Briefing on EMFAC-HK Update

Dr. Carol Wong

Senior Environmental Protection Officer (Mobile Source)5

Mr. Charles Ng Environmental Protection Officer (Strategic Assessment) 53

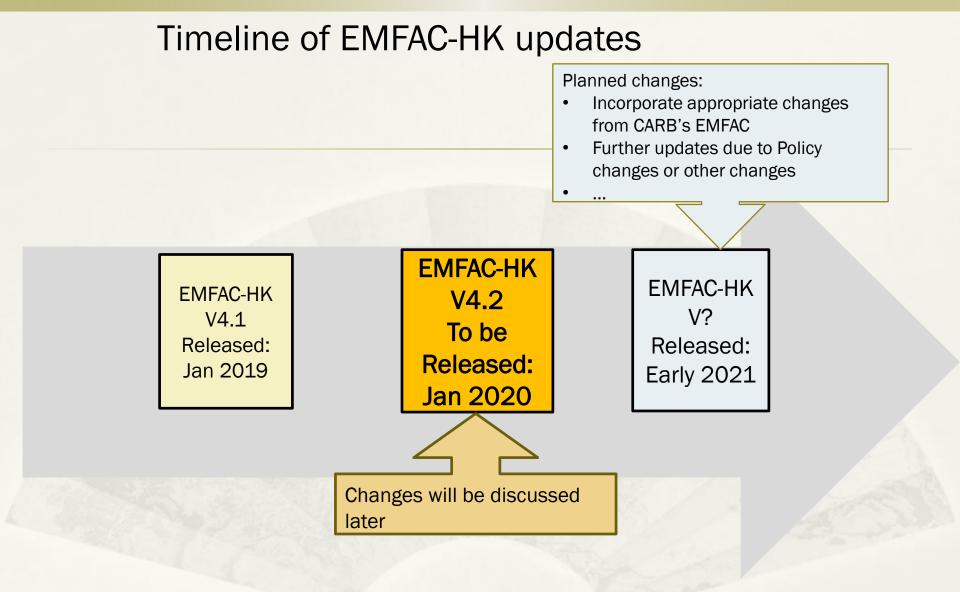
Environmental Protection Department Hong Kong SAR Government Dec 2019

Background

- EPD has adapted the vehicle emission model, EMFAC, developed by California Air Resources Board (CARB) for use in Hong Kong since 2005.
- EMFAC-HK calculates emission rates[#] from all on-road vehicles.
- Emission factors in EMFAC-HK are multiplied by territory-wide vehicle activity data to estimate territory-wide emission inventories.
- For other vehicle emission assessment like EIA, EMFAC-HK provides fleet average emission factors and the consultants will provide case specific activity data
- We have promulgated updates every January, if needed, since 2013
- EMFAC-HK Webpage: https://www.epd.gov.hk/epd/english/environmentinhk/air/guide_ref/emfa c-hk.html

#Emission rate = Emission Factor (g/km) x Vehicle activity (km/day)

Outline


- Application of EMFAC-HK
- Timeline of EMFAC-HK updates
- Changes made in EMFAC-HK update (V4.2)
- Comparison of emissions and fleet average emission factors (FAEF)
- Transitional Arrangement & Meeting Air Quality Objectives

Application of EMFAC-HK

- EMFAC-HK is a tool for estimating vehicle emissions with default vehicle emission factors and assumptions[#].
- Some default data may become outdated over time. Thus, we will issue a new version of EMFAC-HK in early part of the year when necessary.
- When using EMFAC-HK, users can apply other appropriate assumptions in estimating vehicle emissions to suit their projects/purpose.
- The users should judge whether the default values of EMFAC-HK are applicable to their case and how robust their assessments are.

Outline

- Application of EMFAC-HK
- Timeline of EMFAC-HK updates
- Changes made in EMFAC-HK update (V4.2)
- Comparison of emissions and fleet average emission factors (FAEF)
- Transitional Arrangement & Meeting Air Quality Objectives

Outline

- Application of EMFAC-HK
- Timeline of EMFAC-HK updates
- Changes made in EMFAC-HK update (V4.2)
- Comparison of emissions and fleet average emission factors (FAEF)
- Transitional Arrangement & Meeting Air Quality Objectives

Comparison of Current EMFAC-HK V4.1 & EMFAC-HK update (V4.2)

Modelling Methodology Related

Current	Update
To align with CARB's EMFAC2014, added start emissions for SCR diesel vehicles.	To align with CARB's EMFAC2017, revised methodology of start emissions for SCR diesel vehicles.
Assumed Euro 3 motorcycle (MC) has catalytic converter	Assumed Euro 3 MC has no catalytic converter
Hydrocarbons speciation methodology to align with CARB's EMFAC2011	To align with CARB's EMFAC2017, revised hydrocarbons speciation methodology.

Comparison of Current EMFAC-HK V4.1 & EMFAC-HK update(V4.2)

Activity Related

Current	Update
Default speed profile employed 2016	Due to update of 2016 Vehicle Emission
Vehicle Emission Inventory	Inventory, revised default speed profile.

Changes highlighted in red.

Split of Exhaust Tech Groups

Split Exhaust Tech Groups:

EICODE	FUEL	Old TG Desc	New TG Desc	TGI
PLB	LPG	Euro IV & V	Euro IV	50
PLB	LPG		Euro V	51
PLB	LPG	Euro IV & V CAT Replaced	Euro IV CAT Replaced	, 58
PLB	LPG	all All all all the	Euro V CAT Replaced	48

Changes highlighted in red.

New Tech Group indexes

Comparison of Current EMFAC-HK V4.1 & EMFAC-HK update (V4.2)

Policy Related

Current	Update
Plan to progressively phase out all Euro	Plan to progressively phase out all Euro
IV DCV by end 2023	IV DCV by end 2027 (tentative)

Changes highlighted in red.

Changes in Implementation Dates of Vehicle Emission Standards

Current EMFAC-HK (V4.1)

Vehicle Class\ Fuel Type	Eu	ro 4
	Petrol	Diesel
Motorcycle		2020 ative)

EMFAC-HK update (V4.2)

Vehicle Class\ Fuel Type	Eu	ro 4			
	Petrol	Diesel			
Motorcycle	1.10.2020 (tentative)				

Changes highlighted in red. Emfac-HK homepage, Appendix III

Changes in Implementation Dates of Vehicle Emission Standards

Current EMFAC-HK (V4.1)

EMFAC-HK update (V4.2)

Vehicle Class		Euro VI			Vehicle C	Vehicle Class			Euro VI			
Fuel Type		LPG	Petrol Diesel		Fuel Type	Fuel Type		Petrol Diesel				
Bus	<= 9 t	NA	1.1.2021 (tentative)		Bus	<= 9 t	NA	NA 1.3.2021 (tentative)				
Light Bus	>3.5 t		1.1.2021 (tentative)		Light Bus	>3.5 t	2	1.3.202 (tentativ				

Changes highlighted in red. Emfac-HK homepage, Appendix III Notes: # HK adopted California LEV III Standards on 1 Octobe³2017 for diesel PC.

Comparison of Current EMFAC-HK V4.1 & EMFAC-HK update (V4.2)

Emission Output

Current	Update
No NO ₂ will be output	NO ₂ will be output with other pollutants. All
(external spreadsheet has been used to	output files formats are modified!
estimate NO ₂ level)	
Only one of PM_{30} , PM_{10} and $PM_{2.5}$ can	All PM_{30} , PM_{10} and $PM_{2.5}$ will be output in
be output in a single run	a single run. All output files formats are
	modified!
	(PM options in INP will be ignored)
and the second sec	

Changes highlighted in red.

Output Files Revision

No more "bcd.csv" output

	A	В	С	D	E	F	G	Н	I	J	К	L	м	N
1	CALYR	START MY	END MYR	REGION	SAR 📐	STARTS	POPULATI	VKT	VEH TYPE	VEH TECH	POLLUTAN	PROCESS	EMISSION	BASIS
2	2030	1986	2030	SAR Avera	HongKon	10	7	121	PC	NCAT	со	Run Exh	0.003855	Day
3	2030	1986	2030	SAR Avera	Horig Kon	10	7	121	PC	NCAT	NOx	Run Exh	0.000432	Day
4	2030	1986	2030	SAR Avera	Hong Kon	18	7	121	PC	NCAT	PM	Run Exh	0.000004	Day
5	2030	1986	2030	SAR Avera	HongKon	10	7	121	PC	MCAT	VOC	Run Exh	0.000185	Day
6	2030	1986	2030	SAR Avera	HongKon	10		121	PC	NCAT	CO2	Run Exh	0.026478	Day
7	2030	1986	2030	SAR Avera	Hong Kon	10	7	121	PC	NCAT	со	Start Ex	0.000424	Day
8	2030	1986	2030	SAR Avera	Hong Kon	10	7	122	PC	NCAT	NOx	Start Ex	0.000029	Day
9	2030	1986	2030	SAR Avera	Hong Kon	10	7	121	РС	NCAT	PM	Start Ex	0.000001	Day
10	2030	1986	2030	SAR Avera	Hong Kon	10	7	121	PC	NCAT	VOC	Start Ex	0.000042	Day
11	2030	1986	2030	SAR Avera	Hong Kor	10	~	121	PC	NCAT	CO2	Start Ex	0.002032	Day
12	2030	1986	2030	SAR Avera	HongKon	10	7	121	PC	NCAT	со	Hot Soak	0	Day
13	2030	1986	2030	SAR Avera	Hong Kon	10	7	121	PC	NCAT	NOx	Hot Soak	0	Day
14	2030	1986	2030	SAR Avera	Hong Kon	10	7	121	PC	NCAT	PM	Hot Soak	0	Day
15	2030	1986	2030	SAR Avera	HongKon	10	7	121	PC	NCAT	voc	Hot Soak	0.000045	Day

Output Files Revision (cont')

".csv" output file

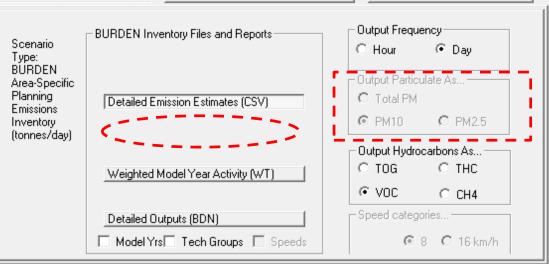
	21										
	28	Oxides of	Nitrogen I	Emissions							
Added NO ₂	29	Run Exh	0.00043	0.18204	0.00729	0	0.18975	0	0.00009	0	2.!
result	30	Start Ex	0.00003	0.07195	0	0	0.07198	0	0.00001	0	0.1
	31										
	32	Nitrogen [Dioxide Em	issions							
	33	Run Exh	0.00002	0.0091	0.00094	0	0.01007	0	0	0	0
	34	Start Ex	0	0.0036	0	0	0.0036	0	0	0	0.1
	35										
	36	Carbon Di	oxide Emis	sions (000)						
	37	Run Exh	0.00003	4.94639	0.04525	0	4.99167	0	0.00082	0	1.1
	38	Start Ex	0	0.08006	0	0	0.08006	0	0	0	0.1
	39										
	40	Total Parti	culate Emi	ssions							
	4	Run Exh	0.00001	0.06257	0.0005	0	0.06308	0	0.00001	0	
	42	Start Ex	0	0.0056	0	0	0.00561	0	0	0	
	43										
	1	PM10 Emi:	ssions								
All PM species	45	Run Exh	0	0.0607	0.0005	0	0.0612	0	0.00001	0	
are output	46	Start Ex	0	0.00544	0	0	0.00544	0	0	0	
	47										
at the same	48	PM2.5 Emi	issions								
time	49	Run Exh	0	0.05632	0.00046	0	0.05678	0	0.00001	0	
unio	50	Start Ex	0	0.00504	0	0	0.00504	0	0	0	
	51										

Output Files Revision (cont')

"bdn.csv" output file

Added NO₂ columns

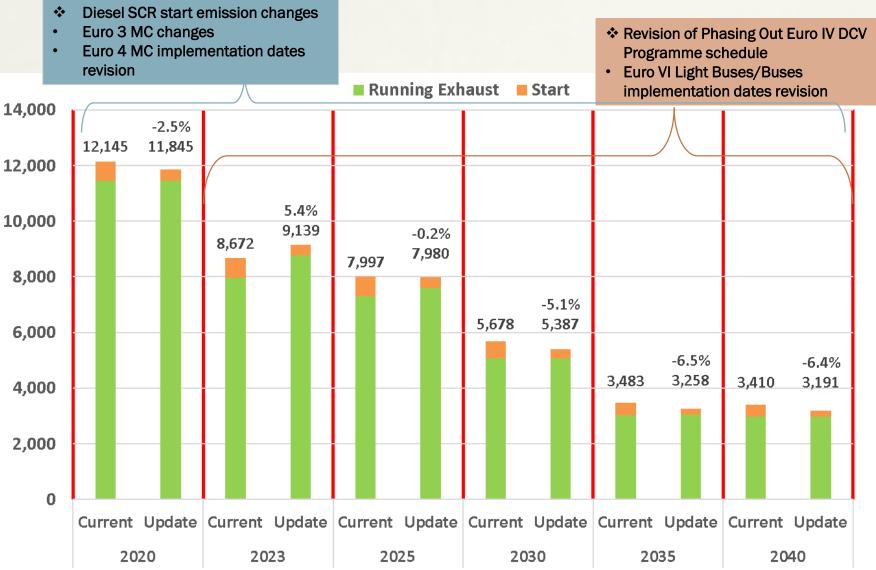
All PM species are output at the same time


STREX	NO2_RUNEX	NO2_STREX	CO2_RUNEX	CO2_STREX	PM30_RUNEX	PM30_STREX	PM10_RUNEX	PM10_STREX	PM2.5_RUNEX	PM2.5_STREX
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
24E-06	1.63E-06	1.12E-07	2.19E-03	1.58E-04	4.22E-07	5.32E-08	3.80E-07	4.79E-08	2.87E-07	3.62E-08
0	1.15E-07	0	5.36E-04	0	5.30E-07	0	5.30E-07	0	4.88E-07	0
0	4.99E-09	0	2.33E-05	0	2.31E-08	0	2.31E-08	0	2.12E-08	0

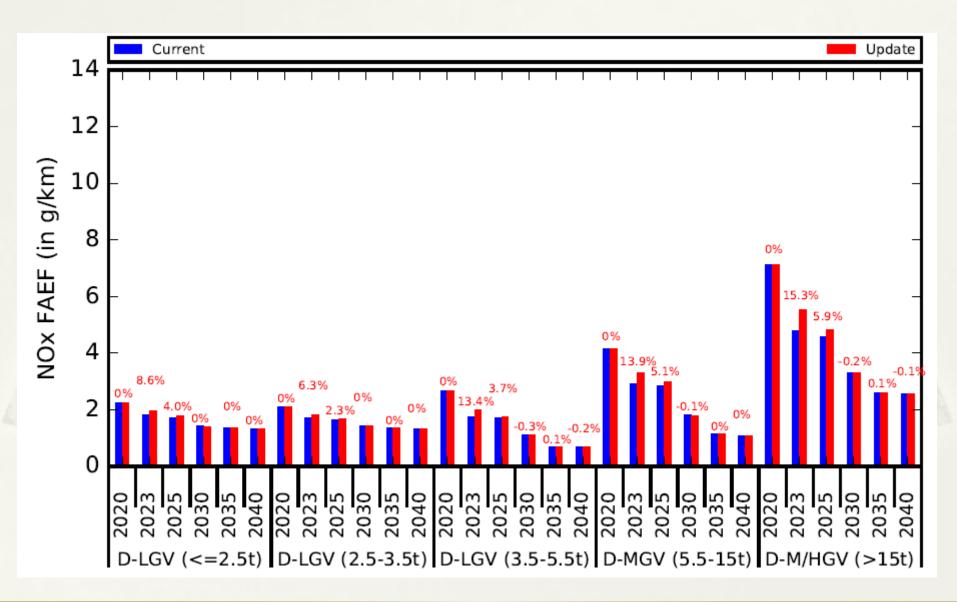
EMFAC mode output ".rtl.csv" also includes NO₂ and all PMs

Output Selection Screen Revised

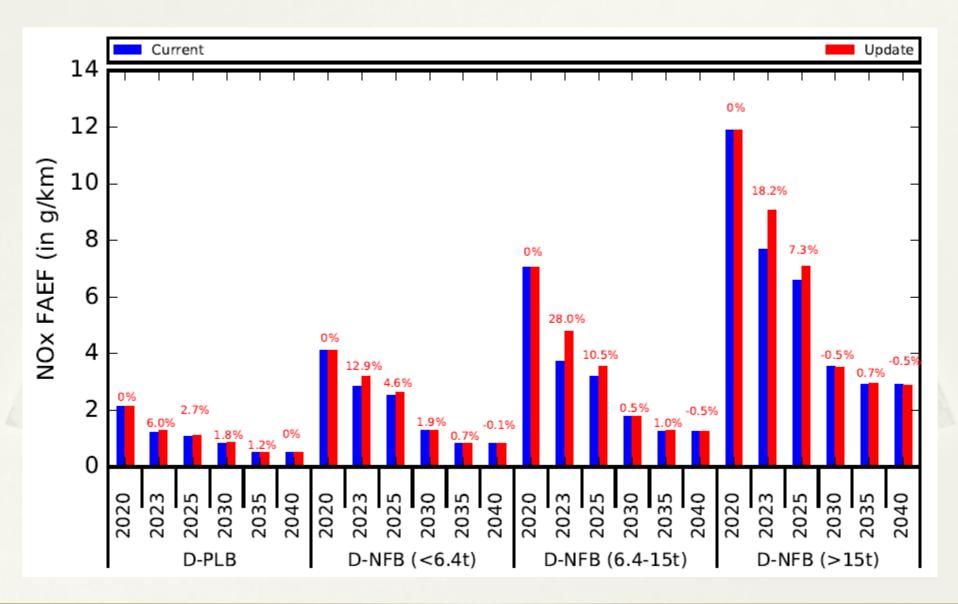
Current


urden - Area Emiss	ion Estimate Emfac - Area fleet average emiss	ions Calimfac - Detailed vehicle data			
Scenario Type: BURDEN Area-Specific Planning Emissions Inventory (tonnes/day)	BURDEN Inventory Files and Reports Detailed Emission Estimates (CSV) MVE17G (BCD) Weighted Model Year Activity (WT) Detailed Outputs (BDN) Model Yrs Tech Groups Speeds	Output Frequency Hour Day Output Particulate As Total PM PM10 PM2.5 Output Hydrocarbons As TOG THC VOC CH4 Speed categories @ 8 C 16 km/h	Update BCD output and PM are disabled	A options	
		Burden - Area Emission Estimate	Emfac - Area fleet average emissions	Calimfac - Detailed vehicle data	

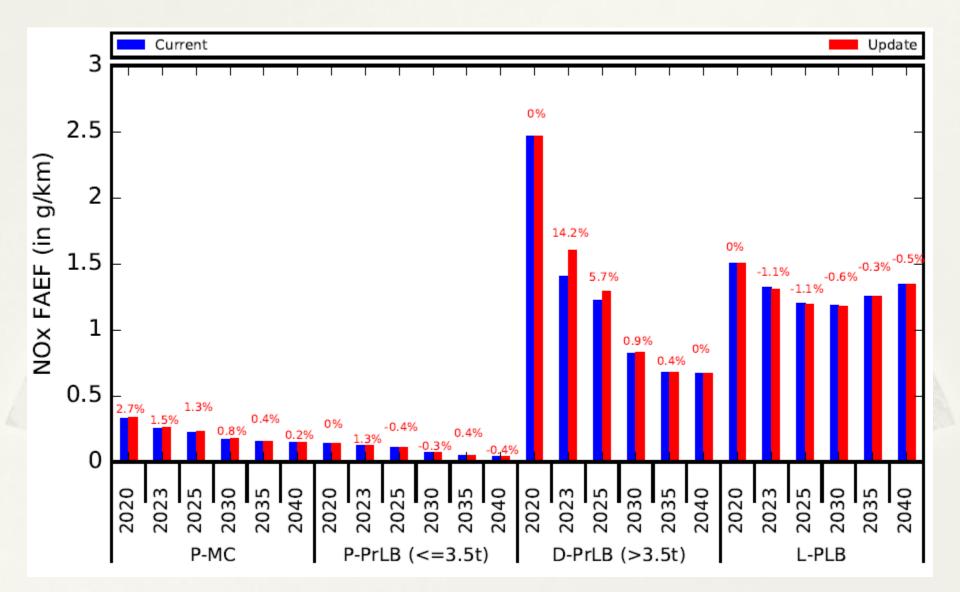
Outline


- Application of EMFAC-HK
- Timeline of EMFAC-HK updates
- Changes made in EMFAC-HK update (V4.2)
- Comparison of emissions and fleet average emission factors (FAEF)
- Transitional Arrangement & Meeting Air Quality Objectives

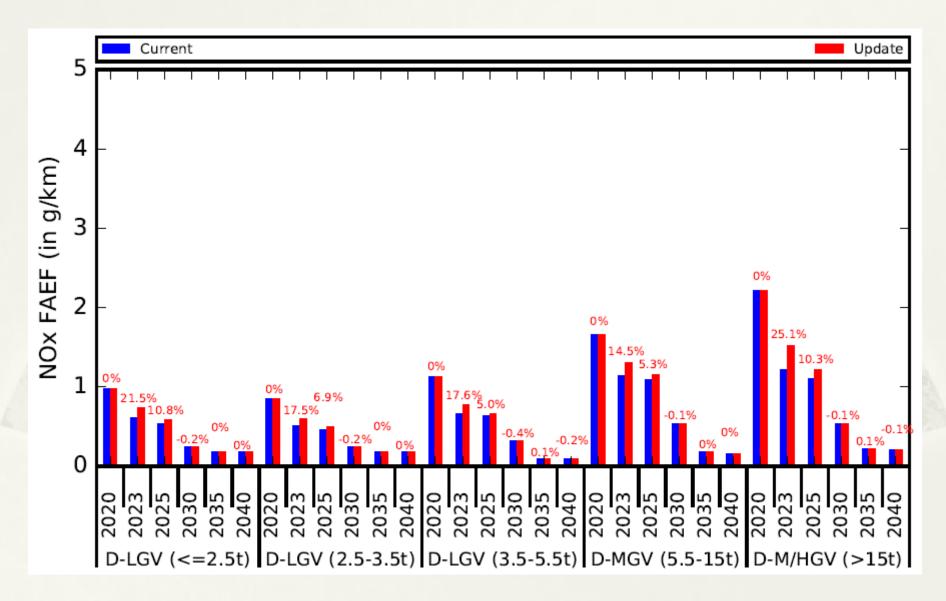
Comparison of Territory-wide NOx Emissions in Current (V4.1) and EMFAC-HK update (V4.2)



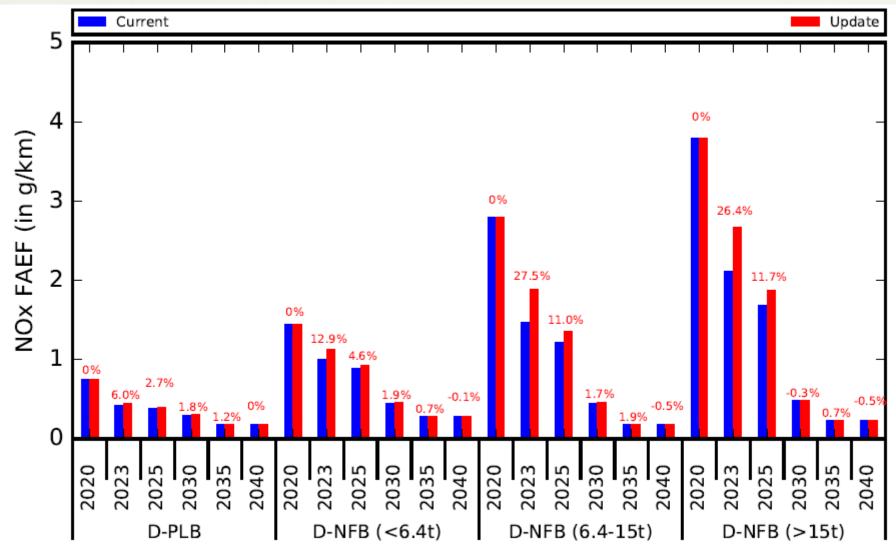
Remark: Hong Kong average speed from 2016 Vehicle Emission Inventory is used in all versions for comparison purpose.


Comparison of NOx (Running Exhaust) FAEF (at 12km/hr) – Diesel Goods Vehicles

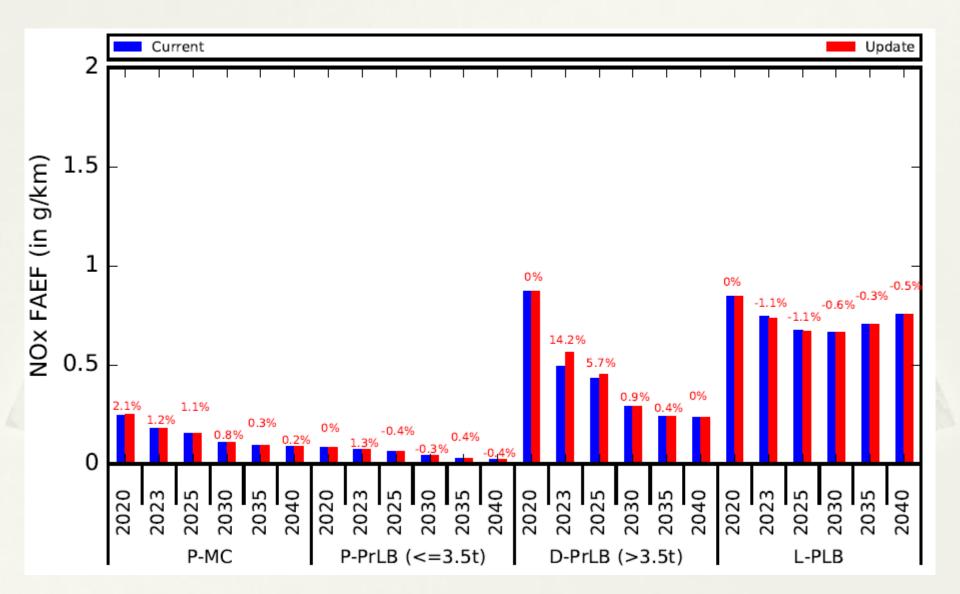
Comparison of NOx (Running Exhaust) FAEF (at 12km/hr) – Diesel Public Light Buses and Non-Franchised Buses



Comparison of NOx (Running Exhaust) FAEF (at 12km/hr)– Others

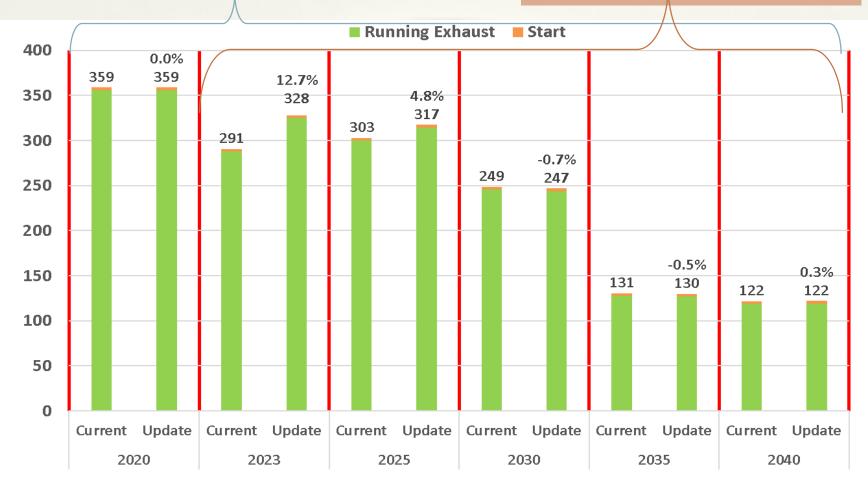


Changes of NOx fleet average emission factors for running exhaust of all remaining classes are negligible


Comparison of NOx (Running Exhaust) FAEF (at 68km/hr) – Diesel Goods Vehicles

Comparison of NOx (Running Exhaust) FAEF (at 68km/hr) – **Diesel Public Light Buses and Non-Franchised Buses**

Comparison of NOx (Running Exhaust) FAEF (at 68km/hr)– Others

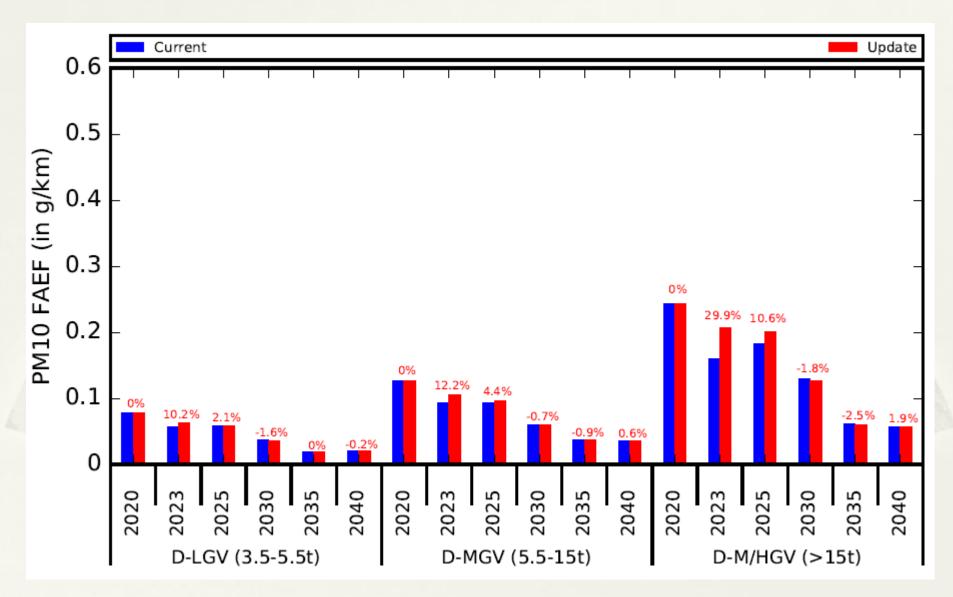


Changes of NOx fleet average emission factors for running exhaust of all remaining classes are negligible

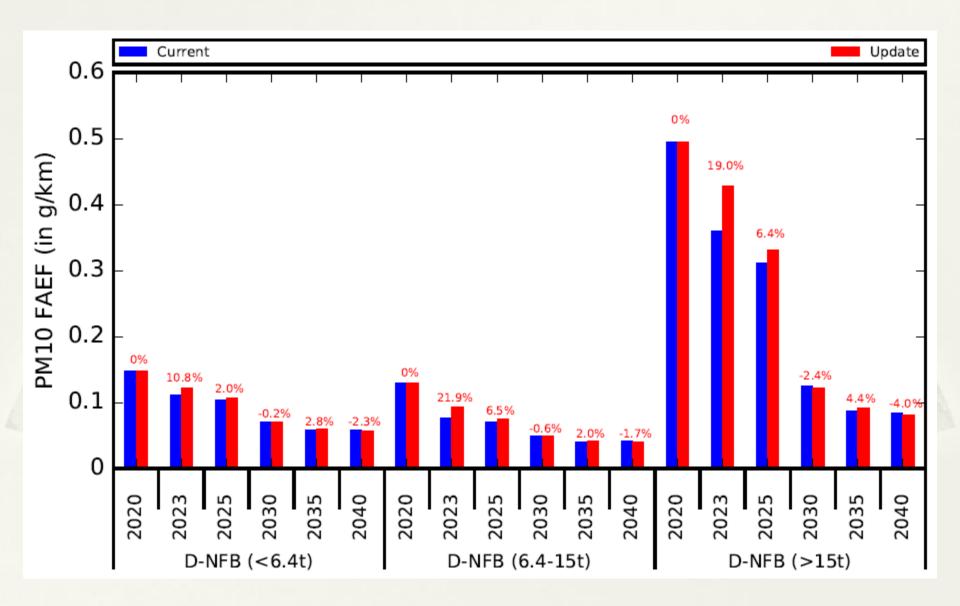
Comparison of Territory-wide PM₁₀ Emissions in Current (V4.1) and EMFAC-HK update (V4.2)

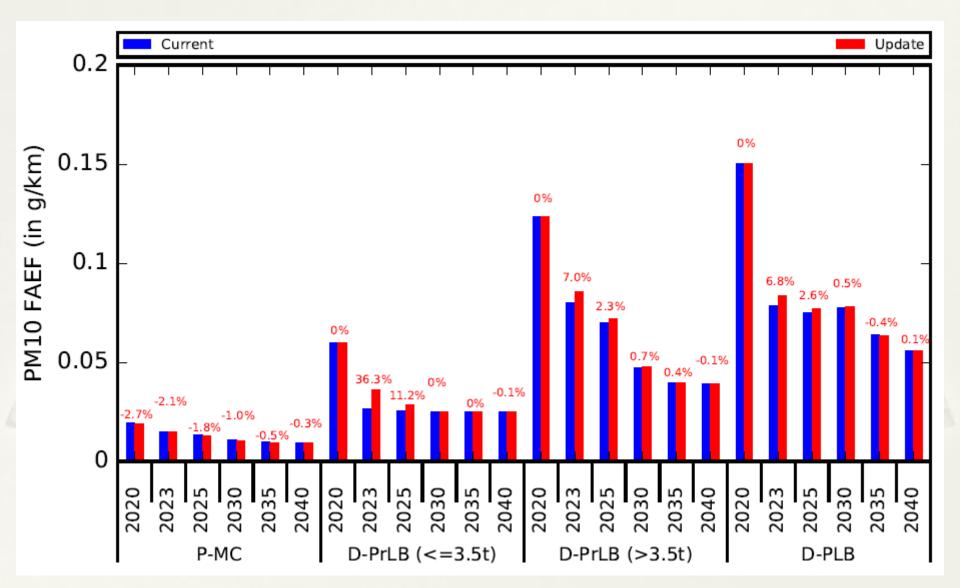

- Euro 3 MC changes
- Euro 4 MC implementation dates revision

- Phasing Out Euro IV DCV Programme schedule revision
- Euro VI Light Buses/Buses implementation dates revision

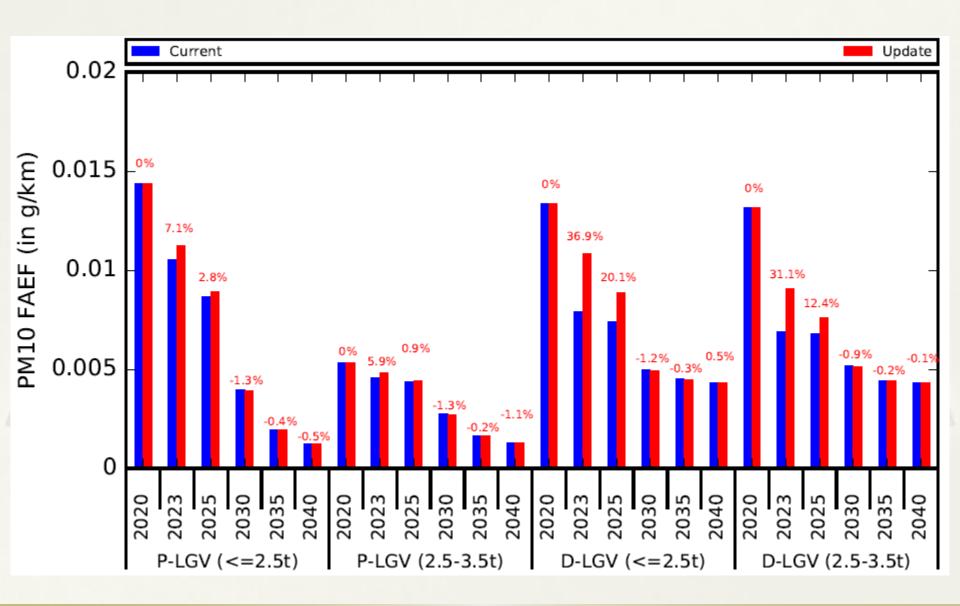


Remark: Hong Kong average speed from 2016 Vehicle Emission Inventory is used in all versions for comparison purpose.

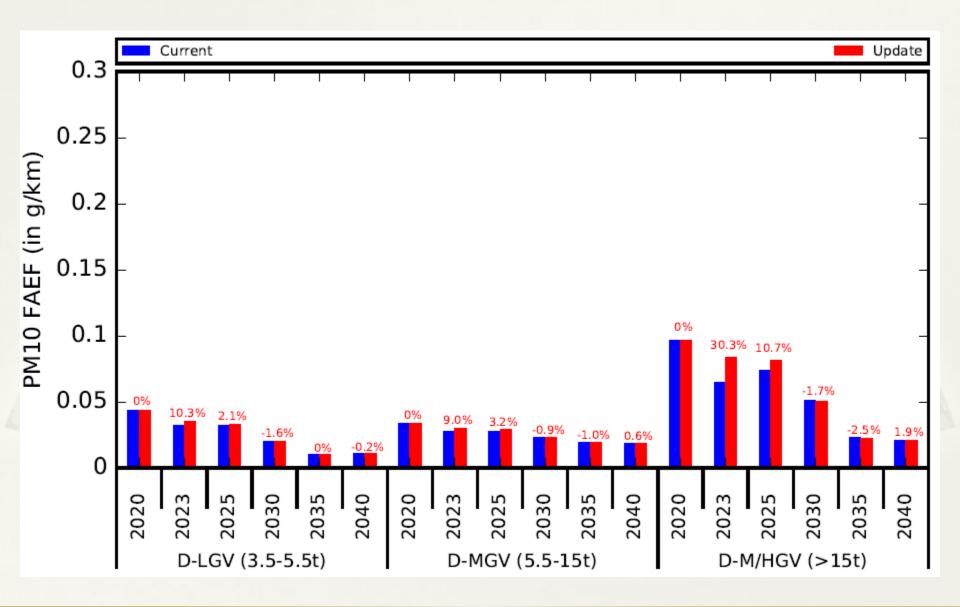

Comparison of PM_{10} (Running Exhaust) FAEF (at 12 km/hr) – Light Goods Vehicles $\leq 3.5t$


Comparison of PM_{10} (Running Exhaust) FAEF (at 12km/hr) – Goods Vehicles > 3.5 tonnes

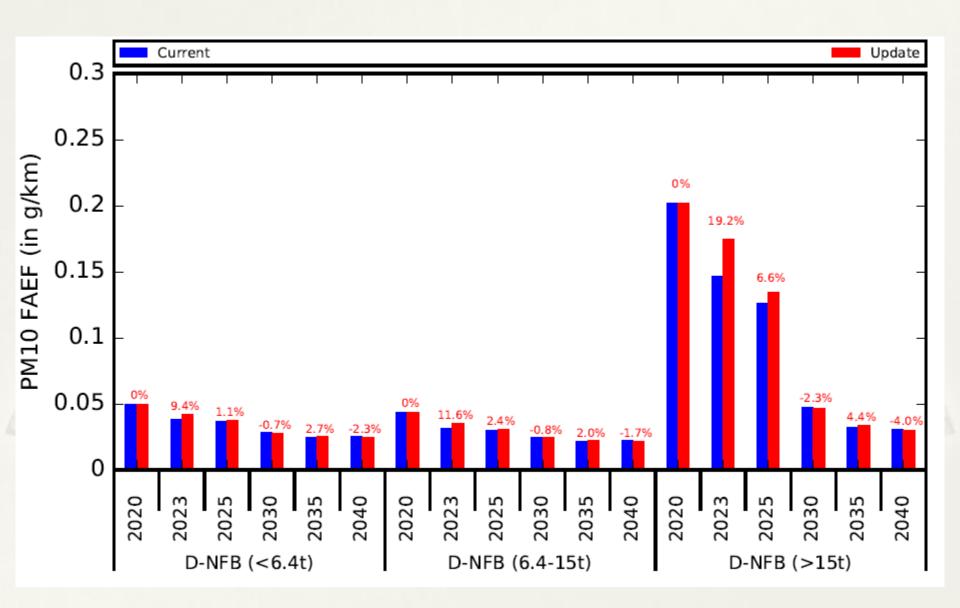
Comparison of PM_{10} (Running Exhaust) FAEF (at 12km/hr) – Non-Franchised Buses

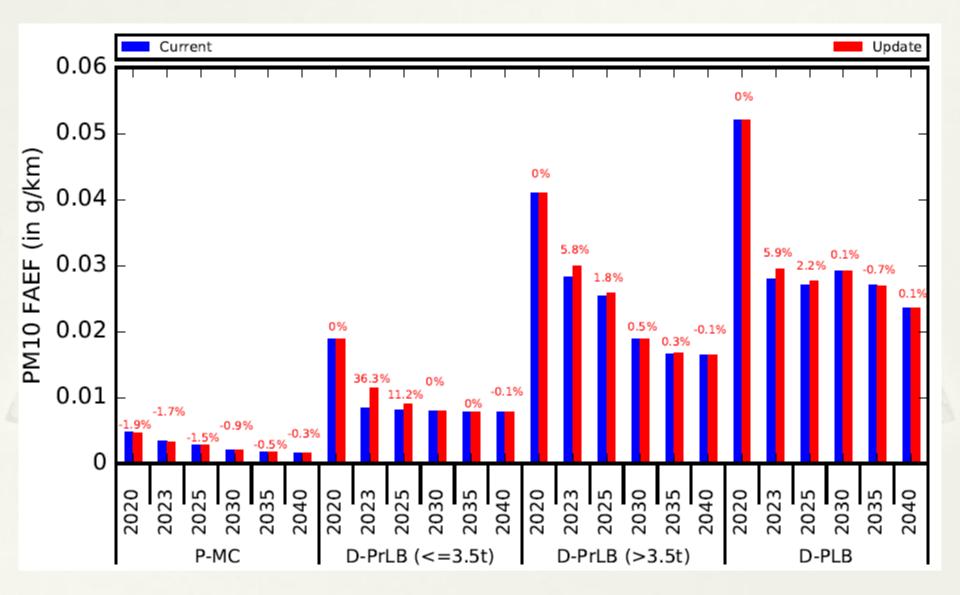


Comparison of PM_{10} (Running Exhaust) FAEF (at 12km/hr) – Others



Changes of PM₁₀ fleet average emission factors for running exhaust of all remaining classes are negligible.


Comparison of PM_{10} (Running Exhaust) FAEF (at 68km/hr) – Light Goods Vehicles \leq 3.5t


Comparison of PM_{10} (Running Exhaust) FAEF (at 68km/hr) – Goods Vehicles > 3.5 tonnes

Comparison of PM_{10} (Running Exhaust) FAEF (at 68km/hr) – Non-Franchised Buses

Comparison of PM_{10} (Running Exhaust) FAEF (at 68km/hr) – Others

Changes of PM₁₀ fleet average emission factors for running exhaust of all remaining classes are negligible.

Release of EMFAC-HK

* Will release EMFAC-HK V4.2 in January 2020.

Outline

- Application of EMFAC-HK
- Timeline of EMFAC-HK updates
- Changes made in EMFAC-HK update (V4.2)
- Comparison of emissions and fleet average emission factors (FAEF)
- Transitional Arrangement & Meeting Air Quality Objectives

Transitional Arrangement for Use of EMFAC-HK in EIA Studies

- Provision of 6-month transition period for EIA studies being conducted for adaption to the new model and reduction of abortive work (same as the current arrangement)
- During the transition period, EIA reports submitted under Section 6 of the EIAO may continue to use the previous old model version for the air quality impact assessment. After the transition period, all EIA report submissions must use the new model version

Meeting Air Quality Objectives

- Air Quality Objectives (AQOs) are the principal air quality standards in determining the acceptability of air quality impacts of development projects
- Annex 4 of the Technical Memorandum on EIA Process (TM) issued under the EIAO sets out the criteria for evaluating air quality impact in EIA studies. The key criterion is that AQOs and other standards established under the Air Pollution Control Ordinance have to be met. The same criterion applies to non-EIAO case.
- Project proponents need to demonstrate that, by means of various mathematical air quality assessment models, upon inclusion of the impacts caused by the project, the cumulative air pollutant concentration at identified air sensitive receivers would comply with the AQOs during the construction and operation phases of the project.
- Meeting the annual concentration standard of NO2, i.e. 40ug/m3, is challenging in urban districts and at the vicinity of trunk roads
- * Appropriate **mitigation measures** have to be adopted to **control and prevent noncompliance**, if necessary.

Thank you.

BX

тахі 40

Central 中環

MARKS&SPENCER

1

8

marten rettes thes