Calculation of Watering Efficiency

With reference to Cowherd et al., "Control of Open Fugitive Dust Sources, EPA-450/3-88-008, U.S. Environmental Protection Agency, Research Triangle Park, NC, percentage of dust mitigation efficiency is calculated from Equation (3-2) :

$$C = 100 - \frac{0.8 \, pdt}{i}$$

where

p =	Potential	average	e hourly	daytime	evaporation rate,	, mm/hour	= 0.25916 [1]

d = Average hourly daytime traffic rate per hour = 66 per hour [2]

I = Application intensity = 1.7 L/m2 [3]

Note:

[1] p = 0.0049 x 52.8898 inch, where 52.8898inch is equivalent to the total evaoporation of 1343.4mm obtained from Hong Kong Observatory (http://www.weather.gov.hk/cis/normal/1971_2000/normals_e.htm)
[2] The material to be transported in user 2025 in EU Lis the meet in the whole NDA devaluement.

[2]	The material to be transported in year 2025 in FLN is the most in the whole NDA development.					
	The total material to be transport in year 2025 in FLN (A)	$794,942 \text{ m}^3$				
	Total working area (B):	875,464 sq.m				
	Average material to be transport per unit working area (C) = (A) $/$ (B)	0.91 m ³ /sq.m				
	Area of largest site in 2025 (WC22) (D)	370,120 sq.m				
	The total material to be transport in year 2025 under WC22 (E) = (C) x (D)	$336,078 \text{ m}^3$				
	Trip generation (2 ways)	65.3 veh/hr				
	(F) = (E) / 5.5 / 12 / 26 / 6 * 2					
	Assumptions:					
	1. Assume the construction traffic is generated between 10am and 4pm (6hours)					
	2. Assume 26 working days per month					
	3. Assume 5.5m ³ per truck					
[3]	The assumptions provided are for the purpose of assessment predictions only. Actual figures would be defined in the					

By applying the Equation (3-2) with the above assumptions,

detailed design stage.

Dust suppression efficiency = $100 - 0.8 \times (0.25916 \times 66 \times t) / 1.7 [t = time between application, hr]$

Therefore,

For watering once per hour (i.e. t = 1 hour), the estimated dust suppression efficiency is 92.1%.