Appendix 13 C

PHI Assessment: Shatin Water Treatment Works

EXECUTIVE SUMMARY

Project Background

ERM-Hong Kong Ltd (ERM) has been commissioned to conduct a Hazard Assessment (HA) for the Shatin Water Treatment Works (STWTW) in relation to the construction and operation of the Shatin to Central Link (SCL).

The STWTW is designated as a Potentially Hazardous Installation (PHI) since it stores and handles chlorine in 1 tonne drums. The proposed SCL railway extension and Hin Keng Station will be located within the 1000m Consultation Zone at a distance of about 450 m from the Chlorine Store.

It is expected that during at least part of the SCL construction period, the WTW will undergo a refurbishment which will result in temporary reduction of the chlorine storage and usage levels. These reduced levels are therefore taken into account in the assessment as well as the ultimate storage case.

Methodology

The Study methodology is based on the approved methodology which was used in the HA for STWTW conducted by ERM in 1997-2001. That previous study was part of the Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works study commissioned by WSD and involved the use of wind tunnel and CFD modelling results. The population and WTW operational data have now been updated to reflect the conditions during the SCL construction and operation.

Risk Criteria

As required by the EIA Study Brief No. ESB-191/2008, the individual and societal risks assessed under the study should be compared to the Hong Kong Risk Guidelines (HKRG) as stipulated in Annex 4 of the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM). The criterion that appears most pertinent to this study is the requirement that any scenario with a frequency of occurrence greater than 1 x 10-9 per year (once in one billion years) should not cause more than 1000 fatalities.

Population Data

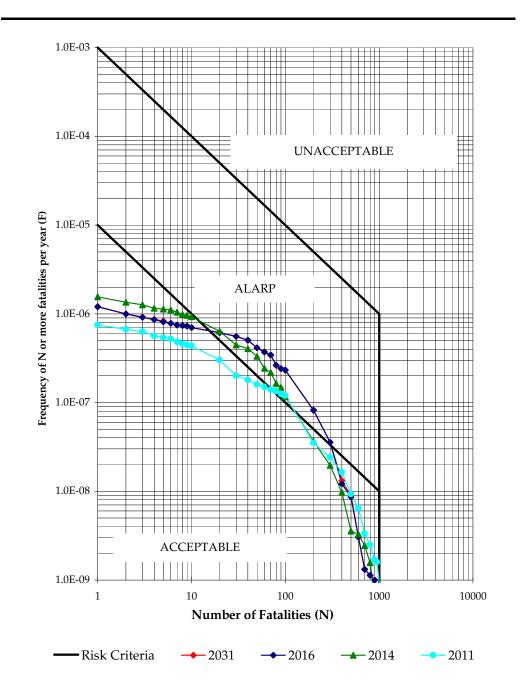
The background population data for the study area within the 1000m WTW Consultation Zone (CZ) as well as the population outside the CZ that may be affected by a chlorine release at WTW have been updated based on the latest available information from the Planning Department, publicly available sources and site surveys.

The SCL population data for the construction and operational phases of the project (number and locations of the construction workers, and expected

numbers of passengers using SCL trains and the HIK Station) are based on information provided by MTRC.

Scenarios Considered, Results and Discussion

The scenarios considered for the construction and operational phases of the project are listed in the table below, together with the corresponding WTW storage and usage data (provided by WSD). The results on the maximum number of fatalities are also shown in *Table 1*.


Table 1: Scenarios Considered in QRA

Scenario	Assessment	
	year	Cł
		at
SCL Construction	2011	
Period 1 (before WTW		
refurbishment starts)		
SCL Construction	2014	
Period 2 (during the		
WTW refurbishment		
between 2012 and 2016)		
SCL Operation Period 1	2016	
(after completion of		
WTW refurbishment)		
SCL Operation Period 2	2031	
(increase in SCL		
patronage and		
surrounding		
population growth		
taken into account)		
Note (1): if necessary, the	period for w	hicł
agreed between MTR and	d WSD after tl	he d
SCL construction workfo		
The Casistal Disk rea		

The Societal Risk results for all scenarios fall in the "ALARP" region of the HKRG. The risks to the SCL population alone (considering HIK Station and the train populations) lie within the "Acceptable" region. The FN curves are illustrated in Figure 1 below.

Maximum Chlorine Storage It WTW (tonnes)	Weighted Average Chlorine Storage Time Distribution Assumed in the QRA (tonnes, % of time)	Average Chlorine Usage at WTW (tonnes per year)
221	203 (10%) ¹ 183 (80%) 158 (10%)	896
158	158 (100%)	642
190	190 (20%) 150 (80%)	761
190	190 (20%) 150 (80%)	761

nich WSD will maintain this time distribution will be ne details of the SCL construction programme and the on plan<u>are</u> known

The main contributors to the risks causing large numbers of fatalities are catastrophic events such as earthquakes and plane crashes. These lead to the collapse of the store building and multiple chlorine drum ruptures.

It may be noted that the 2001 STWTW QRA predicted the societal risk within the ALARP region of the HKRG, but very close to the 1000 fatalities criterion. Any increase in population due to natural growth or any new development including transient construction workforce might therefore be expected to result in exceedance of the HKRG criteria (ie N>1000).

ERM-Hong Kong, Limited

Nevertheless, societal risk levels for all scenarios studied have N<1000. This is due to the lower chlorine storage and use anticipated during and after the WTW refurbishment. For the possible SCL construction period before the WTW refurbishment begins, WSD has agreed to maintain the chlorine storage time distribution that will not lead to an exceedance of the N<1000 criterion.

The individual risk levels are low and in compliance with HKRG.

Mitigation

Mitigation measures were considered, however following a formal costbenefit analysis all were deemed not practicable. Nevertheless it is recommended that adequate emergency response/evacuation plans for the SCL works area and the future Hin Keng Station staff and passengers are established and emergency training/drills for all relevant MTR personnel conducted at regular intervals. Installation of on-site gas monitors is also recommended.

	CONTENTS	
	EXECUTIVE SUMMARY	
1		1
1	INTRODUCTION	1
1.1	Project Background	1
1.2	PURPOSE OF THE HAZARD ASSESSMENT	1
1.3	PREVIOUS QRA STUDY FOR SHATIN WTW	5
1.4	STRUCTURE OF THE REPORT	6
2	DESCRIPTION OF SHATIN WTW AND THE SCL CONSTRUCTION	ON AND
	OPERATION AREAS	8
2.1	DESCRIPTION OF SHATIN WTW	8
2.2	SHATIN TO CENTRAL LINK (SCL)	14
2.3	SCENARIOS CONSIDERED IN THE QRA	14
2.4	METEOROLOGICAL CONDITIONS	16
2.5	POPULATION DATA	18
3	HAZARD IDENTIFICATION	38
3.1	HAZARDOUS CHARACTERISTICS OF CHLORINE	38
3.2	Review of Past Incidents	39
3.3	HAZARD AND OPERABILITY STUDY	39
3.4	CHARACTERISATION OF CHLORINE RELEASE SCENARIOS	44
3.5	HAZARDS RELATED TO THE WTW REFURBISHMENT WORKS	47
3.6	HAZARDS ASSOCIATED WITH LIQUID OXYGEN	48
4	CONSEQUENCE ANALYSIS	50
4.1	Methodology	50
4.2	CONSEQUENCE ANALYSIS RESULTS	54
5	RATIONALISATION OF CHLORINE RELEASE SCENARIOS AN	
	ESTIMATION OF SCENARIO FREQUENCIES	63
5.1	RATIONALISATION OF CHLORINE RELEASE SCENARIOS	63
5.2	Frequency Estimation	68
6	QUANTITATIVE RISK ASSESSMENT	71
6.1	RISK ASSESSMENT METHODOLOGY	71
6.2	Risk Criteria	71
6.3	QRA RESULTS	72
7	SELECTION OF EFFECTIVE RISK MITIGATION	83

Introdu	CTION	83
Identific	ATION OF MITIGATING OPTIONS	83
OPTION 1	REDUCING THE NUMBER OF CHLORINE DRUMS IN STORAGE	84
OPTION 2	: Improvements to Chlorine Store	84
OPTION 3	PROTECTING THE RAILWAY CONSTRUCTION WORKERS	85
OPTION 4	PROTECTING SCL STAFF AND PASSENGERS	86
Cost Ben	EFIT ANALYSIS	86
Discussio	DN	89
CONCLU	SIONS AND RECOMMENDATIONS	90
REFEREN	NCES	91
Annex A	DRIFT Flat Terrain Dispersion Modelling	
Annex B	Wind Tunnel Test Results for Shatin WTW	
Annex C	CFD Modelling Results for Shatin WTW and Tai Po Tau WI	ΓW
Annex D	Application of Chlorine Dispersion Modelling in QRA	
Annex E	Chlorine Cloud Height Dispersion Predictions	
Annex F	Definition of Time Periods and Population Scaling Factors	

7.1

7.2 7.3 7.4 7.5 7.6 7.7 7.8

8

9

Annex F Definition of Time Periods and Population Scaling Factors Annex G Seismic Hazard Assessment

ERM-Hong Kong Ltd (ERM) has been commissioned to conduct a Hazard Assessment (HA) for the Shatin Water Treatment Works (STWTW) in connection with the construction and operation of the Shatin to Central Link (SCL).

The STWTW is designated as a Potentially Hazardous Installation (PHI) owing to its use and storage of chlorine in 1 tonne drums. The proposed SCL railway extension and Hin Keng Station will be located within the 1000m Consultation Zone of the Chlorine Store of the STWTW and therefore a hazard assessment is required. This Report presents the results of the Hazard Assessment.

1.1 **PROJECT BACKGROUND**

SCL consists of two sections; the Tai Wai to Hung Hom Section and the Cross Harbour Section. The Tai Wai to Hung Hom Section will be an extension of the Ma On Shan Line from Tai Wai Station to Hung Hom Station. The cross harbour section will extend from the existing East Rail Line from Hung Hom to Admiralty with one intermediate station at Exhibition.

The development and operation of the Project will have the following components:

- A railway of approximately 11km long from Tai Wai to Hung Hom;
- Six railway stations at Diamond Hill, Kai Tak, To Kwa Wan, Ma Tau Wai, Ho Man Tin and Hung Hom, with a future station at Hin Keng. Diamond Hill, Ho Man Tin and Hung Hom will become integrated interchange stations with the existing Kwun Tong Line, the proposed Kwun Tong Line Extension and the future Cross Harbour Section of the SCL, respectively;
- A railway depot at the former Tai Hom Village at Diamond Hill; and
- Associated works including storage of explosives, supporting facilities and infrastructures for the construction and operation of the Project.

1.2 PURPOSE OF THE HAZARD ASSESSMENT

Under Section 5(7) of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499) (EIAO), the Director of Environmental Protection (Director) from the Environmental Protection Department (EPD) has issued a Study Brief No. ESB-191/2008 for this project (EIA Study Brief). Section 3.4.5 of the EIA Study Brief specifies Hazard to Life assessments to be conducted for the Project. Part of this requirement addresses risks in relation to Shatin WTW. For completeness, these requirements are repeated in *Table 1.1*.

Table 1.1 EIA Study Brief - Hazard to Life Requirement

3.4.5 Hazard to Life

3.4.5.4 Treatment Works.

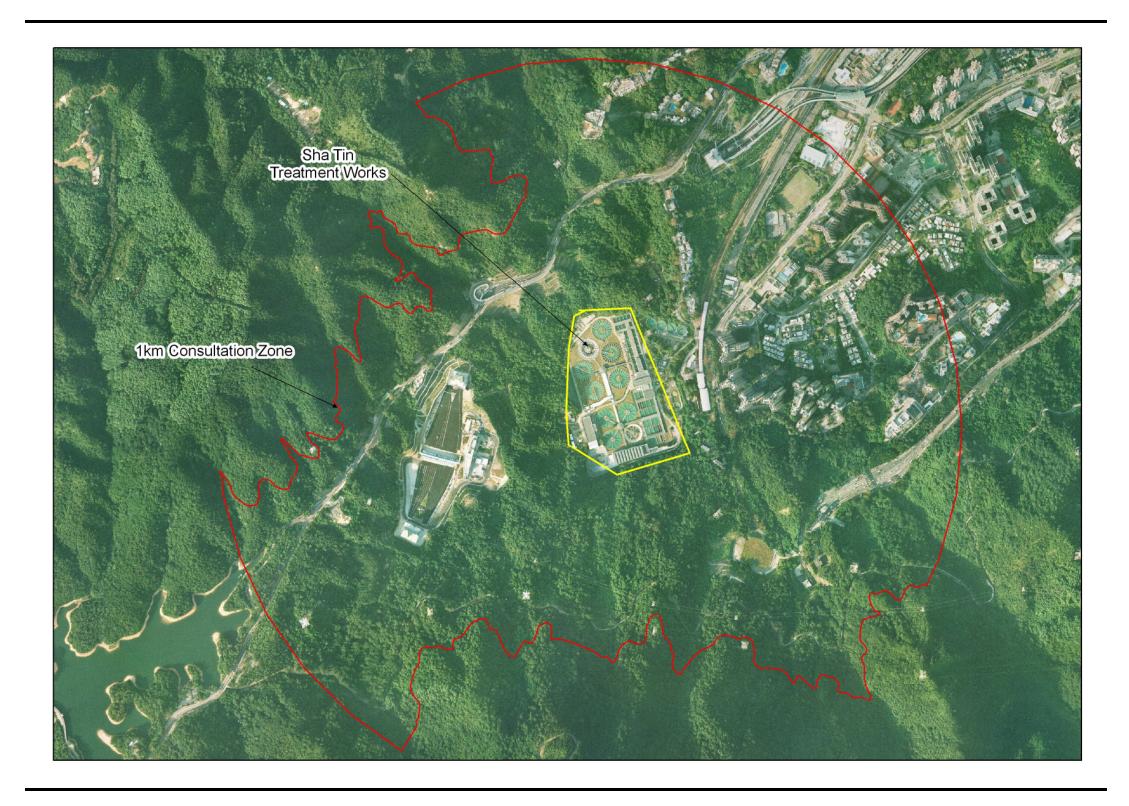
The hazard assessment shall include the following :

population risks in both individual and societal terms;

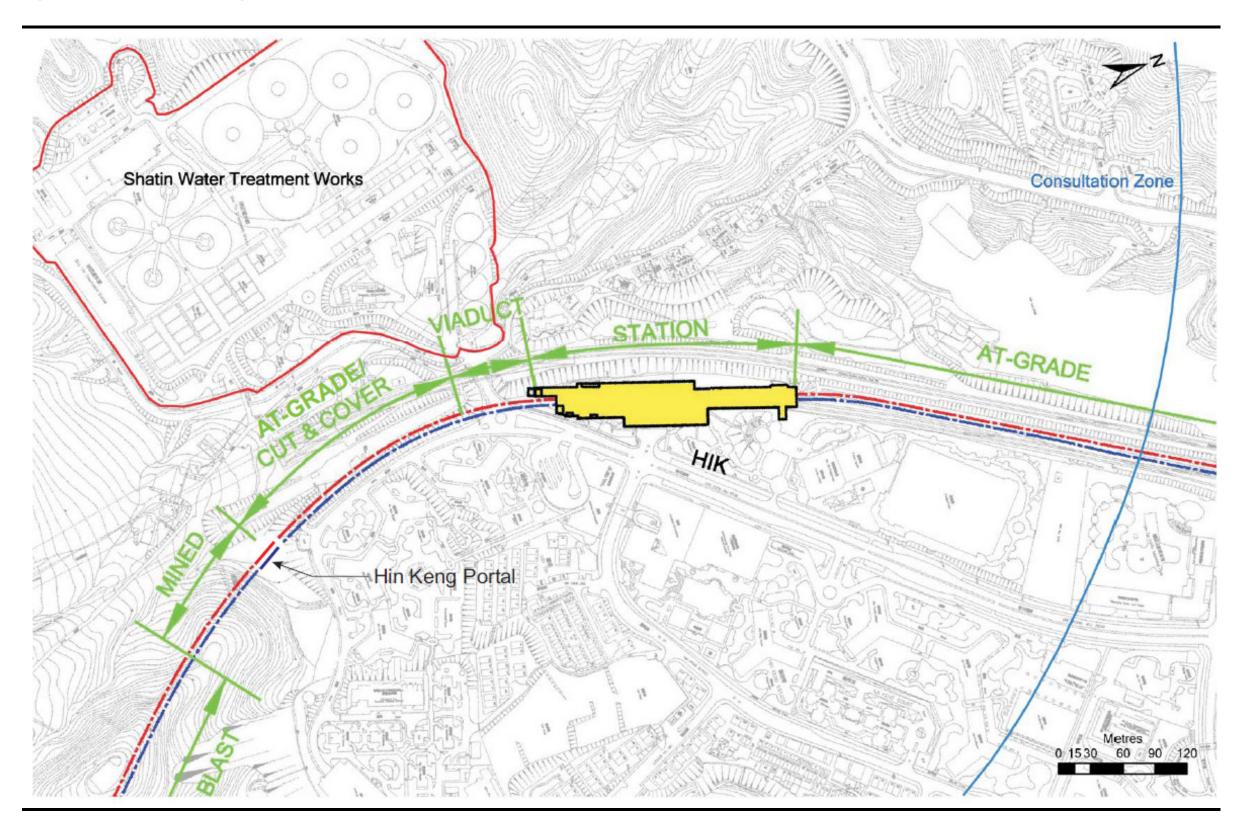
life stipulated in Annex 4 of the TM; and

(iv) Identify and assess practicable and cost-effective risk mitigation measures.

The methodology to be used in the hazard assessment should be consistent with previous studies having similar issues (e.g. "Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works" commissioned by Water Supplies Department).


The STWTW is designated as a Potentially Hazardous Installation (PHI) owing to its use and storage of chlorine in 1 tonne drums. A Consultation Zone (CZ), centred at the chlorine store, of 1000 m radius but excluding the areas located at over 150m above sea level is established around the WTW. Part of the railway alignment and the future station at Hin Keng will be located within the CZ (*Figures 1.1, 1.2*).

Societal risks from a PHI depends on surrounding population levels. Consultation Zones are established around PHIs to control developments in the vicinity and prevent population accumulating to the point where societal risks may become unacceptable. Any new development within the Consultation Zone of a PHI that may lead to an increase in population requires a hazard assessment to be conducted to ensure that the societal risks remain acceptable. The purpose of this assessment, therefore, is to assess risks from STWTW to the surrounding population including the construction and operational phases of SCL and Hin Keng Station. The criteria and guidelines for assessing Hazard to Life are stated in Annexes 4 and 22 of the Technical Memorandum (EIAO-TM Criteria).


The Applicant shall carry out hazard assessment to evaluate potential hazard to life during construction and operation stages of the Project due to Sha Tin Water

- (i) Identify hazardous scenarios associated with the on-site transport, storage and use of chlorine at Sha Tin Water Treatment Works and then determine a set of relevant scenarios to be included in a Quantitative Risk Assessment (ORA);
- (ii) Execute a QRA of the set of hazardous scenarios determined in (i), expressing
- (iii) Compare individual and societal risks with the criteria for evaluating hazard to

Figure 1.1 Consultation Zone of STWTW

Figure 1.2Hin Keng Station and SCL Alignment

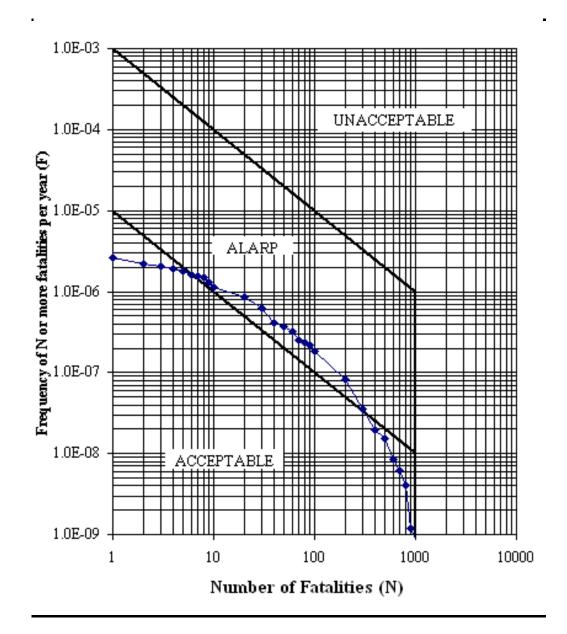
1.3 PREVIOUS QRA STUDY FOR SHATIN WTW

In 1997, the Water Supplies Department (WSD) commissioned ERM to carry out a Reassessment of Chlorine Hazards for Eight Existing Water Treatment Works. The WTWs considered were:

- Au Tau WTW;
- Pak Kong WTW;
- Shatin WTW;
- Sheung Shui WTW;
- Tai Po Tau WTW;
- Tsuen Wan WTW;
- Tuen Mun WTW; and
- Yau Kom Tau WTW.

The approved methodology for the above QRA studies is detailed in the 8 WTW Study Methodology Report (ERM, 1997). Results for the STWTW (ERM, 2001) showed that:

- The risk was in the 'ALARP region'; and
- The maximum number N of fatalities was assessed at over 900.


This is illustrated in the FN chart shown in *Figure 1.3*.

The previous QRA study for STWTW (ERM, 2001) was based on the following operational data:

- 223 tonnes of chlorine storage;
- 7.5 mg/l dosing giving a consumption of 3359 tonnes/year; and
- Population based on 1997 data, projected to year 2006.

The ERM (2001) study methodology has been consistently adopted for the current assessment, as specified in the EIA study brief (*Table 1.1*).

A13C-5

1.4	STRUCTURE OF THE REPORT
	The rest of this report is divided into
	• <i>Section</i> 2 provides a description of operation of the SCL project as reproject and surrounding population from the WTW;
	• <i>Section 3</i> presents the results of th

- *Section 4* presents the results of the consequence analysis;
- frequencies;

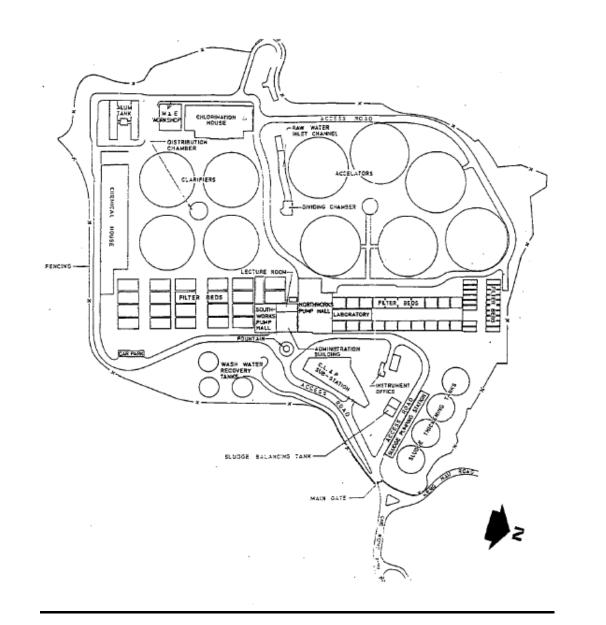
to the following sections:

of the Shatin WTW, the construction and elevant for this study, and details of the tion that may be subject to chlorine hazards

he hazard identification;

• Section 5 presents the chlorine release scenarios and estimation of scenario

• <i>Section 6</i> presents the risk results;	2	DESCRIPTION OF SHATIN WTW A
Section 7 discusses possible risk mitigation measures;		
• <i>Section 8</i> presents the conclusions and recommendations of the study; and		
• <i>Section 9</i> provides the list of references used in this study.	2.1	DESCRIPTION OF SHATIN WTW
	2.1.1	Location


Shatin WTW is located at the head of a valley on Keng Hau Road, Hin Tin to the south-west of Shatin new town. The site is approximately rectangular in shape and measures 400m north to south by 300m east to west. The treatment plant comprises a South Works and a North Works. The chlorination house is located in the south-west corner of the site. The site location and the site layout plan are shown in *Figures 2.1* and 2.2.

The site is approached from Keng Hau Road or Che Kung Miu Road. The existing on-site access road to the chlorination house follows the east, south and south west edges of the site (Figure 2.3). Chlorine trucks must first drive past the administration building, chemical house, alum tanks and M&E Workshop before reaching the store.

Figure 2.1 Shatin WTW and its Surroundings

AND THE SCL CONSTRUCTION AND

2.1.2 *Operations*

Delivery, Storage and Handling of Chlorine

Chlorine is delivered to Shatin WTW in batches of up to 6 x 1 tonne drums. Unloading takes place inside the chlorine store, with the doors closed, in a designated truck unloading bay. The movement of drums within the storage area and 'drive-through' unloading bay is carried out using a hoist/monorail system with a purpose-built lifting beam. Prior to usage, the drums are stored on cradles within the chlorine storage area.

Chlorination System

The draw-off units comprise of pairs of drums, one drum on duty, the other serving as standby. The number of drums on line is subject to the raw water quality. Changeover panels automatically change the draw-off from duty to standby when the draw-off pressure falls below a preset level. The changeover is achieved by electrically-actuated isolating valves provided for each drum.

Liquid chlorine is drawn from the 1 tonne drums and is passed to the evaporators for conversion into the gaseous state. The gaseous chlorine passes through the chlorinators and dissolves in water at ejectors to form a chlorinated water solution for feeding into the bulk water stream during the treatment process.

The chlorinators are of vacuum venturi type and thus the section of line between the regulator and the chlorinator is at negative pressure. This reduces the chances of chlorine leaks. Double non return valves are provided within the chlorinator units.

Ventilation System

The chlorine drum storage area, evaporator and chlorinator rooms are normally ventilated via a supply of fresh air at high level which is extracted at low level. On detection of chlorine levels above 3 ppm there are visual and audible alarms, the ventilation fans stop and the normally-open motorised louvres shut.

Chlorine Scrubbing System

An emergency chlorine scrubbing system is installed to remove any leaked chlorine in the chlorine handling and storage areas. The system is a packed tower utilising sodium hydroxide as the neutralising agent. The plant and equipment are installed in a separate scrubber room.

On detection of chlorine at a concentration of 3 ppm or above in the chlorine handling or storage areas, the scrubbing system will activate automatically. The air/chlorine mixture in the affected areas is drawn into the scrubber by the scrubber fan via ducting connected to the normal ventilation system. An electrically-operated isolating damper is provided in the scrubber intake which opens automatically when the scrubber fan starts up.

The scrubber system is normally set at auto standby mode for discharge of the treated air to atmosphere at roof level (chlorine concentration below 3 ppm). If the chlorine concentration rises above 3 ppm, the discharge to atmosphere will be stopped and air will be recycled back to the drum storage area for further treatment. In case of chlorine concentrations above 15 ppm, the whole scrubbing operation will be stopped (by stopping the scrubber fan) and the plant operator will check the proper functioning of the scrubber system. The control for recycling or discharging air to atmosphere is effected by means of a pair of electrically operated change-over dampers which can also be manually

controlled from the local control panel. A continuous chlorine monitor is installed at a point downstream of the packed tower and upstream of the vent/recycle changeover dampers. It has a high level alarm which sounds at both the local control panel and in the main control room when the chlorine concentration exceeds the pre-set level.

The sodium hydroxide solution is of 10-12% concentration and is held in a solution tank beneath the packed tower. When the system is in operation, the sodium hydroxide is recirculated by a pump to the distributor at the top of the packed tower to provide adequate irrigation to the packing. Sufficient solution is provided to absorb 1 tonne of chlorine. A mist eliminator is provided at the top of the packed tower to prevent entrainment of liquid into the treated air.

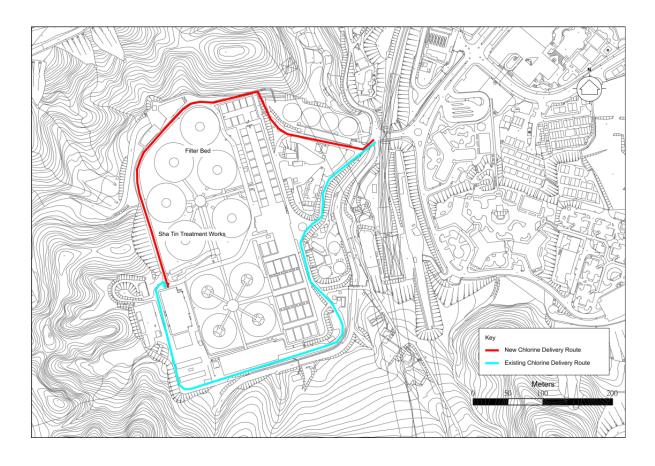
The scrubber is provided with the following additional features: a sampling point, a top entry mixer (for preparation the sodium hydroxide solution), a direct reading transparent level gauge, an inspection window and level indication with high and low level alarms and a temperature measurement device for monitoring the temperature of caustic solution during the preparation process.

Emergency Repair/Stoppage Kit for Chlorine Spillage/Leakage

According to Fire Services Department's fire safety requirements, an emergency repair/stoppage kit for chlorine spillage/leakage is provided and maintained in good working condition at all times for use by the trained persons and stowed adjacent to but outside the store/plant room. Regular drills are conducted to train personnel on the proper use of the breathing apparatus and protective clothing.

WTW Refurbishment

Water Supplies Department is planning a major ST WTW refurbishment programme, which is scheduled to commence in mid-2012 tentatively. During the refurbishment, since parts of the plant will have to be temporarily shut down, the water throughput will decrease and accordingly, chlorine storage and usage levels will be significantly reduced. Following completion of the refurbishment at the end of 2016, water throughput will return to 1,227 Mld.


Chlorine dosage levels were assumed at 7.5 mg/l in ERM (2001) but current dosing levels are below 2 mg/l. This will be further reduced to 1.7 mg/l following the refurbishment, due to the introduction of new treatment technology. This will result in a permanent reduction in chlorine usage once refurbishment is completed in 2016. Details are presented in Table 2.1.

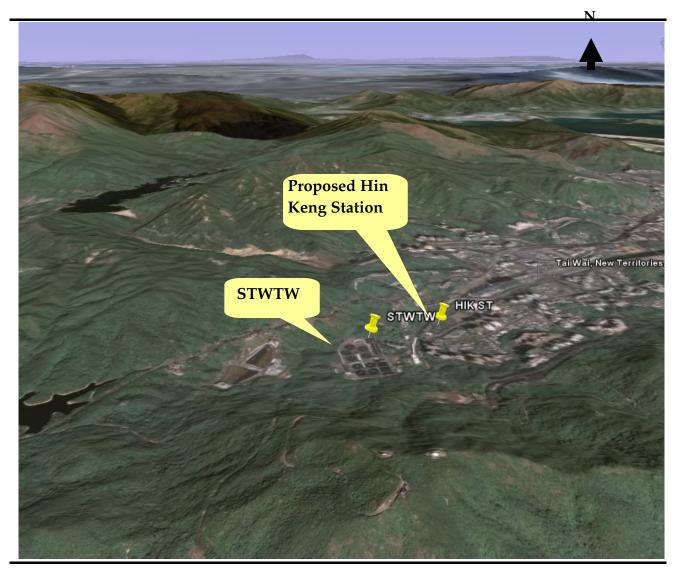
Chlorine truck supplies to the chlorine store will be diverted during the refurbishment period from the existing route around the south side of the site to an alternative route. According to the information provided by WSD, the most likely alternative route will take chlorine trucks around the north side of the site (Figure 2.3) to avoid the construction activities. Note however, that this alternative chlorine delivery route, which is also expected to be permanently used after the WTW refurbishment is completed, is subject to detailed design and assessment/scrutiny by the prospective D&C consultants and approval from relevant government departments such as FSD.

The exact number of refurbishment construction workers on-site will depend on a number of factors such as the actual scope of works, construction sequence etc, to be scrutinized by the prospective D&C consultants and so it is not known at the moment. Based on the preliminary WSD information the maximum number of construction workers is estimated at 110 persons.

Route to be used during and after the Refurbishment

Figure 2.3

Basic Operating Data for Shatin WTW


The operating data for the WTW at different time periods are listed in Table 2.1, based on the information provided by WSD.

ERM-Hong Kong, Limited

Existing Chlorine Delivery Route at STWTW and the Tentative Alternative

Shatin WTW is located at 30m above the Principal Datum (PD) and is surrounded on three sides by hills rising to approximately 300m. To the northeast the land slopes gently downwards towards the town of Shatin. The topography is of particular relevance; since chlorine is a dense gas the spread of chlorine cloud from any large release would be restricted by the neighbouring hills and directed towards the populated areas. The topography of the site is shown in *Figure 2.4*.

Figure 2.4 Shatin WTW and Topography (not to scale)

2.2

SHATIN TO CENTRAL LINK (SCL)

Station to Hung Hom Station.

Of interest to this QRA is the proposed Hin Keng Station as well as the SCL alignment and construction works areas within the Consultation Zone of STWTW. The proposed location of the Hin Keng Station and the SCL alignment in relation to the STWTW are shown in *Figure 1.2*.

The proposed Hin Keng Station construction site is located approximately 450m to the north-east of Shatin WTW chlorine store, but only some 90 m from the WTW site entrance and its access road which is used by the trucks delivering chlorine to the WTW. Similarly, the SCL tunnel entrance work area is located about 375 m from the chlorine store and 150 m from the WTW access road. The exact location of the construction works office and yard is not known at the moment; for the purpose of this assessment it was assumed that they will be located close to the NW corner of the Hin Keng Station area.

According to the information provided by MTRC, major construction activities in the area under consideration in this QRA will commence by mid-2012 to be completed by the end of 2016. Note that this period mostly coincides with the STWTW refurbishment works, although, depending on the future detailed schedules of WSD and MTRC and the possibility of programme slippages, the SCL construction may begin before or after the start of WTW refurbishment. A worst-case scenario is therefore considered in the assessment, namely that of SCL construction beginning before WTW refurbishment. This gives the worst case as chlorine storage and usage levels are still high at this time and SCL construction will introduce more population (workers) in the vicinity.

2.3

SCENARIOS CONSIDERED IN THE QRA

Based on the SCL construction and WTW refurbishment schedules described above, four scenarios have been considered in the QRA including two possible stages of the construction phase and two periods of the SCL operation. The main assumptions used for each scenario, based on WTW operational data provided by WSD, are listed in *Table 6.1*. The chlorine storage levels and their time distribution for the future scenarios have been agreed with WSD. Details of the population data for each assessment year are provided in Table 2.3.

As mentioned earlier, Scenario 1 is included to cover the possibility that SCL construction may begin before WTW refurbishment. Chlorine usage is still high during this scenario.

ERM-Hong Kong, Limited

The proposed SCL railway will extend the Ma On Shan Line from Tai Wai

The second scenario considers the period when both SCL construction and WTW refurbishment are taking place simultaneously. Chlorine usage is lower during this period since the WTW will be operating at reduced capacity, but population levels are higher with both SCL and WTW workers present.

The third and fourth scenarios consider SCL operational phases after completion of WTW refurbishment. The year 2016 is considered for immediately following refurbishment, and a future year 2031 to allow for possible population growth.

Table 2.1Scenarios Considered in QRA

Scenario	Assessment year	Maximum Chlorine Storage at WTW (tonnes)	Weighted Average Chlorine Storage Time Distribution Assumed in the QRA (tonnes, % of time)	Average Chlorine Usage at WTW (tonnes per year)
Scenario 1: SCL Construction (before WTW refurbishment starts) ¹	2011	221	203 (10%) ¹ 183 (80%) 158 (10%)	896
Scenario 2: Simultaneous SCL Construction and WTW refurbishment	2014	158	158 (100%)	642
Scenario 3: SCL Operation Period 1 (after completion of WTW refurbishment)	2016	190	190 (20%) 150 (80%)	761
Scenario4: SCL Operation Period 2 (surrounding population growth taken into account)	2031	190	190 (20%) 150 (80%)	761
Assumed in 2001 QRA	2006	223	223 (100%)	3359

(1): If necessary, the period for which WSD will maintain this time distribution will be agreed between MTRC and WSD after the details of the SCL construction programme and the SCL construction workforce mobilization plan are known.

2.4

METEOROLOGICAL CONDITIONS

For the sake of consistency, this study uses the same meteorological data set as was used in the previous QRA (ERM, 2001), ie the data recorded at the Shatin weather station in the year 1996 by the Hong Kong Observatory. The weather data have been rationalised into different combinations of wind direction, speed and atmospheric stability class. The probabilities of occurrence of each combination during day and night are presented in *Table 2.2*. The Pasquill-Gifford stability classes range from A through F. Class A represents extremely unstable conditions which typically occur under conditions of strong daytime insolation. Class F on the other hand represents stable conditions which typically arise on clear nights with little wind. Turbulent mixing, which affects the dispersion of a chlorine cloud, increases through the stability class range from F to A.

		DAY Pro	DAY Probability			NIGHT P	NIGHT Probability		
Direction	Wind Speed (m/s):	2.3	1.5	3.5	1.5	1.5	3.5	1.5	TOTAL
	Atmospheric Stability :	в	D	D	ц	D	D	ц	
Z		0.0509	0.0380	0.0120	0.0153	0.0224	0.0045	0.0761	0.2191
NE		0.0458	0.0228	0.0253	0.0149	0.0107	0.0239	0.0529	0.1963
Е		0.0450	0.0200	0.0299	0.0115	0.0116	0.0173	0.0774	0.2126
SE		0.0146	0.0065	0.0059	0.0027	0.0023	0.0029	0.0233	0.0581
S		0.0171	0.0106	0.0125	0.0042	0.0029	0.0050	0.0346	0.0868
SW		0.0247	0.0113	0.0429	0.0050	0.0034	0.0103	0.0528	0.1504
W		0.0023	0.0020	0.0004	0.0017	0.0018	0.0000	0.0139	0.0220
NW		0.0038	0.0048	0.0059	0.0039	0.0036	0.0032	0.0294	0.0546
Total		0.2042	0.1160	0.1346	0.0590	0.0587	0.0671	0.3604	1

 Table 2.2
 Meteorological Data for Shatin Water Treatment Works

ERM-Hong Kong, Limited

A13C-17

2.5 **POPULATION DATA**

2.5.1 General Approach

The approach to the population data used in this study for the total risk assessment is as per the 2001 QRA for Shatin WTW (ERM, 2001). The population data from the 2001 study were updated to reflect the current situation (the "base population data") and the current projections to the assessment years for construction and operational phases of the project. Note that this approach (retaining the basic structure of the 2001 QRA data, but updating it based on the latest information is consistent with other recent studies assessing chlorine hazards in vicinity of WTWs, such as the approved EIA on Tsuen Wan Bypass, widening of Tsuen Wan Road between Tsuen Tsing Interchange and Kwai Tsing Interchange, and associated junction improvement works (EIA-152/2008).

2.5.2 Sources of Information

MTRC

Railway-specific data such as SCL train and station loadings for 2016 (Scenario 3) and 2031 (Scenario 4) operational phases, population of the Tai Wai MTR Depot, number and locations of the SCL construction workers etc. were provided by MTRC.

WSD

Population data for the STWTW staff quarters as well as the number of STWTW refurbishment workers were provided by WSD.

PlanD

The Planning Department provided the GIS coverage of Tertiary Planning Units (TPUs) further divided into Street Blocks (SB). Detailed TPU-based population data and their projections to the future are publicly available from the PlanD website.

The Territory Population and Employment Data Matrix (TPEDM) 2006-based population projections for different planning areas (PVS) were also obtained from PlanD. These were used to obtain population projections up to the year 2031 and the average household size for different areas.

Centamap

Hong Kong conducts a population census once every ten years and a bycensus in the middle of the intercensal period. By-census differs from a full census in not having a complete headcount but enquiring on the detailed characteristics of the population on the basis of a large sample. Census data is presented on Centamap website¹ for most of building groups. Where available, population data from the 2006 by-census was used in this study.

If the population data was not directly available, data on the number of floors and units of the residential developments were obtained from the Centamap website and, together with the TPEDM data on average household size, were used to estimate the current population of these developments. The number of units was, however, not available for village housing and public housing estates.

The Centamap website was also used to verify the locations and/or further existence of the population units assumed in the 2001 QRA and to check for any new developments that may have been constructed following that assessment.

Leisure and Cultural Services Department

Daily attendance data at Hin Tin Swimming Pool the period of December 2008 to November 2009 and the highest and average daily usage data for the Hin Tin Playground were obtained from LCSD.

Transport Department

Most of the road populations were estimated based on the Annual Average Daily Traffic (AADT) data from the Transport Department's (TD) Annual Traffic Census 2007².

Since the traffic data for the newly opened Route 8 are not included in the 2007 Traffic Census, the recent monthly data for the Tsing Sha Control Area were obtained from TD₃.

Site Survey

A site survey covering a large part of the area within the 1 km CZ considered in the study was conducted by ERM personnel on 28 April 2009. Its main objectives were:

¹ http://www.centamap.com/gc/home.aspx

http://www.td.gov.hk/publications_and_press_releases/publications/free_publications/the_annual_traffic_census_2007 /index.htm

http://www.td.gov.hk/en/transport_in_hong_kong/transport_figures/monthly_traffic_and_transport_di gest/index.html

ERM-Hong Kong, Limited

- Estimation of the numbers of floors and units for the public housing estates for which such information was not available from the Centamap website;
- Verification of some population numbers estimated during the ERM survey of 6 November 1997;
- Identification of any new developments under construction and/or not included in the Centamap information;
- Verification of the locations and/or further existence of some population units assumed in the 2001 QRA;
- Vehicle count on the Che Kung Miu Road and Hin Keng Street.

An additional site survey of areas around the SCL project site was conducted in July 2011.

Education Bureau Data

For most kindergartens, primary and secondary schools and colleges, data from the Education Bureau website1 was used. This included the number of classrooms and the capacity of each classroom.

Telephone Interviews

For cases where population data were not available from publicly available data sources, the required information was obtained by telephone interviews and e-mail inquiries.

2001 STWTW QRA Report

For a few cases where the actual population data could not be verified using any of the above sources of information, the 2006 projections of the 2001 STWTW QRA Report (ERM,2001) were used in this study and further projected to the assessment years considered in this study. Details are provided in Section 2.5.4 and Table 2.3.

The percentages of the maximum population present (occupancy) at different times of the day and the indoor/outdoor fractions for the total unit population were also mainly based on those used in the 2001 STWTW QRA.

2.5.3

Population Units

All the population units defined in the form of GIS-based polygons, points and lines that were included in the 2001 QRA have been retained for this study; however, the extent of the Hin Tin Playground (polygon B) has been reduced to make way for the planned Hin Keng Station. A number of new units have also been created. The full list of population units considered is provided in Table 2.3 and their locations shown in Figure 2.5. The population units within the 1 km Consultation Zone of the WTW are referenced with letters while those outside the CZ are denoted by numbers.

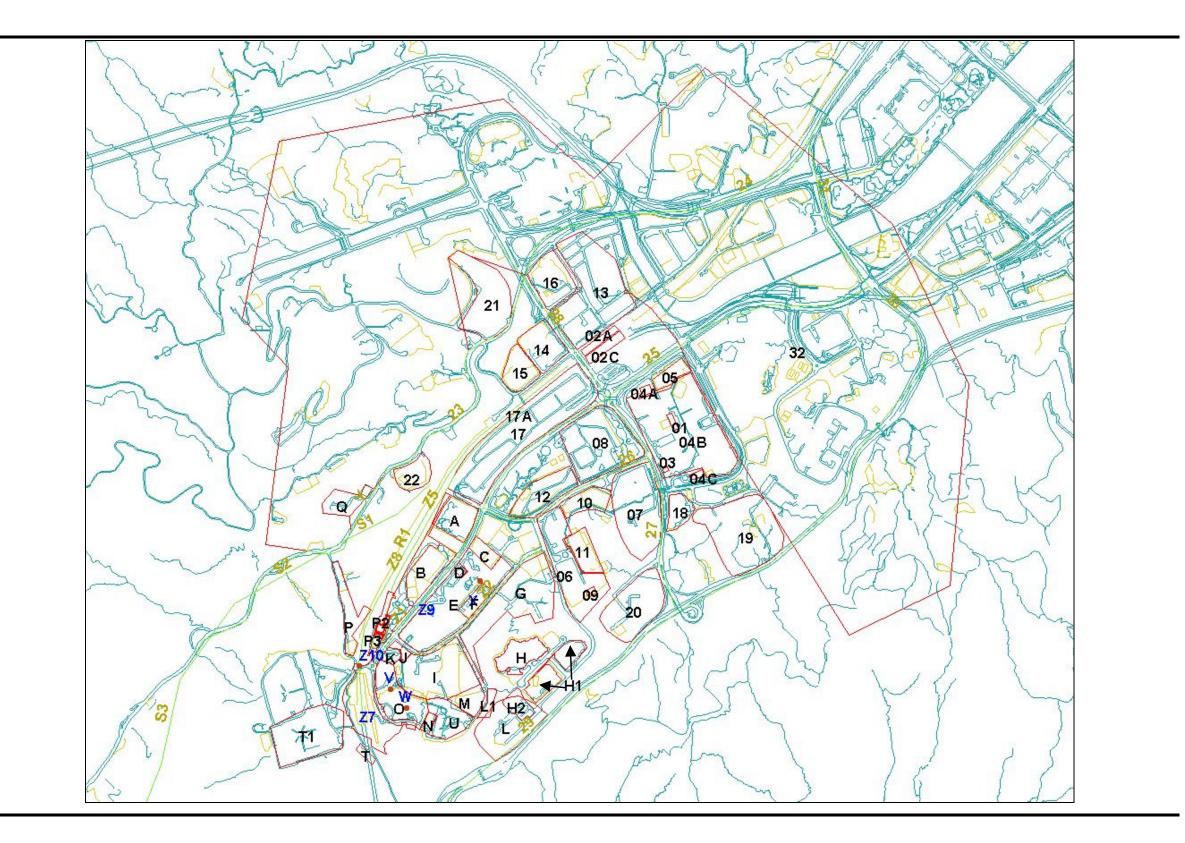
The new units introduced for the purposes of this study include:

- Line unit Z5: SCL train (moving, operational phase only);
- Polygon unit Z7: Tunnel portal (construction phase only);
- Line unit Z8: SCL track construction (construction phase only);
- Polygon unit T1: WTW refurbishment workers (Scenario 2 only);
- Area;
- north-west of the Union Hospital;
- Polygon unit H1 Julimount Garden;
- Polygon unit H2 Hill Paramount; and

¹ http://www.edb.gov.hk/index.aspx?nodeID=163&langno=1

• Polygon units B1 and B2: Hin Tin Playground which in the 2001 assessment was represented by Polygon unit B for the purposes of the present assessment has been split into polygons B1 and B2, representing the main playground and the tennis court and football field areas, respectively;

 Polygon unit Z6: Hin Keng (HIK) Station works area (construction phase); HIK Station and a stationary SCL train at the station (operational phase);


• Polygon unit Z9: construction yard and offices (construction phase only);

Polygon unit 17A: new residential development in the Tai Wai MTR Depot

• Polygon unit L1: Proposed residential development at Hin Tin St, to the

Point Unit Z10: Keng Hau Rd underpass below the SCL alignment.

Figure 2.5Population Units used in QRA

2.5.4 Processing Population Data

This *Section* outlines the procedures used in obtaining the population numbers for the construction and operational phases assessment years from the general data described above.

MTR Trains (items 2B, R1, Z5, Z6)

Peak hour and daily total passenger numbers were provided by MTRC. 28 trains per hour in each direction are expected for the peak period. Percentages for the off-peak periods were determined based on the ERM (2001) QRA study methodology taking into account the difference of the daily and peak values in the recent MTRC data.

For the moving trains (items R1 and Z5), following the ERM (2001) QRA methodology, the train population was evenly distributed along the respective length of the track, additionally introducing a 0.1 protection factor due to the limited exposure duration.

MTR Stations (items 2A, 2C, Z6)

Peak hour and daily total numbers of passengers boarding or alighting from a train at each station were provided by MTRC. It has been assumed that each of these passengers spends 5 minutes at the Tai Wai station.

For the new Hin Keng Station (*Figure 2.6*) situated near the WTW, the average time spent by each passenger in the station has been determined by calculating:

- the time needed to go from the train to the station exit for alighting passengers, assuming 4 km/h walking speed; and
- the time needed to go from the station entrance to the train platform, with an average of 1 minute waiting added for the people boarding the train.

According to the MTR predictions, 7000 passengers are expected to use the Hin Keng Station during peak hours in both 2016 and 2031. It is assumed that on average, 3500 of these passengers will be boarding a train each hour and 3500 alighting. The walking distance to/from the platform is estimated at 180 m resulting in 2.69 min walking time. The peak hour station population walking to/from the train can then be estimated at 7000*2.69/60 = 314, while the number of people waiting at the platform is 3500*1/60 = 58, giving a station total of 314+58 = 372.

The proposed Hin Keng Station will be an open construction, so while following the ERM (2001) approach, the stationary train passengers are considered indoors, the station population is treated as being outdoors in the modelling. On the other hand, it is an elevated structure (platforms at 12 m above the ground) which may collapse in an earthquake leading to fatalities much like any other low rise concrete building. Therefore in the case of an earthquake, the station population (concourse, stairs and platforms) is conservatively treated as outdoor population with regards to exposure to a chlorine cloud but only the earthquake-surviving fraction may be affected. The surviving fraction of the station and stationary train population was computed in the same way as for the population of low-rise reinforced concrete buildings. More details of this approach, which is consistent with ERM (2001) are provided in *Annex G*.

SCL construction areas, MTR Tai Wai Depot, WTW Staff Quarters, WTW refurbishment area (items 17, T, T1, Z6, Z7, Z8, Z9)

Population data for these units were directly adopted from the information provided by MTRC and WSD.

Public Housing Estates and Private Residential Developments

Items 1, 6, 7, 12, 13, 14, 18, 20, E, F, H, H1, O, U

2006 population levels for these units were based on the 2006 by-census data available on the Centamap website.

Item H2

Information on number of units was obtained from the developer website.

Item L1

While exact number of units for this development is not yet known, the probable number of units as well as planned average number of residents per unit was obtained from PlanD.

Items 22, P, Q

2006 population levels estimated for these units were based on the number of units determined from the Centamap website multiplied the 2006 average household size obtained from the TPEDM data for their respective PVSs.

Item 17A

The number of units for the development under construction in the Tai Wai MTR Depot area was not available from Centamap and was roughly estimated during the ERM site survey in April 2009. The future population was estimated based on that number of units and the average household size for the appropriate PVS.

Village Housing (items 8, 19, G, I)

For these villages, the number of units is not available on Centamap and 2006 population levels estimated for these units were therefore based on the number of houses determined from the Centamap website. It was then assumed that the average number of storeys is 3 and that there is 1 unit per storey. The 2006 average household size was obtained from the TPEDM data for their respective PVSs.

Schools, Kindergartens, Hospitals, Homes for the Aged etc (items 3, 4, 5, 9, 10, 11, 15, 16, C, D, L, M, N, V, W, X)

Where available, capacity was taken from the Education Bureau or the Social Welfare Department websites. Populations of units D and W were obtained from telephone interviews. In two cases (units 9 and L), the current information could not be obtained from any of these sources, so data from the 2001 QRA has been used.

All schools considered in this QRA belong to the "whole day" category that has about 190 school days per year. To account for the school closures during the holidays, appropriate time factors have been applied to the F values in all FN pairs involving schools as part of societal risk evaluation.

Item 32

Population of item 32, defined as "Populated area 2-3 km northwest of Shatin WTW" was determined mainly from the by-census and number of unit information available from the Centamap website, supplemented by other data sources outlined above. Following the 2001 QRA, the population was deemed as mostly residential and the average number of floors assumed at 20.

Hin Tin Swimming Pool and Hin Tin Playground (items A, B1, B2)

Population of the Hin Tin Swimming Pool at any given time has been estimated based on the year-long daily attendance figures provided by LCSD and an interview with the pool staff. It has been assumed that each person spends at the pool 1.5 hours on the average and that attendance on weekends is twice as high as on weekdays. Two periods are separately considered in the QRA: summer months (June to September) and the remaining part of the year, with higher attendance and lower proportion of users attributed to the indoor pool during the summer period. The population of Hin Tin Playground, tennis court and football field was based on the average daily attendance for the whole year. Similar to the swimming pool, it has been assumed that each person spends at the playground 1.5 hours on the average and that attendance on weekends is twice as high as on weekdays.

During the construction of Hin Keng Station and SCL alignment, the Playground (unit B1), with the exception of its tennis court and the football field (unit B2), will be converted to the construction work areas (unit Z9). Therefore, only the tennis court and football field population is taken into account for the Construction Phase scenarios.

Similarly, a part of the Hin Tin Playground will be permanently converted to the future Hin Keng Station site; therefore its existing population has been reduced for the 2016 and 2031 assessment years in proportion to the planned area reduction.

Bus Terminus and Commercial Areas (items J, K)

Population of these units has been estimated based on the population data reported in the ERM (2001) study. These data were verified for the purpose of the present study by a site survey on 29 April 2009. As a result, the population of the commercial area J has been significantly increased, while that of the bus terminus decreased, the indoor fraction of the area J population has also been adjusted.

Road Populations (items 23, 24, 25, 26, 27, 28, 29, 30, 31, Y, Z1, Z2, Z10)

Road populations were estimated according to the AADT values obtained from 2007 Annual Traffic Census.

The peak hour population was then established by multiplying the AADT value by a factor of 0.00943 and the length of the road in km. The factor 0.00943 is equal to $0.1 \times 3.3 / 35$ where 0.1 is the assumed fraction of AADT during the peak hour, 3.3 the average number of people per vehicle and 35 the assumed speed in km/hr.

In some cases (items 23, 24, 29, Y) a traffic jam was assumed in one direction during the jammed peak period; the jammed road population was then obtained assuming that each vehicle with 3.3 people occupies on average 6 m of the road.

No AADT data were available for the Che Kung Miu Street and Hin Keng Street (units Z1, Z2). Since the limited-time traffic count undertaken during the April 2009 site survey yielded results lower than those used in the 2001 QRA, the latter, more conservative data were adopted for this study as well.

As no information on the future traffic trends was available for these roads and the examination of past traffic data shows no significant upward traffic trend over recent years, the population numbers as described above were not further projected to the future years.

Estimate of Z10 population was based on site survey conducted in July 2011.

Route 8 Road Populations (items S1, S2, S3)

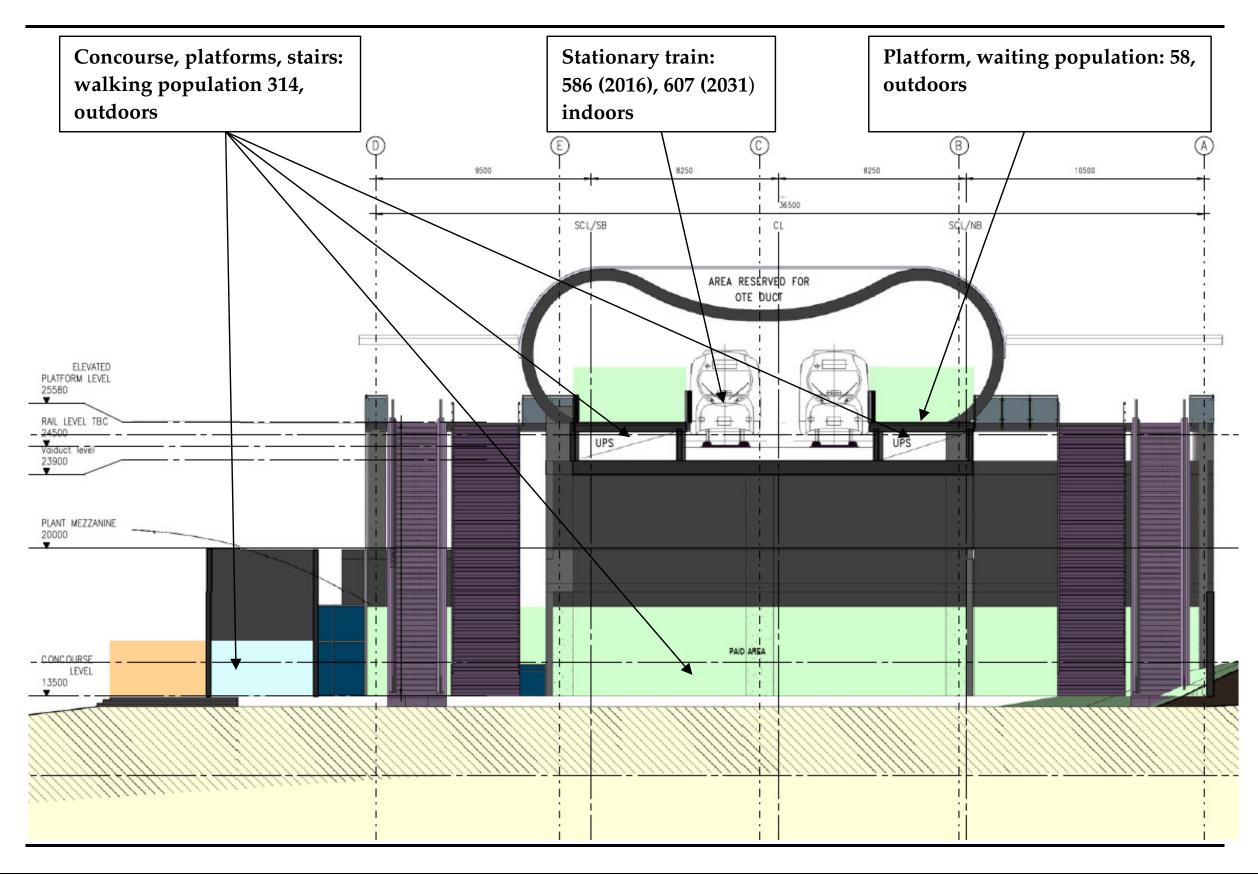
Since the Route 8 AADT data are not available from the 2007 Annual Traffic Census, they have been estimated from the monthly traffic data (from November 2008 to October 2009) provided by Transport Department.

The methodology of estimating population for different time periods is similar to that described above. Similar to items 23, 24, 29, and Y, a traffic jam was assumed in one direction during the jammed peak period for Tsing Sha Highway (S1), Shatin Heights Tunnel (S2) and the Toll Plaza (S3).

Population Forecast

It has been assumed that, in the Consultation Zone, there is no space available for further residential development.


Outside the Consultation Zone, the 2006 residential population levels determined as described above have been scaled up or down according to the population trends determined from the area-specific TPEDM PVS-based projections. Details are provided in *Annex F*.


For population types other than residential, no growth has been assumed.

2.5.5 Summary

The population data used in this study are summarised in *Table 2.3* and their locations shown in *Figure 2.5*. The total population levels are greater than those used in the 2001 QRA (ERM, 2001) due to general population growth in the area.

A definition of the time periods included in *Table 2.3* is provided in *Annex F*.

•

of Remarks Floors	610	 35 Value from Centamap (2006 population by- census), scaled according 	to PVS projection. 1 Based on MTRC data	1 Based on MTRC data	1 Based on MTRC data	1 Value from: http://www.swd.gov.hk/	5 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied	in modelling. 5 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied in modelling	 School capacity: from 2001 QRA. Time factor of 0.67 applied in modelling 	5 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied in modelling	12 Value from Centamap(2006 population by- census), scaled according	to PVS projection. 35 Value from Centamap (2006 population by- census), scaled according	WEEK 39 - SEPT 11	o. of Remarks ors	to PVS projection.	3 Number of houses extracted from Centamap, scaled according to PVS	projection. 1 Value from 2001 QRA	 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied 	in modelling 5 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied	in modelling/ 5 School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied in modelling	20 Value from Centamap(2006 population by- census) scaled according to	PVS projection. 10 Value from Centamap (2006 population by- census) scaled according to	PVS projection. 25 Value from Centamap (2006 population by- census) scaled according to
		ю́		-	-						τ.	Э		er- No. y of or Floors		()				L J	7	4	5
v unter- ability Factor	דמרור	1	1	1	1	3.3	3.3	3.3	3.3	1	1	1		Vulner- ability Factor		1	3.3	3.3	1	1	1	1	1
Indoors		%66	%0	100%	100%	95%	95%	95%	95%	95%	%66	99%		Fraction Indoors		%66	95%	95%	95%	95%	%66	%66	%66
Morling	Day	50%	50%	50%	50%	100%	100%	100%	100%	100%	50%	50%		Working Day		50%	100%	100%	100%	100%	50%	50%	50%
y Waaband	weeкепа Day	20%	50%	50%	50%	100%	0%0	%0	%0	%0	20%	70%		Occupancy Peak Weekend Hour Day		20%	100%	%0	0%	0%0	%02	70%	70%
Occupancy Past	Hour	50%	100%	100%	100%	100%	50%	50%	50%	50%	50%	50%		Occupanc Peak Hour		50%	100%	50%	50%	50%	50%	50%	50%
	Peak	50%	100%	100%	100%	100%	50%	50%	50%	50%	50%	50%	-29	Jammed Peak		50%	100%	50%	50%	50%	50%	50%	50%
	JUIGINI	100%	20%	20%	20%	100%	%0	0%	%0	%0	100%	100%	A13C-29	Night		100%	100%	0%0	0%	0%	100%	100%	100%
1007		20633	2083	1464	1250	68	315	1087	780	2386	16497	5109		2031		2670	134	1215	1035	2428	7047	7547	2272
0107		20828	2000	1304	500	68	315	1087	780	2386	16964	4434		2016		1981	134	1215	1035	2428	7246	7629	2297
H T07		19414	2000	1304	500	68	315	1087	780	2386	17119	4475		2014		1999	134	1215	1035	2428	7313	7793	2347
1107		17471	2000	1304	500	68	315	1087	780	2386	17119	4475		2011		1999	134	1215	1035	2428	7313	7957	2396
Jatest data	uata available)	18717	2000	1304	500	68	315	1087	780	2386	15563	4068		Base (latest data available)		1817	134	1215	1035	2428	6648	8203	2470
Projection		18800	720	3600	1250	143	780	780	780	2655	13500	4000		2006 Projection used in 2001 HA		1817	134	780	1350	2700	6700	2363	5100
		Sun Chui Estate	East Rail Tai Wai Station	East Rail Train at Tai Wai Station	Station	Home for the Aged ground floor Sun Chui	Estate Cheong Wong Wai Primary School	Free Methodist Bradbury Chun Lei Primary School	KCBC Hay Nien (Yan Ping) Primary School	Ng Yuk Secondary School and Shatin Tsung Tsin Secondary	scnool Lung Hang Estate	King Tin Court	ERM-Hong Kong, Limited	Name		Tin Sam Village	Home for the Aged ground floor Lung Hang	Estate PLK C. H. Wong Primary School	PLK C W Chu College	Lok Sin Tong Young Ko Hsiao Lin Secondary School and Pok Oi Hospital Chan Kai Memorial	College Carado Garden	Misc. residential buildings	Holford Garden
INC.		01	02A	02B	02C	03	04A	04B	04C	05	90	07	ERM-Hc	Ref		08	60	10.1	10.2	11	12	13	14

A13C-30

· matrix constraints constraints constraints constraints constraints · matrix constraints · matrix constraints · matrix constraints · matrix constraints · matrix constraints · matrix constraints 2 constraints is constraints is constraints is constraints is constraints is constraints is constraints 2 constraints is constraints 2 constraints is constraints is constraints is constraints is constraints is constraints is constraints 2 constraints is constraints is constraints is constraints is constraints is constraints 2 constraints is constraints is constraints is constraints is constraints is constraints 3 constraints is constraints is constraints is constraints is constraints 3 constraints is constraints is constraints is constraints is constraints 3 constraints is constraints is constraints is constraints is constraints	Ref	Name	Projection used in 2001 HA	base (latest data available)	2011	2014	2016	2031	Night	Jammed Peak	Occupancy Peak Hour	Occupancy Peak Weekend Hour Day	Working Day	Fraction Indoors	Vulner- ability Factor	No. of Floors	Remarks
matrix is and the second of the		Christian Alliance Cheng Wing Gee College and GCC&ITKD Lau Pak Lok	2700	2324	2324	2324	2324	2324	0%	50%	50%	0%0	100%	95%	1	വ	School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied in modelling
111		Secondary School Shatin Public School	160	220	220	220	220	220	0%0	50%	50%	%0	100%	95%	1	-	School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied
1 0.00 0.01 0.		Tai Wai MTR Depot	455	47	47	47	47	47	44%	50%	50%	55%	100%	80%	1	1	in modelling Based on MTRC data
offect State State <t< td=""><td>A</td><td>Highrise residential buildings being constructed in Tai Wai Depot area</td><td>0</td><td>6107</td><td>6107</td><td>6718</td><td>6657</td><td>6473</td><td>100%</td><td>50%</td><td>50%</td><td>%02</td><td>50%</td><td>%66</td><td>1</td><td>40</td><td>Following the April 2009 site visit, population assumed as 8 buildings x 40 floors x 6 units x 3.28 persons per unit. Scaled according to PVS</td></t<>	A	Highrise residential buildings being constructed in Tai Wai Depot area	0	6107	6107	6718	6657	6473	100%	50%	50%	%02	50%	%66	1	40	Following the April 2009 site visit, population assumed as 8 buildings x 40 floors x 6 units x 3.28 persons per unit. Scaled according to PVS
0.00 100 100		Golden Lion Garden - Phase II	4563	3300	3080	3423	3672	3637	100%	50%	50%	70%	50%	%66	1	35	projection. Value from Centamap (2006 population by- census) scaled according to PVC monitorion
113 124 <td></td> <td>Kak Tin Village</td> <td>2048*</td> <td>1067</td> <td>966</td> <td>1107</td> <td>1187</td> <td>1176</td> <td>100%</td> <td>50%</td> <td>50%</td> <td>%02</td> <td>50%</td> <td>%66</td> <td>1</td> <td></td> <td>Number of houses extracted from Centamap, scaled according to PVS projection. Note that in the 2001 Report, unit 21 population was listed</td>		Kak Tin Village	2048*	1067	966	1107	1187	1176	100%	50%	50%	%02	50%	%66	1		Number of houses extracted from Centamap, scaled according to PVS projection. Note that in the 2001 Report, unit 21 population was listed
of 100 101		Worldwide Garden	1154	1480	1628	1628	1613	1569	100%	50%	50%	20%	50%	%66	1		Value from Centamap (2006 population by- census) scaled according to
a All Circle lister 201 201 Mater M		Tai Wai Village	0,	1098	1061	1041	1021	1010	100%	50%	50%	70%	50%	66%	1		PVS projection. Number of houses extracted from Centamap, scaled according to PVS
Troperiori and HA, Maidalo, Troperiori HA, Maidalo Teak Har, Topic Factor Teap Har, Topic Factor Teap Har, Taa Har, Topic Factor <th>r,</th> <th>Name</th> <th></th> <th>Base</th> <th>2011</th> <th>2014</th> <th>2016</th> <th>2031</th> <th>A13C</th> <th></th> <th></th> <th></th> <th></th> <th>Fraction</th> <th>Vulner-</th> <th>, S</th> <th></th>	r,	Name		Base	2011	2014	2016	2031	A13C					Fraction	Vulner-	, S	
43 294 53 510 53 100% 50% 50% 50% 90% 1 5 720 533 533 533 533 533 533 533 533 533 533 534 543 544 544 546 100% 55% 25% 75% 75% 1 7 1300 1043 1043 1043 1043 1043 1043 1043 56% 55% 75% 75% 1 7 7 1300 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1 1 7 7 1300 264 264 264 109% 100% 100% 50% 55% 0% 1 7 7 1300 264 162 12 12 12 12 12 12 12 12 12 12 12 12				(latest data available)				I		Jammed Peak	<u>Occupanc</u> Peak Hour	y Weekend Day	Working Day	Indoors	abuity Factor	of Floors	
		Shatin Heights	432	294	529	517	510	535	100%	50%	50%	70%	50%	%66	1	ъ	projection. Note that in the 2001 Report, unit 21 population was listed together with unit 19. Based on number of units extracted from Centamap and PVS household size (3.46).
1300 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1043 1044 1046 <th< td=""><td></td><td>Tai Po Road (1 km from WTW to Mei Tin Rd)</td><td>720</td><td>563</td><td>563</td><td>563</td><td>563</td><td>563</td><td>2%</td><td>100%</td><td>36%</td><td>18%</td><td>20%</td><td>%0</td><td>1</td><td>ı</td><td>Traffic data from 2007 Annual Traffic Census; length 0.8 km. Assume one direction jammed and the other free-flow at Jammed</td></th<>		Tai Po Road (1 km from WTW to Mei Tin Rd)	720	563	563	563	563	563	2%	100%	36%	18%	20%	%0	1	ı	Traffic data from 2007 Annual Traffic Census; length 0.8 km. Assume one direction jammed and the other free-flow at Jammed
340 264 266 576 $0%$ 1 -1 210 175 175 175 175 175 176 $10%$ $50%$ $57%$ $0%$ 1 -1 230 168 168 168 168 168 168 168 $5%$ $10%$ $50%$ $5%%$ $0%$ 1 -1 308 2502 2502 2502 2502 2502 2502 2502 2502 2502 2502 2502 $25%$ $0%$ 1 -1 -1		Tai Po Road (Mei Tin Rd to 3 km from WTW)	1300	1043	1043	1043	1043	1043	2%	100%	53%	25%	27%	0%	1	1	Traffic data from 2007 Annual Traffic Census 1997; length 1.4 km. Assume one direction jammed and the other free- flow at lammed Peak.
86 102 102 102 102 102 102 102 103 100% 50% 55% 0% 1 - 210 175 175 175 175 175 175 5% 100% 100% 50% 55% 0% 1 - 230 168 168 168 168 5% 100% 50% 55% 0% 1 - 3080 2502 2502 2502 4% 100% 76% 40% 45% 0% 1 -		Che Kung Miu Road (Lion Rock Tunnel Rd to 1 km from WTW)	340	264	264	264	264	264	5%	100%	100%	50%	55%	%0	1	ı	Traffic data from 2007 Annual Traffic Census; length 1.8 km.
		Tin Sam Street	86	102	102	102	102	102	5%	100%	100%	50%	55%	%0	1	ı	Traffic data from 2007 Annual Traffic Census; length 0.7 km.
230 168 168 168 168 168 168 169 100% 100% 50% 55% 0% 1 - 3080 2502 2502 2502 2502 4% 100% 76% 40% 45% 0% 1 -		Hung Mui Kuk Road	210	175	175	175	175	175	5%	100%	100%	50%	55%	%0	1	·	Traffic data from 2007 Annual Traffic Census; length 0.8 km.
3080 2502 2502 2502 2502 2502 4% 100% 76% 40% 45% 0% 1 -		Mei Tin Road	230	168	168	168	168	168	5%	100%	100%	50%	55%	%0	1	,	Traffic data from 2007 Annual Traffic Census;
		Lion Rock Tunnel Road - Shatin Rd to Lion Rock Tunnel	3080	2502	2502	2502	2502	2502	4%	100%	76%	40%	45%	%0	1	ı	length 0.7 km. Traffic data from 2007 Annual Traffic Census. Road length ~2.6km; Assume one direction

A13C-32

		used in 2001 HA	data available)					Night	Jammed Peak	Peak Hour	Peak Weekend Hour Day	Working Day	I	Factor	Floors	NCHIGUNS
																flow at Jammed Peak.
Lic NG	Lion Rock Tunnel Road - Che Kung Miu Rd to Shatin	50	42	42	42	42	42	5%	100%	100%	50%	55%	0%	7	ı	Traffic data from 2007 Annual Traffic Census; length 0.4 km.
to C Ro	Rd Lion Rock Tunnel Road - Tai Po Rd to Che Kung Miu	130	102	102	102	102	102	5%	100%	100%	50%	55%	%0	1	ı	Traffic data from 2007 Annual Traffic Census; length 0.6 km.
Po 3 k Sh	Populated area 2- 3 km northeast of Shatin WTW	83500	82224	85451	87096	88734	87018	100%	50%	50%	70%	50%	%66	1	20	Based on Centamap and other sources, scaled according to PVS
Hi Sw	Hin Tin Swimming Pool	700+	300*	300*	300*	300*	300*	0%	50%	50%	100%	50%	30%	1		projections Based on the average daily usage data provided by LCSD and an interview with the pool staff, assuming each user would spend about 1.5 hours at the pool.
																 #50% of maximum occupancy assumed *Population for summer is 300. Population for rest of the year is 123. ‡30% of population is indoors in summer. 50% is
Hi Pl¢	Hin Tin Playground	300	133	0	0	128	128	%0	50%	50%	100%	50%	%0	1		indoors for rest or the year. Based on the average daily usage data provided by LCSD, assuming each user would spend about 1.5 hours at the playground. scenarios. To be converted to the Project works areas (unit Z9) during the construction phases.
ong k	ERM-Hong Kong, Limited							A13(A13C-33							WEEK 39 - SEPT 11
Na	Name	2006 Projection	Base (latest	2011	2014	2016	2031			Occupan	Ŋ		Fraction Indoors	Vulner- abilitv	No. of	Ramarke
		used in 2001 HA	data available)				ı	Night	Jammed Peak		Peak Weekend Hour Day	Working Day	1	Factor	S	ANGLIGH NO
Hi Fo	Hin Tin tennis court and Football field	n/a	87	87	87	87	87	%0	50%	50%	100%	50%	%0	-		Based on the average daily usage data provided by LCSD, assuming each user would spend about 1.5 hours at the playground. Note that in ERM (2001) items B1 and B7 were
Ca La: Scł	Carmel Alison Lam Primary School	823	1042	1042	1042	1042	1042	0%0	50%	50%	%0	100%	95%	Э.Э.	9	treated as one unit B. School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied
Mc Ho	Wong Wah San Hostel for the	150	140	140	140	140	140	100%	100%	100%	100%	100%	95%	3.3		in modelling Telephone interview, June 2009
ΪΗΖ	in Keng Estate orth	9800	10763	10763	10763	10763	10763	100%	50%	50%	%02	50%	%66	1	35	Value from Centamap (2006 population by- census)
Ka	Ka Keng Court	2300	1140	1140	1140	1140	1140	100%	50%	50%	20%	50%	66%	7	41	Value from Centamap (2006 population by- census)
Sh _i Ha	Sheung/Ha Keng Hau Village	2121	2155	2155	2155	2155	2155	100%	50%	50%	%02	50%	%66	1	æ	Based on the number of houses from Centamap.
Pa	Parc Royale	1792	2470	2470	2470	2470	2470	100%	50%	50%	20%	50%	%66	1	20	Based on Centamap (2006 population by-census)
Jul Ga	Julimount Garden	n/a	810	810	810	810	810	100%	50%	50%	20%	50%	%66	1	22	Based on Centamap (2006 population by-census)
Ηi	Hill Paramount	n/a	518	518	518	518	518	100%	50%	50%	20%	50%	%66	1	27	Based on the number of units
Hi Ho	Hin Tin Village Housing	960	1350	1350	1350	1350	1350	100%	50%	50%	%02	50%	%66	1	ю	Based on the number of houses from Centamap.
Má Pla star	Market Place/Bazaar/Re staurant	300	400	400	400	400	400	0%	50%	50%	100%	50%	%06	1	4	2001 QRA population numbers increased, portion

A13C-34

l		НА	available)					I	Peak	Hour	Hour Day	Day				
l																sports centre across the street taken into account.
В	Bus Station	100	50	50	50	50	50	10%	100%	100%	50%	50%	%0	1	1	Value from 2001 QRA reduced following the 2009
ц я С	Union Hospital and Staff	473	473	473	473	473	473	100%	100%	100%	100%	100%	%66	3.3	13	survey. Value from 2001 QRA
NH E D I	Proposed residential development at Hin Tin St	n/a	0	0	765	765	765	100%	50%	50%	70%	50%	%66	1	40	Estimates based on information from PlanD
	Helen Liang Memorial School	1200	1040	1040	1040	1040	1040	%0	50%	50%	0%	100%	95%	1	9	School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied
0 H G	CUHK FAA Thomas Cheung Primary School	500	1116	1116	1116	1116	1116	0%0	50%	50%	%0	100%	95%	3.3	6	School capacity from: http://www.edb.gov.hk/. Time factor of 0.67 applied
S	Hin Keng Estate South	0086	9454	9454	9454	9454	9454	100%	50%	50%	20%	50%	%66	1	35	In modelung Value from Centamap (2006 population by-
R (]	Residential Area (Keng Hau Road)	186	129	129	129	129	129	100%	50%	50%	20%	50%	%66	1	Ю	century) Based on number of units and PVS household size
BRL	Low Rise Residential Buildings	183	180	180	180	180	180	100%	50%	50%	70%	50%	%66	1	1	Based on number of units and PVS household size
щц	East Rail Train near Shatin WTW	1912	718	718	718	718	806	16%	100%	100%	41%	41%	100%	1	1	Based on MTRC data
1 († 1 S	Tsing Sha Hwy (formerly Route 16: Northern Section)	345	362	362	362	362	362	1%	100%	18%	6%	10%	0%0	1	1	Based on the traffic data provided by TD. Traffic assumed stationary in one direction during Jammed Peak.
2			۵ ۵	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 100	200	56								ž	
4	Name	2006 Projection used in 2001	Base (latest data	2011	2014	2016	2031	Night	Jammed	Occupano Peak	Occupancy Peak Weekend	Working	Fraction Indoors	Vulner- ability Factor	No. of Floors	Remarks
νF	shatin Heights Junnel	1035	1275	1275	1275	1275	1275	1%		18%	9%	10%	100%	1	1	Based on the traffic data provided by TD.
ц 1 С	(formerly Route 16: Shatin Tunnel)															Traffic assumed stationary in one direction during Jammed Peak.
ч х С	Route 8 (formerly Route 16): Toll Plaza	867	708	708	708	708	708	1%	100%	43%	10%	16%	%0	1	1	Based on the traffic data provided by TD. Traffic assumed stationary in one direction during Jammed Peak.
s s	Staff Quarters of Shatin WTW	114	10	10	10	10	×	100%	50%	50%	%02	50%	%66	1	1	Based on WSD data
2 I 2	WTW refurbishment workers	0	0	0	110	0	0	0%	50%	50%	0%0	100%	10%	1	1	Based on WSD data. Exact locations not known at the time. Workers assumed to be spread throughout the South Works area
X	Ka Tin Court	4700	4956	4956	4956	4956	4956	100%	50%	50%	20%	50%	%66	1	35	Value from Centamap (2006 population by- census)
X U X	Kindergarten G/F of Hing Kwai Lau	150	06	06	06	06	06	%0	50%	50%	%0	100%	95%	3.3	1	Value from: http://www.edb.gov.hk/
Ч	Baby Care Centre G/F of Hing Fu Lau	50	0	0	0	0	0	%0	50%	50%	%0	100%	95%	3.3	1	Based on the 2009 site survey and telephone interviews the centre is
X O L	Kindergarten G/F of Hing Tak	150	240	240	240	240	240	%0	50%	50%	%0	100%	95%	3.3	1	Value from: http://www.edb.gov.hk/
	Lau Tai Po Road	1030	1057	1057	1057	1057	1057	2%	100%	43%	21%	24%	0%0	1	,	Traffic data from the 2007 annual traffic census. Length 1.5 km. Assume one direction jammed and the other free-flow at
0 2	Che Kung Miu	300	300	300	300	300	300	5%	1000/	1000/	200/2)0 L L	/00/			Januneu reak. Value from 2001 ORA.

A13C-36

Induction Occupancy Peak Weekend Working Hour Day Day 100% 50% 55% 0% 100% 41% 41% 100% 100% 41% 41% 0% 100% 41% 100% 0% 50% 10% 100% 0% 50% 10% 100% 0% 100% 50% 0% 0% 100% 50% 0% 0% 100% 50% 0% 0% 100% 50% 0% 0% 100% 50% 0% 0% 100% 50% 0% 0% 0 olumn 100% 100% 0%	Night Jammed 5% 100% 16% 100% 16% 100% 0% 50% 0% 50% 0% 50% 0% 50% 0% 50% ent in the Remarks c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Projection (latest data data available) 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n/a 6 7 n/a 6 7 n/a 6 7 211721 217602 222356 2 $2pulation assumptions of Refs 19 & 2$ 2
--	--	--	---

A13C-37

3.1 HAZARDOUS CHARACTERISTICS OF CHLORINE

The following paragraphs summarise some of the key hazardous characteristics of chlorine (Chlorine Handbook, ICI, 1995):

- Chlorine gas is heavier than air and as a result will tend to accumulate in low places when released to the atmosphere and flow downhill in still air. However, slight breezes or thermal turbulence will cause it to move upward, so people are not necessarily safe simply because they are above the point of release.
- Chlorine gas has a greenish-yellow colour which is only visible at high concentrations (above approximately 500ppm) many times higher than the danger level (see *Table 3.1* below).
- Chlorine gas is a respiratory irritant. Symptoms caused by inhalation of chlorine include: headaches, pain, difficult breathing, burning sensation of the chest, nausea and watering of the eyes.

The physiological effects of chlorine are summarised in *Table 3.1*.

Physiological Effects of Chlorine Table 3.1

Concentration (ppm)	Effects
0.2-3.5	Threshold of odour perception in most individuals.
3-5	Tolerated without undue ill effect for half to one hour.
5-8	Slight irritation of the mucous membranes of the upper respiratory tract and the eyes.
15	Effects are immediate. Irritation of nose, throat and eyes with cough and lachrymation.
30	Immediate cough with a choking sensation, retrosternal chest pain and a sense of constriction in the chest.
40-60	Development of a chemical tracheo-bronchitis and pulmonary oedema.
1000	Concentration likely to be fatal after a few deep breaths.

REVIEW OF PAST INCIDENTS

3.2

3.3

3.3.1

In light of the recent judgement of the Court of Final Appeal (FACV 28/2005) the Hazard Identification results of ERM (2001) have been carefully reviewed for the purpose of the current assessment. In particular the latest version of the world wide accident database MHIDAS has been independently reviewed in order to update the Hazard Identification conclusions. However, only a few relevant chlorine incidents occurred worldwide since the previous review, and after examination of their nature it has been concluded that no revisions of the previously identified hazard scenarios or their frequencies are necessary for this study.

The following reference data had been searched and consulted:

- journal articles, conference proceedings, etc.)
- Lees (1996);
- AQUALINE;
- Chlorine Institute; and
- Chlorine Transport Risk Studies (DNV, 1997; Atkins, 2006).
- HAZARD AND OPERABILITY STUDY Overview

A Hazard and Operability (HAZOP) study was conducted for Shatin WTW as part of the Eight WTWs Study to provide a full and systematic identification of the hazards associated with the delivery, storage and handling of chlorine. The HAZOP technique provides a means of examining deviations from the design intent, their causes, consequences and safeguards, in a structured manner.

• MHIDAS Database (MHIDAS is a Major Hazard Incident Data Service developed by the Safety and Reliability Directorate of the UK Atomic Energy Authority. MHIDAS contains incidents from over 95 countries particularly the UK, USA, Canada, Germany, France and India. The database allows access to many other important sources of accident data, such as the Loss Prevention Bulletin, and is continuously updated);

• HSELine (The Library and Information Services of the UK Health and Safety Executive has accumulated in a computer database documents relevant to health and safety at work. HSELine contains citations to HSE and Health and Safety Commission publications, together with documents,

	The primary focus of the HAZOP was on the hazards posed to people off-site.		released instantaneously, eg in the cas
	'Internal' as well as' external' hazards were considered, ie those within the		earthquake.
	control of the operating staff, such as the hazards arising during drum		curuiquitei
	connection/disconnection, as well as those outside their control such as an		For releases occurring within the chlor
			is provided to minimise the likelihood
	external fire. The information provided for the HAZOP included the site		The principal failure modes of the Con
	layout plan, Process and Instrumentation Diagram (P&ID), chlorine store		
	layout plan, as well as the Operations and Maintenance Manual.		the HAZOP, are summarised in <i>Table 3</i>
	The HAZOP sessions considered each of the following aspects of the design		Table 3.4 cross-references chlorine leak
	and operation of the WTW:		Kong against the hazards identified in
	 transport of chlorine containers along the site access road (including 	Table 3.2	Hazards Identified in HAZOP Study fo
			5
	manoeuvring of the truck outside the entrance to the truck unloading bay);		Hazard
	• here alling of comparison over the stores		1. ACCESS ROAD
	 handling of containers within the store; 		1.1 Fire on the truck leading to melting of t
			1.2 Fire on the roadside leading to melting
	containers in storage;		1.3 Impact with object during truck manoe
			1.4 Lorry over-turns
	 connection and disconnection of containers; 		1.5 Collision with another vehicle
			1.6 Loadshedding
	 chlorination system (including the liquid chlorine pipework, evaporators, 		 Spontaneous drum failure CONTAINER HANDLING
	chlorinators and ejectors); and		2.1 Dropped container
			2.2 Collision of container with another obje
	 Contain and Absorb system. 		2.3 Accidental impact of drum on pigtail d
			2.4 Overextension during use of truck cran
	The HAZOP considered the various operating modes of the plant		2.5 Section of monorail track incorrectly al
	(auto/manual) as well as planned maintenance operations. Prior to the		3. CONTAINERS IN STORAGE
	HAZOP study, previous HAZOP studies of WTWs and chlorine leak incidents		3.1 Leaking chlorine containers
	were reviewed to provide additional input to the identification of the chlorine		3.2 Overfilled containers leading to overpr
	release scenarios.		3.3 Impurities in chlorine containers, in pa
			explosion) or moisture (causing accelerated co
3.3.2	Results of the HAZOP Study		3.4 Object falls onto chlorine containers3.5 Fire (external or internal)
0.0.2	Results of the Hillor Study		3.5 Fire (external or internal)3.6 External explosion
			3.7 Lightning strike
	<i>Table 3.2</i> shows the hazards which were identified for Shatin WTW.		3.8 Extreme wind
	Two 0.2 biows the hulling which were factulied for oradin with.		3.9 Flooding
	In summary, the primary hazard arises from a loss of containment of chlorine		3.10 Construction activities
			3.11 Subsidence
	with subsequent acute exposure of people off-site leading to injuries or		3.12 Earthquake
	fatalities. Releases may range in size from a small leak (eg via a valve gland),		3.13 Aircraft crash
	through to dislodgement of a fusible plug (¾" diameter) or catastrophic failure		3.14 Sabotage
	of the container itself. The releases may be isolatable (ie via closure of the		3.15 Vehicle crash
	changeover valves or drum valve) or non-isolatable (ie a leak from the shell of		3.16 Electromagnetic interference
	the container).		4. CONNECTION AND DISCONNECTIO
			4.1 Human error or equipment failure dur5. CHLORINATION SYSTEM
	The physical state of the release may be gas, liquid or two-phase depending		5.1 Trapping of liquid chlorine between clo
	on the precise location, eg a small leak downstream of the evaporator is likely		leading to overpressurisation of pipework
	to be gas, a leak from the 'pigtail' connection is likely to be two-phase (due to		5.2 Pigtail failure
			5.3 Failure of fixed chlorine pipework
	flashing in the line), whereas a leak from the container shell itself is likely to		5.4 Open end on pipework due to operator
	be liquid. The release may arise from failure of the chlorine equipment itself or		5.5 Corroded pipework
	failure induced by an external event such as an earthquake or landslide. The		5.6 Presence of nitrogen trichloride in evap
	quantity of chlorine released may vary from a few kilograms to several tonnes		5.7 Presence of moisture in evaporator lead
	ERM-Hong Kong, Limited WEEK 39 - SEPT 11		ERM-Hong Kong, Limited
	A13C-40		Δ13

A13C-40

case of a severe external event such as an

lorine store a Contain and Absorb system od of the release escaping to atmosphere. ontain and Absorb system, as identified at e 3.3.

ak incidents which have occurred in Hong in *Table 3.2*.

for Shatin WTW

of the fusible plugs on one or more containers ing of the fusible plugs on one or more containers noeuvring

object l during setdown at standby position rane (not normally used) v aligned leading to a dropped drum

rpressurisation on thermal expansion particular nitrogen trichloride (leading to corrosion)

TION OF CHLORINE CONTAINERS luring connection/disconnection of containers

closed valves and subsequent thermal expansion

ator or maintenance error

vaporator leading to explosion eading to accelerated corrosion

A13C-41

Table 3.3	Failure Modes of	f Contain	and Absorb System Identified in HAZ	OP Study	Location	Date	Description	Cross ref to Table 3.2
	Hazard							
	1. LEAK DETE Chlorine leak detec	ctor 'cell' ma			Sek Kong	19.10.90	On 19.10.90, two men were injured when a lorry carrying six chlorine containers over-	Item 1.4
	2. CONTAIN S Door left open Air inlet louvres fa		n demand				turned. One container fell from the vehicle, but did not leak. The cause of the accident is believed to be brake failure of the lorry.	
	chlorine leak Failure of chlorine atmosphere' positio Failure of door seal Outage due to main System disabled by 3. CHLORINE Caustic pump failu	absorption s on and failu ls ntenance <u>7 operator</u> ABSORPTI ure	ual mode, therefore does not shutdown on dete system (see below) with dampers set to 'exhaus re to detect chlorine breakthrough ON SYSTEM		Shatin Treatment Works	8.9.92	The incident occurred inside the chlorine transfer room of the Shatin Water Treatment Works on 8.9.92. Workers were charging liquefied chlorine from 1 tonne drums to bulk chlorine vessels each with a maximum holding capacity of 125 tonnes. 150 kg of chlorine was leaked from the liquid chlorine charging line.	Not relevant (Bulk chlorine vessels since replaced)
	Blockage in caustic Overloading of scr Caustic valve inad No caustic in tank Caustic pipe leakag Scrubber nozzles b	ubber vertently clc ge locked			Pak Yue Kong Swimming Pool	18.5.92	Liquid chlorine was found leaking from the valve spindle of a 1-tonne chlorine drum inside the chlorine store of the Pak Yue Kong Public Swimming Pool, on 18.5.92.	Item 3.1
	Degradation of cau Wrong chemical in Failure due to pow	nto tank cau istic over a p tank er failure	sing dilution of caustic and reduced efficiency		Sheung Shui WTW	25.1.93	2 kg of chlorine leaked form the connection between the feeding pipe and chlorine drum at the Sheung Shui Water Treatment Works on 25.1.93.	Item 5.2
	Outage due to main System disabled by				Tai Lam Chung Pre-chlorination House	March 94	In March 1994 leakage occurred at isolating valve of full chlorine drum at Tai Lam Chung Prechlorination House.	Item 3.1
Table 3.4	Chlorine Leak In	cidents in	i Hong Kong		Tai Po Tau WTW	8.3.96	Gaseous chlorine was leaking from the pressure gauge of No. evaporator.	Item 5.3
	Location	Date	Description	Cross ref to Table 3.2			Chlorine dosing was suspended for 3.5 hours.	
	Eastern WTW Cheung Sha Wan SW Pumping Station	1962 1982	Valve gland leak. Connection failure	Item 3.1 Item 5.2	Yau Kom Tau WTW	6.1.99	A chlorine leak occurred inside the chlorine plant room at about 3:00pm. The leakage was due to the rupturing of the chlorine pressure gauge at the No. 1	Item 5.3
	Tai Po Tau WTW	8683	A chlorine leak from a one tonne drum	Item 5.2			evaporator which was on standby position.	

Location	Date	Description	Cross ref to Table 3.2
Eastern WTW	1962	Valve gland leak.	Item 3.1
Cheung Sha Wan SW Pumping Station	1982	Connection failure	Item 5.2
Tai Po Tau WTW	8.6.83	A chlorine leak from a one tonne drum occurred on 8.6.83 at Tai Po Tau WTW. Following changeover between drums, the copper coil connection failed.	Item 5.2
Hong Kong	25.7.90	Brass pipe attached to chlorine cylinder fractured causing gas leak at water park	Not relevant to WTWs
Tai Lam Chung Pre-chlorination House	28.9.90	11.2 kg of chlorine leak from a one tonne drum in the chlorine store at Tai Lam Chung Prechlorination House in the New Territories on 28.9.90. The leak was repaired on site by the chlorine supplier with the presence of Fire Services personnel by tightening the gland of the drum isolating valve.	Item 3.1
ERM-Hong Kong, Limited		1100 10	WEEK 39 - SEPT 11

3.4 CHARACTERISATION OF CHLORINE RELEASE SCENARIOS

Having identified various possible mechanisms for a chlorine release (*Table 3.2*), the next step in the Hazard Assessment is to characterise these release scenarios in terms of the releasing inventory, hole size and phase of release (*Table 3.5*). This follows the approach outlined in the Consultants' Methodology Report for the *Eight WTWs Study* (ERM, 1997). *Table 3.5* also screens out scenarios considered to present negligible off-site risk.

Table 3.5Characterisation of Chlorine Release Scenarios

Chlorine release scenario	Outcome	Releasing inventory (tonnes)	Hole size (diameter)	Phase
1. ACCESS ROAD				
1.1 Truck fire	Considered to result in melting of the fusible plugs on up to three drums ¹ .	3	3x6mm	liquid
1.2 Fire on the roadside	Considered to present negligible off-site risk as truck does not park on site other than within chlorine building	-	-	-
1.3 Manoeuvring accident	Considered to result in a single drum – small leak (eg valve gland failure)	1	3mm	liquid
1.4 Rollover	Single drum - small leak(eg valve gland failure)	1	3mm	liquid
	Single drum - medium leak(eg guillotine failure of drum valve)	1	8mm	liquid
	Three drums - medium leak (eg guillotine failure of drum valves on three drums) Fire (outcomes as item 1.1 above)	3	3x8mm	liquid
1.5 Collision	Single drum - rupture Fire (outcomes as item 1.1 above)	1	-	liquid
1.6 Load-	Single drum - small leak	1	3mm	liquid
Shedding	Single drum - medium leak	1	8mm	liquid
1.7 Spontaneous	Single drum - medium leak	1	8mm	liquid
drum failure	Single drum - large leak (eg. dislodgement of a fusible plug)	1	20mm	liquid
	Single drum – rupture	1 (inst)	-	liquid
2. DRUM HAI	NDLING			
2.1 Dropped	Single drum - medium leak	1	8mm	liquid
drum	Single drum - large leak (eg dislodgement of fusible plugs)	1	20mm	liquid
		1 (inst)	-	liquid
	Single drum - rupture	- ()		-

Chlorine release Outcome scenario drum with another object 2.3 Accidental Pigtail - guillotine fa impact of drum on pigtail during setdown at standby position 2.4 Dropped Single drum - mediu drum due to overextension of truck crane 2.5 Dropped As item 2.1 above drum due to incorrect alignment of monorail track 3. CONTAINERS IN STORAGE 3.1 Leaking Single drum - mediu chlorine drums Single drum - large Single drum - ruptur 3.2 Overfilled As item 3.1 above drums leading to overpressurisation on thermal expansion 3.3 Impurities in As item 3.1 above chlorine drum leading to explosion or leak 3.4 Object falls Considered to prese

off-site risk as there onto chlorine containers likely to fall which c significant damage t 3.5 Fire (external Considered to presen or internal) off-site risk as chlorin 2 hour fire-rated stru most significant inte fire is considered to chlorine truck. How pessimistically, all tr modelled as occurrin 3.6 External Single drum - mediu explosion 3.7 Lightning Considered to prese strike off-site risk as the ch lightning protected lightning, while it electrical damage, is

ERM-Hong Kong, Limited

A13C-44

	Releasing inventory (tonnes)	Hole size (diameter)	Phase
ailure	1	4.5mm	two- phase
um leak	1	8mm	liquid

um leak	1	8mm	liquid
leak	1	20mm	liquid
ıre	1 (inst)	-	liquid

Considered to present negligible off-site risk as there are no objects likely to fall which could cause significant damage to the drums.	-	-	-
Considered to present negligible off-site risk as chlorine stores are 2 hour fire-rated structures. The most significant internal source of fire is considered to be the chlorine truck. However, pessimistically, all truck fires are modelled as occurring outdoors	-	-	-
Single drum - medium leak	1	8mm	liquid
Considered to present negligible off-site risk as the chlorine store is lightning protected and a lightning, while it can result in electrical damage, is unlikely to cause a chlorine release	-	-	-

A13C-45

Chlorine release scenario	Outcome	Releasing inventory (tonnes)	Hole size (diameter)	Phase
3.8 Extreme wind	Considered to present negligible off-site risk as chlorine store is designed for typhoon loading	-	-	-
3.9 Flooding	Considered to pose negligible risk as could only affect empty drums	-	-	-
3.10 Construction activities	No construction activities inside the chlorine store are anticipated during the construction and operational phases of this project.	-	-	-
3.11 Subsidence	Considered to present negligible risk, due to topographical and geological properties of the site	-	-	-
3.12 Earthquake ⁽²⁾	Overhead crane dislodged from rails: Single drum-rupture	1 (inst)	-	liquid
	Roof collapse: Multiple drum-rupture	42 (inst) (5)		
8.13 Aircraft crash	Roof collapse: Multiple drum-rupture (similar to earthquake)	42 (inst) ⁽⁵⁾	-	liquid
3.14 Sabotage	Considered to present negligible risk (issues of site security were considered in the HAZOP studies and appropriate actions have been raised.)	1	8mm	liquid
.15 Vehicle rash	Single drum - medium leak	1	8mm	liquid
.16 Electromagnetic nterference	Considered to present negligible off-site risk as precautions are adopted in the design of the electrical systems.	-	-	-
4. CONNECTI	ON AND DISCONNECTION OF CHI	LORINE CONT	AINERS	
.1 Human error or equipment ailure during onnection or lisconnection of lrums	Pigtail - guillotine failure	1	4.5mm	two- phase
5. CHLORINATION 5.1 - 5.5 Failures associated with the chlorination system pipework	N SYSTEM Liquid chlorine pipework - guillotine failure	1.05(3)	4.5mm ⁽⁴⁾	two- phase
ERM-Hong Kong, Limite	ed 413C-46		WEEK 39	9 - SEPT 11

Chlorine relea scenario	se Outcome	Releasing inventory (tonnes)	Hole size (diameter)	Phase
5.6 - 5.7 Failure of evaporator	e Evaporator - leak or rupture	1.05	4.5mm	two- phase
 fusible plu no longer (2) For assess (3) Inventory (4) Diameter 4.5mm. (5) The value 	l QRA a mixture of "old" and "new" of ag, respectively). According to the rece in use, so only the "new"-type drums a ment of effects of earthquake on chlori of drum (1 tonne) and evaporator (50k of liquid chlorine pipework is 20mm b es listed are for 221 tonnes storage. a proportion to the storage levels (see o	ent WSD informat are considered. ne store see Anne (g) put limiting orifice For reduced sto	ion, the "old" di x G e size is that of p rage scenarios	rums are Þigtail, ie
HAZARDS RE	LATED TO THE WTW REFURBISH	MENT WORKS		
additional ch simultaneous the refurbish approved EL Water Treatr concerning c	VTW refurbishment period (Sce lorine release events may be ca s WTW operations and refurbis ment works are yet available, re A-186/2010 for Integration of Si nent Works (Black & Veatch 202 onstruction related hazards. Th cards, although not all of the fol	used by interfe hment work. S eference was n iu Ho Wan and 10) which asses is gives some i	erence of the ince no detail nade to the real Silvermine I ssed similar is nsight into th	cently Bay ssues e
disorderly	damage to Chlorine Store, pipi movement of mechanical equi rs, mobile cranes, trucks etc.) an	pment, constru	action vehicle	s

nearby excavation works;

3.5

- collapse of tower cranes / rollover of mobile cranes;
- the route; and
- storage of construction related chemicals and fuels.

• Structural damage to Chlorine Store, piping and other facilities caused by

• Structural damage to Chlorine Store, piping and other facilities caused by

• Accidents involving Chlorine Delivery Trucks on the access road due to movements of construction vehicles and equipment, and obstructions along

• Fire / explosion hazards to Chlorine Store, piping and other facilities from

Measures will be implemented to mitigate or eliminate these risks. In particular, construction related activities will be separated from the operating chlorine facilities. Separate transport routes will be used for chlorine delivery trucks and construction related movements. Specifically, chlorine delivery trucks will utilize a route around the north side of the site, while construction activities will utilize a route around the south side. The following general recommendations should also be considered as good practice:

- Adequate monitoring, inspection, training and management of construction related activities;
- Adequate traffic management; although separate transport routes will be used for chlorine deliveries and construction vehicles, they share a common entrance gate; and
- Establishment of proper WTW/contractor communication channels.

For the STWTW refurbishment works, additional chlorine release hazards will be identified and adequate mitigation measures recommended during the detailed design stage. WSD as the proponent of the refurbishment works has confirmed that "a Hazard and Operability (HAZOP) study will be carried out during detailed design stage to select appropriate safety measures to ensure that likelihood of chlorine release will not be increased."

This assessment has therefore assumed that refurbishment works will be adequately managed and any additional hazardous scenarios from these activities will be adequately mitigated and will not result in additional hazardous impact to the construction and operation of the SCL Project.

3.6 HAZARDS ASSOCIATED WITH LIQUID OXYGEN

The WTW refurbishment will introduce new technology (ozonation) to reduce chlorine consumption. According to WSD, liquid oxygen (LOX) is proposed to be used in the process. Storage of LOX may be required as a backup to the online generation although this is not yet confirmed and design details are not available at this time.

The storage of LOX, if implemented, may present new hazards relevant to the operational phases of the current analysis (Scenarios 3 and 4) after completion of the refurbishment works.

Oxygen is present normally in air at a concentration of 21%. Short term exposure to elevated concentrations of oxygen is not harmful. Oxygen is not flammable by itself, but its main hazards are associated with its role in supporting combustion. In an oxygen enriched atmosphere, combustible materials ignite at a lower temperature, burn at a higher flame temperature, and burn more rapidly. Fires are therefore more likely in an oxygen enriched atmosphere. The effects are slight at 25% oxygen, significant at 40% oxygen and near to their maximum at about 50% oxygen (EIGA 2004). Normal

combustible materials such as workmen's clothing, wood, plastics, hydrocarbons, etc. may burn fiercely in an oxygen enriched environment.

Apart from the fire hazards discussed above, LOX also presents cryogenic hazards from its storage at -183°C. Spills can lead to embrittlement of materials and cold burns. These effects will be very localised and will not contribute to offsite risks.

The main concern associated with LOX is therefore the increased possibility of fires which may escalate to surrounding facilities. The chlorine store would not be significantly affected by accidental releases of LOX since it is built from non-combustible materials and all piping is underground. Nevertheless, it is recommended to segregate the LOX tank from the chlorine store as far as practicable.

The hazards associated with LOX are well understood and WSD has experience with a similar system at their Ngau Tam Mei works. Any LOX installation at Sha Tin WTW will adopt standard engineering safeguards including:

- valves and rupture discs;
- chance of tank failure;
- Special paving of non-combustible and non-sparking material;
- Non-combustible tank supports;
- Elimination of nearby ignition sources;
- No oil or grease used in the system;
- Segregation from flammable and combustible materials; and
- Fire-fighting facilities, etc.

In addition to the above engineered controls, implementation of good practice and management is expected to mitigate any risks from the LOX. WSD as the proponent of the refurbishment works has confirmed that a Hazard and Operability (HAZOP) study will be carried out during detailed design stage to select appropriate safety measures to ensure that likelihood of chlorine release will not be increased and hence there will be no additional hazardous impact on the construction and operation of the SCL Project.

• Overpressure protection for the storage tank by means of pressure relief

 LOX tanks design, construction and testing to appropriate standard such as ASME Boiler and Pressure Vessel Code, Section VIII or equivalent;

• Dual tank arrangement with inner vessel and outer jacket to reduce the

4 CONSEQUENCE ANALYSIS

METHODOLOGY 4.1

4.1.1 **Overview**

> The assessment of the consequences of a chlorine release essentially involves three steps:

- modelling the initial release of chlorine (whether inside or outside the chlorine building);
- modelling the dispersion of chlorine in the atmosphere; and
- assessing the toxic impact to people off-site (whether indoors or outdoors).

In this study, the methodology for the consequence analysis follows that of the Eight WTWs Study as detailed in the Methodology Report (ERM, 1997) and summarised below.

4.1.2 Initial Release of Chlorine

The initial release of chlorine or 'source term' is modelled using standard discharge rate formulae as detailed in (ERM, 1997). Releases direct from the chlorine container are the most significant and, in the case of chlorine drums, these are modelled as liquid releases.

The rapid flashing of chlorine which occurs following a liquid leak from a drum is conservatively assumed to result in 100% entrainment of the liquid as aerosol with no rain-out. For catastrophic (instantaneous) liquid releases the rapid boiling of the chlorine on contact with the ground is assumed to result in entrainment of twice the initial flash fraction as aerosol, following Lees (1996). The remainder of the liquid chlorine is modelled as a spreading, evaporating pool.

For releases of chlorine within the chlorine building, a simple 'perfect mixing' model is used to account for the initial dilution of chlorine. Instantaneous releases of 1 tonne of chlorine are assumed to result in pressurisation of the building to the extent that there could be a release of chlorine via weak points in the building structure, e.g. door seals. Continuous releases are assumed to be entirely contained, except in the event of failure of the Contain and Absorb system for which two modes of failure are considered: normal ventilation remains on or a door is left open.

The Eight WTWs Study used advanced techniques for prediction of the dispersion of chlorine in the atmosphere. The effects of buildings and variable ground terrain on the dispersion of chlorine in the atmosphere are modelled. The modelling of the dispersion of chlorine in the atmosphere involves three elements:

- Wind tunnel simulations;
- Computational Fluid Dynamics (CFD); and
- Flat terrain dispersion modelling.

The wind tunnel and CFD studies represent the 'state of the art' in dense gas dispersion modelling and provide the only rigorous means of accounting for the effects of buildings and complex terrain. Wind tunnel testing has been used in the *Eight WTWs Study* to investigate a range of release conditions, wind directions and wind speeds in near-neutral atmospheric conditions. CFD has been used to determine the influence of atmospheric stability on the dispersion of chlorine and provide a broad comparison against the wind tunnel results for neutral stability. In the Eight WTWs Study wind tunnel simulations were undertaken for all eight sites, whereas CFD modelling was undertaken for two sites representing the extremes of topography (Shatin WTW and Tai Po Tau WTW). Both the wind tunnel testing and CFD modelling have included off-site high rise buildings as well as on-site buildings as these have a significant influence on the dispersion of the chlorine.

The role of the flat terrain dispersion modelling has been to provide the 'source term' for both the wind tunnel and CFD studies. The model used in the *Eight WTWs Study* was DRIFT (Webber et al, 1992), an integral dispersion model developed by AEA Technology under the sponsorship of the UK Health and Safety Executive. DRIFT contains the necessary thermodynamics and heat transfer sub-models to be able to simulate the dispersion of a cold, aerosol-laden cloud typical of the early stage of a chlorine release. As DRIFT runs in a matter of minutes, it has also been possible to use the code to simulate the full range of chlorine release rates and weather conditions. In conjunction with the wind tunnel and CFD, this provides all the data needed for input to the QRA.

Chlorine Probit Equation

The following probit equation has been used to estimate the likelihood of fatality due to exposure to chlorine:

 $Pr = -14.3 + lnC^{2.3}t$

where

Pr = probit value

C = chlorine concentration (mg/m³)

t = exposure time (minutes)

This probit equation is recommended for use in QRA studies by the Dutch Government (TNO, 1992) and incorporates the findings of recent investigation into chlorine toxicity. It supersedes the 'Hong Kong' probit, which was widely used in chlorine Hazard Assessments undertaken in the past.

Table 4.1 shows the relationship between the chlorine concentration and the probability of fatality for the TNO probit (assuming a 10 minute exposure duration).

Table 4.1 Chlorine Toxicity Relationship

Chlorine concentration (ppm)	Probit value for 10 min exposure (TNO probit)	Probability of fatality (LD = Lethal Dose)
251	3.17	0.03 (LD03)
557	5.00	0.50 (LD50)
971	6.28	0.90 (LD90)

Modelling of Escape from the Chlorine Cloud

In risk assessments for toxic gas releases it is common practice to take into account the possibility of escape of exposed persons. This is because at lower concentrations of the gas, people may be able to obtain protection by moving indoors or directly out of the cloud.

Annex F1 of ERM (2001) provides details of the modelling of escape from a chlorine cloud. The methodology followed is similar to that developed by the UK Health and Safety Executive (Lees and Ang, 1989). It assumes that a person out of doors will have a probability of escape dependent on the chlorine cloud concentration, with escape occurring either directly out of the cloud or to a nearby building. The methodology takes into account the dose received during escape as well as the subsequent dose in the place of refuge. Suitable conservative assumptions are made for the time of escape bearing in

WEEK 39 - SEPT 11

mind the debilitating effect of the chlorine gas.

Incorporating all the above considerations it is possible to calculate an 'effective' outdoors fatality probability, i.e. the fatality probability that can be applied to the total outdoor population at any given location taking into account the probability of escape.

The consequence analysis gives three fatality probability contours for each release scenario, corresponding to 3%, 50% and 90% nominal outdoor fatality probability. The effective outdoors fatality probabilities corresponding to these levels of fatality are shown in Table 4.2.

Table 4.2

Effective Outdoors Probability of Fatality

Nominal outdoor fatality probability (for a person remaining outdoors)	% of population attempting escape	Effective outdoor fatality probability (taking into account the probability of escape)
90%	0%	90%
50%	80%	31%
3%	80%	0.7%

Protection for Persons Indoors

Following similar previous studies undertaken in Hong Kong and elsewhere, it is assumed that the probability of fatality for a person indoors is 10% of that for a person remaining outdoors, i.e. nominal outdoor fatality probability.

Protection is also considered for people on the upper floors of high rise buildings. This is based on data on the typical height of a chlorine cloud provided by the dispersion modelling (Section 4.2.3).

Sensitive Populations

Certain groups of people, ie the young, the elderly and the infirm will be more sensitive to the effects of chlorine than others (see *Methodology Report* for further details). This is taken into account in the QRA by increasing the fatality rate applied to certain sensitive receivers such as nurseries, primary schools, old people homes and hospitals (see Table 2.3).

In line with data published by Withers and Lees (1985) and risk criteria applied to sensitive developments in the UK and Australia, the fatality rate for these groups of people is set a factor of 3.3 higher than for the average population.

- 4.2 CONSEQUENCE ANALYSIS RESULTS
- 4.2.1 Initial Release of Chlorine

The results of the 'source term' modelling of chlorine releases is summarised in *Table 4.3* below.

Table 4.3Summary of Source Term Modelling Results for Shatin WTW

Release case	Hole size (mm)	Phase	Mode of release to atmosphere (for internal release cases only)	Release rate to atmosphere or instantaneous release quantity	Release duration (Note 1)		Contain and dramatically reduced fron diluted in the system 'Norr	Absorb sys (eg for a m n 1.4 kg/s t e building a	nedium leak to 0.3 kg/s c air. The failt
External releases (1 t	tonne drun	n)					open' in term		
Small leak	3	Liquid	-	0.2 kg/s	83 min		normal venti		•
Medium leak	8	Liquid	-	1.4 kg/s	12 min		release of chl		
Multiple medium	6 (x6)	Liquid	-	4.8 kg/s	3.5 min		ventilation sl	nutdown, c	chlorine scru
leaks Large leak	20	Liquid	-	8.8 kg/s	114 s	4.2.2	Chlorine Dispersion Modelling		
Rupture	-	Liquid	-	1000 kg	-		Mind Turne of	Madallina	Deculto
Internal releases (1 t	onne drun	n or chlorin	e pipework)				Wind Tunnel	would with a second sec	<i>Nesuus</i>
Pigtail - guillotine failure	4.5	Two- phase	Normal ventilation remains on	0.027 kg/s	10 min (Note 2)		The results o and <i>Figures E</i>		0
			Door left open	0.013 kg/s	10 min	Table 4.4	Summary of	Wind Tunr	1el Tests Re
Medium leak from drum	8	Liquid	Normal ventilation remains on	0.30 kg/s	10 min		Release case	Release location	Description
			Door left open	0.13 kg/s	10 min		0.2 kg/s	Access	Small leak (
Large leak from drum	20	Liquid	Normal ventilation	0.55 kg/s	10 min		(aerosol) Continuous	Road	from chlorir
			remains on				0.5 kg/s	Chlorine store	Chlorine vaj release from
			Door left open	0.24 kg/s	10 min		(vapour) continuous	store	due to large
Rupture	-	Liquid	Pressurisation of chlorine store - release via weak points (Note 4)	1.62 kg/s	10 s (Note 3)				(20mm) fror within store followed by of Contain a Absorb Syst
11	of 10 min vould be ta	set for dur ken to shut	ration of releases f -off ventilation, clo				1.4 kg/s (aerosol) continuous	Access road	Medium lea (8mm) from chlorine dru

Note 4: 'Normal ventilation remains on' and 'Door left open' are not included for this mode of release since 'Pressurisation of chlorine store - release via weak points' will be more dominant in the QRA.

From *Table 4.3* it is apparent that releases from a drum due to melting of the fusible plugs (4.8 kg/s) or dislodgement of the plugs (8.8 kg/s) occur sufficiently rapidly to cause emptying of the drum in a short period of time (within a few minutes). Therefore these release cases are treated as effectively instantaneous releases.

(QRA not sensitive to this assumption)

ERM-Hong Kong, Limited

It is also apparent that the chlorine building has a significant effect in modifying the release of chlorine to the atmosphere, given failure of the Contain and Absorb system. The rate of chlorine release is reduced dramatically (eg for a medium leak the rate of chlorine to atmosphere is reduced from 1.4 kg/s to 0.3 kg/s or 0.13 kg/s) and the chlorine becomes diluted in the building air. The failure mode of the Contain and Absorb system 'Normal ventilation remains on' is a more severe case than 'Door left open' in terms of the chlorine release rate to atmosphere. This is because the normal ventilation (typically 2.6 air changes per hour) provides a more rapid release of chlorine to the environment than if a door is left open (normal ventilation shutdown, chlorine scrubber system in operation).

Results

ng for Shatin WTW are summarised in Table 4.4

otion	Weather class	Wind directions (Note 1)	Maximum extent of LD03 contour (m) (Note 2)
eak (3mm) Ilorine drum	D2	SW, W	No LD03 contour off-site
le vapour from store arge leak) from drum	D2	SW, W, SE	No LD03 contour off-site
store d by failure ain and System	D5	SW, SE	No LD03 contour off-site
n leak from e drum	D2	S, SW, W NW, SE, NNE	No LD03 contour off-site

Results for Shatin WTW

Release	Release	Description	Weather	Wind	Maximum	cloud instead diverting down t	he Shatin v	alley (ie follo	owing the pa	
case	location		class	directions (Note 1)	extent of LD03 contour (m)	of least resistance).		-		
					(Note 2)	CED Madulling Describe				
						CFD Modelling Results				
			D5	W, SE	No LD03		1	7 1 T · D		
					contour	The results of the CFD modelling for S				
					off-site	summarised in <i>Table 4.5</i> below. Full de	etails can by	7 found in H	SL (1998) ar	
	C1.1 ·		D0	COM	250	HSL (1999).				
l tonne	Chlorine	Catastrophic failure	D2	SSW,	350					
(aerosol) Instantaneous	store	of a chlorine drum		WSW, SE,	650 250	Table 4.5Summary of CFD Modelling Results	Summary of CFD Modelling Results			
Instantaneous				NNE,	230 285					
				WNW	No LD03	Release case Weather Class	Release case Weather Class Maximum extent of LD cont		tour (m)	
				VIIIV	contour	Tercase case Treatment chass			tour (III)	
					off-site		LD90	LD50	LD03	
						Shatin WTW				
			D5	WSW,	315					
				SE	250	1.4 kg/s continuous D2	110	140	205	
						F2	145	155	225	
1 tonne	Access	Catastrophic failure	D2	S	295					
(aerosol)	road	of a chlorine drum		SW	640	1 tonne instantaneous D	170	200	255	
instantaneous				W	260	F2	220	255	275	
				NW	480					
			SE	300	Tai Po Tau WTW					
			NNE	355						
						õ	135	165	265	
			D5	W	165	F2	130	180	330	
				SE	210					
ote 1: Follow	ving standa	rd meteorology notatior	wind direc	tions refer to	the direction from		200	215	255	
here the wind l	0	ia meteoroiogy notation	, white unec				180	255	355	
	010 00 5.					B2	75	95	105	

Note 2: Downwind distance to 3% nominal outdoor fatality probability, ie not taking into account escape and assuming 10 min exposure duration or cloud passage time (whichever is the shorter)

From the results in Table 4.4 above, Annex B and RWDI (1998), the key findings of the wind tunnel testing may be summarised as follows:

- the wind tunnel results show that the LD03 contour only exceeds the site boundary for 1 tonne instantaneous releases. For 1.4 kg/s and 0.5 kg/s continuous releases the LD03 does not extend off-site; and
- the LD contours for the 1 tonne instantaneous release cases are strongly influenced by the topography and buildings near Shatin WTW. In particular:
 - the chlorine clouds are constrained by the hills surrounding the WTW on three sides. However it is noted that the LD03 contour does extend to an elevation of 100m above Principal Datum (NNE wind direction) with significant concentrations of chlorine also present at greater elevations (eg 30 ppm at 200m above PD); and
 - the nearest high rise blocks of the Hin Keng Estate act as an effective barrier to chlorine dispersion in the WSW direction with the chlorine

A13C-56

From Table 4.5, HSL (1998) and HSL (1999), the key findings of the CFD modelling may be summarised as follows:

- significantly overestimated by ignoring B conditions); and

• Atmospheric stability does not significantly influence the hazard range of either a 1.4 kg/s continuous release of chlorine or a 1 tonne instantaneous release of chlorine for the two weather conditions of most interest in this study (ie D - neutral stability and F - stable conditions). This is because, in the presence of buildings and complex, heavily-vegetated terrain, atmospheric stability has less of an influence on chlorine dispersion;

• For B (unstable conditions) the CFD results for Tai Po Tau WTW indicate that the chlorine hazard range is significantly reduced compared to neutral conditions (ie a factor of 2.5 shorter for a 1 tonne instantaneous release). HSL indicate that this is due to the unstable wind field which significantly enhances vertical dispersion of the chlorine. However, as B conditions account for no more than 20% of the weather in Hong Kong, this is not considered a significant factor for the QRA (ie risks are not considered to be

• For F (stable conditions) the CFD results for Tai Po Tau WTW indicate that, whilst the chlorine hazard range is not significantly affected by

atmospheric stability, the direction of travel of the chlorine cloud may be affected. At Tai Po Tau WTW, the chlorine releases in F conditions more closely followed the topographic contours than the equivalent releases in D conditions, which followed the direction of the wind.

Flat Terrain Dispersion Modelling Results

The results of the flat terrain dispersion modelling using DRIFT are presented in Annex A and summarised in Table 4.6 below.

Table 4.6 Summary of DRIFT Results

Release case	Weather Class	Maximum e	extent of LD con	tour (m)
		LD90	LD50	LD03
0.2 kg/s continuous	D2	86	119	182
1.4 kg/s continuous	D2	268	362	550
1 tonne instantaneous	D2	325	425	600
3 tonne instantaneous	D2	586	735	1044
10 tonne instantaneous	D2	1004	1286	1790

From the results in *Table 4.6* it is possible to derive a relationship between the chlorine release rate (or release quantity) and the downwind hazard range. The relationship is used in the QRA, as described below.

Comparison of Results of Wind Tunnel Testing, CFD Modelling and DRIFT Modelling

Table 4.7 compares the key results from the wind tunnel testing, CFD modelling, and DRIFT flat terrain dispersion modelling.

Table 4.7 Comparison of Wind Tunnel, CFD and DRIFT Results (Neutral stability, 2m/s wind speed)

Release case	Maximum extent of LD03 contour (m)			
	Wind tunnel	CFD	DRIFT	
0.2 kg/s continuous	<125	-	182	
1.4 kg/s continuous	<125	260 (Note 1)	550	
1 tonne instantaneous	250-650	255	600	

Note 1: Result from higher order discretisation scheme used in CFD modelling (HSL, 1998)

From *Table 4.7* the following key points emerge:

- applicable to Hong Kong conditions);
- the wind tunnel; and
- QRA.

Rationalisation of Chlorine Dispersion Modelling Results

The preceding sections have discussed the results arising from the various strands of work on chlorine dispersion modelling. The following paragraphs summarise how these results have been applied in the QRA. More details are provided in Annex D.

Wind tunnel testing: the wind direction-specific cloud shapes generated in the wind tunnel have been used directly in the QRA. This has been achieved through use of Graphical Information Systems (GIS) software which is described in further detail below. Another output of the wind tunnel testing was the influence of wind speed on the chlorine hazard range. From the wind tunnel test results for all eight WTWs a simple scale factor was derived to modify the cloud contours for the 2m/s wind speed case to determine those for the 5m/s case.

• the chlorine hazard range predicted by the wind tunnel testing and CFD modelling is generally shorter than that predicted by the DRIFT flat terrain dispersion modelling, particularly for continuous-type releases. This highlights the importance of modelling the effects of buildings and complex terrain, which act to increase turbulence and cause greater mixing of the chlorine. (It should also be noted that there is an inherent limitation in models such as DRIFT, whereby the surface roughness chosen must be small in relation to the cloud height. For dense gas release this limits the scope of DRIFT-type simulations to relatively smooth terrain, which is not

• the hazard range predicted by the wind tunnel testing for the 1.4 kg/s continuous release case is significantly shorter than that predicted by the CFD modelling (less than half). The reason for this is not certain, however an independent technical review of the wind tunnel testing (Webber, 1998) highlighted the limitation of modelling this type of release in the wind tunnel (1:500 scale) due to the difficulty of accurately simulating turbulence close to the ground near the source of the release. It is possible, therefore, that in the wind tunnel the degree of turbulence was greater than would occur in practice for this type of release. In view of this, the QRA uses the CFD modelling results for this release, in preference to those generated by

• the hazard range predicted by the wind tunnel for 1 tonne instantaneous releases are greater than those predicted by the CFD modelling. The reason for this is not clear, however as the wind tunnel results err on the conservative side (whilst eliminating the pessimism in the DRIFT-type predictions for these releases) they have been used in preference in the

CFD modelling: the CFD modelling results show no significant influence of atmospheric stability on the chlorine hazard range (for D and F conditions), therefore this parameter is not considered further in the QRA. However the CFD results for the 1.4 kg/s continuous release case (D2 weather conditions), which are consistent for Shatin WTW and Tai Po Tau WTW, are used in the QRA in preference to those from the wind tunnel.

DRIFT modelling: the DRIFT flat terrain dispersion modelling results are not used directly in the QRA. However the relationships derived from the DRIFT modelling for the chlorine release rate/quantity versus hazard range are used to scale the wind tunnel results for the complete range of release scenarios which need to be considered in the QRA. One further aspect which needs to be considered in applying the results of the wind tunnel testing in the QRA is the number of individual wind tunnel directions which are considered. In the wind tunnel testing up to eight wind directions were typically modelled for the most important release scenarios (eg a 1 tonne instantaneous release). However, in a QRA, it is usually necessary to consider a greater number of possible directions, in order to eliminate any spurious, numerical error in the risk results. The process of interpolating between the modelled wind directions is called 'wind smoothing' (achieved mathematically in software such as RISKPLOT the Consultants proprietary risk integration tool).

The application of wind smoothing in this study was considered in detail in Technical Note 1(ERM, 1998). It was concluded that for sites with relatively flat surrounding terrain, wind smoothing could be achieved by the simple method of cloud 'rotation' (i.e. rotation of clouds to fill the directional 'gaps' left by the wind tunnel). However for sites with complex terrain and/or high rise buildings it would be necessary to demonstrate that the important effects of the topography and buildings had been adequately captured in the raw wind tunnel data. For Shatin WTW it was demonstrated in *Technical Note* 1 that sufficient number of wind directions were considered in the wind tunnel testing, such that further wind smoothing was either not necessary or could be achieved easily by the method of cloud rotation without introducing any significant additional error.

Comparison of Dispersion Model Results with Data from Actual Incidents

There have been two significant chlorine release incidents at WTWs in Hong Kong;

- Shatin WTW, Sep 1992: 150 kg release of chlorine from a 1/4 inch hole in a liquid charging line, which escaped to atmosphere via folding doors, which were open; and
- Tai Po Tau WTW, June 1983: 725 kg release of chlorine from an adapter on a chlorine drum valve (1/4 inch hole) which escaped to atmosphere via the exhaust fan, doors and door louvres.

Data from the first incident provides some indication of the extent of the offsite effects of the chlorine release as it is known that four tenants at the staff ERM-Hong Kong, Limited WEEK 39 - SEPT 11

A13C-60

quarters (200m from the chlorine store) suffered respiratory discomfort during a period of exposure of 30 seconds. This would indicate chlorine concentrations of around 10-30 ppm (Table 3.1).

A release from a 1/4 inch hole in a liquid chlorine line would produce a release rate of around 0.26 kg/s, taking into account two-phase flow due to flashing in the line. The incident description indicates that the building may have had little or no mitigating effect on the release. However considering the two extremes of (i) a release direct to atmosphere via the open doors and (ii) a release which is initially held up and diluted in the building air, then the respective predictions of the wind tunnel testing for Shatin WTW and the DRIFT modelling for this scenario are shown in *Table 4.8* below.

Table 4.8

4.2.3

Predictions of Wind Tunnel Testing, CFD and DRIFT Modelling for release from 1/4 inch hole in liquid chlorine line in Shatin WTW (incident Sept 1992)

(ppm) at 200m distance 200m di (Note 1)		Concentration 00m distance	Actual Concentration (ppm) at 200m distance
	Case (i)	Case (ii)	(inferred from incident data)
Wind Tunnel Testing	14	0.50	
CFD	35	-	
		(Note 2)	10-30
DRIFT	20	80	
Note 2: No data from 0	CFD modellin	g for chlorine vap	our releases.
It should be emphas precise circumstanc indicate (as noted al releases may be opt	sised that th es of the 19 bove) that t imistic, wh FD prediction nparison ca	hese compariso 92 release are i he wind tunne ilst the DRIFT ions are reason	ons are approximate only as the not known. However they l tests for small, continuous predictions are certainly ably consistent with the incider

Release case	Chlorine cloud height (m) (Note 1)	Equivalent number of storeys (Note 2)
1.4 kg/s continuous	30	10
1 tonne instantaneous	6	2
10 tonne instantaneous	9	3

Note 1: Note that this is not the full height of the chlorine cloud. It is the height up to which the ground level chlorine concentration is assumed to apply for the purpose of calculating number of fatalities in tall buildings.

Note 2: Assumes 3m per storey.

RATIONALISATION OF CHLORINE RELEASE SCENARIOS AND ESTIMATION OF SCENARIO FREQUENCIES

5.1

5

RATIONALISATION OF CHLORINE RELEASE SCENARIOS

The consequence analysis from wind tunnel testing and CFD modelling shows that it is only certain, severe types of chlorine release which could produce fatal off-site concentrations of chlorine (Table 4.4 and Table 4.5). The release cases which fall into this category are external continuous releases of 1.4 kg/s or more (equivalent to guillotine failure of a drum valve) and instantaneous releases of 1 tonne or more whether external or internal.

These results mean that many of the chlorine release scenarios identified in Section 3 (Table 3.5) can be eliminated from further consideration in the QRA. Table 5.1 considers each release scenario in turn and, based on the results of the consequence analysis, determines whether the scenario poses an off-site hazard. Table 5.2 then summarises the results of the analysis in Table 5.1 by grouping the release scenarios into 'events' having identical release characteristics (ie the same release rate, duration and phase of release). Table 5.3 shows the events grouped according to the leak quantity.

ERM-Hong Kong, Limited

Chlorine release scenario	Outcome	Hole size	Phase	Chlorine release rate from primary source (kg/s)	Chlorine release quantity (tonnes)	Chlorine release rate (or quantity) to atmosphere	Significant off-site hazard ? (Y/N)	Event Ref ⁽²⁾
1. ACCESS ROAD 1.1 Truck fire	Considered to result in melting of the fusible plugs on up to three drums.	3x6mm	Liquid	2.4	n	2.4 kg/s	¥	RU1TMML
1.3 Manoeuvring accident	Single drum - small leak	3mm	liquid	0.2	1	0.2 kg/s	Z	ı
1.4 Rollover	Single drum - small leak	3mm	liquid	0.2	1	$0.2 \mathrm{kg/s}$	Z	1
	Single drum - medium leak	8mm	liquid	1.4		$1.4 \mathrm{kg/s}$	Υ	RU1TSML
	Three drums - medium leak	3 x 8mm	liquid	4.2	ю	$4.2 \mathrm{kg/s}$	¥	RU1TMML
	Fire (outcomes as item 1.1 above)							
1.5 Collision	Single drum - rupture Fire (outcomes as item 1.1 above)	ı	liquid	ı	1 (inst)	1 tonne	Y	RUITSRU
1.6 Loadshedding	Single drum - small leak	3mm	liquid	0.2	1	$0.2 \mathrm{kg/s}$	Z	1
	Single drum - medium leak	8mm	liquid	1.4	1	$1.4 \mathrm{kg/s}$	Y	RU1TSML
1.7 Spontaneous	Single drum - medium leak	8mm	liquid	1.4	1	$1.4 \mathrm{kg/s}$	Y	RU1TSML
container failure	Single drum - large leak	20mm	liquid	8.8	1	$8.8 \mathrm{kg/s^{(3)}}$	Y	RU1TSRU
	Single drum - rupture	I	liquid	ı	1(inst)	1 tonne	Y	RU1TSRU
2. DRUM HANDLING	TING							
2.1 Dropped drum	Single drum - medium leak	8mm	liquid	1.4		0.30 kg/s	Z	ı
ERM-Hong Kong, Limited			A	A13C-64				WEEK 39 - SEPT 11
Chlorine release scenario	Outcome	Hole size	Phase	Chlorine release rate from primary source (kg/s)	Chlorine release quantity (tonnes)	Chlorine release rate (or quantity) to atmosphere	Significant off-site hazard ? (Y/N)	Event Ref ⁽²⁾
	Single drum - large leak	20mm	liquid	8.8	-1	0.55 kg/s	Z	1
	Single drum - rupture	ı	liquid	ı	1 (inst)	16 kg	Z	,
2.2 Collision of drum	Single drum - medium leak	8mm	liquid	1.4	1	0.30 kg/s	Z	ı
with another object 2.3 Accidental impact of drum on pigtail during setdown at standby position	Pigtail - guillotine failure	4.5mm	two- phase	0.12	EI.	0.027 kg/s	Z	T
2.4 Dropped drum due to overextension of	Single drum - medium leak	8mm	liquid	1.4	1	0.30 kg/s	Z	1

As item 2.1 above

truck crane 2.5 Dropped drum due to incorrect alignment of monorail track

3. CONTAINERS IN STORAGE

WEEK 39 - SEPT 11								ERM-Hong Kong, Limited
							As item 3.1 above	3.3 Impurities in
								overpressurisation on thermal expansion
							As item 3.1 above	3.2 Overfilled drums leading to
	Z	16 kg	1 (inst)	ı	liquid	ı	Single drum - rupture	
	Z	0.55 kg/s	1	8.8	liquid	20mm	Single drum - large leak	
ı	Z	$0.30 \mathrm{kg/s}$	1	1.4	liquid 1.4	8mm	Single drum - medium leak	3.1 Leaking chlorine drums
							UNAGE	9. CONTAINERS IN 31 ONAGE

A13C-65

Chlorine release scenario	Outcome	Hole size	rnase	Chlorine release rate from primary source (kg/s)	Chlorine release quantity (tonnes)	Chlorine release rate (or quantity) to atmosphere	Significant off-site hazard ? (Y/N)	Event Ref ⁽²⁾
chlorine drum leading to explosion or leak								
3.6 External explosion	Single drum - medium leak	8mm	liquid	1.4	1	0.30 kg/s	Z	ı
3.12 Earthquake	Overhead crane dislodged from rails:	ı	liquid	ı	1 (inst)	16 kg	Z	ı
	sıngle drum-rupture Roof collapse: multiple drum-rupture	ı	liquid	·	42 ⁽⁴⁾ (inst)	26.8 tornes ^(1,4)	¥	EU1TMRU EU1TMRU1G
3.13 Aircraft crash	Roof collapse: multiple drum rupture (similar to	ı	liquid		42 ⁽⁴⁾ (inst)	26.8 tonnes ^(1,4)	X	AUITMRU
3.15 Vehicle crash	eau uryuaxe) Single drum - medium leak	8mm	liquid	1.4	1	$0.30 \mathrm{kg/s}$	N	ı
4. CONNECTION	CONNECTION AND DISCONNECTION OF CHLORINE CONTAINERS	NE CONTAINE	ERS					
4.1 Human error or equipment failure during connection/disconne ction of drums	Pigtail - guillotine failure	4.5mm	two- phase	0.12		0.027 kg/s	Z	1
5. CHLORINATION SYSTEM	YSTEM							
5.1 - 5.5 Failures associated with the chlorination system pipework	Liquid chlorine pipework - guillotine failure	4.5mm	two- phase	0.12	1.05	0.027 kg/s	Z	1
5.6 - 5.7 Failure of	Evaporator - leak or rupture	4.5mm	two-	0.12	1.05	0.027 kg/s	N	1
ERM-Hong Kong, Limited			A	A13C-66				WEEK 39 - SEPT 11
Chlorine release scenario	Outcome	Hole size	Phase	Chlorine release rate from primary source (kg/s)	Chlorine release quantity (tonnes)	Chlorine release rate (or quantity) to atmosphere	Significant off-site hazard ? (Y/N)	Event Ref ⁽²⁾
Evaporator			phase					

R (Road) or E (Earthquake) or A (Aircraft crash) or I (internal)
U U (Unisolated) or I (Isolated)
U U (Unisolated) or I (Isolated)
IT 11 (1 tonne drums)
M S (Single) or M (Multiple)
M RU (Rupture). LL (Large Leak), ML (Medium Leak) or SL(Small Leak)
IG Earthquake of higher ground acceleration
Note (3): These releases treated as effectively instantaneous releases due to short release duration
Note (4): The values listed are for 221 tonnes storage. For reduced storage scenarios they are reduced in proportion to the storage levels (see discussion in *Annex G*)

WEEK 39 - SEPT 11

A13C-67

ERM-Hong Kong, Limited

Table 5.2Release Scenarios Included in QRA

Event Ref	Component scenarios	Release rate (or quantity) to atmosphere	Type of release	Release location
RU1TSML	Rollover Loadshedding Spontaneous leak	1.4 kg/s	Continuous	Access road
RU1TMML	Rollover Truck fire	4.2 kg/s	Continuous	Access road
RU1TSRU	Truck impact Truck fire Spontaneous failure	1 tonne	Instantaneous	Access road
EU1TMRU	Earthquake: roof collapse, ground acceleration 0.7g	26.8 ⁽¹⁾ tonnes	Instantaneous	Chlorine store
EU1TMRU1G	Earthquake: roof collapse, ground acceleration 1g	26.8 ⁽¹⁾ tonnes	Instantaneous	Chlorine store
AU1TMRU	Aircraft crash	26.8(1) tonnes	Instantaneous	Chlorine store

Note (1): the values listed are for 221 tonnes storage. For reduced storage scenarios they are reduced in proportion to the storage levels

Table 5.3Release Scenarios Categorised by Leak Quantity

Leak Quantity (kg)	Event Ref
100-1000	RU1TSML, RU1TMML, RU1TSRU
>1000	EU1TMRU, EU1TMRU1G, AU1TMRU

5.2 FREQUENCY ESTIMATION

Having identified the chlorine release scenarios of interest (*Section 5.1*), the next step in the Hazard Assessment is to determine their frequency of occurrence. This is based on the approach outlined in the Consultants' *Methodology Report* (ERM, 1997).

Table 5.4 summarises the base data which has been used in the frequency calculations. Following the methodology described in ERM (2001), actual frequencies are then determined based on these base failure data and the operational parameters of the WTW such as chlorine use, chlorine storage levels, and length of the access road (see *Table 2.1*) or, in the case of the aircraft crash event, the STWTW location in relation to the flight path, number of flights into CLK airport etc. The resulting total event frequencies are presented in *Table 5.5*.

ERM-Hong Kong, Limited

Table 5.4Base Failure Rate Data

Data it	tem
1. Chlo	prine container
1.1 (i)	Spontaneous container failure frequency
(ii)	
(iii)	Conditional probability of medium leak
(iv)	Conditional probability of large leak
1.2 (i)	Probability of dropped container
(ii)	Conditional probability of catastrophic failure
2. Chlc	orine delivery vehicle
	Frequency of loadshedding Conditional probability of a medium leak
2.2 (i) (ii)	medium leak of a single
(iii)	drum Conditional probability of medium leak of multiple drums
2.3 (i)	Frequency of vehicle impact
(ii)	Conditional probability of drum rupture
2.4	Frequency of spontaneous truck fire
3. Exte	rnal events
3.1 (i) (ii)	Frequency of earthquake of 0.7g ground acceleration Probability of roof collapse in an earthquake of 0.7g ground acceleration

- 3.2 (i) Frequency of earthquake of 1.0g ground acceleration
- (ii) Probability of roof collapse in an earthquake of 1.0g ground acceleration

Value	Units	Source
1.5E-4	per year	Methodology Report
0.027	-	(based on review of worldwide failure data for chlorine containers
0.22	-	and generic pressure vessel failure data)
0.081	-	
7.7E-6 1.0E-4	per lift -	<i>Methodology Report</i> (based on Hong Kong data for number of lifts
		which have occurred without incident)
1.1E-7 6.3E-2	per truck-km -	Chlorine Transport Risk Study, DNV (1997)
1.9E-7 1.5E-1	per truck-km -	Chlorine Transport Risk Study, DNV (1997)
1.1E -2	-	
4.0E-7	per truck-km	Chlorine Transport Risk Study, DNV (1997)
1.7E-2	-	Study, Divv (1997)
4.0E-9	per truck-km	Chlorine Transport Risk Study, DNV (1997)
4.0E-7	per year	Cook et al (1993)
0.1	-	Water Treatment Works Seismic Hazard Assessment, Ove Arup (2001)
2.5E-8	per year	Cook et al (1993)
0.5	-	Water Treatment Works Seismic Hazard Assessment, Ove Arup (2001)

Data item	Value	Units	Source
3.3 Frequency of aircraft crash	1.2E-8	per landing	Based on US National Transportation Safety Board aircraft crash date 1982-1998 (<i>Annex H of</i> <i>ERM</i> , 2001)

Table 5.5 **Event Frequencies**

Event Ref	Component scenarios	Frequencies (per year)	Time periods during which event could occur
RU1TSML1	Rollover	3.21E-6	All except Night
	Loadshedding	7.79E-7	All except Night
	Spontaneous leak	2.54E-7	All except Night
	Total	4.24 <i>E</i> -6	
RU1TMML ¹	Rollover	2.35E-7	All except Night
	Truck fire	4.52E-7	All except Night
	Total	6.87E-7	1 0
RU1TSRU1	Truck impact	7.66E-7	All except Night
	Spontaneous drum failure	1.25E-7	All except Night
	Total	8.91E-7	
EU1TMRU	Earthquake	4.0E-8	All
EU1TMRU1G	Earthquake	1.25E-8	All
AU1TMRU	Aircraft crash	1.44E-9	All

Note 1: Frequencies for the access road events are proportional to the number of chlorine trucks per year and are shown here for the maximum WTW chlorine usage of 896 tonnes (150 trucks) per year and the existing truck access route. Frequencies for other scenarios were reduced according to the annual number of trucks and the length of the alternative truck access route.

6.1

6

RISK ASSESSMENT METHODOLOGY

The QRA combines information on the consequences of chlorine releases with information on the likelihood of releases to generate two measures of risk individual risk and societal risk. Individual risk is the chance of death per year to a specified individual at a specific location. Societal risk is the risk to the population as a whole.

The QRA has been undertaken using a GIS-based software GISRisk, developed for the 8WTW project. The GIS component of the software enables the complex cloud shapes generated by the wind tunnel to be input directly into the QRA. It also provides a graphical interface by which the population data, chlorine cloud (LD) contours and individual risk contours can be viewed on a base map of the area. GISRisk is an application of standard, well-validated, commercial software, i.e. ESRI's ARCVIEW GIS software, Microsoft Access and Microsoft Excel.

Associated with the GIS software is a database containing all the relevant information relating to the WTW, the defined events, the meteorological data, the population data and the chlorine cloud coordinates. The database contains the routines for the calculation of individual and societal risk.

The main outputs from the software are as follows:

- area;
- a log-log scale; and
- summing the product of each *f*-*N* pair, as below:

 $PLL = f_1 N_1 + f_2 N_2 + \ldots + f_n N_n$

6.2

RISK CRITERIA

The Hong Kong Planning Standards and Guidelines (HKPSG), Chapter 12 require that development proposals within the Consultation Zone of a Potentially Hazardous Installation (PHI) are assessed against Hong Kong Risk Guidelines (HKRG) to ensure that risks to the public are confined to within acceptable limits. The same criteria are stipulated in Annex 4 of the Technical Memorandum on the Environmental Impact Assessment Process (EIAO-TM). ERM-Hong Kong, Limited WEEK 39 - SEPT 11

QUANTITATIVE RISK ASSESSMENT

• Individual risk in the form iso-risk contours overlaid on a base map of the

• Societal risk in the form of an FN curve, which is a graphical representation of the cumulative frequency (F) of N or more fatalities plotted against N on

• Societal risk in the form of a Potential Loss of Life (PLL) value, which expresses the risk to the population as a whole and for each scenario and its location. The PLL is an integrated measure of societal risk obtained by

A13C-71

Acceptable risk levels are defined as follows:

- *Individual Risk*: The maximum involuntary individual risk of death associated with accidents arising at PHIs should not exceed 1 chance in 100,000 per year (10⁻⁵/yr); and
- *Societal Risk*: The societal risk associated with a PHI should comply with the FN diagram (Fig 3 in HKPSG, Ch 12). Three areas of risk are shown:
 - Acceptable where risks are so low that no action is necessary;
 - *Unacceptable* where risks are so high that they should usually be reduced regardless of the cost or else the hazardous activity should not proceed; and
 - ALARP (As Low As Reasonably Practicable) where the risks associated with each probable hazardous event at the PHI should be reduced to a level >as low as reasonably practicable, usually measured as a trade off between the risk reduction afforded and the cost of that reduction. Risk mitigation measures may take the form of either engineered measures at the PHI or development (ie population) controls in the vicinity of the PHI. In the case of a new development within the Consultation Zone of an existing PHI the onus is on the developer to implement such measures as are necessary to ensure that risk levels at the development site are ALARP.

6.3 QRA RESULTS

The following sub-sections present the QRA results for the four scenarios considered in the QRA. For the scenario description, see *Section 2.3* and *Table 2.1*.

6.3.1 Societal Risk Results

The FN curves for each scenario listed in *Table 2.1* are presented in *Figures 6.1* to *6.4*. *Table 6.1* summarises the maximum N numbers derived from these figures. *Tables 6.2* and *6.3* present the overall PLL values, together with a breakdown of the PLL by release scenario and population area.

Scenario 1 (SCL Construction before WTW refurbishment)

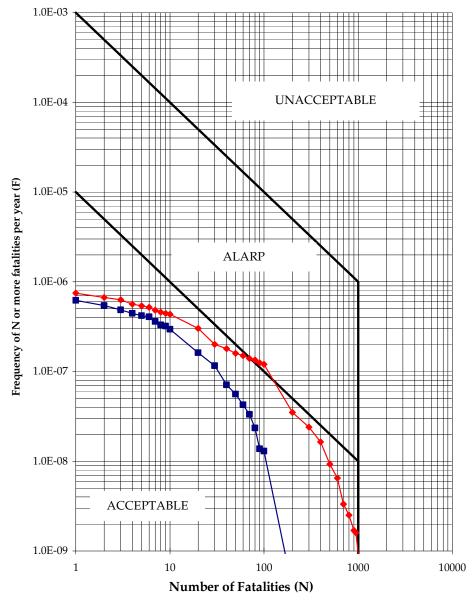
FN curve for the Scenario 1 is shown in *Figure 6.1*. The risks are in the ALARP zone of HKRG. The risk to SCL construction population, when considered on its own, falls within the "Acceptable" region.

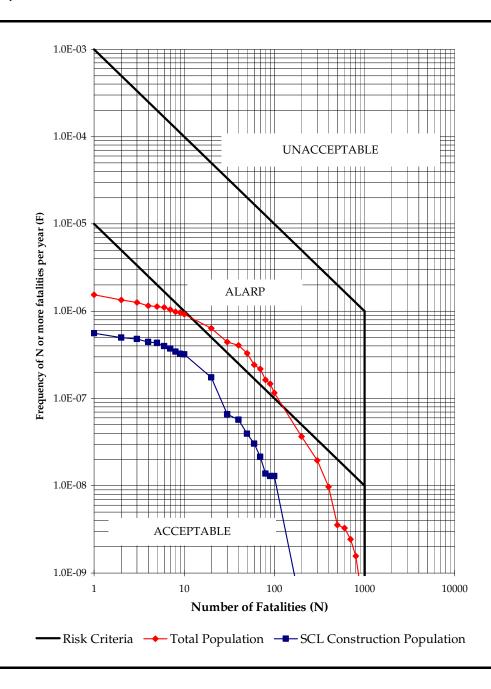
The main contributors to PLL (Potential Loss of Life) are the EU1TMRU event – multiple chlorine drum ruptures following a store roof collapse during an earthquake of 0.7g magnitude and RU1TSRU - a single drum rupture incident due to the chlorine truck fire, truck impact or spontaneous failure.

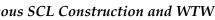
ERM-Hong Kong, Limited

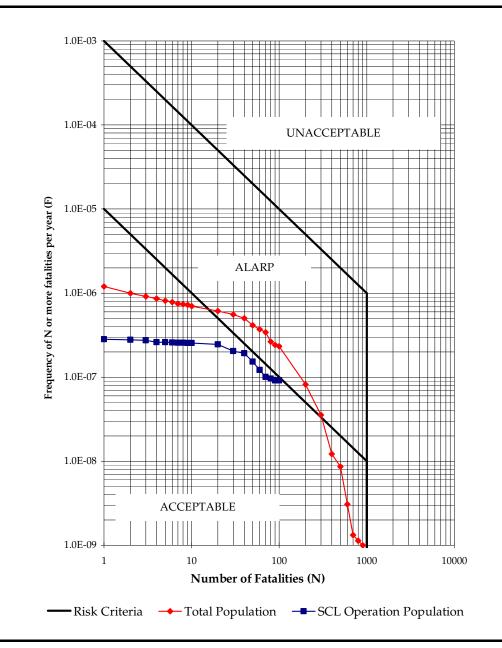
Scenario 2 (Simultaneous SCL Construction Phase and WTW Refurbishment)

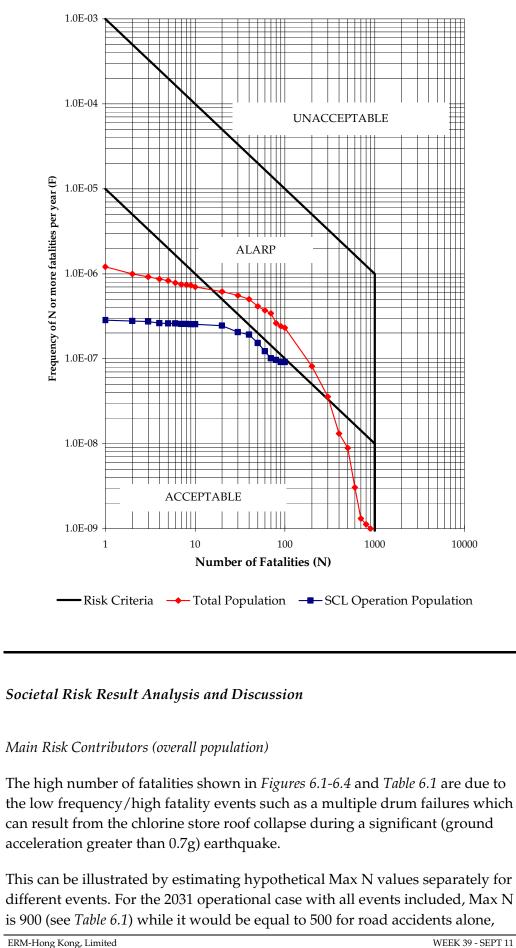
For Scenario 2 (*Figure 6.2*), during the WTW refurbishment period, the FN curve is in the "ALARP" region, even though the additional population of the refurbishment workers is taken into account. This is because the reduced chlorine storage during this period significantly lowers the risks.


The risk to SCL construction population, when considered on its own, falls within the "Acceptable" region.


The main contributor to PLL is the RU1TSML event – a continuous chlorine release from one drum, due to rollover, loadshedding or spontaneous leak.


Operational Phases


The Societal Risk results for both Operational Phase scenarios fall in the "ALARP" region of the HKRG (*Figures 6.3* and *6.4*). The risks to the SCL population alone (considering HIK Station and the train populations) lie within the "Acceptable" region.


The main contributors to PLL are the chlorine truck events RU1TSML and RU1TMML.

WEEK 39 - SEPT 11

ERM-Hong Kong, Limited

6.3.2

A13C-77

206 for aircraft crash, 764 for both earthquake events combined, and 900 for both earthquake events and aircraft crash combined. Earthquake events considered separately would result in Max N of 690 and 398 for EU1TMRU and EU1TMRU1G, respectively.

The earthquake frequencies used in this study, 4 x 10⁻⁷ (i.e. once in 2.5 million years) and 2.5 x 10⁻⁸ for 0.7 g and 1g earthquakes, respectively, as well as the probability of a store roof collapse in an earthquake and the numbers of chlorine drums ruptured were derived as part of the *Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works* study commissioned by WSD.

While the earthquake scenarios are dominant for the high N values of the FN curve, the chlorine truck accident scenarios that can affect only the populations close to WTW and on their own contribute to about 500 fatalities have higher frequencies than earthquakes, and contribute about 50% to 80% to the total PLL (*Table 6.2*).

Table 6.1Maximum N Value within the FN Chart for the Scenarios considered in QRA

Scenario	Max N for
	$F > 1 \times 10^{-9}$
Scenario 1: SCL Construction before WTW refurbishment	990
Scenario 2: Simultaneous SCL Construction and WTW refurbishment	864
Scenario 3: SCL Operation Period 1 (after completion of WTW refurbishment)	900
Scenario4: SCL Operation Period 2 (surrounding population growth taken into	900
account)	
2001 QRA (ERM, 2001)	980

Table 6.2Breakdown of PLL by Release Scenario

Release Scenario ¹	Construct	tion Phase	Operatio	nal Phase
	Scenario 1	Scenario 2	Scenario 3	Scenario 4
RU1TMML	3.8E-06 (10.7%)	1.6E-05 (28.7%)	2.9E-05 (40.0%)	2.9E-05 (40.0%)
RU1TSML	3.9E-06 (11.0%)	2.0E-05 (36.1%)	2.8E-05 (38.4%)	2.8E-05 (38.5%)
RU1TSRU	1.1E-05 (30.3%)	6.0E-06 (10.8%)	3.7E-06 (5.1%)	3.8E-06 (5.2%)
Total: chlorine				
truck incidents	1.8E-5 (52.0%)	4.2E-05 (75.6%)	6.1E-05 (83.5%)	6.2E-05 (83.6%)
AU1TMRU	7.3E-07 (2.1%)	5.7E-07 (1.0%)	6.0E-07 (0.8%)	6.0E-07 (0.8%)
EU1TMRU	1.3E-05 (35.7%)	1.0E-05 (18.2%)	9.1E-06 (12.5%)	9.1E-06 (12.4%)
EU1TMRU1G	3.7E-06 (10.3%)	2.9E-06 (5.3%)	2.3E-06 (3.2%)	2.3E-06 (3.2%)
Total: earthquake				
and aircraft crash	1.7E-05 (48.0%)	1.4E-05 (24.4%)	1.2E-05 (16.5%)	1.2E-05 (16.4%)
Total (per year)	3.6-05	5.5E-05	7.3E-05	7.4E-05

Note 1: for definitions of release scenarios see Table 5.2

The maximum N value as shown in *Table 6.1* is a summation of all events causing N or more fatalities. Being a summation of multiple events, the contribution of each population group to the total will vary depending on wind direction for example, it is therefore impossible to present a breakdown of max N by the different population groups. A more meaningful measure of such contributions is PLL as presented in *Table 6.3*. Nevertheless, while comparing the maximum N values for Scenario 1 and scenarios 2, 3 and 4

(*Table 6.1*), it may be noted that reduction of chlorine storage results in a reduction of max N despite the increase in population, especially addition of the SCL and HIK Station passenger population (Scenarios 3 and 4). Therefore, the results show that with the reduced chlorine storage, combined with low presence factors of the new population and low frequency of events causing large number of fatalities, the max N remains within the 1000 criterion.

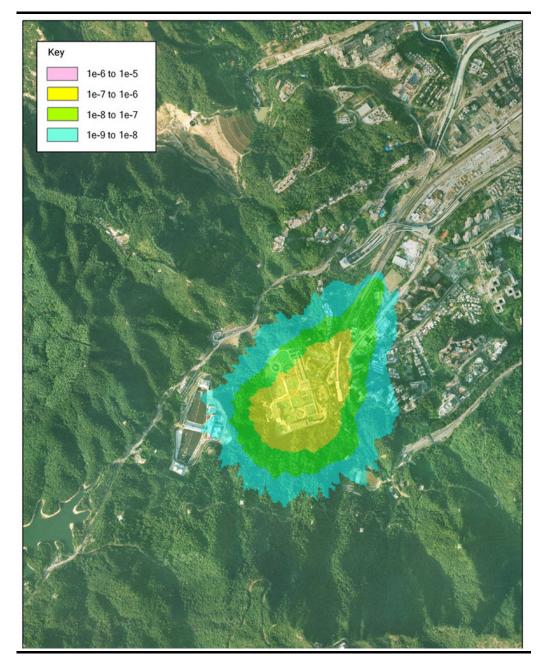
Table 6.3

Ref ¹	PLL	%	PLL	%	PLL	%	PLL	%
	Scenario 1		Scenario 2		Scenario 3		Scenario 4	
29	7.4E-08	0.2%	1.8E-08	0.0%	2.9E-08	0.0%	2.9E-08	0.0%
32	1.3E-07	0.4%	8.2E-08	0.1%	9.0E-08	0.1%	8.9E-08	0.1%
А	6.1E-08	0.2%	4.4E-08	0.1%	4.6E-08	0.1%	4.6E-08	0.1%
B1	0.0E+00	0.0%	0.0E+00	0.0%	1.4E-06	2.0%	1.4E-06	2.0%
B2	2.4E-07	0.7%	1.4E-07	0.3%	1.5E-07	0.2%	1.5E-07	0.2%
С	8.6E-08	0.3%	5.7E-08	0.1%	6.5E-08	0.1%	6.5E-08	0.1%
D	1.9E-07	0.5%	1.5E-07	0.3%	1.3E-07	0.2%	1.3E-07	0.2%
E	7.0E-07	2.0%	9.9E-07	1.8%	1.3E-06	1.8%	1.3E-06	1.8%
F	5.4E-08	0.2%	2.0E-08	0.0%	2.4E-08	0.0%	2.4E-08	0.0%
G	1.0E-07	0.3%	6.5E-08	0.1%	7.0E-08	0.1%	7.0E-08	0.1%
Н	2.3E-08	0.1%	2.2E-08	0.0%	2.2E-08	0.0%	2.2E-08	0.0%
H1	6.8E-09	0.0%	6.4E-09	0.0%	1.7E-08	0.0%	1.7E-08	0.0%
H2	4.0E-09	0.0%	3.5E-09	0.0%	1.1E-08	0.0%	1.1E-08	0.0%
Ι	4.5E-07	1.3%	9.6E-07	1.7%	1.4E-06	2.0%	1.4E-06	1.9%
J	7.0E-07	2.0%	2.1E-06	3.9%	3.4E-06	4.6%	3.4E-06	4.6%
K	1.3E-06	3.5%	3.2E-06	5.8%	4.7E-06	6.5%	4.7E-06	6.4%
L	2.0E-08	0.1%	1.5E-08	0.0%	1.5E-08	0.0%	1.5E-08	0.0%
L1	0.0E+00	0.0%	1.9E-08	0.0%	1.9E-08	0.0%	1.9E-08	0.0%
М	4.4E-08	0.1%	1.9E-08	0.0%	2.3E-08	0.0%	2.3E-08	0.0%
Ν	8.2E-07	2.3%	6.3E-07	1.1%	9.5E-07	1.3%	9.5E-07	1.3%
0	5.7E-06	16.2%	1.2E-05	22.4%	1.7E-05	23.9%	1.7E-05	23.6
Р	3.1E-07	0.9%	6.0E-07	1.1%	8.5E-07	1.2%	8.5E-07	1.2%
Q	1.2E-08	0.0%	8.8E-09	0.0%	9.0E-09	0.0%	9.0E-09	0.0%
R1	1.6E-06	4.6%	1.4E-06	2.5%	2.1E-06	2.9%	2.4E-06	3.2%
S1	6.4E-08	0.2%	4.4E-08	0.1%	4.6E-08	0.1%	4.6E-08	0.1%
S2	1.9E-08	0.1%	5.6E-08	0.1%	8.3E-08	0.1%	8.3E-08	0.1%
S3	9.3E-07	2.6%	4.1E-07	0.7%	5.6E-07	0.8%	5.6E-07	0.8%
Т	3.5E-08	0.1%	1.7E-08	0.0%	2.0E-08	0.0%	1.6E-08	0.0%
T1	0.0E+00	0.0%	1.2E-05	21.1%	0.0E+00	0.0%	0.0E+00	0.0%
U	3.2E-07	0.9%	2.1E-07	0.4%	2.4E-07	0.3%	2.4E-07	0.3%
V	4.7E-07	1.3%	1.3E-06	2.4%	2.0E-06	2.7%	2.0E-06	2.7%
W	0.0E+00	0.0%	0.0E+00	0.0%	0.0E+00	0.0%	0.0E+00	0.0%
X	4.5E-08	0.1%	1.1E-08	0.0%	1.9E-08	0.0%	1.9E-08	0.0%
Y	8.7E-07	2.4%	1.1E-06	2.0%	1.4E-06	1.9%	1.4E-06	1.9%
Z1	3.3E-06	9.4%	5.6E-06	10.1%	8.1E-06	11.0%	8.1E-06	10.9
Z2	3.0E-07	0.8%	4.9E-07	0.9%	6.8E-07	0.9%	6.8E-07	0.9%
Z5	0.0E+00	0.0%	4.9E-07 0.0E+00	0.9%	0.3E-07 2.7E-08	0.9%	2.8E-08	0.0%
Z6	5.2E-06	14.5%		0.0 <i>%</i> 4.7%	2.4E-05	33.0%	2.5E-05	33.4
Z0 Z7	9.3E-06	14.5 % 26.2%	2.6E-06 7.2E-06					
				13.0%	0.0E+00	0.0%	0.0E+00	0.0%
Z8 Z0	3.2E-08	0.1%	1.4E-08	0.0%	0.0E+00	0.0%	0.0E+00	0.00
Z9 710	4.5E-07	1.3%	3.8E-07	0.7%	0.0E+00	0.0%	0.0E+00	0.0%
Z10	8.8E-07	2.5%	8.1E-07	1.5%	1.0E-06	1.4%	1.0E-06	1.49
others Total	6.7E-07 3.6E-05	1.9% 100.0%	4.2E-07 5.5E-05	0.8%	4.5E-07 7.3E-05	0.6%	4.6E-07 7.4E-05	0.6%

Note 1: for description and locations of population units see *Table 2.3* and *Figure 2.5* Note 2: Highlighted are three top PLL contributors for each scenario

ERM-Hong Kong, Limited

Contribution of SCL Construction and Operation to Overall Risk Results


In terms of the Potential Loss of Life (*Table 6.3*), the SCL construction (units Z6 to Z9) contributes about 42%, and 19% of the total PLL value for Scenarios 1 and 2, respectively. For the SCL construction workers the PLL drop for the Scenario 2 is due to the reduction of chlorine usage and storage and the adoption of the alternative transport route (Figure 2.3) located at a greater distance from some main SCL construction areas during the WTW refurbishment (note that while this route relocation benefits some areas, it also increases the PLL for other population units). The main contributor to the increase in total PLL value in Scenario 2 is the introduction of the WTW refurbishment workforce (unit T1) which is much lower than the number of SCL construction workers, but is located very close to the potential chlorine release points.

For both operational phase scenarios the PLL for the SCL passengers and HIK Station population (units Z5 and Z6) is about 2.5 x 10⁻⁵, i.e. 33% of the total PLL. This high contribution is due to the large number of SCL passengers and proximity of the HIK Station and SCL alignment to the STWTW.

6.3.3 Individual Risk

The individual risk levels are calculated for a hypothetical person spending 100% of their time outdoors in the vicinity of the Shatin WTW. Individual risk is independent of the surrounding population levels.

Figure 6.5 presents the individual risks obtained for the Scenario 1, but assuming the maximum chlorine storage of 221 tonnes. Risks for other scenarios will be slightly lower due to the lower average chlorine storage and dosage levels (Table 2.1). As can be seen, the risks are low and nowhere outside the WTW site boundary does the individual risk exceed 10⁻⁵ per year. It is therefore concluded that Shatin WTW complies with the individual risk criteria.

6.3.4

Result Summary

The 2001 STWTW QRA (ERM, 2001) predicted the societal risk within the "ALARP" region of the HKRG, but very close to the 1000 fatality criterion (Figure 1.3). Any increase in population due to natural growth or any new development including transient construction workforce might therefore be expected to result in exceedance of the HKRG criteria (i.e. N>1000).

Nevertheless, societal risk levels for all scenarios studied are within the ALARP region (N<1000). This is due to the lower chlorine storage and use anticipated during and after the WTW refurbishment. For the possible SCL construction period before the WTW refurbishment begins, WSD has agreed to maintain the chlorine storage time distribution (see the first row of Table 2.1) that will not lead to an exceedance of the N<1000 criterion. ERM-Hong Kong, Limited

In terms of the Potential Loss of Life (<i>Table 6.3</i>), the SCL construction contributes about 42%, and 19% of the total PLL value for the Scenarios, 1 and 2, respectively, while for both operational phase scenarios the PLL for the SCL passengers and HIK Station population amounts to about 33% of the total	7	SELECTION OF EFFECTIVE RISK
PLL. Of the background population units, the highest contribution to PLL results from Hin Keng Estate (unit O) and Che Kung Miu Road (unit Z1), and,	7.1	INTRODUCTION
during the WTW refurbishment, from the refurbishment workforce (unit T1)		Since the societal risk levels for all s of the HKRG, mitigation measures
The individual risk levels are low and in compliance with HKRG.		Low As Reasonably Practicable. Th measures and assesses their practica
		A number of mitigation measures h original QRA for STWTW (ERM, 20 provided by WSD, those considered implemented at the WTW. Therefor the SCL construction and WTW ref passengers and not on the WTW op the mitigation measures at the WTW practicable, are re-examined here by
	7.2	IDENTIFICATION OF MITIGATING OP
		Possible effective mitigation measu drums that can rupture following a protecting the SCL population.
		Other options have been identified as reported in the ERM (2001) study
		Based on the findings from <i>Sections</i> measures appear possible.
		The options considered are:
		• Option 1: Reducing the maximu
		• Option 2: Improvements to the c
		• Option 3: Protecting the Railway
		• Option 4: Protecting SCL passen
		These options are discussed in the four of all options considered is presented is p

K MITIGATION

l scenarios considered lie in the ALARP zone s are required to reduce the risks to levels As 'his section discusses potential mitigation icability.

a have been considered and assessed in the 2001) and, according to the information ed practicable have been already fore, the measures discussed below focus on efurbishment workforce, the future SCL operation themselves. Nevertheless, some of ΓW that were previously deemed not based on the updated PLL results.

PTIONS

sures would be to reduce the number of a chlorine store roof collapse scenario and

d but already addressed in previous QRAs dy.

ns 6 and ERM (2001), no other mitigation

um/average number of chlorine drums;

chlorine store;

ay construction workers; and

engers and staff.

e following sections; the cost-benefit analysis need in *Section 7.7*.

7.3	OPTION 1: REDUCING THE NUMBER OF CHLORINE DRUMS IN STORAGE	7.5	OPTION 3: PROTECTING THE RAILWA
	A reliable way of reducing the number of fatalities for scenarios with fatalities approximating 1000 is to reduce the number of chlorine drums ruptured during a store roof collapse and the extent of the resulting chlorine cloud. This can be accomplished by reducing the amount of chlorine stored at the WTW. However, the number of chlorine drums to be stored at WTW during the SCL construction and operation has already been reduced from its current level (<i>Table 2.1</i>) and the N<1000 criterion is met for all scenarios considered. It is understood that further chlorine storage reduction at the WTW is not possible due to WSD operational requirements.		Adequate measures should be in pla MTRC/Contractors, to ensure that i MTRC/Contractors should take the construction workers are minimised other similar projects, such as Route are considered. Note that other mea as modifications or reduction of chlo here, since they either are discussed relevant to this study. For example, the WTW was considered in the Rou
7.4	OPTION 2: IMPROVEMENTS TO CHLORINE STORE		grounds as being ineffective. Specifi be used on chlorine leaks, as it will i
	Another way of reducing the number of drums ruptured during a roof collapse would be introducing improvements to the chlorine store		hydrochloric acid. Hence this optior assessment.
	construction. Following the recommendation of Ove Arup (2001) three possible improvements to the chlorine store have been considered in the	7.5.1	Option 3a: Gas Monitors and Emerg
	previous, CCPHI-approved QRA (ERM, 2001, Sections 7.1 & 7.2). It is understood that, similar to Option 1, due to time constrains these options could be implemented for the SCL Operational phase only.		This option would include:Installation of on-site gas monitor
	They are discussed in the following paragraphs.		Establishment of emergency resp
7.4.1	Option 2a: Strengthening of Columns of Chlorine Store		of various parties/departments r
	This measure involves wrapping the columns with a carbon fibre material. It would significantly improve the seismic resistance of the chlorine store by		 Safety/emergency response/eva- personnel.
	increasing the ductile capacity of the columns and allowing them to deform without the roof collapsing. This treatment is a common method of retrofitting	7.5.2	Option 3b: Suspension of Construct
	structures in highly seismic areas, but would entail removing the infill walls to allow access to the columns.		There will be up to 107 chlorine deli and the chlorine truck accidents according SCL construction workers. These ris
7.4.2	<i>Option 2b: Replacement of the Roof with a Light-weight Structure</i> The current roof is a 2 hour fire rated reinforced concrete slab. If it could be		construction workers are evacuated chlorine deliveries.
	replaced by a light-weight structure then this would eliminate the chance of damage to the chlorine containers in the event of a severe earthquake	7.5.3	Option 3c: Limitation of Working H near WTW
7.4.3	Option 2c: Building Additional Structure to Protect the Drums		This option may cause significant pr programme, but is still retained for t
	This would involve building re-enforced concrete dividing walls inside the chlorine store extending to height 0.5m above the height of the drums. These walls would be capable of supporting the collapsing roof. It is noted that this	7.5.4	Option 3d: Reduction of Drum Stoc
	option would reduce the chlorine storage capacity.		As discussed in other parts of the reparameter affecting the risks to the parameter affecting the risks to the paircraft crash and its reduction would SCL construction workers and other

VAY CONSTRUCTION WORKERS

place and coordinated between WSD and at in the event of Chlorine release detection, he most appropriate actions and the risks to ed. Based on the measures considered for ate 16 (now Route 8)¹, the following options easures proposed in the Route 16 EIA, such hlorine stock at WTW etc are not included ed in other parts of this report or are not e, provision of a water spray curtain around Route 16 EIA but dismissed on technical cifically, NFPA advises that water should not ll increase vaporisation rates and produce ion is not considered further in this

ergency Procedures

- itors in all relevant SCL construction areas;
- esponse and evacuation plans (co-operation s required); and
- vacuation training and drills for all

action Work during Chlorine Deliveries

eliveries per year during SCL construction ccount to about 25% of the total PLL for the risks would be significantly lowered if ed to safe (indoors) location during the

g Hours and Number of Workers in the area

problems to the SCL construction or further consideration

ock during the Construction Period

report, the chlorine storage level is a crucial the population in the case of an earthquake or buld significantly reduce the risks to both the the populations. This could be achieved by

¹ http://www.epd.gov.hk/eia/register/report/eiareport/eia_02099/index.htm

A13C-85

ERM-Hong Kong, Limited

	implementing a "just in time" chlorine delivery at the WTW. Storage levels are determined by the requirement to have 90 days of storage to guard against supply disruptions. WSD has already committed to some reductions in storage quantities and these values have been used in this assessment. This option is therefore not further considered.	a p: IC	n this stud fatality (IG receding s CAF = Cos	CAF) for t sections. T st of mitig	the vario The ICA gation m	ous m F valı
7.5.5	<i>Option 3e: Erecting Physical Barriers between WTW and the Main SCL Work Areas</i> This option is similar to Option 4b discussed below, but while the costs would be significantly lower, it also could be only partially effective.	IC d' cc re	itigation f CAF is a m ue to impl ompared v easonably uen the mi	neasure of lementati with the v practicab	f the cos on of a p value of i ble to im	partic life to plem
7.5.6	<i>Option 3f: Erecting Toxic Refuges at all SCL Construction Sites</i> This option, implemented together with Option 3a, would provide additional	oi	f life is tak ERM, 2001	ken as HK		
7.6	protection for construction workers in the case of chlorine release. OPTION 4: PROTECTING SCL STAFF AND PASSENGERS	re fa	epending eflect peop ctor is tak	ole's avers ken as 20,	sion to h as the F	nigh r N cui
7.6.1	Option 4a: Emergency Response Planning		e Risk Gu alue of life			
	An emergency plan should be in place and coordinated between WSD and MTRC, to ensure that in the event of Chlorine release detection, Passengers and MTRC staff are appropriately evacuated. Similar to Option 3 discussed above, the particular measures may include installation of on-site gas monitors and adequate training and drills for MTR personnel. The emergency plan should also include adequate procedures for controlling the tunnel ventilation system and stopping of the SCL train traffic in order to prevent the	p: ch C	he ICAF v resented in naracterize onstructic <i>alculation</i>	n <i>Table 7.</i> ed by hig on Phases	1. They a hest PLI only, th	are ba L (<i>Tal</i> ne PLI
	trains moving into the affected areas. These measures should be implemented as a matter of good practice.	Mitigation measure		PLL reduction (per year)		(HK
7.6.2	<i>Option 4b: Physical Barriers</i> It may be possible to provide physical barriers (e.g. fully enclosed station) between the possible chlorine clouds and the SCL passengers and staff. The cost for such feature has been estimated at about HKD 500M. This physical barrier, if implemented, would not be able to reliably withstand an earthquake scenario; it will be however be effective for other scenarios.	Option 1 reduction of chlorine storage at WTW		6.0E-6	50	33,
7.7	<i>Cost Benefit Analysis</i> The preceding sections identified a number of mitigation measures to take forward into a cost-benefit analysis (CBA). CBA is widely used in QRA studies to evaluate the cost-effectiveness of alternative measures and provide a demonstration that all reasonably practicable measures have been taken to reduce risks.	Options 2a-2c Enhancement of seismic performance of chlorine store	5	1.2E-05	50	8,3

ed by calculating the implied cost of averting nitigation measures identified in the lue is calculated as follows:

re/ (Reduction in PLL value x Design life of

e life saved over the lifetime of the project cular mitigation measure. It may be o determine whether a mitigation measure is nent, i.e. if ICAF is less than the value of life, uld be implemented. In this study the value n is the same figure as used in previous QRA

ne value of life figure may be adjusted to risk. Following ERM (2001) the aversion urve, although in the lower ALARP region of the 1000 fatalities cut-off line. The adjusted actor of 20 is HK\$660M.

mitigation measures identified above are based on the Operational Phase Scenario 4, *able 6.3*). For the measures applicable to the LL values from Scenario 2 are used.

CAF	Practicable?	Notes
K\$M)	(ICAF<	
	\$660M ?)	
3,333	Ν	Further reduction of storage
		may not be possible for logistical
		reasons or would involve
		significant capital and
		operational costs (building
		alternative storage elsewhere),
		that for the purpose of this
		analysis are estimated at
		HK\$10M. ICAF is estimated
		based on the 50% reduction in
		PLL due to the store roof
		collapse
,333	Ν	Each of these measures would
		eliminate (or significantly
		reduce) the seismic risk.
		However they would each
		involve major civil works, hence
		the estimated cost of each
		measure is HK\$5M. ICAF is
		estimated based on the 100%
		reduction in PLL due to the store
		roof collapse

te Mitigation Measures

Mitigation measure	Cost Estimate (HK\$M)	PLL reduction (per year)	Design life (years)	ICAF (HK\$M)	Practicable? (ICAF< \$660M ?)	Notes	7.8	Discussion
Option 3a Gas Monitors and Emergency Procedures	1	5.1.E-06	5	39,239	Ν	ICAF is estimated assuming that a 50% PLL reduction for the SCL workforce can be achieved by introducing the measures discussed in <i>Section 7.5.1</i>		As can be seen in <i>Table 7.1</i> none of the meets the practicability criterion of life". Nevertheless, since the costs for these options are recommended for
Option 3b Suspension of Construction Work During Chlorine Deliveries	3	7.7E-06	5	77,922	Ν	ICAF is estimated assuming a 100% reduction of SCL workers PLL due to chlorine truck accidents		these options are recommended for practice. Note that while due to the Option 3a is significantly higher tha and experience gained during the S during operational phase as well, so
Option 3c Limitation of Working Hours and Number of Workers in the area near WTW		2.0E-6	5	980,969	Ν	Cost of the disruption of SCL construction programme conservatively estimated at only 10M. ICAF is estimated assuming a 20% reduction of SCL workers PLL		On the other hand, implementation recommended even that the ICAF v because the store roof collapse scen
Option 3e Erecting Physical Barriers between WTW and the Main SCL Work Areas	5	5.1E-06	5	196,194	Ν	ICAF is estimated assuming that a 50% PLL reduction for the SCL construction workforce can be achieved by introducing the measures		events for which the FN curves alrest for all scenarios (<i>Figures 6.1-6.4</i>). The 10 < N < 300, i.e. in the area where be minimal.
Option 3f Erecting Toxic Refuge Shelters in addition to implementing of Option 3a	2	3.3E-06	5	121,200	Ν	ICAF is estimated optimistically assuming that this option together with Option 3a would provide a full protection to the construction workers. Thus an additional 3.3E-06 reduction was assumed.		
Option 4a: Protecting SCL Staff and Passengers: Emergency plans and drills; on-site gas monitors	2	8.1E-06	50	4,938	Ν	ICAF is estimated assuming that a 33% PLL reduction for the SCL staff and passengers can be achieved by introducing the measure.		
Option 4b: Protecting SCL Staff and Passengers: Fully enclosed station	500	1.2E-05	50	833,333	Ν	ICAF is estimated assuming that a 50% PLL reduction for the SCL staff and passengers can be achieved by introducing the measure.		

of the mitigation measures discussed above of ICAF being less than "adjusted value of s for options 3a and 4a are relatively lower, for implementation as a matter of good he limited time of its applicability, ICAF for than for Option 4a, the equipment acquired e SCL construction phase can be beneficial , so both the Option 3a and Option 4a should

on of one of the Options 2a-2c is not F value is similar to that of Option 4a. This is enarios are high fatality/low frequency lready lie in the Acceptable region of HKRG Their effects on the FN curves in the range of re they extend into the ALARP zone, would A Hazard Assessment of the risks associated with the storage and handling of chlorine at Shatin Water Treatment Works has been conducted for the Construction and Operational Phases of the SCL Project.

For all cases studied, the Individual Risk complies with the Hong Kong Risk Guidelines.

The societal risk expressed in the form of FN curves, lies in the "ALARP" region of the HKRG for all Scenarios.

Mitigation measures were considered. However, following a formal costbenefit analysis all were deemed not practicable. Nevertheless it is recommended that adequate emergency response/evacuation plans for the SCL works area and the future Hin Keng Station staff and passengers are established and emergency training/drills for all relevant MTR personnel conducted at regular intervals. Installation of on-site gas monitors is also recommended.

WEEK 39 - SEPT 11

A13C-90

Department.

REFERENCES

Black & Veatch (2010), Integration of Siu Ho Wan and Silver Mine Bay Water Treatment Works, EIA 1862010, http://www.epd.gov.hk/eia/register/report/eiareport/eia_1862010/index.html

Cook, I., N. J. Holloway, W. Nixon and D.W. Phillips (1993), Consultancy on the Environmental Aspects of the Daya Bay Nuclear Power Station for the Government of Hong Kong - Risk Assessment Report.

DNV (1997), Quantitative Risk Assessment of the Transport of Chlorine in Hong Kong for Environmental Protection Department.

EIGA (2004), Prevention of Major Accidents - Guidance on Compliance with the Sevesco II Directive, IGC Doc 60/04/E, European Industrial Gases Association.

ERM (1997), Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works: Methodology Report, Final Report, 24 September 1997.

ERM (1998), Technical Note 1: Application of Wind Tunnel Test Results in Hazard Assessments, Report for Water Supplies Department CE14/96 Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works, 17 July 1998.

ERM (2001), Reassessment of Chlorine Hazard for Eight Existing Water Treatment Works: Hazard Assessment for Shatin Water Treatment Works, Final Report, January 2001.

HSL (1998), CFD Modelling of Chlorine Dispersion at Shatin WTW, The Health and Safety Laboratory, March 1998.

HSL (1999), CFD Modelling of Chlorine Dispersion at Tai Po Tau WTW, The Health and Safety Laboratory, December 1998.

ICI (1995), Chlorine Handbook, ICI Australia

Lees F P (1996), Loss prevention in the Process Industries, Butterworth Heinemann.

Lees and Ang (1989), Safety Cases within the CIMAH Regulations 1984, Ch12 - Quantitative Risk Assessment of Major Hazard Installations: 3, The HSE Risk Assessment Tool.

Ove Arup (2001), Water Treatment Works Seismic Hazard Assessment -Seismic Assessment of Chlorine Storage Buildings and Chlorine Containers.

Planning Department (2007) Projections of Population Distribution, 2007-

ERM-Hong Kong, Limited

Atkins (2006), Risk Assessment of the Transport of Liquid Chlorine from Sham Shui Kok of North Lantau and Tuen Mun Area 40 to Various Waterworks Potentially Hazardous Installations. Report for Water Supplies

A13C-91

2016,http://www.pland.gov.hk/info_serv/statistic/wgpd07_e.htm).

RWDI (1998), Wind Tunnel Study - Reassessment of Chorine Hazard for Shatin WTW, Rowan Williams Davies and Irwin Inc., January 1998.

TNO (1992), "Methods for the Determination of Possible Damage to People and Objects Resulting from Releases of Hazardous Materials", CPR 16E, Green Book, 1992.

Transport Department (2008), The Annual Traffic Census 2007. http://www.td.gov.hk/publications_and_press_releases/publications/free_ publications/the_annual_traffic_census_2007/index.htm

Webber, D M, S J Jones, G A Tickle, and T Wren (1992), UKAEA Report SRD/HSE R587 " A model of dispersing gas cloud, and the computer implementation DRIFT – II Steady Continuous Releases"

Webber(1998), Brief Review of RWDI and DRIFT Results, 16 February 1998.

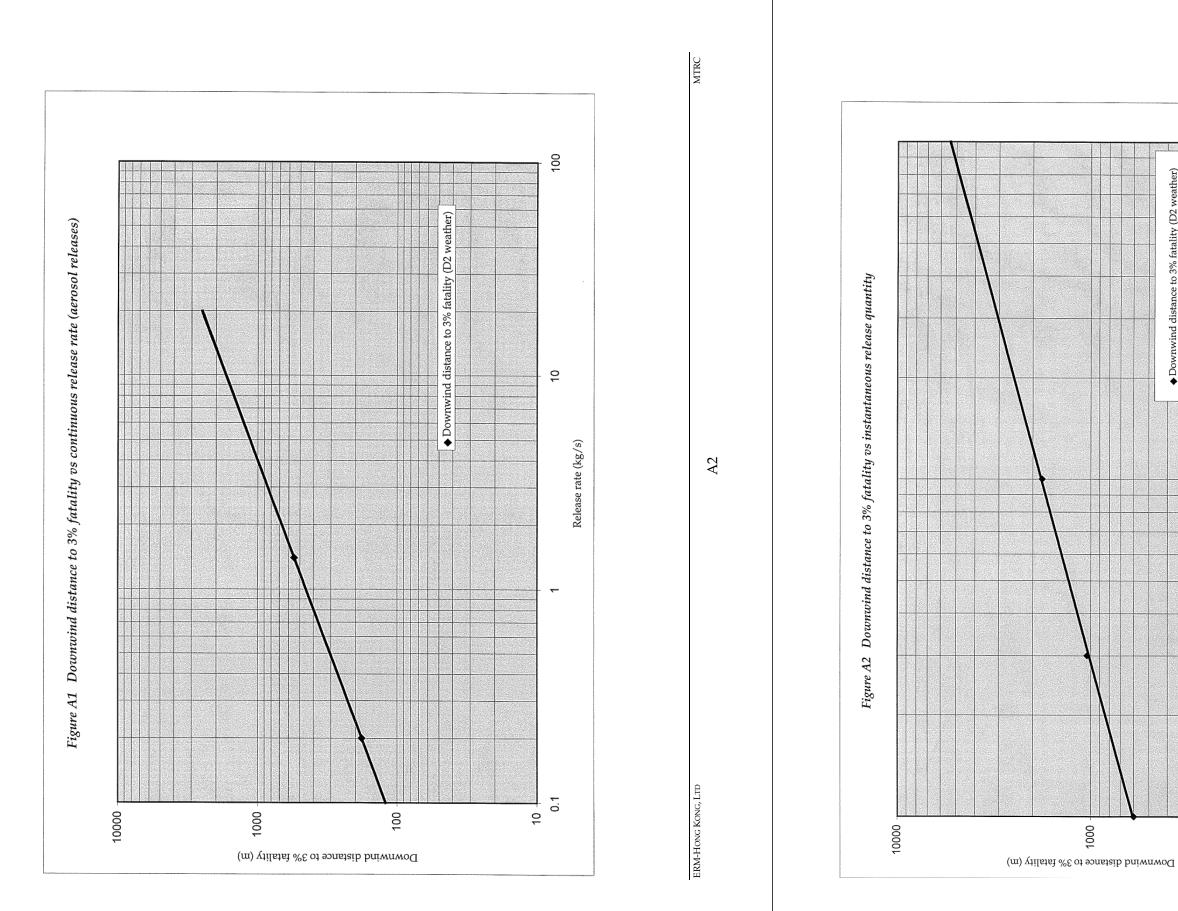
Withers, R.M.J. and F.P. Lees (1985), "The Assessment of Major Hazards: The Lethal Toxicity of Chlorine. Part 1. Review of Information on Toxicity". Journal of Hazardous Materials, 12, 231-282. Part 2. Model of Toxicity to Man". Journal of Hazardous Materials, 12, p. 283-302

Annex A

DRIFT Flat Terrain Dispersion Modelling

DRIFT FLAT TERRAIN DISPERSION MODELLING RESULTS

Table A1 presents the results of the flat terrain dispersion modelling using the DRIFT and EJECT software codes. DRIFT is a 'state-of-the-art' integral dense gas dispersion model and is able to simulate the dispersion of aerosols. The DRIFT model provides a smooth transition from the near field buoyancy-dominated dispersion phase to the far field passive dispersion phase.


EJECT is a 'state-of the art' model for the prediction of the near-field dispersion of jet releases. Like DRIFT, EJECT can also simulate dense, aerosol releases and provides a seamless interface with DRIFT at the end of the momentum-driven dispersion phase. The EJECT model has been used to assess the significance of the initial momentum-dominated dispersion phase of chlorine releases from 1 tonne containers.

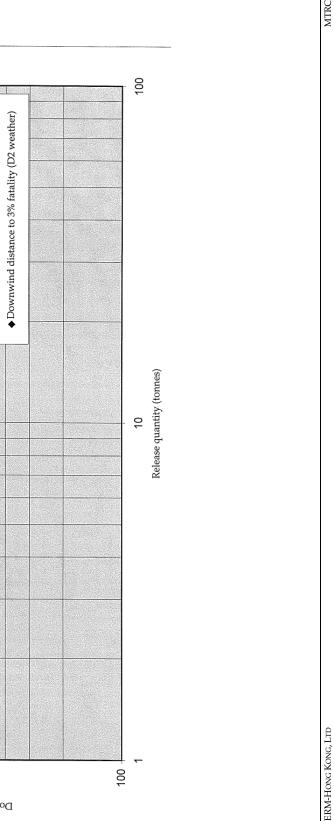

Based on the results in *Table A1*, *Figures A1 and A2* show the relationship between the chlorine hazard range and release rate/quantity of chlorine.

Table A1DRIFT Flat Terrain Dispersion Modelling Results

Release case	Weather	Downwind	Downwind	Downwind
	class	distance to LD90	distance to LD50	distance to LD03
		(metres)	(metres)	(metres)
DRIFT Results				
0.2 kg/s continuous	B2	70	89	128
8,	D2	86	119	182
	D5	48	65	105
	F2	135	190	320
1.4 kg/s continuous	B2	184	234	323
0.	D2	268	362	550
	D5	150	200	310
	F2	460	650	1120
1 tonne instantaneous	B2	293	350	470
	D2	325	425	600
	D5	300	400	600
	F2	400	550	800
3 tonne instantaneous	D2	586	735	1044
	D5	498	661	968
10 tonne instantaneous	D2	1004	1286	1790
	D5	855	1136	1658
DRIFT + EJECT Results				
1.4 kg/s continuous	D5	181	236	360
	F2	491	770	1380

A1

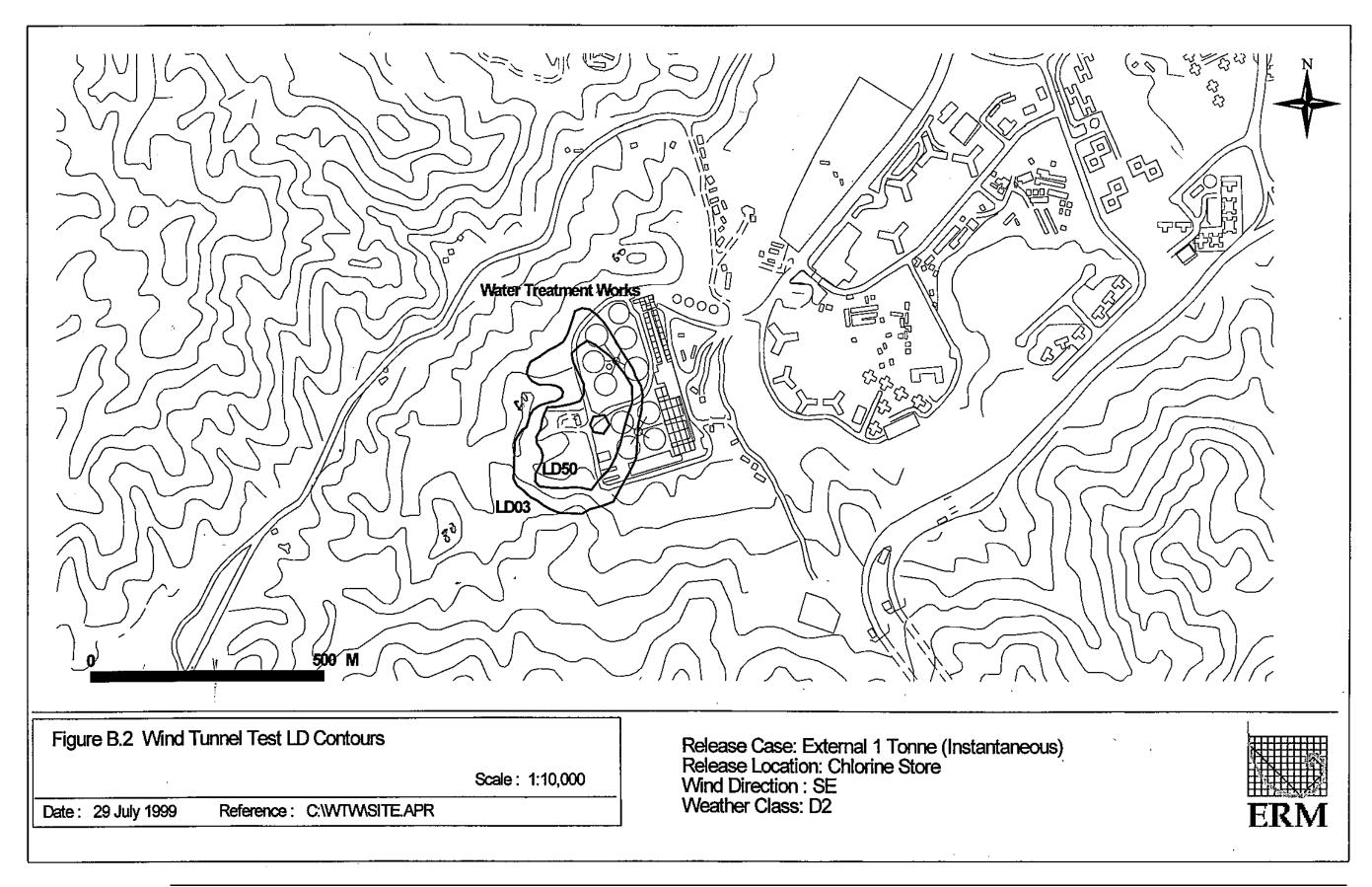
A3

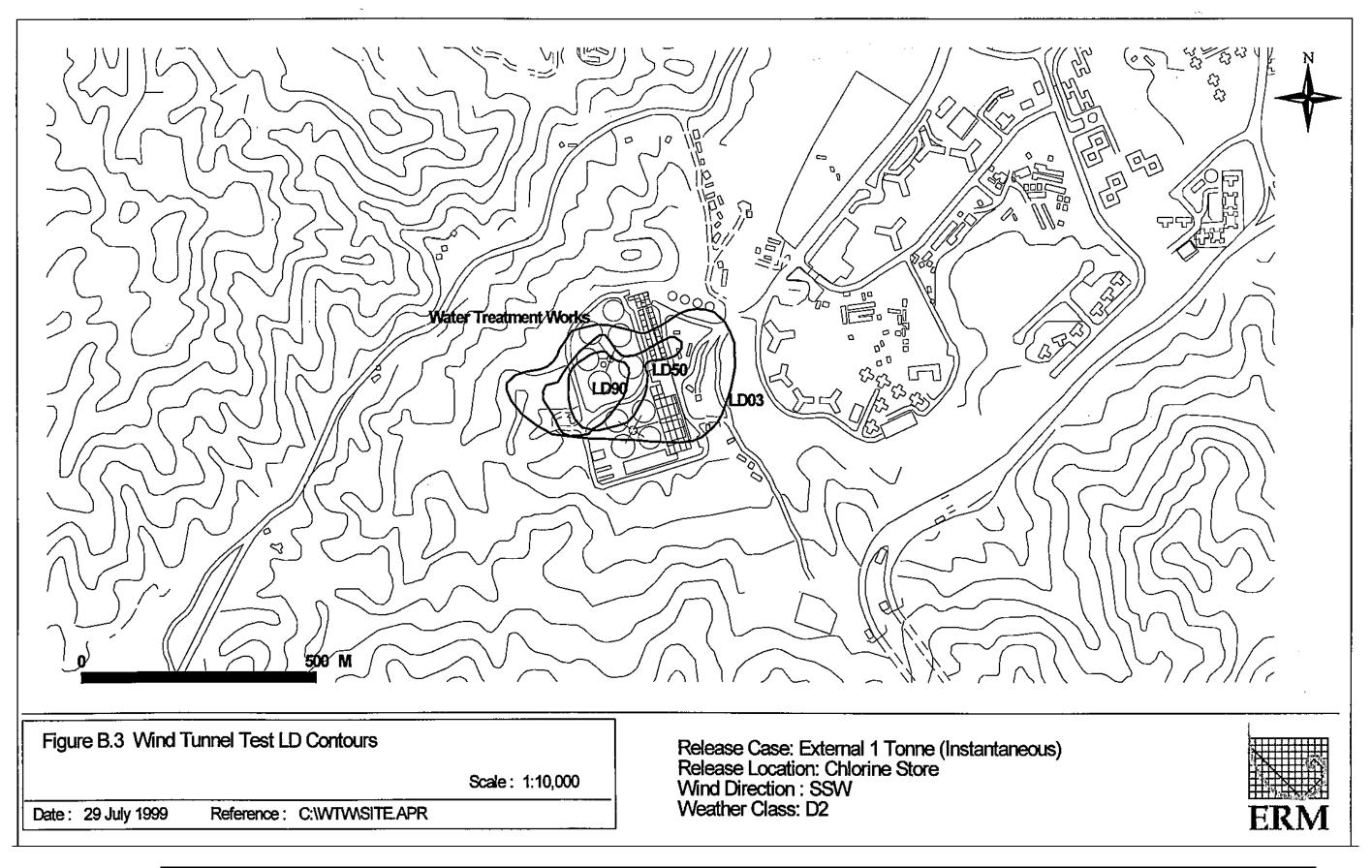
Annex B

Wind Tunnel Test Results for Sha Tin WTW

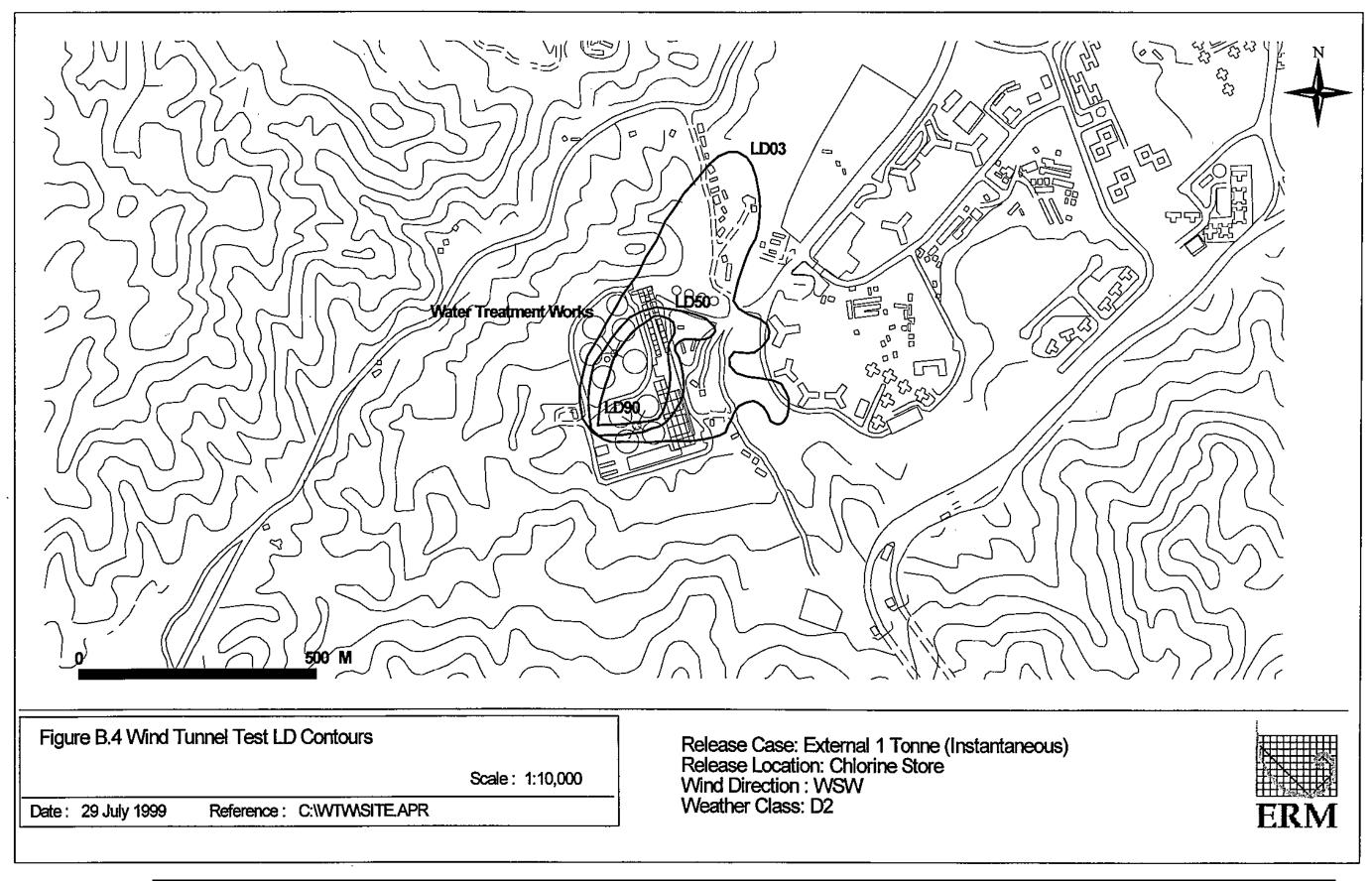
Test No. I	Release location	Release type	Phase of release	Release rate (kg/s) or quantity (kg)	Wind speed (m/s)	Wind directions	Figure no.s
			Chlorine vapour at ambient				
1-3	NE corner of chlorine store	Continuous	temperature	0.5	CI	SE, SW, W NNE, SE, SSW, WSW,	
4 - 8	NE corner of chlorine store	Instantaneous	Aerosol Chlorine vapour at ambient	1000.0	N	MNW	B1-B4
9 - 10 N	NE corner of chlorine store	Continuous	temperature	0.5	5	SE, SW	
11 - 12	NE corner of chlorine store Access Road (outside Admin	Instantaneous	Aerosol	1000.0	Ð	SE, WSW	B5, B6
13 - 18 E	Building) Access Road (outside Admin	Continuous	Aerosol	1.4	CI	NNE, SE, S, SW, W, NW	
19 - 24 E	Building) Access Road (outside Admin	Instantaneous	Aerosol	1000.0	N	NNE, SE, S, SW, W, NW	B7-B12
25 - 26 E	Building) Access Road (outside Admin	Continuous	Aerosol	0.2	2	SW, W	
27 - 28 E	Building) Access Road (outside Admin	Continuous	Aerosol	1.4	£	SE, W	
29 - 30 E	Building)	Instantaneous	Aerosol	1000.0	5	SE, W	B13-B14

Table B1 - Specification for Wind Tunnel Simulations for Sha Tin WTW

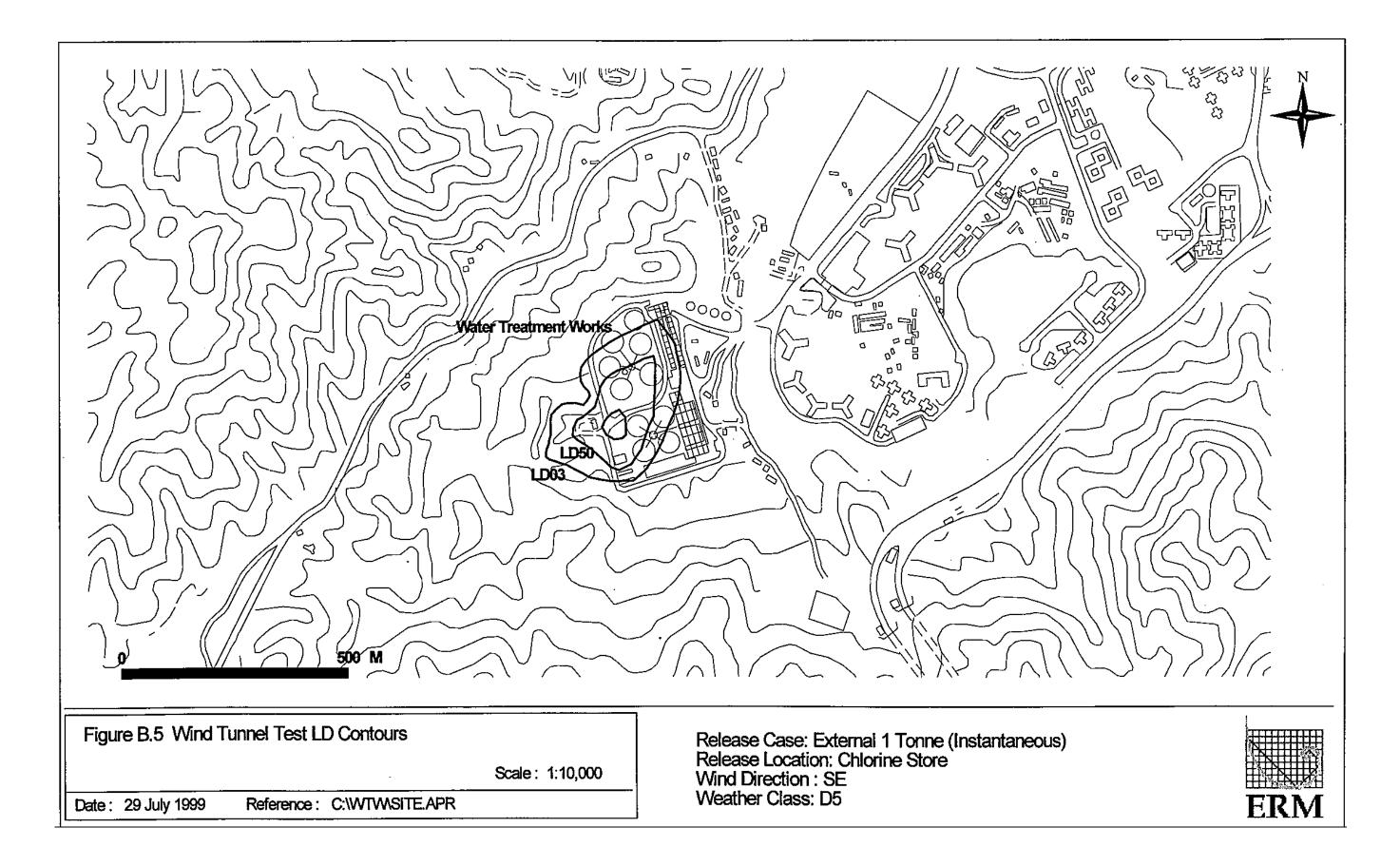

ERM-HONG KONG, LTD

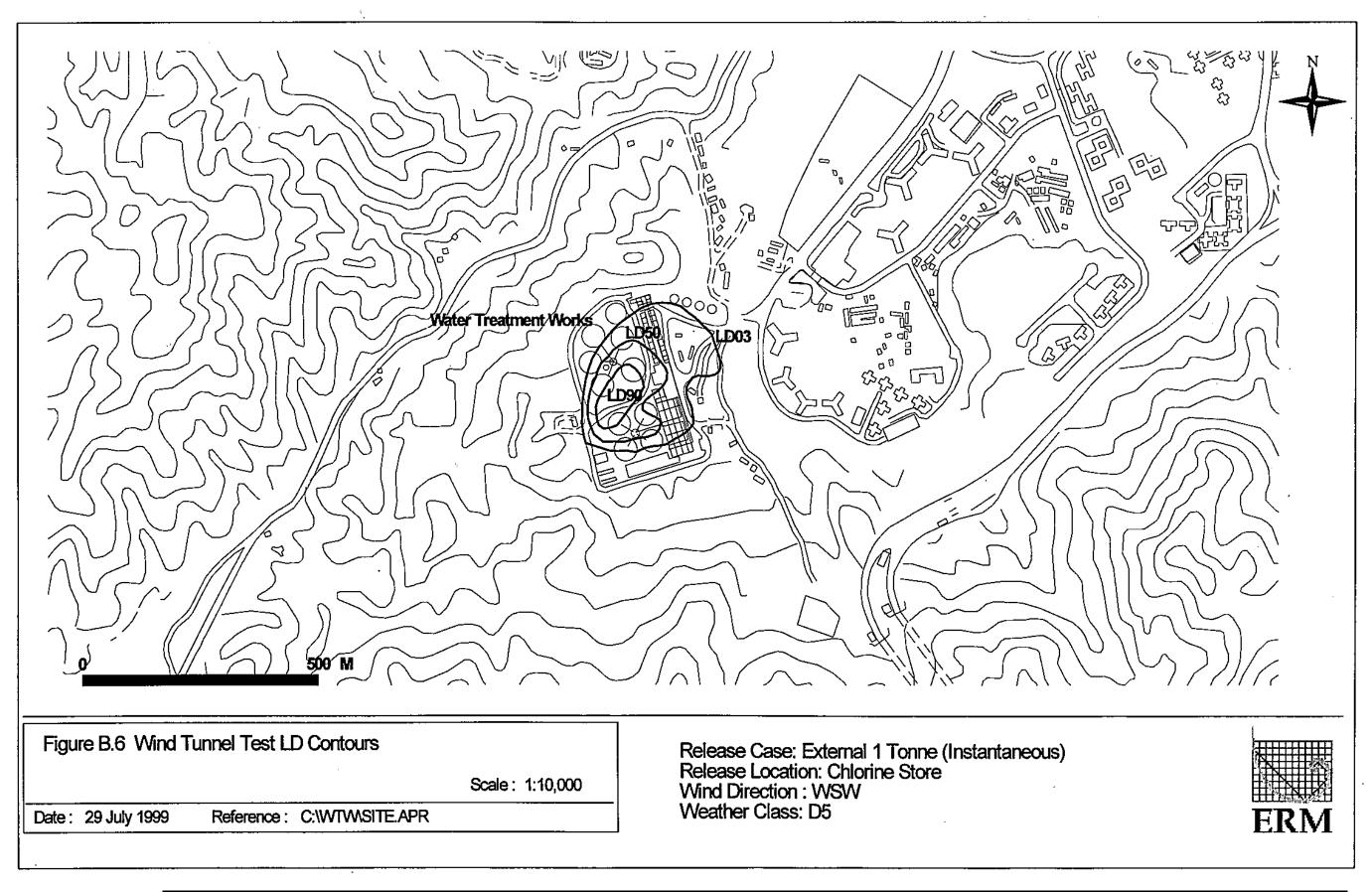

B1

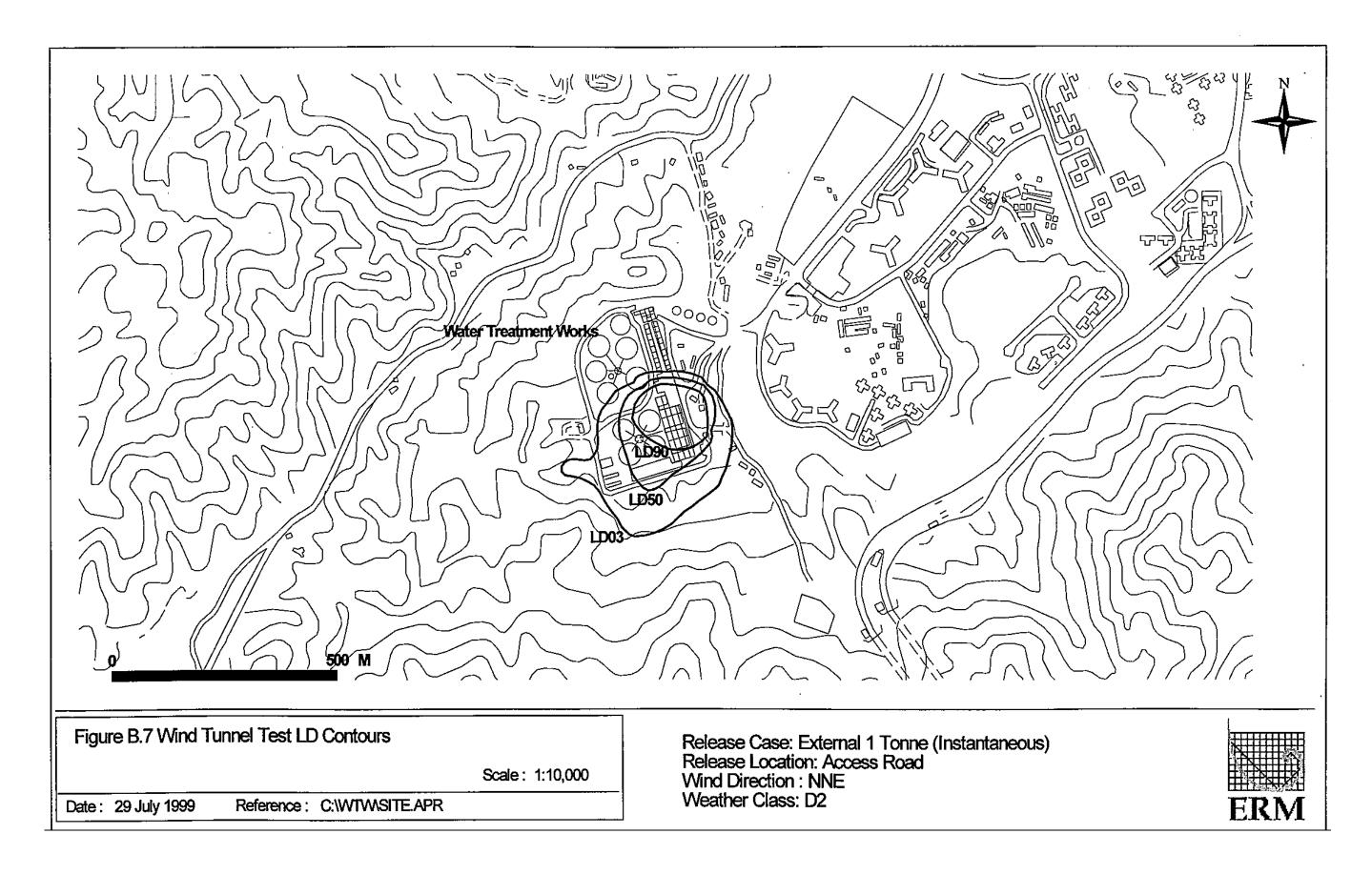
MTRC

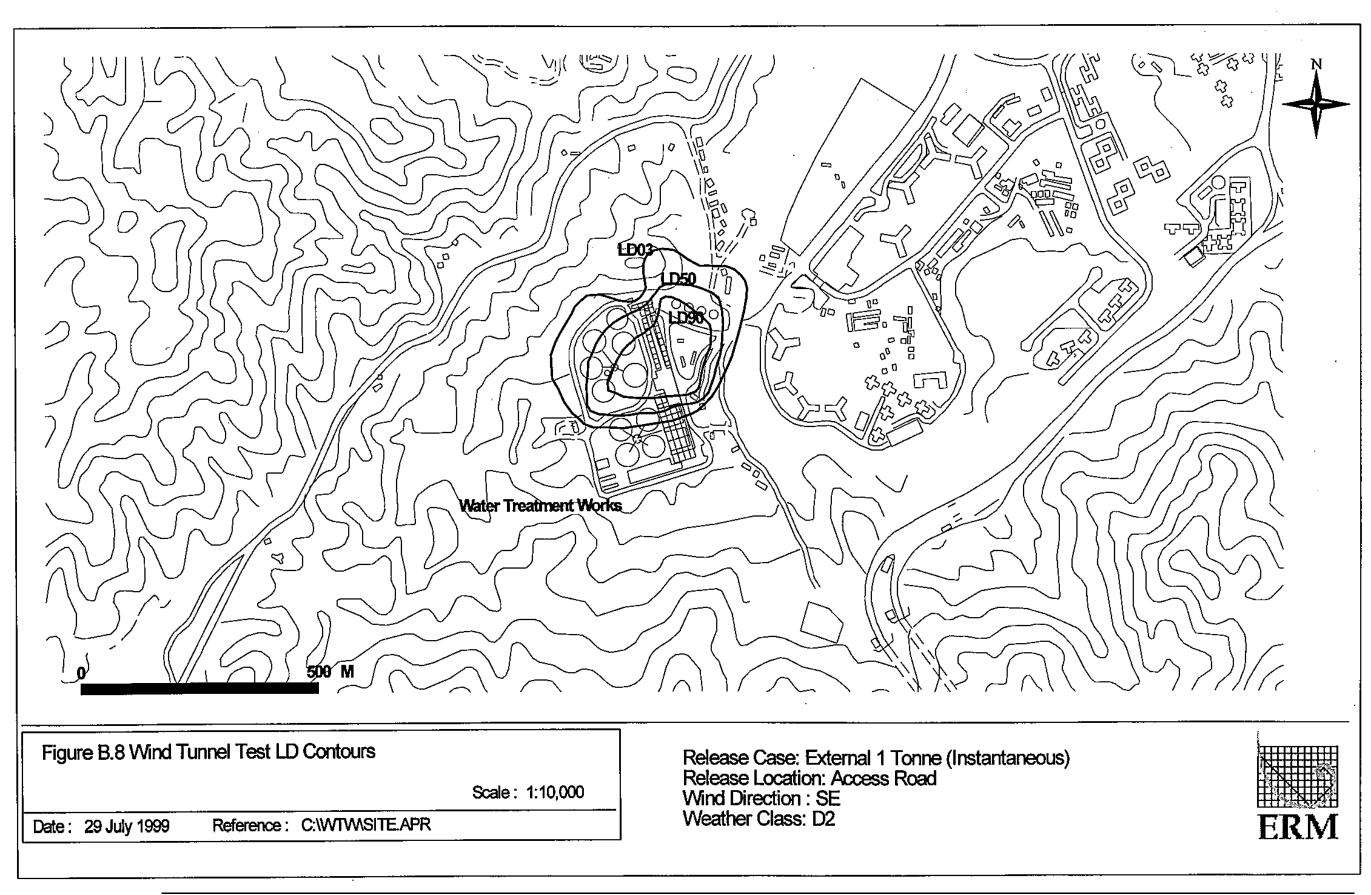


MTRC



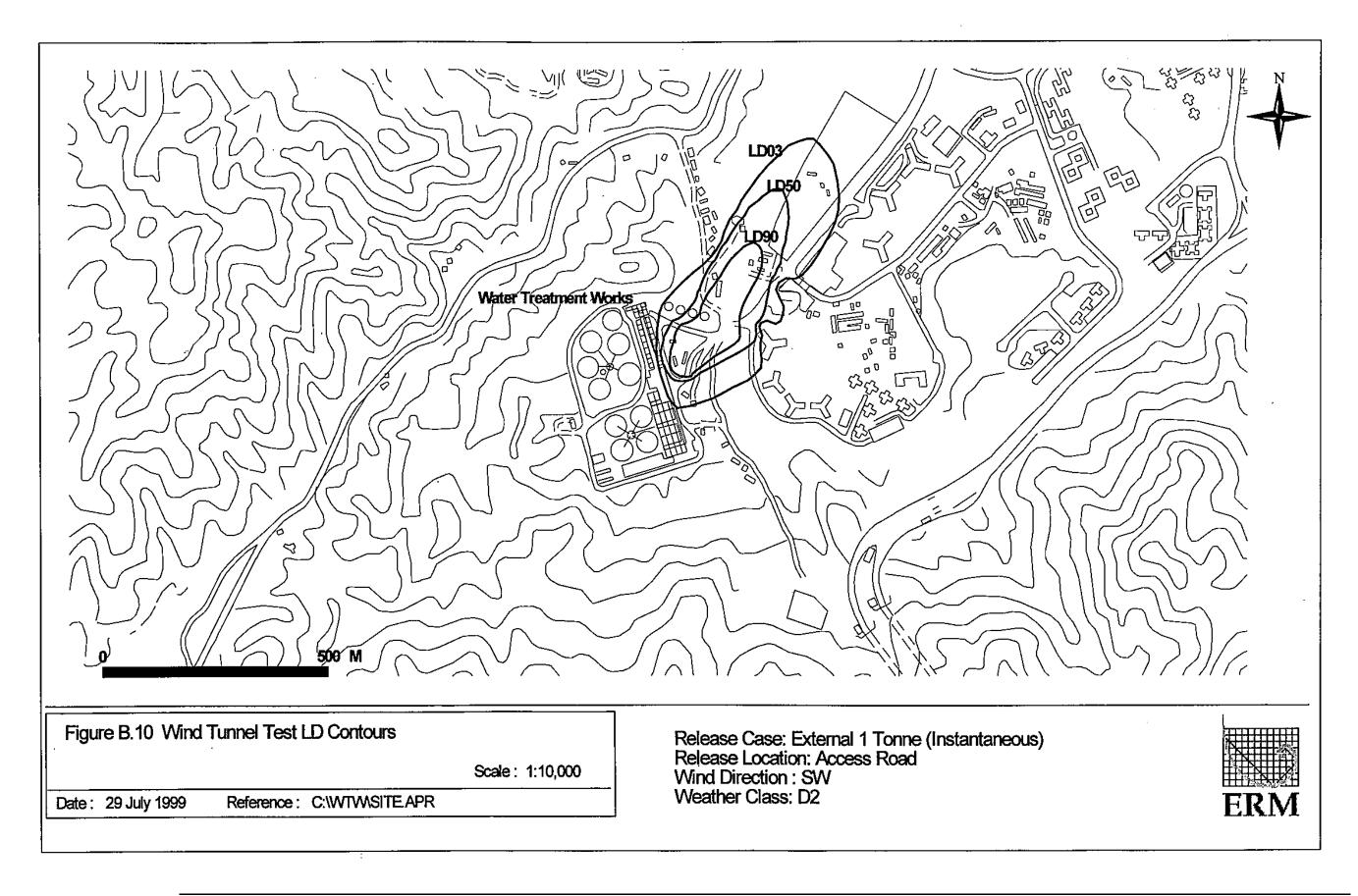

MTRC

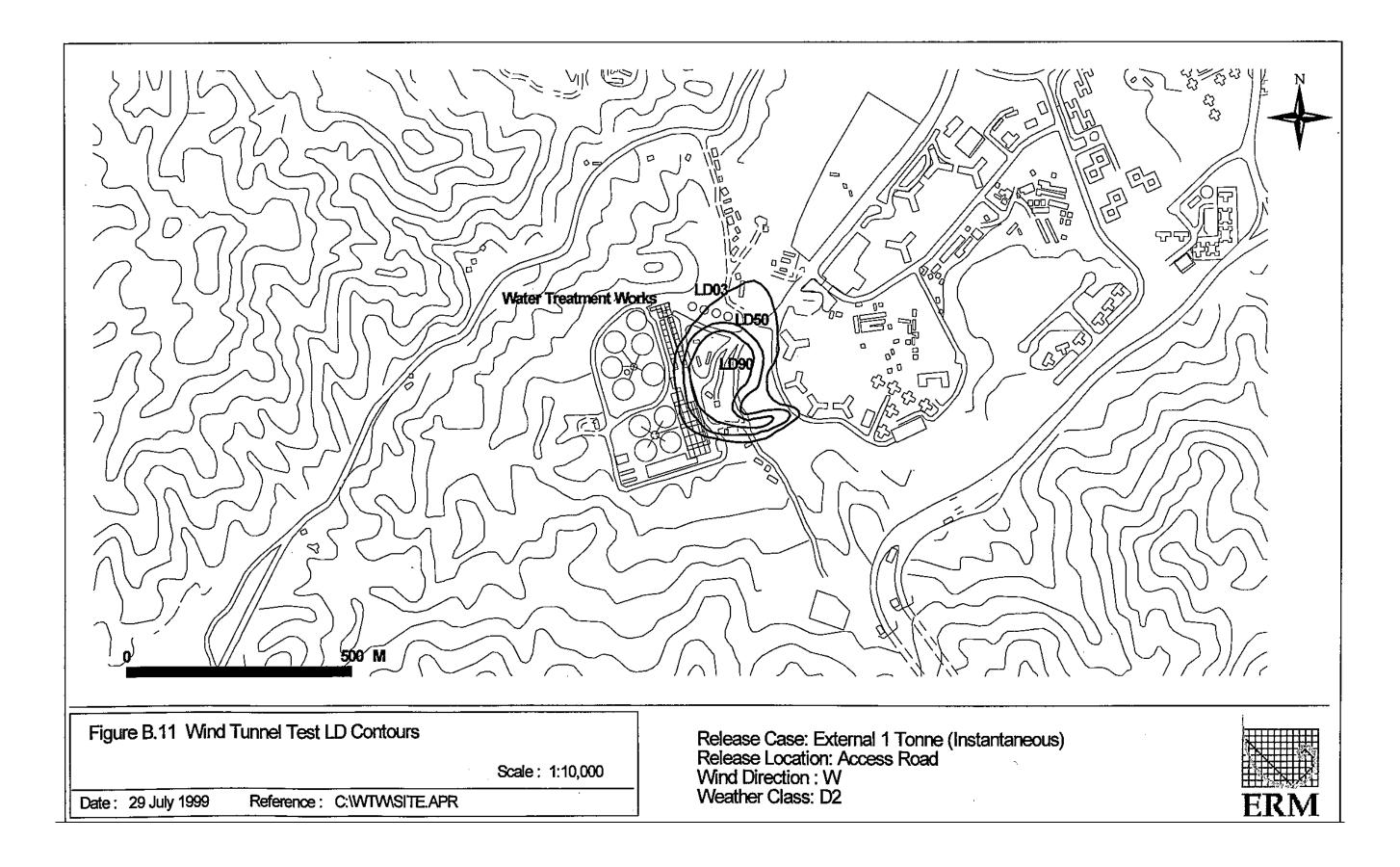

MTRC

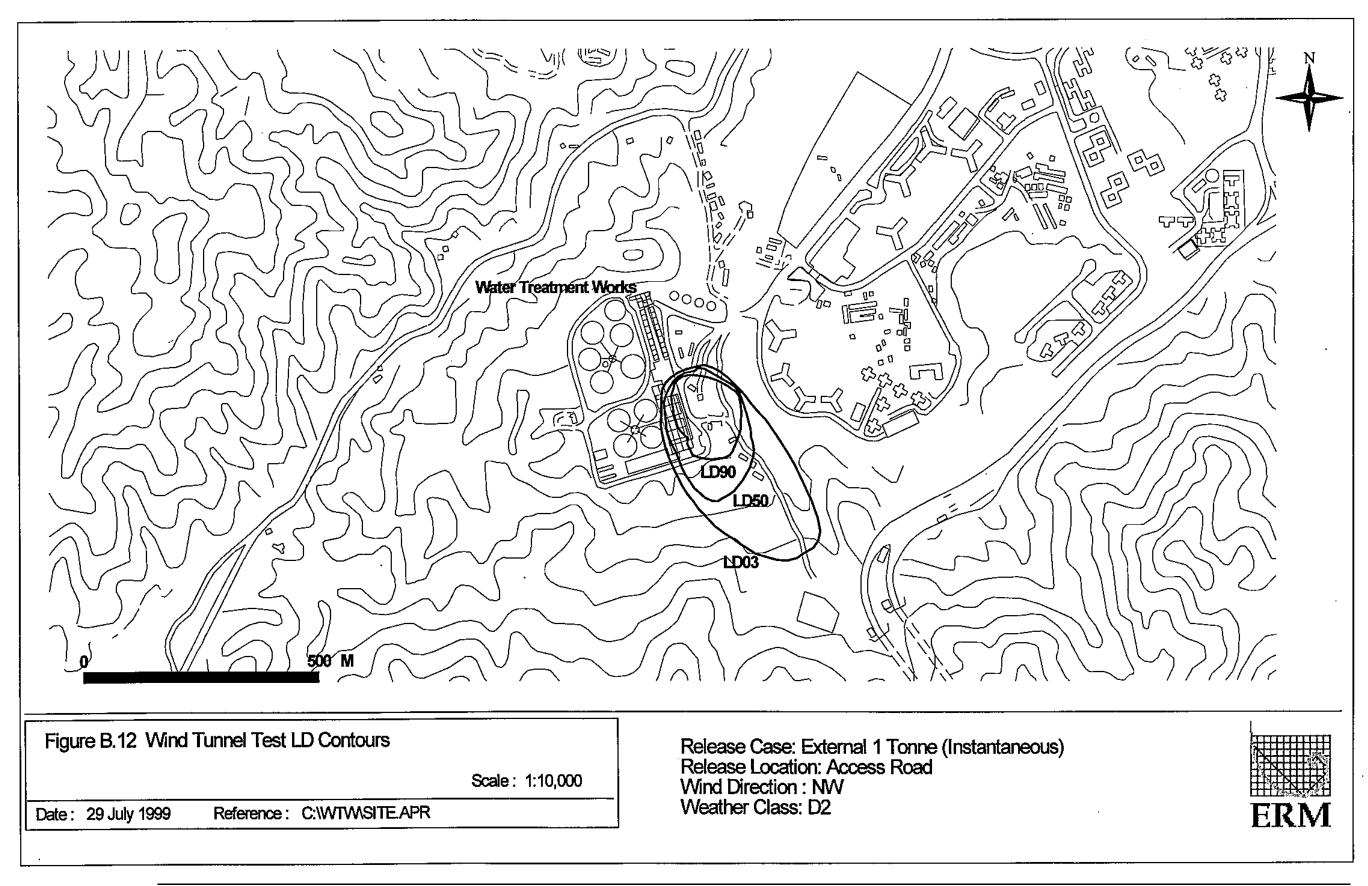

MTRC

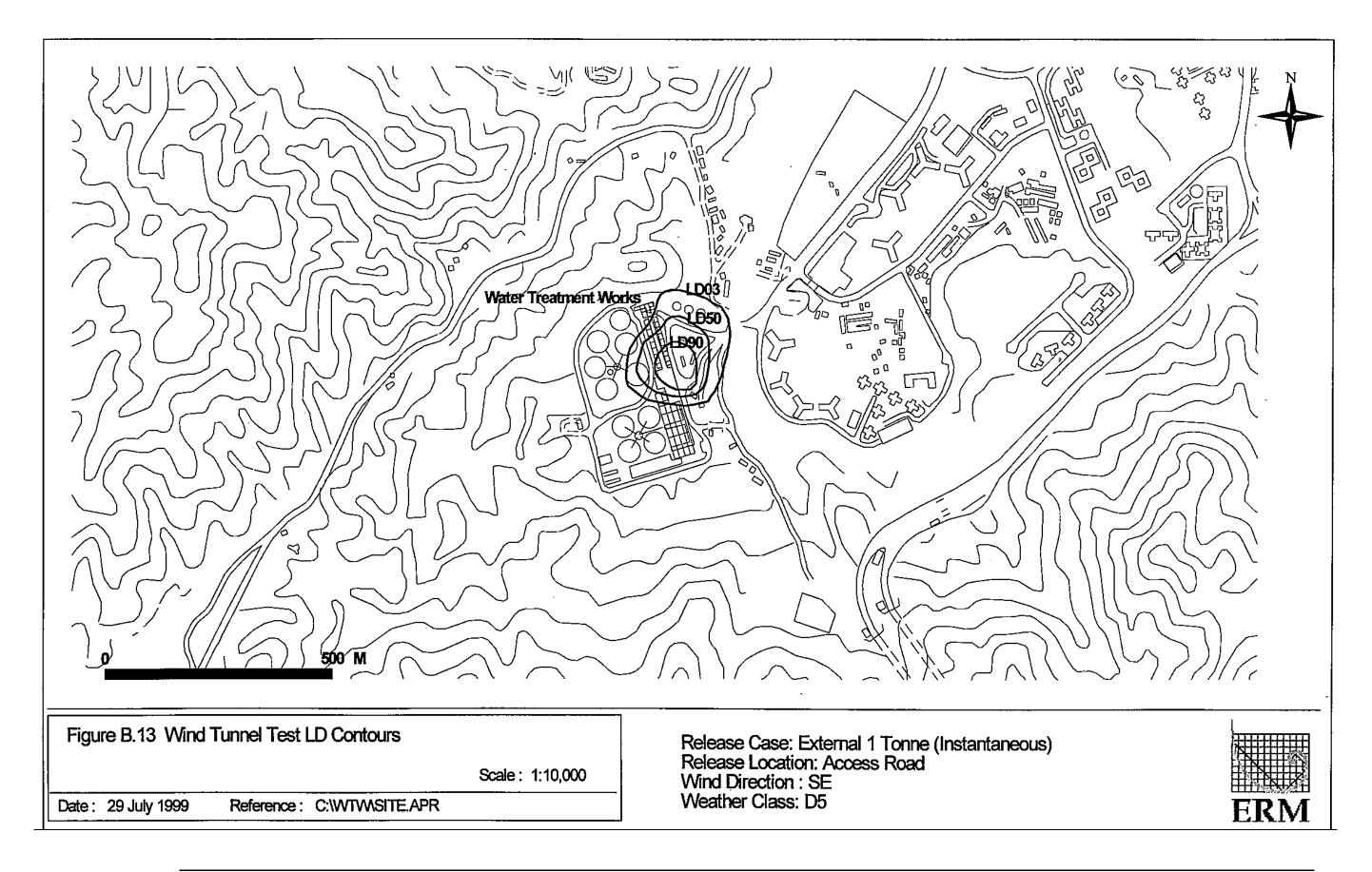


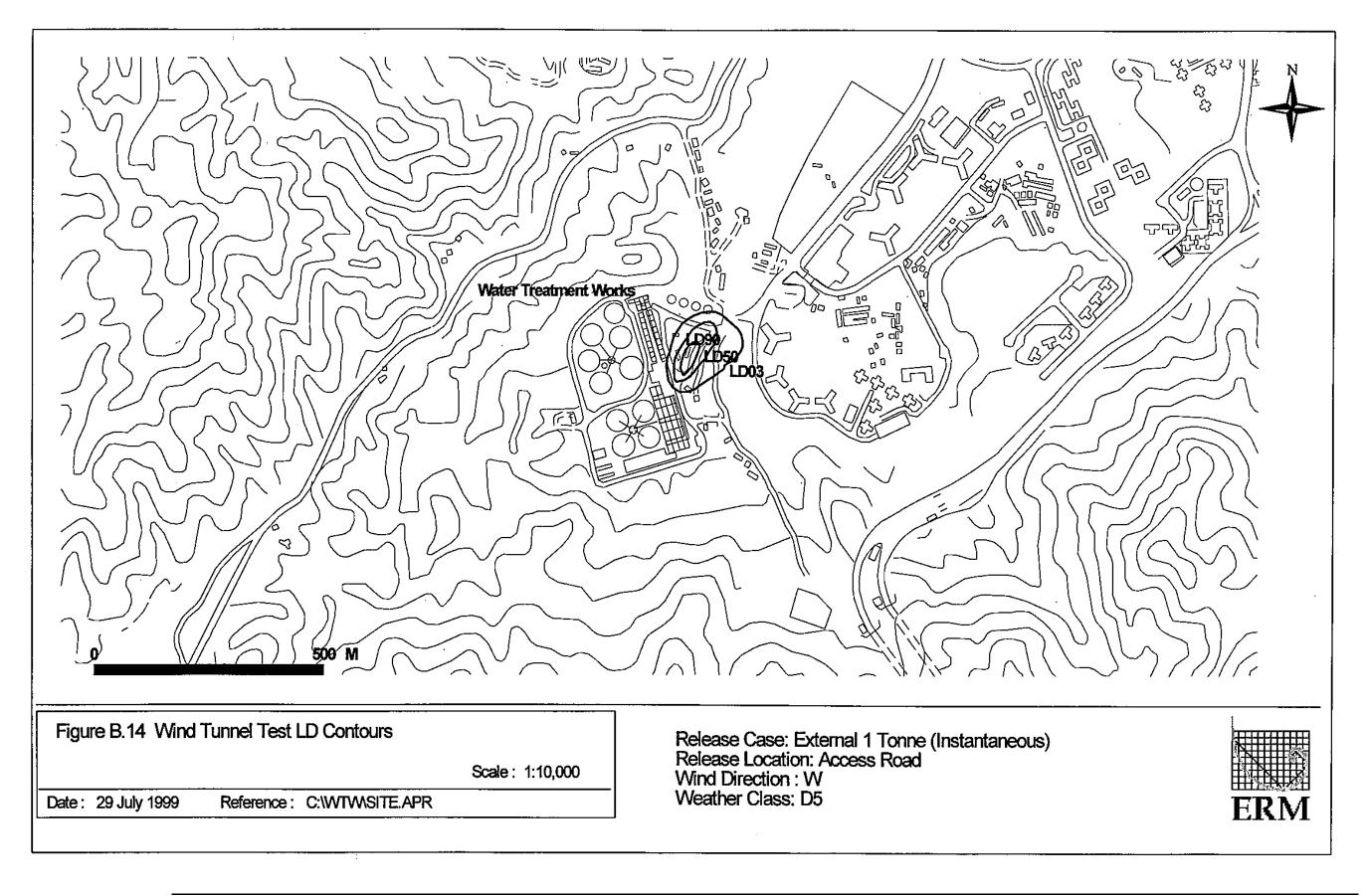
MTRC




MTRC




MTRC



MTRC

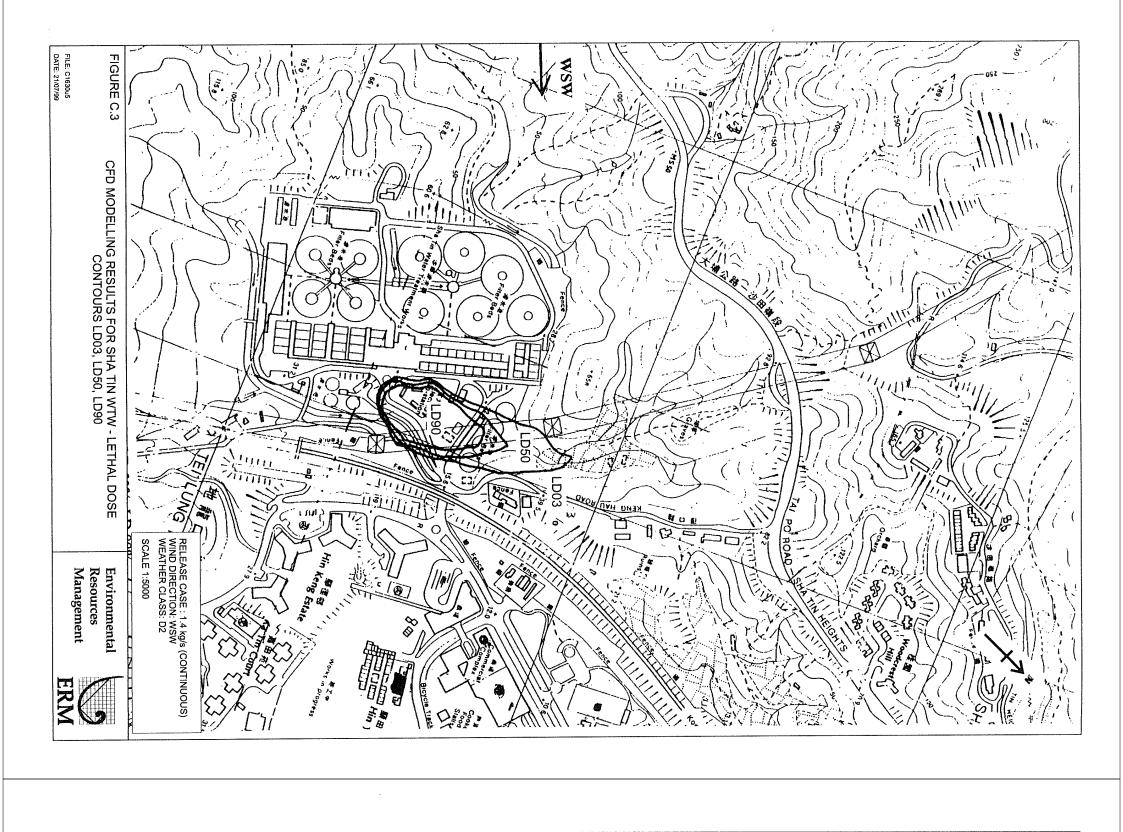
MTRC

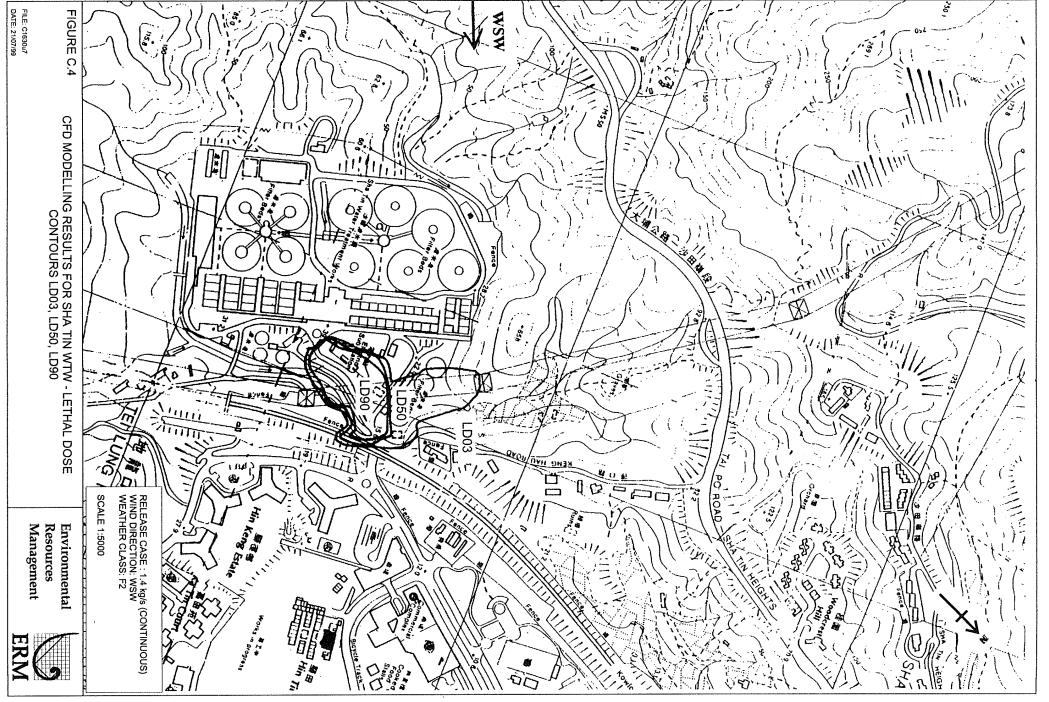
ERM-HONG KONG, LTD

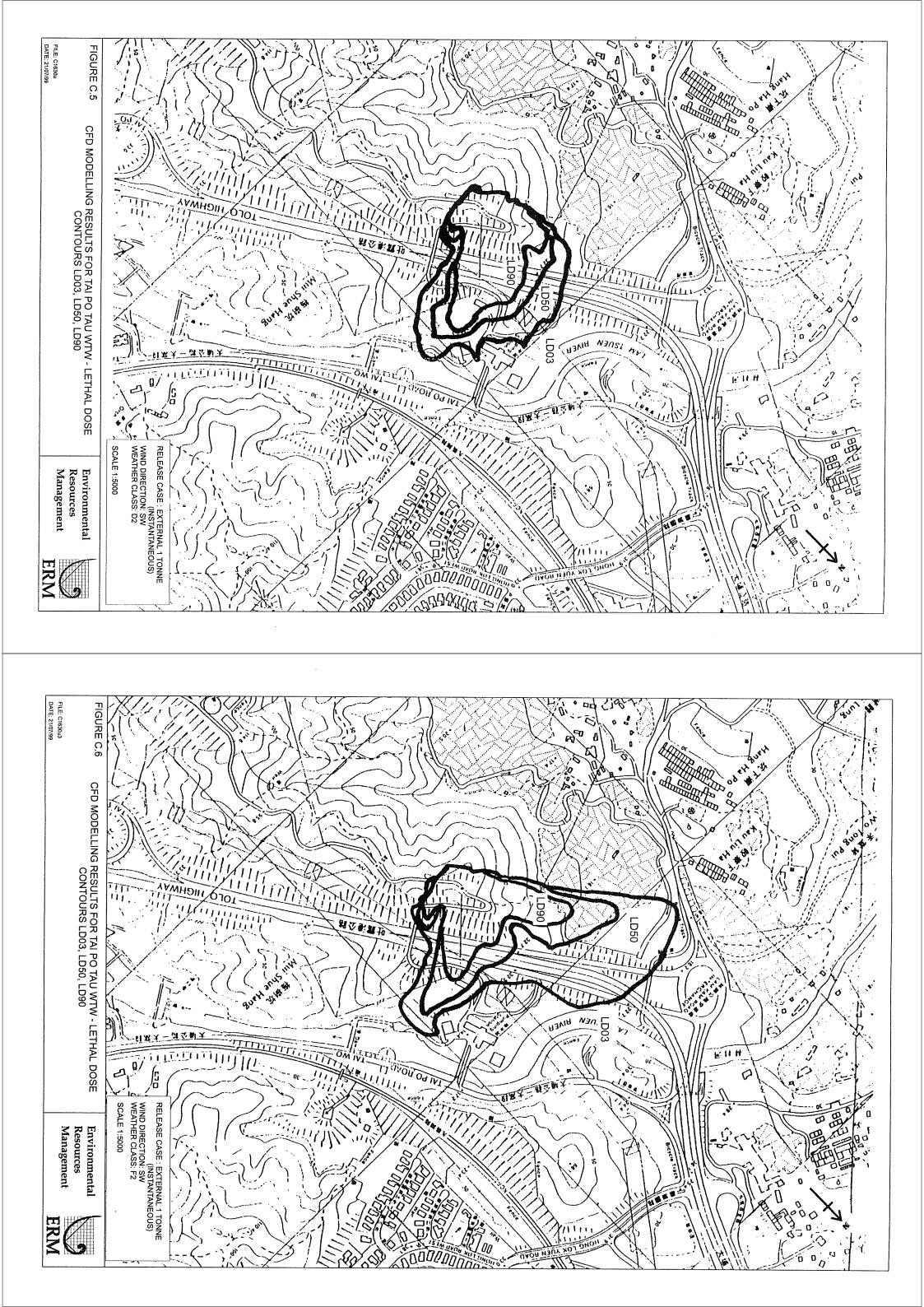
Annex C

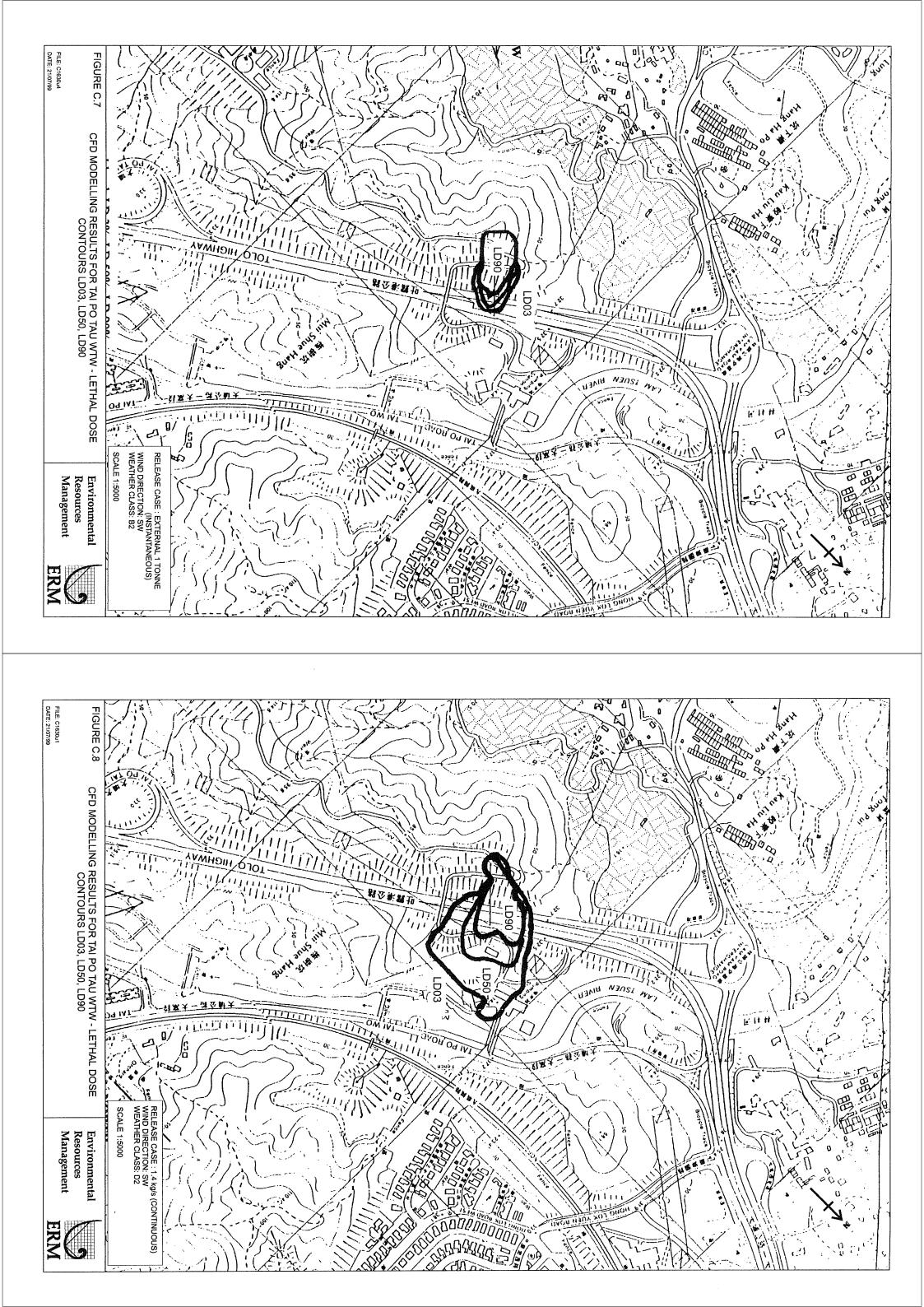
CFD Modelling Results for Sha Tin WTW and Tai Po Tau WTW

.


			Release rate (kg/s) or		Pasquill stability	Wind	
Run No.	Release Location	Release type	Release type quantity (kg)	Wind Speec	class	direction	(m/s) class direction Figure no.s
	Access Road	Instantaneous	1000	2	D	SW	C5
2	Access Road	Instantaneous	1000	2	נד	SW	C6
ω	Access Road	Instantaneous	1000	2	σ	SW	C7
4	Access Road	Continuous	1.4	2		SW	C8
თ	Access Road	Continuous	1.4	2	т	SW	С9


Table C2 - Specification for CFD Modelling for Tai Po Tau Water Treatment Works


Run No.	Release Location	Release rate Release type quantity (kg)	Release rate (kg/s) or quantity (kg)	Wind Speed (m/s)	(m/s) class direct	Wind direction Figure no.s	Figure no
-	NE corner of chlorine store	Instantaneous	1000	N	D	WSW	01
Ν	NE corner of chlorine store	Instantaneous	1000	N	т	WSW	C2
4	Access Road (outside Admin Building)	Continuous	1.4	2		WSW	C3
σı	Access Road (outside Admin Building) Continuous	Continuous	1.4	Ν	TT	WSW	C4


Table C1 - Specification for CFD Modelling for Sha Tin Water Treatment Works

Annex D

Application of Chlorine Dispersion Modelling Results in QRA

This annex presents the details of how the chlorine dispersion modelling	Parameter I
results from the wind tunnel testing, CFD modelling and DRIFT flat terrain	1. Chlorine release
dispersion modelling have been applied in the QRA. It complements the	rate/quantity r
discussion in Section 4.2 of the main text of this report.	С
	n
In the wind tunnel testing (Annex B) 36 separate simulations of chlorine	r
releases were undertaken. However in the QRA it is necessary to consider a	r
much large number of possible release scenarios corresponding to various	ť
	n
combinations of chlorine release rate/quantity, release location, wind speed,	v
wind direction and atmospheric stability. This annex describes how the	F
results of the wind tunnel testing, in combination with those from the CFD	t
modelling and DRIFT modelling have been used to generate all the cloud	F
shapes required for the QRA.	ť
	t
The aspects covered are as follows:	t
	i
 scaling of the wind tunnel results for different chlorine release 	c
rates/quantities;	v.
 scaling of the wind tunnel results for different wind speeds; 	ŗ
 simulation of releases at different locations along the site access road; 	ť
• interpolation of the wind tunnel results for different wind directions (ie the	F
method of 'wind smoothing'); and	с
• the influence of atmospheric stability on the chloring bazard range	V

• the influence of atmospheric stability on the chlorine hazard range.

Table D1 below lists each of the key parameters of interest and details how the results of the various strands of the dispersion modelling work have been applied in the QRA.

D1

APPLICATION OF CHLORINE DISPERSION MODELLING RESULTS IN QRA

Table D1

Application of Chlorine Dispersion Modelling Results in QRA

eter	Details of Application
orine release	The wind tunnel testing
uantity	rates/quantities, ie typi
	continuous release case
	modelling a much grea
	considered (Annex A).
	relationship between th
	range. These relationsh
	the wind tunnel accord
	method of uniform scal
	within the GISRisk soft
	provided that the range
	topography surroundir
	For Sha Tin WTW the t
	this introduces potentia
	tonne instantaneous rel
	tonnes). The method o
	into account the effects
	constraining the cloud
	contour is constrained
	wind tunnel), whilst pr
	provides a conservative
	the large release cases,
	populated areas around
	contours the scaling is a
	way). Unlike the LD90
	to expand without rega
	made to ensure that the
	ie to avoid any discont
	The scale factors used i
	1. Continuous releases

2. Instantaneous Releases ('Base case' instantaneous release: 1 tonne) Event RU1TMRU (3 tonne instantaneous release) Scale factor = 1.7 (from *Figure A2*) Event EU1TMRU (instantaneous release) Scale factor = 4.6 for a storage of 203 tons (from *Figure A2*) Scale factor = 4.5 for a storage of 190 tons (from *Figure A2*) Scale factor = 4.4 for a storage of 183 tons (from *Figure A2*) Scale factor = 4.1 for a storage of 158 tons (from *Figure A2*)

Scale factor = 4.0 for a storage of 150 tons (from *Figure A2*)

ERM-HONG KONG, LTD

n of Dispersion Modelling Results

ng considered only a limited range of chlorine release pically one instantaneous release case and one or two ses per site. However in the DRIFT flat terrain eater range of chlorine release rates/quantities was From the DRIFT results it is possible to derive a the chlorine release rate/quantity and the hazard ships are used to scale the LD contours generated by rding to the release rate/quantity of interest. A caling is used, which is undertaken mathematically ftware. This method of scaling is sufficiently accurate ge of extrapolation is not too great and that the ing the WTW is reasonably flat.

topography surrounding the WTW is not flat and tial errors when scaling the wind tunnel results for 1 releases up to the largest releases of interest (ie 27 of uniform scaling has therefore been adapted to take ts of the topography. This has been achieved by d to follow the topographic contours (ie the LD90 d to 50m PD, based on observed behaviour in the preserving the cloud area. This method of scaling ve assessment of the number of fatalities arising from s, as it results in the cloud penetrating into the nd the Hin Keng Estate. For the LD03 and LD50 s achieved by applying the scale factors (in the normal 90 contour, the LD03 and LD50 contours are allowed gard to the local topography. An adjustment is then he contours still fit with the (modified) LD90 contour, ntinuities.

l in the QRA for Sha Tin WTW are as follows:

('Base case' continuous release: 1.4 kg/s)

Event RU1TMML (4.2 kg/s continuous release) Scale factor = 1.8 (from *Figure A1*)

Details of Application of Dispersion Modelling Results	Parameter	Details of Application of
In the wind tunnel testing for each WTW, most simulations were	5. Atmospher	ic The CFD modelling for S
undertaken at a 2m/s wind speed, which is typical of the weather	stability	atmospheric stability is a
conditions in Hong Kong. However a small number of tests were		hazard range, when com
undertaken at the higher wind speed of 5 m/s, usually for critical wind		conditions, which are th
directions such as towards the nearest population. The results of the 2 m/s		atmospheric stability is a
and 5 m/s wind tunnel tests have been compared for all sites to determine		and the probability of u
		combined with that for l
scaling factor is 0.7.		
Accidents associated with the transport of chlorine along the site access		
road may occur at any location along the access road and it is important to		
· · · · ·		
-		
modelled in the wind tunnel.		
For Sha Tin WTW the number of release locations considered for both the		
existing and alternative access roads is nine (for continuous releases) and		
four (for instantaneous releases). It is not necessary to consider as many		
release locations for the instantaneous releases, because the clouds are large		
and the spatial resolution need not be as great.		
In the wind tunnel testing for each WTW, up to eight wind directions were		
instantaneous release). However in the QRA it is necessary to consider a		
much larger number of possible wind directions, in order to avoid any		
numerical error in the risk results. The means interpolating between		
modelled wind directions is called 'wind smoothing'. For the case of flat		
terrain, wind smoothing can be achieved with sufficient accuracy by the		
simple method of cloud 'rotation', ie rotating adjacent clouds to fill the		
directional 'gaps' left by the wind tunnel testing (see 8 WTW Project		
Technical Note 1, ERM, 1998). The cloud rotation is achieved		
mathematically within the GISRisk software.		
For the case of complex terrain, however, it is necessary to ensure that,		
within the raw wind tunnel data, the effects of nearby topography		
(including any high rise buildings) are adequately represented, such that		
further wind smoothing is either not necessary or can be achieved easily		
using the method of cloud rotation. For Sha Tin WTW it was demonstrated		
in Technical Note 1 (see 8 WTW Project Technical Note 1, ERM, 1998) that		
sufficient directions had been considered in the original wind tunnel		
testing, such that further wind smoothing was not necessary.		
The above discussion applies to the instantaneous chlorine releases at Sha		
Tin WTW. For the continuous releases on the access road the results from		
QRA in preference to the wind tunnel results, as explained in <i>Section</i> 4.2 of		
total of 16 wind directions at each release location on the access road.		
	 undertaken at a 2m/s wind speed, which is typical of the weather conditions in Hong Kong. However a small number of tests were undertaken at the higher wind speed of 5 m/s, usually for critical wind directions such as towards the nearest population. The results of the 2 m/s and 5 m/s wind tunnel tests have been compared for all sites to determine a simple scaling factor. This scaling factor is then applied to all the 2 m/s LD contours to generate the corresponding 5 m/s contours. The calculated scaling factor is 0.7. Accidents associated with the transport of chlorine along the site access road may occur at any location along the access road and it is important to take this into account in the QRA. In the wind tunnel testing for each WTW, releases were typically modelled at two locations - the store and one location on the access road. In the QRA however releases are considered to occur at several points along the access road (typically one release location every 50m). The cloud contours for each location are generated by simply translating the clouds generated from the nearer of the two locations modelled in the wind tunnel. For Sha Tin WTW the number of release locations considered for both the existing and alternative access roads is nine (for continuous releases) and four (for instantaneous releases). It is not necessary to consider a smay release locations for the instantaneous releases, because the clouds are large and the spatial resolution need not be as great. In the wind tunnel testing for each WTW, up to eight wind directions were simulated for the most important releas escenarios (eg a 1 tonne instantaneous release). However in the QRA it is necessary to consider a much larger number of possible wind directions, in order to avoid any numerical error in the risk results. The means interpolating between modelled wind direction's is called 'wind smoothing'. For the case of flat terrain, wind smoothing can be achieved with sufficient accuracy by the simple method of c	 undertaken at a 2m/s wind speed, which is typical of the weather stability conditions in Inog Kom, However a small number of tests were undertaken at the higher wind speed of 5 m/s, usually for critical wind directions such as towards the nearest pepulation. The results of the 2m/s and 5 m/s wind turned tests have been compared for all sites to determine a simple scaling factor. This scaling factor is then applied to all the 2 m/s Lo ontours to generate the corresponding 5 m/s contours. The calculated scaling factor is 0.7. Accident associated with the transport of chlorine along the site access road may occur at my location along the access road and it is important to take this into account in the QRA. In the wind numel testing for each WTW, releases were typically modelled at two locations - the store and one location on the access road. In the QRA however releases are considered to occur at several points along the access road applied you ereleases location every 59m). The cloval contours for each location are generated by simply translating the clouds generated from the nearer of the two location modelled in the wind turnel. For 5ha Tin WTW the number of release locations considered for both the existing and alternative access road spin to consider as many release locations for the instantaneous releases.) In convert you consider as many release. In the wind turnel testing for each WTW, up to eight wind directions were simultaneous releases.) in the case release to a modelle at two locations are used as a many release. release. release accurate the case of complex to ensider a many release. release accurate accelease to a sc

D3

on of Dispersion Modelling Results

for Sha Tin WTW and Tai Po Tau WTW shows that y is not a significant factor influencing the chlorine comparing D (neutral) and F (stable) atmospheric e the most important in Hong Kong. Therefore y is not a parameter which is considered in the QRA of unstable (B) or stable (F) conditions is simply for D (neutral) conditions. Annex E

Chlorine Cloud Height Predictions

CHLORINE CLOUD HEIGHT PREDICTIONS

This annex presents information on the height of a chlorine cloud which has been obtained from the wind tunnel testing, CFD modelling and DRIFT flat terrain dispersion modelling. This is important for determining the impact on populations within high rise buildings.

Wind tunnel testing has been used in this study to investigate a range of release scenarios, wind directions and wind speeds in near-neutral atmospheric conditions. CFD has been used to determine the influence of atmospheric stability on the dispersion of chlorine and provide a broad comparison against the wind tunnel results for neutral stability. Wind tunnel simulations were undertaken for all eight sites, whereas CFD modelling was undertaken for two sites representing the extremes of topography (Sha Tin WTW and Tai Po Tau WTW). Both the wind tunnel testing and CFD modelling have included off-site high rise buildings as well as on-site buildings, as these have a significant influence on the dispersion of the chlorine.

The role of the flat terrain dispersion modelling has been to provide the 'source term' for both the wind tunnel and CFD studies. The model used in this study was DRIFT (Webber et al, 1992). As DRIFT runs in a matter of minutes, it has also been possible to use the code to simulate the full range of chlorine release rates and weather conditions.

Table E1 below summarises the data obtained from the wind tunnel testing, CFD and DRIFT modelling on the chlorine cloud height.

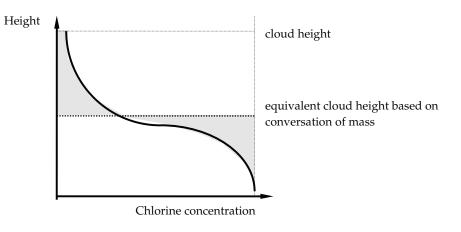
Table E1 **Chlorine Cloud Height Predictions**

Release case	Chlorine cloud height (m) at LD03 distance ⁽¹⁾							
	Wind t	runnel ⁽²⁾	CFI) (3)	DR	IFT		
1.4 kg/s continuous	30(4)	(D2)	60/60	(D2)	7	(D2)		
-	-	(D5)	-	(D5)	5.5	(D5)		
	-	(F2)	20/30	(F2)	-	(F2)		
1 tonne instantaneous	4(5)	(D2)	20/30	(D2)	6.5	(D2)		
	4(6)	(D5)	-	(D5)	8.5	(D5)		
	-	(F2)	10/20	(F2)	4	(F2)		
3 tonnes instantaneous	-		-		10(7)	(D2)		
					12.5(8)	(D5)		
					-	(F2)		
10 tonnes instantaneous	-		-		12(9)	(D2)		
					20(10)	(D5)		
					-	(F2)		

(1) The data given relates to the chlorine cloud height at the maximum horizontal distance to the LD03 (Lethal Dose - 3% fatality) concentration. 'Height' refers to the height at which the chlorine concentration falls to negligible levels, ie <5% of the ground level concentration (unless otherwise stated).

(2) Results are for Sha Tin WTW, measured at nearest block of Hin Keng Estate

(3) Results are for Sha Tin WTW/Tai Po Tau WTW


ERM-HONG KONG, LTD

(4) Estimate by RWDI for cloud height at LD03 distance based on conservation of mass (5) Height at which concentration drops to 1/2 of ground level concentration (6) Height at which concentration drops to $1/6^{\text{th}}$ of ground level concentration (7) Cloud height is 10 metres at LD03 distance and 6 metres at LD50 distance (D2) (8) Cloud height is 12.5 metres at LD03 distance and 8 metres at LD50 distance (D5) (9) Cloud height is 12 metres at LD03 distance and 9 metres at LD50 distance (D2) (10) Cloud height is 20 metres at LD03 distance and 11 metres at LD50 distance (D5)

Continuous Releases

As detailed in Section 4.2.2 of the main report, the CFD modelling has been used to set the downwind extent of the chlorine hazard range for the 1.4 kg/s continuous release case. Therefore the corresponding value of the chlorine cloud height from the CFD modelling has also been used in the QRA. From *Table E1* it can be seen that the predicted cloud height is 60m, which is the height at which the chlorine concentration drops to negligible levels. However for the purposes of the QRA, the parameter required is the equivalent height of the chlorine cloud based on conservation of mass (to ensure a realistic assessment of fatalities in high rise buildings). The relationship between these two values is illustrated in *Figure E1* below. The equivalent chlorine cloud height is estimated conservatively as 30m, assuming that the chlorine concentration is inversely proportional to cloud height . (In reality the chlorine concentration drops off more rapidly with height and therefore the equivalent cloud height would be less than 30m).

Figure E1 Estimation of Equivalent Chlorine Cloud Height

Instantaneous Releases

For instantaneous releases the wind tunnel LD contours are used in the QRA. However only a limited number of measurements of chlorine cloud height are available from the wind tunnel simulations, indicating a cloud height of around 4m for a 1 tonne instantaneous release (Table E1). Consideration has therefore also been given to the cloud height predictions from the DRIFT simulations. These indicate a cloud height of 4 - 8.5m for a 1 tonne instantaneous release. Based on this data, a cloud height of 6m will be assumed for a 1 tonne instantaneous release.

For a 10 tonne instantaneous release a cloud height of 9m will be assumed based on the cloud height predicted by DRIFT at the LD50 distance for D2 weather conditions - see Note (9) to *Table E1*. This is considered to be more representative of the average height of the cloud over the range of chlorine concentrations of interest (LD03 - LD90) than taking the cloud height at LD03.

For instantaneous chlorine releases between 3 and 10 tonnes (or in excess of 10 tonnes), linear interpolation (or extrapolation) of the chlorine cloud height has been performed, but rounding the value thus obtained up to the nearest number of equivalent building storeys. The calculations assume 3m per storey.

Annex F

Definition of Time Periods and Population Scaling Factors

The population data is presented in five time periods within a week: night, jammed peak, peak, weekend day and working day. The classification of the time periods is shown in *Table F1*. The frequency of events occurring at a certain time period is calculated by multiplying the time period percentage shown in *Table F1* and the event frequencies (listed in *Table 5.5* of the *Main Report*). For events related to transport of chlorine, which does not take place at night, the frequency at any other time periods is calculated by doubling the corresponding time period percentages.

Table F1

From	То	Mon-Fri	Sat	Sun	
00:00	01:00	Night	Night	Night	
01:00	02:00	Night	Night	Night	
02:00	03:00	Night	Night	Night	
03:00	04:00	Night	Night	Night	
04:00	05:00	Night	Night	Night	
05:00	06:00	Night	Night	Night	
06:00	07:00	Night	Night	Night	
07:00	08:00	Peak	Peak	Weekend day	
08:00	08:15	Jammed Peak	Jammed Peak	Weekend day	
08:15	09:00	Peak	Peak	Weekend day	
09:00	10:00	Working day	Working day	Weekend day	
10:00	11:00	Working day	Working day	Weekend day	
11:00	12:00	Working day	Working day	Weekend day	
12:00	13:00	Working day	Working day	Weekend day	_
13:00	15:00	Working day	Peak	Weekend day	
15:00	16:00	Working day	Weekend day	Weekend day	_
16:00	17:00	Working day	Weekend day Weekend	Weekend day	_
17:00	19:00	Peak	day	Weekend day	
19:00	20:00	Night	Night	Night	
20:00	21:00	Night	Night	Night	
21:00	22:00	Night	Night	Night	
22:00	23:00	Night	Night	Night	
23:00	00:00	Night	Night	Night	
Days		5	1	1	
Peak	(hours)	18.75	3.75	0	13.39%
Jammed Peak		1.25	0.25	0	0.89%
Working day		40	4	0	26.19%
Weekend day		0	4	12	9.52%
Night		60	12	12	50.00%

POPULATION FORECAST – DEFINITION OF SCALING FACTORS

It has been assumed that in the Consultation Zone there is no space available for further residential development, the residential populations are therefore assumed at their 2006 levels.

Outside the Consultation Zone, the 2006 residential population levels have been scaled up or down according to the population trends determined from the area-specific TPEDM PVS-based projections.

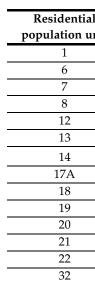
For population types other than residential, no growth has been assumed. TPEDM data included average household size for the years 2006, 2011, 2016 and 2031.

Table F2 provides the scaling factors for different PVSs.

Table F2 Population Data from TPEDM by PVS

F2

PVS	2006	2011	2016	Scaling factor 2014/2006	Scaling factor 2016/2006	2031	Scaling factor 2031/2006
205	35175	36 607	39 632	1.08	1.13	38 531	1.10
206	12233	11 819	11 370	0.95	0.93	11 271	0.92
208	17527	16 459	15 462	0.91	0.88	15 715	0.90
209(*)	30711	33 827	33 571	1.10	1.09	32 462	1.06
210	30338	28 318	33 760	1.02	1.11	33 443	1.10
211	25372	25 493	25 986	1.01	1.02	25 042	0.99
212	49103	47 661	65 088	1.15	1.33	62 454	1.27
384	6491	11 676	11 249	1.77	1.73	11 817	1.82
385	33928	35 139	35 151	1.04	1.04	33 783	1.00


Note: since the future population of Unit 17A (the new development in the Tai Wai MTR Depot area) which is estimated at 6107, is specifically included in the QRA, for the purposes of population scaling, its population has been subtracted from the 2014, 2016 and 2031 totals of the PVS 209.

For the year 2014, values from TPEDM were not available. The scaling factors were therefore interpolated using the values available for 2011 and 2016.

Each population was then scaled according to the PVS where it is located. The locations of relevant PVS areas are shown Figure F1. Table F3 shows the residential population units outside the STWTW Consultation Zone that are associated with each PVS. For the exact locations of the population units see Figure 2.5 of the Main Report.

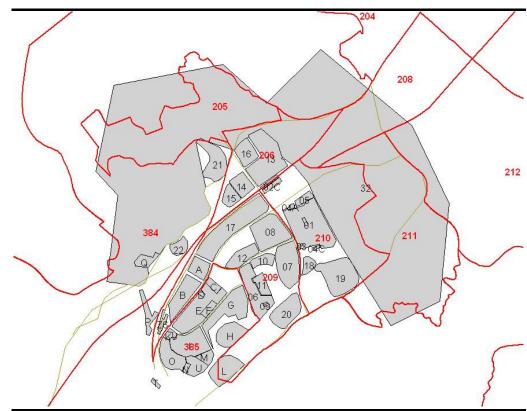

As can be seen, only the population unit 32 spreads across several PVSs. In this case the scaling factor has been evaluated considering the different areas that the population unit 32 overlaps.

Table F3

Figure F1

Locations of PVS areas

Note: the grey polygons represent the population units considered in the QRA. For their full description see Table 2.3 and Figure 2.5 of the Main Report.

PVS Scaling Factors Used for Residential Population Units

1	PVS scaling factor
nit	used
	210
	209
	209
	209
	209
	206
	206
	209
	210
	210
	209
	384
	384
	Average of 205, 206,
	208, 210, 211, 212, 384

Annex G

Seismic Hazard Assessment

SEISMIC HAZARD ASSESSMENT

Introduction

This annex presents a summary of the Seismic Hazard Assessment for the eight WTWs which was undertaken by Ove Arup (2001). The following paragraphs summarise the work which has been undertaken and the application of the results of the Seismic Hazard Assessment in the QRA.

Scope of Work

The work undertaken by Ove Arup investigated the seismic vulnerability of the chlorine stores at the eight WTWs and advised on the magnitude of earthquake necessary to cause varying levels of damage, from relatively minor, 'internal' damage to gross collapse of the store. The focus of the work was on the consequences of earthquakes in terms of the potential release of chlorine, whereas the likelihood of an earthquake of a given magnitude was derived from the Daya Bay Risk Assessment study (Cook et al, 1993), which has been used in past Hazard Assessment studies of WTWs in Hong Kong. Apart from advising on the likely damage to the chlorine stores at the eight WTWs, part of Ove Arup's scope of work was also to advise on the likely levels of damage to the general building stock in Hong Kong. This assists in determining the marginal impact of an earthquake on the surrounding population.

Methodology

The methodology for the Seismic Hazard Assessment involved:

- qualitative evaluation of the seismic vulnerability of the chlorine stores against the Federal Emergency Management Agency (FEMA 273) 'checklist';
- review of damage surveys from earthquakes around the world (including assessment of their relevance to structures in Hong Kong); and
- modelling of the dynamics of objects impacting chlorine containers.

Key Findings of Seismic Hazard Assessment

The key findings of the Seismic Hazard Assessment are as follows:

- the outcome of a earthquake of a given magnitude is probabilistic in nature rather than deterministic and graphs have been provided by Ove Arup (derived from historical data) which can be used to determine the probability of a given level of damage for an earthquake of a given magnitude (*Figure G1*);
- the chlorine stores at the eight WTWs may be divided into three groups, according to their vulnerability to seismic loading:

- storeys); and
- height).
- catastrophically or not at all;
- (*Group 3* WTWs);

Modelling of Seismic Hazards in the QRA

The assessment of seismic hazards in the QRA for Sha Tin WTW focuses on earthquakes which could cause roof collapse leading to multiple catastrophic failure of chlorine drums. Two magnitudes of earthquake are considered: 0.7g/MMXI (10% chance of roof collapse) and 1.0g/MMXII (50% chance of roof collapse) as shown in Figure G1 (Ove Arup, 2001). The lower level of earthquake (0.4g/MMIX) which could cause the crane to come off its rails and split a drum is not considered significant because the release would be contained within the chlorine building (the infill walls at Sha Tin are of reinforced concrete construction).

Within the QRA two key aspects are modelled:

- containers failing; and

ERM-HONG KONG, LTD

G1

ERM-HONG KONG, LTD

- Group 1 (Sha Tin, Pak Kong, Au Tau) being the least vulnerable and ranking amongst the best buildings in Hong Kong;

- Group 2 (Sheung Shui and Yau Kom Tau) being of average vulnerability but above average when compared to the general building stock (equivalent to high rise buildings of more than 20

- Group 3 (Tuen Mun, Tsuen Wan and Tai Po Tau) being the most vulnerable, equivalent to the average vulnerability of the general building stock in Hong Kong (ie low rise buildings up to 10 storeys in

• there is no 'partial' failure mode of the chlorine buildings, ie due to their nature of construction (reinforced concrete) they will either fail

• the magnitude of earthquake required to cause gross collapse of the chlorine stores is large, eg for a probability of collapse of 50%, the required magnitudes of earthquake (peak ground acceleration) are 1.0g/MMXII (Group 1 WTWs), 0.80g/MMXI-XII (Group 2 WTWs) and 0.60g/MMX-XI

the potential consequences of a roof collapse are severe due to the heavy construction of the roofs at the eight WTWs (roof slabs are typically 200mm thick and roof support beams typically 300mmx500mm in cross section). The predicted number of drums which would fail catastrophically is typically 10-100, depending on the WTW under consideration.

• the impact of the earthquake on the chlorine store, in terms of the probability of roof collapse, probability of damage to chlorine containers and number of

• the impact of the earthquake on the buildings surrounding each WTW, in terms of the % of buildings of different types which would be expected to fail (this information is used to estimate the number of direct fatalities due to the earthquake, hence the surviving fraction which could be exposed to the

chlorine release). Note that the earthquake-surviving fraction of the population of the elevated Hin Keng Station (population unit Z6) which, due to the open character of the station is considered in this QRA as basically outdoors, is estimated in the same way as indoor population of other buildings.

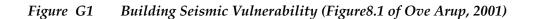
Figure G2 summarises the modelling of seismic hazards in the QRA for Sha Tin WTW in the form of an event tree showing the various outcomes of earthquakes of magnitude 0.7g (MMXI) and 1.0g (MMXII).

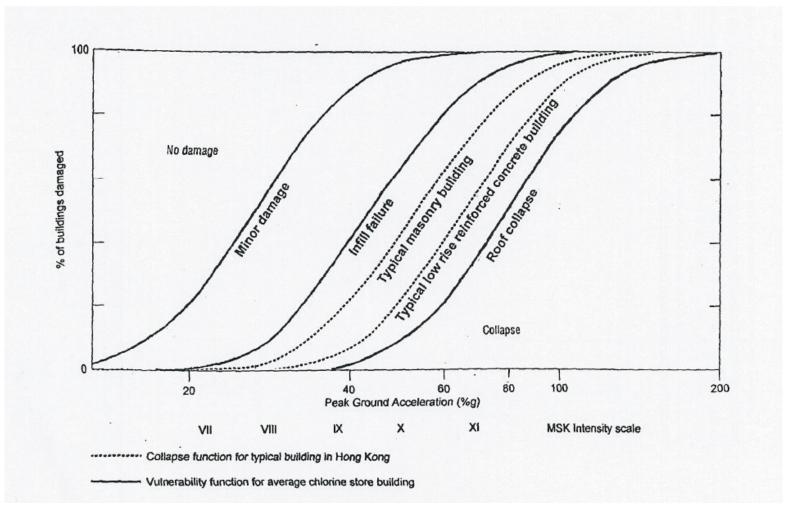
In *Figure G2* the 'surviving fraction of the indoor population' calculated in the last column is used to modify the population data (*Table 2.3* of the main text of the report), so that only the *additional* fatalities due to the chlorine release are assessed. For outdoor populations within high-rise, urban areas a fraction (50%) of the outdoor population is also assumed to suffer direct fatality due the earthquake, ie through falling masonry.

A summary of the drum impact assessment for Shatin WTW is shown in *Table G1* below:

Table G1Evaluation of the Damage to the Chlorine Containers for Collapse of Building
Structures

Site Name	Sha	Tin
Minimum number of	35	(25)
drums ruptured		
Intermediate number of	40	(25)
drums ruptured		
Maximum number of	47	(50)
drums ruptured		
Weighted average	42	

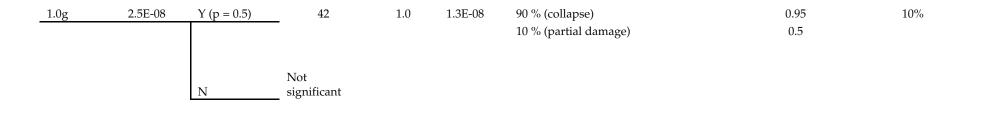

Note 1: Likelihood (%) of effect


The number of drums ruptured in scenarios where the storage is reduced from 223 tonnes to a lower level is obtained by reducing 42 (number of drums ruptured for the case of 223 tonnes storage) in proportion to the reduced storage level. This is because the according to Ove Arup (2001) the roof beams do not necessarily fall on the drums in predicted ways, but may impact drums located anywhere within several m (the storey height, ie 5.5 m) from the original location of the beam. Since in case of the STWTW chlorine store the distance between the drum racks and the drums themselves is lower than the storey height and the maximum roof beam displacement distance, it can be concluded that in a case of reduced storage no particular layout of the chlorine drums with regard to the roof beam location could reduce the probability of drum failure. Thus, the drum failure pattern is basically random, and the number of drum failures is proportional to the total number of drums in store seems reasonable. Note that results of a recent detailed seismic analysis for two storage levels in a CCPHI-approved Hazard Assessment for Tai Po WTW¹ have also shown that the number of drum failures in a roof collapse scenario is proportional to the assumed storage level.

G3

ERM-HONG KONG, LTD

¹Expansion of Tai Po Water Treatment Works Investigation Study: Hazard Assessment, ERM Report to Black&Veatch, February 2009



ERM-HONG KONG, LTD

G4

Figure G2:	Event Tree for	Assessment of Seismic	Hazards (Sha Tin WTW)
------------	----------------	-----------------------	-----------------------

			Outcome (Chl Number of	orine store)		Outcome (Buildings near Sha Tin WTW)		
Magnitude of earthquake	Frequency (per year) (Note 1)	Roof collapse ? (Note 2)	containers failing (Note 3)	Probability (Note 3)	Frequency (per year)	Percentage of buildings damaged and associated level of damage (from <i>Figure 8.1</i> in Ove Arup, 2001) (Note 4)	Probability of fatality (Note 5)	Surviving percentage of population (Note 6)
0.7g	4.0E-07	Y (p = 0.1)	42	1.0	4.0E-08	60 % (collapse)	0.95	23%
			-			40 % (partial damage)	0.5	

Note 1: from *Daya Bay Risk Assessment* (Cook, et al, 1993)

Note 2: probabilities of roof collapse from Ove Arup (2001)

Note 3: number of drums failing and associated probability from Ove Arup (2001) but simplified to a single outcome with 42 drums failing

Note 4: reference curve in Figure 8.1 of Ove Arup (2001) is that for typical low rise reinforced concrete buildings (ie up to 10 storeys),

which is considered to represent average of buildings around Sha Tin WTW

Note 5: probability of fatality for total collapse of a building estimated to be 95% and for partial damage 50%

Note 6: % surviving population = 1 - [% of buildings collapsing x p(fatality due to collapse) + % of buildings partially damaged x p(fatality due to partial damage)]

ERM-HONG KONG, LTD

MTRC