

Role of Thermal Treatment Facilities in Sustainable Waste Management

Dipl.-Ing. Volker Weiss Federal Environment Agency (Umweltbundesamt) Germany

> Seminar on Thermal Waste Treatment Hongkong, 7th March 2008

Content:

- ➤ Waste arisings in Germany
- ➢ Waste management in Germany, Legislation
- Sustainability in Waste management
- Closed substance cycle economy
- > Waste sector's contribution to climate protection
- Thermal Waste treatment plants
- Environmental performance of WTE-plants
- Conclusions

Waste arisings in Germany

82 million inhabitants in Germany

- Total waste amount: 331 million tons (2005)
- Construction and demolition waste: 185 mill. tons
- Mining residues: 52 mill. tons
- Production and Industrial Waste: 48 mill. tons
- Municipal solid waste: 46 mill. tons
- Domestic waste: 41 mill. tons (part of MSW)
- Hazardous Waste: 18 mill. tons

Waste management in Germany: Legislation

- Waste Management Act 1986
 - waste hierachy
 - reduction of waste volume
 - reduction of harmful substances
- Technical Instructions on Waste from Human Settlements 1993
 - to recover as much as possible
 - to reduce harmful substances
 - to ensure an environmental treatment and landfill
 - Target for landfill ban in 2005

Waste management in Germany: Legislation (2)

Further Regulations

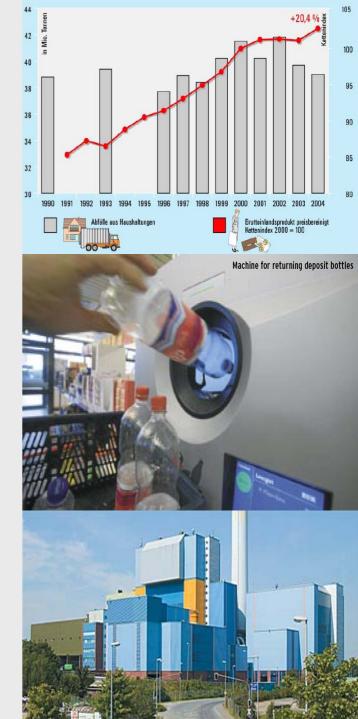
- Seventeenth Federal Immission Control Ordinance 1990 (Ordinance on waste incineration plants)
 emission limits for dioxins, furans, heavy metals
- Closed Substance Cycle and Waste Management Act 1996
 dual waste management concept
 - from waste management to resource management

Waste management in Germany: Legislation (3)

- Waste Storage Ordinance 2001
 - landfill ban for untreated waste after 1 June 2005
 - legal obligation placed on the waste owner and landfill owner
 - no exemptions after 1 June 2005
 - Residues of mechanical biological treatment and waste incineration may be still landfilled

Sustainability in waste management

➢ Reduce


- efficient use of materials and energy
- internal recovery in production

≻ Reuse

• returnable systems

➢ Recovery

- recycling
- energy recovery

Closed substance cycle economy

- \succ cooperation with stakeholder
- ➢ legal framework
- clear responsibilities: domestic waste > local authorities

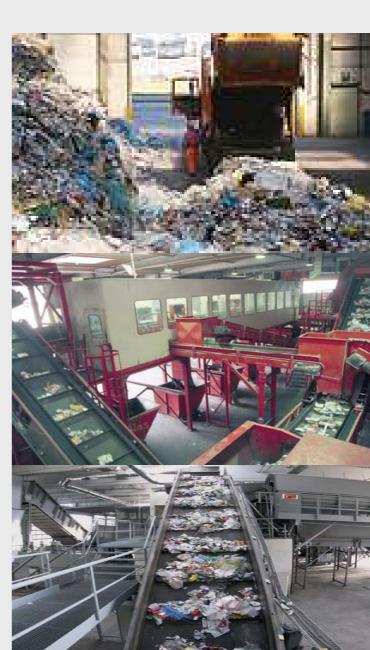
other waste > industry

- Extended Producer Responsibility
- voluntary agreements waste paper - 1994 - construction and demolition waste - 1996 -
- return and recycling/recovery obligations

 packagings 1992 waste batteries 1998 electrical and electronic scrap 2006
- ➤ internalization of costs
- ➤ landfill ban for untreated waste

Separate collection

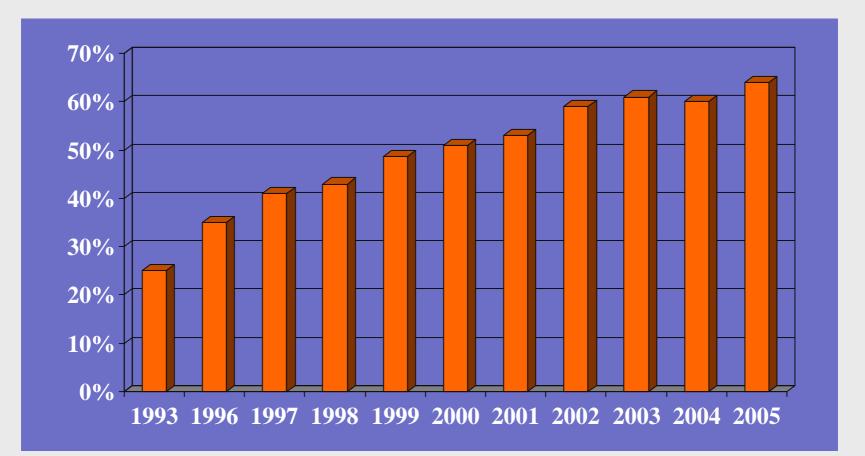
- waste paper
- glass
- packaging waste
- waste batteries
- electronic waste
- biowaste
- waste oil



Sorting and treatment

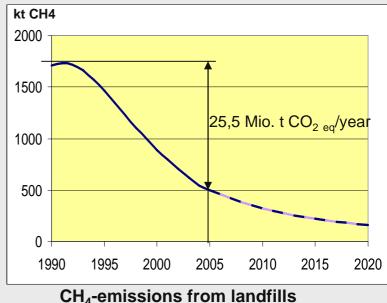
≻modern technologies

high quality of secondary raw materialmarket for recycling products


Recovery-Quotas

- household waste 59%
- production waste 42%
- construction waste 86%
- packagings 81%
- waste paper 82%
- glass 88%

Recycling of Household Waste

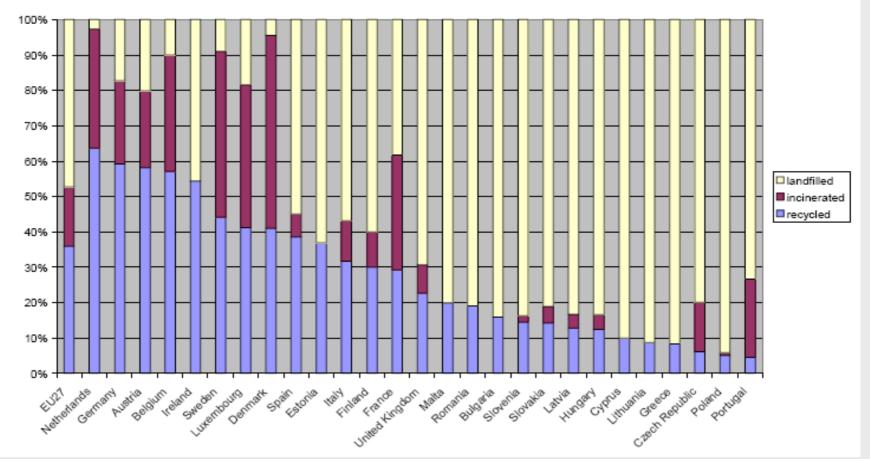

Recycling is important but not sufficient!

Waste sector's contribution to climate protection

1990-2005: Savings of 46 Mio. t $CO_{2 eq}$ /year

Main measures:

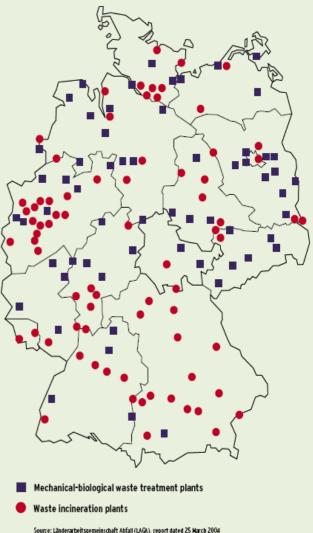
- CH₄ reduction from landfills: collecting and burning in cogeneration units
- Landfill ban 2005
- Enlargement of incineration capacity
- Increased energy efficiency of WtE-Plants
- Extended material recycling since 1990 by the factor 4



Outlook to Europe: Potential of the Waste Sector to contribute to Climate Protection

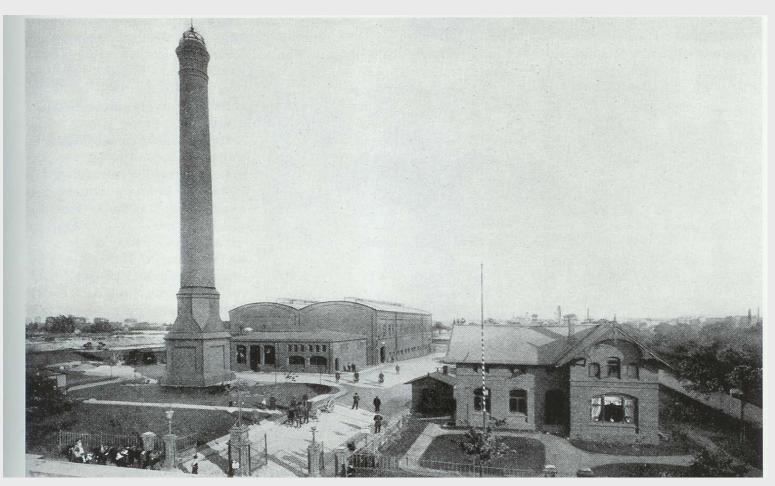
- Ban of landfilling unpretreated waste in EU -15 can avoid 134 million tons CO₂ equivalents. This is equivalent to 11 % of the post Kyoto maximum target of a 30 % emission reduction in 2020.
- A consequent implementation of the EU-Landfill Directive could reduce the emissions by 74 million tons CO₂ equivalents

Management of municipal waste in the EU 27 (2004)



Thermal Waste Treatment in Germany

- 68 WtE 17,5 Mio. t/year cap.
- 70 MBWTP 7 Mio. t/year cap.
 → 3 Mio. tons RDF for
 Co-incineration (powerplants, cement kilns) and RDF-incineration plants
- 30 Hazardous waste incineration plants (1,2 Mio. t/year)
- Sewage sludge: 23 incineration plants and co-incineration (1,2 Mio. t/year)
- Clinical waste: 1 incineration plant and co-incineration in WtE-plants
- 160 Biomass/Waste-wood incin. plants


Treatment plants for municipal wastes to implement the Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities (status: April 2004)

Waste Incineration in Germany

Long Tradition: from 1895

Waste Incineration in Germany

... up to now

Waste to Energy plants in Germany

- 68 Municipal solid waste incineration plants with a capacity of 17,5 million tons/year
 - \rightarrow all plants with energy use (WtE)
- Throughput range: from 34.000 tons/year to 670.000 tons/year, → average: 230 000 tons/year
- 2 lines to 4 lines, ranges from 5 tons/h to 35 tons/h
- All plants have grate firing systems (broad-band technique)
- Thermal treatment cost/charges 90 Euro to 250 Euro per ton waste (average 170 Euro/ton)
- All plants operated with Best Available Techniques (BAT)

Best Available Techniques for Waste Incineration

- BREF WI based on the EU-IPPC-Directive
- Integrated, cross-media approach
- Purpose of the Directive is to ensure a high level of protection of the environment taken as a whole
- Important document for the licensing authorities
- All German WtE-Plants meet the requirements of the BREF WI

Umwelt Bundes Amt ()

BAT air emission standards (BREF WI)

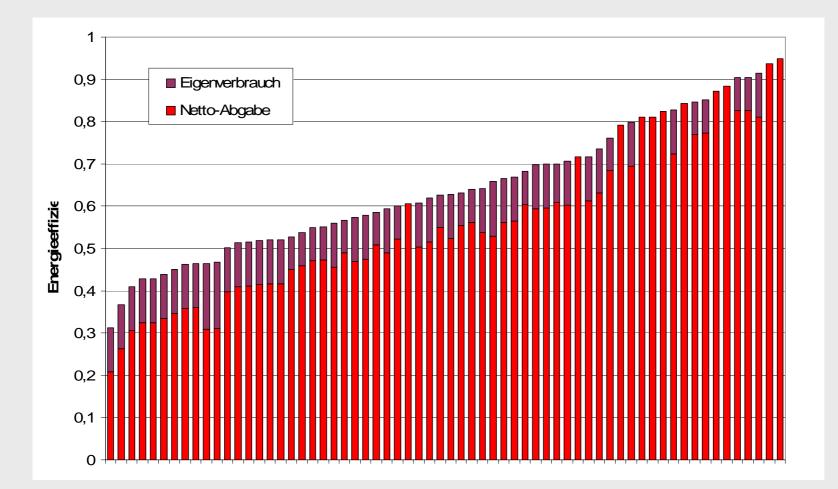
Substance	periodi-	half-hour	daily	BAT-Technique	
	cal	average	average		
	value	value	value		
Dust		1-20	1-5	Fabric filter, electrical precipitator	
HCI		1-50	1-8	Wet / semi dry flue gas cleaning systems	
SO ₂		1-150*	1-40*	Wet / semi dry flue gas cleaning systems	
NOx with		40-300*	40-100*	High energy consumption and costs	
SCR					
NOx with		30-350	120-180	If high raw gas values NH ₃ -Slip is possible, in	
SNCR				connection with wet systems preferred	
TOC		1-20	1-10	Optimal combustion conditions	
CO		5-100	5-30	Optimal combustion conditions	
Hg	<0,05	0,001-	0,001-	Input-controll/reduction, C-doped Adsorp-	
		0,03	0,02	tiontechnique	
Cd/TI	0.005 –				
	0.05				
PCDD/	0,01-			Optimal combustion conditions, temperatur-	
PCDF	0,1*			controlled reduction of the de-novo-synthese,	
				C-doped Adsorptiontechnique	

Extract of BAT-Table 5.2 "Operational Emission Levels associated with the use of BAT" for air in mg/Nm³

Umwelt Bundes Amt (a) Fir Mesch und Linweit BAT water emission standards (BREF WI)

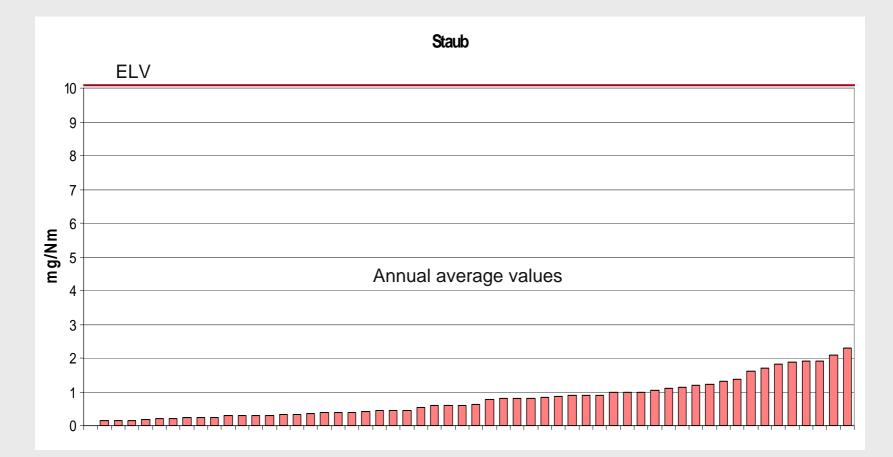
Parameter	Dimension	BAT- Range	Annex 33
			Wastewater
			Ordinance
Mercury	mg/l	0,001 – 0,03	0,03
Cadmium	mg/l	0,01 – 0,05	0,05
Thallium	mg/l	0,01 – 0,05	0,05
Arsenic	mg/l	0,01 – 0,15	0,15
Lead	mg/l	0,01 - 0,1	0,1
Chromium	mg/l	0,01 – 0,5	0,5
Copper	mg/l	0,01 – 0,5	0,5
Nickel	mg/l	0,01 – 0,5	0,5
Zinc mg/l		0,01 – 1,0	1,0
PCDD/F	ng TEQ/I	0,01 – 0,1	0,3

22

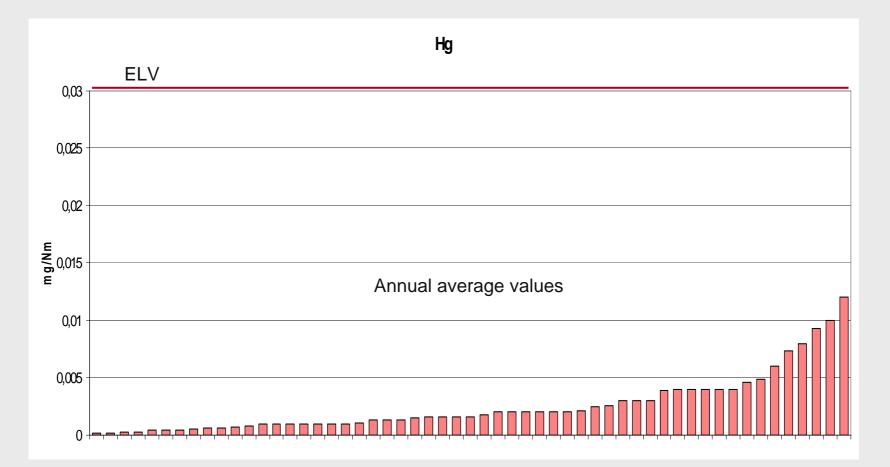

Energy generation and CO₂-Savings from WTE-plants in Germany

- Total Energy from WtE: ~ 23 TWh
 - Electric energy ~ 6 TWh
 - Heat energy ~ 17 TWh
- CO₂-Savings (Substitution of energy from conventional coal-fired powerplants): 9,75 Mio. t/year
- Potential for increased Energy efficiency

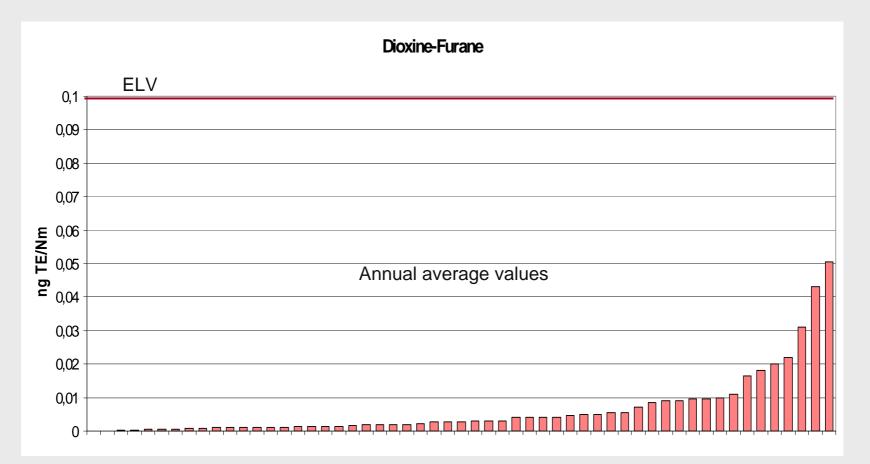
 \rightarrow additional CO₂-Savings of ~ 3 Mio. t/year



Energy efficiency of WtE-Plants in Germany



Emissions of WtE-Plants: Dust



Emissions of WtE-Plants: Mercury

Emissions of WtE-Plants: Dioxin

WtE: Emission Reduction

WtE: Sink for air pollutants

- At least 3 tons of arsenic equivalents and 5000 tons of particulate matter would be more in the air in Germany if the energy generated by Waste-to-Energy plants would have been produced by traditional power stations.
- Dioxin emissions dropped to 1/1000 since 1990:
 400 g (1990) → 0,5 g (2000)
 while the amount of waste thermally treated has double
 http://www.bmu.de/english/waste_management/downloads/doc/35950.php
- No significant risk for human health by emission from WtE

Emissions of WtE-Plants: Dioxin

"Environment Agency estimates that during the Millennial celebrations in London the emissions from one 15 minute, 35 ton firework display equalled 120 years of dioxin emissions from the SELCHP waste incinerator." Source: APSWG briefing on Energy from Waste;

UK Environment Agency 2000

Conclusions (1)

- Avoid, reuse, recycle and for the rest regard waste as a resource for material and energy recovery
- Dumping untreated waste as landfill is the worst solution
- The waste sector has a large potential for greenhouse gas reduction
- WtE-plants are essential and indispensable element of sustainable waste management: enabling secure disposal and contributing to climate protection
- WtE-plants designed with BAT: any impacts on environment or human health are negligible

Conclusions (2)

- Germany and other European countries who have most successfully reduced dependance on landfills have done this by combining:
 - material recycling
 - biological treatment
 - and waste to energy
- Proving that thermal waste treatment goes hand in hand with recycling

Thank you for your kind attention!

volker.weiss@uba.de

www.umweltbundesamt.de