Hydraulic Analysis - Summary

A sewerage Model is developed with the following assumptions / parameters:

- 1) Latest DSD Drainage Record Plan
- 2) Occupied rate of office = 100%
- 3) Unit Flow Factors are adopted as follows:

40 a. Staff of Plant $0.33 \text{ m}^3/\text{d}$ b. Unit Flow Staff (J2) c. Visitor 60 $0.04 \text{ m}^3/\text{d}$ d. Unit Flow (Student)

(assume the Unit Flow generated by Visitor is equal to Student)

Estimate Quantity of Sewage

			Av. Flow from Visitor		Av. Flow from Employee		Subtotal		Contribution
Catchment	Visitor	Staff	(m3/day)	(m3/s)	(m3/day)	(m3/s)	(m3/day)	(m3/s)	Population
Desal Plant	60	40	2.4	0.00003	13.2	0.00015	15.60000	0.00018	58

Add

	m3/cleaning	m3/day (dewater in 4 day, i.e. 96 hours)	Subtotal	Contribution Population
RO Chemical Cleaning	514.8	128.7000	0.00149	477

(excluding stormwater allowance)

Check for Downstream Sewerage Infrastructure

The design capacity of Tseung Kwan O PS is 6.85 m3/s The Flow generated from Desal Plant 0.00167 m3/s Assume peaking factor is 3, the max. flow is 0.00203 m3/s

% when compared with the TKO PS is 0.03 %

Since the increase is 0.03% only, hence the impact is considered to be insignificant.

Check for Existing Immediately Downstream 600mm Sewer (FMH4035449 to FMH4035450)

Parameters

	· arameters					
	Surface roughness	k_s		3	mm	(Assume poor condition slimed sewer [Clayware])
	kinematic viscosity	V		1.14	mm ² /s	
	Frictional gradient	S _f 1 in		820		
	Capacity of Drain					
	Pipe size	D		=	600	mm
	Hydraulic radius	R = D/4		=	0.15	m
	Mean velocity (Colebrook-White)	\overline{V} =	$-\sqrt{32gRS}$ lo	$\log\left[\frac{k_s}{148R}\right]$	$+\frac{1.255v}{R\sqrt{(32gRS)}}$]
				=	0.68	m/s
	Capacity provided	Q		=	V x Cross Section Area of Drain	
				=	0.19	m ³ /s
	Allow for 10% siltation		Q _{90%}	=	0.17	m ³ /s
Assume peaking factor is 6, the max. flow is			0.00257	7 m3/s	(excluding stormwater allowance)	
% when compared with the existing 600mm Sewer is					1.33	%

Since the increase is around 1.33% only, hence the impact is considered to be insignificant.

⁴⁾ The RO Cleaning Cleaning Water will be pumped into the sewer by pump. Uniformed flow is assumed in the assessment