### **Training Exercises**

### **Exercise Setup**

- Folders for each Exercise
- Save input/output to folders for each Exercise
- Exercises require MS Office 2007 (Excel).

#### Exercise #1: Daily Emissions Inventory

- Problem: This exercise will generate an average daily emissions inventory for Hong Kong for calendar year 2030. Assume model defaults, except as noted below. I/M programs begin in 2014.
- Purpose: familiarization with emission inventories; using BURDEN output formats
- Scenario input data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - No Alternate Baseline Year
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Detailed Planning Inventory (CSV), MVEI7G (BCD)
  - Output Frequency: daily
  - Pollutants: PM10, VOC

#### Exercise #1: Notes

- Requires 1 scenario for calendar year 2030
- Save Input File As: HK\_2030\_Burden.inp

#### Exercise #1: Input 1 Tab

| 🛃 Emfac-HK V3.1 Editing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <u>File Run H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                                                                                                    |
| Environmental Protection Department<br>The Government of the Hong Kong<br>Special Administrative Region                                                                                                                                                                                                                                                                                                                                                                                                                    | permitted by<br>Air Resources Board<br>California | Calendar Year Selection                                                                                                            |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | Available                                                                                                                          |
| . Input 1 Input 2 Mode and Output Tech/IM Base / Cal. Yr Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 2030                                                                                                                               |
| Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Year and Season           Step 1 - Geographic Area           Area Type: SAR         SAR           Hong Kong         Image: SAR           SAR         Hong Kong           Step 2a - Calendar Year         Step 2b - Alternate Base Year           Select         Select           Calendar year 2030         Selected           Scenario Year for Output         OPTIONAL: Selecting this option overrides EMFAC-HK default base year. |                                                   | 1937       2000         1939       2000         2001       =         2002       >         2003          2004          2005       < |
| Step 3 Season or Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   | <u>Q</u> K <u>Cancel</u>                                                                                                           |
| Cancel Next > Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                                                                    |

### Exercise #1: Mode and Output Tab



# Exercise #1: Main Screen After All Edits Applied

| the second second                                                                              |                                                                                                                                                                       |                         |                                                |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|
| e <u>R</u> un <u>H</u> elp                                                                     |                                                                                                                                                                       |                         |                                                |
| Environmental Protection D<br>The Government of the Hong Kong<br>Special Administrative Region | Department                                                                                                                                                            |                         | permitted by<br>Air Resources Be<br>California |
| <i>mfac-НК V3.1</i> чз.                                                                        | 1 20160104 Pr: Emfac-HK HK:                                                                                                                                           | 3.1                     |                                                |
| AIN  .  .  .  .  .                                                                             |                                                                                                                                                                       |                         |                                                |
| Webpage\EMFA<br>ist of Available Scenarios<br>11 Hong Kong SAB Annual CYr 2030 Default Title   | C-HK V3.1 Training Nov 2015\Workin<br>Current Scenario Data<br>Number: 1 of 1<br>Name: Hong Kong SA<br>Title<br>Calendar Year: 2030<br>Season: Annual<br>Type: Burden | ig Files\HK_2030_Bi     | urden.inp<br>Default                           |
|                                                                                                | 1                                                                                                                                                                     | 7                       | 1                                              |
|                                                                                                | IM Program Parameters                                                                                                                                                 | Save                    |                                                |
|                                                                                                |                                                                                                                                                                       | Save As                 |                                                |
|                                                                                                | Add New Scenario                                                                                                                                                      | Run                     |                                                |
|                                                                                                | Edit Scenario                                                                                                                                                         | Finish Editing          |                                                |
|                                                                                                | Delete Scenario                                                                                                                                                       | Cancel                  |                                                |
| Denotes currently active scenario                                                              | Regime Size Change Data                                                                                                                                               | Regime Changes **       | 1                                              |
|                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                               | Reduction Sta           | rt                                             |
|                                                                                                | Category-Fuel Hi                                                                                                                                                      | ghs Supers Ye           | ar                                             |
|                                                                                                | Private Car-Petrol:                                                                                                                                                   | 20 20 20                | 4                                              |
|                                                                                                | Taxi-LPG:                                                                                                                                                             | 85 85 20                | 14                                             |
|                                                                                                | Private Light Bus \3 5tJ PG                                                                                                                                           | 40 40 20                | 14                                             |
|                                                                                                | Above 15t-Diesel                                                                                                                                                      |                         | 14                                             |
|                                                                                                |                                                                                                                                                                       | - 1 - 1 - 0             |                                                |
|                                                                                                | ** When checked, changes a                                                                                                                                            | apply to all scenarios. |                                                |
|                                                                                                |                                                                                                                                                                       |                         |                                                |

#### Exercise #1: Output Generated

HK\_2030\_Burden.bcd.csv HK\_2030\_Burden.csv HK\_2030\_Burden.inp HK\_2030\_Burden.log

| Microsoft Office Exc | 11/3/2015 12:57 AM                                                        |
|----------------------|---------------------------------------------------------------------------|
| Microsoft Office Exc | 11/3/2015 12:57 AM                                                        |
| INP File             | 11/2/2015 11:33 PM                                                        |
| Text Document        | 11/3/2015 12:57 AM                                                        |
|                      | Microsoft Office Exc<br>Microsoft Office Exc<br>INP File<br>Text Document |

## Exercise #1: Format of the BURDEN Text File with \*.CSV extension

| 1 🖬 🤊 - 🤉    | ¥ - <del>2</del> 8- 1∓ |                  |            |              |             |               |              |           |          |           | Salt Salt     | HK_2030_Bu | rden.csv - | Microsoft Exc | el         |            |            |           |            |            |          |               |          |             |            |          | - 0 -      |
|--------------|------------------------|------------------|------------|--------------|-------------|---------------|--------------|-----------|----------|-----------|---------------|------------|------------|---------------|------------|------------|------------|-----------|------------|------------|----------|---------------|----------|-------------|------------|----------|------------|
| File Ho      | me Developer           | Insert P         | age Layout | Formulas     | Data        | Review        | View         | Developer | Acrobat  |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          | a 🕜 🗆 🗗    |
| Cut          | Calibri                | - 1              | 1 - A      | <b>≡</b> =   | - 🎭 📒       | <b>⊒</b> i Wr | rap Text     | Genera    | il.      | •         | 45            | Nor        | mal        | Bad           |            | Good       | Neu        | tral      | Calculati  | on         | +        | 1             | Σ Aut    | toSum * A   | A          |          |            |
| Paste Eor    | mat Painter B I        | <u>u</u> -   🖽 - | 3-1        | . = =        | 温 使的        | E Me          | erge & Cente | r · 🛒 ·   | % , %    | .00 Con   | ditional Fo   | rmat Che   | ck Cell    | Expland       | tory       | Input      | Link       | ed Cell   | Note       |            | Insert   | Delete Format | Cla      | Sort        | & Find &   |          |            |
| Clipboard    | d 5                    | Font             |            | 6            | Align       | nment         |              | 9         | Number   | Form      | atting * as T | able +     |            |               | Style      | s          |            |           |            |            | ÷        | Cells         | CZ CIE   | Editing     | r* Select* |          |            |
| A1           | • (=                   | fr Title         | Hong       |              | nual CVr 20 | 30 Default    | t Title      |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
|              | <u> </u>               |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| A            | B C                    | D                | E          | F            | G           | н             | 1            | J         | K        | L         | М             | N          | 0          | P             | Q          | R          | S          | т         | U          | V          | W        | х             | γ        | Z           | AA         | AB       | AC         |
| Title : Ho   | ng Kong SAR Annu       | al CYr 2030      | Default Ti | tle          |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Version :    | Emfac-HK V3.1 V3.      | 1 20160104 F     | Pr: Emfac- | HK HK3.1     |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Run Date :   | : 2016/01/07 17:14:0   | 00               |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Scen Year:   | : 2030 All model       | years in the     | range 198  | 6 to 2030 se | lected      |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Season :     | Annual                 |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Area :H      | ong Kong SAR           |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| I/M Stat : I | HK I/M CY2013+ pro     | gram in eff      | ect        |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Emissions    | : Tonnes Per Day       |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
|              |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             | 1014 101   |          |            |
|              | PC-NCAT PC-CAT         | PC-DSL           | PC-LPG     | PC-101       | TAXI-NCA    | TAXI-CAT      | TAXI-DSL     | TAXI-LPG  | TAXI-TOT | LGV<=2.5t | LGV<=2.5t     | LGV<=2.5t  | LGV<=2.5   | LGV<=2.5t     | LGV2.5-3.: | LGV2.5-3.: | LGV2.5-3.: | LGV2.5-3. | LGV2.5-3.1 | GV>3.5t-IL | GV>3.5t- | LGV>3.5t-1L0  | 3V>3.5t- | LGV>3.5t- H | 1GV<=15t H | HGV<=15t | HGV<=15t H |
| venicies     | 3 /839.                | 21 011           | 5<br>•     | 0 /9003/     | 0           | 0             |              | 18193     | 18193    | 0         | 2             | 1003       | 0          | 1005          | 0          | 1057       | 53810      | 0         | 54874      | 0          | 0        | 20003         | 0        | 20003       | 0          | 0        | 12/31      |
| 2 VKI        | 51 218872              | 10 1/14/         | 1          | 0 22058732   | 0           | 0             |              | 7005950   | 7005950  | 14        | 90            | /42/5      | 0          | /4385         | /          | 6/122      | 3549671    | 0         | 3010800    | 0          | 0        | 254//3/       | 0        | 254//3/     | 0          | 0        | 1055561    |
| NOC Emic     | 4 11/00                | 50 517           | 5          | 0 1105170    | 0           | U             | , .          | 12113     | 12113    | 1         |               | 4011       | U          | 4019          | 1          | 4250       | 215207     | 0         | 219517     | U          | 0        | 100011        | 0        | 100011      | 0          | 0        | 50919      |
| F Pup Evh    | 0 0001 0 124           | 0.001            | -          | 0 0 12622    | 0           | 0             |              | 0.07566   | 0.07566  | 0.00002   | 0.00011       | 0.00111    | 0          | 0.00125       | 0.00001    | 0.00451    | 0.05417    | 0         | 0.0597     | 0          | 0        | 0.02004       | 0        | 0.02004     | 0          | 0        | 0.05446    |
| 5 Start Ev   | 0.0001 0.124           | 2 0.001          | 2          | 0 0.12025    | 0           | 0             |              | 0.02917   | 0.02917  | 0.00003   | 0.000011      | 0.00111    | 0          | 0.00125       | 0.00001    | 0.00431    | 0.03417    | 0         | 0.0012     | 0          | 0        | 0.02334       | 0        | 0.02554     | 0          | 0        | 0.03440    |
| 7            | 0.00000 0.102          |                  |            | 0 0.10255    |             |               |              |           | 0.00017  | 0.00002   | 0.00000       |            |            | 0.00000       | 0.00001    | 0.00125    |            |           | 0.0010     |            |          |               |          |             |            |          |            |
| 2            |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Diurnal      | 0.00003 0.300          | 98               | n          | 0 0.30102    | 0           | 0             | 0 0          | 0 0       | 0        | 0.00001   | 0             | 0          | 0          | 0.00001       | 0          | 0.00067    | 0          | 0         | 0.00067    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
| Hot Soak     | 0.00002 0.193          | 74               | 0          | 0 0.19376    | 0           | 0             | ) (          | 0 0       | 0        | 0.00001   | 0.00001       | 0          | 0          | 0.00002       | 0          | 0.00136    | 0          | 0         | 0.00136    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
| Running      | 0.00009 0.299          | 32               | D          | 0 0.29942    | 0           | 0             | ) (          | 0 0       | 0        | 0.00004   | 0.00002       | 0          | 0          | 0.00007       | 0.00001    | 0.00433    | 0          | 0         | 0.00434    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
| Resting      | 0.00004 0.51           | 13               | D          | 0 0.51134    | 0           | 0             | ) (          | 0 0       | 0        | 0.00001   | 0             | 0          | 0          | 0.00001       | 0          | 0.00105    | 0          | 0         | 0.00105    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
|              |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Carbon Me    | onoxide Emissions      |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| Run Exh      | 0.00249 7.139          | 0.0276           | 5          | 0 7.16969    | 0           | 0             | 0 0          | 6.74331   | 6.74331  | 0.00078   | 0.00241       | 0.01835    | 0          | 0.02154       | 0.00039    | 0.35674    | 0.87361    | 0         | 1.23074    | 0          | 0        | 1.03304       | 0        | 1.03304     | 0          | 0        | 0.96331    |
| Start Ex     | 0.00035 3.47           | 02 0             | D          | 0 3.47055    | 0           | 0             | 0 0          | 0.16319   | 0.16319  | 0.00011   | 0.00049       | 0          | 0          | 0.00059       | 0.00006    | 0.05858    | 0          | 0         | 0.05864    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
| /            |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 3 Oxides of  | Nitrogen Emission      | s                |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 9 Run Exh    | 0.00018 0.227          | 14 0.0037        | 3          | 0 0.23105    | 0           | 0             | 0 0          | 1.9419    | 1.9419   | 0.00005   | 0.00015       | 0.02892    | 0          | 0.02912       | 0.00002    | 0.00189    | 1.44273    | 0         | 1.44464    | 0          | 0        | 0.97312       | 0        | 0.97312     | 0          | 0        | 1.01276    |
| 0 Start Ex   | 0.00003 0.044          | 07 0             | D          | 0 0.0441     | . 0         | 0             | ) (          | 0.05401   | 0.05401  | 0         | 0.00002       | 0          | 0          | 0.00002       | 0          | 0.00067    | 0          | 0         | 0.00067    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
|              |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 2 Carbon Di  | oxide Emissions (0     | 00)              |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 8 Run Exh    | 0.00001 4.676          | 86 0.0400        | 5          | 0 4.71693    | 0           | 0             | 0 0          | 1.77352   | 1.77352  | 0         | 0.00002       | 0.01928    | 0          | 0.0193        | 0          | 0.01223    | 0.92154    | 0         | 0.93377    | 0          | 0        | 1.04423       | 0        | 1.04423     | 0          | 0        | 0.52734    |
| 4 Start Ex   | 0 0.086                | 17 (             | D          | 0 0.08617    | 0           | 0             | 0 0          | 0.00572   | 0.00572  | 0         | 0             | 0          | 0          | 0             | 0          | 0.00031    | 0          | 0         | 0.00031    | 0          | 0        | 0             | 0        | 0           | 0          | 0        | 0          |
| 5            |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 5 PM10 Emi   | ssions                 |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          |             |            |          |            |
| 7 Run Exh    | 0 0.066                | 49 0.0004        | 7          | 0 0.06696    | 0           | 0             | ) (          | 0 0       | 0        | 0         | 0             | 0.00067    | 0          | 0.00067       | 0          | 0.00024    | 0.04303    | 0         | 0.04327    | 0          | 0        | 0.04405       | 0        | 0.04405     | 0          | 0        | 0.02888    |
| / Hull LAII  |                        |                  |            |              |             |               |              |           |          |           |               |            |            |               |            |            |            |           |            |            |          |               |          | 0.01105     |            |          |            |

# Exercise #1: Format of the MVEI7G File with \*.BCD.CSV Extension

| le F     | tome Deve | loper In | sert Page L | ayout Formulas Data   | Review       | View Dev    | eloper | Acrobat  |                 |                 |          |              |       | a 🕜 🗆        |
|----------|-----------|----------|-------------|-----------------------|--------------|-------------|--------|----------|-----------------|-----------------|----------|--------------|-------|--------------|
| ۲.       | Calibri   | + 11     | × A* *      |                       | an Text      | General     |        | -        |                 |                 | +        | <b>3</b>     | Σ-    | AT A         |
| e 🖬 -    | BIU       | •   = •  | 3 - A -     |                       | rge & Center | · · · · ·   | , .0   | .00 Con  | ditional For    | mat Cell        | Insert   | Delete Forma | t 💽 * | Sort & Fin   |
| <b>V</b> |           | Fart     |             |                       |              |             | 100    | Forn     | natting * as Ta | able - Styles - |          | * *          | 2.    | Filter * Sel |
| oard 14  |           | Font     | 9           | Alignment             |              | × Numb      | ber    | - 64     | Style           | 5               |          | Cells        |       | Editing      |
|          |           |          |             |                       |              |             |        |          |                 |                 |          |              |       |              |
| А        | В         | С        | D           | E                     | F            | G           | н      | 1        | J               | К               | L        | M            | N     | 0            |
| ALYR     | START MY  | END MYR  | REGION      | SAR                   | STARTS       | POPULATI VK | Т      | VEH TYPE | VEH TECH        | POLLUTAN        | PROCESS  | EMISSION E   | BASIS |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO              | Run Exh  | 0.002494     | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOx             | Run Exh  | 0.000183 [   | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | PM              | Run Exh  | 0.000001     | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | VOC             | Run Exh  | 0.000104     | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO2             | Run Exh  | 0.010821     | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | со              | Start Ex | 0.000351     | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOx             | Start Ex | 0.000034     | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | PM              | Start Ex | 0 [          | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | VOC             | Start Ex | 0.000064     | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO2             | Start Ex | 0.000884     | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO              | Hot Soak | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOx             | Hot Soak | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | PM              | Hot Soak | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | VOC             | Hot Soak | 0.00002      | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO2             | Hot Soak | 0 0          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO              | Running  | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOx             | Running  | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | PM              | Running  | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | VOC             | Running  | 0.000094     | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO2             | Running  | 01           | Day   |              |
| 20:      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO              | PD Rest  | 0 [          | Day   |              |
| 203      | 30 1986   | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOX             | PD Rest  | 0 [          | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAK Average | 4            | 3           | 51     |          | NCAT            | MM              | PD Rest  | 0 000000     | Jay   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | 000             | PD Rest  | 0.000036 [   | Jay   |              |
| 20:      | 1980      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC PC    | NCAT            | 0               | MD Roct  | 01           | Jay   |              |
| 20:      | 1980      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC DC    | NCAT            | NOV             | MD Rest  | 01           | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC PC    | NCAT            | DM              | MD Rest  | 01           | )ay   |              |
| 203      | 1980      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC PC    | NCAT            | VOC             | MD Rest  | 0 000000 0   | )ay   |              |
| 203      | 1900      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC PC    | NCAT            | 002             | MD Rest  | 0.000021     | )ay   |              |
| 203      | 1906      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC PC    | NCAT            | 0               | Resting  | 01           | Jav   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | NOX             | Resting  | 0 0          | Dav   |              |
| 203      | 1980      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | PM              | Resting  | 0            | Day   |              |
| 203      | 1986      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | VOC             | Resting  | 0 000039     | Dav   |              |
| 203      | 1996      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | CO2             | Resting  | 0.0000391    | Dav   |              |
| 203      | 1996      | 2030     | SAR Average | Hong Kong SAR Average | 4            | 3           | 51     | PC       | NCAT            | 0               | PD Diuro | 0.0          | Jav   |              |
| 200      | 1,000     | 2000     | age         |                       | -            | -           | 91     | -        |                 |                 |          | 01           |       |              |

#### Exercise #1a: Processing BCD Output

- Problem: using BCD output from Exercise #1, determine total NOx running exhaust emissions for 2030.
- Purpose: post processing of BCD output, single year scenario
- Hints:
  - Import \*.BCD.CSV directly into spreadsheet
  - Use data filters
    - pollutant (NOx), process ("Run Exh")
  - Copy filtered results to a separate tab in spreadsheet for analysis

#### Exercise #1a: Solution

|     | 3.           | (비 - 백교 - ) -       |                |                |                       | Ex1         | a.xlsx - Microsoft | t Excel  |          | Sec. Names      |               | -             | and the second second |          | - 0         | x          |
|-----|--------------|---------------------|----------------|----------------|-----------------------|-------------|--------------------|----------|----------|-----------------|---------------|---------------|-----------------------|----------|-------------|------------|
| F   | ile Ho       | ome Develo          | per Inser      | t Page Layout  | Formulas Data Revie   | w View      | Developer          | Acrobat  |          |                 |               |               |                       |          | a 🕜 🗖       | er 23      |
| 100 | 📜 🔏 Cut      | C                   | alibri         | × 11 × A* •*   | = = _ >, =            | Wran Text   | General            |          | -        |                 |               | ÷ 🐩           | ΣΑ                    | utoSum * | A           | an l       |
|     | 🔲 🐚 Cop      | py +                |                |                |                       | a line less | ochelu             |          |          |                 |               |               |                       | ill 🕶    | Zu          |            |
| Pa  | ste 🝼 For    | mat Painter         | B I <u>U</u> - | ⊞ •   22 • A • |                       | Merge & C   | enter 🔹 📑 🔹        | % • .ö   | Form     | atting * as Tab | le * Styles * | insert Delete | + QC                  | lear 🔻   | Filter * Se | elect *    |
|     | Clipboar     | d G                 | F              | Font           | Alignment             |             | - Gx - 1           | lumber   | Gi .     | Styles          |               | Cells         |                       | Ed       | iting       |            |
|     | N31          | • (*                | f <sub>x</sub> | Day            |                       |             |                    |          |          |                 |               |               |                       |          |             | ^          |
|     |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             | *          |
|     |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             |            |
|     |              |                     | 0              | 5              | -                     |             | 6                  |          | 1        |                 |               |               |                       |          |             |            |
| 1   | A<br>EMEAC-H | B<br>K V3 1 Filtere | d Results      | D              | E                     | E           | G                  | н        | 1        | 1               | K             | L             | M                     | IN       | 0           | <u>+ ñ</u> |
| -   | CIVIL AC-11  | V J.I FILLERE       | a nesures      | 1              |                       | -           |                    |          |          | 1               |               | 1             | 1                     |          | 1           |            |
|     |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             |            |
|     |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             |            |
| 2   | CALYR        | START MYR           | END MYR        | REGION         | SAR                   | STARTS      | POPULATION         | VKT      | VEH TYPE | VEH TECH        | POLLUTANT     | PROCESS       | EMISSIONS             | BASIS    |             |            |
| 3   | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 4           | 3                  | 51       | PC       | NCAT            | NOx           | Run Exh       | 0.000183              | Day      | -           | _          |
| 4   | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 1176000     | 783921             | 21887210 | PC       | CAT             | NOX           | Run Exh       | 0.227139              | Day      | -           |            |
| 5   | 2030         | 1980                | 2030           | SAR Average    | Hong Kong SAR Average | 72779       | 19192              | 7665956  | TAYL     | USL             | NOX           | Run Exh       | 1 9/1997              | Day      | -           | _          |
| 7   | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 12/15       | 0                  | 14       | LGV3     | NCAT            | NOX           | Run Exh       | 0.00005               | Day      | 1           | 1          |
| 8   | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 7           | 2                  | 96       | LGV3     | CAT             | NOx           | Run Exh       | 0.000148              | Day      | 1           |            |
| 9   | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 4011        | 1003               | 74275    | LGV3     | DSL             | NOx           | Run Exh       | 0.028923              | Day      | -           |            |
| 10  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 1           | 0                  | 7        | LGV4     | NCAT            | NOx           | Run Exh       | 0.000025              | Day      |             |            |
| 11  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 4230        | 1057               | 67122    | LGV4     | CAT             | NOx           | Run Exh       | 0.001887              | Day      |             |            |
| 12  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 215287      | 53816              | 3549671  | LGV4     | DSL             | NOx           | Run Exh       | 1.442728              | Day      | -           |            |
| 13  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 106611      | 26653              | 2547737  | LGV6     | DSL             | NOx           | Run Exh       | 0.973116              | Day      | -           |            |
| 14  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 50919       | 12731              | 1055561  | HGV7     | DSL             | NOX           | Run Exh       | 1.012759              | Day      | -           | - U        |
| 15  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 6491        | 1623               | 485981   | DIR      | DSL             | NOX           | Run Exh       | 0.505804              | Day      | -           |            |
| 17  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 10891       | 2723               | 815425   | PLB      | LPG             | NOx           | Run Exh       | 0.450059              | Day      | -           |            |
| 18  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 1768        | 632                | 60388    | PV4      | CAT             | NOx           | Run Exh       | 0.002693              | Day      | 1           |            |
| 19  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 1132        | 404                | 41023    | PV4      | DSL             | NOx           | Run Exh       | 0.031824              | Day      |             |            |
| 20  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 7           | 2                  | 106      | PV5      | CAT             | NOx           | Run Exh       | 0.000052              | Day      |             |            |
| 21  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 6551        | 2340               | 183584   | PV5      | DSL             | NOx           | Run Exh       | 0.182131              | Day      | _           |            |
| 22  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 1869        | 668                | 49542    | PV5      | LPG             | NOx           | Run Exh       | 0.017966              | Day      | -           |            |
| 23  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 11/29       | 2932               | 34//15   | NFB6     | DSL             | NOX           | Run Exh       | 0.661266              | Day      | -           |            |
| 24  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 11833       | 2054               | 343951   | NEB8     | DSL             | NOX           | Run Exh       | 0.247004              | Day      | 1           |            |
| 26  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 4140        | 388                | 72384    | FBSD     | DSL             | NOx           | Run Exh       | 0.060772              | Day      | 1           |            |
| 27  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 57633       | 5403               | 1265799  | FBDD     | DSL             | NOx           | Run Exh       | 2.737143              | Day      | 1           |            |
| 28  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 14684       | 2447               | 25492    | MC       | NCAT            | NOx           | Run Exh       | 0.015576              | Day      |             |            |
| 29  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 409348      | 68218              | 1292455  | MC       | CAT             | NOx           | Run Exh       | 0.364088              | Day      |             |            |
| 30  | -            |                     |                |                |                       |             |                    |          |          |                 | -             |               |                       |          |             |            |
| 31  | 2030         | 1986                | 2030           | SAR Average    | Hong Kong SAR Average | 2322688     | 1030631            | 45091454 | ALL      | ALL             | NOx           | Run Exh       | 13.622524             | Day      |             |            |
| 32  |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             |            |
| 33  |              |                     |                |                |                       |             |                    |          |          |                 |               |               |                       |          |             |            |
| 14  | I H Sh       | eet1 Sheet          | 2 / Sheet3     | 12             |                       |             |                    |          |          |                 |               |               |                       |          |             | •          |
| Re  | ady 🛅        |                     |                |                |                       |             |                    |          |          |                 |               |               | 100%                  | 0        | 0           | + ,:       |

# Exercise #1b: Processing Text/CSV Output

- Problem: using Text/CSV output from Exercise #1, determine total NOx running exhaust emissions for 2030.
- Post processing of Text/CSV output

## Exercise #1b: Processing Text/CSV Output

|                                                                  |          | H            | (_2030_Burden. | csv - Microso | oft Excel | -            |           |           |             | - and the second |             |               | - 0 <b>-</b> X |
|------------------------------------------------------------------|----------|--------------|----------------|---------------|-----------|--------------|-----------|-----------|-------------|------------------|-------------|---------------|----------------|
| File Home Developer Insert Page Layout Formulas                  | Data Rev | iew View     | Developer      | Acrobat       |           |              |           |           |             |                  |             |               | a 🕜 🗆 📾        |
| 🗎 🔏 Cut                                                          |          |              | 1              |               |           |              |           | -         | v 1994      | Σ Au             | toSum + A   | <b>7</b> (44) |                |
|                                                                  | 87.4     | Wrap Text    | Genera         | H             | - I       | 55           |           |           | ſ 🛄         | I Fill           | . Z         | r m           |                |
| Paste 🕜 Format Painter 🖪 🛛 🖳 🕶 🔛 👻 📥 👻 📰 🚍 🚍                     | 律律       | 🛃 Merge & Ce | nter 🔹 🕎 🔹     | % , .00       | .00 Cond  | itional Form | nat Cell  | Insert De | lete Format |                  | So File     | rt & Find &   |                |
| Clipboard G Font G                                               | Alignmen |              | 5 1            | Number        | is.       | Styles       | ne styles | C         | ells        | -                | Editing     | l Select      |                |
| CD29 • 6 fx 13.62252                                             |          |              | - coli         |               |           |              |           |           | 0.754       |                  |             |               |                |
|                                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
|                                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
|                                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| A                                                                | BR       | BS           | BT             | BU            | BV        | BW           | BX        | BY        | BZ          | CA               | CB          | CC            | CD             |
| Title : Hong Kong SAR Annual CYr 2030 Default Title              |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| Version : Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1         |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| Run Date : 2016/01/07 17:14:00                                   |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| Scen Year: 2030 All model years in the range 1986 to 2030 select | ed       |              |                |               |           |              |           |           |             |                  |             |               |                |
| Season : Annual                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| Area : Hong Kong SAR                                             |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| I/M Stat : HK I/M CY2013+ program in effect                      | _        |              |                |               |           |              |           |           |             |                  |             |               |                |
| Emissions: Tonnes Per Day                                        |          |              |                |               |           |              |           |           |             |                  |             |               |                |
|                                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 0                                                                | FBSD-LF  | PG FBSD-TOT  | FBDD-NCAT      | FBDD-CAT      | FBDD-DSL  | FBDD-LPG     | FBDD-TOT  | MC-NCAT   | MC-CAT      | MC-DSL           | MC-LPG      | MC-TOT        | ALL-TOT        |
| 1 Vehicles                                                       | _        | 0 388        | 3 0            | 0             | 5403      | 0            | 5403      | 2447      | 68218       | 0                | 0           | 70665         | 1030630        |
| 2 VKI                                                            |          | 0 72384      | 0              | 0             | 1265/99   | 0            | 1265/99   | 25492     | 1292455     | 0                | 0           | 131/94/       | 45091452       |
| A MOC Emissions                                                  |          | 0 4140       | , ,            | 0             | 57633     | 0            | 57633     | 14684     | 409348      | 0                | U           | 424033        | 2322690        |
| 4 VOC Emissions                                                  |          | 0 0.0107     |                |               | 0.07502   |              | 0.07503   | 0.07161   | 0.2016      |                  | 0           | 0.26221       | 1 60400        |
| 6 Start Ex                                                       |          | 0 0.010/4    |                |               | 0.07503   | 0            | 0.07503   | 0.0/101   | 0.15005     | 0                | 0           | 0.30321       | 0.27622        |
| 7                                                                |          | 0 0          | ,              | , .           |           |              | 0         | 0.04040   | 0.13333     | 0                | U           | 0.20042       | 0.37022        |
| 8                                                                |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 9 Diumal                                                         |          | 0 0          | 0              | 0             | 0         | 0            | 0         | 0.10322   | 0.17689     | 0                | 0           | 0.28011       | 0.58213        |
| 0 Hot Soak                                                       |          | 0 0          | ) 0            | 0             | 0         | 0            | 0         | 0.2853    | 0.16545     | 0                | 0           | 0.45075       | 0.64633        |
| 1 Running                                                        |          | 0 0          | ) 0            | 0             | 0         | 0            | 0         | 1.46785   | 0.41615     | 0                | 0           | 1.88401       | 2.18922        |
| 2 Resting                                                        |          | 0 0          | 0 0            | 0             | 0         | 0            | 0         | 0.13957   | 0.17517     | 0                | 0           | 0.31474       | 0.82765        |
| 3                                                                |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 4 Carbon Monoxide Emissions                                      |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 5 Run Exh                                                        |          | 0 0.16886    | 5 0            | 0             | 2.41637   | 0            | 2.41637   | 0.63442   | 3.61199     | 0                | 0           | 4.24641       | 48.4395        |
| 6 Start Ex                                                       |          | 0 0          | 0 0            | 0             | 0         | 0            | 0         | 0.13904   | 1.27459     | 0                | 0           | 1.41364       | 5.52489        |
| 7                                                                |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 8 Oxides of Nitrogen Emissions                                   |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 9 Run Exh                                                        |          | 0 0.06077    | 7 0            | 0             | 2.73714   | 0            | 2.73714   | 0.01558   | 0.36409     | 0                | 0           | 0.37966       | 13.62252       |
| 0 Start Ex                                                       |          | 0 0          | 0              | 0             | 0         | 0            | 0         | 0.00537   | 0.07087     | 0                | 0           | 0.07625       | 0.2141         |
| 1                                                                |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 2 Carbon Dioxide Emissions (000)                                 |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| 3 Run Exh                                                        |          | 0 0.06838    | 3 0            | 0             | 1.56388   | 0            | 1.56388   | 0.00234   | 0.16709     | 0                | 0           | 0.16943       | 14.75557       |
| 4 Start Ex                                                       | _        | 0 (          | 0 0            | 0             | 0         | 0            | 0         | 0.00087   | 0.01255     | 0                | 0           | 0.01341       | 0.10679        |
|                                                                  |          |              |                |               |           |              |           |           |             |                  |             |               |                |
| PMIDEMISSIONS                                                    |          | 0 0.0010     |                |               | 0.1770    |              | 0.1770    | 0.00007   | 0.000770    |                  |             | 0.00000       | 0.57027        |
| A NILEXI                                                         |          | 0 0.00423    | 0              | 0             | 0.1779    | 0            | 0.1779    | 0.00087   | 0.00272     | 0                | 0           | 0.00359       | 0.57027        |
|                                                                  |          |              |                |               |           | 1.           |           |           |             |                  | []] []] 100 | × (-)         |                |

## Exercise #1c: Determine Fleet-Average Emissions

- Problem: using spreadsheet results obtained in Exercise #1a, determine the *fleet-average* NOx emission factor (gram/km) for all vehicles for 2030.
- Purpose: Convert emission rate to an emission factor
- Steps
  - Divide EMISSIONS Column by VKT Column
  - Sum over all vehicle classes to get composite.
  - Convert units to obtain grams/km

#### Exercise #1c: Solution

| X  | 3 -       | (a - 8 <mark>8</mark> - 1∓ |                       |             |                       |            | Ex1a.xlsx - Micr | osoft Excel |          | No. of Concession, Name | A. S. (815) |                    |           |           |               | 3 X   |
|----|-----------|----------------------------|-----------------------|-------------|-----------------------|------------|------------------|-------------|----------|-------------------------|-------------|--------------------|-----------|-----------|---------------|-------|
| -  | ile Ho    | me Develo                  | per Insert            | Page Layout | Formulas Data Revie   | w View     | Developer        | Acrobat     |          |                         |             |                    |           |           | ۵ 🕜 .         | 2 6 2 |
|    | 🗎 🔏 Cut   | 16                         |                       |             |                       |            |                  |             |          |                         |             |                    | Σ         | AutoSum * | A A           |       |
|    | Cor       | C C                        | alibri                | * 11 * A A  | = = >>-               | Wrap Text  | Genera           | 1           | *        |                         |             | <b>1</b>           |           | Fill ¥    | Zr m          |       |
| Pa | ste 🚽 For | mat Painter                | B <i>I</i> <u>U</u> ∗ | 🖽 * 🖄 * 📥 * | 三三三 读作 🏼              | Merge & Ce | enter • 📑 •      | % , 5       | 0 .00 Co | matting * as Tab        | at Cell     | Insert Delete      | Format    | Clear *   | Sort & Find & |       |
|    | Clipboar  | d is                       | F                     | ont Ta      | Alignment             |            | G 1              | lumber      | Tic I    | Styles                  | ie styles   | Cells              | -         | Edi       | iting         |       |
|    | M10       | - (                        | fx                    | 0.000025    |                       |            |                  |             |          |                         |             |                    |           |           |               | ^     |
|    |           |                            |                       |             |                       |            |                  |             |          |                         |             |                    |           |           |               | -     |
|    |           |                            |                       |             |                       |            |                  |             |          |                         |             |                    |           |           |               |       |
|    |           |                            |                       |             |                       |            |                  |             |          |                         |             |                    |           |           |               | -     |
|    | Α         | В                          | С                     | D           | E                     | F          | G                | н           | <u> </u> | J                       | к           | L                  | М         | N         | 0             | р 🔺   |
| 1  | EMFAC-H   | K V3.1 Filtere             | d Results             |             |                       |            |                  |             |          |                         |             |                    | _         | 1         |               |       |
|    |           |                            |                       |             |                       |            |                  |             |          |                         |             |                    |           |           |               |       |
|    |           |                            |                       |             |                       |            |                  |             |          |                         |             |                    |           |           | EMISSION      |       |
|    |           |                            |                       |             |                       |            |                  |             |          | -                       |             |                    |           |           | FACTOR        |       |
| 2  | CALYR     | START MYR                  | END MYR               | REGION      | SAR                   | STARTS     | POPULATION       | VKI         | VEH TYP  | VEH TECH                | POLLUTANI   | PROCESS<br>Pup Exh | EMISSIONS | BASIS     | (g/km)        | _     |
| 3  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 1176000    | 782921           | 21887210    | PC       | CAT                     | NOX         | Run Exh            | 0.000183  | Day       | 0.0104        |       |
| 5  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 9170       | 6113             | 171471      | PC       | DSI                     | NOX         | Run Exh            | 0.003731  | Day       | 0.0218        |       |
| 6  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 72779      | 18193            | 7665956     | TAXI     | LPG                     | NOx         | Run Exh            | 1,941897  | Day       | 0.2533        |       |
| 7  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 1          | 0                | 14          | LGV3     | NCAT                    | NOx         | Run Exh            | 0.00005   | Day       | 3.5714        |       |
| 8  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 7          | 2                | 96          | LGV3     | CAT                     | NOx         | Run Exh            | 0.000148  | Day       | 1.5417        |       |
| 9  | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 4011       | 1003             | 74275       | LGV3     | DSL                     | NOx         | Run Exh            | 0.028923  | Day       | 0.3894        |       |
| 10 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 1          | 0                | 7           | LGV4     | NCAT                    | NOx         | Run Exh            | 0.000025  | Day       | 3.5714        |       |
| 11 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 4230       | 1057             | 67122       | LGV4     | CAT                     | NOx         | Run Exh            | 0.001887  | Day       | 0.0281        |       |
| 12 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 215287     | 53816            | 3549671     | LGV4     | DSL                     | NOx         | Run Exh            | 1.442728  | Day       | 0.4064        |       |
| 13 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 106611     | 26653            | 2547737     | LGV6     | DSL                     | NOx         | Run Exh            | 0.973116  | Day       | 0.3820        |       |
| 14 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 50919      | 12731            | 1055561     | HGV7     | DSL                     | NOx         | Run Exh            | 1.012759  | Day       | 0.9595        |       |
| 15 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 137375     | 34347            | 2849234     | HGV8     | DSL                     | NOx         | Run Exh            | 2.498596  | Day       | 0.8769        |       |
| 16 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 6491       | 1623             | 485981      | PLB      | DSL                     | NOX         | Run Exh            | 0.505804  | Day       | 1.0408        |       |
| 10 | 2030      | 1980                       | 2030                  | SAR Average | Hong Kong SAR Average | 10891      | 2/23             | 60200       | PLB      | CAT                     | NOX         | Run Exh            | 0.45005   | Day       | 0.5519        |       |
| 10 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 1132       | 404              | 41023       | PV4      | DSI                     | NOX         | Run Exh            | 0.002033  | Day       | 0.7758        | _     |
| 20 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 7          | 2                | 106         | PV5      | CAT                     | NOx         | Run Exh            | 0.000052  | Day       | 0,4906        |       |
| 21 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 6551       | 2340             | 183584      | PV5      | DSL                     | NOx         | Run Exh            | 0.182131  | Day       | 0.9921        |       |
| 22 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 1869       | 668              | 49542       | PV5      | LPG                     | NOx         | Run Exh            | 0.017966  | Day       | 0.3626        |       |
| 23 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 11729      | 2932             | 347715      | NFB6     | DSL                     | NOx         | Run Exh            | 0.661266  | Day       | 1.9017        |       |
| 24 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 8217       | 2054             | 239204      | NFB7     | DSL                     | NOx         | Run Exh            | 0.247604  | Day       | 1.0351        |       |
| 25 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 11833      | 2958             | 343951      | NFB8     | DSL                     | NOx         | Run Exh            | 0.214364  | Day       | 0.6232        |       |
| 26 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 4140       | 388              | 72384       | FBSD     | DSL                     | NOx         | Run Exh            | 0.060772  | Day       | 0.8396        |       |
| 27 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 57633      | 5403             | 1265799     | FBDD     | DSL                     | NOx         | Run Exh            | 2.737143  | Day       | 2.1624        |       |
| 28 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 14684      | 2447             | 25492       | MC       | NCAT                    | NOx         | Run Exh            | 0.015576  | Day       | 0.6110        |       |
| 29 | 2030      | 1986                       | 2030                  | SAR Average | Hong Kong SAR Average | 409348     | 68218            | 1292455     | MC       | CAT                     | NOX         | Run Exh            | 0.364088  | Day       | 0.2817        |       |
| 30 | 2020      | 1000                       | 2020                  | SAP Average | Hong Kong SAP Average | 2222600    | 1020621          | 45001454    | ALL      | ALL                     | NOv         | Pup Eyk            | 12 633534 | Dave      | 0.2021        |       |
| 32 | 2030      | 1980                       | 2030                  | SAN Average | Hong Kong SAK Average | 2322088    | 1030631          | 43091454    | ALL      | ALL                     | NUX         | Runexn             | 13.022524 | Day       | 0.3021        |       |
| H  | 1 > > Sh  | eet1 Sheet                 | 2 Sheet3              | /*)         |                       |            |                  |             | П        | 4                       |             |                    |           |           | 4             | *     |
| Re | ady 🎦     |                            | and and a star        |             |                       |            |                  |             | 19       |                         |             |                    |           | 100% (    | 5 0           | +     |

# Exercise #2: Hourly Emissions Inventory

- Problem: Repeat Exercise #1, except generate an hourly emissions estimates for Hong Kong for calendar year 2030 only.
- Context: This output is useful to ambient air quality modelers who are interested in hourly emission estimates.
- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: hourly
  - Pollutants: PM10, VOC
- Purpose: generating/processing BURDEN hourly output formats

# Exercise #2: Hourly Emissions Estimates

- Problem: Repeat Exercise #1, except generate an hourly emissions inventory for Hong Kong for calendar year 2030 only.
- Purpose: generating/processing BURDEN hourly output formats
- Context: This output is useful to ambient air quality modelers who are interested in hourly emission inventories.
- In this run the Burden inventories are calculated on an hourly basis, and then aggregated to show an inventory for the entire day. The hourly inventories are mainly based on disaggregating daily activity to an hourly basis. The data provide default diurnal distribution of hourly trip starts, and vehicle kilometers travelled.

# Exercise #2: Mode and Output Tab – Hourly Output Frequency

| Emfac-HK V3.1 E                                                                                    | diting data                                                                               | Par la                                                                           |                                                                                       |                                                                                                                     |                                                   |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <u>File Run H</u> elp<br>Environm<br>The Governn<br>Special Admi                                   | ental Protection<br>ment of the Hong Kon<br>nistrative Region                             | on Department                                                                    | ~~~                                                                                   |                                                                                                                     | permitted by<br>Air Resources Board<br>California |
| Emfac-h                                                                                            | Mode and Output                                                                           | V3.1 20160104 Pr: E<br>Tech/IM Base / Cal. Y<br>fac - Area fleet average er      | mfac-HK HK3.<br>r Basis   .   .<br>nissions   Calim                                   | 1<br>  .  <br>  fac - Detailed vehic                                                                                | sle data                                          |
| Scenario<br>Type:<br>BURDEN<br>Area-Specific<br>Planning<br>Emissions<br>Inventory<br>(tonnes/day) | BURDEN Inventory Detailed Emission MVEI7G (BCD) Weighted Model Detailed Outputs Model Yrs | Files and Reports  Estimates (CSV)  Year Activity (WT)  (BDN)  cch Groups Speeds | Output Fr<br>Hour<br>Output P.<br>Total<br>PM10<br>Output H<br>TOG<br>VOC<br>Speed ca | equency<br>C Day<br>articulate As<br>PM<br>C PM2.5<br>ydrocarbons As<br>C THC<br>C CH4<br>stegories<br>C 8 C 16 km/ | ň                                                 |
|                                                                                                    | Cancel                                                                                    | < Back                                                                           | Edit Program<br>Constants                                                             | Finish                                                                                                              |                                                   |

### Exercise #2: Output Generated

| Name 🔺                         | Size      | Туре                 | Date Modified     |
|--------------------------------|-----------|----------------------|-------------------|
| HK_2030_Burden_by_Hour.bcd.csv | 11,567 KB | Microsoft Office Exc | 11/6/2015 7:00 AM |
| HK_2030_Burden_by_Hour.csv     | 618 KB    | Microsoft Office Exc | 11/6/2015 7:00 AM |
| HK_2030_Burden_by_Hour.inp     | 1 KB      | INP File             | 11/6/2015 6:59 AM |
| HK_2030_Burden_by_Hour.log     | 1 KB      | Text Document        | 11/6/2015 7:00 AM |
|                                |           |                      |                   |

# Exercise #2a: Hourly Emission Rate

- Problem: using BCD output from Exercise #2, determine total NOx running exhaust emission rates by hour for 2030. What is the peak emission rate, and which hour?
- Purpose: determine peak hourly emission rates using hourly BCD output.
- Steps
  - Open \*.BCD.CSV (allows BCD file to be directly loaded into spreadsheets)
  - Use data filters
    - pollutant (NOx), process ("Run Exh")
  - Copy filtered results to a separate tab in spreadsheet for analysis
  - Sort by BASIS, VEH TYPE
  - Perform a group subtotal by **BASIS**
  - Collapse Subtotal Group #2 to see values by hour

#### Exercise #2a: Solution

| X   🚽  | <b>□7 •</b> (* • 🖓 •   = |                |                       |            |          | Ex2.xlsx         | - Microsof | t Excel  |              |                     |               |             | -             |          |
|--------|--------------------------|----------------|-----------------------|------------|----------|------------------|------------|----------|--------------|---------------------|---------------|-------------|---------------|----------|
| File   | Home Develo              | per Insert     | Page Layout           | Formulas I | Data Re  | view View De     | veloper    | Acrobat  |              |                     |               |             | 2             | 3 🖷 🗆 🚯  |
| -      | 🔏 Cut                    | alibri         | 11 × A A              | =          | Ser.     | Wrap Text        | General    | *        | 1            |                     | <b>7</b>      | Σ Αυ        | toSum * A     | <u></u>  |
| Dacta  | Copy -                   |                |                       |            | *        |                  | ocnerul    | ← 0 00   | Conditional  | Earmat Call         |               | Format Fill | · Zu          | Eind 9   |
| Taste  | Format Painter           | B Z Ū → ⊞      | * <u>0</u> * <u>A</u> |            | ie ie    | Merge & Center * | - %        | , .00 .0 | Formatting * | as Table * Styles * | insert Delete | ✓ Cle       | ar * Filter * | Select * |
| 0      | lipboard 🗔               | Font           | 1                     | ŝ.         | Alignmer | nt 54            | Nu         | nber 🖓   | 5            | tyles               | Cells         |             | Editing       |          |
|        | L431 • (                 | fx             |                       |            |          |                  |            |          |              |                     |               |             |               |          |
|        |                          |                |                       |            |          |                  |            |          |              |                     |               |             |               | í í      |
|        |                          |                |                       |            |          |                  |            |          |              |                     |               |             |               |          |
| 123    |                          | D              |                       | F          | F        | G                | н          | 1        | I            | К                   | - I           | М           | N             |          |
|        | 1 END MYE                | REGION         | - SAR                 |            | STARTS   |                  | VKT 🖓      |          | VEH TECL     |                     | PROCESS       | EMISSION -  | BASIS         | -        |
| [+]    | 29                       |                |                       | 1000       |          |                  |            |          |              |                     |               | 13.622524   | Day Total     |          |
| +      | 54                       |                |                       |            |          |                  |            |          |              |                     |               | 0.244008    | Hr00 Total    |          |
| +      | 79                       |                |                       |            |          |                  |            |          |              |                     |               | 0.151201    | Hr01 Total    |          |
| +      | 104                      |                |                       |            |          | 1 1              |            |          |              |                     |               | 0.113175    | Hr02 Total    |          |
| +      | 129                      |                |                       |            |          |                  |            |          |              |                     |               | 0.093751    | Hr03 Total    |          |
| +      | 154                      |                |                       |            |          |                  |            |          |              |                     |               | 0.099813    | Hr04 Total    |          |
| +      | 180                      |                |                       |            |          |                  |            |          |              |                     |               | 0.162832    | Hr05 Total    |          |
| +      | 207                      |                |                       |            |          |                  |            |          |              |                     |               | 0.367508    | Hr06 Total    |          |
| +      | 235                      |                |                       |            |          |                  |            |          |              |                     |               | 0.731032    | Hr07 Total    |          |
| +      | 263                      |                |                       |            |          |                  |            |          |              |                     |               | 1.128095    | Hr08 Total    |          |
| +      | 291                      |                |                       |            |          |                  |            |          |              |                     |               | 1.120608    | Hr09 Total    |          |
| +      | 319                      |                |                       |            |          |                  |            |          |              |                     |               | 0.765532    | Hr10 Total    |          |
| +      | 347                      |                |                       |            |          |                  |            |          |              |                     |               | 0.725073    | Hr11 Total    |          |
| +      | 375                      |                |                       |            |          |                  |            |          |              |                     |               | 0.678431    | Hr12 Total    |          |
| +      | 403                      |                |                       |            |          |                  |            |          |              |                     |               | 0.696309    | Hr13 Total    |          |
| +      | 431                      |                |                       |            |          |                  |            |          |              |                     | ļ             | 0.729148    | Hr14 Total    |          |
| +      | 459                      |                |                       |            |          |                  |            |          |              |                     |               | 0.745938    | Hr15 Total    |          |
| +      | 487                      |                |                       |            |          |                  |            |          |              |                     |               | 0.756602    | Hr16 Total    |          |
| +      | 515                      |                |                       |            |          |                  |            |          |              |                     |               | 1.080809    | Hr17 Total    |          |
| +      | 543                      |                |                       |            |          |                  |            |          |              |                     |               | 0.920634    | Hr18 Total    |          |
| +      | 571                      |                |                       |            |          |                  |            |          |              |                     |               | 0.742978    | Hr19 Total    |          |
| +      | 599                      | -              |                       |            |          |                  |            |          |              |                     |               | 0.436227    | Hr20 Total    |          |
| +      | 627                      |                |                       |            |          |                  |            | -        |              |                     |               | 0.402697    | Hr21 Total    |          |
| 14 4 > | M Sheet1 Sheet           | 2 / Sheet3 / 😋 | 1/                    |            |          |                  |            |          | •            |                     |               |             |               | . · •    |
| Ready  |                          |                |                       |            |          |                  |            |          |              |                     |               |             | .5% 😑         | • •      |

## Exercise #3: EMFAC Mode

- Problem: Generate emission factors for 25 °C and 40% RH for calendar year 2030 using the EMFAC mode.
- Context: In Emfac mode the model calculates emission factors either in grams per hour or grams per kilometer for each temperature, relative humidity and average speed combination specified by the user.
- fleet-average emission factors (grams/km or g/mile) are useful in roadway modeling

# Exercise #3: EMFAC Mode

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - No Alternate Baseline Year
  - Season: Annual
  - Scenario Type: EMFAC
  - Output File types: Impact Rate Detail (RTL)
  - Temperatures: 25 °C
  - Relative Humidity: 40%
  - Pollutants: PM10, VOC
- Purpose: generating/processing EMFAC formats

#### Exercise #3: Input 1 Tab (populated)

| 🔁 Emfac-HK V3.1 Editing data                                                                            |                                         |                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|
| <u>File Run H</u> elp                                                                                   |                                         |                    |
| Environmental Protection Department<br>The Government of the Hong Kong<br>Special Administrative Region | HONG<br>KONG<br>Air Resou<br>California | l by<br>Irces Boar |
| Emfac-HK V3.1 v3.1 20160104 Pr: Emfac-HK HK3.                                                           | 1                                       |                    |
| . Input 1 Input 2 Mode and Output Tech/IM Base / Cal. Yr Basis                                          |                                         |                    |
| Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Yea                | ar and Season                           |                    |
| Step 1 - Geographic Area                                                                                |                                         |                    |
| Area Type: SAR SAR                                                                                      |                                         |                    |
| Hong Kong 💌                                                                                             |                                         |                    |
| J SAR                                                                                                   |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
| Step 2a - Calendar Year                                                                                 | 7                                       |                    |
| Select Select                                                                                           |                                         |                    |
| Calendar year 2030 Alternate Base Data                                                                  |                                         |                    |
| selected Year INACTIVE                                                                                  |                                         |                    |
| Scenario Year for Output OPTIONAL: Selecting this                                                       |                                         |                    |
| option overrides EMFAC-HK<br>default base year.                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
| Step 3 Season or Month                                                                                  |                                         |                    |
| Annual                                                                                                  |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
|                                                                                                         |                                         |                    |
| Cancel Next >                                                                                           | Finish                                  |                    |
|                                                                                                         |                                         |                    |

### Exercise #3: Mode and Output Tab

| 💼 Emfac-HK V3.1 Editing data                                                     |                                                 |                              |                                                   |  |
|----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|---------------------------------------------------|--|
| <u>File Run H</u> elp                                                            |                                                 |                              |                                                   |  |
| Environmental Prote<br>The Government of the Hor<br>Special Administrative Regin | ection Department                               |                              | permitted by<br>Air Resources Board<br>California |  |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1                                   |                                                 |                              |                                                   |  |
| . Input 1 Input 2 Mode and 0                                                     | Pert Technik Dase / Cal Y Dasis                 | .  .                         |                                                   |  |
| Burden - Area Emission Estimate                                                  | Emfac - Area fleet average emissions            | Calimfac - Detailed vehi     | cle data                                          |  |
| Scenario Type: EMFAC Area-s<br>humidites, and speeds                             | pecific fleet average emissions (g/activity) fo | or selected temperatures, re | lative                                            |  |
| Configure EMFAC Outputs                                                          | Emfac Rate Files                                | Output Particulate As        | s                                                 |  |
| Temperatures                                                                     |                                                 |                              | PM2.5                                             |  |
| Relative Humidities                                                              |                                                 | Output Hydrocarbon           | s As                                              |  |
| Speed                                                                            | Detailed Impact Rates (RTL)                     | C TOG C C                    | THC<br>CH4                                        |  |
|                                                                                  |                                                 |                              |                                                   |  |
| Cancel                                                                           | < Back Edit Pro                                 | ogram<br>ants Finish         |                                                   |  |

# Exercise #3: Select/Edit Temps (delete until just 1. set to 25 deg C)

| 🛃 Emfac-HK V3.1 Editing data                                                                            |                                                   | Select/Edit temperature for Emfa                                                             | ac calculations                                                                       |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <u>File Run H</u> elp                                                                                   |                                                   |                                                                                              |                                                                                       |
| Environmental Protection Department<br>The Government of the Hong Kong<br>Special Administrative Region | HONG<br>KONG<br>Air Resources Board<br>California | Enter data for temperature. Click<br>Enter values of speed and tem<br>© Delete temperature 1 | button to enable new value.<br>perature C Enter temperature 13 C Enter temperature 14 |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.                                                           |                                                   | C Enter temperature 3                                                                        | C Enter temperature 14                                                                |
| . Input 1 Input 2 Mode and Output Tech/IM Base / Cal. Yr Basis                                          |                                                   | C Enter temperature 5                                                                        | C Enter temperature 17                                                                |
| Burden - Area Emission Estimate Emfac - Area fleet average emissions Calin                              | ifac - Detailed state                             | C Enter temperature 6                                                                        | C Enter temperature 18                                                                |
|                                                                                                         |                                                   | C Enter temperature 7                                                                        | C Enter temperature 19                                                                |
| Connection Turner EMEAC - Alexa annualities finale subscription and a dealth shell for annual           |                                                   | C Enter temperature 8                                                                        | C Enter temperature 20                                                                |
| humidites, and speeds                                                                                   | ed temperatures, relative                         | C Enter temperature 9                                                                        | C Enter temperature 21                                                                |
|                                                                                                         |                                                   | C Enter temperature 10                                                                       | C Enter temperature 22                                                                |
| Configure EMFAC Outputs Emfac Rate Files                                                                | utput Particulate As                              | C Enter temperature 11                                                                       | C Enter temperature 23                                                                |
|                                                                                                         | Total PM                                          | C Enter temperature 12                                                                       | C Enter temperature 24                                                                |
| Relative Humidities                                                                                     | • PM10 C PM2.5                                    | Sort the array (done after exit)                                                             | OK Cancel                                                                             |
|                                                                                                         | utput Hydrocarbons As                             |                                                                                              |                                                                                       |
| Speed.                                                                                                  | Стод Стнс                                         | C.                                                                                           |                                                                                       |
| Detailed Impact Rates (RTL)                                                                             | VOC C CH4                                         |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
|                                                                                                         |                                                   |                                                                                              |                                                                                       |
| Cancel < Back Constants                                                                                 | Finish                                            |                                                                                              |                                                                                       |

# Exercise #3: Select/Edit RH (delete until just 1. set to 40%)

| Emfac-HK V3.1 Editing data                                                 |                                                   | Select/Edit rel hum for Emfac calcula                                                            | tions                                           |
|----------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <u>File R</u> un <u>H</u> elp                                              |                                                   |                                                                                                  |                                                 |
| The Government of the Hong Kong<br>Special Administrative Region           | HONG<br>KONG<br>Air Resources Board<br>California | Enter data for rel hum. Click button to<br>Enter values of speed and tempera<br>Delete rel hum 1 | enable new value.<br>ture<br>C Enter rel hum 13 |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK                                   | (HK3.1                                            | C Enter rel hum 2                                                                                | C Enter rel hum 14                              |
| . Input 1 Input 2 Mode and Output Tech/IM Base / Cal. Yr Basis .           |                                                   | C Enter rel hum 4                                                                                | C Enter rel hum 16                              |
| Burden - Area Emission Estimate Emfac - Area fleet average emissions       | Calimfac - Detailed vehicle dat                   | C Enter rel hum 5                                                                                | C Enterrel hum 17                               |
|                                                                            |                                                   | C Enter rel hum 6                                                                                | C Enter rel hum 18                              |
| Scenario Type: EMFAC Area-specific fleet average emissions (g/activity) fo | or selected temperatures, relative                | C Enter rel hum 7                                                                                | C Enter rel hum 19                              |
| humidites, and speeds                                                      |                                                   | C Enter rel hum 8                                                                                | C Enter rel hum 20                              |
| Configure EMEAC Outputs - Emfac Bate Files                                 | Output Particulate As                             | C Enter rel hum 9                                                                                | C Enter rel hum 21                              |
|                                                                            | C Total PM                                        | C Enter rel hum 10                                                                               | C Enter rel hum 22                              |
| Temperatures                                                               | @ PM10 C PM25                                     | C Enter rel hum 11                                                                               | C Enter rel hum 23                              |
|                                                                            | 5° FM10 5 FM2.5                                   | C Enter rel hum 12                                                                               | C Enter rel hum 24                              |
| Relative Humidities                                                        | Output Hydrocarbons As                            | ,                                                                                                | ,                                               |
| Speed Detailed Impact Rates (RTL)                                          | CTOG CTHC<br>CVOC CCH4                            | ✓ Sort the array (done after exit)                                                               | OK Cancel                                       |
|                                                                            |                                                   | L                                                                                                |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
|                                                                            |                                                   |                                                                                                  |                                                 |
| 1 Edit Pro                                                                 | ogram                                             |                                                                                                  |                                                 |
| Cancel < Back Const                                                        | ants Finish                                       |                                                                                                  |                                                 |

#### **Exercise #3: Output Generated**

| Name 🔺                | Size   | Туре                 | Date Modified     |
|-----------------------|--------|----------------------|-------------------|
| HK_2030_EMFAC.inp     | 1 KB   | INP File             | 11/6/2015 8:32 AM |
| HK_2030_EMFAC.log     | 2 KB   | Text Document        | 11/6/2015 8:32 AM |
| HK_2030_EMFAC.rtl.csv | 174 KB | Microsoft Office Exc | 11/6/2015 8:32 AM |
|                       |        |                      |                   |

# Exercise #4: Changing Technology Group Fractions

- Context: This example evaluates emission changes if the Government introduces a tax incentive program. In this case, introducing Euro V in 2010 for light goods vehicles greater than 3.5 tonnes (vehicle class LGV6).
- The table below shows the accelerate phasein of Euro V for LGV6
  - Model Year: 2010-2012 40% Euro V
  - Model Year: 2013+ 100%

# Exercise #4: Changing TG Fractions

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Detailed Estimates (CSV)
  - Output Frequency: daily
  - Pollutants: PM10, VOC
- Perform a Base Case Run
- Update TG distribution using data on next slide

# Exercise #4: New LGV6 Exhaust TG Fractions to Apply

| Exh TG ->     | 119                             | 132                             | 133                            |
|---------------|---------------------------------|---------------------------------|--------------------------------|
| Model<br>Year | Euro IV POC<br>LGV 3.5-5-5t Dsl | Euro IV DPF<br>LGV 3.5-5-5t Dsl | Euro V DPF<br>LGV 3.5-5-5t Dsl |
| 2010          | 17.435%                         | 42.5646%                        | 40%                            |

# Exercise #4: Exhaust TG Modification Tab

**Before Edit** 

#### **After Edit**



# Exercise #4: "Apply to Others – Model Year Only"

#### **Before Edit**

#### After Edit

| Apply to Range?                              |  |  |  |  |
|----------------------------------------------|--|--|--|--|
| Apply This Profile to a     Range of Values? |  |  |  |  |
| Parameters                                   |  |  |  |  |
| Vehicle Class                                |  |  |  |  |
| V Model Year                                 |  |  |  |  |
|                                              |  |  |  |  |
| OK Cancel                                    |  |  |  |  |
|                                              |  |  |  |  |



#### Exercise #4: "Apply to Others"

#### **Before Edit**

#### **After Edit**



| Model Years<br>Selections Available | Apply To:<br>2010<br>2011<br>2012<br><< |
|-------------------------------------|-----------------------------------------|
|-------------------------------------|-----------------------------------------|

#### Exercise #4: Solution

| 1 | I.         | J          | К           | L       | Μ           | N       | 0          |  |
|---|------------|------------|-------------|---------|-------------|---------|------------|--|
|   | VEH TYPE 🖵 | VEH TECH 🖵 | POLLUTANT 🖵 | PROCESS | EMISSIONS 👻 | BASIS 👻 | Case       |  |
| 3 | LGV6       | DSL        | NOx         | Run Exh | 0.973116    | Day     | Base Case  |  |
| 3 | LGV6       | DSL        | NOx         | Run Exh | 0.962865    | Day     | Euro V     |  |
| 2 |            |            |             |         |             |         |            |  |
| 3 | LGV6       | DSL        | NOx         |         | 0.010251    | Day     | Difference |  |
| 4 |            |            |             |         |             |         |            |  |
## Exercise #5: Changing VKT

- Context: EMFAC users involved with planning are frequently asked to estimate emissions for an area, say Kwai Chung, in Hong Kong. The territory-wide VKT by vehicle class and fuel type will not be applicable here resulting in a change in VKT. VKT by class will have to be changed. We take one vehicle class and one fuel type, say petrol private cars, as an example.
- Two ways the user can change VKT:
  - 1) adjust the population to match desired VKT since VKT is calculated from Population\*Accrual (i.e., "conformity" approach); or,
  - 2) directly alter via the VKT GUI
  - If VKT only is changed, the model alters number of trips/starts in order to match VKT.

## Exercise #5: Changing VKT

- Problem: Determine emissions in 2030 for petrol private cars (Vehicle Class 1) given a *forecasted* VKT of 1,609,000 km/day.
- This Exercise will be conducted in three phases:
  - 5: "base" case
  - 5a: "conformity" adjustment
  - 5b: direct VKT adjustment

## Exercise #5a: Changing VKT ("Conformity" Approach)

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: hourly
  - Pollutants: PM<sub>10</sub>, VOC
- VKT for private cars = 1,609,000 km/day
- Use "conformity" approach: adjust population to match desired VKT

## Exercise #5a: Notes

- Determine Population Adjustment to Match VKT
  - Find "base" population and VKT for vehicle class and fuel for 2030.
    - Enter scenario data in Input 1 screen
    - Edit Program Constants
    - Click "Population" key in Tab Pop/Accrual Screen
      - Select By Vehicle and Fuel:
      - PC petrol population? (Vehicle Class 1, Fuel=1):
    - Advance to VKT Screen
      - Tab By Vehicle and Fuel:
      - PC VKT (Vehicle Class=1, Fuel=1)?:
  - Determine VKT adjustment factor?
- Multiply population by VKT adjustment factor:

## Exercise #5a: Pop/Accrual Tab



## Exercise #5a: VKT/Trips Tab



### Exercise #5a: Base Case Values

### 2030 Population by Fuel 783,924 vehicles (gas/petrol)

|                                          |            |                                | Copy with             | Headings             | Paste Data Only |  |  |  |  |  |
|------------------------------------------|------------|--------------------------------|-----------------------|----------------------|-----------------|--|--|--|--|--|
| Hong Kong SAR                            |            |                                |                       |                      |                 |  |  |  |  |  |
| diting Mode                              |            | Editing                        | Cal Pop (registered v | ehicles with adjustr | ments)          |  |  |  |  |  |
| Total Cal Pop By Vehicle Class By Vehi   | cle and Fu | iel B V                        | ehicle/Fuel/Age       |                      |                 |  |  |  |  |  |
|                                          |            | Fuel (1=Petrol/2=Diesel/3=LPG) |                       |                      |                 |  |  |  |  |  |
|                                          |            |                                | 1                     | 2                    | 3               |  |  |  |  |  |
| 01 - Private Cars (PC)                   |            | 1                              | 783924.3              | 6113.0               | 0.0             |  |  |  |  |  |
| 02 · Taxi                                |            | 2                              | 0.0                   | 0.0                  | 18193.0         |  |  |  |  |  |
| 03 - Light Goods Vehicles<=2.5t          |            | 3                              | 1.9                   | 1002.7               | 0.0             |  |  |  |  |  |
| 04 - Lt Goods Vehicles 2.5-3.5t          |            | 4                              | 1057.4                | 53816.4              | 0.0             |  |  |  |  |  |
| 05 - Light Goods Vehicles>3.5t           |            | 5                              | 0.0                   | 26652.7              | 0.0             |  |  |  |  |  |
| 06 · Medium _Heavy Goods Vehic           |            | 6                              | 0.0                   | 12730.9              | 0.0             |  |  |  |  |  |
| 07 - Medium _Heavy Goods Vehicles>1      |            | 7                              | 0.0                   | 34347.2              | 0.0             |  |  |  |  |  |
| 08 - Public Light Buses                  |            | 8                              | 0.0                   | 1622.9               | 2723.1          |  |  |  |  |  |
| 09 - Private Light Bus <=3.5t            | 5          | 9                              | 631.6                 | 404.4                | 0.0             |  |  |  |  |  |
| 10 - Private Light Bus >3.5t             | Clas       | 10                             | 2.4                   | 2340.0               | 667.6           |  |  |  |  |  |
| 11 - Non-franchised Bus<=6.4t            | le         | 11                             | 0.0                   | 2932.0               | 0.0             |  |  |  |  |  |
| 12 - Non-franchised Bus 6.4-15t          | hic        | 12                             | 0.0                   | 2054.0               | 0.0             |  |  |  |  |  |
| 13 - Non-franchised Bus >15t             | Ve         | 13                             | 0.0                   | 2958.0               | 0.0             |  |  |  |  |  |
| 14 - Franchised Bus (SD)                 |            | 14                             | 0.0                   | 388.0                | 0.0             |  |  |  |  |  |
| 15 - Franchised Bus (DD)                 |            | 15                             | 0.0                   | 5403.0               | 0.0             |  |  |  |  |  |
| 16 - Motorcycles (MC)                    |            | 16                             | 70665.1               | 0.0                  | 0.0             |  |  |  |  |  |
| 17 - <placeholder (p1)=""></placeholder> |            | 17                             | 0.0                   | 0.0                  | 0.0             |  |  |  |  |  |
| 18 - <placeholder (p2)=""></placeholder> |            | 18                             | 0.0                   | 0.0                  | 0.0             |  |  |  |  |  |
| 19 - <placeholder (p3)=""></placeholder> |            | 19                             | 0.0                   | 0.0                  | 0.0             |  |  |  |  |  |
| 20 - <placeholder (p4)=""></placeholder> |            | 20                             | 0.0                   | 0.0                  | 0.0             |  |  |  |  |  |
| 21 · <placeholder (p5)=""></placeholder> |            | 21                             | 0.0                   | 0.0                  | 0.0             |  |  |  |  |  |

### 2030 VKT by Fuel 21,887,260 km/day (1=gas/petrol)

| otal VKT for area                        |          |        | Copy with            | n Headings         | Paste Data Only  |  |  |  |
|------------------------------------------|----------|--------|----------------------|--------------------|------------------|--|--|--|
| Hong Kong SAR                            |          |        |                      |                    |                  |  |  |  |
| diting Mode                              |          |        | Editing VKT (vehicle | km traveled per we | ekday)           |  |  |  |
| Total VKT By Vehicle Class By Vehicle a  | and Fuel | By Veł | nicle/Fuel/Hour      |                    |                  |  |  |  |
|                                          |          |        | Fuel (1=P            | etrol/2=Diesel/3   | /2=Diesel/3=LPG) |  |  |  |
|                                          |          |        | 1                    | 2                  | 3                |  |  |  |
| 01 - Private Cars (PC)                   |          | 1      | 21887260.0           | 171471.0           | 0.0              |  |  |  |
| 02 - Taxi                                |          | 2      | 0.0                  | 0.0                | 7665955.0        |  |  |  |
| 03 - Light Goods Vehicles<=2.5t          |          | 3      | 109.9                | 74275.4            | 0.0              |  |  |  |
| 04 - Lt Goods Vehicles 2.5-3.5t          |          | 4      | 67129.2              | 3549671.3          | 0.0              |  |  |  |
| 05 - Light Goods Vehicles>3.5t           |          | 5      | 0.0                  | 2547736.5          | 0.0              |  |  |  |
| 06 - Medium _Heavy Goods Vehic           | 2        | 6      | 0.0                  | 1055561.3          | 0.0              |  |  |  |
| 07 · Medium _Heavy Goods Vehicles>1      |          | 7      | 0.0                  | 2849234.3          | 0.0              |  |  |  |
| 08 - Public Light Buses                  |          | 8      | 0.0                  | 485980.8           | 815425.1         |  |  |  |
| 09 - Private Light Bus <=3.5t            |          | 9      | 60387.8              | 41022.6            | 0.0              |  |  |  |
| 10 - Private Light Bus >3.5t             | Clas     | 10     | 105.6                | 183583.6           | 49542.4          |  |  |  |
| 11 · Non-franchised Bus<=6.4t            | le       | 11     | 0.0                  | 347714.9           | 0.0              |  |  |  |
| 12 - Non-franchised Bus 6.4-15t          | hic      | 12     | 0.0                  | 239203.8           | 0.0              |  |  |  |
| 13 - Non-franchised Bus >15t             | N.       | 13     | 0.0                  | 343950.8           | 0.0              |  |  |  |
| 14 - Franchised Bus (SD)                 |          | 14     | 0.0                  | 72384.1            | 0.0              |  |  |  |
| 15 - Franchised Bus (DD)                 |          | 15     | 0.0                  | 1265799.5          | 0.0              |  |  |  |
| 16 - Motorcycles (MC)                    |          | 16     | 1317946.8            | 0.0                | 0.0              |  |  |  |
| 17 - <placeholder (p1)=""></placeholder> |          | 17     | 0.0                  | 0.0                | 0.0              |  |  |  |
| 18 - <placeholder (p2)=""></placeholder> |          | 18     | 0.0                  | 0.0                | 0.0              |  |  |  |
| 19 - <placeholder (p3)=""></placeholder> |          | 19     | 0.0                  | 0.0                | 0.0              |  |  |  |
| 20 - <placeholder (p4)=""></placeholder> |          | 20     | 0.0                  | 0.0                | 0.0              |  |  |  |
| 21 - <placeholder (p5)=""></placeholder> |          | 21     | 0.0                  | 0.0                | 0.0              |  |  |  |
|                                          |          |        |                      |                    |                  |  |  |  |
| Apply                                    | C        | ancel  |                      | Done               |                  |  |  |  |

## Exercise #5a: VKT Adjustment using Population

• Find "base" population and VKT for vehicle class and fuel (PC petrol) for 2030:

- Population (2030): 783,924 vehicles

- VKT (2030 base): 21,887,260 kilometers
- Determine VKT adjustment factor:

- 1,609,000/ 21,887,260 = 0.0735

• Multiply population by factor:

- 783,924 \* 0.0735 = 57,629

## Exercise #5a: Population Edits

### 2030 Population (Base Case)

|                                                             |           |         | Copy with             | Headings              | Paste Data Onl |
|-------------------------------------------------------------|-----------|---------|-----------------------|-----------------------|----------------|
| Hong Kong SAR                                               |           |         |                       |                       |                |
| liting Mode                                                 |           | Editing | Cal Pop (registered v | vehicles with adjustr | nents)         |
| Total Cal Pop   By Vehicle Class By Vehic                   | le and Fu | el BV   | ehicle/Fuel/Age       |                       |                |
|                                                             |           |         | Fuel (1=Pe            | trol/2=Diesel/3=      | LPG)           |
|                                                             |           |         | 1                     | 2                     | 3              |
| 11 - Private Cars (PC)                                      |           |         | 783924.3              | 6113.0                | 0.0            |
| 12 - Taxi                                                   |           | 2       | 0.0                   | 0.0                   | 18193.0        |
| l3 - Light Goods Vehicles<=2.5t                             |           | 3       | 1.9                   | 1002.7                | 0.0            |
| 4 - Lt Goods Vehicles 2.5-3.5t                              |           | 4       | 1057.4                | 53816.4               | 0.0            |
| 5 - Light Goods Vehicles>3.5t                               |           | 5       | 0.0                   | 26652.7               | 0.0            |
| 6 - Medium_Heavy Goods Vehic                                |           | 6       | 0.0                   | 12730.9               | 0.0            |
| 7 - Medium _Heavy Goods Vehicles>1                          |           | 7       | 0.0                   | 34347.2               | 0.0            |
| I - Public Light Buses                                      |           | 8       | 0.0                   | 1622.9                | 2723.1         |
| 9 - Private Light Bus <=3.5t<br>) - Private Light Bus >3.5t | lass      | 9       | 631.6                 | 404.4                 | 0.0            |
|                                                             |           | 10      | 2.4                   | 2340.0                | 667.6          |
| 1 - Non-franchised Bus<=6.4t                                | le        | 11      | 0.0                   | 2932.0                | 0.0            |
| 2 - Non-franchised Bus 6.4-15t                              | hic       | 12      | 0.0                   | 2054.0                | 0.0            |
| 3 - Non-franchised Bus >15t                                 | Ve        | 13      | 0.0                   | 2958.0                | 0.0            |
| I - Franchised Bus (SD)                                     |           | 14      | 0.0                   | 388.0                 | 0.0            |
| 5 - Franchised Bus (DD)                                     |           | 15      | 0.0                   | 5403.0                | 0.0            |
| 6 - Motorcycles (MC)                                        |           | 16      | 70665.1               | 0.0                   | 0.0            |
| 7 - <placeholder (p1)=""></placeholder>                     |           | 17      | 0.0                   | 0.0                   | 0.0            |
| 8 - <placeholder (p2)=""></placeholder>                     |           | 18      | 0.0                   | 0.0                   | 0.0            |
| 9 - <placeholder (p3)=""></placeholder>                     |           | 19      | 0.0                   | 0.0                   | 0.0            |
| :0 - <placeholder (p4)=""></placeholder>                    |           | 20      | 0.0                   | 0.0                   | 0.0            |
|                                                             |           | 21      | 0.0                   | 0.0                   | 0.0            |

### 2030 Population (Edited for VKT Match)

| otal Cal Pop for area<br>Hong Kong SAR  |                |         | Copy with             | Headings            | Paste Data Only |
|-----------------------------------------|----------------|---------|-----------------------|---------------------|-----------------|
| diting Mode                             |                | Editing | Cal Pop (registered v | ehicles with adjust | ments)          |
| Total Cal Pop   By Vehicle Class        | √ehicle and Fu |         | Vehicle/Fuel/Age      |                     |                 |
|                                         |                |         | Fuel (1=Pet           | rol/2=Diesel/3=     | LPG)            |
|                                         |                |         |                       | 2                   | 3               |
| 01 - Private Cars (PC)                  |                |         | 57628.7               | 6113.0              | 0.0             |
| )2 - Taxi                               |                | 2       | 0.0                   | 0.0                 | 18193.0         |
| 13 - Light Goods Vehicles<=2.5t         |                | 3       | 1.9                   | 1002.7              | 0.0             |
| 4 - Lt Goods Vehicles 2.5-3.5t          |                | 4       | 1057.4                | 53816.4             | 0.0             |
| 5 - Light Goods Vehicles>3.5t           |                | 5       | 0.0                   | 26652.7             | 0.0             |
| 6 · Medium_Heavy Goods Vehic            |                | 6       | 0.0                   | 12730.9             | 0.0             |
| 7 · Medium_Heavy Goods Vehicles>1       |                | 6 7     | 0.0                   | 34347.2             | 0.0             |
| 8 - Public Light Buses                  |                | 8       | 0.0                   | 1622.9              | 2723.1          |
| 9 - Private Light Bus <=3.5t            | 52             | 9       | 631.6                 | 404.4               | 0.0             |
| ) - Private Light Bus >3.5t             | Clas           | 10      | 2.4                   | 2340.0              | 667.6           |
| 1 - Non-franchised Bus<=6.4t            | le             | 11      | 0.0                   | 2932.0              | 0.0             |
| 2 - Non-franchised Bus 6.4-15t          | hic            | 12      | 0.0                   | 2054.0              | 0.0             |
| 3 - Non-franchised Bus >15t             | Ve             | 13      | 0.0                   | 2958.0              | 0.0             |
| 4 - Franchised Bus (SD)                 |                | 14      | 0.0                   | 388.0               | 0.0             |
| 5 - Franchised Bus (DD)                 |                | 15      | 0.0                   | 5403.0              | 0.0             |
| 6 · Motorcycles (MC)                    |                | 16      | 70665.1               | 0.0                 | 0.0             |
| 7 · <placeholder (p1)=""></placeholder> |                | 17      | 0.0                   | 0.0                 | 0.0             |
| 8 - <placeholder (p2)=""></placeholder> |                | 18      | 0.0                   | 0.0                 | 0.0             |
| 9 - <placeholder (p3)=""></placeholder> |                | 19      | 0.0                   | 0.0                 | 0.0             |
| U - <placeholder (p4)=""></placeholder> |                | 20      | 0.0                   | 0.0                 | 0.0             |
| I - < maceholder (P5J>                  |                | 21      | 0.0                   | 0.0                 | 0.0             |
|                                         |                |         |                       |                     |                 |
| Apply                                   | C              | ancel   |                       | Done                |                 |

### Exercise #5a: Verify VKT Adjustment

### 2030 VKT (Base Case)

### 2030 VKT (After Pop Edit)

| Editing VKT data for scenario 1: Hong Kong S/ | AR An    | nual CYr  | 2030 Default Tit    | le                 |                 | Editing VKT data for scenario 1: Hong Kor | ng SAR A   | nnual CY | r 2030 Default Tit  | le                 |                   |
|-----------------------------------------------|----------|-----------|---------------------|--------------------|-----------------|-------------------------------------------|------------|----------|---------------------|--------------------|-------------------|
| Total VKT for area                            |          |           | Copy with           | Headings           | Paste Data Only | Total VKT for area                        |            |          | Copy with           | Headings           | Paste Data Onlu   |
| Hong Kong SAR                                 |          |           | -                   |                    |                 | Hana Kana SAR                             |            |          | сору чи             | ritedalings        | T date D'did Only |
|                                               |          |           | No ANCT Contrate    |                    |                 | Hong Kong SAN                             |            |          |                     |                    |                   |
| Editing Mode                                  |          | Ed        | liting VKT (venicle | km traveled per we | зекаауј         | Editing Mode                              |            | E        | diting VKT (vehicle | km traveled per we | ekday)            |
| Total VKT   By Vehicle Class By Vehicle and   | Fuel     | By Vehicl | le/Fuel/Hour        |                    |                 | Total VKT By Vehicle Class By Vehicle     | e and Fuel | By Vehi  | icle/Fuel/Hour      |                    |                   |
|                                               | $\wedge$ | 1001      | Fuel (1=Pe          | etrol/2=Diesel/3   | =LPG)           |                                           |            |          | Fuel (1=P           | etrol/2=Diesel/3   | =LPG)             |
|                                               |          |           |                     | 2                  | 3               |                                           |            |          | 1                   | 2                  | 3                 |
| 01 - Private Cars (PC)                        |          |           | 21887260.0          | 171471.0           | 0.0             | 01 - Private Cars (PC)                    |            |          | 1609000.1           | 171471.0           | 0.0               |
| 02 - Taxi                                     |          | 2         | 0.0                 | 0.0                | 7665955.0       | 02 - Taxi                                 |            | 2        | 0.0                 | 0.0                | 7665955.0         |
| 03 - Light Goods Vehicles<=2.5t               |          | 3         | 109.9               | 74275.4            | 0.0             | 03 - Light Goods Vehicles<=2.5t           |            | 3        | 109.9               | 74275.4            | 0.0               |
| 04 - Lt Goods Vehicles 2.5-3.5t               |          | 4         | 67129.2             | 3549671.3          | 0.0             | 04 - Lt Goods Vehicles 2.5-3.5t           |            | 4        | 67129.2             | 3549671.3          | 0.0               |
| 05 - Light Goods Vehicles>3.5t                |          | 5         | 0.0                 | 2547736.5          | 0.0             | 05 - Light Goods Vehicles>3.5t            |            | 5        | 0.0                 | 2547736.5          | 0.0               |
| 06 - Medium _Heavy Goods Vehic                |          | 6         | 0.0                 | 1055561.3          | 0.0             | 06 - Medium _Heavy Goods Vehic            |            | 6        | 0.0                 | 1055561.3          | 0.0               |
| 07 - Medium _Heavy Goods Vehicles>1           |          | 7         | 0.0                 | 2849234.3          | 0.0             | 07 - Medium _Heavy Goods Vehicles>1       |            | 7        | 0.0                 | 2849234.3          | 0.0               |
| 08 - Public Light Buses                       |          | 8         | 0.0                 | 485980.8           | 815425.1        | 08 - Public Light Buses                   |            | 8        | 0.0                 | 485980.8           | 815425.1          |
| 09 - Private Light Bus <=3.5t                 | S        | 9         | 60387.8             | 41022.6            | 0.0             | 09 - Private Light Bus <=3.5t             | 5          | 9        | 60387.8             | 41022.6            | 0.0               |
| 10 - Private Light Bus >3.5t                  | Cla      | 10        | 105.6               | 183583.6           | 49542.4         | 10 - Private Light Bus >3.5t              | las        | 10       | 105.6               | 183583.6           | 49542.4           |
| 11 - Non-franchised Bus<=6.4t                 | le       | 11        | 0.0                 | 347714.9           | 0.0             | 11 - Non-franchised Bus<=6.4t             | e l        | 11       | 0.0                 | 347714.9           | 0.0               |
| 12 - Non-franchised Bus 6.4-15t               | hic      | 12        | 0.0                 | 239203.8           | 0.0             | 12 - Non-franchised Bus 6.4-15t           | hic        | 12       | 0.0                 | 239203.8           | 0.0               |
| 13 - Non-franchised Bus >15t                  | 1        | 13        | 0.0                 | 343950.8           | 0.0             | 13 - Non-franchised Bus >15t              | Ve         | 13       | 0.0                 | 343950.8           | 0.0               |
| 14 - Franchised Bus (SD)                      |          | 14        | 0.0                 | 72384.1            | 0.0             | 14 - Franchised Bus (SD)                  |            | 14       | 0.0                 | 72384.1            | 0.0               |
| 15 - Franchised Bus (DD)                      |          | 15        | 0.0                 | 1265799.5          | 0.0             | 15 - Franchised Bus (DD)                  |            | 15       | 0.0                 | 1265799.5          | 0.0               |
| 16 - Motorcycles (MC)                         |          | 16        | 1317946.8           | 0.0                | 0.0             | 16 - Motorcycles (MC)                     |            | 16       | 1317946.8           | 0.0                | 0.0               |
| 17 - <placeholder (p1)=""></placeholder>      |          | 17        | 0.0                 | 0.0                | 0.0             | 17 - <placeholder (p1)=""></placeholder>  |            | 17       | 0.0                 | 0.0                | 0.0               |
| 18 - <placeholder (p2)=""></placeholder>      |          | 18        | 0.0                 | 0.0                | 0.0             | 18 - <placeholder (p2)=""></placeholder>  |            | 18       | 0.0                 | 0.0                | 0.0               |
| 19 - <placeholder (p3)=""></placeholder>      |          | 19        | 0.0                 | 0.0                | 0.0             | 19 - <placeholder (p3)=""></placeholder>  |            | 19       | 0.0                 | 0.0                | 0.0               |
| 20 - <placeholder (p4)=""></placeholder>      |          | 20        | 0.0                 | 0.0                | 0.0             | 20 - <placeholder (p4)=""></placeholder>  |            | 20       | 0.0                 | 0.0                | 0.0               |
| 21 - <placeholder (p5)=""></placeholder>      |          | 21        | 0.0                 | 0.0                | 0.0             | 21 - <placeholder (p5)=""></placeholder>  |            | 21       | 0.0                 | 0.0                | 0.0               |
|                                               |          |           |                     |                    |                 |                                           |            |          |                     |                    |                   |
| Applu                                         | C        | ncel      | 1                   | Done               |                 | Apply                                     |            | ancal    | 1                   | Done               |                   |
| Арру                                          | La       | ncei      |                     | Done               |                 | Арру                                      |            | aricei   |                     | Done               |                   |

## Exercise #5b: Changing VKT (Directly)

- Problem: Determine emissions in 2030 for petrol private cars (Vehicle Class 1) given a forecasted VKT of 1,609,000 km/day.
- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: hourly
  - Pollutants: PM<sub>10</sub>, VOC
- VKT for petrol private cars = 1,609,000 km/day
- Direct entry of new VKT

## Exercise #5b: Editing VKT Screen

### 2030 VKT (Base Case)

| otal VKT for area                        |          |        | Copy with            | n Headings         | Paste Data Only |
|------------------------------------------|----------|--------|----------------------|--------------------|-----------------|
| Hong Kong SAH                            |          |        |                      |                    |                 |
| diting Mode                              |          | E      | Editing VKT (vehicle | km traveled per we | ekday)          |
| Total VKT By Vehicle Class By Vehicle .  | and Fuel | By Veh | icle/Fuel/Hour       |                    |                 |
|                                          |          |        | Fuel (1=P            | etrol/2=Diesel/3   | =LPG)           |
|                                          |          |        | 1                    | 2                  | 3               |
| )1 - Private Cars (PC)                   |          |        | 21887260.0           | 171471.0           | 0.0             |
| 02 - Taxi                                |          | 2      | 0.0                  | 0.0                | 7665955.0       |
| 03 - Light Goods Vehicles<=2.5t          |          | 3      | 109.9                | 74275.4            | 0.0             |
| 04 - Lt Goods Vehicles 2.5-3.5t          |          | 4      | 67129.2              | 3549671.3          | 0.0             |
| 15 - Light Goods Vehicles>3.5t           |          | 5      | 0.0                  | 2547736.5          | 0.0             |
| 16 - Medium _Heavy Goods Vehic           |          | 6      | 0.0                  | 1055561.3          | 0.0             |
| 17 - Medium _Heavy Goods Vehicles>1      |          | 7      | 0.0                  | 2849234.3          | 0.0             |
| 18 - Public Light Buses                  |          | 8      | 0.0                  | 485980.8           | 815425.1        |
| 19 - Private Light Bus <=3.5t            | 5        | 9      | 60387.8              | 41022.6            | 0.0             |
| 0 - Private Light Bus >3.5t              | Cla      | 10     | 105.6                | 183583.6           | 49542.4         |
| 1 - Non-franchised Bus<=6.4t             | le       | 11     | 0.0                  | 347714.9           | 0.0             |
| 2 - Non-franchised Bus 6.4-15t           | hic      | 12     | 0.0                  | 239203.8           | 0.0             |
| 3 - Non-franchised Bus >15t              | A        | 13     | 0.0                  | 343950.8           | 0.0             |
| 4 - Franchised Bus (SD)                  |          | 14     | 0.0                  | 72384.1            | 0.0             |
| 5 - Franchised Bus (DD)                  |          | 15     | 0.0                  | 1265799.5          | 0.0             |
| 6 - Motorcycles (MC)                     |          | 16     | 1317946.8            | 0.0                | 0.0             |
| 7 - <placeholder (p1)=""></placeholder>  |          | 17     | 0.0                  | 0.0                | 0.0             |
| 8 - <placeholder (p2)=""></placeholder>  |          | 18     | 0.0                  | 0.0                | 0.0             |
| 9 - <placeholder (p3)=""></placeholder>  |          | 19     | 0.0                  | 0.0                | 0.0             |
| 0 - <placeholder (p4)=""></placeholder>  |          | 20     | 0.0                  | 0.0                | 0.0             |
| .1 - <placeholder (p5)=""></placeholder> |          | 21     | 0.0                  | 0.0                | 0.0             |
|                                          |          |        |                      |                    |                 |
|                                          |          | 38     | 1                    | - 1                |                 |

### 2030 VKT (After VKT Edit)

| tal VKT for                                                                                                  | area                        |                                       |        | Copy wit             | h Headings           | Paste Data On |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|--------|----------------------|----------------------|---------------|
|                                                                                                              | Hong Kong SAR               |                                       |        |                      |                      |               |
| iting Mode                                                                                                   |                             |                                       | E      | Editing VKT (vehicle | e km traveled per we | ekday)        |
| [otal VKT ]                                                                                                  | By Vehicle Class By Vehicle | e and Fuel                            | BuVeh  | icle/Fuel/Hour       |                      |               |
|                                                                                                              |                             |                                       | 3, 101 | Fuel (1=P            | etrol/2=Diesel/3     | =LPG)         |
|                                                                                                              |                             |                                       |        | Tuci (T              | 2                    | 3             |
| 1 - Private 0                                                                                                | Cars (PC)                   |                                       | 1      | 1609000.0            | 171471.0             | 0.0           |
| 2 · Taxi                                                                                                     |                             |                                       | 2      | 0.0                  | 0.0                  | 7665955.0     |
| 3 - Light Go                                                                                                 | ods Vehicles<=2.5t          |                                       | 3      | 109.9                | 74275.4              | 0.0           |
| 4 - Lt Good                                                                                                  | s Vehicles 2.5-3.5t         |                                       | 4      | 67129.2              | 3549671.3            | 0.0           |
| 5 - Light Go                                                                                                 | ods Vehicles>3.5t           | les>1                                 | 5      | 0.0                  | 2547736.5            | 0.0           |
| 6 - Medium                                                                                                   | Heavy Goods Vehic           |                                       | 6      | 0.0                  | 1055561.3            | 0.0           |
| 7 - Medium                                                                                                   | Heavy Goods Vehicles>1      |                                       | 7      | 0.0                  | 2849234.3            | 0.0           |
| 8 - Public Li                                                                                                | ight Buses                  |                                       | 8      | 0.0                  | 485980.8             | 815425.1      |
| 9 - Private L                                                                                                | .ight Bus ≺=3.5t            | 2                                     | 9      | 60387.8              | 41022.6              | 0.0           |
| 0 - Private L                                                                                                | ight Bus >3.5t              | las                                   | 10     | 105.6                | 183583.6             | 49542.4       |
| 1 - Non-fran                                                                                                 | ichised Bus<=6.4t           | le                                    | 11     | 0.0                  | 347714.9             | 0.0           |
| 2 - Non-fran                                                                                                 | ichised Bus 6.4-15t         | hic                                   | 12     | 0.0                  | 239203.8             | 0.0           |
| 3 - Non-fran                                                                                                 | ichised Bus >15t            | N°                                    | 13     | 0.0                  | 343950.8             | 0.0           |
| 4 - Franchis                                                                                                 | ed Bus (SD)                 |                                       | 14     | 0.0                  | 72384.1              | 0.0           |
| 5 - Franchis                                                                                                 | ed Bus (DD)                 |                                       | 15     | 0.0                  | 1265799.5            | 0.0           |
| 6 - Motorcy                                                                                                  | cles (MC)                   |                                       | 16     | 1317946.8            | 0.0                  | 0.0           |
| 7 - <placeh< td=""><td>older (P1)&gt;</td><td></td><td>17</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | older (P1)>                 |                                       | 17     | 0.0                  | 0.0                  | 0.0           |
| B - < Placeh                                                                                                 | older (P2)>                 |                                       | 18     | 0.0                  | 0.0                  | 0.0           |
| 3 - <placeh< td=""><td>older (P3)&gt;</td><td></td><td>19</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | older (P3)>                 |                                       | 19     | 0.0                  | 0.0                  | 0.0           |
| 0 - <placeh< td=""><td>older (P4)&gt;</td><td></td><td>20</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | older (P4)>                 |                                       | 20     | 0.0                  | 0.0                  | 0.0           |
| I - <placeh< td=""><td>older (P5)&gt;</td><td></td><td>21</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | older (P5)>                 |                                       | 21     | 0.0                  | 0.0                  | 0.0           |
|                                                                                                              |                             |                                       | 8      |                      |                      |               |
|                                                                                                              |                             |                                       |        |                      |                      |               |
|                                                                                                              | 1                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | 1                    | 1                    |               |

## Exercise #5c: Changing VKT -Comparison of #5a and #5b Output

- Problem: determine difference in NOx running and starting exhaust emissions output from Exercises #5a and #5b for petrol private cars.
- Purpose: examine results from alternate VKT edit approaches
- Extract/compare NOx running and starting exhaust emissions from Text/\*.CSV. Use values for the day.
  - Note: day is at bottom of CSV after results by hour
  - Note: you'll need to add results for NCAT and CAT

## Exercise #5c: Solution

| Process                          | Base       | #5a: Pop-adjusted<br>VKT | #5b: VKT direct |
|----------------------------------|------------|--------------------------|-----------------|
| Vehicles                         | 783,924    | 57,629                   | 783,924         |
| VKT                              | 21,887,260 | 1,609,000                | 1,609,000       |
| Trips                            | 1,176,004  | 86,452                   | 1,176,004       |
| NOx Run Exhaust<br>(tonne/day)   | 0.2273     | 0.0167                   | 0.0167          |
| Nox Start Exhaust<br>(tonne/day) | 0.0441     | 0.0032                   | 0.0441          |

### Notes:

Results show how the model adjusted trips in Exercise #5a, thus, starting exhaust as well. Running exhaust emissions do not differ.

Exercise #5b shows it is possible to directly input VKT into EMFAC-HK; however, it is generally not recommended to do this independent of vehicle population because of the desire to properly estimate start and evaporative emissions tied to the size of the vehicle fleet.

## Exercise #6: Changing Trips

- Context: If Hong Kong institutes a new Transportation Control Measure (TCM) that reduces trips for petrol Private Cars in 2015 to 250,000 trips per day. The planner is then asked to estimate the potential emission reductions from this new TCM. There are two potential methods for doing this analysis and both are examined in this Exercise.
  - 1) Adjust the population to match desired trips (i.e., "conformity" approach);
  - 2) Directly alter via the Trips GUI
  - If VKT only is changed, the model alters number of trips/starts in order to match VKT.
- This Exercise will be conducted in two phases:
  - 6a: "conformity" adjustment
  - 6b: direct trips adjustment

## Exercise #6a: Changing Trips ("Conformity" Approach)

- Problem: Determine emissions in 2030 for PC petrol given forecasted trips of 250,000 trips/day.
- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: day
  - Pollutants: PM<sub>10</sub>, VOC
- Trips for PC petrol cars = 250,000 trips/day
- Use "conformity" approach: adjust population to match desired trips

## Exercise #6a: Notes

- Determine Population Adjustment to Match Trips
  - use "base" population and trips for vehicle class and fuel (PC petrol) for 2030.
    - Enter scenario data in Input 1 screen
    - Edit Program Constants
    - Advance to Population Screen
      - Tab By Vehicle and Fuel:
      - PC petrol population? (Vehicle Class 1, Fuel=1):
    - Advance to Trips Screen
      - Tab By Vehicle and Fuel:
      - PC petrol trips (Vehicle Class=1, Fuel=1):
  - Determine Trips adjustment factor?
- Multiply population by trips adjustment factor:

### Exercise #6a: Base Case Values

### 2030 Population by Fuel 783,924 vehicles (gas/petrol)

| Hong Kong SAR                             |             |                                | Copy with             | Headings            | Paste Data Only |  |  |  |  |
|-------------------------------------------|-------------|--------------------------------|-----------------------|---------------------|-----------------|--|--|--|--|
| diting Mode                               |             | Editing                        | Cal Pop (registered v | ehicles with adjust | ments)          |  |  |  |  |
| Total Cal Pop   By Vehicle Class   By Veh | icle and Fu | el Nu V                        | ehicle/Fuel/Age       |                     |                 |  |  |  |  |
|                                           |             | Fuel (1=Petrol/2=Diesel/3=LPG) |                       |                     |                 |  |  |  |  |
|                                           |             |                                | 1                     | 2                   | 3               |  |  |  |  |
| 01 - Private Cars (PC)                    |             |                                | 783924.3              | 6113.0              | 0.0             |  |  |  |  |
| 02 - Taxi                                 |             | 2                              | 0.0                   | 0.0                 | 18193.0         |  |  |  |  |
| 03 - Light Goods Vehicles<=2.5t           |             | 3                              | 1.9                   | 1002.7              | 0.0             |  |  |  |  |
| 04 - Lt Goods Vehicles 2.5-3.5t           |             | 4                              | 1057.4                | 53816.4             | 0.0             |  |  |  |  |
| 05 - Light Goods Vehicles>3.5t            |             | 5                              | 0.0                   | 26652.7             | 0.0             |  |  |  |  |
| 06 - Medium _Heavy Goods Vehic            |             | 6                              | 0.0                   | 12730.9             | 0.0             |  |  |  |  |
| 07 · Medium_Heavy Goods Vehicles>1        |             | 7                              | 0.0                   | 34347.2             | 0.0             |  |  |  |  |
| 08 - Public Light Buses                   | s           | 8                              | 0.0                   | 1622.9              | 2723.1          |  |  |  |  |
| 09 - Private Light Bus <=3.5t             |             | 9                              | 631.6                 | 404.4               | 0.0             |  |  |  |  |
| 10 - Private Light Bus >3.5t              | Clas        | 10                             | 2.4                   | 2340.0              | 667.6           |  |  |  |  |
| 11 - Non-franchised Bus<=6.4t             | le          | 11                             | 0.0                   | 2932.0              | 0.0             |  |  |  |  |
| 12 - Non-franchised Bus 6.4-15t           | ehic        | 12                             | 0.0                   | 2054.0              | 0.0             |  |  |  |  |
| 13 - Non-franchised Bus >15t              | A           | 13                             | 0.0                   | 2958.0              | 0.0             |  |  |  |  |
| 14 - Franchised Bus (SD)                  |             | 14                             | 0.0                   | 388.0               | 0.0             |  |  |  |  |
| 15 - Franchised Bus (DD)                  |             | 15                             | 0.0                   | 5403.0              | 0.0             |  |  |  |  |
| 16 - Motorcycles (MC)                     |             | 16                             | 70665.1               | 0.0                 | 0.0             |  |  |  |  |
| 17 · <placeholder (p1)=""></placeholder>  |             | 17                             | 0.0                   | 0.0                 | 0.0             |  |  |  |  |
| 18 - <placeholder (p2)=""></placeholder>  |             | 18                             | 0.0                   | 0.0                 | 0.0             |  |  |  |  |
| 13 - < Flaceholder (F3)>                  |             | 19                             | 0.0                   | 0.0                 | 0.0             |  |  |  |  |
| 20 - < Placeholder (P4)>                  |             | 20                             | 0.0                   | 0.0                 | 0.0             |  |  |  |  |
| 21 · < Flaceholder (F5)>                  |             | 21                             | 0.0                   | 0.0                 | 0.0             |  |  |  |  |

### 2030 Trips by Fuel 1,176,004 trips (gas/petrol)

| Total Trips-pe                                                                                                 | r-Day for area              |           |         | Copy with        | Headings              | Paste Data Onl |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|---------|------------------|-----------------------|----------------|
|                                                                                                                | Hong Kong SAR               |           |         |                  |                       |                |
| Editing Mode                                                                                                   |                             |           | -       | Editing Trips-pe | r-Day (starts per wee | ekday)         |
| Total Trips-                                                                                                   | per-Day By Vehicle Class By | Vehicle a | nd Fuel | B Vehicle/Fuel/H | our                   |                |
|                                                                                                                |                             | $\square$ |         | Fuel (1=Pe       | trol/2=Diesel/3=      | LPG)           |
|                                                                                                                |                             |           |         | 1                | 2                     | 3              |
| 01 - Private                                                                                                   | Cars (PC)                   |           | 1       | 1176004.1        | 9170.4                | 0.0            |
| 02 - Taxi                                                                                                      |                             |           | 2       | 0.0              | 0.0                   | 72779.3        |
| 03 - Light Go                                                                                                  | oods Vehicles<=2.5t         |           | 3       | 7.8              | 4011.3                | 0.0            |
| 04 - Lt Good                                                                                                   | s Vehicles 2.5-3.5t         |           | 4       | 4230.2           | 215287.3              | 0.0            |
| 05 - Light Go                                                                                                  | oods Vehicles>3.5t          |           | 5       | 0.0              | 106610.7              | 0.0            |
| 06 - Medium                                                                                                    | _Heavy Goods Vehic          |           | 6       | 0.0              | 50918.7               | 0.0            |
| 07 - Medium                                                                                                    | _Heavy Goods Vehicles>1     |           | 7       | 0.0              | 137375.0              | 0.0            |
| 08 - Public L                                                                                                  | ight Buses                  |           | 8       | 0.0              | 6491.0                | 10891.2        |
| 09 - Private I                                                                                                 | Light Bus <=3.5t            | S         | 9       | 1768.4           | 1132.1                | 0.0            |
| 10 - Private I                                                                                                 | Light Bus >3.5t             | Clas      | 10      | 6.6              | 6551.4                | 1869.2         |
| 11 - Non-fram                                                                                                  | nchised Bus<=6.4t           | le (      | 11      | 0.0              | 11729.2               | 0.0            |
| 12 - Non-fran                                                                                                  | nchised Bus 6.4-15t         | hic       | 12      | 0.0              | 8216.8                | 0.0            |
| 13 - Non-fran                                                                                                  | nchised Bus >15t            | Ve        | 13      | 0.0              | 11833.2               | 0.0            |
| 14 - Franchis                                                                                                  | sed Bus (SD)                |           | 14      | 0.0              | 4140.4                | 0.0            |
| 15 - Franchis                                                                                                  | sed Bus (DD)                |           | 15      | 0.0              | 57632.7               | 0.0            |
| 16 - Motorcy                                                                                                   | cles (MC)                   |           | 16      | 424032.8         | 0.0                   | 0.0            |
| 17 - <placeh< td=""><td>iolder (P1)&gt;</td><td></td><td>17</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | iolder (P1)>                |           | 17      | 0.0              | 0.0                   | 0.0            |
| 18 - <placeh< td=""><td>older (P2)&gt;</td><td></td><td>18</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<>  | older (P2)>                 |           | 18      | 0.0              | 0.0                   | 0.0            |
| 19 - <placeh< td=""><td>iolder (P3)&gt;</td><td></td><td>19</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<> | iolder (P3)>                |           | 19      | 0.0              | 0.0                   | 0.0            |
| 20 - <placeh< td=""><td>older (P4)&gt;</td><td></td><td>20</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<>  | older (P4)>                 |           | 20      | 0.0              | 0.0                   | 0.0            |
| 21 - <placeh< td=""><td>older (P5)&gt;</td><td></td><td>21</td><td>0.0</td><td>0.0</td><td>0.0</td></placeh<>  | older (P5)>                 |           | 21      | 0.0              | 0.0                   | 0.0            |
|                                                                                                                |                             |           |         |                  |                       |                |
|                                                                                                                |                             |           |         |                  |                       |                |
|                                                                                                                | Annlu                       | C         | ancel   |                  | Done                  |                |
|                                                                                                                | 0999                        |           | uniosi  |                  | DONO                  |                |

# Exercise #6a: Trips Adjustment using Population

- Find "base" population and trips for vehicle class and fuel (PC petrol) for 2030:
  - Population (2030): 783,924 vehicles
  - Trips (2030 base): 1,176,004 trips
- Determine Trips adjustment factor:
   250,000/ 1,176,004 = 0.2126
- Multiply population by factor:

- 783,924 x 0.2126 = 166,650 vehicles

## Exercise #6a: Population Edits

### 2030 Population (Base Case)

| otal Cal Pop for area                     |            |         | Copy with             | Headings              | Paste Data Only |
|-------------------------------------------|------------|---------|-----------------------|-----------------------|-----------------|
| Hong Kong SAH                             |            |         |                       |                       |                 |
| diting Mode                               |            | Editing | Cal Pop (registered v | vehicles with adjustr | nents)          |
| Total Cal Pop   By Vehicle Class By Vehic | cle and Fu | el ByV  | ehicle/Fuel/Age       |                       |                 |
|                                           |            | /       | Fuel (1=Pe            | trol/2=Diesel/3=      | LPG)            |
|                                           |            |         | 1                     | 2                     | 3               |
| )1 - Private Cars (PC)                    |            | 1       | 783924.3              | 6113.0                | 0.0             |
| 12 · Taxi                                 |            | 2       | 0.0                   | 0.0                   | 18193.0         |
| 3 - Light Goods Vehicles<=2.5t            |            | 3       | 1.9                   | 1002.7                | 0.0             |
| 4 - Lt Goods Vehicles 2.5-3.5t            |            | 4       | 1057.4                | 53816.4               | 0.0             |
| 5 - Light Goods Vehicles>3.5t             |            | 5       | 0.0                   | 26652.7               | 0.0             |
| 6 - Medium _Heavy Goods Vehic             |            | 6       | 0.0                   | 12730.9               | 0.0             |
| 7 · Medium_Heavy Goods Vehicles>1         |            | 7       | 0.0                   | 34347.2               | 0.0             |
| 8 - Public Light Buses                    |            | 8       | 0.0                   | 1622.9                | 2723.1          |
| 9 - Private Light Bus <=3.5t              |            | 9       | 631.6                 | 404.4                 | 0.0             |
| 0 - Private Light Bus >3.5t               | Clas       | 10      | 2.4                   | 2340.0                | 667.6           |
| 1 · Non-franchised Bus<=6.4t              | le         | 11      | 0.0                   | 2932.0                | 0.0             |
| 2 - Non-franchised Bus 6.4-15t            | hic        | 12      | 0.0                   | 2054.0                | 0.0             |
| 3 - Non-franchised Bus >15t               | Ve         | 13      | 0.0                   | 2958.0                | 0.0             |
| 4 · Franchised Bus (SD)                   |            | 14      | 0.0                   | 388.0                 | 0.0             |
| 5 - Franchised Bus (DD)                   |            | 15      | 0.0                   | 5403.0                | 0.0             |
| 6 · Motorcycles (MC)                      |            | 16      | 70665.1               | 0.0                   | 0.0             |
| 7 · <placeholder (p1)=""></placeholder>   |            | 17      | 0.0                   | 0.0                   | 0.0             |
| 8 - <placeholder (p2)=""></placeholder>   |            | 18      | 0.0                   | 0.0                   | 0.0             |
| 9 - <placeholder (p3)=""></placeholder>   |            | 19      | 0.0                   | 0.0                   | 0.0             |
| U - <placeholder (p4)=""></placeholder>   |            | 20      | 0.0                   | 0.0                   | 0.0             |
| 1 · <placeholder [p5]=""></placeholder>   |            | 21      | 0.0                   | 0.0                   | 0.0             |
|                                           |            |         |                       |                       |                 |
|                                           | _          |         |                       |                       |                 |
| 1                                         |            |         | 1                     | 1                     |                 |

### 2030 Population (Edited for Trips Match)

|                                                 |        |            | Copy with            | Headings              | Paste Data |
|-------------------------------------------------|--------|------------|----------------------|-----------------------|------------|
| Hong Kong SAR                                   |        |            |                      |                       |            |
| ing Mode                                        |        | Editing Ca | al Pop (registered v | vehicles with adjustr | nents)     |
| otal Cal Pop By Vehicle Class By Vehicle ar     | nd Fue | ByVeh      | nicle/Fuel/Age       |                       |            |
|                                                 |        | 107.0      | Fuel (1=Pe           | trol/2=Diesel/3=      | (PG)       |
|                                                 |        |            | 1                    | 2                     | 3          |
| Private Cars (PC)                               |        | 1          | 166650.0             | 6113.0                | 0.0        |
| - Taxi                                          |        | 2          | 0.0                  | 0.0                   | 18193.0    |
| - Light Goods Vehicles<=2.5t                    |        | 3          | 1.9                  | 1002.7                | 0.0        |
| - Lt Goods Vehicles 2.5-3.5t                    | -      | 4          | 1057.4               | 53816.4               | 0.0        |
| - Light Goods Vehicles>3.5t                     |        | 5          | 0.0                  | 26652.7               | 0.0        |
| - Medium _ Heavy Goods Vehic                    |        | 6          | 0.0                  | 12730.9               | 0.0        |
| - Medium_Heavy Goods Vehicles>1                 |        | 7          | 0.0                  | 34347.2               | 0.0        |
| Public Light Buses                              |        | 8          | 0.0                  | 1622.9                | 2723.1     |
| <ul> <li>Private Light Bus &lt;=3.5t</li> </ul> | 5      | 9          | 631.6                | 404.4                 | 0.0        |
| - Private Light Bus >3.5t                       | las    | 10         | 2.4                  | 2340.0                | 667.6      |
| <ul> <li>Non-franchised Bus&lt;=6.4t</li> </ul> | le     | 11         | 0.0                  | 2932.0                | 0.0        |
| Non-franchised Bus 6.4-15t                      | hic    | 12         | 0.0                  | 2054.0                | 0.0        |
| - Non-franchised Bus >15t                       | Ve     | 13         | 0.0                  | 2958.0                | 0.0        |
| - Franchised Bus (SD)                           |        | 14         | 0.0                  | 388.0                 | 0.0        |
| <ul> <li>Franchised Bus (DD)</li> </ul>         |        | 15         | 0.0                  | 5403.0                | 0.0        |
| - Motorcycles (MC)                              |        | 16         | 70665.1              | 0.0                   | 0.0        |
| < <placeholder (p1)=""></placeholder>           |        | 17         | 0.0                  | 0.0                   | 0.0        |
| < <placeholder (p2)=""></placeholder>           |        | 18         | 0.0                  | 0.0                   | 0.0        |
| < <placeholder (p3)=""></placeholder>           |        | 19         | 0.0                  | 0.0                   | 0.0        |
| < <placeholder (p4)=""></placeholder>           |        | 20         | 0.0                  | 0.0                   | 0.0        |
| <ul> <li>Placeholder (P5)</li> </ul>            |        | 21         | 0.0                  | 0.0                   | 0.0        |

### Exercise #6a: Verify Trips Adjustment

### 2030 Trips (Base Case)

### Editing Trips-per-Day data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title Total Trips-per-Day for area Copy with Headings Paste Data Only Hong Kong SAR Editing Mode Editing Trips-per-Day (starts per weekday) By Vehicle and Fuel Total Trips-per-Day By Vehicle Class y Vehicle/Fuel/Hour Fuel (1=Petrol/2=Diesel/3=LPG) 2 3 01 · Private Cars (PC) 1176004.1 9170.4 0.0 02 · Taxi 0.0 2 0.0 72779.3 03 - Light Goods Vehicles<=2.5t 3 7.8 4011.3 0.0 04 - Lt Goods Vehicles 2.5-3.5t 4 4230.2 215287.3 0.0 05 - Light Goods Vehicles>3.5t 5 0.0 106610.7 0.0 06 - Medium Heavy Goods Vehic 6 0.0 50918.7 0.0 07 · Medium \_ Heavy Goods Vehicles>1 7 0.0 137375.0 0.0 08 - Public Light Buses 8 0 0 6491.0 10891.2 09 - Private Light Bus <=3.5t 9 1768.4 1132.1 0.0 Vehicle Class 10 - Private Light Bus > 3.5t 10 6.6 6551.4 1869.2 11 · Non-franchised Bus<=6.4t 11 11729.2 0.0 0.0 12 - Non-franchised Bus 6.4-15t 12 8216.8 0.0 0.0 13 - Non-franchised Bus >15t 13 11833.2 0.0 0.0 14 - Franchised Bus (SD) 14 0.0 4140.4 0.0 15 - Franchised Bus (DD) 15 57632.7 0.0 0.0 16 · Motorcycles (MC) 16 424032.8 0.0 0.0 17 · < Placeholder (P1)> 17 0.0 0.0 0.0 18 - < Placeholder (P2)> 18 0.0 0.0 0.0 19 · < Placeholder (P3)> 19 0.0 0.0 0.0 20 · <Placeholder (P4)> 20 0.0 0.0 0.0 21 - <Placeholder (P5)> 21 0.0 0.0 0.0 Cancel Done

### 2030 Trips (After Pop Edit)

|                         |               | Copy with         | Headings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paste Data On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | -             | Editing Trips-pe  | r-Day (starts per wee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ekday)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vehicle a               | nd Fuel       | By Vehicle/Fuel/H | our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\overline{\mathbf{N}}$ |               | Fuel (1=Pe        | trol/2=Diesel/3=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LPG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |               |                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |               | 250000.0          | 9170.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 2             | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72779.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 3             | 7.8               | 4011.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 4             | 4230.2            | 215287.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 5             | 0.0               | 106610.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 6             | 0.0               | 50918.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 7             | 0.0               | 137375.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 8             | 0.0               | 6491.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10891.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                       | 9             | 1768.4            | 1132.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| las                     | 10            | 6.6               | 6551.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1869.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| le                      | 11            | 0.0               | 11729.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hic                     | 12            | 0.0               | 8216.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ve                      | 13            | 0.0               | 11833.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 14            | 0.0               | 4140.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 15            | 0.0               | 57632.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 16            | 424032.8          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 17            | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 18            | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 19            | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 20            | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 21            | 0.0               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | Vehicle Class | Vehicle and Fuel  | Licpy with<br>Editing Trips-pe<br>Vehicle and Fuel<br>By Vehicle/Fuel/H<br>Fuel (1=Pe<br>250000.0<br>2 0.0<br>3 7.8<br>4 4230.2<br>5 0.0<br>6 0.0<br>7 0.0<br>8 0.0<br>9 1768.4<br>10 6.6<br>11 0.0<br>12 0.0<br>13 0.0<br>14 0.0<br>15 0.0<br>16 424032.8<br>17 0.0<br>18 0.0<br>19 0.0<br>20 0.0<br>20 0.0<br>20 0.0<br>19 0.0<br>19 0.0<br>20 0.0<br>20 0.0<br>19 0.0<br>10 | Lopy with Headings           Editing Trips-per-Day (starts per were           Vehicle and Fuel         By Vehicle/Fuel/Hour           Fuel (1=Petrol/2=Diesel/3=           1         2           2         0.0           3         7.8           4         4230.2           5         0.0           3         7.8           4         4230.2           5         0.0           10         6.6           9         1768.4           11         0.0           12         0.0           13         0.0           14         0.0           15         0.0           17         0.0           18         0.0           19         0.0           12         0.0           13         0.0           14         0.0           17         0.0           18         0.0           19         0.0           10         0.0 |

## Exercise #6a: VKT Adjustment after Population Adjustment

### 2030 VKT (Base Case)

### 2030 VKT (After Pop Edit)

| Editing Mode Total VKT By Vehicle Class By Vehicle and Fuel 01 - Private Cars (PC) 02 - Taxi 03 - Light Goods Vehicles <= 2.5t 04 - Lt Goods Vehicles 2.5-3.5t 05 - Light Goods Vehicles >3.5t 06 - Medium ,Heavy Goods Vehicles >1 08 - Public Light Buses 09 - Private Light Bus <= 3.5t 10 - Private Light Bus <= 3.5t 11 - Non-franchised Bus <= 6.4t 12 - Non-franchised Bus <= 6.4t | E<br>By Vehi<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | diting VKT (vehicle<br>icle/Fuel/Hour<br>1<br>21887260.0<br>0.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                    | trol/2=Diesel/3<br>2<br>171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3  | =LPG)<br>3<br>0.0<br>7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Editing Mode<br>Total VKT<br>01 - Private C<br>02 - Taxi<br>03 - Light Gor<br>04 - Lt Goods<br>05 - Medium |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Editing Mode       Total VKT     By Vehicle Class       01 - Private Cars (PC)       02 - Taxi       03 - Light Goods Vehicles<=2.5t                                                                                                                                                                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | atting VKT (venicle<br>icle/Fuel/Hour)<br>Fuel (1=P<br>1<br>21887260.0<br>0.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                               | etrol/2=Diesel/3<br>2<br>171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3 | =LPG)<br>3<br>0.0<br>7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 01 - Private C<br>02 - Taxi<br>03 - Light Gor<br>04 - Lt Goods<br>05 - Marting                             |
| Total VKT     By Vehicle Class     By Vehicle and Fuel       01 - Private Cars (PC)     02 - Taxi       03 - Light Goods Vehicles<=2.5t                                                                                                                                                                                                                                                   | 2 3 4 5 6 7 8 9                                           | Fuel/Hour           Fuel (1=P           1           21887260.0           0.0           109.9           67129.2           0.0           0.0           0.0           0.0           0.0           0.0 | etrol/2=Diesel/3<br>2<br>171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3 | =LPG)<br>3<br>0.0<br>7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | Total VKT<br>01 - Private C<br>02 - Taxi<br>03 - Light Gov<br>04 - Lt Goods<br>05 - Light Gov              |
| 01 - Private Cars (PC)         02 - Taxi           03 - Light Goods Vehicles<=2.5t                                                                                                                                                                                                                                                                                                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | Fuel (1=P<br>1<br>21887260.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                | etrol/2=Diesel/3<br>2<br>171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3 | =LPG) 3 0.0 7665955.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                       | 01 - Private C<br>02 - Taxi<br>03 - Light Gov<br>04 - Lt Goods<br>05 - Light Gov                           |
| 01 - Private Cars (PC)         02 - Taxi           03 - Light Goods Vehicles <= 2.5t                                                                                                                                                                                                                                                                                                      | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | 1<br>21887260.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                    | 2<br>171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3                     | 3<br>0.0<br>7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                        | 01 - Private C<br>02 - Taxi<br>03 - Light Gor<br>04 - Lt Goods<br>05 - Light Gor                           |
| 01 - Private Cars (PC)           02 - Taxi           03 - Light Goods Vehicles <= 2.5t                                                                                                                                                                                                                                                                                                    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | 21887260.0<br>0.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                  | 171471.0<br>0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3                          | 0.0<br>7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 01 - Private C<br>02 - Taxi<br>03 - Light Goo<br>04 - Lt Goods<br>05 - Light Goo                           |
| 02 - Taxi<br>03 - Light Goods Vehicles <= 2.5t<br>04 - Lt Goods Vehicles 2.5-3.5t<br>05 - Light Goods Vehicles 3.3 5t<br>06 - Medium _Heavy Goods Vehic<br>07 - Medium _Heavy Goods Vehicles >1<br>08 - Public Light Buss<br>09 - Private Light Buss <= 3.5t<br>10 - Private Light Bus <= 3.5t<br>11 - Non-franchised Bus <= 6.4t<br>12 - Non-franchised Bus 6.4-15t                      | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                      | 0.0<br>109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                | 0.0<br>74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3                                      | 7665955.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 02 - Taxi<br>03 - Light God<br>04 - Lt Goods<br>05 - Light God                                             |
| 03 - Light Goods Vehicles <= 2.5t<br>04 - Lt Goods Vehicles 2.5-3.5t<br>05 - Light Goods Vehicles 3.3.5t<br>06 - Medium _Heavy Goods Vehic<br>07 - Medium _Heavy Goods Vehicles >1<br>08 - Public Light Buses<br>09 - Private Light Bus <= 3.5t<br>10 - Private Light Bus <= 3.5t<br>11 - Non-franchised Bus <= 6.4t<br>12 - Non-franchised Bus 6.4-15t                                   | 3<br>4<br>5<br>6<br>7<br>8<br>9                           | 109.9<br>67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                       | 74275.4<br>3549671.3<br>2547736.5<br>1055561.3<br>2849234.3                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                 | 03 - Light Goo<br>04 - Lt Goods<br>05 - Light Goo                                                          |
| 04 - Lt Goods Vehicles 2.5-3.5t<br>05 - Light Goods Vehicles>3.5t<br>06 - Medium _Heavy Goods Vehicles>1<br>07 - Medium _Heavy Goods Vehicles>1<br>08 - Public Light Buses<br>09 - Private Light Bus <=3.5t<br>10 - Private Light Bus <3.5t<br>11 - Non-franchised Bus <=6.4t<br>12 - Non-franchised Bus 6.4.15t                                                                          | 4<br>5<br>6<br>7<br>8<br>9                                | 67129.2<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                | 3549671.3<br>2547736.5<br>1055561.3<br>2849234.3                                                        | 0.0<br>0.0<br>0.0                                                               | 04 - Lt Goods<br>05 - Light Goo                                                                            |
| 05 - Light Goods Vehicles>3.5t<br>06 - Medium _Heavy Goods Vehicles>1<br>07 - Medium _Heavy Goods Vehicles>1<br>08 - Public Light Buses<br>09 - Private Light Bus <=3.5t<br>10 - Private Light Bus >3.5t<br>11 - Non-franchised Bus <=6.4t<br>12 - Non-franchised Bus 6.4-15t<br>14                                                                                                       | 5<br>6<br>7<br>8<br>9                                     | 0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                           | 2547736.5<br>1055561.3<br>2849234.3                                                                     | 0.0<br>0.0<br>0.0                                                               | 05 - Light Goo                                                                                             |
| 06 - Medium_Heavy Goods Vehic<br>07 - Medium_Heavy Goods Vehicles>1<br>08 - Public Light Buses<br>09 - Private Light Bus <=3.5t<br>10 - Private Light Bus >3.5t<br>11 - Non-franchised Bus <=6.4t<br>12 - Non-franchised Bus 6.4-15t<br>14                                                                                                                                                | 6<br>7<br>8<br>9                                          | 0.0<br>0.0<br>0.0                                                                                                                                                                                  | 1055561.3<br>2849234.3                                                                                  | 0.0                                                                             | 06 - Medium                                                                                                |
| 07 - Medium, Heavy Goods Vehicles>1           08 - Public Light Busses           09 - Private Light Bus <=3.5t                                                                                                                                                                                                                                                                            | 7<br>8<br>9                                               | 0.0                                                                                                                                                                                                | 2849234.3                                                                                               | 0.0                                                                             | 00 · Mediani                                                                                               |
| 08 - Public Light Buses         99 - Private Light Bus <=3.5t                                                                                                                                                                                                                                                                                                                             | 8                                                         | 0.0                                                                                                                                                                                                |                                                                                                         |                                                                                 | 07 · Medium                                                                                                |
| 09 - Private Light Bus <=3.5t                                                                                                                                                                                                                                                                                                                                                             | 9                                                         |                                                                                                                                                                                                    | 485980.8                                                                                                | 815425.1                                                                        | 08 - Public Lig                                                                                            |
| 10 - Private Light Bus > 3.5t         9           11 - Non-franchised Bus         -6.4t           12 - Non-franchised Bus 6.4-15t         9                                                                                                                                                                                                                                               |                                                           | 60387.8                                                                                                                                                                                            | 41022.6                                                                                                 | 0.0                                                                             | 09 - Private L                                                                                             |
| 11 - Non-franchised Bus<=6.4t<br>12 - Non-franchised Bus 6.4-15t                                                                                                                                                                                                                                                                                                                          | 10                                                        | 105.6                                                                                                                                                                                              | 183583.6                                                                                                | 49542.4                                                                         | 10 - Private L                                                                                             |
| 12 - Non-franchised Bus 6.4-15t                                                                                                                                                                                                                                                                                                                                                           | 11                                                        | 0.0                                                                                                                                                                                                | 347714.9                                                                                                | 0.0                                                                             | 11 - Non-fran                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                        | 0.0                                                                                                                                                                                                | 239203.8                                                                                                | 0.0                                                                             | 12 - Non-fran                                                                                              |
| 13 - Non-franchised Bus >15t 🔰 🎽                                                                                                                                                                                                                                                                                                                                                          | 13                                                        | 0.0                                                                                                                                                                                                | 343950.8                                                                                                | 0.0                                                                             | 13 - Non-fran                                                                                              |
| 14 - Franchised Bus (SD)                                                                                                                                                                                                                                                                                                                                                                  | 14                                                        | 0.0                                                                                                                                                                                                | 72384.1                                                                                                 | 0.0                                                                             | 14 - Franchise                                                                                             |
| 15 - Franchised Bus (DD)                                                                                                                                                                                                                                                                                                                                                                  | 15                                                        | 0.0                                                                                                                                                                                                | 1265799.5                                                                                               | 0.0                                                                             | 15 - Franchise                                                                                             |
| 16 - Motorcycles (MC)                                                                                                                                                                                                                                                                                                                                                                     | 16                                                        | 1317946.8                                                                                                                                                                                          | 0.0                                                                                                     | 0.0                                                                             | 16 - Motorcyc                                                                                              |
| 17 - <placeholder (p1)=""></placeholder>                                                                                                                                                                                                                                                                                                                                                  | 17                                                        | 0.0                                                                                                                                                                                                | 0.0                                                                                                     | 0.0                                                                             | 17 - <placeho< td=""></placeho<>                                                                           |
| 18 - <placeholder (p2)=""></placeholder>                                                                                                                                                                                                                                                                                                                                                  | 18                                                        | 0.0                                                                                                                                                                                                | 0.0                                                                                                     | 0.0                                                                             | 18 - <placeho< td=""></placeho<>                                                                           |
| 19 - <placeholder (p3)=""></placeholder>                                                                                                                                                                                                                                                                                                                                                  | 19                                                        | 0.0                                                                                                                                                                                                | 0.0                                                                                                     | 0.0                                                                             | 19 - <placeho< td=""></placeho<>                                                                           |
| 20 - <placeholder (p4)=""></placeholder>                                                                                                                                                                                                                                                                                                                                                  | 20                                                        | 0.0                                                                                                                                                                                                | 0.0                                                                                                     | 0.0                                                                             | 20 - <placeho< td=""></placeho<>                                                                           |
| 21 - <placeholder (p5)=""></placeholder>                                                                                                                                                                                                                                                                                                                                                  | 21                                                        | 0.0                                                                                                                                                                                                | 0.0                                                                                                     | 0.0                                                                             | 21 - <placeho< td=""></placeho<>                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |                                                                                                                                                                                                    |                                                                                                         |                                                                                 |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | 1                                                                                                                                                                                                  | 1                                                                                                       |                                                                                 |                                                                                                            |

|                                          |          |       | Copy with           | h Headings         | Paste Data Only |
|------------------------------------------|----------|-------|---------------------|--------------------|-----------------|
| Hong Kong SAR                            |          |       |                     |                    |                 |
| diting Mode                              |          | E     | diting VKT (vehicle | km traveled per we | ekday)          |
| Total VKT By Vehicle Class By Vehicle    | and Fuel | P Veh | icle/Fuel/Hour      |                    |                 |
|                                          | K        |       | Fuel (1=P           | etrol/2=Diesel/3   | =LPG)           |
|                                          |          |       |                     | 2                  | 3               |
| 01 - Private Cars (PC)                   |          | 1     | 4652888.0           | 171471.0           | 0.0             |
| 02 - Taxi                                |          | 2     | 0.0                 | 0.0                | 7665955.0       |
| )3 - Light Goods Vehicles<=2.5t          |          | 3     | 109.9               | 74275.4            | 0.0             |
| 04 - Lt Goods Vehicles 2.5-3.5t          |          | 4     | 67129.2             | 3549671.3          | 0.0             |
| )5 - Light Goods Vehicles>3.5t           |          | 5     | 0.0                 | 2547736.5          | 0.0             |
| 06 - Medium _Heavy Goods Vehic           |          | 6     | 0.0                 | 1055561.3          | 0.0             |
| )7 · Medium_Heavy Goods Vehicles>1       |          | 7     | 0.0                 | 2849234.3          | 0.0             |
| 08 - Public Light Buses                  |          | 8     | 0.0                 | 485980.8           | 815425.1        |
| )9 - Private Light Bus <=3.5t            | Class    | 9     | 60387.8             | 41022.6            | 0.0             |
| 0 - Private Light Bus >3.5t              |          | 10    | 105.6               | 183583.6           | 49542.4         |
| 1 - Non-franchised Bus<=6.4t             | le       | 11    | 0.0                 | 347714.9           | 0.0             |
| 2 - Non-franchised Bus 6.4-15t           | hic      | 12    | 0.0                 | 239203.8           | 0.0             |
| 3 - Non-franchised Bus >15t              | A        | 13    | 0.0                 | 343950.8           | 0.0             |
| 4 - Franchised Bus (SD)                  |          | 14    | 0.0                 | 72384.1            | 0.0             |
| 5 - Franchised Bus (DD)                  |          | 15    | 0.0                 | 1265799.5          | 0.0             |
| 6 - Motorcycles (MC)                     |          | 16    | 1317946.8           | 0.0                | 0.0             |
| 7 - <placeholder (p1)=""></placeholder>  |          | 17    | 0.0                 | 0.0                | 0.0             |
| 18 - <placeholder (p2)=""></placeholder> |          | 18    | 0.0                 | 0.0                | 0.0             |
| 9 - <placeholder (p3)=""></placeholder>  |          | 19    | 0.0                 | 0.0                | 0.0             |
| 20 - < Placeholder (P4)>                 |          | 20    | 0.0                 | 0.0                | 0.0             |
| 21 · < Flaceholder (FDJ>                 |          | 21    | 0.0                 | 0.0                | 0.0             |

## Exercise #6b: Changing Trips (Directly)

- Problem: Determine emissions in 2030 for PC petrol (Vehicle Class 1) given a forecast of 250,000 trips/day.
- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2030
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: hourly
  - Pollutants: PM<sub>10</sub>, VOC
- Trips for PC petrol cars = 250,000
- Direct entry of new trips

## Exercise #6b: Editing Trips Screen

### 2030 Trips (Base Case)

### Editing Trips-per-Day data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title Total Trips-per-Day for area Copy with Headings Paste Data Only Hong Kong SAR Editing Mode Editing Trips-per-Day (starts per weekday) Total Trips-per-Day By Vehicle Class, By Vehicle and Fuel By Vehicle/Fuel/Hour Fuel (1=Petrol/2=Diesel/3=LPG) 1 2 3 01 - Private Cars (PC) 1 1176004.1 9170.4 0.0 02 · Taxi 2 0.0 72779.3 03 - Light Goods Vehicles<=2.5t 3 7.8 4011.3 0.0 04 - Lt Goods Vehicles 2.5-3.5t 4 4230.2 215287.3 0.0 05 · Light Goods Vehicles>3.5t 5 0.0 106610.7 0.0 06 - Medium Heavy Goods Vehic 6 0.0 50918.7 0.0 07 · Medium\_Heavy Goods Vehicles>1 7 0.0 137375.0 0.0 08 - Public Light Buses 8 0.0 6491.0 10891.2 09 - Private Light Bus <=3.5t 9 1768.4 1132.1 0.0 Vehicle Class 10 - Private Light Bus > 3.5t 10 6551.4 6.6 1869.2 11 · Non-franchised Bus<=6.4t 11 0.0 11729.2 0.0 12 · Non-franchised Bus 6.4-15t 12 0.0 8216.8 0.0 13 · Non-franchised Bus >15t 13 0.0 11833.2 0.0 14 - Franchised Bus (SD) 14 0.0 4140.4 0.0 15 - Franchised Bus (DD) 15 0.0 57632.7 0.0 16 - Motorcycles (MC) 16 424032.8 0.0 0.0 17 - < Placeholder (P1)> 17 0.0 0.0 0.0 18 - < Placeholder (P2)> 18 0.0 0.0 0.0 19 · < Placeholder (P3)> 19 0.0 0.0 0.0 20 · < Placeholder (P4)> 20 0.0 0.0 0.0 21 · <Placeholder (P5)> 21 0.0 0.0 0.0 Apply Cancel Done

### 2030 Trips (After Trips Edit)

| otal Trips-pe                                                                                                  | r-Day for area<br>Hong Kong SAR |           |         | Copy with         | Headings              | Paste Data On |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|---------|-------------------|-----------------------|---------------|
| diting Mode                                                                                                    |                                 |           |         | Editing Trips-pe  | r-Day (starts per wee | ekday)        |
| Total Trips-                                                                                                   | per-Day By Vehicle Class By     | Vehicle a | nd Fuel | By Vehicle/Fuel/H | our                   |               |
|                                                                                                                |                                 |           |         | Fuel (1=Pe        | etrol/2=Diesel/3=     | LPG)          |
|                                                                                                                |                                 |           |         |                   | 2                     | 3             |
| 01 - Private                                                                                                   | Cars (PC)                       |           | 6       | 250000.0          | 9170.4                | 0.0           |
| 12 - Taxi                                                                                                      |                                 |           | 2       | 0.0               | 0.0                   | 72779.3       |
| )3 - Light G                                                                                                   | oods Vehicles<=2.5t             |           | 3       | 7.8               | 4011.3                | 0.0           |
| )4 - Lt Good                                                                                                   | ds Vehicles 2.5-3.5t            |           | 4       | 4230.2            | 215287.3              | 0.0           |
| )5 - Light G                                                                                                   | oods Vehicles>3.5t              |           | 5       | 0.0               | 106610.7              | 0.0           |
| 06 - Medium                                                                                                    | _Heavy Goods Vehic              |           | 6       | 0.0               | 50918.7               | 0.0           |
| )7 - Medium                                                                                                    | _Heavy Goods Vehicles>1         |           | 7       | 0.0               | 137375.0              | 0.0           |
| 8 - Public L                                                                                                   | ight Buses                      |           | 8       | 0.0               | 6491.0                | 10891.2       |
| 9 - Private                                                                                                    | Light Bus <=3.5t                | 52        | 9       | 1768.4            | 1132.1                | 0.0           |
| 0 - Private                                                                                                    | Light Bus >3.5t                 | las       | 10      | 6.6               | 6551.4                | 1869.2        |
| 1 - Non-fra                                                                                                    | nchised Bus<=6.4t               | le        | 11      | 0.0               | 11729.2               | 0.0           |
| 2 - Non-fra                                                                                                    | nchised Bus 6.4-15t             | hic       | 12      | 0.0               | 8216.8                | 0.0           |
| 3 - Non-fra                                                                                                    | nchised Bus >15t                | Ve        | 13      | 0.0               | 11833.2               | 0.0           |
| 4 - Franchi                                                                                                    | sed Bus (SD)                    |           | 14      | 0.0               | 4140.4                | 0.0           |
| 5 - Franchi                                                                                                    | sed Bus (DD)                    |           | 15      | 0.0               | 57632.7               | 0.0           |
| 6 - Motorcy                                                                                                    | voles (MC)                      |           | 16      | 424032.8          | 0.0                   | 0.0           |
| 7 - < Placeł                                                                                                   | nolder (P1)>                    |           | 17      | 0.0               | 0.0                   | 0.0           |
| 8 - < Placel                                                                                                   | nolder (P2)>                    |           | 18      | 0.0               | 0.0                   | 0.0           |
| 9 - <placel< td=""><td>nolder (P3)&gt;</td><td></td><td>19</td><td>0.0</td><td>0.0</td><td>0.0</td></placel<>  | nolder (P3)>                    |           | 19      | 0.0               | 0.0                   | 0.0           |
| 20 - <placeł< td=""><td>nolder (P4)&gt;</td><td></td><td>20</td><td>0.0</td><td>0.0</td><td>0.0</td></placeł<> | nolder (P4)>                    |           | 20      | 0.0               | 0.0                   | 0.0           |
| 21 - <placeł< td=""><td>nolder (P5)&gt;</td><td></td><td>21</td><td>0.0</td><td>0.0</td><td>0.0</td></placeł<> | nolder (P5)>                    |           | 21      | 0.0               | 0.0                   | 0.0           |
|                                                                                                                |                                 |           |         |                   |                       |               |
|                                                                                                                |                                 |           |         |                   |                       |               |
|                                                                                                                | Applu                           | C         | ancel   |                   | Done                  |               |

Exercise #6c: Changing VKT -Comparison of #6a and #6b Output

- Problem: determine difference in NOx running and starting exhaust emissions output from Exercises #6a and #6b for PC petrol cars.
- Purpose: examine results from alternate trip edit approaches
- Extract/compare NOx running and starting exhaust emissions from Test/\*.CSV. Use values for the day.

- Note: you'll need to add results for NCAT and CAT

## Exercise #6c: Solution

| Process           | Base       | #6a: Pop-adjusted<br>Trips | #6b: Trips<br>direct |
|-------------------|------------|----------------------------|----------------------|
| Vehicles          | 783,924    | 166,650                    | 783,924              |
| VKT               | 21,887,260 | 465,2888                   | 21,887,260           |
| Trips             | 1,176,004  | 250,000                    | 250,000              |
| NOx Run Exhaust   | 0.2273     | 0.0483                     | 0.2273               |
| NOx Start Exhaust | 0.0441     | 0.0094                     | 0.0094               |

Notes:

Results show how altering trips via population (#6a) also alters VKT; thus, running exhaust is altered, as well. Exercise #6b shows altering trips only reduces starting exhaust.

## Exercise #7: Speed Distributions

- Hong Kong has developed a TCM, which requires medium and heavy goods vehicles to only travel between midnight (0-hr) and 8 a.m. and from 10 p.m. to midnight. 5% of the VKT occurs at average speed 1-8 km/hr (Speed Bin #1 in GUI); 25% at 24-32 km/hr (Speed Bin #4); 20% at 48-56 km/hr (Speed Bin #7), 25% at 56-64 km/hr (Speed Bin #8), and 25% at 64-72 km/hr (Speed Bin #9).
- What is the effect on NOx running exhaust emissions from this change?

## Exercise #7: Speed Distributions

- Problem: Determine change in emissions in 2015 for HGV7 (Vehicle Class 6) and HGV8 (Vehicle Class 7) given the revised speed distribution below.
- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2015
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: Text (CSV), BCD
  - Output Frequency: daily
  - Pollutants: PM<sub>10</sub>, VOC
- Speed Fractions:

5% of the VKT occurs at average speed 1-8 km/hr (Speed Bin #1); 25% at 24-32 km/hr (Speed Bin #4); 20% at 48-56 km/hr (Speed Bin #7); 25% at 56-64 km/hr (Speed Bin #8) and 25% at 64-72 km/hr (Speed Bin #9).

## Exercise #7: Profiles/Speed Tab



## Exercise #7: Editing Speed Fractions

2015 Speed Fractions (HGV7)

About to Copy Edits from Spreadsheet

### 2015 Speed Fractions (HGV7) **Base Case**

| a: I<br>Ho | Hong Ko | long SAR               |        |        | Scena      | nio Year: 2010 | ) <u>Copy with</u> | Headings    | Paste Data On    | Scenario Year: 2030 <u>Copy with Headings</u> <u>E</u>   | Paste Data    |
|------------|---------|------------------------|--------|--------|------------|----------------|--------------------|-------------|------------------|----------------------------------------------------------|---------------|
| T۰۷        | /eighte | ed Average             | Basis: | 8 KPH  | 16 KPP     | Vehicle Clas   | 06: Heavy          | Goods Vehic | :les (5.5-15t) 💌 | Basis: 8 KPH 16 KPH Vehicle Class: 06: Heavy Goods Vehic | les (5.5-15t) |
|            |         |                        |        |        | nour (1 to | 24)            |                    |             | 1                | Hour (1 to 24)                                           |               |
| Ì          |         | 1                      | 2      | 3      | 4          | 5              | 6                  | 7           | 8                | 2 3 4 5 6 7                                              | 8             |
|            | 1       | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000 =         | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.0000        |
|            | 2       | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
|            | 3       | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
|            | 4       | 0.2682                 | 0.2682 | 0.2682 | 0.2682     | 0.2682         | 0.2682             | 0.2682      | 0.1915           | Editing speed fractions                                  | 0.191         |
|            | 5       | 0.0374                 | 0.0374 | 0.0374 | 0.0374     | 0.0374         | 0.0374             | 0.0374      | 0.0401           | 0374                                                     | 0.040         |
|            | 6       | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0000                                                     | 0.000         |
|            | 7       | 0.3277                 | 0.3277 | 0.3277 | 0.3277     | 0.3277         | 0.3277             | 0.3277      | 0.2579           | 3277                                                     | 0.257         |
|            | 8       | 0.0197                 | 0.0197 | 0.0197 | 0.0197     | 0.0197         | 0.0197             | 0.0197      | 0.0310           | Paste 24 hours of speed fractions data?                  | 0.03          |
|            | 9       | 0.3469                 | 0.3469 | 0.3469 | 0.3469     | 0.3469         | 0.3469             | 0.3469      | 0.4795           | 3469                                                     | 0.47          |
|            | 10      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0000                                                     | 0.00          |
|            | 11      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           |                                                          | 0.000         |
|            | 12      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | <u>Y</u> es <u>N</u> o                                   | 0.00          |
| _          | 13      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0000                                                     | 0.00          |
| _          | 14      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.00          |
|            | 15      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
| L          | 16      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
| L          | 17      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000           | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
|            | 18      | 0.0000                 | 0.0000 | 0.0000 | 0.0000     | 0.0000         | 0.0000             | 0.0000      | 0.0000 -         | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 0.000         |
|            | Tota    | ul 100 % in ea<br>hour | ach    | Apply  | Can        | cel            | Done               | App         | y to Others      | each Apply Cancel Done App                               | ly to Oth     |

Set the "Basis" tab to "8 KPH" and select the Heavy Goods Vehicles<15t. Then change the VKT speed distribution. Then apply this change to this hour and vehicle class. Then apply this change to other vehicle classes.

### Exercise #7: Editing Speed Fractions

### 2015 Speed Fractions (HGV7) Base Case

|      |         |                |        |         |            |               |             |             |                | _ |
|------|---------|----------------|--------|---------|------------|---------------|-------------|-------------|----------------|---|
| (1.) | Weighte | ed Average     | Basis: | 8 KPH   | 16 KPH     | Vehicle Class | < 06: Heavy | Goods Vehic | :les (5.5-15t) | • |
|      |         |                |        |         | Hour (1 to | 24)           |             |             |                | 1 |
|      |         | 1              | 2      | 3       | 4          | 5             | 6           | 7           | 8              |   |
|      | 1       | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         | - |
|      | 2       | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
|      | 3       | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         | ۲ |
|      | 4       | 0.2682         | 0.2682 | 0.2682  | 0.2682     | 0.2682        | 0.2682      | 0.2682      | 0.1915         |   |
|      | 5       | 0.0374         | 0.0374 | 0.0374  | 0.0374     | 0.0374        | 0.0374      | 0.0374      | 0.0401         |   |
| 2    | 6       | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| Ξl   | 7       | 0.3277         | 0.3277 | 0.3277  | 0.3277     | 0.3277        | 0.3277      | 0.3277      | 0.2579         |   |
| I    | 8       | 0.0197         | 0.0197 | 0.0197  | 0.0197     | 0.0197        | 0.0197      | 0.0197      | 0.0310         |   |
| 4    | 9       | 0.3469         | 0.3469 | 0.3469  | 0.3469     | 0.3469        | 0.3469      | 0.3469      | 0.4795         |   |
| 3    | 10      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| Ĩ    | 11      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| 2    | 12      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| ě    | 13      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| 2    | 14      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
|      | 15      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
|      | 16      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
|      | 17      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
|      | 18      | 0.0000         | 0.0000 | 0.0000  | 0.0000     | 0.0000        | 0.0000      | 0.0000      | 0.0000         |   |
| C    |         |                |        |         |            |               |             |             | •              |   |
|      |         |                |        |         |            |               |             |             |                |   |
|      | Tet     | al 100 % in es | ch /   | unolu I | Can        | cel I         | Done        | And And     | u to Others    |   |
|      | 100     | hour           | ,,     | Abbia   | Can        |               | Done        |             | ny to Others   | _ |

### 2015 Speed Fractions (HGV7) Edits Applied

| rea:<br>H                                                                                                                                                                           | Hong I<br>ong Ko | Kong SAR<br>ng SAR    |         |        | Scena      | nio Year: 2015 | Copy with | Headings    | Paste Data I  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------|--------|------------|----------------|-----------|-------------|---------------|
| <t-\< th=""><th>Veight</th><th>ed Average</th><th>Basis:</th><th>8 KPH</th><th>16 KPH</th><th>Vehicle Class</th><th>06: Heavy</th><th>Goods Vehic</th><th>les (5.5-15t)</th></t-\<> | Veight           | ed Average            | Basis:  | 8 KPH  | 16 KPH     | Vehicle Class  | 06: Heavy | Goods Vehic | les (5.5-15t) |
|                                                                                                                                                                                     |                  |                       |         |        | Hour (1 to | 24)            | - 31      |             |               |
| Ì                                                                                                                                                                                   |                  | 1                     | 2       | 2      | 4          | c              | 6         | 7           | 8             |
| 4                                                                                                                                                                                   | 1                | 0.0500                | 0.0500  | 0.0500 | 0.0500     | 0.0500         | 0.0500    | 0.0500      | 0.0500        |
|                                                                                                                                                                                     | 2                | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
|                                                                                                                                                                                     | 3                | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
|                                                                                                                                                                                     | 4                | 0.2500                | 0.2500  | 0.2500 | 0.2500     | 0.2500         | 0.2500    | 0.2500      | 0.2500        |
|                                                                                                                                                                                     | 5                | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
| 18                                                                                                                                                                                  | 6                | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
| 3                                                                                                                                                                                   | 7                | 0.0000                | 0.2000  | 0.2000 | 0.2000     | 0.2000         | 0.2000    | 0.2000      | 0.2000        |
| 1                                                                                                                                                                                   | 8                | 0.2500                | 0.2500  | 0.2500 | 0.2500     | 0.2500         | 0.2500    | 0.2500      | 0.2500        |
|                                                                                                                                                                                     | -                | 0.2500                | 0.2500  | 0.2500 | 0.2500     | 0.2500         | 0.2500    | 0.2500      | 0.2500        |
| 7.                                                                                                                                                                                  | 10               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
| E                                                                                                                                                                                   | 11               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
| 9                                                                                                                                                                                   | 12               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
| bee                                                                                                                                                                                 | 13               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.000     | 0.0000      | 0.0000        |
| n                                                                                                                                                                                   | 14               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.0000    | 0.0000      | 0.0000        |
|                                                                                                                                                                                     | 15               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.000     | 0.0000      | 0.0000        |
|                                                                                                                                                                                     | 16               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.000     | 0.0000      | 0.0000        |
|                                                                                                                                                                                     | 17               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.000     | 0.000       | 0.0000        |
|                                                                                                                                                                                     | 18               | 0.0000                | 0.0000  | 0.0000 | 0.0000     | 0.0000         | 0.000     | 0.0000      | 0.0000        |
|                                                                                                                                                                                     |                  | III.                  |         |        |            |                |           |             | ۲.            |
|                                                                                                                                                                                     | Tot              | al 100 % in e<br>hour | ach 🦳 🧷 | Apply  | Can        | cel            | Done      | App         | ly to Others  |

# Exercise #7: Apply Speed Fraction Edits to Other Hours

### Speed Fractions by Scenario Year and Vehicle Class Area: Hong Kong SAR Scenario Year: 2030 Copy with Headings Paste Data Only Hong Kong SAR 8 KPH 16 KPH Vehicle Class: VKT-Weighted Average Basis: 06: Heavy Goods Vehicles (5.5-15ť 👻 Hour (1 to 24) 2 7 1 3 6 8 1 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0 Apply to Range? 3 0 0000 0 0000 0 0000 4 0.2000 0.2 0.2000 0.2000 5 0.0000 0.0 0.0000 0.0000 Apply This Profile to a 8.16.24 10:18 6 0.0000 0.0 0.0000 0.0000 Range of Values? 7 0.2500 0.2 0.2500 0.2500 8 0.2500 0.2500 0.2 0.2500 Parameters 9 0.2500 0.2 0.2500 0.2500 ✓ Vehicle Class 10 0.0000 0.0 0.0000 0.0000 11 0.0000 0 0 0 0000 0.0000 Bin 12 0.0000 0.0000 0.0000 0.0 13 0.0000 0.0 0.0000 0.0000 OK Cancel 14 0.0000 0.0 0.0000 0.0000 15 0.0000 0.0 0.0000 0.0000 16 0 0000 0 0000 0 0000 0 0 17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Apply to Others Total 100 % in each Cancel Done hour

### **Apply Edit to Another Veh Class**

### **Apply Edit to HGV8**



### Exercise #7: Solution

| X  | 1 🖬 🤊 -               | (                                         | -                              | No. of Concession, name           |                           | Ex7.x   | lsx - Microsof                              | t Excel | _        | -          | -                                             | -       |                       | (IC    |                 | X    |
|----|-----------------------|-------------------------------------------|--------------------------------|-----------------------------------|---------------------------|---------|---------------------------------------------|---------|----------|------------|-----------------------------------------------|---------|-----------------------|--------|-----------------|------|
|    | File H                | lome D                                    | eveloper                       | Insert Page                       | e Layout Formulas [       | Data F  | Review Vie                                  | w De    | eveloper | Acrobat    |                                               |         |                       | 2      | <b>?</b> -      | 67 X |
|    | From Acce<br>From Web | ss<br>From Oth<br>Sources<br>Set External | ner Existi<br>• Connec<br>Data | ing<br>ctions<br>Refresh<br>All + | Connections     2↓     2. | t Filte | r K Clear<br>Reapply<br>r Advance<br>Filter | ed Colu | to Remo  | Data Tools | ta Validation<br>nsolidate<br>hat-If Analysis | Group   | Ungroup Su<br>Outline | btotal | igt Inhol Inhol |      |
|    | D14                   | L .                                       | <b>-</b> (°                    | f.x.                              |                           |         |                                             |         |          |            |                                               |         |                       |        |                 | *    |
|    | A                     | В                                         | С                              | D                                 | E                         | F       | G                                           | Н       | - I      | J          | K                                             | L       | М                     | N      | 0               |      |
| 1  | Base                  | START MYR                                 | END MYR                        | REGION                            | SAR                       | STARTS  | POPULI ATION                                | VKT     | VEH TYPE | VEH TECH   | POLILITANT                                    | PROCESS | EMISSIONS             | BASIS  |                 |      |
| 3  | 2015                  | 1971                                      | 2015                           | SAR Average                       | Hong Kong SAR Average     | 47248   | 11813                                       | 980825  | HGV7     | DSL        | NOx                                           | Run Exh | 3.221954              | Day    |                 |      |
| 4  | 2015                  | 1971                                      | 2015                           | SAR Average                       | Hong Kong SAR Average     | 127473  | 31871                                       | 2646047 | HGV8     | DSL        | NOx                                           | Run Exh | 14.517085             | Day    |                 |      |
| 5  |                       |                                           |                                |                                   |                           |         |                                             |         |          |            |                                               |         |                       |        |                 |      |
| 6  | TDM                   |                                           |                                |                                   |                           |         |                                             |         |          |            |                                               |         |                       |        |                 |      |
| 7  | CALYR                 | START MYR                                 | END MYR                        | REGION                            | SAR                       | STARTS  | POPULATION                                  | VKT     | VEH TYPE | VEH TECH   | POLLUTANT                                     | PROCESS | EMISSIONS             | BASIS  |                 |      |
| 8  | 2015                  | 1971                                      | 2015                           | SAR Average                       | Hong Kong SAR Average     | 47248   | 11813                                       | 980825  | HGV7     | DSL        | NOx                                           | Run Exh | 3.401024              | Day    |                 |      |
| 9  | 2015                  | 1971                                      | 2015                           | SAR Average                       | Hong Kong SAR Average     | 127473  | 31871                                       | 2646047 | HGV8     | DSL        | NOx                                           | Run Exh | 15.19208              | Day    |                 |      |
| 10 |                       |                                           |                                |                                   |                           |         |                                             |         |          |            |                                               |         |                       |        |                 | -    |
| 11 | 4 + + 5               | heet1 /S                                  | heet2 / Sl                     | neet3 / 🔁 /                       |                           |         |                                             |         |          |            |                                               | 1111    |                       |        | <u></u>         |      |
| R  | eady 🛅                |                                           |                                |                                   |                           |         |                                             |         |          |            |                                               |         | u 85% —               |        |                 | ÷    |

## Exercise #8: Changing RH

- Context: This exercise shows how the user can change the relative humidity for an area of concern, say, area near a weather station, P, in 2015. It also provides the users
- Problem: Set up a base run for 2015 calendar year for Hong Kong. Include a second scenario, replacing the annual relative humidity values with the annual values provided on RH.XLS.

## Exercise #8: Entering Different Relative Humidity Values

- Scenario data:
  - Scenario #1
    - Geographic Area: Hong Kong SAR
    - Calendar Years: 2015
    - Season: Annual
    - Scenario Type: **BURDEN**
    - Output File types: Text (CSV), BCD
    - Output Frequency: daily
    - Pollutants: PM<sub>10</sub>, VOC
  - Scenario #2: Replace annual Relative Humidity Values with values from RH.XLS

## Exercise #8: Changing RH

### **RH Annual (Default)**

### **RH Annual from RH.XLS**

|          |          |           | VK        | Are<br>-Weigh | a: Hong<br>Month:<br>ted Ave | g Kong S<br>Annual<br>grage of | AR<br>1 Sub-a | reas     |          | 1       |        | }   |          |
|----------|----------|-----------|-----------|---------------|------------------------------|--------------------------------|---------------|----------|----------|---------|--------|-----|----------|
| Hong Ko  | ng SAR   |           |           |               |                              |                                |               |          |          |         |        |     | F        |
| Belative | Humiditu | (%)       |           |               |                              |                                | Cop           | y with H | eadings  | Paste   | Data O | nly | <u> </u> |
| 11010170 | . romony | (-9)      |           |               | Hour                         |                                |               |          |          |         |        |     |          |
| 0000     | 0100     | 0200      | 0300      | 0400          | 0500                         | 0600                           | 0700          | 0800     | 0900     | 1000    | 1100   |     |          |
| 80.8     | 81.2     | 81.6      | 81.9      | 82.0          | 82.1                         | 82.2                           | 81.4          | 78.6     | 74.7     | 71.4    | 69.1   |     |          |
| 1200     | 1300     | 1400      | 1500      | 1600          | 1700                         | 1800                           | 1900          | 2000     | 2100     | 2200    | 2300   |     |          |
| 67.9     | 67.2     | 67.1      | 67.8      | 69.3          | 71.6                         | 74.6                           | 77.2          | 78.6     | 79.6     | 80.2    | 80.6   |     |          |
|          | □ Mo     | odify Val | ues for F | lange o       | f Hours                      |                                |               |          |          |         |        |     |          |
|          |          |           | to        |               |                              |                                |               | Consta   | nt Value | for Rar | nge    |     |          |
|          |          |           |           |               |                              |                                |               |          |          |         |        |     |          |
|          |          | 1         | 1         |               | c.,                          | and I                          | 1             |          |          |         | 1      |     |          |

| Diurnal Relative Humidity Profile                                           |
|-----------------------------------------------------------------------------|
| Area: Hong Kong SAR<br>Month: Annual<br>VMT-Weighted Average of 1 Sub-areas |
| Hong Kong                                                                   |
| Relative Humidity (%)                                                       |
| Hour                                                                        |
| 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100                 |
| 80.6 80.8 81.1 81.2 80.9 81.1 80.2 77.3 74.2 71.1 68.8 67.6                 |
| 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300                 |
| 66.9 67.1 68.2 69.4 72.1 75.2 77.3 78.3 79.1 79.6 80.0 80.3                 |
| to Constant Value for Range                                                 |
| Apply Cancel Done                                                           |
This example shows how to choose and edit an alternate base year and data; then, perform a forecast of these data. The example selects an alternate baseline year (Calendar Year 2014); performs a 5% adjustment to the petrol base population; then forecasts the inventory for Calendar Year 2030.

Suggested steps:

- 1) Run EMFAC-HK V3.1
- 2) Select "File" and click "New" from the Menu
- 3) On Tab "MAIN", click "Add New Scenario".

| 💼 Emfac-HK V3.1 Editing data                                                                   |                              |                         |                                                   |
|------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------------------------------------------|
| <u>File R</u> un <u>H</u> elp                                                                  |                              | HONE                    |                                                   |
| Environmental Protection D<br>The Government of the Hong Kong<br>Special Administrative Region | epartment                    |                         | permitted by<br>Air Resources Board<br>California |
| Emfac-HK V3.1 v3.                                                                              | 1 20160104 Pr: Emfac-HK HK3  | 3.1                     |                                                   |
| [MAIN]. ]. ]. ]. ]. ].                                                                         |                              |                         |                                                   |
| List of Available Scenarios                                                                    |                              | No file or sce          | enario                                            |
|                                                                                                | Current Scenario Data        |                         |                                                   |
|                                                                                                | Number: 0 of 0<br>Name:      |                         |                                                   |
|                                                                                                | Calendar Year:               |                         |                                                   |
|                                                                                                | Season:                      |                         |                                                   |
|                                                                                                | Туре:                        |                         |                                                   |
|                                                                                                | IM Program Parameters        | Save                    |                                                   |
|                                                                                                |                              | Save As                 |                                                   |
|                                                                                                | Add New Scenario             | Run                     |                                                   |
|                                                                                                | Edit Sconario                | Finish Editing          |                                                   |
|                                                                                                | Delete Scenario              | Cancel                  |                                                   |
| * Denotes currently active scenario                                                            | Regime Size Change Data      |                         | 1                                                 |
|                                                                                                | 🔽 Apply                      | Regime Changes **       |                                                   |
|                                                                                                | %                            | Reduction Start         |                                                   |
|                                                                                                | Category-Fuel His            | ghs Supers Year         |                                                   |
|                                                                                                | Tavid PG                     | 20 20 2014              |                                                   |
|                                                                                                | Public Light Bus-LPG         | 40 40 2014              |                                                   |
|                                                                                                | Private Light Bus >3.5t-LPG: | 20 20 2014              |                                                   |
|                                                                                                | Above 15t-Diesel:            | 0 0 2014                |                                                   |
|                                                                                                | ** When checked, changes a   | apply to all scenarios. |                                                   |
|                                                                                                |                              | ••••                    |                                                   |
|                                                                                                |                              |                         |                                                   |

4) On Tab "INPUT1", under *Step 2a - Target Years*, click "**Select**"

5) On the "Target Year Selection" screen, click "**2030**" in the *Available* column; then, click ">". The target year 2030 should appear in the "Included" column. Click "**OK**".



6) On Tab "INPUT 1", under *Step 2b – Alternate Baseline Yr*" is no longer "grayed out". Click "**Select**" and proceed to selecting an alternate baseline year.

7) On the "Alternate Baseline Yr Selection" screen, click "**2014**" in the *Available* column; then, click ">". The alternate baseline year of "2014" should appear in the "Included" column. Click "**OK**".

| 💼 Emfac-HK V3.1 Editing data                                                                                                                                                                                                                             |                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File Run H</u> elp                                                                                                                                                                                                                                    |                                                                                                                                                               |
| The Government of the Hong Kong<br>Special Administrative Region                                                                                                                                                                                         | HONG<br>KONG<br>Air Resources Board<br>California                                                                                                             |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1                                                                                                                                                                                                           |                                                                                                                                                               |
| . Input 1 Input 2                                                                                                                                                                                                                                        |                                                                                                                                                               |
| Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Yea                                                                                                                                                                 | Alternate Base Year Selection                                                                                                                                 |
| Step 1 - Geographic Area                                                                                                                                                                                                                                 | Available Included                                                                                                                                            |
| Area Type: SAR SAR                                                                                                                                                                                                                                       |                                                                                                                                                               |
| SAR     Hong Kong       Step 2a - Calendar Year     Step 2b - Alternate Base Year       Select     Select       Calendar year 2030     Selected       Scenario Year for Output     OPTIONAL: Selecting this option overrides EMFAC-HK default base year. | 2002 ▲ 2014<br>2003<br>2004<br>2005<br>2006<br>2006<br>2009<br>2009<br>2010<br>2011<br>2012<br>2013<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021 - |
| Step 3 Season or Month                                                                                                                                                                                                                                   | All All No Alternate base data year                                                                                                                           |
|                                                                                                                                                                                                                                                          | <u>D</u> K <u>C</u> ancel                                                                                                                                     |
| Cancel Next >                                                                                                                                                                                                                                            | Finish                                                                                                                                                        |

8) The updated *Step 2a – Target Years* and *Step 2b – Alternate Baseline Yr* boxes should now both be updated, as indicated below. At Step 3, keep the *Season or Month* selection as "**Annual**". Click "**Next**" to proceed to the screen titled *Input 2*.

| Elie Bun Help         Environmental Protection Department         be Government of the Hong Kong         special Administrative Region         CEMEAC-HIK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1         Input 1 Input 2         Input 1 Input 2         Step 1 - Geographic Area         Area Type: SAR         SAR         Hong Kong         Step 2a - Calendar Year         Area Type: SAR         Step 2a - Calendar Year         Calendar year 2030         selected         Scenario Year for Dutput         OPTIONAL: Selecting this         option xer selected         Scenario Year for Dutput                                                                                                                                                                                                                                                                                                                                                                                                     | 🞦 Emfac-HK V3.1 Editing data                                                                            |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Environmental Protection Department       Image: Comparison of the Hong Kong Special Administrative Region         Emfac-HK V3.1 v3.1 20160104 Pr: Emfac:HK HK3.1         Imput 1       Input 2         Imput 1       Input 2         Step 1 - Geographic Area         Area Type: SAR         SAR             Step 2 - Calendar Year         Step 2 - Calendar Year | <u>File Run H</u> elp                                                                                   |                                                   |
| Emfac-HK V3.1 v3.1 20160104 Pr: Emfac-HK HK3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Environmental Protection Department<br>The Government of the Hong Kong<br>Special Administrative Region | permitted by<br>Air Resources Board<br>California |
| Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Year and Season          Step 1 - Geographic Area         Area Type: SAR         SAR         Hong Kong         Step 2a - Calendar Year         Calendar Year         Select         Calendar year 2030         selected         Scenario Year for Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1                                                          |                                                   |
| Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Year and Season          Step 1 - Geographic Area         Area Type: SAR       SAR         Hong Kong         SAR         Hong Kong         Step 2a - Calendar Year         Actrivate Base Year         Actrivate Base Year         Activate Base Year         Atternate Base Year         Atternate Base Year         OPTIONAL: Selecting this         Option overrides EMFAC-HK         default base year.                                                                                                                                                                                                                                                                     | . Input 1 Input 2                                                                                       |                                                   |
| Step 1 - Geographic Area<br>Area Type: SAR SAR<br>SAR<br>Hong Kong<br>SAR<br>Step 2a - Calendar Year<br>Select<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2 - Searce or Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basic scenario data - Select Area, Calculation Method, Calendar Year, Alternate Base Year and Season    |                                                   |
| Area Type: SAR<br>SAR<br>Hong Kong<br>SAR<br>Hong Kong<br>SAR<br>Sar<br>Sar<br>Sar<br>Sar<br>Step 2a - Calendar Year<br>Select<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2a - Calendar Year<br>Step 2a - Calendar Year<br>Activity Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                             | Step 1 - Geographic Area                                                                                |                                                   |
| SAR     Hong Kong       Step 2a - Calendar Year     Step 2b - Alternate Base Year       Select     ACTIVATED       Calendar year 2030<br>selected     Alternate Base data<br>year 2014 selected       Scenario Year for Output     OPTIONAL: Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Area Type: SAR SAR                                                                                      |                                                   |
| Step 2a - Calendar Year<br>Select<br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2b - Alternate Base Year<br>ACTIVATED<br>Alternate Base data<br>year 2014 selected<br>OPTIONAL: Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hong Kong 🗸                                                                                             |                                                   |
| Step 2a - Calendar Year         Select         Calendar year 2030         selected         Scenario Year for Output         OPTIONAL: Selecting this option overrides EMFAC-HK default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                   |
| Step 2a - Calendar Year         Select         Calendar year 2030         selected         Scenario Year for Output    Selecting this option overrides EMFAC-HK default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                   |
| Step 2a - Calendar Year<br><u>Select</u><br>Calendar year 2030<br>selected<br>Scenario Year for Output<br>Step 2b - Alternate Base Year<br><u>ACTIVATED</u><br>Alternate Base data<br>year 2014 selected<br>OPTIONAL: Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                                                   |
| Step 2a - Calendar Year       Step 2b - Alternate Base Year         Select       ACTIVATED         Calendar year 2030       Alternate Base data         selected       Scenario Year for Output         OPTIONAL: Selecting this option overrides EMFAC-HK         default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                   |
| Step 2a - Lalendar Year     Step 2b - Alternate Base Year       Select     ACTIVATED       Calendar year 2030     Alternate Base data       selected     Scenario Year for Output       OPTIONAL: Selecting this       option overrides EMFAC-HK       default base year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                   |
| Select       ACTIVATED         Calendar year 2030<br>selected       Alternate Base data<br>year 2014 selected         Scenario Year for Output       OPTIONAL: Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Step 28 - Calendar Year                                                                                 |                                                   |
| Calendar year 2030<br>selected<br>Scenario Year for Output<br>Scenario Year for Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Select                                                                                                  |                                                   |
| Scenario Year for Output<br>OPTIONAL: Selecting this<br>option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calendar year 2030 Alternate Base data<br>selected year 2014 selected                                   |                                                   |
| option overrides EMFAC-HK<br>default base year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scenario Year for Output OPTIONAL: Selecting this                                                       |                                                   |
| - Step 2 - Season or Month-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | option overrides EMFAC-HK<br>default base year.                                                         |                                                   |
| - Step 2 - Season or Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                   |
| Step 5 * Season of Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Step 3 Season or Month                                                                                  |                                                   |
| Annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Annual                                                                                                  |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                   |
| Cancel Next > Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cancel Next > Finish                                                                                    |                                                   |

9) In *Input 2* screen, click "**Default Title**" to change the *Step 4* - *Scenario Title for Reports* to reflect the concerned scenario.

| Environmental Pro                    | tection Department                        | HONG                       |                                               |
|--------------------------------------|-------------------------------------------|----------------------------|-----------------------------------------------|
| Special Administrative Re            | ong Kong<br>gion                          | KONG                       | permitted by<br>Air Resources E<br>California |
| mfac-HK V                            | <b>3. 1</b> V3.1 20160104 Pr: En          | nfac-HK HK3.1              |                                               |
| Input 1 Input 2 Mode and             | Output                                    | . ]. ]                     |                                               |
| Basic scenario data - Select or Entr | er Scenario Lifle                         |                            | _                                             |
| - Step 4 - Scenario Title for Repor  | ts                                        |                            |                                               |
| Hong Kong SAR Annual CYr 20          | 30 Default Title                          | Default Title              |                                               |
|                                      |                                           |                            | 2                                             |
| In Emfac Impact                      | Hate reports, titles over 40 characters   | s will be truncated!       |                                               |
| Step 5 - Model Years                 | Step 6 - Vehicle Classes                  | Step 7 - I/M Program Sched | ule                                           |
| All model years selected             | MODIFIED: All vehicle<br>classes selected | Standard I/M schedules     |                                               |
|                                      |                                           |                            |                                               |
| All                                  | All                                       | Default                    |                                               |
| Modify                               | Maditu                                    | Madilu                     |                                               |
|                                      | Modily                                    | Modify                     |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |
|                                      |                                           |                            |                                               |

15) Click "Next" and proceed to the Mode and Output screen.

•16) In the *Mode and Output* screen, click on "**Burden – Area Emission Estimate**". Under *Burden Inventory Files and Reports* click on "**Detailed Emission Estimates (CSV)"** and "**MVEI7G (BCD)**".

| <u>R</u> un <u>H</u> elp                                                                  |                                                |                                      | HONG                                                 |                                               |
|-------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------------|
| The Governm<br>Special Admi                                                               | ental Prot<br>ent of the Ho<br>nistrative Regi | ection Department<br>ng Kong<br>on   | KONG                                                 | permitted by<br>Air Resources I<br>California |
| mfac-H                                                                                    | IK V3                                          | <b>1</b> V3.1 20160104 Pi            | : Emfac-HK HK3.1                                     |                                               |
| Input 1 Input 2                                                                           | 2 Mode and 0                                   | utput   Tech/IM   Base / Ca          | I. Yr Basis                                          | search 1                                      |
| Scenario<br>Type:<br>BURDEN                                                               | - BURDEN Inv                                   | entory Files and Reports             | C Hour C Day                                         |                                               |
| <ul> <li>Area-Specific</li> <li>Planning</li> <li>Emissions</li> <li>Inventory</li> </ul> | Detailed E                                     | mission Estimates (CSV)              | C Total PM<br>PM10 C PM25                            | ;                                             |
| (tonnes/day)<br>                                                                          | Weighted                                       | BCD(<br>Model Year Activity (WT)     | Output Hydrocarbons As<br>C TOG C THC<br>© VOC C CH4 |                                               |
|                                                                                           | Detailed 0                                     | utputs (BDN)<br>s Tech Groups 🗖 Spee | ds Speed categories                                  | ı/h                                           |
|                                                                                           |                                                |                                      |                                                      |                                               |
|                                                                                           |                                                |                                      | 1 Edit Program                                       |                                               |

17) Click "Edit Program Constants" to advance to the next screen, which is the Tech/IM screen.

18) Click "**Next**" at the *Tech/IM Screen* to advance to the *Base/Targ Yr* screen.

19) We will now perform edits to the Alternate Baseline Data: on the *Base/Targ Yr* Screen click on "**2014 (Alt Baseline Pop)**" to select the alternate baseline data for editing. Once the selection is made, notice that the tab has been relabeled to *Base Yr Basis (2014)*, and the *Population* tab appears on the Tab Strip.

| 🗈 Emfac-HK V3.1 Editing data                                                                            |
|---------------------------------------------------------------------------------------------------------|
| <u>File Run H</u> elp                                                                                   |
| Environmental Protection Department<br>The Government of the Hong Kong<br>Special Administrative Region |
| Emfac-HK V3.1 V3.1 20160104 Pr: Emfac-HK HK3.1                                                          |
| .   Input 1   Input 2   Mode and Output   Tech/IM   Base Yr Basis (2014)   Population   .   .           |
| Editing - Calendar Year Basis for Activity                                                              |
| Select the calendar year basis for editing activity data: 2014 (Alt. Base Pop) Active                   |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
|                                                                                                         |
| Cancel < Back Next > Finish                                                                             |

20) Click "Next" to advance to the *Population* edits screen.

*21) Population/Accrual* edit screen: notice the Accrual button is "grayed out", as it is neither applicable nor editable for the baseline year).

22) Click on the "**Population**" button to advance to the editing screen.

| 💼 Emfac-HK V3.1 -                | - Editing data                                                      |                                                 |                              |                                         |
|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------|------------------------------|-----------------------------------------|
| <u>File R</u> un <u>H</u> elp    |                                                                     |                                                 |                              |                                         |
| The Government of Special Action | nmental Protectio<br>rnment of the Hong Kor<br>dministrative Region | n Department                                    | HONG per<br>KONG Air<br>Cal  | mitted by<br>Resources Board<br>ifornia |
| Emfac-                           | <u>HK V3.1</u>                                                      | V3.1 20160104 Pr: Emfac-HK HK3.1                |                              |                                         |
| . Input 1 Inp                    | out 2 Mode and Output                                               | Tech/IM   Base Yr Basis (2014) Population       |                              |                                         |
|                                  | Editing Program Cons                                                | tants - Population for Alternate Base year 2014 |                              |                                         |
| (                                | Population                                                          | Edit the vehicle population                     |                              |                                         |
|                                  | Accrual                                                             | Edit the odometer accrual *                     |                              |                                         |
|                                  |                                                                     | Info * Accrual is independent of cale           | indarwear                    |                                         |
|                                  |                                                                     |                                                 | Notice the "Adbutton is gray | ed out.                                 |
|                                  |                                                                     |                                                 |                              |                                         |
|                                  |                                                                     |                                                 |                              |                                         |
|                                  |                                                                     |                                                 |                              |                                         |
|                                  |                                                                     |                                                 |                              |                                         |
|                                  | Cancel                                                              | <back next=""></back>                           | Finish                       |                                         |

23) Editing Baseline Population screen for Petrol (By Vehicle/Fuel/Age). The default data for 2014 are displayed.

24) Click on "**Vehicle Class 1**", "**Age 1**" cell (i.e., Row 1, Column 1). Hold mouse down while dragging mouse downward and across to the right until all 45 ages and 21 vehicle classes are highlighted.

25) Select "Copy with Headings".

| diting Base Pop data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title |                     |                      |             |        |                  |                     |  |
|----------------------------------------------------------------------------------|---------------------|----------------------|-------------|--------|------------------|---------------------|--|
| Tota                                                                             | Base Pop            | p for area           |             |        | Copy with Headin | ngs Paste Data Only |  |
|                                                                                  |                     | Hong Kong SAR        | Í.          |        |                  |                     |  |
| Editir                                                                           | s with adjustments) |                      |             |        |                  |                     |  |
| Total Base Pop   Bu Vehicle Class   Bu Vehicle and Fuel   Bu Vehicle/Fuel/Age    |                     |                      |             |        |                  |                     |  |
|                                                                                  | Adi Dase i          | op   by verileie ele | Vehicle Cla | ee     |                  | •                   |  |
|                                                                                  |                     | 10                   | 19          | 20     | 21               | -                   |  |
|                                                                                  | 25                  | 10                   | 19          | 20     | 21               |                     |  |
|                                                                                  | 26                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 27                  | 0.0                  | 0.0         | 0.0    | 0.0              | Fuel Type           |  |
|                                                                                  | 28                  | 0.0                  | 0.0         | 0.0    | 0.0              | Petrol              |  |
|                                                                                  | 29                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 30                  | 0.0                  | 0.0         | 0.0    | 0.0              | Diesel              |  |
|                                                                                  | 31                  | 0.0                  | 0.0         | 0.0    | 0.0              | 100                 |  |
|                                                                                  | 32                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 33                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
| e                                                                                | 34                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
| A                                                                                | 35                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 36                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 37                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 38                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 39                  | 0.0                  | 0.0         | 0.0    | 0.0              | -                   |  |
|                                                                                  | 40                  | 0.0                  | 0.0         | 0.0    | 0.0              | -                   |  |
|                                                                                  | 41                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 42                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 43                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 44                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
|                                                                                  | 45                  | 0.0                  | 0.0         | 0.0    | 0.0              |                     |  |
| •                                                                                |                     |                      |             |        |                  |                     |  |
|                                                                                  |                     | Apply                |             | Cancel | Done             |                     |  |

26) Open a Microsoft Excel blank spreadsheet. Paste data into Cell A1. Paste data again at Cell C24 (a formula will be used to edit this portion of the data)

27) Adjust column width of "A", so vehicle class label can be seen.

28) At Cell B25, enter the formula "=**B2\*1.05**". Copy this formula to the data range (C25:AT45). Values highlighted below in yellow with "blue" text illustrate the formula cells.



29) Highlight C25:AT25 with the mouse (i.e, the "yellow" portion above entending to Age 45), then type "**Ctrl-C**" to copy to the buffer.

30) Return to EMFAC-HK and click "**Paste Data Only**". Then "**Apply**". Then "**Done**"

| Edit | Editing Base Pop data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title |           |                     |                        |                 |                                          |                   |  |
|------|-----------------------------------------------------------------------------------|-----------|---------------------|------------------------|-----------------|------------------------------------------|-------------------|--|
| T    | otal                                                                              | Base Pop  | o for area          |                        |                 | Copy with Heading                        | s Paste Data Only |  |
|      |                                                                                   |           | Hong Kong SAR       | 1                      |                 |                                          |                   |  |
| E    | ditin                                                                             | a Mode    |                     |                        | F               | diting Base Pop (u:                      | ser-entered data) |  |
| -    | T                                                                                 | -10       |                     |                        |                 | Euel/Age                                 |                   |  |
| l í  | 100                                                                               | al Base F | rop   By Venicle Li | ass   By Venicle and F | uel by vehicle/ | li l |                   |  |
|      |                                                                                   |           | ~ 1                 | Vehicle Class          | s               |                                          | - Î I             |  |
|      |                                                                                   |           | 1                   | 2                      | 3               | 4                                        |                   |  |
|      |                                                                                   | 1         | 41843.5             | 0.0                    | 0.0             | 52.4                                     |                   |  |
|      |                                                                                   | 2         | 44911.1             | 0.0                    | 0.0             | 75.1                                     | - Fuel Type       |  |
|      |                                                                                   | 3         | 43858.5             | 0.0                    | 2.1             | 1/6.5                                    | Petrol            |  |
|      |                                                                                   | 4<br>c    | 42001.8             | 0.0                    | 0.0             | 100.7                                    |                   |  |
|      |                                                                                   | 6         | 27712 9             | 0.0                    | 0.0             | 282.4                                    | Diesel            |  |
|      |                                                                                   | 7         | 34322 1             | 0.0                    | 0.0             | 97.3                                     |                   |  |
|      |                                                                                   | 8         | 32342.7             | 0.0                    | 0_0             | 341.5                                    | LPG               |  |
|      |                                                                                   | 9         | 26464.0             | 0.0                    | 1.0             | 133.5                                    |                   |  |
|      | e                                                                                 | 10        | 25150.8             | 0.0                    | 0.0             | 126.7                                    |                   |  |
|      | Ag                                                                                | 11        | 24582.2             | 0.0                    | 0.0             | 68.0                                     |                   |  |
|      |                                                                                   | 12        | 18960.0             | 0.0                    | 0.0             | 63.5                                     |                   |  |
|      |                                                                                   | 13        | 22777.8             | 0.0                    | 5.0             | 48.9                                     |                   |  |
|      |                                                                                   | 14        | 22604.5             | 0.0                    | 4.0             | 67.2                                     |                   |  |
|      |                                                                                   | 15        | 18997.9             | 0.0                    | 2.0             | 94.8                                     |                   |  |
|      |                                                                                   | 16        | 13383.5             | 0.0                    | 1.0             | 25.1                                     |                   |  |
|      |                                                                                   | 17        | 11510.6             | 0.0                    | 0.0             | 11.4                                     |                   |  |
|      |                                                                                   | 18        | 10548.9             | 0.0                    | 0.9             | 2.8                                      |                   |  |
|      |                                                                                   | 19        | 3310.0              | 0.0                    | 2.8             | 0.9                                      |                   |  |
|      |                                                                                   | 20        | 2210.0              | 0.0                    | 13.7            | 1.8                                      |                   |  |
|      |                                                                                   | 21        | 2022.9              | 0.0                    | 4.5             | 0.9                                      | <b>v</b>          |  |
|      | •                                                                                 | III       |                     |                        |                 | +                                        |                   |  |
| -    |                                                                                   | -/        |                     |                        |                 |                                          |                   |  |
|      |                                                                                   |           | Apply               | Ca                     | ncel            | Done                                     |                   |  |

17) Click "Finish"

18) At the MAIN screen, click "Save As" to save and name the input file to an appropriate folder. In this example, the input file was named as "Ex09.inp".

Exercise #10: Future Projections (Accelerated Retirement)

- Context: This example evaluates emission changes if franchised double-deck buses older than 15 years old are retired from the fleet (replaced with newer ones). Compare results in Calendar Year 2013 vs 2020.
- Replacement options:
  - 1: All buses 15+ yrs old replaced with brand new
  - 2: All buses 15+ yrs old replaced with 1-5 yr-old buses.

## Exercise #10: Future Projections

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2013, 2020
  - Season: Annual
  - Scenario Type: BURDEN
  - Output File types: CSV, BCD
  - Pollutants: PM10, VOC
  - Hint: Copy FBDD populations by age from GUI and implement desired program.

### Exercise #11 – HK Expressway



## Exercise #11 – HK Expressway Emission Factor

 Problem: Determine the "composite" NOx running exhaust emission factor (grams/km) for the expressway links below. Additional information for exercise on EX11 spreadsheet.

| Road Link        | Link ID | Fleet<br>Profile* | Link<br>Length (km) | Peak Traffic<br>Flow (veh/hr) |
|------------------|---------|-------------------|---------------------|-------------------------------|
| W Kowloon Hwy NB | 1167    | EX                | 0.260               | 4,117                         |
| W Kowloon Hwy SB | 1169    | EX                | 0.395               | 4,842                         |

## Exercise #11 – Expressway Fleet Profile

| РС     | Taxi   | LGV3  | LGV4  | LGV6  | HGV7  | HGV8  | PLB   |
|--------|--------|-------|-------|-------|-------|-------|-------|
| 45.77% | 19.46% | 0.24% | 9.60% | 5.69% | 1.17% | 3.33% | 2.50% |

| PV4   | PV5   | NFB6  | NFB7  | NFB8  | FBSD  | FBDD | MC    |
|-------|-------|-------|-------|-------|-------|------|-------|
| 0.41% | 0.34% | 1.34% | 0.97% | 0.97% | 0.05% | 3.5% | 4.66% |

### Exercise #11 – Expressway Link (cont.)

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2015
  - Season: Annual
  - Scenario Type: EMFAC
  - Output File types: RTL
  - Pollutants: PM10, VOC
  - Temperature: 1 = 20 deg C
  - Relative Humidity: 1 = 70%
  - Speeds: 100kph, except 70kph for GV > 5.5t, FB, NFB

### Exercise #11 – Expressway Link (cont.)

 Number of Runs: only 1 EMFAC-HK run is necessary as the fleet and speed distributions are the same for each link.

# Exercise #11 (cont.)

- Steps
  - Setup EMFAC-HK model run
  - Look up emission factors for each vehicle class
  - Fill out Speed Fractions Table
    - NOTE: speeds differ by vehicle class
  - Compute "composite" (i.e., fleet-average) emission factor
  - Develop CALINE4 input parameters

# Exercise #12: Build/No-Build

- Context: This example evaluates emission changes if a roadway construction project is not implemented (i.e, build/no-build). Projections are made what traffic will be like on the road if the project is not done.
- Roadway (2015)
  - Assume expressway fleet distribution from Exercise #11
    - 4% reduction in vehicle population
    - Reduce speeds by 10kph to simulate present congestion

## Exercise #12: Build/No-Build

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Year: 2015
  - Season: Annual
  - Scenario Type: EMFAC
  - Output File types: RTL
  - Pollutants: NOx

# Exercise #13: EIA Example

- Project: Extensive new roadway to be built
- Sensitivity Analysis reveals 3 scenario years to evaluate:
  - 2021: commission year
  - 2026: interim year
  - 2036: 15 years after (peak VKT)
- 3 Roadway Groups:
  - EX (100 kph), UT (80 kph), PD (50 kph)
  - no starting emissions assumed

### Exercise #13: Road Extent Example



Source: Agreement No. CE 43/2010 (HY) Central Kowloon Route – Design and Construction Estimation of Vehicular Emission for the Study Area and Determination of Worst Assessment Year by EMFAC, Appendix 4.5

# Exercise #13 – EIA Example

- Scenario data:
  - Geographic Area: Hong Kong SAR
  - Calendar Years: 2021, 2026, 2036
  - Season: Annual
  - Scenario Type: EMFAC
  - Output File types: RTL
  - Pollutants: NOx
  - Temperature: 1 = 20 deg C
  - Relative Humidity: 1 = 70%
  - Speed Fractions:
  - Roads w/ posted speeds >= 70kph
    - 100% at 70kph for GV > 5.5t, FB, NFB

# Exercise #13: Simplifications

- For simplicity
  - default technology fractions
  - we'll evaluate calendar year 2021 only.
  - Fleet mix distributions for each roadway type provided on spreadsheet

## Exercise #13: EIA Example

- Setup EMFAC-HK model runs
- Look up emission factors for each vehicle class for appropriate speed
- Compute "composite" (i.e., fleet-average) NOx running exhaust emission factor for each roadway type
- Develop CALINE4 input parameters