Agreement No. CE 20/2004(EP) North East New Territories (NENT) Landfill Extension

Monthly Environmental Monitoring and Audit Report (No. 6) – May 2023

2023-06-12

Our Ref.: CL/91823/0485-VES

Date:

12 June 2023

By Email

Veolia Environmental Services Hong Kong Limited 40/F, One Taikoo Place 979 King's Road Quarry Bay Hong Kong

Attn.: Mr. Colin Mitchell

Meinhardt Infrastructure and **Environment Ltd**

邁進基建環保工程顧問有限公司

10/F Genesis 33-35 Wong Chuk Hang Road Hong Kong 香港黃竹坑道33-35號 創協坊10樓

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com

Dear Sir

Re: Contract No. EP/SP/77/15

North-East New Territories Landfill Extension (NENTX)

Monthly Environmental Monitoring and Audit Report (No.6) - May 2023

I refer to Condition 3.3 under Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, regarding the submission of a monthly Environmental Monitoring and Audit report. I hereby verify the captioned "Monthly Environmental Monitoring and Audit Report (No.6) - May 2023" dated 12 June 2023.

Should you have any queries, please do not hesitate to contact the undersigned at 2859 5409.

Yours faithfully

MEINHARDT INFRASTRUCTURE AND ENVIRONMENT LTD

Claudine Lee

Independent Environmental Checker

Aurecon Hong Kong Limited Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong Hong Kong T +852 3664 6888 F +852 3664 6999 E hongkong@aurecongroup.com w aurecongroup.com

Ref: P521530-0000-REP-NN-0059

By Email

12 June 2023

Meinhardt Infrastructure & Environment Ltd. 10/F Genesis 33-35 Wong Chuk Hand Road Hong Kong

Attn: Ms. Claudine Lee,

Dear Claudine,

Re: Contract No. EP/SP/77/15

Northeast New Territories Landfill Extension

Submission of Monthly Environmental Monitoring and Audit Report (No.6) - May 2023

In accordance with the requirement specified in Condition 3.3 of Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, we are pleased to submit the certified "Monthly Environmental Monitoring and Audit Report (No.6) – May 2023" dated 12 June 2023 for your verification.

Should you require any further information or clarification, please do not hesitate to contact the undersigned or our Mr. Keith Chau on 3664 6788.

Yours faithfully, For and on behalf of Aurecon Hong Kong Limited

Fredrick Leong

Environmental Team Leader

Encl

CC.

1. Monthly Environmental Monitoring and Audit Report (No.6) – May 2023

1. IEC - Ms. Claudine Lee (By email: claudinelee@meinhardt.com.hk)

IEC - Ms. Claudine Lee (by email. claudinelee@meinhardt.com.nk)
 IEC Representative – Ms. Echo Hung (By email: echohung@meinhardt.com.hk)

Document Control Record

Document prepared by:

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223 – 231 Wai Yip Street, Kwun Tong, Kowloon

Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- **b)** Using the documents or data for any purpose not agreed to in writing by Aurecon.

Doc	Document control aurecon					
Report title		Monthly Environmental Monitoring and Audit Report (No. 6) – May 2023				
Document ID			Project number			
File path						
Client		Veolia Environmental Services Hong Kong Limited				
Client contact			Client reference			
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver
0	7 June 2023	Submit to IEC	J Man	K.Chau		FL
1	12 June 2023	Submit to IEC	J Man	K.Chau		FL
Current revision		1				

Approval						
Reviewer's signature	A STATE OF THE STA	Approver's signature	Tul			
Name	Keith Chau	Name	Fredrick Leong			
Title	Associate, Environmental	Title	Environmental Team Leader			

Contents

Ex	ecutive Summary	1
1.	ecutive SummaryIntroduction	3
2.	Project Information	5
	Air Quality Monitoring	
4	Noise Monitoring	. 19
5	Water Quality Monitoring	. 24
6	Waste Management	. 32
7	Landfill Gas Monitoring	. 33
	Landscape and Visual	
9	Cultural Heritage	. 39
10	Ecological Monitoring	. 40
11	Site Inspection and Audit	. 41
12	Environmental Non-conformance	. 42
13	Implementation Status on Environmental Mitigation Measures	. 43
	Future Key Issues	
	Conclusion	

Figure

Figure 1	Location of the Project Site
Figure 2	Impact Air Quality, Noise & Surface Water Monitoring Locations
Figure 3	Landfill Gas Monitoring Locations

Appendix

Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L Appendix M Appendix N	Construction Programme Project Organization Chart & Management Structure Monitoring Schedule for Reporting Month & Next Month Calibration Certificates Monitoring Results Graphical Presentations Notification of Environmental Quality Limits Exceedance Wind Data Waste Flow Table Joint Environmental Site Inspection Records Environmental Mitigation Implementation Schedule (EMIS) Construction Site Activities Mitigation Measures of Cultural Landscape Features Ecological monitoring record
Appendix N Appendix O	Ecological monitoring record Detail Status of FEP & EP Submission

All rights reserved | The information/data furnished in our document is confidential and competitive information proprietary to Aurecon or its subcontractors, the release of which would harm the competitive position of Aurecon or its sub-contractors/consultants. This information/data shall not be reproduced, stored in a retrieval system, transmitted in any form or by any means, used or disclosed in whole or in part, for any purpose other than to evaluate and adjudicate this document. If Aurecon is shortlisted or a contract is awarded to Aurecon as a result of this solicitation, or in connection with the submission of such information/data, the right (and the extent thereof) to reproduce, store, transmit, use or disclose this information/data must, by agreement, be included in such contract.

Executive Summary

Aurecon Hong Kong Limited (Aurecon) was appointed to undertake the role of Environmental Team (ET) and carry out Environmental Monitoring and Audit for the North East New Territories (NENT) Landfill Extension.

The construction phase and EM&A programme of the Project commenced on 1 December 2022.

This 6th Monthly EM&A Report presents the EM&A works conducted from 1 to 31 May 2023 in accordance with the EM&A Manual.

Summary of Construction Works undertaken during Report Period

The major construction works undertaken during the reporting period include:

-	Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
-	Permanent site office foundation works with pouring of concrete at Portion D
-	Site clearance at Portion A & E3-1
-	Installation of permanent fencing at Portion A, B1 & E4
-	Site formation at Portion A & E3-1
-	Tree felling at Portion E3-1 & E4

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	5, 11, 17, 23 & 29 May 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	5 times	5, 11, 17, 23 & 29 May 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	5 May 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	26 times	2 to 6, 8 to 13, 15 to 20, 22 to 27, 29 to 31 May 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	17 May 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	12 May 2023
_	Joint Environmental Site Inspection	5 times	2, 8, 15, 22 & 29 May 2023

Environmental Exceedance

Air Quality, Noise, Surface Water Quality & Landfill Gas Monitoring

No exceedance of the Action and Limit Levels for was recorded at designated monitoring stations during the reporting period.

Environmental Non-conformance/Compliant/Summons and Prosecution

No non-compliance event and complaint were recorded during the reporting period.

No summons/prosecutions were received in this reporting period.

Reporting Change

There was no reporting change in the reporting period.

Future Key Issues

Works to be undertaken in the next month include:

- Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
- Permanent site office foundation works with pouring of concrete at Portion D
- Site clearance at Portion A & E3-1
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A & E3-1
- Tree felling at Portion E3-1 & E4

Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

1. Introduction

1.1. Background

- 1.1.1. The North East New Territories Landfill Extension (the NENTX Project) is located adjacent to the existing North East New Territories (NENT) Landfill at Ta Kwu Ling. The extension site is located in a valley covering mainly the existing NENT Landfill Stockpile and Borrow Area that was formed to the east of the existing landfill as part of the original site development of the landfill, and layout plan shown in **Figure 1**.
- 1.1.2. The NENTX is a designated project. The Environmental Impact Assessment (EIA) Report (AEIAR-111/2007) and an Environmental Monitoring and Audit Manual were approved on 20 September 2007. The project is governed by an Environmental Permit (EP) (EP-292/2007) which was granted on 26 November 2007. A further of EP (FEP) was applied and the FEP (FEP-01/292/2007) was subsequently granted on 28 April 2022.
- 1.1.3. In accordance with the requirements specified in Section 2.6 to 2.10 and Section 12.3 of the approved Environmental Monitoring and Audit (EM&A) Manual and Environmental Permit (EP and FEP) condition 3.3, Monthly EM&A report should be submitted to the Director of Environmental Protection (DEP), within 2 weeks after the end of the reporting month. The submissions shall be certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC).
- 1.1.4. The construction phase and EM&A programme of the Project commenced on 1 December 2022.

1.2. Nature, Scale and Scope of the captioned Designated Project

1.2.1 The Nature, Scale and Scope of the captioned Designated Project is presented in **Table 1-1**.

Table 1-1 Nature, Scale and Scope of the captioned Designated Project

Item(s)	Content
Nature of Designated Project	Construction and operation of a landfill for waste as defined in the "Waste Disposal Ordinance" (Cap. 354)
Scale and Scope of	The Project mainly consists of the followings: -
Designated Project	Construction and operation of a landfill extension of about 70 hectares with a target void space of at least 19 million cubic metres on the eastern side of the existing NENT Landfill, including the followings: -
	i. Site formation and preparation;
	ii. Installation of liner system;
	iii. Installation of leachate collection, treatment and disposal facilities;
	iv. Installation of gas collection, utilization and management facilities;
	v. Utilities provisions and drainage diversion;
	vi. Landfilling operation;
	vii. Restoration and aftercare in subsequent stages; and
	viii. Measures to mitigate environmental impacts as well as environmental monitoring and auditing to be implemented.

1.3. Purpose of this Report

1.3.1. This is the 6th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 01 to 31 May 2023.

1.4. Structure of the Report

1.4.1. The structure of the report is as follows:

Section 1 – Introduction

- details the background, purpose and structure of the report.

Section 2 – Project Information

 summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permit(s)/License(s) during the reporting period.

Section 3 - Air Quality Monitoring

- Construction Dust

Section 4 – Noise Monitoring

Section 5 - Water Quality Monitoring

- Groundwater Monitoring
- Surface Water Monitoring

Section 6 - Waste Management

Section 7 - Landfill Gas Monitoring

Section 8 - Landscape and Visual

Section 9 - Cultural Heritage

Section 10 - Ecological Monitoring

Section 11 - Site Inspection and Audit

Section 12 - Environmental Non-Conformance

Section 13 – Implementation Status on Environmental Mitigation Measures

Section 14 - Future Key Issues

2. Project Information

2.1. Construction Activities

2.1.1. A summary of the major construction activities undertaken in this reporting period is shown in **Appendix L**. Construction programme is illustrated in **Appendix A**.

2.2. Project Organization & Management Structure

2.2.1. The Project Organization Chart & Management Structure are shown in **Appendix B**. The key personnel contact information is summarized in **Table 2-1**.

Table 2-1 Contact Information of Key Personnel

Party	Name	Contact Number
Contractor	Mr. William Wan	2902 5296
(Veolia Environmental Service Hong Kong Ltd.)		
Independent Environmental Checker (IEC)	Ms. Claudine Lee	2859 5409
(Meinhardt Infrastructure and Environment Ltd.)		
Environmental Team Leader (ETL)	Mr. Fredrick Leong	3664 6888
(Aurecon Hong Kong Limited)		

2.3. Status of Submission required under the FEP & EP during reporting period

2.3.1. The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP during reporting period are presented in **Table 2-2**. The detail status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP for NENTX project are shown in **Appendix O**.

Table 2-2 Status of Submissions required under the FEP & EP during reporting period

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submitted
2.2	2.4	Setting up of Community Liaison Group (CLG)	Community Liaison Group was set up.
2.3	2.5	Submission of EM&A Manual	Submitted
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submitted
2.6	2.8	Submission of translocation proposal	Submitted
2.7	2.9	Submission of Transplantation	Submitted
	Report and Post-Transplantation Monitoring		10 th post-transplantation monitoring
			(17 May 2023)
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out and the report submitted.
			10 th post-translocation monitoring
			(12 May 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submitted
2.10	2.12	Submission of Waste Management Plan	Submitted
3.2	3.2	Submission of Baseline Monitoring Report	Submitted

2.4. Status of Environmental Approval Document

2.4.1. A summary of the relevant valid permits, licences, and/or notifications on environmental protection for this Project since the granting of the FEP & EP is presented in **Table 2-4**.

Table 2-4 Summary of the relevant valid permits, licences, and/or notifications on environmental protection

Permit / Licenses / Notification	Reference	Expiry Date	Remark
Environmental Permit (EP)	EP-292/2007	Throughout the Contract	Permit granted on 26 November 2007
Further Environmental Permit (FEP)	FEP-210/2022	Throughout the Contract	Permit granted on 28 April 2022
Notification of Construction Works as required under Air Pollution Control (Construction Dust) Regulation	479809	Throughout the Construction Phase	Notified on 13 May 2022
Registration of Waste Producer under Waste Disposal Ordinance	7043692	Throughout the Contract	Registered on 13 April 2022
Registration as Chemical Waste Producer	5213-642-P1034-18	Throughout the Contract	Registered on 11 July 2022
Construction Noise Permit	GW-RN0299-23	22 June 2023	Permit granted on 21 March 2023
Effluent Discharge License under Water	WT00042301-2022	31 October 2027	Permit granted on 18 October 2022
Pollution Control Ordinance			Variation of Licence (Permit granted on 7 February 2023)

2.5. Environmental Monitoring and Audit Progress

2.5.1. A summary of the monitoring activities in this reporting period is presented in **Table2-5**.

Table 2-5 Summary of the Monitoring Activities in this reporting period

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	5, 11, 17, 23 & 29 May 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	5 times	5, 11, 17, 23 & 29 May 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	5 May 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	26 times	2 to 6, 8 to 13, 15 to 20, 22 to 27, 29 to 31 May 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	17 May 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	12 May 2023
-	Joint Environmental Site Inspection	5 times	2, 8, 15, 22 & 29 May 2023

Air Quality

5 sets of 1-hr & 24-hr TSP construction dust measurement were carried out at each monitoring stations during normal weekdays of the reporting period.

No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

Noise

5 sets of 30-minute construction noise measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period.

Groundwater

Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

Surface Water Quality

1 set of surface water quality measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of surface water quality was recorded during the reporting period

Landfill Gas

26 sets of landfill gas measurement were carried out at the designated monitoring locations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of landfill gas was recorded during the reporting period.

Landscape and Visual

All the specified and affected LCAs, LRs and VSRs have been monitored during the reporting period. No exceedance of Action and Limit Levels of landscape and visual was recorded during the reporting period.

Cultural Heritage

Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Ecology

1 set of post-translocation monitoring at recipient site and 1 set of post-transplantation monitoring and audit for transplanted plants and receptor sites during normal weekdays of the reporting period were carried out. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Environmental Site Inspection

5 weekly environmental site inspections were carried out during the reporting period. A joint environmental site inspection was carried out by the representatives of the Employer's Representative (ER), the Contractor, IEC and the ET on 15 May 2023. The Contractor has generally implemented the mitigation measures as recommended.

3. Air Quality Monitoring

3.1 Construction Dust

3.1.1 Monitoring Requirement

3.1.1.1 In accordance with the EM&A Manual, 1-hr & 24-hr Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations in every 6 days to ensure that any deteriorating air quality could be readily detected, and timely action shall be undertaken to rectify such situation. For 1-hr TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs. The specific time to start and stop the 24- hr TSP monitoring shall be clearly defined for each location.

3.1.2 Monitoring Parameters, Frequency and Location

- 3.1.2.1 According to the EM&A Manual, three monitoring stations namely AM(D)1, AM(D)2 and AM(D)3 are selected for the impact monitoring.
- 3.1.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at AM(D)1, AM(D)2 and AM(D)3, the adjusted stations at AM1, AM2 and AM3 were agreed with IEC prior to the baseline and impact monitoring. The locations of adjusted dust monitoring locations are shown in **Figure 2**.
- 3.1.2.3 The detailed monitoring schedule is shown in **Appendix C**. The locations of dust monitoring stations are shown in **Table 3-1**. The monitoring parameters, frequency and duration are shown in **Table 3-2**.

Table 3-1 Locations of Dust Monitoring Stations

Monitoring Station	Representative for	Monitoring Parameters
AM1	Tung Lo Hang	1-hr and 24-hr TSP
AM2	Heung Yuen Wai	1-hr and 24-hr TSP
AM3	Wo Keng Shan Tsuen	1-hr and 24-hr TSP

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

AM(D)1 Tung Lo Hang, AM(D)2 Heung Yuen Wai, AM(D)3 Wo Keng Shan Tsuen are the air monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen

Wai and Wo Keng Shan Tsuen were denied. A search for alternative air monitoring locations (AM1, AM2 & AM3) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comment received from EPD.

Due to the adjustment of the location of AM(D)1, AM(D)2 & AM(D)3 to AM1, AM2 & AM3, the measured air quality levels at AM1, AM2 & AM3 would represent the air quality levels at AM(D)1, AM(D)2 & AM(D)3.

Table 3-2 Dust Impact Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
AM1, AM2, AM3	1-hr TSP	At least 3 times per 6 days
AIVI I, AIVIZ, AIVIS	24-hr TSP	1 time per 6 days

3.1.3 Monitoring Equipment

- 3.1.3.1 High volume samplers (HVSs) were used for carrying out 24-hr TSP monitoring. For 1-hr TSP monitoring, direct reading dust meters were used to measure 1-hr TSP levels.
- 3.1.3.2 **Table 3-3** summarises the equipment that were used in the dust monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 3-3 Dust Monitoring Equipment

Equipment	Model	Expiry Date	Monitoring Station	
	TE-5170X (S/N: 1105)	5 Jul 2023	AM1	
High Volume Sampler (HVS)	TE-5170X (S/N: 1106)		AM2	
	TE-5170X (S/N: 1856)		AM3	
	Sibata LD- 5R (S/N: 0Z4545)	2 Dec 2023		
S: 15 !: 5 !M!	Sibata LD- 5R (S/N: 882106)			
Direct Reading Dust Meter	Sibata LD- 5R (S/N: 882110)		AM1 to AM3	
	Sibata LD- 5R (S/N: 942532)			
Calibration Kit (for HVS)	TE-5025A (S/N: 3465)	28 Jun 2023	AM1 to AM3	

3.1.4 Monitoring Methodology

1-hr TSP Monitoring

3.1.4.1 The 1-hr TSP impact monitoring was conducted using a portable direct reading dust meter.

Measuring Procedures

3.1.4.2 The measuring procedures of the 1-hr dust meter has been undertaken in accordance with the Manufacturer's Instruction Manual as follows:

Procedure of starting monitoring

- Place the 1-hr dust meter at least 1.3m above ground;
- Turn on the "On/Off" button at the side of instrument. Program will be changed to "BG" mode and leave it for 1 minute.
- Pull out the Suction adaptor and turn the button at the side. Cover with hand at the suction adaptor measure the background for 10 seconds.
- Press " UP" and " DOWN" for choosing "SPAM Mode" for SPAM Measurement.
- Press "Up" and "Down" to select "Measurement Mode" with 60 minutes interval and unit in ug/m3.
- Press "Start/Stop" to start monitoring.

Procedure of setting measurement timer

- Press "Up" or "Down" to find "Setting LOG".
- Select "Record Cycle" and change the record time subject to different project requirement. For example, setting the record cycle as 60 minutes for normal operation.
- Press "ESCAPE" back to the main page.
- Press "Up" or "Down" to access "Measurement Timer" and select "Measurement time" to change the time to 3 hours.
- Information such as sampling date, time, count value and site condition will be recorded during the monitoring period.

Calibration & Maintenance

- 3.1.4.3 The direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.
- 3.1.4.4 All digital dust indicator will be calibrated with on-site HVS annually. Calibration certificate will be provided after calibration. The Calibration process shall eyewitness with the representative of ET & IEC.

Quality Audit

- 3.1.4.5 Checklist of regular checking for digital dust meter will be conducted bi-weekly by environmental technician to ensure the all-digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- 3.1.4.6 Logbook is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.

24-hr TSP Monitoring

3.1.4.7 The 24-hr TSP monitoring has been conducted using a High-Volume Sampler (HVS).

Measuring Procedures

- 3.1.4.8 The HVS has been set-up at the monitoring location with a fixed power supply for operation. The measuring procedures of the 24-hr TSP measurements has been undertaken in accordance with the specifications listed in the EM&A Manual. Each HVS includes a motor, a filter holder, a flow controller and a sampling inlet in accordance with the performance specification of the USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50), Appendix B. The measuring procedures of the 24-hr dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - The power supply will be checked to ensure the HVS works properly;
 - The filter holder and the area surrounding the filter will be cleaned;
 - The filter holder will be removed by loosening the four bolts and a new filter on a supporting screen will be aligned carefully;
 - The filter will be properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts will be fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid will be closed and secured with the aluminium strip;
 - The HVS will be warmed-up to establish run-temperature conditions;
 - A new flowrate record sheet will be set into the flow recorder;
 - The programmable timer will be set for a sampling period of 24 hour, and the starting time, weather condition and the filter number will be recorded;
 - · The initial elapsed time will be recorded;
 - At the end of sampling, the sampled filter will be removed carefully and folded in halflength so that only surfaces with collected particulate matter will be in contact;
 - The sample will be placed in a clean plastic envelope and sealed;
 - All monitoring information will be recorded on a standard data sheet; and
 - The filters will be taken back to HOKLAS accredited laboratory for analysis.
- 3.1.4.9 In addition, site conditions and dust sources were recorded in a standard form for direct input into a database.

Calibration & Maintenance

- 3.1.4.10 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 3.1.4.11 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually.

The detail procedure of calibration of HVS is listed below:

- 1. Make sure the electrical circuit is connected properly. The motor should be directly connected to the power source.
- 2. Open the top cover and unlock the screws at the four corners.
- 3. Install the orifice and adapter plate to high volume air sample. Tighten the nut securely. Turn the knob of orifice clock-wise to close the four holes on the bottom open.
- 4. Hold the water manometer on the cover of mass flow controller vertically. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave opposite side of the manometer open to the atmosphere.
- 5. Turn on the sampler
- 6. Five flow rates are achieved by changing the different plates to change the resistance. Record the manometer reading and the reading from continuous flow recorder. At least 5 sets of data should be recorded.
- 3.1.4.12 The Calibration process shall eyewitness with the representative of ET & IEC.

3.1.5 Monitoring Results

3.1.5.1 The impact dust monitoring results are summarized in **Table 3-4** and **Table 3-5**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 3-4 Summary of Impact 1-hr TSP Monitoring Results

Dust Monitoring Station	Average 1-hr TSP Concentration, μg/m³ (Range)	Action Level, µg/m³	Limit Level, µg/m³
AM1	23 (15 – 40)	>285	>500
AM2	30 (15 – 43)	>279	>500
AM3	35 (26 – 49)	>285	>500

Table 3-5 Summary of Impact 24-hr TSP Monitoring Results

Dust Monitoring Station	Average 24-hr TSP Concentration, μg/m³ (Range)	Action Level, μg/m³	Limit Level, µg/m³
AM1	62 (28 – 106)	>164	>260
AM2	73 (53 – 87)	>152	>260
AM3	93 (29 – 121)	>163	>260

3.1.5.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance are shown in **Table 3-6**. The Notification of Environmental Quality Limits Exceedances are presented in **Appendix G**.

Table 3-6 Summary of Impact 1-hr & 24-hr TSP Exceedance during the reporting period

Dust	Parameter	4 hr TCD	24 hr TCD	Exceedance	
Monitoring Station	Level Exceedance	1-hr TSP	24-hr TSP	Count	
AM1	Action	0	0	0	
	Limit	0	0	0	
AM2	Action	0	0	0	
	Limit	0	0	0	
AM3	Action	0	0	0	
	Limit	0	0	0	

Remarks: * equal to non-project related

3.1.5.3 No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

3.1.6 Wind Data Monitoring

3.1.6.1 During the monitoring period. wind data from existing weather station in the vicinity of the designated monitoring location, i.e Ta Kwu Ling station operated by Hong Kong Observatory was adopted. It is considered that the wind data obtained from Ta Kwu Ling station are representative of the Project area and could be used for the construction dust monitoring programme for the Project. The results for wind data monitoring are presented in **Appendix H**.

3.1.7 Recommended Mitigation Measures

- 3.1.7.1 The recommended dust mitigation measures from EIA report are listed as followed:
 - The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.
 - Dust emission from construction vehicle movement is confined within the worksites area.

- Watering facilities will be provided at every designated vehicular exit point.
- Good site practice is recommended during construction phase.

3.1.8 Event and Action Plan

3.1.8.1 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 3-7** shall be carried out.

Table 3-7 Event and Action Plan for dust impact

Event	ET	IEC	Contractor
Exceedance of Action Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level 		 Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform Contractor and IEC Repeat measurements to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Continue monitoring at daily intervals if exceedance is due to the Project If no exceedance for 3 consecutive days, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review with analysed results submitted by ET Review the proposed remedial measures by Contractor Supervise the implementation of remedial measures 	 Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate

Event	ET	IEC	Contractor
Exceedance of Li	mit Level		
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below limit level Assess effectiveness of Contractor's remedial actions and keep EPD and IEC informed of the results 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor potential remedial actions Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform IEC and EPD the causes and actions taken for the exceedances Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and informed of the results Increase monitoring frequency to confirm findings If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss amongst ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works until the exceedance is abated

4 Noise Monitoring

4.1 Monitoring Requirement

4.1.1 In accordance with the EM&A manual, noise impact monitoring shall be carried out at 2 monitoring stations NM1 and NM2 once a week during normal construction working hour (0700-1900 Monday to Saturday). The minimum logging interval shall be 30 minutes with average of 6 consecutive Leq 5 mins. L10 and L90 shall also be measured at 5 mins intervals.

4.2 Monitoring Locations, Parameters and Frequency

- **4.2.1** According to the EM&A Manual, two monitoring stations namely NM1 and NM2 are selected for the impact monitoring.
- 4.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at NM1 and NM2, the adjusted stations at NM1a and NM2a were agreed with IEC prior to the baseline and impact monitoring. The noise monitoring locations are summarized in Table 4-1 and shown in Figure 2.
- **4.2.3** The detailed monitoring schedule is shown in **Appendix C**. The frequency and duration are shown in **Table 4-2**.

Table 4-1	Noise Monitoring Locations
-----------	----------------------------

Monitoring Station	Representative for	Type of Measurement
NM1a	Wo Keng Shan Tsuen	Free field
NM2a	Lin Ma Hang	Free field

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

NM1 Wo Keng Shan Tsuen & NM2 Lin Ma Hang are the noise monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative noise monitoring locations (NM1a & NM2a) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comments received from EPD. Noise measurement at NM1a & NM2a will be considered as free-field and a correction of +3dB(A) would be made to the noise monitoring results.

Due to the adjustment of the location of NM1 & NM2 to NM1a & NM2a, the measured noise levels at NM1 & NM2 would represent the noise levels at NM1 & NM2.

Table 4-2 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
NM1a and NM2a	L _{Aeq} (30mins) average of 6 consecutive L _{eq} (5min); L10 (5min) & L90 (5min)	once a week during normal construction working hour (0700- 1900 Monday to Saturday)

4.3 Monitoring Equipment

- 4.3.1 Integrating Sound Level Meters (SLMs) was used for noise impact monitoring. The SLM complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out noise monitoring. The accuracy of the SLM was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements shall be accepted as valid only if the calibration level from prior to and after the noise measurement agrees to within 1.0dB.
- **4.3.2** A portable wind speed meter was used for measuring wind speeds in m/s.
- **4.3.3 Table 4-3** summarises the equipment that have been used in the impact noise monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 4-3 Noise Monitoring Equipment

Equipment	Model	Expiry Date
Sound Level Meter	NTi XL2 (S/N: A2A-13661-E0)	21 Aug 2023
Acoustic Calibrator	Rion NC-75 (S/N: 34724243)	10 Jul 2023
Anemometer	RS PRO RS-90 (S/N: 210722208)	12 Feb 2025

4.4 Monitoring Methodology

- **4.4.1** The details of noise measurement procedures are described as follows:
 - Free-field measurements were made at the monitoring locations.
 - For free field, the Sound Level Meter was set at a height of 1.2 m above the ground. The battery condition was checked to ensure the proper functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - · Frequency weighting: A
 - Time weighting: Fast
 - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
 - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid

- and repeat of noise measurement would be required after recalibration or repair of the equipment.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
- All noise monitoring will be conducted with the wind speed not exceeding 5m/s and no gusts exceeding 10m/s.

Calibration & Maintenance

- 4.4.2 The sound level meter, sound calibrator, and anemometer should be properly maintained to ensure that the equipment and a continuous power supply were in good working condition. The sound level meter and sound calibrator will be calibrated annually. The anemometer will be calibrated two years interval in accordance with the HOKLAS Supplementary Criteria No.2. Calibration certificate will be provided after calibration.
- **4.4.3** The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

4.5 Monitoring Results

4.5.1 The impact noise monitoring results are summarized in **Table 4-4**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 4-4 Summary of Noise Monitoring Results during normal working hours (07:00-19:00, Monday to Saturday)

Noise Monitoring Station	Average Leq, 30min, dB(A) (Range)	Action Level	Limit Level	
NM1a	57.4 (47.6 – 61.0)	When one documented	>75dB(A)	
NM2a	55.8 (48.4 – 58.0)	complaint is received		

Remark:

- (2) If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- **4.5.2** No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **4.5.3** No particular observations are identified near the monitoring stations during the monitoring period.

^{(1) *} A correction of +3 dB(A) was made to the free field measurements

4.6 Recommended Mitigation Measures

- **4.6.1** The recommended noise mitigation measures from EIA report are listed as followed:
 - 1. Use of good site practices to limit noise emissions by considering the following:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;
 - Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
 - Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;
 - Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;
 - Mobile plant should be sited as far away from NSRs as possible and practicable;
 - Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from onsite construction activities.
 - 2. Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.

4.7 Event and Action Plan

4.7.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 4.5** shall be carried out.

Table 4-5 Event and action plan for construction noise monitoring

Event	ET	IEC	Contractor
Exceedance of Action Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Report the results of investigation to IEC, and Contractor Discuss with Contractor and IEC for formulate remedial measures Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	Submit noise mitigation proposals to IEC Implement the agreed noise mitigation proposals
Exceedance of Limit Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurements to confirm findings Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC and EPD informed of the results Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by project proponent until the exceedance is abated.

5 Water Quality Monitoring

5.1 Groundwater Monitoring

5.1.1 Monitoring Requirement

5.1.1.1 In accordance with the EM&A manual, groundwater quality monitoring shall be carried out at least once per month at the 35 designated groundwater monitoring locations (i.e ED1 to ED35). Based on the existing construction programme, site clearance and site formation works for future landfilling area are in progress. The groundwater monitoring locations ED1 to ED35 will be installed after the site formation work of the landfilling area. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

5.2 Surface Water Monitoring

5.2.1 Monitoring Requirement

5.2.1.1 In accordance with the EM&A manual, impact surface water quality monitoring was carried out at the two designated surface water discharge points (i.e WM1 and WM2) for once per month from commencement of construction works of the Project.

5.2.2 Monitoring Locations, Parameters and Frequency

- 5.2.2.1 Impact surface water monitoring was carried out on 5 May 2023 at WM1 and WM2. The monitoring locations are indicated in **Table 5-1** and **Figure 2**.
- 5.2.2.2 The monitoring parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-2**. Detailed monitoring schedule is presented in **Appendix C**.

Table 5-1 Surface water quality monitoring locations

Monitoring Station	Lagation	Coordinates (HK Grid)		
Monitoring Station	Location	Easting	Northing	
WM1	Upstream of Lin Ma Hang River	836665	845020	
WM2	Ping Yuen River	835592	844186	

Table 5-2 Surface water quality monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, Alkalinity, COD, BOD ₅ , TOC, Ammonia-nitrogen, TKN, Nitrate, Sulphate, Sulphite, Phosphate, Chloride, Sodium, Mg, Ca, K, Fe, Ni, Zn, Mn, Cu, Pb, Cd, Coliform Count, Oil and Grease	Once per month

5.2.3 Monitoring Equipment

5.2.3.1 The measurements of pH, electrical conductivity (EC), DO, turbidity, water temperature and air temperature were undertaken in situ. In situ monitoring instruments in compliance with the specifications listed under Section 5.5 of the EM&A Manual were used to undertake the surface water quality monitoring for the Project. Table 5-3 summarises the equipment used in the impact surface water quality monitoring works. Copies of the calibration certificates are attached in Appendix D.

Table 5-3 Surface Water Quality Monitoring Equipment

Equipment	Model	Expiry Date	
Water Quality Meter	YSI ProDSS (S/N: 22C106561)	24 Jul 2023	
Water Flow Meter	FP111 (S/N: 22K100859)	6 Nov 2023	

5.2.4 Summary of Surface Water Quality Monitoring Procedure

Operational/ Analytical Procedures

- 5.2.4.1 In general, water samples were collected from within 500 mm of the water surface. Water was collected by a small clean open-mouthed bucket with the lip pointing upstream. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on. For samples that were preserved with acid or alkalis prior to transport to the laboratory, the samples bottles were filled to the level specified by the analytical laboratory.
- 5.2.4.2 Analyses shall be carried out in accordance with methods described in ASTM or APHA AWWA-WEF Standard.

Laboratory Analytical Methods

5.2.4.3 The testing of parameters presented in **Table 5-4** for all stations was conducted by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results. The detection limits are provided in **Table 5-4**.

Table 5-4 Surface Water Monitoring Detection Limits and Limit of Reporting

Parameters	Detection Limit (in EM&A Manual)	Limit of Reporting	Method Reference
рН	0.1	0.1	APHA 4500 H+ B
Electrical conductivity	1 μS/cm	1 μS/cm	APHA 2510 B
Alkalinity	1 mg/L	1 mg/L	APHA 2320 B
COD	10 mg/L	5 mg/L	APHA 5220 C
BOD ₅	3 mg/L	2 mg/L	APHA 5210 B
TOC	1 mg/L	1 mg/L	APHA 5310 B
SS	0.1 mg/L	0.1 mg/L	APHA 2540 D
Ammonia-nitrogen	0.2 mg/L	0.01 mg/L	APHA 4500 NH3 G
TKN	0.4 mg/L	0.1 mg/L	APHA 4500Norg: D
Nitrate	0.5 mg/L	0.01 mg/L	APHA 4500 NO3 I
Sulphate	5 mg/L	1 mg/L	USEPA 375.4
Sulphite	2 mg/L	2 mg/L	APHA 4500 SO3 B
Phosphate	0.01 mg/L	0.01 mg/L	APHA 4500-P B & F
Chloride	0.5 mg/L	0.5 mg/L	USEPA 325.1
Sodium	50 μg/L	50 μg/L	USEPA 6010C
Mg	50 μg/L	50 μg/L	USEPA 6010C
Ca	50 μg/L	50 μg/L	USEPA 6010C
K	50 μg/L	50 μg/L	USEPA 6010C
Fe	50 μg/L	10 μg/L	USEPA 6010C
Ni	1 μg/L	1 μg/L	USEPA 6020A
Zn	10 μg/L	10 μg/L	USEPA 6020A
Mn	1 μg/L	1 μg/L	USEPA 6020A
Cu	1 μg/L	1 μg/L	USEPA 6020A
Pb	1 μg/L	1 μg/L	USEPA 6020A
Cd	0.2 μg/L	0.2 μg/L	USEPA 6020A
Coliform Count	1 cfu/ 100mL	1 cfu/ 100mL	DoE section 7.8, 7.9.4.1 & 3
Oil and Grease	5 mg/L	5 mg/L	APHA 5520 B

QA/ QC Requirements

5.2.4.4 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at the intervals according to manufacturer's requirement throughout all stages of the surface water quality monitoring programme. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three-month interval. Calibration of water flow is conducted annually. Responses of sensors and electrodes were checked with certified standard solutions before each use. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. For the on-site calibration of field equipment, the requirements of the BS 1427:2018, "Guide to on-site test methods for the analysis of waters" was observed.

Decontamination Procedures

5.2.4.5 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.

Sampling Management and Supervision

5.2.4.6 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Quality Control Measures for Sample Testing

- 5.2.4.7 The samples testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory:
 - One method blank; and
 - One sample duplicate.

5.2.5 Monitoring Results

- 5.2.5.1 Impact surface water quality monitoring was conducted at WM1 and WM2 on 5 May 2023. No adverse weather was observed during reporting period. The detailed monitoring schedule is shown in Appendix C.
- 5.2.5.2 The summary of monitoring results is presented in **Table 5-5**. Detailed monitoring results at each monitoring station and graphical presentations of surface water quality (DO, SS and Turbidity) at the monitoring stations are given in **Appendix E** and **Appendix F**.
- 5.2.5.3 No particular observations are identified near the monitoring stations during the monitoring period.
- 5.2.5.4 No exceedance of Action and Limit Levels of surface water monitoring was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.

Table 5-5 Summary of Impact Surface Water Monitoring Results

	Monitoring Station					
Monitoring	WM1			WM2		
Parameter(s)	Monitoring Results	Action Level	Limit Level	Monitoring Results	Action Level	Limit Level
рН	6.9	>7.7	>7.8	7.3	>7.6	>7.7
Electrical Conductivity in µS/cm	69			212		
DO in mg/L	7.9	<7.4	<4	8.1	<5	<4
Turbidity in NTU	3.1	>9.2	>9.5	30.6	>108.3	>108.9
SS in mg/L	3.3	>9.7	>11.4	34.2	>94.5	>94.7
Alkalinity	18			58		
COD	10			13		
BOD ₅	<2			3.0		
TOC	3			5		
Ammonia- nitrogen	0.06			0.39		
TKN	0.4			0.8		
Nitrate	<0.01			0.03		
Sulphate	4			8		
Sulphite	<2			<2		
Phosphate	0.0			<0.01		
Chloride	7			15		
Sodium	8590	-		11800		
Mg	470			1420		
Ca	3460			18600		
K	570			3900		
Fe	660			8990		
Ni	<1			1		
Zn	<10					
Mn	84			2370		
Cu	2.0			3		
Pb	<1			3		
Cd	<0.2			<0.2		
Coliform Count	40000			1500		
Oil and Grease	<5			<5		

5.2.6 Recommended Mitigation Measure

- 5.2.6.1 The recommended surface water mitigation measures from EIA report are listed as followed:
 - Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.
 - The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows.
 - The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.
 - All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads.
 - Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
 - Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

5.2.7 Implementation of the temporary surface water drainage system

- 5.2.7.1 The site inspection and audits were carried out by ER, IC, ET & Contractor on weekly basis (IEC on monthly basis) to monitor the construction progress, maintenance performance and effectiveness of temporary surface water drainage system in the Project Site to fulfil the FEP Condition 2.13, EP Condition 2.15 and the section 5.2.1.1 of the EM&A Manual. The joint environmental site inspection records are shown in **Appendix J**.
- 5.2.7.2 All construction site runoff would be treated by silt removal facilities to fulfil the requirement of WPCO licenses from the project. Construction site runoff from the project after treatment was discharged to Ping Yuen River. The surface water monitoring results at WM2 (after the discharge point of silt removal facilities) can reflect the water quality at Ping Yuen River during the reporting period.

5.2.8 Event and Action Plan

5.2.8.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 5-6** shall be carried out.

Table 5-6 Event and Action Plan for Water Quality

Event	ET	IEC	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Repeat measurement on next day of exceedance 	Verify Notification of Exceedance Check monitoring data and Contractor's working methods	Rectify unacceptable practice Amend working methods if appropriate
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Discuss with Contractor and IEC for remedial measures Ensure mitigation measures are implemented Increase the monitoring frequency to daily until no exceedance of Action level Repeat measurement on next day of exceedance 	 Verify Notification of Exceedance Check monitoring data and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Submit proposal of additional mitigation measures to IEC of notification Implement the agreed mitigation measures Amend proposal if appropriate

Event	ET	IEC	Contractor
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted By ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted by ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures Resubmit proposals if problem still not under control Slow down or to stop relevant activity until exceedance is abated

6 Waste Management

- 6.1.1 Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials were made up of general refuse, steels and paper/cardboard packaging materials. Steel materials generated from the Project were also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Appendix I.
- 6.1.2 A total of 28,473 tonnes of C&D materials was reused at alternative disposal ground (NENT Landfill) during the reporting period. No yard waste was generated during the reporting period. A total of 7.45 tonnes of general refuse and A total of 409.16 tonnes of non-recyclable yard waste was generated during the reporting period. The general refuse generated from the Project were disposed of at the NENT Landfill.
- **6.1.3** The recommended waste management mitigation measures from EIA report are listed as followed:
 - Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010.
 - Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills.
 - Proper areas should be designated for waste segregation and storage wherever site conditions permit.
 - Maximise the use of reusable steel formwork to reduce the amount of C&D material.
 - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement.
 - On-site sorting and segregation facility of all type of wastes is considered as one
 of the best practice in waste management and hence, should be implemented in
 all projects generating construction waste.
 - The sorted public fill and C&D waste should be properly reused.
 - Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather.

7 Landfill Gas Monitoring

7.1 Monitoring Requirement during Construction

Monitoring for Construction Works

- 7.1.1 Intrinsically safe portable gas detectors should be used during or when working in any confined spaces, which have the potential for presence of LFG and risk of explosion or asphyxiation. The monitoring equipment should alarm, both audibly and visually, when the concentrations of the following gases were exceeded:
 - CH₄: >10% Lower Explosion Limit (LEL);
 - CO₂: >0.5%; and
 - O₂: <18% by volume.

7.2 Monitoring Locations

- 7.2.1 During the construction works within the NENT Landfill Extension site with excavation of 1m deep or more, LFG concentrations should be monitored before entry and periodically during the progress of works. If drilling is required, the procedures for safety management and working procedures as stipulated in EPD's Landfill Gas Hazard Assessment Guidance Note should be strictly adopted.
- **7.2.2** The monitoring frequency and areas to be monitored should be set down prior to commencement of groundworks by the Safety Officer. All measurements in excavations should be made with the monitoring tube located not more than 10mm from the exposed ground surface. Monitoring of excavations should be undertaken as follows:
- **7.2.3** For excavation works deeper than 1m, measurements should be made:
 - · at ground surface prior to excavation;
 - immediately before any worker enters the excavation;
 - at the beginning of each working day for the entire period the excavation remains open; and
 - periodically through the working day whilst workers are in the excavation.
- **7.2.4** For excavation between 300mm and 1m deep, measurements should be made:
 - · directly after the excavation has been completed; and
 - periodically whilst the excavation remains open.
- **7.2.5** For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer.
- **7.2.6** The locations of LFG monitoring locations during reporting period are shown in **Table 7-1**. The Site formation layout plan is shown in **Figure 2** and the Layout of LFG monitoring locations is presented in **Figure 3**.

Table 7-1 Locations of LFG Monitoring during reporting period

Monitoring Location	Type of works
Portion A +55 mpD to 70 mpD Platform	Excavation Works

7.3 Monitoring Equipment

7.3.1.1 Gas Detector was used for carrying out LFG monitoring for Construction Works. **Table 7-2** summarises the equipment that were used in the LFG monitoring programme. The calibration certificates are shown in **Appendix D**. The detection limits are provided in **Table 7-3**.

Table 7-2 LFG Monitoring Equipment

Monitoring Parameters	Equipment	Model	Expiry Date
CH ₄ & O ₂	Gas Detector	PS200 (S/N: 373075)	16 Nov 2023
CO ₂	Gas Analyser	GEM5000 (S/N: G508566)	16 Aug 2023

Table 7-3 Landfill Gas Monitoring Detection Limits

Parameters	Detection Limit
CH ₄	1% LEL
O ₂	0.1%
CO ₂	0.1%

7.4 Event and Action Plan (EAP)

7.4.1 Should non-compliance of the criteria occur, action in accordance with the action plan in Table7-4 shall be carried out.

Table 7-4 Action Plan for the monitoring during construction phase

Parameter	Monitoring Result	Action
	Action Level <19% O ₂	Ventilate trench/void to restore O ₂ to >19%
Oxygen (O ₂)	Limit Level <18% O ₂	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore O ₂ to >19%
	Action Level >10% LEL*	Prohibit hot works Increase ventilation to restore CH ₄ to <10% LEL
Methane (CH₄)	Limit Level >20% LEL*	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore CH ₄ to <10% LEL
	Action Level** >0.5%** CO ₂	Ventilate to restore CO ₂ to <0.5%
Carbon dioxide (CO ₂)	Limit Level >1.5% CO ₂	Stop works Evacuate personnel / prohibit entry Increase ventilation to restore CO ₂ to <0.5%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

Depending on the baseline CO₂ levels, the Action Level at a particular location will be changed.

^{**} This Action Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

7.5 Monitoring Results

- **7.5.1** The LFG monitoring was carried out two rounds (at the beginning of works in the morning and after lunch) at the working days. The monitoring period of each round of LFG monitoring is around 5 minutes.
- **7.5.2** The LFG monitoring was conducted at Portion A +55 mpD to 70 mpD Platform in May 2023 (Conducted on working days). The LFG monitoring results are summarized in **Table 7-5**.

Table 7-5 Summary of LFG Monitoring Results

Table 7-5	Summary of LFG Monitoring Results					
LFG	Monitoring		Monitorin	g Parameter(s)		
Monitoring Station	Date	CH₄ in %	LEL in %/v	CO ₂ in %	O ₂ in %	
Station			Average Mo	onitoring Results		
	2 May 2023	0	0	0	20.3	
	3 May 2023	0	0	0	20.2	
	4 May 2023	0	0	0	20.1	
	5 May 2023	0	0	0	20.2	
	6 May 2023	0	0	0	20.2	
	8 May 2023	0	0	0	20.1	
	9 May 2023	0	0	0	20.3	
	10 May 2023	0	0	0	20.2	
	11 May 2023	0	0	0	20.2	
	12 May 2023	0	0	0	20.1	
	13 May 2023	0	0	0	20.1	
	15 May 2023	0	0	0	20.1	
Portion A +55	16 May 2023	0	0	0	20.2	
mpD to 70 mpD Platform	17 May 2023	0	0	0	20.1	
	18 May 2023	0	0	0	20.1	
	19 May 2023	0	0	0	20.2	
	20 May 2023	0	0	0	20.2	
	22 May 2023	0	0	0	20.1	
	23 May 2023	0	0	0	20.3	
	24 May 2023	0	0	0	20.1	
	25 May 2023	0	0	0	20.1	
	26 May 2023	0	0	0	20.2	
	27 May 2023	0	0	0	20.1	
	29 May 2023	0	0	0	20.2	
	30 May 2023	0	0	0	20.2	
	31 May 2023	0	0	0	20.1	
Action	Level	>10% LEL		>0.5%** CO ₂	<19%	

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

- **7.5.3** No exceedance of Limit Levels of LFG was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **7.5.4** No effect that arose from the other special phenomena and work progress of the concerned site was noted during the current monitoring month.

7.6 Recommended Mitigation Measures

- **7.6.1** The recommended landfill gas mitigation measures from EIA report are listed as followed:
 - Special LFG precautions should be taken due to close proximity of NENT landfill
 extension site to existing landfill to avoid potential hazards of LFG exposure (ignition,
 explosion, asphyxiation, toxicity).

^{**} This Limit Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

- Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.
- No smoking or burning should be permitted on-site.
- Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.
- No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.
- Adequate fire fighting equipment should be provided on-site.
- Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.
- Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.
- 'Permit to Work' system should be implemented.
- Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.

8 Landscape and Visual

8.1 Monitoring Requirement

- 8.1.1 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.
- **8.1.2** All relevant environmental mitigation measures listed in the approved EIA Report and the EM&A Manual and their implementation status are summarised in **Appendix K**.

8.2 Result and Observation

- **8.2.1** Measures to mitigate the landscape and visual impacts during the construction phase has been checked to ensure compliance with the intended aims of the measures within the reporting period. The progress of the engineering works are regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken.
- 8.2.2 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

9 Cultural Heritage

- 9.1.1 The Mitigation measures for preservation of the cultural landscape feature located within the project area was conducted before commencement of construction of the project based on the requirement of Survey Report and Mapping Records for Boulder Paths BP1 & 2 & Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX.
- **9.1.2** The survey and mapping works carried out on 23 August 2022 and the verification works carried out on 23 August 22 confirmed that both 2 boulder paths BP1 and BP2 are fall outside the site boundary and the Project area.
- 9.1.3 All the affected graves within the waste boundary have been removed in accordance with section 119(1) of the Public Health and Municipal Services Ordinance (Cap 132). Removal of the graves as shown on Figure 2 attached to the FEP was proven by the visit of graves on 8 July 2022. All the graves as shown on Figure 2 attached to the FEP were abandoned and removed and no mitigation or preservation measures is necessary.
- 9.1.4 The Survey Report and Mapping Records for Boulder Paths BP1 & 2 was certified by ET on 10 Oct 2022, was verified by IEC and submitted to EPD on 12 Oct 2022. The Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX was certified by ET, was verified by IEC and submitted to EPD on 15 Oct 2022. No later than four weeks before commencement of construction of the project in accordance with Condition 2.4 of the FEP-01/292/2007.
- 9.1.5 Implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit. The permanent fencing locations are shown in Appendix M. In case of any presence of undiscovered grave during construction phase, AMO will be informed as soon as possible.

10 Ecological Monitoring

- 10.1.1 In the reporting period, the post-translocation monitoring for the Endemic Freshwater Crab Somanniathelphusa zanklon was conducted on 17 May 2023 based on the requirement of the approved Revised Translocation Proposal for the Endemic Freshwater Crab Somanniathelphusa zanklon. The 10th Post-Translocation Monitoring Report (May 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in Appendix N. During the reporting period, no S. zanklon individual is identified.
- 10.1.2 The post-transplantation monitoring was conducted on 12 May 2023 based on the requirement of the approved Transplantation Proposal for Plant Species of Conservation Importance (Rev.1). The 10th Post-transplantation Monitoring and Audit Report (12th May 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in **Appendix N**. During the reporting period, the numbers, measurements, and health conditions of the transplanted plant species are recorded.
- **10.1.3** The details of requirements, monitoring results and site inspection with photos for the post-translocation monitoring and post-transplantation monitoring would be reported separately.
- **10.1.4** The milestone of the ecological monitoring is presented in **Table 10-1.** The softcopies of the submissions are provided in https://www.nentx-ema.com/ep-submissions/.

Table 10-1 Milestone of the Ecological Monitoring

Type of Monitoring	Monitoring Event No.	Monitoring Date	
Post-	1 st (Aug 2022)	29 Aug 2022	
translocation	2 nd (Sep 2022)	28 Sep 2022	
Monitoring	3 rd (Oct 2022)	28 Oct 2022	
	4 th (Nov 2022)	22 Nov 2022	
	5 th (Dec 2022)	29 Dec 2022	
	6 th (Jan 2023)	30 Jan 2023	
	7 th (Feb 2023)	24 Feb 2023	
	8 th (Mar 2023)	20 Mar 2023	
	9 th (Apr 2023)	19 Apr 2023	
	10 th (May 2023)	17 May 2023	
Post-	1 st	24 Nov 2022	
transplantation	2 nd	9 Dec 2022	
Monitoring	3 rd	21 Dec 2022	
	4 th	13 Jan 2023	
	5 th	26 Jan 2023	
	6 th	8 Feb 2023	
	7 th	24 Feb 2023	
	8 th	20 Mar 2023	
	9 th	21 Apr 2023	
	10 th	12 May 2023	

11 Site Inspection and Audit

- **11.1.1** Site Inspection and audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project Site.
- 11.1.2 Weekly ET environmental site inspections were conducted in the reporting period on 2, 8,15, 22 & 29 May 2023. A joint environmental site inspection was carried out by the representatives of the ER, the Contractor, IEC and the ET on 15 May 2023. The joint environmental site inspection records are shown in Appendix J. There was no noncompliance recorded during the site inspections.
- **11.1.3** Major findings and recommendations are summarized as follows:

02 May 2023

- Water in the drip tray shall be cleared off at Portion A. The contractor was recommended to collect and dispose of any stagnant water accumulated in the drip trays and handle them as chemical waste.
- Sand and silt were observed at the road leading to SBA. The contractor was recommended that road surface shall be kept clear of sand and silt.
- Dust suppression measure shall be enhanced to cover all work area and dusty stockpiles in SBA. The contractor was reminded to ensure the implementation of dust suppression measure for the dry work area and dusty stockpile.

08 May 2023

- Accumulated sand and silt shall be cleared off in the wheel washing bay in SBA. The contractor was reminded to conduct regularly cleaning work for the wheel washing bay and to ensure the implementation of vehicle washing in SBA.
- The contractor was reminded to cover the waste skip with impervious sheets during and rainfall, to avoid accumulation of waste and to implement waste sorting.
- The contractor was reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement. The construction and surface runoff shall be directed to silt removal facilities and treated wastewater shall fulfill WPCO requirement.

15 May 2023

- The accumulate of the uprooting of trees without covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides were found at the work area at SBA. 1. The contractor was recommended that the demolished trees should be covered by impervious sheeting or placed in an area sheltered on the top and the 3 sides.
- The accumulate water was found at the lower area at the Portion D. The contractor was recommended that the surface water should be collected to silt removal facilities.
- Accumulate water in drip tray was observed at Portion D. The contractor was recommended to keep cleaning the accumulated water in drip tray to minimize

the large amount of potential chemical waste when the chemical leakage was found.

22 May 2023

- The unrooting trees at Portion A was not covered by impervious sheeting and or placed in an area sheltered on the top and the 3 sides within a day of demolition. The contractor was recommended that all demolished items (including trees) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition.
- The sand and soil near the channel at Portion E3-1 were found. The contractor
 was recommended to avoid the untreated surface runoff contaminated with
 related materials discharged to channel directly. All construction runoffs should
 be collected to silt removal facilities for treatment.

29 May 2023

- Portion of road leading to Portion A and Portion B2 shall be kept clear of dusty and muddy materials. The Contractor was reminded to clear dusty and muddy material on the portion of road leading to Portion A and Portion B2.
- Slope protection work in Portion A shall be maintained properly to minimize dust dispersion and surface runoff. The Contractor was recommended to apply surface protection on the exposed slope in Portion A.
- The accumulated uprooting trees is found behind the silt removal facilities in Portion B2. 3. The accumulated uprooting trees shall be covered with impervious sheets, placed in an area sheltered on the top and the 3 sides or disposed properly.
- **11.1.4** No Environmental Protection Department-Regional Office (North) conducted general site inspection in May 2023.

12 Environmental Non-conformance

12.1 Summary of Monitoring Exceedance

12.1.1 No exceedance of the Action and Limit Levels for was recorded at designated monitoring stations during the reporting period.

12.2 Summary of Environmental Non-compliance

12.2.1 No non-compliance event was recorded during the reporting period.

12.3 Summary of Environmental Complaint

12.3.1 No environmental complaint was recorded during the reporting period.

12.4 Summary of Environmental Summons and Successful Prosecution

12.4.1 No summons was received during the reporting period

13 Implementation Status on Environmental Mitigation Measures

13.1.1 The Contractor has generally implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual and the contract documents. The implementation status during the reporting period is summarized in **Appendix K**.

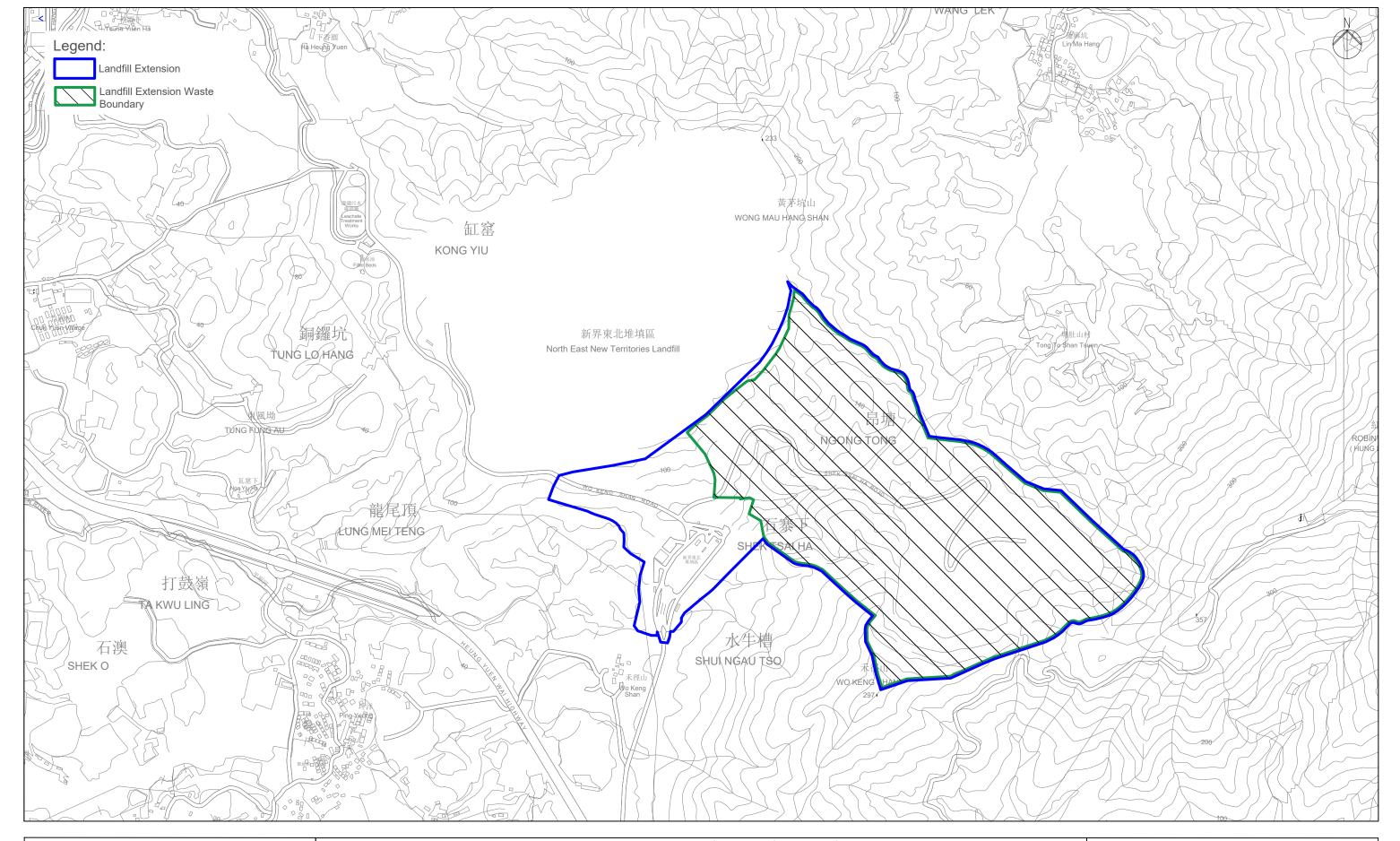
14 Future Key Issues

14.1 Key Issues for the Coming Month

- **14.1.1** Works to be undertaken for the coming monitoring periods are summarized below. Detailed construction activities and locations are summarized in **Appendix L**.
 - Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
 - Permanent site office foundation works with pouring of concrete at Portion D
 - Site clearance at Portion A & E3-1
 - Installation of permanent fencing at Portion A, B1 & E4
 - Site formation at Portion A & E3-1
 - Tree felling at Portion E3-1 & E4
- **14.1.2** Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology

14.2 Monitoring Schedule for the Next Month

14.2.1 The tentative schedule of environmental monitoring for the next reporting period is presented in **Appendix C**.

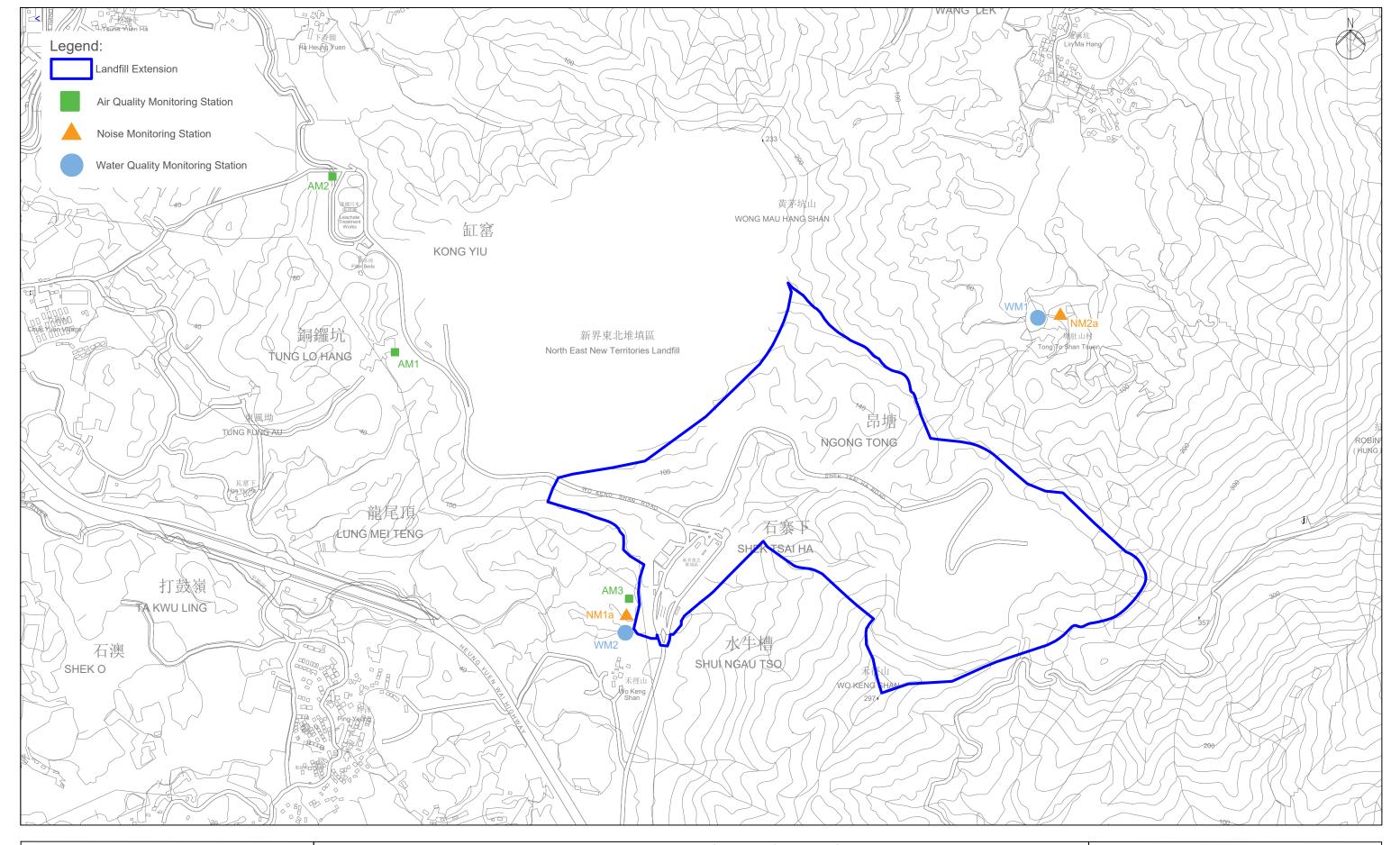

14.3 Construction Programme for the Next Month

14.3.1 The most updated construction programme for the Project is presented in **Appendix A**.

15 Conclusion

- **15.1.1** 1-hr & 24-hr TSP impact monitoring was carried out in the reporting month. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.
- **15.1.2** Construction noise monitoring was carried out in the reporting month. No Action / Limit Level exceedance at NM1a & NM2a was recorded during the period.
- **15.1.3** Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.
- **15.1.4** Surface water monitoring was carried out in the reporting month. No Action / Limit Level exceedance at WM1 & WM2 was recorded during the period.
- **15.1.5** Landfill Gas Monitoring was carried out in the reporting month. No exceedance of Limit Levels of LFG was recorded during the reporting period.
- **15.1.6** In terms of cultural heritage, implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit in the reporting period. All the mitigation measures are in order.
- **15.1.7** Post-translocation Monitoring was carried out in the reporting period. No *S. zanklon individual* was found. Post-transplantation monitoring was carried out in the reporting month. The numbers, measurements and health conditions of the transplanted species are recorded.
- **15.1.8** Five environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for Permit/ Licenses were given to the Contractor for remediating the deficiencies identified during the site inspections.
- **15.1.9** No environmental complaint was recorded during the reporting period.
- **15.1.10** No non-compliance event was recorded during the reporting period.
- **15.1.11** No notification of summons and prosecution was received during the reporting period.
- **15.1.12** The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Figure 1 Location of the Project Site



North-East New Territories (NENT) Landfill Extension Location Plan of the Project Site

Figure 1.1

Scale: 1:10000

Figure 2 Impact Air Quality, Noise & Surface Water Quality Monitoring Locations

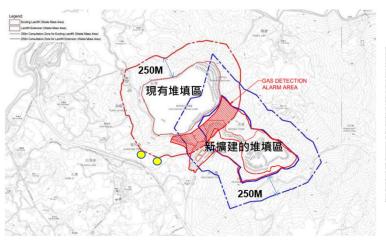

North-East New Territories (NENT) Landfill Extension Impact Monitoring Locations

Figure 2

Scale: 1:10000

Figure 3 Landfill Gas Monitoring Locations

Gas Monitoring Point • Monitoring Frequency: 2 times per day

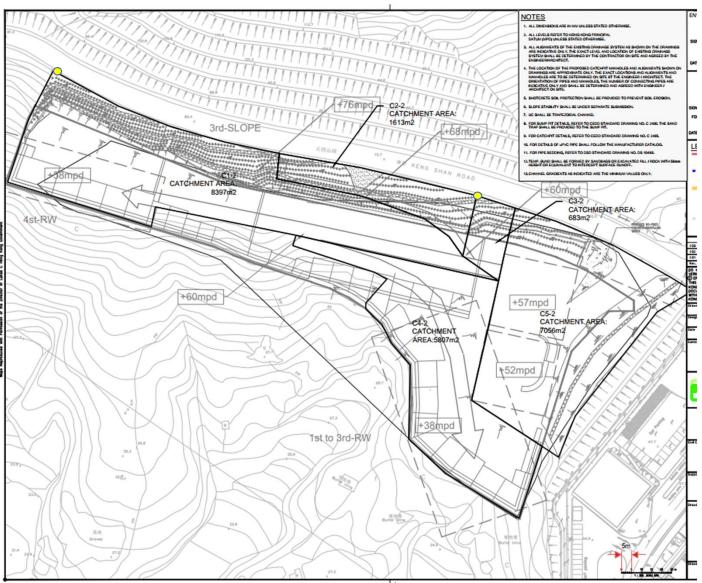
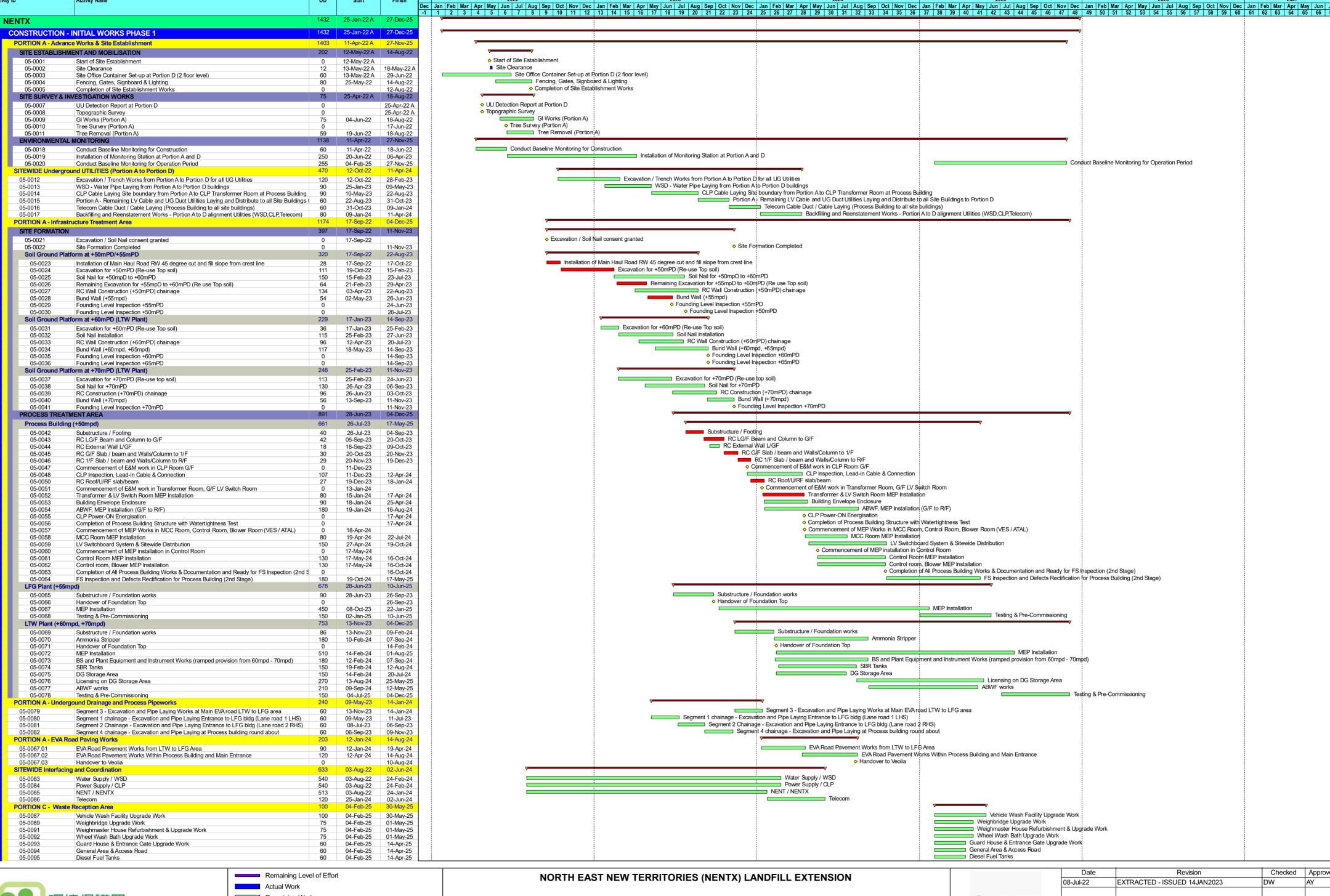
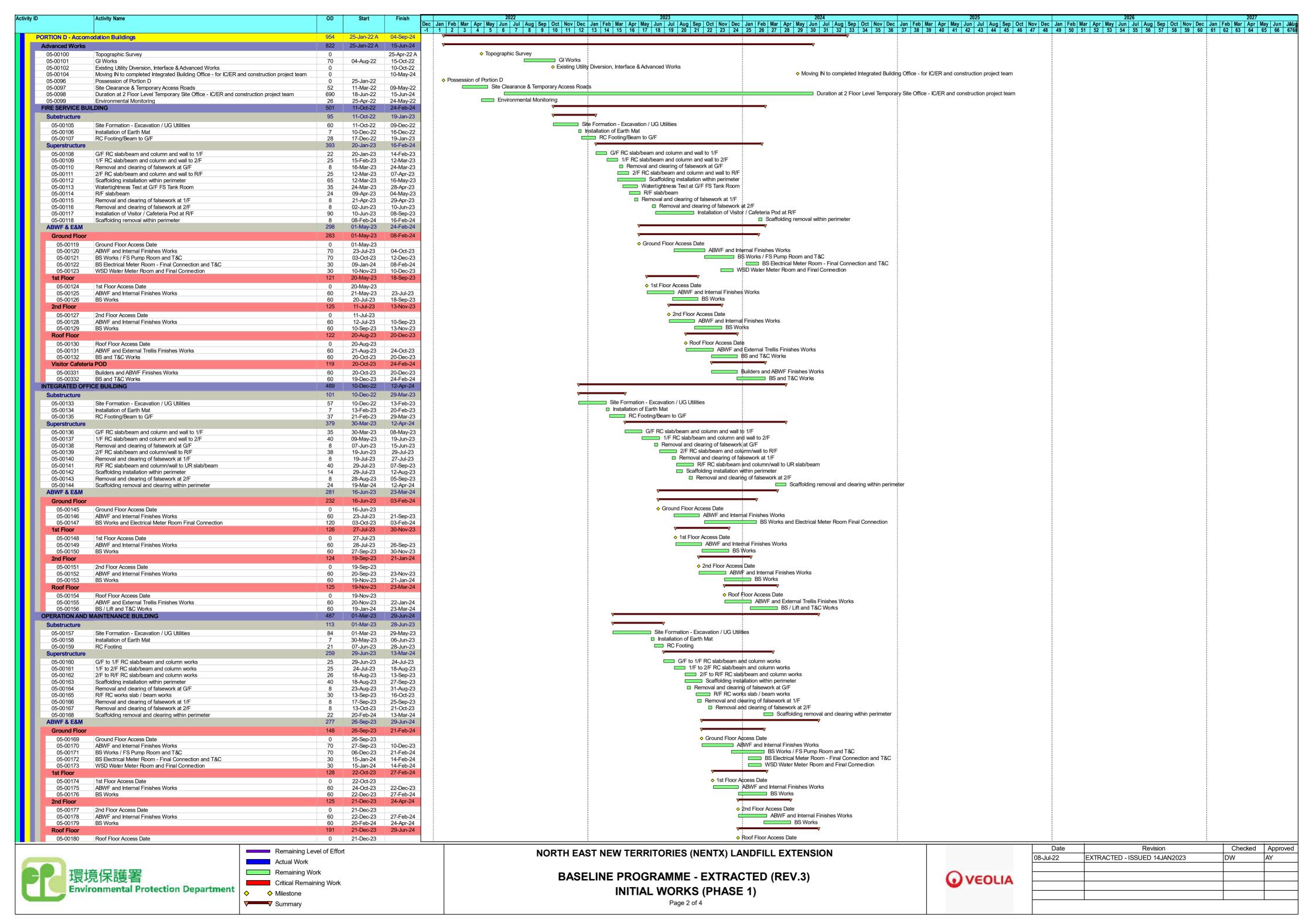
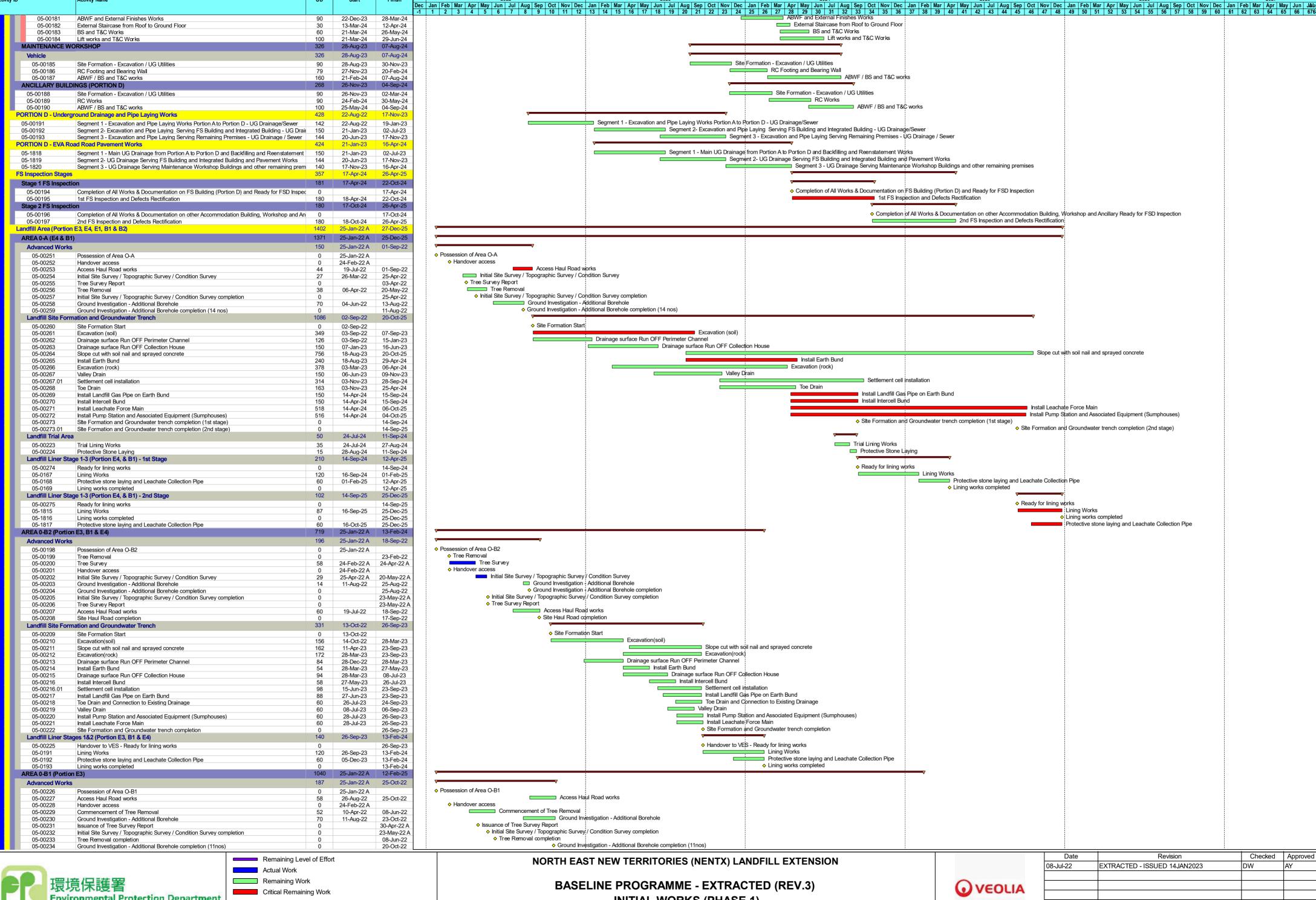



Figure 3 Landfill Gas Monitoring Locations

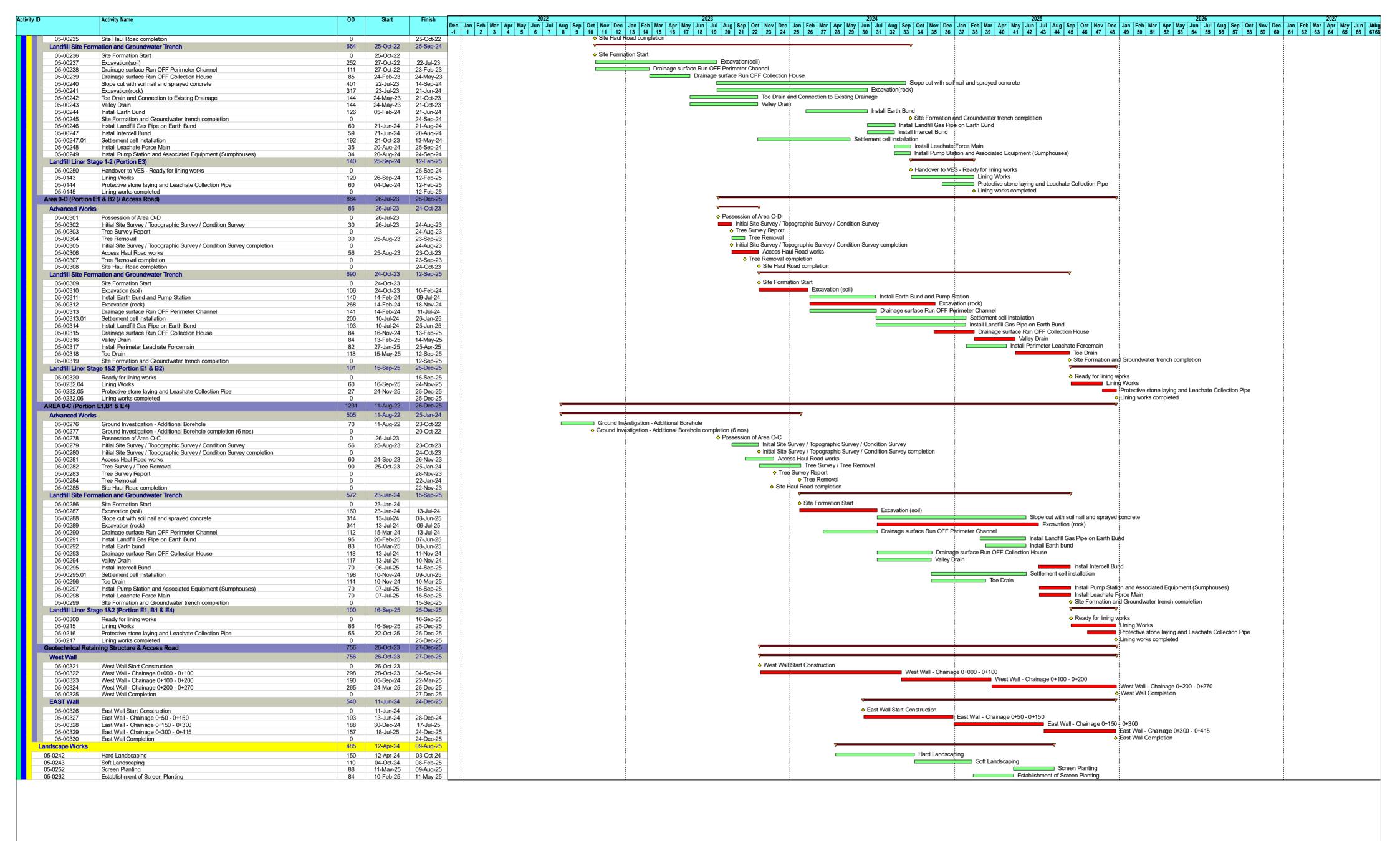
Appendix A Construction Programme





BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 1 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

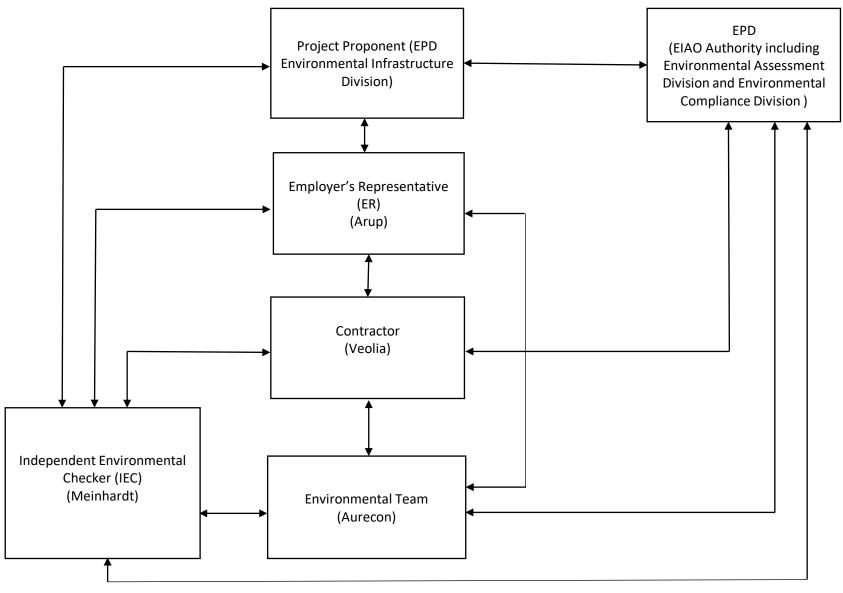


INITIAL WORKS (PHASE 1)

Page 3 of 4

0	VE	Ol	JA

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

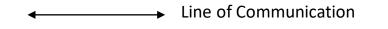


BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 4 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

Appendix B Project Organization Chart & Management Structure

Notes:


EPD - Environmental Protection Department

Arup – Ove Arup & Partners Limited

Veolia - Veolia Environmental Services Hong Kong Limited

Meinhardt - Meinhardt Infrastructure And Environment Limited

Aurecon - Aurecon Hong Kong Limited

Appendix C Monitoring Schedule for Reporting Month & Next Month

Impact Monitoring Schedule for NENT Landfill Extension (May 2023) (version 2.0)

5-2023						
Sun	Mon		Wed	Thur	Fri	Sat
	1	2	3	4	5 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2	6
7	8	9	10	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	12	13
14	15	16	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	18	19	20
21	22	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	24	25	26	27
28	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	30	31	1	Air quality monitoring at AM1, AM2 and AM3	3

Remark:

- 1. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 2. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 3. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Impact Monitoring Schedule for NENT Landfill Extension (June 2023) (version 1.0)

			6-2023			
Sun	Mon	Tue	Wed	Thur		Sat
				1	2 Air quality monitoring at AM1, AM2 and AM3	3
4	5	6	7	8 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	9	10
11	12	13	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2		16	17
18	19	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a				24
25	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	27	28	29	Air quality monitoring at AM1, AM2 and AM3	3

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Appendix D Calibration Certificates

Air Quality

Website www acuityth co

Unit E, 12/F, Ford Glory Plaza
Not. 37-39 Wing Hong Street,
Cheung Sha Wan, Kowloon

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

0Z4545

Our Report Refrence No.

RPT-22-HVS-0026

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification Date	Date	Tim			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
		_	1 5/10		0.00114				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

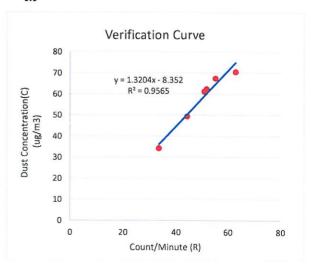
1.1

By Linear Regression of y on x:

slope, mh= 1.3204

intercept,ch= -8.3520

*Correlation Coefficient,R= 0.9780


Verification Test Result: Strong Correlation, Results were accepted.

 $\mbox{*}$ If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Tel : (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.:

Sibata LD-5R

Unit-under-Test Serial No.:

882106

Our Report Refrence No.:

RPT-22-HVS-0027

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification Da	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70
					0.00107				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

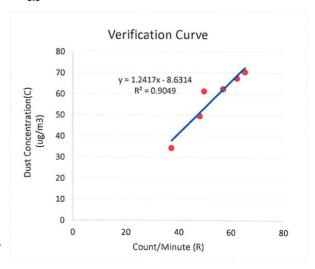
By Linear Regression of y on x:

slope, mh= 1.2417

intercept,ch= -8.6314

*Correlation Coefficient,R=

0.9513


Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

T 1 1 1 1 1 1 1

Date: 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

4-Dec-22 to

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

882110

Our Report Refrence No.

RPT-22-HVS-0025

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.	ł	TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification	Date	Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)	
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	tor (TC)	ID No.	y axis	
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.0

By Linear Regression of y on x:

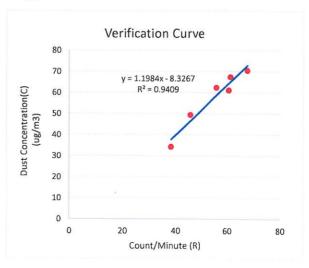
slope, mh=

1.1984

intercept,ch=

-8.3267

*Correlation Coefficient,R=


0.9700

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: _ 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

4-Dec-22

Verification Test Date:

3-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

942532

Our Report Refrence No.

RPT-22-HVS-0024

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification	Date	Time Date		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)	
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

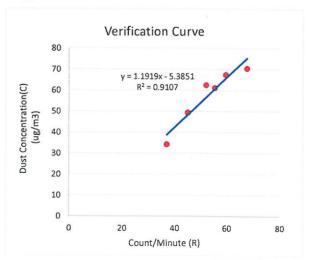
By Linear Regression of y on x:

slope, mh=

1.1919

intercept,ch=

-5.3851


*Correlation Coefficient,R=

0.9543

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Date: 05-12-2022

Site I	nformat	ion
--------	---------	-----

Location:	NENTX	Site ID:	AM1	Date:	07-Mar-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	759.0	Actual Temperature during Calibration (T _a) (deg K):	296.4	
---	-------	--	-------	--

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or	ΔH ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	11.30	1.645	55.0	55.11
13	9.20	1.485	50.0	50.10
10	6.90	1.288	44.0	44.09
7	4.50	1.042	37.0	37.08
5	2.80	0.824	30.0	30.06

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	30.2340	b=	5.2945	Corr. Coeff=	0.9998	
diameter and						

Calculations

 $Qa = 1/m_c * [Sqrt (\Delta H_2 O * (P_a/P_{Std}) * (T_{Std}/T_a)) - b_c]$ $IC = I * (Sqrt (P_a/P_{Std}) * (T_{Std}/T_a))$

Qa = actual flow rate

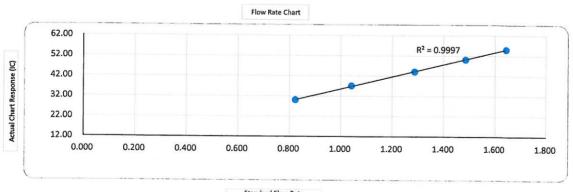
IC = corrected chart response

I = actual chart response

 m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope


b = sampler intercept

 $T_{Std} = 298 \text{ deg K}$

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

P_a = actual pressure during calibration (mm Hg)

Standard Flow Rate (m3/min)

Checked by:	/A	
	/ 0	

Date:

07-Mar-2023

Site Information

Location:	NENTX	Site ID:	AM1	Date:	06-May-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	760.8	Actual Temperature during Calibration (T _a) (deg K):	297.2
--	-------	--	-------

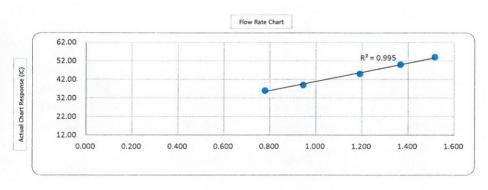
Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	9.60	1.517	54.0	54.10
13	7.80	1.368	50.0	50.09
10	5.90	1.191	45.0	45.08
7	3.70	0.945	39.0	39.07
5	2.50	0.779	36.0	36.07

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)


m=	24.7528	b=	16.1708	Corr. Coeff=	0.9975	
				120001200000000000000000000000000000000	5500 J. P. B. C. W. C. S.	

Calculations

 $Qa = 1/m_c * [Sqrt (\Delta H_2 O * (P_a/P_{Std}) * (T_{Std}/T_a)) - b_c]$ $IC = I * (Sqrt (P_a/P_{Std}) * (T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response $m_c =$ calibrator slope $b_c =$ calibrator intercept m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

 T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Standard Flow Rate (m³/min)

Checked by: HUI WAI FUNG
Laboratory Manager

Date: 06-May-2023

Site Information

Location:	NENTX	Site ID:	AM2	Date:	07-Mar-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	759.0	Actual Temperature during Calibration (T _a) (deg K):	296.4
--	-------	--	-------

Calibration Orifice

	- Gambiation On	1100	
Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or ∆H ₂ O		Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	12.10	1.702	62.0	62.13
13	9.40	1.501	57.0	57.12
10	7.20	1.315	50.0	50.10
7	4.50	1.042	42.0	42.09
5	2.90	0.838	36.0	36.07

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	30.6717	

10.2530

Corr. Coeff=

0.9989

Calculations

Qa = $1/m_c*[Sqrt (\Delta H_2O*(P_a/P_{Std})*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

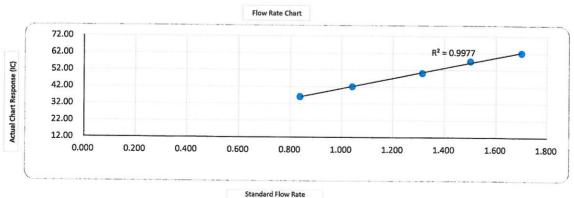
Qa = actual flow rate

IC = corrected chart response I = actual chart response

m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope


b = sampler intercept

 $T_{Std} = 298 \text{ deg K}$

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

P_a = actual pressure during calibration (mm Hg)

(m3/min)

Checked by:	1/2/
	V

Date:

07-Mar-2023

Site Information

Location:	NENTX	Site ID:	AM2	Date:	06-May-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	760.8	Actual Temperature during Calibration (T _a) (deg K):	297.2
--	-------	--	-------

Calibration Orifice

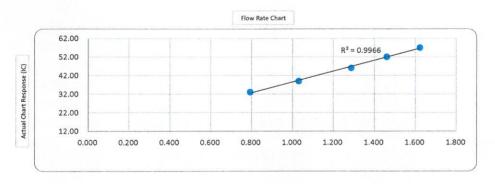
Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	11.00	1.623	57.0	57.11
13	8.90	1.461	52.0	52.10
10	6.90	1.287	46.0	46.09
7	4.40	1.030	39.0	39.07
5	2.60	0.794	33.0	33.06

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m= 29.1007 b= 9.4295 Corr. Coeff= 0.9983


Calculations

 $Qa = 1/m_c*[Sqrt (\Delta H_2O*(P_a/P_{Std})*(T_{Std}/T_a))-b_c] \\ IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response $m_c = calibrator slope$ $b_c = calibrator intercept$

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

 T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Standard Flow Rate (m³/min)

Checked by: HUI WAI FUNG
Laboratory Manager

Date: _

06-May-2023

Sito	Infor	mation
SILE	HUOI	mauon

Location:	NENTX	Site ID:	AM3	Date:	07-Mar-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	759.0	Actual Temperature during	296.4
(mm ng):		Calibration (T _a) (deg K):	

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

	The second secon			
Plate or	ΔH ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	12.70	1.743	58.0	58.12
13	10.00	1.548	52.0	52.11
10	7.80	1.368	45.0	45.09
7	4.90	1.087	37.0	37.08
5	3.10	0.866	29.0	29.06

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	32.9317	

0.7369

Corr. Coeff=

0.9991

Calculations

 $Qa = 1/m_c^* [Sqrt (\Delta H_2 O^* (P_a/P_{Std})^* (T_{Std}/T_a)) - b_c]$ $IC = I*(Sqrt(P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate

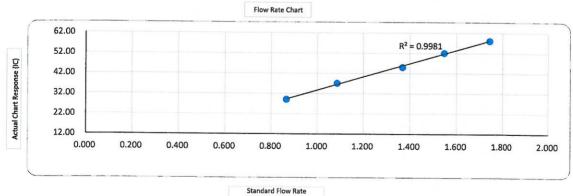
IC = corrected chart response

I = actual chart response

m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope


b = sampler intercept

T_{Std} = 298 deg K

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

(m3/min)

Checked by:	1A	
	1/13	

Date:

07-Mar-2023

Site Information

Location:	NENTX	Site ID:	AM3	Date:	06-May-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	760.8	Actual Temperature during Calibration (T _a) (deg K):	297.2
(1.9).		(6/ (- 0 - /	

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _d):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

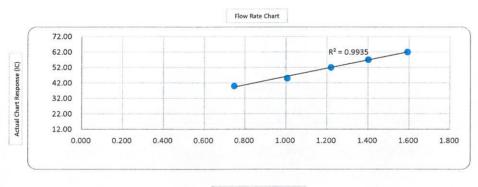
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	10.60	1.593	62.0	62.12
13	8.20	1.403	57.0	57.11
10	6.20	1.221	52.0	52.10
7	4.20	1.006	45.0	45.08
5	2.30	0.747	40.0	40.07

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	26.7568	b=	19.3460	Corr. Coeff=	0.9968	
A CONTROL OF THE PARTY OF THE P			U.S. S. C.	200 CE 200 CE-20 COURT - 2		

Calculations


 $Qa = 1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a)) - b_c]$ $IC = I*(Sqrt(P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg)

Standard Flow Rate (m³/min)

Checked by: HUI WAI FUNG Laboratory Manager

Date: 06-May-2023

RECALIBRATION DUE DATE:

June 28, 2023

Certificate of Calibration

Calibration Certification Information

Cal. Date: June 28, 2022

Rootsmeter S/N: 438320

Ta: 296

°K

Operator: Jim Tisch

Pa: 755.1

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 3465

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4290	3.2	2.00
2	3	4	1	1.0130	6.4	4.00
3	5	6	1	0.9050	7.9	5.00
4	7	8	1	0.8590	8.8	5.50
5	9	10	1	0.7110	12.8	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9961	0.6970	1.4144	0.9958	0.6968	0.8854
0.9918	0.9791	2.0003	0.9915	0.9788	1.2522
0.9899	1.0938	2.2364	0.9895	1.0934	1.4000
0.9887	1.1509	2.3456	0.9883	1.1506	1.4683
0.9834	1.3831	2.8289	0.9830	1.3826	1.7708
	m=	2.05924		m=	1.28946
QSTD	b=	-0.01929	QA	b=	-0.01207
	r=	0.99998		r=	0.99998

	Calculation	ıs	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa= Va/ΔTime	
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b $	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
	olute temperature (°K)
	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Noise

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:68914)

Preamplifier:

NTi Audio MA220 (M2211) (Serial No.:6282)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F., Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 20 August 2022

Date of calibration: 22 August 2022

Date of NEXT calibration: 21 August 2023

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 22 August 2022

Certificate No.: APJ22-071-CC001

MR TESTING LABORATION (A+A) *L

Page 1 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Calibration Precaution: 1.

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.4 °C

Air Pressure:

1005 hPa

Relative Humidity:

68.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. \	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		93.8	Ref
30-130	30-130 dBA SPL	Fast	104	1000	103.8	±0.3	
			114		114.0	±0.3	

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	Ref
30-130 UBA	DA SPL	Slow	94	1000	93.8	±0.3	

Certificate No.: APJ22-071-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	93.9	±2.0
					63	94.0	±1.5
×					125	93.9	±1.5
					250	93.8	±1.4
30-130	dB	SPL	Fast	94	500	93.8	±1.4
					1000	93.8	Ref
					2000	93.4	±1.6
					4000	93.0	±1.6
					8000	92.2	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.6	-39.4 ±2.0
					63	67.7	-26.2 ±1.5
					125	77.8	-16.1 ±1.5
					250	85.2	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.6	-3.2 ±1.4
					1000	93.8	Ref
					2000	94.6	+1.2 ±1.6
					4000	94.0	$+1.0\pm1.6$
					8000	91.2	-1.1 +2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	90.9	-3.0 ±2.0
					63	93.1	-0.8 ± 1.5
					125	93.7	-0.2 ±1.5
					250	93.8	-0.0 ± 1.4
30-130	dBC	BC SPL	Fast	94	500	93.8	-0.0 ± 1.4
					1000	93.8	Ref
					2000	93.3	-0.2 ±1.6
					4000	92.2	-0.8 ±1.6
					8000	89.3	-3.0 +2.1; -3.1

Certificate No.: APJ22-071-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

MAR TESTING LABORED AND LABORED AND MAR TESTING LABORED AND LABORE

Page 4 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Certificate No. D224349E

CALIBRATION CERTIFICATE

Product : SOUND CALIBRATOR

Type : NC-75

Serial number : 34724243

Manufacturer : RION CO., LTD.

Calibration quantities : Sound pressure level (with reference standard microphone)

Calibration method : Measured by specified secondary standard microphone

according to JCSS calibration procedure specified by RION.

Ambient conditions : Temperature 23.9 °C, Relative humidity 49 %,

Static pressure 99.9 kPa

Calibration date : 05/07/2022 (DD/MM/YYYY)

Calibration location : 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

RION CO., LTD. Calibration Room

We hereby certify that the results of this calibration were as follows.

Issue date: 11/07/2022 (DD/MM/YYYY)

Junichi Kawamura
Manager
Quality Assurance Section,
Quality Assurance Department,
Environmental Instrument Division,
RION CO., LTD.

3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533, Japan

This certificate is based on article 144 of the Measurement Law and indicates the result of calibration in accordance with measurement standards traceable to Primary Measurement Standards (National Standards) which realizes the physical units of measurement according to the International System of Units (SI).

The accreditation symbol is attestation of which the result of calibration is traceable to Primary Measurement Standards (National Standards).

The certificate shall not be reproduced except in full, without the written approval of the issuing laboratory.

The calibration laboratory who issued this calibration certificate conforms to ISO/IEC 17025:2017.

This calibration certificate was issued by the calibration laboratory accredited by IAJapan who is a signatory to the Mutual Recognition Arrangement (MRA) of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Accreditation Cooperation (APAC). This (These) calibration result(s) may be accepted internationally through ILAC/APAC MRA.

Certificate No. D224349E

CALIBRATION RESULT

1. Sound pressure level (with reference standard microphone)

Measured	Expanded
value	uncertainty *1
93.99 dB	0.09 dB

Specified secondary standard microphone:

Type

: 4160

Serial number : 2973341

Reference Sound pressure: 2×10.5 Pa

*1 Defines an interval estimated to have a level of confidence of approximately 95 %.

Coverage factor k=2

Calibration result is the calibration value in ambient conditions during calibration.

BE OUT OF JCSS CALIBRATION

1. Frequency

M	Measurement
Measured value	uncertainty (k=2)
1000.0 Hz	$3.9 \times 10^{-4} \mathrm{Hz}$

Working measurement standard universal counter:

: 53132A

Serial number : MY40005574

(JCSS Calibration Certificate No. 21081499079575510)

2. Total distortion

Measured	
value	181770
0.2 %	

Working measurement standard distortion meter:

: VA-2230A

Serial number : 11076061

(A2LA Calibration Certificate No. 1501-03080)

- closing -

Calibration Certificate

Certificate No. 300737

Page

2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q30320

Date of receipt

2-Feb-23

Item Tested

Description: Hot Wire Anemometer

Manufacturer: RS PRO

I.D.

ASCL-EQ-111

Model

: RS-90

Serial No.

: 210722208

Test Conditions

Date of Test: 13-Feb-23

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: T03, Z04.

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

206240

NIM-PRC

S223C

Std. Thermometer

205617

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

13-Feb-23

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

E

Calibration Certificate

Certificate No. 300737

Page 2 of 2 Pages

Results:

1. Velocity

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.00	0.00	
2.50	2.43	
5.00	5.04	1 (2 0/ - 6 1: + 0 2/)
10.00	10.07	\pm (3 % of reading + 0.3 m/s)
15.00	15.65	
19.00	19.87	

2. Temperature

Applied Value (°C)	UUT Reading (°C)	Mfr's Spec.
23.12	23.0	±2°C

Remark: 1. UUT: Unit-Under-Test

2. Uncertainty: \pm (0.9 % + 0.16 m/s) for Velocity, \pm 0.1 °C for Temperature, for a confidence probability of not less than 95 %.

3. Atmospheric Pressure: 1 002 hPa

----- END -----

Water Quality

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC040109

Date of Issue

: 25 April 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS (Multi-Parameters)

Manufacturer:

YSI (a xylem brand)

Serial Number:

S/N: 22C106561

Date of Received:

18 April 2023

Date of Calibration:

25 April 2023

Date of Next Calibration:

24 July 2023

Request No.:

D-BC040109

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500 H+

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 21e 4500 O

Turbidity

APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.10	0.10	Satisfactory
7.42	7.50	0.08	Satisfactory
10.01	10.01	0.00	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
10	10.5	0.5	Satisfactory
23	23.1	0.1	Satisfactory
35	34.4	-0.1	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.81	-1.90	Satisfactory
20	20.47	2.35	Satisfactory
30	31.31	4.37	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager (Chemical Testing)

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC040109

Date of Issue

: 25 April 2023

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
8.07	8.08	0.01	Satisfactory
5.10	4.80	-0.30	Satisfactory
2.06	2.17	0.11	Satisfactory
0.24	0.37	0.13	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.74		Satisfactory
10	9.60	-4.00	Satisfactory
20	18.94	-5.30	Satisfactory
100	95.17	-4.80	Satisfactory
800	752.06	-6.00	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- 'The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Calibration Certificate

Certificate No. 210252

Page 2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q24081

Date of receipt

31-Oct-22

Item Tested

Description : Flow Probe

Manufacturer: Global Water

I.D.

Model

: FP111

Serial No.

: 22K100859

Test Conditions

Date of Test:

7-Nov-22

Supply Voltage : --

Ambient Temperature :

23°C

Relative Humidity: 78%

Test Specifications

Calibration check.

Ref. Document/Procedure: V12

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S179

Std. Tape

201868

NIM-PRC

S136A

Stop Watch

201878

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Kin Wong

Approved by:

This Certificate is issued by

Hong Kong Calibration Ltd.

7-Nov-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results:

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks: 1. UUT: Unit-Under-Test

2. Uncertainty: ± 1 %, for a confidence probability of not less than 95%.

----- END -----

Landfill Gas

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email:info@promat.hk. http://www.premat.hk

Calibration Certificate

Customer Name

Paul Y Construction Co. Ltd

Model

PS200

Serial

373075

Tested On

16 November, 2022

Cal Expires

16 November, 2023.

Audible Alarm

PASS

Visual Alarm

PASS

Calibrated For

METHANE

100% LEL Equivalent

4.4% by VOL

Overall Results

PASS

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	РРМ СО	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Calibrated By Ivan Lo:

CERTIFICATION OF CALIBRATION

Date Of Calibration: 17-Aug-2022 Certificate Number: G508566_2/31066

Issued by: QED Environmental Systems Ltd.

Customer: Onuee Electronics Ltd

C3-E TCL Science Park No.1001 Zhong Shan Yuan Rd.

Nanshan Shenzhen 518052 CHINA

Description: Gas Analyser

Model: GEM5000

Serial Number: G508566

UKAS Accredited results:

Methane (CH₄)			
Certified Gas (%) Instrument Reading (%) Uncertainty (%)			
5.0	4.9	0.072	
15.0	14.9	0.13	
60.0	59.6	0.42	

Carbon Dioxide (CO₂)				
Certified Gas (%)	Instrument Reading (%) Uncertainty (%)			
5.0	5.0	0.074		
15.0	14.9	0.13		
40.0	40.0	0.29		

	Oxygen (O₂)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
21.2	21.3	0.25

All concentrations are molar.

CH₄, CO₂ readings recorded at :

33.0 °C ± 2.5 °C

O2 readings recorded at :

22.7 °C ± 2.5 °C

Barometric Pressure :

1002 mbar ± 4 mbar

Method of Test: The analyser is calibrated in a temperature controlled chamber using a series of reference gases, in compliance with procedure LP004.

Instrument has passed calibration as the measurement result is within the specification limit. The specification limit takes into account the measurement uncertainty.

The results relate only to the item calibrated

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 1 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Certificate Number: G508566 2/31066

Date Of Calibration: 17-Aug-2022

Issued by: QED Environmental Systems Ltd.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Calibrations marked 'Non-UKAS Accredited results' on this certificate have been included for completeness.

Non-UKAS accredited results after adjustment:

Baromet	er (mbar)
Reference	Instrument Reading
1002	1002

	Additional Gas Cells	
Gas	Certified Gas (ppm)	Instrument Reading (ppm)
H ₂ S	52.6	53

Date of Issue: 18-Aug-2022

Approved by Signatory

Keeley Knight

Laboratory Inspection

End of Certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 2 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

Appendix E Monitoring Results

Air Quality

1-hour TSP Concentration (µg/m³) at Location AM1

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactoi	vveatilei	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m ³
5/5/2023	Sibata LD-5R	942532	0.00108	Fine	8:30	9:30	10:30	15	21	20	19		
11/5/2023	Sibata LD-5R	942532	0.00108	Fine	11:46	12:46	13:46	16	21	19	19		
17/5/2023	Sibata LD-5R	942532	0.00108	Fine	14:00	15:00	16:00	21	23	22	22	285	500
23/5/2023	Sibata LD-5R	942532	0.00108	Fine	11:30	12:30	13:30	16	24	19	20		
29/5/2023	Sibata LD-5R	942532	0.00108	Cloudy	12:19	13:19	14:19	34	40	38	37		
							Average		23				
							May		40				

Min.

Min.

1-hour TSP Concentration (µg/m³) at Location AM2

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	IX-IUCIOI	Weather	Camping Time (1)	Camping Time (2)	oumpring time (o)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m ³
5/5/2023	Sibata LD-5R	882106	0.00107	Fine	8:45	9:45	10:45	20	34	29	28		
11/5/2023	Sibata LD-5R	882106	0.00107	Fine	12:00	13:00	14:00	15	24	19	19		
17/5/2023	Sibata LD-5R	882106	0.00107	Fine	14:20	15:20	16:20	31	34	32	32	279	500
23/5/2023	Sibata LD-5R	882106	0.00107	Fine	11:45	12:45	13:45	26	34	30	30		
29/5/2023	Sibata LD-5R	882106	0.00107	Cloudy	12:36	13:36	14:36	41	43	40	41		
							Average		30				
							Max.		43				
							Min.	15					

1-hour TSP Concentration (µg/m³) at Location AM3

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-lactor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
5/5/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:10	9:10	10:10	26	31	29	29		
11/5/2023	Sibata LD-5R	0Z4545	0.00114	Fine	10:35	11:35	12:35	39	49	40	43		
17/5/2023	Sibata LD-5R	0Z4545	0.00114	Fine	14:10	15:10	16:10	32	38	33	34	285	500
23/5/2023	Sibata LD-5R	0Z4545	0.00114	Fine	11:10	12:10	13:10	31	34	33	33		
29/5/2023	Sibata LD-5R	0Z4545	0.00114	Cloudy	13:00	14:00	15:00	35	40	36	37		
							Average		35				•
							May		40				

The Summary of TSP 24-hour Concentration (µg/m³) at Location AM1

Start Date	Weather	Avg Air Temp	Avg Atmospheric Pressure	Elapse	Time	Sampling Time		Averaged Flow Rate	Total Flow Volume	Filter We	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
5/5/2023	Fine	27.9	1005.1	1071.34	1095.34	1440	40	1.13	1629	2.6676	2.7171	0.0495	30		
11/5/2023	Fine	24.2	1014.8	1095.47	1119.47	1440	40.5	0.99	1422	2.6707	2.7978	0.1271	89		
17/5/2023	Fine	27.9	1007.4	1119.47	1143.47	1440	41	0.99	1419	2.6584	2.7373	0.0789	56	164	260
23/5/2023	Cloudy	28.7	1009.8	1143.47	1167.47	1440	40	0.95	1364	2.6638	2.7025	0.0387	28		
29/5/2023	Cloudy	30.1	1006.0	1167.47	1191.47	1440	39.5	0.92	1322	2.6655	2.8059	0.1404	106		
-				-		-	-					Average	62		•
												Min	28		
												Max	106		

The Summary of 24-hour TSP Concentration (ug/m³) at Location AM2

Start Date	Weather	Avg Air Temp	Avg Atmospheric Pressure	Elapse	Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
5/5/2023	Fine	27.9	1005.1	844.41	868.41	1440	41	0.99	1419	2.6766	2.7525	0.0759	53		
11/5/2023	Fine	24.2	1014.8	868.46	892.46	1440	40.5	1.07	1543	2.6674	2.7815	0.1141	74		
17/5/2023	Fine	27.9	1007.4	892.46	916.46	1440	36.5	0.92	1320	2.6751	2.7849	0.1098	83	164	260
23/5/2023	Cloudy	28.7	1009.8	916.46	940.46	1440	41	1.07	1543	2.6491	2.7552	0.1061	69		
29/5/2023	Cloudy	30.1	1006.0	940.46	964.46	1440	41.5	1.08	1555	2.6794	2.8151	0.1357	87		
												Average	73		
												Min	53		
												Max	87		

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM3

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter We	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
5/5/2023	Fine	27.9	1005.1	1850.77	1874.77	1440	40	1.18	1695	2.6620	2.7115	0.0495	29		
11/5/2023	Fine	24.2	1014.8	1874.84	1898.84	1440	40	0.78	1118	2.6792	2.8144	0.1352	121		
17/5/2023	Fine	27.9	1007.4	1898.84	1922.84	1440	39	0.72	1035	2.6792	2.7875	0.1083	105	164	260
23/5/2023	Cloudy	28.7	1009.8	1922.84	1946.84	1440	40	0.76	1091	2.6534	2.7669	0.1135	104		
29/5/2023	Cloudy	30.1	1006.0	1946.84	1970.84	1440	40	0.75	1078	2.6653	2.7810	0.1157	107		
			·									Average	93	· ·	
												Min	29		

Max

Remarks:
1. Orange Text equal to exceed Action Level
2. Red Text equal to exceed Limit Level

Noise

Impact Phase Construction Noise Monitoring Data at Location NM1a

Date	Weather	Wind speed	Start Time	End Time				L ed	(dB(A))				L 10 (C	IB(A))					L 90 (C	B(A))		
Date	vveather	m/s	Start Tille	Elia Illile	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
5/5/2023	Fine	0	7:10	7:40	46.1	47.9	46.6	48.9	47.1	48.1	47.6	47.6	49.2	47.7	50.2	48.6	49.7	45.9	46.6	45.1	47.1	45.7	46.5
11/5/2023	Fine	0	10:40	11:10	56.2	55.9	56.4	55.7	55.5	56.1	56.0	62.7	67.3	67.7	60.2	62.7	67.1	52.8	53.4	54.1	52.9	53	54.2
17/5/2023	Fine	0.2	14:21	14:51	57.2	58.6	59.2	60.2	58.4	60.4	59.1	60.3	61.2	62.6	63.3	62.4	62.9	51.2	52.3	54.1	55.2	54.4	58.4
23/5/2023	Cloudy	1.2	10:02	10:32	52.4	53.3	54.1	53.6	53.9	54.4	53.7	55.4	56.3	58.1	56.5	57.1	58.3	50.3	49.2	51.3	50.2	50.2	52.3
29/5/2023	Cloudy	3.1	9:34	10:04	60.2	61.2	61.9	60.3	60.9	61.1	61.0	60.8	61.9	62.1	61.3	61.4	62.6	59.1	58.2	59.2	58.3	59.2	57.1

Average 57.4

Baseline Level 55.4

Action Level When one valid documented complaint is received

Limit Level 75

Impact Phase Construction Noise Monitoring Data at Location NM2a

Date	Weather	Wind speed	Start Time	End Time				L ec	, (dB(<i>i</i>	A))				L ₁₀ (d	IB(A))					L 90 (C	B(A))		
Date	Weather	m/s	Start Tille	Elia Illile	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
5/5/2023	Fine	0.2	12:00	12:30	45.5	43.4	46.6	42.6	48.4	53.5	48.4	49.7	46.3	46.8	45.4	48.9	59.2	37.9	37.5	38.1	37.2	39	38.7
11/5/2023	Fine	0	14:24	14:54	56.6	57.1	55.1	57.4	56.3	55.2	56.4	70.7	71.2	69.4	72.2	70.1	68.2	35.4	36.4	34.9	37.4	35.1	36.4
17/5/2023	Fine	0.9	16:41	17:11	57.2	58.3	57.3	56.3	58.2	59.2	57.8	60.3	61.3	60.9	59.3	61.4	62.4	52.3	53.2	54.2	55.2	52.2	55.9
23/5/2023	Cloudy	2.1	15:30	16:00	50.2	51.3	49.9	52.1	51.9	52.4	51.4	53.2	54.4	52.1	53.6	54.2	54.3	47.2	48.4	48.1	49.2	48.8	48.1
29/5/2023	Cloudy	2.1	16:00	16:30	60.2	58.2	57.4	57.7	56.3	57.4	58.0	62.2	59.3	58.5	58.9	59.2	58.4	59.1	54.2	56.1	54.1	52.1	53.2
	_								lvoroa	•	EE O						_						

Average 55.8

Baseline Level 54.5

Action Level When one valid documented complaint is received

Limit Level 75

Water Quality

Monitoring Location: WM1

	Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)	
						()	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
- :	5-May-23	11:47	Fine	0.1	0	24.3	Value Action Level Limit Level Value		6.9	>7.7	>7.8	3.1	>9.2	>9.5	3.3	>9.7	>11.4	

Monitoring Location: WM2

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)	DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)		
						Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
5-May-23	7:46	Fine	0.16	0	25.2	8.1	<5	<4	7.3	>7.6	>7.7	30.6	>108.3	>108.9	34.2	>94.5	>94.7

Remark

^{1.} Sample will be grabbed on surface when the water depth is less than 1m.

^{2. &}quot;TBC" equal to "To be confirm"

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : ACUMEN LABORATORY AND TESTING LIMITED

: MR HUNTINGTON HUI

: UNIT D, 12/F, FORD GLORY PLAZA, NOS.37-39 WING HONG

STREET, CHEUNG SHA WAN, KOWLOON, HONG KONG

E-mail : htthui@acumen-env.com

: +852 2333 6823 Telephone

: +852 2333 1316 Facsimile

Project : NENTX

Order number

Contact

Address

C-O-C number : ----

Site

This report may not be reproduced except with prior written approval from the testing laboratory.

: ALS Technichem (HK) Pty Ltd

: Richard Fung

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

Telephone

Laboratory

Contact

Address

E-mail

Quote

number

: richard.fung@alsglobal.com : +852 2610 1044

Facsimile

: +852 2610 2021

: HKE/2751/2022_V2

Issue Date

Page

Work Order

: 19-May-2023

: 2

: 2

: 05-May-2023

: 1 of 9

: HK2317588

No. of samples received

Date Samples Received

No. of samples analysed

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Position

Authorised results for

Fung Lim Chee, Richard

Managing Director

Inorganics

Fung Lim Chee, Richard

Managing Director

Metals_ENV

Ng Sin Kou, May

Ha

Laboratory Manager

Microbiology ENV

Page Number

2 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2317588

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Testing period is from 05-May-2023 to 18-May-2023.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2317588

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.

Microbiological sample(s) was/ were collected in 250mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 17:55.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

ED037 - Titration end point for Total Alkalinity is pH 4.5 while end point for Total Alkalinity <20mg/L is pH 4.2.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

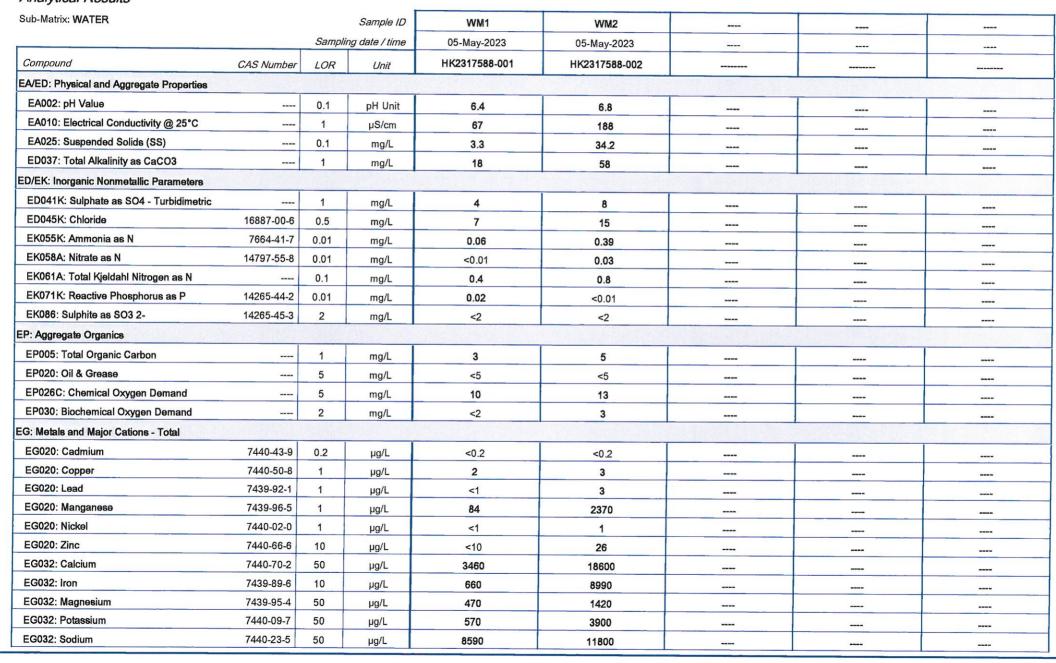
EA002 - pH value is reported as at 25°C. Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EA025 - The accredited LOR of Total Suspended Solids is 0.5 mg/L. Results below this LOR are for reference only.

ALS

Rage Number

3 of 9


Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2317588

Analytical Results

Page Number

: 4 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

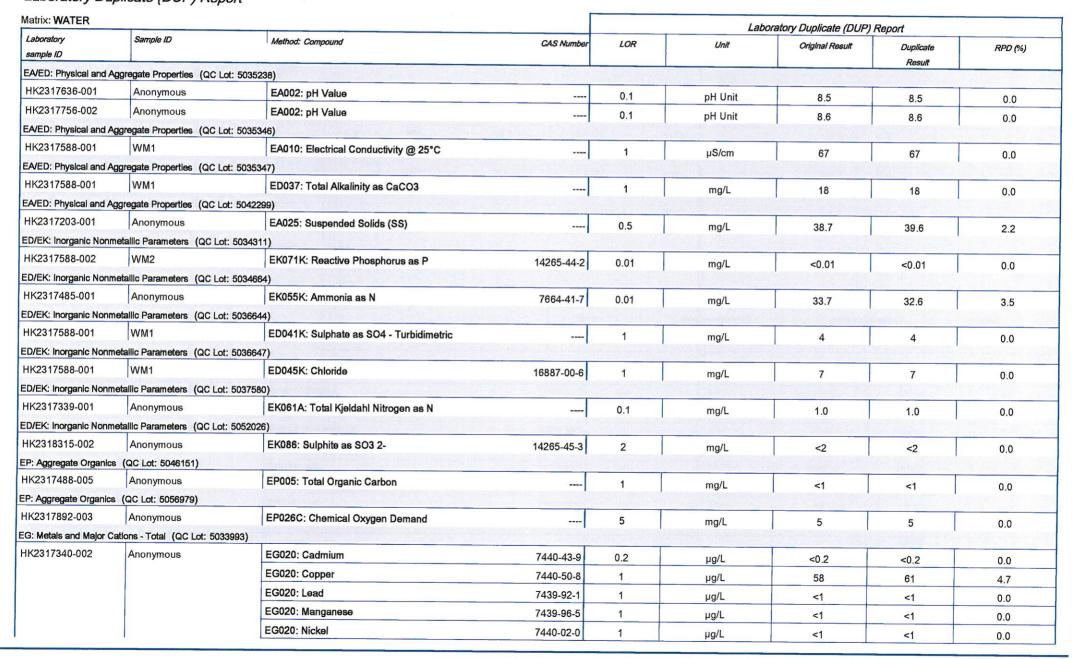
Work Order

HK2317588

Sub-Matrix: WATER			Sample ID	WM1	WM2			****
		Samplii	ng date / time	05-May-2023	05-May-2023			
Compound	CAS Number	LOR	Unit	HK2317588-001	HK2317588-002	******		
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	30000	110		-	
EM003: Total Coliforms		1	CFU/100mL	40000	1500			

Rage Number

5 of 9


Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2317588

Laboratory Duplicate (DUP) Report

Page Number

6 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2317588

Matrix: WATER					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major (Cations - Total (QC Lot: 503	33993) - Continued						
HK2317340-002	Anonymous	EG020: Zinc	7440-66-6	10	μg/L	43	43	0.0
EG: Metals and Major (Cations - Total (QC Lot: 503	33999)						
HK2317588-002	WM2	EG032: Iron	7439-89-6	10	μg/L	8990	9280	3.2
		EG032: Calcium	7440-70-2	50	μg/L	18600	19300	3.5
		EG032: Magnesium	7439-95-4	50	μg/L	1420	1490	4.5
	EG032: Potassium	7440-09-7	50	μg/L	3900	3950	1.4	
		EG032: Sodium	7440-23-5	50	μg/L	11800	12200	3.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB)	Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
WALLANT STATE OF				Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 5035346)										
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	146.9 μS/cm	102		93.5	106		
				<1	1412 μS/cm	98.4		94.3	105		
EA/ED: Physical and Aggregate Properties (QC	Lot: 5035347)										
ED037: Total Alkalinity as CaCO3		1	mg/L	<1	50 mg/L	101		95.0	105		STANAME IN
EA/ED: Physical and Aggregate Properties (QC	Lot: 5042299)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	91.0		82.4	118		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5034311)										
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	101		92.4	106		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5034664)										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	104		89.3	109		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5036644)										
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	<1	5 mg/L	105		89.8	108		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5036647)										
ED045K: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	98.8		88.2	108		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5037580)										
EK061A: Total Kieldahl Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	103		89.0	120		

Rage Number

7 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

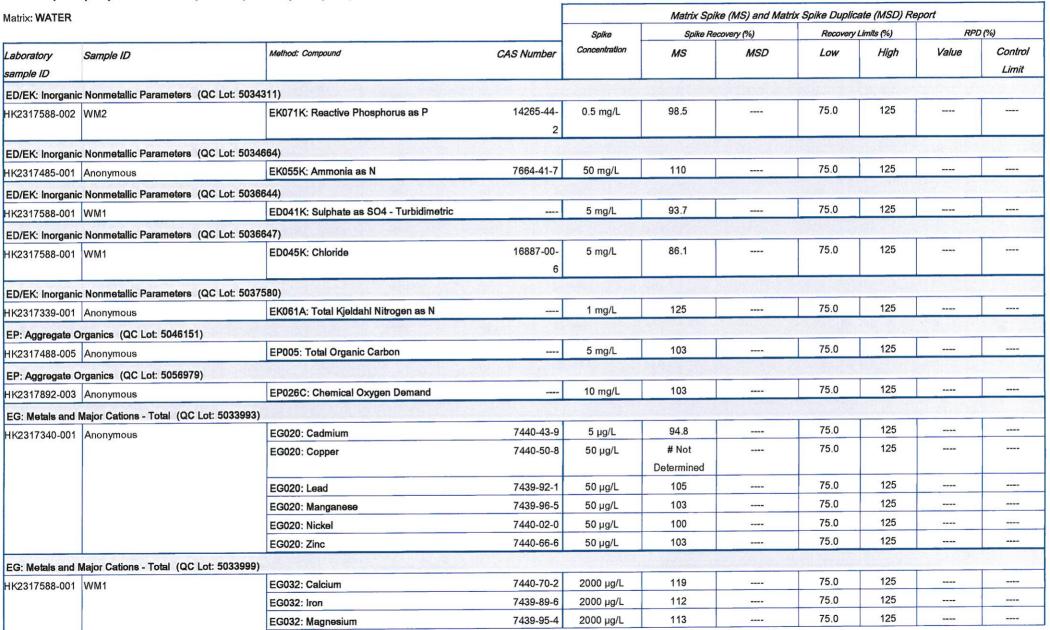
Work Order

HK2317588

Matrix: WATER			Method Blank (MB	l) Report		Laboratory Conti	rol Spike (LCS) and La	boratory Control S	Spike Duplicate (L	OCS) Report	
				Spike Concentration	Spike Re	pike Recovery (%)		Recovery Limits(%)		D (%)	
Method: Compound CAS Number		LOR	Unit	Result		LCS	DCS	Low	High	Value	Control
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 5052026)								State of the last		Limit
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2							
EP: Aggregate Organics (QC Lot: 5032687)									AND STATE OF STREET		
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	99.2		78.6	110	September 1	Teacher and a
EP: Aggregate Organics (QC Lot: 5046151)					100 Hig/L	00.2		70.0	118		
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	103		78.1	100		Markey Later
			g/ _	<1	100 mg/L	93.6		78.1	123 119		
EP: Aggregate Organics (QC Lot: 5049731)					100 mg/L	30.0		19.9	119		
EP020: Oil & Grease		2	mg/L	<2	20 mg/L	96.0					
EP: Aggregate Organics (QC Lot: 5056979)		All Marie	mg/L		20 mg/L	96.0	NESSER EUROPE	84.2	110	City of Carry Street	
EP026C: Chemical Oxygen Demand			mg/L		25	100					Sea So Esternis
7,5			mg/L		25 mg/L 250 mg/L	103 100		92.0	108		
EG: Metals and Major Cations - Total (QC Lot:	5033003)				250 Hig/L	100		92.3	106		
EG020: Cadmium	7440-43-9	0.2	ug/l	-0.0	- "						alle per 198
EG020: Copper	7440-50-8	1	μg/L	<0.2	5 μg/L	97.4		85.0	109		
EG020: Lead	7439-92-1	1	μg/L μg/L	<1	50 μg/L	101		90.0	111		
EG020: Manganese	7439-96-5	1	μg/L	<1	50 μg/L	108		89.0	111		
EG020: Nickel	7440-02-0	1			50 μg/L	101	-	85.0	115		
EG020: Zinc	7440-66-6	10	μg/L	<1	50 μg/L	101		87.0	110		
EG: Metals and Major Cations - Total (QC Lot:		10	μg/L	<10	50 μg/L	106		86.0	114		
EG032: Calcium	7440-70-2	50	/1	-50	2000 #						
EG032: Iron	7439-89-6	10	μg/L	<50	2000 μg/L	99.5		85.0	115		
EG032: Magnesium	7439-89-6		µg/L	<10	2000 μg/L	104		85.0	115		3,000
EG032: Potassium	7439-95-4	50	μg/L	<50	2000 μg/L	105		85.0	115		
EG032: Sodium		50	μg/L	<50	2000 μg/L	101		85.0	115		****
2002. Codium	7440-23-5	50	μg/L	<50	2000 μg/L	101		85.0	115		

Page Number

: 8 of 9


Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2317588

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

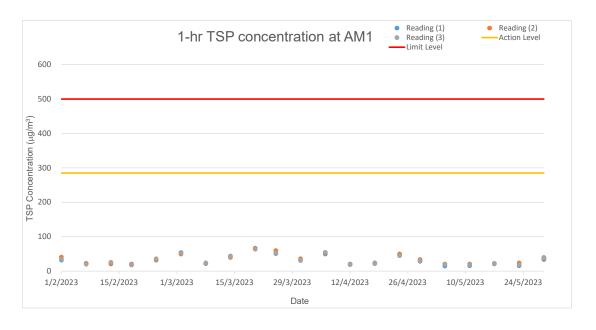
Rage Number

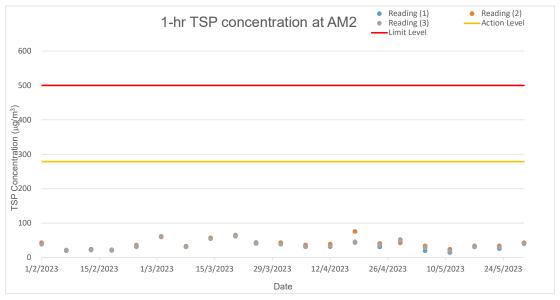
9 of 9

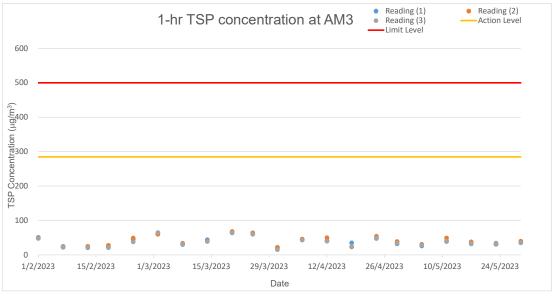
Client

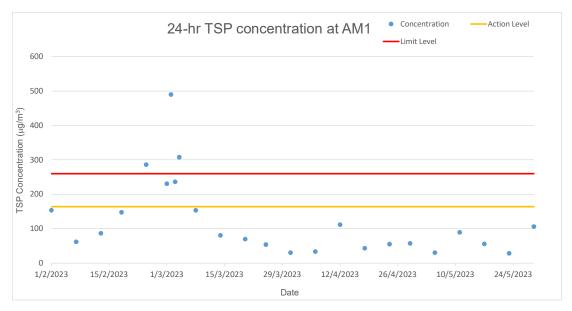
ACUMEN LABORATORY AND TESTING LIMITED

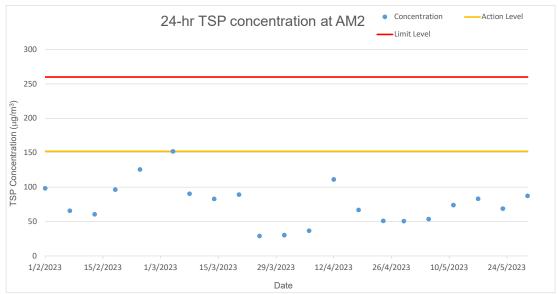
Work Order

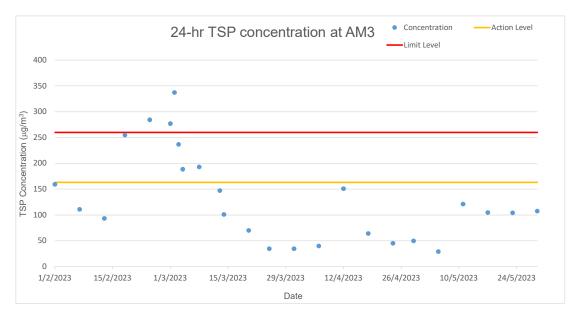

HK2317588

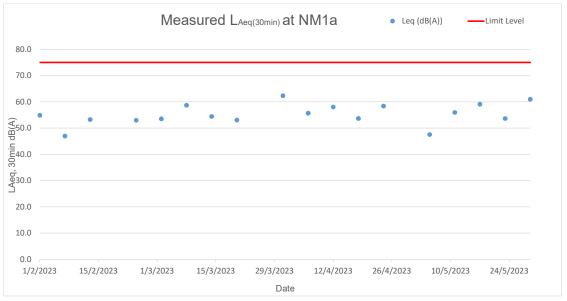


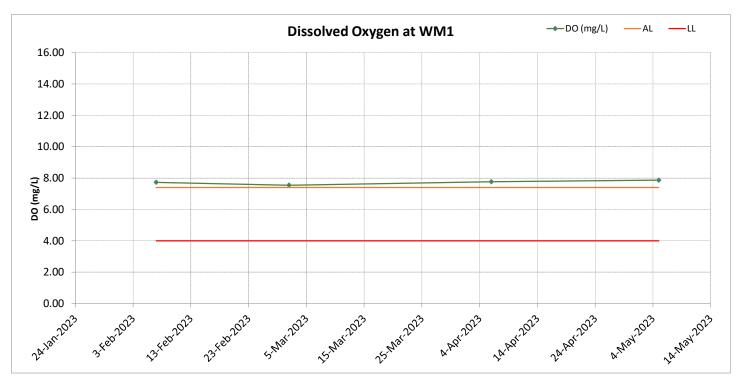

Matrix: WATER					Matrix Spil	ke (MS) and Matn	x Spike Duplic	ate (MSD) Re	port	
l abaneta	2			Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL	7 (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
EG: Metals and	Major Cations - Total (QC L	ot: 5033999) - Continued								Limit
1K2317588-001	WM1	EG032: Potassium	7440-09-7	2000 μg/L	109		75.0	125		
		EG032: Sodium	7440-23-5	2000 μg/L	# Not		75.0	125		
					Determined					

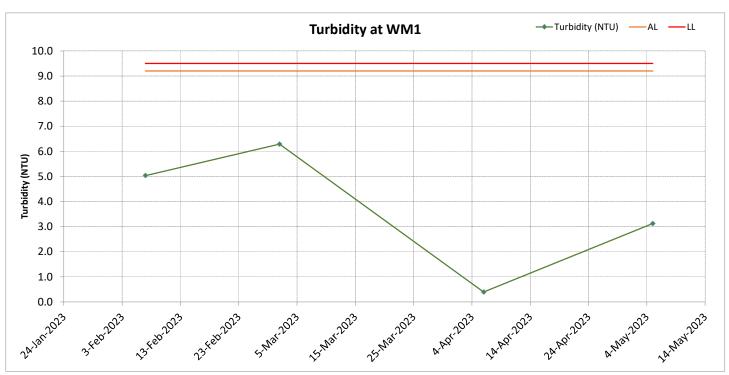

Appendix F Graphical Presentations

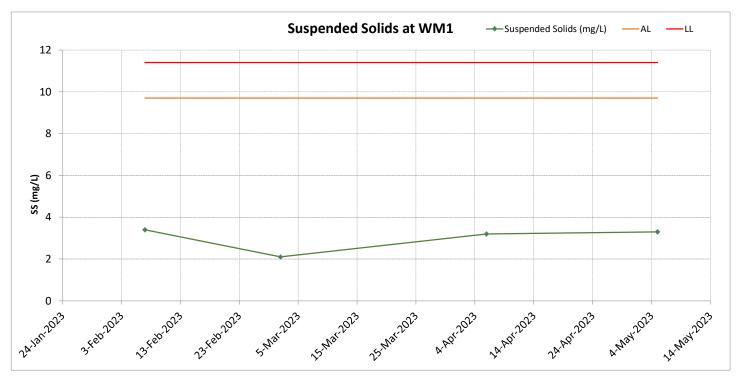

Air Quality

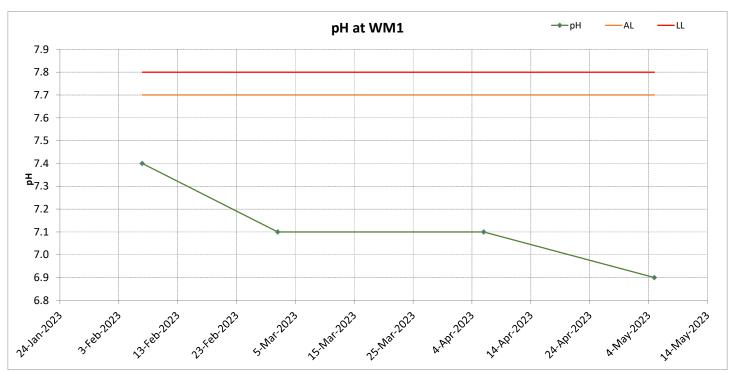


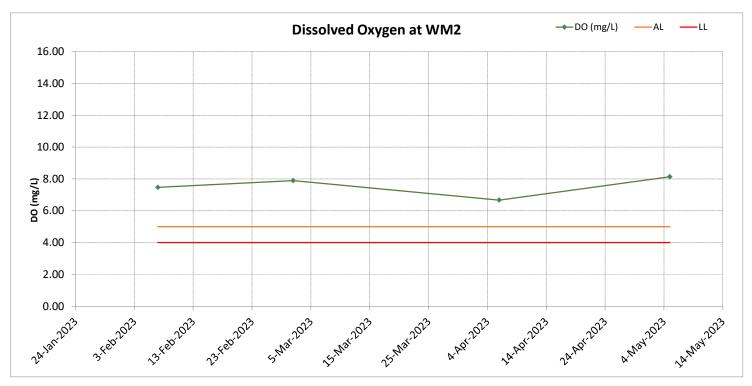


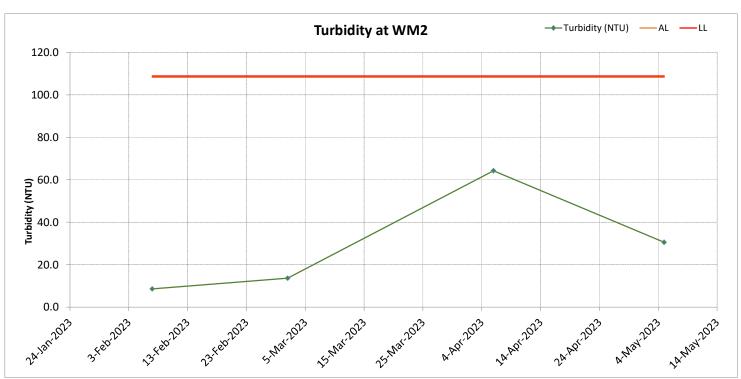


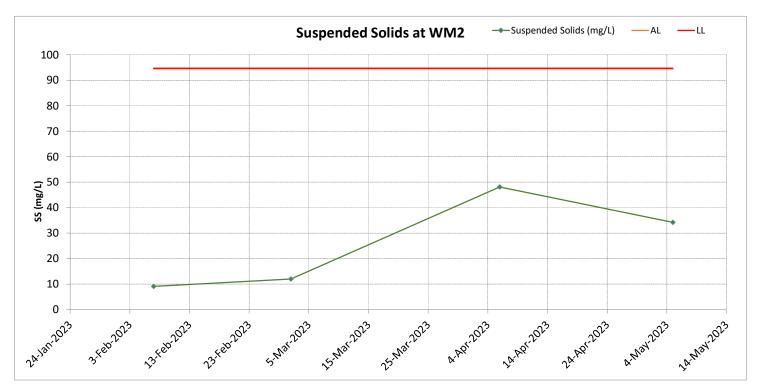

Noise

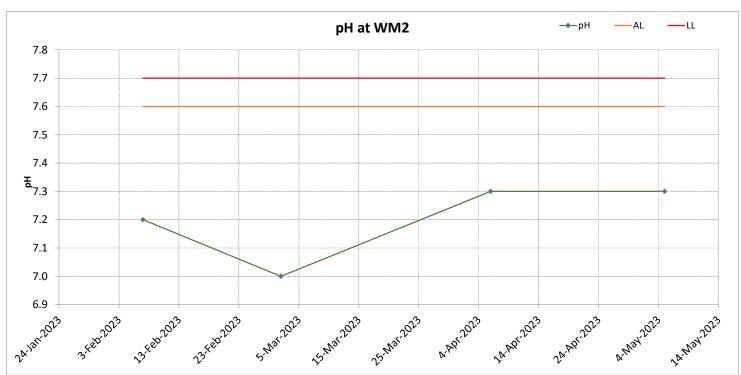





Water Quality







Appendix G Notification of Environmental Quality Limits Exceedance

Notification of Environmental Quality Limits Exceedance

Construction Dust

				Exceedance Count					
Dust Monitoring	Parameter	1-hr TSP	24-hr TSP	Reportir	ng period	Accumulate project to date			
Station	Level Exceedance	1-111 137	24-111 13F	Project related	Non- project replated	Project related	Non- project replated		
AM1	Action	0	0	0	0	0	2		
	Limit	0	0	0	0	0	3		
AM2	Action	0	0	0	0	0	0		
	Limit	0	0	0	0	0	0		
AM3	Action	0	0	0	0	0	4		
	Limit	0	0	0	0	0	3		

Remarks: * equal to non-project related

Noise Monitoring

Manifesian Otation	Monitoring	No. of Exceedance				
Monitoring Station	Parameter(s)	Action Level	Limit Level			
NM1a		0	0			
NM2a	LAeq (30mins)	0	0			

Notification of Environmental Quality Limits Exceedance

Surface Water Monitoring

Manitarina Station	Monitoring	No. of Ex	ceedance
Monitoring Station	Parameter(s)	Action Level	Limit Level
	Dissolved Oxygen	0	0
10/044	рН	0	0
WM1	Turbidity	0	0
	Suspended Solids	0	0
	Dissolved Oxygen	0	0
14/140	рН	0	0
WM2	Turbidity	0	0
	Suspended Solids	0	0

Landfill Gas (LFG) Monitoring

LFG Monitoring	Monitoring	No. of Exceedance
Station	Parameter(s)	Limit Level
	CH₄	0
Portion A +50 mpD to +70 mpD Platform	CO ₂	0
	O ₂	0

Appendix H Wind Data

Date & Time	WH 10 11 1	W. 171 1 07 1
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230501_0000	2.2	SE
20230501_0010	2.8	SE
20230501 0020	3.1	ESE
20230501 0030	2.5	ESE
20230501_0040	1.9	ESE
20230501_0040	3.1	ESE
20230501_0030	2.2	ESE
	2.2	ESE
20230501_0120	2.2	ESE
20230501_0130	1.7	ESE
20230501_0140	2.2	ESE
20230501_0150	2.2	ESE
20230501_0200	2.5	E
20230501_0210	2.8	ESE
20230501_0220	3.1	E
20230501 0230	2.5	E
20230501_0240	2.8	ESE
20230501_0250	2.2	ESE
20230501 0300	2.5	ESE
20230501 0300	2.2	ESE
20230501_0310	2.8	ESE
20230501_0320	2.8	ESE
20230501_0330	3.1	ESE ESE
20230301_0340	2.2	ESE
	2.2	ESE or
20230501_0400	2.8	SE
20230501_0410	3.3	ESE
20230501_0420	2.8	ESE
20230501_0430	2.8	ESE
20230501_0440	2.8	ESE
20230501_0450	2.8	ESE
20230501_0500	2.5	SE
20230501 0510	2.5	ESE
20230501 0520	2.2	ESE
20230501 0530	2,5	ESE
20230501 0540	2.5	SE
20230501 0550	2.2	ESE
20230501 0600	2,5	SE
20230501 0610	2.5	ESE
20230501 0620	2.2	ESE
20230501_0020	2.5	ESE
20230501_0030	1.7	E E E E E E E E E E E E E E E E E E E
20230501 0040	1.7	E
20230501_0030	1.7	ESE
20230501_0710	1.7	ESE
20230501_0720	1.7	ESE
20230501_0730	1.9	ESE
20230501_0740	1.7	ESE
20230501_0750	2.5	ESE
20230501_0800	2.2	ESE
20230501_0810	2.5	ESE
20230501_0820	2.5	ESE
20230501_0830	2.5	E
20230501_0840	2.5	E
20230501 0850	2.8	E
20230501 0900	2.5	E
20230501 0910	2.5	E
20230501 0920	2,5	Ē
20230501_0930	2.8	Ē
20230501_0940	2.5	E
20230501_0540	3.1	E E
20230501_0950	2.8	E
20230501_1000	2.5	ENE
20230301_1010	2.5	ESE
	2.8	
20230501_1030		E
20230501_1040	2.5	E
20230501_1050	2.8	E
20230501 1100	3.1	ENE
20230501_1110	2.8	ENE
20230501_1120	3.1	Е
20230501_1130	2.8	E
20230501_1140	2.8	E
20230501_1150	2.5	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		` '
20230501_1200	3.1	E
20230501_1210	3.3	E
20230501 1220 20230501_1230	3.3	E E
20230501_1230	3.1	ENE
20230501_1240	3.6	E
20230501_1300	2.8	Ē
20230501_1310	3.9	E
20230501_1320	3.1	E
20230501_1330	3.3	ESE
20230501_1340	3.1	E
20230501_1350 20230501_1400	2.8	ESE E
20230501_1400	2.8	ESE
20230501_1410	3,3	SE
20230501 1430	3.3	ESE
20230501_1440	3.3 2.8	E
20230501 1450	3.3 3.3	E
20230501_1500	3.3	ESE
20230501_1510	3.6	E
20230501_1520	2.8	ESE
20230501 1530 20230501_1540	2.8 3.1	SE ESE
20230501_1540	3.1	ESE ESE
20230501_1550	4.2	E
20230501 1610	4.2	ESE
20230501 1620	3.3	ESE
20230501_1630	3.3	ESE
20230501_1640	3.3	ESE
20230501_1650	3.9	SE
20230501_1700	3.6	SE
20230501 1710 20230501 1720	3.1 2.8	ESE ESE
20230501_1720	2.8	ESE
20230501_1750	3.1	ESE
20230501 1750	2.5	ESE
20230501_1800	2.8	ESE
20230501_1810	1.9	SE
20230501_1820	1.7	E
20230501_1830	1.4	ESE
20230501_1840 20230501_1850	2.2 2.8	ESE ESE
20230501_1900	1.1	SE
20230501_1910	1.7	ESE
20230501 1920	1.4	ESE SE
20230501_1930	2.5	SE
20230501_1940	1.7	SE SE
20230501_1950	2.5	SE
20230501_2000	3.1 3.1	SE
20230501_2010 20230501_2020	4.2	ESE
20230501_2020	4.2	ESE ESE
20230501_2030	4.7	SE
20230501_2050	4.4	SE
20230501 2100	5	SE
20230501_2110	3.9	SE
20230501 2120	3.9	SE
20230501_2130	4.4	SE
20230501_2140 20230501_2150	3.9	SE
20230501_2150	2.8	SE SE
20230501_2200	3.1	ESE ESE
20230501_2210	3.9	SE
20230501_2230	3.9	SE
20230501_2240	3.6	ESE
20230501_2250	3.3	SE
20230501 2300	3.9	SE
20230501_2310	4.7	SE
20230501_2320	4.7	SE
20230501_2330 20230501_2340	4.7 5	ESE SE
20230501_2340	4.4	SE SE
20220301_2330	7.7	OL.

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230502 0000	4.7	SE
20230502_0000	3.9	SE SE
20230502_0010	3.9	SE SE
20230502_0030	3.6	ESE
20230502_0030	3.3	SE
	3.3	
20230502_0050	3.3	SE
20230502_0100	2.8	SE
20230502_0110	3.3	SE
20230502_0120	3.3	SE
20230502_0130	3.9	SE
20230502_0140	2.8	SE
20230502 0150	3.3	SE
20230502_0200	2.8	SE
20230502_0210	2.5	SE
20230502 0220	2.8	ESE
20230502 0230	3.1	SE
20230502 0240	3.3	ESE
20230502_0240	3,3	SE
20230502 0250	4.7	SE
20230502 0300	4.2	SE SE
20230502_0310	3,3	
		ESE
20230502_0330	3.3	SE
20230502_0340	3.3	SE
20230502_0350	2.5	SE
20230502_0400	3.9	SE
20230502_0410	4.2	SE
20230502_0420	3.9	SE
20230502_0430	3.3	ESE
20230502 0440	3.3	ESE
20230502 0450	3,3	SE
20230502 0500	4.7	SE
20230502 0510	5	SE
20230502 0510	4.4	SE
20230502_0520	4.2	SE
20230502 0540	3,3	ESE
20230502 0540	3.9	ESE
20230502_0550	3.3	ESE
20230502_0610	3.6	ESE
20230502_0620	3.9	ESE
20230502_0630	3.9	ESE
20230502_0640	3.9	ESE
20230502_0650	3.9	ESE
20230502_0700	2.2	<u> </u>
20230502_0710	2.8	SE
20230502_0720	3.3	ESE
20230502_0730	2.8	SE
20230502 0740	2.2	SE
20230502_0750	2.2	ESE
20230502 0800	2.5	ESE
20230502 0810	2.8	ESE
20230502 0820	3.3	ESE
20230502_0830	3.9	ESE
20230502_0840	3.3	ESE
20230502_0850	3,3	ESE
20230502 0830	3.6	ESE
20230502_0500	3.3	ESE
20230502_0910	3.9	ESE
20230502 0920	2.8	ESE
20230502_0940		
	3.1	ESE
20230502 0950	3.1	ESE
20230502_1000	2.8	ESE
20230502_1010	2.8	ESE
20230502_1020	2.8	ESE
20230502_1030	3.3	ESE
20230502_1040	2.5	ESE
20230502_1050	2.2	Е
20230502_1100	2.5	E
20230502_1110	2.8	ENE
20230502_1120	2.8	E
20230502 1130	2.8	E
20230502_1140	3.1	E
20230502_1150	2.5	ESE

Date & Time	Wind Coard (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230502_1200 20230502_1210	3.3 3.3	E ENE
20230502_1210	2.8	ENE ENE
20230502 1220	2.8	ENE
20230502 1240	2.8	ENE
20230502 1250	2.5	Е
20230502_1300	2.8	ENE
20230502_1310	2.8	ENE
20230502_1320	3.1	ENE
20230502_1330 20230502_1340	2.8 2.5	E E
20230502_1340	2.5	E
20230502_1400	2.2	Ē
20230502 1410	2.8	Е
20230502 1420 20230502 1430	2.2 2.8 2.2 2.5 2.8	Е
20230502 1430	2.5	E
20230502_1440 20230502_1450	2.8	E E
20230502_1430	2.8	ENE
20230502 1500	2.8	E
20230502 1520	3,3	Ē
20230502_1530	2.8 2.5	ENE
20230502_1540	2.5	E
20230502_1550	2.8	E
20230502 1600 20230502 1610	2.5 2.8	<u>Е</u> Е
20230502_1010	1.7	ENE
20230502_1020	2.2	E
20230502_1640	2.8	ENE
20230502 1650	3.1	E
20230502_1700	2.5	E
20230502 1710	2.5	ENE
20230502_1720 20230502_1730	2.2 1.9	E E
20230502_1750	2.2	<u></u> Е
20230502 1740	2.8	Ē
20230502_1800	2.5	ESE
20230502_1810	2.2	Е
20230502_1820	1.7	E
20230502_1830	1.7 1.9	E
20230502 1840 20230502 1850	1.9	ESE ESE
20230502_1000	0.8	SE
20230502 1910	0.3	ESE
20230502_1920	0.3	ENE
20230502_1930	0.6	ENE
20230502 1940	0.8	E
20230502_1950 20230502_2000	1.1	<u>Е</u> Е
20230502_2000	1.1	ESE
20230502 2010	1.1	E
20230502_2030	1.1	Е
20230502_2040	1.4	Е
20230502 2050	1.1	E
20230502_2100 20230502_2110	1.1	ESE
20230502_2110 20230502_2120	1.4 1.1	ESE SE
20230502_2120	1.4	SE SE
20230502_2140	1.4	ESE
20230502_2150	1.7	ESE
20230502_2200	1.9	SE
20230502_2210	1.4	SE
20230502 2220 20230502 2230	1.1 0.8	SE ESE
20230502_2240	0.8	SE
20230502_2240	1.4	SE
20230502_2300	1.4	SE
20230502_2310	1.1	ESE
20230502_2320	1.1	E
20230502 2330 20230502 2340	1.1	E
20230502_2340 20230502_2350	1.4 1.4	ESE ESE
VCC2_200000	1.4	LOE

Date & Time	Wr. 10 17 ()	Wr. ID: C. C.
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230503_0000	0.3	S
20230503_0010	0.8	SSE
20230503_0020	0.8	SE
20230503_0030	1.4	ESE
20230503_0040	1.7	E
20230503 0050	1.1	ESE ESE
20230503_0100 20230503_0110	0.8	SE SE
20230503_0110	0.8	ESE ESE
20230503_0120	1.1	SE SE
20230503_0140	1.1	SE
20230503 0150	1.1	SE
20230503 0200	1.4	ESE
20230503_0210	1.4	ESE
20230503_0220	1.4	ESE
20230503_0230	1.7	E
20230503_0240	1.4	ESE
20230503_0250	1.4	SE
20230503 0300	1.4	ESE
20230503_0310	1.9	E
20230503_0320 20230503_0330		E ESE
20230503_0330	1.7	SE SE
20230503_0340	0.8	SSE
20230503_0350	0.3	SSE
20230503 0410	0.3	SSE
20230503 0420	1.7	ESE
20230503 0430	1.9	ESE
20230503_0440	2.2	ESE
20230503_0450	2.8	ESE
20230503_0500	2.2	ESE
20230503_0510	1.7	ESE
20230503_0520	1.4	ESE
20230503_0530	1.4	E
20230503 0540	1.7	E
20230503_0550 20230503_0600	1.7 1.7	<u>Е</u> Е
20230503_0000	1.9	E E
20230503 0620	2.5	E
20230503_0630	1.9	Ē
20230503 0640	2,5	E
20230503_0650	3.3	ESE
20230503_0700	3.3	ESE
20230503_0710	2.8	ESE
20230503_0720	3.3	ESE
20230503_0730	3.1	ESE
20230503_0740	2.5	ESE
20230503_0750 20230503_0800	2.2 2.8	ESE ESE
20230503_0800	2.8	ESE
20230503_0810	2.8	ESE E
20230503_0830	2.2	E
20230503_0840	2.2	ESE
20230503 0850	2.2	ESE
20230503_0900	1.9	ESE
20230503_0910	1.7	ESE
20230503_0920	2.2 2.2	ESE
20230503_0930	2.2	ESE
20230503_0940	2.5	ESE E
20230503 0950 20230503_1000	2.2 3.1	
20230503_1000	3.3	ESE E
20230503_1010	3.3	ESE
20230503_1020	3.1	ESE ESE
20230503_1030	3.1	E
20230503 1050	2.8	E
20230503_1100	2.8	E
20230503_1110	2.2	SE
20230503 1120	2.5 2.2 2.5	ESE
20230503_1130	2.2	SE SE
20230503_1140	2.5	
20230503_1150	2.2	SE

Date & Time	Wind Connel (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	Wind Speed (m/s)	, ,
20230503_1200 20230503_1210	2.5	SSE
20230503_1210	2.2	SE
20230503 1220	2.2 3.1	ESE E
20230503 1220 20230503 1230 20230503 1240 20230503 1250 20230503 1300	2.1	ESE
20230503_1240	2.8 2.8	E
20230503 1300	2.8	E
20230503_1310	2.2	ESE
20230503_1320	3.1	ESE
20230503_1330	3.3	ESE
20230503_1340	3.1 2.5	ESE SE
20230503_1350 20230503_1400	2.5	SE SE
20230503_1400	3.3	ESE
20230503 1420	3.1	ESE
20230503 1430	2.2	E
20230503_1440	3.3	ESE
20230503_1450	3.1	ESE
20230503 1500	2.2	ESE
20230503_1510 20230503_1520	3.3	ESE E
20230503_1520	3.3	E ESE
20230503 1540	3.3	ESE ESE
20230503 1550	2.8	ESE
20230503 1600	2.8	ESE
20230503_1610	3.9	ESE
20230503_1620	3.1	ESE
20230503_1630	3.3	ESE
20230503_1640 20230503_1650	3.9 3.3	ESE
20230503_1700	3.9	ESE ESE
20230503_1700	3.1	ESE
20230503_1720	3.3	ESE
20230503 1730	2.8	ESE
20230503 1740	3.9	ESE
20230503_1750	3.3	ESE
20230503_1800	3.3	ESE
20230503_1810 20230503_1820	3.1 3.3	ESE E
20230503_1830	2.8	E
20230503 1840	2.8 3.3 3.3	F
20230503 1840 20230503_1850	3.3	E E
20230503_1900	3.3	ESE
20230503_1910	2.5	ESE
20230503_1920	3.3	ESE
20230503_1930 20230503_1940	3.1 3.6	ESE
20230503_1950	3.1	ESE ESE
20230503_1750	3.3	ESE
20230503 2010	2.8	E
20230503 2020	2.8	ESE
20230503_2030	3.3	E
20230503_2040	2.5	ESE
20230503 2050 20230503 2100	2.5	ESE
20230503_2100	1.7 1.4	ESE ESE
20230503_2110	1.7	ESE ESE
20230503 2120	1.7	ESE
20230503 2140	2.2	SE
20230503 2150	2.5	SE
20230503_2200	2.2	SE
20230503_2210	2.8	ESE
20230503_2220 20230503_2230	2.5 2.5	ESE ESE
20230503_2230	2.5	ESE ESE
20230503_2240	2.2	ESE
20230503_2230	1.7	ESE
20230503 2300	1.7	ESE
20230503 2320	2.5	ESE
20230503 2330	2.5	Е
20230503_2340	2.2	ESE
20230503_2350	2.5	ESE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230504_0000	2.2	ESE
20230504_0010	2.2	ESE
20230504_0010	2.2	ESE ESE
	2.3	
20230504_0030		ESE
20230504_0040	1.7	ESE
20230504 0050	1.7	ESE
20230504_0100	1.9	ESE
20230504 0110	1.9	ESE
20230504 0120	2.2	ESE
20230504_0130	2.2	ESE
	2.2	ESE
20230504_0140		ESE
20230504_0150	3.1	ESE
20230504_0200	3.3	ESE
20230504_0210	3.3	ESE
20230504 0220	3,3	ESE
20230504 0230	3.3	ESE
20230504_0240	3.9	ESE
20230504_0250	4.2	ESE
	3.3	
20230504 0300		ESE
20230504_0310	3.1	E
20230504_0320	3.1	E
20230504 0330	2.8	E
20230504 0340	2.2	Е
20230504 0350	1.9	ESE
20230504 0400	2.2	ESE
20230504 0410	2.8	ESE
20230504_0420	3.3	ESE
20230504_0430	2.5	ESE
20230504_0440	2.2	E
20230504 0450	2.2	E
20230504 0500	2.2	ESE
20230504 0510	1.7	ESE
20230504 0510	1.7	ESE
		SE SE
	1.4	
20230504_0540	1.4	SE
20230504_0550	1.1	ESE
20230504_0600	0.3	-
20230504 0610	1.1	SE
20230504 0620	1.7	ESE
20230504 0630	1.9	SE
20230504_0030	2,5	ESE
	2.2	
20230504_0650		ESE
20230504_0700	1.4	ESE
20230504_0710	1.7	ESE
20230504 0720	2.2	ESE
20230504 0730	1.7	ESE
20230504 0740	2.8	ESE
20230504 0750	2.5	ESE
	1.9	E E E E E E E E E E E E E E E E E E E
20230504_0810	2.2	SE
20230504_0820	2.2	ESE
20230504_0830	1.7	ESE
20230504_0840	2.5	Е
20230504 0850	2.2	E
20230504 0900	2.5	Ē
20230504_0900	2.5	E
20230504_0920	2.2	E
20230504_0930	2.5	E
20230504_0940	2.2	E
20230504 0950	2.5	E
20230504 1000	2.5	Е
20230504 1010	1.9	Ē
20230504_1010	2.8	E
20230504_1030	1.7	ESE
20230504_1040	2.2	E
20230504_1050	2.8	E
20230504 1100	3.3	E
20230504_1110	3.3	E
20230504 1120	2.8	Ē
20230504_1120	2.5	ESE
20230504_1140	3.1	E
20230504_1150	3.9	E

Data & Time		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230504 1200	3.1	Е
20230504_1210 20230504_1210 20230504_1220 20230504_1230	3,3	Ē
20230504 1220	3.3	E
20230504_1230	3.1	Е
20230504 1240	2.8	Е
20230504 1250	3.9	E
20230504_1300	4.2 3.9	E
20230504_1310 20230504_1320	5.9 4.4	E E
20230504 1320	4.4	E E
20230504_1330	5	ENE
20230504_1350	4.2	ENE
20230504_1400	3.3	Е
20230504_1410	3.6	E
20230504_1420	3.6	ENE
20230504 1430	3.3	ESE
20230504_1440	3.3	E
20230504_1450 20230504_1500	3.9	E E
20230504_1510	3.3	E E
20230504_1510	3,3	E
20230504 1530	3.9	Ē
20230504_1540	3.9	Е
20230504_1550	3.9	Е
20230504_1600	3.3	E
20230504_1610	4.4	E
20230504_1620	3.9	E
20230504 1630 20230504 1640	4.2	E E
20230504_1640	3,3	ESE
20230504_1700	3.9	E
20230504_1700	3,9	E
20230504 1720	3.9	E
20230504 1730	3.3	Е
20230504_1740	2.8	ESE
20230504_1750	3.9	ESE
20230504_1800	3.6	E
20230504_1810	3.3	ESE
20230504_1820 20230504_1830	3.3 3.3	ESE ESE
20230504_1830	3.3	ESE ESE
20230504 1850	3.1	ESE
20230504 1900	2,2	SE
20230504 1910	2.2	SE
20230504_1920	2.5	SE
20230504_1930	2.5	SE
20230504_1940	2.5	SE
20230504_1950	1.7	SE
20230504_2000 20230504_2010	1.9	SE
20230504_2010 20230504_2020	2.2	SE SSE
20230504 2020	1.7	SE SE
20230504_2030	1.9	SE SE
20230504 2050	1.7	SE
20230504_2100	1.7	SE
20230504_2110	1.7	ESE
20230504_2120	1.7	ESE
20230504_2130	1.7	ESE
20230504_2140	1.7	ESE
20230504_2150 20230504_2200	1.4 1.7	SE SE
20230504_2200	1.7	SE SE
20230504_2210	1.7	SE SE
20230504_2220	1.7	SE
20230504_2240	1.1	SE
20230504_2250	0.8	SE
20230504_2300	1.1	SE
20230504_2310	0.3	ESE
20230504_2320	0.8	SSE
20230504 2330	0	SSE
20230504_2340	0	
20230504_2350	0.3	SSE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230505_0000	1.1	SSE
20230505_0000	1.1	SSE
20230505 0010	1.7	ESE
20230505 0020	1.1	ESE
20230505_0040	0.8	E E E E E E E E E E E E E E E E E E E
20230505_0050	0.3	WNW W
20230505_0100	0.6	
20230505_0110	0.3	SSW
20230505 0120	1.1	ESE
20230505_0130	1.7	ESE
20230505_0140	1.4	ESE
20230505_0150	1.7	ESE
20230505_0200	1.7	SE
20230505_0210	1.7	SE
20230505_0220	1.7	SE
20230505 0230	1.9	SE
20230505 0240	1.4	SE
20230505_0250	1.4	SE
20230505 0300	1.1	SE
20230505 0310	0.6	ESE
20230505 0320	1.1	ENE
20230505 0330	0.3	E
20230505 0340	0.6	S
20230505_0340	0.8	SSE
20230505 0400	1.1	E
20230505 0410	0.8	<u>Е</u> Е
20230505_0410	2.2	SE
20230505_0420	2.2	SE SE
20230505_0430	2.5	ESE
20230505_0450	2.2	SE
20230505_0500	2.2	SE
20230505_0510	2.2	E
20230505_0520	1.7	ESE
20230505_0530	2.2	ESE
20230505_0540	2.2	ESE
20230505_0550	2.2	ESE
20230505_0600	1.7	ESE
20230505 0610	2.8	ESE
20230505_0620	2.2	ESE
20230505 0630	1.4	SE
20230505 0640	2.2	ESE
20230505 0650	1.7	SE
20230505 0700	1.7	ESE
20230505 0710	2.5	SE
20230505 0720	2.2	ESE
20230505 0730	2.2	ESE
20230505 0740	2.5	ESE
20230505 0750	2.5	ESE
20230505_0750	2.5	ESE
20230505_0800	2.5	ESE
20230505 0820	1.7	ESE
20230505_0830	2.5	E
20230505_0840	2.5	E
20230505 0850	2.2	ESE
20230505_0900	3.1	ESE
20230505_0910	2.8	ESE
20230505 0920	2.5	ESE
20230505_0930	2.2	ESE
20230505_0940	2.5	E
20230505_0950	2.5	E
20230505_1000	2.8	E
20230505_1010	2.5	ESE
20230505 1020	1.9	SE
20230505_1030	1.7	E
20230505 1040	1.7	S
20230505_1040	2.2	ESE
20230505 1000	1.1	SW
20230505_1100	1.4	SW
20230505_1110	1.4	SE SE
20230505 1130	1.4	SE
20230505_1140	2.2	SW
20230505_1150	3.6	SW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230505_1200	3.1	SW
20230505_1210	3.3	SW
20230505 1220	3.3	SSW
20230505_1230	4.2	SW
20230505_1240 20230505_1250	3.9 3.3	SW SW
20230505_1300	4.2	SW
20230505_1310	3.3	SW
20230505_1320	3.9	SW
20230505_1330	2.8	SW
20230505_1340	4.2	SW
20230505_1350 20230505_1400	3.3 3.9	SW SW
20230505_1400	3.3	SSW
20230505_1410 20230505_1420	3.3	SW
20230505 1430	4.4	SW
20230505_1440 20230505_1450	3.9 4.2	SW
20230505_1450 20230505_1500	3.3	SW SW
20230505 1500	3.6	SW
20230505 1520	3.9	SW
20230505 1530 20230505_1540	3.3	SW SSW
20230505_1540	3.3	SSW
20230505_1550 20230505_1600	2.8 3.6	S SSW
20230505 1610	3.9	SW
20230505 1620	3,3	SW
20230505 1630	3.3	SW
20230505_1640	3.9	SSW
20230505_1650 20230505_1700	3.3 3.9	SW SW
20230505_1700	3.9	SSW
20230505 1710	3.9	SSW
20230505_1730	3.6	SSW
20230505_1740	3.1	SW
20230505_1750	3.3	SSW
20230505_1800 20230505_1810	3.6 2.8	SW SSW
20230505_1820	2.8	SW
20230505_1830	2,5	SSW
20230505 1840	1.7	SSW
20230505_1850	2.2	S
20230505_1900 20230505_1910	3.1	S S
20230505 1910	2.2 2.5	SE SE
20230505_1720	2.2	SSE
20230505 1940	1.4	SE
20230505_1950	1.4	SE
20230505_2000	2.2	SSE
20230505_2010 20230505_2020	2.2 1.4	SSE SE
20230505 2020	1.4	ESE
20230505 2040	1.7	ESE
20230505_2050	1.1	ESE
20230505_2100	1.1	E
20230505_2110	1.7	ESE
20230505 2120 20230505_2130	1.1 1.1	SE SE
20230505_2140	1.1	ESE ESE
20230505_2140	1.4	SE
20230505_2200	1.4	ESE
20230505_2210	1.7	ESE
20230505 2220 20230505 2230	2.2 2.2	ESE ESE
20230505_2240	2.2	ESE ESE
20230505_2250	2.2	ESE
20230505_2300	1.7	ESE
20230505_2310	1.7	ESE
20230505_2320	1.7	ESE
20230505 2330 20230505_2340	1.9	E ESE
20230505_2350	1.1 1.4	ESE E
20220203_2330	1.7	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		, ,
20230506_0000 20230506_0010	1.4	E ESE
20230506 0010	2.2 2.2 2.2 2.2	ESE
20230506 0030	2.2	E
20230506 0040	1.7	Е
20230506 0050	1.7	E
20230506_0100 20230506_0110	1.4	ESE ESE
20230506 0120	1.1	ESE
20230506_0130	1.7	ESE
20230506_0140	2.2	ESE
20230506_0150 20230506_0200	1.4 1.7	ESE SE
20230506_0200	1.1	ESE
20230506_0220	1.1	ESE
20230506_0230	0.8	SE
20230506_0240	0.8	SE
20230506_0250 20230506_0300	0.8	SE SE
20230506_0310	1.1	SE SE
20230506_0320	0.6	SE
20230506_0330	0.8	SE
20230506_0340 20230506_0350	0.8 1.4	SE ESE
20230506 0330	1.1	SE
20230506_0410	1.1	ESE
20230506_0420	1.4	ESE
20230506_0430	0.8 0.8	SE SE
20230506_0440 20230506_0450	0.8	SE SE
20230506 0500	1.1	SE
20230506 0510	1.4	ESE
20230506_0520	1.1	ESE E
20230506_0530 20230506_0540	2.2	
20230506_0550	2.2 2.2	E ESE
20230506_0600	2.2	ESE
20230506 0610	1.4	ESE ESE
20230506_0620 20230506_0630	1.4 1.1	SE SE
20230506 0640	0.6	ESE
20230506_0650	0.8	SE
20230506_0700	1.1	ESE
20230506_0710 20230506_0720	1.1 1.1	ESE SE
20230506_0720	1.1	SE
20230506_0740	1.7	SSE
20230506_0750	1.7	SSE
20230506_0800 20230506_0810	1.7 2.2	SSE SSE
20230506 0810	1.7	SSE
20230506_0830	1.7	S
20230506_0840	1.9	SSW
20230506 0850 20230506 0900	2.2 2.8	S SSW
20230506_0900	3.9	SSW
20230506_0920	3.3	SSW
20230506_0930	2.8	SSW
20230506_0940	3.3 3.9	S SSW
20230506_0950 20230506_1000	3.9	S
20230506_1010	3.3	SSW
20230506_1020	2.5	SSW
20230506_1030	3.6	SSW
20230506_1040 20230506_1050	5 4.2	SSW SSW
20230506_1000	4.4	SSW
20230506_1110	4.2	SSW
20230506_1120	4.2	SSW
20230506_1130 20230506_1140	4.2 4.7	SSW S
20230506_1140	3.9	SSW

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230506_1200	3.3	SW
20230506 1210 20230506 1220	4.2 3.9	SW
20230506_1220	3.3	SW SW
20230506 1240	3.3	SSW
20230506_1250	4.4	SSW
20230506_1300 20230506_1310	4.2 4.7	SW SSW
20230506 1310	4.7	SSW
20230506_1330	4.4	SW
20230506_1340	4.7	SSW
20230506_1350 20230506_1400	4.2 3.9	SW SW
20230506_1400	4.7	SW
20230506_1420	3.9	SW
20230506 1430	3.9	SW
20230506_1440 20230506_1450	3.9	SW SW
20230506 1500	3.9	SW
20230506_1510	3.3	SW
20230506_1520	2.8	WSW
20230506 1530 20230506_1540	3.1 2.5	SW SW
20230506_1550	3.1	SSW
20230506 1600	2.8	SSW
20230506_1610	3.3	SSW
20230506_1620	3.3	SW
20230506 1630 20230506 1640	3.3	SW SSW
20230506_1650	3.3	SW
20230506_1700	2.8	SSW
20230506 1710	3.1	SW
20230506_1720 20230506_1730	3.3 2.8	SW SW
20230506_1740	3.1	SW
20230506_1750	3.3	SSW
20230506_1800	3.3	SSW
20230506_1810 20230506_1820	2.5 2.8	SW SW
20230506 1830	2.5	SW
20230506_1840	2.5	SSW
20230506_1850	1.7	SW
20230506_1900 20230506_1910	1.7 1.7	SW SW
20230506 1910	1.7	SSW
20230506_1930	1.4	SSW
20230506_1940	0.6	SW
20230506_1950 20230506_2000	1.1 0.8	SW SW
20230506_2000	0.8	S
20230506 2020	1.4	SSW
20230506_2030	1.7	SSW
20230506_2040 20230506_2050	1.7 1.7	SSW SSW
20230506 2000	1.7	SSW
20230506_2110	1.1	SSW
20230506 2120	1.4	SSW
20230506_2130 20230506_2140	1.4 1.7	SSW SSW
20230506_2140	1.7	SSW
20230506_2200	1.9	SSW
20230506_2210	1.4	S
20230506_2220	0.8	SSE
20230506_2230 20230506_2240	1.1 1.1	S S
20230506_2250	0.8	SE
20230506_2300	0.3	SSE
20230506_2310	0.3	SSE
20230506_2320 20230506_2330	0.3	SSE
20230506 2340	0.3	=
20230506_2350	0	NE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230507 0000	0.3	ENE
20230507_0000	0.3	ESE
20230507_0010	0.3	SE SE
	0.3	
		SE
20230507_0040	0	=
20230507_0050	0	-
20230507_0100	0	-
20230507_0110	0	-
20230507 0120	0	-
20230507_0130	0	-
20230507_0140	0	-
20230507 0150	0	-
20230507_0200	0.3	
20230507_0210	0.3	ESE
20230507_0220	0.5	EDE
20230507 0220	0	
20230507 0230	0.3	SSE
20230507_0240	0.3	DOE
		ESE
20230507 0300	0.6	ESE
20230507_0310	0.3	-
20230507_0320	0.6	SE
20230507_0330	0.3	SE
20230507_0340	0.3	ESE
20230507_0350	0.8	ESE
20230507 0400	0.8	ESE
20230507 0410	0.3	E
20230507 0420	1.1	ENE
20230507 0430	1.1	E
20230507 0440	0.3	ENE
20230507_0440	0.5	SSE
20230507_0450	0,3	SE SE
	0.8	ESE
20230507_0520	0.6	E
20230507_0530	0.6	<u> </u>
20230507_0540	0.3	
20230507_0550	0.3	ENE
20230507_0600	0.3	SW
20230507_0610	0.3	SW
20230507_0620	0	-
20230507 0630	0.3	ESE
20230507 0640	0.3	WSW
20230507 0650	0	-
20230507 0700	0.3	-
20230507 0710	0.3	NNE
20230507 0710	0.3	SW
20230507_0720	0.6	SW
20230507_0750	0.0	-
20230307_0740	0.3	SE
20230307_0730		
	0.6	SSW
20230507_0810	0	- P
20230507 0820	0.3	E
20230507_0830	0.3	SSE
20230507_0840	0	S
20230507 0850	0	<u>-</u>
20230507_0900	1.1	E
20230507_0910	1.1	E
20230507_0920	1.4	ESE
20230507_0930	2.2	ESE
20230507_0940	1.7	ESE
20230507_0950	1.4	SE
20230507_1000	1.9	SE
20230507_1010	1.7	SE
20230507_1010	2.2	SE
20230507_1020	1.7	SSE
20230507_1050	2.5	SE
20230507_1040	3.3	SE SE
20230507 1100	2.8	SE
20230507_1110	2.5	SSE
20230507_1120	2.5	SE
20230507 1130	1.7	SE
20230507_1140	2.2	ESE
20230507_1150	1.7	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230507_1200	1.4	ESE
20230507_1210 20230507_1220	0.6	ESE WSW
20230507 1220 20230507 1230	0.8 5	NW NW
20230507_1240	2.8	N N
20230507_1240	2.5	NW
20230507_1300	0.6	NE
20230507_1310	1.1	SSW
20230507_1320	0.8	W
20230507_1330	0.8	- CWI
20230507_1340 20230507_1350	2.5 3.3	SW
20230507_1350 20230507_1400	3.3 1.4	WSW W
20230507_1400	0	ENE
20230507_1420	1,9	E
20230507 1430		SSW SW
20230507_1440	1.4 2.2	SW
20230507_1450	1.4	WSW
20230507_1500	1.4	SSW
20230507_1510	1.1	S
20230507_1520 20230507_1530	0.6	SW
20230507_1540	0 1.4	SE
20230507_1550	1.4	SE
20230507_1600	1.7	ESE
20230507_1610	0.8	ESE
20230507_1620	1.7	SE
20230507_1630	3.1	ESE
20230507_1640	3.3	SE
20230507_1650	2.2	SE
20230507_1700 20230507_1710	2.8 1.1	SE SE
20230507 1710	1.1	ENE ENE
20230507_1720	0.6	ENE
20230507 1740	1.7	NE NE
20230507_1750	0.8	WNW
20230507_1800	0.3	WNW
20230507_1810	0.8	NW
20230507_1820	0.8	NNW
20230507_1830	0.8	N NW
20230507_1840 20230507_1850	0.3 0.6	NW SW
20230507_1830	1.1	NW
20230507_1900	0.8	NW
20230507_1920	1.4	NW
20230507_1930	0.8	WNW
20230507_1940	0.8	WNW
20230507_1950	1.4	NW
20230507_2000	1.1	NW
20230507_2010 20230507_2020	1.1 1.4	NW WSW
20230507 2020 20230507 2030	0.8	WNW
20230507_2030	0.3	NNE
20230507 2050	0.5	
20230507 2100	0.3	SE
20230507_2110	0.3	S
20230507_2120	0.3	SSW
20230507_2130	0.3	- CF
20230507_2140 20230507_2150	0.3	SE
20230507_2150	0	SE -
20230507_2200	0	
20230507_2210	0	S
20230507_2230	0	SW
20230507_2240	0	-
20230507_2250	0.3	SSE
20230507 2300	0.6	NW
20230507_2310	0.3	WNW
20230507_2320	0.3	SE
20230507 2330 20230507 2340	0.3	SSW
20230507_2340 20230507_2350	1.7	N N
20230301_2330	1./	IN

Data & Time	1	
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230508_0000	1.9	NNE
20230508 0010	1.4	NNE
		ININE
20230508 0020	0.3	-
20230508_0030	0	-
20220500_0030		
20230508_0040	0	-
20230508_0050	0	-
20230508 0100	0.8	N
20230508_0110	1.1	N
20230508_0120	1.4	NNE
20230508_0130	1.4	N
20230508_0140	1.7	N
20230508 0150	2.5	NNE
20230508_0200	0.8	NNE
20230300_0200		
20230508_0210	1.1	NNE
20230508 0220	1.4	N
20230508 0230	0.8	NNW
20230306_0230	0.6	
20230508_0240	1.7	N
20230508_0250	1.7	N
20230508_0300	2.8	N
20230508_0310	1.7	NNE
20230508 0320	1.1	NNE
20230508_0330	0.3	NE
20230508 0340	0	-
20230508 0350	0.8	N
20230508_0400	0.8	NNE
20230508 0410	0.8	NE
20230508 0420	1.1	NNE
20230508_0430	0.6	N
20230508 0440	0.3	-
20230508 0450	1.1	N
20230508 0500	1.7	NNE
20230508 0510	0.8	N
	1.1	N N
20230508 0530	2.2	N
20230508 0540	2.2	N
20230508_0550	1.9	N
20230508 0600	3.1	NNE
20230508 0610	2.8	N
20230508_0620	2.2	N
20230508 0630	1.7	N
20230508 0640	2,5	N
	2.3	
20230508_0650	2.5	N
20230508 0700	2.2	N
20230508 0710	2.2	
		N
20230508 0720	1.7	N
20230508 0730	3.3	N
20230508_0740	3.3	NNE
20230508_0750	1.9	N
20230508 0800	1.9	NNE
20230508_0810	0.8	NNW
20230508 0820	0.8	N
20230508_0830	0.3	NE
20230508_0840	0.8	E
20230508 0850	0.3	-
20230508_0900	0.3	N
20230508_0910	1.4	NNW
20230508 0920	2.2	N
20230508 0930	2.5	N
20230508_0940	2.8	N
20230508_0950	1.7	N
20220500 0750		
20230508_1000	2.5	N
20230508_1010	2.2	N
20230508_1020	2.2	N
20230508_1030	1.7	NNE
20230508 1040	1.1	NNE
20230508 1050	0.8	N
20220500 1030		
20230508_1100	0.8	N
20230508_1110	1.1	N
20230508 1120	1.4	N
20230508_1130	1.7	N
20230508_1140	1.7	NNE
20230508_1150	1.1	NNE
20230306_1130	1.1	ININE

Date & Time	Wr - 1 0 1 (t)	W' - 1 D' (F)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230508_1200 20230508_1210	2.2	NNE
20230508_1210 20230508_1220	1.4	NNE
20230306_1220	2.2	NNE NNE
20230508 1220 20230508 1230 20230508 1240 20230508 1250	2.2 2.2 2.5 2.5	N
20230508 1250		N
20230508_1300	2.2	N
20230508_1310	2.2	N
20230508 1320 20230508_1330	2.8 1.7	NNE N
20230508_1340	2.2	N N
20230508_1340	2.8	N N
20230508_1400	2.2	N
20230508_1410	3.1	N
20230508_1420	2.8	NNE
20230508 1430	2.5 2.2	NNE NNE
20230508_1440 20230508_1450	2.2	NNE NNE
20230508 1430	1.7	NNE N
20230508 1500	0.8	NNE
20230508_1520	0.8	NNE
20230508 1530	0.3	NW
20230508_1540	0.6	NE NE
20230508_1550 20230508_1600	0.3	N NNE
20230508_1610	0.3	NNE NNE
20230508_1620	1.1	NNE
20230508 1630	0.8	N
20230508_1640	1.1	NNE
20230508_1650	0.8	NE
20230508_1700	0.3	E
20230508 1710 20230508_1720	0	E
20230508_1720	0	SW
20230508 1740	0	WSW
20230508_1750	0.3	NNW
20230508_1800	0.8	NNW
20230508_1810	1.1	N
20230508_1820 20230508_1830	1.1 0.8	N NNE
20230508_1830 20230508_1840 20230508_1850	0.6	- INNE
20230508 1850	0	-
20230508_1900	0	=
20230508_1910	0.3	NE
20230508_1920	0.3	NE NE
20230508_1930 20230508_1940	0.3	E
20230508 1950	0	-
20230508 2000	0,3	NE
20230508 2010	0	=
20230508 2020	0	N
20230508_2030 20230508_2040	0	SW
20230508_2040 20230508_2050	0	SW SSE
20230508_2100	0	SSE
20230508 2110	0	SW
20230508 2120	0	N
20230508 2130	0	-
20230508_2140	0	-
20230508 2150 20230508 2200	0 0,3	ENE
20230508_2210	0.6	ENE E
20230508_2210	1.1	ESE
20230508_2230	2.2	ESE
20230508_2240	1.7	ESE
20230508_2250	1.4	ESE
20230508 2300	1.7	ESE
20230508_2310 20230508_2320	1.7 1.7	E E
20230508_2320	1.7	<u>Е</u> Е
20230508 2330	1.1	ESE
20230508_2350	1.7	SE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230509_0000	2.2	SE
20230509_0000	1.9	ESE
20230509 0010	1.4	ESE
20230509_0030		EOE
20230509_0030	1.7 1.4	E
20230509_0050	0.8	<u>Е</u> Е
	1.1	
20230509_0050		SE SE
20230509_0100	1.1	
20230509 0110	1.1	SE
20230509_0120	0.6	SE
20230509_0130	0.6	E
20230509 0140	0.6	ESE
20230509_0150	1.7	E
20230509_0200	1.1	E
20230509_0210	1.1	ENE
20230509 0220	1.1	ENE
20230509_0230	1.7	ENE
20230509_0240	1.4	ENE
20230509 0250	1.4	ENE
20230509_0300	1.4	ENE
20230509_0310	1.4	ENE
20230509 0320	1.7	ENE
20230509_0330	1.7	E
20230509_0340	1.1	ENE
20230509_0350	1.7	ENE
20230509_0400	1.9	ENE
20230509_0410	2.2 1.7	ENE
20230509_0420	1.7	E
20230509_0430	1.1	ESE
20230509_0440	1.9	E
20230509_0450	1.7	Е
20230509 0500	1.1	ESE
20220500 0510	1.4	SE
20230509_0520	1.1	SE
20230509 0530	0.3	E
20230509_0540	1.9	ESE
20230509_0550	0.8	-
20230509 0600	1.7	ESE
20230509 0610	1.4	E
20230509 0620	0.8	E
20230509 0630	0.8	Ē
20230509 0640	0.8	Ē
20230509 0650	1.1	E
20230509 0700	1.4	ESE
20230509 0710	2.5	SE
20230509_0720	1.4	ENE
20230509 0730	1.1	ESE
20230509_0740	1.1	ESE
20230509_0740	2.2	SE
20230509_0800 20230509_0810	1.4	ESE
20230509 0810	1.1 1.4	<u>Е</u> Е
20230509_0820	2.8	<u> </u>
20230509_0830	2.0	ESE ESE
20230509_0850	2.8 2.2	SE SE
	2.2	
20230509_0900		<u>E</u>
20230509 0910	1.4 1.7	E
20230509_0920		E
20230509_0930	2.5	E
20230509_0940	3.1	E
20230509_0950	2.2	ENE
20230509_1000	2.8	E
20230509_1010	2.8	ESE
20230509_1020	3.3	E
20230509_1030	2.8	E
20230509_1040	3.1	E
20230509_1050	2.5	E
20230509_1100	3.3	E
20230509_1110	3.6	E
20230509 1120	2.8	E
20230509_1130	2.8	ESE
20230509 1140	2.2	ESE
20230509 1150	3.1	ESE

Wind Speed (m/s)	Date & Time	WW 10 11 ()	W. 171 1 W 1
20030509 1210 2.8 ESE		Wind Speed (m/s)	Wind Direction (From)
20230509 1200 2.8 ESE			
20230509 1230			
20230509 1240 1.9 ESE	20230509_1220		
20230509 1500			
20230509 1300 3.3 ESE			
2023059 1310 2.5 E		3.3	
20230509 1320		2.5	
20230509 1330 3.3 E			
2023/05/09 1350	20230509_1330	3.3	
20230509 1400 3.1 ESE			
20230509 1410	20230509_1350	2.8	ESE
20230509 1420		3.1	
2023/05/09 1440 3.1 ESE	20230509_1410	2.8	
2023/05/09 1440 3.1 ESE	20230509_1420	4.2	
20230509 1450	20230309_1430	3.3	ESE
20230509 1500 2.8			
20230509 1510			
20230509 1500 3.3 ESE		2.8	
20230509 1500 2.8	20230509 1520		
20230509 1500 2.8	20230509 1530	3.3	Е
20230509 1500 2.8	20230509_1540	3.3	
20230509 1610 3.1 E	20230509_1550		
20230509 1620	20230509_1600	3.6	Ë
20230509 1630 3.3 E 20230509 1640 3.3 E 20230509 1650 2.8 E 20230509 1700 3.3 E 20230509 1700 3.3 E 20230509 1710 3.1 E 20230509 1710 3.1 E 20230509 1720 3.3 ESE E 20230509 1730 2.8 E E 20230509 1730 2.8 E E 20230509 1730 2.5 E E 20230509 1740 2.5 E E 20230509 1800 2.2 ESE 20230509 1800 2.2 ESE 20230509 1810 2.5 E E 20230509 1810 2.5 E E 20230509 1830 1.9 ESE 20230509 1830 1.9 ESE 20230509 1830 1.9 ESE 20230509 1850 1.4 ESE 20230509 1850 1.4 ESE 20230509 1850 1.4 ESE 20230509 1910 1.7 ESE 20230509 1910 1.7 ESE 20230509 1930 1.7 E E 20230509 20000 2.2 ESE 20230509 2010 1.9 SE 20230509 2010 1.9 SE 20230509 2100 1.9 SE 20230509 2100 2.8 SE 20230509 2100 2.8 SE 20230509 2100 2.8 SE 20230509 2210 2.8 SE 20230509 2200 2.8 SE 20230509 2300 2.5 SE 20230		3.1	
20230509 1640		2.8	
20230509 1650 2.8 E	20230309_1630	3.3	
20230509 1700 3.3 E	20230509_1650	2.8	
20230509 1710 3.1 E	20230509_1000		
20230509 1720 3.3 ESE	20230509 1710		
20230509 1740		3.3	
20230509 1750			Е
20230509 1800 2.2 ESE		2.5	
20230509 1810		1.7	ESE
20230509 1820			ESE
20230509 1830	20230509_1810		
20230509 1840	20230509_1820		E
20230509 1850			ESE
20230509 1900	20230509_1840		ESE
2023/05/09 1910			
20230509 1920	20230509 1910		ESE
20230509 1940	20230509_1920		ESE
2023/05/09 1950			
20230509 2000 2.2			ESE
20230509 2010			-
20230509 2000 2.2 ESE			
20230509 2030 2.2 SSE			
20230509 2040 1.9 SE			
20230509 2050 2.5			
20230509 2100 1.9 SE			ESE
20230509 210		1.9	SE
20230509 2120 2.5 SE		2.2	
20230509 2140	20230509_2120	2.5	SE
20230509 2150 3.3 SE			
20230509 2200 2.8 SE	20230509_2140		
20230509 2210 2.2 ESE 20230509 2220 2.5 ESE 20230509 2230 2.8 ESE 20230509 2230 2.8 ESE 20330509 2240 2.2 ESE 20230509 2300 2.5 SE 20230509 2300 2.5 SE 20230509 2310 2.8 SE 20230509 2320 2.5 SE 20230509 2330 3.3 SE 20230509 2340 3.1 SE		3.3	
20230509 2220 2.5 ESE		2.8	
20230509 2230 2.8 ESE 20230509 2240 2.2 ESE 20230509 2250 2.2 SE 20230509 2300 2.5 SE 20230509 2310 2.8 SE 20230509 2320 2.5 SE 20230509 2320 3.3 SE 20230509 2340 3.1 SE		2.2	
20230509 2240 2.2 ESE 20230509 2250 2.2 SE 20230509 2300 2.5 SE 20230509 2310 2.8 SE 20230509 2320 2.5 SE 20230509 2330 3.3 SE 20230509 2340 3.1 SE			
20230509 2250 2.2 SE 20230509 2300 2.5 SE 20230509 2310 2.8 SE 20230509 2320 2.5 SE 20230509 2330 3.3 SE 20230509 2340 3.1 SE	20230509_2230		
20230509 2300 2.5 SE			
20230509_2310	20230509 2300		
20230509 2320 2.5 SE 20230509 2330 3.3 SE 20230509 2340 3.1 SE	20230509 2310	2.8	
20230509 2330 3.3 SE 20230509_2340 3.1 SE	20230509_2320	2.5	
20230509_2340 3.1 SE	20230509 2330	3.3	SE
20230509_2350 2.8 ESE	20230509_2340		SE
	20230509_2350	2.8	ESE

D . 0 m		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230510_0000	3.3	ESE
20230510_0000	3.3	SE SE
20230510_0010	4.2	ESE
20230510 0020	3.9	ESE
20230510_0030	3,3	ESE
20230510 0040	4.2	ESE
20230510 0050	3,9	ESE
20230510 0100	4.4	ESE
20230510 0110	4.4	ESE
20230510_0120	4.2	ESE
20230510_0130	3.9	ESE
20230510_0140	3.3	SE
20230510_0150	3.3	ESE
20230510_0200	3.6	ESE
20230510_0210	3.3	SE
20230510 0220	3.9	ESE ESE
20230510_0230 20230510_0240	2.5 2.8	ESE
20230510_0240	2.8	ESE
20230510 0250 20230510_0300	3.1 2.8	ESE ESE
20230510_0300	2.8	ESE
20230510_0300	2.5	ESE
20230510 0320	2.8	ESE ESE
20230510_0350	2.5	ESE
20230510 0350	2.5	E
20230510 0400	3.3	ESE
20230510_0410	3.1	ESE
20230510 0420	2.8	ESE
20230510_0430	2.8	ESE
20230510_0440	2.2	E
20230510_0450	3.3	ESE
20230510_0500	3.3	ESE
20230510_0510	2.5	ESE
20230510_0520	2.8	ESE
20230510 0530 20230510_0540	3.3 2.5	ESE
20230510_0540	2.5	E ESE
20230510_0550	2.2	ESE E
20230510 0600	3.3	E ESE
20230510_0010	3,3	ESE
20230510_0020	3.1	ESE
20230510 0640	3.1	ESE
20230510 0650	2,5	ESE
20230510 0700	2.8	ESE
20230510_0710	2.5	ESE
20230510_0720	2.8	ESE
20230510_0730	3.1	ESE
20230510_0740	3.3	ESE
20230510_0750	3.6	ESE
20230510_0800	4.4	ESE
20230510 0810	4.7	ESE ESE
20230510_0820	3.6	ESE
20230510_0830	3.6 3.3	ESE
20230510 0840	3.3 2.8	ESE ESE
20230510_0850 20230510_0900	3.1	E ESE
20230510_0900	2.8	E E
20230510 0910	3.9	ESE
20230510_0920	4.2	ESE
20230510 0940	3.3	E
20230510 0950	3.9	Ē
20230510_1000	4.4	ESE
20230510_1010	3.3	ESE
20230510_1020	3.3	ESE
20230510_1030	3.3	ESE
20230510_1040	4.2	ESE
20230510 1050	4.4	ESE
20230510_1100	4.7	ESE
20230510 1110	3.9	ESE
20230510 1120 20230510_1130	4.2 2.8	ESE SE
20230510_1130	2.8	SE
20230510_1140	3.1	ESE
20230510 1150	2.8	SE

Date & Time	Wr - 1 0 1 (t)	W. IDing. (Pros)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230510_1200	4.2	SE
20230510_1210 20230510_1220	4.2	SE SE
20230510 1220	4.7 4.2	SE SE
20230510_1240	4.2	ESE
20230510 1250	4.2	SE
20230510_1300	3.3	ESE
20230510_1310	3.3	ESE
20230510_1320	3.3	ESE
20230510_1330 20230510_1340	4.4 4.2	ESE ESE
20230510_1340	4.7	ESE
20230510_1300	4.7	ESE
20230510 1410	4.2	ESE
20230510_1410	3.9	ESE ESE ESE
20230510 1430	4.2	ESE
20230510_1440 20230510_1450	4.7 4.7	ESE E
20230510_1430	4.7	<u></u> Е
20230510 1500	4.7	ESE
20230510_1520	3.3	ESE
20230510 1530	3.9	ESE
20230510_1540	3.9	E
20230510_1550	3.9 3.3	ESE
20230510 1600 20230510 1610	3.3	ESE SE
20230510_1610	2.8	ESE
20230510_1620	3.1	E
20230510 1640	3.3	ESE
20230510 1650	3.3	ESE
20230510_1700	3.3	ESE
20230510 1710 20230510 1720	3.6 3.3	ESE ESE
20230510_1720	3.3	ESE ESE
20230510_1750	2.5	ESE
20230510_1750	2.5	ESE
20230510_1800	2.8	SE
20230510 1810	3.3	ESE
20230510_1820	2.5	SE
20230510_1830 20230510_1840	2.8 2.5	SE SE
20230510_1840	2.2	ESE
20230510_1900	1.4	-
20230510_1910	1.4	SE
20230510_1920	2.2	SSE
20230510_1930 20230510_1940	2.5 2.5	SE SE
20230510_1940	2.5	SE ESE
20230510_1930	1.4	SE
20230510_2000	1.9	ESE
20230510 2020	2.5	ESE
20230510_2030	2.8	SE
20230510_2040	2.5	SE
20230510 2050 20230510 2100	1.7 2.5	SE SE
20230510_2100	1.9	SE SE
20230510_2110	1.1	ESE
20230510_2130	2.5	ESE
20230510_2140	2.2	ESE
20230510 2150	2.5 2.2	ESE
20230510_2200	2.2	ESE
20230510_2210 20230510_2220	2.2 2.5	ESE ESE
20230510_2220	1.9	ESE
20230510_2240	2.5	SE
20230510_2250	2.2	SE
20230510 2300	1.7	ESE
20230510_2310	2.2	SE
20230510_2320 20230510_2330	2.5	SE
20230510_2340	2.8 2.5	ESE ESE
20230510_2340	2.5	ESE
20230310_2330	2,2	Lon

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	1.7	ESE
20230511_0000 20230511_0010	1.7	SE SE
20230511_0010	2.5	SE SE
20230511 0020	2.2	SE SE
20230511_0030	1.9	SE SE
20230511_0030	1.7	SSE
20230511 0040	1.7	SE SE
20230511_0030	2.2	SE
20230511_0100	2.2	SE
20230511_0120	3.3	SE SE
20230511_0120	4.2	SE
20230511_0130	3.9	SE
20230511_0150	3.9	SE
20230511_0200	3.6	SE
20230511 0210	3.1	SE
20230511 0220	2.8 3.3	SE
20230511 0230	3.3	SE SE
20230511 0240	2.5	ESE
20230511 0250	3.9	SE
20230511_0300	3.3	SE
20230511_0310	3.3	SE
20230511_0320	3.3	SE
20230511_0330	2.8	SE
20230511_0340	2.2	ESE
20230511 0350	3.1	SE
20230511_0400	2.5	ESE
20230511_0410	2.2	ESE
20230511 0420	2.2	ESE
20230511_0430	1.7	SE
20230511_0440	1.4	SE
20230511_0450	2.2	SE
20230511 0500	2.5	ESE
20230511_0510 20230511_0520	1.7	ESE
20230511_0520 20230511_0530	1.7	ESE
20230511 0530 20230511_0540	1.7	E ESE
20230511_0540	1.7	E E E E E E E E E E E E E E E E E E E
20230511 0600	1.1	SE
20230511 0600	1.1	SE
20230511 0620	1.1	SE
20230511 0630	0.8	SE
20230511 0640	1.7	SSE
20230511 0650	1.4	SE
20230511 0700	2.2	SE
20230511_0710	1.9	SE
20230511_0720	1.7	ESE
20230511_0730	1.7	ESE
20230511_0740	1.7	ESE
20230511_0750	1.7	ESE
20230511_0800	2.5	ESE
20230511 0810	3.3	ESE ESE
20230511_0820	2.5	ESE
20230511_0830	3.1	ESE
20230511 0840 20230511 0850	2.8	ESE ESE
20230511_0850	4.2	ESE
20230511_0900	4.2 3.9	ESE
20230511 0910	3.3	ESE E
20230511_0920	2.8	E
20230511_0950	2.8	E
20230511_0950	3.3	E
20230511_1000	4.2	Ē
20230511 1010	4.2	E
20230511_1020	3.9	ESE
20230511_1030	3.3	E
20230511_1040	3.3	ENE
20230511_1050	3.1	Е
20230511_1100	2.8	E
20230511_1110	2.8	E
20230511 1120 20230511_1130	2.2 2.2	ESE ESE
20230511_1130		ESE
20230511_1140	2.2	ESE
20230511 1150	3.3	E

Date & Time	TT 10 11 ()	W. 171 1 W 1
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230511_1200	3.3	E
20230511_1210	3.9	ENE
20230511_1220	3.6	E
20230511_1230	4.7	ENE
20230511_1240 20230511_1250	3.1 3.3	E ENE
20230511_1230	3.3	ENE E
20230511_1310	3.3	E
20230511 1320	3.3	ENE
20230511_1330	3.3	Е
20230511_1340	3.3	ENE
20230511_1350	2.8	E
20230511_1400	1.7	E
20230511_1410	2.5 2.2 3.1	E
20230511_1420 20230511_1430	2.2	E
20230511_1440	3.1	E E
20230511_1440	2.2	E
20230511_1500	2.8	E
20230511_1510	2.2	Ē
20230511 1520	2.5	E
20230511_1530	2.2 2.2	Е
20230511_1540	2.2	ESE
20230511 1550	1.7	E
20230511_1600	2.5	E
20230511_1610 20230511_1620	2.5 2.5	E
	2.5	E
20230511_1630 20230511_1640	2.2	E E
20230511_1650	2.2	ESE
20230511_1700	2.5	ESE
20230511_1700	1.7	E
20230511 1710	1.7	Ē
20230511 1730	1.7	E
20230511 1740	1.7	ESE
20230511_1750	1.4	ESE
20230511_1800	1.7	Е
20230511_1810	1.7	E
20230511_1820	1.4	E
20230511_1830	1.4	ENE
20230511 1840 20230511 1850	1.4 1.7	ENE ENE
20230511_1830	1.7	ENE
20230511_1900	1.7	ENE
20230511_1910	1.4	ENE
20230511 1930	1.4	NE
20230511 1940	0.8	ENE
20230511_1950	0.6	ENE
20230511_2000	0.8	ENE
20230511_2010	0.8	Е
20230511 2020	0.8	E
20230511_2030	0.8	ESE
20230511_2040	0.8	SE
20230511 2050 20230511 2100	1.1 0.8	ESE E
20230511_2100	0.8	ENE
20230511_2110	0.8	ESE
20230511 2120	0.3	ESE
20230511 2140	0.8	ENE
20230511_2150	0.6	E
20230511_2200	0.8	Е
20230511_2210	1.1	ESE
20230511_2220	0.8	SE
20230511_2230	0.3	SE
20230511_2240	0.8	SE
20230511_2250	1.1	E
20230511 2300 20230511_2310	1.4 0.8	ESE ESE
20230511_2310	0.8	E E E
20230511_2320	0.8	E
20230511 2330	1.1	ENE
20230511_2350	1.4	ENE

Date & Time	Wind Coord (m/s)	Wind Direction (France)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230512_0000	1.1	ESE
20230512_0010 20230512_0020	1.4 1.1	SE SE
20230512_0030	0.8	ESE
20230512 0030	1.1	E
20230512 0040 20230512_0050	1.4	E
20230512_0050	1.4	ESE
20230512_0100	0.8	ESE
20230512_0110 20230512_0120	0.8	ESE ESE
20230512_0120 20230512_0130	0.8	ENE ENE
20230512_0130	0.8	NE NE
20230512 0150	1.1	ESE
20230512_0200	1.4	ESE
20230512_0210	1.1	ESE
20230512 0220	1.7	ESE
20230512_0230 20230512_0240	1.1 0.8	SE E
20230512_0240	1.4	ESE ESE
20230512 0230	0.8	SE SE
20230512_0310	0.8	ESE
20230512 0320	0.3	SE
20230512_0330	0.3	SE
20230512_0340	0.8	ESE
20230512_0350 20230512_0400	0.3 0.3	SE ESE
20230512_0400	0.3	NNE ESE
20230512 0420	0.8	NNE
20230512_0430	0.8	NE
20230512_0440	1.1	NNE
20230512_0450	1.4	NNE
20230512 0500	1.7	NNE
20230512 0500 20230512 0510 20230512_0520	1.1	NE N
20230512_0520	0.8	N N
20230512 0530	0.3	NE NE
20230512_0550	0,3	N
20230512 0600	0.3	NNW
20230512_0610	1.4	N
20230512_0620	1.1	NNE
20230512 0630 20230512 0640	1.1 0.8	N N
20230512_0040	0.6	N N
20230512_0030	0.8	N
20230512_0710	1.4	N
20230512_0720	0.8	NNE
20230512 0730	1.1	NNE
20230512_0740	1.4	NNE
20230512_0750 20230512_0800	0.8 1.7	NNE NNE
20230512_0800	1.4	N N
20230512 0810 20230512_0820	1.4	N
20230512 0830	1.7	N
20230512 0840 20230512_0850	1.9	N
20230512_0850	2.2	NNE
20230512_0900	2.2	N N
20230512_0910 20230512_0920	2.2	N N
20230512_0920	2.5	NNE NNE
20230512 0940	1.9	NNE
20230512_0950	2.2	N
20230512_1000	1.7	N
20230512_1010	1.7	NNE
20230512_1020 20230512_1030	1.7	NNE
20230512_1030 20230512_1040	1.4	NNE
20230512_1040	0.8	SSE
20230512 1030	1.1	E
20230512_1110	1.7	ESE
20230512 1120	1.4	ESE
20230512_1130	2.2	ESE
20230512_1140 20230512_1150	2.8	E
20230312_1130	2.8	Е

Date & Time	WF 10 17 ()	THE LINE OF AN A
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230512_1200	2.2	ESE
20230512_1210 20230512_1220	1.7 2.2	E E
20230512 1220	1.1	NE
20230512_1230	1.7	NE NE
20230512 1250	1.4	NNE
20230512_1300	1.7	NNE
20230512_1310	2.2	NNE
20230512_1320	2.2 1.7	Ŋ
20230512_1330 20230512_1340	2.5	N N
20230512_1350	2.8	N N
20230512 1400	2.2	NNE
20230512_1410	2.2	N
20230512 1410 20230512 1420 20230512 1420 20230512 1430 20230512 1440	2.2 2.2 2.2 2.2	N
20230512 1430 20230512 1440	2.2	NNE
20230512_1440	1.9 1.7	N NNE
20230512_1430	2.7	NNE N
20230512 1510	2.2 2.8	NNE
20230512 1520	2.2	N
20230512 1530 20230512 1540	1.9	N
20230512_1540	2.2	N N
20230512_1550 20230512_1600	1.7	N N
20230512 1600	2.5 2.2	N N
20230512_1610 20230512_1620	2.2	N N
20230512 1630	1.4	N
20230512_1640	1.7	N
20230512_1650 20230512_1700 20230512_1710	1.7	N
20230512_1700 20230512_1710	1.9	N N
20230512 1710	1.7	N N
20230512_1720	2.5	N
20230512 1740	2.5	NNE
20230512_1750	1.7	N
20230512_1800	1.7	N
20230512 1810 20230512_1820	2.2 1.1	N N
20230512_1820	1.1	NNW
20230512 1840	1.1	NNW
20230512_1850	1.1	N
20230512_1900	0	-
20230512_1910 20230512_1920	0.3	W WNW
20230512_1920	0.3	SSW
20230512_1940	0.3	SSW
20230512_1950	0.3	SSW
20230512_2000	0.3	S
20230512_2010	0.3	SE
20230512 2020 20230512 2030	0 0,3	ENE
20230512_2030	0.5	NE NE
20230512 2050	0.3	W
20230512_2100	0.3	WNW
20230512_2110	0.3	WSW
20230512 2120 20230512 2130	0.6	S S
20230512_2140	0	5
20230512_2140	0.3	SE
20230512_2200	0.3	SSE
20230512_2210	0.3	NNW
20230512_2220	0.8	NNE
20230512_2230 20230512_2240	0.3	SSW
20230512_2240	0.3	SSW
20230512_2230	0.3	SW
20230512_2310	0.3	S
20230512_2320	0.6	SSE
20230512 2330	0.6	SE
20230512_2340 20230512_2350	0	NE .
0/C2_21 C0C402	U	-

Date & Time	*** 10 11 1	W. 171 1 07 1
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230513 0000	0	N
20230513 0010	0.3	-
20230513 0020	0,3	S
20230513 0030	0.8	SW
20230513 0040	0.3	SW
20230513_0040	0.5	311
20230513 0000	0	
	0,3	S
20230513 0120	0.3	S
20230513_0130	0.3	SSW
20230513_0140	0.3	SW
20230513_0150	0	SSW
20230513_0200	0	-
20230513_0210	0	ESE
20230513 0220	0.3	E
20230513 0230	0.3	NNE
20230513 0240	0	NNW
20230513_0250	0,3	NW
20230513 0300	0.3	SSW
20230513 0310	0.3	SSW
20230513_0310	0.3	SE
20230513_0320	0.3	SE SE
20230513_0330	0.3	SE CCE
20230513_0340	0.3	SSE
		-
20230513_0400	0	
20230513_0410	0.3	S
20230513_0420	0.3	SSE
20230513_0430	0.3	<u> </u>
20230513_0440	0	-
20230513_0450	0	=
20230513 0500	0	-
20230513 0510	0	-
20230513 0520	0.3	SSE
20230513 0530	0.3	SSE
20230513 0540	0,3	SE
20230513 0550	0.5	-
20230513 0600	0,3	NE
20230513_0000	0.5	SSW
20230513 0610	0.3	S
20230513_0020	0.3	SE
20230513_0640	0	SSE
20230513_0650	0	N
20230513_0700	0.3	N
20230513_0710	0	-
20230513_0720	0	N
20230513_0730	0	SSW
20230513_0740	0	-
20230513_0750	0.3	WNW
20230513_0800	0.3	NW
20230513_0810	0.3	N
20230513 0820	0	ENE
20230513_0830	0.3	SSE
20230513 0840	0.3	S
20230513 0850	0.3	S
20230513 0900	0.3	SE
20230513_0910	0.3	NNE
20230513_0910	0.8	NNE
20230513 0920	0.3	NE NE
20230513_0940	0.5	ENE
	0.3	
20230513_0950		NE
20230513_1000	0	COM
20230513_1010	0	SSW
20230513_1020	0.3	-
20230513_1030	0.3	NNW
20230513_1040	0.3	<u>-</u>
20230513_1050	0.3	N
20230513_1100	0.3	NW
20230513_1110	0.3	NNE
20230513_1120	0.8	N
20230513_1130	0.8	NNE
20230513_1140	0.8	NNE
20230513_1150	0.8	NNW

Date & Time	W. 10 1/ /)	THE LINE OF A PARTY
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230513_1200	1.4	NNE
20230513_1210	0.3	- NATE
20230513 1220 20230513 1230	0.8 1.1	NNE NE
20230513_1240	0.6	N N
20230513_1240	0.6	SE
20230513_1300	1.1	E
20230513_1310	1.1	ESE
20230513_1320	1.1	S
20230513_1330	0.8	NE
20230513_1340	0.8	E
20230513_1350	0.3 0.8	ENE N
20230513_1400 20230513_1410	1.1	N N
20230513_1410	1.4	NNE
20230513 1430	1.1	N
20230513 1440	0.8	NNW
20230513_1450 20230513_1500 20230513_1510	0.8	NNW
20230513_1500	1.1	NNW
20230513_1510	0.6	-
20230513_1520	0.3	N NINTE
20230513 1530 20230513_1540	0.3 0.3	NNE NW
20230513_1540	0.3	WNW
20230513_1530	0.5	******
20230513 1610	0	SSE
20230513_1620	0	ESE
20230513_1630	0	E
20230513_1640	0.3	S
20230513_1650	0.3	ESE
20230513_1700 20230513_1710	0.3	E NNE
20230513 1710	0	NNE -
20230513_1720	0	-
20230513_1740	1.4	N
20230513_1750	2.2	N
20230513_1800	2.2	N
20230513_1810	1.9	N
20230513_1820	1.7	N
20230513_1830	1.7	N
20230513_1840 20230513_1850	1.9 1.7	N N
20230513_1630	1.7	N
20230513 1910	1.4	NNW
20230513_1920	1.7	NNW
20230513_1930	1.9	NNW
20230513 1940 20230513 1950 20230513 2000	2.5 2.2	N
20230513_1950	2.2	NNW
20230513 2000 20230513 2010 20230513 2010 20230513 2020 20230513 2030	1.1	N NE
20230513_2010	0.6	NE S
20230513 2020	0.8	SW
20230513_2030	0.3	S
20230513 2050	0.3	SSW
20230513 2100	0.3	WSW
20230513_2110	0.8	S
20230513_2120	0.3	SSW
20230513_2130	0	NNE
20230513_2140 20230513_2150	0.3	NNW
20230513_2150	0,6	SE
20230513_2200	0.8	S
20230513_2210	0.6	NNW
20230513_2230	0.3	NNW
20230513_2240	0	NNE
20230513 2250	0	-
20230513 2300	0.3	SW
20230513_2310	0	-
20230513_2320	0.3	SW
20230513 2330 20230513_2340	0	NW
20230513_2340	0	-
20230313_2330	U	

D . 0 m		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230514_0000	0	SSE
20230514_0000	0	- 33L
20230514_0010	0,3	S
20230514 0020	0.8	SW
20230514_0030	0.3	-
20230514_0040	0.3	W
20230514_0050	0.3	NNW
20230514_0100	0.3	N
20230514_0110	0.3	N
20230514_0120 20230514_0130	0 0,3	- S
20230514_0130	0.6	SSW
20230514_0140	0.8	
20230514_0130	0.8	<u>S</u> S
20230514 0210	0,3	SSW
20230514 0220	0	WNW
20230514_0230	0.3	SW
20230514_0240	0.6	SW
20230514 0250	0.3	SSW
20230514_0300	0	- -
20230514_0310 20230514_0320	0.3	N NW
20230514 0320	0.3	SW
20230514_0330	0.3	S
20230514_0340	0.3	SE
20230514 0400	0.5	-
20230514_0410	0	N
20230514_0420	0	Е
20230514_0430	0	<u>-</u>
20230514_0440	0.3	SSW
20230514_0450	0	÷
20230514 0500	0	NW
20230514_0510 20230514_0520	0.8 0.3	N N
20230514_0520	0.5	IN .
20230514 0530 20230514_0540	0.3	SW
20230514 0550	0	-
20230514 0600	0	-
20230514_0610	0	-
20230514_0620	0.3	SSW
20230514_0630	0.3	SSW
20230514_0640 20230514_0650	0.3	S
20230514_0030	0.3	SSE
20230514 0700	0.8	SSE
20230514_0720	1.1	SSE
20230514 0730	0.8	SSE
20230514_0740	0.8	SSE
20230514_0750	0.8	S
20230514_0800	0.8	S
20230514 0810	0.3	S S
20230514_0820	0.6	
20230514_0830 20230514_0840	0.6 0.3	SSE S
20230514 0840	0.3	<u> </u>
20230514_0000	0,3	WNW
20230514 0910	0,3	WSW
20230514_0920	0.3	-
20230514_0930	0.6	NW
20230514_0940	0.8	NNW
20230514_0950	0.8	N
20230514_1000	1.1	NNE -
20230514_1010 20230514_1020	0 0.3	ESE
20230514_1030	0.3	SSE
20230514_1030	0.6	SSE
20230514 1050	0.8	S
20230514_1100	0.8	SSW
20230514 1110	0.3	WSW
20230514 1120 20230514_1130	0	-
20230514_1130	0	E
20230514_1140	0	ESE
20230514_1150	0.6	SE

Date 6 Trans		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230514 1200	1.4	ESE
20230514 1210 20230514 1210 20230514 1220 20230514_1230	0.8	SE
20230514 1220	0.6	ESE ESE
20230514_1230	0.6	ESE
20230514 1240	0.3	ESE
20230514 1250	0.3	NW
20230514_1300	0.3	NW
20230514_1310 20230514_1320	1.1	WNW
20230514_1320	0.8 0.6	NNW NNW
20230514_1340	0.8	N
20230514 1350	0,3	ENE
20230514_1400	1.1	E
20230514_1410	1.7	SE
20230514_1420	1.4	ESE
20230514 1430	1.4	ESE
20230514_1440	1.7	ESE ESE
20230514_1450 20230514_1500	1.1	ESE
20230514_1510	1.1	E E E E E E E E E E E E E E E E E E E
20230514_1510	1.7	ESE
20230514_1520	1.7	E
20230514_1540	1.7	E
20230514_1550	0.8	ESE
20230514_1600	1.4	ESE
20230514_1610	2.2	ESE
20230514_1620	2.2	ESE
20230514_1630 20230514_1640	1.7 0.8	ESE ESE
20230514_1650	0.8	SE SE
20230514_1700	0.8	SSE
20230514_1710	1.1	S
20230514 1720	0.8	SSE
20230514 1730	0.6	ESE
20230514_1740	1.1	E
20230514_1750	0.8	SE
20230514_1800	0.6	SSE
20230514_1810	0.3	S
20230514_1820 20230514_1830	0 0,3	ESE
20230514_1830	1.1	E E E E E E E E E E E E E E E E E E E
20230514 1850	1.4	E
20230514 1900	1.4	ESE
20230514 1910	1.4	ESE
20230514_1920	1.7	ESE
20230514_1930	2.5	ESE
20230514_1940	2.2	ESE
20230514_1950	2.2	E
20230514_2000 20230514_2010	1.7	ESE ESE
20230514_2010	1.9	ESE
20230514 2020	2.2	ESE
20230514_2030	2.2	ESE
20230514 2050	2.2	ESE
20230514_2100	1.7	ESE
20230514_2110	2.2	ESE
20230514 2120	2.8	SE
20230514_2130	2.5	SE
20230514_2140	1.4	SSE
20230514_2150 20230514_2200	2.5 1.9	SE SE
20230514_2200	1.7	ESE
20230514_2210	1.4	ESE
20230514_2230	1.4	SE
20230514_2240	1.1	SE
20230514_2250	1.1	Е
20230514_2300	1.4	E
20230514_2310	0.8	ESE
20230514_2320	0.8	SE
20230514 2330 20230514_2340	0.3 0.8	ESE NNE
20230514_2340	0.8	NNE NNE
UCC2_14 دUC2U2	U.3	ININE

CYYYMMBB HIMMD Direction (From) Wind Direction (From)	Date & Time	W. 10 1/ ()	****
20230515 0010		Wind Speed (m/s)	Wind Direction (From)
20230515 0020	20230515_0000		
20230515 0020			
20230515 0030	20230515_0020		
20230515 0040	20230515_0020		
20230515 0100	20230313_0030		
20230515 0140	20230515 0050		
20230515 0140	20230515 0100		
20230515 0140	20230515 0110	1.1	N
20230515 0140	20230515_0120		
20230515 0150	20230515_0130		
20230515 0200 0.3 NNE	20230515_0140		
20230515 0210	20230515_0150		
20230515 0230			
20230515 0230	20230515_0210		LINE
20230515 0240	20230515 0220		-
20230515 0300	20230515 0240	0	N
20230515 0310		0.8	
20230515 0320			
20230515 0330			NE
20230515 0340	20230515_0320		- N
20230515 0350			
20230515 0400		0.3	
20230515 0410	20230515 0400		NNW
20230515 0420	20230515 0410		
20230515 0430	20230515_0420	0.3	N
20230515 0450	20230515_0430		NNE
20230515 0500			
20230515 0530	20230515_0450		
20230515 0530	20230515 0500		W
20230515 0530	20230313_0310	0 0 2	- cw
20230515 0540	20230515_0520	0.3	
20230515 0550	20230515 0540		-
20230515 0600	20230515_0550		WNW
20230515 0620			
20230515 0630			
20230515 0540			5
20230515 0650			
20230515 0700			S
20230515 0720	20230515 0700		
20230515 0730 0.3 SSW	20230515_0710		-
20230515 0740	20230515_0720		
20230515 0750	20230515_0730		
20230515 0800			SSE
20230515 0810			SE NW
20230515 0830	20230515_0000		- 1 A AA
20230515 0830	20230515 0820		S
20230515 0840	20230515 0830		
20230515 0910 0.8 NW	20230515_0840		
20230515 0910 0.8 NW	20230515_0850	0.3	
20230515 0930	20230515_0900		
20230515 0930	20230515_0910		
20230515 0940	20230313_0920		
20230515 0950			
20230515 1000			
20230515 1010	20230515_1000	1.4	NNE
20230515 1030	20230515 1010		N
20230515 1040 0.8 SE			NE
20230515 1050			- CF
20230515 1100			
20230515 1110 1.4 ESE 20230515 11.0 1.1 SSE 20230515 1130 0.8 SE 20230515 1140 1.4 S			
20230515 1120 1.1 SSE 20230515 1130 0.8 SE 20230515 1140 1.4 S			
20230515_1130			
20230515_1140 1.4 S	20230515_1130		SE
20230515_1150 1.7 S	20230515_1140		S
	20230515_1150	1.7	S

Wind Speed (m/s)	Date & Time	WW 10 11 11	W. 171 1 W 1
20230515 1210	(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230515 1220	20230515_1200		-
20230515 1230			ESE
20230515 1240			-
20230515 1250			
20230515 1300	20230515_1240		
20230515 1310	20230313_1230		
20230515 1320			
20230515 1330		1.4	
20230515 1350	20230515_1330	2.2	Е
20230515 1350		2.2	
20230515 1410	20230515_1350	1.7	E
20230515 1430		1.9	
20230515 1430	20230515_1410	2.5	
20230515 1440	20230313_1420	2.2	E
20230515 1450	20230313_1430	2.5	E F
20230515 1500	20230515_1440		
20230515 1520		2.2	
20230515 1530	20230515_1510	2.2	
20230515 16-00	20230515_1520		
20230515 16-00	20230515_1530		SE
20230515 16-00	20230515_1540		SE
20230515 16-00	20230515_1550		SE
20230515 16-00	20230515_1600		SE
20230515 16-00	20230313_1010		ESE
20230515 1650	20230313_1020		
20230515 1650	20230515_1640		FSE
20230515 1700	20230515_1650		ESE
20230515 1710	20230515 1700		SE
20230515 1720	20230515 1710	1.7	
20230515 1740	20230515 1720		
20230515 1800		1.7	SE
20230515 1800	20230515_1740		SE
20230515 1810	20230515_1750		SE
20230515 1820			
20230515 1830			SE
20230515 1840	20230313_1820		ESE
20230515 1850			SE SE
20230515 1900	20230515 1850		SE SE
2023(915 1910			ESE
20230515 1920			ESE
20230515 1940 0.8 SE	20230515_1920	1.1	E
20230515 1950			
20230515 2000			
20230515 2010			
20230515 2020			
20230515 2030			
20230515 2040			
20230515 2050			
20230515 2100			
20230515 2110	20230515_2100		SE
20230515 2120	20230515_2110		
20230515 2140	20230515 2120		
20230515 2150	20230515_2130		
20230515 2200			
20230515 2210	20230515_2150		
20230515 2220			
20230515 2230 0.6 SE 20230515 2240 0.8 - 20230515 2250 0.8 - 20230515 2300 0.8 ESE 20230515 2310 0 - 20230515 2320 0.6 SE 20230515 2330 0.8 SE 20230515 2340 0.3 ESE			
20230515 2240			
20230515 2250			
20230515 2300			
20230515 2310 0 - 20230515 2320 0.6 SE 20230515 2330 0.8 SE 20230515 2340 0.3 ESE	20230515 2300		
20230515 2320 0.6 SE 20230515 2330 0.8 SE 20230515 2340 0.3 ESE	20230515_2310	0	-
20230515 2330 0.8 SE 20230515 2340 0.3 ESE 20230515 2350 0.8 ESE	20230515 2320		
20230515_2340	20230515 2330	0.8	SE
20230515_2350 0.8 ESE	20230515_2340	0.3	
	20230515_2350	0.8	ESE

Date & Time	Wind Coord (m/s)	Wind Discotion (France)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230516_0000	0.8	ESE
20230516_0010	0.3	ESE
20230516_0020 20230516_0020	0 0.3	SSE
20230516_0030	0.8	SSE
20230516 0040	1.1	SSE
20230516_0050	1.4	SSE
20230516_0100	1.4	SSE
20230516 0110	1.7	SE
20230516_0120	1.1 1.4	SSE SSE
20230516_0130 20230516_0140	1.1	SSE
20230516_0150	1.1	SSE
20230516_0200	0.6	SE
20230516_0210	0.6	SE
20230516 0220	0.8	SE
20230516_0230	0.8	SE
20230516_0240	0.3	-
20230516 0250	0,3	<u> </u>
20230516_0300 20230516_0310	0.6	S
20230516_0310	1.1	SSE
20230516_0330	0.8	SSE
20230516_0340	0.8	SSE
20230516_0350	0.8	SSE
20230516_0400	1.1	S
20230516_0410	0.8	SSE
20230516_0420 20230516_0430	0.3	SE SE
20230516_0430	0.3	WNW
20230516_0440	0.5	· · · · · · · · · · · · · · · · · · ·
20230516_0500	0	S
20220516_0510	1.1	SSE
20230516 0520	1.4	SE
20230516 0530	1.1	SSE
20230516_0540	0.3	SSE
20230516_0550	0.8 0.3	SE
20230516 0600 20230516 0610	0.3	ESE
20230516 0620	0.3	W
20230516 0630	0,3	-
20230516_0640	0.6	E
20230516_0650	0.6	ENE
20230516 0700	0.3	E
20230516_0710	0.6	NE NE
20230516_0720 20230516_0730	1.1 0.8	NE ESE
20230516_0740	2.2	E
20230516_0740	2.5	E
20230516 0800	2.5	Ē
20230516_0810	2.8	ESE
20230516_0820		E
20230516_0830	2.5	E
20230516 0840	2.5 2.2	ENE
20230516_0850 20230516_0900	1.7	E ESE
20230516_0900	1.7	ESE E
20230516_0920	2.2	E
20230516 0930	1.7	ESE
20230516 0940	1.9	ESE
20230516_0950	2.5	ESE
20230516_1000	2.8	ESE
20230516_1010	2.2	ESE
20230516_1020 20230516_1030	3.1 3.3	SE SSE
20230516_1030	3.3	SSE
20230516_1040	3.6	SE SE
20230516 1100	2.2	E
20230516_1110	3.3	E
20230516 1120	2.8	E
20230516_1130	3.9	E
20230516_1140	4.2	E
20230516_1150	3.9	Е

70.00	ı	
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230516 1200	3,9	E
20230516_1210	3.9	E
20230516 1220	3.3	E
20230516_1230	3.3	E
20230516_1240	3.1	ESE
20230516_1250	3.9	E
20230516_1300	3.9	E
20230516_1310 20230516_1320	3.6 3.1	E ESE
20230516_1320	2.2	ESE
20230516_1340	1.7	ESE
20230516_1350	1.7	ESE
20230516_1400	2.2 2.5 2.2	SE
20230516_1410	2.5	ESE
20230516_1420	2.2	ESE
20230516 1430 20230516_1440	1.7 2.2	SSE ESE
20230516_1450	2.2	ESE
20230516_1500	3.1	E
20230516 1510	2.5	ESE
20230516 1520	2.2	SE
20230516_1530 20230516_1540	2.8 2.8 2.8	ESE ESE
20230516_1540	2.8	ESE
20230516_1550	2.8	ESE
20230516_1600	2.8 2.2	SE ESE
20230516_1610 20230516_1620	2.5	ESE
20230516_1630	2.3	ESE
20230516_1640	2.2	ESE
20230516_1650	2.8	ESE
20230516_1700	3.1	ESE
20230516_1710	2.5	E
20230516_1720	2.5	E
20230516_1730	1.7	SE
20230516 1740 20230516 1750	1.7	SE ESE
20230516_1730	1.7	ESE
20230516_1810	1.7	ESE
20230516 1820	1.7	ESE
20230516 1830	2.5	ESE
20230516_1840	1.9	ESE
20230516_1850	2.5	ESE
20230516_1900	2.2	ESE
20230516_1910	2.2 2.8	ESE ESE
20230516_1920 20230516_1930	2.8	ESE
20230516_1940	2.8	ESE
20230516_1950	2.2	ESE
20230516_2000	2.5	ESE
20230516_2010	2.5	ESE
20230516 2020	3.1	ESE
20230516_2030	2.8	ESE
20230516_2040	2.2	SE
20230516 2050 20230516_2100	2.2 2.8	E ESE
20230516_2110	3.1	ESE
20230516 2120	2.8	ESE
20230516 2130	3.3	ESE
20230516 2130 20230516 2140 20230516 2150 20230516 2200 20230516 2210	2.5 2.5 2.2	ESE ESE ESE
20230516_2150	2.5	ESE
20230516_2200	2.2	ESE
20230516_2210	1.9	SE
20230310 2220	1.9	ESE
20230516_2230 20230516_2240	2.2	ESE ESE
20230516 2240 20230516 2250 20230516 2300 20230516 2310 20230516 2320 20230516 2330 20230516 2340	1.7	ESE
20230516_2230	1.7	ESE
20230516_2310	1.7 2.2	ESE ESE
20230516_2320	2.5	ESE
20230516_2330	3.3	ESE
20230516_2340	3.3	ESE
20230516_2350	3.1	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	2.5	
20230517_0000 20230517_0010	1.7	E ESE
20230517 0020	2.2	ESE
20230517_0030	2.2	ESE
20230517_0040	2.5	E
20230517_0050	1.7	ESE
20230517_0100 20230517_0110	1.1 0.8	ESE SE
20230517_0110	1.1	E
20230517_0130	1.1	SE
20230517_0140	1.1	ESE
20230517_0150	1.1	SE
20230517_0200 20230517_0210	1.1 2.2	SE ESE
20230517_0220	1.9	ESE
20230517_0230	2.2	ESE
20230517_0240	1.7	SE
20230517_0250	1.7	SE
20230517 0300 20230517_0310	1.9	ESE ESE
20230517_0320	2.2	ESE
20230517 0330	1.7	ESE
20230517_0340	1.7	ESE
20230517_0350 20230517_0400	1.7 2.2	ESE
20230517 0400 20230517 0410	2.2	ESE SE
20230517_0410	2.2	SE
20230517_0430	2.2	ESE
20230517_0440	2.2	ESE
20230517_0450 20230517_0500	2.2 1.9	SE
20230517_0500	2.2	SSE
20230517 0510 20230517_0520	2.5	SSE SE
20230517_0530	2.2	SE
20230517 0540	1.7	SE
20230517_0550 20230517_0600	1.4 1.4	SE SE
20230517_0600	1.4	ESE ESE
20230517_0620	1.7	SE
20230517_0630	1.9	SE
20230517_0640	2.2	ESE
20230517_0650 20230517_0700	3.3	ESE ESE
20230517_0700	2.5	ESE
20230517_0720	2.8	ESE
20230517_0730	1.9	ESE
20230517_0740	2.2	ESE
20230517_0750 20230517_0800	1.9	SE SE
20230517_0800	1.7	SE SE
20230517 0820	2.2	ESE
20230517_0830	2.8	SE
20230517_0840	1.7 2.2	SE
20230517 0850 20230517 0900	2.2	SSE SE
20230517_0900	1.7	SE
20230517_0920	1.7	SE
20230517_0930	2.2	SE
20230517_0940	1.4 0.8	S SSE
20230517 0950	0.8	SSE
20230517 1010	0.8	E
20230517_1020	0.6	ESE
20230517_1030	0.6	ESE
20230517_1040 20230517_1050	0.6	SE
20230517_1050	1.1 1.7	ESE SE
20230517 1110	1.4	SE SE
20230517_1120	1.1	ESE
20230517 1130	1.1	SE
20230517_1140	1.7	SE
20230517_1150	1.4	E

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230517 1200	1.4	ESE
20230517_1200 20230517_1210 20230517_1220 20230517_1230	2.5 1.7	ESE
20230517_1220	1.7	SE
20230517_1230	1.7	SSE
20230517_1240	1.7	SSW
20230517 1250 20230517 1300	3.3 4.2	S SSW
20230517_1300	1.1	S
20230517_1310	1.1	<u>S</u>
20230517 1320	0.3	SSE
20230517 1340	0.8	SE
20230517 1350	0.3	ENE
20230517_1400	0.8	SSW
20230517_1410	2.2	S
20230517_1420	1.7	S
20230517 1430 20230517 1440	2.5 2.5	S S
20230517_1440	2.2	S
20230517_1430	2.5	S
20230517 1500	3,3	S
20230517 1520	1.7	S
20230517 1530	3.1	SSW
20230517_1540	4.2	SW
20230517_1550	4.2	SSW
20230517_1600	3.6 3.9	SSW
20230517_1610		SSW
20230517_1620 20230517_1630	4.2 4.2	SSW SW
20230517_1630	3.9	SW
20230517_1040	3.3	SW
20230517_1700	3.1	SSW
20230517_1710	3.6	SSW
20230517_1720	2.8	SSW
20230517_1730	3.3	SW
20230517_1740	3.3	SW
20230517_1750	2.8	SSW
20230517_1800 20230517_1810	1.9	SSW SSW
20230517_1810	2.8	SE SE
20230517_1820	0.8	SSE
20230517_1830	1.4	S
20230517 1850	1.7	SSW
20230517_1900	1.7	SW
20230517_1910	2.2	SW
20230517_1920	2.8	SW
20230517_1930	1.7	SW
20230517_1940 20230517_1950	1.7	SSW
20230517_1950 20230517_2000	1.4 2.5	SSW SSW
20230517_2000	2.2	SSW
20230517_2010	2.5	SSW
20230517_2030	1.7	SSW
20230517_2040	1.4	SSW
20230517_2050	1.4	SW
20230517_2100	1.7	SSW
20230517_2110	1.1	S
20230517_2120	0.8	SW
20230517_2130 20230517_2140	0.8 0.8	ESE E
20230517_2140	0.6	ESE
20230517_2130	0.3	SSE
20230517_2200	0	-
20230517_2220	0.3	ESE
20230517_2230	0.3	SE
20230517_2240	0	_
20230517_2250	0	N
20230517 2300	0	- 0
20230517_2310 20230517_2320	0.3	S -
20230517_2320	0.3	E
20230517 2330	0.3	SSE
20230517_2350	0.3	-

Date & Time	Wr. 10 17 ()	W ID: C C
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230518_0000	0	-
20230518 0010	0	-
20230518 0020	0	=
20230518_0030	0.3	SE
20230518_0040	0.3	SSW
20230518 0050	0.3	-
20230518 0100	0	-
20230518_0110	0	SE
20230518_0120	0	SE
20230518_0130	0	ESE
20230518 0140	0	-
20230518 0150	0	-
20230518_0200	0,3	SSE
20230518_0210	1.1	SSE
20230518 0220	0.6	ESE
20230518 0230	0	
20230518_0240	0	-
20230518_0250	0.3	SE
20230518 0300	0	-
20230518_0310	0	-
20230518_0320	0	-
20230518_0320	0,3	SW
20230518 0340	0.8	SSW
20230518_0340	0.3	SSE
20230518_0550	0.3	ESE
20230518 0400	0.6	SE SE
20230518 0420	0.8	SE
20230518_0420	0.6	SE SE
20230518 0440	0.8	SE SE
20230518_0440	0.8	SE
20230518_0430	0.5	JL -
20230518 0510	0	SSE
20230518 0510	0	
20230518_0520	0	-
20230518_0530	0	
20230318 0340	0	
20230518_0550	0	
20230518_0000	0	
20230518 0610	0	<u>-</u>
20230518_0020	0	ENE
20230518_0030	0	EINE
20230318 0040	0	<u> </u>
20230518_0030	0.3	-
20230318_0700	0.3	SSW
20230318_0710	0.3	S
20230518_0720	0.3	SE
	0.8	
20230518 0740 20230518 0750	1.1	SE SE
		SE SE
20230518_0800 20230518_0810	1.4	ESE ESE
	1.4	
20230518 0820 20230518_0830	1.7	ESE SE
20230518_0840	1.9 1.7	ESE ESE
20230518 0850	1.7 1.4	E ESE
20230518_0900		
20230518_0910	1.7	ESE ESE
20230518 0920 20230518 0930	1.7	ESE ESE
	1.7 1.9	
20230518_0940	1.4	E
20230518 0950 20230518 1000	1.4	ESE
	1.4	E
20230518_1010		Е
20230518_1020	0.3	-
20230518_1030	0.8	WNW
20230518_1040 20230518_1050	1.4 1.4	NW NW
20230518 1100	2.2	WNW
20230518_1110	2.2	W
20230518_1120	2.2	SW
20230518 1130	1.7	WSW
20230518_1140	2.5	WSW
20230518_1150	2.8	WSW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	2.2	Willia Direction (From)
20230518_1200 20230518_1210	1.9	WNW
20230518 1220	2.5	W
20230518_1230	2.5	W
20230518_1240 20230518_1250	1.7 2.2	WSW WSW
20230518_1230	2.2	WSW
20230518_1310	1.7	WSW
20230518_1320	1.7	-
20230518_1330 20230518_1340	2.2 1.7	SW SW
20230518_1340	2.5	SW
20230518_1400	2.8	SW
20230518_1410	2.8 2.8 2.5 2.8	WSW
20230518_1420 20230518_1430	2.5	WSW WSW
20230518_1440	1.7	WSW
20230518_1450	2.8	WSW
20230518 1500	3.3	SSW
20230518_1510 20230518_1520	2.8 2.8	SW SSW
20230518_1520 20230518_1530	2.8	SW SW
20230518 1530 20230518_1540	2.2 2.5	WSW
20230518 1550	3,3	SW
20230518 1600	2.8 2.2	WSW SW
20230518_1610 20230518_1620	2.2	SW SW
20230518_1620 20230518_1630	2.5	SW
20230518 1030	2.2	SW
20230518 1650	2.8	SSW
20230518_1700	3.1	SSW
20230518 1710	2.8	SSW
20230518_1720 20230518_1730	2.8 2.5	SSW SW
20230518_1730	2.5	SW
20230518_1750	2.5	SW
20230518_1800	2.2	SW
20230518_1810	1.9	SW
20230518_1820 20230518_1830	1.4	SW WSW
20230518_1830	0.6	WSW
20230518 1850	0.8	W
20230518_1900	0.6	WNW
20230518_1910	1.4	WNW
20230518_1920 20230518_1930	0 0,3	SSE SSE
20230518_1930	0.8	SSW
20230518_1950	0.8	SW
20230518_2000	0.8	S
20230518_2010	0.8	ESE
20230518 2020 20230518 2030	0.8	E ESE
20230518_2030	0.8	ESE
20230518_2050	0.8	S
20230518_2100	0.3	S
20230518_2110	0.8	S
20230518 2120 20230518 2130	0.8	SSE E
20230518_2140	0.8	SSW
20230518_2150	0.8	S
20230518_2200	0.8	SSE
20230518_2210	0.3	SE
20230518 2220 20230518 2230	1.1 0.3	SSW SSW
20230518_2240	0.8	SSE
20230518_2250	0.3	ENE
20230518_2300	0.3	S
20230518_2310	0.3	-
20230518_2320	0.6 0.3	S
20230518 2330 20230518_2340	0.3	SSW
20230518_2350	1.1	SSW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230519 0000	2.8	SE
20230519_0000	2.8	ESE ESE
20230519 0020	1.7	SE
20230519 0030	2.5	ESE
20230519_0040	2.2	ESE
20230519_0050	2.8	ESE
20230519_0100	3.1	ESE
20230519_0110	2.8	E
20230519_0120	2.8	ESE
20230519_0130 20230519_0140	2.5 2.5	ESE SE
20230519_0140	2.5	ESE
20230519_0200	2.8	ESE
20230519_0210	2.8	ESE
20230519_0220	3.3	ESE
20230519_0230	2.8	ESE
20230519_0240	3.3	ESE
20230519_0250	2.5	ESE
20230519 0300	3.1	ESE
20230519_0310 20230519_0320	3.1 2.8	ESE ESE
20230519_0320	2.0	ESE E
20230519 0330	2.8 2.8	E
20230519 0350	2.2	E
20230519_0400	3.3	E
20230519_0410	2.5	ENE
20230519_0420	1.7	E
20230519_0430	1.9	ENE
20230519_0440	2.2	E
20230519_0450 20230519_0500	1.4 1.1	- N
20230519_0500		N N
20230519 0510	1.1 1.7	N N
20230519 0530	0.8	N
20230519 0540	2.2	NNE
20230519_0550	2.8	NNE
20230519_0600	3.6	NNE
20230519 0610	3.3	NNE
20230519_0620 20230519_0630	3.6 3.3	NNE
20230519_0630 20230519_0640	3.1	NNE NNE
20230519_0650	3.3	NNE
20230519 0700	3.3	NNE
20230519 0710	3.3	NNE
20230519_0720	2.8	NNE
20230519_0730	1.7	NNE
20230519_0740	1.9	N
20230519_0750	1.9	N
20230519_0800	2.8 2.2	NNE
20230519_0810 20230519_0820	2.2	N N
20230519 0820	1.7	NNE NNE
20230519_0840	2.2	NNE
20230519 0850	1.7	N
20230519_0900	1.7	N
20230519_0910	2.5	N
20230519_0920	3.1	NNE
20230519_0930	2.5	N
20230519_0940	2.5	N NNE
20230519 0950	3.3 2.5	NNE NNE
20230519_1000	1.7	NNE
20230519_1010	2.2	NNE
20230519_1030	2.2	NNE
20230519_1040	2.5	NNE
20230519_1050	2.8	NNE
20230519 1100	2.8	NNE
20230519_1110	3.3	NNE
20230519_1120	3.3	NNE
20230519 1130	4.2	NNE
20230519_1140 20230519_1150	3.6 3.9	NNE NNE
20230319_1130	3.9	ININE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230519 1200	4.2	NNE
20230519_1200 20230519_1210 20230519_1220 20230519_1230	3.9	N
20230519_1220	4.4	NNE
20230519_1230	5	NNE
20230519_1240	4.4	N
20230519 1250 20230519 1300	4.7 4.4	N N
20230519_1310	4.4	NNE NNE
20230519_1310	5,3	NNE
20230519 1330	4.2	N
20230519 1340	4.7	N
20230519_1350	4.2	NNE
20230519_1400	3.9	NNE
20230519_1410	4.7	NNE
20230519_1420	5.3	NNE
20230519 1430 20230519 1440	5.3	NNE NNE
20230519_1440	4,2	NNE
20230519_1430	4.7	NNE
20230519_1510	3,3	NNE
20230519 1520	4.7	N
20230519 1530	3.9	N
20230519_1540	3.9	N
20230519_1550	3.6	N
20230519_1600	3.1 3.9	N N
20230519_1610	3.9	
20230519_1620 20230519_1630	3.3	N N
20230519 1640	5.5 4.7	NNE
20230519_1640	4.2	NNE
20230519_1700	5	NNE
20230519 1710	3,9	NNE
20230519_1720	2.8	N
20230519_1730	3.6	NNE
20230519_1740	3.9	NNE
20230519_1750	3.6	NNE
20230519_1800 20230519_1810	3.9	NNE NNE
20230519_1810	4.2	NNE NNE
20230519_1820	3,3	NE NE
20230519_1840	3.9	NNE
20230519 1850	3.3	NNE
20230519_1900	4.7	NNE
20230519_1910	3.3	NNE
20230519_1920	3.9	NNE
20230519_1930	3.3	NNE
20230519_1940	3.1 3.9	NNE
20230519_1950 20230519_2000	3.3	NNE NNE
20230519_2000	3.9	NNE N
20230519_2010	3.3	NNE
20230519 2020	2.8	N
20230519_2040	2.2	N
20230519 2050	2.8	N
20230519_2100	3.1	N
20230519_2110	4.2	N
20230519_2120	4.2	N.
20230519_2130	3.3	N
20230519_2140 20230519_2150	2.8 3.3	N N
20230519_2200	2.5	N N
20230519_2210	3.9	N N
20230519_2210	3.9	N
20230519_2230	3.6	N
20230519_2240	3.3	N
20230519_2250	3.9	N
20230519 2300	4.2	N.
20230519_2310	3.3	N N
20230519_2320 20230519_2330	4.7 2.8	N N
20230519_2330	2.8 4.2	N N
20230519_2340	3.3	NNE NNE
2022017_2300	2,2	111112

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230520_0000	3.3	NNE
20230520_0010	3.1	NNE
20230520_0020	3.3	NNE
20230520_0030	3.1	NNE
20230520_0040	3.3	N N
20230520 0050 20230520 0100	3.3 3.6	N N
20230520_0100	3.9	N
20230520 0120	3.9	N
20230520_0130	3.9	N
20230520_0140	4.2	N
20230520_0150	3.3	N N
20230520_0200 20230520_0210	3.3 3.3	N N
20230520_0210	3.3	N
20230520 0230	3.6	N
20230520_0240	3.1	N
20230520_0250	3.9	N
20230520 0300	3.1	N
20230520_0310	3.1 2.8	NNE
20230520_0320 20230520_0330	3.3	NNE N
20230520 0330	3.6	N N
20230520_0350	3.9	N
20230520_0400	3.3	N
20230520_0410	3.3	N
20230520_0420	3.1	N
20230520_0430 20230520_0440	3.3 3.3	N N
20230520_0440	3.3	N N
20230520 0500	3,3	N
	3,9	NNE
20230520 0510 20230520_0520	3.1	NNE
20230520_0530	3.3	NNE
20230520_0540	3.3 4.2	NNE
20230520_0550 20230520_0600	3.3	NNE N
20230520 0000	3,3	N N
20230520_0620	4.4	N
20230520_0630	5.3	NNE
20230520 0640	4.7	NNE
20230520_0650 20230520_0700	4.2 3.9	N
20230520_0700 20230520_0710	4.2	N N
20230520_0720	4.7	NNE
20230520 0730	5.3	NNE
20230520_0740	5.3	NNE
20230520_0750	4.4	NNE
20230520_0800	5.3	NNE
20230520_0810 20230520_0820	4.7 4.2	NNE NNE
20230520 0820	4.2	NNE NNE
20230520_0840	3.9	N
20230520 0850	4.2	N
20230520_0900	3.6	N
20230520_0910	3.9	N
20230520 0920 20230520 0930	3.3	N N
20230320_0930	4.7	NNE
20230520_0540	4.2	N
20230520_1000	3.3	NNE
20230520_1010	3.9	NNE
20230520_1020	5	NNE
20230520_1030 20230520_1040	3.6	N N
20230520_1040	3.3	N N
20230520_1030	3.3	N N
20230520_1110	3.9	N
20230520_1120	3.3	N
20230520 1130	3.6	N
20230520_1140	3.3	NNE
20230520_1150	2.5	N

Data 6 Trans		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230520 1200	3.9	N
20230520_1210 20230520_1210 20230520_1220 20230520_1230	3.1	N
20230520 1220	3.1	N
20230520_1230	3.3	N
20230520 1240	3.3	N
20230520_1250	3.9	N
20230520_1300	4.2 3.9	N
20230520_1310 20230520_1320	3.9 4.2	N
20230520 1320	3.9	N N
20230520_1330	4.7	N N
20230520_1350	3,9	N
20230520_1400	4.4	N
20230520_1410	5	NNE
20230520_1420	3.9	NNE
20230520 1430	4.2	NNE
20230520_1440	4.4 4.4	NNE
20230520 1450 20230520 1500	4.4	NNE NNE
20230520_1510	4.4	NNE
20230520_1510	4.4	NNE
20230520_1520	3,9	NNE
20230520_1540	4.4	NNE
20230520_1550	4.7	NNE
20230520_1600	3.6	NNE
20230520_1610	3.3	NNE
20230520_1620	3.6	NNE
20230520 1630 20230520 1640	4.2 3.9	NNE NNE
20230520_1650	2.8	NNE NNE
20230520_1000	2.8	NNE
20230520_1700	2.8	N
20230520 1720	3,3	NNE
20230520 1730	3.3	NNE
20230520_1740	3.9	NNE
20230520_1750	4.2	NNE
20230520_1800	3.9	NNE
20230520_1810	3.9	NNE
20230520_1820 20230520_1830	3.9 3.9	NNE NNE
20230520_1830	2.2	ENE
20230520 1840	0.8	NNE
20230520 1900	0,3	N
20230520 1910	2.2	NNE
20230520_1920	1.7	ENE
20230520_1930	0.3	<u>-</u>
20230520_1940	0.3	-
20230520_1950	1.1	NNE
20230520_2000 20230520_2010	1.4 0.8	NNE N
20230520_2010	0.8	N N
20230520 2020	0,3	NW
20230520_2030	0.8	SW
20230520 2050	0.6	WNW
20230520_2100	0.3	=
20230520_2110	0.3	WSW
20230520_2120	0.3	NNW
20230520_2130	1.4	N
20230520_2140	2.2	N N
20230520_2150 20230520_2200	2.2 2.5	N N
20230520_2200	3.1	N N
20230520 2220	2.2	N N
20230520_2230	1.7	N
20230520_2240	1.1	N
20230520_2250	0.8	ENE
20230520_2300	0.8	ENE
20230520_2310	0.8	ENE
20230520_2320	0.3	SSW
20230520 2330 20230520 2340	0.8 0.8	SSE
20230520_2340	0.8	SSE SSE
ULC3_U3C0_C3U0	0.3	ناده

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230521_0000 20230521_0010	0.6	N S
20230521_0010	0.3	N N
20230521 0030	0.3	-
20230521_0040	0	N
20230521 0050	0.3	SSW
20230521_0100 20230521_0110	0.3	SW SW
20230521_0110	0.3	S
20230521_0130	0.3	SE
20230521_0140	0.8	SSE
20230521_0150	0.3	-
20230521_0200	0.3	ESE N
20230521_0210 20230521_0220	0	N N
20230521_0220	0.3	-
20230521 0240	0.3	SSE
20230521_0250	0.3	S
20230521_0300	0.8	SSE
20230521_0310 20230521_0320	0,3	N SE
20230521_0520	0.3	SE SE
20230521_0340	0.3	-
20230521_0350	0	N
20230521_0400	0.3	S
20230521_0410 20230521_0420	0	N N
20230521_0420	0	N N
20230521_0440	0.3	-
20230521_0450	0	N
20230521_0500	0.3	S
20230521 0510 20230521_0520	0.3	SSE
20230521_0520 20230521_0530	0 0.3	N S
20230521_0530	0.3	SSE
20230521_0550	0.3	SSE
20230521_0600	0.3	SE
20230521_0610	0.3	- -
20230521_0620 20230521_0630	0 0.3	N S
20230321_0030	0.3	SSE
20230521 0650	0.3	S
20230521_0700	0.8	SSE
20230521_0710	0.6	SSE
20230521_0720	0.6	S
20230521_0730 20230521_0740	0	N N
20230521_0740	0,3	S
20230521_0800	0.3	W
20230521 0810	0.3	SSW
20230521_0820	0.8	Е
20230521_0830 20230521_0840	0.3 1.9	- N
20230521_0840	1.9	NNW
20230521 0900	3.3	N N
20230521_0910	3.1	N
20230521 0920	3.3	N
20230521_0930	3.1	N
20230521_0940 20230521_0950	2.5	N N
20230321 0930	1.7	NE NE
20230521_1010	2.8	SE
20230521_1020	2.5	E
20230521_1030	2.8	E
20230521_1040	3.3	E
20230521_1050 20230521_1100	2.5 3.1	ESE ESE
20230521 1100	2.8	ESE
20230521_1120	3.1	ESE
20230521_1130	3.1	ESE
20230521_1140	2.8	ESE
20230521_1150	2.8	ESE

D . 0 m		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20220521 1200	2.2	
20230521 1200 20230521 1210 20230521 1220 20230521 1220 20230521 1230	2.5	SE
20230321_1210	1.7	
20230321 1220	1.4	S S
20230521_1230	2.8	NE
20230521_1240	2.0	ENE
20230521 1230	1.7	ESE
20230521_1300	1.4	N N
20230521_1310	1.7	ENE
20230521 1320	1.1	NNW
20230521_1340	1.4	-
20230521_1350	1.7	_
20230521_1550	1.1	SW
20230521_1400	1.1	SSW
20230521 1420	1.1	SSW
20230521_1420	2.2	NNW
20230521_1440	1.7	NNW
20230521_1450	1.9	NW
20230521_1450	1.9	NNW
20230521 1500	2.2	NNW
20230521_1510	1.7	NW
20230521_1520	2.5	N N
20230521_1530	1.7	N N
20230521_1540	2.8	NNE
20230521_1550	1.7	NNE N
20230521_1000	1.7	NNW
20230521_1620	1.7	N
20230521_1020	1.7	NNE
20230521_1030	2.5	NE.
20230521_1040	1.1	NNE
20230521_1030	1.1	E
20230521 1700	2.2	ESE
20230521 1710	2.5	E
20230521_1720	2.5	E
20230521_1730	2.5	E
20230521 1740	2.8	E
20230521_1750	2.5	E
20230521_1800	3.1	E E
20230521 1810	2.5	E
20230521_1820	3.1	E
20230521_1830	2.8	ESE
20230521 1850	2.5	E
20230521_1830	2.2	ESE
20230521_1700	2.8	ESE
20230521 1910	2.8	ESE
20230521_1920	2.8	ESE
20230521_1930	2.8	SE
20230521_1540	2.8	ESE
20230521_1990	2.2	ESE
20230521_2000	2.2	ESE
20230521_2010	1.4	SE
20230521 2020	1.9	SE SE
20230521_2030	2.2	SE SE
20230521_2040	1.7	SE SE
20230521 2030	1.4	SE SE
20230521_2100	1.4	SE
20230521_2110	1.7	SE SE
20230521 2120	1.4	ESE
20230521_2130	1.1	ESE
20230521_2140	0.8	-
20230521 2200	1.4	ESE
20230521_2200	1.4	E
20230521_2210	2.2	ESE
20230521_2220	1.9	ESE
20230521_2230	1.7	ESE
20230521_2240 20230521_2250	1.7	ESE
20230521 2230	1.7	SE
20230521_2300	1.9	ESE
20230521_2310	1.9	ESE
20230521_2320	1.7	ESE
20230521 2340	2.5	ESE
20230521_2350	2.5	ESE
DCC2_1_1_CC	4,2	نالبنا

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230522 0000	1.9	ESE
20230522_0010	1.7	SE
20230522_0010	1.7	ESE
20230522 0020	1.9	ESE
20230522_0030	1.7	ESE
	1.7	SE SE
20230522_0100	1.4	ESE
20230522_0110	1.4	E
20230522_0120	1.4	E
20230522_0130	1.4	Е
20230522_0140	1.4	Е
20230522 0150	1.4	ESE
20230522_0200	1.4	SE
20230522_0210	0.8	SE
20230522 0220	0.8	SE
20230522 0230	1.1	ESE
20230522 0240	0.8	SE
20230522 0250	0	N
20230522_0250	0	N N
20230522 0300	0	N N
20230522_0310	0,3	SSW
20230522_0320	0.3	SSE
20230522 0330	1.1	SSE SE
20230522_0350	1.4	SE
20230522_0400	1.7	SE
20230522_0410	1.1	SE
20230522_0420	0.3	WNW
20230522_0430	0.3	W
20230522_0440	0.3	W
20230522_0450	0.3	W
20230522_0500	0	N
20230522 0510	0	N
20230522_0520	0	N
20230522 0530	0	N
20230522 0540	0	N
20230522 0550	0.3	N
20230522 0600	0	N
20230522 0610	0	N
20230522 0620	0	N
20230522_0630	0.3	SW
20230522 0640	0	N
20230522 0650	0	N
20230522_0700	0	N
20230522 0710	0	N
20230522 0720	0	N
20230522 0730	0	N
20230522 0740	0.3	NNW
20230522_0750	0.3	NE
20230522_0800	0.3	NW
20230522_0810	0.3	NNE
20230522_0810	0.3	N N
20230522_0830	0.8	NE NE
20230322_0030	0.0	
20230522_0840	0.8	N
20230522 0850	1.4	NNE
20230522_0900	0.8	NNE
20230522_0910	1.1	N
20230522 0920	1.4	N
20230522_0930	1.1	NW
20230522_0940	0.8	NNW
20230522_0950 20230522_1000	1.1	-
20230522_1000	2.2	ESE
20230522_1010	2.5	N
20230522_1020	0.8	<u>-</u>
20230522_1030	2.8	SE
20230522_1040	3.3	ESE
20230522_1050	3.1	ESE
20230522 1100	3.3	ESE
20230522_1110	3.3	ESE
20230522 1120	3.3	SE
20230522 1130	3.3 3.3	ESE
20230522_1140	3.3	ESE ESE
20230522_1150	3.9	ESE

11 11 11 11 11 12 12 13 14 15 15 15 15 15 15 15	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230522 1210 3.3 ESE	(YYYYMMBB HHMM)		
20230522 1200 3.3 ESE	20230522_1200	3.3	
20230522 1240		5.5	E
20230522 1240	20230522 1220	3.3	ESE
20230522 1310 3.3 ESE	20230522_1230	3.3	ESE
20230522 1310 3.3 ESE	20230522 1250		ESE
20230522 1310 3.3 ESE	20230522_1300		
20230522 1330 3.1 E	20230522 1310		
20230522 1340	20230522 1320	3.1	
20230522 1400	20230322_1330		
20230522 1400		2.5	
20230522 1400 3.3 E	20230522 1400	2.8	E
20230522 1430		3.1	
20230522 1440			E
20230522 1450		2.8	
20230522 1500 3.1 E			
20230522 1510 3.3 E			F
20230522 1530 3.1 E			Ē
20230522 1540 3.1 E	20230522_1520	3.3	ESE
20230522 1550 3.3 E			
20230522 1600 2.8	20230522_1540		
20230522 1610			
20230522 1620 3.1 E			
20230522 1630 3.3 E			
20230522 1650 3.1 E	20230522 1630	3.3	
20230522 1700 3.3 E	20230522_1640		
20230522 1710 3.3 E 20230522 1730 3.3 E 20230522 1730 3.3 E 20230522 1740 3.1 E 20230522 1740 3.1 E 20230522 1750 3.3 E 20230522 1750 3.3 E 20230522 1800 1.4 ESE 20230522 1800 1.4 ESE 20230522 1800 2.2 ESE 20230522 1830 2.2 ESE 20230522 1830 2.8 ESE 20230522 1830 2.8 ESE 20230522 1830 2.5 ESE 20230522 1830 2.5 ESE 20230522 1840 2.5 ESE 20230522 1840 2.5 ESE 20230522 1800 2.5 ESE 20230522 1900 2.5 ESE 20230522 1900 2.5 ESE 20230522 1900 2.5 ESE 20230522 1930 2.2 ESE 20230522 1930 2.2 ESE 20230522 1950 2.5 SE 20230522 1950 2.8 SE 20230522 2010 2.8 SE 20230522 2010 2.8 SE 20230522 2010 2.8 SE 20230522 2000 2.8 SE 20230522 2000 2.8 SE 20230522 2000 2.2 ESE 20230522 2000 2.2 ESE 20230522 2010 2.2 ESE 20230522 2100 2.2 ESE 20230522 2110 1.1 SE 20230522 2150 1.1 SE 20230522 2210 1.1 SE 20230522 2210 1.1 SE 20230522 2230 0.8 SSE 20230522 2330 0.8 SSE 20230522 2330			
20230522 1720 3.3 E			
20230522 1730 3.3 E			
20230522 1740 3.1 E			
20230522 1750 3.3 E			
20230522 1810	20230522_1750	3.3	E
20230522 1820			
20330522 1900 2.5 ESE	20230522 1810	2.2	ESE
20330522 1900 2.5 ESE	20230322_1820	2.2	ESE
20330522 1900 2.5 ESE	20230522_1850	2.5	ESE
20330522 1900 2.5 ESE	20230522 1850	2.5	ESE
20230522 1920	20230522_1900		
20230522 1930 2.2 SE	20230522 1910		
20230522 1940 2.5 SE		2.5	
20230522 1950 2.5 SE	20230522_1930	2.2	SE CE
20230522 2000 2.8 SE 20230522 2010 2.8 SE 20230522 2020 2.8 SE 20230522 2030 1.9 SE 20230522 2040 2.2 ESE 20230522 2050 2.2 ESE 20230522 2100 2.2 ESE 20230522 2110 1.9 ESE 20230522 2120 2.2 SE 20230522 2130 2.2 ESE 20230522 2140 2.2 ESE 20230522 2150 1.7 SE 20230522 2200 1.4 SE 20230522 2210 1.1 SE 20230522 2220 1.4 SE 20230522 2230 1.1 SE 20230522 2240 0.3 - 20230522 2250 0.3 SE 20230522 2300 0.8 SE 20230522 2310 0.8 SE 20230522 2310 0.8 SE	20230522_1940	2.5	SE
20230522 2010 2.8 SE 20230522 2020 2.8 SE 20230522 2040 2.2 ESE 20230522 2040 2.2 ESE 20230522 2050 2.2 ESE 20230522 2100 2.2 ESE 20230522 2110 1.9 ESE 20230522 2120 2.2 SE 20230522 2130 2.2 ESE 20230522 2140 2.2 ESE 20230522 2150 1.7 SE 20230522 2200 1.4 SE 20230522 2210 1.1 SE 20230522 2230 1.1 SE 20230522 2230 0.1 SE 20230522 2250 0.3 SE 20230522 2300 0.8 SSE 20230522 2310 0.8 SE 20230522 2300 0.8 SSE 20230522 2300 0.8 SSE 20230522 2300 0.8 SSE 20230522 2330 0.8 SSE	20230522 2000	2.8	SE
20230522 2030 1.9 SE	20230522 2010	2.8	SE
20230522 2050 2.2 ESE	20230522 2020	2.8	SE
20230522 2050 2.2 ESE	20230522_2030	1.9	
20230522 2100 2.2 ESE	20230322_2040	2.2	
20230522 2110	20230522 2030		ESE ESE
2023/0522 2120 2.2 SE	20230522 2110	1.9	ESE
20230522 2140 2.2 ESE	20230522 2120	2.2	SE
20230522 2150			ESE
20230522 2200	20230522_2140		ESE
20230522 2210 1.1 SE	20230522 2150	1./	SE SE
20230522 2220			SE SE
20230522 2230 1.1 SE 20230522 2230 0.3 -			SE
20230522 2250 0.3 SE 20230522 2300 0.8 SSE 20230522 2310 0.8 SE 20230522 2320 0.8 SE 20230522 2330 0.8 SSE 20330522 2330 0.8 SE	20230522_2230	1.1	SE
20230522 2300 0.8 SSE 20230522 2310 0.8 SE 20230522 2320 0.8 SSE 20230522 2320 0.8 SSE			=
20230522 2310 0.8 SE 20230522 2320 0.8 SSE 20230522 2330 0.8 SE			
20230522 2320 0.8 SSE 20230522 2330 0.8 SE			
20230522 2330 0.8 SE			
20230522_2340 0.3 ESE	20230522_2340	0.3	ESE
20230522_2350 0 N	20230522_2350	0	N

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230523 0000	0.3	S
20230523_0000	1.1	SSE
20230523_0010	1.9	SSE
20230523 0020	2.2	SSE
20230523_0030	1.7	SSE
20230523_0040	1.7	
20230523_0050	2.2	SSE
20230523_0100		SSE
20230523_0110	2.2	SSE
20230523_0120	1.1	SSE
20230523_0130	0.3	S
20230523_0140	1.1	SSE
20230523_0150	0.8	SSE
20230523_0200	1.1	SSE
20230523_0210	0.8	SSE
20230523_0220	0.8	SE
20230523 0230	1.1	SSE
20230523 0240	1.4	SE
20230523 0250	1.1	ESE
20230523 0300	0.8	ESE
20230523 0310	1.1	ESE
20230523 0320	0.3	SE
20230523 0330	0.8	SE
20230523 0340	1.1	SE SE
20230523_0340	0.3	ESE
20230523_0330	0.3	E
20230523 0400	0.8	<u>Е</u> Е
20230523_0410	0.3	E E
20230523_0420	0.5	N N
20230523_0430	0.3	ESE
20230523_0450	1.4	SE
20230523_0500	1.4	SE
20230523_0510	1.7	SE
20230523_0520	1.7	SE
20230523_0530	1.1	SE
20230523_0540	0.8	SE
20230523_0550	1.4	SSE
20230523_0600	1.7	SE
20230523 0610	1.7	SE
20230523_0620	1.4	SE
20230523 0630	1.1	-
20230523 0640	1.7	ESE
20230523 0650	1.7	ESE
20230523 0700	1.7	ESE
20230523 0710	1.7	ESE
20230523 0720	1.7	E
20230523 0730	1.1	ENE
20230523 0740	1.4	ESE
20230523 0750	1.1	E
20230523_0750	1.4	ESE
20230523_0800	1.7	ESE
20230523 0820	2.5 2.2	ESE
20230523_0830 20230523_0840	2.5	<u>Е</u> Е
20230523_0840		
20230523 0850	2.8	ENE
20230523_0900	2.8	ENE
20230523_0910	3.3	E
20230523_0920	2.5	E
20230523_0930	3.1	E
20230523_0940	3.1	E
20230523_0950	3.3	ESE
20230523_1000	3.3	Е
20230523_1010	3.3	Е
20230523_1020	3.1	ESE
20230523_1030	3.1	ESE
20230523 1040	3.1	E
20230523 1050	3.1	Ē
20230523_1000	2.8	Ē
20230523_1110	3.1	E
20230523_1110	3.3	E
20230523_1120	3.3	E
20230523_1130	3.3	ESE
20230523_1140	2.8	ENE ENE
20230323_1130	4.0	LINE

Date & Time	TT 10 11 ()	W. 1701 1 070 1
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230523_1200	3.1	ENE
20230523_1210	2.8	Е
20230523 1220	2.5	ENE
20230523_1230	3.1 3.1	E E
20230523_1240 20230523_1250	2.8	ESE ESE
20230523_1230	3.1	ESE E
20230523_1310	2.8	SE
20230523_1320	2.2	E
20230523_1330	2.2 2.8 2.5	Е
20230523_1340	2.5	E
20230523_1350	2.5	Е
20230523 1400 20230523 1400 20230523 1410 20230523 1420 20230523 1430 20230523 1440	2.8 3.1	E
20230523_1410	3.1	-
20230523_1420	3.1	E
20230523 1430 20230523 1440	3.3 3.3	<u>Е</u> Е
20230523_1450	3.3	E
20230523_1450	3.3	E
20230523 1500 20230523_1510	3.3	Ē
20230523 1520	3.9	Ē
20230523 1530 20230523 1540	3.9	Е
20230523_1540	3.9	Е
20230523 1550	3.9	Е
20230523 1600 20230523 1610 20230523 1620	3.9	E
20230523_1610	3.3	E
20230523_1620	3.1	E
20230523 1630 20230523 1630 20230523 1640 20230523 1650 20230523 1700 20230523 1710 20230523 1720	2.8 2.2	ESE
20230323_1040	2.8	<u>Е</u> Е
20230323_1030	3.3	E
20230523_1700	3.3	E
20230523 1720	3.3	Ē
20230523 1730	3.3	Ē
20230523 1740	3,3	E
20230523_1750	2.8	Е
20230523_1800	2.8	ESE
20230523_1810	2.8	ESE
20230523_1820	1.7	E
20230523_1830	2.2	ENE
20230523 1840 20230523 1850	1.7 1.7	E E
20230523_1830	1.9	E
20230523_1910	1.7	ENE
20230523 1920	1.7	E
20230523 1930	1.7	E
20230523 1940	2.2	ESE
20230523_1950	1.1	ESE
20230523_2000	1.4	ESE
20230523_2010	1.4	ESE
20230523 2020	1.4	SSE
20230523_2030 20230523_2040	1.1 1.1	SE SE
20230523_2040 20230523 2050	1.1	SE SE
20230523 2100	1.1	SE SE
20230523_2100	1.7	SE
20230523 2120	2.5	SE
20230523_2130	1.7	SE
20230523_2140	1.7	SE
20230523_2150	1.1	SE
20230523_2200	1.7	SE
20230523_2210	1.7	SE
20230523 2220	1.1	ESE
20230523_2230 20230523_2240	1.4 0.8	ESE E
20230523_2240 20230523_2250	0.8	ESE ESE
20230523_2230	0.8	SSE
20230523_2310	1.4	SE
20230523 2320	0.8	ESE
20230523 2330	1.1	SE
20230523 2330 20230523 2340	1.1	SE
20230523_2350	1.1	SSE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230524 0000	1.4	SSE
20230524_0000	1.1	SE
20230524 0010	1.1	ESE
20230524 0020	1.4	E E E E E E E E E E E E E E E E E E E
20230524_0030	1.4	E E
20230524_0050	1.4	E
20230524_0100	1.1	E
20230524_0110	1.4	E
20230524_0120	0.8	E
20230524_0130	1.1	E
20230524_0140	1.1	E
20230524_0150	1.1	ESE
20230524_0200	1.1	ESE
20230524_0210	1.4	SE
20230524 0220	1.1	SE
20230524 0230	0.8	SE
20230524 0240	0.3	ESE
20230524_0250	0	N
20230524 0300	1.1	SE
20230524 0300	1.1	SE
20230524_0310	0.8	ESE
20230524_0520	0.8	ESE
20230524_0330	1.1	ESE
20230524_0340		E ESE
	0.8	
20230524_0400	0.8	E
20230524_0410	0.8	ESE
20230524_0420	0.8	ESE
20230524_0430	0.8	ESE
20230524_0440	1.1	ESE
20230524_0450	1.1	ESE
20230524_0500	1.1	E
20230524 0510	0.8	E
20230524_0520	1.4	SE
20230524 0530	1.1	ESE
20230524 0540	2.2	SE
20230524 0550	1.7	SE
20230524 0600	2,5	SE
20230524 0610	1.4	SSE
20230524 0620	1.7	SE
20230524 0630	1.4	SSE
20230524 0640	1.7	ESE
20230524 0650	1.9	ESE
20230524 0700	2.2	SE
20230524_0700	2.8	E
20230524 0710	2.5	ESE
20230524_0720	2.5	ESE
20230524_0730	2.8	ESE
20230524_0740	2.5	
		ESE
20230524_0800	2.5	E
20230524_0810	2.2	ESE
20230524 0820	1.9	E
20230524_0830	2.8	ENE
20230524_0840	2.5	E
20230524_0850	2.8	E
20230524_0900	2.8	E
20230524_0910	3.3	E
20230524_0920	3.1	E
20230524_0930	2.5	E
20230524_0940	2.5	ESE
20230524_0950	2.8	ESE
20230524 1000	2.8	ESE
20230524 1010	2.8	E
20230524_1020	2.8	ESE
20230524_1030	2.2	SE
20230524_1030	2.5	E
20230524_1050	2.5	SE
20230524 1100	2.8	SE
20230524_1100	1.9	ENE
20230524_1110	2.2	ENE
20230524_1120	2.5	SE SE
20230524_1130	2.8	E E
20230524_1140	2.5	E
20230324_1130	2.3	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230524_1200	2.5	E
20230524_1210 20230524_1220	2.5	E E
20230524_1220 20230524_1230	2.5 2.2	ESE
20230524_1240	2.2	ESE
20230524 1250	2.5	ESE
20230524_1300	2.5	ESE
20230524_1310	1.9	SE
20230524 1320	2.2	ESE
20230524_1330	2.8 2.8 3.1	E
20230524_1340 20230524_1350	2.8	E E
20230524_1330	2.8	E
20230524 1410	3,3	ESE
20230524 1420	3.3	ESE
20230524 1430	3.3	E E
20230524_1440	3.3	E
20230524_1450 20230524_1450 20230524_1500 20230524_1510	3.6 3.3	E
20230524 1500	3.3	E
20230524_1510 20230524_1520	3.6	E E
20230524_1520	3.3	E E
20230524 1530	2.5	ESE
20230524_1550	3.1	ESE
20230524_1600	3.3	Е
20230524_1610	3.1	E
20230524_1620	3.3	E
20230524_1630	3.1	ESE
20230524_1640 20230524_1650	3.3	E E
20230524_1030	3.3	<u>Е</u> Е
20230524_1700	3.1	E
20230524 1720	3.3	Ë
20230524_1730	2.8	E
20230524 1740	2.5	Е
20230524_1750	2.8	ESE
20230524_1800	3.3	ESE
20230524_1810 20230524_1820	3.3 3.1	ESE
20230524_1820	3.3	E ESE
20230524_1840	3.1	ESE
20230524_1850	2,5	ESE
20230524 1900	2.5 3.1	ESE ESE
20230524_1910	2.8 2.8	ESE
20230524_1920	2.8	SE
20230524_1930	2.8	ESE
20230524_1940 20230524_1950	2.5 3.3	SE SE
20230524_1930	3.1	SE SE
20230524 2010	2.5	ESE
20230524 2020	2.5	ESE
20230524 2020 20230524_2030	2.5	ESE
20230524 2040	2.5	ESE
20230524 2050	1.7	ESE
20230524_2100	2.5	SE
20230524_2110 20230524_2120	2.8 2.2	SE SE
20230524_2120 20230524_2130	2.2	SE SE
20230524_2130	2.5	SE
20230524_2140	3.1	SE
20230524_2200	2.5	SE
20230524_2210	2.5	SE
20230524 2220	1.7	SE
20230524_2230	2.5	SE
20230524_2240	2.2	SE
20230524_2250 20230524_2300	2.8 3.1	SE SE
20230524_2300 20230524_2310	2.8	SE SE
20230524_2320	2.8	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230525 0000	2.5	ESE
20230323_0000	2.2	ESE
20230525_0010	1.9	SE
20230525 0030	1.7	SE
20230525 0040	2.5	SE
20230525 0050	2.5	ESE
20230525_0100	1.9	ESE
20230525_0110	2.2	ESE
20230525_0120	1.9	ESE
20230525_0130 20230525_0140	1.7	SE SE
20230525_0140 20230525_0150	1.7 1.7	SE SE
20230525_0130	1.7	SSE
20230525_0200	1.7	SSE
20230525 0220	1.4	SE
20230525 0230	0.8	-
20230525_0240	1.1	ESE
20230525_0250	0.8	Е
20230525_0300	0.8	E
20230525_0310	1.4	E
20230525_0320	1.7	ENE
20230525 0330 20230525 0340	1.4 1.1	E ESE
20230525_0340	1.1	ESE
20230525 0400	1.7	ESE
20230525 0400	1.1	SE SE
20230525_0420	1.4	ESE
20230525 0430	0.8	ESE
20230525_0440	0.8	E
20230525_0450	1.1	ESE
20230525_0500	0.8	E
20230525 0510	0.3	SE
20230525_0520 20230525_0530	1.1	ESE ESE
20230525 0530	1.7	E E E
20230525 0540	0.8	E
20230525 0600	0.8	SSE
20230525 0610	0.8	NE
20230525_0620	1.1	ENE
20230525_0630	0.6	ENE
20230525_0640	0.8	SE
20230525_0650	0.3	SE
20230525_0700 20230525_0710	0.8	SE ESE
20230525_0710	0.8 1.4	ESE ESE
20230525_0720	1.4	ESE
20230525_0750	1.1	SE
20230525 0750	0.8	SE SE
20230525 0800	0.8	SE
20230525_0810	1.1	SE
20230525 0820	1.4	SE
20230525_0830	1.1	NE
20230525_0840	1.1	E
20230525 0850 20230525 0900	1.7	ESE ESE
20230323_0900	2.5	E E E
20230525_0910	2.3	E E
20230525 0930	2.5	E
20230525_0940	2.5	ESE
20230525_0950	2.8	Е
20230525_1000	2.2	ENE
20230525_1010	1.7	ESE
20230525_1020	2.2	ESE
20230525_1030	1.9	ESE
20230525_1040 20230525_1050	2.5 2.2	E
20230525_1050 20230525_1100	2.2	ESE E
20230525 1100	2.5	E E
20230525_1110	3.1	E
20230525 1130	3.3	E
20230525_1140	2.5	Ē
20230525_1150	2.8	SE

Date & Time	WF - 1 C 1 (()	W' - 1 D' (D)
(VVVVIAIDD HIMAA)	Wind Speed (m/s)	Wind Direction (From)
20230525 1200 20230525 1210 20230525 1220 20230525 1220 20230525 1230	2.8	ESE
20230525_1210	2.8 2.5	E
20230525_1220	2.5	E ESE
20230525_1230	2.8	ESE E
20230525 1250	2.2	ESE
20230525 1300	2.5	E
20230525 1310	2.8	ENE
20230525_1320	2.5	Е
20230525_1330	2.2	E
20230525_1340	2.5	E
20230525 1350 20230525 1400	2.5 2.5	E E
20230525_1400	2.8	E
20230525_1410	2.8	ESE
20230525 1430	3.1	ESE
20230525_1440	2.8	ESE
20230525_1450	2.8	ESE
20230525_1500	2.2	ESE
20230525_1510 20230525_1520	1.7 1.7	ESE ESE
20230525_1520	1.7	ESE ESE
20230525 1530	0.6	SSW
20230525_1550	1.1	SE
20230525 1600	1.7	ESE
20230525_1610	1.7	ESE
20230525_1620	1.7	ESE
20230525 1630 20230525 1640	1.7	E E
20230525_1640	2.5	ESE
20230525_1030	3.3	E
20230525 1710	3.3	E
20230525 1720	3.1	ESE
20230525_1730	2.8	ESE
20230525 1740	2.8	ESE
20230525_1750	3.3	ESE
20230525_1800 20230525_1810	2.5	ESE ESE
20230525 1810	2.5	ESE ESE
20230525_1620	1.4	ENE
20230525 1840	1.1	NE
20230525_1850	0.8	NE
20230525_1900	0.3	SSE
20230525_1910	1.7	SE
20230525_1920 20230525_1930	1.1 0.6	SE
20230525_1930	1.4	ESE ESE
20230525 1950	1.4	ESE
20230525 2000	1.7	ESE
20230525_2010	2.2	ESE
20230525 2020	2.2	E
20230525_2030	1.1	E
20230525_2040 20230525_2050	1.4 1.4	ENE E
20230525_2050	1.4	E ESE
20230525_2100	1.1	SE
20230525 2120	0,3	SE
20230525_2130	0.3	-
20230525_2140	0.3	SE
20230525_2150	0.3	E
20230525_2200 20230525_2210	0.8	E
20230525_2210 20230525_2220	0.6 1.1	E ENE
20230525 2230	1.4	ENE
20230525 2240	1.1	ESE
20230525_2240 20230525_2250 20230525_2300	1.4	SE
20230525 2300	0.6	SE
20230525 2310	0.3	SSW
20230525_230 20230525_2320 20230525_2330	0	N
20230525_2330 20230525_2340	0 0.3	N S
20230525_2350	0.8	SSE
NF7777770	V.U	בוניט

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230526_0000	0.8	S
20230526_0010	0.3	S
20230526 0020	0.8	SSE
20230526_0030	0.8	SSW
20230526_0040	0.6	SSW
20230526_0050 20230526_0100	1.1 1.4	S SSE
20230526_0110	1.4	S
20230526 0120	1.4	SSE
20230526_0130	1.7	SE
20230526_0140	0.8	SSW
20230526 0140 20230526 0150 20230526_0200	1.1 0.8	ESE SE
20230526_0210	0.8	SSE
20230526_0220	1.7	SSE
20230526 0230	1.7	SE
20230526_0240 20230526_0250	1.1 1.7	ESE ESE
20230526 0300		SE SE
20230526_0310	1.7 1.7	SE SE
20230526_0320	1.1	ESE
20230526_0330 20230526_0340	1.4 1.1	ESE ESE
20230526_0350	0.8	ESE
20230526 0350 20230526 0400 20230526 0410	0.8	SE
20230526_0410	0.3	ESE
20230526 0420	1.4	ESE
20230526_0430 20230526_0440	1.7 1.7	ESE E
20230526_0450	1.1	E
20230526_0500	1.9	ENE
20230526 0510	1.7	E
20230526_0520	0.8	SE
20230526_0530 20230526_0540	1.1 0.8	SSE SSE
20230526 0550	0.8	S
20230526_0600	1.1	SSE
20230526 0610	0.3	NNE
20230526_0620 20230526_0630	0	N N
20230526_0030	0,3	SE
20230526_0650	0.3	SSE
20230526_0700	0	N
20230526_0710	0.6	S SSW
20230526_0720 20230526_0730	1.1 0.8	S
20230526 0740	0.6	SSE
20230526_0750	0.3	E
20230526_0800	0.3	ESE
20230526_0810 20230526_0820	0.3 0.3	SSW SSW
20230526_0830	0.3	N
20230526_0840	0.3	NW
20230526 0850	0.6	NE
20230526_0900	1.1	WNW
20230526_0910 20230526_0920	0.3	NW N
20230526_0930	0.3	NE NE
20230526_0940	1.1	E
20230526_0950	1.7	E
20230526_1000 20230526_1010	1.7 1.4	<u>Е</u> Е
20230526_1010 20230526_1020	1.4	<u>E</u> E
20230320_1030	1.1	ENE
20230526_1040	1.7	ESE
20230526_1050	2.5	E
20230526 1100 20230526 1110	2.8 2.8	<u>Е</u> Е
20230526_1110	2.5	E E
20230526 1130	3.1	Ē
20230526_1140	2.2	E
20230526_1150	2.2	E

Date & Time	WF 10 1/ /)	THE LINE OF AN A
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230526_1200	2.5	E
20230526_1200 20230526_1210 20230526_1220 20230526_1230	2.2 2.8 3.3	E
20230526 1220	2.8	E E
20230526_1240	3.1	E
20230526 1250	2,5	E
20230526_1300	2.2	Е
20230526_1310	1.7	ESE
20230526 1320 20230526 1330	0.8	ESE E
20230526_1340	1.7	E
20230526_1350	0.8	ENE
20230526_1400	0.6	SE
20230526_1410	0.8	ENE
20230526_1420 20230526_1430	0.3 0.3	ESE ENE
20230526_1440	0.8	ENE ENE
20230526 1450	0.8	NE
20230526 1500	1.4	ENE
20230526_1510	1.7	ENE
20230526_1520	2.2 1.7	ENE
20230526_1530 20230526_1540	1.7	NE ENE
20230526_1550	1.9	NE NE
20230526 1600	2.2	ENE
20230526_1610	1.7	ENE
20230526_1620	1.7	ENE
20230526_1630 20230526_1640	1.4 1.7	E E
20230526_1650	1.7	E E
20230526_1700	0.8	ESE
20230526 1710	1.4	E
20230526_1720	1.7	Е
20230526_1730	1.7	E
20230526 1740 20230526 1750	2.2	E ESE
20230526_1730	2.2	ESE
20230526_1810	0.8	ENE
20230526_1820	1.7	ENE
20230526_1830	1.4	ENE
20230526_1840 20230526_1850	1.1 1.4	ENE ENE
20230526 1900	1.4	ENE
20230526 1910	1.4	E
20230526_1920	0.8	ENE
20230526_1930	1.1	ENE
20230526_1940 20230526_1950	0.8 1.4	ENE ENE
20230526_1930	1.4	ENE ENE
20230526_2000	1.7	NE NE
20230526 2020	1.7	ENE
20230526_2030	1.1	Е
20230526_2040	0.8	E
20230526 2050 20230526_2100	1.1 1.1	ENE NE
20230526_2110	1.4	ENE
20230526 2120	1.1	ENE
20230526_2130	0.8	ENE
20230526_2140	1.1	NE
20230526_2150	0.8	NE E
20230526_2200 20230526_2210	1.1 1.4	E ENE
20230526_2220	1.1	NE NE
20230526_2230	0.8	ENE
20230526_2240	1.1	ESE
20230526_2250	1.1	ESE
20230526 2300	1.4	E
20230526_2310 20230526_2320	1.4 0.3	E NE
20230526_2320	0.3	NNE
20230526_2340	0.3	N
20230526_2350	0.3	NNW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	0,3	NE NE
20230527_0000 20230527_0010	0.8	ENE ENE
20230527 0010	1.4	E
20230527_0030	1.1	NE
20230527_0040	1.1	NE
20230527_0050	0.8	ENE
20230527_0100	0.8	SE
20230527_0110	0.3	NNW
20230527_0120	1.1	ENE
20230527_0130 20230527_0140	1.1 1.4	ESE ENE
20230527_0140	1.1	ENE
20230527_0150	0.8	ESE
20230527_0210	0	N
20230527_0220	0.8	ENE
20230527_0230	1.4	NE
20230527_0240 20230527_0250	1.4	E
20230527_0250	1.4	ENE
20230527_0300 20230527_0310	1.4	ENE
20230527_0310 20230527_0320	1.7 1.1	ENE ENE
20230527_0320	1.1	ENE ENE
20230527_0330 20230527_0340	1.4	ENE
20230527_0350	1.4	ENE
20230527_0400	1.1	ENE
20230527_0410	0.8	NE
20230527_0420	0.8	ENE
20230527_0430 20230527_0440	0.6	ENE
20230527_0440 20230527_0450	0.3	ENE
20230527_0430	0.8	E N
20230527 0500	0,3	ENE
20230527 0510 20230527_0520	1.1	E
20230527 0530	1.1	E
20230527_0540	0.3	Е
20230527 0550 20230527 0550 20230527 0600 20230527 0610 20230527 0620	0.3	ENE
20230527_0600	0	N or
20230527 0610	0.3	SE ESE
20230527_0620 20230527_0630	1.1	ENE ENE
20230527_0030	0.3	NE NE
20230527 0650	0.6	NNE
20230527 0700	0.3	NE
20230527_0710	0.8	NE
20230527_0720	0.8	ENE
20230527_0730	0	N
20230527_0740	0 0,3	N
20230527_0750 20230527_0800	0.8	NNE NNE
20230527_0810	0.8	ININE
20230527 0810	1.1	E
20230527_0830	0.8	SE
20230527_0840	1.1	Е
20230527 0850	1.7	E
20230527_0900	1.7	E
20230527_0910	1.7	E
20230527_0920 20230527_0930	1.7 2.2	E ESE
20230527_0930	1.9	ESE E
20230327_0940	1.7	ESE
20230527 1000	1.7	ESE
20230527_1010	1.9	ESE
20230527_1020	2.2	E
20230527_1030	2.5	E
20230527_1040	2.2	E
20230527_1050	2.2	E
20230527 1100 20230527 1110	2.5 2.5	<u>Е</u> Е
20230527_1110	2.8	<u>Е</u> Е
20230527_1120	2.8	E E
20230527 1130	3,3	E
20230527_1150	2.8	ENE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230527 1200 20230527 1210 20230527 1220 20230527 1220 20230527 1230	3.3	ESE
20230527_1210	3.3	ESE
20230527_1220	3.1	E
20230527_1230 20230527_1240	3.3 3.3	ESE E
20230527_1240	2.5	E E
20230527 1300	3.3	E
20230527 1310	3.3	E
20230527_1320	3.3	E
20230527_1330	3.3	E
20230527_1340 20230527_1350	3.3 3.3	E E
20230527_1530	3.6	E E
20230527 1410	3.3	ENE
20230527_1420	3.9	ENE
20230527 1430	3.3	E
20230527_1440 20230527_1450	3.1	E E
20230527_1430	3.1	E E
20230527_1510	3.6	E
20230527 1520	3.6	E
20230527_1530	3.3	E
20230527_1540	3.9	E
20230527_1550 20230527_1600	3.3 3.3	E E
20230527_1610	3.3	E E
20230527_1620	3.3	E
20230527_1630	4.2	Е
20230527_1640	3.3	ESE
20230527_1650	3.3	E
20230527_1700 20230527_1710	3.6 3.6	ESE ESE
20230527 1710	4.2	ESE
20230527_1730	3.3	ESE
20230527 1740	3.1	E
20230527_1750	2.8	E
20230527_1800 20230527_1810	2.8	ESE ESE
20230527 1810	1.9	ESE ESE
20230527 1830	2,5	E
20230527 1840	2.5	ESE
20230527_1850	2.8	ESE
20230527_1900 20230527_1910	2.5 1.7	SE SE
20230527_1910	2.5	SE SE
20230527 1930	2.2	SE
20230527 1940	2.5	ESE
20230527_1950	2.8	ESE
20230527_2000	2.8	ESE
20230527_2010 20230527_2020	3.3 3.6	ESE ESE
20230527 2030	2.8	ESE
20230527_2040	2.8	ESE
20230527 2050	2.8	ESE
20230527_2100	2.8	SE
20230527_2110	3.1	SE
20230527_2120 20230527_2130	3.3 2.8	SE SE
20230527_2130	2.5	SE
20230527 2150	2.2	ESE
20230527_2200	3.3	SE
20230527_2210	2.2	SE
20230527_2220	2.5 3.3	ESE
20230527_2230 20230527_2240	3.3 2.2	ESE ESE
20230527_2240	2.8	ESE
20230527_2230	3.3	ESE
20230527_2310	3.3	ESE
20230527_2320	3.3	ESE
20230527 2330 20230527_2340	3.9	SE
20230527_2350	3.6 3.3	ESE ESE
20230321_2330	2,2	LOL

CYYYYMBB HHMM Care Care	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230528 0010	(YYYYMMBB HHMM)		
20230528 0020	20230528_0000		
20230528 0030			
20230528 0050	20230528_0030	3.3	ESE
20230528 0100			
20230528 0110	20230528_0050		
20230528 0130			
20230528 0140			
20330528 0140	20230528 0130		ESE
20230528 0200	20230528_0140	2.5	ESE
20230528 0200	20230528_0150	2.5	
20230528 0200	20230528_0200	2.5	
20230528 0230		2.3	
20230528 0240	20230528 0230		
20230528 03:00	20230528 0240	1.7	
20230528 03:00	20230528_0250	1.7	
20230528 03:00	20230528 0300	1.9	
20230528 0330	20230528_0310	1.7	
20230528 0350	20230528_0320		
20230528 0350	20230528 0340		
20230528 0400 2.2 E 20230528 0420 2.2 E 20230528 0430 1.7 E 20230528 0440 2.2 E 20230528 0440 2.2 E 20230528 0450 1.7 E 20230528 0450 2.5 E 20230528 0500 1.9 ESE 20230528 0500 1.9 ESE 20230528 0500 1.9 E 20230528 0500 1.9 E 20230528 0530 1.9 E 20230528 0530 1.9 E 20230528 0550 1.7 E 20230528 0560 1.7 ESE 20230528 0650 1.7 ESE 20230528 0630 1.7 ESE 20230528 0630 1.7 ESE 20230528 0630 1.7 ESE 20230528 0630 2.5 ESE 20230528 0640 2.2 ESE 20230528 0650 2.5 ESE 20230528 0700 2.5 ESE 20230528 0700 2.2 E E 20230528 0700 2.5 ESE 20230528 0700 2.8 E 20230528 1000 3.1 E 20230528 1000 3.1 E 20230528 1	20230528_0350		
20230528 0420	20230528_0400		
20230528 0430			
20230528 0440			
20230528 0450	20230528_0430		
20230528 0500			
20230528 0530	20230528 0500		
20230528 0530	20230528 0510		E
20230528 0540	20230528_0520		
20230528 0550			
20230528 0610	20230528 0540		
20230528 0610	20230528_0600		ESE
20230528 0630	20230528 0610		ESE
20230528 0640	20230528_0620		
20230528 0650	20230528_0630		
20230528 0700 2.5	20230528_0640		
20230528 0710 2.2 E 20230528 0730 2.2 E 20230528 0730 2.2 ESE 20230528 0740 2.2 ESE 20230528 0750 2.5 ESE 20230528 0750 2.5 ESE 20230528 0800 2.8 E 20230528 0810 2.5 E E 20230528 0830 2.2 E E 20230528 0830 2.2 E E 20230528 0840 2.5 E E 20230528 0910 2.5 E E 20230528 0930 3.3 E E 20230528 0930 3.3 E E 20230528 0950 2.8 E E 20230528 0950 2.8 E E 20230528 1000 2.8 E 20230528 1000 2.8 E 20230528 1000 2.8 E 20230528 1000 3.1 E 20230528 1030 3.3 E 20230528 1030 3.3 E 20230528 1030 3.1 E 20230528 1050 3.1 E 20230528 1050 3.1 E 20230528 1050 3.3 E 20230528 1100 3.6 E E 20230528 1100 3.9 E 20230528 1140			
20230528 0720	20230528 0710		
20230528 0740 2.2 ESE	20230528 0720		
20230528 0750 2.5			
20230528 0800 2.8			ESE
20230528 0810	20230528_0750		
20230528 0820	20230528 0810	2.5	
20230528 0830 2.2 E	20230528 0820	2.2	Е
20230528 0850 2.5			
20230528 0900 2.8			
20230528 0910 2.5 E	20230528 0850	2.5	
20230528 0920 3.1 E			
20230528 0930 3.3 E	20230528 0920	3.1	Е
20230528 0050 2.8 E	20230528_0930	3.3	E
20230528 1000 2.8 E 20230528 1010 3.3 E 20230528 1020 3.1 E 20230528 1020 3.1 E 20230528 1030 3.3 E 20230528 1040 3.1 E 20230528 1050 3.3 ESE 20230528 1100 3.6 ESE 20230528 1110 3.6 ESE 20230528 1120 3.9 E 20230528 1130 3.9 E 20230528 1140 3.9 E			
20230528 1010 3.3 E			
20230528 1020 3.1 E			
20230528 1030 3.3 E			
20230528 1050 3.3 ESE 20230528 1100 3.6 ESE 20230528 1110 3.6 ESE 20230528 1120 3.9 E 20230528 1130 3.9 E 20230528 1140 3.9 E	20230528_1030	3.3	E
20230528 1100 3.6 ESE			
20230528 1110 3.6 ESE			
20230528 1120 3.9 E 20230528 1130 3.9 E 20230528 1140 3.9 E			
20230528 1130 3.9 E 20230528 1140 3.9 E			
20230528_1140 3.9 E			
20230528_1150 3.9 E	20230528_1140	3.9	E
	20230528_1150	3.9	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230528_1200 20230528_1210	4.2 3.3	E E
20230528 1210	4.2	E E
20230528 1230	3.9	E
20230528_1240	3.9	Е
20230528 1250	3.3	ESE
20230528_1300	4.4 4.2	E
20230528_1310 20230528_1320	3.9	E E
20230528_1330	4.2	Ē
20230528_1340	4.4	Е
20230528_1350	3.9	E
20230528 1330 20230528 1400 20230528 1410 20230528 1420 20230528 1430	4.2	<u>Е</u> Е
20230528_1410 20230528_1420	4.2 4.2	E E
20230528 1420	4.4	ENE
20230528 1440	4.2	E
20230528_1450	4.2	E
20230528_1500	4.4	E
20230528_1510	3.6	E
20230528_1520 20230528_1530	3.9 3.9	E E
20230528 1530 20230528_1540	3.9	E E
20230528 1550	3.3	E
20230528_1600	4.2	E
20230528_1610	3.9 3.3	E
20230528_1620 20230528_1630	3.9	E E
20230528 1640	3.9	E E
20230528_1650 20230528_1700 20230528_1710	3,6	Ē
20230528_1700	3.3	Е
20230528 1710	3.3	E
20230528_1720 20230528_1730	3.1 2.5	E
20230528_1740	2.8	ESE E
20230528 1740	2.8	E
20230528 1800	2.2	Е
20230528 1810	2.5	ESE
20230528_1820	2.5	ESE
20230528_1830 20230528_1840	1.7 1.4	ESE ESE
20230528 1840	1.4	ESE
20230528_1900	1.4	SE
20230528 1910	1.7	SE
20230528_1920	2.2	ESE
20230528_1930 20230528_1940	2.2	ESE
20230528_1940	2.2	E E
20230528_1750	2.2	ESE
20230528_2010	2.2	E
20230528 2020	2.2	ESE
20230528_2030	2.2	ESE
20230528_2040 20230528_2050	1.9 2.5	ESE ESE
20230528_2050	2.5	ESE ESE
20230528 2110	2.2	ESE
20230528 2120	1.7	ESE
20230528_2130	1.9	ESE
20230528_2140	1.7	ESE
20230528_2150 20230528_2200	1.7 1.7	ESE ESE
20230528_2210	1.4	ESE
20230528 2220	1.7	ESE
20230528_2230	1.7	ESE
20230528_2240	1.7	ESE
20230528_2250	1.7	ESE
20230528 2300 20230528_2310	2.2 1.7	ESE ESE
20230528_2310	1.7	ESE
20230528 2330	1.4	SE
20230528_2340	1.7	ESE
20230528_2350	1.7	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230529 0000	1.7	ESE
20230529_0010	2.2	ESE
20230529 0020	1.7	ESE
20230529_0030	1.7	ESE
20230529_0040 20230529_0050	1.7 1.4	ESE ESE
20230529_0100	1.1	ESE
20230529 0110	1.1	ESE
20230529 0120	1.4	E
20230529_0130 20230529_0140	2.2 1.4	ESE
20230529 0140	1.4	ESE ESE ESE
20230529_0200	0.8	ESE
20230529_0210	1.1	E
20230529_0220	1.4	ESE
20230529 0230 20230529 0240	1.4 1.1	ESE ESE
20230529 0250	1.4	ESE
20230529 0300	0.6	ENE
20230529_0310	0.8	ENE
20230529_0320 20230529_0330	0.3	ENE ENE
20230529 0340	0.3	-
20230520 0350	0.8	ENE
20230529_0330 20230529_0400 20230529_0410	1.9 2.2	ENE
20230529_0410	1.7	ENE E
20230529 0430	2.2	ENE
20230529 0440	2.8	E
20230529_0450	3.1	E
20230529 0500 20230529 0510	3.1	E E
20230529 0510	3.3	E E
20230529 0530	3.3	E
20230529 0540	2.8	E
20230529_0550 20230529_0600	2.8	<u>Е</u> Е
20230529_0000	3.3	ENE
20230529_0620	3.3	ENE
20230529_0630	2.5	E
20230529_0640 20230529_0650	2.8 3.1	<u>Е</u> Е
20230529 0030	2.5	E E
20230529 0710	2.5	ESE
20230529_0720	3.1	SE
20230529_0730 20230529_0740	2.5	E ESE
20230529 0740	3.1 2.5	ESE
20230529 0800	2.8	ESE
20230529 0810	2.8	ESE
20230529 0820 20230529_0830	2.8 2.5	ESE
20230529_0830 20230529_0840	2.8	ESE E
20230529 0850	2.8	E
20230529_0900	2.8	E
20230529_0910 20230529_0920	2.5	ESE
20230529_0920	3.1 2.5	E E
20230529_0940	2.5	Ē
20230529_0950	2.8	E
20230529_1000	2.8	ESE
20230529_1010 20230529_1020 20230529_1030	3.1	E E
20230529_1020	3.3 3.3	E
20230529_1040	2.5	Е
20230529_1050	2.2	E
20230529_1100 20230529_1110	2.5 2.2	ESE E
20230529_1110	1.7	E
20230529 1130	1.4	ESE
20230529_1140	2.2	ESE
20230529_1150	2.8	ESE

D . 0 M'		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230520 1200	1.9	ESE
20230529 1200 20230529 1210 20230529 1220 20230529 1220 20230529 1230	1.7	ESE
20230529_1210	2.2	F
20230529 1220	1.7	E ESE
20230529 1240	1.7	ESE
20230529 1250	1.7	ESE
20230529 1300	2.2	SE
20230529 1310	1.4	S
20230529 1320	1.7	SE
20230529_1330	0.8	ESE
20230529_1340	0.8	SE
20230529_1350	0.8	S
20230529_1400	0.3	NNE
20230529_1410	0.3	N
20230529_1420	0.3	NNE
20230529 1430	0.8	W
20230529_1440	0.8	SW
20230529_1450	0	N
20230529_1500	0	N
20230529_1510 20230529_1520	0.3	S
20230529_1520 20230529_1530	0.8	ESE
20230529_1530 20230529_1540	0.3	NNE NNE
20230529_1540	0.3	NNE N
20230529_1550	0.3	SW
20230529 1600	0.3	NNW
20230529_1010	0.8	W
20230529_1630	1.1	SSW
20230529 1640	0.8	E
20230529 1650	1.1	E
20230529_1700	1.1	-
20230529_1710	0.3	SW
20230529 1720	0.3	W
20230529_1730	0.3	E
20230529 1740	0.3	SE
20230529 1750	1.4	SSE
20230529 1800	1.1	SSE
20230529 1810	1.1	S
20230529_1820	1.4	S
20230529_1830	1.1	S
20230529_1840	1.4	S
20230529_1850	0.8	SW
20230529_1900	0.8	E
20230529_1910	0.3	E
20230529_1920	0.3	WNW
20230529_1930	0.8	SSW
20230529_1940	1.1	SSE
20230529_1950	0.6	SE
20230529_2000	0	N
20230529_2010	0.3	S
20230529_2020	0.8	SSE
20230529_2030 20230529_2040	1.4	SSE SE
20230529_2040	0.3	SE SSE
20230529_2050	0.3	SSE
20230529_2100	0.8	SSE
20230529_2110	0.8	- -
20230529 2120	0.3	
20230529_2130	0.5	N N
20230529_2140	0	N N
20230529 2130	0.3	ENE
20230529 2210	0.8	-
20230529 2220	0.0	N
20230529 2230	0.3	SSW
20230529_2240 20230529_2250 20230529_2300	0.3	ESE
20230529_2250	0	N
20230529 2300	0	N
20230529_2310	0.3	ESE
20230529 2320	0.8	ESE
20230529 2330	0.3	-
20230529 2340	0	N
20230529_2350	0	N

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230530_0000	0	N
20230530_0000	0	N N
20230530 0010	0	N N
20230530 0020	0	N N
20230530_0030	0	N N
20230530_0040		
20230530_0050	0	N
20230530_0100	0	N
20230530_0110	0	N
20230530_0120	0.8	ESE
20230530_0130	0.3	SSE
20230530_0140	1.4	SE
20230530_0150	1.4	ESE
20230530_0200	1.4	ESE
20230530_0210	2.5	NNE
20230530 0220	1.1	SSE
20230530 0230	1.9	NNE
20230530 0240	1.7	SSE
20230530_0250	1.4	SSW
20230530 0300	1.7	ENE
20230530 0300	0.8	-
20230530_0310	2.2	NNE
20230530_0320	3.1	NE
20230530 0330	3.1 1.4	SSW
20230530_0340	1.4	
		W
20230530_0400	0.3	ENIE
20230530_0410	1.1	ENE
20230530_0420	0.3	
20230530_0430	1.4	WSW
20230530_0440	1.4	NNE
20230530_0450	1.1	ESE
20230530_0500	0.6	ESE
20230530 0510	0.3	=
20230530_0520	0.6	SE
20230530 0530	1.4	E
20230530 0540	1.7	Е
20230530 0550	0.3	NE
20230530 0600	1.1	NE
20230530 0610	0.8	-
20230530 0620	0.3	E
20230530 0630	0.8	NNE
20230530 0640	1.7	SE
20230530 0650	2.8	SSE
20230530 0700	1.1	SSE
20230530 0710	1.7	S
20230530 0710	1.1	S
20230530_0720	1.4	SE
20230530_0750	0.8	SSE
20230530_0740	0.8	SE SE
20230530_0730		3E
	0.3	- NY
20230530_0810	0	N
20230530 0820	0.3	-
20230530_0830	1.1	S
20230530_0840	0.8	SSE
20230530 0850	0.8	SE
20230530_0900	0.8	WNW
20230530_0910	0.3	ENE
20230530_0920	1.1	ENE
20230530_0930	0.8	NNW
20230530_0940	1.4	NNE
20230530_0950	1.4	NNE
20230530_1000	1.4	ENE
20230530_1010	1.1	SE
20230530_1020	0.8	ESE
20230530_1030	0	N
20230530 1040	0	N
20230530 1050	0	N
20230530 1100	0.3	ESE
20230530_1110	0.3	E
20230530_1110	1.1	ESE
20230530 1120	0.8	ESE
20230530_1150	0.8	SSE
20230530_1150	0.6	SE
2020-0000_1100	5.0	200

Date & Time	WW 10 1/ ()	W. 181 1 0 0
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230530_1200	1.1	ESE
20230530_1210	1.7	SE
20230530_1220	1.4	SSE
20230530_1230 20230530_1240	0	N N
20230530_1240	0	N N
20230530_1300	0.8	SSE
20230530_1310	1.1	S
20230530_1320	1.1	SE
20230530_1330	0.3	ESE
20230530_1340	0	N
20230530_1350 20230530_1400	0.8 1.4	E ESE
20230530_1400	1.4	SE SE
20230530_1410	0.8	ESE
20230530 1430	0.6	_
20230530 1430 20230530 1440	0.8	ESE
20230530 1450	0	N
20230530 1500	0	N
20230530_1510 20230530_1520	0.8	WSW WSW
20230530_1520	1.1 1.7	WSW
20230530_1540	1.7	SW
20230530_1550	2.5	SW
20230530_1600	2.2	SW
20230530_1610	1.4	SW
20230530_1620	1.7	SW
20230530_1630	0.8	WSW
20230530_1640 20230530_1650	1.7	WSW SW
20230530_1030	1.7	WSW
20230530_1700	0.8	W
20230530 1720	0.6	W
20230530_1730	0.8	WSW
20230530_1740	0.3	-
20230530_1750	0.3	SSW
20230530_1800	0	N N
20230530 1810 20230530_1820	0.3	N NW
20230530_1820	1.4	WNW
20230530_1840	0.8	W
20230530_1850	0	N
20230530_1900	0.8	NNE
20230530_1910	0.8	E
20230530_1920 20230530_1930	0.8	NE NE
20230530_1930	0.0	
20230530 1950	0.8	SSE NNE
20230530_1950 20230530_2000	0.8	SSW
20230530_2010	0.3	=
20230530 2020	0.3	N
20230530_2030	0.6	NW
20230530_2040	0	N
20230530 2050 20230530 2100	1.1 1.4	SSE SSE
20230530_2110	0.8	SW
20230530_2110	1.4	S
20230530_2130	0.8	S
20230530_2140	0.6	ESE
20230530_2150	0.6	E
20230530_2200	0.3	ESE
20230530_2210 20230530_2220	0.3	- N
20230530_2220	0	N N
20230530_2230	0	N N
20230530_2240	0.3	E
20230530 2300	0	N
20230530_2310	0	N
20230530_2320	0	N
20230530 2330	0	N
20230530_2340	0	N ENE
20230530_2350	0.3	ENE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230531 0000	0,3	ENE
20230531_0010	0	N
20230531_0020	0	N
20230531_0030	0	N
20230531 0040	0	N
20230531 0050	0	N
20230531 0100	0	N
20230531_0110	0.3	S
20230531_0120	0	N
20230531_0130	0	N
20230531 0140	0	N
20230531 0150	0	N
20230531 0200	0	N
20230531_0210	0	N
20230531_0220	0	N
20230531 0230	0	N
20230531 0240	0	N
20230531_0250	0	N
20230531 0300	0	N
20230531 0300	0	N N
20230531_0320	0.3	SSW
20230531_0330	0	N
20230531_0340	0.3	=
20230531 0350	0	N
20230531_0300	0	N
20230531 0400	2,2	S
20230531_0420	1.1	S
20230531_0430	0.8	SSE
20230531 0440	0.3	NW
20230531 0450	0.3	NE
20230531 0500	0,3	ENE
20230531_0500	0.3	LIVE
20230531_0520	0	N
20230531_0530	0	N
20230531 0540	0.3	NE
20230531 0550	0.3	SW
20230531 0600	0,3	
20230531 0610	0	N
20230531 0620	0	N
20230531_0630	0	N
20230531_0640	0	N
20230531_0650	0	N
20230531 0700	0	N
20230531 0710	0	N
20230531 0720	0	N
20230531_0720	0	N N
20230531_0740	0	N
20230531_0750	0	N
20230531_0800	0	N
20230531 0810	0	N
20230531 0820	0	N
20230531_0830	0	Ň
20230531_0840	0.3	S
		0011
20230531_0850	0.3	SSW
20230531_0900	0.6	SSE
20230531_0910	0.3	<u>-</u>
20230531 0920	0	N
20230531 0930	0	N
20230531_0940	0	N
20230531_0950	0	N
20230531 0930	0.3	WSW
		W S W
20230531_1010	0.3	SSW
20230531_1020	0.3	SW
20230531_1030	0.3	-
20230531 1040	0	N
20230531_1050	0	N
	0	N N
20230531_1100		IN WOW
20230531_1110	0.3	WSW
20230531_1120	1.1	WSW
20230531_1130	0.8	WSW
20230531_1140	0.3	W
20230531_1150	0.3	W

Date & Time	Wind Connel (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230531_1200 20230531_1210	0.8 1.4	W W
20230531_1210	1.7	W
20230531 1230	1.7	W
20230531_1240	1.7	W
20230531 1250 20230531_1300	1.4 1.7	W WSW
20230531_1310	1.9	W
20230531_1320	1.7	WNW
20230531_1330	1.1	WNW
20230531_1340	1.1	WNW
20230531_1350 20230531_1400	1.4 0.6	NW NW
20230531 1410	0.8	NNW
20230531_1420	0.6	NNW
20230531 1430 20230531 1440	0.6	NW W
20230531_1440 20230531_1450	1.1 1.7	W
20230531_1450	1.7	WSW
20230531_1510	1.7	W
20230531_1520	1.1	W
20230531 1530 20230531 1540	1.1 1.1	WSW W
20230531 1550	0.3	WNW
20230531 1600	0.3	NW
20230531 1610	0.3	ENE
20230531_1620	0.8	ESE SE
20230531_1630 20230531_1640	0.8 0.3	SSE
20230531 1650	0.8	SSE
20230531_1700	0.3	S
20230531 1710	0.3	SSE
20230531_1720 20230531_1730	0 0.3	N WNW
20230531_1750	0.3	NW
20230531_1750	0	N
20230531_1800	0	N
20230531 1810 20230531_1820	0.6 1.1	SSW S
20230531_1830	0.8	SE
20230531 1840	0.3	NNW
20230531_1850	0.8	NNW
20230531_1900 20230531_1910	2.2 2.2	NNE NNW
20230531_1910	1.4	N N
20230531_1930	0.8	SW
20230531_1940	0.3	SSE
20230531_1950 20230531_2000	0.3	E N
20230531_2000	1.1	SE
20230531 2010	1.7	SSE
20230531_2030	1.4	ESE
20230531_2040 20230531_2050	1.4	ESE
20230531_2050	1.9	ESE SE
20230531_2100	1.4	NE NE
20230531_2120	1.4	NNE
20230531_2130	0.8	ESE
20230531_2140 20230531_2150	1.7 1.9	ESE ESE
20230531_2150	1.7	E
20230531_2210	1.1	=
20230531_2220	0.8	ESE
20230531_2230 20230531_2240	1.7 1.7	SE ESE
20230531_2240	0.8	NW NW
20230531_2300	1.1	NW
20230531_2310	0.8	NNE
20230531_2320 20230531_2330	0.3	NE N
20230531 2330 20230531 2340	0.3	N -
20230531_2350	1.4	NNE

Appendix I Waste Flow Table

Waste Flow Table

		Total Quantities of Inert C&D Materials to be Generated from the Contract				Total Quantities of Recyclables Generation				Total Quantities of C&D Materials to be Generated from the Contract			
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill		Paper / Cardboard Packaging		Yard Waste (to Y-Park)	Chemical Waste	General Refuse	Others, e.g. non- recyclable yard waste
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000L)	(in tonne)	(in tonne)
Dec-22	84.77	0	0	0	0	0	0	0	0	11.49	0	7.53	65.75
Jan-23	24.51	0	0	0	0	0	0	0	0	0	0	24.51	0
Feb-23	506.45	0	0	0	0	0	0	0	0	3.16	0	5.85	497.44
Mar-23	9,581.15	0	0	9,187	0	0	0	0	0	3.69	0	6.96	383.5
Apr-23	18,532.07	0	0	18,466	0	0	0	0	0	1.97	0	5.81	58.29
May-23	28,889.61	0	0	28,473	0	0	0	0	0	0	0	7.45	409.16
Total	57,618.56	0	0	56126	0	0	0	0	0	20.31	0	58.11	1414.14

Note:

- The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material. 1.

Appendix J Joint Environmental Site Inspection Records

(Construction Phase)

traffic cones?

Inspection Date:	02 May 2023	Inspected By:	Andy Ng			
Time:	14:00	Cloudy				
Participants:	Sylvia Ho (ER), William Wan (Contractor), Kristy Wong (Contractor), Andy Ng (ET)					

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		CNP No: GW-RN0131-23
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is open burning avoided?		\boxtimes		
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A
В3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
B4	Any remedial action undertaken?	\boxtimes			N/A
B5	Observed dust source(s)				
		☐ Wind eros	sion		
		Vehicle/ E	Equipment	Moveme	nts
		Loading/	unloading	of materi	als
		Others:			
B6	Are unpaved areas/ designated roads watered regularly to avoid dust generation?		\boxtimes		
В7	Are dusty materials covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?				Refer to Reminder 1
B8	After removal of stockpile, are the remained dusty materials wetted with water and cleared from surface of roads?	\boxtimes			N/A
В9	Is the stockpile of dusty materials avoid to be		\boxtimes		

B10	Are loaded dump trucks covered by impervious sheeting appropriately before leaving the site?		\boxtimes		
B11	Are wheel washing facilities with high pressure				
ВП	water jet provided at all site exits if practicable?				
B12	Are all vehicles and plant cleaned before they leave the construction site?		\boxtimes		
B13	Are hoarding ≥ 2.4m tall provided beside roads or area with public access?				N/A
B14	Is the portion of any road leading only to				
517	construction site (within 30m of a vehicle entrance		Ц	\boxtimes	Refer to
	or exit) kept clear of dusty materials?				Observation 2
B15	Are surfaces where any pneumatic or power-driven				
БІЗ	f :		\boxtimes		
	drilling, cutting, polishing or other mechanical				
	breaking operations takes place sprayed with water				
	or a dust suppression chemical continuously?				
B16	Is the area involved demolition activities sprayed	\boxtimes			
	with water or a dust suppression chemical				
	immediately prior to, during and immediately after				N/A
	the activities so as to maintain the entire surface				
	wet?				
B17	Is scaffolding erected around the perimeter of a	\boxtimes			N/A
	building under construction?				IN/A
B18	Are effective dust screens, sheeting or netting	\boxtimes			
	provided to enclose the scaffolding from the ground				
	floor level of the building, or a canopy provided from				N/A
	the first floor level up to the highest level of the				
	scaffolding?				
B19	Is the skip for materials transport enclosed by				
5.0	impervious sheeting?				N/A
B20	Is every stock of more than 20 bags of cement or				
520	dry pulverized fuel ash (PFA) covered entirely by				
	impervious sheeting or placed in an area sheltered				Not Observed
	on the top and 3 sides?				
B21	Are the areas of washing facilities and the road				
DZ I	section between the washing facilities and the exit				
	. •				
	point paved with concrete, bituminous materials or				
DOO	hardcores?				
B22	Are the activities of loading, unloading, transfer,				NI/A
	handing or storage of bulk cement or dry PFA				N/A
	carried out in a totally enclosed system or facility?				
B23	Is any vent or exhaust fitted with an effective fabric				N/A
	filter or equipment air pollution control system?				
B24	Is the exposed earth properly treated by		\boxtimes		
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer within				
	six months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				
B25	Are the worksites wetted with water regularly?			\boxtimes	Refer to Reminder 1
B26	Is generation of dust avoided during loading or				T.C.T.II.IGOT 1
520	unloading?		\boxtimes		
B27	Are all trucks loaded to a level within the side and		\boxtimes		
	tail boards?				

North East New Territories (NENT) Landfill Extension

(Construction Phase)

Environmental Site Inspection Checklist (Rev. 2)

B28	Are appropriate speed limit sign displayed?		\boxtimes		
B29	Are designated roads paved?		\boxtimes		
B30	Are site vehicle movements confined to designated roads?		\boxtimes		
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes		
С	Noise	N/A or Not Observed	Yes	No	Remarks / Photo
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes		
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes		
С3	Is the noise directed away from nearby NSRs?		\boxtimes		
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes		
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/A
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes		
C10	Is the hoarding maintained properly?	\boxtimes			N/A
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A
C12	Are compressor operated with doors closed?	\boxtimes			N/A
C13	QPME used with valid noise labels?	\boxtimes			Not Observed
C14	Major noise source(s)				
		☐ Traffic			
		⊠ Construct	ion activiti	es inside	of site
		Construct	ion activiti	es outsid	e of site
		Others:			_

(Construction Phase)

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Activities				
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes		
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes		
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes		
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?		\boxtimes		
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Will be treated with shotcrete in Portion E3-1.
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes		
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes		
D13	Are the silt removal facilities, channels and manholes maintained regularly?		\boxtimes		
D14	Is the deposite silt and grit removed regularly?		\boxtimes		
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		
D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes		

(Construction Phase)

Environmental Site	Inenection	Chacklist	(Ray	2
	mspection	CHECKISE	inev.	_

D20	Is a wheel washing bay provided at every site exit?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?	\boxtimes			Not Observed
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?	\boxtimes			Not Observed
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Genera	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E3	Does accumulation of waste avoid?		\boxtimes		
E4	Is waste disposed regularly?		\boxtimes		
E5	Regular waste collection by approved waste collector in purpose-built vehicles?		\boxtimes		
E6	Burning of refuse on construction site prohibited?		\boxtimes		

Construction Waste					
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled on- site?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	\boxtimes			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
Chemi	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?	\boxtimes			Not Observed
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?	\boxtimes			Not Observed
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?	\boxtimes			Not Observed
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?	\boxtimes			Not Observed
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
Chemi	cal Waste / Waste Oil				

struction Phase)	Environmental Site Inspection Checklist (Rev. 2
------------------	---

E27	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area?				
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes		
Record					
E30	Is a licensed waste hauler used for waste collection?				
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes		
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?	\boxtimes			N/A
F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?				
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?		\boxtimes		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?				
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation of installed pipeline?	\boxtimes			Not Observed
F11d	Is forced ventilation implemented for works inside trenches deeper than 1m?	\boxtimes			Not Observed

(Construction Phase)

F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes	
	*LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.			
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?			
F14	Are LFG monitoring conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.			Not Observed
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?	\boxtimes		Not Observed
F15b	Are temporary offices or buildings located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes		Not Observed
F16	Is a Safety Officer trained in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%			Not Observed
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.			Not Observed
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?		\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located not more than 10mm from exposed ground surface?		\boxtimes	
F18	For excavations deeper than 1m, are measurements conducted? • At ground surface before excavation commences;		\boxtimes	

(COIISI	uction Filase)		VIIOIIIIEIILE	ii Site iiis	Dection Checkist (Nev. 2)
F19	Immediately before any worker enters the excavation; At the beginning of each working day for entire period the excavation remains open; and Periodically throughout the working day whilst workers are in excavation. For excavations between 300mm and 1m, are measurements conducted?		\boxtimes		
	Directly after excavation has been completed; and Periodic all whilst excavation remains open.				
F20	For excavations less than 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is damage to surrounding areas avoided?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the tree protection zone of each individual tree?		\boxtimes		
G4	Is early planting using fast growing plants at strategic locations within site implemented?	\boxtimes			N/A
G5	Is boundary green belt planting implemented around the site perimeter and the construction of temporary soil bunds?	\boxtimes			N/A
G6	Is temporary landscape treatment as green surface cover implemented?	\boxtimes			N/A
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?	\boxtimes			Not Observed
н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?	\boxtimes			Not Observed
I	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	

J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Report No. 0048-20230502

Follow up action for previous Site Inspection:

- 1. The Contractor scheduled watering at the entrance of Portion A.
- 2. Rotten leaves were removed from the channels.
- 3. The Silt Removal Facilities were functioned properly and the Contractor conducted cleaning work on them.

Observation(s):

- 1. Water in the drip tray shall be cleared off at Portion A.
- 2. Sand and silt are observed at the road leading to SBA.

Reminder(s):

1. Dust suppression measure shall be enhanced to cover all work area and dusty stockpiles in SBA.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- 1. The Contractor has been recommended to collect and dispose of any stagnant water accumulated in the drip trays and handle them as chemical waste.
- 2. The Contractor has been recommended that road surface shall be kept clear of sand and silt.
- 3. The Contractor has been reminded to ensure the implementation of dust suppression measure for the dry work area and dusty stockpile.

	Environmental Team Representative:	IEC's Representative:	Contractor's Representative:	Engineer's Representative
Signature:	1/2	1	Wan Many	Ho
Name:	Andy Ng	1	William Wan	Sylvia Ho
Date:	02 May 2023	1	02 May 2023	02 May 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

 The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied to the exposed surface by the end of April to prevent surface runoff into stream in long term.

Follow-up status

To be implemented

2. The entrance of Portion A was observed muddy.

The Contractor scheduled watering at the entrance of Portion A.

3. The Contractor was reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion.

Waiting for Contractor's Input

 The channels at the entrance of SBA were accumulated with rotten leaves, sand and silt.

Rotten leaves were removed from the channels.

The surface protection works in Portion A shall be maintained properly.

Waiting for Contractor's Input

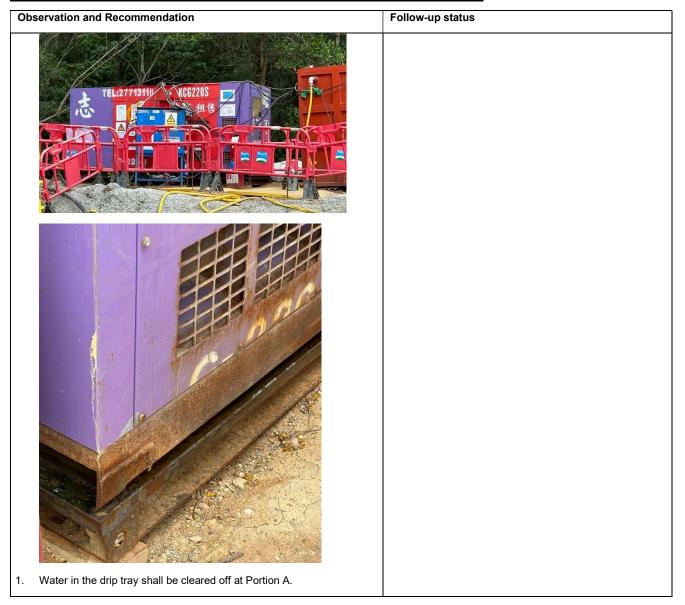
Portion A

Portion E3

Portion A

Portion D

6. The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.


Portion D

The Silt Removal Facilities were functioned properly and the Contractor conducted cleaning work on them.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation Follow-up status Sand and silt are observed at the road leading to SBA

Observation and Recommendation

Dust suppression measure shall be enhanced to cover all dry work area and dusty stockpile in SBA.

PART III Temporary surface water drainage system photo record during the environmental site inspection

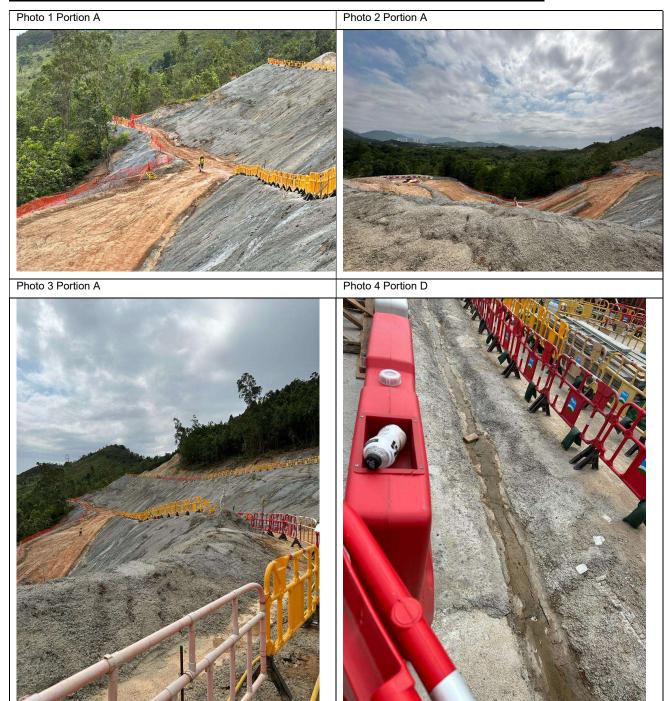


Photo 5 Portion D

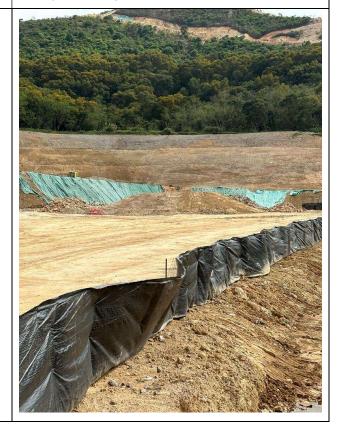

Photo 6 Portion B1 Cut-off drain with Silt fence


Photo 7 Portion B1 Silt fence at the soil stockpile areas

Photo 8 Portion B1 Cut-off drain with Silt fence

•	•	,

ction Date:	08 May 2023	Inspected By:		Andy Ng		
:	14:00	Weather Condition:		Rainy		
cipants:	Sylvia Ho (ER), Kristy Wong (Contra	actor), Andy Ng (ET)				
Permits/Lic	enses	N/A or Not Observed	Voe No Pomarke / Phote			
1			\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007	
Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		ed 🔲	\boxtimes		CNP No: GW-RN0131-23	
Is wastewater discharge licence available for inspection?			\boxtimes			
		stion \square				
Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		ole 🗌	\boxtimes			
				•		
Air Quality		N/A or Not Observed	Yes	No	Remarks / Photo	
Is open burn	ning avoided?		\boxtimes			
practicable?		\boxtimes			N/A	
			\boxtimes			
Any remedia	al action undertaken?	\boxtimes			N/A	
Observed do	ust source(s)					
		☐ Wind eros	☐ Wind erosion			
		Vehicle/ E	Equipment	t Moveme	nts	
	Are Constructions of the practicable? Are Constructions of the at site entral inspection? Are trip ticked wasted dispodent on the practicable of	Permits/Licenses Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access? Are Construction Noise Permits/ Environmental license/ other permit available for inspection/poste at site entrance. Is wastewater discharge licence available for inspection? Are trip tickets for chemical waste and construction waste disposal available for inspection? Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?	Permits/Licenses Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access? Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance. Is wastewater discharge licence available for inspection? Are trip tickets for chemical waste and construction waste disposal available for inspection? Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection? Air Quality N/A or Not Observed Is open burning avoided? Are completed earthworks sealed as soon as practicable? Are plant and equipment well maintained (i.e. without black smoke from powered plant)? Any remedial action undertaken?	Sylvia Ho (ER), Kristy Wong (Contractor), Andy Ng (ET) Permits/Licenses	Sylvia Ho (ER), Kristy Wong (Contractor), Andy Ng (ET) Permits/Licenses	

(Construction Phase)

B10	Are loaded dump trucks covered by impervious sheeting appropriately before leaving the site?		\boxtimes		
B11	Are wheel washing facilities with high pressure				
ווט	water jet provided at all site exits if practicable?		\boxtimes		
B12	Are all vehicles and plant cleaned before they leave			\boxtimes	Refer to
	the construction site?				Observation 1
B13	Are hoarding ≥ 2.4m tall provided beside roads or	\boxtimes			N/A
	area with public access?				IN/A
B14	Is the portion of any road leading only to		П	\boxtimes	Refer to
	construction site (within 30m of a vehicle entrance				Observation 2 on
	or exit) kept clear of dusty materials?				20230502
B15	Are surfaces where any pneumatic or power-driven		\boxtimes		
	drilling, cutting, polishing or other mechanical	_			
	breaking operations takes place sprayed with water				
	or a dust suppression chemical continuously?				
B16	Is the area involved demolition activities sprayed	\boxtimes			
	with water or a dust suppression chemical				
	immediately prior to, during and immediately after				N/A
	the activities so as to maintain the entire surface				
D47	wet?				
B17	Is scaffolding erected around the perimeter of a building under construction?				N/A
B18	Are effective dust screens, sheeting or netting	\boxtimes	П		
	provided to enclose the scaffolding from the ground				
	floor level of the building, or a canopy provided from				N/A
	the first floor level up to the highest level of the				
	scaffolding?				
B19	Is the skip for materials transport enclosed by				N/A
	impervious sheeting?	_			14// 1
B20	Is every stock of more than 20 bags of cement or	\boxtimes			
	dry pulverized fuel ash (PFA) covered entirely by				Not Observed
	impervious sheeting or placed in an area sheltered				
DO4	on the top and 3 sides?	_			
B21	Are the areas of washing facilities and the road		\boxtimes		
	section between the washing facilities and the exit point paved with concrete, bituminous materials or				
	hardcores?				
B22	Are the activities of loading, unloading, transfer,				
DZZ	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	carried out in a totally enclosed system or facility?				,,, .
B23	Is any vent or exhaust fitted with an effective fabric				
	filter or equipment air pollution control system?			Ш	N/A
B24	Is the exposed earth properly treated by		\boxtimes		
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer within				
	six months after last construction activity on the				
	construction site or part of the construction site where the exposed earth lies?				
B25	Are the worksites wetted with water regularly?				
				Ш	
B26	Is generation of dust avoided during loading or unloading?		\boxtimes		
B27	Are all trucks loaded to a level within the side and	П	\boxtimes		
Dan	tail boards?				
B28	Are appropriate speed limit sign displayed?		\boxtimes		

North East New Territories (NENT) Landfill Extension

(Construction Phase)

Environmental Site Inspection Checklist (Rev. 2)

Report No. <u>0049-20230508</u>

B29	Are designated roads paved?		\boxtimes			
B30	Are site vehicle movements confined to designated roads?		\boxtimes			
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes			
С	Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes			
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby NSRs?		\boxtimes			
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A	
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A	
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A	
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/A	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?	\boxtimes			N/A	
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A	
C12	Are compressor operated with doors closed?	\boxtimes			N/A	
C13	QPME used with valid noise labels?	\boxtimes			Not Observed	
C14	Major noise source(s)					
		☐ Traffic				
		Construction activities inside of site				
		Construct	ion activiti	es outsid	e of site	
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Consti	uction Activities				
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes		
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes		
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes		
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?		\boxtimes		
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete in Portion E3-1.
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes		
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes		
D13	Are the silt removal facilities, channels and manholes maintained regularly?			\boxtimes	Refer to Reminder 2
D14	Is the deposite silt and grit removed regularly?		\boxtimes		
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		
D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes		

E4	Is waste disposed regularly?			\boxtimes	Refer to Reminder 1
E3	Does accumulation of waste avoid?			\boxtimes	Refer to Reminder 1
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?			\boxtimes	Refer to Reminder 1
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?			\boxtimes	Refer to Reminder 1
Genera	al Waste				
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?				Not Observed
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?			\boxtimes	Refer to Observation 1
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D20	Is a wheel washing bay provided at every site exit?		\boxtimes		

 \times

 \times

Regular waste collection by approved waste

Burning of refuse on construction site prohibited?

collector in purpose-built vehicles?

E5

E6

(Construction Phase)

Const	ruction Waste				
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled onsite?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	×			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
Chemi	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?	\boxtimes			Not Observed
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?	\boxtimes			Not Observed
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?	\boxtimes			Not Observed
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?	\boxtimes			Not Observed
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
Chemi	cal Waste / Waste Oil				

of installed pipeline?

trenches deeper than 1m?

Is forced ventilation implemented for works inside

F11d

Report No. <u>0049-20230508</u>

Not Observed

Not Observed

E27	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area?		\boxtimes		
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes		
Record	d <u>s</u>				
E30	Is a licensed waste hauler used for waste collection?		\boxtimes		
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes		
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?	\boxtimes			N/A
F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes		
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?		\boxtimes		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes		
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation				

 \times

 \times

(Construction Phase)

F12	Is frequency and location of LFG monitoring within		\square		
	excavation area determined prior to				
	commencement of works?				
	*LFG monitoring in excavations should be				
	conducted at no more than 10mm from exposed				
	ground surface.				
F13	For excavation works, Is LFG monitoring				
	conducted (1) at ground surface prior to				
	excavation, (2) immediately before workers				
	entering excavations, (3) at the beginning of each				
	half-day work, and (4) periodically throughout the				
	working day when workers are in the excavation?				
F14	Are LFG monitoring conducted periodically when				
' '	any cracks on ground level encountered on-site?				
	any oraona on ground level encountered on-site!				Not Observed
	*Appropriate action should be taken in accordance				NOT OBSELVED
	*Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.				
F15a					
гтэа	Are LFG precautionary measures involved in				
	excavation and piping works provided in accordance with LFG Guidance Note and included				Not Observed
E1Eh	in Safety Plan of construction phase?				
F15b	Are temporary offices or buildings located where				
	free LFG has been proven or raised clear of				Not Observed
	ground at a separation distance of at least				
F40	500mm?				
F16	Is a Safety Officer trained in the use of gas				
	detection equipment and LFG- related hazards				
	present on-site throughout the groundwork phase?				
	*The Sefety Officer should be provided with an				
	*The Safety Officer should be provided with an				Not Observed
	intrinsically safe portable instrument appropriately				NOL Observed
	calibrated and capable of measuring the following				
	gases: •CH ₄ : 0-100% and LEL: 0-100%/v				
	•CH4: 0-100% and LEL: 0-100%/V •CO ₂ : 0-100%				
	•O ₂ : 0-100%				
E170		_			
F17a	Periodically during groundwork construction, Is the				
	works area monitored for CH ₄ CO ₂ and O ₂ using				
	appropriately calibrated portable gas detection				
	equipment?				Not Observed
	*The monitoring fraguency and arras should be				Not Observed
	*The monitoring frequency and areas should be				
	established prior to commencement of groundwork				
	either by Safety Officer or appropriately qualified				
	person.				
F17b	Is routine monitoring carried out in all excavations,		\boxtimes		
	manholes, created by temporary storage of				
F47	building materials on-site?				
F17c	Are all measurements in excavations made with		\boxtimes		
	monitoring tube located not more than 10mm from				
F40	exposed ground surface?				В
F18	For excavations deeper than 1m, are		\boxtimes		
	measurements conducted?				
	At ground surface before excavation				
	commences;				

	Immediately before any worker enters the				
	excavation;				
	At the beginning of each working day for				
	entire period the excavation remains open; and				
	 Periodically throughout the working day whilst 				
	workers are in excavation.				
F19	For excavations between 300mm and 1m, are		\boxtimes		
	measurements conducted?				
	Directly after excavation has been completed;				
	and				
	Periodic all whilst excavation remains open.				
F20	For excavations less than 300mm, are monitoring		\boxtimes		
	omitted at the discretion of Safety Officer or appropriately qualified person?				
	appropriately qualified person?				
G	Landscape and Visual Impacts	N/A or Not	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?	Observed			
GI	is the work site confined within site boundaries?				
G2	Is damage to surrounding areas avoided?		\boxtimes		
G3	Are the protective fencing erected along or beyond		\boxtimes		
	the perimeter of the tree protection zone of each individual tree?				
G4	Is early planting using fast growing plants at				
	strategic locations within site implemented?	\boxtimes			N/A
G5	Is boundary green belt planting implemented	\boxtimes			
	around the site perimeter and the construction of				N/A
	temporary soil bunds?				
G6	Is temporary landscape treatment as green surface	\boxtimes			N/A
07	cover implemented?				
G7	Are existing and affected tree which identified as ecological significant preserved whenever	\boxtimes			Not Observed
	possible?				Not Observed
	P-00-18-18-18-18-18-18-18-18-18-18-18-18-18-				
		NI/A ou Not			
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species				
	implemented? Is post-transplantation maintained	\boxtimes			Not Observed
	and monitored regularly?				
		N/A or Not	.,		
I	Environmental Complaint	Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this		П	\boxtimes	
	week?			لا ک	
		N/A or Not			
J	General Housekeeping / Others	Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas		\boxtimes		
	identified to prevent loss of vegetation			J	
J2	Are the portable toilets maintained in a state, which		\boxtimes		
	will not deter the workers from utilizing these portable toilets?				

Report No. 0049-20230508

Follow up action for previous Site Inspection:

1. The Contractor scheduled watering for the dusty stockpile.

Observation(s):

1. Accumulated sand and silt shall be cleared off in the wheel washing bay in SBA.

Reminder(s):

- 1. The Contractor has been reminded to cover the waste skip with impervious sheets during and rainfall, to avoid accumulation of waste and to implement waste sorting.
- The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement.

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- The Contractor has been reminded to conduct regularly cleaning work for the wheel washing bay and to ensure the implementation of vehicle washing in SBA.
- 2. Waste skip shall be covered with impervious sheets during rainfall. General waste shall be properly sorted, recycled and regularly disposed.
- 3. Construction and surface runoff shall be directed to silt removal facilities and treated wastewater shall fulfill WPCO requirement.

	Environmental Team Representative:	IEC's Representative:	Contractor's Representative:	Engineer's Representative
Signature:	Mi	1	Deman	#10
Name:	Andy Ng	1	William Wan	Sylvia Ho
Date:	08 May 2023	1	08 May 2023	08 May 2023

Observation and Recommendation Follow-up status To be implemented 1. The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied to the exposed surface by the end of April to prevent surface runoff into stream in long term.

- 2. The Contractor was reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion.
- 3. Dust suppression measure shall be enhanced to cover all dry work area and dusty stockpile in SBA.

The Contractor scheduled watering for the dusty stockpile.

Waiting for Contractor's Input

4. The surface protection works in Portion A shall be maintained properly.

Waiting for Contractor's Input

5. Water in the drip tray shall be cleared off at Portion A.

6. Sand and silt were observed at the road leading to SBA

Waiting for Contractor's Input

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation Follow-up status 1. Accumulated sand and silt shall be cleared off in the wheel washing bay in SBA. The Contractor has been reminded to cover the waste skip with impervious sheets during rainfall, to avoid accumulation of waste and to implement waste sorting.

Observation and Recommendation Follow-up status The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement.

PART III Temporary surface water drainage system photo record during the environmental site inspection

Photo 3 Portion E3 Sediment Basin

Photo 5 Portion B1 Silt fence at soil stockpile areas

Inspection Date:	15 May 2023	Inspected By:	Jason Man			
Time:	14:00	Weather Condition:	Fine			
Participants:	Sylvia Ho (ER), William Wan (Contractor), Kristy Wong (Contractor), Echo Hung (IEC) & Jason Man (ET)					

A	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is <u>open burning</u> avoided?		\boxtimes		
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
В3	Any remedial action undertaken?	\boxtimes			N/A
B4	Are the worksites wetted with water regularly?		\boxtimes		
B5	Are NRMM labels properly affixed on the PMEs?		\boxtimes		
В6	Observed dust source(s)			•	
		☐ Wind eros	sion		
		Vehicle/ E	quipment	Moveme	nts
		Loading/	unloading	of materi	als
		Others:			
Air P	ollution Control (Construction Dust) Regulation				
Part I	Control Requirements for Notifiable Works				
Demo	olition of building				
B7	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities?			\boxtimes	N/A
Cons	truction of the superstructure of a building				
B8	Is <u>scaffolding</u> erected around the perimeter of a building under construction?	\boxtimes			N/A

В9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
٥.,	water jet provided at all site exits if practicable?				
B12	Are the <u>areas of washing facilities</u> and the <u>road</u>				
DIZ	section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?				
B13	Are the hoarding ≥ 2.4m tall provided at the site				
	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?	_	_		
Asses	ss road				
B14	Are every main haul road (having a vehicle passing				
٥.,	rate of higher than 4 in any 30				
	minutes) paved with concrete, bituminous materials,		\boxtimes		
	* *	Ш		Ш	
	hardcorres or metal plates, and kept clear of dusty				
D.4.E	materials?				
B15	Are every main haul road sprayed with water or a		\boxtimes		
	dust suppression chemical?	_			
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?		\boxtimes		
B18	Is unpaved main haul road wet by water spraying?				
2.0	is <u>unpavou main nuurrouu</u> vist 25 mater opraying.			Ш	
	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (PFA) covered entirely by	\boxtimes			N/O
	impervious sheeting or placed in an area sheltered			Ш	IN/O
	on the top and 3 sides?				
B20	Are the activities of loading, unloading, transfer,				
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	carried out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an effective fabric				
	filter or equipment air pollution control system?	\boxtimes			N/A
-					
	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer		\boxtimes		
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				

Part I	Part IV Control Requirements for Individual Activities						
Stock	piling of dusty materials						
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or						
B24	unloading? Is the stockpile of dusty materials avoid to be extend beyond the pedestrian barriers, fencing or traffic cones?		\boxtimes				
Loadi	ng, unloading or transfer of dusty materials						
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes				
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes				
Use o	f vehicles						
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes				
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes				
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes				
Pneu	matic or power-driven drilling, cutting and polishing	1					
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>				N/A		
<u>Debri</u>	s handling						
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A		
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A		
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes			N/A		

Exca	vation or earth moving		
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
Site o	<u>elearance</u>		
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		Refer to Observation 1

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
С3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?	\boxtimes			N/O	
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		⊠ Traffic				
	Construction activities inside of site					
		Construction activities outside of site				
		Others: N	lot observe	ed		

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?		\boxtimes		
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes		
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes		
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes		
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes		
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?		\boxtimes		To be treated with shotcrete at part of slope surface.
D5a	Have the <u>overall slope</u> of the site should be kept a minimum?		\boxtimes		
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes		
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes		
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/O
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		

D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul		\boxtimes	
D30	sewer always prevented?			
D10a	Are particular attention paid to the control of silty		\boxtimes	
	surface runoff during storm event?			
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u>			
	should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly.			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 			
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured. 			N/A
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 			
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A
D12b	Are the oil interceptors are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes		N/A

D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	s)			
	Are portable chemical toilets and sewage holding				Γ
D19a	tanks provided?				
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the notices posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	cilities)		
D21a	Are the service workshop and maintenance				
	facilities located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the temporary surface water drainage system provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> <u>of higher elevations</u> to those of <u>lower elevations</u> and ultimately to the discharge point?			\boxtimes	Refer to Observation 2
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo			
Waste Management								
Gener	al Waste							
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes					
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes					
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?		\boxtimes					
E2c	Is <u>waste disposed</u> regularly?		\boxtimes					
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes					
E3	Burning of refuse on construction site prohibited?		\boxtimes					
C&D I	Materials							
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	\boxtimes			N/O			
E4b	Are the C&D materials sorted and recycled on-site?		\boxtimes					
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes					
E5b	Do the wooden hoardings avoid to be used?		\boxtimes					
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes					
E6a	Are the concrete and masonry used as general fill ?		\boxtimes					
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes					
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes					
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes					
Е7а	Are the temporary stockpiles maintained regularly?	\boxtimes			N/O			
E7b	Is the <u>excavated fill material</u> reused for backfilling and reinstatement?		\boxtimes					
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes					
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?	\boxtimes			N/O			
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes					
E9	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?		\boxtimes					
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes					

E11	Are the training of site personnel for cleanliness,							
	proper waste management procedures including							
	chemical waste handling, and waste reduction, reuse							
	and recycling concept implemented?							
E12	Are the <u>regular cleaning</u> and <u>maintenance</u>							
	programme for drainage systems, sumps, oil interceptors?							
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?		\boxtimes					
E13b	Do the <u>excavated materials</u> appear contaminated?							
				\boxtimes				
E13c	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A			
E14	Is the <u>disposal</u> of <u>C&D materials</u> avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes					
E15	Are the public fill and C&D waste segregated and							
	stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?		\boxtimes					
Chemi	ical Waste / Waste Oil							
E16	Are <u>chemicals</u> and <u>waste oil</u> recycled or disposed properly?		\boxtimes					
Chemi	ical Packaging							
E17a	Have the <u>containers</u> a capacity of <450 L unless the	\boxtimes						
E17b	specification has been approved by EPD? Are the containers (holding, resistant to corrosion,							
LITE	maintained in a good condition, and securely closed)							
	used for storage of chemical wastes?	_		_				
Chemi	Chemical Labelling							
E18	Is chemical waste or waste oil <u>stored</u> and <u>labelled</u> in <u>English and Chinese</u> properly in designated area?							
	Capacity of Dimensions of Label							
	Container							
	< 50L No less than 90 x 100mm 50 to 450L No less than 120 x 150mm							
	> 450L No less than 180 x 200mm							
	7 430L No less than 100 x 200mm							
Chemi	ical Waste / Fuel Storage Area							
E19a	Are the storage area are clearly labelled and	\boxtimes			N/O			
	separated (if needed)?				14/0			
E19b	Are the storage area enclosed 3 sides by walls/							
	<u>fence of ≥2m tall</u> and bounded with adequate bund							
	capacity (>110% of largest container) or do the	\boxtimes			N/O			
	storage area allow storage of 20% of total volume							
F40-	of waste?							
E19c	Do the <u>storage areas</u> have adequate <u>ventilation</u>				N/O			
	and be covered to prevent rainfall entering and reduce heat from sunlight?				N/O			
E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u>	_						
54	provided with locks and sited on sealed areas?	\boxtimes		$ \; \sqcup \; $	N/O			
E20	Is chemical waste collected by licensed waste							
	<u>collectors</u> and disposed of at <u>licensed facility</u> eg.		\boxtimes					
	Chemical Waste Treatment Centre?			·				

Recor	<u>ds</u>				
E21	Is a licensed waste hauler used for <u>waste</u> collection?		\boxtimes		
E22	Are the records of quantities of wastes generated,				
	recycled and disposed properly kept?	Ш	\bowtie	Ш	
E23	For the demolition material / waste, is the number of		\square		
	<u>loads</u> for each day recorded as appropriate?				

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo
Within	NENT Landfill Extension				
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?	\boxtimes			N/O
F3	Is <u>no smoking</u> or <u>burning</u> permitted on-site?	\boxtimes			N/O
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes		
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes		
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes		
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes		
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes		

	*LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?	\boxtimes	
F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance		
F15a	with the action plan in Table 7.6 of EIA Report. Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?	\boxtimes	
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes	
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.	\boxtimes	
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and	\boxtimes	

	Periodically throughout the working day whilst						
F19	workers are in excavation. For excavations 300mm to 1m, are measurements						
F 18	conducted?	' L	\boxtimes				
	Directly after excavation has been completed;						
	and						
===	Periodic all whilst excavation remains open.						
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately		\boxtimes				
	qualified person?		l				
	James Person.				L		
		N/A or Not					
G	Landscape and Visual Impacts	Observed	Yes	No	Remarks / Photo		
G1	Is the work site confined within site boundaries?		\boxtimes				
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes				
G3	Are the protective fencing erected along or beyond		\boxtimes				
	the perimeter of the <u>tree protection zone</u> of each individual tree?		_				
A al							
	nced screening tree planting						
G4a	Is early planting using fast growing plants and tall shrubs at strategic locations within site		\boxtimes				
	shrubs at <u>strategic locations</u> within site implemented?		l				
G4b	Are the roadside planter and shrub planting		\boxtimes				
	implemented in front of Cheung Sha Temple?						
	Boundary Green Belt planting						
Bound G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u>		\boxtimes				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?						
G5 Tempo	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope</u>						
G5 Tempo	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope cover</u> ?						
G5 Tempo	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope</u>						
G5 Tempo	Are the <u>fast growing</u> and <u>fire-resistant plant species</u> planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope cover</u> ? Ing tree preservation Are <u>existing</u> and <u>affected tree</u> which identified as						
G5 Tempe G6 Existin	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever						
G5 Tempe G6 Existin	Are the <u>fast growing</u> and <u>fire-resistant plant species</u> planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope cover</u> ? Ing tree preservation Are <u>existing</u> and <u>affected tree</u> which identified as						
G5 Tempe G6 Existin	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever						
G5 Tempe G6 Existin	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever	N/A or Not Observed		□ □ No	Remarks / Photo		
G5 Tempo G6 Existin	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species		Yes	No D	Remarks / Photo		
G5 Tempo G6 Existin G7	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained			No □	Remarks / Photo		
G5 Tempo G6 Existin G7	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species		Yes	No □	Remarks / Photo		
G5 Tempo G6 Existin G7	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained	Observed	Yes	No	Remarks / Photo		
G5 Tempo G6 Existin G7 H H1	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained		Yes	No No	Remarks / Photo Remarks / Photo		
G5 Tempo G6 Existin G7	Are the fast growing and fire-resistant plant species planted around the site perimeter? orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? In gree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?	Observed N/A or Not	Yes				

J	I	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J	l1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J	12	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

- 1. The surface protection works at Portion A was conducted by contractor.
- 2. The contractor arranged the water tank conducted the cleaning work at the road section between SBA and Portion A.

Observation(s):

- 1. The accumulate of the uprooting of trees without covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides were found at the work area at SBA.
- 2. The accumulate water was found at the lower area at the Portion D.
- 3. Accumulate water in drip tray was observed at Portion D.

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- 1. The contractor was recommended that the demolished trees should be covered by impervious sheeting or placed in an area sheltered on the top and the 3 sides.
- 2. The contractor was recommended that the surface water should be collected to silt removal facilities.
- 3. The contractor was recommended to keep cleaning the accumulated water in drip tray to minimize the large amount of potential chemical waste when the chemical leakage was found.

(Construction Phase)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		hho.	Con Many	Ho.
Name:	Jason Man	Echo Hung	William Wan	Sylvia Ho
Date:	15 May 2023	15 May 2023	15 May 2023	15 May 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

Follow-up status

03 April 2023

To be implemented

The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied to the exposed surface by the end of April to prevent surface runoff into stream in long term.

25 April 2023

The surface protection works in Portion A shall be maintained properly.

The surface protection works at Portion A was conducted by contractor.

Follow-up status

Water in the drip tray shall be cleared off at Portion A.

Waiting for Contractor's Input

2 May 2023

Sand and silt were observed at the road leading to SBA

Follow-up status

The contractor arranged the water tank conducted the cleaning work at the road section between SBA and Portion A.

Observation and Recommendation Follow-up status

8 May 2023

Waiting for Contractor's Input

Accumulated sand and silt shall be cleared off in the wheel washing bay in SBA.

Follow-up status

8 May 2023

Waiting for Contractor's Input

The Contractor has been reminded to cover the waste skip with impervious sheets during rainfall, to avoid accumulation of waste and to implement waste sorting.

8 May 2023

Waiting for Contractor's Input

The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement.

Follow-up status

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

Observation:

 The accumulate of the uprooting of trees without covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides were found at the work area at SBA.

Observation:

2. The accumulate water was found at the lower area at the Portion D.

Observation: 3. Accumulate water in drip tray was observed at Portion D.

PART III Temporary surface water drainage system photo record during the environmental site inspection

Photo 7 Portion E3 Silt removal facilities

Photo 8 Portion E3 Sediment Basin

22 May 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Jason Man

Time:		14:00	Wea	ather Condition:		Fine		
Partic	ipants:	Sylvia Ho (ER), Kristy Wong (Contra	actor) & Jason Man (ET)			
Α	Permits/Lic	enses		N/A or Not Observed	Yes	No	Remarks / Photo	
A1	displayed at	nmental Permit, license/ other per major site exit and vehicle access?			\boxtimes			
A2	_	uction Noise Permits/ Environmer er permit available for inspection/pos nce.			\boxtimes			
A3	Is wastewa inspection?	ater discharge licence available	for		\boxtimes			
A4	waste dispo	ets for chemical waste and construct sal available for inspection?	ion		\boxtimes			
A5	Are relevation for inspection	waste or excavated materials availa	of ble		\boxtimes			
В	Air Quality			N/A or Not Observed	Yes	No	Remarks / Photo	
B1	_	ning avoided?			\boxtimes			
B2		<pre>and equipment well maintained (k smoke from powered plant)?</pre>	i.e.		\boxtimes			
ВЗ	Any remedia	al action undertaken?		\boxtimes			N/A	
B4		ksites wetted with water regularly?			\boxtimes			
B5	Are NRMM	labels properly affixed on the PMEs?			\boxtimes			
B6	Observed d	ust source(s)						
				☐ Wind eros	ion			
				Vehicle/ E	quipment	Moveme	nts	
				Loading/ ι	ınloading	of materia	als	
				Others:				
Air Po	ollution Cont	rol (Construction Dust) Regulation						
Part I	Control Req	uirements for Notifiable Works						
Demo	olition of buil	ding						
B7	with water	involved demolition activities spray r or a dust suppression chemi prior to, during and immediately after	cal	\boxtimes			N/A	
Cons	truction of th	e superstructure of a building						
B8		ng erected around the perimeter o	fa	\boxtimes			N/A	

Inspected By:

В9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
٥.,	water jet provided at all site exits if practicable?				
B12	Are the <u>areas of washing facilities</u> and the <u>road</u>				
DIZ	section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?				
B13	Are the hoarding ≥ 2.4m tall provided at the site				
	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?	_	_		
Asses	ss road				
B14	Are every main haul road (having a vehicle passing				
٥.,	rate of higher than 4 in any 30				
	minutes) paved with concrete, bituminous materials,				
	* *	Ш		Ш	
	hardcorres or metal plates, and kept clear of dusty				
D.4.E	materials?				
B15	Are every main haul road sprayed with water or a		\boxtimes		
	dust suppression chemical?	_			
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?		\boxtimes		
B18	Is unpaved main haul road wet by water spraying?				
2.0	is <u>unpavou main nuurrouu</u> vist 25 mater opraying.			Ш	
	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (PFA) covered entirely by	\boxtimes			N/O
	impervious sheeting or placed in an area sheltered			Ш	IN/O
	on the top and 3 sides?				
B20	Are the activities of loading, unloading, transfer,				
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	carried out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an effective fabric				
	filter or equipment air pollution control system?	\boxtimes			N/A
-					
	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer		\boxtimes		
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				

Part I	Part IV Control Requirements for Individual Activities				
Stock	piling of dusty materials				
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?		\boxtimes		
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes		
Load	ng, unloading or transfer of dusty materials				
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes		
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes		
Use c	f vehicles				
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes		
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes		
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes		
Pneu	matic or power-driven drilling, cutting and polishing	1			
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	\boxtimes			N/A
Debri	s handling				
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris</u> is <u>dumped</u> into a debris chute?	\boxtimes			N/A

Exca	vation or earth moving			
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
Site o	<u>clearance</u>			
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes	Refer to Observation 1

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the <u>hoarding</u> maintained properly?	\boxtimes			N/O	
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		⊠ Traffic				
		⊠ Construct	ion activiti	es inside	of site	
		Construction activities outside of site				
		Others: N	ot observe	ed		

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo			
Const	Construction Runoff							
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes					
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?		\boxtimes					
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes					
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes					
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes					
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes					
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes					
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes					
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface. Refer to Observation			
D5a	Have the overall slope of the site should be kept a minimum?		\boxtimes		_			
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes					
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes					
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes					
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes					
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes					
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes					
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/O			

D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes	
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94)			
	 Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly. 			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 			
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly. ii. Open stockpiles of construction materials 		\boxtimes	
	(e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. All temporary covers to slopes and stockpiles should be secured.			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 			
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A

D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> <u>of higher elevations</u> to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		

D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		
				<u> </u>	
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Gener	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E2b	Does accumulation of waste avoid?		\boxtimes		
E2c	Is waste disposed regularly?		\boxtimes		
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D I	<u>Materials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the use of reusable steel formwork maximise?		\boxtimes		
Е7а	Are the temporary stockpiles maintained regularly?	\boxtimes			N/A
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes		
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		

E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?			\boxtimes		
E11	Are the <u>training</u> of proper waste man chemical waste has and recycling conditions.		\boxtimes			
E12	Are the <u>regula</u> <u>programme</u> for interceptors?		\boxtimes			
E13a	Are <u>wood</u> , <u>steel</u> a use and/or recyclin		\boxtimes			
E13b		materials appear contaminated?			\boxtimes	
E13c	If suspected conta followed?	minated, appropriate <u>procedures</u>	\boxtimes			N/A
E14	Is the <u>disposal</u> of sensitive locations	<u>C&D materials</u> avoided onto any e.g. agricultural lands etc.?		\boxtimes		
E15	stored in differen	and <u>C&D waste segregated</u> and t containers or skips to enhance g of materials and their proper		\boxtimes		
Chemi	ical Waste / Waste					
E16 Are <u>chemicals</u> and <u>waste oil</u> recycled or disposed properly?			\boxtimes			
Chemi	ical Packaging					
E17a	Have the <u>containers</u> a capacity of <u><450 L</u> unless the specification has been approved by EPD?		\boxtimes			
E17b	Are the <u>containers</u> (holding, resistant to corrosion, maintained in a good condition, and securely closed) used for <u>storage of chemical wastes</u> ?		\boxtimes			
Chemi	ical Labelling				•	
E18	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area? Capacity of Dimensions of Label Container < 50L No less than 90 x 100mm 50 to 450L No less than 120 x 150mm > 450L No less than 180 x 200mm			\boxtimes		
Chemical Waste / Fuel Storage Area						
E19a	Are the storage area are clearly labelled and separated (if needed)?		\boxtimes			N/O
E19b	Are the <u>storage area</u> enclosed <u>3 sides by walls/fence of ≥2m tall</u> and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow <u>storage of 20% of total volume</u> of waste?		\boxtimes			N/O
E19c			\boxtimes			N/O

E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u> provided with locks and sited on sealed areas?	\boxtimes		N/O
E20	Is chemical waste collected by <u>licensed waste</u> <u>collectors</u> and disposed of at <u>licensed facility</u> eg. Chemical Waste Treatment Centre?		\boxtimes	
Recor	<u>rds</u>			
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?		\boxtimes	
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?		\boxtimes	
E23	For the demolition material / waste, is the <u>number of</u> <u>loads</u> for each day recorded as appropriate?		\boxtimes	

F	Landfill Gas (LFG)	N/A or Not	Yes	No	Remarks / Photo		
		Observed			- Tromano / Friedo		
Withir	Within NENT Landfill Extension						
F1	Are special LFG precautions taken to avoid						
	potential hazards of LFG exposure (ignition,	\boxtimes			N/O		
	explosion, asphyxiation, toxicity)?						
F2	Are <u>prominent safety warning signs</u> erected on-	\bowtie					
	site to alert all personnel and visitors of LFG hazards during excavation works.?				N/O		
F3	Is no smoking or burning permitted on-site?						
' 3	is no smoking or burning permitted on-site:	\boxtimes	Ш	Ш	N/O		
F4	Are prominent 'No smoking' and 'No Naked	\boxtimes			N/O		
	Flames' signs erected on-site?				IN/O		
F5	Is no worker allowed to work alone at any time in		\boxtimes				
	excavated trenches or confined areas on-site?						
F6	Is adequate <u>fire fighting equipment</u> provided on-		\boxtimes				
	site?						
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground		\boxtimes				
	installed with spark arrestors?						
F8	Are electrical motors and extension cords						
	explosion-proof and intrinsically safe for use on-	\boxtimes			N/O		
	site?		_	_			
F9	ls 'Permit to Work' system implemented?		\boxtimes				
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u>						
	conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring						
	procedures and presence of qualified persons to						
	supervise the works?						
F11a	For piping assembly or conduit construction,						
	are all valves and seals closed immediately after	\boxtimes			N/A		
	installation?						
F11b	Are the pipe ends sealed on one side during						
	installation if installation of large diameter pipes	\boxtimes			N/A		
	(diameter > 600mm) is required?						
F11c	Is <u>forced ventilation</u> implemented prior to	\boxtimes			N/A		
F112	operation of installed pipeline?						
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> inside trenches deeper than 1m?	\boxtimes			N/A		
	maide denoties deeper than this						

F12	Is frequency and location of LFG monitoring within				
' '^	· · · · · · · · · · · · · · · · · · ·				
	•				
	commencement of works?				
			\boxtimes	Ш	
	*LFG monitoring in excavations should be				
	conducted at < 10mm from exposed ground				
	surface.				
F13	For excavation works, Is LFG monitoring		\boxtimes		
	conducted (1) at ground surface prior to excavation,				
	(2) immediately before workers entering				
	excavations, (3) at the beginning of each half-day				
	work, and (4) periodically throughout the working				
	day when workers are in the excavation?				
F14	Are LFG monitoring conducted periodically when				
[14	-		\boxtimes	Ш	
	any cracks on ground level encountered on-site?				
	**				
	*Appropriate action should be taken in accordance				
	with the action plan in Table 7.6 of EIA Report.				
F15a	Are LFG precautionary measures involved in		\boxtimes		
	<u>excavation</u> and <u>piping works</u> provided in				
	accordance with LFG Guidance Note and included				
	in Safety Plan of construction phase?				
F15b	Are temporary offices or buildings located where		\boxtimes		
	free LFG has been proven or raised clear of ground				
	at a separation distance of at least 500mm?				
F16	Is a Safety Officer trained in the use of gas	П	\boxtimes		
	detection equipment and LFG- related hazards				
	present on-site throughout the groundwork phase?				
	hhh				
	*The Safety Officer should be provided with an				
	intrinsically safe portable instrument appropriately				
	calibrated and capable of measuring the following				
	gases:				
	•CH ₄ : 0-100% and LEL: 0-100%/v				
	•CO ₂ : 0-100%				
	•O ₂ : 0-21%				
F17a	Periodically during groundwork construction, Is the		\boxtimes		
	works area monitored for CH ₄ CO ₂ and O ₂ using]	
	appropriately calibrated portable gas detection				
	equipment?				
	*The monitoring frequency and areas should be				
	established prior to commencement of groundwork				
	either by Safety Officer or appropriately qualified				
	person.				
F17b	Is routine monitoring carried out in all excavations,				
175	manholes, created by temporary storage of building		\boxtimes		
	materials on-site?				
F17c	Are all measurements in excavations made with				
F1/6			\boxtimes		
	monitoring tube located < 10mm from exposed				
F40	ground surface?				
F18	For excavations > 1m, are measurements		\boxtimes		
	conducted?				
	At ground surface before excavation				
	commences;				

	Immediately before any worker enters the excavation;				
	 At the beginning of each working day for entire period the excavation remains open; and 				
	 Periodically throughout the working day whilst workers are in excavation. 				
F19	For excavations 300mm to 1m, are measurements		\boxtimes		
	conducted?Directly after excavation has been completed;				
	and				
F20	 Periodic all whilst excavation remains open. For excavations < 300mm, are monitoring omitted 		\boxtimes		
at the discretion of Safety Officer or appropriately qualified person?					
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond		\boxtimes		
	the perimeter of the <u>tree protection zone</u> of each individual tree?				
Advan	ced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at strategic locations within site		\boxtimes		
	implemented?				
G4b	Are the roadside planter and shrub planting implemented in front of <u>Cheung Sha Temple</u> ?		\boxtimes		
	lary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope</u> <u>cover</u> ?		\boxtimes		
Existi	ng tree preservation				
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes		
				•	
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
		NI/A - NI			
I	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	

J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

- 1. The slope protection is conducting in progress by contractor to minimize the high suspended solid surface runoff to treat by silt removal facilities & avoid it directly discharged to channel.
- 2. The cleaning work for accumulated sand and silt in the wheel washing bay at SBA was conducted by contractor.
- 3. The accumulated water in drip tray at Portion D was removed by contractor.

Observation(s):

- 1. The unrooting trees at Portion A was not covered by impervious sheeting and or placed in an area sheltered on the top and the 3 sides within a day of demolition.
- 2. The sand and soil near the channel at Portion E3-1 were found.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- The contractor has been recommended that all demolished items (including trees) should be covered
 entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of
 demolition
- 2. The contractor has been recommended to avoid the untreated surface runoff contaminated with related materials discharged to channel directly. All construction runoffs should be collected to silt removal facilities for treatment.

(Construction Phase)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		1	M	40
Name:	Jason Man	1	Kristy Wong	Sylvia Ho
Date:	22 May 2023	I	22 May 2023	22 May 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

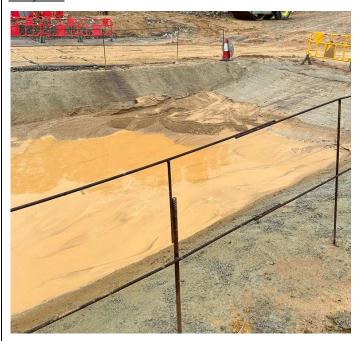
03 April 2023

The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied to the exposed surface by the end of April to prevent surface runoff into channel in long term.

Follow-up status

The slope protection is conducting in progress by contractor to minimize the high suspended solid surface runoff to treat by silt removal facilities & avoid it directly discharged to channel.

2 May 2023



Water in the drip tray shall be cleared off at Portion A.

Waiting for Contractor's Input

Follow-up status

8 May 2023

Accumulated sand and silt shall be cleared off in the wheel washing bay at SBA.

The cleaning work for accumulated sand and silt in the wheel washing bay at SBA was conducted by contractor.

Follow-up status

8 May 2023

Waiting for Contractor's Input

The Contractor has been reminded to cover the waste skip with impervious sheets during rainfall, to avoid accumulation of waste and to implement waste sorting.

8 May 2023

Waiting for Contractor's Input

The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement.

Follow-up status

15 May 2023

Waiting for Contractor's Input

Observation:

The accumulate of the uprooting of trees without covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides were found at the work area at SBA.

15 May 2023

Waiting for Contractor's Input

Observation:

The accumulate water was found at the lower area at the Portion D. The contractor has been recommended that the surface water should be collected to silt removal facilities.

15 May 2023

Observation:

Accumulate water in drip tray was observed at Portion D. The contractor was recommended to keep cleaning the accumulated water in drip tray to minimize the large amount of potential chemical waste when the chemical leakage was found.

Follow-up status

The accumulated water in drip tray at Portion D was removed by contractor.

Waiting for Contractor's Input

Follow-up status

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

Observation:

 The unrooting trees at Portion A was not covered by impervious sheeting and or placed in an area sheltered on the top and the 3 sides within a day of demolition.

Observation:

The sand and soil near the channel at Portion E3-1 were found. The contractor was recommended to avoid the untreated surface runoff contaminated with related materials discharged to channel directly. All construction runoffs should be collected to silt removal facilities for treatment.

PART III Temporary surface water drainage system photo record during the environmental site inspection

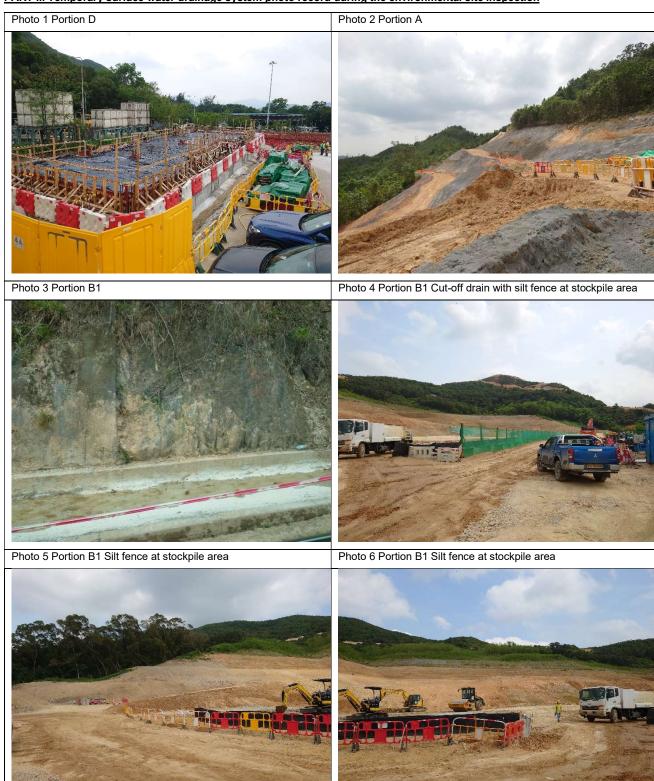


Photo 7 Portion B2 Silt removal facilities Photo 8 Portion B2 Sediment Basin

29 May 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Andy Ng

Time:		14:00	Wea	ather Condition:	Condition: Sunny				
Partic	ipants:	Sylvia Ho (ER), Kristy Wong (Contra	actor) & Andy Ng (E1	Γ)				
Α	Permits/Lic	enses		N/A or Not Observed	Yes	No	Remarks / Photo		
A1		nmental Permit, license/ other per major site exit and vehicle access?	mit		\boxtimes				
A2	_	ruction Noise Permits/ Environmer er permit available for inspection/post nce.			\boxtimes				
A3	Is wastewa inspection?	ater discharge licence available	for		\boxtimes				
A4	-	ets for chemical waste and constructi sal available for inspection?	ion		\boxtimes				
A5		ant licence/permit for disposal n waste or excavated materials availal on?	of ble		\boxtimes				
В	Air Quality			N/A or Not Observed Yes No Remarks / Photo					
B1	ls <u>open bur</u>	rning avoided?			\boxtimes				
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?				\boxtimes				
ВЗ	Any remedial action undertaken?			\boxtimes			N/A		
B4	Are the wor	ksites wetted with water regularly?			\boxtimes				
B5	Are NRMM	labels properly affixed on the PMEs?			\boxtimes				
B6	Observed de	ust source(s)							
				☐ Wind eros	sion				
				Vehicle/ E	quipment	Moveme	nts		
				☐ Loading/ ι	unloading	of materia	als		
			Ī	Others:	Not Ob	served			
Air Po	ollution Cont	rol (Construction Dust) Regulation							
Part I	Control Req	uirements for Notifiable Works							
Demo	lition of buil	ding							
B7	with water	involved demolition activities spray r or a dust suppression chemi r prior to, during and immediately after t	ical	⊠ □ N/A					
Cons	truction of th	ne superstructure of a building							
B8		ing erected around the perimeter or ler construction?	fa	\boxtimes			N/A		

Inspected By:

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
.	water jet provided at all site exits if practicable?				
B12	Are the <u>areas of washing facilities</u> and the <u>road</u>				
DIZ	section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?		\boxtimes		
B13	Are the hoarding ≥ 2.4m tall provided at the site				
	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?				
Asses	ss road				
B14	Are every main hard ward (begins a vahiala passing		I		
D14	Are every <u>main haul road</u> (having a vehicle passing				
	rate of higher than 4 in any 30				
	minutes) paved with concrete, bituminous materials,			Ш	
	hardcorres or metal plates, and kept clear of dusty				
	materials?				
B15	Are every main haul road sprayed with water or a		\boxtimes		
	dust suppression chemical?				
B16	Is the portion of any road leading only to construction			_	Refer to
	site (within 30m of a vehicle entrance or exit) kept			\boxtimes	Observation 1
	clear of dusty materials?				Observation
B17	Are appropriate speed limit sign displayed?		\boxtimes		
B18	Is <u>unpaved main haul road</u> wet by water spraying?				
5.0	not 2) mater opicyg.			Ш	
	nt and dry pulverized fuel ash (PFA)				
B19	Is every stock of <u>more than 20 bags of cement</u> or dry pulverized fuel ash (<u>PFA</u>) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?	\boxtimes			N/O
B20	Are the activities of loading, unloading, transfer,				
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	<u>carried</u> out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an effective fabric	\boxtimes			NI/A
	filter or equipment air pollution control system?				N/A
Expo	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer		\boxtimes		
	within 6 months after last construction activity on the		<u> </u>		
	construction site or part of the construction site				
	where the exposed earth lies?				
	where the exposed earth lies:				

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or		\boxtimes			
B24	unloading? Is the stockpile of dusty materials avoid to be extend beyond the pedestrian barriers, fencing or traffic cones?		\boxtimes			
Loadi	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials <u>sprayed with water</u> or a dust suppression chemical immediately <u>prior to</u> <u>any loading, unloading or transfer operation</u> so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use o	f vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>	\boxtimes			N/A	
<u>Debri</u>	s handling					
B31	Are any debris covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?				N/A	
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes			N/A	

Environmental Site Inspection Checklist (Rev. 3)

Exca	vation or earth moving			
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
Site o	<u>clearance</u>			
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes	Refer to Observation 3

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing <u>operation</u> of <u>construction plants</u> where practicable?		\boxtimes			
C10	Is the <u>hoarding</u> maintained properly?	\boxtimes			N/O	
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		⊠ Traffic				
		⊠ Construct	ion activiti	es inside	of site	
		Construct	ion activiti	es outsid	e of site	
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const					
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?		\boxtimes		
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes		
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes		
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes		
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes		
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface. Refer to Observation
D5a	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes		
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes		
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/O

D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes	
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at any time of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94)			
	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly. 			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 			
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured. 			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 			
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A

(Cor	າstr	ucti	on	Ph	ase
---	-----	------	------	----	----	-----

D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any <u>sediment plume</u> observed in nearby watercourses?			\boxtimes	
<u>Sewag</u>	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	e Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		

Environmental Site Inspection Checklist (Rev. 3)

D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		
				•	
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Gener	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?				
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?		\boxtimes		
E2c	Is <u>waste disposed</u> regularly?		\boxtimes		
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D N	<u>Naterials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the <u>wooden hoardings</u> avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
E7a	Are the temporary stockpiles maintained regularly?	\boxtimes			N/A
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the excavated slope , stockpile material and bund walls covered by tarpaulin?		\boxtimes		
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		

E10	responsible for garrangements for	n of approved personnel to be good site practices and making collection of all wastes generated we disposal implemented?		\boxtimes		
E11	proper waste machemical waste ha	of <u>site personnel</u> for cleanliness, anagement procedures including indling, and waste reduction, reuse cept implemented?		\boxtimes		
E12		r cleaning and maintenance drainage systems, sumps, oil		\boxtimes		
E13a	Are <u>wood</u> , <u>steel</u> a use and/or recyclin	nd <u>other metals</u> separated for reng?		\boxtimes		
E13b		materials appear contaminated?			\boxtimes	
E13c	If suspected conta followed?	minated, appropriate <u>procedures</u>	\boxtimes			N/A
E14	Is the <u>disposal</u> of sensitive locations	<u>C&D materials</u> avoided onto any e.g. agricultural lands etc.?		\boxtimes		
E15	stored in differen	and <u>C&D waste segregated</u> and t containers or skips to enhance g of materials and their proper		\boxtimes		
Chemi	ical Waste / Waste					
E16	Are <u>chemicals</u> ar properly?	nd <u>waste oil</u> recycled or disposed		\boxtimes		
Chemi	ical Packaging					
E17a		ers a capacity of <450 L unless the een approved by EPD?	\boxtimes			
E17b	maintained in a go	rs (holding, resistant to corrosion, od condition, and securely closed) of chemical wastes?	\boxtimes			
Chemi	ical Labelling				•	
E18		or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm		\boxtimes		
Chemi	ical Waste / Fuel S	torage Area				
E19a	Are the storage separated (if need	area are clearly labelled and ed)?	\boxtimes			N/O
E19b	fence of ≥2m tall capacity (>110%	area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the vistorage of 20% of total volume	\boxtimes			N/O
E19c	· · · · · · · · · · · · · · · · · · ·	areas have adequate ventilation to prevent rainfall entering and sunlight?	\boxtimes			N/O

E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u> provided with locks and sited on sealed areas?	\boxtimes		N/O
E20	Is chemical waste collected by <u>licensed waste</u> <u>collectors</u> and disposed of at <u>licensed facility</u> eg. Chemical Waste Treatment Centre?		\boxtimes	
Recor	<u>rds</u>			
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?		\boxtimes	
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?		\boxtimes	
E23	For the demolition material / waste, is the <u>number of loads</u> for each day recorded as appropriate?		\boxtimes	

Within I	NENT Landfill Extension Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)? Are prominent safety warning signs erected on-	Observed	Yes	No	Remarks / Photo							
F1 .	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes										
F2 .	potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes		F1 Are <u>special LFG precautions</u> taken to avoid								
F2 .	explosion, asphyxiation, toxicity)?											
1	Are prominent safety warning signs erected on-		Ш		N/O							
	site to alert all personnel and visitors of LFG hazards during excavation works.?	\boxtimes			N/O							
F3	Is no smoking or burning permitted on-site?	\boxtimes			N/O							
1	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O							
F5	Is no worker allowed to <u>work alone</u> at any time in excavated trenches or confined areas on-site?		\boxtimes									
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes									
	Are <u>construction equipment</u> equipped with											
	vertical exhaust at least 0.6m above ground		\boxtimes									
	installed with spark arrestors?	_	_									
	Are <u>electrical motors</u> and <u>extension cords</u>											
	explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O							
	ls 'Permit to Work' system implemented?		\boxtimes									
	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u>											
1	conducted only under 'Permit to Work' system											
	following clear safety requirements, gas monitoring procedures and presence of qualified persons to		\boxtimes									
	supervise the works?											
	For piping assembly or conduit construction,											
	are all valves and seals closed immediately after	\bowtie			N/A							
1	installation?											
	Are the <u>pipe ends</u> sealed on one side during											
	installation if installation of large diameter pipes	\boxtimes		$\mid \; \sqcup \; \mid$	N/A							
	(diameter > 600mm) is required?				<u> </u>							
	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A							
1 1 1	Is <u>forced ventilation</u> implemented for <u>works</u>											
1	inside trenches deeper than 1m?	\boxtimes			N/A							

F12	Is frequency and location of LFG monitoring within			
	excavation area determined prior to			
	commencement of works?			
		\boxtimes		
	*LFG monitoring in excavations should be			
	conducted at < 10mm from exposed ground			
	surface.			
F13	For excavation works, Is LFG monitoring	\boxtimes		
	conducted (1) at ground surface prior to excavation,			
	(2) immediately before workers entering			
	excavations, (3) at the beginning of each half-day			
	work, and (4) periodically throughout the working			
	day when workers are in the excavation?			
F14	Are LFG monitoring conducted periodically when	\square		
	any cracks on ground level encountered on-site?			
	, 5			
	*Appropriate action should be taken in accordance			
	with the action plan in Table 7.6 of EIA Report.			
F15a	Are LFG precautionary measures involved in			
54	excavation and piping works provided in		🗀	
	accordance with LFG Guidance Note and included			
	in Safety Plan of construction phase?			
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where			
100	free LFG has been proven or raised clear of ground			
	at a separation distance of at least 500mm?			
F16	Is a <u>Safety Officer trained</u> in the use of gas			
10	detection equipment and LFG- related hazards			
	present on-site throughout the groundwork phase?			
	prosont on-site unoughout the groundwork phase?			
	*The Safety Officer should be provided with an			
	intrinsically safe portable instrument appropriately			
	calibrated and capable of measuring the following			
	gases: •CH ₄ : 0-100% and LEL: 0-100%/v			
	•CO ₂ : 0-100%			
F47-	•O ₂ : 0-21%	 		
F17a	Periodically during groundwork construction, Is the	\boxtimes		
	works area monitored for CH ₄ CO ₂ and O ₂ using			
	appropriately calibrated portable gas detection			
	equipment?			
	*The medical of			
	*The monitoring frequency and areas should be			
	established prior to commencement of groundwork			
	either by Safety Officer or appropriately qualified			
	person.			
F17b	Is routine monitoring carried out in all excavations,	\boxtimes		
	manholes, created by temporary storage of building			
	materials on-site?			
F17c	Are all measurements in excavations made with	\boxtimes		
	monitoring tube located < 10mm from exposed			
	ground surface?			
F18	For excavations > 1m, are measurements	\boxtimes		
	conducted?			
	• At ground surface before excavation			
	commences;			

	Immediately before any worker enters the excavation;At the beginning of each working day for entire				
	period the excavation remains open; andPeriodically throughout the working day whilst workers are in excavation.				
F19	 For excavations 300mm to 1m, are measurements conducted? Directly after excavation has been completed; and Periodic all whilst excavation remains open. 				
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?		\boxtimes		
		N/A or Not			
G	Landscape and Visual Impacts	Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes		
Advan	ced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?				
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	lary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u>		\boxtimes		
	species planted around the site perimeter?				
	orary landscape treatment as green surface cover				
Tempo G6			\boxtimes		
G6	orary landscape treatment as green surface cover Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope		\boxtimes		
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover?				
G6	Are grase hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever				
G6 Existin G7	Are grase hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever	N/A or Not Observed		□ □ No	Remarks / Photo
G6 Existin	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible?		\boxtimes	No	Remarks / Photo
G6 Existin G7	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained	Observed	Yes	No	Remarks / Photo
G6 Existin G7	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover? Ing tree preservation Are existing and affected tree which identified as ecological significant preserved whenever possible? Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained		Yes	No No	Remarks / Photo Remarks / Photo

Environmental Site Inspection Checklist (Rev. 3)

J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

- 1. The slope protection in Portion E3-1 is conducting in progress by contractor to minimize the high suspended solid surface runoff to treat by silt removal facilities & avoid it directly discharged to channel.
- 2. The silt removal facilities in Portion E3-1 were monitored and maintained in good condition by Contractor.
- 3. The accumulation of the uprooting of trees in SBA are continuously removed by the Contractor.
- 4. The accumulate water was diverted to the silt removal facilities at Portion D.
- 5. The accumulated water in drip tray at Portion D was removed by contractor.
- 6. The unrooting trees at Portion A was removed by contractor.
- 7. The sand and soil near the channel at Portion E3-1 was removed by contractor.

8.

Observation(s):

- 1. Portion of road leading to Portion A and Portion B2 shall be kept clear of dusty and muddy materials.
- Slope protection work in Portion A shall be maintained properly to minimize dust dispersion and surface runoff
- 3. The accumulated uprooting trees is found behind the wetsep in Portion B2.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- 1. The Contractor has been reminded to clear dusty and muddy material on the portion of road leading to Portion A and Portion B2.
- 2. The Contractor has been reminded to apply surface protection on the exposed slope in Portion A.
- 3. The accumulated uprooting trees shall be covered with impervious sheets, placed in an area sheltered on the top and the 3 sides or disposed properly.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:	4	1	ml	Ho.
Name:	Andy Ng	1	Kristy Wong	Sylvia Ho
Date:	29 May 2023	1	29 May 2023	29 May 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

03 April 2023

The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied to the exposed surface by the end of April to prevent surface runoff into channel in long term.

Follow-up status

The slope protection in Portion E3-1 is conducting in progress by contractor to minimize the high suspended solid surface runoff to treat by silt removal facilities & avoid it directly discharged to channel.

2 May 2023

Water in the drip tray shall be cleared off at Portion A.

Waiting for Contractor's Input

Follow-up status

8 May 2023

The Contractor has been reminded to cover the waste skip with impervious sheets during rainfall, to avoid accumulation of waste and to implement waste sorting.

Waiting for Contractor's Input

8 May 2023

The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall and the discharged wastewater shall comply with WPCO requirement.

The silt removal facilities in Portion E3-1 were monitored and maintained in good condition by contractor.

Follow-up status

15 May 2023

Observation:

The accumulate of the uprooting of trees without covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides were found at the work area at SBA.

The accumulation of the uprooting of trees in SBA are continuously removed by contractor.

15 May 2023

Observation:

The accumulate water was found at the lower area at the Portion D. The contractor has been recommended that the surface water should be collected to silt removal facilities.

The accumulate water was diverted to the silt removal facilities at Portion D

15 May 2023



Observation:

Accumulate water in drip tray was observed at Portion D. The contractor was recommended to keep cleaning the accumulated water in drip tray to minimize the large amount of potential chemical waste when the chemical leakage was found.

Follow-up status

The accumulated water in drip tray at Portion D was removed by contractor.

22 May 2023

Observation:

The unrooting trees at Portion A was not covered by impervious sheeting and or placed in an area sheltered on the top and the 3 sides within a day of demolition.

Follow-up status

The unrooting trees at Portion A was removed by contractor.

22 May 2023

Observation:

The sand and soil near the channel at Portion E3-1 were found. The contractor was recommended to avoid the untreated surface runoff contaminated with related materials discharged to channel directly. All construction runoffs should be collected to silt removal facilities for treatment.

The sand and soil near the channel at Portion E3-1 was removed by contractor.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

Portion B2

Portion A

1. Portion of road leading to Portion A and Portion B2 shall be kept clear of dusty and muddy materials.

Follow-up status

The entrance / exit at Portion B2 was cleaned by contractor.

Portion A

Waiting for Contractor's Input

Waiting for Contractor's Input

2. Slope protection work in Portion A shall be maintained properly to minimize dust dispersion and surface runoff.

Waiting for Contractor's Input

The accumulated uprooting trees is found behind the wetsep in Portion B2.

PART III Temporary surface water drainage system photo record during the environmental site inspection

Photo 5 Portion B2 Silt removal facilities Photo 6 Portion B1 Photo 8 Portion B1 Photo 7 Portion B1

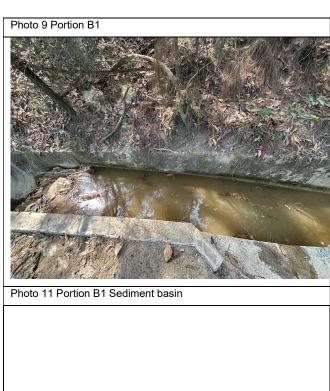


Photo 12 Portion B1 Drainage system

Appendix K Environmental Mitigation Implementation Schedule (EMIS)

Environm	ental Mitigati	on Implementation Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref.	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Air Qua	lity						
S3.8.	S3.1.8	 The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation. Dust emission from construction vehicle movement is confined within the worksites area. Watering facilities will be provided at every designated vehicular exit point. Good site practice is recommended during construction phase. 	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	Entire NENT Landfill Extension site	To control the dust impact to within the HKAQO and TM - EIA criteria (Ref. 1-hr and 24hr TSP levels are 500 μg/m ⁻³ and 260 μg/m ⁻³ , respectively)	✓
Constru	ıction Noise						
S4	S4.9	 Use of good site practices to limit noise emissions by considering the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise by means of good site practices	Contractor	Entire construction site	Noise Control Ordinance	*
S4	S4.9	2) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	Entire construction site	Noise Control Ordinance & its TM Annex 5, TM-EIA	✓

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the	standards for the	
	Ref	necessary)	Measures & Main	the	measures	measures to achieve?	
			Concerns to address	measures?			
Constru	ction Runo	ff			1		
35.8.1	S5.2.1	Construction on Site Runoff	Control construction	Contractor	Entire	ProPECC PN 1/94	✓
		At the start of site establishment, perimeter cut-off drains to direct	runoff and erosion		construction		
		off-site water around the site should be constructed with internal	from site surface,		site	Water Pollution Control	
		drainage works and erosion and sedimentation control facilities	drainage channel,			Ordinance	
		implemented. Channels (both temporary and permanent drainage	stockpiles, wheel				
		pipes and culverts), earth bunds or sand bag barriers should be	washing facilities, etc				
		provided on site to direct stormwater to silt removal facilities.	to minimize water				
		The dikes or embankments for flood protection should be	quality during				
		implemented around the boundaries of earthwork areas. Temporary	construction stage				
		ditches should be provided to facilitate the runoff discharge into an					
		appropriate watercourse, through a silt/sediment trap. The					
		sediment/silt traps should be incorporated in the permanent					
		drainage channels to enhance deposition rates.					
		The design of efficient silt removal facilities should be based on the					
		guidelines in Appendix A1 of ProPECC PN 1/94, which states that					
		the retention time for silts and sediment traps should be 5 minutes					
		under maximum flow conditions.					
		Construction works should be programmed to minimize surface					
		excavation works during the rainy seasons (April to September). All					
		exposed earth areas should be completed and vegetated as soon					
		as possible after earthworks have been completed, or alternatively,					
		within 14 days of the cessation of earthworks where practicable. If					
		excavation of soil cannot be avoided during the rainy season, or at					
		any time of year when rainstorms are likely, exposed slope surfaces					
		should be covered by tarpaulin or other means.					
		The overall slope of the site should be kept to a minimum to reduce					
		the erosive potential of surface water flows, and all traffic areas and					
		access roads protected by coarse stone ballast. An additional					
		advantage accruing from the use of crushed stone is the positive					
		traction gained during prolonged periods of inclement weather and					
		the reduction of surface sheet flows.					
		All drainage facilities and erosion and sediment control structures					
		should be regularly inspected and maintained to ensure proper and					
		efficient operation at all times and particularly following rainstorms.					
		Deposited silt and grit should be removed regularly and disposed of					
		by spreading evenly over stable, vegetated areas.					

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the	standards for the	
	Ref	, , ,	Measures & Main	the	measures	measures to achieve?	
			Concerns to address	measures?			
Construc	ction Runo	ff (Cont'd)	-				
5.8.1	S5.2.1	Measures should be taken to minimise the ingress of site drainage into	Control construction	Contractor	Entire	ProPECC PN 1/94	✓
		excavations. If the excavation of trenches in wet periods is necessary,	runoff and erosion		Construction		•
		they should be dug and backfilled in short sections wherever	from site surface,		site	Water Pollution Control	
		practicable. Water pumped out from trenches or foundation	drainage channel,			Ordinance	
		excavations should be discharged into storm drains via silt removal	stockpiles, wheel				
		facilities.	washing facilities, etc				
		Open stockpiles of construction materials (for example, aggregates,	to minimize water				
		sand and fill material) of more than 50 m ³ should be covered with	quality during				
		tarpaulin or similar fabric during rainstorms. Measures should be taken	construction stage				
		to prevent the washing away of construction materials, soil, silt or					
		debris into any drainage system.					
		Manholes (including newly constructed ones) should always be					
		adequately covered and temporarily sealed so as to prevent silt,					
		construction materials or debris being washed into the drainage					
		system and storm runoff being directed into foul sewers.					
		Precautions to be taken at any time of year when rainstorms are likely,					
		actions to be taken when a rainstorm is imminent or forecasted, and					
		actions to be taken during or after rainstorms are summarised in					
		Appendix A2 of ProPECC PN 1/94. Particular attention should be paid					
		to the control of silly surface runoff during storm events, especially for					
		areas located near steep slopes.					
		All vehicles and plant should be cleaned before leaving a construction					
		site to ensure no earth, mud, debris and the like is deposited by them					
		on roads. An adequately designed and sited wheel washing bay					
		should be provided at every construction site exit. Wash-water should					
		have sand and silt settled out and removed at least on a weekly basis					
		to ensure the continued efficiency of the process. The section of					
		access road leading to, and exiting from, the wheel-wash bay to the					
		public road should be paved with sufficient backfall toward the wheel-					
		wash bay to prevent vehicle tracking of soil and silly water to public					
		roads and drains.					
		Oil interceptors should be provided in the site drainage system					
		downstream of any oil/fuel pollution sources. The oil interceptors					
		should be emptied and cleaned regularly to prevent the release of oil					
		and grease into the storm water drainage system after accidental					
		spillage. A bypass should be provided for the oil interceptors to					
		prevent flushing during heavy rain.					

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Constru	ction Runo	ff					
S5.8.1	S5.2.1	 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. Requirements for solid waste management are detailed in Section 6 of this Report. All fuel tanks and storage areas should be provided with docks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. To prevent pollution risks arising from works area (waste reception area) and haul roads, intercepting bund or barrier along the roadside should be constructed. 	Control construction runoff and erosion from site surface, drainage channel, stockpiles, wheel washing facilities, etc to minimize water quality during construction stage	Contractor	Entire construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	√
S5.8.1	S5.2.1	Sewage Effluent from Workforce Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. Notices will be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. Regular environmental audit on the construction site can provide an effective control of any malpractices and can achieve continual improvement of environmental performance on site.	Control sewage effluent arising from the sanitary facilities provided for the on- site construction workforce	Contractor	On-site sanitary facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√
S5.8.1	S5.2.1	Accidental Spillage of Chemical Any service workshop and maintenance facilities shall be located within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of equipment involving activities with potential for leakage and spillage will only be undertaken within the areas.	Control of chemical leakage	Contractor	Service workshop and maintenance facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the	standards for the	
	Ref		Measures & Main	the	measures	measures to achieve?	
			Concerns to	measures?			
			address				
Erosion	Control Me	easures		•			•
S5.8.2	S5.2.2	Erosion Control /Measures	Erosion control	Contractor	Drainage	ProPECC PN 1/94	✓
		a. Preserve Natural Vegetation			system		
		This Best Management Practices will involve preserving natural				Water Pollution Control	
		vegetation to the greatest extent possible during the construction				Ordinance	
		process. and after construction where appropriate. Maintaining natural					
		vegetation is the most effective and inexpensive form of erosion					
		prevention control.					
		b. Provision of Buffer Zone					
		A buffer zone consists of an undisturbed area or strip of natural vegetation					
		or an established suitable planting adjacent to a disturbed area that					
		reduces erosion and runoff. The rooted vegetation holds soils acts as a					
		wind break and filters runoff that may leave the site.					
		c. Seeding (Temporary/Permanent)					
		A well-established vegetative cover is one of the most effective methods					
		of reducing erosion. Vegetation should be established on construction					
		sites as the slopes are finished, rather than waiting until all the grading is					
		complete. Besides, Hydroseeding will be applied on the surface of					
		stockpiled soil and on temporary soil covers for inactive tipping areas to					
		prevent soil erosion during rainy season.					
		d. Ground Cover					
		Ground Cover is a protective layer of straw or other suitable material					
		applied to the soil surface. Straw mulch and/or hydromulch are also used					
		in conjunction with seeding of critical areas for the establishment of					
		temporary or permanent vegetation. Ground cover provides immediate					
		temporary protection from erosion. Mulch also enhances plant					
		establishment by conserving moisture, holding fertilizer, seed, and topsoil					
		in place, and moderating soil temperatures.					

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S5.8.2	\$5.2.2	e. Hydraulic Application Hydraulic application is a mechanical method of applying erosion control materials to bare soil in order to establish erosion-resistant vegetation on disturbed areas and critical slopes. By using hydraulic equipment, soil amendments, mulch, tackifying agents, Bonded Fiber Matrix (BFM) and liquid co-polymers can be uniformly broadcast, as homogenous slurry, onto the soil. These erosion and dust control materials can often be applied in one operation. f. Sod Establishes permanent turf for immediate erosion protection and stabilizes rainageways. g. Matting There are numerous erosion control products available that can be described in various ways, such as matting, blankets, fabric and nets. These products are referred as matting. A wide range of materials and combination of materials are used to produce matting including, but not limited to: straw, jute, wood fiber, coir (coconut fiber), plastic netting, and Bonded Fiber Matrix. The selection of matting materials for a site can make a significant difference in the effectiveness of the Best Management Practices. h. Plastic Sheeting Plastic Sheeting will provide immediate protection to slopes and stockpiles. However, it has been known to transfer erosion problems because water will sheet flow off the plastic at high velocity. This is usually attributable to poor application, installation and maintenance. i. Dust Control Dust Control is one preventative measure to minimize the wind transport of soil, prevent traffic hazards and reduce sediment transported by wind and deposited in water resources.	Erosion control	Contractor	Drainage system	ProPECC PN 1/94 Water Pollution Control Ordinance	

EIA Ref.	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to implement	Location of the	What requirement	Status
	Log Ref	(to be implemented when the trigger level is exceeded, where	Recommended	the measures?	measures	or standards for the	
		necessary)	Measures & Main			measures to	
			Concerns to			achieve?	
			address				
Surface W	ater Draina	ge System					
\$5.8.2	S5.2.2	Temporary surface water drainage system will be provided to	Surface Water	Contractor	Surface water	Water Pollution	✓
		manage runoff during construction and operation. This system will	Management/		system	Control Ordinance	
		consist of channels as constructed around the perimeter of the site	Control run off		Construction		
		area. This system will collect surface water from the areas of higher				TM-water	
		elevations to those of lower elevations and ultimately to the point					
		of discharge. Erosion will therefore be minimised.					
		The temporary surface water drainage system will include the use					
		of a silt fence around the soil stockpile areas to prevent sediment					
		from entering the system. Regular cleaning will be carried out to					
		prevent blockage of the passage of water flow in silt fence.					
		Intermediate drainage system will be installed for filled cell/phase.					
		The major purpose of the intermediate drainage system is to					
		prevent the clean surface water run-off from the filled phases					
		coming into contact with the waste mass in active cell and to					
		prevent excessive surface water infiltration through the					
		intermediate cover, thus contribute to increasing volume of					
		leachate. The intermediate drainage system will collect the clean					
		surface water run-off and divert it to the permanent discharge					
		channels connected to the public drainage system.					
		In addition, surface flow from the haul road (especially near the					
		wheel washing facility) will be collected to a dry weather flow					
		interceptor and conveyed to the on-site leachate treatment plant					
		for further treatment.					

EIA	EM&A	ation Implementation Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
	Manageme	ent					
S6	WM1	C&D Materials Implement proper waste management measures during construction phase as stipulated in the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 Environmental Management in Construction Sites. Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010. Copies/counterfoils from trip-tickets (with quantities of C&D Materials off-site) should be kept for record purposes. Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005. Make provisions in Contract documents to allow and promote the use of recycled aggregates where appropriate. Ensure material balance in terms of excavated C&D materials in the design of NENT landfill extension project. The contract specifications should specify no excavated materials should be removed from the landfill extension site, but should be fully reused. Careful design, planning and good site management to minimise over-ordering and waste materials such as concrete, mortars and cement grouts. The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic fencing should be considered to increase the potential for reuse. The Contractor should recycle as much as possible the C&D waste on-site through proper waste segregation on-site. Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills. Proper areas should be designated for waste segregation and storage wherever site conditions permit. Maximise the use of reusable steel formwork to reduce the amount of C&D material. Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. On-site sorting and segregation facility of all type of wastes is considered as one of the best practice in waste management and hence, should be implemented in all projects generating cons	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
S6	WM1	C&D Materials (Cont'd) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. Minimise excessive ordering of concrete, mortars and cement grout by doing careful check before ordering.	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	
S6	WM2	Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Plant/equipment maintenance schedule should be designed to optimise maintenance effectiveness and to minimise the generation of chemical wastes. Where possible, chemical wastes (e.g. waste lube oil) should be recycled by licensed treatment facilities	Ensure proper disposal of chemical waste generated on-site to minimise the associated hazards on human health and environment	Contractor	Entire construction site	Waste Disposal (Chemical Waste) General Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	✓

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
S6	WM2	Chemical Waste (Cont'd) Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD. Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulation. The storage area for chemical wastes should be clearly labelled and used solely for storage of chemical waste, enclosed with at least 3 sides, having an impermeable floor and bund of sufficient capacity to accommodate 110% of volume of the largest container or 20 % of total volume of waste stored in that area, whichever is the greatest, having adequate ventilation, being covered to prevent rainfall entering, and being arranged so that incompatible materials are adequately separated. Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g. Chemical Waste Treatment Centre.	Ensure proper disposal of chemical waste generated on-site to minimise the associated hazards on human health and environment.	Contractor	Entire construction site	Waste Disposal (Chemical Waste) General Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	√
S6	WM3	General Refuse General refuse generated on-site should be properly stored in enclosed bins or compaction units separately from construction and chemical wastes. All recyclable materials (separated from the general waste) should be stored on-site in appropriate containers with cover prior to collection by a local recycler for subsequent reuse and recycling. Residual, non-recyclable, general waste should be stored in appropriate containers to avoid odour. Regular collection should be arranged by an approved waste collector in purpose-built vehicles that minimise environmental impacts during transportation Reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans should be separated from general waste stream and collected by recyclers. Proper collection bins should be provided on- site to facilitate the waste sorting.	Minimise generation of general refuse to avoid odour, pest and visual nuisance	Contractor	Entire construction site	Waste Disposal Ordinance	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the measures	requirement or	
	Ref		Measures & Main	the		standards for the	
			Concerns to	measures?		measures to	
			address			achieve?	
S6	WM3	General Refuse (Cont'd)	Minimise	Contractor	Entire	Waste Disposal	✓
		Office waste paper should recycled if the volume warrant collection by recyclers.	generation of		construction	Ordinance	
		Participation in community waste paper recycling programme should be considered by	general refuse to		site		
		the Contractor, including waste paper, aluminium cans, plastic bottles, waste batteries,	avoid odour, pest				
		etc.	and visual				
			nuisance				

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	standards for the measures to achieve?	
LFG							
		dfill Extension		T =	T = -		
S7	LFG1	Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	✓
S7	LFG2	Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.				F&IU (Confined Spaces) Regulations	✓
S7	LFG3	No smoking or burning should be permitted on-site.				Code of Practice on Safety	✓
S7	LFG4	Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.				and Health at Work in Confined Spaces	✓
S7	LFG5	No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.					✓
S7	LFG6	Adequate fire fighting equipment should be provided on-site.					✓
S7	LFG7	Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.					√
S7	LFG8	Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.					✓
S7	LFG9	'Permit to Work' system should be implemented.					✓
S7	LFG10	Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.					✓
S7	LFG11	For piping assembly or conduit construction, all valves and seals should be closed immediately after installation to avoid accumulation and migration of LFG. If installation of large diameter pipes (diameter >600mm) is required, the pipe ends should be sealed on one side during installation. Forced ventilation is required prior to operation of installed pipeline. Forced ventilation should also be required for works inside trenches deeper than 1m.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces) Regulations Code of Practice on Safety	√
S7	LFG12	Frequency and location of LFG monitoring within excavation area should be determined prior to commencement of works. LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.				and Health at Work in Confined Spaces	✓

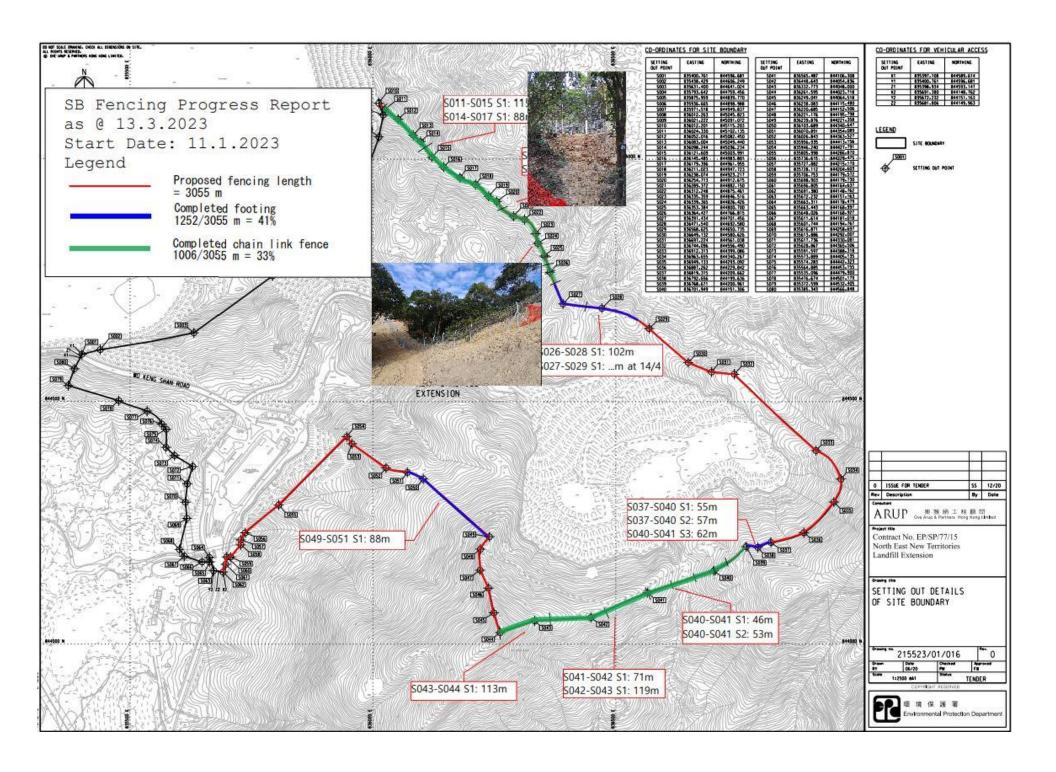
EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
	NFNT Lan	dfill Extension					
S7	LFG13	For excavation works, LFG monitoring should be conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces)	√
S7	LFG14	Any cracks on ground level encountered on-site should be monitored for LFG periodically. Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.				Regulations Code of Practice on Safety and Health at Work in	√
S7	LFG15	LFG precautionary measures involved in excavation and piping works should be provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase. Temporary offices or buildings should be located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm.				Confined Spaces	✓
S7	LFG16	For large development such as NENT landfill extension, a Safety Officer trained in the use of gas detection equipment and LFG-related hazards should be present on-site throughout the groundwork phase. The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%					√
S7	LFG17	Periodically during groundwork construction, the works area should be monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person. Routine monitoring should be carried out in all excavations, manholes, created by temporary storage of building materials on-site. All measurements in excavations should be made with monitoring tube located not more than 10mm from exposed ground surface.					√

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
		dfill Extension (Cont'd)			I = .		
S7	LFG18	For excavations deeper than 1m, measurements should be	To minimise the	Contractor	Entire construction	Landfill Gas Hazard	✓
		conducted:	risk of LFG		site	Assessment	
		 At ground surface before excavation commences; 	hazards to			Guidance Note	
		 Immediately before any worker enters the excavation; 	personnel in construction site			(EPD/TR8/97)	
		At the beginning of each working day for entire period the	CONSTRUCTION SILC				
		excavation remains open; and				F&IU (Confined	
		Periodically throughout the working day whilst workers are in				Spaces) Regulations	
		excavation.					
S7	LFG19	For excavations between 300mm and 1m, measurements should be				Code of Practice on	✓
		conducted:				Safety and Health at Work in Confined	
		Directly after excavation has been completed; and				Spaces	
		Periodic all whilst excavation remains open.					
S7	LFG20	For excavations less than 300mm, monitoring may be omitted at the discretion of Safety Officer or appropriately qualified person.					✓

		gation Implementation Schedule (EMIS) Construction Phase					
EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures	
	Ref	necessary)	Measures & Main	the		to achieve?	
			Concerns to	measures?			
			address				
Lands	cape and \	Visual Phases		•			
S8	LV1	Advanced screening tree planting	To minimise the	Contractor	Entire	DEVB TC(W) No. 4/2020 -	Advanced screen tree
		Early planting using fast growing trees and tall shrubs at	impact on existing		construction	Tree Preservation	planting is under planning.
		strategic locations within site to block major view corridors	vegetation retained		site		
		to the site from the VSRs, and to locally screen haul roads,	by personnel in			DEVB TC(W)) No. 6/2015 -	
		excavation works and site preparation works.	construction			Maintenance of Vegetation	
		Roadside planter and shrub planting design in front of	To provide initiation			and Hard Landscape	
		Cheung Shan Temple.	on permanent			Features	
S8	LV2	Boundary Green Belt planting	landscape and				To be implemented during
		Considerable planting belts proposed around the site	visual mitigation			DEVB TC(W) No. 6/2011 -	operation phase
		perimeter and the construction of temporary soil bunds will	measures			Maintenance of Man-made	
		screen the landfill operations to a certain degree. Fast				Slopes and Emergency	
		growing and fire resistant plant species will be used.				Repair on Stability of Land	
S8	LV3	Temporary landscape treatment as green surface cover					Grass hydroseeding will be
		For certain areas where landfilling operations would have					applied at Portion E3-2.
		to be suspended temporarily for periods of years, simple					
		temporary landscape treatment such as hydroseeding					
		should be considered. During construction and operational					
		phases, grass hydroseeding or synthetic covering material					
		of green colour should also be used as a temporary slope					
		cover if applicable.					
S8	LV4	Existing tree preservation					√
	- ۷ -	Transplant existing trees and vegetation, which are					'
		identified as ecologically significant in Ecological Impact					
		Assessment and as rare tree species recorded in the tree					
		survey, under circumstances where technically feasible.					
		For all affected trees, the principle of avoidance of tree					
		felling and tree transplanting of tree before felling should					
		apply whenever possible. A tree felling application should					
		be submitted to DEVB-GLTMS and be approved before					
		any trees are felled or transplanted.					

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures to	
	Ref	necessary)	Measures & Main	the		achieve?	
			Concerns to	measures?			
			address				
Ecolo	ЭУ						
Gener	al Protection	on Measures:					
S10	E1	Restriction of construction activities to the work areas that	To minimise	Contractor	Entire	Practice Note for Professional	✓
		would be clearly demarcated.	environmental		construction	Persons (ProPECC),	
S10	E2	Reinstatement of the work areas immediately after completion	impacts and		site	Construction Site Drainage	✓
		of the works.	therefore potential			(PN1/94)	
S10	E3	Only well-maintained plant should be operated on-site and plant	ecological impacts				✓
		should be serviced regularly during the construction	within and near the			Code of Practice on the	
		programme.	construction site			Packaging, Labelling and	
S10	E4	Machines and plant (such as trucks, cranes) that may be in				Storage of Chemical Wastes,	✓
		intermittent use should be shut down between work periods or				EPD (1992)	
		should be throttled down to a minimum.					
S10	E5	Plant known to emit noise strongly in one direction, where				ETWB TC(W)) No. 33/2002	√
		possible, be orientated so that the noise is directed away from				Management of Construction	•
		nearby NSRs.				and Demolition Material	
S10	E6	Silencers or mufflers on construction equipment should be				Including Rock	To be implemented
		properly fitted and maintained during the construction works.					'
S10	E7	Mobile plant should be sited as far away from NSRs as possible				DEVB TC(W) No. 6/2010 Trip	✓
		and practicable.				Ticket System for Disposal of	•
S10	E8	Material stockpiles, site office and other structures should be				Construction and Demolition	√
- · •		effectively utilised, where practicable, to screen noise from on-				Materials	•
		site construction activities.					
						ETWB TC(W)No.19/2005	
S10	E9	Use of "quiet" plant and working methods.				Environmental Management	✓
S10	E10	Construction phase mitigation measures in the Practice Note				on Construction Sites	√
		for Professional Persons on Construction Site Drainage.					

EIA Ref.	••	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S10	E11	tion Measures: Design and set up of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction.	To minimise environmental impacts and	Contractor	Entire construction	WBTC No. 12/2002, Specifications Facilitating the Use of Recycled Aggregates	✓
S10	E12	Design and incorporation of silt/sediment traps in the permanent drainage channels to enhance deposition rates and regular removal of reposited silt and grit.	therefore potential ecological impacts within and near the			WBTC Nos. 25/99,25/99A and 25/99C. Incorporation of Information on Construction	✓
S10	E13	Minimization of surface excavation works during the rainy seasons (April to September), and in particular, control of silty surface runoff during storm events, especially for areas located near steep slopes.	construction site				✓
S10	E14	Regular inspection and maintenance of all drainage facilities and erosion and sediment control structures to ensure proper and efficient operation at all times and particularly following rainstorms.					✓
S10	E15	Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					✓


Appendix L Construction Site Activities

Construction Activities	Photos	When	Where	Who	What - ENV Impacts	Mitigation Measures
Material loading and unloading, site traffic	15 00°		Portion A, SBA to Alternative Disposal Ground	PYE	Dust, bringing mud to the common haul road	Speed limit, covering of materials and water spraying, lorry washing at the exit of the site
Permanent site office foundation works with pouring of concrete		Dec 22 to June 23	Portion D	PYE	Washout flowing to site water discharge point, dust emissions	Avoid the spillage of concrete, lorry washing at designated area, operation and maintenance of water treatment facility at discharge point
Site clearance		Dec 22 to June 23	Portion A, Portion E3-1	PYE	Wash out going to surface water channel and site water discharge point, generation of yard waste	Cover exposed slope by tarpaulin, diversion of surface water, operation and maintenance of water treatment facility at discharge point, implementation of trip ticket system
Installation of permanent fencing		Dec 22 to June 23	Portion A, Portion B1, Portion E4	PYE	Dust	Covering of cement storage area, enclosure of mixing area
Site formation	ide 3	Dec 22 to Dec 23	Portion A, Portion E3-1	PYE	Generation of C&D waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Tree Felling	1	Dec 22 to June 23	Portion E3-1, E4	PYE	Generation of yard waste	Implementation of trip ticket system, waste recycling, internal waste transfer

Remark:

PYE is the Sub-contractor for this project.

Appendix M Mitigation Measures of Cultural Landscape Features

Appendix N Ecological Monitoring Record

Post-translocation monitoring photo record extracted from post-translocation report (May 2023)

Hand netting to search for S. zanklon

Kick-netting to search for \mathcal{S} . zanklon

Direct Observation to search for S. zanklon

B.1 Incense Tree Aquilaria sinensis

Photo B.1.1.: General view of the transplanted individual AS-03.

Photo B.1.3.: General view of the transplanted individual AS-02.

Photo B.1.2.: Stem condition of the transplanted individual AS-03.

Photo B.1.4.: Stem condition of the transplanted individual AS-02.

B.2 Lamb of Tartary *Cibotium barometz*

Photo B.2.1.: General view of the transplanted individual CB-01.

Photo B.2.3.: Leaf condition of the new foliage.

Photo B.2.2.: New foliage of the transplanted individual CB-01.

Photo B.2.4.: General view of the transplanted individual CB-01.

B.3 Bottlebrush Orchid Goodyera procera

Photo B.3.1: Individual GP-01. Flower withering.

Photo B.3.2: Individual GP-02.

Photo B.3.3: Individual GP-03.

Photo B.3.4: Individual GP-03. Holes in leaves.

Photo B.3.5: Individual GP-04.

Photo B.3.7: Individual GP-05.

Photo B.3.6: Individual GP-04. Wilted flower.

Photo B.3.8: Individual GP-05. Wilted flower.

Photo B.3.9: Individual GP-06.

Photo B.3.11: Individual GP-07.

Photo B.3.10: Individual GP-06. Wilted flower.

Photo B.3.12: Individual GP-07. Partially wilted leaf.

Photo B.3.13: Individual GP-08.

Photo B.3.15: Individual GP-09. Wilting flower.

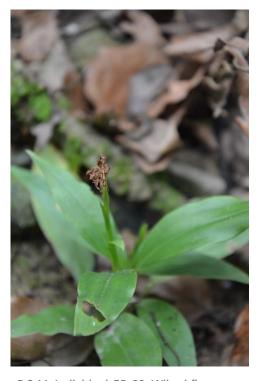


Photo B.3.14: Individual GP-08. Wilted flower.

Photo B.3.16: Individual GP-10. Wilted flower.

Photo B.3.17: Individual GP-11. Flowering.

Photo B.3.19: Individual GP-12.

Photo B.3.18: Individual GP-11. Wilted flower.

Photo B.3.20: Individual GP-13.

Photo B.3.21: Individual GP-14.

Photo B.3.23: Individual GP-15.

Photo B.3.22: Individual GP-14. Wilted flower.

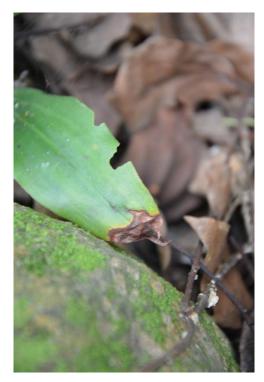


Photo B.3.24: Individual GP-15. Partially wilted leaves.

Photo B.3.25: Individual GP-16.

Photo B.3.27: Individual GP-17.

Photo B.3.26: Individual GP-16. Wilted flower.

Photo B.3.28: Individual GP-18.

Photo B.3.29: Individual GP-18. Wilted flower.

Photo B.3.30: Individual GP-19. Flowering.

Photo B.3.31: Individual GP-19. Wilted flower.

Appendix O Detail Status of EP Submission

Detail Status of Submissions required under the FEP & EP

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submission Date (12 Oct 2022)
2.2	2.4	Setting up of Community Liaison Group (CLG)	Submission Date (12 Oct 2022)
			1st CLG meeting (12 Jan 2023)
2.3	2.5	Submission of EM&A Manual	Submission Date (12 Oct 2022)
2.4	2.6	Submission of Preservation of Cultural Landscape Features	Survey and Preservation of Grave Records: Submission Date (15 Oct 2022)
			Survey and Preservation of Boulder Paths: Submission Date (12 Oct 2022)
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submission Date (2 September 2022)
2.6	2.8	Submission of translocation proposal	Submission Date (8 July 2022)
2.7	2.9	Submission of Transplantation Report and Post-Transplantation	Submission Date (19 Jan 2023)
		Monitoring	1 st monitoring (24 Nov 2022) 2 nd monitoring (9 Dec 2022) 3 rd monitoring (21 Dec 2022)
			4 th monitoring (13 Jan 2023)
			5 th monitoring (26 Jan 2023)
			6 th monitoring (8 Feb 2023)
			7 th monitoring (24 Feb 2023) 8 th monitoring (20 Mar 2023)
			9 th monitoring (21 Apr 2023)
			10 th monitoring (17 May 2023)

FEP Condition	EP Condition	Submission / Measures	Status
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out in July 2022
			Submission Date (27 December 2022)
			1 st monitoring (29 Aug 2022)
			2 nd monitoring (28 Sep 2022)
			3 rd monitoring (28 Oct 2022)
			4 th monitoring (28 Oct 2022)
			5 th monitoring (29 Dec 2022)
			6 th monitoring (30 Jan 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (19 Apr 2023)
			10 th monitoring (12 May 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submission Date (6 Oct 2022)
2.10	2.12	Submission of Waste Management Plan	Submission Date (30 December 2022)
3.2	3.2	Submission of Baseline Monitoring Report	Submission Date (30 Nov 2022)

Prepared by:

Aurecon Hong Kong Limited
Unit 1608, 16/F, Tower B, Manulife Financial Centre,
223 – 231 Wai Yip Street, Kwun Tong,
Kowloon Hong Kong S. A. R.

T: +852 3664 6888

F: +852 3664 6999

E: hongkong@aurecongroup.com

