China Resources Construction Company Limited

Contract No. SS M333

Reprovisioning of Diamond Hill Crematorium

Monthly EM&A Report for November 2007

December 2007

	Name	Signature
Reviewed & Checked:	Kenneth Lau	Komoth lan
Approved: (ET Leader)	Y T Tang	Tought Tour

Version:	Revision 0	Date: 14 Decen	nber 2007

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of our brief. This report has been prepared for the sole and specific use of our client and ENSR Asia (HK) Ltd. accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission.

ENSR Asia (HK) Ltd.

11/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 2893 1551 Fax: (852) 2891 0305 www.ensr.aecom.com www.maunsell.aecom.com

· []

安城工程顾闻有限公司 香港灣仔 空后大道京183 败 合和中心47機

gs: (852) 2911 2233 ■文编算: (852) 2805 5028

he: www.hyderconsulting.com

: (852) 2805 5028 Fax Email ; hyder.hk@hyderconsulting.com 電子郵箱: hyder.hk@hyderconsulting.com Website: www.hyderconsulting.com

Hyder Consulting Limited is incorporated in Hong Kong with limited liability.

COI Number 126012

BY POST & FAX (2524 8194)

Hyder Consulting Limited

47/F Hopewell Centre.

Wan Chai, Hong Kong

183 Queen's Road East.

: (852) 2911 2233

Your Ref:

1148-06/E07-46474 Our Ref:

13 December 2007

Architectural Services Department Queensway Government Offices 66 Queensway Hong Kong

For attention of: Ms. Renata Cheng

Dear Renata,

Reprovisioning of Diamond Hill Crematorium Monthly EM&A Report for November 2007 (Revision 0)

We refer to the email on the captioned subject received on 12 December 2007 with the enclosure of the draft monthly EM&A Report for November 2007 (Revision 0) from ENSR Asia Ltd.

We have no further comment and hereby verify the captioned EM&A report.

Should you have any queries, please do not hesitate to contact the undersigned on 2911 2729.

Yours sincerely

Adi Lee

Independent Environmental Checker

HYDER CONSULTING LIMITED

ENSR Asia Ltd - Mr. Y. T. Tang/Mr. Kenneth Lau CC

(Fax: 2891 0305)

CRCCL - Mr. Whyment Leung

(Fax: 2827 2921)

ALWM/It

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	111
		_
1.	INTRODUCTION	
	Background	1
	Scope of Report	1
	Project Organisation	1
	Environmental Status in the Reporting Month	1
	Summary of EM&A Requirements	7
2.	AIR QUALITY	2
	Monitoring Requirements	2
	Monitoring Equipment	2
	Monitoring Parameters, Frequency and Duration	2
	Monitoring Locations	2
	Monitoring Methodology	2
	Results and Observations	4
3.	NOISE	5
	Monitoring Requirements	
	Monitoring Equipment	5
	Monitoring Parameters, Frequency and Duration	5
	Monitoring Locations	5
	Monitoring Methodology	€
	Results and Observations	6
4.	ENVIRONMENTAL SITE INSPECTION	
	Site Inspections	7
	Review of Environmental Monitoring Procedures	1
	Advice on Waste Management Status	7
	Status Environmental Licences and Permits	č
	Implementation Status of Environmental Mitigation Measures	c
	Summary of Exceedances of Environmental Quality Performance LimitSummary of Environmental Complaints, Notifications of Summons and Successful	
	Prosecutions	9
5.	FUTURE KEY ISSUES	9
	Key Issues and Recommendations for Coming Month	9
	Environmental Monitoring and Audit Schedule for the Coming Months	9
6.	CONCLUSIONS AND RECOMMENDATIONS	10
	Conclusions	
	Recommendations	10

Reprovisioning Monthly EM&A	of Diamond Hill Crematorium Report for November 2007 (Revision 0)	_
List of Tables		
Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 2.5 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 4.1 Table 4.2	Air Quality Monitoring Equipment. Air Quality Monitoring Parameters, Frequency and Duration Locations of Air Quality Monitoring Stations Summary of Impact 1-hour TSP Monitoring Results. Summary of Impact 24-hour TSP Monitoring Results. Noise Monitoring Equipment Noise Monitoring Parameters, Frequency and Duration Locations of Noise Monitoring Stations Summary of Impact Noise Monitoring Results during 07:00 – 19:00 on Normal Weekdays Summary of Waste Disposal in the Month Summary Of Environmental Complaints And Prosecutions	.2 .4 .5 .5 .6
List of Figures		
Figure 1.1 Figure 1.2 Figure 2.1 Figure 3.1 Figure 4.1	Project Organisation for Environmental Management Layout of Work Site Locations of Air Quality Monitoring Stations Locations of Construction Noise Monitoring Stations Complaint Flow Diagram	
Appendices		
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L	Key Contacts of Environmental Personnel Construction Programme Environmental Action and Limit Levels Environmental Monitoring and Audit Schedules Calibration Details Air Quality Monitoring Results and Graphical Presentation Noise Monitoring Results and Graphical Presentation Summary of Weekly Environmental Site Inspection Observations Status of Environmental Permits/Licences Implementation Schedule of Mitigation Measures Event and Action Plans Detailed Laboratory Results for Contaminated Subsurface Soil Verification Samples	

EXECUTIVE SUMMARY

Introduction

ENSR Asia (HK) Limited (formerly Maunsell Environmental Management Consultants Limited) is the designated Environmental Team (ET) for "Reprovisioning of Diamond Hill Crematorium" (The Project). This is the thirty-seventh monthly Environmental Monitoring and Audit (EM&A) report prepared by ENSR Asia (HK) Limited for the Project. The EM&A programme for the Project commenced on 29 October 2004. This report documents the findings of EM&A Works conducted in the month of November 2007 (1 to 30 November 2007).

As informed by the Contractor, construction activities in the reporting period were:

- Excavate for footing and U/G services;
- Demolition of existing building.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

1-hour TSP monitoring	15 sessions
24-hour TSP monitoring	5 sessions
Daytime noise monitoring	4 sessions
Environmental site inspection	5 sessions

Breaches of Action and Limit Levels

Air Quality

All 1-hour and 24-hour TSP monitoring results recorded in the month complied with the Action and Limit Levels.

Construction Noise

All noise monitoring results recorded in the month complied with the Action and Limit Levels.

Implementation Status of Environmental Mitigation Measures

In general, the Contractor satisfactorily implemented all the required mitigation measures and was reasonably responsive to the ET's recommendations on any discrepancy observed during the weekly environmental site inspection.

Environmental Complaints, Notification of Summons and Successful Prosecutions

No environmental complaint, notification of summons or successful prosecution was received or made against this Project in the month.

Reporting Changes

No reporting change was required in the month.

Future Key Issues

Key issues to be considered in the coming month include:

- · Generation of dust from activities on-site;
- Noise impact from operating equipment and machinery on-site;
- Generation of site surface runoffs and wastewater from activities on-site;
- Storage and disposal of general refuse and construction waste from activities on-site;
- Management of chemicals and avoidance of oil spillage.

Reprovisioning of Diamond Hill Crematorium Monthly EM&A Report for November 2007 (Revision 0)
· 摘要
簡介
安社亞洲(香港)有限公司(前茂盛環境管理顧問有限公司)乃「重置鑽石山火葬場」[下稱(工程項目)] 的指定環境小組。本冊是安社為工程項目製作的第三十七份每月環境監察及審核報告。工程項目的環境監察及審核由二零零四年十月廿九日開始、本報告記錄了二零零七年十一月份(二零零七年十一月一日至十一月三十日)所進行的環境監察及審核工作。
根據承建商的資料,本月有以下的建築活動:
挖掘地基及地下工程拆卸現有大廈
本月有下列幾項的監察及審核活動: 一小時總懸浮粒子監察 15 次 廿四小時總懸浮粒子監察 5 次 日間噪音監察 4 次 環境巡査 5 次
違反監察標準
空氣質素 本月所有一小時與廿四小時總懸浮粒子監測結果皆符合行動水平和極限水平。
建築噪音
本月所有噪音監測結果皆符合行動水平和極限水平。
環境影響緩和措施 承建商大致上完成所需的緩和措施,同時已對環境小組在每週的環境巡查中的建議作出合理的回應及跟進。
有關環境的投訴,傳票及檢控
本月沒有收到有關環境的投訴,傳票及檢控。
報告修訂
本月並沒有修訂報告。
預計要注意的事項
下月要注意事項包括: 工程活動所產生的塵埃 操作中儀器及機器產生的噪音影響 工程活動所產生的污水 英语 陈你 宋母 郑 郑 郑 郑 郑 邓 邓

- 普通廢物與建築廢物的暫貯及棄置
- 化學品的管理及防止意外漏油

1. INTRODUCTION

Background

1.1 ENSR Asia (HK) Limited (formerly Maunsell Environmental Management Consultants Limited) (hereinafter called the "ET") was appointed by China Resources Construction Company Limited (CRC) (hereinafter called the "Contractor") to undertake Environmental Monitoring and Audit for "Reprovisioning of Diamond Hill Crematorium" (hereinafter called the "Project"). Under the requirements of Section 7 of Environmental Permit EP-179/2004/B, EM&A programme as set out in the approved EM&A Manual is required to be implemented. In accordance with the approved EM&A Manual, environmental monitoring of air quality and noise and environmental site inspections are required for the Project.

Scope of Report

1.2 The EM&A programme for the Project commenced on 29 October 2004. This report presents a summary of the environmental monitoring and audit works, list of activities, and mitigation measures for the Project in November 2007 (from 1 to 30 November 2007).

Project Organisation

1.3 The organisation of the environmental management team is shown in Figure 1.1. Key personnel contacts are presented in Appendix A.

Environmental Status in the Reporting Month

- 1.4 The construction programme of the Project is provided in Appendix B. In the month, the following activities took place for the construction of the Project:
 - Excavate for footing and U/G services;
 - · Demolition of existing building.
- 1.5 Layout plan of the Project work site is provided in Figure 1.2.

Summary of EM&A Requirements

- 1.6 The description and detailed locations of sensitive receivers and monitoring stations for air quality and noise are shown in Figures 2.1 and 3.1 respectively and relevant sections of this Report.
- 1.7 The EM&A programme requires environmental monitoring for air quality and noise and environmental site inspections for air quality, noise, water quality, landscape and visual, waste management. The EM&A requirements for each parameter described in the following sections include:
 - All monitoring parameters
 - Action and Limit Levels for all environmental parameters
 - · Event and Action Plans
 - Environmental mitigation measures, as recommended in the project final EIA report
 - Environmental requirements in contract documents.
- 1.8 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarised in Appendix J of the Report.

2. AIR QUALITY

Monitoring Requirements

- 2.1 1-hour TSP and 24-hour TSP levels at two designated monitoring stations were monitored in the month in accordance with the EM&A Manual. Appendix C shows the established Action and Limit Levels for the environmental monitoring works.
- 2.2 The monitoring schedule for the month is shown in Appendix D. Air quality monitoring stations for 24-hour TSP and 1-hour TSP measurements are shown in Figure 2.1.

Monitoring Equipment

Portable dust meter was used to carry out 1-hour TSP monitoring. High volume sampler (HVS - Model GMWS-2310 Accu-Vol) completed with the appropriate sampling inlets was installed for 24-hour TSP sampling. The HVS meet all the requirements as specified in the approved EM&A Manual. Table 2.1 summarises the equipment that was used in the dust-monitoring programme.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Model
Dust Meter (for 1-hour TSP measurement	Laser Dust Monitor - Model LD-3
HVS (for 24-hour TSP measurement)	GMWS 2310 Accy-Vol system
Calibration Kit (for HVS)	TISCH

Monitoring Parameters, Frequency and Duration

2.4 Table 2.2 summarises the monitoring parameters, frequency and duration of the impact air quality monitoring.

Table 2.2 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Duration	Frequency
1-hour TSP	1 hour	3 times every six days
24-hour TSP	24 hours	Once every six days

Monitoring Locations

2.5 In accordance with the EM&A Manual, two air quality monitoring stations, as shown in Figure 2.1 were selected for 24-hour TSP and 1-hour TSP sampling. Table 2.3 describes the location of the air quality monitoring stations.

Table 2.3 Locations of Air Quality Monitoring Stations

Monitoring Station	Identity / Description	Level
ASR8	Po Leung Kuk Grandmont Primary School	Roof top level of 7-storey building
ASR17	Staff Quarter for Diamond Hill Crematorium	Roof top level of 1-storey building

Monitoring Methodology

1-hour TSP Monitoring

Monitoring Procedure

2.6 The measuring procedures of 1-hour TSP by a portable dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Set POWER to "ON", push BATTERY button, make sure that the meter's indicator is in the range
 with a red line and allow the instrument to stand for about 3 minutes (Then, the air sampling inlet
 has been capped).
- Push the knob at MEASURE position.
- Push "O-ADJ" button. (Then meter's indication is 0).
- Push the knob at SENSI ADJ position and set the meter's indication to S value described on the Test Report using the trimmer for SENSI ADJ.
- Pull out the knob and return it to MEASURE position.
- Push "START" button.

Maintenance and Calibration

- The 1-hour TSP dust meters are verified at 1-year intervals throughout all stages of the impact air quality monitoring.
- Calibration details for the dust meters are provided in Appendix E.

24-hour TSP Monitoring

Installation

- 2.7 The HVSs were installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVSs:
 - A horizontal platform with appropriate support to secure the samplers against gusty wind was provided.
 - The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - A minimum of 2 meters separation from walls, parapets and penthouses was provided for rooftop sampler.
 - No furnace or incinerator flues were nearby.
 - Airflow around the sampler was unrestricted.
 - Permission was obtained to set up the sampler and to obtain access to the monitoring stations.
 - A secure supply of electricity was obtained to operate the sampler.

Preparation of Filter papers

- Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The
 conditioning environment temperature was around 25 °C and not variable by more than ±3 °C;
 the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working
 RH was 40%.
- ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory which has comprehensive quality assurance and quality control programmes.

Monitoring Procedures

- The power supply was checked to ensure the HVSs work properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- Then the shelter lid was closed and secured with the aluminum strip.
- The HVSs were warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flowrate record sheet was set into the flow recorder.

- The flow rate of the HVS was checked and adjusted at around 1.1 m³/min. The range was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hrs ± 1 hr, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- It was then be placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to ALS Technichem (HK) Pty Ltd. for analysis.

Maintenance and Calibration

- The HVSs and their accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs are calibrated at bi-monthly intervals using GMW-25 Calibration Kit throughout all stages
 of the impact air quality monitoring.
- Calibration details for the HVSs are provided in Appendix E.

Results and Observations

2.8 Dust monitoring was conducted for both 1-hour TSP and 24-hour TSP at all designated monitoring stations in the month. Air quality monitoring results and graphical presentations are provided in Appendix F.

1-hour TSP Monitoring

2.9 All measured 1-hour TSP levels complied with the Action and Limit Levels in the month. A summary of 1-hour TSP monitoring results is presented in Table 2.4.

Table 2.4 Summary of Impact 1-hour TSP Monitoring Results

Monitoring Station	1-hour TSP (μg/m³)	Action Level	Limit Level		. of dance
Otation	Range	(μg/m³)	(μ g/m ³)	Action	Limit
ASR8	82.0 - 96.3	408.1	500.0	Nil	Nil
ASR17	80.0 - 96.4	408.4	500.0	Nil	Nil

24-hour TSP Monitoring

2.10 All measured 24-hour TSP levels complied with the Action and Limit Levels in the month. A summary of 24-hour TSP monitoring results is presented in Table 2.5.

Table 2.5 Summary of Impact 24-hour TSP Monitoring Results

Monitoring Station	24-hour TSP (μg/m³)	Action Level	Limit Level	ALCOHOL:	. of dance
Otation	Range	(μ g/m ³)	(μ g/m³)	Action	Limit
ASR8	49.8 - 172.5	195.0	260.0	Nil	Nil
ASR17	59.5 - 95.3	174.1	260.0	Nil	Nil

3. NOISE

Monitoring Requirements

- 3.1 Noise levels at three designated monitoring stations were monitored in the month in accordance with the EM&A Manual. Appendix C shows the established Action and Limit Levels for the environmental monitoring works.
- 3.2 The monitoring schedule for the month is shown in Appendix D. Noise monitoring stations are shown in Figure 3.1.

Monitoring Equipment

Integrating Sound Level Meter was employed for noise monitoring. They were Type 1 sound level meters capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). Portable electronic wind speed indicator capable of measuring wind speed in m/s was employed to check the wind speed. Table 3.1 details the noise monitoring equipment used.

Table 3.1 Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Rion NL-31
Calibrator	Rion NC-73

Monitoring Parameters, Frequency and Duration

3.4 Table 3.2 summarises the monitoring parameters, period, frequency and duration of the impact noise monitoring.

Table 3.2 Noise Monitoring Parameters, Frequency and Duration

Time Period	Parameters	Duration (min)	Frequency
Daytime (0700 to 1900 on normal weekdays)	L _{ea}	30	Once per week

Monitoring Locations

3.5 In accordance with the EM&A Manual, three noise monitoring stations, as shown in Figure 3.1 were selected for noise monitoring. Table 3.3 describes the location of these monitoring stations.

Table 3.3 Locations of Noise Monitoring Stations

Monitoring Station	Identity / Description	Level
SR3	International Christian Quality Music Secondary and Primary School	Roof top level of 7- storey building
SR4	Po Leung Kuk Grandmont Primary School	Roof top level of 7- storey building
SR6	Staff Quarter for Diamond Hill Crematorium	Roof top level of 1- storey building

Monitoring Methodology

Monitoring Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- Façade measurements were made at all three monitoring locations.

- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - time measurement: L_{eq}(30 minutes) during non-restricted hours i.e. between 07:00 and 19:00 on normal weekdays
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with a portable wind meter.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration details for the sound level meter and calibrator are provided in Appendix E.

Results and Observations

- Noise monitoring was conducted at all designated monitoring stations as scheduled in the month. Noise monitoring results and graphical presentations are provided in Appendix G.
- 3.7 All measured noise levels complied with the Action and Limit Levels in the month. A summary of noise monitoring results is presented in Table 3.4.

Table 3.4 Summary of Impact Noise Monitoring Results during 07:00 – 19:00 on Normal Weekdays

Monitoring Station	Measured Noise Level, dB(A) L _{eg (30 min)}	Calculated Limit Level Construction Noise Level, dB(A)		No. of Exceedance	
į	Average and Range	Average and Range		Action*	Limit
SR3	63.7 (63.4 – 63.8)	(# - #)	70/65***	Nil	Nil
SR4	62.9 (62.3 – 63.2)	(# - #)	70/65##	Nil	Nil
SR6	61.8 (61.0 – 62.7)	(# - #)	75	Nil	Nil

^{* -} Action Level is triggered by receipt of a noise complaint

^{# -} Measured noise level is less than the baseline noise level

^{## -} reduce to 70dB(A) for schools and 65dB(A) during school examination periods

4. ENVIRONMENTAL SITE INSPECTION

Site Inspections

Site inspection was carried out on a weekly basis to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In the month, five site inspections were carried out. The summary of weekly environmental site inspection observations and environmental site inspection checklists are attached in Appendix H.

Review of Environmental Monitoring Procedures

The monitoring works conducted by the Environmental Team were inspected regularly. Observations have been recorded for the monitoring works as follows:

Air Quality Monitoring

- The monitoring team recorded the observations around the monitoring stations within and outside of the construction site.
- The monitoring team recorded the temperature and general weather condition on the monitoring day.

Noise Monitoring

- The monitoring team recorded the observations around the monitoring stations, which might affect the results.
- Major noise sources were identified and recorded.

Advice on Waste Management Status

The actual quantities of inert C&D materials and non-inert C&D wastes generated by activities of the Project in the month are provided in Table 4.1. Trip ticket system was implemented for all offsite waste disposal.

Table 4.1 Summary of Waste Disposal in the Month

Type of Waste Material Inert C&D materials		Disposed Quantity	Destination Kai Tak Public Fill Barging Point	
		274.63 m ³		
Non-inert C&D waste	Metals	Nil	Not Applicable	
	Paper/cardboard packaging	Nil	Not Applicable	
	Plastics	Nil	Not Applicable	
	Chemical waste	Nil	Not Applicable	
	Others, e.g. general refuse	24.37 m ³	SENT Landfill	

In accordance with the Environmental Permit (EP) No. EP-179/2004/B Condition 5.14 and Confirmation Report and Remediation Action Plan (Confirmatory Analysis of Subsurface Soil around Existing Crematorium Chimney at Phase II Area), excavation of contaminated subsurface soil around the decommissioned crematorium chimney shall be carried out and verification samples shall be taken to confirm that all contaminated materials have been excavated.

A total of 184.79 tonnes of contaminated soil in S3, S4 and S5 was excavated from 7 September 2007 to 18 September 2007 and transported to SENT landfill for disposal. A total of 15 verification soil samples were collected by the Contractor (CRC) from three excavation pits (four from sidewalls and one from base of each pit) for laboratory analysis. Lead and tin were tested for samples collected from S3 while tin was tested for samples collected from S4 and S5. The Dutch B levels (150mg/kg for lead and 50mg/kg for tin) as stipulated in the Practice Note ProPECC PN 3/94 "Contaminated Land Assessment and Remediation" would be used as the soil contamination criteria.

Among the 15 soil samples collected, concentrations of lead and tin were found below the Dutch B levels for all samples collected. Based on the verification sampling results, all contaminated soil has been excavated. The detailed laboratory results are presented in Appendix L.

Status Environmental Licences and Permits

The status of all permits/licences obtained/in-use in the month is summarised in Appendix I.

Implementation Status of Environmental Mitigation Measures

An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix J.

During the weekly site inspection conducted by the Environmental Team in the month, the following observations and recommendations were made.

Water Quality

 Stagnant water was accumulated in the site. The Contractor was reminded to clean up the stagnant water more frequently.

Air Quality

- No mitigation measure was provided for excavated materials near the site security room in the site. The Contractor was reminded to spray with water during handling the excavated materials.
- Some stockpiles of sand were placed without mitigation measure in the site. The Contractor was reminded to cover the stockpile or spray with water to prevent fugitive dust generation.

Noise

 No particular observations and recommendations were made during the weekly site inspections in the month.

Waste or Chemical Management

- C & D wastes were accumulated near the site entrance in the site. The Contractor was reminded to remove the C & D wastes regularly.
- Plastic wastes were accumulated in the recycling bin near CRC site office. The Contractor was recommended to recycle the plastic box regularly.

Landscape and Visual

 No particular observations and recommendations were made during the weekly site inspections in the month.

Others

 No particular observations and recommendations were made during the weekly site inspections in the month.

Summary of Exceedances of Environmental Quality Performance Limit

The Event and Action Plans for air quality and noise are presented in Appendix K.

No exceedance of Action and Limit Levels for 1-hour and 24-hour TSP and noise was recorded in the month.

Summary of Environmental Complaints, Notifications of Summons and Successful Prosecutions

Figure 4.1 presents the environmental complaint flow diagram of the Project and Table 4.2 presents the statistics of complaints, notification of summons and successful prosecution since the commencement of the Project.

Table 4.2

Summary of Environmental Complaints and Prosecutions

Complair	Complaints logged		s served Successful Prosecution		Prosecution
Nov 2007	Cumulative	Nov 2007 Cumulative		Nov 2007	Cumulative
0	1	0	0	0	0

No environmental complaint, notification of summons and prosecution was received or made against the Project in the month.

5. FUTURE KEY ISSUES

Key Issues and Recommendations for Coming Month

Key issues to be considered in the coming month include:

- · Generation of dust from activities on-site;
- · Noise impact from operating equipment and machinery on-site;
- · Generation of site surface runoffs and wastewater from activities on-site;
- Storage and disposal of general refuse and construction waste from activities on-site; and
- Management of chemicals and avoidance of oil spillage.

Recommendations for the coming month include:

- Stagnant water should be avoided through proper design and maintenance of drainage system;
- Drip trays should be maintained properly;
- Provide water spray to haul roads and unpaved areas;
- Provide regular maintenance to wheel wash facilities on-site;
- Cover the stockpiles on-site entirely;
- · Store all chemicals on site in the chemical storage area;
- Ensure general refuse are sorted, recycled and disposed properly; and
- Ensure construction wastes are disposed off-site properly and regularly.

Environmental Monitoring and Audit Schedule for the Coming Months

The tentative schedules for environmental monitoring and audit for the next three months are provided in Appendix D.

6. CONCLUSIONS AND RECOMMENDATIONS

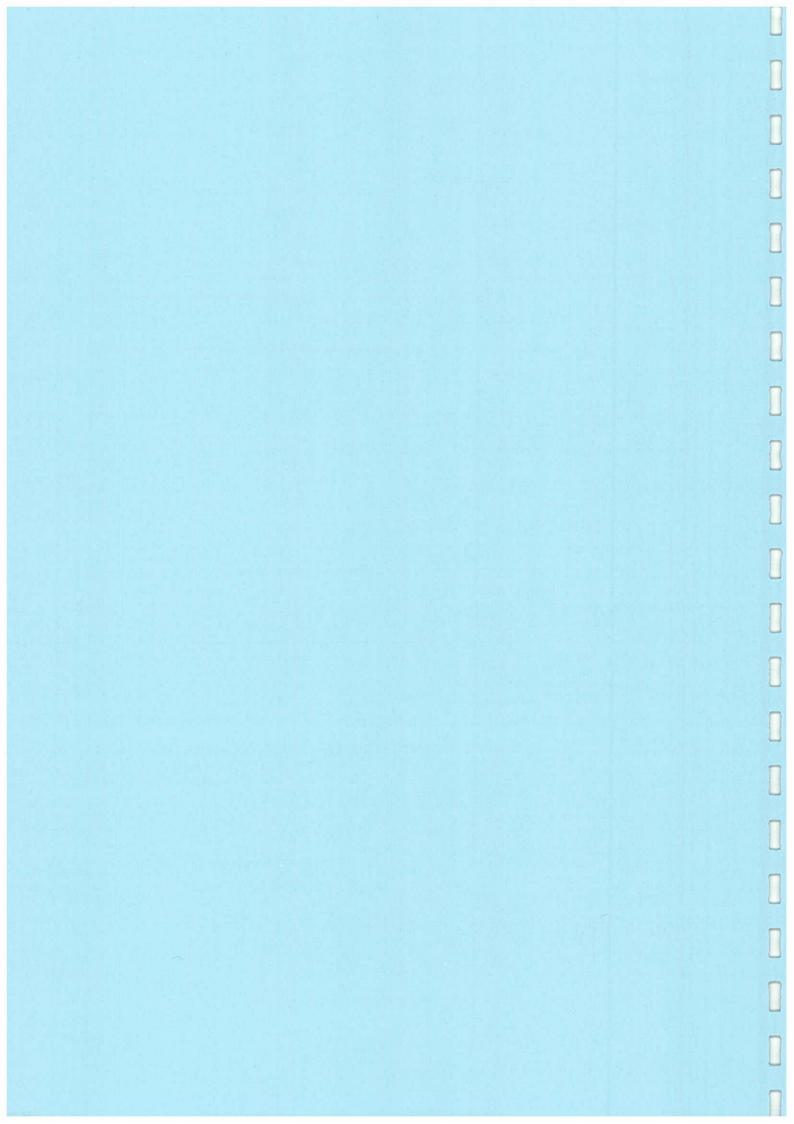
Conclusions

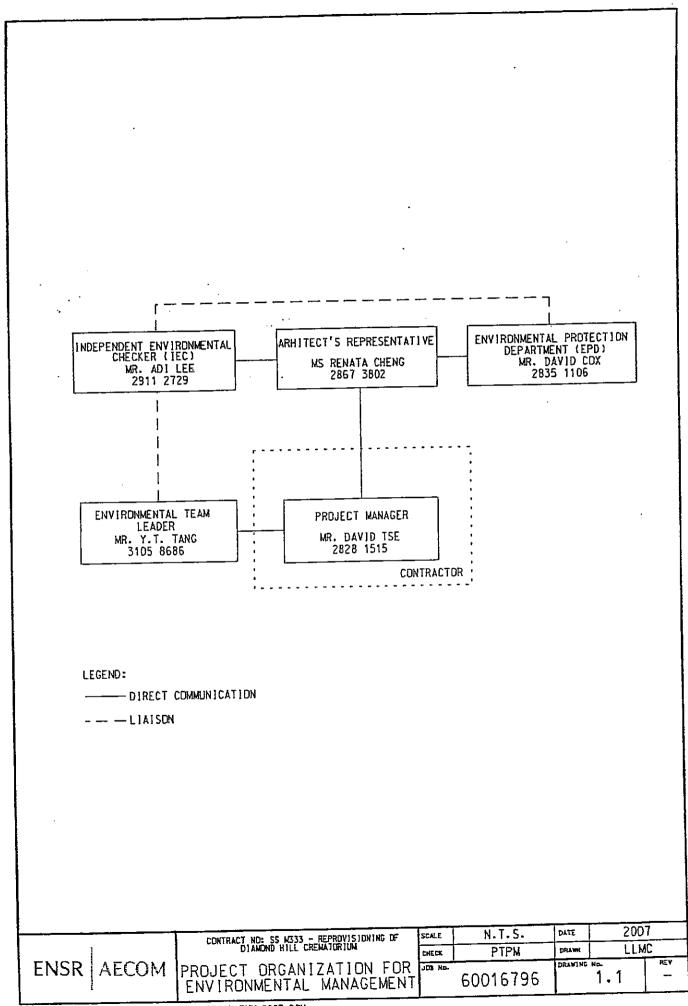
Environmental monitoring and audit was performed in November 2007. All monitoring and audit results in the month were checked and reviewed.

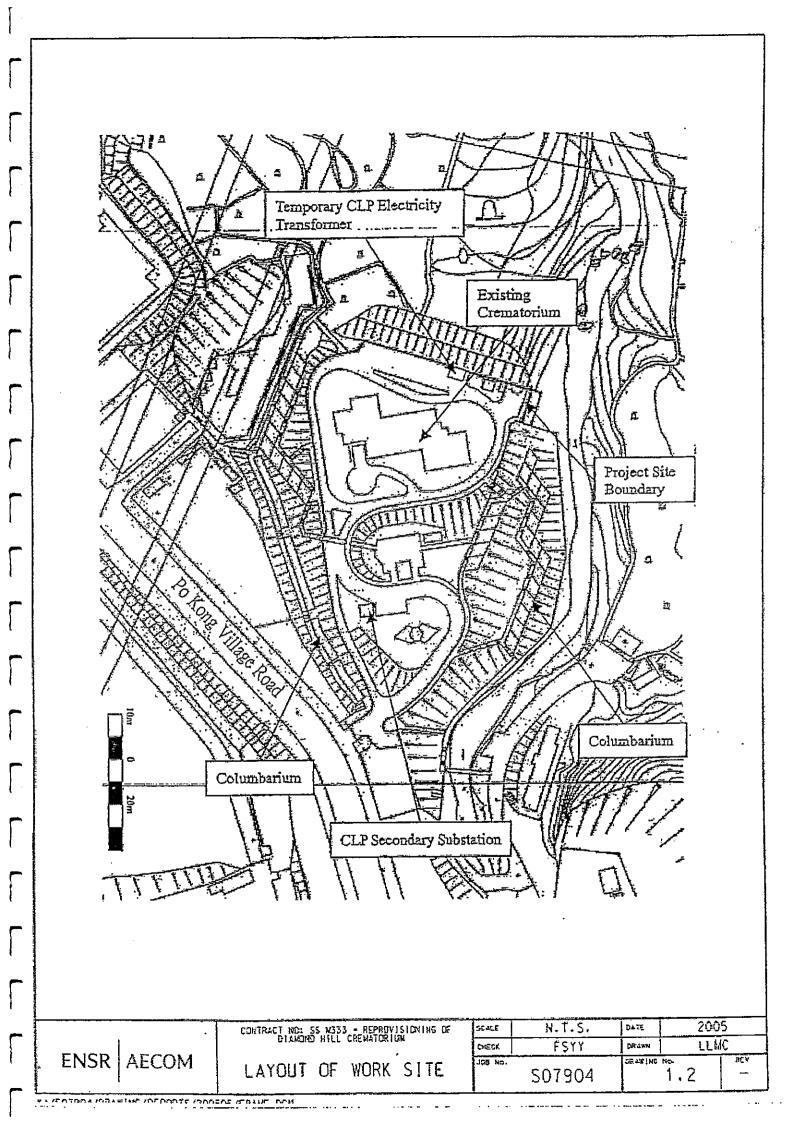
All 1-hour and 24-hour TSP monitoring results recorded in the month complied with the Action and Limit Levels.

All noise monitoring results recorded in the month complied with the Action and Limit Levels.

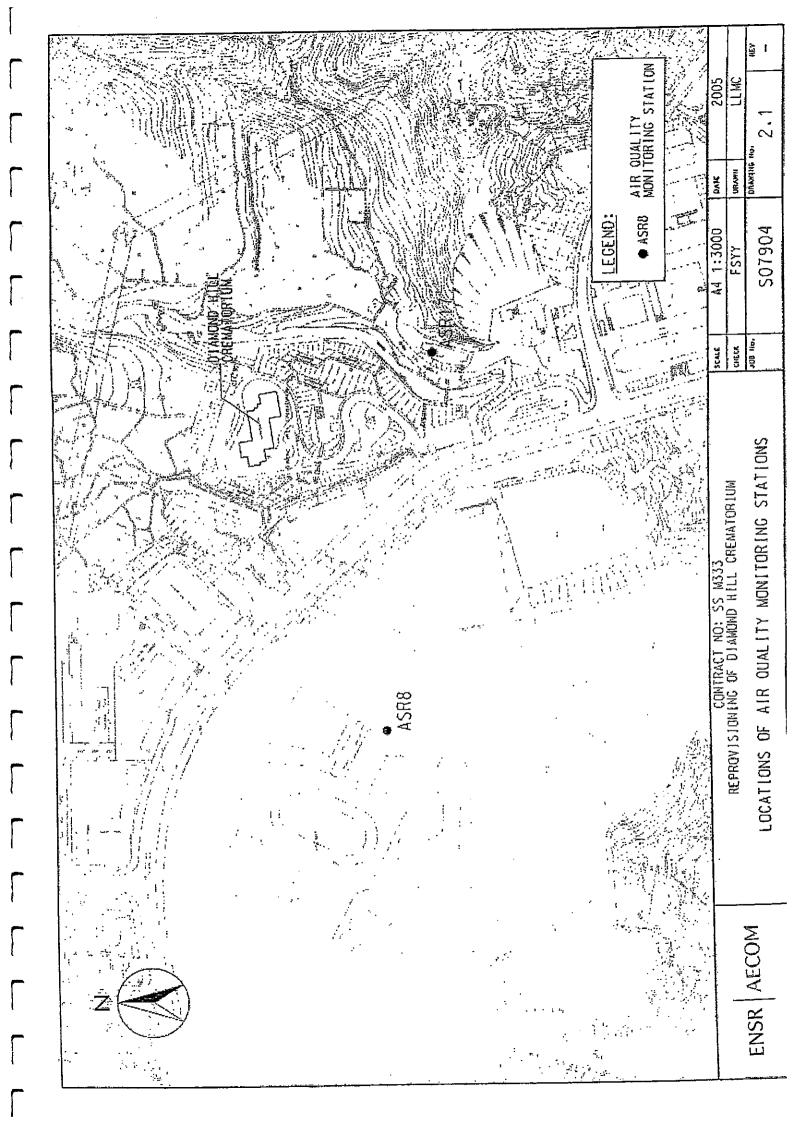
In general, the Contractor satisfactorily implemented all the required mitigation measure and was reasonably responsive to the ET's recommendations on any discrepancy observed during the weekly environmental site inspection.

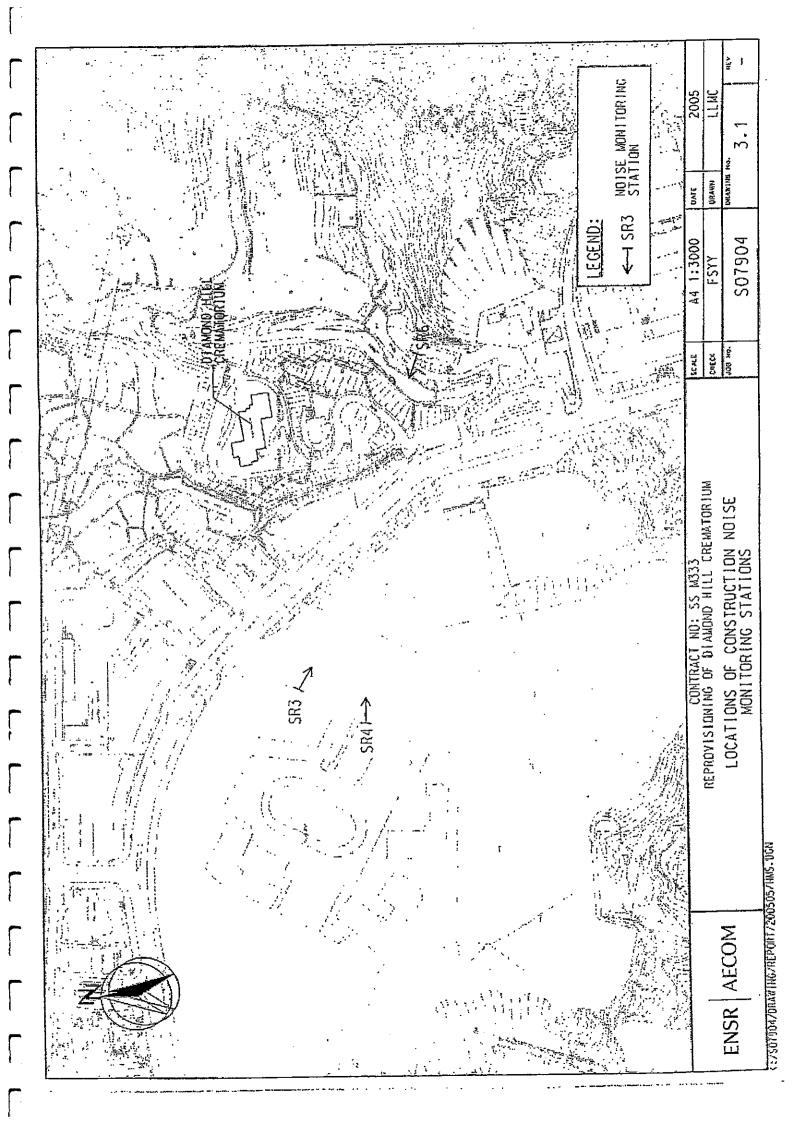

No environmental complaint, notification summons or successful prosecution was received or made against this Project in the month.

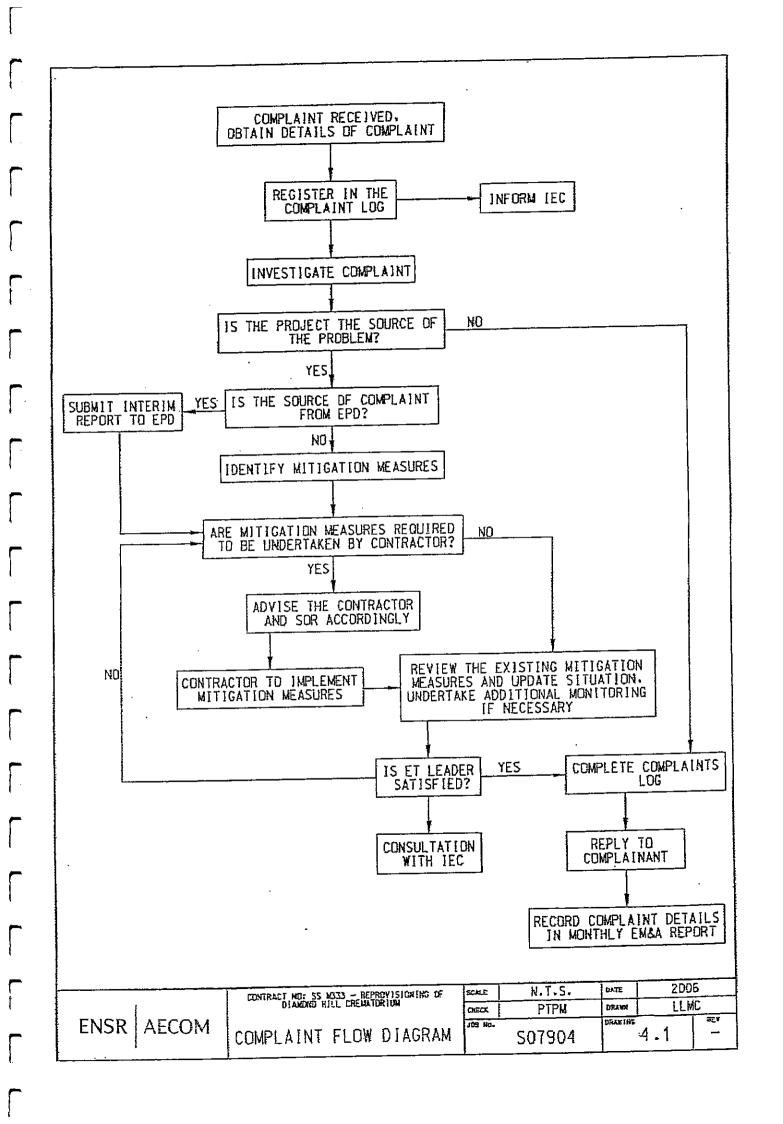

Based on the results of 15 subsurface soil verification samples, concentrations of lead and tin were found below the Dutch B levels and confirmed that all contaminated soil has been excavated.

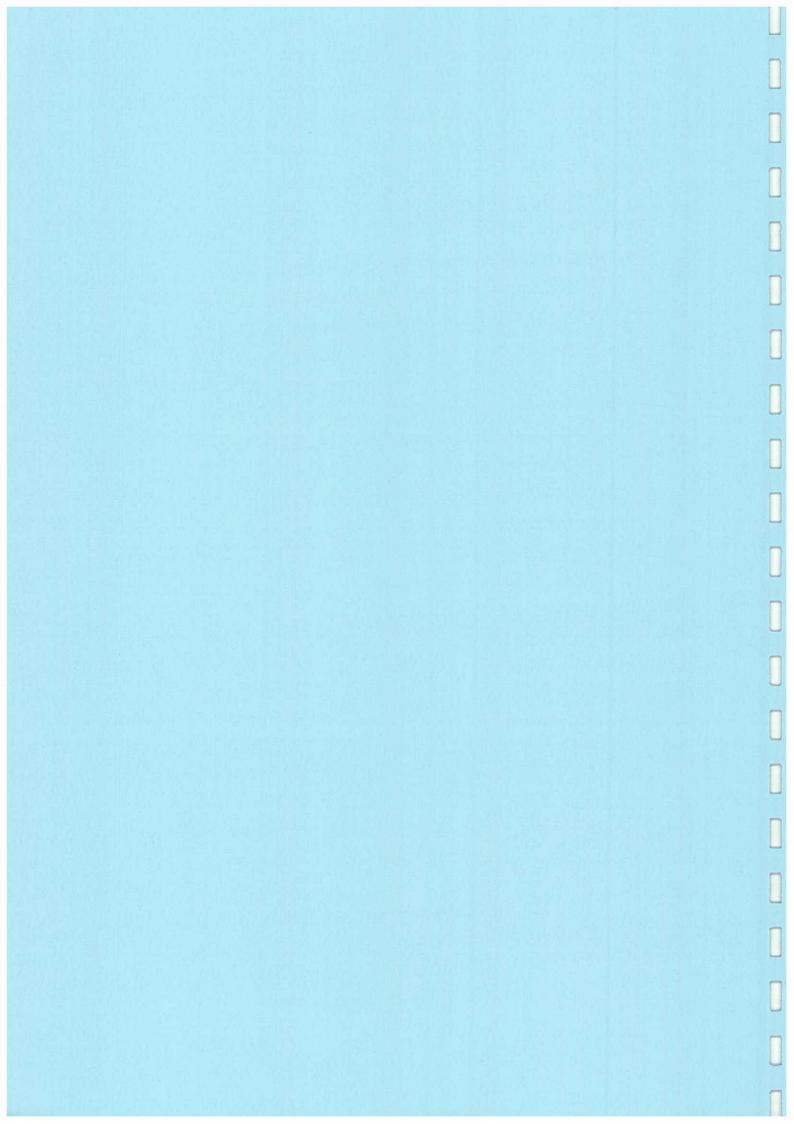

Recommendations

According to results of weekly environmental site inspections performed in the month and the construction programme for the coming month, recommendations for air quality, construction noise, water quality and waste and chemical management are detailed in Sections 5.1 and 5.2.


FIGURES

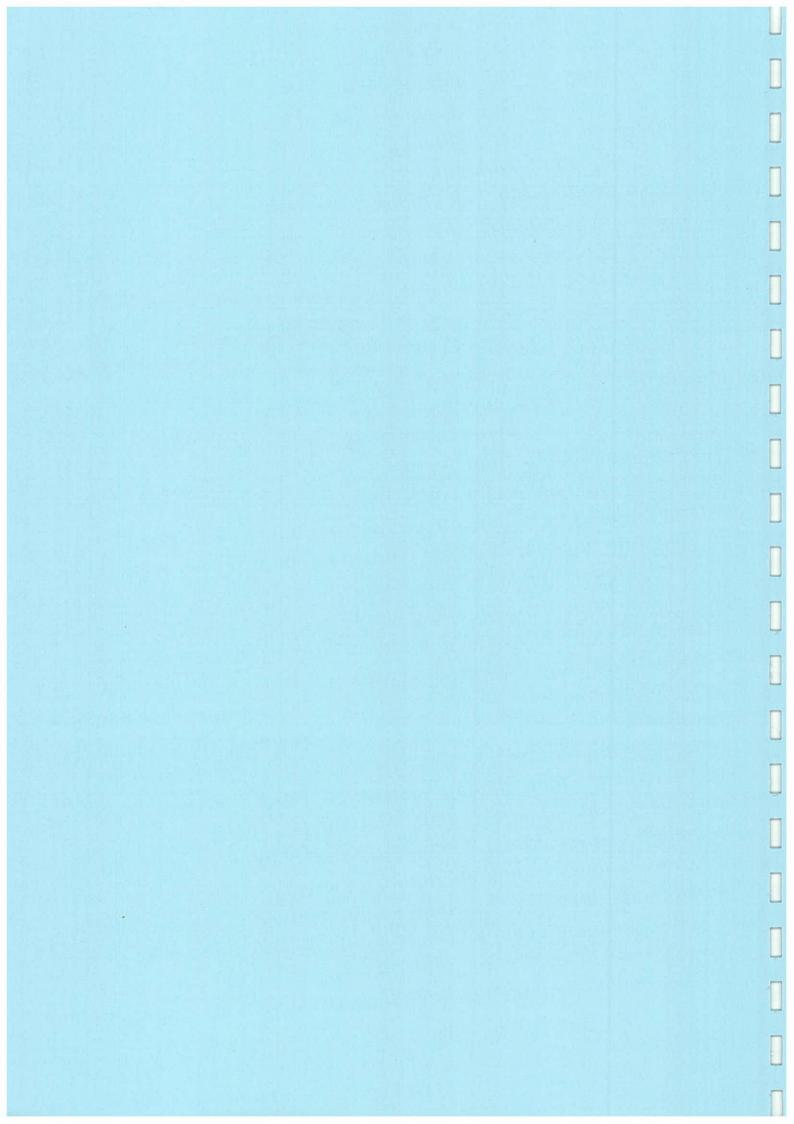



		•	
(
•			
·			

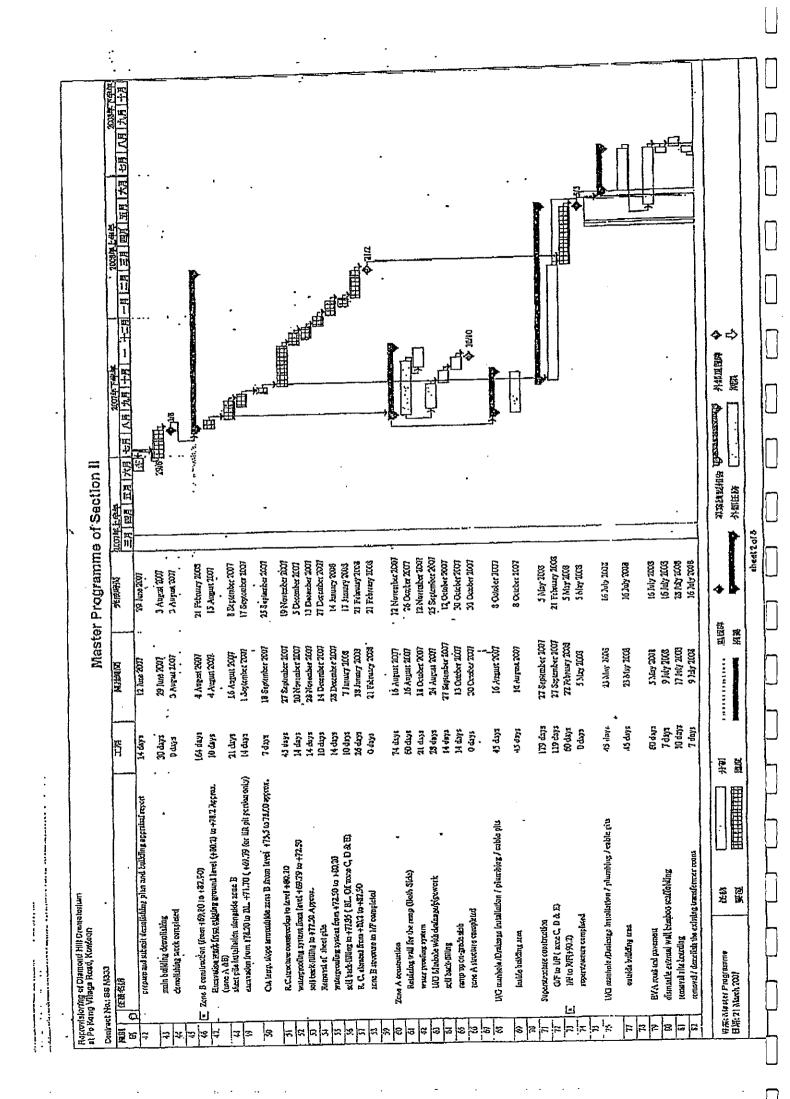

-	

	·	
		1 1

APPENDIX A
KEY CONTACTS OF ENVIRONMENTAL
PERSONNEL

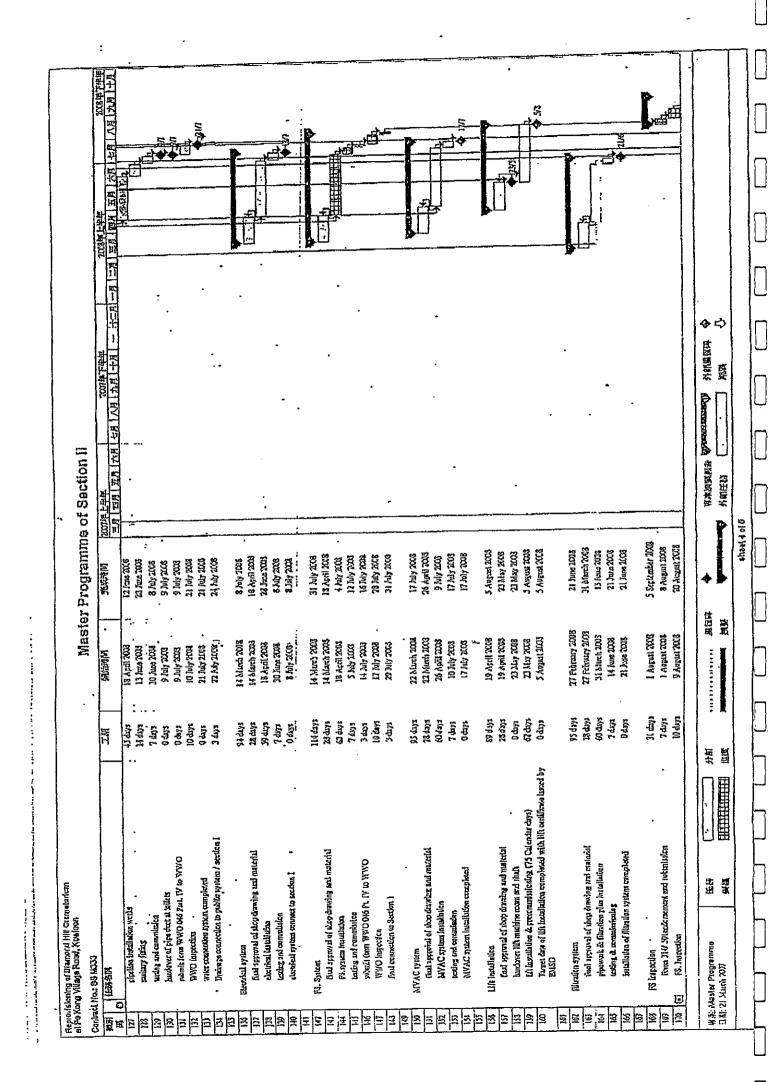


Appendix A Key Contacts of Environmental Personnel

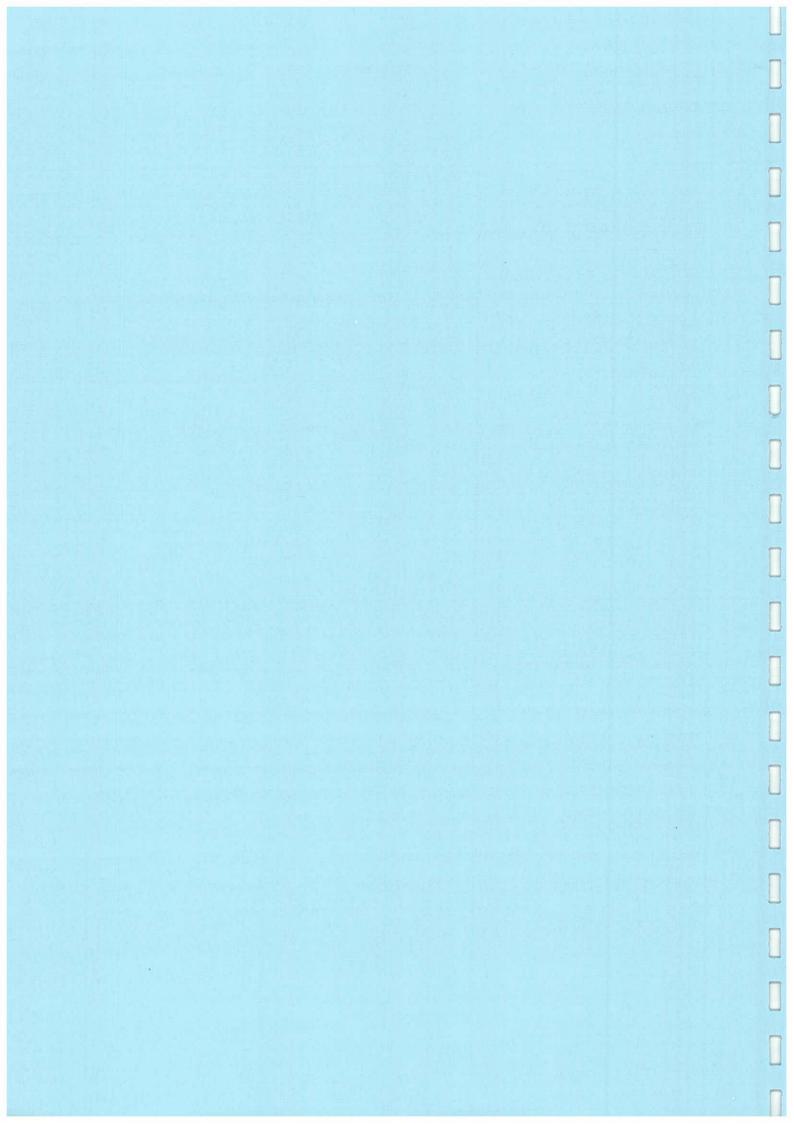

Party	Name	Telephone No.	Fax No.	
Environmental Protection	Department		•	
SEPO	Mr. David Cox	2835 1106	2591 0558	
EPO	Ms. Marlene Ho	2835 1186	2591 0558	
EPO (ECD)	Mr. Charles Wu	2117 7540	2756 8588	
Architect				
Architectural Services Depart	artment			
Project Architect	Ms. Renata Cheng	2867 3802	2524 8194	
Independent Environmen	tal Checker			
Hyder Consulting Limited				
IEC	Mr. Adi Lee	2911 2729	2805 5028	
Assistant to IEC	Ms. Winnie Ma	2911 2912	2805 5028	
Contractor				
China Resources Construc	tion Company Limited			
Project Manager	Mr. David Tse	2828 1515	2827 2921	
Environmental Team				
ENSR Asia (HK) Limited (fo	ormerly Maunsell Environ	mental Managemen	t Consultants Ltd)	
ET Leader	Mr. Y.T. Tang	3105 8686	2891 0305	
Audit Team Leader	Mr. Kenneth Lau	3105 8686	2891 0305	
Monitoring Team Leader	Mr. Eddie Yang	3105 8686	2891 0305	

	·	
	-	
	·	

APPENDIX B CONSTRUCTION PROGRAMME


		Master P	'rogramme	laster Programme of Section II	•		
Contract Nut. 88 H503 開發 任務起間	E H	田谷時頃	免现時間	1007年上中世	1007年下半年	2000年上4年下,1	2001年下中华 月 人乃(九月 十月
C) Hardin II construction (SIA Cultudar days)	139 Gets	ज्य गुरुद्धमुख्या ।	30 Seçtember 2003	76.	TORKE STATES	The state of the s	
T Toward In the Section II	0425		31 March 2007	4-912	-	•	•
1 secure ligation	17401	2 April 2007	19 April 2007		**.	•	•
E	15401	13-25 120	MAFRICAL TANK			-	
6 Vehicle withing pool		2 April 2017	11 1/10/2007				•
New Franches exputer	त्र हो होते	+ Nay 2001	29 May 2007.				•
गज्यीया हैंद हस्टर्धिया	30 days	15 April 2007	21 biss 2001				
1	28 drys	1 Audi 2007	9 May 2337	Park		•	
1) Extering cultivity following persons are assumed and a second and a				, [•
13 (2) Substantial of the brune utilities of the property of t	. 21 days	2 April 2607 , 14 April 2607	13 April 7007 9 May 2007			•	
			,				
널	50 days	2 April 2007	28 Jaco 2000	+2			
9 Miles Otherwy cooling form	7 days	10 April 2007	to Amir 1200		•		
		באמנו וריין פן	מופורייו	→ <u></u>			
 1-	i deyi	16 Asd 2007	12.04.201	重	•		
	•		10 1/ ACAT			-	,
· ·	odtys 21 dyw	12 Alty 2007	9 luce 2007		•		
11 IPD endreament of report (18 Latender da) at	rten C	9 (tes 2007	9 funs 2007	956			•
oli sangka outika main bolidas	17 4235	18 April 2007	8 May 2007				-
•	, 3 days	13 April 2007	20 April 2007		•		:
<u> </u>	14 days	21 April 2007	8. May 2007	· ;			
ī :	O chuy	\$ 5/10 ZCOT	5 June 2007	\$	-	•	
The Bandoo setting action with protocols energies of minuty	Î			j i		•	
25 ALEA (removed and dispersed off alea revolutionaries of ACM been elected	14 days 0 days	11 June 2007 23 June 2007	II dane ICOF II dane ICOF				
11	7.6 6-146	4 Niv 2f07	13 June 2007	October 1			
31 castured over the teather the part of closing by elling	i i	4 6197 2007	THIN YOU	·			
Т	Octays	7 Alsy 2607	7 2417 22.07	57			
1	1 days	8 Nay 2007	15 May 2007	5			
1	(원 ·	15 May 2007 14 May 2017	IS May SEE				
26 notify RPU	() () () () () () () () () ()	19.14y 2007	5 June 2007		•		
_		e that dept	12 tens 1677	→	٠	•	•
33 Centalishing that is a lamant	Sign .	6 June 2007	[3] June 2007	3			
i		200	10000				
41 main tealulas denolistins works	41000	14 Pine ALVI	JATE INTO INC.	* * : : : :			
1) The state of th		· · · · · · · · · · · · · · · · · · ·	\$	Cheverson Chever Sundicht	今 北町田宮珠 今 二 河底 つ		
	Ę		•				

7030年下学程 七月 | 八月 | 九月 | 十月 7004年中年 | 12月 | 三月 | 四月 | 五日 公部里位为 | 1007年上半年 | 三月 | 100月 | 1五月 | 六月 | 七月 | 八月 | 九月 | 七月 | Š Master Programme of Section II 外部任功 A than 3 of 5 19 June 2008 li Augus 1008 29 July 2009 29 July 1008 17 Jan 2008 18 April 700B 18 August 2003 26 Juna 2003 4 Nely 2008 21 Hely 2003 21 Jely 2003 23 July 2003 29 July 2003 29 July 21.08 2.1 July 7000 3 Apput ICCs 4 A . greet 2000 4 为7 其63 4 July 2013 12 74/17/503 29 July 2008 19 June 2008 17 June 2003 29 NA 2103 17,500 2001 TI SEEN TICES 19 June 2008 19 June 2008 What ace 16 July 2008 19 Jean 2008 17 June 2003 23 blay 2208 11 July 2008 25 July 2008 5 New 2888 4 hly 2003 2000年代 超回语 **以** H March 1003 14 March 2003 15 May 7003 15 May 2008 23 May 2003 22 May 2005 26 Juna 7008 BOOK APPLIES. KCC FINE OI 26 /uez 2003 26 /uez 2008 22 John 7002 14 John 7008 26 Iune (1003 72 Iuly 2008 O June AS Se land \$ 14y X03 15 May 2003 15 May 2008 16 here X48 15 51 7 TOTA 13 Liny 203 15 May 2008" 15 May 2003 23 May 2008 23 April 2008 15 May 2008 DHW KK D.J.fay 2003 15 5447 2003 10 June 2003 26 Azm 2003 13 16,7 203 15 May 2028 5 haly 2013 No. 5 345 2008 ************ विष्ठ वेक्रज ऽर्दक्राः शक्ताः E¢ep +1 22 4315 21 days 45 days 21 days 73 days 77 dt.p 22 days 21 days 2 dey 2 dey 2 dey 14 days 28 days 21 4373 700,3 11 days 20 days 21 days 21 days 45 E)34 .(O days 10 days 1041731 N days 45 days May 1 E SPO ħ 万 地 Ayligh and glass ceapys yelems (ahop drawing approved) Light drie of the p driwing stendy. तिको महत्त्वरत्रो अ क्षिक क्षेत्रभेतत् स्त्ये त्त्रबदर्गयी Input Initials for AVO serves confider most ditact they drawing approval shop daralog submission and approval holding beam in lift thail 3 & 6 Repressioning of Diamond His Gramaterium at Po Korg VIIInge Road, Korston Plumbing & Drainage lassellation. Wilst 2017 Infinitel Seaming floor screed / Insulation bound prescrien layer with rect like whaters I trains to talking a colored subble stone to wall roviez fighting completed न्त्रको भरत्र कि कि कि tiest door installation Sandral and reliens napeoded calling Soubilities Sakapiteling tylem betilation works Insullation work Reafire (Leathing system Treated Library teel and malalwerk Tellatial lasides salist loce granile / Ting Accessive wall pend wall plazaring & Lilling Ploor tiling and binury Establishm werks sul pizakring Selia publics werk Exema finishing laber seen 均张 Master Pregramme 日第71 March 2017 Just of faishing Spayited & EFF AN CA KING ConfratA No.: 85 11533 在政治院 0 2 € 8 72 2 2 2 ≅ 1000 12


and the second second and the second second

٠.

£ • 大型世纪女 疑 化共通数据 令不不知 Master Programme of Section II 公司任托 Khael 5 of 2 5.3epiember 7003 " 19 Styrenter 2008 20 Styrenter 2008 19 Sepander 2003 25 July 1008 25 July 2008 17 July 2008 4 August SCO 20 AUgrant 2003 17 July 2008 IS NUY TACK 12 Toly 2000 17 July 2008 医包括说 9 July 1ECB 相配的 火 3 Skywober 1108 10 Skyzaku 2033 S September 1033 20 June 2003 17 July 2003 11 745 2203 19 Pody 2203 21 Avgust 2008 10 Augus 2004 20 has title 10 744-2008 10 July 2003 3 July 1008 3 July 2503 四次的四 7dıyı Odaya 163 1643 2643 3(cp **†**1 30 dayı 7457 7 days 30 days 近貿 देवतांकि के त्यांक्ष अवकार्य ६ ६ १ थी (अध्याध जिल्लाक । १८४ १०) derwich the existing separated the feich wall appared Section I and 10 Rannal of eciting temp testal stalcanes of section 1 nitts good the parapet will and Ext. Individual haultden acits in AVO reribe certifor and make good the too janabon finaliting site tidiness 遊戲 Reprovisioning of Damond I pus Gramplanum, as Po Keng Villaga Road, Konkon make good the Ortective works convect to section I with TAC faselfation works exceptered 13 Impaction excepted remoral of towar craims includation warts F3 certificate 181 (T. bandoner seatlan !! 拼系: Master Programme 日期: 21 March 207 Contract Mp.; 58 (1)303 在研名四 **E**

APPENDIX C ENVIRONMENTAL ACTION AND LIMIT LEVELS

Appendix C Environmental Action and Limit Levels

Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (μg/m³)	Limit Level (µg/m³)
ASR8	195.0	260
ASR17	174.1	260

Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (μg/m³)	Limit Level (μg/m³)
ASR8	408.1	500
ASR17	408.4	500


Action and Limit Levels (L_{eq}) for Construction Noise

Time Period	Action Level	Limit Le	vel	
		SR3	SR4	SR6
0700 – 1900 hours on normal weekdays	When one documented complaint is received	70/65*	70/65*	75
0700 – 2300 hours on public holidays including Sundays and 1900 – 2300 hours on all days	from any one of the sensitive receivers	stipulate	to requirem d in future ction Noise	
2300 - 0700 on all days				

^{*}reduce to 70dB(A) for schools and 65dB(A) during school examination periods

	·	
•		
•		

APPENDIX D ENVIRONMENTAL MONITORING AND AUDIT SCHEDULES

Reprovisioning of Diamond Hill Crematorium Impact Air Quality and Noise Monitoring and Audit Schedule for November 2007

	# Saturday -	3-Nov	24-hour TSP		10-Nov	1-hour TSP		17-Nov			24-Nov			1-Dec		
mper zuur	ay⊪	2-Nov			NoN-6	24-hour TSP		16-Nov	1-hour TSP Noise		23-Nov			30-Nov		
Schedule for Novel	िस्सार्का Thursday≅मिस्सामा	1-Nov		Site Environmental Audit	8-Nov			15-Nov	24-hour TSP		22-Nov	1-hour TSP Noise		29-Nov		
onitoring and Audit	Wednesday	31-Oct		3)	7-Nov		•	14-Nov			21-Nov	24-hour TSP		28-Nov	1-hour TSP Noise	
Impact Air Quality and Noise Monitoring and Audit Schedule for November 2007	Tuesday Tuesday	30-Oct			voN-8			13-Nov			20-Nov			27-Nov	24-hour TSP	
Impact Air (F Un - Monday Special	29-Oct		,	2-Nov	1-hour TSP Noise	Site Environmental Audit	12-Nov		Site Environmental Audit	19-Nov		Site Environmental Audit	26-Nov		Site Environmental Audit
	Sunday Sure	28-Oct			4-Nov			11-Nov			18-Nov			25-Nov		

Reprovisioning of Diamond Hill Crematorium

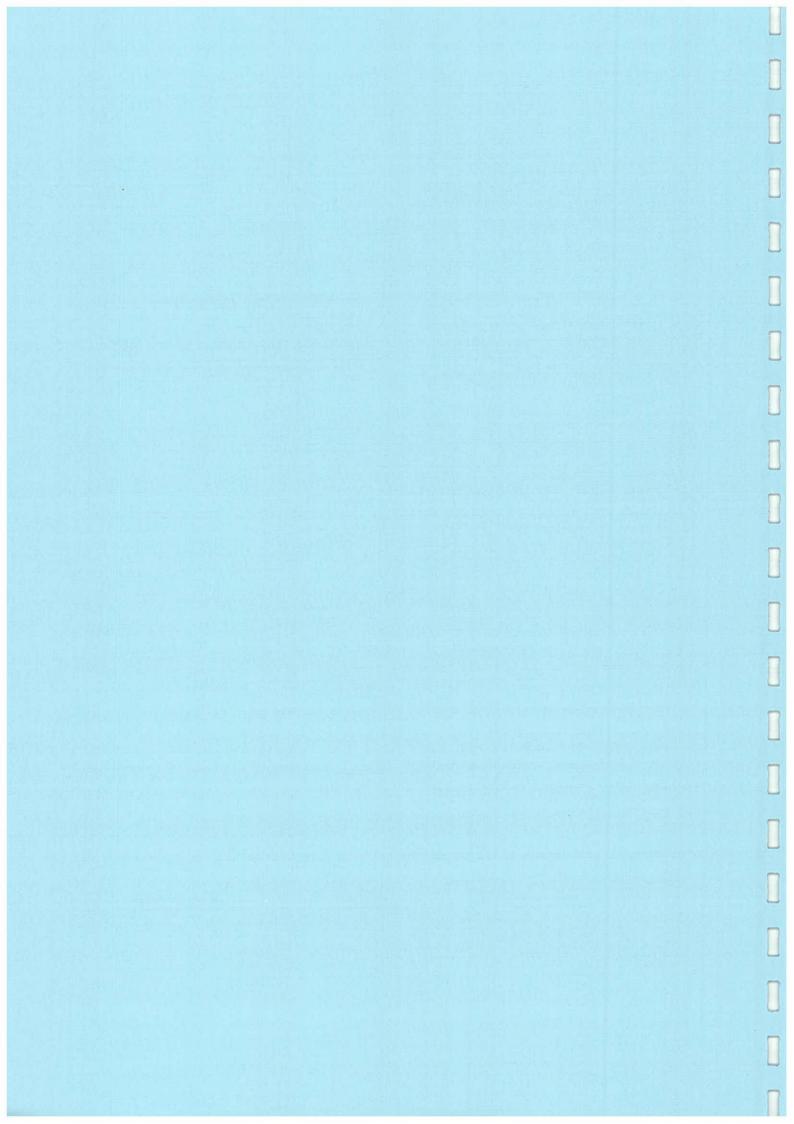
Tentative Impact Air Quality and Noise Monitoring and Audit Schedule for December 2007

					Site Environmental Audit	
		2000		-	## C - ## C - ## C - ## C	
		1-hour TSP Noise			24-hour TSP	
290-87	Z8-Dec	7/-Dec	26-Dec	25-Dec	c 24-Dec	23-Dec
C		I			Site Environmental Audit	
	1-hour TSP Noise	24-hour TSP				-
22-Dec	21-Dec	20-Dec	19-Dec	18-Dec	17-Dec	16-Dec
		Site Environmental Audit			Noise	
1-hour TSP	24-hour TSP				1-hour TSP	
15-Dec	14-Dec	13-Dec	12-Dec	11-Dec	10-Dec	9-Dec
i i					Site Environmental Audit	
24-hour TSP				1-hour TSP Noise	24-hour TSP	
8-Dec	7-Dec	9-Dec	5-Dec	4-Dec	3-Dec	2-Dec
1-Dec	30-Nov	29-Nov	28-Nov	27-Nov		25-Nov
Saturday Saturday	Friday Friday	Thursday		Tuesday	Monday Monday	Sunday

The schedule is subject to change due to unforeseeable circumstances (adverse weather, etc)

Reprovisioning of Diamond Hill Crematorium Tentative Impact Air Quality and Noise Monitoring and Audit Schedule for January 2008

Saturday	5-Jan		12-Jan	24-hour TSP	19-Jan	1-hour TSP		26-Jan		2-Feb	
14	4-Jan		11-Jan		18-Jan	24-hour TSP	4	25-Jan	1-hour TSP Noise	1-Feb	
Notice Modrosday	3-Jan		10-Jan		17-Jan			24-Jan	24-hour TSP	31-Jan	1-hour TSP Noise
Mednesday	2-Jan	1-hour TSP Noise	9-Jan		16-130			23-Jan		30-Jan	24-hour TSP
Monday The Machan Guality and In			8-Jan	1-hour TSP	Noise			22-Jan		29-Jan	
		24-hour TS	Site Environmental Audit	24-hour TSF	Site Environmental Audit	1-hour TSI	Noise Site Environmental Audit	21-Jan	-	Site Environmental Audit	Site Environmental Audit
Cumpan	30-Dec		6-Jan		12 lon			20-Jan		27-Jan	


The schedule is subject to change due to unforeseeable circumstances (adverse weather, etc)

Reprovisioning of Diamond Hill Crematorium

	Saturday Saturday	2-Feb	9-Feb		18. Eeb		24-hour TSP	23-Feb		1-hour TSP	1-Mar		
February 2008	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1-Feb	e e e e e e e e e e e e e e e e e e e			DB 1-C1	-	22.Eeh		24-hour TSP	29-Feb	1-hour TSP Noise	
Noise Monitoring and Audit Schedule for February 2008	Thursday Thursday	31-Jan	7-Feb			14-1-60		10 TO			28-Feb	24-hour TSP	
Noise Monitoring and Audit	Wednesday	30-Jan	G H-C	1-hour TSP		13-Feb		4	ZO-rep		27-Feb		
Tentative Impact Air Quality and No	-100	29-Ja	7. Teah	24-hour TSP		12-Feb	1-hour TSP Noise	1	19-Feb		26-Feb		
Tentative Impac	A Monday	28-Jan	Site Environmenta		Site Environmental Audit	11-Feb	24-hour TSP	Site Environmental Audit	18-Feb	1-hour TSP Noise	Site Environmental Audit		Site Environmental Audit
	10.70	27-Jan	t	3-reb		10-Feb			17-Feb		40 T V	Z4-1-61	

The schedule is subject to change due to unforeseeable circumstances (adverse weather, etc)

APPENDIX E CALIBRATION DETAILS

tation	Po Leuna Kuk	Grandmont Primar	y School (ASR8)	Operator:	Shum Ka	m Yuen	_
al. Date:	07-Sep-07			Next Due Date:	07-No	ov-07	_
ar. baic. quipment No.:	A-001-69T	- . (CMOVS 231)	Accy-Vol syste	em) Serial No.	07	16	<u>-</u>
(Caparicine 140.	7,00,00,	(GILTID ZOX					
	•	,	Ambient	Condition			
Temperatu	ıre, Ta (K)	298	Pressure, F	a (mmHg)	·	768.0	
			Orifice Transfer St	andard Informatio		<u></u>	1 000446
Seria	il No:	988	Slope, mc	2.00577	Interce		-0.00146
Last Calibr	ation Date:	05-Dec-06		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)]"*	
Next Calibr	ration Date:	05-Dec-07			Pa/760) x (298/Ta)]	"2 -bc} / mc	
			Calibration o	f TSP Sampler			
			Orfice		HV:	S Flow Recorder	
Resistance Plate No.	DH (orifice) in. of wate		760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF	
18	12.5		3.55	1,77	50.0	50.2	6
13	10.8		3.30	1.65	44.0	44.2	3
10	8.6		2.95	1.47	40.0	40.2	1
7	5.8		2.42	1.21	32.0	32.1	7
5	3.2		1.80	0.90	22.0	22.1	2
Slope , mw = Correlation Co).9947 librate.	Intercept, bw =	<u>-</u> 5.6	6686	_
-II Cottetation C	Demoent < 0.5	50, Clicck and room		Calculation			
F # TOD?		Own take Oatd					
		Curve, take Qstd					
From the Hegre	ession Equation	, the "Y" value acco	лину ю				
		ពា	w x Qstd + bw = IC	x [(Pa/760) x (298	/Та)] ^{1/2}		
				10		34.54	
Therefore, Set	Point; IC = (my	v x Qstd + bw) x [(760/Pa)x(Ta/2	98 }]"=		34.34	_~-
<u>, </u>							
Remarks:							
Remarks:							
	Fddio 4	ang		9 Holy		Date:	· 200-

tation	Po Leung Kuk Gr	andmont Primar	y School (ASR8)	Operator:	Shum Ka	m Yuen
cal. Date:	05-Nov-07			Next Due Date:	05-Jai	n-08
	A-001-69T (GMW	S 2310 Accy-Vo	ol system)	Serial No.	071	6
quipmontition						
			Ambient (Condition		
Temperat	ure, Ta (K)	298	Pressure, Pa	a (mmHg)		760.4
<u></u>						,
			Orifice Transfer Sta	andard Information	n	ent bc -0.00146
Seri	al No:	988	Slope, mc	2.00577	Interce	/P4 00
Last Calib	ration Date:	05-Dec-06		mc x Qstd + bc :	= [DH x (Pa/760) x	(298/1a)]***
Next Calib	oration Date:	. 05-Dec-07		Qstd = {[DH x (F	Pa/760) x (298/Ta)]	-bc} / mc
					· · ·	
			Calibration of	TSP Sampler		O El December
			Orfice	<u>, </u>	HV	S Flow Recorder
Resistance Plat No.	DH (orifice), in. of water	[DH x (Pa/	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	12.8		3.58	1.78	52.0	52.01
13	10.8		3.29	1.64	48.0	48.01
10	8.6		2.93	1.46	42.0	42.01
7	6.0		2.45	1.22	34.0	34.01
5	3.2		1.79	0.89	24.0	24.01
Slope, mw = Correlation C			0.9993 alibrate.	Intercept, bw = —	4.	5250 .
<u> </u>			Set Point	t Calculation		
From the TSP	Field Calibration (Curve, take Ostd	= 1.30m ³ /min			
	ression Equation, t					
			nw x Qstd + bw = 10	x [(Pa/760) x (298	//Ta)] ^{1/2}	
Therefore, Se	et Point; IC = (mw	x Qstd + bw)x [(760/Pa)x(Ta/2			36.80
Remarks:		<u> </u>				

	Staff Ouarter For	Diamond Hill Cro	ematorium (ASR17)	Operator:	Shum Kar	m Yuen	
tation Sal. Date:	07-Sep-07			Next Due Date:	07-No	v-07	
ui. Date. puipment No.:	A-001-69T	CMWS 2310	Accy-Vol syste	m) Serial No.	717	'5	
Sibilicur 140"	7,507 557	GNITTO					
<u></u>			Ambient (Condition			·
Temperatur	e Ta(K)	298	Pressure, Pr	a (mmHg)		768.0	
Temperator	0, 12 (19						
			Orifice Transfer Sta	andard information	n		
Serial	No:	988	Slope, mc	2.00577	Interce		-0.00146
Last Calibra		05-Dec-06		mc x Qstd + bc =	= [DH x (Pa/760) x ([298/Ta)] ^{1/2}	
Next Calibra		05-Dec-07		$Qstd = \{[DH \times (F)]\}$	a/760) x (298/Ta)] ¹	^{/2} -bc} / mc	
					<u> </u>		
			Calibration of	TSP Sampler		·	
			Orfice		HVS	Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
10	12.4		3.54	1.77	50.0	50.26	3
18 13	9.8		3.15	1.57	44.0	44.23	3
10	8.4		2.91	1.45	38.0	38.20)
7	5.6		2.38	1.19	32.0	32.17	7
5	3.0		1.74	0.87	22.0	22.1	2
By Linear Regre Slope , mw = Correlation Coe			0.9911	intercept, bw =	-5.0	9696	•••
), CHICCK GIRG I COL					
	OBINOISTIC V 0.33C	•		Calculation			
*If Correlation Co			Set Point	Calculation			
If Correlation Co	ield Calibration C	Curve, take Qstd	Set Point = 1.30m³/min	Calculation	,		
*If Correlation Co		Curve, take Qstd	Set Point = 1.30m³/min	Calculation	,		
*If Correlation Co	ield Calibration C	Curve, take Qstd he "Y" value acc	Set Point = 1.30m³/min		(Ta)] ^{1/2}		
*If Correlation Co From the TSP F From the Regree	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	Па)] ^{1/2}	3E US	
*If Correlation Co From the TSP F From the Regres	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08	
*If Correlation Co From the TSP F From the Regree	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	Та)] ^{1/2}	35.08	
*If Correlation Co From the TSP F From the Regree	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08	
From the TSP F From the Regree	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08	
*If Correlation Co From the TSP F From the Regree	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08	
*If Correlation Conference of the TSP F From the Regreence of the TSP F Therefore, Set F	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m	Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08	
From the TSP F From the Regree Therefore, Set F	ield Calibration C ssion Equation, t	Curve, take Qstd he "Y" value acc m x Qstd + bw) x [(Set Point = 1.30m³/min ording to w x Qstd + bw = IC	x [(Pa/760) x (298/	(Ta)] ^{1/2}	35.08 Date:	

Station	Staff Quarter Fo	r Diamond Hill Cı	ematorium (ASR17)) Operator:	Shum Ka	am Yuen	
Cal. Date:	05-Nov-07		<u> </u>	Next Due Date:	05-Ja	an-08	_
Equipment No.:	A-001-49T (GMWS 2310 Acc	y-Vol system)	Serial No.	71	75	
···			Ambient	Condition			
Tamanaratu	To /V	298	Pressure, F			760.4	
Temperatu	ire, ra (n)	290	riessuie, r	a (mining)	 -	700.7	<u> </u>
			Orifice Transfer St	tandard Informatio	n	<u>-</u>	
Seria	ıl No:	988	Slope, mc	2.00577	Interce	ept, bc	-0.00146
Last Calibra	ation Date:	05-Dec-06		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	05-Dec-07		$Qstd = \{[DH x]\}$	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
		•					
-			Calibration o	f TSP Sampler			
			Orfice		HV:	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (Cl	
18	12.8		3.58	1.78	52.0	52.0	11
13	10.0		3.16	1.58	46.0	46.0	11
10	8.6		2.93	1.46	42.0	42.0	11
7	5.5		2.35	1.17	34.0	34.0	11
5	3.0		1.73	0.86	24.0	24.0)1
Slope , mw = Correlation Coe		0	.9990	Intercept, bw =	-1.8	3825	_
*If Correlation Co	oefficient < 0.990	, check and recal	ibrate.				
			Set Point	Calculation			•
From the TSP Fi	ield Calibration C	urve, take Qstd =	: 1.30m³/min				
From the Regres	ssion Equation, th	ne "Y" value acco	rding to				
		mu	v x Qstd + bw = IC	x ((Pa/760) x (298/	Ta)] ^{1/2}		
		1311	4014 517 - 10	L(/1		
Therefore, Set P	Point; IC = (mw x	Qstd + bw) x [(760 / Pa) x (Ta / 29	98)] ^{1/2} =		37.42	_
Danielon							
Remarks:				,		<u></u>	
		···		<u> </u>		<u> </u>	
OC Baviower	Eddie Ym	wy,	Signature:	/dex)		Date: 7 No	v. 2007
AO LIEAIRMEL"		- 	orginatore.				

EQUIPMENT CALIBRATION RECORD

Type:				Laser Du	ıst Moni	itor		
	ecturer/Brand:			SIBATA				
Model				LD-3				
	nent No.:			A.005.10	а			
Sensiti	vity Adjustment	Scale Se	tting:	753 CPI	И			
Operat	ior:			Eddie Ya	ng (EWI	VY)		
Standar	d Equipment							
Taulan		Du	norocht & l	Patashnick	TEOM®			
Equipn		Cul	bornort (Di	i Ying Seco	ndany Si	chool)		
Venue:			ries 1400A		maary O	5110017		
Model				40AB2198	00803			
Serial I	NO:			200C1436		K _p : 12500		
Lact Co	alibration Date*:		nsor: <u>1</u> June 2007		39003	170. 12000	 	
					<u> </u>			
*Remark	ks: Recommend	ed interva	al for hardv	vare calibra	tion is 1	year		
Calibrat	ion Result	-						
						750 05	N #	
Sensiti	ivity Adjustment	Scale Se	tting (Befor	re Calibratio)П):	753 CP		
Sensiti	ivity Adjustment	Scale Se	tting (After	Calibration):	753 CP	'M	
			Ti	Ami	pient	Concentration 1	Total	Count
Hour	Date		Time	1		(mg/m³)	Count ²	Minute
	(dd-mm-yy)				dition	Y-axis	Count	X-axis
				Temp	R.H.	1-axis		\\-axis
		40.00	44.0	(°C)	(%) 75	0.03558	1640	27.33
1	08-07-07	10:00	- 11:0		75	0.03998	1753	29.22
2	08-07-07	11:00	- 12:0				2146	35.77
3	08-07- 07	12:00	- 13:0		75	0.05114	1873	31.22
4	08-07-07	13:00	- 14:0		76	0.04332	10/3	31.22
Note:	 Monitoring of the count Total Count Count/minu 	was logg	ed by Lase	er Dust Mo⊓	itoΓ	ashnick TEOM®		
				(,			
•	ar Regression of	Y or X	0.0044					
	(K-factor):		0.0014					
Correla	ation coefficient:		0.9391					
Validity	y of Calibration I	Record:	9 July	2008				
					•			
Remark	s:							
1								
	•							
								
					Flow		a To	ily 200
OC Re	viewer: Eddi	e Yang	Sid	nature:	1 W 1.	Dat	e/_/	77

		EQUIPN	MENT C	ALIBRA'	ΠΟΝ RI	ECORD		·
Model I Equipm	acturer/Brand: No.: nent No.: vity Adjustment S	Scale Setting:		Laser Du SIBATA LD-3 A.005.11a 799 CPM	l .	or		
Operat	or:		_ <u>i</u>	Eddie Yar	ng (EWN	Y)		
Standar	d Equipment					•		
	: No.:	Cyberper Series : Control: Sensor: 17 June	ort (Pui Y 1400AB 140 120 2007	ashnick 1 fing Secon AB21989 DC14365	9803 9803 9803	K _o : <u>12500</u>		
	ion Result							
Sensiti	ivity Adjustment ivity Adjustment	Scale Setting	(After Ca	alibration)	: 	799 CP	M	Count/
Hour	Date (dd-mm-yy)	Time	:	Amb Cond Temp (°C)		Concentration (mg/m³) Y-axis	Total Count ²	Minute ³ X-axis
1	08-07-07	10:00 -	11:00	30.9	75	0.03558	1527	25.45 27.32
2	08-07-07	11:00 -	12:00	30.8	75 75	0.03998 0.05114	1639 1987	33.12
3 4	08-07-07 08-07-07	12:00 - 13:00 -	13:00 14:00	31.2 31.3	75 76	0.03114	1747	29.12
Slope Correl	2. Total Count 3. Count/minular Regression of (K-factor): ation coefficient:	was logged be was calculated as X	oy Laser I ated by (7 0.0015 0.9300	Fotal Cou	KOL	shnick TEOM®		
Validit Remark	y of Calibration I	Record:	9 July 20					
QC R	eviewer: <u>Edd</u> i	e Yang	Signa	ature:	Edi) Dat	_{te: 9} Ји	ly 2007

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator		Rootsmeter Orifice I.I	-	833620 0988	Ta (K) - Pa (mm) -	293 - 756.92
PLATE OR	VOLUME · START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.4220 0.9990 0.8930 0.8500 0.7020	3.1 6.3 7.8 8.6 12.5	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

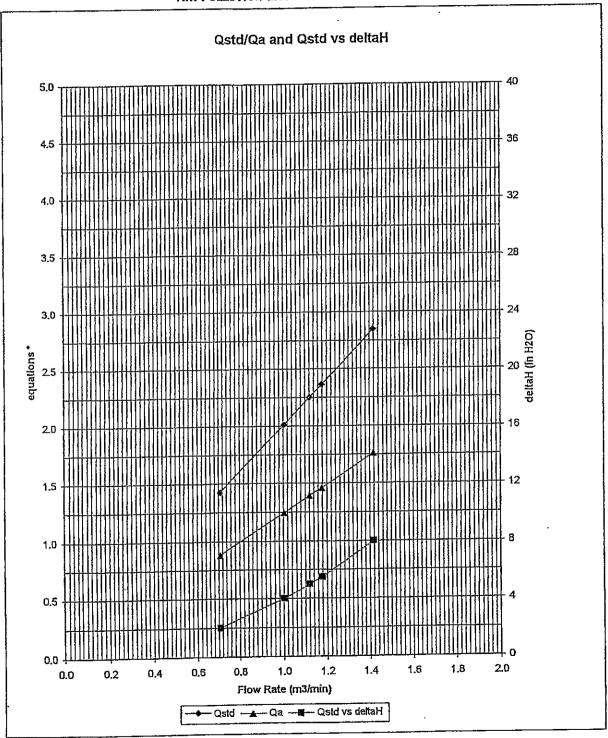
Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0088 1.0045 1.0024 1.0014 0.9961	0.7094 1.0055 1.1225 1.1781 1.4190	1.4233 2.0129 2.2505 2.3603 2.8467		0.9959 0.9917 0.9896 0.9886 0.9834	0.7003 0.9927 1.1082 1.1631 1.4009	0.8799 1.2443 1.3912 1.4591 1.7598
Qstd slop intercept coefficient	(b) =	2.00577 -0.00146 0.99999		Qa slop	t (b) = ent (r) = 	1.25598 -0.00090 0.99999
y axis =	SQRT [H20 (Pa/760)(298/	ra)]	y axis =	SQRT [H2O ([a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series: $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$

Qa series: $\sqrt{(\Delta H (Ta / Pa))}$

#0988

称 百 武 贺 月 戊 ム リ SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 Website: www.cigismec.com E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

07CA0713 01-05

Page

of

2

Item tested

Description: Manufacturer:

Sound Level Meter (Type I) RION CO., LTD.

Microphone RION CO., LTD. UC-53A

Type/Model No.: Serial/Equipment No.:

00320534 / N.007.02A

90526

Adaptors used:

Item submitted by

Customer Name:

Maunsell Environmental Management Consultants Ltd.

Address of Customer:

Room 1213-1219, Grand Central Plaza, Tower 2, 138 Shafin Rural Committee Rd, Sha Tin, New Territories, HK

Request No.: Date of request:

13-Jul-2007

NL-31

Date of test:

17-Jul-2007

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226

DS 360 DS 350

Serial No. 2288444

33873 61227

Expiry Date:

11-Jan-2008 23-Nov-2007 13-Jun-2008

Traceable to:

CIGISMEC CEPREI CEPRE

Ambient conditions

Temperature:

Relative humidity: Air pressure:

(23 ± 2) °C (55 ± 15) % (990 ± 10) hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2. replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Huang Jian Min/F.-phg-Jun Qi-

Date: 17-Jul-2007

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

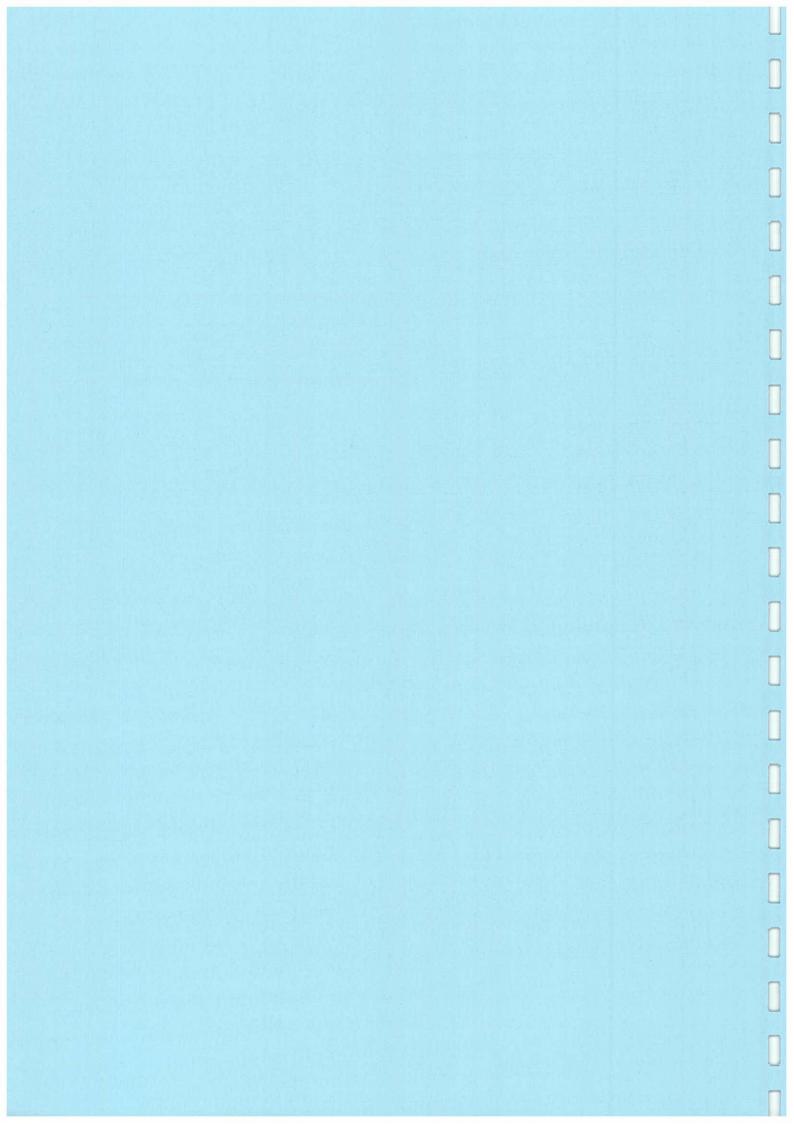
綜合試驗消限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G.F., 9.F., 12.F., 13.F. & 20.F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓、13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	07CA0713 01-08		Page:	1 of 2	
Item tested					
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Acoustical Calibrat RION CO. LTD. NC-73 10307216 (N.C				
ltem submitted by					
Curstomer: Address of Customer: Request No.: Date of request:	Maunsell Environn Room 1213-1219, Grad - 13-Jul-2007	nental Management Cor nd Central Plaza, Tower 2, 13	ısultanis Lid. 8 Shafin Rural Committee Rd.	Sha Tin, New Temiorie	s,HK
Date of test:	17-Jul-2007				
Reference equipment	used in the calib	ration			
Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2412857 2239857 2346941 61227 US36087050 GB41300350 MY40003662	Expiry Date: 29-Nov-2007 29-Nov-2007 29-Nov-2007 13-Jun-2008 30-Nov-2007 27-Nov-2007 15-Jun-2008	Traceable to SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI CEPREI	
Ambient conditions					
Temperature: Relative humidity: Air pressure:	24 ± 1 °C 55 ± 10 % 990 ± 15 hPa				<u> </u>
and the lab calibrat 2, The calibrator was	ion procedure SMIPU tested with its axis ve	d in accordance with the 104-CA-156. rtical facing downwards .01 dB and 0.1 Hz and the maker's information income.	at the specific frequency	y using insert volta- for variations from	ge technique a reference
-	d calibrator conforms to t	he requirements of annex l	B of IEC 60942: 1997 for th	ne conditions under w	hich the
This is to certify that the sound test was performed. This d	loes not imply that the	sound calibrator meets	IEC 60942 under any o	Met colloinous.	

Details of the performed measurements are presented on page 2 of this certificate.


Approved Signatory: Date: 17-Jul-2007 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

O Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

APPENDIX F AIR QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATION

APPENDIX F: Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station ASR8

Date	Starting		Concentra	tion, µg/m3	
	Time	1st	2nd	3rd	Average
5-Nov-07	9:30	84.0	82.9	82.0	83.0
10-Nov-07	9:30	88.4	86.9	86.7	87.3
16-Nov-07	9:35	91.0	89.3	88.7	89.7
22-Nov-07	9:25	92.6	91.5	91.2	91.8
28-Nov-07	9:40	94.0	96.3	94.8	95.0
L	· 			Min.	82.0
				Max.	96.3
				Average	89.4

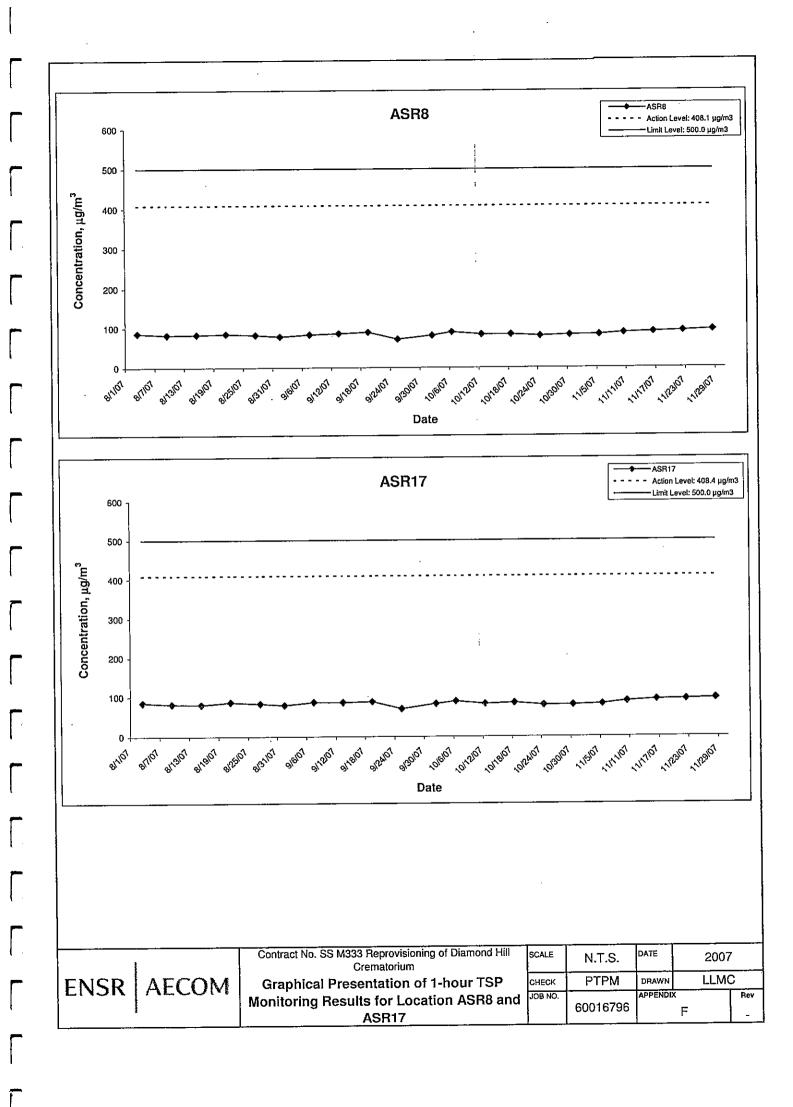
1-hour TSP Monitoring Results at Station ASR17

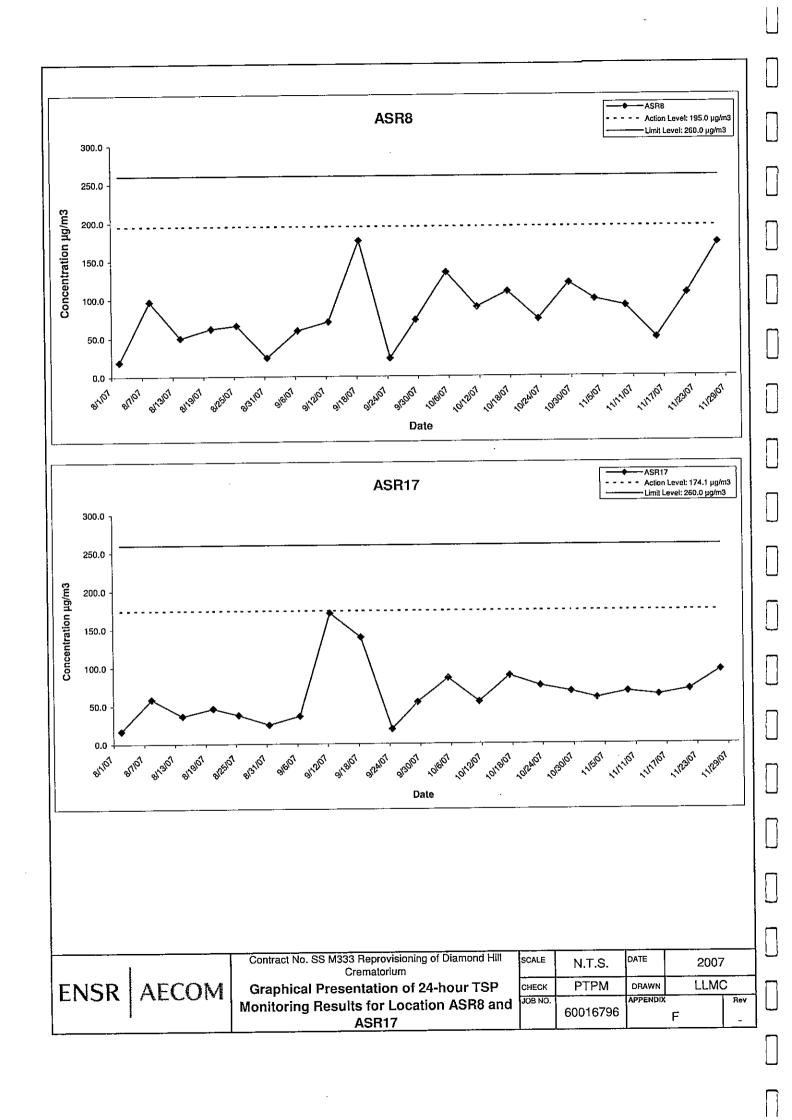
I-HOUI IOI	111011110111	<u> </u>			
Date	Starting		Concentra	ation, μg/m3	
]	Time	1st	2nd	3rd	Average
5-Nov-07	9:40	80.4	84.5	80.0	81.6
10-Nov-07	9:40	87.6	88.8	89.6	88.7
16-Nov-07	9:45	92.5	91.4	94.1	92.7
22-Nov-07	9:35	93.2	94.4	92.9	93.5
28-Nov-07	9:50	95.5	96.4	95.0	95.6
				Min.	80.0
				Max.	96.4
				Average	90.4

Remark:

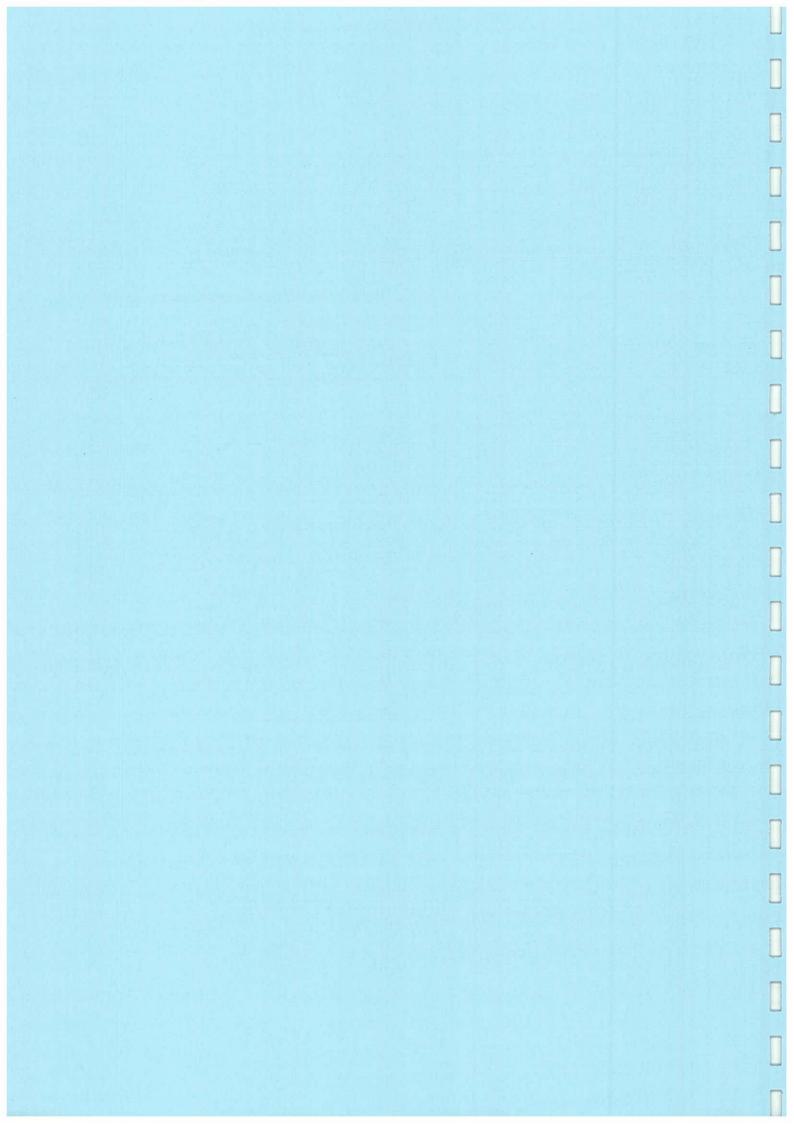
Bold value indicated an Action level exceedance Bold & Italic value indicated an Limit level exceedance

APPENDIX F: Air Quality Monitoring Results


24-hour TSP Monitoring Results at Station ASR8


								1		-	A	Tata 1.0.7
Date	Filter W	Veight (a)	Flow Rate	. (m³/min.)	Elapse	Elapse Time	Sampling	Conc.	Weather	Φ	AV. TIOW	otal vol.
		Final	Initial	Final	Initial	Final	Time(hrs.)	(hg/m³)	Condition	weight(g)	(m³/min)	(m,)
P Nov.07	2 3660	2 5580	1.34	1.34	6867.45	6891.45	24.0	99.4	Sunny	0.19	1.34	1931.0
0-NON-0	0.000	3 5082	1.37	1.37	6891.5	6915.5	24.0	6.08	Sunny	0.18	1.37	1978.6
9-1404-07	0.0200	2,4254	1 44	1 44	6915.5	6939.5	24.0	49.8	Sunny	0.10	1.44	2070.7
ID-ADNI-CI	3.320	0.450	16	100	6030 5	6963 5	24 D	107.1	Sunny	0.21	1.34	1931.0
70-NON-12	3,3445	3.5513	÷.	5	2.555	1000		1775	Simul	28.0	1 44	70707
27-Nov-07	3.5988	3.9560	1.44	1.44	6963.5	02/269	24.0	1.2.3	Guilly	20:5		
							Min	49.8				
							Max	172.5				
							Average	103.9				
						-			1			

24-hour TSP Monitoring Results at Station ASR17


-	141	12 12 12	Class Data (m3/min	(m ³ /min)	Flance	Flance Time	Sampling	Conc.	Weather	Particulate	Av. flow	Total vol.
Date	riller w	Filter weignt (g)	חוסיי חמוב	(1111 /11111-)	LIGIN		9					é
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(ˈm/bn)	Condition	weight(g)	(m²/min)	(m²)
5 Now 07	2 2006	9.4360	1.32	1.32	18877.9	18901.9	24.0	59.5	Sunny	0.11	1.32	1906.6
O-MON-O	0.020	7007	00.	1 30	18901 9	18925 9	24.0	67.9	Sunny	0.14	1.39	1998.7
\0-\0\-\0	3,5503	2.400/	6.5.1	20.1	2.000	2020	2		ľ	0, 0	,	0 0100
15_Nov_07	2 3283	3 4580	1.42	1.42	18925.9	18949.9	24.0	63.4	Sunny	0.13	1.42	2040.2
70-801-0					0,00	0 0100	0,0	70.4	Cinner	0,10	5	1906 6
1 21.Nov-07	3.3208	3,4551	.32	1,32	18949.9	189/3.8	Z4.0	10.4	Sullily	3	20.	
27 8 12 07	0 5070	VC07 0	57.	1 42	18973 9	18997 9	24.0	95.3	Sunny	0.20	1.42	2046.2
/0-A0N-/Z	0.037.0	9.7354		17.		2						
							Min	59.5				
							Max	95.3				
							Average	71.3				
						_			1			

Remark: Bold value indicated an Action level exceedance Bold & Italic value indicated an Limit level exceedance

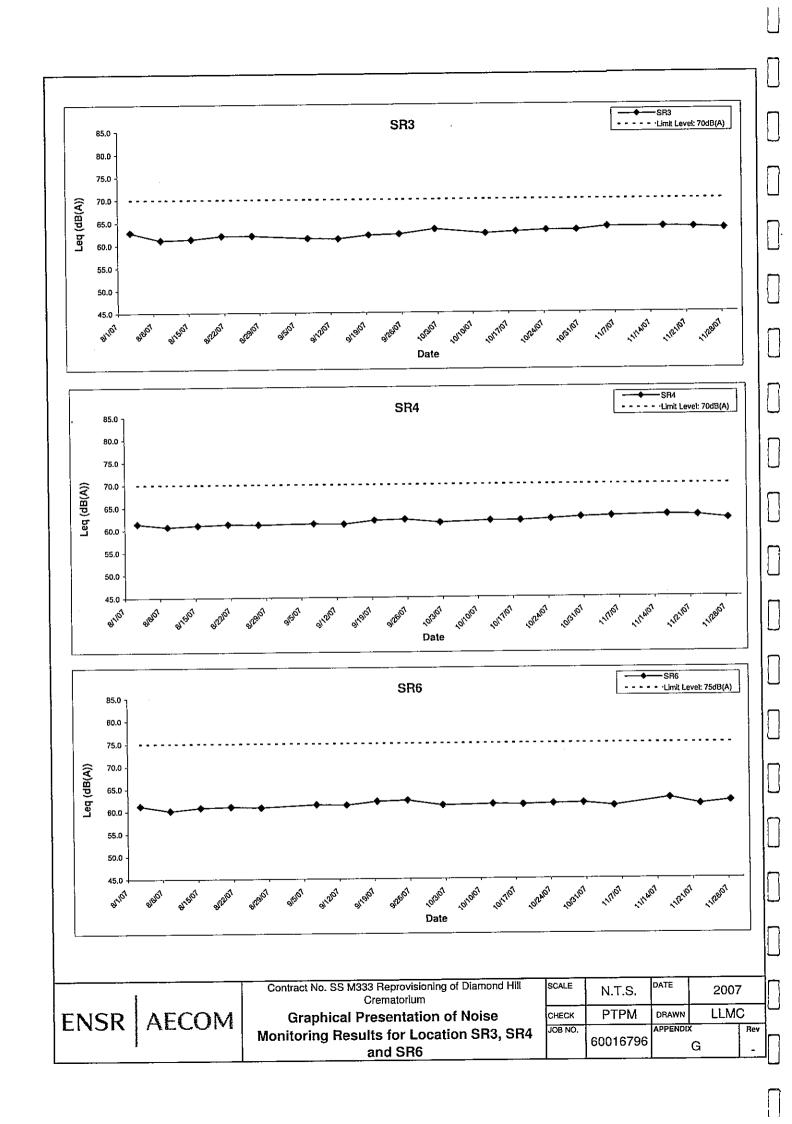
APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G Noise Monitoring Results

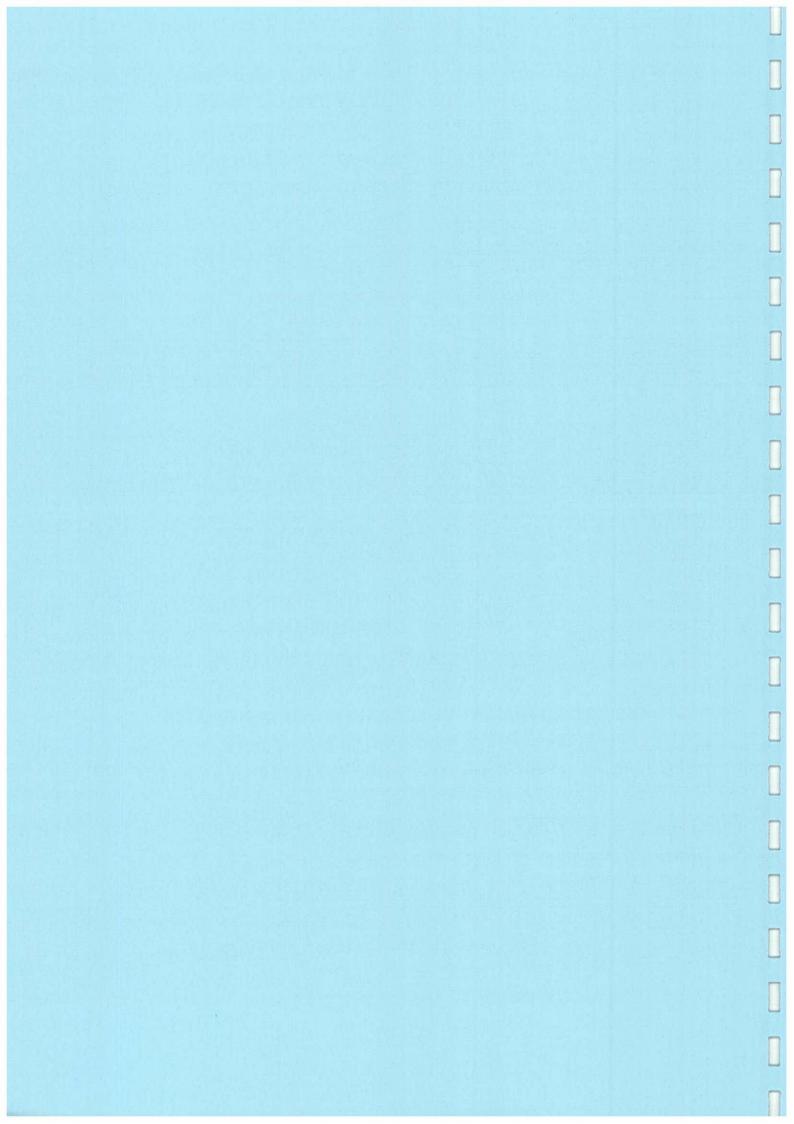
Daytime Noise Monitoring Results at Station SR3

Date	Weather Condition	Noise Level for 30-min, dB(A)*			Baseline Noise Level, dB(A)	Calculated Construction Noise	Limit Level, dB(A)	Exceedance (Y/N)		
							Level dB(A)	70	 	
5-Nov-07	Sunny	10:20	59.9	67.1	63.8	65.1	*Note		N	
16-Nov-07	Sunny	10:20	60.4	67.2	63.8	65.1	*Note	70	<u> N</u>	
22-Nov-07	Sunny	10:15	60.0	67.4	63.7	65.1	*Note	70	N	
28-Nov-07	Sunny	10:25	60.5	66.7	63.4	65.1	*Note	70	N	
		Min	59.9	66.7	63.4					
		Max	60.5	67.4	63.8					
		Average	60.2	67.1	63.7	<u>J</u>				

Daytime Noise Monitoring Results at Station SR4


Date	Weather		Noise Level for 30-min, dB(A) ⁺ Time L90 L10 Leg			Baseline Noise Level, dB(A)	Calculated Construction Noise	Limit Level, dB(A)	Exceedance (Y/N)
<u> </u>		•		66.5	62.9	65.6	*Note	70	N
5-Nov-07	Sunny	9:30	59.5	06.5		· · · · · · · · · · · · · · · · · · ·			- 14
16-Nov-07	Sunny	9:35	59.7	65.7	63.2	65.6	*Note	70	N
22-Nov-07	Sunny	9:25	59.7	66.1	63.0	65.6	*Note	70	N
28-Nov-07	Sunny			62.3	65.6	*Note	70	N	
		Min	59.5	65.5	62.3				
		Max	59.8	66.5	63.2]			
		Average	59. <u>7</u>	66.0	62.9]			

Daytime Noise Monitoring Results at Station SR6


						·			
Date	Weather	Noise Level for 30-min, dB(A)*			Baseline Noise	Calculated Construction Noise	Limit Level,	Exceedance	
Date	Condition	Time	L90	L10	Leq	Level, dB(A)	Level dB(A)	dB(A)	(Y/N)
5-Nov-07	Sunny	11:10	59.0	64.3	61.0	68.5	*Note	75	N
16-Nov-07	Sunny	11:00	59.1	65.0	62.7	68.5	*Note	75	N N
22-Nov-07	Sunny	11:00	59.5	64.5	61.3	68.5	*Note	75	N
28-Nov-07	Sunny	11:10	59.5	64.4	62.0	68.5	*Note	75	N
		Min	59.0	64.3	61.0		•		
		Max	59.5	65.0	62.7]			
		Average	59.3	64.6	61.8	1			

* - Façade measurement Bold & Italic value indicated an Limit level exceedance

Note: Measured noise level is less than the baseline noise level.

APPENDIX H
SUMMARY OF WEEKLY ENVIRONMENTAL
SITE INSPECTION OBSERVATIONS

Inspection Information

Date	1 November 2007
	9:50 am

Remarks/Observations

Water Quality

1. Stagnant water was accumulated in the site due to the rain. The Contractor was reminded to clean up the stagnant water more frequently.

Air Quality

2. Following up the previous audit, site entrance road was maintained surface wet in this inspection.

Noise

No violation was observed in this site inspection.

Waste/Chemical Management

3. C & D wastes were accumulated near the site entrance in the site. The Contractor was reminded to remove the C & D wastes regularly.

Landscape and Visual

No violation was observed in this site inspection.

Others

No violation was observed in this site inspection.

Inspection Information

Date	5 November 2007
Time	9:35 am

Remarks/Observations

Water Quality

1. Stagnant water was accumulated in the haul road. The Contractor was reminded to clean up the stagnant water regularly.

Air Quality

No violation was observed in this site inspection.

Noise

No violation was observed in this site inspection.

Waste/Chemical Management

2. Following up the previous audit, C & D wastes were removed near the site entrance in the site.

Landscape and Visual

No violation was observed in this site inspection.

Others

No violation was observed in this site inspection.

Inspection Information

Date	12 November 2007
Time	9:35 am

Remarks/Observations

ν	Va	ter	Qua.	litv
•	• •		~~~	

1. Following up the previous audit, stagnant water was removed in the haul road in this inspection.

Air Quality

No violation was observed in this site inspection.

Noise

No violation was observed in this site inspection.

Waste/Chemical Management

No violation was observed in this site inspection.

Landscape and Visual

No violation was observed in this site inspection.

Others

No violation was observed in this site inspection.

Inspection Information

Date	19 November 2007
Time	9:35 am

Remarks/Observations

Water Quality

No violation was observed in this site inspection.

Air Quality

No violation was observed in this site inspection.

Moise

No violation was observed in this site inspection.

Waste/Chemical Management

1. Plastic wastes were accumulated in the recycling bin near CRC site office. The Contractor was recommended to recycle the plastic box regularly.

Landscape and Visual

No violation was observed in this site inspection.

Others

No violation was observed in this site inspection.

Inspection Information

Date	26 November 2007
Time	9:36 am

Remarks/Observations

Water Quality

No violation was observed in this site inspection.

Air Quality

- No mitigation measure was provided for excavated materials near the site security room in the site.
 The Contractor was reminded to spray with water during handling the excavated materials.
- 2. Some stockpiles of sand were placed without mitigation measure in the site. The Contractor was reminded to cover the stockpile or spray with water to prevent fugitive dust generation.

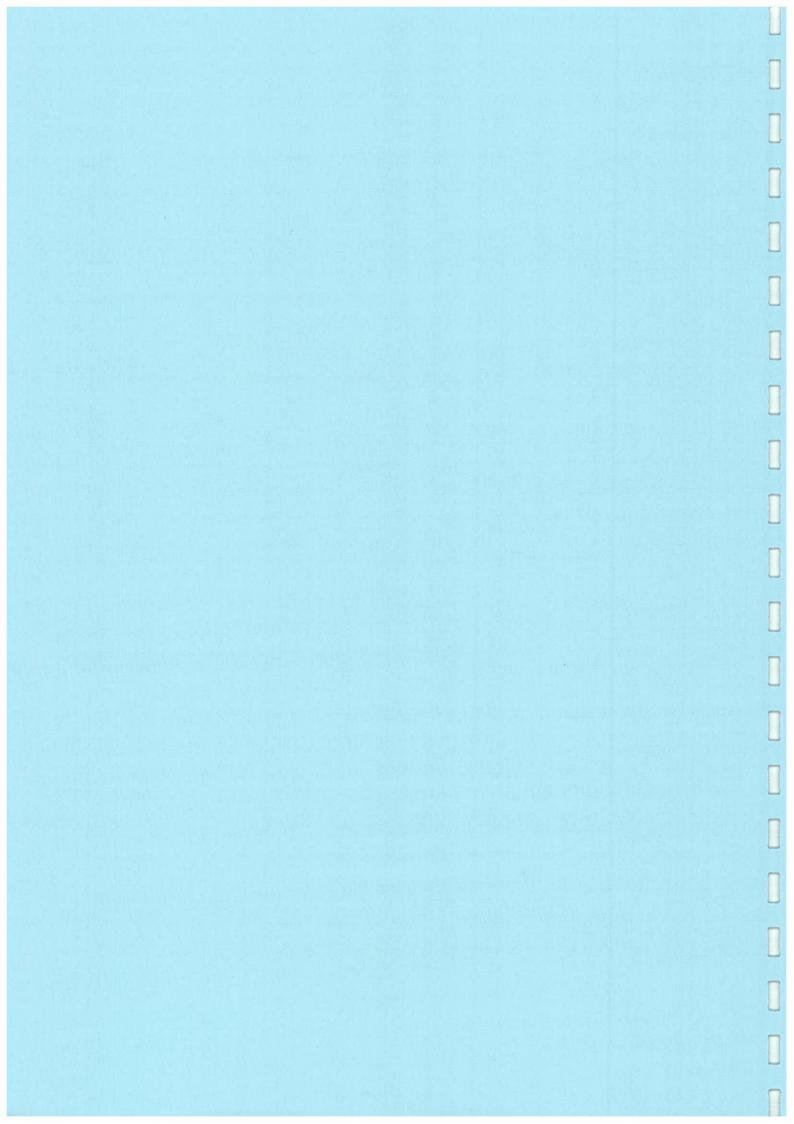
Noise

No violation was observed in this site inspection.

Waste/Chemical Management

3. Following up the previous audit, plastic wastes were removed in the recycling bin near CRC site office.

Landscape and Visual

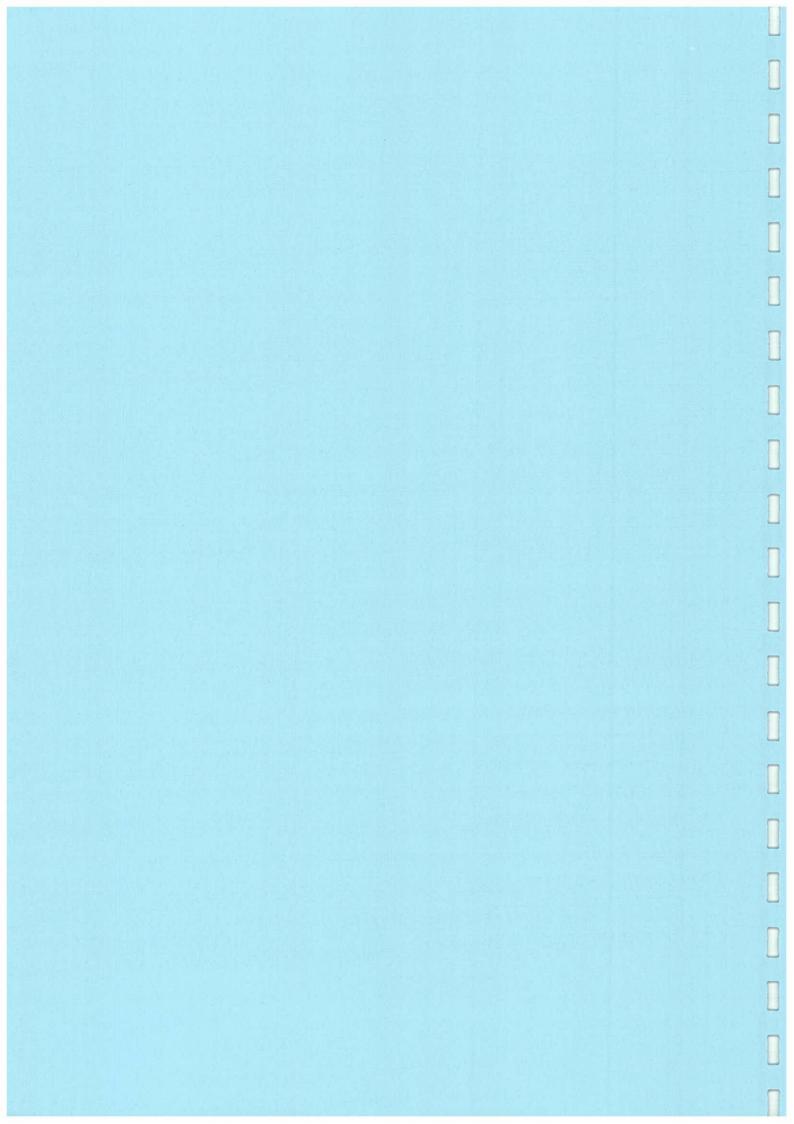

No violation was observed in this site inspection.

Others

No violation was observed in this site inspection.

П
П
T .

APPENDIX I STATUS OF ENVIRONMENTAL PERMITS/LICENCES


Appendix I

Status of Environmental Permits/Licenses

Damit Na	Valid	Period		Section				
Permit No.	From	То	Jection				Status	
Environmental Per	mit & Furth	er Environn	nental Permit					
EP-179/2004/B	14 Feb 2005	N/A	Reprovisioning Crematorium	of	Diamond	Hill	Valid	
Registration as a C	hemical Wa	ste Produc	er					
5213-288-C3108- 10	6 Dec 2004	N/A	Reprovisioning Crematorium	of	Diamond	Hill	Valid	
Water Discharge L	icense							
RE/C0202/288/1	9 Mar 2005	31 Mar 2010	Reprovisioning Crematorium	of	Diamond	Hill	Valid	
Construction Nois	e Permit			*******				
] -					

	Π

APPENDIX J IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES

Appendix J - Environmental Mitigation Implementation Schedule

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Air Quality Mitigation Measures				2244200	1
Special air pollution control systems shall be installed and operate to reduce the emissions of air pollutants to acceptable levels	New cremators in New Crematorium	Arch SD	Design, Construction, Demolition and Operation stage	BPM/APCO	
FEHD shall apply for a Specified Process License under the APCO	New Cremators in the New Crematorium / prior to operation	FEHD	Construction, Demolition and Operation stage	APCO	N/A
The efflux velocity of chimney shall be at least 15 m/s, the design diameter of the chimneys shall be 0.22 m and 0.30 m, the design chimney height shall be 101mP.D. (28.5m above ground), for 170 kg and 250 kg cremators respectively	Chimney of New Crematorium / design and construction staces	Arch SD	Design and Construction stage	ВРМ/АРСО	N/A
if the interior wall of existing cremators and chimney are confirmed dioxins contaminated, special precautions shall be taken avoid fugitive emissions of dioxin contaminated materials	Cremator room and chimney in Existing Crematorium / demolition	Arch SD/Contractor	Demolition stage		N/A
Sufficient water spraying should be applied during the construction work, the fugitive dust generated from general construction dust would be	Project site / construction and demolition stages	Arch SD, contractor	Construction and Demolition stage	APCO	1
reduced by 90% Carry out a confirmatory test of dioxins in the depositions on chimney wall, flue gas ducting and combustion chambers when the existing Crematorium is shut down	Chimney, flue and cremators in Existing Crematorium / decommissioning	FEHD, Arch SD	Demolition stage		N/A
If the dioxin level of surface deposition is between 1 and 10 ppb I-TEQ, it is classified as moderately contaminated with dioxins. The demolition work site should be covered up to avoid emission of fugitive dust during demolition	Chimney, flue and cremators in Existing Crematorium / decommissioning	Arch SD 3	Demolition stage		TUA .

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
If the dioxin level of surface deposition exceeds 10 ppb I-TEQ, it is classified as severely dioxin-contaminated waste. If it is confirmed that the existing facilities are severely contaminated with dioxins, a special decommissioning method — Containment method —	Chimney, flue and cremators in Existing Crematorium / decommissioning	Arch SD 3	Demolition stage		N/A
would be adopted All the demolition waste would be carefully handled, sealed and treated as chemical waste. The waste collector shall be responsible for preventing fugitive dust emission when handling the demolition waste	Chimney, flue and cremators in Existing Crematorium / demolition stage	Arch SD, contractor	Demolition stage		√
Employ a registered asbestos contractor to remove asbestos containing material during the demolition of the existing crematorium building	Cremator room in Existing Crematorium / decommissioning	Arch SD, contractor	Demolition stage	APCO	Ñ/A
Submit a formal AIR and Asbestos Abatement plan signed by a registered asbestos consultant to the Authority for approval under APCO 28 days prior to the start of any	Cremator room in Existing Crematorium / decommissioning	Arch SD, consultant	Demolition stage	APCO	N/A
asbestos abatement work. When removing asbestos containing materials, enclosure of the work area; containment and seating for the asbestos containing waste; provision of personal decontamination facility; use of personal respiratory/protection equipment; use of vacuum cleaner equipped with highefficiency air particulate (HEPA) filter for cleaning up the work area; and carry out air quality monitoring during the	Cremator room in Existing Crematorium / decommissioning	Arch SD, consultant	Demolition stage	APCO	N/A
asbestos abatement work Appoint qualified personnel to carry out the asbestos containing material removal work, including a registered asbestos contractor to carry out the work; a registered asbestos supervisor to supervise the work; a registered asbestos laboratory to monitor the air quality, and a registered asbestos consultant to supervise and certify the asbestos abatement work.	Cremator room in Existing Crematorium / decommissioning	Arch SD, consultant	Demolition stage	APCO	N/A

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to implement?	What Requirements or Standards to Achieve?	Status
Erect a site barrier with the height of no less than 2.4m to enclose the construction site Apply frequent water spraying to ensure the surface of the construction site sufficiently wet to reduce fugitive dust due to wind erosion and transportation on unpaved haul road Cover up stockpiles of fill material and dusty material Install a vehicle-cleaning system at the main entrance of the construction site to clean up the vehicles before leaving the site The Air Pollution Control (Construction Dust) Regulation shall be followed for fugitive dust control	Project site I construction and demolition stages	Contractor	Construction and Demolition stage	APCO, Air Pollution Control (Construction Dust) Regulation	•
control No more than 6 cremators (including both the existing and new ones) are in operation during commissioning test of new cremators. The commissioning test of each new cremator shall be recorded by a log book	Existing and new cremators in Exiting and New Crematorium / text and commissioning	Arch SD/FEHD/ Contractor	Construction stage		N/A
Special air pollution control systems shall be installed and operate to reduce the emissions of air pollutants to acceptable levels	New cremators in New Crematorium / all stages	Arch SD	Design, Construction, Demolition and Operation stage	BPMAPCO	N/A
Conduct baseline and regular 1-hour and 24-hour TSP monitoring.	A8 and A171 baseline monitoring prior to Phase I & II works and regular monitoring throughout Phase I & II works	Contractor	Construction and Demolition stage	APCO, EM&A Guidelines for Development Projects in Hong Kong	1
When the demofition material is confirmed to have ACM, monitoring for asbestos fibre would be carried out at the boundary of the construction site for reassurance purposes as per the requirement of future	Construction site boundary / demolition	Contractor	Demolition stage	Asbestos Study Report, AIR and AAP to be submitted under	N/A

				7	Di-ti-
Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
license for asbestos abatement, though it is not expected that asbestos fibre would be liberated from the demolition of the Existing Crematorium building.				APCO, future licence for asbestos abatement (if any)	
Noise Mitigation Measures		<u> </u>	1 5 1 1 1 1 1 1 1 1	GW-TM	
Select quiet plant, which is defined as PME with a sound power level lower than that specified in GW-TM. Examples of quiet plant can be referred to those listed in British Standard BS5228.	Project site / construction and demolition stages	Contractor	Construction and Demolition stages	GVV-TM	
Where practicable, use movable barriers of 3 to 5 m height with a small cantilevered upper portion and skid footing can be located within a few metres from a stationary plant (e.g. generator, compressor, etc.) and within about 5 m for a mobile equipment (e.g. breaker, excavator, etc.), especially in the vicinity of SR3, SR4 and SR6. The purpose-built noise barriers or screens shall be constructed of appropriate materials with a minimum superficial density of 15kg/m2.	Project site / construction and demolition stages	Contractor	Construction and Demolition stages	NCO	N/A
Only well-maintained plant should be operated on site and plant should be regularly serviced during the construction works	Project site / construction and demolition stages	Contractor	Construction and Demolition stages	NCO	1
Plant that is used intermittently should be turned off or throttled down when not in active use	1				
Plant that is known to emit noise strongly in one direction should be oriented to face away from NSRs					
Silencers, mufflers and enclosures for plant should be used where possible and maintained adequately throughout the works					
Where possible mobile plant should be sited away from NSRs		<u> </u>			

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
 Stockpiles of excavated materials and other structures such as site buildings should be used effectively to screen noise from the works 					
Liaise with the school and the Examination Authority to ascertain the dates and times of examination periods during the course of the construction/ demolition works so as to avoid any noisy activities during these periods Programme of the on-site works should hence be well programmed such that the noisier construction activities would not be coincided with the examination of the schools.	Project site / construction and demolition stages	Contractor	Demolition stage	NCO	4
Conduct regular noise monitoring.	SR 3, SR 4 and SR 6 / Phase i & II works	Contractor	Demolition stage	NCO, EM&A Guidelines for Development Projects in Hong Kong	1
Land Contamination Mitigation Measures					ļ. ,
Additional site investigations in areas of the site that are currently in use and cannot be readily accessed. These investigations will be carried out once the existing facility has been decommissioned. The additional site investigations are required in the vicinity of the existing CLP secondary substation, and around the cremators and flues inside the crematorium building. Once access to these areas is available, a sampling and analysis plan will be prepared for approval by EPD, additional investigations will take place, and the need for remedial works will be determined. Any remedial works required will be in addition to those described in this current report.	CLP secondary substation and cremator room/ demolition stage (Phase I – CLP secondary substation; Phase II – cremator room)	Contractor	Demolition stage	ProPECC PN 3/94	
Once the Existing Crematorium has ceased operating during Phase II, confirmatory surface	Locations S1 to S6 specified in the	Contractor	Demolition stage	ProPECC PN 3/94	N/A

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
samples will be taken from the samples points S1 to S6 at a depth of 0.1m, and these samples will be analysed for the same suite of determinands (i.e. dioxins, metals and PAH) in order to confirm that no further contamination has occurred. The Remediation Action Plan will be revised on the basis of these results.	CAP/demolition				
The underground fuel storage tank and associated pipework will be removed as part of the site formation works. The base of the excavations will be inspected during and after tank removal by a suitably experienced environmental specialist in order to determine whether there is any visual or offactory evidence of fuel contamination. If such contamination is suspected, then confirmatory soil sampling will be carried out, and the samples analysed for TPH.	Underground fuel storage tank/during and after tank removal	Contractor	Demolition stage	ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops	N/A
Summary of remediation works at locations S3 and S5:					
1. Mark out 5m radius around S3 and S5 2. Excavate to depth of 0.5m 3. Transport to landfill site for final disposal4. Take 4 samples from edges of excavation and one sample from base of excavation, analyse for lead and tin 5. If the results exceed Dutch B Levels, extend excavation to a further 5 m radius and 0.5 m depth in the quadrant where the contaminated samples is encountered and repeat steps 3 and 4.6. If the results less than Dutch B Levels, then remediation completed.	Locations S3 and S5 specified in CAP/demolition	Contractor	Demolition stage	ProPECC PN3/94	N/A

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
During removal of the underground fuel storage tank, appropriate precautions should be taken to avoid contamination. All fuel tanks and associated pipework should be emptied prior to any demolition work being undertaken. Any remaining sludge or sediment in the tanks or pipework should be removed and disposed of as chemical waste in accordance with the appropriate regulations for disposal of such material.	Underground fuel storage tank / Phase II demolition	Agent Contractor	Demolition stage	ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismanlling Workshops	N/A
Should contamination be encountered beneath the fuel tank or the CLP secondary substation, further remedial work will be required. Such potential contamination would consist of either TPH (in the case of the fuel tank) or PCBs (in the case of the CLP secondary substation). As a realistic worst-case estimate, the PCB contaminated soil at CLP secondary substation may require stabilisation with cement prior to disposal to landfill. A realistic worst case estimate is that the volume of TPH contaminated soil at underground storage tank would require landfill disposal.	CLP secondary substation /Phase I demolition and underground fuel tank / Phase II demolition	Contractor	Demolition stage	ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops	N/A
Health and Safety Precautions during Remedial Works					
The site workers engaged in the remedial works should be provided with adequate personal protective equipment, which should include: • Protective footwear; • Gloves; • Dust masks; and • Overalls. A clean area should be provided, equipped with washing facilities. Eating, dinking and smoking should only be permitted within designated "clean" areas after washing. Excavated material should not be stockpiled, but should immediately be treated/transported to landfill on a daily basis	All areas requiring remediat works in Project site I demotition during Phases I and II	Contractor	Demolition stage	ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boalyards and Car Repair / Dismanlling	N/A

.

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
				Workshops	L
Avoidance of Impacts on Water Quality during Remedial Works In order to avoid impacts on water quality during remedial works, care will be taken to minimise the mobilisation of sediment during excavation and transport. Measures to be adopted will be based on the recommendations set out in Practice Note for Professional Persons ProPECC PN1/94 (Construction Site Drainage*. The results of the site investigation suggest that there is unlikely to be any requirement for dewatering of excavations, since groundwater was not encountered in any of the exploratory holes. The contractor carrying out the remedial works will be required to submit a method statement detailing the measures to be taken to avoid water quality impacts. Typical measures would include; Carry out the works during the dry season (i.e. October to March) if possible; Use bunds or perimeter drains to prevent run-off water entering excavations; Sheet or otherwise cover excavations whenever minstorms are expected to occur; Minimise the requirements for stockpiling of material and ensure any stockpiling of contaminated materials should be avoided, and all excavated contaminated soils/materials should be disposed of on a daily basis; Ensure that any discharges to storm drains pass hrough an appropriate silt trap. Waste Disposal Requirements during Remedial	All areas requiring remedial works in Project site / demolition during Phases I and II	Agent Contractor	Demolition stage	ProPECC PN 3/94. ProPECC PN1/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boalyards and Car Repair / Dismantling Workshops	N/A
Works An application for permission to dispose of excavated	All areas requiring	Contractor	Demolition stage	ProPECC PN 3/94.	N/A
naterial should be made to the Facilities Management stroup of EPD three months prior to disposal. A "tip- cket" system should be implemented. Each load of ontaminated soil despatched to landfill should be	remedial works in Project site I demolition during Phases I and II			Waste Disposal Ordinance (Cap. 354), WBTC No. 21/2002 and	

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
accompanied by an admission ticket. Vehicles leaving the site should be adequately sheeted to prevent dispersion of contaminated material during transport. The wheets of vehicles should be cleaned prior to leaving site, to prevent contaminated material leaving site on the wheels of vehicles.				Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops	
Compliance Report for Remedial Works Following completion of remediation works, a Remediation Report should be compiled and submitted, to demonstrate that the remediation works have been carried out in accordance with the Remediation Action Plan. The Remediation Report should include details of the excavation works carried out, records of material taken to landfill, and results of confirmatory testing, and should be submitted to EPD for approval before the commencement of building works.	All areas requiring remedial works in Project site I after completion of remediation works	Agent Contractor	Demolition stage	ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops	NJA
Land Contamination Mitigation Measures Conduct supplementary sile investigation for TPH and PCB in soil samples.	CLP substation / after decommissioning but prior to demolition during Phase I work	Contractor	Demolition stage	CAR, RAP, future sampling and analysis plan	1
Conduct confirmatory testing of PAH, dioxins and metals (the "Dutch List") in soil samples.	S1 to S6 / Phase II work	Contractor	Construction and Demolition stages	CAR, RAP, future sampling and analysis plan	N/A
If fuel contamination underneath the underground fuel tank is suspected, confirmatory soil sampling will be carried out for analysis of TPH.	Underneath the underground fuel tank / Phase II	Contractor	Demolition stages	CAR, RAP, future sampling and analysis plan	N/A
Conduct confirmatory testing of tin and lead in soil	S3 and S5 / during	Contractor	Construction and	CAR, RAP, future	N/A

ecommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
amples to confirm all contaminated soil has been xcavated.	Phase II work following excavation at each location		Demolition stages	sampling and analysis plan	
Vaste Management Mitigation Measures				Mosto Disposal	
obod Site Practice Obtain relevant waste disposal permits from the propriate authorities, in accordance with the Waste isposal Ordinance (Cap. 354), Waste Disposal Chemical Waste) (General) Regulation (Cap. 354) and the Land (Miscellaneous Provision) Ordinance(Cap. 8) Prepare a Waste Management Plan approved by the ingineers / Supervising Officer of the Project in coordance with Environment, Transport and Works ingreau Technical Circular (Works) (ETWBTC(W)) 5/2003, Waste Management On Construction Siles Nominate an approved person, such as site manager, obe responsible for good site practice, arrangements or collection and effective disposal of all types of vastes generated on-site to appropriate facility. Use waste haulier authorized or licensed to collect pecific category of waste Establish trip ticket system as contractual equirement (with reference to Works Branch Technical Circular (WBTC) No. 21/2002) for monitoring of public ill and C&D waste at public filling facilities and landfills such activities should be monitored by the Environmental Team Provide training to site staff in terms of proper waste nanagement and chemical waste handling procedures Separate chemical wastes for special handling and its posses them at licensed facility for treatment. Establish routine cleaning and maintenance programme for drainage systems, sumps and oil interceptors		Contractor	Design, Construction and Demoittion stages	Waste Disposal Ordinance (Cap. 354), Waste Disposal(Chemical Waste) (General) Regulation(Cap. 354) Land(Miscellaneou s Provision) Ordinance(Cap. 28) WDO, ETWBTC(W) 15/2003, WBTC No. 21/2002	

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
collection for disposal Adopt measures to minimize windblown litter and dust during transportation of waste, such as covering trucks or transporting wastes in enclosed containers Establish recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)					
Waste Management Plan The contractor should submit the Waste Management Plan to Engineer/Supervising Officer of the Project for approval. The Waste Management Plan should describe the arrangements for avoidance, reuse, recovery and recycling, storage, collection, Irealment and disposal of different categories of waste to be generated from the activities of the Project and indicate the disposal location(s) of all waste. A trip ticket system shall be included in the Waste Management Plan.	Project site / design, construction and demolition stages	Contractor	Design, Construction and Demolition stages	Wasie Disposal Ordinance (Cap. 354)	7
Waste Reduction Measures - Minimize the damage or contamination of construction material by proper storage and site practices - Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste - Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and / or recycling to minimize the quantity of waste to be disposed of to landfill - Minimize use of wood and reuse non-timber formwork to reduce the amount of C&D waste - Recycle any unused chemicals or those with remaining functional capacity as far as practicable - As far as practicable, segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal - Encourage collection of aluminium cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors, separate labeled	Project site / construction and demolition stages	Agent Contractor	Construction and Demolition stages	WBTC No. 32/92, 5/98 and 19/99	4

1	

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
bins should be provided to help segregate this waste from other general refuse generated by the work force		İ	1		
rom only depend netuse years are by the work inde- Excavated Material Rock and soil generated from excavation should be reused for site formation as far as possible. In addition, excavated material from foundation work can be reused for landscaping as far as practicable to avoid disposal off-site.	Project site / construction and demolition stages	Contractor	Construction and Demolition stages	WBTC 12/2000	1
Construction and Demolition Material Careful design, obanning and good site management can minimize vover-ordering and generation of waste materials such as concrete, mortar and cement grouts. Standard formwork should be used as far as practicable, wooden formwork should be replaced by metal ones whenever possible. Alternatives such as plastic fencing and reusable site office structures can also minimize C&D waste generation. The contractor should recycle as much as possible of the C&D material on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Materials such as concrete and masonry can be crushed and used as fill and steel reinforcing bar can be used by scrap steel mills. Different areas of sites should be designated for such segregation and storage. To maximize landfill life, government policy discourages the disposal of C&D materials with more than 20% inert material by volume (or 30% inert material by weight) at landfill. Inert C&D material (public fill) should be directed to an approved public filling area, where it has the added benefil of offsetting the need for removal of materials from borrow areas for	Project site / construction and demolition stages	Contractor	Design, Construction and Demolition stages	WBTC 5/98 and19/99	
reclamation purposes. Contaminated Material – Further Contamination	CLP secondary	Contractor	Demolition	ProPECC PN	N/A

Recommended Mitigation Measures		ures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
Location	Investigation Parameter	Investigation Period	<u> </u> 			ļ. <u> </u>	_
Cremators/ flue/chimney and surrounding areas	Asbestos (building structure)	Phase II					
CLP secondary substation	PCB, TPH (soil samples)	Phase I					
Cremators/ flue/chimney and surrounding areas	Dioxins, heavy metals, PAH (ash waste)	Phase II					
Surface soil around Existing Crematorim	Dioxins, heavy metals, PAH (soil sample)	Phase II			,		
information or at cremators /	materials requiring	imination velt as the quantity of					

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
Samples of ash/particulate matters should be collected from within the cremators (including the bottom ash), chimney walls, flues and surrounding area of the Existing Crematorium for analysis of dioxin, heavy metals and PAHs by a HOKLAS accredited laboratory. A consultant experienced in the abatement of chemical wastes particularly the handling of DCM, should be appointed in order to assist with the evaluation of the information and prepare an abatement plan for the ash waste. Such a plan shall be submitted to EPD and the Labour Department (LD) to establish an acceptable and safe method for these potentially hazardous wastes. The abatement plan should identify the method of abatement, the performance criteria for the protection of workers and the environment and any emergency procedures and contingency measures required.					
It must be ensured that the treatment of ash wastes will comply with all routine construction site safety procedures would apply as well as statutory requirements under the Occupational Safety and Health Ordinance and Factories and Industrial Undertakings Ordinance. Due to the difficulties in establishing permanent and effective engineering controls, the protection of workers is likely to be at the worker level. A safe system of work must be provided, and training and suitable personal protective equipment as well as hygienic decontamination facilities should be provided. It is recommended that the methods to be adopted by the contractor for disposal of the ash waste should be	Cremator room in Existing Crematorium / before demolition and after decommission	Contractor	Demolition stage	ProPECC PN 3/94	N/A
agreed with LD and EPD. Sufficient time should be allocated to abate all ash waste with DCM/HMCM/PAHCM. The contractor should ensure the implications of dust				ProPECC PN 3/94 Code of Practice on	N/A

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
containing DCM/HMCM on air quality and workers health during the clean up work are mitigated. Since DCM is chemically related to Polychlorinated Biphenyl (PCB) wastes, the requirements of the Code of Practice on the Handling, Transportation and Disposal of (PCB) Wastes should be referenced when developing the				the Handling, Transportation and Disposal of (PCB) Wastes	
abatement plan. A land contamination site investigation was carried out under this EIA to determine disposal requirements for contaminated soil. Further site investigation on soil around CLP secondary substation is needed when decommissioned, which will be during Phase I of the works. In addition, confirmatory testing on DCM level in locations S1 to S6 will be required to identify the appropriate remediation and disposal requirements	Locations S1 to S6 in CAP / prior to Phase II demolition		Demolition stage	Code of Practice	N/A
during Phase II of the works. Asbestos Containing Materials (ACM) Further asbestos assessment should be carried out when access to the cremators /flue /chimney is accessible after decommissioning and before demolition. An AMP should be prepared. The AAP should be prepared and submitted to EPD for approval prior to, commencement of demolition works in accordance to the APCO. It is preferable to remove all ACM before actual demolition. A registered asbestos removal contractor should be employed to remove all ACM in accordance with the approved AAP which will be prepared in due course in accordance with the Code of Practice (COP) on Asbestos Control for Safe Handling of Low Risk ACM and Asbestos Work Using Full Containment or Mini Containment Method published by EPD. A registered asbestos consultant should also be employed to	Cremator room in Existing Crematorium / before demolition and after decommission	Contractor	Demolition stage	Code of Practice (COP) on Asbestos Control for Safe Handling of Low Risk ACM and Asbestos Work Using Full Containment or Mini Containment Method COP on Handling, Transportation and Disposal of Asbestos Waste under the Waste Disposal	

4	~

Recommende	ed Mitigation Measu	ires	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
the contractor on Handling, I Waste under t	tement works. For the should observe the (Transportation and Di the Waste Disposal	COP isposal of Asbestos				(Chemical Waste) (General) Regulation APCO	
(Chemical Wat Dioxin Contain Containing Mat Polyaromatic (PAHCM) from Crematorium Proposed Conwith DCM/HM	usfe) (General) Requi ning Materials (DCM) aterials (HMCM) / Hydrocarbon Contain n Demolition of the E Intamination Classifica ICM	/ Heavy Metal ning Materials existing ation for Ash Waste	Cremator room in Existing Crematorium / before demolition and after decommission	Contractor	Demolition	ProPECC PN3/94 USEPA dioxin assessment criterion	N/A
Classificati on of Contamina tion	Dioxin Level in Ash Waste	Heavy Metal Level in Ash Waste					
Low/Non Contaminat ed by DCM / HMCM / PAHCM	< 1 ppb TEQ	< Dutch "B" List					
Moderately/ Severely Contaminat ed HMCM / PAHCM	< 1 ppb TEQ	≥ Dutch *B* List					
Moderately Contaminat ed DCM	≥ 1 and <10 ppb TEQ	Any level					

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to implement?	What Requirements or Standards to Achieve?	
Severely ≥10 ppb TEQ Any level Contaminat ed DCM			- VC - 4000	I APCO	N/A
Demolition, Handling, Treatment and Disposal of Low/Non-Contaminated DCM/HMCM// PAHCM from Demolition of Existing Grematorium Where the ash waste contains low/non contaminated DCM/HMCM/PAHCM, the contractor should avoid ash waste becoming airborne during demolition. General dust suppression measures mentioned in Section 4 should be followed All such ash waste can be directly disposal of at landfill. Subject to the findings of the further asbestos investigation, building structures where such ash waste is found but contaminated with asbestos		Contractor	Demolition stage		
should be dealt in accordance to 7.7.16. Demolition, Handling, Treatment and Disposal of Moderately/Severely Contaminated DCM and Moderately/Severely Contaminated HMCM / PAHCM from Demolition of the Existing Crematorium Procedure on demolition, handling, treatment and disposal of Moderately Contaminated DCM and Moderately/Severely Contaminated HMCM PAHCM is listed below Item Procedure	Genomon	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A

Recommend	ed Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Site Preparation	The contractor should ensure the impacts of dust containing dioxin and/or heavy metals on air quality and workers health during the handling and transportation of the contaminated materials are mitigated. Except the cremators/flue/chimney, all removable items where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is identified should be removed as far as practicable to avoid obstructing the decontamination activities. Preliminary site decontamination of all debris shall be carried out using HEPA vacuum cleaner. The top portion of the chimney above the roof shall be enclosed by a chamber with three layers of polyethene sheets. At the entrance to the cremators /flues /chimney, a 3-chamber decontamination unit shall be constructed for entry and exit from the work area. The 3-chamber decontamination unit shall comprise a dirty room, a shower room and a clean room of at least 1 m x 1m base each with 3 layers of fire retardant polyethene sheet where all workers shall carry out decontamination procedures before leaving the work area. Warning signs in both Chimese and English should be put up in conspicuous areas.					

Recommende	d Mitigation Measures	Location and Timing	Who to implement?	When to implement?	What Requirements or Standards to Achieve?	Status
Decontamin ation, demolition and handling	All workers shall wear full protective equipment, disposable protective coveral (such as Tyvek) (with hood and shoe covers), nitritle gloves, rubber boots (or boot covers), and full-face positive pressure respirators equipped with a combination cartridge that filters particulate and removes organic vapour. The organic vapour protection is an added protection against the unlikely exposure to any vapour. If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above site preparation. The cremators/flue/chimney shall be removed from top down starting from the chimney. Any ash or residues attached to the cremators/flue/chimney or any other building structures shall be removed by scrubbing and HEPA vacuuming. Wastes generated from the containment or decontamination unit including the protection clothing of the workers such as the coveralt, nitrile glove, rubber boots and materials used	Cremator room in Existing Crematorium / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A
	for wet wiping shall be disposed of at landfill site.			<u> </u>		<u> </u>

Recommend	led Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
<u></u>	After completion of removal, decontaminate all surfaces by HEPA vacuum.					
Treatment	If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above decontamination, demolition and handling measures. The ash waste contains dioxin/heavy metals and in its untreated state would be classified as a chemical waste under the Waste Disposal (Chemical Waste) (General) Regulation. While the quantity of DCM/HMCM is not expected to be significant, the levels of dioxin and heavy metals would affect the treatment					
	option. Immobilization of the contaminated materials by mixing with cement followed by disposal at landfill (if landfill disposal criteria can be met) would be the most preferable option.	1				
	Rather than treating the already incinerated ash waste by incineration, the ash waste with moderately contaminated					

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
DCM or moderately/severely contaminated HMCM/PAHCM should be collected and stabilized to meet landfilt disposal criteria of the Facilities Management Group (FMG) of EPD. In this case it is envisaged that the process would involve collection and mixing of the ash waste with cement. Pilot mixing and TCLP tests should be carried out to establish the appropriate ratio of cement to ash waste to the satisfaction of EPD. It is envisaged that the pilot tests would involve the mixing of say 5%, 10% and 15% ratios of cement to ash waste and three replicate of 300 mm cube blocks for each ratio. TCLP tests should then be used to establish the correct ratio of cement to ash waste to the satisfaction of EPD.					

Recommended Miligation Measur	res	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Disposal After immobilization by mixing with cemiratio as determined and TCLP test, the should be placed in lined steel drums fo landfill. Transparent plastic mm thickness low-cor PVC should be emisshould be 16 gauge and fitted with double be adequately sealed in new or good condition. I be clearly marked "CHEMICAL WASTI Chinese. Prior agredisposal criteria from the FM agreement to dispoperator must be of the should be a fall back option disposal criteria can immobilization of the disposal at the CW considered. The building struction and Total control of at landfill.	ent in the correct by the pilot mixing waste materials side polyethene r disposal at sheeting of 0.15 fensity polyethene	Cremator room in Existing Crematorium / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A

Recommended Mitigation Measures		Location and Timing	Who to implement?	When to implement?	What Requirements or Standards to Achieve?	Status
Severely Cont Demolition of a Procedure for	If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant disposal measures for building structures described in the AAP (see 7.7.16) should be implemented instead. and instead and instead of aminated DCM from the Existing Crematorium demolition, handling, treatment and verely Contaminated DCM	Cremator room in Existing Crematorium I demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A
Item	Procedure				 	
Site Preparation	Except the cremators/flue/chimney, all removable items where severely contaminated DCM is identified should be removed from the cremator room as far as practicable to avoid obstructing the decontamination activities. Preliminary site decontamination of all debris shall be carried out using HEPA vacuum cleaner. The walls, floor and ceiling of the cremator room where severely contaminated DCM localed shall be lined with 3 layers of fire retardant polyethene sheets. The top portion of the chimney above the roof shall be enclosed by a chamber with three tayers of polyethene sheets. At the entrance to the cremators/flues/chimney, a 3-chamber					

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to implement?	What Requirements or Standards to Achieve?	Status
decontamination unit shall be constructed for entry and exit from the work area. The 3-chamber decontamination unit shall comprise a dirty room, a shower room and a clean room of at least 1m x 1m base each with 3 layers of fire retardant polyethene sheet where all workers shall carry out decontamination procedures before leaving the work area. Warning signs in both Chinese and English should be	t				
put up in conspicuous areas. Air movers should be installed at the cremator room, and at the bottom of the chimney to exhaust air from the work area. A stand-by air mover shall also be installed with each of the air movers. Sufficient air movement shall be maintained to give a minimum of 6 air changes per hour to the work area, and maintain a negative pressure of 0.05-0.15 inches of water within the work area throughout the entire course of the decommissioning works. A pressure monitor with printout records and audible alarm shall be installed at an easily accessible location to demonstrate the negative pressure is maintained. New pre-fillers and HEPA filters shall be used on the air movers. A copy of the maintenance records of	at ,				

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
the air movers should be kept on site for inspection upon request. The appointed contractor shall also check the differential pressure of the air mover to make sure the filter is not blocked. A differential pressure above 0.2 inches of water indicates that the filters would need to be changed.	Cremator room in	Contractor	Demolition stage	Waste Disposal	N/A
Smoke Test before commencement of the decommissioning work, a smoke test with non-toxic smoke shall be carried out to ensure the air-tightness of the containment. Also check whether there are stagnant air pockets indicated by an aggregate of smoke that cannot effectively be extracted. After a successful test, switch on the air mover to exhaust smoke from the containment and to give a minimum of 6 air changes per hour, and check visually to see that the filters screen out the smoke effectively and if the pressure gauges read normal. If not, the air mover shall be sealed up and returned to the supplier workshop for necessary servicing, and replaced by a tested air mover. The normal reading pressure range for maintaining 6 air changes per hour shall be 1.54 mm/0.05-0.15 inches of water or equivalent	Existing Crematorium / demolition			(Chemical Waste) (General) Regulation	

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
(negative pressure). The audible alarm's integrity should also be checked and the trigger shall be at <1.5 mm/0.05 inches of water (negative pressure). Otherwise securely seal up all openings before switching off the air mover. Treatment of Waste/Workers Safety Protection: the contractor shall be					
required to register as a Chemical Waste Producer, All workers shall wear full protective equipment, disposable protective coverall (such as Tyvek) (with hood and shoe covers), nitrile gloves, rubber boots (o	l.				
pressure respirators equipped with a combination cartridge that filters particulate and removes organic vapour. The organic vapour protection is an added protection against the unlikely exposure to any vapour as a necessary	n				
measure. If ACM is identified in building structures where severely contaminated DCM is found, relevant abatement measur for building structures described in the AAP (see 7.7.16) should be implemented prior to the above site preparation.	res				

Recommende	ed Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status	
Decontamin ation, demolition and handling	The cremators/flue/chimney shall be removed from top down starting from the chimney. Any ash or residues attaching to the cremators/flue/chimney or any other building structures shall be removed by scrubbing and HEPA vacuuming. The detached sections of the building structures where severely contaminated DCM is located shall be wrapped with 2 layers of fire retardant polyethene sheets. A third layer shall then be wrapped and secured with duct tape. Decontaminate the outer layer of the	Cremator room in Existing Crematonium / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A	
	wrapped flue sections by wet wiping. Wastes generated from the containment or decontamination unit including the fire retardant polyethene sheets, protection clothing of the workers such as the coverall, nitrile glove, rubber boots and materials used for wet wiping shall be disposed of at landfill site.	Cremator room in Existing Crematorium / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	, wa	

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
The quantity of wastewater generated from the decontaminated process will be very small but the contractor should take precautionary measures as to minimize the quantity of contaminated water arising. Nevertheless, if any contaminated wastewater needs to be discharged out of the site, it has to be properly treated to WPCO requirements with prior agreement from EPD on discharge standards. After completion of removal, decontaminated be surface where severely contaminated be surface where severely contaminated be wrapped incinerator furnace and flue sections left within the containment, by wet wiping and HEPA vacuum. Then spray the innermost layer of the fire retardant polyethene sheet covering the wall, celling and floor with PVA. Upon drying, peel off this innermost layer of the polyethene sheet covering the containment and dispose of at landfill site.					

Recommende	d Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
	Repeat the above decontamination procedure for the second innermost layer of fire retardant polyethene sheet by wel wiping and HEPA vacuuming. After spraying with PVA, peel off this second innermost layer of the polyethene sheet covering the wall, ceiling and floor and dispose of at landfill site. Finally, the last layer of polyethene sheet shall then be taken down after spaying with PVA and be disposed as contaminated wastes.					
Treatment and disposal	If ACM is identified in building structures where severely contaminated DCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above decontamination, demolition and handling measures. Waste to be disposed to CWTC: all contaminated ash waste with severely contaminated DCM removed and the	Cremator room in Existing Crematorium / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	N/A
	used HEPA filters shall be sent to CWTC in Tsing Yi. The total volume should be confirmed by further site investigation:	demolition			Regulation	

Recommended Mitigation Measures	Location and Timing	Who to implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Waste to be Disposed of at Landfill: other wastes including the building structures and its associated panels a well as wastes generated from this decommissioning works are also considered as contaminated waste ar shall be disposed of at a designated landfill. Wastes generated from this decommissioning works refer to the polyethene wrapping sheets for the building structures, waste generated from the dismantlement of the containment and decontamination units, and cloth used in well wrapping, etc. as previously described in this section. They shall to placed into appropriate containers such as drums, jerricans, or heavy duty an leak-proof plastic as a prudent approach. A disposal permit has to be obtained from the Authority. The disposal trip ticket is required to be made available as record after disposal. If ACM is identified in building structures where severely contaminated DCM is found, relevant disposal measures of public measures in the above disposal measures.	od d				

	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Dioxin Containing Materials (DCM) / Heavy Metal Containing Materials (HMCM) / Polyaromatic Hydrocarbon Containing Materials (PAHCM) / Total Petroleum Hydrocarbon Containing Materials (PPHCM) / Polychlorinated Biphenyts Containing Materials (PCBCM) from Soil Remediation at the Project Site According to the CAR and RAP, less than 100 m3 of soil would require disposal at landfill. Relevant health and safety procedure, waste disposal requirements and compliance report are as detailed in Figure 6.3. Mitigation measures to avoid fugitive dust emission mentioned in S.4.7.2 should also be observed. In addition, after decommissioning but before demolition of the Existing Crematorium, further investigations during Phase I of the works at the vicinity of CLP secondary substation should also be carried out to determine if additional remediation (in addition to the current RAP) is required. Confirmatory test on levels of DCM, HMCM and PAHCM in locations \$1 to \$6 during Phase II of the works is also required to determine any further remediation, the ash waste in cremator/chimney/flues should also be collected for the testing of DCM/HMCM/PAHCM during Phase II of the works. The sampling and analysis plan should be prepared and	Locations S3 and S5 of CAP / demolition CLP secondary substation / after decommission and before demolition	Contractor	Demolition stage Demolition stage	ProPECC PN3/94 APCO ProPECC PN3/94	N/A
submitted to EPD for approval. All the aforementioned ACM / DCM / HMCM / PAHCM / TPHCM / PCBCM are classified as chemical waste. In addition to the measures mentioned above, the packaging, tabelling and storage practices of chemical waste as stipulated in the following paragraphs should also	Project site / demolition	Contractor	Demolition stage	Waste Disposal (Chemical Waste) (General) Regulation	

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
Chemical Waste All the chemical waste should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. The Contractor should register as a chemical waste producer, The chemical waste should be stored and collected by an approved contractor for disposal at a licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. Containers used for the storage of chemical waste should:	Project site I demolition	Contractor	Demolition stage	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Waste Disposal (Chemical Waste) (General) Regulation.	
 Be suitable for the substance they are holding, resistant to corrosion, maintained in good condition, and securely closed; Have a capacity of less than 450 L unless the specifications have been approved by the EPD; and Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical 					
Waste) (General) Regulation. The storage area for chemical waste should: Be clearly labeled and used solely for the storage of chemical waste; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; Have adequate ventilation;					·
Have adequate verification. Be covered to prevent rainfall from entering (wate collected within the bund must be tested and disposal as chemical waste if necessary); and Be properly arranged so that incompatible.					

	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
				Code of Practice	N/A
materials are adequately separated. The chemical waste should be disposed of by: A licensed waste collector; A facility licensed to receive chemical waste, such as the CWTC at Tsing Yi, which offers chemical waste collection service and can supply the necessary storage containers; and/or A waste recycling plant as approved by EPD.	Project site / demolition	Contractor	Demolition stage	on the Packaging, Labelling and Storage of Chemical Wastes. Waste Disposal (Chemical Waste) (General) Regulation.	
	Project site /	Contractor	Construction and Demolition stage		•
General Refuse General refuse should be stored in enclosed bins or compaction units separated from C&D and chemical wastes. A reliable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D and chemical wastes, on a daily or every second day basis to minimize odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law. Aluminum cans are often recovered from the waste stream by individual collectors if they are segregated or easily accessible. Therefore, separately labeled bins for deposit of these cans should be provided if feasible. Similarly, plastic bottles and carton package material generated on-site should be separated for recycling as far as practicable. Site office waste should be reduced through recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme	ļ			AIR, AMP/AAP IO	N/A
collection. Participation in a local collection.	s Around existing	Contractor	Demolition stage	be	Tan-
should be considered if one is available. Conduct supplementary site investigation for asbestor in building structures and for dioxins, metals (the "Dutch List") and PAH in ash/particular	cremators, chimney and flue	s		submitted under	_1

commended Mitigation Measures	Location and Timing	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve? APCO, future	·
itter samples.	inside cremator room / after decommissioning but prior to demolition during Phase II work			supplementary site investigation plan	
andscape and Visual Mitigation Measures ill highlight those sources of conflict squiring design solutions or modifications to reduce the impacts and, if possible, blend the evelopment with the surrounding landscape. The roposed landscape mitigation measures rill be described and illustrated by means of site play ind photomortage and take into eccount factors including: Screen planting Transplanting of mature trees with good amenit value where appropriate Conservation of topsoil for reuse Sensitive alignment of structures to minimise disturbance to surrounding vegetation Reinstatement of areas disturbed during construction The design and finishes / colours of architectur and engineering structures such as terminals i pylons Existing views, views of the development with mitigation, views with mitigation at day one of operation and after 10 years of operation Tree transplanting. The tree survey has identified to	construction and demolition stages	Contractor/FEH D/Arch SD Contractor/Arch d SD	Construction and Demolition stage Construction and Demolition stage		N/A N/A

		Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
	as operation stages				
allow tree transplanting from Phase II site directly to Phase I site. Tree protection: Trees to be retained adjacent to works areas will be carefully protected by strong hoarding and if necessary additional protection to individual tree trunks to avoid	Project site / construction and demolition stages	Arch SD	Construction and Demolition stage	WBTC 7/2002, WBTC 14/2002, EIAO-TM	N/A

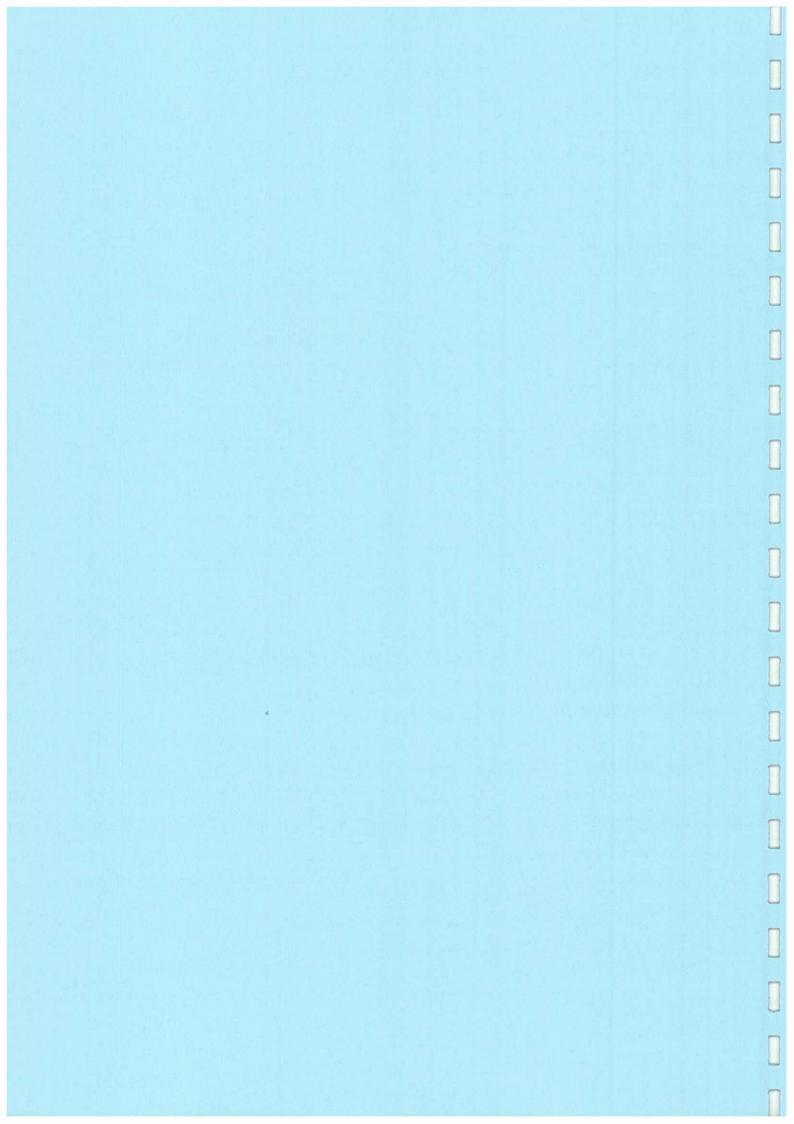
	_
٠	~
۰	•

	ocation and iming	Who to Implement?	When to Implement?	What Requirements or Standards to Achieve?	Status
opsoil conservation: Any topsoil excavate density onstruction will be carefully saved and tored to one side of the works area for reuse upon ompletion. Replanting: Upon completion planting of ornamental rees and shrubs will be provided to the veriphery of the new crematorium building to help screen and soften the overall appearance of the structure. In addition, a reprovisioned memorial garden with a lotus pond and promamental planting will be incorporated in the deck area of the building. Since the majority of the new planting will be on the deck structure the selection of species will be more limited with emphasis on smaller trees and ornamental shrubs to comply with loading restrictions. Notwithstanding this site constraint on tree selection, a minimum of 1.2m soil depth will be provide for tree planting on the podium / roof structure for healthy establishment of the new	Project site / upon completion of construction works for each phase Project site / upon completion of construction works for each phase	Arch SD Arch SD	Construction and Demolition stage Construction and Demolition stage	WBTC 7/2002, WBTC 14/2002, EIAO-TM WBTC 7/2002, WBTC 14/2002, EIAO-TM	N/A N/A
tree planting. Weekly inspections of tree protection measures as well as monitoring of tree transplant operations.	Phase	Landscape Architect	Demolition stage	and Maintenance in Hong Kong	
Water Quality Mitigation Measures Construction and Demolition Phases – General To safeguard the water quality of the WSRs potentially	Project site /	Contractor	Construction and Demolition stage		1

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
contractor should implement appropriate mitigation measures with reference to the Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94) published			Contaction and	ProPECC PN 1/94	1
Drainage (Procedure Street Programme) Construction and Demolition Phases - Construction and Demolition Run-off and Drainage Exposed soil areas should be minimized to reduce the potential for increased sitation, contamination of run-off and erosion. Any effluent discharge from the Project site is subject to the control of Water Pollution Control Ordinance (WPCO) discharge license and should be treated to meet the discharge standard set out in the relevant license. In addition, no site run-off should enter the stream on the eastern side of the Project site. Run-off impacts associated with the construction and demolition activities can be readily controlled through the use of appropriate mitigation measures, which include: Temporary ditches should be provided to facilitat run-off discharge into appropriate watercourses, via a sitt retention pond Boundaries of earthworks should be marked and surrounded by dykes Open material storage stockpiles should be covered with tarpaulin or similar fabric to preven material washing away Exposed soil areas should be minimized to reduct the potential for increased sittation and contamination of run-off Earthwork final surfaces should be well compact and subsequent permanent work should be immediately performed Use of sediment traps wherever necessary	ce	Contractor	Construction and Demolition stage	ProPECC PN 1/94	

	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Statu s
Maintenance of drainage systems to prevent					 -
a					1
All temporary drainage pipes and culverts provided to acilitate run-off discharge should be adequately designed to facilitate rapid discharge of storm flows. All sediment traps should be regularly cleaned and maintained. The temporarily					
regularly cleaned and maintained. diverted drainage should be reinstated to its original condition, when the construction/demolition			\	<u> </u>	1
work is completed.					4
facilities should be settled out and removed from discharge into temporary drainage pipes or	İ				
the wheel washing bay and the public road show of					
water or other site run-off from entering poblic road	<u></u>	Contractor	Construction and	ProPECC PN 1/94	N/A
drains. Oil interceptors should be provided in the drainage system downstream of any significant oil and grease sources. They should be regularly maintained to prevent the release of oil and grease into the storm water drainage system after accidental spillage. The inceptor should have a bypass to prevent flooding during periods of	Project site / construction and demolition stages	Contractor	Demolition stage		
heavy rain, as specified in ProPECC Pro	Project site /	Contractor	Construction and	ProPECC PN 1/94	14
Construction and Demolition Phases - General Construction and Demolition Activities All the solid waste and chemical waste generated on site should be collected, handled and disposed of property to avoid affecting the water quality	construction and demolition stages		Demolition stage		
of the nearby warks. The proper waste management measures are detailed in \$.7.7.5-\$.7.7.6. Construction and Demoittion Phases - Sewage	Project site /	Contractor	Construction and Demolition stage	ProPECC PN 1/94	1
Generated from On-site Workforce	construction and		1 00111011		•

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
The sewage from construction work force is expected to be handled by portable chemical toilets if the existing toilets in the Project site are not adequate. Appropriate and adequate portable toilets should be provided by licensed contractors who will be responsible for appropriate disposal and maintenance of these facilities. Construction and Demolition Phases - Soil Remediation Activities Mitigation measures will need to be implemented during the currently identified soil remediation activities. If further land contamination investigation results (at CLP secondary substation during Phase I and at locations S1 to S6 during Phase II) confirm the needs for further soil remediation prior to demolition of the Existing Crematorium, relevant water quality mitigation measures (in addition to the current RAP) will need to be identified and implemented by the contractor. In addition, the mitigation measures recommended for minimizing water quality impacts for construction and demolition nun-off and drainage as well as for general construction and demolition activities should also be adopted where applicable. In order to avoid impacts on water quality during further remedial works, care will be taken to minimise the mobilisation of sediment during excavation and transport. Measures to be adopted will be based on the recommendations set out		Contractor	Construction and Demolition stage	ProPECC PN 1/94	V
in Practice Note for Professional Persons ProFECC PN 1/94 "Construction Site Drainage". The results of the site investigation suggest that there is unlikely to be any					


_	_	
5	У	

Recommended Mitigation Measures	Location and Timing	Who to Implement?	When to implement?	What Requirements or Standards to Achieve?	Status
excavations, since groundwater was not encountered in any of the exploratory holes. The contractor carrying out the remedial works will be required to submit a method statement detailing the measures to be taken to avoid water quality impacts. Typical measures would include: Carry out the works during the dry season (i.e. October to March) if possible Use bunds or perimeter drains to prevent run-off water entering excavations Sheet or otherwise cover excavations whenever rainstorms are expected to occur Minimise the requirements for stockpiling of material and ensure any stockpiles are covered Temporary on-site stockpiling of contaminated materials should be avoided, all excavated contaminated soils/materials should be disposed of on a daily basis Ensure that any discharges to storm drains pass through an appropriate silt trap					

Note: √ × • N/A

Compliance of mitigation measure
Non-compliance of mitigation measures
Non-compliance but rectified by the contractor
Not applicable

APPENDIX K EVENT AND ACTION PLANS

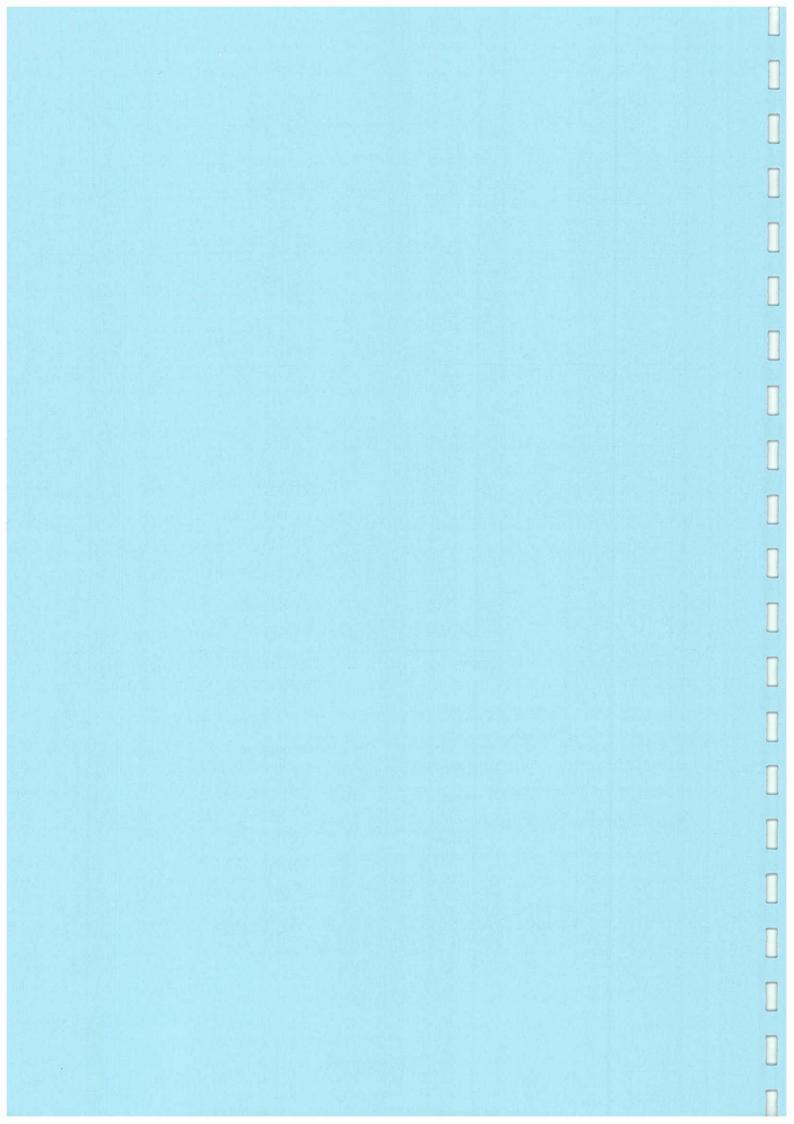

Appendix K Event and Action Plans

Table K.1 Event and Action Plan for Air Quality

EVENT	티		ACTION	AR	CONTRACTOR
1				A Noth Contrarier	1. Rectify any unacceptable
Exceedance for one sample	÷ 4 € 4	Identify source, investigate the cause of syceedance and propose remedial measures; inform IEC and AR; Repeat measurement to confirm finding; increase monitoring frequency to daily, if ET assessment indicates that exceedance is due to assessment indicates that exceedance is due to	Check monitoring data submitted by E1; Check Contractor's working method.		
Excendence for two or more consecutive semples	- 4 to 4 to 6 to	contractor's construction works. Identity source, investigate the cause of dentity source, investigate the cause of facedance and propose remedial measures; increase an assurements to confirm findings; increase monitoring frequency to deity, if ET assessment indicates that exceedance is due to contractor's construction works; in the confirmation of the confirmati	Check monitoring date submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the AR on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	Submit proposels for remedial actions to IEC within three working days of notification; Z. Implement the agreed proposels; 3. Amend proposel if appropriate.
		monivoring.			
Exceedance for one sample	÷ 2,6,4, 7,	identity source, investigate the cause of exceedance and propose remedial measures; Inform IEC, AR and EPD; Repeal measurement to confirm finding; Increase monitoring frequency to daily, if ET assessment indicates that exceedance is due to confractor's construction works; Assess effectiveness of Contractor's remedial actions and keep IEC, AR and EPD informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the AR on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing: 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within three working days of notification; 3. implement the agreed proposals; 4. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	4 5 4	Notify Contractor, IEC, AR and EPD; Identify source, investigate the cause of exceedance and propose remedial measures; Repeat measurement to confirm findings; Increase monitoring frequency to daily, if ET	Discuss amongst AR, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the AR accordingly;	Confirm receipt of notification of exceedance in writing: Notify Contractor. In consultation with the IEC, agree with the Contractor on the remedial	Take immediate action to avoid further exceedence; Submit proposals for remedial actions to IEC within three working days of notification;

	CONTRACTOR	3. Implement the agreed	proposals; 4 Resubmit proposals if problem	still not under control;	works as determined by the	AR until the exceedance is			
	av	manageree to be Implemented:	4. Ensure remedial measures properly	implemented; 5. If exceedance confinues, consider	what portion of the work is responsible	portion of work until the exceedance is	abaled,	,	
NOILUK:		IEC	3. Supervise the implementation of remedial						
		E.T.	assessment indicates that exceedance is due to	contractor's construction works; 5 Carry out analysts of Contractor's working	procedures to determine possible miligation to be	implemented; 6. Arrange meeting with IEC and AR to discuss the	remedial actions to be taken;	7. Assess effective less of comments and keep IEC, AR and EPD informed of	the results; 8. If exceedance stops, cease additional monitoring.
		EVENT			_				

APPENDIX L
DETAILED LABORATORY RESULTS FOR
CONTAMINATED SUBSURFACE SOIL
VERIFICATION SAMPLES

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: HK0714717 : 11 Oct 2007 18 Oct 2007 Received 1013 No. of samples Date received Date of issue Page Work Order 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwal Chung, N.T., Hong Kong HONG KONG ALS Technichem (HK) Pty Ltd Alica.Wong@alsenviro.com +852 2610 1044 +852 2610 2021 Alice Wong Quote number Telephone _aboratory Facsimile Address Contact E-mail CHINA RESOURCES CONSTRUCTION LTD REPROVISIONING OF DIAMOND HILL CHINA RESOURCES BUILDING, davidtse@imail.crc.com.lik NO 26 HARBOUR ROAD, CREMATORIUM SSM333 MR DAVID TSE HONG KONG RM 1001-1005, WANCHAI, 2726 2695 2326 1502 C-O-C number Order number elephone acsimile Project Address. Contact E-mail Clen

Report Comments

Site

to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for This report for ALS Technichem (HK) Pty Ltd work order reference HK0714717 supersedes any previous reports with this reference. The completion date of analysis is 17 Oct 2007. Results apply process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

2 2

Analysed

Specific comments for Work Order HK0714717: Sample(s) were received in an ambient condition.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

Soil sample(s) analysed on an as received basis. Resuli(s) reported on a dry weight basis.

Soll sample(s) as recoived, digested by in-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hond Kong, Chapter 553. Section 6.

Signatory
Fung Lim Chae, Richard

General Manager

Authorised results for-

Inorganics

ALS Latoratory Group
Trading Name: ALS Technichem (HK) Pety Ltd
11/F., Chung Shun Krillon centr, 13 Wing 1/p Sheet, Kwa Chung, M.T., Hong Kong
14ft, 482 2810 1044 Far. 482 2810 2021 www.alennio.com
A Cempball Brothers Linited Company

EG: Metals and Major 0.5 mg/kg Cations 40.2 1.0 17.3 17.9 8.1 7,5 9,6 Aggregate Properties Contemt (dried @:103* EA/ED: Physical and EA055 Molsture 0.1% 3.5 3.6 3.4 7.4 10.4 10.4 5.3 Analyte: Analyte Group: LOR / Units: HK0714717-003 HK0714717-004 HK0714717-010 HK0714717-005 HK0714717-006 HK0714717-008 HK0714717-009 HK0714717-002 HK0714717-007 HK0714717-001 ALS Identification Sample Date / Time [11 Oct 2007] [11 Oct 2007] 11 Oct 2007] [11 Oct 2007] [11 Get 2007] 11 Oct 2007 11 Oct 2007 11 Oct 2007] Analytical Results Submatrix: SOIL Cilent Sample ID ¥ SAB SK 5K SSB 35C 35D 35E S4E S5A

Preson wish

: 2 of 3 : CHINA RESOURCES CONSTRUCTION LTD

Page Number Work Order

HK0714717

Page Number Client

: 3 of 3 : CHINA RESOURCES CONSTRUCTION LTD HK0744717 Work Order

Quality Control - Laboratory Duplicate (DUP) Results

Matrix Type: SOIL	Se .					Duplicate (DUP) Results	asuita	
Laboratory Sample (D	Cilent Sample ID	Method: Analysis Description	CAS number	10H	Umits	Original Result	Duplicate Result	. (%) Oda
EAVED: Physical and Aggr	egate Properties (GC/Lot: 512485					24.00 mm	Propries (Inc.) and the second second	
HK0714606-001	Anonymous	EA055: Moisture Content (dried @ 103*C)	1	0.1	%	72.4	73.1	0,1
HK0714717-010	SEE	EA055: Molsture Content (dried @ 103°C)		0,1	%	5.3	5.0	8.1
EG: Metala and Major Catk	ör calons, (qc Lottis (2458)	Constitution of the consti					A CALL TO THE PARTY OF THE PART	
HK0714717-D02	S4B	EG020: Tin	7440-31-5	0.5	mg/kg	7.5	6.8	10.6
HK0714722-002	Anonymous	EG020: Tln	7440-31-5	0.5	mg/kg	63.8	68.0	6.4

Quality Control - Method Blank (MB), Single Control Spike (SCS) and Duplicate Control Spike (DCS) Results

Matrix Type: SOIL			Method Blank (AE	MB) Results		Single Co.	Single Control Splite (SCS) and Duplicate Control Splite (DCS) Result	pilcate Corb	of Spaller (DC:	S) Results	
					Spike	Spike Rec	Spika Recovery (%)	Recovery Limits (%)	fmits (%)	RPDs (%)	(%)
Method: Analysis Description	CASnumber	10R	Units	Result	Concentration	SOS	SOO	TOM	1911	Value	Control Limit
EG: Metals and Majorications (GC	1.84:612486)										
EG020; Tin	7440-31-5	1.0	mg/kg	<0.5	5 mg/kg	92.2	ì	85	115	1	

Quality Control - Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

Matrix Type: SOIL					Matrix S	Matrix Spiles (MS) and Matrix Spike Dupilcate (MSD) Results	pike Dupiler	te (ArSD) Res	uits	
				Spike	Spike Recovery (%)	overy (%)	Recovery Limits (%)	Comits (%)	RPD* (%)	
Laboratory Sample ID	Cilent Semple ID	Method: Analysis Description	CAS number	Concembation	SH	MSD	701	High	Value	Control Limit
EG: Wetals and Major Callons (QGLot: 512458)	lons (QCLot: 512456)								and the second	
HK0714717-001	S4A	EG020: Tin	7440-31-5	5 mg/kg	90.3	i	75	125		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

ALS Technichem (HK) Pty Ltd Page ; 1 of 3 Alice Wong 11/F., Chung Shun Kniting Centre, 1 - 3 wyning Yip Street, Kwal Chung, 1 - 3 wyning Yip Street, Kwal Chung,	Alice.Wong@alsenvlro.com +852_2616_1044 +852_2610_2021 Date of issue : 4 Oct 2007 Date of issue : A Received : 5 No. of semples - Anelysud 5
STRUCTION LTO Laboratory Contect Address	NO 26 HARBOUR ROAD, WANCHAI, HONS KONG 2728 2895 2728 2895 2827 2921 Oucle number
Client Contact Address	E-mail Telephosie Facsimile Project Order nymber C-O-C number

Report Comments

This report to ALS Technichem (HK) Pry Lid work order reference HK0713580 supersedes any previous reports with this reference. The completion date of analysis is 28 Sep 2007. Results apply to sample(s) as submitted. All pages of this raport have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for

process purposes, Abbreviations; CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

This report inay not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis. Sample(s) were received in a chilled condition. Specific comments for Work Order HK0713589;

Soll sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This document has been electronically signed by those names that appear on this report and are the authorised

Authorised results for:-Inorganics signatories. Electronic algning has been carried out in compliance willt procedures specified in the 'Electronic Goneral Manager Transactions Ordinance' of Hond Kong. Chapter 553. Section 6. Fung Lim Chee, Richard

118., Chung Shin kelbag Cema, 1-3 Wag Tip Sheel, kwal Crung, N.T., Hony Karg 1811, 422 2310 1044 - Francisca 2010 2021 - www.insentholom. (reding Name: ALS TECHNICHEIN (PIK) Pty Ltd A Cantrel Brother Links Cannery ALS Laboratory Group

HK0713589-005 [19 Sep 2007] 13.7 37 10.8 HK0713589-004 [19 Sep 2007] 8.0 8. 4. HK0713589-003 [19 Sep 2007] 8 2 119 Sep 2007 1 HK0713689-002 14.3 13.5 [19 Sep 2007] HK0713589-001 10,2 2 4 5 Client Sample ID : Laboratory Sample IO : Sample Date / Time : mxj/kg mg/kg LOR Units Units Z 2013 CHINA RESOURCES CONSTRUCTION LTD HK0713589 <u>ا</u> 7440-31-5 7439-92-1 HEATEO RIVEIGNESSION NESSELECTION NESSELECTI EA055; Moisture Content (dried @ EGONAMA ENTINATOR CHICKE Analytical Results Method: Analysis Description 103°C) EG020: Lead Submatrix SOIL EG020: Tl₁ı Mark Order Cler

Page Number

.

: 3 of 3 CHINA RESOURCES CONSTRUCTION LTD HK0713589

Page Number Cliant

Wash Order HK0713589

Outsilty Control - Laboratory Duplicate (DUP) Results

	د	<u> </u>		33		•	
Dupticate (DUP) Results	Lette Ordainel Resolt Duplicate Resold RPD (%)				 - 	rtig/kg 11.5	
Orgality Control - Laboratory Duplicate (DUF) Results		Matrix Type: 50/L Calent Sample ID Calent Sample	nd 84grand 16 17 10 18 18 18 18 18 18 18 18 18 18 18 18 18	EA055: Molsture Content (dried @ 103°C)	(Information (Information)	EGUZO: LEBIU 1838 1440-31-5 0.5 HK0743589.U02 1840-31-5 0.5	

	DCS) Results	APDs (%)	Value Control Limit		•			
control Spike (DCS) Results	stude Control Solke (SCS) and Outside Control Splin (DCS) Results	Falls Danman (74)	200	Soc Society of the Control of the Co	24.1	115 HB 115		
Control Spike (SCS) and Dublicate Co		Rethod Blank (AB) Resurts	a year	LOR Units Resurt Concentration		¥	0.5 mg/kg <0.5 u mg/kg	Positife (MCD) Bositife
Results (SCS) and Dublicate Control Spike (DCS) Results	Bratity Control - Method Blank (ME), SING		Matrix Type: SOIL	CAS purities 1	Rethod: Analysis Description	ECHARISTER OF MEJOTO-SANDRE LINE CONTROL 7439-92-1	7440-31-5	EG020: 1 III

RFDs (X) | Nature Spike (MS) and Matrix Spike Dupfleate (MSD) Results
Spike Recovery Limits (1%) Spike Quality Control - Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results Matrix Type: SOIL

Value					
delly **o7		75 125	10 406	73 67	
OSF#	A LINE TO SERVICE SERV	NACO CONTRACTOR CONTRACTOR CONTRACTOR	i	1	
200	Characteristics of the Control of th		Not Determined	78.1	
Γ	CAS number Contended to the contended		7439-92-1 5 mg/kg	7440-31-5 5 mg/kg	
	escription				
	Method: Analysis Description	CONTRACTOR OF STREET	#6/ #86 # Ed While Called Work Called William	EGOZO: Leao	EG020: Tin
	Chalcal Cantols (7)	ALL AND DESCRIPTION OF THE PROPERTY OF THE PRO	C.11GHS (OCL 01: 49)	S3A	
MACK LYPO.		Laboratory Sample 1D	C. Markento Majo	HK0713539-001	