

17 August 2023

Our Ref: JC/KW/N72261/23/tt

The EIA Ordinance Register Office, 27th floor, Southorn Centre, 130 Hennessy Road, Wan Chai, Hong Kong

Attn: Ms. Trista Lau

Dear Sirs,

Contract No. EP/SP/77/15
North-East New Territories Landfill Extension (NENTX)
NENTX – Submission of Monthly EM&A Report (No. 8) – July 2023

In accordance with Condition 3.3 of the EP-292/2007 and FEP-01/292/2007 for the North East New Territories (NENT) Landfill Extension Project (the Project), we are now submitting 2 hard copies and one electronic copy (in CD-ROM format) of the Monthly EM&A Report (No. 8) – July 2023 for the construction stage dated 11 August 2023 together with ET's certification letter and IEC's verification for your perusal.

If you have any questions, please contact our Kristy Wong at 2902 5260.

Yours faithfully

For and on behalf of

VEOLIA HONG KONG HOLDING LIMITED

Colin Mitchell

Capex Delivery Director - Hong Kong

Encl.

cc. EPD - Jamie Ng / Amanda Yeung (by email only)

Arup — Anson Cheung (1 copy & email)

MIEL - Steve Kok / Claudine Lee (2 copies & email)

Aurecon - Fredrick Leong (1 copy & email)

VHK - JC / KW / VC

Agreement No. CE 20/2004(EP) North East New Territories (NENT) Landfill Extension

Monthly Environmental Monitoring and Audit Report (No. 8) – July 2023

2023-08-11

Our Ref.: Date: CL/91823/0628-VES 14 August 2023

By Email

Veolia Environmental Services Hong Kong Limited 40/F, One Taikoo Place 979 King's Road Quarry Bay Hong Kong

Attn.: Mr. Colin Mitchell

Meinhardt Infrastructure and Environment Ltd

邁進基建環保工程顧問有限公司

10/F Genesis 33-35 Wong Chuk Hang Road Hong Kong 香港黃竹坑道33-35號 創協坊10樓

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com

Dear Sir

Re: Contract No. EP/SP/77/15

North-East New Territories Landfill Extension (NENTX)

Monthly Environmental Monitoring and Audit Report (No.8) - July 2023

I refer to Condition 3.3 under Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, regarding the submission of a monthly Environmental Monitoring and Audit report. I hereby verify the captioned "Monthly Environmental Monitoring and Audit Report (No.8) – July 2023" dated 14 August 2023.

Should you have any queries, please do not hesitate to contact the undersigned at 2859 5409.

Yours faithfully

MEINHARDT INFRASTRUCTURE AND ENVIRONMENT LTD

Claudine Lee

Independent Environmental Checker

Aurecon Hong Kong Limited Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong Hong Kong T +852 3664 6888 F +852 3664 6999 E hongkong@aurecongroup.com w aurecongroup.com

Ref: P521530-0000-REP-NN-0066

By Email

14 August 2023

Meinhardt Infrastructure & Environment Ltd. 10/F Genesis 33-35 Wong Chuk Hand Road Hong Kong

Attn: Ms. Claudine Lee,

Dear Claudine,

Re: Contract No. EP/SP/77/15

Northeast New Territories Landfill Extension

Submission of Monthly Environmental Monitoring and Audit Report (No.8) - July 2023

In accordance with the requirement specified in Condition 3.3 of Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, we are pleased to submit the certified "Monthly Environmental Monitoring and Audit Report (No.8) – July 2023" dated 11 August 2023 for your verification.

Should you require any further information or clarification, please do not hesitate to contact the undersigned or our Mr. Keith Chau on 3664 6788.

Yours faithfully, For and on behalf of Aurecon Hong Kong Limited

Fredrick Leong

Environmental Team Leader

Encl

1. Monthly Environmental Monitoring and Audit Report (No.8) – July 2023

1. IEC - Ms. Claudine Lee (By email: claudinelee@meinhardt.com.hk)

2. IEC Representative - Ms. Echo Hung (By email: echohung@meinhardt.com.hk)

Document Control Record

Document prepared by:

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223 – 231 Wai Yip Street, Kwun Tong, Kowloon

Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- **b)** Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docu	Document control aurecon						
Report title		Monthly Environmental Monitoring and Audit Report (No. 8) – July 2023					
Document ID			Project number				
File p	oath						
Clien	t	Veolia Environmental Services Hong Kong Limited					
Client contact			Client reference				
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver	
0	7 August 2023	Submit to IEC	J Man	K.Chau		FL	
1	11 August 2023	Submit to IEC	J Man	K.Chau		FL	
Curre	ent revision	1					

Approval					
Reviewer's signature	A STATE OF THE STA	Approver's signature	Tul		
Name	Keith Chau	Name	Fredrick Leong		
Title	Associate, Environmental	Title	Environmental Team Leader		

Contents

Ex	ecutive SummaryIntroduction	1
1.	Introduction	3
2.	Project Information	5
3.	Air Quality Monitoring	. 10
4	Noise Monitoring	. 19
5	Water Quality Monitoring	. 24
6	Waste Management	. 33
7	Landfill Gas Monitoring	. 34
8	Landscape and Visual	. 39
9	Cultural Heritage	. 40
10	Ecological Monitoring	41
11	Site Inspection and Audit	43
12	Environmental Non-conformance	. 46
13	Implementation Status on Environmental Mitigation Measures	47
	Future Key Issues	
15	Conclusion	. 49

Figure

Figure 1	Location of the Project Site
Figure 2	Impact Air Quality, Noise & Surface Water Monitoring Locations
Figure 3	Landfill Gas Monitoring Locations

Construction Programme

Appendix

Appendix A

. 4-1	• - · · - · · - · · · · · · · · · · · ·
Appendix B	Project Organization Chart & Management Structure
Appendix C	Monitoring Schedule for Reporting Month & Next Month
Appendix D	Calibration Certificates
Appendix E	Monitoring Results
Appendix F	Graphical Presentations
Appendix G	Notification of Environmental Quality Limits Exceedance
Appendix H	Wind Data
Appendix I	Waste Flow Table
Appendix J	Joint Environmental Site Inspection Records
Appendix K	Environmental Mitigation Implementation Schedule (EMIS)
Appendix L	Construction Site Activities
Appendix M	Mitigation Measures of Cultural Landscape Features
Appendix N	Ecological monitoring record
Appendix O	Detail Status of FEP & EP Submission
Appendix P	Cumulative complaint / enquiry log, Summaries of complaints and enquiries &
	Environmental complaint reports
Appendix Q	Implementation Status on Environmental Mitigation Measures

All rights reserved | The information/data furnished in our document is confidential and competitive information proprietary to Aurecon or its sub-contractors, the release of which would harm the competitive position of Aurecon or its sub-contractors/consultants. This information/data shall not be reproduced, stored in a retrieval system, transmitted in any form or by any means, used or disclosed in whole or in part, for any purpose other than to evaluate and adjudicate this document. If Aurecon is shortlisted or a contract is awarded to Aurecon as a result of this solicitation, or in connection with the submission of such information/data, the right (and the extent thereof) to reproduce, store, transmit, use or disclose this information/data must, by agreement, be included in such contract.

Executive Summary

Aurecon Hong Kong Limited (Aurecon) was appointed to undertake the role of Environmental Team (ET) and carry out Environmental Monitoring and Audit for the North East New Territories (NENT) Landfill Extension.

The construction phase and EM&A programme of the Project commenced on 1 December 2022.

This 8th Monthly EM&A Report presents the EM&A works conducted from 1 to 31 July 2023 in accordance with the EM&A Manual.

Summary of Construction Works undertaken during Report Period

The major construction works undertaken during the reporting period include:

-	Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
-	Permanent site office foundation works with pouring of concrete at Portion D
-	Site clearance at Portion A, B2/E2, E3-1 & E4
-	Installation of permanent fencing at Portion A, B1 & E4
-	Site formation at Portion A & E3-1
-	Tree felling at Portion B2/E1, E3-1 & E4

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	6, 12, 18, 24 & 29 July 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	6, 12, 21 & 24 July 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	12 July 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	24 times	3 to 8, 10 to 15, 18 to 22, 24 to 29, 31 July 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	18 July 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	12 July 2023
-	Joint Environmental Site Inspection	5 times	3, 10, 18, 24 & 31 July 2023
-	General Site Inspection by EPD-RNG	1 time	31 July 2023

Environmental Exceedance

Air Quality, Noise, Surface Water Quality & Landfill Gas Monitoring

No exceedance of the Action and Limit Levels were recorded at designated monitoring stations during the reporting period.

Environmental Non-conformance/Compliant/Summons and Prosecution

No non-compliance event was recorded during the reporting period.

No complaint was recorded during the reporting period.

No summons/prosecutions were received in this reporting period.

Reporting Change

There was no reporting change in the reporting period.

Future Key Issues

Works to be undertaken in the next month include:

- Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
- Permanent site office foundation works with pouring of concrete at Portion D
- Site clearance at Portion A & E3-1
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A & E3-1
- Tree felling at Portion E3-1 & E4

Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

1. Introduction

1.1. Background

- 1.1.1. The North East New Territories Landfill Extension (the NENTX Project) is located adjacent to the existing North East New Territories (NENT) Landfill at Ta Kwu Ling. The extension site is located in a valley covering mainly the existing NENT Landfill Stockpile and Borrow Area that was formed to the east of the existing landfill as part of the original site development of the landfill, and layout plan shown in **Figure 1**.
- 1.1.2. The NENTX is a designated project. The Environmental Impact Assessment (EIA) Report (AEIAR-111/2007) and an Environmental Monitoring and Audit Manual were approved on 20 September 2007. The project is governed by an Environmental Permit (EP) (EP-292/2007) which was granted on 26 November 2007. A further of EP (FEP) was applied and the FEP (FEP-01/292/2007) was subsequently granted on 28 April 2022.
- 1.1.3. In accordance with the requirements specified in Section 2.6 to 2.10 and Section 12.3 of the approved Environmental Monitoring and Audit (EM&A) Manual and Environmental Permit (EP and FEP) condition 3.3, Monthly EM&A report should be submitted to the Director of Environmental Protection (DEP), within 2 weeks after the end of the reporting month. The submissions shall be certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC).
- 1.1.4. The construction phase and EM&A programme of the Project commenced on 1 December 2022.

1.2. Nature, Scale and Scope of the captioned Designated Project

1.2.1 The Nature, Scale and Scope of the captioned Designated Project is presented in **Table 1-1**.

Table 1-1 Nature, Scale and Scope of the captioned Designated Project

Item(s)	Content
Nature of Designated Project	Construction and operation of a landfill for waste as defined in the "Waste Disposal Ordinance" (Cap. 354)
Scale and Scope of	The Project mainly consists of the followings: -
Designated Project	Construction and operation of a landfill extension of about 70 hectares with a target void space of at least 19 million cubic metres on the eastern side of the existing NENT Landfill, including the followings: -
	i. Site formation and preparation;
	ii. Installation of liner system;
	iii. Installation of leachate collection, treatment and disposal facilities;
	iv. Installation of gas collection, utilization and management facilities;
	v. Utilities provisions and drainage diversion;
	vi. Landfilling operation;
	vii. Restoration and aftercare in subsequent stages; and
	viii. Measures to mitigate environmental impacts as well as environmental monitoring and auditing to be implemented.

1.3. Purpose of this Report

1.3.1. This is the 8th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 01 to 31 July 2023.

1.4. Structure of the Report

1.4.1. The structure of the report is as follows:

Section 1 – Introduction

details the background, purpose and structure of the report.

Section 2 – Project Information

 summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permit(s)/License(s) during the reporting period.

Section 3 - Air Quality Monitoring

Construction Dust

Section 4 – Noise Monitoring

Section 5 - Water Quality Monitoring

- Groundwater Monitoring
- Surface Water Monitoring

Section 6 - Waste Management

Section 7 - Landfill Gas Monitoring

Section 8 - Landscape and Visual

Section 9 - Cultural Heritage

Section 10 - Ecological Monitoring

Section 11 - Site Inspection and Audit

Section 12 - Environmental Non-Conformance

Section 13 – Implementation Status on Environmental Mitigation Measures

Section 14 - Future Key Issues

2. Project Information

2.1. Construction Activities

2.1.1. A summary of the major construction activities undertaken in this reporting period is shown in **Appendix L**. Construction programme is illustrated in **Appendix A**.

2.2. Project Organization & Management Structure

2.2.1. The Project Organization Chart & Management Structure are shown in **Appendix B**. The key personnel contact information is summarized in **Table 2-1**.

Table 2-1 Contact Information of Key Personnel

Party	Name	Contact Number
Contractor	Ms. Kristy Wong	2902 5260
(Veolia Environmental Service Hong Kong Ltd.)		
Independent Environmental Checker (IEC)	Ms. Claudine Lee	2859 5409
(Meinhardt Infrastructure and Environment Ltd.)		
Environmental Team Leader (ETL)	Mr. Fredrick Leong	3664 6888
(Aurecon Hong Kong Limited)		

2.3. Status of Submission required under the FEP & EP during reporting period

2.3.1. The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP during reporting period are presented in **Table 2-2**. The detail status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP for NENTX project are shown in **Appendix O**.

Table 2-2 Status of Submissions required under the FEP & EP during reporting period

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submitted
2.2	2.4	Setting up of Community Liaison Group (CLG)	Community Liaison Group was set up.
2.3	2.5	Submission of EM&A Manual	Submitted
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submitted
2.6	2.8	Submission of translocation proposal	Submitted
2.7	2.9	2.9 Submission of Transplantation Report and Post-Transplantation Monitoring	Submitted
			12 th post-transplantation monitoring
			(18 Jul 2023)
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out and the report submitted.
			12 th post-translocation monitoring
			(12 Jul 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submitted
2.10	2.12	Submission of Waste Management Plan	Submitted
3.2	3.2	Submission of Baseline Monitoring Report	Submitted

2.4. **Status of Environmental Approval Document**

2.4.1. A summary of the relevant valid permits, licences, and/or notifications on environmental protection for this Project since the granting of the FEP & EP is presented in Table 2-4.

Table 2-4 Summary of the relevant valid permits, licences, and/or notifications on environmental protection

Permit / Licenses / Notification	Reference	Expiry Date	Remark
Environmental Permit (EP)	EP-292/2007	Throughout the Contract	Permit granted on 26 November 2007
Further Environmental Permit (FEP)	FEP-210/2022	Throughout the Contract	Permit granted on 28 April 2022
Notification of Construction Works as required under Air Pollution Control (Construction Dust) Regulation	479809	Throughout the Construction Phase	Notified on 13 May 2022
Registration of Waste Producer under Waste Disposal Ordinance	7043692	Throughout the Contract	Registered on 13 April 2022
Registration as Chemical Waste Producer	5213-642-P1034-18	Throughout the Contract	Registered on 11 July 2022
Construction Noise Permit	GW-RN0619-23	22 September 2023	Permit granted on 16 June 2023
Effluent Discharge License under Water	WT00042301-2022	31 October 2027	Permit granted on 18 October 2022
Pollution Control Ordinance			Variation of Licence (Permit granted on 7 February 2023)

2.5. Environmental Monitoring and Audit Progress

2.5.1. A summary of the monitoring activities in this reporting period is presented in **Table2-5**.

Table 2-5 Summary of the Monitoring Activities in this reporting period

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	6, 12, 18, 24 & 29 July 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	6, 12, 21 & 24 July 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	12 July 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	24 times	3 to 8, 10 to 15, 18 to 22, 24 to 29, 31 July 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	18 July 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	12 July 2023
-	Joint Environmental Site Inspection	5 times	3, 10, 18, 24 & 31 July 2023
-	General Site Inspection by EPD-RNG	1 time	31 July 2023

Air Quality

5 sets of 1-hr & 24-hr TSP construction dust measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.

Noise

4 sets of 30-minute construction noise measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period.

Groundwater

Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

Surface Water Quality

1 set of surface water quality measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action Levels and Limit Level of surface water quality were recorded during the reporting period.

Landfill Gas

24 sets of landfill gas measurement were carried out at the designated monitoring locations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of landfill gas was recorded during the reporting period.

Landscape and Visual

All the specified and affected LCAs, LRs and VSRs have been monitored during the reporting period. No exceedance of Action and Limit Levels of landscape and visual was recorded during the reporting period.

Cultural Heritage

Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Ecology

1 set of post-translocation monitoring at recipient site and 1 set of post-transplantation monitoring and audit for transplanted plants and receptor sites during normal weekdays of the reporting period were carried out. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Environmental Site Inspection

5 weekly environmental site inspections were carried out during the reporting period. A joint environmental site inspection was carried out by the representatives of the Employer's Representative (ER), the Contractor, IEC and the ET on 18 July 2023. The Contractor has generally implemented the mitigation measures as recommended. 1 general site inspection on 31 July 2023 was conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG).

3. Air Quality Monitoring

3.1 Construction Dust

3.1.1 Monitoring Requirement

3.1.1.1 In accordance with the EM&A Manual, 1-hr & 24-hr Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations in every 6 days to ensure that any deteriorating air quality could be readily detected, and timely action shall be undertaken to rectify such situation. For 1-hr TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs. The specific time to start and stop the 24- hr TSP monitoring shall be clearly defined for each location.

3.1.2 Monitoring Parameters, Frequency and Location

- 3.1.2.1 According to the EM&A Manual, three monitoring stations namely AM(D)1, AM(D)2 and AM(D)3 are selected for the impact monitoring.
- 3.1.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at AM(D)1, AM(D)2 and AM(D)3, the adjusted stations at AM1, AM2 and AM3 were agreed with IEC prior to the baseline and impact monitoring. The locations of adjusted dust monitoring locations are shown in **Figure 2**.
- 3.1.2.3 The detailed monitoring schedule is shown in **Appendix C**. The locations of dust monitoring stations are shown in **Table 3-1**. The monitoring parameters, frequency and duration are shown in **Table 3-2**.

Table 3-1 Locations of Dust Monitoring Stations

Monitoring Station	Representative for	Monitoring Parameters
AM1	Tung Lo Hang	1-hr and 24-hr TSP
AM2	Heung Yuen Wai	1-hr and 24-hr TSP
AM3	Wo Keng Shan Tsuen	1-hr and 24-hr TSP

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

AM(D)1 Tung Lo Hang, AM(D)2 Heung Yuen Wai, AM(D)3 Wo Keng Shan Tsuen are the air monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen

Wai and Wo Keng Shan Tsuen were denied. A search for alternative air monitoring locations (AM1, AM2 & AM3) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comment received from EPD.

Due to the adjustment of the location of AM(D)1, AM(D)2 & AM(D)3to AM1, AM2 & AM3, the measured air quality levels at AM1, AM2 & AM3 would represent the air quality levels at AM(D)1, AM(D)2 & AM(D)3.

Table 3-2 Dust Impact Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
AM1, AM2, AM3	1-hr TSP	At least 3 times per 6 days
AWT, AWZ, AWS	24-hr TSP	1 time per 6 days

3.1.3 Monitoring Equipment

- 3.1.3.1 High volume samplers (HVSs) were used for carrying out 24-hr TSP monitoring. For 1-hr TSP monitoring, direct reading dust meters were used to measure 1-hr TSP levels.
- 3.1.3.2 **Table 3-3** summarises the equipment that were used in the dust monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 3-3 Dust Monitoring Equipment

Equipment	Model	Expiry Date	Monitoring Station	
	TE-5170X (S/N: 1105)		AM1	
High Volume Sampler (HVS)	TE-5170X (S/N: 1106)	19 Jun 2024	AM2	
	TE-5170X (S/N: 1856)		AM3	
	Sibata LD- 5R (S/N: 0Z4545)	S/N: 645) a LD- S/N: 06) 2 Dec 2023 a LD- S/N: 10) a LD- S/N:		
	Sibata LD- 5R (S/N: 882106)			
Direct Reading Dust Meter	Sibata LD- 5R (S/N: 882110))-	AM1 to AM3
	Sibata LD- 5R (S/N: 942532)			
Calibration Kit (for HVS)	TE-5025A (S/N: 4166)	19 Jun 2024	AM1 to AM3	

Remarks:

The Expiry Date of Calibration Kit (for HVS) reflected that the calibration certificate fulfils the bi-monthly calibration interval requirement for the HVS.

3.1.4 Monitoring Methodology

1-hr TSP Monitoring

3.1.4.1 The 1-hr TSP impact monitoring was conducted using a portable direct reading dust meter.

Measuring Procedures

3.1.4.2 The measuring procedures of the 1-hr dust meter has been undertaken in accordance with the Manufacturer's Instruction Manual as follows:

Procedure of starting monitoring

- Place the 1-hr dust meter at least 1.3m above ground;
- Turn on the "On/Off" button at the side of instrument. Program will be changed to "BG" mode and leave it for 1 minute.
- Pull out the Suction adaptor and turn the button at the side. Cover with hand at the suction adaptor measure the background for 10 seconds.
- Press "UP" and "DOWN" for choosing "SPAM Mode" for SPAM Measurement.
- Press "Up" and "Down" to select "Measurement Mode" with 60 minutes interval and unit in ug/m3.
- Press "Start/Stop" to start monitoring.

Procedure of setting measurement timer

- Press "Up" or "Down" to find "Setting LOG".
- Select "Record Cycle" and change the record time subject to different project requirement. For example, setting the record cycle as 60 minutes for normal operation.
- Press "ESCAPE" back to the main page.
- Press "Up" or "Down" to access "Measurement Timer" and select "Measurement time" to change the time to 3 hours.
- Information such as sampling date, time, count value and site condition will be recorded during the monitoring period.

Calibration & Maintenance

- 3.1.4.3 The direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.
- 3.1.4.4 All digital dust indicator will be calibrated with on-site HVS annually. Calibration certificate will be provided after calibration. The Calibration process shall eyewitness with the representative of ET & IEC.

Quality Audit

- 3.1.4.5 Checklist of regular checking for digital dust meter will be conducted bi-weekly by environmental technician to ensure the all-digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- 3.1.4.6 Logbook is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.

24-hr TSP Monitoring

3.1.4.7 The 24-hr TSP monitoring has been conducted using a High-Volume Sampler (HVS).

Measuring Procedures

- 3.1.4.8 The HVS has been set-up at the monitoring location with a fixed power supply for operation. The measuring procedures of the 24-hr TSP measurements has been undertaken in accordance with the specifications listed in the EM&A Manual. Each HVS includes a motor, a filter holder, a flow controller and a sampling inlet in accordance with the performance specification of the USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50), Appendix B. The measuring procedures of the 24-hr dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - The power supply will be checked to ensure the HVS works properly;
 - · The filter holder and the area surrounding the filter will be cleaned;
 - The filter holder will be removed by loosening the four bolts and a new filter on a supporting screen will be aligned carefully;
 - The filter will be properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts will be fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid will be closed and secured with the aluminium strip;
 - The HVS will be warmed-up to establish run-temperature conditions;
 - A new flowrate record sheet will be set into the flow recorder;
 - The programmable timer will be set for a sampling period of 24 hour, and the starting time, weather condition and the filter number will be recorded;
 - · The initial elapsed time will be recorded;
 - At the end of sampling, the sampled filter will be removed carefully and folded in halflength so that only surfaces with collected particulate matter will be in contact;
 - The sample will be placed in a clean plastic envelope and sealed;
 - All monitoring information will be recorded on a standard data sheet; and
 - The filters will be taken back to HOKLAS accredited laboratory for analysis.
- 3.1.4.9 In addition, site conditions and dust sources were recorded in a standard form for direct input into a database.

Calibration & Maintenance

- 3.1.4.10 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 3.1.4.11 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually.

The detail procedure of calibration of HVS is listed below:

- 1. Make sure the electrical circuit is connected properly. The motor should be directly connected to the power source.
- 2. Open the top cover and unlock the screws at the four corners.
- 3. Install the orifice and adapter plate to high volume air sample. Tighten the nut securely. Turn the knob of orifice clock-wise to close the four holes on the bottom open.
- 4. Hold the water manometer on the cover of mass flow controller vertically. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave opposite side of the manometer open to the atmosphere.
- 5. Turn on the sampler
- 6. Five flow rates are achieved by changing the different plates to change the resistance. Record the manometer reading and the reading from continuous flow recorder. At least 5 sets of data should be recorded.
- 3.1.4.12 The Calibration process shall eyewitness with the representative of ET & IEC.

3.1.5 Monitoring Results

3.1.5.1 The impact dust monitoring results are summarized in **Table 3-4** and **Table 3-5**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 3-4 Summary of Impact 1-hr TSP Monitoring Results

Dust Monitoring Station	Average 1-hr TSP Concentration, μg/m³ (Range)	Action Level, µg/m³	Limit Level, µg/m³
AM1	35 (21 – 46)	>285	>500
AM2	34 (21 – 48)	>279	>500
AM3	32 (21 – 44)	>285	>500

Table 3-5 Summary of Impact 24-hr TSP Monitoring Results

Dust Monitoring Station	Average 24-hr TSP Concentration, μg/m³ (Range)	Action Level, μg/m³	Limit Level, μg/m³
AM1	36 (17 – 60)	>164	>260
AM2	34 (25 – 48)	>152	>260
AM3	30 (22 – 40)	>163	>260

3.1.5.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance are shown in **Table 3-6**. The Notification of Environmental Quality Limits Exceedances are presented in **Appendix G**.

Table 3-6 Summary of Impact 1-hr & 24-hr TSP Exceedance during the reporting period

Dust	Parameter	4 hr TCD	24 hr TCD	Exceedance	
Monitoring Station	Level Exceedance	1-hr TSP	24-hr TSP	Count	
AM1	Action	0	0	0	
	Limit	0	0	0	
AM2	Action	0	0	0	
	Limit	0	0	0	
AM3	Action	0	0	0	
	Limit	0	0	0	

Remarks: * equal to non-project related

3.1.5.3 No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

3.1.6 Wind Data Monitoring

3.1.6.1 During the monitoring period. wind data from existing weather station in the vicinity of the designated monitoring location, i.e Ta Kwu Ling station operated by Hong Kong Observatory was adopted. It is considered that the wind data obtained from Ta Kwu Ling station are representative of the Project area and could be used for the construction dust monitoring programme for the Project. The results for wind data monitoring are presented in **Appendix H**.

3.1.7 Recommended Mitigation Measures

- 3.1.7.1 The recommended dust mitigation measures from EIA report are listed as followed:
 - The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.
 - Dust emission from construction vehicle movement is confined within the worksites area.

- Watering facilities will be provided at every designated vehicular exit point.
- Good site practice is recommended during construction phase.

3.1.8 Event and Action Plan

3.1.8.1 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 3-7** shall be carried out.

Table 3-7 Event and Action Plan for dust impact

Event	ET	IEC	Contractor
Exceedance of Action Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures 	Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform Contractor and IEC Repeat measurements to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Continue monitoring at daily intervals if exceedance is due to the Project If no exceedance for 3 consecutive days, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review with analysed results submitted by ET Review the proposed remedial measures by Contractor Supervise the implementation of remedial measures 	 Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate

Event	ET	IEC	Contractor
Exceedance of Li	mit Level		
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below limit level Assess effectiveness of Contractor's remedial actions and keep EPD and IEC informed of the results 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor potential remedial actions Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform IEC and EPD the causes and actions taken for the exceedances Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and informed of the results Increase monitoring frequency to confirm findings If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss amongst ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works until the exceedance is abated

4 Noise Monitoring

4.1 Monitoring Requirement

4.1.1 In accordance with the EM&A manual, noise impact monitoring shall be carried out at 2 monitoring stations NM1 and NM2 once a week during normal construction working hour (0700-1900 Monday to Saturday). The minimum logging interval shall be 30 minutes with average of 6 consecutive Leq 5 mins. L10 and L90 shall also be measured at 5 mins intervals.

4.2 Monitoring Locations, Parameters and Frequency

- **4.2.1** According to the EM&A Manual, two monitoring stations namely NM1 and NM2 are selected for the impact monitoring.
- 4.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at NM1 and NM2, the adjusted stations at NM1a and NM2a were agreed with IEC prior to the baseline and impact monitoring. The noise monitoring locations are summarized in Table 4-1 and shown in Figure 2.
- **4.2.3** The detailed monitoring schedule is shown in **Appendix C**. The frequency and duration are shown in **Table 4-2**.

Table 4-1	Noise Monitoring Locations
-----------	----------------------------

Monitoring Station	Representative for	Type of Measurement
NM1a	Wo Keng Shan Tsuen	Free field
NM2a	Lin Ma Hang	Free field

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

NM1 Wo Keng Shan Tsuen & NM2 Lin Ma Hang are the noise monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative noise monitoring locations (NM1a & NM2a) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comments received from EPD. Noise measurement at NM1a & NM2a will be considered as free-field and a correction of +3dB(A) would be made to the noise monitoring results.

Due to the adjustment of the location of NM1 & NM2 to NM1a & NM2a, the measured noise levels at NM1 & NM2 would represent the noise levels at NM1 & NM2.

Table 4-2 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
NM1a and NM2a	L _{Aeq} (30mins) average of 6 consecutive L _{eq} (5min); L10 (5min) & L90 (5min)	once a week during normal construction working hour (0700- 1900 Monday to Saturday)

4.3 Monitoring Equipment

- 4.3.1 Integrating Sound Level Meters (SLMs) was used for noise impact monitoring. The SLM complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out noise monitoring. The accuracy of the SLM was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements shall be accepted as valid only if the calibration level from prior to and after the noise measurement agrees to within 1.0dB.
- **4.3.2** A portable wind speed meter was used for measuring wind speeds in m/s.
- **4.3.3 Table 4-3** summarises the equipment that have been used in the impact noise monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 4-3 Noise Monitoring Equipment

Equipment	Model	Expiry Date
Sound Level Meter	NTi XL2 (S/N: A2A-13661-E0)	21 Aug 2023
Acoustic Calibrator	Rion NC-75 (S/N: 35124527)	1 Nov 2023
Anemometer	RS PRO RS-90 (S/N: 210722208)	12 Feb 2025

4.4 Monitoring Methodology

- **4.4.1** The details of noise measurement procedures are described as follows:
 - Free-field measurements were made at the monitoring locations.
 - For free field, the Sound Level Meter was set at a height of 1.2 m above the ground. The battery condition was checked to ensure the proper functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - · Frequency weighting: A
 - Time weighting: Fast
 - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
 - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid

- and repeat of noise measurement would be required after recalibration or repair of the equipment.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
- All noise monitoring will be conducted with the wind speed not exceeding 5m/s and no gusts exceeding 10m/s.

Calibration & Maintenance

- 4.4.2 The sound level meter, sound calibrator, and anemometer should be properly maintained to ensure that the equipment and a continuous power supply were in good working condition. The sound level meter and sound calibrator will be calibrated annually. The anemometer will be calibrated two years interval in accordance with the HOKLAS Supplementary Criteria No.2. Calibration certificate will be provided after calibration.
- **4.4.3** The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

4.5 Monitoring Results

4.5.1 The impact noise monitoring results are summarized in **Table 4-4**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 4-4 Summary of Noise Monitoring Results during normal working hours (07:00-19:00, Monday to Saturday)

Noise Monitoring Station	Average Leq, 30min, dB(A) (Range)	Action Level	Limit Level	
NM1a	62.1 (61.0 – 63.7)	When one documented	>75dB(A)	
NM2a	56.3 (54.2 – 58.2)	complaint is received		

Remark:

- (2) If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- **4.5.2** No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **4.5.3** No particular observations are identified near the monitoring stations during the monitoring period.

^{(1) *} A correction of +3 dB(A) was made to the free field measurements

4.6 Recommended Mitigation Measures

- **4.6.1** The recommended noise mitigation measures from EIA report are listed as followed:
 - 1. Use of good site practices to limit noise emissions by considering the following:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;
 - Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
 - Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;
 - Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;
 - Mobile plant should be sited as far away from NSRs as possible and practicable;
 - Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from onsite construction activities.
 - 2. Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.

4.7 Event and Action Plan

4.7.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 4-5** shall be carried out.

Table 4-5 Event and action plan for construction noise monitoring

Event	ET	IEC	Contractor
Exceedance of Action Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Report the results of investigation to IEC, and Contractor Discuss with Contractor and IEC for formulate remedial measures Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	Submit noise mitigation proposals to IEC Implement the agreed noise mitigation proposals
Exceedance of Limit Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurements to confirm findings Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC and EPD informed of the results Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by project proponent until the exceedance is abated.

5 Water Quality Monitoring

5.1 Groundwater Monitoring

5.1.1 Monitoring Requirement

5.1.1.1 In accordance with the EM&A manual, groundwater quality monitoring shall be carried out at least once per month at the 35 designated groundwater monitoring locations (i.e ED1 to ED35). Based on the existing construction programme, site clearance and site formation works for future landfilling area are in progress. The groundwater monitoring locations ED1 to ED35 will be installed after the site formation work of the landfilling area. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

5.2 Surface Water Monitoring

5.2.1 Monitoring Requirement

5.2.1.1 In accordance with the EM&A manual, impact surface water quality monitoring was carried out at the two designated surface water discharge points (i.e WM1 and WM2) for once per month from commencement of construction works of the Project.

5.2.2 Monitoring Locations, Parameters and Frequency

- 5.2.2.1 Impact surface water monitoring was carried out on 12 July 2023 at WM1 and WM2. The monitoring locations are indicated in **Table 5-1** and **Figure 2**.
- 5.2.2.2 The monitoring parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-2**. Detailed monitoring schedule is presented in **Appendix C**.

Table 5-1 Surface water quality monitoring locations

Monitoring Station	Location	Coordinat	es (HK Grid)	
	Location	Easting	Northing	
WM1	Upstream of Lin Ma Hang River	836665	845020	
WM2	Ping Yuen River	835592	844186	

Table 5-2 Surface water quality monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, Alkalinity, COD, BOD ₅ , TOC, Ammonia-nitrogen, TKN, Nitrate, Sulphate, Sulphite, Phosphate, Chloride, Sodium, Mg, Ca, K, Fe, Ni, Zn, Mn, Cu, Pb, Cd, Coliform Count, Oil and Grease	Once per month

5.2.3 Monitoring Equipment

5.2.3.1 The measurements of pH, electrical conductivity (EC), DO, turbidity, water temperature and air temperature were undertaken in situ. In situ monitoring instruments in compliance with the specifications listed under Section 5.5 of the EM&A Manual were used to undertake the surface water quality monitoring for the Project. Table 5-3 summarises the equipment used in the impact surface water quality monitoring works. Copies of the calibration certificates are attached in Appendix D.

Table 5-3 Surface Water Quality Monitoring Equipment

Equipment	Model	Expiry Date
Water Quality Meter	HORIBA U-53 (S/N: PORBNFNT)	16 Aug 2023
Water Flow Meter	FP111 (S/N: 22K100859)	6 Nov 2023

5.2.4 Summary of Surface Water Quality Monitoring Procedure

Operational/ Analytical Procedures

- 5.2.4.1 In general, water samples were collected from within 500 mm of the water surface. Water was collected by a small clean open-mouthed bucket with the lip pointing upstream. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on. For samples that were preserved with acid or alkalis prior to transport to the laboratory, the samples bottles were filled to the level specified by the analytical laboratory.
- 5.2.4.2 Analyses shall be carried out in accordance with methods described in ASTM or APHA AWWA-WEF Standard.

Laboratory Analytical Methods

5.2.4.3 The testing of parameters presented in **Table 5-4** for all stations was conducted by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results. The detection limits are provided in **Table 5-4**.

Table 5-4 Surface Water Monitoring Detection Limits and Limit of Reporting

Parameters	Detection Limit (in EM&A Manual)	Limit of Reporting	Method Reference	
pН	0.1	0.1	APHA 4500 H+ B	
Electrical conductivity	1 μS/cm	1 μS/cm	APHA 2510 B	
Alkalinity	1 mg/L	1 mg/L	APHA 2320 B	
COD	10 mg/L	5 mg/L	APHA 5220 C	
BOD ₅	3 mg/L	2 mg/L	APHA 5210 B	
TOC	1 mg/L	1 mg/L	APHA 5310 B	
SS	0.1 mg/L	0.1 mg/L	APHA 2540 D	
Ammonia-nitrogen	0.2 mg/L	0.01 mg/L	APHA 4500 NH3 G	
TKN	0.4 mg/L	0.1 mg/L	APHA 4500Norg: D	
Nitrate	0.5 mg/L	0.01 mg/L	APHA 4500 NO3 I	
Sulphate	5 mg/L	1 mg/L	USEPA 375.4	
Sulphite	2 mg/L	2 mg/L	APHA 4500 SO3 B	
Phosphate	0.01 mg/L	0.01 mg/L	APHA 4500-P B & F	
Chloride	0.5 mg/L	0.5 mg/L	USEPA 325.1	
Sodium	50 μg/L	50 μg/L	USEPA 6010C	
Mg	50 μg/L	50 μg/L	USEPA 6010C	
Ca	50 μg/L	50 μg/L	USEPA 6010C	
K	50 μg/L	50 μg/L	USEPA 6010C	
Fe	50 μg/L	10 μg/L	USEPA 6010C	
Ni	1 μg/L	1 μg/L	USEPA 6020A	
Zn	10 μg/L	10 μg/L	USEPA 6020A	
Mn	1 μg/L	1 μg/L	USEPA 6020A	
Cu	1 μg/L	1 μg/L	USEPA 6020A	
Pb	1 μg/L	1 μg/L	USEPA 6020A	
Cd	0.2 μg/L	0.2 μg/L	USEPA 6020A	
Coliform Count	1 cfu/ 100mL	1 cfu/ 100mL	DoE section 7.8, 7.9.4.1 & 3	
Oil and Grease	5 mg/L	5 mg/L	APHA 5520 B	

QA/ QC Requirements

5.2.4.4 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at the intervals according to manufacturer's requirement throughout all stages of the surface water quality monitoring programme. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three-month interval. Calibration of water flow is conducted annually. Responses of sensors and electrodes were checked with certified standard solutions before each use. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. For the on-site calibration of field equipment, the requirements of the BS 1427:2018, "Guide to on-site test methods for the analysis of waters" was observed.

Decontamination Procedures

5.2.4.5 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.

Sampling Management and Supervision

5.2.4.6 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Quality Control Measures for Sample Testing

- 5.2.4.7 The samples testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory:
 - · One method blank; and
 - One sample duplicate.

5.2.5 Monitoring Results

- 5.2.5.1 Impact surface water quality monitoring was conducted at WM1 and WM2 on 12 July 2023. No adverse weather was observed during reporting period. The detailed monitoring schedule is shown in Appendix C.
- 5.2.5.2 The summary of monitoring results is presented in **Table 5-5**. Detailed monitoring results at each monitoring station and graphical presentations of surface water quality (DO, SS and Turbidity) at the monitoring stations are given in **Appendix E** and **Appendix F**.
- 5.2.5.3 No particular observations are identified near the monitoring stations during the monitoring period.

Table 5-5 Summary of Impact Surface Water Monitoring Results

	Monitoring Station					
Monitoring		WM1		WM2		
Parameter(s)	Monitoring Results	Action Level	Limit Level	Monitoring Results	Action Level	Limit Level
рН	7.2	>7.7	>7.8	7.1	>7.6	>7.7
DO in mg/L	7.5	<7.4	<4	7.3	<5	<4
Turbidity in NTU	6.1	>9.2	>9.5	50.2	>108.3	>108.9
Electrical Conductivity in µS/cm	99			137		
SS in mg/L	2.0	>9.7	>11.4	16.8	>94.5	>94.7
Alkalinity in mg/L	18			38		
COD in mg/L	12			9		
BOD₅ in mg/L	<2			<2		
TOC in mg/L	3			2		
Ammonia-nitrogen in mg/L	0.03			0.07		
TKN in mg/L	0.4			0.3		
Nitrate in mg/L	0.53			0.26		
Sulphate in mg/L	7			13		
Sulphite in mg/L	<2			<2		
Phosphorus in mg/L	0.01			<0.01		
Chloride in mg/L	7					
Sodium in µg/L	8350					
Magnesium in μg/L	660			1330		
Calcium in µg/L	19400					
Potassium in µg/L	690			2130		
Iron in μg/L	780			2370		
Nickel in µg/L	<1			2.0		
Zinc in µg/L	72			26		
Manganese in μg/L	72			757		
Copper in µg/L	2					
Lead in ⊬g/L	<1					
Cadmium in µg/L	<0.2			<0.2		
Coliform Count in cfu/100mL	56			850		
Oil and Grease in mg/L	<5			<5		

- 5.2.5.4 No exceedance of Action Levels and Limit Level of surface water monitoring were recorded during the reporting period.
- 5.2.5.5 The Summary of Impact Surface Water Quality Exceedance are shown in **Table 5-6**.

Table 5-6 Summary of Impact Surface Water Quality Exceedance during the reporting period

Water	Parameter	рН	DO Turbidity		F	
Quality Monitoring Station	Level Exceedance			Turbidity	SS	Exceedance Count
WM1	Action	0	0	0	0	0
	Limit	0	0	0	0	0
WM2	Action	0	0	0	0	0
	Limit	0	0	0	0	0

Remarks:

5.2.6 Recommended Mitigation Measure

- 5.2.6.1 The recommended surface water mitigation measures from EIA report are listed as followed:
 - Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.
 - The overall slope of the site should be kept to a minimum to reduce the erosive potential
 of surface water flows.
 - The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.
 - All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads.
 - Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
 - Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

^{(1) #} The investigation results will be presented in the report after the investigation.

^{(2) *} equal to non-project related

5.2.7 Implementation of the temporary surface water drainage system

- 5.2.7.1 The site inspection and audits were carried out by ER, IC, ET & Contractor on weekly basis (IEC on monthly basis) to monitor the construction progress, maintenance performance and effectiveness of temporary surface water drainage system in the Project Site to fulfil the FEP Condition 2.13, EP Condition 2.15 and the section 5.2.1.1 of the EM&A Manual. The layout of the temporary surface water drainage system is presented in **Appendix Q**. The joint environmental site inspection records are shown in **Appendix J**.
- 5.2.7.2 All construction site runoff would be treated by silt removal facilities to fulfil the requirement of WPCO licenses from the project. Construction site runoff from the project after treatment was discharged to Ping Yuen River. The surface water monitoring results at WM2 (after the discharge point of silt removal facilities) can reflect the water quality at Ping Yuen River during the reporting period.

5.2.8 Event and Action Plan

5.2.8.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 5-6** shall be carried out.

Table 5-6 Event and Action Plan for Water Quality

Event	ET	IEC	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Repeat measurement on next day of exceedance 	Verify Notification of Exceedance Check monitoring data and Contractor's working methods	Rectify unacceptable practice Amend working methods if appropriate
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Discuss with Contractor and IEC for remedial measures Ensure mitigation measures are implemented Increase the monitoring frequency to daily until no exceedance of Action level Repeat measurement on next day of exceedance 	 Verify Notification of Exceedance Check monitoring data and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Submit proposal of additional mitigation measures to IEC of notification Implement the agreed mitigation measures Amend proposal if appropriate

Event	ET	IEC	Contractor
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted By ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted by ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures Resubmit proposals if problem still not under control Slow down or to stop relevant activity until exceedance is abated

6 Waste Management

- 6.1.1 Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials were made up of general refuse, steels and paper/cardboard packaging materials. Steel materials generated from the Project were also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Appendix I.
- **6.1.2** A total of 50,307 tonnes of C&D materials was reused at alternative disposal ground (NENT Landfill) during the reporting period. No Yard waste (collected to Y-Park) was generated during the reporting period. A total of 25.54 tonnes of general refuse and A total of 262.95 tonnes of non-recyclable yard waste was generated during the reporting period. The general refuse generated from the Project were disposed of at the NENT Landfill.
- **6.1.3** The recommended waste management mitigation measures from EIA report are listed as followed:
 - Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010.
 - Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills.
 - Proper areas should be designated for waste segregation and storage wherever site conditions permit.
 - Maximise the use of reusable steel formwork to reduce the amount of C&D material.
 - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement.
 - On-site sorting and segregation facility of all type of wastes is considered as one
 of the best practice in waste management and hence, should be implemented in
 all projects generating construction waste.
 - The sorted public fill and C&D waste should be properly reused.
 - Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather.

7 Landfill Gas Monitoring

7.1 Monitoring Requirement during Construction

Monitoring for Construction Works

- 7.1.1 Intrinsically safe portable gas detectors should be used during or when working in any confined spaces, which have the potential for presence of LFG and risk of explosion or asphyxiation. The monitoring equipment should alarm, both audibly and visually, when the concentrations of the following gases were exceeded:
 - CH₄: >10% Lower Explosion Limit (LEL);
 - CO₂: >0.5%; and
 - O₂: <18% by volume.

7.2 Monitoring Locations

- 7.2.1 During the construction works within the NENT Landfill Extension site with excavation of 1m deep or more, LFG concentrations should be monitored before entry and periodically during the progress of works. If drilling is required, the procedures for safety management and working procedures as stipulated in EPD's Landfill Gas Hazard Assessment Guidance Note should be strictly adopted.
- **7.2.2** The monitoring frequency and areas to be monitored should be set down prior to commencement of groundworks by the Safety Officer. All measurements in excavations should be made with the monitoring tube located not more than 10mm from the exposed ground surface. Monitoring of excavations should be undertaken as follows:
- **7.2.3** For excavation works deeper than 1m, measurements should be made:
 - · at ground surface prior to excavation;
 - immediately before any worker enters the excavation;
 - at the beginning of each working day for the entire period the excavation remains open; and
 - periodically through the working day whilst workers are in the excavation.
- **7.2.4** For excavation between 300mm and 1m deep, measurements should be made:
 - · directly after the excavation has been completed; and
 - periodically whilst the excavation remains open.
- **7.2.5** For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer.
- **7.2.6** The locations of LFG monitoring locations during reporting period are shown in **Table 7-1**. The Site formation layout plan is shown in **Figure 2** and the Layout of LFG monitoring locations is presented in **Figure 3**.

Table 7-1 Locations of LFG Monitoring during reporting period

Monitoring Location	Type of works
Portion A +55 mpD to 70 mpD Platform	Excavation Works

7.3 Monitoring Equipment

7.3.1.1 Gas Detector was used for carrying out LFG monitoring for Construction Works. **Table 7-2** summarises the equipment that were used in the LFG monitoring programme. The calibration certificates are shown in **Appendix D**. The detection limits are provided in **Table 7-3**.

Table 7-2 LFG Monitoring Equipment

Monitoring Parameters	Equipment Model		Expiry Date
CH ₄ & O ₂	Gas Detector	PS200 (S/N: 373075)	16 Nov 2023
CO ₂	Gas Analyser	GEM5000 (S/N: G508566)	16 Aug 2023

Table 7-3 Landfill Gas Monitoring Detection Limits

Parameters	Detection Limit
CH ₄	1% LEL
O ₂	0.1%
CO ₂	0.1%

7.4 Event and Action Plan (EAP)

7.4.1 Should non-compliance of the criteria occur, action in accordance with the action plan in Table7-4 shall be carried out.

Table 7-4 Action Plan for the monitoring during construction phase

Parameter	Monitoring Result	Action
	Action Level <19% O ₂	Ventilate trench/void to restore O ₂ to >19%
Oxygen (O ₂)	Limit Level <18% O ₂	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore O ₂ to >19%
	Action Level >10% LEL*	Prohibit hot works Increase ventilation to restore CH ₄ to <10% LEL
Methane (CH₄)	Limit Level >20% LEL*	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore CH ₄ to <10% LEL
	Action Level** >0.5%** CO ₂	Ventilate to restore CO ₂ to <0.5%
Carbon dioxide (CO ₂)	Limit Level >1.5% CO ₂	Stop works Evacuate personnel / prohibit entry Increase ventilation to restore CO ₂ to <0.5%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

Depending on the baseline CO₂ levels, the Action Level at a particular location will be changed.

^{**} This Action Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

7.5 Monitoring Results

- **7.5.1** The LFG monitoring was carried out two rounds (at the beginning of works in the morning and after lunch) at the working days. The monitoring period of each round of LFG monitoring is around 5 minutes.
- **7.5.2** The LFG monitoring was conducted at Portion A +55 mpD to 70 mpD Platform in July 2023 (Conducted on working days). The LFG monitoring results are summarized in **Table 7-5.**

Table 7-5 Summary of LFG Monitoring Results

Table 7-5 Summary of LFG Monitoring Results LFG Monitoring Monitoring Parameter(s)						
Monitoring		Monitorin	g Parameter(s)			
Date	CH₄ in %	LEL in %/v	CO ₂ in %	O₂ in %		
	Average Monitoring Results					
3 Jul 2023	0	0	0	20.2		
4 Jul 2023	0	0	0	20.2		
5 Jul 2023	0	0	0	20.1		
6 Jul 2023	0	0	0	20.2		
7 Jul 2023	0	0	0	20.1		
8 Jul 2023	0	0	0	20.0		
10 Jul 2023	0	0	0	20.2		
11 Jul 2023	0	0	0	20.1		
12 Jul 2023	0	0	0	20.1		
13 Jul 2023	0	0	0	20.2		
14 Jul 2023	0	0	0	20.2		
15 Jul 2023	0	0	0	20.1		
18 Jul 2023	0	0	0	20.2		
19 Jul 2023	0	0	0	20.1		
20 Jul 2023	0	0	0	20.1		
21 Jul 2023	0	0	0	20.1		
22 Jul 2023	0	0	0	20.1		
24 Jul 2023	0	0	0	20.1		
25 Jul 2023	0	0	0	20.1		
26 Jul 2023	0	0	0	20.1		
27 Jul 2023	0	0	0	20.1		
28 Jul 2023	0	0	0	20.2		
29 Jul 2023	0	0	0	20.2		
31 Jul 2023	0	0	0	20.2		
Level	>10% LEL		>0.5%** CO ₂	<19%		
	3 Jul 2023 4 Jul 2023 5 Jul 2023 6 Jul 2023 7 Jul 2023 8 Jul 2023 10 Jul 2023 11 Jul 2023 12 Jul 2023 13 Jul 2023 14 Jul 2023 15 Jul 2023 18 Jul 2023 19 Jul 2023 20 Jul 2023 21 Jul 2023 22 Jul 2023 24 Jul 2023 25 Jul 2023 26 Jul 2023 27 Jul 2023 28 Jul 2023 29 Jul 2023	Monitoring Date 3 Jul 2023 4 Jul 2023 5 Jul 2023 6 Jul 2023 7 Jul 2023 7 Jul 2023 0 8 Jul 2023 0 10 Jul 2023 0 11 Jul 2023 0 12 Jul 2023 0 13 Jul 2023 0 14 Jul 2023 0 15 Jul 2023 0 18 Jul 2023 0 19 Jul 2023 0 20 Jul 2023 0 21 Jul 2023 0 22 Jul 2023 0 24 Jul 2023 0 25 Jul 2023 0 27 Jul 2023 0 28 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0 21 Jul 2023 0 27 Jul 2023 0 28 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0 29 Jul 2023 0	Monitoring Date CH4 in % LEL in %/v 3 Jul 2023 0 0 4 Jul 2023 0 0 5 Jul 2023 0 0 6 Jul 2023 0 0 7 Jul 2023 0 0 8 Jul 2023 0 0 10 Jul 2023 0 0 11 Jul 2023 0 0 12 Jul 2023 0 0 13 Jul 2023 0 0 14 Jul 2023 0 0 15 Jul 2023 0 0 19 Jul 2023 0 0 20 Jul 2023 0 0 21 Jul 2023 0 0 22 Jul 2023 0 0 24 Jul 2023 0 0 25 Jul 2023 0 0 26 Jul 2023 0 0 27 Jul 2023 0 0 28 Jul 2023 0 0 29 Jul 2023 0 0 29 Jul 2023 0<	Monitoring Date CH4 in % LEL in %/v CO2 in %		

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

- **7.5.3** No exceedance of Limit Levels of LFG was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **7.5.4** No effect that arose from the other special phenomena and work progress of the concerned site was noted during the current monitoring month.

7.6 Recommended Mitigation Measures

- **7.6.1** The recommended landfill gas mitigation measures from EIA report are listed as followed:
 - Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).

^{**} This Limit Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

- Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.
- No smoking or burning should be permitted on-site.
- Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.
- No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.
- Adequate fire fighting equipment should be provided on-site.
- Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.
- Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.
- 'Permit to Work' system should be implemented.
- Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.

8 Landscape and Visual

8.1 Monitoring Requirement

- 8.1.1 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.
- **8.1.2** All relevant environmental mitigation measures listed in the approved EIA Report and the EM&A Manual and their implementation status are summarised in **Appendix K**.

8.2 Result and Observation

- **8.2.1** Measures to mitigate the landscape and visual impacts during the construction phase has been checked to ensure compliance with the intended aims of the measures within the reporting period. The progress of the engineering works are regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken.
- 8.2.2 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

9 Cultural Heritage

- 9.1.1 The Mitigation measures for preservation of the cultural landscape feature located within the project area was conducted before commencement of construction of the project based on the requirement of Survey Report and Mapping Records for Boulder Paths BP1 & 2 & Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX.
- **9.1.2** The survey and mapping works carried out on 23 August 2022 and the verification works carried out on 23 August 22 confirmed that both 2 boulder paths BP1 and BP2 are fall outside the site boundary and the Project area.
- 9.1.3 All the affected graves within the waste boundary have been removed in accordance with section 119(1) of the Public Health and Municipal Services Ordinance (Cap 132). Removal of the graves as shown on Figure 2 attached to the FEP was proven by the visit of graves on 8 July 2022. All the graves as shown on Figure 2 attached to the FEP were abandoned and removed and no mitigation or preservation measures is necessary.
- 9.1.4 The Survey Report and Mapping Records for Boulder Paths BP1 & 2 was certified by ET on 10 Oct 2022, was verified by IEC and submitted to EPD on 12 Oct 2022. The Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX was certified by ET, was verified by IEC and submitted to EPD on 15 Oct 2022. No later than four weeks before commencement of construction of the project in accordance with Condition 2.4 of the FEP-01/292/2007.
- 9.1.5 Implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit. The permanent fencing locations are shown in Appendix M. In case of any presence of undiscovered grave during construction phase, AMO will be informed as soon as possible.

10 Ecological Monitoring

- 10.1.1 The post-transplantation monitoring was conducted on 18 Jul 2023 based on the requirement of the approved Transplantation Proposal for Plant Species of Conservation Importance (Rev.1). The 12th Post-transplantation Monitoring and Audit Report (18th Jul 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in Appendix N. During the reporting period, the numbers, measurements, and health conditions of the transplanted plant species are recorded.
- 10.1.2 In the reporting period, the post-translocation monitoring for the Endemic Freshwater Crab Somanniathelphusa zanklon was conducted on 12 Jul 2023 based on the requirement of the approved Revised Translocation Proposal for the Endemic Freshwater Crab Somanniathelphusa zanklon. The 12th Post-Translocation Monitoring Report (Jul 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in Appendix N. During the reporting period, no S. zanklon individual is identified.
- **10.1.3** The details of requirements, monitoring results and site inspection with photos for the post-translocation monitoring and post-transplantation monitoring would be reported separately.
- **10.1.4** The milestone of the ecological monitoring is presented in **Table 10-1**. The softcopies of the submissions are provided in https://www.nentx-ema.com/ep-submissions/.

Milestone of the Ecological Monitoring Table 10-1

Type of	Monitoring Event	Monitoring Date
Monitoring	No.	
Post-	1 st	24 Nov 2022
transplantation Monitoring	2 nd	9 Dec 2022
Worldoning	3 rd	21 Dec 2022
	4 th	13 Jan 2023
	5 th	26 Jan 2023
	6 th	8 Feb 2023
	7 th	24 Feb 2023
	8 th	20 Mar 2023
	9 th	21 Apr 2023
	10 th	12 May 2023
	11 th	16 Jun 2023
	12 th	18 Jul 2023
Post-	1 st (Aug 2022)	29 Aug 2022
translocation	2 nd (Sep 2022)	28 Sep 2022
Monitoring	3 rd (Oct 2022)	28 Oct 2022
	4 th (Nov 2022)	22 Nov 2022
	5 th (Dec 2022)	29 Dec 2022
	6 th (Jan 2023)	30 Jan 2023
	7 th (Feb 2023)	24 Feb 2023
	8 th (Mar 2023)	20 Mar 2023
	9 th (Apr 2023)	19 Apr 2023
	10 th (May 2023)	17 May 2023
	11 th (Jun 2023)	7 Jun 2023
	12 th (Jul 2023)	12 Jul 2023

11 Site Inspection and Audit

- **11.1.1** Site Inspection and audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project Site.
- 11.1.2 Weekly ET environmental site inspections were conducted in the reporting period on 03, 10, 18, 24 & 31 July 2023. A joint environmental site inspection was carried out by the representatives of the ER, the Contractor, IEC and the ET on 18 July 2023. The joint environmental site inspection records are shown in Appendix J. There was no noncompliance recorded during the site inspections.
- **11.1.3** Major findings and recommendations are summarized as follows:

03 July 2023

Observation(s):

- Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used. The Contractor was reminded to cover the dusty stockpile with impervious sheets.
- Muddy water was observed at the vehicular entrance in Portion A. The Contractor was reminded to clear the muddy water and divert the muddy water to wastewater treatment facility.
- Chemical containers in SBA shall be stored properly to prevent any potential
 of chemical leakage and generation of chemical waste. The Contractor has
 been reminded to provide proper chemical storage area on site.

12 Jul 2023

Observation(s):

- Full loading of the rubbish skips for general waste at the Portion D and lack of
 waste separation were found. The contractor was recommended that
 accumulation of waste should be avoid, the waste should be disposed regularly
 & the general waste should be collected properly by using the waste separation
 facilities for paper, aluminium cans and plastic bottles etc.
- The loaded dump truck without covered by impervious sheeting was found.
 The contractor was advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.
- The stagnant water, floating leaves, deposited silt and grit were found at the sedimentation basin near the wheel washing facilities at the Portion B1. The contractor was recommended that the stagnant water should be collected to silt removal facilities for treatment before reusing for wheel washing. The floating leaves, deposited silt and grit should be removed regularly.
- The high amount of deposited silt was found at the silt removal facilities at the
 Portion E3-1. The contractor was advised that the deposited silt should be
 removed and regularly and increase the checking frequency of it, and the silt
 removal facilities should be maintained at good condition to maintain the high
 effectiveness of it.

 The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor was recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

18 July 2023

Observation(s):

- The earth bund along the edge of the slope in Portion A was collapsed. The
 earth bund along the edge of the slope in Portion A should be reconstructed to
 prevent surface runoff flowing outside the site boundary. The Contractor was
 reminded to review the height of the earth bund to ensure the surface runoff
 should not flow outside the site boundary.
- The stagnant water in the drip trays should be cleared off In Portion A. The Contractor was reminded to clear the drip tray after the rainfall.
- EP shall be displayed at the entrance of portion. The Contractor was reminded to display the EP at the entrance of each portion.
- Holes are found on the silt fencing. The Contractor was recommended to review and replace the damage silt fencing in SBA to fulfil EP condition 2.13b.
- Surface Protection in Portion A should be maintained properly after the rainfall.
 The Contractor was reminded to conduct maintenance work on the slope surface in Portion A.

24 July 2023

Observation(s):

- Dusty materials was entering in the exist channel in Portion A. Earth bund or sand barriers shall be provided along the existing channels in Portion A.
- Earth bund shall be constructed at the edge of the slope to prevent surface runoff flowing outside the site in Portion A. The contractor was recommended to construction earth bund along the edge of the slope in Portion A.
- The work area in Portion A was dry and dusty. The contractor was advised to schedule watering in the work area and review the coverage of the water sprinkler.

Reminder(s):

• The accumulated silt in sedimentation basin Portion E3 shall be removed regularly. The Contractor was reminded to clear up the accumulated silt regularly to ensure the proper function of the sedimentation basin.

31 July 2023

Observation(s):

 Earth bunds and ditches should be established at the boundary of the +52 mpd Platform of the Portion A. The contractor was advised that the earth bunds and ditches should be constructed at the boundary of the +52 mpd Platform of the Portion A. The sandbags barriers or other control of surface runoff measures

- should be provided at the boundary in short term to avoid the surface runoff flow to the earth bunds at the boundary of the +38 mpd platform directly.
- The slope surface at the Portion E4 shall be coved by impervious sheet. The
 contractor was recommended that the exposed slope at the Portion E4 should
 be covered by impervious sheet. The exposed slope at the Portion E4 should
 be treated with shotcrete for long term.
- The assess road at the Portion E4 was dry. The contractor was advised that
 the assess road at the Portion E4 should be sprayed with water when the
 assess road is dry to minimize the dust suppression. The water sprinkler
 should be considered to establish at the assess road of the Portion E4.
- The accumulated silt and grit were found near the sandbags barriers of the Portion E3-1 silt removal facilities. The contractor was advised that the silt and grit should be removed near the sandbags barriers of the Portion E3-1 silt removal facilities after heavy rain.
- The accumulated water at the drip tray under the silt removal facilities was found. The contractor was recommended to remove the accumulated water at the drip tray to minimize the potential chemical waste.

Reminder(s):

- The contractor was reminded that the particular attention should be paid to the
 control of silty surface runoff during upcoming storm event in accordance with
 Appendix A2 of ProPECC PN/94. The contractor was reminded that the
 particular attention should be paid to the control of silty surface runoff during
 upcoming storm event in accordance with Appendix A2 of ProPECC PN/94.
- **11.1.4** 1 general site inspection on 31 July 2023 was conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG).

12 Environmental Non-conformance

12.1 **Summary of Monitoring Exceedance**

No exceedance of the Action Levels and Limit Level were recorded at designated monitoring stations during the reporting period.

12.2 **Summary of Environmental Non-compliance**

12.2.1 No non-compliance event was recorded during the reporting period.

12.3 **Summary of Environmental Complaint**

- **12.3.1** No complaint was recorded during the reporting period.
- 12.3.2 The cumulative statistics on environmental complaints are presented in Table 12-1.

Table 12-1 Cumulative Statistics on Environmental Complaints

Reporting		Envi	ronmental As	pects		No. of Environmental
Period	Air Quality	Noise	Water Quality	Waste	Ecology	Complaints
Jul 2023	0	0	0	0	0	0
Accumulate of project	1*	0	1#	0	0	2(1* & 1#)

Remarks:

- (1) * equal to non-project related after the investigation
- (2) # equal to the investigation results will be presented in the report after the investigation.
- 12.3.3 Cumulative complaint / enquiry log, Summaries of complaints and enquiries & Environmental complaint reports are presented in Appendix P.

Summary of Environmental Summons and Successful Prosecution 12.4

12.4.1 No summons and successful prosecution were received during the reporting period

13 Implementation Status on Environmental Mitigation Measures

13.1 General

13.1.1 The Contractor has generally implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual and the contract documents. The implementation status during the reporting period is summarized in **Appendix K**.

13.2 Temporary Surface Water Drainage System (TSWDS)

13.2.1 The effectiveness of the TSWDS is keeping reviewing and improve by the contractor. The layout of the TSWDS is presented in **Appendix Q**.

13.3 Hydroseeding

13.3.1 The implementation of hydroseeding at the site boundary is keeping conducting by the contractor. The layout of implementation of hydroseeding is presented in **Appendix Q**.

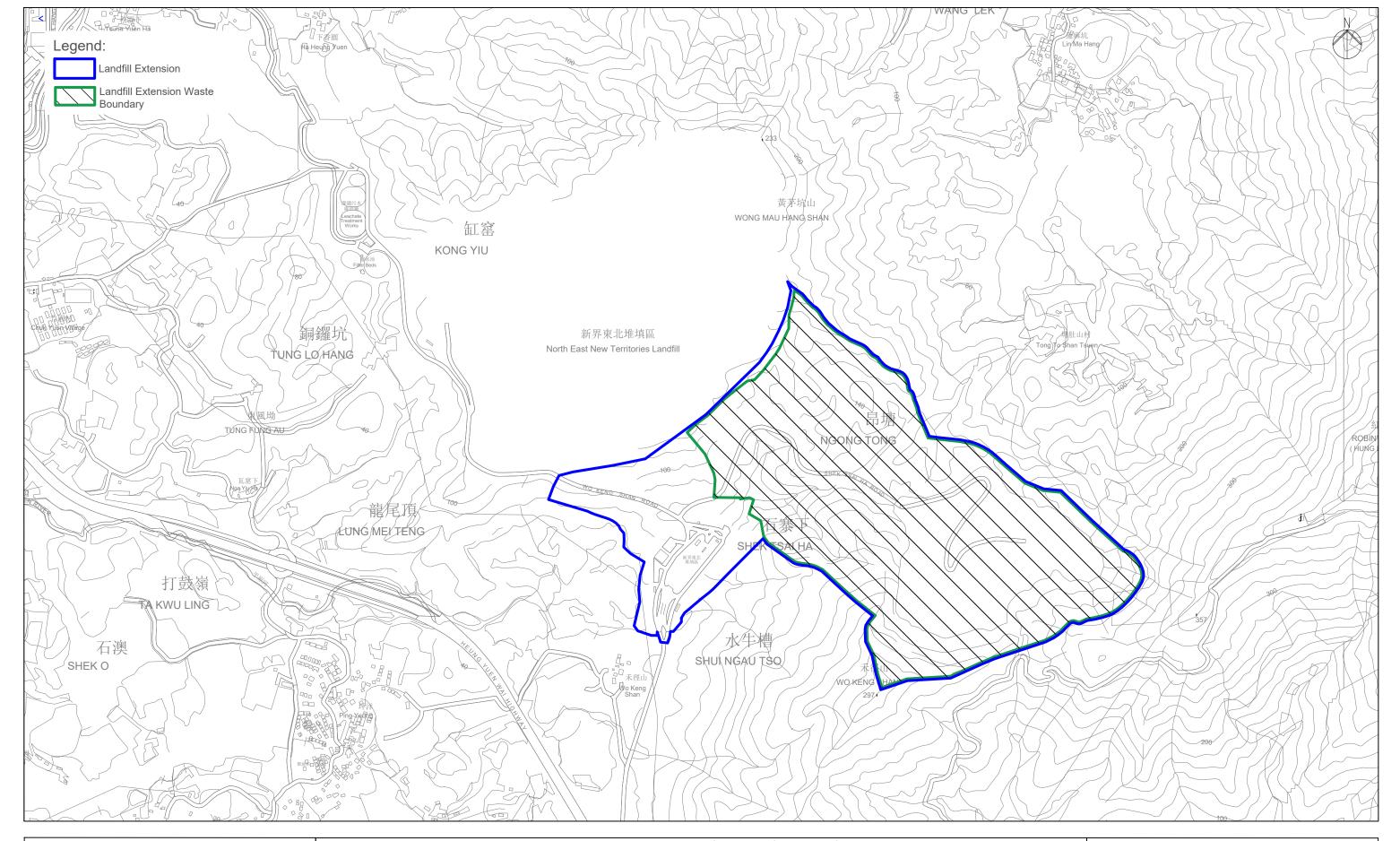
14 Future Key Issues

15.2 Key Issues for the Coming Month

- Works to be undertaken for the coming monitoring periods are summarized below. Detailed construction activities and locations are summarized in **Appendix L**.
 - Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
 - Permanent site office foundation works with pouring of concrete at Portion D
 - Site clearance at Portion A & E3-1
 - Installation of permanent fencing at Portion A, B1 & E4
 - Site formation at Portion A & E3-1
 - Tree felling at Portion E3-1 & E4
- 15.2.2 Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology

15.3 Monitoring Schedule for the Next Month

15.3.1 The tentative schedule of environmental monitoring for the next reporting period is presented in **Appendix C**.

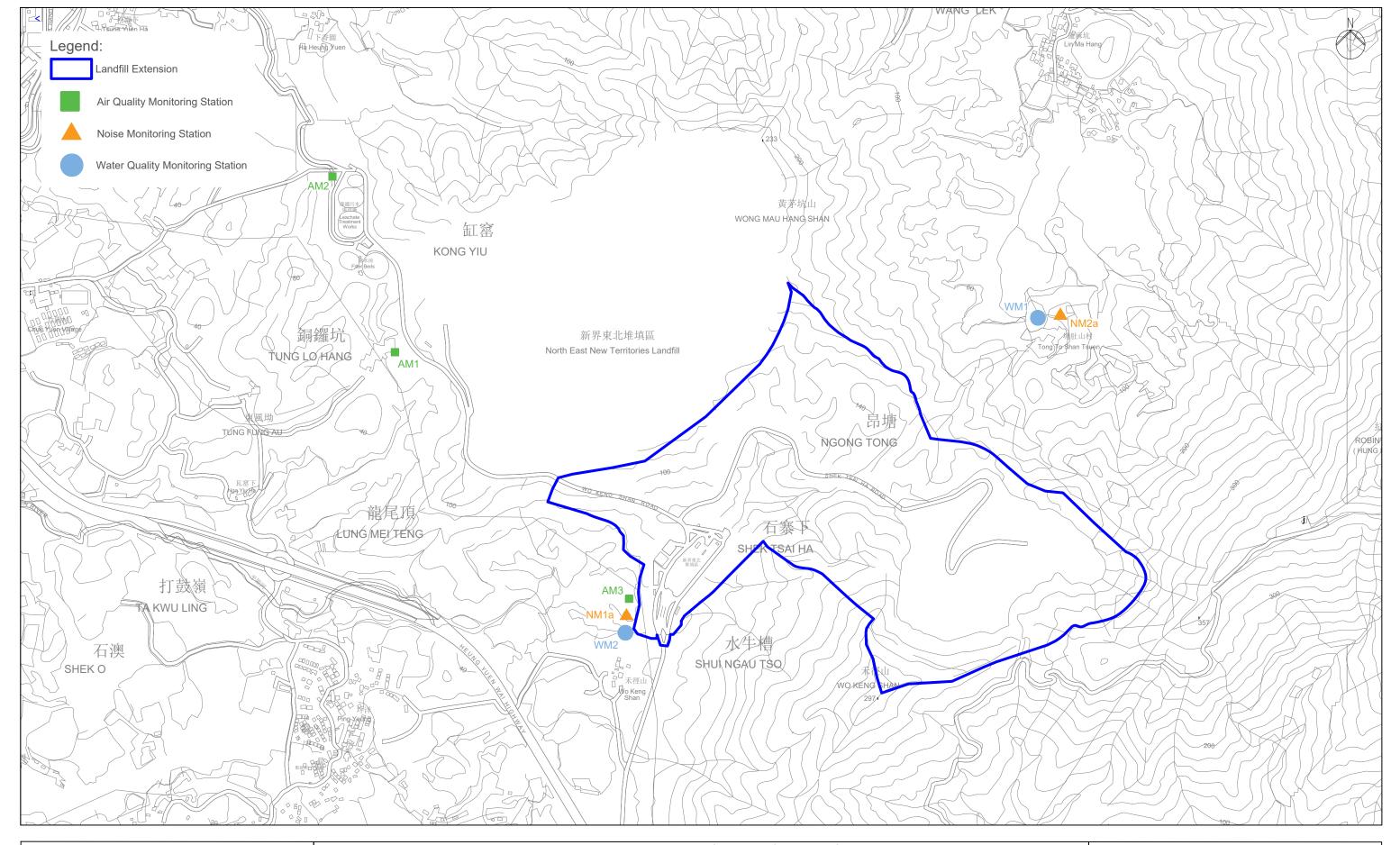

15.4 Construction Programme for the Next Month

15.4.1 The most updated construction programme for the Project is presented in **Appendix A**.

16 Conclusion

- 16.1.1 1-hr & 24-hr TSP impact monitoring was carried out in the reporting month. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.
- 16.1.2 Construction noise monitoring was carried out in the reporting month. No Action / Limit Level exceedance at NM1a & NM2a was recorded during the period.
- 16.1.3 Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.
- 16.1.4 Surface water monitoring was carried out in the reporting month. No Action / Limit Level exceedance of surface water monitoring was recorded during the reporting period.
- 16.1.5 Landfill Gas Monitoring was carried out in the reporting month. No exceedance of Limit Levels of LFG was recorded during the reporting period.
- 16.1.6 In terms of cultural heritage, implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit in the reporting period. All the mitigation measures are in order.
- 16.1.7 Post-transplantation monitoring was carried out in the reporting month. Post-translocation Monitoring was carried out in the reporting period. No *S. zanklon individual* was found. The numbers, measurements and health conditions of the transplanted species are recorded.
- 16.1.8 Five environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for Permit/ Licenses were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 16.1.9 No complaint was recorded during the reporting period.
- 16.1.10 No non-compliance event was recorded during the reporting period.
- 16.1.11 No notification of summons and prosecution was received during the reporting period.
- 16.1.12 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Figure 1 Location of the Project Site



North-East New Territories (NENT) Landfill Extension Location Plan of the Project Site

Figure 1.1

Scale: 1:10000

Figure 2 Impact Air Quality, Noise & Surface Water Quality Monitoring Locations

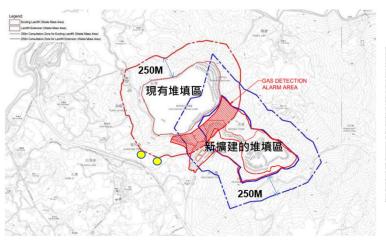

North-East New Territories (NENT) Landfill Extension Impact Monitoring Locations

Figure 2

Scale: 1:10000

Figure 3 Landfill Gas Monitoring Locations

Gas Monitoring Point • Monitoring Frequency: 2 times per day

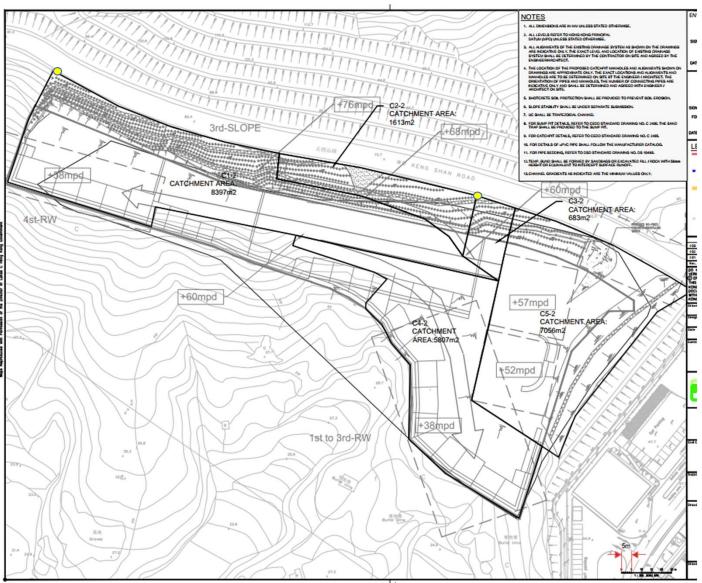
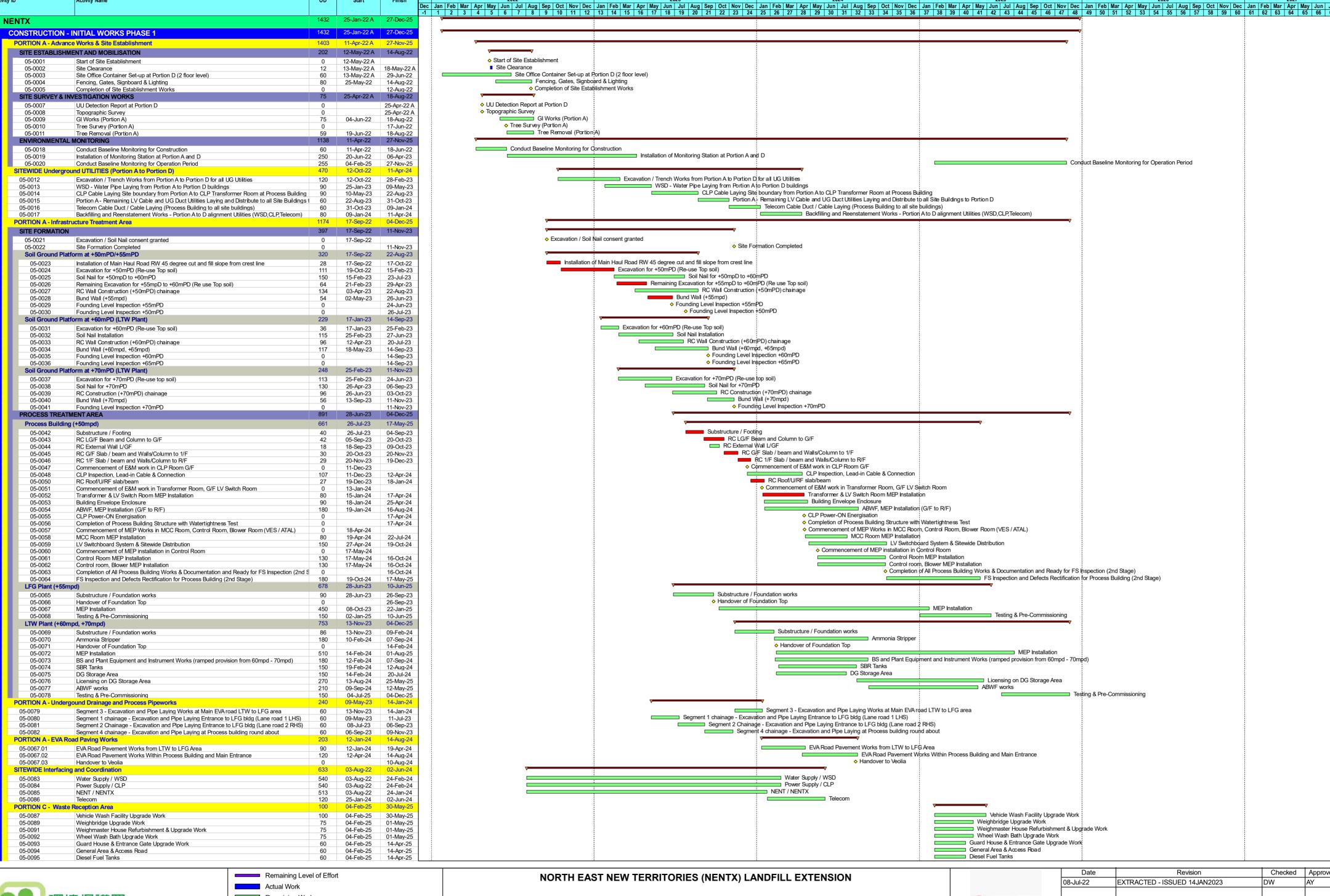
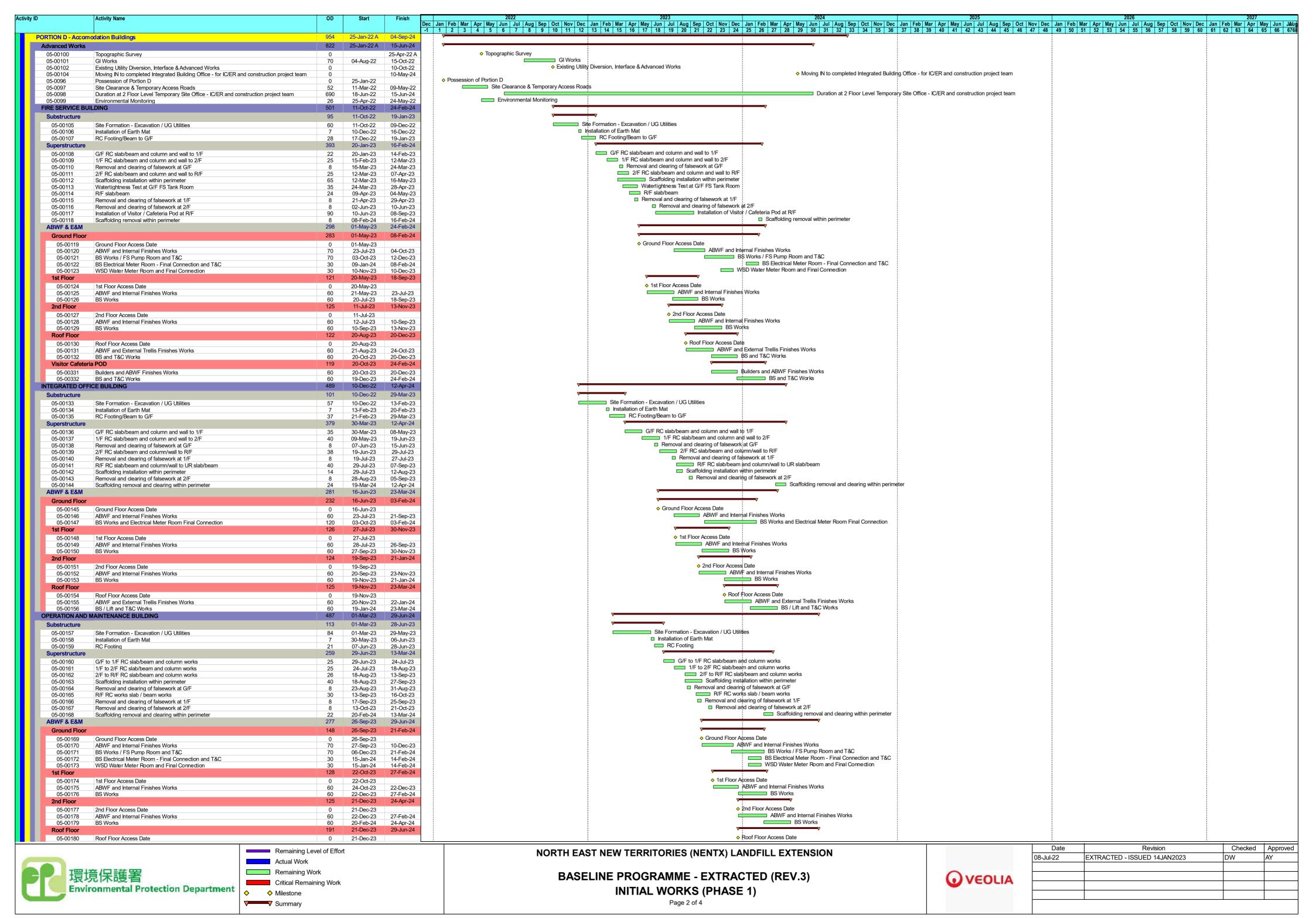
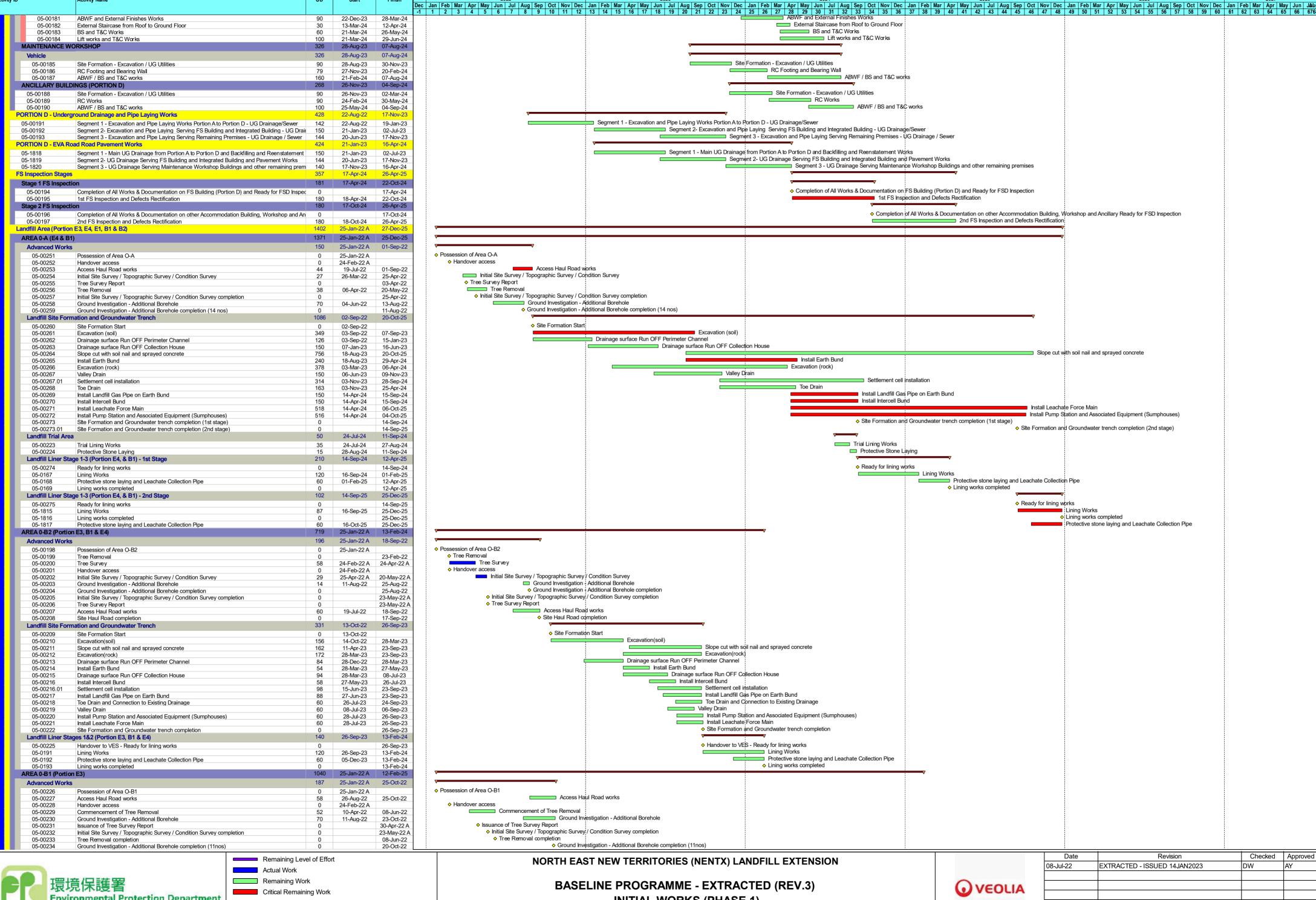



Figure 3 Landfill Gas Monitoring Locations

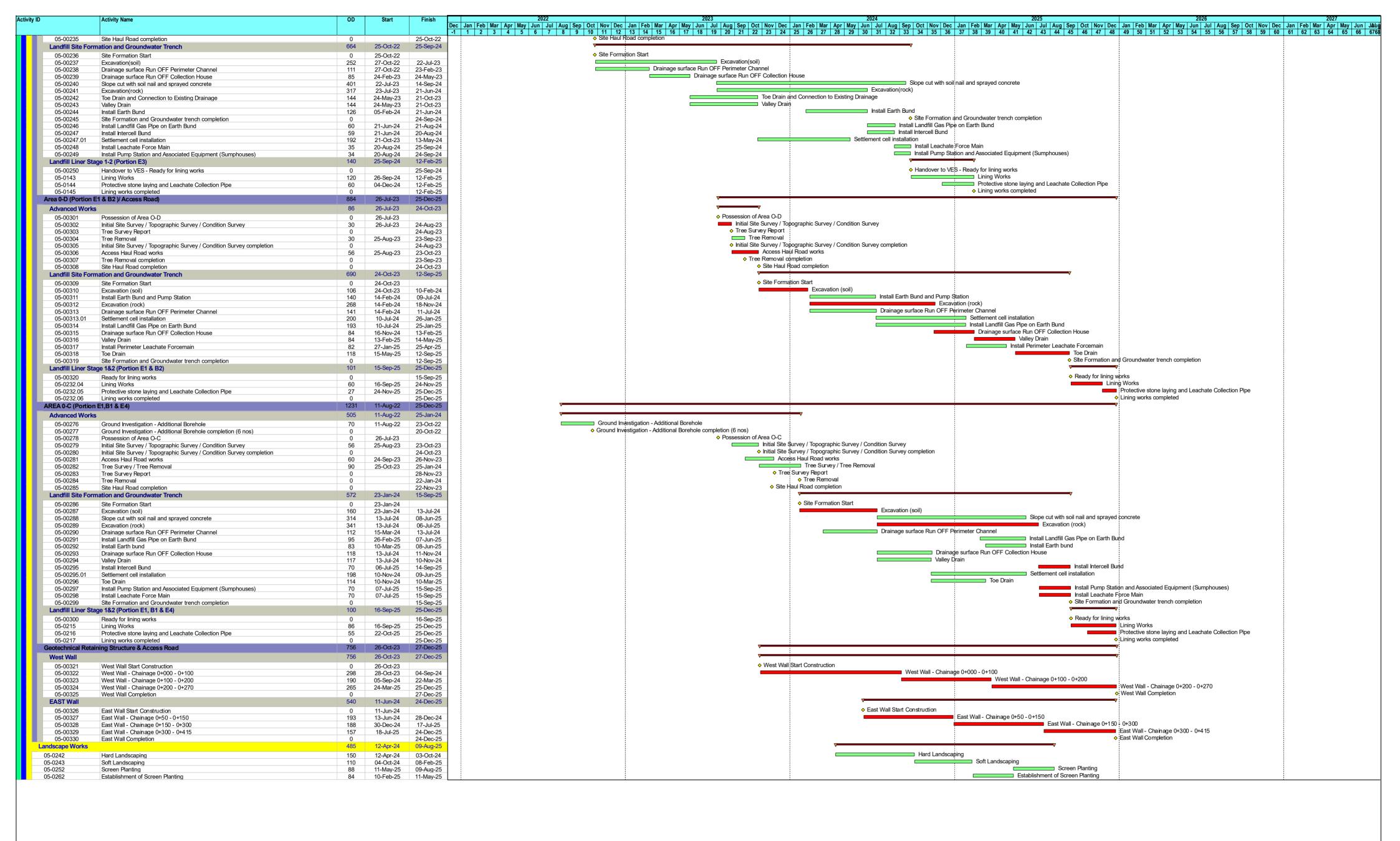
Appendix A Construction Programme





BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 1 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

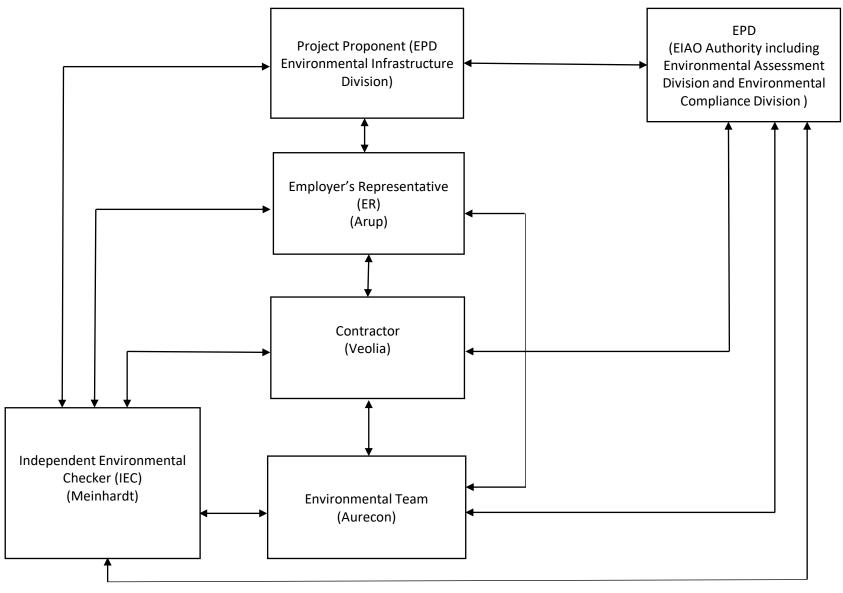


Milestone Summary

INITIAL WORKS (F

KIRACIED (REV.3)	() VEC
PHASE 1)	

	Date	Revision	Checked	Approved
[08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY
[
[

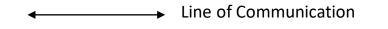


BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 4 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

Appendix B Project Organization Chart & Management Structure

Notes:


EPD - Environmental Protection Department

Arup – Ove Arup & Partners Limited

Veolia - Veolia Environmental Services Hong Kong Limited

Meinhardt - Meinhardt Infrastructure And Environment Limited

Aurecon - Aurecon Hong Kong Limited

Appendix C Monitoring Schedule for Reporting Month & Next Month

Impact Monitoring Schedule for NENT Landfill Extension (July 2023) (version 2.0)

7-2023							
Sun	Mon	Tue	Wed	Thur	Fri	Sat	
						1	
2	3	4	5	6 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	7	8	
9	10	11	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2	13	14	15	
16	17	Air quality monitoring at AM1, AM2 and AM3	19	20	21 Noise monitoring at NM1a and NM2a	22	
23	24 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	25	26	27	28	29 Air quality monitoring at AM1, AM2 and AM3	
30	31						

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Impact Monitoring Schedule for NENT Landfill Extension (August 2023) (version 1.0)

			8-2023			
Sun	Mon	Tue	Wed	Thur	Fri	Sat
		5	2	3	4 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2	5
6	7	8	9	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	11	12
13	14	15	16 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	17	18	19
20	21	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	23	24	25	26
27	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	29	30	31	1	Air quality monitoring at AM1, AM2 and AM3

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Appendix D Calibration Certificates

Air Quality

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative ForTung Lo Hang	Site ID:	AM1	Date:	06-Jul-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.9998

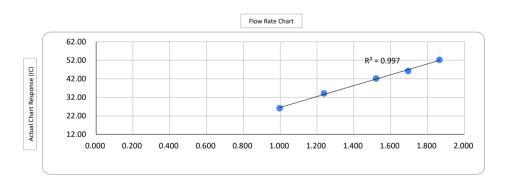
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.60	1.865	52.0	52.18
13	10.20	1.695	46.0	46.16
10	8.00	1.521	42.0	42.14
7	5.00	1.238	34.0	34.12
5	3.00	0.997	26.0	26.09

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.3019	b=	-2.7348	Corr. Coeff=	0.9985

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Heung Yuen Wai	Site ID:	AM2	Date:	06-Jul-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.9998

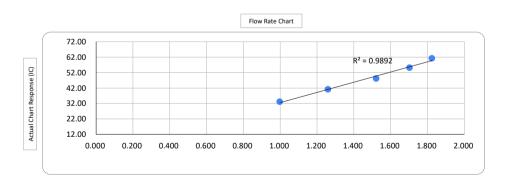
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.00	1.824	61.0	61.21
13	10.30	1.702	55.0	55.19
10	8.00	1.521	48.0	48.16
7	5.20	1.259	41.0	41.14
5	3.00	0.997	33.0	33.11

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	32.9874	b=	-0.4203	Corr. Coeff=	0.9946

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date: 06-Jul-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Wo Keng Shan Tsuen	Site ID:	АМ3	Date:	06-Jul-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.9998

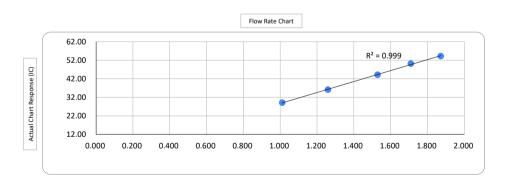
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.70	1.872	54.0	54.18
13	10.40	1.710	50.0	50.17
10	8.10	1.529	44.0	44.15
7	5.20	1.259	36.0	36.12
5	3.10	1.011	29.0	29.10

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.5749	b=	-0.9086	Corr. Coeff=	0.9995

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

Website www acuitylk cor

Unit E. 12/F, Ford Glory Plaza Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

0Z4545

Our Report Refrence No.

RPT-22-HVS-0026

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
			10.54%		0.00114			-	

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

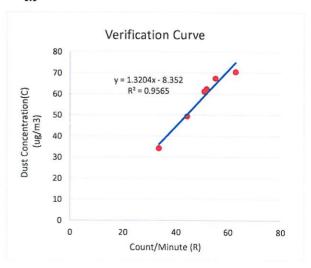
1.1

By Linear Regression of y on x:

slope, mh= 1.3204

intercept,ch= -8.3520

*Correlation Coefficient,R= 0.9780


Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.:

Sibata LD-5R

Unit-under-Test Serial No.:

882106

Our Report Refrence No.:

RPT-22-HVS-0027

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information						
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator			
Standard Equipment Model No.		TE-5170X	TE-5025A			
Equipment serial no.	MFC	1106	3465			
Last Calibration Date		1-Dec-22	28-Jun-22			
Next Calibration Date		31-Jan-23	27-Jun-23			

Verification	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70
					0.00107				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

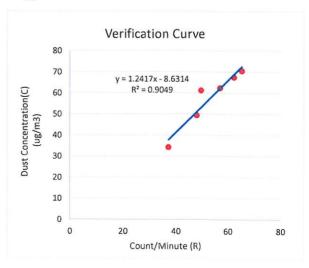
By Linear Regression of y on x:

slope, mh= 1.2417

intercept,ch= -8.6314

*Correlation Coefficient,R= 0.

0.9513


Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

4-Dec-22 to

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

882110

Our Report Refrence No.

RPT-22-HVS-0025

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.	ł	TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)	
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.0

By Linear Regression of y on x:

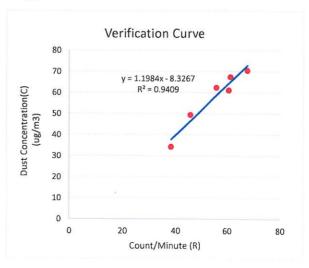
slope, mh=

1.1984

intercept,ch=

-8.3267

*Correlation Coefficient,R=


0.9700

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: _ 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

4-Dec-22

Verification Test Date:

3-Dec-22

2-Dec-23

Next Verification Test Date: Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

942532

Our Report Refrence No.

RPT-22-HVS-0024

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information						
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator			
Standard Equipment Model No.		TE-5170X	TE-5025A			
Equipment serial no.	MFC	1106	3465			
Last Calibration Date		1-Dec-22	28-Jun-22			
Next Calibration Date		31-Jan-23	27-Jun-23			

Verification	Date		Time		K-Factor	Counts/ Minute (R)		TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

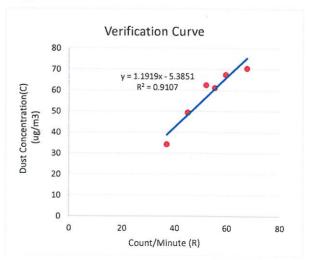
By Linear Regression of y on x:

slope, mh=

1.1919

intercept,ch=

-5.3851


*Correlation Coefficient,R=

0.9543

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Date: 05-12-2022

RECALIBRATION DUE DATE:

June 19, 2024

Certificate of Calibration

Calibration Certification Information

Cal. Date:

June 19, 2023

Rootsmeter S/N: 438320

Ta: 294
Pa: 754.9

°K

Operator:

Calibration Model #:

Jim Tisch

n Hscn

TE-5025A

Calibrator S/N: 4166

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4500	3.2	2.0
2	3	4	1	1.0260	6.4	4.00
3	5	6	1	0.9170	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7240	12.8	8.00

	The state of the s		- HOLLOW		0.00
		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0025	0.6914	1.4190	0.9958	0.6867	0.8826
0.9983	0.9730	2.0068	0.9915	0.9664	1.2481
0.9961	1.0863	2.2436	0.9894	1.0790	1.3955
0.9951	1.1346	2.3532	0.9883	1.1270	1.4636
0.9897	1.3670	2.8380	0.9830	1.3578	1.7651
	m=	2.10188		m=	1.31616
QSTD[b=	-0.03580	QA	b=	-0.02227
	r=	0.99998			0.99998

	Calculation	ns		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime		Va/ΔTime	
-	For subsequent flow rat	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM		
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$		$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

	Standard Conditions
Tstd:	298.15 °ĸ
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual absorption	olute temperature (°K)
Pa: actual bard	ometric pressure (mm Hg)
b: intercept	- Oi
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Noise

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:68914)

Preamplifier:

NTi Audio MA220 (M2211) (Serial No.:6282)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F., Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 20 August 2022

Date of calibration: 22 August 2022

Date of NEXT calibration: 21 August 2023

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 22 August 2022

Certificate No.: APJ22-071-CC001

IN TESTING LABORRION WAS NOT THE TES

Page 1 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.4 °**C**

Air Pressure:

1005 **hPa**

Relative Humidity:

68.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	±0.4

Linearity

Sett	ing of Uni	t-under-t	est (UUT)	App	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
			94		93.8	Ref	
30-130	dBA	SPL	Fast	104	1000	103.8	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	Ref
30 130	UDA	31 L	Slow	74	1000	93.8	±0.3

Certificate No.: APJ22-071-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Frequency Response

Linear Response

Sett	ing of Unit	t-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	93.9	±2.0
					63	94.0	±1.5
×					125	93.9	±1.5
					250	93.8	±1.4
30-130	dB	SPL	Fast	94	500	93.8	±1.4
					1000	93.8	Ref
					2000	93.4	±1.6
					4000	93.0	±1.6
					8000	92.2	+2.1; -3.1

A-weighting

Sett	ing of Uni	it-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.6	-39.4 ±2.0
					63	67.7	-26.2 ±1.5
					125	77.8	-16.1 ±1.5
					250	85.2	-8.6±1.4
30-130	dBA	SPL	Fast	94	500	90.6	-3.2 ±1.4
					1000	93.8	Ref
					2000	94.6	+1.2±1.6
					4000	94.0	+1.0 ±1.6
					8000	91.2	-1.1 +2.1; -3.1

C-weighting

Sett	ing of Un	it-under-te	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	90.9	-3.0 ±2.0
					63	93.1	-0.8 ± 1.5
					125	93.7	-0.2 ±1.5
					250	93.8	-0.0 ± 1.4
30-130	dBC	SPL	Fast	94	500	93.8	-0.0 ± 1.4
					1000	93.8	Ref
					2000	93.3	-0.2 ±1.6
					4000	92.2	-0.8 ±1.6
					8000	89.3	-3.0 +2.1; -3.1

Certificate No.: APJ22-071-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
-	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

MAR TESTING LABORING (A+A) *L

Page 4 of 4

CALIBRATION CERTIFICATE

Product

: SOUND CALIBRATOR

Type

NC-75

Serial number

35124527

Manufacturer

RION CO., LTD.

Calibration quantities : Sound pressure level (with reference standard microphone)

Calibration method

: Measured by specified secondary standard microphone

according to JCSS calibration procedure specified by RION.

Ambient conditions

: Temperature 23.9 °C, Relative humidity 49 %,

Static pressure 100.6 kPa

Calibration date

02/11/2022 (DD/MM/YYYY)

Calibration location

3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

RION CO., LTD. Calibration Room

We hereby certify that the results of this calibration were as follows.

Issue date: 09/11/2022 (DD/MM/YYYY)

Junichi Kawamura

Manager

Quality Assurance Section, Quality Assurance Department, Environmental Instrument Division,

RION CO., LTD.

3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533, Japan

This certificate is based on article 144 of the Measurement Law and indicates the result of calibration in accordance with measurement standards traceable to Primary Measurement Standards (National Standards) which realizes the physical units of measurement according to the International System of Units (SI).

The accreditation symbol is attestation of which the result of calibration is traceable to Primary Measurement Standards (National Standards).

The certificate shall not be reproduced except in full, without the written approval of the issuing laboratory.

The calibration laboratory who issued this calibration certificate conforms to ISO/IEC 17025:2017.

This calibration certificate was issued by the calibration laboratory accredited by IAJapan who is a signatory to the Mutual Recognition Arrangement (MRA) of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Accreditation Cooperation (APAC). This (These) calibration result(s) may be accepted internationally through ILAC/APAC

Certificate No. D224644E

CALIBRATION RESULT

1. Sound pressure level (with reference standard microphone)

Measured	Expanded
value	uncertainty *1
93.99 dB	0.09 dB

Specified secondary standard microphone:

Type

: 4160

Serial number : 2973341

Reference Sound pressure: 2×10⁻⁵ Pa

*1 Defines an interval estimated to have a level of confidence of approximately 95 %.

Coverage factor k=2

Calibration result is the calibration value in ambient conditions during calibration.

BE OUT OF JCSS CALIBRATION

1. Frequency

Measured	Measuremen	
	uncertainty	
value	(k=2)	
1000.0 Hz	$2.7 \times 10^{-4} \mathrm{Hz}$	

Working measurement standard universal counter:

Type

: 53132A

Serial number : MY40005574

(JCSS Calibration Certificate No. 2208001889940)

2. Total distortion

Measured	
value	
0.2 %	

Working measurement standard distortion meter:

Type

: VA-2230A

Serial number : 11076061

(A2LA Calibration Certificate No. 1502-03109)

· closing ·

Calibration Certificate

Certificate No. 300737

Page

2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q30320

Date of receipt

2-Feb-23

Item Tested

Description: Hot Wire Anemometer

Manufacturer: RS PRO

I.D.

ASCL-EQ-111

Model

: RS-90

Serial No.

: 210722208

Test Conditions

Date of Test: 13-Feb-23

 $(23 \pm 3)^{\circ}C$

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: T03, Z04.

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

206240

NIM-PRC

S223C

Std. Thermometer

205617

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

13-Feb-23

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 300737

Page 2 of 2 Pages

Results:

1. Velocity

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.	
0.00	0.00		
2.50	2.43		
5.00	5.04	7. (2.0) 5 1:	
10.00	10.07	\pm (3 % of reading + 0.3 m/s)	
15.00	15.65		
19.00	19.87		

2. Temperature

Applied Value (°C)	UUT Reading (°C)	Mfr's Spec.
23.12	23.0	±2°C

Remark: 1. UUT: Unit-Under-Test

2. Uncertainty: \pm (0.9 % + 0.16 m/s) for Velocity, \pm 0.1 °C for Temperature, for a confidence probability of not less than 95 %.

3. Atmospheric Pressure: 1 002 hPa

----- END -----

Water Quality

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC050055

Date of Issue

: 17 May 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

HORIBA U-53

Manufacturer:

HORIBA

Serial Number:

PORBNFNT

Date of Received:

11 May 2023

Date of Calibration:

17 May 2023

Date of Next Calibration: Request No.:

16 August 2023 D-BC050055

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500 H+

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 21e 4500 O

Turbidity

APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.14	0.14	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	10.06	0.05	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
16	17.5	1.5	Satisfactory
24	25.7	1.7	Satisfactory
32	32.3	0.3	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.66	-3.40	Satisfactory
20	19.52	-2.40	Satisfactory
30	30.20	0.67	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager (Chemical Testing)

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC050055

Date of Issue

: 17 May 2023

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
8.22	7.88	-0.34	Satisfactory
4.31	3.90	-0.41	Satisfactory
1.81	1.37	-0.44	Satisfactory
0.07	0.00	-0.07	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.00		Satisfactory
10	10.8	8.00	Satisfactory
20	20.0	0.00	Satisfactory
100	106	6.00	Satisfactory
800	811	1.40	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Calibration Certificate

Certificate No. 210252

Page 2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q24081

Date of receipt

31-Oct-22

Item Tested

Description : Flow Probe

Manufacturer: Global Water

I.D.

Model

: FP111

Serial No.

: 22K100859

Test Conditions

Date of Test:

7-Nov-22

Supply Voltage : --

Ambient Temperature :

23°C

Relative Humidity: 78%

Test Specifications

Calibration check.

Ref. Document/Procedure: V12

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S179

Std. Tape

201868

NIM-PRC

S136A

Stop Watch

201878

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Kin Wong

Approved by:

This Certificate is issued by

Hong Kong Calibration Ltd.

7-Nov-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results:

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks: 1. UUT: Unit-Under-Test

2. Uncertainty: ± 1 %, for a confidence probability of not less than 95%.

----- END -----

Landfill Gas

CERTIFICATION OF CALIBRATION

Date Of Calibration: 17-Aug-2022 Certificate Number: G508566_2/31066

Issued by: QED Environmental Systems Ltd.

Customer: Onuee Electronics Ltd

C3-E TCL Science Park No.1001 Zhong Shan Yuan Rd.

Nanshan Shenzhen 518052 CHINA

Description: Gas Analyser

Model: GEM5000

Serial Number: G508566

UKAS Accredited results:

Methane (CH ₄)			
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)	
5.0	4.9	0.072	
15.0	14.9	0.13	
60.0	59.6	0.42	

Carbon Dioxide (CO ₂)			
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)	
5.0	5.0	0.074	
15.0	14.9	0.13	
40.0	40.0	0.29	

	Oxygen (O₂)	
Certified Gas (%)	Instrument Reading (%)	Uncertainty (%)
21.2	21.3	0.25

All concentrations are molar.

CH₄, CO₂ readings recorded at :

33.0 °C ± 2.5 °C

O2 readings recorded at :

22.7 °C ± 2.5 °C

Barometric Pressure :

1002 mbar ± 4 mbar

Method of Test: The analyser is calibrated in a temperature controlled chamber using a series of reference gases, in compliance with procedure LP004.

Instrument has passed calibration as the measurement result is within the specification limit. The specification limit takes into account the measurement uncertainty.

The results relate only to the item calibrated

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 1 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Certificate Number: G508566 2/31066

Date Of Calibration: 17-Aug-2022

Issued by: QED Environmental Systems Ltd.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Calibrations marked 'Non-UKAS Accredited results' on this certificate have been included for completeness.

Non-UKAS accredited results after adjustment:

Baromet	er (mbar)
Reference	Instrument Reading
1002	1002

	Additional Gas Cells	
Gas	Certified Gas (ppm)	Instrument Reading (ppm)
H ₂ S	52.6	53

Date of Issue: 18-Aug-2022

Approved by Signatory

Keeley Knight

Laboratory Inspection

End of Certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 114 IGC Instance: N/A

Page 2 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email: info@promat.hk-http://www.premat.hk

Calibration Certificate

Customer Name

Paul Y Construction Co. Ltd

Model

PS200

Serial

373075

Tested On

16 November, 2022

Cal Expires

16 November, 2023.

Audible Alarm

PASS

Visual Alarm

PASS

Calibrated For

METHANE

100% LEL Equivalent

4.4% by VOL

Overall Results

PASS

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	РРМ СО	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Calibrated By Ivan Lo:

Appendix E Monitoring Results

Air Quality

1-hour TSP Concentration (µg/m³) at Location AM1

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactoi	vveatilei	Sampling Time (1)	Sampling Time (2) 15:30 11:00 16:10 15:40 13:05	Sampling Time (3)	μg/m³	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m ³
6/07/2023	Sibata LD-5R	942532	0.00108	Fine	14:30	15:30	16:30	37	25	36	33			285	500
12/07/2023	Sibata LD-5R	942532	0.00108	Fine	10:00	11:00	12:00	36	40	32	36			285	500
18/07/2023	Sibata LD-5R	942532	0.00108	Fine	15:10	16:10	17:10	24	26	21	24	285	500	285	500
24/07/2023	Sibata LD-5R	942532	0.00108	Cloudy	14:40	15:40	16:40	46	45	45	45			285	500
29/07/2023	Sibata LD-5R	942532	0.00108	Fine	12:05	13:05	14:05	39	40	37	39			285	500
_				_			Average		35						

Max.

Min.

46 21

44 21

1-hour TSP Concentration (µg/m³) at Location AM2

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level	Action Level	Limit Level
Date	Brand & Model	Serial No.	IX-Idotoi	Weather	Camping Time (1)	Sampling Time (2) 14:30 11:15 16:30 15:50 13:16	Camping Time (5)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
6/07/2023	Sibata LD-5R	882106	0.00107	Fine	13:30	14:30	15:30	26	36	26	29			279	500
12/07/2023	Sibata LD-5R	882106	0.00107	Fine	10:15	11:15	12:15	40	45	36	40			279	500
18/07/2023	Sibata LD-5R	882106	0.00107	Fine	15:30	16:30	17:30	21	26	23	23	279	500	279	500
24/07/2023	Sibata LD-5R	882106	0.00107	Cloudy	14:50	15:50	16:50	46	48	45	46			279	500
29/07/2023	Sibata LD-5R	882106	0.00107	Fine	12:16	13:16	14:16	30	34	31	32			279	500
							Average		34						
							Max.		48						

Min.

1-hour TSP Concentration (µg/m³) at Location AM3

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level	Action Level	Limit Level
Date	Brand & Model	Serial No.	IX-Idotoi	Weather	Camping Time (1)	13:36 11:40 15:00 15:30 13:30	camping rime (o)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
6/07/2023	Sibata LD-5R	0Z4545	0.00114	Fine	12:36	13:36	14:36	29	37	28	31			285	500
12/07/2023	Sibata LD-5R	0Z4546	0.00114	Fine	10:40	11:40	12:40	31	36	36	34			285	500
18/07/2023	Sibata LD-5R	0Z4545	0.00114	Fine	14:00	15:00	16:00	21	32	21	23	285	500	285	500
24/07/2023	Sibata LD-5R	0Z4545	0.00114	Cloudy	14:30	15:30	16:30	30	31	28	46			285	500
29/07/2023	Sibata LD-5R	0Z4545	0.00114	Fine	12:30	13:30	14:30	41	44	40	42			285	500
							Average		32						

Max.

Min.

The Summary of TSP 24-hour Concentration (µg/m³) at Location AM1

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	e Time	Sampling Time	Averaged Flow Rate	Averaged Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/07/2023	Fine	30.4	1009.3	1353.53	1377.53	1440	30.4	1.44	2075	2.6757	2.7102	0.0345	17		
12/07/2023	Fine	30.7	998.0	1377.53	1401.53	1440	30.7	1.44	2076	2.6500	2.7741	0.1241	60		
18/07/2023	Fine	31.0	1002.1	1401.53	1425.53	1440	31	1.43	2059	2.6493	2.6924	0.0431	21	164	260
24/07/2023	Cloudy	29.8	1007.0	1425.74	1449.74	1440	39	1.41	2024	2.6574	2.7499	0.0925	46		
29/07/2023	Fine	29.5	1003.9	1450.61	1474.61	1440	41	1.47	2116	2.7471	2.8267	0.0796	38		
												Average	36		
												Min	17		

Max

Max

Max

60

48

22

40

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM2

Start Date	Weather	Avg Air Temp	Avg Atmospheric Pressure	Elapse	e Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/07/2023	Fine	30.4	1009.3	1111.40	1135.40	1440	40	1.21	1742	2.6638	2.7071	0.0433	25		
12/07/2023	Fine	30.7	998.0	1135.40	1159.40	1440	40	1.20	1722	2.6447	2.7140	0.0693	40		
18/07/2023	Fine	31.0	1002.1	1159.40	1183.40	1440	40.5	1.21	1750	2.6377	2.6818	0.0441	25	152	260
24/07/2023	Cloudy	29.8	1007.0	1183.93	1207.93	1440	38	1.15	1654	2.6514	2.7306	0.0792	48		
29/07/2023	Fine	29.5	1003.9	1208.55	1232.55	1440	36.5	1.10	1585	2.6471	2.6986	0.0515	32		
												Average	34		
												Min	25		

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM3

Start Date	Weather	Avg Air Temp	Avg Atmospheric Pressure	Elapse	Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
	Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/07/2023	Fine	30.4	1009.3	2118.79	2142.81	1441	41	1.40	2017	2.6682	2.7125	0.0443	22		
12/07/2023	Fine	30.7	998.0	2142.81	2166.81	1440	42	1.42	2039	2.6442	2.7101	0.0659	32		
18/07/2023	Fine	31.0	1002.1	2166.81	2190.81	1440	39.5	1.34	1928	2.6464	2.7044	0.0580	30	163	260
24/07/2023	Cloudy	29.8	1007.0	2190.82	2214.82	1440	39.5	1.35	1941	2.6663	2.7207	0.0544	28		
29/07/2023	Fine	29.5	1003.9	2216.00	2240.00	1440	42.5	1.44	2079	2.7477	2.8309	0.0832	40		
	_					_	_	_				Average	30	_	

Remarks:

- Orange Text equal to exceed Action Level
 Red Text equal to exceed Limit Level

Noise

Impact Phase Construction Noise Monitoring Data at Location NM1a

Date	Weather	Wind speed	Start Time	End Time				L ed	, (dB(<i>l</i>	A))				L ₁₀ (c	IB(A))					L ₉₀ (c	B(A))		
Date	vveatrier	m/s	Start Time	Liiu iiiile	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
6/07/2023	Fine	2.1	16:00	16:30	60.2	61.1	62.4	62.9	63.2	62.6	62.2	63.4	62.6	64.2	63.4	64.6	63.6	59.2	58.2	59.2	60.3	62.4	60.6
12/07/2023	Fine	2.1	9:30	10:00	62.1	63.2	64.3	63.4	63.9	62.9	63.4	64.1	65.2	66.4	65.3	64.9	63.9	60.1	60.4	59.1	61.2	61.9	60.3
21/07/2023	Fine	1.2	9:15	9:45	62.4	61.1	63.2	64.3	64.9	65.1	63.7	64.6	63.2	66.2	65.4	67.1	66.2	60.2	60.4	61.2	62.3	62.6	62.1
24/07/2023	Cloudy	2.1	8:00	8:30	59.2	60.2	61.2	60.9	61.4	62.4	61.0	62.2	63.3	62.5	62.9	63.6	64.5	52.4	58.3	59.1	58.4	57.5	59.2

Average 62.1

Baseline Level 55.4

Action Level When one valid documented complaint is received

Limit Level 75

Impact Phase Construction Noise Monitoring Data at Location NM2a

Date	Weather	Wind speed	Start Time	End Time				L _{ec}	, (dB(<i>l</i>	4))				L ₁₀ (d	IB(A))					L ₉₀ (c	IB(A))		
Date	weather	m/s	Start Tille	Elia Tille	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
6/07/2023	Fine	2.5	14:00	14:30	57.2	58.4	57.7	58.1	59.1	57.6	58.1	59.2	60.2	59.4	59.6	60.3	59.1	55.2	54.4	55.2	56.2	55.2	54.2
12/07/2023	Fine	1.9	14:30	15:00	53.6	54.1	55.3	54.2	55.6	55.9	54.9	55.4	56.2	57.1	55.6	56.9	57.4	50.1	53.2	52.6	52.4	53.1	54.6
21/07/2023	Fine	1.2	15:00	15:30	57.2	58.2	59.2	57.2	58.1	59.1	58.2	59.4	60.2	60.2	59.2	60.1	62.1	55.2	56.2	57.3	55.2	56.2	57.9
24/07/2023	Cloudy	1.22	14:00	14:30	54.2	55.2	54.5	53.2	54.5	53.5	54.2	57.2	58.4	57.8	56.9	58.1	56.7	50.2	51.2	50.1	49.1	52.1	50.6
									Average	е	56.3												

Average 56.3

Baseline Level 54.5

Action Level When one valid documented complaint is received

Limit Level 75

Water Quality

Monitoring Location: WM1

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)		
						Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	
12-Jul-23	13:39	Sunny	0.05	0.2	28	7.5	<7.4	<4	7.2	>7.7	>7.8	6.1	>9.2	>9.5	2.0	>9.7	>11.4	

Monitoring Location: WM2

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)	DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)		
						Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
12-Jul-23	8:16	Sunny	0.15	0.1	26.8	7.3	<5	<4	7.1	>7.6	>7.7	50.2	>108.3	>108.9	16.8	>94.5	>94.7

Remarks

1. Sample will be grabbed on surface when the water depth is less than 1m.

2. "TBC" equal to "To be confirm"

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: ACUMEN LABORATORY AND TESTING LIMITED Client

: HUNTINGTON HUI

: UNIT D, 12/F, FORD GLORY PLAZA, NOS.37-39 WING HONG

STREET, CHEUNG SHA WAN, KOWLOON, HONG KONG

: Huntington.Hui@aurecongroup.com E-mail

Telephone

Contact

Address

Facsimile

: NENXT Project

Order number : ----

C-O-C number : ----

Site

Laboratory

Contact

Address

E-mail

Quote

number

: ALS Technichem (HK) Pty Ltd

: Richard Fung

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

: richard.fung@alsglobal.com

: +852 2610 1044 Telephone : +852 2610 2021

Facsimile

: HKE/2751/2022_V2

: 12-Jul-2023 Date Samples Received

: 26-Jul-2023 Issue Date

: 1 of 9

: HK2327651

: 2 No. of samples received

: 2 No. of samples analysed

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Fung Lim Chee, Richard

Managing Director

Position

Inorganics

Authorised results for

Page

Work Order

Fung Lim Chee, Richard

Managing Director

Metals ENV

Aa

Ng Sin Kou, May

Laboratory Manager

Microbiology_ENV

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group Page Number : 2 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2327651

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Testing period is from 12-Jul-2023 to 25-Jul-2023.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2327651

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.

Microbiological sample(s) was/ were collected in 125mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 18:45.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

ED037 - Titration end point for Total Alkalinity is pH 4.5 while end point for Total Alkalinity <20mg/L is pH 4.2.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

EA002 - pH value is reported as at 25°C. Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EA025 - The accredited LOR of Total Suspended Solids is 0.5mg/L. Results below this LOR are for reference only.

3 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2327651

ALS

Analytical Results

Sub-Matrix: WATER			Sample ID	WM1	WM2	 	
		Samplii	ng date / time	12-Jul-2023	12-Jul-2023	 	
Compound	CAS Number	LOR	Unit	HK2327651-001	HK2327651-002	 	
EA/ED: Physical and Aggregate Properties	·						
EA002: pH Value		0.1	pH Unit	7.6	7.2	 	
EA010: Electrical Conductivity @ 25°C		1	μS/cm	84	132	 	
EA025: Suspended Solids (SS)		0.1	mg/L	2.0	16.8	 	
ED037: Total Alkalinity as CaCO3		1	mg/L	18	38	 	
ED/EK: Inorganic Nonmetallic Parameters							
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	7	13	 	
ED045K: Chloride	16887-00-6	0.5	mg/L	7	7	 	
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.07	 	
EK058A: Nitrate as N	14797-55-8	0.01	mg/L	0.53	0.26	 	
EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.3	 	
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	 	
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	 	
EP: Aggregate Organics							
EP005: Total Organic Carbon		1	mg/L	3	2	 	
EP020: Oil & Grease		5	mg/L	<5	<5	 	
EP026C: Chemical Oxygen Demand		5	mg/L	12	9	 	
EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
EG: Metals and Major Cations - Total							
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	 	
EG020: Copper	7440-50-8	1	μg/L	2	2	 	
EG020: Lead	7439-92-1	1	μg/L	<1	3	 	
EG020: Manganese	7439-96-5	1	μg/L	72	757	 	
EG020: Nickel	7440-02-0	1	μg/L	<1	2	 	
EG020: Zinc	7440-66-6	10	μg/L	72	26	 	
EG032: Calcium	7440-70-2	50	μg/L	19400	15600	 	
EG032: Iron	7439-89-6	10	μg/L	780	2370	 	
EG032: Magnesium	7439-95-4	50	μg/L	660	1330	 	mann.
EG032: Potassium	7440-09-7	50	μg/L	690	2130	 	
EG032: Sodium	7440-23-5	50	μg/L	8350	6120	 	

: 4 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2327651

Sub-Matrix: WATER			Sample ID	WM1	WM2	 	
		Samplii	ng date / time	12-Jul-2023	12-Jul-2023	 	
Compound	CAS Number	LOR	Unit	HK2327651-001	HK2327651-002	 	
EM: Microbiological Testing							
EM002: E. coli		1	CFU/100mL	40	600	 	
EM003: Total Coliforms		1	CFU/100mL	56	850	 	

∴ 5 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2327651

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)	
EA/ED: Physical and Ag	gregate Properties (QC Lot: 5170	9445)							
HK2327588-004	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	5.3	5.2	3.0	
EA/ED: Physical and Ag	gregate Properties (QC Lot: 5171	1046)							
HK2325943-001	Anonymous	ED037: Total Alkalinity as CaCO3		1	mg/L	330	335	1.3	
EA/ED: Physical and Ag	gregate Properties (QC Lot: 5172	2207)							
HK2327755-001	Anonymous	EA002: pH Value		0.1	pH Unit	7.6	7.6	0.0	
HK2327651-002	WM2	EA002: pH Value		0.1	pH Unit	7.2	7.2	0.0	
EA/ED: Physical and Ag	gregate Properties (QC Lot: 5172	2208)							
HK2327651-002	WM2	EA010: Electrical Conductivity @ 25°C		1	μS/cm	132	133	0.0	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5170	970)							
HK2327651-001	WM1	ED045K: Chloride	16887-00-6	1	mg/L	7	7	0.0	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5170	971)							
HK2327651-001	WM1	ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	7	7	0.0	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5173	620)							
HK2327651-001	WM1	EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	0.01	0.0	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5184	374)							
HK2327651-001	WM1	EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	0.0	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5184	416)							
HK2327361-001	Anonymous	EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	71.6	72.6	1.4	
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 5190	580)							
HK2328232-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	23.5	23.1	1.7	
EP: Aggregate Organics	(QC Lot: 5186610)								
HK2328067-005	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	
EP: Aggregate Organics	(QC Lot: 5188867)								
HK2327609-004	Anonymous	EP026C: Chemical Oxygen Demand		5	mg/L	22	22	0.0	
EG: Metals and Major C	cations - Total (QC Lot: 5170772)								
HK2327651-002	WM2	EG032: Iron	7439-89-6	10	μg/L	2370	2350	1.1	
		EG032: Calcium	7440-70-2	50	μg/L	15600	15600	0.2	
		EG032: Magnesium	7439-95-4	50	μg/L	1330	1320	1.0	
		EG032: Potassium	7440-09-7	50	μg/L	2130	2160	1.4	
		EG032: Sodium	7440-23-5	50	μg/L	6120	6060	1.1	

6 of 9

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2327651

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)	
sample ID							Result		
EG: Metals and Major Cations - Total (QC Lot: 5170773)									
HK2327651-002	WM2	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0	
		EG020: Copper	7440-50-8	1	μg/L	2	2	0.0	
		EG020: Lead	7439-92-1	1	μg/L	3	3	0.0	
		EG020: Manganese	7439-96-5	1	μg/L	757	724	4.5	
		EG020: Nickel	7440-02-0	1	μg/L	2	1	0.0	
		EG020: Zinc	7440-66-6	10	μg/L	26	22	16.8	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike Concentration	Spike Red	covery (%)	Recove	ery Limits(%)	RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 5170445)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	97.0		82.4	118		
EA/ED: Physical and Aggregate Properties (QC	Lot: 5171046)										
ED037: Total Alkalinity as CaCO3		1	mg/L	<1	50 mg/L	102		95.0	105		
				<1	2000 mg/L	97.2		95.0	105		
EA/ED: Physical and Aggregate Properties (QC	Lot: 5172208)										
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	146.9 μS/cm	97.8		93.5	106		
				<1	1412 µS/cm	96.6		94.3	105		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5170970)										
ED045K: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	96.4		88.2	108		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5170971)										
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	<1	5 mg/L	105		89.8	108		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5173620)										
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	97.0		92.4	106		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 5184374)											
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2							
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5184416)										
EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	104		89.0	120		

7 of 9

Client : AC

Work Order

: ACUMEN LABORATORY AND TESTING LIMITED

HK2327651

Matrix: WATER			Method Blank (MB	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Splke Concentration	Spike Red	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lo	: 5190580)		!					!			
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	100		89.3	109		
EP: Aggregate Organics (QC Lot: 5169711)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		77.6	118		
EP: Aggregate Organics (QC Lot: 5181462)											
EP020: Oil & Grease		2	mg/L	<2	20 mg/L	97.2		84.2	110		
EP: Aggregate Organics (QC Lot: 5186610)											
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	99.2		78.1	123		
				<1	100 mg/L	106		79.9	119		
EP: Aggregate Organics (QC Lot: 5188867)											
EP026C: Chemical Oxygen Demand			mg/L		25 mg/L	100		92.0	108		
					250 mg/L	99.9		92.3	106		
EG: Metals and Major Cations - Total (QC Lot: 517	70772)										
EG032: Calcium	7440-70-2	50	μg/L	<50	2000 μg/L	96.2		85.0	115		
EG032: Iron	7439-89-6	10	μg/L	<10	2000 μg/L	104		85.0	115		
EG032: Magnesium	7439-95-4	50	μg/L	<50	2000 μg/L	103		85.0	115		
EG032: Potassium	7440-09-7	50	μg/L	<50	2000 μg/L	96.0		85.0	115		
EG032: Sodium	7440-23-5	50	μg/L	<50	2000 μg/L	97.4		85.0	115		
EG: Metals and Major Cations - Total (QC Lot: 517	70773)										
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	5 μg/L	103		85.0	109		
EG020: Copper	7440-50-8	1	μg/L	<1	50 μg/L	99.5		90.0	111		
EG020: Lead	7439-92-1	1	μg/L	<1	50 μg/L	100		89.0	111		
EG020: Manganese	7439-96-5	1	μg/L	<1	50 μg/L	102		85.0	115		
EG020: Nickel	7440-02-0	1	μg/L	<1	50 μg/L	98.1		87.0	110		
EG020: Zinc	7440-66-6	10	μg/L	<10	50 μg/L	104		86.0	114		

: 8 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2327651

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

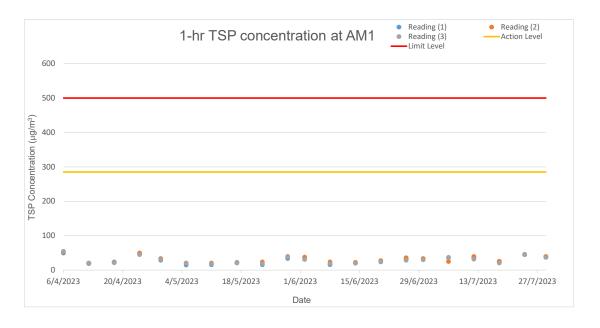
Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
		,		Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
•	ic Nonmetallic Parameters (QC Lot: 5170	970)								
HK2327651-001	,	ED045K: Chloride	16887-00- 6	5 mg/L	84.6		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 5170	971)								
HK2327651-001	WM1	ED041K: Sulphate as SO4 - Turbidimetric		5 mg/L	96.0		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 5173	620)								
HK2327651-001	WM1	EK071K: Reactive Phosphorus as P	14265-44- 2	0.5 mg/L	95.8		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 5184	416)								
HK2327361-001	Anonymous	EK061A: Total Kjeldahl Nitrogen as N		50 mg/L	118		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 5190	580)								
HK2328232-001	Anonymous	EK055K: Ammonia as N	7664-41-7	50 mg/L	93.8		75.0	125		
EP: Aggregate (Organics (QC Lot: 5186610)									
HK2328067-005	Anonymous	EP005: Total Organic Carbon		5 mg/L	92.4		75.0	125		
EP: Aggregate (Organics (QC Lot: 5188867)									
HK2327651-001	WM1	EP026C: Chemical Oxygen Demand		10 mg/L	102		75.0	125		
EG: Metals and	Major Cations - Total (QC Lot: 5170772)									
HK2327651-001	WM1	EG032: Calcium	7440-70-2	2000 μg/L	# Not Determined		75.0	125		
		EG032: Iron	7439-89-6	2000 μg/L	97.6		75.0	125		
		EG032: Magnesium	7439-95-4	2000 μg/L	97.4		75.0	125		
		EG032: Potassium	7440-09-7	2000 μg/L	92.8		75.0	125		
		EG032: Sodium	7440-23-5	2000 μg/L	# Not Determined		75.0	125		
EG: Metals and	Major Cations - Total (QC Lot: 5170773)									
HK2327651-001	WM1	EG020: Cadmium	7440-43-9	5 μg/L	103		75.0	125		
		EG020: Copper	7440-50-8	50 μg/L	99.9		75.0	125		
		EG020: Lead	7439-92-1	50 μg/L	98.7		75.0	125		

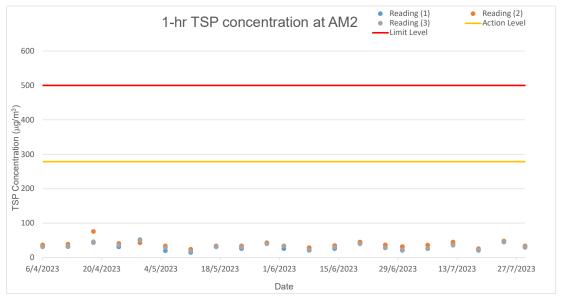
: 9 of 9

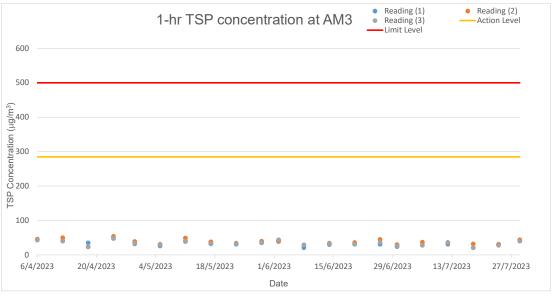
Client

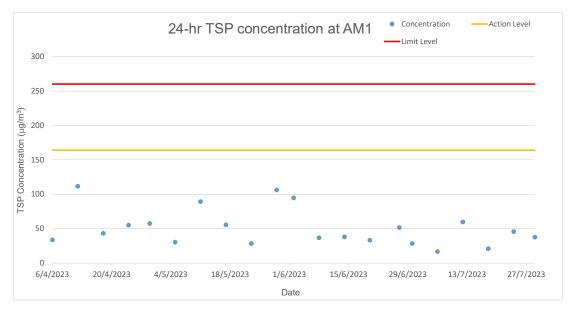
ACUMEN LABORATORY AND TESTING LIMITED

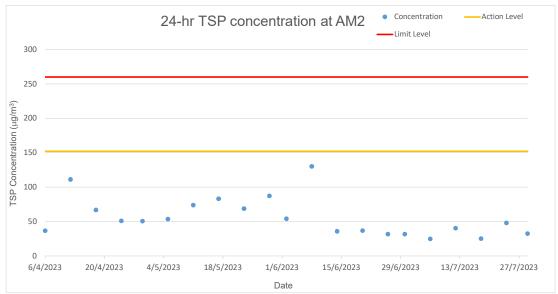
Work Order

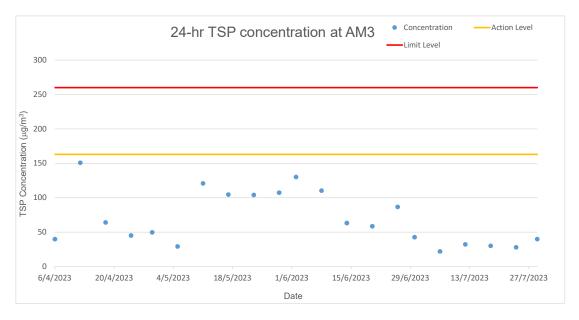

HK2327651

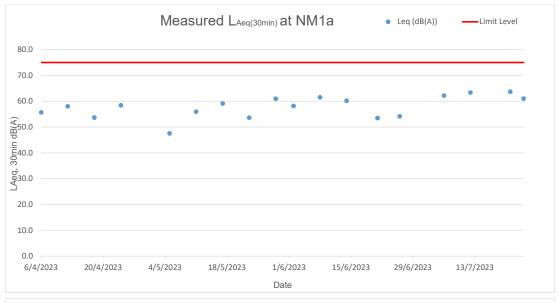


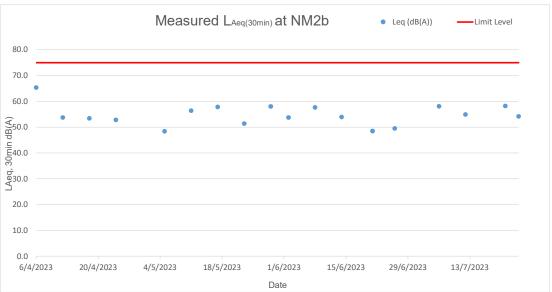

Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Re	эсоvөгу (%)	Recovery Limits (%)		RPD (%)	
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and M	Major Cations - Total (QC Lot: 5170773)	- Continued								
HK2327651-001	WM1	EG020: Manganese	7439-96-5	50 μg/L	93.3		75.0	125		
		EG020: Nickel	7440-02-0	50 μg/L	97.4		75.0	125		
		EG020: Zinc	7440-66-6	50 μg/L	85.2		75.0	125		

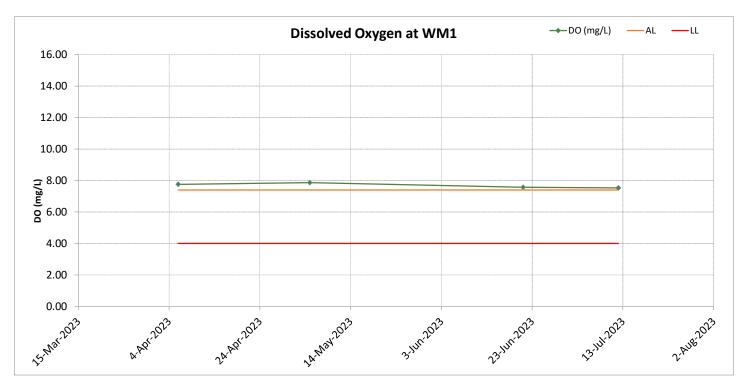

Appendix F Graphical Presentations

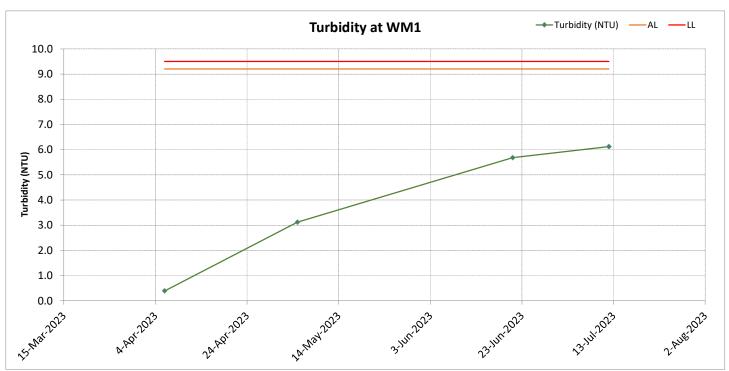

Air Quality

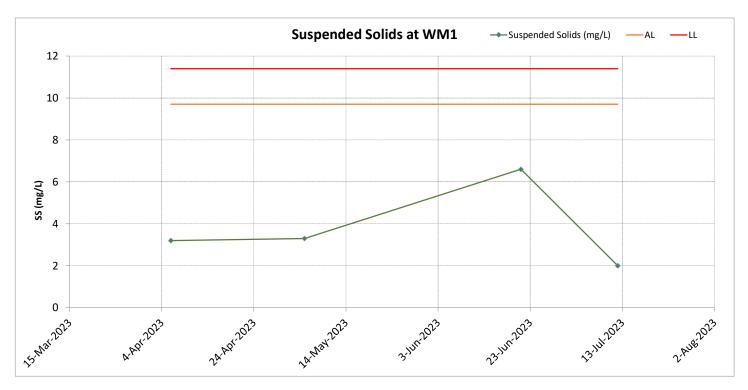


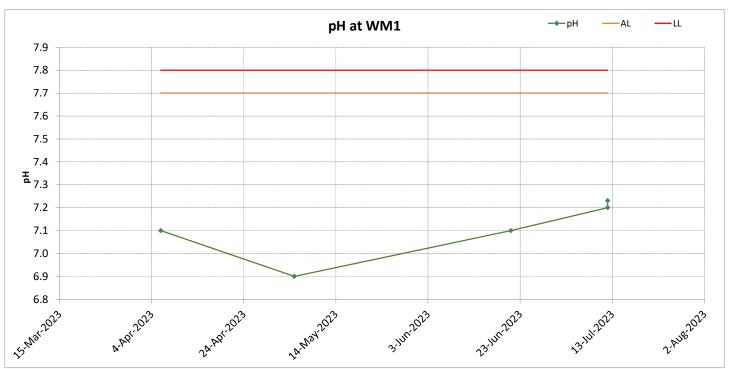


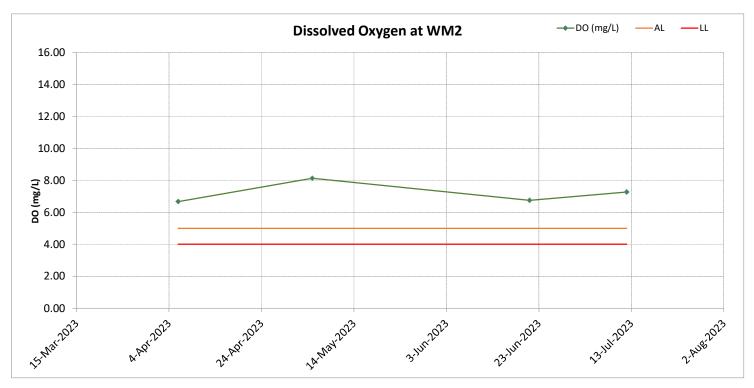


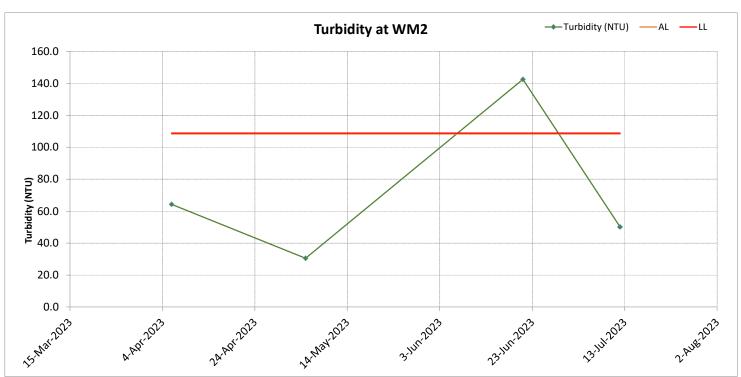


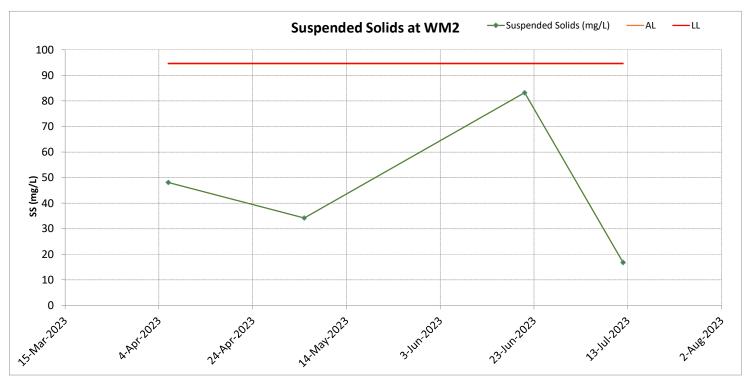

Noise

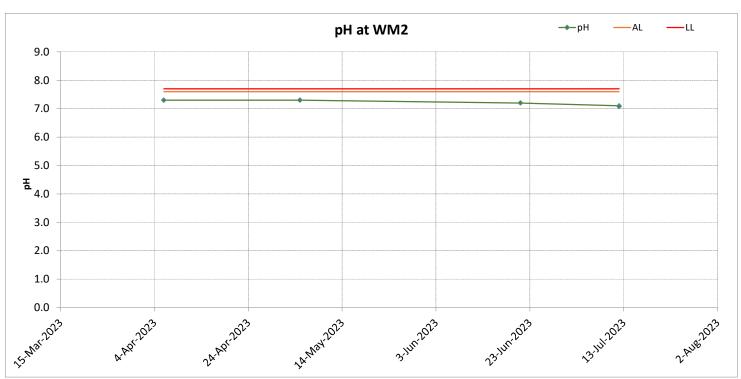





Water Quality







Appendix G Notification of Environmental Quality Limits Exceedance

Notification of Environmental Quality Limits Exceedance

Construction Dust

					Exceedar	nce Count			
Dust Monitoring	Parameter	1-hr TSP	24-hr TSP	Reportir	ng period	Accumulate project to date			
Station	Level Exceedance	1-111 137	24-111 13F	Project related	Non- project replated	Project related	Non- project replated		
AM1	Action	0	0	0	0	0	2		
	Limit	0	0	0	0	0	3		
AM2	Action	0	0	0	0	0	0		
	Limit	0	0	0	0	0	0		
AM3	Action	0	0	0	0	0	4		
	Limit	0	0	0	0	0	3		

Noise Monitoring

Manitarina Station	Monitoring	No. of Exc	eedance
Monitoring Station	Parameter(s)	Action Level	Limit Level
NM1a		0	0
NM2a	LAeq (30mins)	0	0

Notification of Environmental Quality Limits Exceedance

Surface Water Monitoring

						Exceedance Count				
Monitoring	Level		Monitoring Parameter(s)				g period	Accumulate project to date		
Station	Exceedance	Dissolved Oxygen	рН	Turbidity	Suspended Solids	Project related	Non- project replated	Project related	Non- project replated	
VA/N 4.4	Action Level	0	0	0	0	0	0	0	0	
WM1	Limit Level	0	0	0	0	0	0	0	0	
NA/NAO	Action Level	0	0	0	0	0	0	0	0	
WM2	Limit Level	0	0	0	0	0	0	0	1#	

Remarks: # equal to "Investigation In progress"

Landfill Gas (LFG) Monitoring

LFG Monitoring	Monitoring	No. of Exceedance
Station	Parameter(s)	Limit Level
	CH₄	0
Portion A +50 mpD to +70 mpD Platform	CO ₂	0
	O ₂	0

Appendix H Wind Data

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230701_0000	2.2 1.7	<u>Е</u> Е
20230701_0010 20230701_0020	1.9	SE
20230701_0020	2.8	ESE
20230701 0040	2.2	ESE
20230701_0040 20230701_0050	2.2	E
20230701 0100	3.1	Е
20230701_0110 20230701_0120	2.8 3.1	ENE
20230701_0120	3.1	E
20230701 0130	3.1	E
20230701_0140 20230701_0150	1.7 2.2	E ESE
20230701_0130	1.9	ENE
20230701 0200 20230701 0210 20230701 0220	1.4	ENE
20230701 0220	2,2	ESE ESE
20230701 0230 20230701_0240	2.2 2.2 2.2	SE SE
20230701_0240		SE
20230701 0250	1.4	ESE
20230701 0300	1.4	ESE
20230701 0300	1.7	ENE
20230701_0320	2.2	ESE
20230701 0330 20230701_0340	2.2 1.7	ESE ESE
20230701_0340	1.7	ESE E
20230701 0400	1.7	E E
20230701 0410	1.7	ESE
20230701_0420	1.7	E
20230701 0430	1.9	Е
20230701_0440	2.2	ESE
20230701_0450	1.9	Е
20230701 0500	1.9	E
20230701_0510	2.2 2.5	ESE
20230701_0520 20230701_0530	2.5	ESE ESE
20230701_0540	3.1	ESE
20230701_0540	3.3	ESE
20230701_0500	2.5	E
20230701_0610	2.8	E
20230701_0620	2.8	ESE
20230701 0630	1.9	ESE
20230701_0640	2.5	ESE
20230701_0650	2.5	ESE
20230701 0700	2.5 1.9	ESE ESE
20230701_0710 20230701_0720	2.5	ESE
20230701_0720	0.6	SE
20230701_0740	0.3	- -
20230701_0740	0.8	SE
20230701 0800	0.6	WSW
20230701 0810	0.3	SSW
20230701_0820	1.7	SE
20230701_0830	0.6	SSE
20230701_0840	1.1	SE
20230701_0850 20230701_0900	1.4 1.4	SE ESE
20230701_0900	1.4	ESE
20230701_0910	1.4	ESE
20230701_0920	1.1	E
20230701 0940	1.1	E
20230701 0950	1.4	ESE
20230701_1000	1.4	ESE
20230701 1010	1.4	SE
20230701_1020	0.8	ENE
20230701_1030	0.8	W
20230701 1040 20230701 1050	1.1	WNW SE
20230701_1050	0.8 0.6	SE WNW
20230701_1100	1.4	AN TA AN
20230701 1110	2.8	NNE
20230701 1130	3.1	NNE
20230701 1140	3.3	NNE
20230701_1150	2.8	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230701_1200	2.8	N
20230701 1210	3.9	N
20230701_1220	3.3	NNE
20230701_1230 20230701_1240	2.8 2.8	N N
20230701_1240	2.8	N N
20230701_1200	3.3	NNE
20230701 1310	3.3	N
20230701_1320	3.6	N
20230701_1330 20230701_1340	3.9	NNE
20230701_1340 20230701_1350	3.6 2.8	NE NE
20230701_1390	2.8	NNE
20230701_1410	2.8	NE
20230701_1420	3.3	NE
20230701 1430 20230701 1440	2.8 3.3	NNE NNE
20230701_1440	3.3	NNE
20230701_1100	2.5	NNE
20230701_1510	2.5	NNE
20230701_1520	2.5	NNE
20230701 1530 20230701 1540	4.4 5.3	NNE NNE
20230701_1340	5.5	NNE
20230701_1590	3,9	NNE
20230701_1610	5	NNE
20230701_1620	5.3	NNE
20230701 1630 20230701 1640	5.3 5.8	NNE NNE
20230701_1640	6.4	NNE NNE
20230701_1000	6.4	NNE
20230701_1710	5.8	NNE
20230701_1720	6.1	NNE
20230701 1730 20230701 1740	4.7 4.7	NNE NNE
20230701_1740	5	NNE
20230701 1800	5,3	NNE
20230701_1810	4.4	NNE
20230701_1820	4.7	NNE
20230701 1830 20230701 1840	3.3 3.3	NNE NE
20230701_1840	3.6	NNE
20230701 1900	2.8	NE
20230701_1910	2.5	NE
20230701_1920	3.9	NNE
20230701 1930 20230701 1940	4.7 4.2	NNE NNE
20230701_1950	3.1	NNE
20230701 2000	4.7	NNE
20230701 2010	3.9	NNE
20230701_2020 20230701_2030	4.7 3.9	NNE NNE
20230701_2030	3.3	NNE
20230701_2050	3.6	N
20230701 2100	3.3	NNE
20230701_2110 20230701_2120	3.3	N
20230701_2120 20230701_2130	3.3 3.1	NNE N
20220701 2140	2.8	N N
	2.8	N
20230701_2200	2.5 2.5	N
20230701 2210	2.5	N
20230701_2220 20230701_2230	3.1	NNE NNE
20230701_2230	2.8	NNE
20230701 2250	4.2	NNE
20230701 2300	3.3	NNE
20230701 2310	2.8	NNE
20230701_2320 20230701_2330	3.6	NNE NNE
20230701_2330	3.3	NNE
20230701_2350	3.1	NNE

YYYYMMBB HHMM Wind Speed (mls) Wind Direction (From) 20230702 0010 3.3 N N 20230702 0010 4.7 N 20230702 0020 3.9 NNE 20230702 0030 5 NNE 20230702 0030 5 NNE 20230702 0040 4.7 NNE 20230702 0100 5.6 NNE 20230702 0100 5.6 NNE 20230702 0110 4.7 NNE 20230702 0110 4.7 NNE 20230702 0130 5.3 NNE 20230702 0130 5.3 NNE 20230702 0130 5.3 NNE 20230702 0150 4.7 NNE 20230702 0150 4.7 NNE 20230702 0200 4.7 NNE 20230702 0300 4.4 NNE 20230702 0300 4.4 NNE 20230702 0300 4.4 NNE 20230702 0300 4.4 NNE 20230702 0310 3.3 N 20230702 0310 3.3 N 20230702 0310 3.3 N NNE 20230702 0350 3.9 NNE 20230702 0440 4.4 NNE 20230702 0440 4.4 NNE 20230702 0440 4.7 NNE 20230702 0440 4.7 NNE 20230702 0450 3.9 NNE 20230702 0450 3.1 NNE 20230702 0450 3.3 NNE 20230702 0450 3.3 NNE 20230702 0450 3.3 NNE	Date & Time		
20230702 0000 3.3		Wind Speed (m/s)	Wind Direction (From)
20230702 0020	20230702 0000		N
20230702 0030	20230702_0010	4.7	
20030702 0050			
20230702 0100	20230702_0030		
20230702 0100 5.6 NNE 20230702 0110 4.7 NNE 20230702 0110 4.7 NNE 20230702 0120 4.4 NNE 20230702 0130 5.3 NNE 20230702 0140 4.7 NNE 20230702 0150 4.7 NNE 20230702 0210 4.7 NNE 20230702 0210 4.7 NNE 20230702 0210 4.7 NNE 20230702 0220 4.7 NNE 20230702 0220 4.7 NNE 20230702 0220 4.7 NNE 20230702 0230 5 NNE 20230702 0230 5 NNE 20230702 0240 4.2 NNE 20230702 0300 4.4 NNE 20230702 0300 4.4 NNE 20230702 0300 4.4 NNE 20230702 0300 3.3 N 20230702 0330 3.9 N 20230702 0330 3.9 N 20230702 0350 3.9 NNE 20230702 0350 3.9 NNE 20230702 0350 3.9 NNE 20230702 0350 3.9 NNE 20230702 0400 4.7 NNE 20230702 0410 4.7 NNE 20230702 0410 4.7 NNE 20230702 0440 4.4 NNE 20230702 0440 4.7 NNE 20230702 0440 4.7 NNE 20230702 0440 4.7 NNE 20230702 0440 4.7 NNE 20230702 0450 3.9 NNE 20230702 0450 3.9 NNE 20230702 0550 3.9 NNE 20230702 0550 3.9 NNE 20230702 0550 4.2 NNE 20230702 0550 3.9 NNE 20230702 0550 4.2 NNE 20230702 0550 3.9 NNE 20230702 0			
20230702 0110			
20230702 0120			
20230702 0130			
20230702 0150			
20230702 0200	20230702_0140	4.7	NNE
20230702 0210	20230702_0150	4.7	N
20030702 0220			
20230702 0230 5			
20230702 0240			
20230702 0300			
20230702 0300			
20230702 0310 3.3 N			
20230702 0330			
20230702 0340 3.3 N			
20230702 0350 3.9 NNE 20230702 0410 4.7 NNE 20230702 0410 4.7 NNE 20230702 0410 4.7 NNE 20230702 0420 3.9 NNE 20230702 0430 5 NNE 20230702 0430 5 NNE 20230702 0430 4.0 4.4 NNE 20230702 0430 3.9 NNE 20230702 0500 4.2 NNE 20230702 0510 2.8 NNE 20230702 0510 2.8 NNE 20230702 0510 2.8 NNE 20230702 0530 4.2 NNE 20230702 0530 3.9 NNE 20230702 0530 3.9 NNE 20230702 0550 3.9 NNE 20230702 0550 3.9 NNE 20230702 0500 3.1 NNE 20230702 0500 0.3 NNE	20230702 0330	3.9	N
20230702 0400			N
20230702 0410 4.7 NNE 20230702 0420 3.9 NNE 20230702 0430 5 NNE 20230702 0430 5 NNE 20230702 0440 4.4 NNE 20230702 0450 3.9 NNE 20230702 0500 4.2 NNE 20230702 0500 4.2 NNE 20230702 0500 4.2 NNE 20230702 0520 4.2 NNE 20230702 0530 4.7 NNE 20230702 0530 4.7 NNE 20230702 0550 3.9 NNE 20230702 0550 3.9 NNE 20230702 0560 3.9 NNE 20230702 0610 3.1 NNE 20230702 0610 3.1 NNE 20230702 0620 3.6 NNE 20230702 0630 2.5 NNE 20230702 0630 3.9 NNE 20230702 0630 3.1 NNE 20230702 0630 3.1 NNE 20230702 0630 3.5 NNE 20230702 0640 2.2 NNE 20230702 0700 0.8 N 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0730 1.1 NNE 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0800 3.9 NE 20230702 0800 3.9 NE 20230702 0800 3.6 NE 20230702 0800 3.9 NE 20230702 0800 3.6 NE 20230702 0800 3.6 NE 20230702 0800 3.9 NE 20230702 0800 3.6 NE 20230702 0800 3.7 NE 20230702 0800 3.8 NE 20230702 0800 3.3 NNE	20230702_0350	3.9	
20230702 0420 3.9 NNE 20230702 0440 4.4 NNE 20230702 0440 4.4 NNE 20230702 0450 3.9 NNE 20230702 0500 4.2 NNE 20230702 0510 2.8 NNE 20230702 0510 2.8 NNE 20230702 0510 2.8 NNE 20230702 0520 4.2 NNE 20230702 0530 4.7 NNE 20230702 0530 3.9 NNE 20230702 0540 3.9 NNE 20230702 0550 3.9 NNE 20230702 0560 3.9 NNE 20230702 0600 3.9 NNE 20230702 0600 3.1 NNE 20230702 0630 2.5 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0720 1.1 NNE 20230702 0730 1.4 ENE 20230702 0740 1.1 E 20230702 0740 1.1 E 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0800 2.5 NE 20230702 0800 3.6 NE 20230702 0800 3.7 NE 20230702 0800 3.8 NE 20230702 0800 3.8 NE 20230702 0800 3.3 NE	20230702 0400		NNE
20230702 0450	20230702_0410	4.7	
20230702 0450	20230702_0420		
20230702 0450 3.9 NNE 20230702 0500 4.2 NNE 20230702 0510 2.8 NNE 20230702 0520 4.2 NNE 20230702 0530 4.7 NNE 20230702 0530 4.7 NNE 20230702 0540 3.9 NNE 20230702 0600 3.9 NNE 20230702 0610 3.1 NNE 20230702 0630 2.5 NNE 20230702 0630 2.5 NNE 20230702 0650 1.1 NNE 20230702 0700 0650 1.1 NNE 20230702 0700 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0740 1.1 E 20230702 0800 2.5 NE 20230702 0800 2.5 NE 20230702 0810 3.3 NE 20230702 0830 3.9 NE 20230702 0830 3.9 NE <t< td=""><td>20230702 0430</td><td></td><td></td></t<>	20230702 0430		
20230702 0500			
20230702 0510 2.8 NNE 20230702 0520 4.2 NNE 20230702 0530 4.7 NNE 20230702 0540 3.9 NNE 20230702 0550 3.9 NNE 20230702 0600 3.9 NNE 20230702 0610 3.1 NNE 20230702 0630 2.5 NNE 20230702 0640 2.2 NNE 20230702 0650 1.1 NNE 20230702 0650 1.1 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0700 0.8 N 20230702 0700 0.8 N 20230702 0720 1.1 NNE 20230702 0720 1.1 NNE 20230702 0730 1.4 ENE 20230702 0740 1.1 <t< td=""><td></td><td></td><td></td></t<>			
20230702 0530 4.7 NNE 20230702 0540 3.9 NNE 20230702 0550 3.9 NNE 20230702 0600 3.9 NNE 20230702 0610 3.1 NNE 20230702 0610 3.1 NNE 20230702 0620 3.6 NNE 20230702 0630 2.5 NNE 20230702 0640 2.2 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0730 1.4 ENE 20230702 0740 1.1 ENE 20230702 0740 1.1 ENE 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0800 3.3 NE 20230702 0800 3.3 NE 20230702 0800 3.3 NE 20230702 0800 3.9 NE 20230702 0800 3.0 NE	20230702 0510	2.8	
20230702 0530 4.7 NNE 20230702 0540 3.9 NNE 20230702 0550 3.9 NNE 20230702 0600 3.9 NNE 20230702 0610 3.1 NNE 20230702 0610 3.1 NNE 20230702 0620 3.6 NNE 20230702 0630 2.5 NNE 20230702 0640 2.2 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0730 1.4 ENE 20230702 0740 1.1 ENE 20230702 0740 1.1 ENE 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0800 3.3 NE 20230702 0800 3.3 NE 20230702 0800 3.3 NE 20230702 0800 3.9 NE 20230702 0800 3.0 NE	20230702_0520	4.2	NNE
20230702 0550 3.9 NNE 20230702 0600 3.9 NNE 20230702 0610 3.1 NNE 20230702 0610 3.1 NNE 20230702 0620 3.6 NNE 20230702 0620 3.6 NNE 20230702 0620 3.6 NNE 20230702 0650 1.1 NNE 20230702 0650 1.1 NNE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0730 1.4 ENE 20230702 0730 1.4 ENE 20230702 0730 1.4 ENE 20230702 0730 1.4 ENE 20230702 0740 1.1 E 20230702 0740 1.1 E 20230702 0740 1.1 E 20230702 0740 1.4 -	20230702 0530	4.7	
20230702 0610 3.1 NNE 20230702 0630 3.6 NNE 20230702 0630 2.5 NNE 20230702 0640 2.2 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0730 1.1 NNE 20230702 0730 1.4 ENE 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0810 3.3 NE 20230702 0820 3.6 NE 20230702 0830 3.9 NE 20230702 0840 4.4 NE 20230702 0850 3.9 NE 20230702 0900 3.6 ENE 20230702 0910 3.1 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930<	20230702_0540		
20230702 0610 3.1 NNE 20230702 0630 3.6 NNE 20230702 0630 2.5 NNE 20230702 0640 2.2 NNE 20230702 0650 1.1 NNE 20230702 0700 0.8 N 20230702 0710 1.1 NNE 20230702 0730 1.1 NNE 20230702 0730 1.4 ENE 20230702 0750 1.4 - 20230702 0800 2.5 NE 20230702 0810 3.3 NE 20230702 0820 3.6 NE 20230702 0830 3.9 NE 20230702 0840 4.4 NE 20230702 0850 3.9 NE 20230702 0900 3.6 ENE 20230702 0910 3.1 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930<	20230702_0550		
20230702 0620 3.5	20230702 0600	3.9	
20230702 0630	20230702_0010		
20230702 0640 2.2 NNE 20230702 0700 0.8 N NE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0710 1.1 NNE 20230702 0720 1.1 NNE 20230702 0730 1.4 ENE 20230702 0740 1.1 E 20230702 0740 1.1 E 20230702 0750 1.4 -		2.5	
20230702 0560			
20230702 0710		1.1	
20230702 0720	20230702 0700		N
20230702 0730	20230702_0710		
20230702 0740			
20230702 0800 2.5 NE 20230702 0800 3.3 NE 20230702 0810 3.3 NE 20230702 0810 3.3 NE 20230702 0820 3.6 NE 20230702 0830 3.9 NE 20230702 0840 4.4 NE 20230702 0850 3.9 NE 20230702 0850 3.9 NE 20230702 0850 3.9 NE 20230702 0910 3.1 NE 20230702 0910 3.3 NNE 20230702 0910 3.3 NNE 20230702 0930 3.9 NNE 20230702 1000 4.4 NNE 20230702 1000 4.2 NNE 20230702 1000 4.7 NNE			
20230702 0800 2.5 NE			E
20230702 0810 3.3 NE 20230702 0830 3.6 NE 20230702 0830 3.9 NE 20230702 0840 4.4 NE 20230702 0850 3.9 NE 20230702 0900 3.6 ENE 20230702 0910 3.1 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NNE 20230702 0940 3.3 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1000 4.2 NNE 20230702 1030 3.3 NNE 20230702 1030 3.3 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE			- NIC
20230702 0830 3.6 NE			NE NE
20230702 0840 3.9 NE 20230702 0840 4.4 NE 20230702 0850 3.9 NE 20230702 0850 3.9 NE 20230702 0900 3.6 ENE 20230702 0910 3.1 NE 20230702 0920 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.3 NE 20230702 0930 3.9 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1000 4.4 NNE 20230702 1020 4.2 NNE 20230702 1020 4.2 NNE 20230702 1040 3.9 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE 20230702 1100 4.7 NNE 202			
20230702 0840		3.9	
20230702 0850 3.9 NE			NE
20230702 0900 3.6 ENE 20230702 0910 3.1 NE 20230702 0920 3.3 NE 20230702 0930 3.3 NE 20230702 0940 3.3 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1000 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 5.3 NNE 20230702 1100 5.3 NNE	20230702_0850	3.9	NE
20230702 0920 3.3 NE 20230702 0930 3.3 NE 20230702 0940 3.3 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1010 4.2 NNE 20230702 1020 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1030 3.3 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1050 4.2 NNE 20230702 1000 4.7 NNE 20230702 1110 5.3 NNE 20230702 1100 5.3 NNE 20230702 1100 5.3 NNE 20230702 1110 5.3 NNE 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100 5.3 20230702 1100			ENE
20230702 0930 3.3 NE 20230702 0940 3.3 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1010 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1000 4.7 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE			
20230702 0940 3.3 NNE 20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1010 4.2 NNE 20230702 1030 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE			
20230702 0950 3.9 NNE 20230702 1000 4.4 NNE 20230702 1010 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1000 4.7 NNE 20230702 1100 5.3 NNE 20230702 1110 5.3 NNE			
20230702 1000 4.4 NNE 20230702 1010 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1101 5.3 NNE			
20230702 1010 4.2 NNE 20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1000 4.7 NNE 20230702 110 5.3 NNE			
20230702 1020 4.2 NNE 20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1100 5.3 NNE			
20230702 1030 3.3 NNE 20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE			
20230702 1040 3.9 NNE 20230702 1050 4.2 NNE 20230702 1100 4.7 NNE 20230702 1110 5.3 NNE	20230702 1020	3.3	
20230702_1100 4.7 NNE 20230702_1110 5.3 NNE	20230702 1040	3.9	
20230702_1100 4.7 NNE 20230702_1110 5.3 NNE	20230702_1050	4.2	
20230702 1110 5.3 NNE	20230702_1100	4.7	NNE
	20230702 1110		
	20230702_1120	3.9	
20230702_1130 4.4 NNE			
20230702 1140 4.4 NNE	20230702 1140	4.4	
	20230/02_1150)	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230702_1200	3.9	NNE NNE
20230702_1210	5.3	NNE
20230702 1220	5	NNE
20230702 1230	4.4	NNE
20230702_1240 20230702_1250	3.3 4.7	NNE
20230702_1250	4.7	N N
20230702_1300	4.7	N N
20230702 1320	4.2	NNE
20230702_1330	4.4	N
20230702_1340	4.2	N
20230702_1350 20230702_1400	4.7 3.6	N N
20230702 1410	4.4	N N
20230702 1420	3.9	Ň
20230702 1430	4.2	N
20230702_1440	4.2	NNE
20230702_1450 20230702_1500	3.3	NNE
20230702 1500	3.6 3.3	NNE NNE
20230702_1510	2.8	NNE
20230702 1530	3.3	NNE
20230702_1540	2.8	NNE
20230702_1550	3.1	NNE
20230702 1600 20230702 1610	2.5 2.5	NNE NNE
20230702_1010	2.5	NNE
20230702 1630	2.5	NNE
20230702_1640	1.9	N
20230702_1650	1.9	NNE
20230702 1700 20230702 1710	1.7 1.7	NNE NNE
20230702_1710	1.7	NNE
20230702 1730	1.1	NNE
20230702_1740	0.3	-
20230702_1750	0.3	SSE
20230702 1800 20230702 1810	0.3 0.3	WSW NNE
20230702_1810	1.4	N N
20230702_1830	0.6	NNE
20230702_1840	0	N
20230702_1850	0	N
20230702 1900 20230702 1910	0.3 0.8	SSW NNE
20230702_1910	1.1	NNE
20230702 1930	0.6	NE
20230702_1940	0.3	-
20230702_1950	1.4	NNE
20230702 2000	1.9	NE NE
20230702 2000 20230702 2010 20230702_2020	2.8 1.4	NNE
20230702_2020 20230702_2030	0.8	N
20230702_2040	1.4	NE
20230702_2050	1.7	NW
20230702_2100	0.8	NNE ENE
20230702_2110	1.7 0.8	WNW
20230702_2120	0.8	W
20330702 2050 20230702 2100 20230702 2110 20230702 2120 20230702 2130 20230702 2150 20230702 2150 20230702 2150 20230702 2210 20230702 2200 20230702 2220 20230702 2220 20230702 2220 20230702 2230 20230702 2240 20230702 2240 20230702 2250 20230702 2250 20230702 2250 20230702 2300	0.8	WSW
20230702_2150	0.3	SW
20230702_2200	0.8	SSW W
20230702 2210	0.3	SW
20230702 2230	0.5	N N
20230702 2240	0.8	NNW
20230702_2250	0	N
	0.3	NW
20230702 2310 20230702 2320	1.1 0.8	N N
20230702_2320	1.1	N N
20230702 2340	0.3	
20230702_2350	1.4	-

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230703 0000	1.7	N
20230703_0000	3.3	NNE NNE
20230703_0010 20230703_0020	3.3 3.6	NNE
20230703 0030	1.7	N
20230703_0040 20230703_0050	1.7 1.7 2.2 2.8	N
20230703_0050	2.2	NNE
20230703 0100	2.8	NNE
20230703_0110 20230703_0120	3.3 3.9	N
20230703_0120	3.9	NNE
20230703_0130	2.8	N
20230703_0140 20230703_0150	3.1	N N
20230703_0130	2.8 3.1 2.2 3.3	N N
20230703 0200	2.1	N N
20230703_0210 20230703_0220	3.3	NE NE
20230703_0230	0.8	ESE
20230703 0230 20230703 0240	0.3	ESE WSW
20230703 0250	2.2 2.5 2.2	N
20230703 0300 20230703_0310	2.5	N
20230703_0310	2.2	NNW
20230703_0320	2.8	N
20230703 0330	3.3 3.3	NNE
20230703_0340	3.3	NNE
20230703_0350	3.1	NNE
20230703 0400 20230703 0410	3.3	N NNE
20230703_0410	3.3	NNE N
20230703_0420	4.2	NNE
20230703 0430	3.3	NNE
20230703_0450	4.2	N
20230703 0500	2.8	NNE
20230703 0510	2.8 2.8	NNE
20230703 0520	3.3	NNE
20230703 0530	1.4	N
20230703_0540	0.8	ESE
20230703_0550	0.3	ENE
20230703 0600	2.8	NNE
20230703_0610	3.1	N
20230703_0620 20230703_0630	4.4 2.8	NNE NNE
20230703 0640	0.8	NNE NE
20230703_0650	0.3	N N
20230703_0000	0.3	NNW
20230703 0710	1.4	NW
20230703_0720	2.8	N
20230703 0730	3.3	N
20230703_0740	3.3	NNE
20230703_0750	4.2	NNE
20230703 0800	3.3	NNE
20230703_0810	1.7	NE NINTE
20230703_0820 20230703_0830	1.7	NNE N
20230703_0840	3.3	NNE NNE
20230703_0840	3.3	NNE
20230703_0900	3.3	NNE
20230703_0910	3,3	N
20230703 0920	3.1	N
20230703_0930	3.3	N
20230703 0940	3.3	N
20230703_0950	3.9	N
20230703_1000	3.9	N
20230703 1010	3.6	N
20230703_1020	3.3	N
20230703_1030	3.1	NNE
20230703 1040	3.9 2.8	NNE NNE
20230703_1050 20230703_1100	2.8	NNE N
20230703_1100	1.7	IN
20230703_1110	1.7	NE
20230703_1120	2.2	NNE
20230703 1140	2.8	ENE
20230703 1150	2.2	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230703_1200	2.5	NNE
20230703_1210	2.8	NNE
20230703_1210	1.7	- ININL
20230703 1230	2.2	-
20230703 1240	2.5	E
20230703_1250	2.5	-
20230703_1300	2.2	-
20230703_1310	2.8	E
20230703_1320 20230703_1330	2.2	E E
20230703_1330	1.9	NNE
20230703_1350	3.3	TNINL
20230703_1400	1.7	
20230703_1410	3.1	NE
20230703 1420	1.7	SE
20230703 1430	2.5	Е
20230703_1440	2.5	ENE
20230703_1450	1.7	-
20230703 1500 20230703 1510	1.9	NE ENE
20230703_1510	2.5	ENE E
20230703_1520	2.8	E
20230703 1540	3.1	ESE
20230703 1550	2.8	ESE
20230703 1600	2.8	Е
20230703_1610	3.3	ESE
20230703_1620	3.9	ESE
20230703 1630	3.6	E
20230703_1640 20230703_1650	3.6 3.3	<u>Е</u> Е
20230703_1650 20230703_1700	3.9	E
20230703 1710	3.6	<u>е</u> Е
20230703_1710	3.3	ESE
20230703 1730	3.1	Е
20230703 1740	3.1	ESE
20230703_1750	2.8	ESE
20230703 1800	3.3	ESE
20230703_1810	3.3	ESE
20230703_1820	3.3	E
20230703 1830 20230703 1840	3.1 2.2	ESE E
20230703_1840	2.2	ESE
20230703_1830	2.5	SE
20230703 1910	2.8	SE
20230703_1920	2.5	ESE
20230703 1930	1.9	ESE
20230703_1940	2.5	ESE
20230703_1950	1.7	ESE
20230703 2000	1.9	SE
20230703_2010 20230703_2020	2.5 2.8	SE SE
20230703_2020	3,3	SE SE
20230703_2040	2.8	SE
	3.3	SE
20230703_2100	2.5	SE
20230703_2110	2.2 2.2	SE
20230703_2120	2.2	SE
20230703_2130	2.8	SE
20230703_2140	2.8	ESE
20230703 2000 20230703 2100 20230703 2110 20230703 2120 20230703 2130 20230703 2150 20230703 2150 20230703 2200 20230703 2200 20230703 2200 20230703 2200 20230703 2200 20230703 2200 20230703 2200	3.1 3.1	ESE E
20230703_2200	3.1	ESE
20230703 2210	2.5	
20230703 2230	2.5 2.8	<u>Е</u> Е
20230703 2240	2.5	ESE
20230703 2240 20230703_2250	2.2	Е
20230703 2300	1.7	ESE
20230703 2310	1.7	ESE
20230703_2320	1.4	ESE
20230703_2330	1.4	E
20230703 2340	1.4	ENE
20230703_2350	2.5	E

	, ,	
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230704_0000	2.5	E
20230704_0010 20230704_0020	2.8 2.2	E
20230704_0020	2.2	Е
20230704_0030	2.5	E
20230704_0040 20230704_0050	2.5	E
20230704_0050	2.2	E
20230704 0100	1.7	ESE
20230704 0110	1.7	ESE
20230704_0110 20230704_0120	1.4	ESE ESE
20230704 0130	1.1	SSE ESE ESE
20230704_0140 20230704_0150	1.4	ESE
20230704_0150	1.4	ESE
20230704_0200	0.8	S
20230704 0210	1.7	S SSE
20230704 0200 20230704 0210 20230704 0220	1.7 1.7	SE
20230701_0220	1.4	SSE
20230704 0230 20230704_0240	0.3	SSE WSW
20230704_0250	0.3	WSW
20230704_0230	0.3	WSW
20230704 0300 20230704 0310	0.3 0.8	SSW
20230704_0310	0.8	
20230704_0320	0.8	S
20230704 0330	0.8	SSW
20230704_0340	0.3	SSW
20230704 0350	0.3	WSW
20230704 0400	0.8	S
20230704_0410	0.8	SSE
20230704 0420	1.1	SE
20230704 0430	1.1	ESE
20230704_0440	1.1	SE
20230704_0450	0.6	SSW
20230704 0500	0.3	SSW
20230704_0510	0.3	-
20230704_0520	0.8	WNW
20230704 0530	0.8	SE
20230704_0540	0.8	ESE
20230704_0550	0.8	ESE
20230704_0550	0.3	LOL
20230704_0610	0.5	N N
20230704_0620	0.3	ENE
20230704_0620		ENE
20230704 0030	0.6	
20230704_0640	0.3 0.3	N W
20230704_0650		
20230704 0700	0	N
20230704_0710	0	N
20230704_0720	0.3	WNW
20230704 0730	0	N
20230704_0740	0	N
20230704_0750	0.3	-
20230704 0800	0.8	ESE
20230704_0810	1.4	E
20230704_0820	1.7	ENE
20230704_0830	2.2	ESE
20230704_0840	2.2	ESE
20230704_0850	2.2	Е
20230704_0900	2.2	ESE
20230704 0910	2.5	ESE
20230704 0920	3.3	E
20230704_0930	3.3	ESE
20230704 0940	2.2	ESE
20230704 0950	2.5	ESE
20230704_1000	1.7	E
20230704 1010	2.2	ENE
20230704_1010	2.5	ESE
20230704_1020	2.2	E
20230704_1030	2.2	ENE
20230704_1050	2.8	ENE E
20230704_1000	2.5	ESE
20230704_1100	3.3	E E E
20230704_1110	2.5	<u>Е</u> Е
20230704_1120	2.5	
		SE
20230704 1140	2.8	E
20230704_1150	2.2	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230704_1200	2.8	SE
20230704 1210	1.7	ESE
20230704 1220	1.7	ESE SSE
20230704_1230	2.2 2.2	SSE
20230704_1240 20230704_1250	2.2 2.2	SE SSE
20230704_1250	1.4	ENE ENE
20230704_1310	1.9	E
20230704_1320	2.2	ESE
20230704 1330	1.4	W
20230704_1340 20230704_1350	2.5 2.5	NE .
20230704_1350 20230704_1400	2.8	E E
20230704_1410	2.8	E E
20230704_1420	3.1	Е
20230704 1430	2.8	Е
20230704_1440	2.8	ESE
20230704_1450 20230704_1500	2.8 2.8	E E
20230704 1510	2.8	E E E E E E E E E E E E E E E E E E E
20230704 1520	2.8	ESE
20230704 1530	3.3	E
20230704_1540	3.3	E
20230704_1550 20230704_1600	3.3	ESE E
20230704 1600 20230704 1610	3.9	<u>Е</u> Е
20230704_1010	4.4	E
20230704 1630	3.9	E
20230704_1640	3.9	E
20230704_1650	3.9	E
20230704 1700 20230704 1710	3.9 3.3	<u>Е</u> Е
20230704_1710	3.9	E E
20230704 1730	2.8	ESE
20230704_1740	3.1	ESE
20230704_1750	2.8	ESE
20230704 1800 20230704 1810	2.8	SE SE
20230704_1810	1.1 1.4	SE SSE
20230704 1830	2.2	SSE
20230704_1840	2.2	SE
20230704_1850	2.8	SE
20230704 1900 20230704 1910	2.2 2.5	SE SE
20230704_1910	2.2	ESE
20230704_1930	2.8	ESE
20230704_1940	2.8	ESE
20230704_1950	3.1	ESE
20230704 2000	2.8	ESE
20230704_2010 20230704_2020	3.3 2.2 2.2	ESE ESE
20230704_2020	2.2	ESE
20230704_2040	1.7	ESE
	2.5	SE
20230704_2100	2.5	SE
20230704_2110	2.8 1.9	SE ESE
20230704_2120	2.2	ESE
20230704 2140	1.4	ESE
20330704 2050 20230704 2100 20230704 2110 20230704 2120 20230704 2130 20230704 2150 20230704 2150 20230704 2210 20230704 2210 20230704 2220 20230704 2220 20230704 2220 20230704 2230 20230704 2240 20230704 2240 20230704 2240 20230704 2250 20230704 2250 20230704 2250 20230704 2300	1.4	ESE ESE
20230704_2200	1.7 1.7	ESE
20230704 2210		ESE
20230704_2220	1.4 1.7	ESE ESE
20230704_2230		ESE
20230704_2250	2.2 2.2	ESE
	2.5	SE
20230704 2310	2.2	SE
20230704_2320 20230704_2330	2.5	SE
20230704_2330	1.1	ESE
20230704_2350	1.1	ESE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230705 0000	2,2	ESE
20230705_0010 20230705_0020	1.9 1.7	ESE
20230705_0020		ENE
20230705 0030	1.4	E
20230705_0040 20230705_0050	1.1	ESE
20230705_0050	1.9	SE
20230705_0100	1.4	SE
20230705_0110 20230705_0120	1.1	E
20230705_0120	0.8	ENE
20230705_0130	0.3	NNE
20230705_0140 20230705_0150	0.6	NE
20230705_0130	0.6 0.8	NE NE
20230705 0200 20230705 0210 20230705 0220	0.8	
20230705_0210	1.4	<u>Е</u> Е
20230705_0220	1.7	E
20230705_0230 20230705_0240	2.2 1.7	E
20230705_0250	1.7	<u>Е</u> Е
20220705 0200	1.7	ESE
20230705 0310	1.4	ESE
20230705_0320	1.4	ESE
20220705 0220	1.7	SE
20230705 0340	1.1	ESE
20230705_0350	0.3	-
20230705 0400	0.3	WSW
20230705 0410	0	N
20230705_0420	0	N
20230705 0430	0.3	SSE
20230705_0440	0.6	SE
20230705_0450	0.3	ESE
20230705 0500	0.6	S
20230705_0510	0.8	NNE
20230705_0520	0.3	-
20230705 0530	0.3	S
20230705_0540	0.3	NW
20230705_0550	0.3	E
20230705 0600	0.3	NE
20230705_0610	0	N
20230705_0620	0.3	S N
20230705 0630 20230705_0640	0	N N
20230705_0650	0	N N
20230705_0030	0	N
20230705_0710	0	N N
20230705_0720	0	N
20230705_0720	0	N
20230705_0740	0	N
20230705_0750	0	N
20230705 0800	0.3	NNE
20230705 0810	0.3	NNE
20230705 0820	0.3	NNW
20230705_0830	0.3	N
20230705 0840	0.6	
20230705 0850	0.8	NNW
20230705_0900	0.8	NW
20230705 0910	1.1	WNW
20230705_0920	1.1	W
20230705_0930	0.8	WSW
20230705_0940	1.1	NW
20230705_0950	1.1	NNE
20230705_1000	0.8	NNE
20230705 1010	1.1	W WNW
20230705_1020	1.7	
20230705_1030 20230705_1040	0.8	N NNE
20230705 1040 20230705_1050	0.8	NNE NW
20230705_1100	1.1	NW NW
20230705 1110	2.2	NW
20230705_1110	2.8	NW NW
20230705_1120	1.1	N N
20230705_1150	1.7	NNW
20230705_1150	1.7	W
20220102_1120	***	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230705_1200	1.7	NNW
20230705 1210	1.7	WNW NW
20230705 1220	2.5 1.7	
20230705_1230 20230705_1240	1.7	W N
20230705_1240 20230705_1250	0.8 1.4	N NW
20230705_1250	1.7	NNE
20230705 1310	1.1	-
20230705_1320	1.4	NW
20230705_1330 20230705_1340	0.8	SSW WNW
20230705_1340	1.4 1.4	NW
20230705 1400	1.4	SSW
20230705_1410	2.2	SE
20230705_1420	3.3	E
20230705 1430 20230705 1440	2.2 2.5	SSE E
20230705_1450	2.8	SE
20230705 1500	2.8	ESE
20230705_1510	2.5	ESE
20230705_1520	2.5	ESE
20230705 1530 20230705 1540	3.1 2.2	ESE ESE
20230705_1540	2.2	ESE ESE
20230705 1600	2.2	ESE
20230705_1610	2.2	Е
20230705_1620	1.7	E
20230705 1630 20230705 1640	2.2	SW SW
20230705_1650	1.7	SW
20230705 1700	1.7	SE
20230705_1710	1.9	ESE
20230705_1720	1.1	- F
20230705 1730 20230705 1740	2.5	<u>Е</u> Е
20230705 1750	2.5 2.2	ESE
20230705 1800	2.2	ESE
20230705_1810	2.2	ESE
20230705_1820 20230705_1830	2.5 2.8	ESE ESE
20230705 1840	2.8	ESE
20230705_1850	2.5	ESE
20230705 1900	1.7	ESE
20230705_1910 20230705_1920	1.7	ESE ESE
20230705_1920 20230705_1930	2.8 2.5	ESE
20230705_1940	1.7	E
20230705_1950	1.7	ESE
20230705 2000	2.2	ESE
20230705_2010 20230705_2020 20230705_2020	2.5 2.2	ESE ESE
20230705_2020	2.8	ESE
1 20230705 2040	2.5	ESE
	2.5	ESE
20230705_2100	2.8	ESE
20230705_2110	2.2 2.2	SE ESE
20230705 2130	2.5	ESE
20230705_2140	1.7	SE
20230705_2150	1.9	SE
2023/0705 2050 2023/0705 2100 2023/0705 2110 2023/0705 2120 2023/0705 2130 2023/0705 2130 2023/0705 2140 2023/0705 2150 2023/0705 2200 2023/0705 2200 2023/0705 2220 2023/0705 2220 2023/0705 2230 2023/0705 2240 2023/0705 2240 2023/0705 2250 2023/0705 2250 2023/0705 2250	2.5 2.2	SE SE
20230705 2210	1.9	SE SE
20230705_2230	1.9 2.2 2.2	SE
20230705 2240		SE
20230705_2250 20230705_2300	3.1	SE
20230705_2300 20230705_2310	1.7 2.2	SE SSE
20230705 2310	1.7	SSE
20230705_2330	1.7	SE
20230705 2340	1.4	SE
20230705_2350	1.7	SSE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	willu Specu (III/S)	
20230706_0000	1.4	SE
20230706_0010 20230706_0020	1.1	SE
20230706_0020	1.1	Е
20230706_0030	1.1	ESE
20230700_0030	1.1	
20230706_0040 20230706_0050	0.3	ENE
20230706_0050	0.8	Е
20230706 0100	0.6	ESE
20230706_0110 20230706_0120	0.3 0.3	Е
20230706_0120	0.3	ENE
20220706_0120	0.8	
20230700_0130		-
20230706_0140	0.8	
20230706 0130 20230706 0140 20230706 0150	0.8	N
20230706 0200 20230706 0210 20230706 0220	1.1	E
20230706 0210	0.8	E
20230706_0220	0.6	ESE
20230706_0220	0.6	SE
20230706 0230 20230706_0240		SE OFF
20230706_0240	1.1	SSE
20230706_0250	0.8	S
20230706 0300 20230706 0310	0.3	SSW
20230706 0310	0.3	SSE
20230706_0320	1.1	SE
20220706 0220	0.8	SE SE
20230700 0330		
20230706_0340 20230706_0340	1.4	ESE
20230706 0350	1.1	ESE
20230706_0400	0.3	-
20230706_0410	1.4	ESE
20230706_0420	0.3	S
20230700_0420	0.3	
20230706 0430	0.3	NE
20230706_0440	0.3	N
20230706_0450	0	N
20230706 0500	0	N
20230706_0510	0	N
20230706_0520	0.3	S
20230700_0320	0.3	
20230706 0530	0.3	SSE
20230706_0540	0	N
20230706_0550	0	N
20230706 0600	0.3	NNE
20230706_0610	0.6	N
20230706_0620	0.3	N
20230700_0020		
20230706 0630	0.3	SW
20230706_0640	0.8	SSW
20230706_0650	0.3	SW
20230706 0700	0	N
20230706_0710	0	N
20230706_0720	0.3	SSE
20230700_0720	0.3	S
20230706 0730	0.3	
20230706_0740	0.3	SSE
20230706_0750	0	N
20230706 0800	0	N
20230706_0810	0.3	NNE
20230706_0820	0.3	NE
20230706_0830	0.3	- 112
20230700_0030		<u> </u>
20230706_0840	0.3	
20230706_0850	0.3	-
20230706_0900	0.3	S
20230706 0910	0.3	SE
20230706_0920	0.3	
20230706_0930	0.6	NE
20220700_0730		
20230706_0940	0.8	NNE
20230706_0950	0.8	NE
20230706_1000	1.1	NW
20230706 1010	0.8	-
20230706 1020	1.1	W
20230706_1020	1.7	NW
20220700_1030		
20230706 1040	1.9	NW
20230706_1050	2.2	N
20230706_1100	2.2	NNW
20230706 1110	1.9	NNW
20230706 1110	1.7	NNW
20230706_1120	2.2	N
20230700_1130	1.7	
20230706 1140	1.7	N
20230706_1150	1.7	N

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230706 1200	1.4	NNE NNE
20230706_1200 20230706_1210	1.4	NW NW
20230706 1220	1.7	N
20230706_1230	1.4	-
20230706_1240	1.1	ESE
20230706_1250 20230706_1300	3.6 3.1	E ESE
20230706_1310	3.1 3.6	E ESE
20230706_1310	3.9	E
20230706 1330	4.2	Е
20230706_1340	3.6	E
20230706_1350	3.9	E
20230706 1400 20230706_1410	3.3	<u>Е</u> Е
20230706_1410	3.9	E
20230706 1430	3.9	ESE
20230706_1440	4.4	E
20230706_1450	3.9	E
20230706 1500 20230706 1510	4.2 4.2	<u>Е</u> Е
20230706_1510	3.3	E
20230706 1530	4.2	E
20230706_1540	4.4	Е
20230706_1550	4.4	E
20230706 1600 20230706 1610	4.2 3.3	E E
20230706_1610	2.8	ESE
20230706_1620	3.9	ESE
20230706_1640	3.3	E
20230706_1650	4.4	ESE
20230706 1700	3.3	E
20230706_1710 20230706_1720	3.3 3.1	E ESE
20230706_1720	3.1	ESE
20230706_1740	3.1	E
20230706_1750	3.1	Е
20230706 1800	3.3	E
20230706_1810 20230706_1820	3.1 3.3	ESE ESE
20230706 1830	2.8	ESE
20230706_1840	3.3	ESE
20230706_1850	2.8	ESE
20230706 1900	2.5	SE
20230706_1910 20230706_1920	3.1 3.3	ESE ESE
20230706_1920	2.8	SE
20230706_1940	1.7	SE
20230706_1950	2.2 2.2	SE
20230706 2000	2.2	SE
20230706 2000 20230706 2010 20230706 2020	2.5 2.8	SE ESE
20230706_2020	2.2	ESE
20230706 2040	1.7	ESE
	1.7	ESE
20230706_2100	2.5	SE
20230706_2110	2.2 2.5	SE SE
20230706_2120	2.3	ESE ESE
20230706_2130	2.2	ESE
20230706 2050 20230706 2110 20230706 2110 20230706 2110 20230706 2120 20230706 2130 20230706 2140 20230706 2150 20230706 2210 20230706 2210 20230706 2220 20230706 2220 20230706 2230 20230706 2240 20230706 2240 20230706 2240 20230706 2250 20230706 2200	2.2	SE
20230706_2200	2.2	SE
20230706 2210	1.4	E
20230706_2220	1.7 2.2 2.2	ESE SE
20230706_2230	2.2	SE SE
20230706 2250	1.7	SE
20230706_2300	2.2	SE
20230706 2310	2.2	ESE
20230706_2320 20230706_2330	1.4	ESE ESE
20230706_2330	1.1	ESE E
20230706_2350	1.4	E E

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230707 0000	1.4	Е
20230707_0010 20230707_0020	2.2	E
20230707_0020	1.1	E
20230707_0030	1.4 1.7	E ESE
20230707_0040 20230707_0050	1.1	ESE
20230707 0100	1.7	ENE
20230707 0110	1.4	E
20230707_0110 20230707_0120	1.1	ESE
20230707 0130	0.8	ESE
20230707_0140 20230707_0150	1.7	ESE ESE SE
20230707_0150	1.4	SE
20230707 0200 20230707 0210 20230707 0220	1.1 1.4	SE SE
20230707_0210	1.1	SE
20230707 0230	0.8	SSE
20230707 0230 20230707_0240	0.3	SSE SSE
20230707_0250	0.6	ESE
20220707 0200	0	N
20230707 0300	0	N
20230707_0320	0.3	S S
20230707 0330 20230707_0340	0.3	S N
20230707_0340	0.3	E E
20230707 0400	0.8	SE
20230707_0410	0.8	SE
20230707_0420	0.3	SSE
20230707 0430	0.6	S
20230707_0440	0.3	S
20230707_0450	0.8	S
20230707 0500	1.1	S
20230707_0510 20230707_0520	1.4 0.8	S SSE
20230707_0520	0.8	N N
20230707_0540	0	N N
20230707_0550	0	N
20230707 0600	0.3	SSE
20230707_0610	0.3	SSW
20230707_0620	0.3	SSW
20230707 0630	0.3	S
20230707_0640	0	N N
20230707_0650 20230707_0700	0	N N
20230707_0710	0	N N
20230707_0720	0.3	
20230707 0730	0	N
20230707 0740	0	N
20230707_0750	0	N
20230707 0800	0.3	-
20230707_0810	0.3 0.3	N ESE
20230707_0820 20230707_0830	0.3	ENE ENE
20230707_0830	0.8	SE
20230707 0850	1.4	ESE
20230707_0900	2.5	Е
20230707 0910	2.5	ESE
20230707_0920	2.5	E
20230707_0930	2.2	ENE
20230707_0940 20230707_0950	1.7	E ESE
20230707_1000	1.7	SE SE
20230707_1000	1.1	SE SE
20230707_1020	1.1	ENE
20230707 1030	0.8	-
20230707 1040	1.7	ENE
20230707 1050	1.4	ESE
20230707_1100	1.4	E
20230707 1110	1.7	SE
20230707_1120 20230707_1130	1.4	E NE
20230707_1130	1.4	SSE
20230707 1140	1.4	S
20220101_1120	411	

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230707 1200	1.1	WSW
20230707_1210	1.1	NW
20230707_1220 20230707_1230	1.7 2.2	NNW NNE
20230707 1240	2.2 2.2 2.2	NNE N
20230707_1250	2.2	NE NE
20230707 1300	1.7	-
20230707_1310	3.1	ENE
20230707_1320 20230707_1330	2.8	E ESE
20230707_1340	3.1	ESE
20230707_1350	3.3	E
20230707 1400	3.9	ESE
20230707_1410	3.9	E
20230707_1420 20230707_1430	4.2	<u>Е</u> Е
20230707 1430	4.7	E
20230707_1450	4.2	Ē
20230707 1500	3.9	ESE
20230707_1510 20230707 1520	4.2 4.2	<u>Е</u> Е
20230707_1520	3.3	ESE ESE
20230707_1540	4.2	E
20230707_1550	3.3	Е
20230707 1600	3.3	<u>E</u>
20230707_1610 20230707 1620	3.3	<u>Е</u> Е
20230707_1620	3.9	E
20230707_1640	3.3	E
20230707_1650	3.1	Е
20230707 1700	3.9	E
20230707_1710 20230707 1720	3.1 2.8	E ESE
20230707_1720	3.3	E
20230707_1740	3.3	Ē
20230707_1750	3.3	<u>E</u>
20230707 1800 20230707 1810	3.3 2.2	E
20230707_1810	3.3	ESE ESE
20230707_1830	3.3	ESE
20230707_1840	3.3	ESE
20230707_1850	2.8	ESE
20230707 1900 20230707_1910	2.8 3.3	SE SE
20230707_1920	3.1	ESE
20230707 1930	3.3	ESE
20230707_1940	3.3	ESE
20230707_1950 20230707_2000	3.3	ESE ESE
20230707 2000 20230707_2010	3.6 3.9	ESE ESE
20230707 2020	3.9	ESE ESE
20230707_2030	3.9	ESE
20230707_2040	2.8	ESE ESE
20230707_2050 20230707_2100	2.8	ESE
20230707 2110	2.8	ESE
20230707_2120	2.2	SE
20230707_2130	2.8	SE
20230707_2140	2.8	SE SE
20230707_2130	2.5 2.2	SE
20230707 2050 20230707 2100 20230707 2110 20230707 2110 20230707 2120 20230707 2130 20230707 2150 20230707 2150 20230707 2210 20230707 2200 20230707 2210 20230707 2220 20230707 2220 20230707 2220 20230707 2230 20230707 2230 20230707 2230 20230707 2240 20230707 2250 20230707 2250 20230707 2250	2,5	SE
20230707_2220	2.8 2.5 2.2 2.5	SE
20230707_2230	2.5	SE
20230707 2240	2.2	SE SE
	1.7	SE
20230707 2310	1.4	SE
20230707_2320	1.7	SE
20230707_2330 20230707_2340	1.7	SE SE
20230707_2350	1.4	SSE

	ı	
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230708_0000	1.7	SSE
20230708_0010 20230708_0020	1.7 1.7	SSE SSE
20230706_0020	1.7	SSE
20230708_0030	1.9	SSE
20230708_0040 20230708_0050	1.9 1.7	SE SE
20230708_0050		
20230708_0100	1.4	SE
20230708_0110 20230708_0120	1.4	SE
20230708_0120	1.4	ESE
20230708_0130	1.1	ESE ESE ESE
20230708_0140 20230708_0150	1.4	ESE
20230708_0150	1.1	ESE
20230708 0200 20230708 0210 20230708 0210 20230708 0220	1.7 1.7	SE
20230708_0210		SE
20230708_0220	1.1	ESE
20230708 0230 20230708_0240	0.8	ENE
20230708_0240	0	N
20230708_0250	0.3	ENE
20230708 0300 20230708 0310	0.8	ENE
20230708_0310	0.8	ENE
20230708 0320	0.8	ENE
20220708 0220	0.8	ENE
20230708 0340	0	N
20230708 0350	0	N
20230708 0400	0.3	-
20230708 0410	0.3	SE
20230708_0420	0.3	E
20230708 0430	0.3	ENE
20230708 0440	0	N
20230708_0450	0.8	ESE
20230708 0500	1.1	ESE
20230708_0510	1.4	ESE
20230708_0520	1.7	SE
20230708_0520	0.3	N N
20230708 0540	0.3	NE NE
20230708_0550	0.3	NE
20230708_0530	0.3	SSW
20230708_0610	0.3	33 W
20230708_0620	0.3	S
20230708_0020		<u>S</u> N
20230708 0630	0	
20230708_0640	0	N
20230708_0650	0	N
20230708 0700	0	N
20230708_0710	0	N
20230708_0720	0	N
20230708 0730	0	N
20230708_0740	0	N
20230708_0750	0	N
20230708 0800	0	N
20230708_0810	0	N
20230708_0820	0	N
20230708_0830	0.3	SW
20230708_0840	0.3	-
20230708_0850	0.3	NNW
20230708_0900	0.3	NNE
20230708_0910	0.6	E
20230708_0920	0.8	-
20230708_0930	0.3	NE
20230708_0940	1.1	NE
20230708_0950	0.8	N
20230708_1000	0.8	NNE
20230708 1010	0.6	NNW
20230708_1020	1.1	NNE
20230708_1030	1.4	NNW
20230708 1040	1.7	WNW
20230708_1050	1.1	-
20230708 1100	1.4	NW
20230708 1110	1.1	ESE
20230708 1120	3.1	ESE
20230708_1130	3.1	ESE
20230708 1140	3.3	ESE
20230708_1150	3.3	ESE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230708 1200	3.3	ESE
20230708 1210	3.3	E
20230708_1220	2.8	ESE
20230708_1230 20230708_1240	2.8	ESE ENE
20230708_1240	2.2	ENE ENE
20230708_1230	1.1	E
20230708 1310	0.6	NW
20230708_1320	0.8	NE
20230708_1330 20230708_1340	1.1 2.2	WSW WSW
20230708_1350	1.4	WSW
20230708 1400	1.7	SE
20230708 1410	1.1	-
20230708_1420	2.2	ENE
20230708 1430 20230708 1440	2.5 3.1	E ESE
20230708_1440	2.8	E
20230708 1500	2.8	ESE
20230708_1510	2.8	ESE
20230708_1520	3.3	E
20230708 1530 20230708 1540	3.6 4.2	<u>Е</u> Е
20230708_1540	3.9	<u>E</u> E
20230708 1600	3.9	E
20230708_1610	3.9	ESE
20230708_1620	4.2	E
20230708 1630 20230708 1640	4.2	ESE E
20230708_1040	3.1	E
20230708 1700	3,9	E
20230708_1710	4.2	ESE
20230708_1720	3.3	ESE
20230708 1730 20230708 1740	3.3 3.1	ESE ESE
20230708_1740	3.1	ESE
20230708 1800	2.8	ESE
20230708_1810	3.3	SE
20230708_1820	2.2	SE
20230708 1830 20230708 1840	2.2 1.7	SE ESE
20230708_1850	2.8	ESE
20230708 1900	3.1	ESE
20230708_1910	3.1	ESE
20230708_1920	3.3	ESE
20230708 1930 20230708 1940	2.5 3.3	SE SE
20230708_1950	2.2	ESE
20230708 2000	1.9	ESE
20230708 2010	3.3	ESE ESE
20230708_2020 20230708_2030	3.1 3.6	ESE ESE
20230708_2040	3.9	ESE
	3.6	ESE
20230708_2100	3.3	ESE
20230708_2110	3.3	ESE
20230708_2120	3.6 3.3	SE SE
20230708_2130	3.3	SE
20230708_2150	3.1	SE
20230708 2050 20230708 2100 20230708 2110 20230708 2110 20230708 2120 20230708 2130 20230708 2140 20230708 2150 20230708 2200 20230708 2210 20230708 2220 20230708 2220 20230708 2240 20230708 2240 20230708 2240 20230708 2240 20230708 2300	3.1	SE
20230708 2210	3.3	SE
20230708_2220	2.8 2.5 2.5	SE SE
20230708 2240	2.5	SE SE
20230708_2250	3.3	SE
20230708_2300	3.3	SE
20230708 2310 20230708 2320	3.3 3.3	SE
20230708_2320 20230708_2330	3.3	SE ESE
20230708_2330	3.3	SE
20230708_2350	3.1	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230709_0000	3.1	SE
20230709_0010 20230709_0020	3.3	SE
20230709_0020	3,9	SE
20230709_0030	3.9	SE SE
20230709_0030 20230709_0040	3.9	SE
20230709_0050	3.9	SE
20230709 0100	4.2	SE
20230709_0100 20230709_0110	3.6	SE
20230709 0120	3.1	SE
20230709_0130 20230709_0140	2.5 2.5	SE
20230709_0140		SE
20230709 0150 20230709 0200 20230709 0210	1.7 2.2 1.7	SE
20230709_0200	2.2	SE ESE
20230709_0210	1.4	ENE ENE
20230709 0220 20230709 0230	1.7	
20230709_0240	1.4	<u>Е</u> Е
20230709_0210	1.7	E
20230709 0250 20230709 0300	1.7	Ë
20230709 0310	1.7	Ë
20220700 0220	0.8	E
20230709 0330	1.4	ESE
20230709 0340	1.4	ESE
20230709 0350	1.1	ENE
20230709_0400	1.1	E
20230709_0410	1.7	E
20230709 0420 20230709_0430	1.7 1.7	E E
20230709_0440	1.7	E E
20230709_0450	1.4	E
20230709 0500	1.1	Ë
20230709_0510	1.4	E
20230709 0520	1.4	Е
20230709_0530	1.4	Е
20230709_0540	1.1	Е
20230709 0550	1.1	<u>E</u>
20230709_0600	1.7	E
20230709_0610	1.7	E
20230709 0620 20230709_0630	1.4	ESE ESE
20230709_0640	1.1	ESE
20230709_0650	0.8	ESE
20230709_0700	1.4	E
20230709_0710	0.8	E
20230709 0720	1.7	ESE
20230709_0730	2.2	ESE
20230709_0740	1.7	SE
20230709 0750	2.2	SE
20230709_0800	2.5 2.2	SE SE
20230709_0810 20230709_0820	2.2	SE SE
20230709_0820	2.8	SE SE
20230709_0840	2.8	ESE
20230709_0850	2.5	E
20230709 0900	2.5	E
20230709 0910	2.5	Е
20230709_0920	3.1	ENE
20230709_0930	3.1	ENE
20230709_0940	3.3	ENE
20230709_0950	3.6	E
20230709 1000 20230709_1010	3.3 3.1	<u>Е</u> Е
20230709_1010	2.8	ENE ENE
20230709_1020	3.1	ENE E
20230709_1040	3.1	E
20230709 1050	3.3	Ë
20230709 1100	4.2	E
20230709 1110	3.9	ENE
20230709_1120	3.3	ENE
20230709 1130	3.1	Е
20230709_1140	2.8	-

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230709_1200	2.8	Е
20230709 1210	2.8	ENE
20230709_1220	2.8 2.8	ENE
20230709_1230 20230709_1240	2.8	ENE ENE
20230709_1240 20230709_1250	3.1 3.1	ENE ENE
20230709_1230	2.5	E
20230709 1310	2.5	Ē
20230709 1320	2.5	ENE
20230709_1330	2.2	E
20230709_1340 20230709_1350	1.1 1.7	N ENE
20230709_1330	2.8	ENE E
20230709_1410	3.1	ESE
20230709_1420	3.1	Е
20230709 1430	3.6	Е
20230709_1440	3.3	E
20230709_1450 20230709_1500	3.1	E
20230709 1500 20230709 1510	3.1	<u>Е</u> Е
20230709_1510	3.1	E
20230709 1530	3.9	E
20230709_1540	3.3	Е
20230709_1550	3.9	E
20230709 1600	3.6	E
20230709_1610 20230709_1620	3.9 4.2	<u>Е</u> Е
20230709_1620	3.6	E
20230709 1640	3.9	E
20230709_1650	3.3	Ē
20230709 1700	3.3	Е
20230709_1710	2.8	E
20230709_1720	2.8	ESE
20230709 1730 20230709 1740	3.3 3.3	<u>Е</u> Е
20230709_1740	3.3	E
20230709 1800	2.8	E
20230709_1810	2.5	Е
20230709_1820	2.5	E
20230709 1830 20230709 1840	3.1 2.8	E
20230709_1840	2.8	<u>Е</u> Е
20230709 1900	2.8	ESE
20230709 1910	2.2	SE
20230709_1920	2.8	ESE
20230709 1930	1.9	ESE
20230709_1940 20230709_1950	2.2	ESE SE
20230709_1930	1.7 2.2	ESE
20230709 2010	1.7	ESE
20230709 2020	1.7	ESE ESE
20230709_2030	2.5	E
20230709_2040	2.8	E
20230709_2050	2.2 2.2	<u>Е</u> Е
20230709_2100	1.4	ESE
20230709 2120	1.1	SE
20230709_2130	0.8	S
20230709_2140	1.7	SSE SSE
20230709 2050 20230709 2100 20230709 2110 20230709 2120 20230709 2130 20230709 2150 20230709 2150 20230709 2200 20230709 2200 20230709 2200 20230709 2200 20230709 2200 20230709 2200 20230709 2200	0.8	SSE SSE
20230709_2200	1.1 1.1	SSE
20230709 2220	0.8	S
20230709_2230	0.8 0.3	SW
20230709 2240 20230709 2250	0.8	SW
20230709_2250	0.6	SSW
20230709_2300	1.7	S
20230709 2310 20230709 2320	1.7 1.7	SE ESE
20230709_2320	2.2	ESE ESE
20230709 2340	2.2	ESE
20230709_2350	2.5	SE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230710_0000 20230710_0010 20230710_0020	2.8	SE
20230710_0010	2.5 2.2	ESE ESE
20230710_0020		ESE
20230710 0030 20230710 0030 20230710 0040	1.4	ESE
20230710_0030	1.4 1.1	ESE ESE
20230710_0040	1.4	ESE
20230710 0050 20230710 0100 20230710 0110	1.4	ESE
20230710_0100	0.8	ESE ESE
20230710 0120	1.1	SE
20230710 0120 20230710 0130 20230710 0140	1.1	ESE SE
20230710_0140	1.4	SE
20230710 0150 20230710 0200 20230710 0210	0.8	SSE
20230710_0200	0.3	SE N
20230710_0210	0	
20230710 0220 20230710 0230 20230710 0240	0.3	N
20230710_0230	0.3	E E
20230710_0210	0.3	WSW
20230710 0250 20230710_0300	0.3	-
20230710 0300	0	N
20230710 0320	0.6	NE
20230710 0320 20230710 0330	0.8	Е
20230710 0340	0.3	ESE
20230710 0350 20230710 0400	0	N
20230710_0400	0.3	ESE
20230710_0410	1.4	SE
20230710 0420 20230710_0430	0.6 0.3	S WSW
20230710_0430	0.5	N N
20230710_0440	0.8	SW
20230710_0500	0.6	W
20230710_0510	0.3	SW
20230710 0520	1.1	SSW
20230710_0530	0.3	-
20230710_0540	0.3	SSW
20230710 0550	0.8	SE
20230710_0600	0.6	SE
20230710_0610	0.8	E
20230710 0620	0.3	SSW
20230710_0630 20230710_0640	0	N N
20230710_0640	0	N N
20230710_0700	0.3	SW
20230710_0700	1.4	S
20230710_0710	1.4	S
20230710_0730	1.1	S
20230710_0740	0.8	SSW
20230710 0750	0.8	SSW
20230710_0800	1.4	NNE
20230710_0810	0.8	ENE
20230710_0820	2.5	E
20230710_0830	2.5	E
20230710_0840	2.2	E
20230710_0850	1.7	ESE ESE
20230710_0900 20230710_0910	2.2	ESE
20230710_0910	2.2	E E E E E E E E E E E E E E E E E E E
20230710_0920	3.3	ESE
20230710_0930	2.5	ESE
20230710_0950	2.2	E
20230710 1000	2.2	ESE
20230710 1010	2.8	ESE
20230710_1020	2.5	Е
20230710 1030	2.5	ESE
20230710_1040	2.5	E
20230710_1050	3.1	E
20230710 1100	3.1	E
20230710_1110	2.8	E
20230710_1120	3.1	E
20230710 1130 20230710 1140	2.8	ESE ESE
20230710_1140	2.3	ESE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230710 1200	2,5	Е
20230710 1210	2.5	E
20230710_1220	2.5 2.5 2.8 2.5	ESE
20230710_1230 20230710_1240	2.5	ESE
20230710_1240	2.8	<u>Е</u> Е
20230710_1230	2.5	E
20230710 1310	2.8	E
20230710_1320	2.8	E
20230710_1330 20230710_1340	2.5 3.3	E E
20230710_1340	3.1	ENE
20230710 1400	3.1	E
20230710 1410	3.3	E
20230710_1420	3.1	Е
20230710 1430	3.3	E
20230710_1440 20230710_1450	3.1 3.3	E ENE
20230710_1430	3.6	E
20230710 1510	3.6	Ë
20230710_1520	3.3	Е
20230710 1530	3.9	E
20230710_1540	3.3	E
20230710_1550 20230710_1600	3.3 3.3	<u>Е</u> Е
20230710 1610	3.6	E E
20230710_1620	3.3	E
20230710 1630	3.3	Е
20230710_1640	3.3	E
20230710_1650 20230710_1700	3.3 3.1	E ESE
20230710 1700	3.1	ESE
20230710_1710	2.5	ESE
20230710 1730	3.3	ESE
20230710_1740	4.2	E
20230710_1750 20230710_1800	3.6 3.3	ESE E
20230710 1800	3.3	ESE
20230710_1810	3.1	E
20230710 1830	2.2	E
20230710_1840	1.7	ESE
20230710_1850	1.9	ESE
20230710 1900 20230710 1910	1.4 1.7	SE SE
20230710_1910	1.9	SE
20230710 1930	1.4	SSE
20230710_1940	0.3	
20230710_1950	0.3	S
20230710 2000 20230710 2010	0.3 0.3	SE ENE
20230710_2010 20230710_2020	0.6	SE
20230710_2030	0.3	-
20230710_2040	0.3	SSE
20230710_2050	0.8	SSW
20230710_2100	0.8	SSW
20230710_2110	1.1	<u>S</u> S
20230710_2120	1.1	S
20230710_2140	0.8	S
20230710 2050 20230710 2100 20230710 2110 20230710 2110 20230710 2120 20230710 2130 20230710 2140 20230710 2150 20230710 2210 20230710 2220 20230710 2220 20230710 2220 20230710 2240 20230710 2240 20230710 2240 20230710 2240 20230710 2250 20230710 2230	0.3 0.3	-
20230710_2200	0.3	ESE
20230/10 2210	0.3 0.3 0.3	SE SE
20230710_2220	0.8	SE S
20230710 2240	1.1	SSE
20230710_2250	0.3	-
20230710_2300	0.6	SSW
20230710 2310 20230710 2320	0.6	SSW SSW
20230710_2320	0.3 0.3	S S
20230710 2340	0.8	SE
20230710_2350	1.1	SW

	, ,	
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230711_0000 20230711_0010 20230711_0020	0.3	W
20230711 0010	0.3	SW
20230711 0020	0.8	SE
20230711_0030 20230711_0030 20230711_0040	0.3	-
20230711_0030	0.3	W
20230711_0030	0.3 0.3	VV
20230711_0040	0.3	-
20230711_0050 20230711_0100 20230711_0110	0.3 0.3 0.8	SW
20230711_0100	0.3	SSW
20230711_0110	0.8	SSW SSW
20230711_0120	0.3	SSW
20230711_0120 20230711_0130 20230711_0140	0.3 0.3	S SSW
20230711 0140	0.6	WZZ
20230711_0140	0.0	SSW
20230711 0150 20230711 0200 20230711 0210	0.8 0.3 0.8	22 M
20230711_0200	0.3	SSW
20230711_0210	0.8	S
20230711 0220	0.8	SSE
20230711 0220 20230711_0230	0.8 0.3 0.3	SSE
20230711 0240	0.3	S
20230711 0250 20230711_0300	0	N
20230711 0250 20230711_0300	0	N N
20230711_0300	0.3	
20230/11_0310	0.5	-
20230711 0320 20230711 0330	0.3 0.3	E
20230711_0330	0.3	WNW
20230711_0340	0.3	-
20230711 0350	0	N
20230711_0400	0	N
20230711_0410	0	N
20230711_0410	0.3	SSW
20230711 0420		
20230711_0430	0	N
20230711_0440	0.3	SSE
20230711 0450	0.3	SSE
20230711_0500	0	N
20230711_0510	0	N
20230711 0520	0.8	SE
20230711_0530	0.6	SE
20230711_0330		
20230711_0540	0.3	SE
20230711 0550	0	N
20230711_0600	0.3	W
20230711_0610	0	N
20230711 0620	0	N
20230711_0630	0.3	S
20230711_0640	0	N
20230711_0040	0	N
20230711 0030		
20230711_0700	0	N
20230711_0710	0	N
20230711 0720	0.3	SSW
20230711 0730	0.3	S
20230711_0740	0.3	SSE
20230711 0750	0.3	SSW
20230711 0750	0.5	N
20230711_0800	0	N N
20220711_0810		1N
20230711_0820	0.3	-
20230711_0830	0.3	SSW
20230711_0840	0.8	NW
20230711_0850	0.3	ENE
20230711 0900	0.6	NW
20230711_0910	0.3	NNE
20230711_0910	0.8	NNE
20230711_0930	1.1	NNE
20230711_0940	0.8	ENE
20230711_0950	0.8	NNW
20230711 1000	0.8	N
20230711_1010	1.1	NW
20230711_1020	1.1	NNE
20230711_1020	1.1	NW
20230711_1040	1.1	NNE
20230711_1050	0.8	NNE
20230711 1100	0.8	NE
20230711_1110	1.4	SE
20230711_1120	1.4	NE
20230711 1130	1.7	NE
20230711_1140	1.4	NNE
40430/11_1140	1.4	TATATO

Date & Time (YYYYMBB HHMM) 20230711 1200 0.6 S S			
C11 Tolking Halvin C20230711 1210 C2030711 1210 C2030711 1210 C2030711 1230 C2030711 1230 C2030711 1250 C2030711 1250 C2030711 1250 C2030711 1250 C2030711 1250 C2030711 1250 C2030711 1300 C2030711 1400 C2030711 1400 C2030711 1410 C2030711 1410 C2030711 1410 C2030711 1410 C2030711 1410 C2030711 1430 C2030711 1450 C2030711 1450 C2030711 1450 C2030711 1450 C2030711 1500 C2030711 C20300 C2030711 C2030711 C20300 C2030711 C2030711 C20300 C2030711 C	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230711 1210			
20230711 1220			<u>S</u>
20230711 1230			
20230711 1240	20230711_1220		312
20230711 1300	20230711_1230		SW
20230711 1300	20230711_1210	1.9	SE.
20230711 1310	20230711_1200		
20230711 1320	20230711 1310	1.7	ESE
20230711 1340	20230711_1320	1.7	S
20230711 1400	20230711 1330	2.2	ESE
20230711 1400 2.8 ESE 20230711 1420 2.2 ESE 20230711 1440 2.2 ESE 20230711 1450 2.2 20230711 1510 1.7 20230711 1510 1.7 ESE 20230711 1520 1.4 SE 20230711 1530 1.1 ESE 20230711 1530 1.1 ESE 20230711 1530 1.1 ESE 20230711 1540 0.8 SSE 20230711 1540 0.8 SSE 20230711 1540 0.8 SSE 20230711 1500 1.4 SSE 20230711 1600 1.4 SSW 20230711 1600 1.7 SE 20230711 1600 1.7 SE 20230711 1630 2.2 E 20230711 1630 2.2 E 20230711 1650 1.7 ESE 20230711 1650 1.7 ESE 20230711 1650 1.7 ESE 20230711 1710 1.9 E 20230711 1710 1.9 E 20230711 1720 2.2 E 20230711 1740 2.5 ESE 20230711 1740 2.5 ESE 20230711 1800 2.2 E 20230711 1800 2.2 ESE 20230711 1800 2.2 ESE 20230711 1800 2.5 ESE 20230711 1900 2.5 ESE 20230711 2000 2.2 E E 20230711 2100 1.4 E 2023071	20230711_1340	2.5	ESE
20230711 1420	20230711_1350	3.3	ESE
20230711 1420	20230711 1400	2.8	ESE
20230711 1430	20230/11_1410		
20230711 1440		2.2	
20230711 1500	20230711 1430		
20230711 1500 1.7 ESE 20230711 1520 1.4 SE 20230711 1520 1.4 SE 20230711 1530 1.1 ESE 20230711 1530 1.1 ESE 20230711 1550 1.4 SSE 20230711 1550 1.4 SSE 20230711 1600 1.4 SSE 20230711 1610 1.7 SE 20230711 1610 1.7 SE 20230711 1620 2.5 E 20230711 1620 2.5 E 20230711 1630 2.2 E 20230711 1640 1.7 ESE 20230711 1640 1.7 ESE 20230711 1640 1.7 ESE 20230711 1700 1.7 ESE 20230711 1700 1.7 ESE 20230711 1700 1.7 ESE 20230711 1700 2.2 E 20230711 1700 2.2 E 20230711 1730 2.2 E 20230711 1750 2.2 E 20230711 1750 2.2 E 20230711 1750 2.2 E 20230711 1800 2.2 ESE 20230711 1800 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 2000 2.2 E E 20230711 2000 2.2 E E 20230711 2000 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 E 20	20230711_1440		
20230711 1510	20230711_1500		
20230711 1520	20230711 1510	1.7	ESE
20230711 1540 0.8 SSE	20230711_1520	1.4	SE
20230711 1550			
20230711 1600			
20230711 1610			
20230711 1620			
20230711 1630 2.2 E 20230711 1650 1.7 ESE 20230711 1650 1.7 ESE 20230711 1700 1.7 ESE 20230711 1700 1.7 ESE 20230711 1700 1.9 E 20230711 1720 2.2 E 20230711 1740 2.5 ESE 20230711 1740 2.5 ESE 20230711 1740 2.5 ESE 20230711 1800 2.2 E 20230711 1800 2.2 E 20230711 1810 2.2 E 20230711 1830 1.9 ESE 20230711 1830 1.9 ESE 20230711 1830 2.2 ESE 20230711 1830 2.2 ESE 20230711 1850 2.2 ESE 20230711 1850 2.2 ESE 20230711 1850 2.2 ESE 20230711 1840 2.5 ESE 20230711 1900 2.2 E E 20230711 2010 2.2 E E 20230711 2030 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 0.8 E 20230711 2100 0.			
20230711 1640		2.3	
20230711 1500 1.7 ESE 20230711 1710 1.9 E E 20230711 1710 1.9 E E 20230711 1720 2.2 E E 20230711 1730 1.7 E E 20230711 1740 2.5 ESE 20230711 1800 2.2 E E 20230711 1800 2.2 E E 20230711 1800 2.2 ESE 20230711 1800 2.2 E E 20230711 1810 2.2 E E 20230711 1830 1.9 ESE 20230711 1830 1.9 ESE 20230711 1830 2.2 ESE 20230711 1850 2.2 ESE 20230711 1850 2.2 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 1910 2.5 ESE 20230711 1910 2.5 ESE 20230711 1920 2.5 ESE 20230711 1920 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 1900 2.5 ESE 20230711 2000 2.5 ESE 20230711 2000 2.5 ESE 20230711 2000 2.2 E 20230711 2000 2.2 E 20230711 2010 2.2 E 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 ESE 20230711 2100 0.8 E 20230711 2200 0.8 E 20230711 2200 0.7 E 20230711 2200 0.8 E 20230711 2200		1.7	
20230711 1700		1.7	FSF
20230711 1710		1.7	
20230711 1720		1.9	
20230711 1730		2.2	
20230711 1740		1.7	Е
20230711 1820 2.2 ESE	20230711_1740	2.5	
20230711 1820 2.2 ESE	20230711_1750	2.2	
20230711 1820 2.2 ESE	20230711 1800	2.2	ESE
20230711 1830		2.2	
20230711 1850 2.2 ESE 20230711 1910 2.5 ESE 20230711 1910 2.5 ESE 20230711 1910 2.5 ESE 20230711 1920 2.5 ESE 20230711 1930 2.5 ESE 20230711 1940 2.5 ESE 20230711 1940 2.5 ESE 20230711 2000 2.2 E 20230711 2000 2.2 E 20230711 2010 2.2 E 20230711 2010 2.2 E 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 SE 20230711 2100 1.4 SE 20230711 2100 1.4 SE 20230711 2140 1.1 SE 20230711 2140 1.1 SE 20230711 2150 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2220 1.7 E 20230711 2230 1.1 E 2000 2.2 2.			ESE
20230711 1850 2.2 ESE 20230711 1910 2.5 ESE 20230711 1910 2.5 ESE 20230711 1910 2.5 ESE 20230711 1920 2.5 ESE 20230711 1930 2.5 ESE 20230711 1940 2.5 ESE 20230711 1940 2.5 ESE 20230711 2000 2.2 E 20230711 2000 2.2 E 20230711 2010 2.2 E 20230711 2010 2.2 E 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2030 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 SE 20230711 2100 1.4 SE 20230711 2100 1.4 SE 20230711 2140 1.1 SE 20230711 2140 1.1 SE 20230711 2150 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2220 1.7 E 20230711 2230 1.1 E 2000 2.2 2.	20230711 1830	2.5	ESE
20230711 1900 2.5 ESE 20230711 1910 2.5 ESE 20230711 1920 2.5 ESE 20230711 1920 2.5 ESE 20230711 1930 2.5 ESE 20230711 1930 2.5 ESE 20230711 1950 1.9 E 20230711 2000 2.2 E 20230711 2000 2.2 E 20230711 2000 2.2 E 20230711 2020 2.5 ESE 20230711 2020 2.5 ESE 20230711 2020 2.5 E 20230711 2030 2.2 ESE 20230711 2040 1.7 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2110 1.1 SE 20230711 2120 0.8 ESE 20230711 2120 0.8 ESE 20230711 2140 1.1 SE 20230711 2140 1.1 SE 20230711 2140 1.1 SE 20230711 2120 0.8 E 20230711 2200 0.8 E 20230711 2200 0.8 E 20230711 2200 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2220 1.7 E 20230711 2230 1.1 E 20230711 2230 1.1 20230711 2230 20	20230711 1850	2.2	ESE
20230711 1920 2.5 ESE	20230711 1900	2.5	ESE
20230711 1920 2.5 ESE	20230711 1910	2.5	ESE
20230711 1940 2.5 ESE 20230711 1950 1.9 E	20230711_1920		ESE
20230711 1950			ESE
20230711 2000 2.2 E	20230711_1940		
20230711 2010 2.2 E 20230711 2020 2.5 E 20230711 2030 2.2 ESE 20230711 2040 1.7 ESE 20230711 2040 1.7 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2110 1.1 SE 20230711 2110 1.1 SE 20230711 2130 1.4 SE 20230711 2130 1.4 SE 20230711 2130 1.4 SE 20230711 2140 1.1 SE 20230711 2100 0.8 E 20230711 2200 0.8 E 20230711 2200 1.4 E 20230711 2210 1.4 E 20230711 2230 1.1			<u>E</u>
20230711 2020 2.5 E 20230711 2030 2.2 ESE 20230711 2040 1.7 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2110 1.1 SE 20230711 2120 0.8 ESE 20230711 2120 0.8 ESE 20230711 2120 0.8 ESE 20230711 2140 1.1 SE 20230711 2140 1.1 SE 20230711 2150 0.8 E 20230711 2150 0.8 E 20230711 2200 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2210 1.4 E 20230711 2230 1.7 E 20230711 2230 1.1 E E 20230711 2230 2.2	20230711 2000	2.2	E E
20230711 2030 2.2 ESE 20230711 2040 1.7 ESE 20230711 2050 2.2 ESE 20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2100 1.4 ESE 20230711 2100 0.8 ESE 20230711 2120 0.8 ESE 20230711 2120 0.8 ESE 20230711 2130 1.4 SE 20230711 2150 0.8 E 20230711 2150 0.8 E 20230711 2150 0.8 E 20230711 2150 0.8 E 20230711 2210 1.4 E 20230711 2210 1.4 E 20230711 2210 1.7 E 20230711 2230 1.7 E 20230711 2230 1.1 E 20230711 2230 1.1 20230		2.2	E E
20230711 2040 1.7		2.3	
20230711 2050 2.2 ESE 20230711 2100 1.4 ESE 20230711 2110 1.1 SE 20230711 2110 1.1 SE 20230711 2120 0.8 ESE 20230711 2120 0.8 ESE 20230711 2130 1.4 SE 20230711 2140 1.1 SE 20230711 2150 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2210 1.4 E 20230711 2210 1.7 E 20230711 2230 1.7 E 20230711 2230 1.7 E 20230711 2230 1.1 E E 20230711 2230 1.1 E E E 20230711 2230 1.1 E E E E E E E E E			
20230711 2100			
20230711 2120 0.8 ESE			
20230711 2130	20230711_2110		SE
20230711 2140 1.1 SE 20230711 2150 0.8 E 20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2210 1.4 E 20230711 2230 1.7 E 20230711 2230 1.1 E E 20230711 2230 1.1 E			
20230711 2150			
20230711 2200 0.8 E 20230711 2210 1.4 E 20230711 2220 1.7 E 20230711 2230 1.1 E	20230711_2140		
20230711 2210 1.4 E 20230711 2220 1.7 E 20230711 2230 1.1 E			
20230711 2220 1.7 E 20230711 2230 1.1 E			
20230711_2230	20230711 2210	1.7	
20220711 2240 1.1 FEE			
20230711 2250 0.3 E	20220711 2240		
20230711 2300 1.1 E 20230711 2310 1.4 E 20230711 2320 1.4 E 20230711 2330 0.8 E 20230711 2330 0.8 E 20230711 2350 0 N 20230711 2350 0.3 -	20230711 2250	0.3	Е
20230711 2310	20230711_2300	1.1	E
20230711 2330	20230711 2310	1.4	
20230711 2330 0.8 E 20230711 2340 0 N 20230711 2350 0.3 -	20230711_2320	1.4	
20230711 2340 0 N 20230711 2350 0.3 -	20230711_2330		
20230/11_2330 0.5 -	20230711 2340		N
	20230/11_2330	U.5	· ·

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230712_0000	0.8 0.3	Е
20230712_0010 20230712_0020	0.6	
20230712_0020	0.3	NE
20230712 0030 20230712 0030 20230712 0040	0.3 0.3	WSW
20230712_0040	0.3	NW
20230712 0050 20230712 0100 20230712 0110	0.3	WNW
20230712_0100	0.3	WNW
20230712_0110	1.1	WNW W
20230712_0120 20230712_0130 20230712_0140	0.2	WSW
20230712_0130	0.3	W
20230712_0150 20230712_0200 20230712_0210	0.8	SW
20230712_0200	0.3 0.3	WSW
20230712_0210	0.3	NNW
20230712_0210 20230712_0220 20230712_0230 20230712_0240	0.8	NW
20230712_0230	0.8 0.3	ESE SW
20230712_0240	0.3	3W
20230712 0250 20230712 0250 20230712 0300 20230712 0310	0.3 0.3	
20230712 0310	0.3	SSW
20230712 0320 20230712_0330	0.3	-
20230712_0330	0	N
20230712_0340	0	N
20230712 0350 20230712_0400	0	N
20230712_0400	0.3	N
20230712_0410	0.5	- N
20230712 0420 20230712_0430	0	N N
20230712 0440	0	N
20230712 0450 20230712_0500	0	N
20230712_0500	0	N
20230712_0510	0	N
20230712 0520 20230712_0530	0.3	N S
20230712_0540	0.3	SE SE
20230712_0540	0.5	N N
20230712_0600	0	N
20230712_0610	0	N
20230712 0620	0	N
20230712_0630	0	N
20230712_0640 20230712_0650	0	N N
20230712_0700	0	N N
20230712_0710	0	N
20230712 0720	0	N
20230712 0730	0	N
20230712_0740	0	N
20230712 0750	0.3	NE NE
20230712_0800 20230712_0810	0.3 0.6	NNE
20230712_0810	0.6	NE
20230712_0820	0.3	NNE
20230712 0840	0.3	WNW
20230712_0850	0.8	NE
20230712 0900	0.8	ENE
20230712_0910	1.7	E
20230712_0920	1.7	ESE
20230712_0930 20230712_0940	1.4 0.8	SE ENE
20230712_0940	1.4	E
20230712_0000	1.9	NE NE
20230712 1010	2.5	E
20230712_1020	2.8	ENE
20230712 1030	2,5	ENE
20230712_1040	2.2	SE
20230712_1050	1.4	E
20230712 1100 20230712 1110	2.8	ENE ENE
20230712_1110	2.5	ENE E
20230712_1120	2.8	E
20230712 1130	1.9	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230712 1200	2.5	ENE
20230712_1210	2.5	E
20230712_1220	2.2	ESE
20230712_1230 20230712_1240	3.3 3.1	E E
20230712_1250	3.3	E
20230712 1300	3.3	E
20230712_1310 20230712_1320	2.8	<u>Е</u> Е
20230712_1310 20230712_1320 20230712_1330	2.8 2.8 2.8	E
20230/12_1340	2.8	Е
20230712_1350	2.8	E
20230712 1400 20230712_1410	3.1 2.8	<u>Е</u> Е
20230712 1420	3.1	Ē
20230712 1430	2.5	ENE
20230712 1440 20230712_1450	2.8 2.5	<u>Е</u> Е
20230712_1430	2.8	ESE
20230712 1510	2.5	E
20230712_1520 20230712_1530	2.8	E
20230712 1530 20230712 1540	1.7 1.7	SE ESE
20230712 1550	2.2	ESE
20230712 1600 20230712 1610	2.2 2.2 2.5	SSE
20230712_1610 20230712_1620	2.5 2.8	ESE ESE
20230712_1620	1.7	ESE
20230712 1640	2.5	SSE
20230712_1650	2.2	SSE
20230712 1700 20230712 1710	2.5 1.7	SSE SSE
20230712_1710	1.7	SSE
20230712 1730	3.3	Е
20230712_1740 20230712_1750	3.3 3.1	<u>Е</u> Е
20230712_1730	2.8	E
20230712_1810	2.5	Е
20230712_1820	2.8	ESE
20230712 1830 20230712 1840	3.1 3.1	ESE ESE
20230712_1850	2.5	ESE ESE
20230712 1900	2.8	ESE
20230712_1910 20230712_1920	2.2 2.5	ESE SE
20230712 1930 20230712 1940 20230712 1940 20230712 1950 20230712 2000 20230712 2010	3.1	
20230712_1940	3.1 3.3	ESE ESE
20230712_1950	2.8	ESE ESE
20230712 2000	2.3	ESE ESE
20230712_2020	2.5	ESE
20230712_2030	2.5	ESE
20230712_2040 20230712_2050	1.1 1.7	E ESE
20230712_2000	2.2	ESE
20230712 2110	2.5 2.2	ESE
20230712_2120 20230712_2130	2.2	ESE ESE
20230712_2130	1.7	ESE ESE
20230712 2150	2.5	ESE
20230712_2200	2.2	E
20230712 2210 20230712 2220	0.3 1.4	-
20230712_2220	0.6	ENE
20230712 2240	0	N
20230712_2250 20230712_2300	0.3	WNW WSW
20230712_2300	1.1 0.6	WSW
20230712_2320	0.8	S
20230712_2330	1.7	ESE
20230712 2340 20230712 2350	0.8 0.3	SSE S
202207722_2220		

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230713 0000	0.3	SW
20230713_0000	1.1	SSW
20230713_0020	0.8	SSW
20230713_0030	0.3	WSW
20230713_0040	0.3	WSW
20230713_0050	0.6	SSW
20230713_0100		N.
20230713_0110 20230713_0120	0.3	N E
20230713_0120	0.3	Е
20230713_0130	0.3	ESE
20230713_0150	0.3	SE
20230713 0200	0.3	W
20230713_0210	0	N
20230713_0220	0	N
20230713 0230	0	N
20230713_0240 20230713_0250	0.3	N S
20230713_0230	0.3	ESE
20230713_0310	0.3	WSW
20230713_0320	0.6	SSW
20230713 0330	0.8	N
20230713_0340	0.3	NNE
20230713_0350	0.3	SSE
20230713 0400	1.1	ESE
20230713_0410	1.7	ESE
20230713_0420	1.4	DOD
20230713 0430 20230713 0440	1.4 1.7	ESE ESE
20230713_0440	1.7	SSE
20230713_0100	1.7	ESE
20230713 0510	1.1	ESE
20230713_0520	1.1	SE
20230713 0530	0.8	ESE
20230713_0540	0.6	ENE
20230713_0550	0.3	ESE
20230713 0600 20230713 0610	0.3 0.3	SW
20230713_0610 20230713_0620	0.5	S
20230713_0630	1.4	SSE
20230713_0640	1.4	SSW
20230713_0650	0.8	SSE
20230713 0700	0.6	S
20230713_0710	0.3	WSW
20230713_0720	0.3	WNW
20230713 0730	0.3	WNW
20230713_0740 20230713_0750	0.3	N WSW
20230713_0750	0.3	SSW
20230713_0810	0.5	N N
20230713_0820	0.6	SW
20230713_0830	0	N
20230713_0840	0.3	WNW
20230713_0850	0.3	WSW
20230713_0900	0	N
20230713_0910 20230713_0920	0	N N
20230713_0920 20230713_0930	0	N N
20230713_0940	0	N N
20230713_0940	0.3	SSW
20230713_0950 20230713_1000	0.8	SW
20230713 1010	1.1	SW
20230713_1020	0.8	SW SW
20230713_1030	1.7	SW
20230713 1040	1.7	SSW
20230713_1050	1.7	SW
20230713_1050 20230713_1100 20230713_1110	1.7	SW
20230713 1110	1.4	WSW
20230713_1120 20230713_1130	1.4 1.7	SW
20230713 1120 20230713 1130 20230713 1140 20230713 1150	2.2	SW
20230713_1150	1.9	SW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230713 1200	2.2	WSW
20230713_1210	2.5	SW
20230713_1220	2.8	SW
20230713_1230 20230713_1240	2.2	SW WSW
20230713_1240	2.2 2.2	WSW
20230713 1300	1.1	WNW
20230713_1310 20230713_1320	1.1	W
20230713_1320 20230713_1330	0.8 1.4	WNW NW
20230713_1340	0.8	NW
20220712 1250	1.7	SW
20230713 1400 20230713 1410 20230713 1410 20230713 1420 20230713 1430 20230713 1440	1.1 1.9	NNW W
20230713_1410	1.1	NW
20230713 1430	0.3	S
20230713_1440	0.8	W
20230713_1450 20230713_1500	1.4 1.4	WNW W
20230713_1510	1.4	WNW
20230713 1520	2.2	W
20230713 1530 20230713 1540	1.7	WNW
20230713_1540 20230713_1550	1.4 1.7	WNW WNW
20230713_1500	1.4	WNW
20230713_1610	1.4	W
20230713_1620 20230713_1630	0.8	NW NW
20230713 1630 20230713 1640	0.8	NW NNW
20230713_1650	1.4	NW
20230713 1700	1.7	WNW
20230713_1710 20230713_1720	1.7 1.4	WNW W
20230713_1720	1.7	SW
20230713_1740	1.1	SW
20230713_1750	0.3	SW
20230713 1800 20230713 1810	0.6 0.3	WSW WSW
20230713_1820	0.3	WNW
20230713 1830	0.3	SW
20230713_1840	0.3	SSE ESE
20230713_1850 20230713_1900	0.6 0.8	SE SE
20230713_1910	0.6	SE
20230713_1920	1.1	ESE
20230713 1930 20230713 1940 20230713 1950 20230713 2000 20230713 2010	0.8 0.3	S SSW
20230713_1940	0.8	SSW
20230713 2000	0.6	SW
20230713_2010 20230713_2020	0.8	S
20230713_2020	0.6 0.3	ENE -
20230713 2040	0.3	
20230713_2050	0	N
20230713_2100 20230713_2110	0 0.3	N SSE
20230713_2110	0.3	SSE
20230713_2130	0	N
20230713_2140	0.3	S
20230713_2150 20230713_2200	0.8	N SSW
20230713_2200	0.8	აა W -
20230713_2220	0.3	-
20230713_2230	0	N
20230713 2240 20230713_2250	1.1 0.8	NNW NW
20230713_2230	0.6	N
20230713 2310	1.7	NNE
20230713_2320	0.3	NW
20230713_2330 20230713_2340	0.3 0.3	S S
20230713_2350	0.3	WSW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	0	N N
20230714_0000 20230714_0010	0.3	SSW
20230714_0010	0.3	SSE
20230714 0020	0.3	SE
20230714 0030	0	N
20230714_0040	0.3	SSW
20230714_0050	0.3	SW
20230714_0100	0	N
20230714_0110	0	N
20230714_0120 20230714_0130	0	N N
20230714_0140	0	N N
20230714_0150	0	N
20230714 0200	0	N
20230714_0210	0	N
20230714 0220	0	N
20230714_0230	0	N N
20230714_0240 20230714_0250	0	N
20230714 0250 20230714 0300	0.6	N NW
20230714_0300	0.0	N
20230714 0320	0	N
20230714_0330	0	N
20230714_0340	0	N
20230714_0340 20230714_0350 20230714_0400	0.3	NW
20230714_0400	1.1	NW
20230714_0410 20230714_0420	0.3	NW S
20230714 0420 20230714 0430	0.3	N N
20230714_0430	0	N N
20230714_0440	0.6	NNW
20230714 0500	1.4	NW
20230714_0510	1.1	NW
20230714 0520	1.4	NNW
20230714_0530	1.7	NW
20230714_0540	1.1	SSE
20230714 0550 20230714 0600	0.3	SSW S
20230714_0600	1.1	<u>S</u>
20230714_0010	0.8	SSW
20230714 0630	0.3	-
20230714_0640	0.3	SE
20230714 0650	1.4	NNE
20230714_0700	0.8	NE
20230714_0710	0.8	SE
20230714 0720 20230714 0730	0.8 0.3	SSE NE
20230714_0730	2.5	NE N
20230714_0740	2.8	N
20230714_0800	2.5	N
20230714_0810	3.3	N
20230714_0820	3.6	N
20230714_0830	4.2	N
20230714_0840 20230714_0850	3.3 3.6	N N
20230714_0830	3.3	NNE NNE
20230714_0900	2.5	NNE
20230714_0910	3.3	N
20230714_0930	2.8	N
20230714_0940	3.3	N
20230714 0950	3.1	N
20230714 1000 20230714_1010	2.8 3.9	N
20230714_1010	3.9	NNE
20230714_1020 20230714_1030	3.3	N NNW
20230714 1030 20230714_1040	2.8 2.5	NNW NW
20230714_1040	2.5	NW
20230714_1000	2.2 1.7	N
20230714 1110	1.7	NNW
20230714_1120	2.2	N
20230714 1130	2.5	N
20230714_1140	2.5	NNW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230714 1200	2.5	N
20230714_1200	2.5	N N
20230714 1220	2.5 2.2	N
20230714 1230	2.2	
20230714_1240 20230714_1250	1.9 1.7	N NNE
20230714_1250	1.7	NE NE
20230714_1310	2.5	N N
20230714_1320	2.8	NE
20230714_1330	1.7	
20230714_1340 20230714_1350	2.2	WNW
20230714_1350 20230714_1400	2.2	N NW
20230714 1410	2.5	NNE
20230714_1420	2.8	-
20230714 1430	2.8	N
20230714_1440 20230714_1450	3.1	N
20230714_1450 20230714_1500	3.1 2.8	NNW NNW
20230714 1510	2.8	NNW
20230714 1520	1.9	NNW
20230714 1530	3.1	N
20230714_1540	2.5	N
20230714_1550 20230714_1600	2.2	N NNW
20230714 1600 20230714 1610	2.2 3.3	NNE NNE
20230714_1010	3.3	NNE
20230714 1630	2.5	NNE
20230714_1640	2.5	N
20230714_1650	2.8	N
20230714 1700 20230714 1710	2.5 2.2	NNE NNE
20230714_1710	1.7	N N
20230714 1730	2.2	N
20230714_1740	2.2	NNE
20230714_1750	1.1	NNE
20230714 1800 20230714 1810	1.7 1.7	NNE NE
20230714_1810	1.7	NE NE
20230714 1830	1.7	NNE
20230714_1840	1.7	NE
20230714_1850	1.1	NE
20230714 1900 20230714 1910	1.1 1.1	NE NE
20230714_1910	1.1	ENE
20230714 1930	0.3	SSW
20230714_1940	0.3	SSE
20230714_1950	0	N
20230714 2000 20230714 2010	0	N SSW
20230714_2010 20230714_2020	0.3 0.3	S
20230714_2020 20230714_2030	0.8	S
20230714_2040	0.8	SSE
20230711 2010	1.1	SE
20230714_2100	1.4 0.3	SE
20230714_2110	0.3	N N
20230714 2130	0	N
20230714_2140	0.3	SSW
20230714_2150	0	N
20230714_2200	0.3	SW N
20230714 2210	0	N N
20230714 2230	0	N N
20230714 2240	0	N
20330714 2100 20330714 2110 20230714 2110 20230714 2120 20230714 2130 20230714 2150 20230714 2150 20230714 2200 20230714 2210 20230714 2220 20230714 2220 20230714 2220 20230714 2230 20230714 2240 20230714 2250 20230714 2250 20230714 2250 20230714 2250 20230714 2250 20230714 2250	0	N
	0	N
20230714 2310 20230714 2320	0	N N
20230714_2320	0	N N
20230714 2340	0	N
20230714_2350	0	N

D-4- 0 Ti		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230715 0000	1.4	SE
20230715_0000 20230715_0010 20230715_0020	2.2	E
20230715_0020	2.2 2.2	ESE
20230715_0020 20230715_0030 20230715_0040	3.3	ESE
20230715_0030	3.3	Е
20230715_0040	3.3	ESE
20230715_0050 20230715_0100 20230715_0110	3.3	ESE
20230715_0100	4.2 5.3	ESE ESE
20230715_0110		ESE
20230715_0120 20230715_0130 20230715_0140	3.3	ESE
20230715_0130	3.3 3.3	<u>Е</u> Е
20230715_0140	3.9	E
20230715 0150 20230715 0200 20230715 0210	3.3	E
20230715 0210	2.5 2.8 2.2 2.8	<u>Е</u> Е
20230715_0220 20230715_0220 20230715_0230 20230715_0240	2.8	Е
20230715_0230	2.2	Е
20230715_0240	2.8	Е
20230715 0250 20230715_0300	3.3 2.8 2.8	Е
20230715_0300	2.8	Е
20230715_0310	2.8	ESE
20230715 0320 20230715 0330	3.1 2.5	E ESE
20230715_0330 20230715_0340	2.5 2.5	ESE E
20230715_0340	2.3	ESE
20230715_0400	2.2	ESE ESE
20230715_0400	0.6	SE
20230715_0420	0.0	N N
20230715 0430	0.3	ESE
20230715_0440	0	N
20230715 0450	0	N
20230715_0500	0	N
20230715_0510	0.3	ENE
20230715 0520	0.8	NE
20230715_0530	1.1	NE
20230715_0540	0.8	E
20230715 0550 20230715 0600	1.7	E
20230715_0610	1.4 1.1	E E
20230715_0010	1.1	E
20230715_0630	1.7	E
20230715_0640	1.1	E
20230715 0650	1.4	E
20230715 0700	1.4	ENE
20230715_0710	0.8	ENE
20230715 0720	1.4	ESE
20230715_0730	2.5	ESE
20230715_0740	2.8	E
20230715 0750 20230715 0800	2.8 2.8	ESE
20230715_0800	3.3	E ESE
20230715_0820	3.1	E
20230715_0820	3.3	E
20230715 0840	4.2	ESE
20230715_0850	3.3	ESE
20230715 0900	3.9	ESE
20230715_0910	3.9	ESE
20230715_0920	3.9	SE
20230715_0930	4.2	SE
20230715_0940	3.1	ESE
20230715_0950	3.1 3.3	E
20230715 1000 20230715 1010	3.3	E ESE
20230715_1010	3.3	ESE E
20230715_1020	3.9	E E
20230715 1040	3.9	ESE
20230715_1050	3.9	ENE
20230715 1100	3.3	Е
20230715 1110	3.3	Е
20230715_1120	4.4	ESE
20230715 1130	4.4	Е
20230715_1140	3.3	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230715 1200	3,3	E
20230715_1200	3.3	ESE
20230715 1220	2.8	SE
20230715 1230	3.9	ESE
20230715_1240 20230715_1250	4.2 4.7	ESE SE
20230715_1250	3.9	SE SE
20230715_1310	3.1	SE SE
20230715_1320	3.9	E
20230715_1330	3.3	ESE
20230715_1340	4.4	E
20230715_1350 20230715_1400	4.2 3.3	E ESE
20230715 1410	3.9	ESE
20230715_1420	3.9	ENE
20230715 1430	3.6	ESE
20230715_1440 20230715_1450	4.2	E
20230715_1450 20230715_1500	3.9 4.4	<u>Е</u> Е
20230715 1510	3.9	ESE
20230715 1520	4.2	E
20230715 1530	3.3	ESE
20230715_1540	3.3	ESE
20230715_1550 20230715_1600	3.1 3.9	SE E
20230715 1600 20230715 1610	3.9	<u>Е</u> Е
20230715_1010	3.3	E
20230715 1630	3.1	E
20230715_1640	3.3	E
20230715_1650	3.3	ESE
20230715 1700 20230715_1710	3.9 3.9	SE SE
20230715_1710	2.5	ESE
20230715 1730	3.1	SE
20230715_1740	3.1	SE
20230715_1750	2.5	SE
20230715 1800 20230715 1810	3.3	ESE
20230715_1810	3.3 3.3	SE SE
20230715 1830	3.3	SE
20230715_1840	3.3	SE
20230715_1850	3.1	SE
20230715 1900 20230715 1910	3.3 3.3	SE SE
20230715_1910	3.3	SE SE
20230715 1930	3.3	ESE
20230715_1940	3.3	ESE
20230715_1950	3.3	ESE
20230715 2000	3.6	ESE
20230715 2000 20230715 2010 20230715 2020	3.9 3.3	ESE ESE
20230715_2010 20230715_2020 20230715_2030	3.9 3.3 4.2	ESE
20230715 2040	5	ESE
20230715_2050	4.4	ESE
20230715_2100	4.7	SE
20230715_2110	5 4.7	SE SE
20230715_2120	4.4	ESE
20230715 2140	4.7	ESE
20230715 2050 20230715 2100 20230715 2110 20230715 2110 20230715 2120 20230715 2130 20230715 2140 20230715 2240 20230715 2200 20230715 2200 20230715 2220 20230715 2220 20230715 2220 20230715 2250 20230715 2250 20230715 2250 20230715 2250 20230715 2250	5	SE
20230715_2200	5	SE
20230715 2210	4.4	ESE
20230715_2220	4.2 4.7	SE ESE
20230715 2240	5,3	SE
20230715_2250	4.4	ESE
	4.2	ESE
20230715 2310	4.2	ESE
20230715_2320 20230715_2330	3.6 4.4	ESE ESE
20230715_2330	4.2	ESE
20230715_2350	4.7	ESE

	1	
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230716, 0000	4.2	ESE
20230716_0000 20230716_0010 20230716_0020	3.3	ESE
20230716 0020	4.4	ESE ESE
20230716_0020 20230716_0030 20230716_0040	4.7	ESE
20230716_0030	5	ESE ESE
20230716_0040	5.3	ESE
20230716_0050 20230716_0100 20230716_0110	5	ESE
20230716_0100	4.7	ESE ESE
20230/16_0110	5.3 4.7	ESE
20230716_0120 20230716_0130 20230716_0140	5.3 4.7 4.7	ESE
20230716_0130	4.7	ESE ESE
20230716_0140	5.6	ESE
20230716 0150 20230716 0200 20230716 0210	5.0	ESE ESE ESE
20230716 0210	3,9	ESE
20230716 0220 20230716 0230 20230716 0240	4.2 4.2	ESE ESE ESE
20230716_0230	4.2	ESE
20230716_0240	4.2	ESE
20230716 0250 20230716 0300	4.2	ESE ESE
20230716_0300	5.3	ESE
20230716_0310	4.7	ESE
20230716 0320 20230716 0330	5 4.7	ESE ESE
20230716_0330	4.7 5.8	ESE ESE
20230/10_0340	5.8	ESE ESE
20230716 0350 20230716 0400	5.6	ESE ESE
20230716_0410	5	ESE
20230716 0420	4.4	ESE
20230716_0430	5.3	ESE
20230716_0440	5	ESE
20230716 0450	5.3	ESE
20230716_0500	5	ESE
20230716_0510	5.3	ESE
20230716 0520	5.3	ESE
20230716_0530	5.8	ESE
20230716_0540 20230716_0550	5.6 5.3	ESE ESE
20230716_0600	5.3	ESE
20230716_0610	5	ESE
20230716_0620	4.7	ESE
20230716_0630	4.7	ESE
20230716_0640	5	ESE
20230716 0650	5	ESE
20230716_0700	3.9	E
20230716_0710	4.2	ESE
20230716 0720	3.3	ESE
20230716_0730	3.6 3.9	E
20230716_0740 20230716_0750	4.2	E ESE
20230716_0800	4.2 5	E E E
20230716_0810	5	ESE
20230716_0820	5.6	ESE
20230716 0830	5.3	ESE
20230716 0840	4.7	ESE
20230716 0850	3.3	ESE
20230716_0900	3.3	ESE
20230716_0910	4.2	ESE
20230716_0920	4.2	ESE
20230716 0930 20230716 0940	4.7 4.7	ESE ESE
20230716_0940	5	ESE
20230716_0930	5.3	ESE
20230716 1010	5.3	ESE
20230716 1020	5.3	ESE
20230716 1030	4.4	ESE
20230716 1040	3.9	E
20230716_1050	3.9	ESE
20230716 1100	5.3	ESE
20230716 1110	5.6	ESE
20230716_1120	5 5,3	ESE
20230716 1130 20230716 1140	5.3	ESE ESE
20230710_1140	3.3	ESE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230716 1200	5.8	ESE
20230716 1210	4.7	ESE ESE
20230716_1220	5	ESE
20230716_1230 20230716_1240	4.4	ESE ESE
20230716_1250	4.7	E
20230716 1300	5	ESE
20230716_1310	4.2	ESE
20230716_1320	4.4	ESE
20230716_1330 20230716_1340	4.7	ESE SE
20230716_1350	4.7	E
20230716 1400	5.3	Е
20230716_1410 20230716_1420	4.2	ESE
20230716_1420 20230716_1430	4.4 3.3	<u>Е</u> Е
20230716_1440	3.9	ESE
20230716 1450	3.9	ESE
20230716 1500	3.3	ESE
20230716_1510 20230716_1520	3.6 2.8	ESE ESE
20230716_1520	3.3	SE SE
20230716_1540	3.3	ESE
20230716 1550	3.3	ESE
20230716 1600	3.3	ESE
20230716_1610 20230716_1620	2.8 3.3	ESE SE
20230716_1630	3.1	ESE
20230716_1640	2.8	ESE
20230716_1650	2.5	ESE
20230716 1700 20230716 1710	2.5 2.5	ESE ESE
20230716_1710	2.5	SE SE
20230716 1730	2.8	ESE
20230716_1740	2.5 2.2	ESE
20230716_1750		ESE
20230716 1800 20230716_1810	1.7 1.4	ESE SE
20230716_1820	1.7	ESE
20230716 1830	1.7	ESE
20230716_1840	2.2 1.9	ESE ESE
20230716_1850 20230716_1900	2.2	ESE
20230716 1910	1.9	ESE
20230716_1920	2.2	SE
20230716 1930	2.2	ESE
20230716_1940 20230716_1950	2.8 1.7	ESE SE
20230716 2000	2.8	SE
20230716 2010 20230716 2020 20230716 2030	2.8 1.7	ESE
20230716_2020	1.7 1.4	SSE
20230716_2030	2.2	ESE
20230716_2050	2.2	SE
20230716_2100	1.9	E
20230716_2110	2.2	ESE ESE
20230716_2120	2.2	ESE ESE
20230716_2130	1.7	ESE
20230716 2050 20230716 2100 20230716 2110 20230716 2110 20230716 2120 20230716 2130 20230716 2140 20230716 2150 20230716 2210 20230716 2220 20230716 2220 20230716 2220 20230716 2230 20230716 2250 20230716 2240 20230716 2250 20230716 2300	2.2	ESE
20230716_2200	2.8 2.8	ESE
20230716 2210	2.8	ESE
20230716 2230	2.5 2.8	ESE E
20230716 2240	2.5	ESE
20230716_2250	2.5	ESE
20230716_2300 20230716_2310	2.2	E
20230716_2310 20230716_2320	1.4 1.7	E ESE
20230716 2330	1.4	E
20230716 2340	1.9	E
20230716_2350	1.7	E

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230717_0000	1.1	SE
20230717_0000 20230717_0010 20230717_0020	1.7 1.7	ESE
20230717_0020	1.7	ESE
20230717_0030 20230717_0040 20230717_0050	2.2 1.4	E SE
20230717_0040	1.7	ESE ESE
20230717_0030	2.2	E
20230717_0100 20230717_0110 20230717_0120	2.8	E
20230717_0120	2.8 1.7	ESE.
20230717_0130	1.4	ESE
20230717_0130 20230717_0140 20230717_0150	2.2 2.2	ESE ESE ESE
20230717_0150	2.2	ESE
20230717 0200 20230717 0210 20230717 0220	2.5 1.7	ESE F
20230717_0210	1.7	E ESE
20230717 0230 20230717 0240 20230717 0250	1.7	SE ESE ESE
20230717_0240	1.7	ESE
20230717_0250	1.9	ESE
20230717 0300 20230717_0310	1.4 1.7	ESE SE
20230717_0310 20230717_0320	1.7 1.7	ESE ESE
20230717_0320	1.7	ESE
20230717 0340	2.2	ESE ESE
20230717_0350	2.5	ESE
20230717 0400	1.7	SE
20230717_0410	1.7	ESE
20230717_0420	1.7	ESE
20230717 0430 20230717 0440	2.2 1.7	SE ESE
20230717_0440	1.7	ESE ESE
20230717_0430	1.7	ESE
20230717 0510	1.7	ESE
20230717_0520	1.7	ESE
20230717 0530	2.2	SE
20230717_0540	1.7	ESE
20230717_0550 20230717_0600	1.4	ESE ESE
20230717_0610	1.7	ESE
20230717_0620	2.5	ESE
20230717 0630	1.9	Е
20230717_0640	2.2	Е
20230717_0650	2.2	E
20230717 0700 20230717 0710	1.4 1.7	ESE E
20230717_0720	1.7	ESE ESE
20230717_0720	2.2	ESE
20230717 0740	1.4	ESE
20230717_0750	1.1	E
20230717 0800	1.4	ESE
20230717_0810	1.1	E
20230717_0820 20230717_0830	1.1 1.4	<u>Е</u> Е
20230717_0840	1.9	ENE ENE
20230717 0850	2.5	ENE
20230717_0900	1.4	ESE
20230717 0910	1.7	Е
20230717_0920	2.2	E
20230717_0930 20230717_0940	1.7 3.1	<u>Е</u> Е
20230717_0940	2.5	<u>Е</u> Е
20230717_1000	2.8	ENE
20230717 1010	3.3	ENE
20230717 1020	3.1	Е
20230717_1030	3.3	E
20230717 1040	3.3	E
20230717_1050 20230717_1100	3.6 3.3	E E
20230717_1100	3.3	ENE ENE
20230717 1110	3.9	ENE E
20230717_1130	3.3	Е
20230717 1140	3.1	E
20230717_1150	2.8	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230717 1200	3,3	ENE
20230717 1210	3.1	ENE
20230717_1220	3.3	ENE
20230717_1230 20230717_1240	3.6	ENE
20230717_1240	3.1 2.5	ENE E
20230717_1230	2.8	E
20230717 1310	3.3	Ē
20230717_1320	3.1	Е
20230717_1330	3.3	E
20230717_1340 20230717_1350	3.3 2.5	ENE E
20230717_1330	2.8	ENE
20230717 1410	2.5	ENE
20230717_1420	2.5	Е
20230717 1430	1.9	ESE
20230717_1440 20230717_1450	1.7 2.8	ESE ESE
20230717_1430	2.5	ESE
20230717 1510	2.2	ESE
20230717_1520	2.2 2.2	ESE
20230717 1530	2.2	ESE
20230717_1540	2.2	E
20230717_1550 20230717_1600	1.7 1.9	ESE ESE
20230717 1610	1.7	SE
20230717_1620	2.5	Е
20230717 1630	2.8	ESE
20230717_1640	2.5	ESE
20230717_1650 20230717_1700	1.7 1.7	ESE ESE
20230717 1700	1.4	ESE
20230717 1720	2.2	E
20230717 1730	1.4 2.2	E
20230717_1740	2.2	E
20230717_1750 20230717_1800	1.7	<u>Е</u> Е
20230717 1810	1.7	<u>Е</u> Е
20230717 1820	0.6	Ē
20230717 1830	0.3	ENE
20230717_1840	0.8	E
20230717_1850	1.1	E
20230717 1900 20230717 1910	1.1 0.8	E NE
20230717_1920	0.8	NE
20230717 1930	0.8	ENE
20230717_1940	0.3	ENE
20230717_1950	0.8	ENE
20230717 2000	0.8 0.3	E E
20230717_2010 20230717_2020 20230717_2030	0.5	ESE
20230717_2030	1.1	ESE SE
20230717_2040	0.8	ESE
20230717_2050	0.8	ESE
20230/17_2100	0.8	ESE ESE
20230717_2110	0.5	EOE
20230717_2120	0.3	NNE
20230717_2140	0.8	E
20230717_2150	0.8	ESE
20230/17_2200	2.2	ESE SE
20230717 2210	1.4 1.1	
20230717 2230	0	E N
20230717 2240	1.1	SE
20330717 2050 20330717 2110 20230717 2110 20230717 2120 20230717 2130 20230717 2130 20230717 2150 20230717 2240 20230717 2200 20230717 2220 20230717 2220 20230717 2220 20230717 2220 20230717 2230 20230717 2240 20230717 2240 20230717 2250 20230717 2250 20230717 2250 20230717 2250	1.1	SSE
	0.3	SE
20230717 2310 20230717 2320	0.6 1.1	<u>Е</u> Е
20230717_2320	0.3	E
20230717 2340	0.3	-
20230717_2350	0.8	NE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230718 0000	0.8	E
20230718 0010	0.6	ESE
20230718_0020		
20230718 0030	1.4	SE
20230718_0040	1.4	SE
20230718_0050	0.8	Е
20230718_0100	1.4	NE
20230718_0110	0.8	ENE
20230718_0120	0.8	NE
20230718_0130	1.1	ENE
20230718_0140	0.8	E
20230718_0150	0.8	ESE
20230718 0200 20230718 0210	1.1 0.8	E NE
20230718 0140 20230718 0140 20230718 0150 20230718 0200 20230718 0210 20230718 0220	1.4	E
20230718_0220	0.8	ESE
20230718 0230	1.1	E
20230718 0250	0.8	Ë
20230718 0300 20230718_0310	1.1	E
20230718 0310	1.1	ESE
20230718_0320 20230718_0330	1.4	ESE
20230718 0330	1.7	SE
20230718_0340	1.0	SE
20230718_0350	1.7	SSE
20230718 0400	1.4	SE
20230718_0410	1.1	ESE
20230718 0420	1.4	Е
20230718 0430	1.7	ENE
20230718_0440	1.4	E
20230718_0450	1.1	ESE
20230718 0500	0.8	ESE
20230718_0510	0.8	ESE
20230718_0520	1.1	ESE
20230718 0530 20230718_0540	1.1	ESE
20230718_0340	1.1 1.4	E E
20230718_0550	1.4	E E
20230718 0610	1.4	SE
20230718_0010	1.1	E
20230718_0630	0.3	SE
20230718 0640	0.3	-
20230718 0650	0,3	E
20230718 0700	0.8	Е
20230718_0710	1.4	ESE
20230718_0720	0.8	ENE
20230718 0730	1.1	E
20230718_0740	0.8	Е
20230718_0750	1.1	E
20230718 0800	0.8	E
20230718_0810	0.3	ENE
20230718_0820 20230718_0830	0.8	ENE ENE
20230718_0830 20230718_0840	0.8	NE NE
20230718_0840	1.7	NE ENE
20230718_0830	1.7 1.4	ENE ENE
20230718_0900	1.1	ESE
20230718_0920	0.8	
20230718_0930	1.1	ESE
20230718_0940	1.1	NNE
20230718_0950	1.4	N
20230718 1000	1.7	NNE
20230718 1010 20230718 1020	2.2	N
20230718_1020	1.4	N
20230718_1030	1.4	N
20230718 1040	1.7	N
20230718_1050	2.5	NNE
20230718_1100	2.2	N
20230718 1110	1.4	NE
20230718_1120	0.8	NE
20230718_1130	1.1	ESE
20230718 1120 20230718 1130 20230718 1130 20230718 1140 20230718 1150	1.7	E
20230718_1150	1.1	NE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230718_1200	1.1	N
20230718_1210	2.5	N
20230718_1220	1.7	NNW
20230718_1230 20230718_1240	1.7 2.2	N N
20230718_1250	3.1	NNE
20230718 1300	2.8	NNE
20230718_1310 20230718_1320	2.5 2.2 2.2	N
20230718_1320 20230718_1330	2.2	N
20230718_1330 20230718_1340	1.7	NNW NNW
20230718 1350	1.9	N
20230718 1400	2.5 2.5	N
20230718_1410 20230718_1420	2.5 2.5	NNE
20230718_1420 20230718_1430	3.1	N NNE
20230718 1440	2.2	N N
20230718_1450	1.7	N
20230718 1500	2.2	N
20230718_1510 20230718_1520	3.3 2.8	N N
20230718_1520	2.5	N N
20230718 1540	3.1	NNE
20230718_1550	2.5 2.5	NNE
20230718 1600	2.5	N
20230718_1610 20230718_1620	2.5 2.2	N N
20230718_1630	2.5	N N
20230718 1640	2.5	N
20230718_1650	2.5	N
20230718 1700	2.2	N
20230718_1710 20230718_1720	2.2 3.1	N N
20230718_1720	3.9	N N
20230718_1740	3.3	N
20230718_1750	3.3	NNE
20230718 1800 20230718 1810	3.6	NNE
20230718_1810 20230718_1820	3.1 2.8	NNE NNE
20230718 1830	3.1	N
20230718_1840	3.1	N
20230718_1850	3.3	N
20230718 1900 20230718_1910	3.1 2.8	N N
20230718 1020	3.3	N N
20230718 1930 20230718 1940 20230718 1940 20230718 2000 20230718 2010	3.3 2.2	N
20230718_1940	2.2	N
20230718_1950	2.5 3.1	N N
20230718 2000 20230718 2010	2.8	N N
20230718 2020	2.8	N
20230718_2030	2.2	N
20230718_2040	1.4	NNW
20230718_2050 20230718_2100	1.4 1.4	NNW N
20230718_2100	1.4	N N
20230718_2120	0.8	NNW
20230718_2130	1.1	NW
20230718_2140 20230718_2150	0.8 1.4	N N
20230718_2150	1.4	N N
20230718_2200	1.1	N
20230718_2220	0.8	NNW
20230718_2230	1.7	N
20230718 2240 20230718_2250	1.7 1.4	N N
20230718_2230	1.7	NNW
20230718 2310	2.2	N
20230718_2320	2.8	N
20230718_2330	1.7	NNW
20230718 2340 20230718_2350	1.9 1.7	NNW NW
20230110_2330	1.7	1444

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230719 0000	1.7	NNW
20230719_0010	1.7	NNW
20230719_0020	1.9	NNW
20230719_0030	1.4	NNW
20230719_0040	1.4	N
20230719_0050	2.2	N
20230719_0100	2.2	N
20230719_0110	2.5 3.3	N NNE
20230719_0120 20230719_0130	2.5	NNE
20230710 0140	2.5	NNE
20230719_0150	2.5 0.3	-
20230719 0200	0.3	NW
20230719_0210	0.8	NNW
20230719 0150 20230719 0150 20230719 0200 20230719 0210 20230719 0220	1.1	N
20230719 0230	1.4	N
20230719_0240	2.2	N
20230719_0250	2.5	N
20230719 0300 20230719 0310	1.9 2.5	N
20230719_0310 20230719_0320	2.5	N N
20230719_0320	2.2	N N
20230719 0340	1.4	NNE
20230719_0350	0.6	NNE
20230719 0400	0.3	NNW
20230719_0410	1.1	N
20230719_0420	0.8	NNW
20230719 0430	1.4	NNW
20230719 0440 20230719 0450	2.2	N N
20230719_0430	1.1	N N
20230719 0500	0.6	N
20230719 0520	0.3	N
20230719 0530	0.8	N
20230719_0540	1.1	N
20230719_0550	0.8	N
20230719 0600	0.8	NNW
20230719_0610	0.3	N
20230719_0620 20230719_0630	1.4	N N
20230719 0630	1.7	N N
20230719 0650	1.4	N
20230719 0700	1.1	N
20230719_0710	0.8	N
20230719_0720	1.7	N
20230719 0730	1.7	N
20230719_0740	1.1	NNW
20230719_0750	1.1	NNW
20230719 0800	1.1	N
20230719_0810 20230719_0820	1.7 1.7	N N
20230719_0820	1.1	NNW
20230719_0840	0.3	NW
20230719_0850	1.4	NNW
20230719_0900	1.7	N
20230719_0910	1.4	N
20230719_0920	1.1	N
20230719_0930	0.8	N
20230719_0940 20230719_0950	1.1	NNW N
20230719 1000	1.7 1.7	N N
20230719 1010	1.7	N
20230719 1020	2.2	N
20230719 1030	2.2	N
20230719 1040	2.5	N
20230719_1050	1.7	N
20230719_1100	2.2	N
20230719 1110 20230719 1120	1.7	N N
20230719_1120		N N
20230719 1140	2.2	N
	1.7	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230719 1200	2,5	N
20230719 1210	2.8	N
20230719_1220	2.5 2.5 2.2	N
20230719_1230 20230719_1240	2.5	N N
20230719_1240	1.7	N N
20230719_1230	1.7	N N
20230719 1310	1.1	N
20230719_1320	1.7	N
20230719_1330	1.4	N
20230719_1340 20230719_1350	1.7 2.2	N N
20230719_1330	1.7	N N
20230719 1410	1.7	N
20230719_1420	2.2	N
20230719 1430	2.5	N
20230719_1440 20230719_1450	2.2 1.7	N N
20230719_1430	1.4	N N
20230719 1510	2.2	NNE
20230719_1520	2.8	N
20230719 1530	2.5	N
20230719_1540 20230719_1550	1.9 1.4	N N
20230719_1530	1.7	N N
20230719 1610	2.5	N N
20230719_1620	1.7	N
20230719 1630	1.7	N
20230719_1640	1.1	N
20230719_1650 20230719_1700	1.7	N N
20230719 1700	1.7	N N
20230719_1710	1.4	NNW
20230719 1730	2.5	N
20230719_1740	2.5	NNE
20230719_1750 20230719_1800	1.7	NNE N
20230719 1800 20230719 1810	1.1	NNW
20230719 1820	1.7	N
20230719 1830	2.5	N
20230719_1840	1.9	N
20230719_1850	1.7	N
20230719 1900 20230719 1910	1.1 1.1	N NNW
20230719_1920	1.4	NNW
20230719 1930	1.4	NNW
20230719_1940	1.1	NNW
20230719_1950	0.8	NNE
20230719 2000 20230719 2010	0.6 1.1	N NE
20230719 2020	0.3	NNE
20230719_2030	0.3	ENE
20230719_2040	0.3	N
20230719_2050	1.1	N
20230719_2100 20230719_2110	1.1 0.3	N N
20230719_2110	0.3	NNE
20230719_2120	0.8	NNW
20230719_2100 20230719_2110 20230719_2120 20230719_2130 20230719_2140 20230719_2150	0.3	-
20230719_2150 20230719_2200	0.8	ESE
20230719_2130 20230719_2200 20230719_2210	0.3	E
20230719 2200 20230719 2210 20230719 2220 20230719 2230	0.3 0.3 0.3	NE NE
20230719 2230	0.3	N N
20230719 2240 20230719_2250	0.3	NW
20230719_2250	0	N
20230719_2300	0	N
20230719 2310 20230719 2320	0.3 0.3	SW SW
20230719_2320	0.3	WSW
20230719 2340	0	N
20230719_2350	0	N

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230720_0000	0.3	NW
20230720_0010 20230720_0020	0.3 0.3	NW
20230720_0020	0.3	NNE
20230720 0030 20230720 0040 20230720 0050	2.8	ESE E
20230720_0040	1.7 2.2	ESE
20230720_0050	2.2 2.2 2.2 2.5 2.8	E
20230720 0100 20230720 0110 20230720 0120	2,2	E
20230720_0120	2.5	Е
20230720 0120 20230720 0130 20230720 0140 20230720 0150	2.8	Е
20230720_0140	1.9	ESE ESE
20230720_0150	1.7	ESE
20230720 0200 20230720 0210 20230720 0210 20230720 0220	1.7	ESE ESE E
20230720_0210	1.4	ESE
20230720_0220	1.1	E E
20230720 0220 20230720 0230 20230720 0240 20230720 0250	0.8	ENE
20230720_0240	1.1	ENE
20230720_0230	1.1	F
20230720 0300	0.8	E ESE
20230720 0300 20230720 0310 20230720 0320	0.3	ESE
20230720 0330	0	N
20230720 0330 20230720_0340	0.3	ESE
20230720 0350	0.8	ESE
20230720 0400 20230720_0410	1.1	ESE
20230720_0410	1.1	ESE
20230720_0420	0.8	ESE
20230720 0430 20230720_0440	1.7	ESE
20230720_0440	1.1	SE
20230720_0450 20230720_0500	1.4	ESE ESE
20230720_0510	0.6 0.6	ESE E
20230720_0520	1.1	ESE
20230720_0520	1.1	SE
20230720_0540	0.3	<u>.</u>
20230720_0550	0.6	SE
20230720 0600	1.4	SE
20230720_0610	1.1	E
20230720_0620	1.4	Е
20230720 0630	0.8	SE
20230720_0640	1.4	ESE
20230720_0650	1.7	Е
20230720 0700	1.4	E
20230720_0710	1.7	ESE
20230720_0720 20230720_0730	2.5 2.5	E E
20230720_0740	1.7	ESE
20230720_0740	1.4	ESE
20230720_0730	1.7	SE
20230720 0810	1.7	ESE
20230720 0820	1.7	ESE
20230720_0830	1.7	Е
20230720 0840	2.2	Е
20230720_0850	2.2	Е
20230720_0900	2.2	ESE
20230720_0910	2.5	E
20230720_0920	2.5	E
20230720_0930	3.3	ENE
20230720_0940 20230720_0950	3.3 2.8	<u>Е</u> Е
20230720_0950	2.8	<u>E</u>
20230720_1000	2.8	E E
20230720 1010	2.2	ESE
20230720_1020	3.3	E
20230720_1030	2.8	-
20230720 1040	2.5	E
20230720_1100	2.8	Ē
20230720 1110	3.1	Е
20230720_1120	3.3	Е
20230720_1130	3.1	Е
20230720 1140	3.1	ESE
20230720_1150	2.5	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230720 1200	1.4	ESE
20230720_1200	1.1	ESE
20230720 1220	1.7	ESE ESE
20230720 1230	1.7	SE
20230720_1240 20230720_1250	1.4 1.4	ESE
20230720_1250	1.4	E ESE
20230720_1310	1.9	ESE
20230720_1320	1.7	SE
20230720_1330	1.7	ESE
20230720_1340 20230720_1350	2.2	SE
20230720_1330	1.4	ESE ESE
20230720 1410	1.4	ESE
20230720 1420	1.7	SE
20230720 1430	1.4	SE
20230720_1440 20230720_1450	1.1	ESE
20230720_1450 20230720_1500	0.3	- N
20230720 1510	0	N N
20230720 1520	0	N
20230720 1530	0	N
20230720_1540	0.3	ESE
20230720_1550 20230720_1600	0.6	E
20230720 1600 20230720 1610	1.4 0.8	E
20230720_1010	0.6	ESE
20230720 1630	1.4	Е
20230720_1640	1.7	ESE
20230720_1650	2.2	ESE
20230720 1700 20230720 1710	1.9 2.2	ESE ESE
20230720_1710	1.9	SE
20230720 1730	2.2	ESE
20230720_1740	1.7	SE
20230720_1750	1.7	ESE
20230720 1800 20230720 1810	1.9 1.9	ESE ESE
20230720_1810	1.4	E E E E E E E E E E E E E E E E E E E
20230720_1830	1.7	ESE
20230720_1840	2.5	E
20230720_1850	2.2	ESE
20230720 1900 20230720 1910	1.7 1.9	ESE SE
20230720_1910	1.9	ESE
20230720_1920	1.9	E
20230720_1940	1.4	Е
20230720_1950	1.9	E
20230720 2000	2.2	E
20230720 2010 20230720 2020 20230720 2030	1.7 2.2	E ESE
20230720_2020	2.2	ESE
20230720 2040	2.2	Е
	1.7	Е
20230720_2100	2.2	ESE
20230720_2110	2.2 2.2	ESE ESE
20230720_2120	1.7	ESE
20230720 2140	2,5	E
20330720 22050 20230720 2100 20230720 2110 20230720 2110 20330720 2130 20230720 2130 20230720 2140 20230720 2150 20230720 2210 20230720 2210 20230720 2220 20230720 2220 20230720 2230 20230720 2240 20230720 2240 20230720 2240 20230720 2230	2.5 2.5	Е
20230720_2200	2.2	ESE
20230720 2210	3.3	ESE
20230720_2220	2.5 3.1	<u>Е</u> Е
20230720_2230	2.8	E
20230720_2250	3.3	ESE
20230720_2300	2.8	ESE
20230720 2310	2.5	SE
20230720_2320 20230720_2330	2.8	ESE SE
20230720_2330	2.2	SE SE
20230720 2350	1.7	SE

Doto & Time		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230721 0000	2.2	SE
20230721_0000 20230721_0010 20230721_0020	2.5 2.5	ESE
20230721_0020	2.5	Е
20230721_0020 20230721_0030 20230721_0040 20230721_0050	2.5	E
20230721_0040	2.8 2.5	E
20230721_0050	2.5	E
20230721_0100	3.1	E
20230721 0050 20230721 0110 20230721 0110 20230721 0110 20230721 0120 20230721 0130 20230721 0140 20230721 0150 20230721 0200 20230721 0210 20230721 0220 20230721 0220 20230721 0230 20230721 0240 20230721 0250 20230721 0250	2.8	ESE ESE
20230721_0120	2.5	ESE
20230721 0140	1.9	ESE
20230721 0150	1.4	ESE S
20230721 0200	1.7	ESE
20230721_0210	3.1 3.1	<u>Е</u> Е
20230721_0220	3.1	
20230721 0230	2.8	<u>E</u>
20230721_0240	3.1	E E
20230721_0230	3.1	Е Е
20230721 0300	2.1	ESE
20230721_0220 20230721_0300 20230721_0310 20230721_0320	2.8	E
20230721 0330	2.2	E
20220721 0240	2.2	E
20230721 0350	2.5	ESE
20230721 0400	2.2 3.1	ESE
20230721_0410	3.1	ESE
20230721_0420	2.2	ESE
20230721 0430 20230721 0440	2.2 2.5	ESE ESE
20230721_0440	1.7	ESE ESE
20230721_0430	1.7	ESE
20230721 0500 20230721 0510	2.2	ESE
20230721 0520	2.5	ESE
20230721 0530 20230721 0540	2.2	Е
20230721_0540	2.2	ESE
20230721 0550	1.4	Е
20230721 0600 20230721 0610	1.7	ESE
20230721_0610	1.7	ESE
20230721_0620 20230721_0630	1.7	E ESE
20230721_0640	1.7	ESE ESE
20230721_0040	1.7	E
20230721 0700	1.1	ESE
20230721 0710	0.3	-
20230721_0720	1.1	ESE
20230721 0730	1.1	Е
20230721_0740	1.4	E
20230721_0750	1.1	E
20230721 0800 20230721 0810	0.8	E
20230721_0810 20230721_0820	1.1 1.1	SE E
20230721_0830	1.1	SSE
20230721_0840	0	N N
20230721_0840	0.6	E
20230721_0900	0.3	ESE
20230721 0910	0.3	SSE
20230721_0920	0.3	ESE
20230721_0930	0.8	SSE
20230721_0940	1.4	SSE
20230721_0950	0.8	ENE
20230721_1000 20230721_1010	1.1	ESE ESE
20230721 1010 20230721 1020	0.6 0.3	SSW
20230721_1030	0.8	S
20230721_1030	1.1	SE
20230721 1050	0.8	SSE
20230721_1100	0.3	ESE
20230721 1110	0,3	SW
20230721_1120	0.3	
20230721_1130	0	N
20230721 1140	0.3	FOE
20230721_1150	0.3	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230721 1200	0	N
20230721 1210	0	N
20230721_1220	0	N
20230721_1230 20230721_1240	0,3	N SSW
20230721_1240	0.3	N N
20230721 1300	0.3	SE
20230721_1310	0	N
20230721_1320 20230721_1330	0.3	N
20230721_1330 20230721_1340	0.3	S SSE
20230721 1350	0.3	S
20230721 1400	0.3	-
20230721_1410 20230721_1420	0.3	NE
20230721_1420	0.3	N S
20230721 1440	0.8	S
20230721_1450	0.8	SSE
20230721 1500	0.8	SE
20230721_1510 20230721_1520	0.8	S S
20230721_1520	0.5	N N
20230721_1540	0.3	SSW
20230721_1550	0.3	SSW
20230721 1600 20230721 1610	0.6	SSE SE
20230721_1010	0.8	ESE
20230721 1630	0.3	-
20230721_1640	0.3	SSW
20230721_1650 20230721_1700	0.8	N ESE
20230721 1700	0.8	SE
20230721_1720	1.1	SE
20230721 1730	1.7	SE
20230721_1740 20230721_1750	1.7 1.4	<u>Е</u> Е
20230721_1750	1.7	E
20230721_1810	1.7	E
20230721_1820 20230721_1830	1.1 1.4	E ENE
20230721_1840	1.1	ENE
20230721_1850	1.4	ENE
20230721 1900 20230721 1910	1.1	E
20230721_1910 20230721_1920	1.4 0.8	<u>Е</u> Е
20230721 1930	1.7	E
20230721_1940	1.7	ESE
20230721_1950	2.2 2.8	ESE
20230721 2000 20230721 2010	2.0	ESE ESE
20230721_2020	2.5 2.2	ESE ESE
20230721_2030	1.9	ESE
20230721_2040 20230721_2050	1.7 2.2	ESE ESE
20230721 2100	2.5	ESE
20230721 2110	1.7	ESE
20230721_2120 20230721_2130	1.7	ESE
20230721_2130	1.7 2.2	ESE E
20230721_2140	2.5	<u>Е</u> Е
20230721_2200	2.2	E
2023/71 2130 20230721 2130 20230721 2130 20230721 2140 20230721 2210 20230721 2210 20230721 2210 20230721 2220 20230721 2220 20230721 2230 20230721 2240 20230721 2240 20230721 2250	2.2 1.7 1.7	E
20230721_2220	1.7 0.8	SE -
20230721_2230	1.4	S
20230721_2250	1.9	ESE
20230721 2300	1.9	ESE
20230721 2310 20230721 2320	1.7 3.1	ESE ENE
20230721_2330	2.2	ESE
20230721 2340	1.7	-
20230721_2350	2.5	SE

Doto & Times		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20220722 0000	3.1	ESE
20230722 0000 20230722 0010 20230722 0010 20230722 0030 20230722 0030 20230722 0040 20230722 0050 20230722 0100 20230722 0110 20230722 0110 20230722 0120 20230722 0150 20230722 0150 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200 20230722 0200	3.1	Е
20230722_0020	3.3	Е
20230722_0030	2.8	E
20230722_0040	3.3 3.3	ENE
20230722_0050	3.3	E
20230722_0100	2.5 2.2	ESE
20230722_0110	2.2	ESE SE
20230722_0120	1 9	ESE
20230722 0140	1.9 1.7	ESE
20230722_0150	2.5 1.7	SE
20230722 0200	1.7	S SSW
20230722_0210	2.5	SSW
20230722_0220	1.4	SW
20230722 0230	2.2 2.2 2.2	S SSW
20230722_0240	2.2	SSW
20230722_0250	3,3	SSW
20230722 0300	3.3 2.8	S SSW
20230722_0310	1.4	SW
20230722_0320	2.5	SSW
20230722 0330 20230722 0340	2.5 2.5	S
20230722_0350	2.2	SSW
20230722_0400	2.2	SSE
20230722 0400 20230722_0410	2.2	S
20230722 0420	2.8	S
20230722 0430 20230722_0440	2.5 2.8	S
20230722_0440	2.8	SSE
20230722_0450	3.1	S
20230722 0500 20230722 0510	3.1	SSW
20230722_0510	2.8	SSW
20230722_0520	2.5	SSW
20230722 0530 20230722 0540	2.5	SSW
20230722_0540	2.5 2.2	S
20230722 0550 20230722 0600	2.2	SSE SE
20230722_0610	2.2	SSE
20230722_0620	1.7	SSE
20230722_0620	0.8	ESE
20230722_0640	1.4	SE
20230722_0650	1.4	SE
20230722 0700	1.7	SE
20230722_0710	1.7	SE
20230722_0720	1.4	SE
20230722 0730	1.7	ESE
20230722_0740	1.7	<u>E</u>
20230722_0750	1.9	E
20230722 0800 20230722 0810	1.1	ESE
20230722_0810	1.7 1.4	<u>Е</u> Е
20230722_0830	1.4	ESE
20230722_0840	2.2	E E E
20230722_0850	1.9	ESE
20230722_0900	1.7	ESE
20230722 0910	1.7	ESE
20230722 0920	2.2	Е
20230722_0930	1.9	Е
20230722 0940	1.7	Е
20230722_0950	1.7	E
20230722_1000	1.7	ESE
20230722 1010	2.2	ESE
20230722_1020	2.2	ESE
20230722_1030	1.9	ESE
20230722 1040 20230722 1050	0.8 0.3	er.
20230722_1050	0.3	SE SE
20230722_1100	1.1	ESE ESE
20230722 1110	1.1	SE SE
20230722_1120	1.1	SE SE
20230722_1130	1.7	ESE
20230722 1140	1.7	ESE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20220722 1200	1.7	ESE
20230722 1210	1.7	ESE
20230722_1220	1.1	ESE
20230722_1230	1.9	ESE
20230722_1240	1.7	ESE
20230722_1250	1.4	SE
20230722_1300 20230722_1310	0.6	SSW N
20230722_1310	0	ESE
20230722_1320	1.4	ESE
20230722 1340	0.8	SE
20230722_1350	0.3	SW
20230722 1400	0.3	SW
20230722_1410	0.3	-
20230722_1420 20230722_1430	0.3	N
20230722 1430	1.1	SSW S
20230722_1440	1.1	S
20230722_1150	0.8	SSW
20230722 1510	0.8	SSW
20230722_1520	0.8	SW
20230722 1530	0.3	SE
20230722_1540	0	N
20230722_1550 20230722_1600	0	N N
20230722 1600 20230722 1610	0	N N
20230722_1010	0	N N
20230722_1620	0	N
20230722 1640	0	N
20230722_1650	0.3	SSE
20230722 1700	0.3	SSE
20230722_1710	0.8	SE
20230722_1720 20230722_1730	0.8	SSE
20230722 1730 20230722 1740	1.4 1.4	SE SE
20230722_1740 20230722_1750	1.7	SE
20230722 1800	1.9	ESE
20230722_1810	1.4	SE
20230722_1820	1.1	SE
20230722 1830	0.8	SE
20230722_1840 20230722_1850	1.1 2.2	SSE SSE
20230722_1830	1.7	S
20230722_1910	1.1	S
20230722_1920	1.1	S
20230722 1930	0.8	SE
20230722_1940	0.6	SE
20230722_1950	1.4	SSE
20230722 2000	1.1 0.8	S SSE
20230722_2010	1.1	S
20230722 2000 20230722 2010 20230722 2010 20230722 2020 20230722 2030 20230722 2030	1.4	SSW
20230722 2040	1.4	SW
20230722_2050	1.4	SW
20230722_2100	1.7	SW
20230722_2110	1.7	SSW
20230722_2120	2.5 2.8	SW SSW
20230722_2130	3.1	W
20230722_2140	4.4	SW SSW
20230722 2200	3.3	SSW
20230722 2210	3.3 3.3 3.3 3.3	SW
20230722_2220	3.3	SSW SSW
20230722_2230	3.3	SSW
20230722 2240	3.9 4.2	SSW
20330722 2050 20230722 2110 20230722 2110 20230722 2110 20230722 2130 20230722 2140 20230722 2150 20230722 2150 20230722 2200 20230722 2200 20230722 2210 20230722 2200 20230722 2200 20230722 2200 20230722 2230 20230722 2250 20230722 2250 20230722 2250	4.2 3.9	SW SW
20230722_2300	4.4	SW
20230722 2310	4.4	SW
20230722_2330	4.2	SW
20230722 2340	3,9	SW
20230722_2350	3.3	SW

Date & Time	Wind Cond (m/s)	Wind Direction (Form)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230723_0000	3.6	SW SW
20230723_0010 20230723_0020	3.3 4.2	SSW
20230723 0030 20230723 0040 20230723 0050	4.7	S
20230723_0040	3.3 5.6	SSW
20230723_0050	5.6	SSW
20230723_0100	3.9	SSW
20230723_0110	3.6 3.3	SSW SSW
20230723_0120	4.4	SSW
20230723_0140	4.4	SSW SSW
20230723 0050 20230723 0100 20230723 0110 20230723 0120 20230723 0130 20230723 0140 20230723 0150 20230723 0200 20230723 0210 20230723 0210 20230723 0200 20230723 0200 20230723 0200 20230723 0200 20230723 0250 20230723 0250 20230723 0250 20230723 0250 20230723 0250 20230723 0310 20230723 0310 20230723 0320 20230723 0320	3.9	SSW
20230723 0200	3.3 3.9	SSW
20230723_0210	3.3	SSW
20230723 0230	3.9 3.3	
20230723_0240	3.3	S S
20230723_0250	3.6	S
20230723 0300	4.4 3.3	S S
20230723_0310	3.3	S
20230723_0320	3.3	SSW
20230723 0340	3.1	SSW
20230723 0350	3.9	SSW
20230723 0400 20230723_0410	3.1	SSW
20230723_0410 20230723_0420	3.6 4.4	SW SW
20230723_0420	3,3	SW
20230723 0430 20230723_0440	3.3	SW
20230723 0450	2.8	SW
20230723 0500 20230723 0510	3.3	SSW
20230723_0510	3.3	SSW
20230723_0520 20230723_0530	2.8	SSW
20230723 0540	3.1	SSW SSW
20230723_0550	2.8	SSW
20230723 0600	3.1	S
20230723_0610	3.3	S
20230723_0620	2.5	SSW
20230723 0630 20230723 0640	1.4 0.8	SW SW
20230723_0650	0.8	SW
20230723_0000	1.4	SSW
20230723 0710	1.1	SSW
20230723_0720	1.4	SW
20230723 0730	0.3	SW
20230723_0740 20230723_0750	0.3 0.3	SSW SSW
20230723_0730	0.5	N N
20230723 0810	0	N
20230723 0820	0	N
20230723_0830	0	N
20230723_0840	0	N
20230723_0850 20230723_0900	0.3	N N
20230723_0900	0.3	SSE
20230723 0920	0.3	SE
20230723_0930	0	N
20230723_0940	0	N
20230723 0950	0	N
20230723_1000 20230723_1010	0	N N
20230723 1010	0	N N
20230723_1030	0	N
20230723 1040	0	N
20230723_1050	0.3	E
20230723_1100	0.6	E
20230723 1110 20230723 1120	0.3	W WNW
20230723_1120	0.3	N
20230723 1140	0.3	ESE
20230723_1150	0.3	-

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20220722 1200	0.3	
20230723 1210	0	N
20230723_1220	0	N
20230723_1230	0	N
20230723_1240 20230723_1250	0	N N
20230723_1230	0	N N
20230723_1300	0	N N
20230723_1310	0	N
20230723 1330	0.3	W
20230723 1340	0.3	-
20230723_1350	0.3	WNW
20230723 1400	0	N
20230723_1410 20230723_1420	0.6	WSW SW
20230723_1420 20230723_1430	0.3	N N
20230723_1440	0.3	W
20230723_1450	0.5	N
20230723 1500	0	N
20230723 1510	0	N
20230723_1520	0	N
20230723 1530	0	N
20230723_1540	0	N
20230723_1550 20230723_1600	0	N
20230723 1600 20230723 1610	0.3	ENE N
20230723_1610	0	N N
20230723_1630	0.3	SSE
20230723 1640	0.3	ESE
20230723_1650	0.6	ESE
20230723 1700	0.6	S
20230723_1710	1.1	SSE
20230723_1720	0.6	SSE
20230723 1730	1.9	SE
20230723_1740 20230723_1750	0.8 0.8	SE
20230723_1730	0.8	SE SSE
20230723 1810	1.4	SE
20230723_1820	1.7	SE
20230723 1830	1.7	ESE
20230723_1840	1.4	SE
20230723_1850	1.4	SE
20230723 1900	1.1	SE
20230723_1910	0.8	ESE
20230723_1920	0.8	ESE
20230723 1930 20230723_1940	1.4	SSW SW
20230723_1940	1.7	SSW
20230723_1930	1.7	SSW
20230723 1950 20230723 1950 20230723 2000 20230723 2010 20230723 2020 20230723 2030	1.7	S
20230723_2020	2.5 2.2	SSW
20230723_2030		S
20230723_2040	2.8	S
20230723_2050	2.8	S
20230723_2100	2.5	SSE
20230723_2110	2.2 1.7	S S
20230723_2120	1.7	S
20230723 2140	2.5	S
20230723_2150	2.2	S
20230723 2050 20230723 2110 20230723 2110 20230723 2110 20230723 2130 20230723 2140 20230723 2140 20230723 210 20230723 2210 20230723 2210 20230723 2220 20230723 2240 20230723 2240 20230723 2240 20230723 2240 20230723 2250 20230723 2250	1.7 2.5 2.2 1.7	SW
20230723 2210	2.2	SW
20230723_2220	2.8 3.3	SSW SSW
20230723_2230	3.3	SSW
20230723 2240	3.3 3.3	S
20230723_2250 20230723_2300	2.8	S S
20230723_2300	3.9	<u>S</u>
20230723 2320	2.8	S
20230723_2330	2.8	S
20230723 2340	3.1	SSW
20230723_2350	3.3	SSW

Date & Time	Wind Cond (m/s)	Wind Direction (Ferm)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230724_0000	3.9 4.2	SW SW
20230724_0010 20230724_0020	4.4	SW
20230724_0030	3.3	SSW
20230724 0030 20230724 0040 20230724 0050	3.9	SSW
20230724_0050	3.9	SSW
20230724 0100 20230724 0110 20230724 0110 20230724 0120	4.2	S
20230724_0110	4.4	SSW
20230724_0120	4.2 4.2	SSW SSW
20330724 0120 20330724 0130 20230724 0140 20330724 0150 20230724 0200 20330724 0210 20330724 0220 20330724 0220 20330724 0230 20330724 0240 20330724 0250 20330724 0250	3.0	SSW
20230724_0150	3.9 3.1	SW
20230724 0200	4.2 3.9 3.3	SSW
20230724_0210	3.9	SW
20230724_0220	3.3	SW
20230724 0230	3.3 4.2	SSW
20230724_0240	4.2 4.4	S S
20230724_0230	3.3	SSW
20230724 0300	3.3	SSW
20230724 0300 20230724 0310 20230724 0310 20230724 0320	2.8	SW
20230724 0330	2.8 2.8 2.5	SSW
20230724 0330 20230724_0340	2.5	SW
20230724 0350	3.3	SSW
20230724 0400 20230724_0410	3.1	SW
20230724_0410	3.1	SSW
20230724_0420	2.5	SSW SW
20230724 0430 20230724 0440	2.5 2.8	SW
20230724_0450	2.5	SW
20230724 0500	2.5	SW
20230724 0500 20230724_0510	2.5	SW
20230724_0520	1.7	SW
20230724 0530	2.2	SW
20230724_0540	2.2	SW
20230724_0550 20230724_0600	1.9 1.4	SW SW
20230724_0610	1.7	SSW
20230724_0620	1.7	S
20230724 0630	1.7	SW
20230724 0640	1.4	SW
20230724_0650	1.1	SSW
20230724 0700	1.4	SW
20230724_0710	0.8	SW
20230724_0720 20230724_0730	1.4	S SSW
20230724_0740	0.3	SE
20230724 0750	1.1	SE
20230724 0800	0.8	ESE
20230724 0810	0.3	Е
20230724_0820	0.3	-
20230724_0830	0.3	-
20230724_0840 20230724_0850	0.3 0.3	- N
20230724_0850 20230724_0900	0.3	NNE NNE
20230724_0900	0.5	NNE N
20230724 0920	0.3	-
20230724_0930	0	N
20230724 0940	0.3	ENE
20230724_0950	0.8	E
20230724_1000	1.1	SSE
20230724 1010 20230724 1020	0.8	E SW
20230724_1020	0.3	SE SE
20230724_1030	0.3	ESE
20230724 1040	0.5	N N
20230724_1100	0.3	Е
20230724 1110	0.3	S
20230724_1120	0.3	SSE
20230724_1130	0.3	ESE
20230724 1140 20230724 1150	0.3	E N
20230724_1130	U	IN

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230724 1200	0.3	SSW
20230724 1210	0	N
20230724_1220	0	N
20230724_1230 20230724_1240	0	N N
20230724_1240 20230724_1250	0.3	S
20230724_1300	0.5	N
20230724 1310	0.3	SE
20230724_1320	0	N
20230724_1330 20230724_1340	0	N N
20230724_1340	0	N N
20230724 1400	0	N
20230724_1410	0	N
20230724_1420	0.3	E
20230724 1430 20230724 1440	0.3 0.3	NE NW
20230724_1440	0.5	N N
20230724 1500	0.6	E
20230724_1510	0.3	-
20230724_1520	0	N
20230724 1530 20230724 1540	0.8	ENE ESE
20230724_1540	0.3	E
20230724 1600	0.3	ESE
20230724_1610	0	N
20230724_1620	0.3	ESE
20230724 1630 20230724 1640	0.3	ENE N
20230724_1040	0.6	IN
20230724 1700	0.6	ESE
20230724_1710	0.8	Е
20230724_1720	0.3	-
20230724 1730 20230724 1740	0.3	E N
20230724_1740	0	N N
20230724 1800	0.8	E
20230724_1810	0.3	
20230724_1820	1.1	SE
20230724 1830 20230724_1840	0.8	ESE ESE
20230724 1850	1.1	ESE
20230724 1900	1.1	ESE
20230724_1910	1.4	SE
20230724_1920 20230724_1930	1.7 1.4	ESE ESE
20230724_1930	1.1	ESE E
20230724_1950	1.4	SE
20230724 2000	1.1	SSE
20230724 2010 20230724 2020 20230724 2020 20230724 2030	1.4	ESE E
20230724_2020 20230724_2030	1.1 1.7	SSE
20230724_2040	0.8	W
	1.4	W
20230724_2100	1.7	SW
20230724_2110	1.1	SSW SSW
20230724_2120	2.2 1.7	SSW
20230724 2140	2.5 2.8	SW
20230724_2150	2.8	SW SW
20330724 2100 20330724 2110 20330724 2110 20230724 2120 20230724 2130 20330724 2150 20330724 2150 20330724 2210 20330724 2210 20330724 2220 20330724 2220 20330724 2230 20330724 2230 20330724 2230 20330724 2230 20330724 2303	2.5 2.2	SW
20230724 2210	2.2	SSW
20230724_2220	1.9 3.3	SSW SW
20230724 2240	3,3	SW
20230724_2250	3.3	SW
	3.3	SW
20230724 2310 20230724 2320	3.3 3.1	SW WSW
20230724_2320	3.1	SW
20230724 2340	3.3	SW
20230724_2350	3.6	WSW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230725_0000	3.3	SW SW
20230725_0010 20230725_0020	3.3 3.3	SW
20230725 0030 20230725 0040 20230725 0050	3,3	SSW
20230725_0040	3.9	WSW
20230725_0050	3.9	SSW
20230725_0100	4.2 4.2	SSW
20230725_0110	3.6	SW SW
20230725 0130	3.6	SW
20230725 0050 20230725 0100 20230725 0110 20230725 0110 20230725 0120 20230725 0130 20230725 0130 20230725 0150 20230725 0150 20230725 0210 20230725 0200 20230725 0200 20230725 0200 20230725 0200 20230725 0250 20230725 0250	3.3	SSW
20230725_0150	3.6	SW
20230725 0200	4.2 3.9	SW WSW
20230725_0210	2.8	WSW
20230725 0230	2.8 3.3 3.1	WSW WSW
20230725_0240	3.1	WSW
20230725_0250	2.5	SW
20230725 0230 20230725 0300 20230725 0310 20230725 0320	3.6 4.2	SW SW
20230725_0310	3.3	SSW
20230725_0320	3.9	SW
20230725 0330 20230725_0340	3,9	SW
20230725_0350	3.3	WSW
20230725 0400 20230725_0410	3.3	SW
20230725_0410 20230725_0420	3.3	SW SSW
20230723_0420	3.1	SW
20230725 0430 20230725_0440	3.1	SW
20230725 0450	3.1	SW
20230725 0500 20230725_0510	3.3	SW
20230725_0510	3.1	WSW
20230725_0520 20230725_0530	2.8 2.8	SW WSW
20230725 0540	2.2	WSW
20230725_0550	1.7	SW
20230725 0600	1.7	WSW
20230725_0610	1.4	WSW
20230725_0620	1.4	SSW
20230725 0630 20230725 0640	1.1 0.6	S S
20230725_0650	0.8	S
20230725 0700	0.8	SE
20230725 0710	1.1	ESE
20230725_0720	1.4	SE
20230725 0730 20230725 0740	0.3	ESE SE
20230725_0740	0.8 1.1	SE SE
20230725_0730	2.5	E
20230725 0810	1.7	E
20230725_0820	1.4	Е
20230725_0830	1.4	ESE
20230725_0840 20230725_0850	1.4	E ESE
20230725_0900	1.1 1.7	ESE E
20230725_0900	1.1	SE
20230725 0920	1.1	SE
20230725_0930	1.4	ESE
20230725_0940	1.7	ESE
20230725_0950 20230725_1000	1.7	ESE ESE
20230725_1000	1.1	SE SE
20230725 1020	1.7	ESE
20230725_1030	1.4	ESE
20230725 1040	1.4	ESE
20230725_1050	0.8	ESE
20230725_1100	1.1	ESE
20230725 1110 20230725 1120	1.4 1.7	E ESE
20230725_1120	1.7	ESE
20230725 1140	1.7	ESE
20230725 1150	1.9	ESE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230725_1200 20230725_1210	1.9 2.2	ESE ESE
20230725_1210	1.9	ESE
20230725 1230	1.9	ESE
20230725_1240	1.4	ESE
20230725_1250 20230725_1300	1.7 1.7	E ESE
20230725_1310	1.4	ESE
20230725_1320	1.4 1.7	E
20230725 1310 20230725 1310 20230725 1320 20230725 1330 20230725 1340	1.7	E ESE
20230725 1350	1.7 1.1	E
20230725 1400	1.7	Е
20230725_1410 20230725_1420	1.7 1.7	<u>Е</u> Е
20230725_1420 20230725_1430	1.1	E E
20230725 1440	1.1	Е
20230725_1450	1.7	E
20230725 1500 20230725_1510	0.8 1.4	ESE E
20230725 1520	0.3	Ē
20230725 1530	0.8	Е
20230725_1540 20230725_1550	0.8	ESE E
20230725_1530	1.1	SE SE
20230725_1610	0.8	ESE
20230725_1620	1.1	ESE
20230725 1630 20230725 1640	1.7	E E
20230725_1650	1.1	Ë
20230725 1700	1.4	E
20230725_1710 20230725_1720	1.1 1.4	<u>Е</u> Е
20230725_1720	1.9	E
20230725_1740	1.7	E
20230725_1750 20230725_1800	1.4 2.5	ESE ESE
20230725_1810	1.9	ESE
20230725_1820	1.9	ESE
20230725 1830	2.5	ESE
20230725_1840 20230725_1850	1.9 1.7	ESE ESE
20230725 1900	2.2	ESE
20230725 1900 20230725 1910	1.9	E
20230725_1920	1.7 1.7	<u>Е</u> Е
20230725_1940	1.9	Ë
20230725 1930 20230725 1930 20230725 1940 20230725 1950 20230725 2000 20230725 2010	1.9 2.2 1.7	ENE
20230725 2000	1.7	E E
20230725 2020	2.2	SE
20230725_2030	1.9	ESE
20230725_2040 20230725_2050	2.2	ESE ESE
20230725_2030	2.8	SE
20230725_2110	3.1	SE
20230725_2120 20230725_2130	3.3	SE SE
20230725_2130	2.8	SSE
20230725 2150	3.6	SSE
20230725_2200	3.3	SSE
20230725 2210 20230725 2220	3.9 3.3	SSE SE
20230725_2230	3.3	SSE
20230725 2240	2.5	SE
20230725_2250 20230725_2300	3.3 2.8	SE SSE
20230725 2310	4.2	SSE
20230725_2320	3.3	SSE
20230725_2330	3.9	S
20230725 2340 20230725_2350	4.2 3.9	SE SSE
20220.22_2220		UUL

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230726 0000	3.3	SSE
20230726_0000 20230726_0010 20230726_0020	3.3	ESE
20230726 0020	3.3 3.1	ESE ESE
20230726_0030 20230726_0040 20230726_0050	3,3	SE
20230726 0040	3.3	ESE
20230726 0050	3,9	SE
20230726 0100 20230726 0110 20230726 0120 20230726 0120	2.8	SE
20230726 0110	4.2	SSE
20230726_0120	4.2 4.2	SSE SSE
20230726 0120 20230726 0130 20230726 0140 20230726 0150 20230726 0200 20230726 0210 20230726 0220 20230726 0220 20230726 0240 20230726 0250 20230726 0250	4.2	SSE
20230726_0140	3.6	SSE SSE
20230726_0150	3.3	SSE
20230726_0200	4.2	SSE
20230726 0210	3.9	E
20230726_0220	2.8 3.3 2.8 3.1	SE
20230726_0220	3.3	SE
20230726 0250	2.8	FSF
20230726_0210	3.1	ESE ESE
20230726 0300 20230726 0310 20230726 0320	2.8	SE.
20230720 0300	2.8	SE SE
20230726_0310	3.3	ESE
20230720_0320	2.5	ESE
20230726 0330 20230726_0340	2.5 2.2	SE SE
20230726_0350	2.5	SE SE
20230720_0330	2.3	ESE ESE
20230726 0400 20230726 0410	2.5 2.5	ESE SE
20230726_0420	3.1	ESE
20230726_0420	2.5	SE SE
20230726 0430 20230726 0440	2.5	
20230726_0440		SE
20230726_0450	2.8	SE
20230726 0500	1.7	ESE
20230726_0510	2.5	SE
20230726_0520	2.8	ESE
20230726 0530	1.9	SE
20230726_0540	2.5	SE
20230726_0550	2.5	ESE
20230726 0600	2.5	Е
20230726_0610	2.8	Е
20230726_0620	2.8	Е
20230726 0630	3.1	ESE
20230726_0640	3.1	ESE
20230726_0650	2.8	ESE
20230726 0700	3.3	ESE
20230726_0710	3.3	ESE
20230726_0720	2.5	ESE
20230726 0730	2.5	ESE
20230726 0740	2.8	ESE
20230726_0750	3.1	ESE
20230726 0800	3.1	E
20230726 0810	2.5	Ē
20230726 0820	2.8	E
20230726_0830	2.8	E
20230726_0840	2,5	E
20230726_0850	1.7	E
20230726 0900	1.4	E
20230726_0910	2.2	E
20230726_0910	1.7	Ë
20230726_0930	2.8	Ë
20230726_0940	2.2	ESE
20230726 0950	2.2	ESE
20230726_1000	2.2	ESE
20230726_1000	2.2	ESE
20230726 1010	1.9	ESE
20230726_1020	2.5	ESE
20230726_1030	1.9	ESE ESE
20230726 1040	1.9	ESE ESE
20230726_1050		ESE
20230726_1100	2.5	ESE
20230726 1110	2.5	ESE
20230726_1120	1.7	ESE
20230726_1130	2.2	ESE
20230726 1140	2.5	ESE
20230726_1150	2.2	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230726_1200	1.7	ESE
20230726 1210	2.2	ESE
20230726_1210 20230726_1220	2.2 2.2	Е
20230726 1230	1.7	E
20230726_1240 20230726_1250	1.4 1.4	ENE ESE
20230726_1230	1.7	ESE
20230726_1310	1.4	E
20230726 1320	1.1	Е
20230726_1330	1.1	E
20230726_1340 20230726_1350	1.1 1.1	ESE ESE
20230726 1400	1.4	SE
20230726 1410	1.1	ESE
20230726_1420	1.1	SE
20230726 1430 20230726_1440	1.4	SE
20230726_1440 20230726_1450	1.1 0.8	ESE SE
20230726 1500	0.8	SSE
20230726 1510	1.1	ESE
20230726_1520	0.8	Е
20230726 1530 20230726_1540	0.6	E SE
20230726_1540	0.3	SSE
20230726 1600	0.5	N N
20230726_1610	0	N
20230726_1620	0	N
20230726 1630 20230726 1640	0.3	<u>S</u> S
20230726_1650	0.8	SSE
20230726 1700	0.3	SE
20230726_1710	0.8	S
20230726_1720	0.6	SSE
20230726 1730 20230726 1740	1.1 0.3	SSE SE
20230726_1750	1.1	ENE
20230726 1800	0.3	ENE
20230726_1810	0.8	SSE
20230726_1820	0.3	NE NE
20230726 1830 20230726_1840	0.3 0.8	ENE ESE
20230726_1850	1.4	ESE
20230726 1900	2.2	ESE
20230726_1910	1.7	SE
20230726_1920 20230726_1930	1.7 2.2	ESE ESE
20230726_1940	2.2	ESE
20230726_1950	2.8 2.5	ESE
20230726 2000	2.5	ESE
20230726 2010 20230726 2020 20230726 2030	2.5 2.2	<u>Е</u> Е
20230726_2020	1.9	ESE
20230726 2040	2.2	ENE
20230726_2050	2.5	ENE
20230726_2100	2.2	ENE
20230726_2110	2.2 2.8	E E
20230726_2120	2.2	ENE
20230726_2140	2.8	ENE
20230726_2150	2.5	E
20230/26_2200	1.9	ENE ENE
20230726 2210	2.2 2.2 2.2 2.8	ENE ENE
20230726_2230	2.8	E
20230726 2240	3.1	E
20330726 2050 20230726 2110 20230726 2110 20330726 2110 20330726 2120 20330726 2130 20230726 2140 20330726 2150 20330726 2210 20330726 2220 20230726 2220 20330726 2220 20330726 2230 20330726 2230 20330726 2230 20330726 2230	3.1	ESE
20230726_2300 20230726_2310	1.7 2.2	SE SSE
20230726_2320	1.7	S
20230726_2330	0.8	-
20230726 2340	1.4	-
20230726_2350	2.2	SSE

D-4- 0 Ti	1 1	
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230727 0000	3.1	ESE
20230727 0000 20230727 0010 20230727 0010 20230727 0020 20230727 0030 20230727 0050 20230727 0050 20230727 0100 20230727 0110 20230727 0120 20230727 0120 20230727 0150 20230727 0150 20230727 0150 20230727 020 20230727 020 20230727 0210 20230727 0210 20230727 0210 20230727 0210 20230727 0210 20230727 0220 20230727 0230 20230727 0230 20230727 0250	3.3	E
20230727 0020	2.8	E
20230727 0030	3.3	Е
20230727_0040	2.5 2.8	Е
20230727_0050	2.8	SE
20230727_0100	2.5 2.2	ESE
20230727_0110	2.2	ESE ESE
20230727_0120	1.9	
20230727 0140	2.5 2.2 1.7	<u>Е</u> Е
20230727_0140	2.2	SE
20230727_0130	2.2	SE
20230727 0200	2.2	ESE
20230727 0220	2.5	ESE ESE
20230727 0230	1.7	SE
20230727 0240	2.2 1.7	SE SE
20230727 0250	1.7	ESE
20230727_0220 20230727_0300 20230727_0310 20230727_0320	1.9	ESE ESE
20230727_0310	1.7	ESE
20230727_0320	2.2	Е
20230727 0330 20230727 0340	2.8 2.8	Е
20230727_0340	2.8	E
20230727_0350	3.1	ESE
20230727 0400 20230727_0410	3.1 2.8	ESE ESE
20230727_0410	2.8	ESE
20230727_0420	2.2	ESE
20230727 0430 20230727_0440	2.5 2.8	ESE
20230727_0440	2.5	SE
20230727_0500	3.1	ESE
20230727 0500 20230727 0510	2.2	ESE
20230727 0520	2.5	ESE
20230727 0530 20230727 0540	2.5	ESE
20230727_0540	2.8	ESE
20230727 0550	2.2	ESE
20230727 0600 20230727 0610	2.5	ESE
20230727_0610	1.7	E
20230727_0620	2.5	ESE
20230727 0630	1.7	ESE
20230727_0640	2.8	ESE
20230727_0650 20230727_0700	2.5 1.7	SE ESE
20230727 0710	1.7	SE SE
20230727_0720	1.9	SE SE
20230727_0720	1.4	ESE
20230727 0740	1.9	ESE
20230727 0750	1.4	ESE
20230727 0800	1.7	E
20230727 0810	1.7	ESE
20230727_0820	1.1	ESE
20230727_0830	0.8	SE
20230727_0840	0.6	ESE
20230727_0850	0.6	S
20230727_0900	0.8	- 0
20230727 0910 20230727 0920	1.1 1.4	S SE
20230727_0930	1.4	SE SE
20230727_0940	0.8	SSE
20230727_0940	0.8	SSE
20230727_1000	1.1	SSE
20230727 1010	1.1	SSE
20230727 1020	0.8	SSE
20230727_1030	1.1	S
20230727 1040	0.8	SSE
20230727_1050	0	N
20230727_1100	0.3	NE
20230727 1110	0.8	SE
20230727_1120	0.8	ESE
20230727_1130	0.8	ESE
20230727 1140	1.7	ESE
20230727_1150	1./	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230727 1200	1.1	Е
20230727 1210	1.4	SE
20230727_1220	0.8	SE
20230727_1230 20230727_1240	0.3	SSE
20230727_1240	0.3 0.8	SSE SE
20230727_1230	0.3	SE
20230727 1310	0.6	SSE
20230727_1320	0.6	SSE
20230727_1330	0.8	SSE
20230727_1340 20230727_1350	0.3	SE SSE
20230727_1330	0.8	SSE
20230727 1410	0.6	SSE
20230727_1420	0.3	S
20230727 1430	1.1	SE
20230727_1440 20230727_1450	0.3	E SW
20230727_1450 20230727_1500	0.8	S
20230727 1510	1.1	S
20230727_1520	1.1	S
20230727 1530	1.1	S
20230727_1540	1.4	S
20230727_1550 20230727_1600	1.4	S S
20230727 1610	1.4	S
20230727_1610	1.4	S
20230727 1630	0.8	S
20230727_1640	0.8	SSE
20230727_1650	0	N N
20230727 1700 20230727 1710	0	ESE
20230727_1710	1.4	SE
20230727 1730	2.5	ESE
20230727_1740	1.7	ESE
20230727_1750	1.1	ESE
20230727 1800 20230727 1810	0.8	E ESE
20230727_1810	1.1 3.3	ESE
20230727 1830	3.9	ESE
20230727_1840	3.6	ESE
20230727_1850	2.8	ESE
20230727 1900	3.3	ESE
20230727_1910 20230727_1920	3.9 4.4	ESE ESE
20230727_1920	3.3	E
20230727_1940	3.6	ESE
20230727_1950	3.9	ESE
20230727 2000	3.6	E
20230727 2000 20230727 2010 20230727 2020 20230727 2030	3.3 3.6	E ESE
20230727_2020	3.9	ESE
20230727_2040	4.2	ESE
20230727 2050	3.1	Е
20230727_2100	3.1	E
20230727_2110	3.3	ESE ESE
	2.8 3.1	ESE ESE
20230727_2120 20230727_2130 20230727_2140	3.3	ESE
20230727_2150	3.3	ESE
20230727_2150 20230727_2140 20230727_2150 20230727_2200 20230727_2200 20230727_2210 20230727_2220 20230727_2240 20230727_2240 20230727_2300	3.9	ESE
20230727 2210	4.2	ESE
20230727_2220	2.8 3.3	ESE ESE
20230121_2230	2.0	ESE
20230727 2250	2.8	ESE
	2.5	ESE
20230727 2310	2.2	ESE
20230727_2320	2.5	ESE
20230727_2330 20230727_2340	3.3	E ESE
20230727_2350	2.5	ESE ESE
20220141_2330	200	11/11

C11 TMINIOPE HIGHWID C200728 ONLOW O	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230728 0010 3.3 ESE	(YYYYMMBB HHMM)		
20230728 0040			SE
20230728 0030 3.3 SE			
20230728 0100 3.3 SE			
20230728 0100		3.3	
20230728 0100 3.9 SE		3.6	
20230728 010	20230728 0100	3.9	
20230728 0140	20230728 0110		
20230728 0130 3.3 ESE		3,3	ESE
20230728 0140 3.9 ESE 20230728 0200 3.6 SE 20230728 0200 3.6 SE 20230728 0210 3.3 ESE 20230728 0220 3.3 ESE 20230728 0220 3.3 ESE 20230728 0230 3.6 ESE 20230728 0230 3.6 ESE 20230728 0230 3.6 ESE 20230728 0250 3.1 ESE 20230728 0300 3.3 ESE 20230728 0310 3.3 ESE 20230728 0340 3.3 SE 20230728 0340 3.3 SE 20230728 0440 3.9 SE 20230728 0440 1.9 SE 20230728 0440 2.5 ESE 20230728 0430 3.1 ESE 20230728 0440 2.5 ESE 20230728 0440 2.5 ESE 20230728 0450 2.8 ESE 20230728 0450 2.8 ESE 20230728 0450 2.8 ESE 20230728 0550 2.8 SE 20230728 0550 2.8 SE 20230728 0550 2.8 SE 20230728 0550 2.5 SE 20230728 0550 2.8 SE 20230728 0550 2.8 SE 20230728 0550 2.8 SE 20230728 0550 2.8 SE 20230728 0500 2.8 SE 20230728 0500 2.8 SE 20230728 0500 2.2 SE 20230728 0500 2.3 SE 20230728 0500 2.3 SE 20230728 0500 2.3 SE 20230728 0500 2.4 SE 20230728 0500 2.5 SE 20230728 0500 2.5 SE 20230728 0500 2.5 SE	20230728 0130	3.3	ESE
20230728 0230	20230728 0140	3.9	ESE
20230728 0230	20230728 0150	3.3	ESE
20230728 0230	20230728 0200	3.6	SE
20230728 0230	20230728_0210	3.3	ESE
20230728 0300 3.9 E	20230728_0220		ESE
20230728 0520 3.1 ESE	20230728 0230	3.6	
20230728 0300 3.3 ESE	20230728_0240		
20230728 0320	20230728_0250		
20230728 0320	20230728 0300		E
20230728 0330 3.3 SE	20230728_0310		ESE
200307728 0340	20230728_0320	3.3	ESE
20230728 0420	20230728 0330		SE
20230728 0420	20230728_0340		SE
20230728 0420	20230728_0350		SE
20230728 0420	20230728 0400	1.9	SE
20230728 0420	20230728_0410		
20230728 0440			
20230728 0510 2.8 SE			
20230728 0500 2.8 SE		2.8	ESE
20230728 0510	20230728_0450	2.8	SE SE
20230728 0520	20230728 0500	2.8	SE SE
20230728 0530 3.3 SE	20230728_0510		SE SE
20230728 0540	20230728_0520		SE SE
20230728 0550	20230728 0530		
20230728 0600			DE ECE
20230728 0610			
20230728 0620	20230728 0000		SE CE
20230728 0630			
20230728 0640			
20230728 0500 1.9		1.7	
20230728 0700			
20230728 0710			
20230728 0730 2.2 SE			
20230728 0730 3.1 SE			
20230728 0740			
20230728 0750 2.2 SE			
20230728 0810			
20230728 0830 2.2	20230728 0800	2.8	ESE
20230728 0820 2.2 ESE 20230728 0830 2.5 SE 20230728 0840 1.9 SE 20230728 0850 1.4 ESE 20230728 0900 1.9 SE 20230728 0910 2.2 SE 20230728 0930 2.5 SE 20230728 0940 1.7 SE 20230728 0950 2.5 SE 20230728 1000 2.8 ESE 20230728 1000 2.8 ESE 20230728 1020 2.8 E 20230728 1030 2.8 E 20230728 1050 3.3 E 20230728 1050 3.3 E 20230728 1100 2.2 E 20230728 1100 2.2 E 20230728 1100 2.8 ESE 20230728 1100 2.2 E 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.5 SE		2.8	ESE
20230728 0840 1.9 SE	20230728_0820	2.2	ESE
20230728 0850		2.5	
20230728 0900 1.9 SE			
20230728 0910 2.2 SE	20230728_0850		
20230728 0920 2.2 SE		1.9	
20230728 0940 1.7 SE 20230728 0950 2.5 SE 20230728 1000 2.8 ESE 20230728 1010 2.8 ESE 20230728 1020 2.8 E 20230728 1030 2.8 E 20230728 1030 2.8 E 20230728 1050 3.3 E 20230728 1050 3.3 E 20230728 1050 2.8 E 20230728 1050 1.3 E 20230728 1050 2.8 E 20230728 1100 2.8 E 20230728 1100 2.2 E 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE		2.2	SE
20230728 0940 1.7 SE 20230728 0950 2.5 SE 20230728 1000 2.8 ESE 20230728 1010 2.8 ESE 20230728 1020 2.8 E 20230728 1030 2.8 E 20230728 1030 2.8 E 20230728 1050 3.3 E 20230728 1050 3.3 E 20230728 1050 2.8 E 20230728 1050 1.3 E 20230728 1050 2.8 E 20230728 1100 2.8 E 20230728 1100 2.2 E 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE	20230728_0920	2.2	
20230728 0940 1.7 SE 20230728 0950 2.5 SE 20230728 1000 2.8 ESE 20230728 1010 2.8 ESE 20230728 1020 2.8 E 20230728 1030 2.8 E 20230728 1030 2.8 E 20230728 1050 3.3 E 20230728 1050 3.3 E 20230728 1050 2.8 E 20230728 1050 1.3 E 20230728 1050 2.8 E 20230728 1100 2.8 E 20230728 1100 2.2 E 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE 20230728 1100 2.8 ESE	20230728_0930	2.5	
20230728 1030 2.8 E		1.7	
20230728 1030 2.8 E	20230728_0950	2.5	SE
20230728 1030 2.8 E	20230/28_1000	2.8	ESE
20230728 1030 2.8 E	20230/28 1010	2.8	ESE
20230728 1040 2.8 E 20230728 1050 3.3 E 20230728 1100 2.2 E 20230728 1110 2.8 ESE 20230728 1120 1.7 ESE 20230728 1130 2.5 SE	20230728_1020	2.8	
20230728 1050 3.3 E 20230728 1100 2.2 E 20230728 1110 2.8 ESE 20230728 1120 1.7 ESE 20230728 1130 2.5 SE	20230728_1030	2.8	
20230728 1100 2.2 E 20230728 1110 2.8 ESE 20230728 1120 1.7 ESE 20230728 1130 2.5 SE	20230728 1040	2.8	
20230728 1110 2.8 ESE 20230728 1120 1.7 ESE 20230728 1130 2.5 SE			
20230728_1120		2.2	
20230128, 1120 1.7 ESE 20230728, 1130 2.5 SE 20230728, 1140 2.5 ESE	20230/28 1110	2.8	ESE
20230728 1140 2.5 ESE	20230728_1120	1./	ESE
20230720 1140 2.3 ESE	20230728 1140	2.3	
2014070V 1180 1 17 1 0E	20230728 1140	1.7	SE SE
20230120_1130 1./ SE		1./	3E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230728_1200	2,5	ESE
20230728 1210	2.2	ESE
20230728_1220	2.8	ESE ESE
20230728_1230		
20230728_1240 20230728_1250	3.1 2.5	E ESE
20230728_1230	2.5	ESE ESE
20230728_1310	2.5	SE
20230728_1320	2.5	ESE
20230728_1330	3.1	ESE
20230728_1340 20230728_1350	2.8 3.1	ESE ESE
20230728_1330	3.1	ESE ESE
20230728 1410	3.3	ESE
20230728 1420	2.5	ESE
20230728 1430	3.1	ESE
20230728_1440 20230728_1450	3.1	ESE
20230728_1450 20230728_1500	2.8 2.8	ESE E
20230728 1510	2.8	E E
20230728 1520	2.5	E
20230728 1530	3.3	Е
20230728_1540	2.5	ENE
20230728_1550 20230728_1600	1.7	E
20230728 1600 20230728 1610	2.2	ENE E
20230728_1610	1.4	NNE
20230728 1630	1.1	N
20230728_1640	1.4	N
20230728_1650	1.7	N
20230728 1700 20230728 1710	0.8 2.2	N NNE
20230728_1710	2.8	NNE
20230728 1730	3.6	NNE
20230728_1740	3.3	NNE
20230728_1750	3.6	NNE
20230728 1800 20230728 1810	3.3	NNE NNE
20230728_1820	3.1 3.3	NNE
20230728 1830	3.3	NNE
20230728_1840	3.3	NNE
20230728_1850	2.5	NNE
20230728 1900 20230728 1910	2.2 1.7	NNE N
20230728_1910	2.2	N N
20230728 1930	2.8	NNE
20230728_1940	2.2	N
20230728_1950	2.2	N
20230728 2000	1./	NNE
20230728 2010 20230728 2010 20230728 2020 20230728 2030	2.2 1.7	NNE N
20230728_2020	1.9	N
1 20230728 2040	2.5	N
20230728_2050	2.8	NNE
20230728_2100	2.5	N
20230728 2110	2.8 3.1	N NNE
20230728_2120	2.2	NNE
20230728 2140	2.2 1.7	NNE
20330728 2050 20330728 2100 20330728 2110 20230728 2120 20230728 2120 20330728 2130 20330728 2150 20330728 2150 20330728 2210 20330728 2210 20330728 2220 20330728 2220 20330728 2220 20330728 2230 20330728 2230 20330728 2230 20330728 2230	1.9	N
20230728_2200	2.5 2.5	NNE
20230728 2210	2.5	NNE NNE
20230728_2220	3.1 2.8 3.3	NNE NNE
20230728 2240	3.3	NNE
20230728_2250	3.3	NNE
20230728_2300	4.4	NNE
20230728 2310	3.3	NNE
20230728_2320 20230728_2330	4.2	NNE NNE
20230728_2330	3.9	NNE
20230728 2350	4.7	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	5	NNE NNE
20230729_0000 20230729_0010	4.4	NNE N
20230729_0020	4.7	N N
20230729_0030	4.7	N
20230729_0040	4.7	NNE
20230729_0050	5.3	NNE
20230729_0100	4.2	N
20230729_0110	4.7	N
20230729_0120	4.2	NNE
20230729 0130 20230729 0140	3.9	NNE NNE
20230729 0140 20230729 0150 20230729 0200 20230729 0210	5 4.7	NNE
20230729 0200	5.8	NNE
20230729 0210	5	NNE
20230729_0220	4.2	NNE
20230729 0230	4.7	NNE
20230729_0240	3.3	NNE
20230729_0250	4.7	N
20230729 0300 20230729_0310	3.6 3.9	N
20230729_0310 20230729_0320	3.3	N N
20230729_0320	3.3	N N
20230720 0340	3.9	N N
20230729_0350 20230729_0400 20230729_0410		N N
20230729 0400	3.3	N
20230729_0410	4.7	NNE
20230729_0420	3.9	NNE
20230729 0430	5	NNE
20230729_0440	3.9	N
20230729_0450	3.1	N
20230729 0500 20230729 0510	3.9 3.6	NNE N
20230729_0510	3.9	NNE NNE
20230729_0520	3.9	NNE
20230729 0540	3.9	NNE
20230729 0550	4.4	NNE
20230729 0600	3.3	NE
20230729_0610	3.9	NNE
20230729_0620	3.6	NNE
20230729 0630	4.2	NNE
20230729_0640	3.3	NNE
20230729_0650 20230729_0700	3.9 3.3	NNE
20230729 0700 20230729 0710	3.3	NNE NNE
20230729_0710	3.3	NNE
20230729 0730	3.3	NNE
20230729 0740	3.9	N
20230729_0750	3.3	NNE
20230729 0800	2.8	N
20230729_0810	2.2	N
20230729_0820	2.8	N N
20230729_0830 20230729_0840	3.3	N N
20230729_0840	4.2 4.2	N N
20230729_0900	3.3	N N
20230729 0910	3.1	N
20230729 0920	3.1	N
20230729_0930	2.8	N
20230729_0940	3.9	N
20230729_0950	3.9	N N
20230729_1000	3.9	N
20230729 1010 20230729_1020	3.3 3.9	N N
20230729_1020 20230729_1030	3.9 4.2	N N
20230729_1030	3.3	N N
20230729 1040	4.7	N N
20230729 1100	3.1	N N
20230729 1110	4.2	N
20230729 1120	3,6	NNE
20230729 1130	3.3	NNE
20230729 1140	3.1	NNE
20230729_1150	3.3	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230729 1200	3.1	NNE
20230729 1210	3.3	N
20230729_1220	3.3	N
20230729_1230 20230729_1240	3.6	N N
20230729_1240	3.9 3.9	N N
20230729_1230	4.2	N N
20230729_1310	3.9	N
20230729_1320	3.1	N
20230729_1330	3.1	N
20230729_1340 20230729_1350	3.3 3.1	N N
20230729_1330	3.0	N N
20230729 1410	3.3	N
20230729_1420	3.9	N
20230729 1430	3.1	N
20230729_1440 20230729_1450	3.1 2.8	NNE NNE
20230729_1430	3.3	N
20230729 1510	3.6	N
20230729_1520	3.9	N
20230729 1530	3.3	N
20230729_1540 20230729_1550	3.3 3.1	N N
20230729 1600	3.3	N N
20230729 1610	3.3	N N
20230729_1620	3.3	N
20230729 1630	3.3	N
20230729_1640	3.3	NNE
20230729_1650 20230729_1700	3.3 3.3	NNE NNE
20230729 1700	3.3	NNE
20230729 1720	4.2	NNE
20230729 1730	3.3	N
20230729_1740	3.6	N
20230729_1750	4.4 5	N
20230729 1800 20230729 1810	4.4	NNE NNE
20230729 1820	4.2	N
20230729 1830	3.9	N
20230729_1840	4.4	N
20230729_1850	4.7	NNE
20230729 1900 20230729 1910	5.8 5.3	NNE NNE
20230729_1920	4.4	NNE
20230729 1930	5.3	NNE
20230729_1940	4.7	NNE
20230729_1950	4.2	NNE
20230729 2000 20230729 2010	4.2	NNE N
20230729 2010 20230729 2020 20230729 2030 20230729 2030	4.2 4.2 3.3	N
20230729_2030	3.3	N
20230729_2040	3.9	N
20230729_2050	3.1	N N
20230729_2100 20230729_2110	3.9 4.7	N NNE
	4.2	NNE
20230729 2130	3.3	NNE
20230729_2140	3.9	N
20230729 2140 20230729 2150 20230729 2200	5	NNE
20230729_2130 20230729_2200 20230729_2210	3.6 3.3	N N
20230729 2210		N N
20230729 2230	3.3	N N
20230729 2240	4.2	N
20230729 2210 20230729 2210 20230729 2220 20230729 2230 20230729 2240 20230729 2250	3.3	N
20230729_2300	3.6	NNE
20230729 2310 20230729 2320	3.3 2.8	NNE N
20230729_2320	3.6	N N
20230729 2340	3.1	N
20230729_2350	3.1	N

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230730 0000	3.6	N
20230730_0010	3.3	N
20230730_0020	3.9	N
20230730_0030	4.2	NNE
20230730_0040 20230730_0050	3.6 3.9	N NNE
20230730_0030	4.2	N N
20230730_0100	4.4	N
20230730_0120	3.9	N
20230730_0130	4.7	N
20230730_0140	5	NNE
20230730_0150 20230730_0200	3.6	NNE
20230730 0200	4.4 4.4	NNE NNE
20230730_0210	4.4	NNE
20230730 0230	4.2	NNE
20230730_0240	4.4	NNE
20230730_0250	4.2	NNE
20230730 0300 20230730 0310	4.2 4.4	NNE
20230730_0310	4.4	NNE NNE
20230730_0320	3.3	NNE
20230730_0340	3,3	NNE
20230730_0350	3.6	NNE
20230730 0400	4.2	NNE
20230730_0410	3.6 2.8	NNE
20230730_0420 20230730_0430	2.8	NNE NNE
20230730 0440	3.1	N N
20230730_0450	3.3	NNE
20230730 0500	3.3	NNE
20230730_0510	3.9	NNE
20230730_0520 20230730_0530	4.2	NNE
20230730_0540	3.3 4.2	NNE NNE
20230730_0550	3.9	NNE
20230730 0600	3.9	NNE
20230730_0610	1.9	ENE
20230730_0620	0.8	-
20230730 0630 20230730 0640	0.3 2.5	N NNE
20230730_0650	1.4	NE NE
20230730_0090	0.3	-
20230730_0710	0.6	-
20230730_0720	0.8	NNE
20230730 0730	1.4	NNE
20230730_0740 20230730_0750	0.8	N N
20230730_0730	0.3	N
20230730_0810	0.8	SW
20230730_0820	0.6	WNW
20230730_0830	0.3	-
20230730_0840	0.3	W
20230730_0850 20230730_0900	0.3 1.4	NNW N
20230730_0900	2.5	N N
20230730_0920	2.2	N
20230730_0930	2.2 2.5	N
20230730 0940	3.1	N
20230730_0950 20230730_1000	1.9	N N
20230730_1000 20230730_1010	1.4	N N
20230730 1010 20230730_1020	1.1 0.8	ENE
20230730_1020 20230730_1030 20230730_1040	0.8	NE NE
20230730 1040	0.8	Е
20230730_1050	0	N
20230730_1050 20230730_1100 20230730_1110 20230730_1110	1.1	SSE
20230730 1110	0.8	SE SSE
20230730_1120 20230730_1130	0.3	N SSE
20230730 1120 20230730 1130 20230730 1140 20230730 1150	0.8	SSE
20230730_1150	0.3	N

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		Willia Direction (Fiolit)
20230730_1200 20230730_1210	0.3	- N
20230730_1210 20230730_1220	0.3	SSW
20230730 1230	0.3	SW
20230730 1240	0.3	SW
20230730_1250	0.3	S
20230730_1300	0.3	SSE
20230730_1310	0.8	SSE
20230730_1320 20230730_1330	0.3 0.3	ESE
20230730_1330	0.3	N ESE
20230730_1340	0	N
20230730 1400	0.3	-
20230730_1410	0.3	SSE
20230730_1420	0.6	S
20230730 1430	0.8	SSE
20230730_1440 20230730_1450	0.3	N
20230730_1430	0.3	SE
20230730 1510	0.3	- JE
20230730 1520	0.3	
20230730 1530	0.3	S
20230730_1540	0	N
20230730_1550	0	N
20230730 1600	0	N
20230730_1610 20230730_1620	0	N N
20230730_1020	0.3	S
20230730 1640	0.3	SSE
20230730_1650	0	N
20230730 1700	0.3	S
20230730_1710	0.3	SSE
20230730_1720	0.3	- ATT
20230730 1730 20230730 1740	0.3	NE
20230730_1740	0.5	N N
20230730 1800	0.3	S
20230730_1810	0.3	-
20230730_1820	0.3	S
20230730 1830	0.8	SSE
20230730_1840 20230730_1850	0.3 0.6	SSE S
20230730_1830	0.0	N N
20230730 1910	0	N
20230730_1920	0.3	S
20230730 1930	0.3	W
20230730_1940	0.3	S
20230730_1950	0.6	E
20230730 2000	0.3	- N
20230730_2010 20230730_2020	2.2 1.7	NNW
20230730 2000 20230730 2010 20230730 2020 20230730 2030	3.3	N
20230730 2040	3.1	N
20230730_2050	3.3	N
20230730_2100	2.8	N
20230730 2110	2.5 2.5	N N
20230730_2120	1.7	S
20230730_2130	3.1	ESE
20330730 2050 20330730 2100 20330730 2110 20230730 2120 20230730 2120 20330730 2150 20330730 2150 20330730 2150 20330730 2210 20330730 2220 20330730 2220 20330730 2220 20330730 2220 20330730 2240 20330730 2240 20330730 2250 20330730 2250 20330730 2250	2.5	E
20230730_2200	2.8 2.8	Е
20230730 2210	2.8	E
20230/30_2220	2.5 3.1	ESE ESE
20230730_2230	3.1	ESE ESE
20230730 2240	3.1	ESE ESE
	3.1	ESE
20230730 2310	2.5	ESE
20230730_2320	3.1	ESE
20230730_2330	2.2	-
20230730 2340 20230730 2350	2.5 1.4	SE S
20230730_2330	1.4	3

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230731_0000	1.7	S
20230731_0010	2.8	
20230731_0020 20230731_0030	2.2	ENE ESE
20230731_0030	1.4 1.4	ESE N
20230731_0040	1.7	ENE
20230731_0100	0.8	NNW
20230731_0110	1.4	
20230731_0120	1.7	S
20230731_0130 20230731_0140	1.1 0.8	SW SSW
20230731_0150	1.4	N
20230731 0200	2.2	NNW
20230731_0210	1.7	NNW
20230731_0220	1.7	NW
20230731 0230 20230731_0240	1.9 2.2	NNW NNW
20230731_0240	1.7	NW
20230731 0300	2.8	N
20230731_0310	1.7	N
20230731_0320	2.8	NNE
20230731 0330 20230731 0340	1.7 1.4	N NNW
20230731_0350	1.7	N N
20230731 0400	1.7	NNE
20230731_0410	2.5	NE
20230731_0420	1.1	NNE
20230731 0430 20230731 0440	1.4 2.5	E ESE
20230731_0440	2.5	ESE
20230731 0500	2.5	E
20230731_0510	2.8	Е
20230731_0520	2.8	E
20230731 0530 20230731 0540	2.5 3.1	E ESE
20230731_0550	2.5	ESE
20230731_0600	3.1	E
20230731_0610	2.8	ESE
20230731_0620	2.5	E
20230731 0630 20230731 0640	2.2 2.8	ESE ESE
20230731_0650	2.8	ESE
20230731 0700	2.8	ESE
20230731_0710	2.5	SE
20230731_0720	2.8	ESE
20230731 0730 20230731 0740	2.2 1.9	ESE ESE
20230731_0750	1.4	SE
20230731 0800	2.2	SE
20230731_0810	2.2	SE
20230731_0820	1.7	SE
20230731_0830 20230731_0840	1.4 1.4	SE SE
20230731_0840	1.4	SE SE
20230731_0800	1.4	ESE
20230731 0910	1.1	ESE
20230731_0920	0.8	-
20230731_0930	1.4	ESE
20230731_0940 20230731_0950	1.7	E ESE
20230731_0950 20230731_1000	2.2 2.2	ESE
20230731 1010	1.7	ESE
20230731_1020	1.7	ESE
20230731_1030	1.7	SE
20230731 1040	2.2	ESE
20230731_1000	1.7	ESE ESE
20230731 1110		ESE
20230731_1120 20230731_1130	2.5 2.5 1.9	ESE ESE
20230731 1120 20230731 1130 20230731 1140 20230731 1150	1.9	
20230731 1140	1.7	SE
20230731_1150	1.7	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230731 1200	1.7	ESE
20230731_1210	1.7	ESE
20230731_1220	1.7	SE
20230731_1230 20230731_1240	1.1 1.4	E E
20230731_1240	1.4	E
20230731 1300	1.4	Е
20230731_1310 20230731_1320	1.4	E ESE
20230731_1320 20230731_1330	1.4 1.4	ESE SE
20230731_1340	0.8	SE
20230731 1350	0.8	SE
20230731 1400 20230731 1410	1.1 0.6	ESE SE
20230731 1420	0.0	N N
20230731 1430	0	N
20230731_1440 20230731_1450	0	N SSW
20230731_1430	0.3 0.6	SSE
20230731 1510	1.1	SE
20230731 1520	1.4	SE
20230731 1530 20230731 1540	1.7	ESE SE
20230731_1540	0.8	SE WNW
20230731 1600	0.3	WNW
20230731_1610	0.3	W
20230731_1620 20230731_1630	0.3	W N
20230731 1640	0	N N
20230731_1650	0	N
20230731 1700	0	N
20230731_1710 20230731_1720	0.3	N N
20230731_1720	0.5	N N
20230731_1740	0	N
20230731_1750	0	N
20230731 1800 20230731 1810	0.3	SW N
20230731_1820	0	N
20230731 1830	0	N
20230731_1840 20230731_1850	0	N N
20230731_1830	0.3	N N
20230731_1910	0.3	NW
20230731_1920	0.3	NE
20230731 1930 20230731 1930 20230731 1940 20230731 1950 20230731 2000 20230731 2010	0.3 0.3 0.3 0.8	NW NNE
20230731_1950	0.3	N
20230731 2000 20230731 2010		WNW
20230731_2010 20230731_2020	0.8 1.4	N NNE
20230731_2020	0.8	NNE
20230731_2040	1.1	N
20230731_2050 20230731_2100	1.4	NNW NW
20230731_2100	1.1 0.8	SSW
20230731_2120	1.4	-
20230731_2130	2.2	ESE
20230731_2140 20230731_2150	2.2	N
20230731_2130	2.8	ESE
20230731 2210	3.3	ESE
20230731_2220	3.1	ESE
20230731_2230 20230731_2240	3.1	ESE ESE
20230731_2250	3.3	SE
20230731_2300	3.3	SE
20230731 2310 20230731 2320	3.3	ESE ESE
20230731_2320	3.3 3.3	ESE ESE
20230731_2330	3.3	E
20230731_2350	3.3	ESE

Appendix I Waste Flow Table

Waste Flow Table

		Total Quantities of Inert C&D Materials to be Generated from the Contract				Total Quantities of Recyclables Generation				Total Quantities of C&D Materials to be Generated from the Contract			
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill		Paper / Cardboard Packaging		Yard Waste (to Y-Park)	Chemical Waste	General Refuse	Others, e.g. non- recyclable yard waste
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000L)	(in tonne)	(in tonne)
Dec-22	84.77	0	0	0	0	0	0	0	0	11.49	0	7.53	65.75
Jan-23	24.51	0	0	0	0	0	0	0	0	0	0	24.51	0
Feb-23	506.45	0	0	0	0	0	0	0	0	3.16	0	5.85	497.44
Mar-23	9,581.15	0	0	9,187	0	0	0	0	0	3.69	0	6.96	383.5
Apr-23	18,532.07	0	0	18,466	0	0	0	0	0	1.97	0	5.81	58.29
May-23	28,889.61	0	0	28,473	0	0	0	0	0	0	0	7.45	409.16
Jun-23	11,574.89	0	0	11,211	0	0	0	0	0	2.38	0	14.69	346.82
Jul-23	50,595.49	0	0	50,307	0	0	0	0	0	0	0	25.54	262.95
Total	119,788.94	0.00	0.00	117,644.00	0.00	0.00	0.00	0.00	0.00	22.69	0.00	98.34	2,023.91

Note:

- The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix J Joint Environmental Site Inspection Records

3 July 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Andy Ng

Time:		14:00	Wea	ther Condition:	Condition: Sunny			
Partic	ipants:	Sylvia Ho (ER), V.C. Lau (Contracto	r), Kr	risty Wong (Cor	ntractor), A	Andy Ng (ET)	
A	Permits/Lic	enses		N/A or Not Observed	Yes	No	Remarks / Photo	
A1		nmental Permit, license/ other perr major site exit and vehicle access?	mit		\boxtimes			
A2		uction Noise Permits/ Environmen er permit available for inspection/post nce.			\boxtimes			
A3	Is wastewater discharge licence available for inspection?				\boxtimes			
A4		ets for chemical waste and constructions and available for inspection?	ion		\boxtimes			
A5	Are releval construction for inspection	waste or excavated materials availab	of ble		\boxtimes			
В	Air Quality			N/A or Not Observed	Yes	No	Remarks / Photo	
B1		ning avoided?			\boxtimes			
B2		and equipment well maintained (i k smoke from powered plant)?	i.e.		\boxtimes			
В3	-	al action undertaken?		\boxtimes			N/A	
B4		ksites wetted with water regularly?			\boxtimes			
B5	Are NRMM I	abels properly affixed on the PMEs?			\boxtimes			
В6	Observed du	ust source(s)						
				☐ Wind eros	sion			
				Vehicle/ E	Equipment	Moveme	nts	
				Loading/ u	unloading	of materia	als	
				Others:	Not Ob	oserved		
Air Po	ollution Cont	rol (Construction Dust) Regulation	·					
Part I	Control Req	uirements for Notifiable Works						
Demo	olition of build	ding						
B7	with water	involved demolition activities spray or a dust suppression chemic prior to, during and immediately after t	cal	\boxtimes			N/A	
Cons	truction of th	e superstructure of a building						
B8		ng erected around the perimeter of er construction?	fa	\boxtimes			N/A	

Inspected By:

(Construction Phase)

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
	water jet provided at all site exits if practicable?			Ш	
B12	Are the areas of washing facilities and the road				
	section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?				
B13	Are the hoarding ≥ 2.4m tall provided at the site	_		_	
	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?				
	ss road				
B14	Are every main haul road (having a vehicle passing				
	rate of higher than 4 in any 30				
	minutes) paved with concrete, bituminous materials,		\boxtimes		
	hardcorres or metal plates, and kept clear of dusty				
	materials?				
B15	Are every main haul road sprayed with water or a		\boxtimes		
5 .40	dust suppression chemical?				
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept			Ш	
D.47	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?				
B18	Is <u>unpaved main haul road</u> wet by water spraying?		\boxtimes		
Ceme	nt and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (\underline{PFA}) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?	\boxtimes			N/O
B20	Are the <u>activities of loading, unloading, transfer,</u>			_	
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	<u>carried</u> out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an <u>effective fabric</u>	\boxtimes			N/A
	filter or equipment air pollution control system?				1471
Expo	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer		\boxtimes	📙	
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				

Part IV Control Requirements for Individual Activities								
Stock	piling of dusty materials							
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?			\boxtimes	Refer to Observation 2			
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes					
Load	ng, unloading or transfer of dusty materials							
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes					
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes					
Use c	<u>Use of vehicles</u>							
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes					
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes					
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes					
Pneu	matic or power-driven drilling, cutting and polishing	1						
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	×			N/A			
<u>Debri</u>	s handling							
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A			
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A			
B33	Are the watering spray or a dust suppression chemical conducted before debris is dumped into a debris chute?	\boxtimes			N/A			

Exca	vation or earth moving		
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
Site o	<u>elearance</u>		
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?	\boxtimes	

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?					
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		⊠ Traffic				
		⊠ Construct	ion activiti	es inside	of site	
		Construction activities outside of site				
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?			\boxtimes	Refer to Reminder 1
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes		
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes		
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes		
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes		
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?		\boxtimes		To be treated with shotcrete at part of slope surface.
D5a	Have the <u>overall slope</u> of the site should be kept a minimum?		\boxtimes		
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes		
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes		
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?		\boxtimes		
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		

D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be maintained and the <u>deposited silt</u> and			
D10b	 grit should be removed regularly. ii. Temporarily exposed slope surfaces should be cover by tarpaulin. 		\boxtimes	
D 100	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
D10c	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
	 i. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly. ii. Open stockpiles of construction materials (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. All temporary covers to slopes and stockpiles should be secured. 			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	i. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.		\boxtimes	
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A
D12b	Are the oil interceptors are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes		N/A

D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?				
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?		\boxtimes		
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	cilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Gener	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?		\boxtimes		
E2c	Is waste disposed regularly?		\boxtimes		
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D I	Materials				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
Е7а	Are the temporary stockpiles maintained regularly?		\boxtimes		
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes		
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes		

E11	Are the <u>training</u> of <u>site personnel</u> for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concept implemented?		\boxtimes		
E12	Are the <u>regular cleaning</u> and <u>maintenance</u> <u>programme</u> for drainage systems, sumps, oil interceptors?			\boxtimes	Refer to Observation
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?		\boxtimes		
E13b	Do the excavated materials appear contaminated?			\boxtimes	
E13c	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E14	Is the <u>disposal</u> of <u>C&D materials</u> avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E15	Are the <u>public fill</u> and <u>C&D waste segregated</u> and <u>stored</u> in different containers or skips to enhance reuse or recycling of materials and their proper disposal?		\boxtimes		
Chemi	ical Waste / Waste Oil				
E16	Are <u>chemicals</u> and <u>waste oil</u> recycled or disposed properly?		\boxtimes		
Chemi	cal Packaging				
E17a	Have the <u>containers</u> a capacity of <u><450 L</u> unless the specification has been approved by EPD?	\boxtimes			
E17b	Are the <u>containers</u> (holding, resistant to corrosion, maintained in a good condition, and securely closed) used for <u>storage of chemical wastes</u> ?	\boxtimes			
Chemi	ical Labelling				
E18	Is chemical waste or waste oil <u>stored</u> and <u>labelled</u> in <u>English and Chinese</u> properly in designated area? Capacity of Dimensions of Label Container < 50L No less than 90 x 100mm 50 to 450L No less than 120 x 150mm > 450L No less than 180 x 200mm				
Chemi	cal Waste / Fuel Storage Area				
E19a	Are the <u>storage area</u> are clearly labelled and separated (if needed)?			\boxtimes	Refer to Observation 2
E19b	Are the <u>storage area</u> enclosed <u>3 sides by walls/fence of ≥2m tall</u> and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow <u>storage of 20% of total volume of waste</u> ?			\boxtimes	Refer to Observation 2
E19c	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering and reduce heat from sunlight?			\boxtimes	Refer to Observation 2
E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u> provided with locks and sited on sealed areas?			\boxtimes	Refer to Observation 2
E20	Is chemical waste collected by <u>licensed waste</u> <u>collectors</u> and disposed of at <u>licensed facility</u> eg. Chemical Waste Treatment Centre?		\boxtimes		

(Construction Phase)

Recor	<u>rds</u>			
E21	Is a licensed waste hauler used for <u>waste</u>		\boxtimes	
	collection?		<u> </u>	
E22	Are the records of quantities of wastes generated,		\square	
	recycled and disposed properly kept?	Ш		
E23	For the demolition material / waste, is the number of		\square	
	loads for each day recorded as appropriate?			

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo	
Within NENT Landfill Extension						
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O	
F2	Are <u>prominent safety warning signs</u> erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes			
F3	Is <u>no smoking</u> or <u>burning</u> permitted on-site?	\boxtimes			N/O	
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O	
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes			
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes			
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes			
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O	
F9	Is 'Permit to Work' system implemented?		\boxtimes			
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes			
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A	
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A	
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A	
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A	
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes			

(Construction Phase)

	*LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?	\boxtimes	
F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.		
F15a	Are <u>LFG precautionary measures</u> involved in <u>excavation</u> and <u>piping works</u> provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?		
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and		

H H1 I	Ecology Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly? Environmental Complaint Environmental Complaint received during this	N/A or Not Observed N/A or Not Observed	Yes	No No	Remarks / Photo Remarks / Photo		
	Is transplantation of the important plant species implemented? Is post-transplantation maintained	Observed		No	Remarks / Photo		
	Is transplantation of the important plant species implemented? Is post-transplantation maintained			No	Remarks / Photo		
			Yes	No	Remarks / Photo		
·							
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes				
Existing tree preservation							
G6	Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope</u> <u>cover</u> ?		\boxtimes				
Tempo	prary landscape treatment as green surface cover						
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes				
Boundary Green Belt planting							
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes				
Advan	ced screening tree planting						
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes				
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes				
G1	Is the work site confined within site boundaries?		\boxtimes				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo		
<u> </u>	quaiiiou poisoiti:						
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?		\boxtimes				
	 Directly after excavation has been completed; and Periodic all whilst excavation remains open. 						
1 19	For excavations 300mm to 1m, are measurements conducted?		\boxtimes				
F19	workers are in excavation.						

J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

Observation(s):

- 1. Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used.
- 2. Muddy water is observed at the vehicular entrance in Portion A.
- 3. Chemical containers in SBA shall be stored properly to prevent any potential of chemical leakage and generation of chemical waste.

Reminder(s):

Nil

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- 1. The Contractor has been reminded to cover the dusty stockpile with impervious sheets.
- 2. The Contractor has been reminded to clear the muddy water and divert the muddy water to wastewater treatment facility.
- 3. Th Contractor has been reminded to provide proper chemical storage area on site.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		1	W	Ho.
Name:	Jacon Man Avdy Nov	1	Chsty wong	Sylvia Ho
Date:	3 July 2023	1	3 July 2023	3 July 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

<u>SBA</u>

5 June 2023

Portion E3-1

Observation:

The stagnant water and silt in the drip trays shall be clear off in Portion B2 and SBA.

Follow-up status

Waiting for Contractor's Input

Observation and Recommendation Follow-up status 26 June 2023 Waiting for Contractor's Input Observation: The sediment at the drainage system and site boundary, especially at the lower elevations should be kept cleaning regularly. (Most of sediment was found at the lower elevations of Portion A). The contractor should ensure no untreated construction runoff discharging directly outside the site boundary of the project. 26 June 2023 Waiting for Contractor's Input Observation: The accumulate water at the drip tray near Portion E2 was found.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation	Follow-up status
Dusty stockpiles in Portion A shall be covered with impervious sheets	
when they are not in used.	
2. Muddy water is observed at the vehicular etrance in Portion A	
Muddy water is observed at the vehicular etrance in Portion A.	

3. Chemical containers in SBA shall be stored properly to prevent any potential of chemical leakage and generation of chemical waste.

PART III Temporary Drainage System Photo Record during the environmental site inspection

10 July 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Jason Man

Time:		14:00	Wea	Veather Condition: Sunny			
Partic	ipants:	Sylvia Ho (ER), V.C. Lau (Contractor	r), Kri	Kristy Wong (Contractor), Jason Man (ET)			
A	Permits/Lic	enses		N/A or Not Observed	Yes	No	Remarks / Photo
A1	displayed at	nmental Permit, license/ other pern major site exit and vehicle access?			\boxtimes		
A2		uction Noise Permits/ Environment er permit available for inspection/postence.			\boxtimes		
A3	Is wastewa inspection?	ater discharge licence available f	for		\boxtimes		
A4	•	ets for chemical waste and constructions at available for inspection?	on		\boxtimes		
A5	Are releval construction for inspection	waste or excavated materials availab	of ole		\boxtimes		
			•				
В	Air Quality			N/A or Not Observed	Yes	No	Remarks / Photo
B1	•	ning avoided?			\boxtimes		
B2		and equipment well maintained (i.k smoke from powered plant)?	.e.		\boxtimes		
B3	Any remedia	al action undertaken?		\boxtimes			N/A
B4		ksites wetted with water regularly?					
B5	Are NRMM I	abels properly affixed on the PMEs?					
B6	Observed du	ust source(s)					
				Wind eros	sion		
				Vehicle/ E	quipment	Moveme	nts
				Loading/ ι	unloading	of materia	als
				Others:			
Air Po	ollution Cont	rol (Construction Dust) Regulation					
Part I	Control Req	uirements for Notifiable Works					
Demo	lition of build	ding					
В7	with water	involved demolition activities spraye or a dust suppression chemic prior to, during and immediately after the	cal	\boxtimes			N/A
Cons	truction of th	e superstructure of a building					
B8		ng erected around the perimeter of er construction?	а	\boxtimes			N/A

Inspected By:

(Construction Phase)

В9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the	\boxtimes			N/A
D40	scaffolding?				
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
	water jet provided at all site exits if practicable?		\boxtimes		
B12	Are the areas of washing facilities and the road				
	section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?		\boxtimes		
B13	Are the <u>hoarding</u> ≥ 2.4m tall provided at the site boundary near a road, street, service lane or other area accessible to the public?		\boxtimes		
Asses	ss road				
B14	Are every main haul road (having a vehicle passing				
	rate of higher than 4 in any 30 minutes) paved with concrete, bituminous materials, hardcorres or metal		\boxtimes		
D.1.E	plates, and kept clear of dusty materials?				
B15	Are every <u>main haul road</u> sprayed with water or a dust suppression chemical?		\boxtimes		
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
D47	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?				
B18	Is <u>unpaved main haul road</u> wet by water spraying?		\boxtimes		
Ceme	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (<u>PFA</u>) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?	\boxtimes			N/A
B20	Are the <u>activities of loading, unloading, transfer,</u> handing or storage of bulk cement or dry PFA <u>carried</u> out in a totally enclosed system or facility?	\boxtimes			N/A
B21	Is any vent or exhaust fitted with an effective fabric				
	filter or equipment air pollution control system?	\boxtimes		Ш	N/A
Expo	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,			_	
	shotcrete or other suitable surface stabilizer		\boxtimes		
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by <u>impervious sheeting</u> or (b) placed in an <u>area sheltered on the top and the 3 sides</u> or (c) <u>sprayed with water</u> or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the <u>excavation or unloading</u> ?		\boxtimes			
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes			
Load	ing, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
<u>Use of vehicles</u>						
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?			\boxtimes	Refer to Observation 2	
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	\boxtimes			N/A	
<u>Debri</u>	s handling					
B31	Are any debris covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	
					•	

B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes			N/A	
Exca	vation or earth moving					
B34	Are the working area of any excavation or earth moving operation <u>sprayed with water</u> or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes			
Site clearance						
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes			
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes			

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes		
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes		
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes		
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes		
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?				
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes		
C10	Is the hoarding maintained properly?		\boxtimes		
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes		
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes		
C13	QPME used with valid noise labels?		\boxtimes		
C14	Major noise source(s)				
		⊠ Traffic			
		Construction activities inside of site			
		Construction activities outside of site			
		Others:			

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?		\boxtimes		
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes		
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes		
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes		
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes		
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface. Refer to Observation
D5a	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes		
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to Observation 3 & 4
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m ³ on site covered with tarpaulin or similar fabric during rainstorms?		\boxtimes		

(Construction Phase)

D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes	
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94)			
	 Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly. 			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 			Refer to Observation
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			4
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> 		\boxtimes	
	(e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. All temporary covers to slopes and stockpiles should be secured.			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	i. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.		\boxtimes	
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A

D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?		\boxtimes		
	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> <u>of higher elevations</u> to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		

D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Genera	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?			\boxtimes	Refer to Observation 1
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?			\boxtimes	Refer to Observation 1
E2c	Is <u>waste disposed</u> regularly?			\boxtimes	Refer to Observation 1
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D N	<u>Materials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
E7a	Are the <u>temporary stockpiles</u> maintained regularly?		\boxtimes		
E7b	Is the <u>excavated fill material</u> reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes		Refer to Observation 5
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		

E10	responsible for garrangements for	n of approved personnel to be good site practices and making collection of all wastes generated we disposal implemented?		\boxtimes			
E11	proper waste ma chemical waste ha and recycling cond	of site personnel for cleanliness, anagement procedures including andling, and waste reduction, reuse cept implemented?		\boxtimes			
E12	interceptors?	drainage systems, sumps, oil				Refer to Observation 3 & 4	
E13a	use and/or recyclin	<u> </u>		\boxtimes			
E13b		materials appear contaminated?			\boxtimes		
E13c	If suspected conta followed?	minated, appropriate <u>procedures</u>	\boxtimes			N/A	
E14	Is the <u>disposal</u> of sensitive locations	<u>C&D materials</u> avoided onto any e.g. agricultural lands etc.?		\boxtimes			
E15	stored in differen	and <u>C&D waste segregated</u> and t containers or skips to enhance g of materials and their proper		\boxtimes			
Chemical Waste / Waste Oil							
E16	Are <u>chemicals</u> ar properly?	nd <u>waste oil</u> recycled or disposed		\boxtimes			
Chemi	cal Packaging						
E17a		ers a capacity of <450 L unless the een approved by EPD?	\boxtimes			N/A	
E17b	maintained in a go	rs (holding, resistant to corrosion, and condition, and securely closed) of chemical wastes?	\boxtimes			N/A	
Chemi	cal Labelling						
E18	English and Chin	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm		\boxtimes			
Chemi	cal Waste / Fuel S	torage Area					
E19a	Are the storage separated (if need	<u>area</u> are clearly labelled and ed)?		\boxtimes			
E19b	fence of ≥2m tall capacity (>110%	area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the storage of 20% of total volume	\boxtimes		\boxtimes	N/O	
E19c	Do the storage a	areas have adequate ventilation to prevent rainfall entering and sunlight?	\boxtimes		\boxtimes	N/O	

E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u>	\square		N/O
	provided with locks and sited on sealed areas?			14/0
E20	Is chemical waste collected by <u>licensed waste</u>			
	collectors and disposed of at licensed facility eg.			
	Chemical Waste Treatment Centre?			
Reco	rds_			
E21	Is a licensed waste hauler used for waste		\boxtimes	
	collection?			
E22	Are the records of quantities of wastes generated,			
	recycled and disposed properly kept?			
E23	For the demolition material / waste, is the number of		\square	
	<u>loads</u> for each day recorded as appropriate?			

F	Landfill Gas (LFG)	N/A or Not	Yes	No	Remarks / Photo			
•	Landin Gue (El G)	Observed		110	Romano / Frieto			
Within	Within NENT Landfill Extension							
F1	Are special LFG precautions taken to avoid							
	potential hazards of LFG exposure (ignition,	\boxtimes			N/O			
	explosion, asphyxiation, toxicity)?							
F2	Are <u>prominent safety warning signs</u> erected on-		\boxtimes					
	site to alert all personnel and visitors of LFG hazards during excavation works.?							
F3	Is no smoking or burning permitted on-site?							
' '	is no smoking of burning permitted on-site:	\boxtimes		Ш	N/O			
F4	Are prominent 'No smoking' and 'No Naked	\boxtimes	П		N/O			
	Flames' signs erected on-site?				IN/O			
F5	Is no worker allowed to work alone at any time in		\boxtimes					
	excavated trenches or confined areas on-site?							
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes					
F7	Are construction equipment equipped with							
[/	vertical exhaust at least 0.6m above ground		\boxtimes					
	installed with spark arrestors?							
F8	Are electrical motors and extension cords							
	explosion-proof and intrinsically safe for use on-	\boxtimes			N/O			
	site?							
F9	Is 'Permit to Work' system implemented?		\boxtimes					
F10	Are welding, flame-cutting or other hot works							
	conducted only under 'Permit to Work' system	_		_				
	following clear safety requirements, gas monitoring		\boxtimes					
	procedures and presence of qualified persons to							
F44	supervise the works?							
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after	\boxtimes			N/A			
	installation?				IN/A			
F11b	Are the <u>pipe ends</u> sealed on one side during							
' ' ' '	installation if installation of large diameter pipes	\boxtimes			N/A			
	(diameter > 600mm) is required?	<u> </u>						
F11c	Is <u>forced ventilation</u> implemented prior to	\boxtimes			N/A			
	operation of installed pipeline?		<u> </u>		IN/A			
F11d	Is <u>forced ventilation</u> implemented for <u>works</u>	\boxtimes			N/A			
	inside trenches deeper than 1m?	<u>- </u>						

(Construction Phase)

F12	Is frequency and location of <u>LFG monitoring</u> within excavation area determined prior to commencement of works?		
	*LFG monitoring in excavations should be	\boxtimes	
	conducted at < 10mm from exposed ground surface.		
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?	\boxtimes	
F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site?		
	*Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.		
F15a	Are <u>LFG precautionary measures</u> involved in <u>excavation</u> and <u>piping works</u> provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?		
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences;	\boxtimes	

(Construction Phase)

	 Immediately before any worker enters the excavation; 				
	At the beginning of each working day for entire				
	period the excavation remains open; andPeriodically throughout the working day whilst				
	workers are in excavation.				
F19	For excavations 300mm to 1m, are measurements conducted?		\boxtimes		
	Directly after excavation has been completed;				
	and				
F20	 Periodic all whilst excavation remains open. For excavations < 300mm, are monitoring omitted 		\boxtimes		
	at the discretion of Safety Officer or appropriately				
	qualified person?				
		N/A or Not			
G	Landscape and Visual Impacts	Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond		\boxtimes		
	the perimeter of the <u>tree protection zone</u> of each individual tree?				
Advan	ced screening tree planting				
G4a	Is early planting using fast growing plants and tall		\boxtimes		
	shrubs at <u>strategic locations</u> within site implemented?				
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Boundary Green Belt planting					
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u>		\boxtimes		
	species planted around the site perimeter?	Ш			
Tempo	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope		\boxtimes		
	cover?				
Existi	ng tree preservation				
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever		\boxtimes		
	possible?				
н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species		\boxtimes		
	implemented? Is post-transplantation maintained and monitored regularly?				
I	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	

J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

Observation(s):

- 1. Full loading of the rubbish skips for general waste at the Portion D and lack of waste separation are found.
- 2. The loaded dump truck without covered by impervious sheeting is found.
- 3. The stagnant water, floating leaves, deposited silt and grit are found at the sedimentation basin near the wheel washing facilities at the Portion B1.
- 4. The high amount of deposited silt is found at the silt removal facilities at the Portion E3-1.
- 5. The exposed slope surfaces are not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1.

Reminder(s):

Nil

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

Observation(s):

- The contractor has been recommended that accumulation of waste should be avoid, the waste should be disposed regularly & the general waste should be collected properly by using the waste separation facilities for paper, aluminum cans and plastic bottles etc.
- 2. The contractor has been advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.
- The contractor has been recommended that the stagnant water should be collected to silt removal facilities
 for treatment before reusing for wheel washing. The floating leaves, deposited silt and grit should be
 removed regularly.
- 4. The contractor has been advised that the deposited silt should be removed and regularly and increase the checking frequency of it, and the silt removal facilities should be maintained at good condition to maintain the high effectiveness of it.
- 5. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:			M	40.
Name:	Jason Man	1	Kristy Wong	Sylvia Ho
Date:	10 July 2023	1. 1.	10 July 2023	10 July 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

<u>SBA</u>

5 June 2023

Portion E3-1

Observation:

The stagnant water and silt in the drip trays shall be clear off in Portion B2 and SBA.

Follow-up status

Waiting for Contractor's Input

Observation and Recommendation Follow-up status 26 June 2023 Waiting for Contractor's Input Observation: The sediment at the drainage system and site boundary, especially at the lower elevations should be kept cleaning regularly. (Most of sediment was found at the lower elevations of Portion A). The contractor should ensure no untreated construction runoff discharging directly outside the site boundary of the project. 26 June 2023 Waiting for Contractor's Input Observation: The accumulate water at the drip tray near Portion E2 was found.

Follow-up status **Observation and Recommendation** 3 July 2023 Observation: Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used. The Contractor was reminded to cover the dusty stockpile with impervious sheets. 3 July 2023 Observation: Muddy water is observed at the vehicular etrance in Portion A. The Contractor was reminded to clear the muddy water and divert the muddy water to wastewater treatment facility.

Observation and Recommendation	Follow-up status
3 July 2023	
Observation:	
Chemical containers in SBA shall be stored properly to prevent any potential of chemical leakage and generation of chemical waste.	

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

Observation:

1. Full loading of the rubbish skips for general waste at the Portion D and lack of waste separation are found. The contractor has been recommended that accumulation of waste should be avoid, the waste should be disposed regularly & the general waste should be collected properly by using the waste separation facilities for paper, aluminium cans, and plastic bottles etc.

Follow-up status

Observation: 2. The loaded dump truck without covered by impervious sheeting is found. The contractor has been advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.

for wheel washing. The floating leaves, deposited silt and grit should

be removed regularly.

(Construction Phase)

Observation and Recommendation Follow-up status Observation: The stagnant water, floating leaves, deposited silt and grit are found at the sedimentation basin near the wheel washing facilities at the Portion B1. The contractor has been recommended that the stagnant water should be collected to silt removal facilities for treatment before reusing

Observation and Recommendation Follow-up status Observation: The high amount of deposited silt is found at the silt removal facilities at the Portion E3-1. The contractor has been advised that the deposited silt should be removed and regularly and increase the checking frequency of it, and the silt removal facilities should be maintained at good condition to maintain the high effectiveness of it.

Observation: 5. The exposed slope surfaces are not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

PART III Temporary Surface Water Drainage System (TSWD) Photo Record during the environmental site inspection

Photo 1 TSWD at Portion D

Photo 2 TSWD at Portion D

Photo 3 Cut-off drain with silt fence at Portion B1-2 (Front)

Photo 4 Cut-off drain with silt fence at Portion B1-2 (Front)

Photo 5 Cut-off drain with silt fence at Portion B1-2 (Back)

Photo 6 Cut-off drain with silt fence at Portion B1-2 (Back)

Photo 7 Cut-off drain with silt fence at Portion B1-2 (Front)

Photo 8 Sedimentation Basins at Portion E3-1

Photo 9 Sedimentation Basins at Portion E3-1

Photo 9 Sedimentation Basins at Portion E3-1

18 July 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Jason Man, Andy Ng

Time: 14:00 Weather Condition: Rainy					Rainy			
Partic	ipants:	Sylvia Ho (ER), Kristy Wong (Contrac	ctor), Jason Man (E	or), Jason Man (ET), Andy Ng (ET), Echo Hung (IEC)				
Α	Permits/Lic	enses	N/A or Not Observed	Yes	No	Remarks / Photo		
A1	displayed at	nmental Permit, license/ other perm major site exit and vehicle access?		\boxtimes		Refer to Observation 3		
A2		uction Noise Permits/ Environmenta er permit available for inspection/poste nce.		\boxtimes				
A3	Is wastewa inspection?	ater discharge licence available fo	or	\boxtimes				
A4		ets for chemical waste and constructio sal available for inspection?	n 🗆	\boxtimes				
A5	Are relevation for inspection	waste or excavated materials available	of e	\boxtimes				
В	Air Quality		N/A or Not Observed	Yes	No	Remarks / Photo		
B1		ning avoided?		\boxtimes				
B2		and equipment well maintained (i.eks smoke from powered plant)?	e.	\boxtimes				
ВЗ	Any remedia	al action undertaken?	\boxtimes			N/A		
B4		ksites wetted with water regularly?						
B5	Are NRMM I	abels properly affixed on the PMEs?						
B6	Observed du	ust source(s)						
			☐ Wind eros	sion				
			Vehicle/ E	quipment	Moveme	nts		
			Loading/ u	unloading	of materia	als		
			Others:	Not Ob	served			
Air Po	ollution Cont	rol (Construction Dust) Regulation						
Part I	Control Req	uirements for Notifiable Works						
Demo	olition of build	ding						
B7	with water	involved demolition activities spraye or a dust suppression chemica prior to, during and immediately after th	al 🖂			N/A		
Cons	truction of th	e superstructure of a building						
B8		ng erected around the perimeter of er construction?	a 🗵			N/A		

Inspected By:

B9	Are effective dust screens, sheeting or netting				
	provided to enclose the scaffolding from the ground				
	floor level of the building, or a canopy provided from	\boxtimes			N/A
	- · · · · · · · · · · · · · · · · · · ·				IN/#\
	the first floor level up to the highest level of the				
Dia	scaffolding?				
B10	Is the <u>skip</u> for materials transport enclosed by	\boxtimes			N/A
	impervious sheeting?				·
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
	water jet provided at all site exits if practicable?			Ш	
B12	Are the areas of washing facilities and the road				
	section between the washing facilities and the				
	exit point paved with concrete, bituminous materials				
	or hardcores?				
B13	Are the hoarding ≥ 2.4m tall provided at the site				
ыз					
	boundary near a road, street, service lane or other				
	area accessible to the public?				
	ss road				
B14	Are every main haul road (having a vehicle passing				
	rate of higher than 4 in any 30 minutes) paved with				
	concrete, bituminous materials, hardcorres or metal				
	plates, and kept clear of dusty materials?				
B15	Are every main haul road sprayed with water or a				
	dust suppression chemical?				
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
	clear of dusty materials?			_	
B17	Are appropriate <u>speed limit sign</u> displayed?				
	7.10 арргорнаю <u>ороса инисогди</u> аюра уса:			ш	
B18	Is unpaved main haul road wet by water spraying?		\boxtimes		
	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (PFA) covered entirely by	\boxtimes			N/A
	impervious sheeting or placed in an area sheltered				14/7
	on the top and 3 sides?				
B20	Are the activities of loading, unloading, transfer,				
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	carried out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an effective fabric				N1/A
	filter or equipment air pollution control system?				N/A
Evno			1	1	
B22	sed earth Is the exposed earth properly treated by				
022					
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				Refer to
	shotcrete or other suitable surface stabilizer			\boxtimes	Reminder 1
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				

Part IV Control Requirements for Individual Activities						
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?					
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?					
Load	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use o	f vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	\boxtimes			N/A	
<u>Debri</u>	s handling					
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	

B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes			N/A		
Exca	vation or earth moving						
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
Site o	Site clearance						
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes				

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the <u>hoarding</u> maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
	Construction activities inside of site					
		Construct	ion activiti	es outsid	e of site	
	Others:					

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo		
Construction Runoff							
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes				
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?			\boxtimes	Refer to Observation 1		
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes				
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes				
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes				
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes				
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes				
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes				
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface.		
D5a	Have the <u>overall slope</u> of the site should be kept a minimum?		\boxtimes				
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes				
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes				
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes				
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes				
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes				
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes				
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?		\boxtimes				
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes				

D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul		\boxtimes	
	sewer always prevented?		_	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at <u>any time</u> of year			
	when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94)			
	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly. 			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 	_		
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured. 			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 			
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A
D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes		N/A

D12c	Has a bypass provided to prevent flushing during		\boxtimes		
DIZC	heavy rain?				
	Are the <u>construction solid waste</u> , <u>debris</u> and				
D13	<u>rubbish</u> on site collected, handled and disposed of			Ш	
	properly? (same with waste item)				
	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with				
D14	locks and sited on sealed areas, within bunds of a		\boxtimes		
	capacity equal to 110% of the storage capacity of the				
	largest tank?				
	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside				
D15	constructed to prevent pollution risk arising from work			Ш	
	area (waste reception area)?				
D16	Are <u>site drainage systems</u> provided over the entire		\boxtimes		
	project site with sediment control facilities?				
	Are <u>sedimentation tanks</u> provided to treat the large				
D17	amount of sediment-laden wastewater generated				
	from wheel washing, site runoff and construction				
	works?				
D18	Is there any sediment plume observed in nearby			\boxtimes	
	watercourses?	_			
Sewag	e Effluent from Workforce (On-site sanitary facilities	s)			
	Are portable chemical toilets and sewage holding				
D19a	tanks provided?			Ш	
	Is the sewage generated from toilets collected by				
D19b	licensed contractor and responsible for disposal and		\boxtimes		
	maintenance?				
	Are the notices posted at conspicuous locations to				
D20	remind the workers not to discharge any sewage or		\boxtimes		
	wastewater into the nearby environment?				
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	·ilitiae)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u>		<u> </u>		
DZIA	facilities located within a bunded area, and sumps				N/O
	and oil interceptors?				14/0
D21b	Are all maintenance of equipment involving				
0210	activities with potential for leakage and spillage				N/O
	undertaken within the areas?				14/0
D21c	Is chemical leakage or spillages contained and	5 -7			
	cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System		1	l	
D22a	Is the temporary surface water drainage system		\boxtimes		
	provided to manage runoff?				
D22b	Does the system consist of channel as constructed		\boxtimes		
	around the perimeter of the site area?				
Doc	Does the system collect surface water from the <u>areas</u>				
D22c	of higher elevations to those of lower elevations			🏻	
	and ultimately to the discharge point?				
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
	Does the system include the use of a silt fence				
D23a	around the soil stockpile areas to prevent sediment				
	from entering the system?	_		_	
Door	Is the regular <u>cleaning</u> carried out to prevent		\square		
D23b	blockage of the passage of waste flow in silt fence?		\boxtimes		

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo			
Waste Management								
Gener	al Waste							
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes					
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?			\boxtimes	Refer to Observation 1			
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?			\boxtimes	Refer to Observation 1			
E2c	Is <u>waste disposed</u> regularly?			\boxtimes	Refer to Observation 1			
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes					
E3	Burning of refuse on construction site prohibited?		\boxtimes					
C&D I	<u>Materials</u>							
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes					
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes					
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes					
E5b	Do the wooden hoardings avoid to be used?		\boxtimes					
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes					
E6a	Are the concrete and masonry used as general fill ?		\boxtimes					
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes					
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes					
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes					
E7a	Are the temporary stockpiles maintained regularly?		\boxtimes					
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes					
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes					
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes					
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes					
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes					
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes					

E11		of <u>site personnel</u> for cleanliness, anagement procedures including				
	· •	ndling, and waste reduction, reuse				
	and recycling cond	cept implemented?				
E12		r cleaning and maintenance				
	interceptors?	drainage systems, sumps, oil				
E13a	Are <u>wood</u> , <u>steel</u> a use and/or recyclin	nd other metals separated for re-		\boxtimes		
E13b	,	materials appear contaminated?			\boxtimes	
E13c	If suspected conta	minated, appropriate procedures	\boxtimes			N/A
	followed?					IN/A
E14	sensitive locations	<u>C&D materials</u> avoided onto any e.g. agricultural lands etc.?		\boxtimes		
E15		and <u>C&D waste segregated</u> and t containers or skips to enhance				
		g of materials and their proper				
	disposal?					
Chemi	ical Waste / Waste	<u>Oil</u>				
E16	Are <u>chemicals</u> ar properly?	nd <u>waste oil</u> recycled or disposed		\boxtimes		
Chemi	ical Packaging					
E17a		ers a capacity of <450 L unless the		I		
LIIA		peen approved by EPD?	\boxtimes			N/A
E17b		<u>'s</u> (holding, resistant to corrosion,				
	maintained in a go	od condition, and securely closed)	\boxtimes			N/A
	•	,		_	_	
Chami	used for storage of	of chemical wastes?	لاسكا		_	
	used for <u>storage of</u>	of chemical wastes?				
Chemi E18	used for <u>storage of</u> ical Labelling Is chemical waste	of chemical wastes? or waste oil stored and labelled in				
	used for <u>storage of</u> ical Labelling Is chemical waste English and Chin	of chemical wastes?				
	used for <u>storage of</u> ical Labelling Is chemical waste <u>English and Chin</u>	or waste oil <u>stored</u> and <u>labelled</u> in <u>ese</u> properly in designated area?				
	used for storage of ical Labelling Is chemical waste English and Chin Capacity of	or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm				
	used for storage of cal Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L	or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm				
	used for storage of cal Labelling Is chemical waste English and Chin Capacity of Container < 50L	or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm				
	used for storage of cal Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L	or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm				
E18	used for storage of cal Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm				
E18	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm torage Area area are clearly labelled and				
E18 Chemi E19a	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage of separated (if need)	or waste oil stored and labelled in ese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm torage Area area are clearly labelled and ed)?				
E18	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage is storage)	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm Atorage Area area are clearly labelled and led)? area enclosed 3 sides by walls/				
E18 Chemi E19a	used for storage of cal Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage of fence of ≥2m tall	or waste oil stored and labelled in less properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm torage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund				N/O
E18 Chemi E19a	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage of separated (if need Are the storage of fence of ≥2m tall capacity (>110%)	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm Atorage Area area are clearly labelled and led)? area enclosed 3 sides by walls/				N/O
E18 Chemi E19a E19b	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage area allow of waste?	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm torage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the storage of 20% of total volume				N/O
E18 Chemi E19a	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage of separated (if need Are the storage of storage are allow of waste? Do the storage of storage of storage are allow of waste?	or waste oil stored and labelled in ese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm torage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund of largest container) or do the vistorage of 20% of total volume				
E18 Chemi E19a E19b	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage stence of ≥2m tall capacity (>110% storage area allow of waste? Do the storage and be covered	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm Itorage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund of largest container) or do the storage of 20% of total volume areas have adequate ventilation to prevent rainfall entering and				N/O
Chemi E19a E19b	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage storage area allow of waste? Do the storage and be covered reduce heat from storage area area and storage area and storage area and storage area area.	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm No less than 180 x 200mm Atorage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the vistorage of 20% of total volume areas have adequate ventilation to prevent rainfall entering and sunlight?			\boxtimes	N/O
E18 Chemi E19a E19b	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage of separated (if need) Are the storage of ence of ≥2m tall capacity (>110% storage area allow of waste? Do the storage of and be covered reduce heat from so Are the fuel tank	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm Itorage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund of largest container) or do the storage of 20% of total volume areas have adequate ventilation to prevent rainfall entering and				
Chemi E19a E19b	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage of separated (if need) Are the storage of ence of ≥2m tall capacity (>110% storage area allow of waste? Do the storage of and be covered reduce heat from so Are the fuel tanl provided with locks.	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm No less than 180 x 200mm torage Area area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund of largest container) or do the vistorage of 20% of total volume to prevent rainfall entering and sunlight? stand chemical storage areas			\boxtimes	N/O
E18 Chemi E19a E19b E19c	used for storage of ical Labelling Is chemical waste English and Chin Capacity of Container < 50L 50 to 450L > 450L Are the storage separated (if need Are the storage area allow of waste? Do the storage and be covered reduce heat from storage area the fuel tank provided with lock. Is chemical waste	or waste oil stored and labelled in lese properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm No less than 180 x 200mm Area are clearly labelled and ed)? area enclosed 3 sides by walls/and bounded with adequate bund of largest container) or do the storage of 20% of total volume areas have adequate ventilation to prevent rainfall entering and sunlight? As and chemical storage areas and sited on sealed areas? The collected by licensed waste sposed of at licensed facility eg.			\boxtimes	N/O

Recor	<u>ds</u>			
E21	Is a licensed waste hauler used for <u>waste</u>	\square		
	collection?			
E22	Are the records of quantities of wastes generated,	\square		
	recycled and disposed properly kept?		ш	
E23	For the demolition material / waste, is the number of	\square		
	loads for each day recorded as appropriate?			

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo		
Within NENT Landfill Extension							
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O		
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes				
F3	Is <u>no smoking</u> or <u>burning</u> permitted on-site?	\boxtimes			N/O		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes				
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes				
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes				
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O		
F9	Is 'Permit to Work' system implemented?		\boxtimes				
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes				
F11a	For piping assembly or conduit construction , are all valves and seals closed immediately after installation?				N/A		
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A		
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A		
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A		
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes				

	#150 "			
	*LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.			
5 40				
F13	For excavation works, Is <u>LFG monitoring</u>	\boxtimes		
	conducted (1) at ground surface prior to excavation,			
	(2) immediately before workers entering			
	excavations, (3) at the beginning of each half-day			
	work, and (4) periodically throughout the working			
	day when workers are in the excavation?			
F14	Are LFG monitoring conducted periodically when			
' '-	any cracks on ground level encountered on-site?	\boxtimes		
	any cracks on ground level encountered on-site:			
	*Appropriate action should be taken in accordance			
	with the action plan in Table 7.6 of EIA Report.			
F15a	Are LFG precautionary measures involved in	\boxtimes		
	excavation and piping works provided in			
	accordance with LFG Guidance Note and included			
	in Safety Plan of construction phase?			
F15b	Are temporary offices or buildings located where			
	free LFG has been proven or raised clear of ground	\boxtimes	Ш	
	at a separation distance of at least 500mm?			
E40				
F16	Is a <u>Safety Officer trained</u> in the use of gas	\boxtimes		
	detection equipment and LFG- related hazards			
	present on-site throughout the groundwork phase?			
	*The Safety Officer should be provided with an			
	intrinsically safe portable instrument appropriately			
	calibrated and capable of measuring the following			
	gases:			
	•CH ₄ : 0-100% and LEL: 0-100%/v			
	•CO ₂ : 0-100%			
	•O ₂ : 0-21%			
F17a	Periodically during groundwork construction, Is the			
1 174	works area monitored for CH ₄ CO ₂ and O ₂ using	\boxtimes		
	•			
	appropriately calibrated portable gas detection			
	equipment?			
	*The monitoring frequency and areas should be			
	established prior to commencement of groundwork			
	either by Safety Officer or appropriately qualified			
	person.			
F17b	Is routine monitoring carried out in all excavations,	\boxtimes		
	manholes, created by temporary storage of building			
	materials on-site?			
F17c	Are all measurements in excavations made with			
	monitoring tube located < 10mm from exposed	\boxtimes	Ш	
F40	ground surface?			
F18	For excavations > 1m, are measurements	\boxtimes		
	conducted?			
	• At ground surface before excavation			
	commences;			
	• Immediately before any worker enters the			
	excavation;			
	At the beginning of each working day for entire			
	period the excavation remains open; and			
	Portos ano oxeditation formanto opon, and			

	 Periodically throughout the working day whilst workers are in excavation. 				
F19	For excavations 300mm to 1m, are measurements conducted?		\boxtimes		
	Directly after excavation has been completed; and Periodic all whilst excavation remains open.				
F20	For excavations < 300mm, are monitoring omitted		\boxtimes	П	
	at the discretion of Safety Officer or appropriately qualified person?				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the tree protection zone of each individual tree?		\boxtimes		
Advar	nced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes		
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Temp	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a <u>temporary slope</u> <u>cover</u> ?		\boxtimes		
Existi	ng tree preservation				
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?				
ı	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		

North East New Territories (NENT) Landfill Extension			Report No. <u>0059-20230</u>			
(Construction Phase)			Environmenta	I Site Ins	pection Checklist (Rev. 3)	
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these		\boxtimes			

portable toilets?

Follow up action for previous Site Inspection:

Observation(s):

- 1. The earth bund along the edge of the slope in Portion A is collapsed.
- 2. The stagnant water in the drip trays should be cleared off In Portion A.
- 3. EP shall be displayed at the entrance of portion.
- 4. Holes are found on the silt fencing.

Reminder(s):

1. Surface Protection in Portion A should be maintained properly after the rainfall.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- The earth bund along the edge of the slope in Portion A should be reconstructed to prevent surface runoff flowing outside the site boundary. The Contractor has been reminded to review the height of the earth bund to ensure the surface runoff should not flow outside the site boundary.
- 2. The Contractor has been reminded to clear the drip tray after the rainfall.
- 3. The Contractor has been reminded to display the EP at the entrance of each portion.
- 4. The Contractor has been recommended to review and replace the damage silt fencing in SBA to fulfill EP condition 2.13b.
- 5. The Contractor has been reminded to conduct maintenance work on the slope surface in Portion A.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:	├	lano	inl	Ho.
Name:	Jason Man	Echo Hung	Kristy Wong	Sylvia Ho
Date:	18 July 2023	18 July 2023	18 July 2023	18 July 2023

Follow-up status

PART I Follow-up status of the previous site inspection

Observation and Recommendation

<u>SBA</u>

5 June 2023

Portion E3-1

Observation:

The stagnant water and silt in the drip trays shall be clear off in Portion B2 and SBA.

Waiting for Contractor's Input

Observation and Recommendation

Follow-up status

26 June 2023

Waiting for Contractor's Input

Observation:

The sediment at the drainage system and site boundary, especially at the lower elevations should be kept cleaning regularly. (Most of sediment was found at the lower elevations of Portion A). The contractor should ensure no untreated construction runoff discharging directly outside the site boundary of the project.

The accumulate water at the drip tray near Portion E2 was found.

Follow-up status **Observation and Recommendation** 3 July 2023 Observation: Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used. The Contractor was reminded to cover the dusty stockpile with impervious sheets. 3 July 2023 Observation: Muddy water is observed at the vehicular etrance in Portion A. The Contractor was reminded to clear the muddy water and divert the muddy water to wastewater treatment facility.

Observation and Recommendation

3 July 2023

Observation:

Chemical containers in SBA shall be stored properly to prevent any potential of chemical leakage and generation of chemical waste.

Follow-up status

The chemicals were removed in SBA.

10 July 2023

Observation:

Full loading of the rubbish skips for general waste at the Portion D and lack of waste separation were found. The contractor has been recommended that accumulation of waste should be avoid, the waste should be disposed regularly & the general waste should be collected properly by using the waste separation facilities for paper, aluminium cans, and plastic bottles etc.

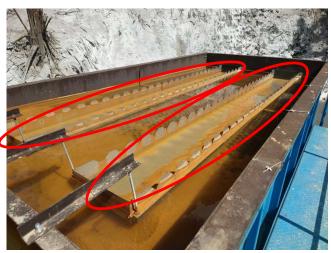
General waste was disposed.

10 July 2023

Observation:

The loaded dump truck without covered by impervious sheeting was found. The contractor has been advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.

10 July 2023


Observation:

The stagnant water, floating leaves, deposited silt and grit were found at the sedimentation basin near the wheel washing facilities at the Portion B1. The contractor has been recommended that the stagnant water should be collected to silt removal facilities for treatment before reusing for wheel washing. The floating leaves, deposited silt and grit should be removed regularly.

Observation:

The high amount of deposited silt was found at the silt removal facilities at the Portion E3-1. The contractor has been advised that the deposited silt should be removed and regularly and increase the checking frequency of it, and the silt removal facilities should be maintained at good condition to maintain the high effectiveness of it.

The Contractor arranged cleaning works for silt removal facility.

10 July 2023

Observation:

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

The exposed slopes were covered with impervious sheets in Portion E3.

PART II Observation and recommendation identified during the environmental site inspection

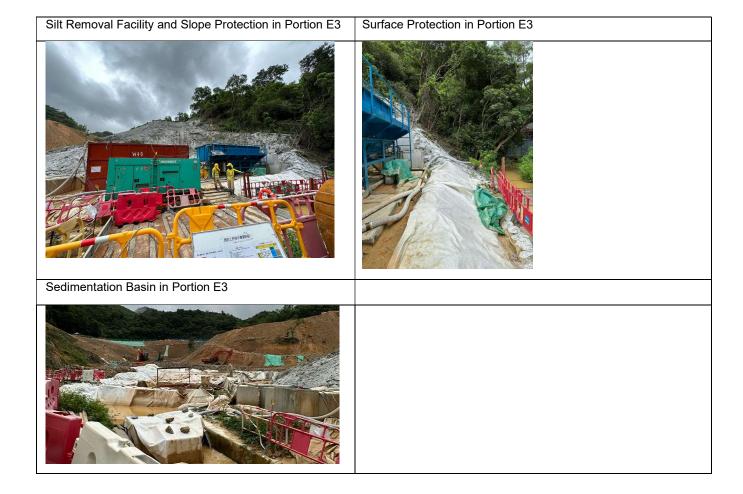
Observation and Recommendation Follow-up status Observation: The earth bund along the edge of the slope in Portion A is collapsed. Reminder:

Surface Protection in Portion A should be maintained properly after the rainfall.

Observation and Recommendation

Observation

The stagnant water in the drip trays should be cleared off In Portion A.


Observation:

EP shall be displayed at the entrance of portion.

Observation and Recommendation	Follow-up status
THE SECOND SECON	
Observation	
Holes are found on the site fencing.	

PART III Temporary Surface Water Drainage System (TSWD) Photo Record during the environmental site inspection

Temporary Drainage System in Portion D	Temporary Drainage System in Portion D
Slope Protection in Portion A	Slope Protection in Portion A
Temporary Drainage System in SBA	Silt Fencing in SBA

24 July 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Andy Ng

Time:		14:00 V	Veather Condition:	Sunny		
Partic	ipants:	Jackie Tam (ER), Kristy Wong (Contra	actor), Andy Ng (E	T)		
A	Permits/Lic	enses	N/A or Not Observed	Yes	No	Remarks / Photo
A1		nmental Permit, license/ other perm major site exit and vehicle access?	t 🗆	\boxtimes		
A2		uction Noise Permits/ Environmenta er permit available for inspection/poste nce.		\boxtimes		
A3	Is wastewa inspection?	ater discharge licence available fo	r 🗆	\boxtimes		
A4		ets for chemical waste and construction sal available for inspection?	n 🗆	\boxtimes		
A5	Are relevation for inspection	waste or excavated materials available	_	\boxtimes		
В	Air Quality		N/A or Not Observed	Yes	No	Remarks / Photo
B1		ning avoided?		\boxtimes		
B2		and equipment well maintained (i.ek smoke from powered plant)?	. 🗆	\boxtimes		
B3	Any remedia	al action undertaken?	\boxtimes			N/A
B4		ksites wetted with water regularly?			\boxtimes	Refer to Observation 3
B5	Are NRMM I	abels properly affixed on the PMEs?		\boxtimes		
В6	Observed du	ust source(s)				
			☐ Wind eros	sion		
			Vehicle/ E	Equipment	Moveme	nts
			Loading/	unloading	of materia	als
			Others:	Not Ob	oserved	
Air Po	ollution Cont	rol (Construction Dust) Regulation	·			
Part I	Control Req	uirements for Notifiable Works				
Demo	olition of build	ding				
B7	with water	involved demolition activities spraye or a dust suppression chemica prior to, during and immediately after the	Ī 🖂			N/A
Cons	truction of th	e superstructure of a building				
B8		ng erected around the perimeter of a er construction?				N/A

Inspected By:

B9	Are effective dust screens, sheeting or netting					
	provided to enclose the scaffolding from the ground					
	floor level of the building, or a canopy provided from	\boxtimes			N/A	
	* * * *			Ш	IN/A	
	the first floor level up to the highest level of the					
	scaffolding?					
B10	Is the skip for materials transport enclosed by	\boxtimes			N/A	
	impervious sheeting?				147.	
Part I	II General Control Requirements					
Site b	oundary and entrance					
B11	Are wheel washing facilities with high pressure					
	water jet provided at all site exits if practicable?		\boxtimes			
B12	Are the areas of washing facilities and the road					
	section between the washing facilities and the	_		_		
			\boxtimes			
	exit point paved with concrete, bituminous materials					
	or hardcores?					
B13	Are the <u>hoarding</u> \geq 2.4m tall provided at the site					
	boundary near a road, street, service lane or other		\boxtimes			
	area accessible to the public?					
Asse	ss road					
B14	Are every main haul road (having a vehicle passing					
	rate of higher than 4 in any 30 minutes) paved with					
	concrete, bituminous materials, hardcorres or metal			Ш		
	plates, and kept clear of dusty materials?					
B15	Are every <u>main haul road</u> sprayed with water or a		-			
5.0	dust suppression chemical?		\boxtimes			
B16	Is the portion of any road leading only to construction					
5.0	site (within 30m of a vehicle entrance or exit) kept		\boxtimes			
	clear of dusty materials?			Ш		
D47	•					
B17	Are appropriate speed limit sign displayed?	Ш		Ш		
B18	Is <u>unpaved main haul road</u> wet by water spraying?		\boxtimes			
Ceme	ent and dry pulverized fuel ash (PFA)					
B19	Is every stock of more than 20 bags of cement or					
	dry pulverized fuel ash (PFA) covered entirely by				N1/A	
	impervious sheeting or placed in an area sheltered	\boxtimes		Ш	N/A	
	on the top and 3 sides?					
B20	Are the activities of loading, unloading, transfer,					
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A	
	carried out in a totally enclosed system or facility?				1.7/1	
B21	Is any vent or exhaust fitted with an effective fabric					
ושען	filter or equipment air pollution control system?	\boxtimes			N/A	
	Exposed earth					
B22	Is the exposed earth properly treated by					
	compaction, turfing, hydroseeding, vegetation					
	planting or sealing with latex, vinyl, bitumen,					
	shotcrete or other suitable surface stabilizer		\boxtimes			
	within 6 months after last construction activity on the					
	construction site or part of the construction site					
	where the exposed earth lies?					

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by <u>impervious sheeting</u> or (b) placed in an <u>area sheltered on the top and the 3 sides</u> or (c) <u>sprayed with water</u> or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the <u>excavation or unloading</u> ?		\boxtimes			
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes			
Load	ing, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use o	of vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
<u>Pneu</u>	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	\boxtimes			N/A	
<u>Debri</u>	Debris handling					
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	

B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes		N/A
Exca	vation or earth moving			
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes	
Site o	<u>elearance</u>			
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes	
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes	

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes		
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes		
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes		
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes		
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes		
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes		
C10	Is the <u>hoarding</u> maintained properly?		\boxtimes		
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes		
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes		
C13	QPME used with valid noise labels?		\boxtimes		
C14	Major noise source(s)			1	
		Construction activities inside of site			
		Construction activities outside of site			
		Others: _			

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo	
Construction Runoff						
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes			
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?			\boxtimes	Refer to Observation 1 and 2	
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes			
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes			
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes			
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes			
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes			
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes			
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface.	
D5a	Have the <u>overall slope</u> of the site should be kept a minimum?		\boxtimes			
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes			
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes			
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes			
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to Reminder 1	
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes			
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes			
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?		\boxtimes			
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes			

D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul		\boxtimes	
	sewer always prevented?		_	
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes	
	Are the precautions to be taken at <u>any time</u> of year			
	when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94)			
	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly. 			
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 			
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.			
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.			
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)			
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured. 			
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)			
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 			
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes	
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes	
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes	
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes	
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes	
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes	
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes		N/A
D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes		N/A

D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any <u>sediment plume</u> observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	s)			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?		\boxtimes		
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	:ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes		

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo	
Waste Management						
Gener	al Waste					
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes			
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes			
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?		\boxtimes			
E2c	Is waste disposed regularly?		\boxtimes			
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes			
E3	Burning of refuse on construction site prohibited?		\boxtimes			
C&D I	Materials					
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes			
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes			
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes			
E5b	Do the wooden hoardings avoid to be used?		\boxtimes			
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes			
E6a	Are the concrete and masonry used as general fill ?		\boxtimes			
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes			
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes			
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes			
Е7а	Are the temporary stockpiles maintained regularly?		\boxtimes			
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes			
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?		\boxtimes			
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes			
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes			
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes			
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes			

E11	Are the <u>training</u> of <u>site personnel</u> for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concept implemented?						
E12	Are the regular cleaning and maintenance programme for drainage systems, sumps, oil interceptors?			\boxtimes			
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?			\boxtimes			
E13b	Do the <u>excavated materials</u> appear contaminated?				\boxtimes		
E13c	If suspected contaminated, appropriate <u>procedures</u> followed?		\boxtimes			N/A	
E14	Is the disposal of sensitive locations		\boxtimes				
E15	Are the <u>public fill</u> and <u>C&D waste segregated</u> and <u>stored</u> in different containers or skips to enhance reuse or recycling of materials and their proper disposal?			\boxtimes			
Chemi	ical Waste / Waste	<u>Oil</u>					
E16	Are <u>chemicals</u> ar properly?	nd <u>waste oil</u> recycled or disposed		\boxtimes			
Chemical Packaging							
E17a		ers a capacity of <450 L unless the peen approved by EPD?	\boxtimes			N/A	
E17b	maintained in a go	rs (holding, resistant to corrosion, nod condition, and securely closed) of chemical wastes?	\boxtimes			N/A	
Chemical Labelling							
E18		or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm		\boxtimes			
Chemical Waste / Fuel Storage Area							
E19a	Are the <u>storage</u> separated (if need	area are clearly labelled and ed)?		\boxtimes			
E19b	fence of ≥2m tall capacity (>110%	area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the v storage of 20% of total volume	\boxtimes		\boxtimes	N/O	
E19c		areas have adequate ventilation to prevent rainfall entering and sunlight?	\boxtimes		\boxtimes	N/O	
E19d		ks and chemical storage areas s and sited on sealed areas?	\boxtimes	\boxtimes	\boxtimes	N/O	
E20	<u>collectors</u> and di	te collected by <u>licensed waste</u> sposed of at <u>licensed facility</u> eg. Treatment Centre?		\boxtimes			

<u>Records</u>						
E21	Is a licensed waste hauler used for <u>waste</u>		\square			
	collection?					
E22	Are the records of quantities of wastes generated,		\square			
	recycled and disposed properly kept?			ш		
E23	For the demolition material / waste, is the number of		\square			
	<u>loads</u> for each day recorded as appropriate?					

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo		
Within NENT Landfill Extension							
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O		
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes				
F3	Is <u>no smoking</u> or <u>burning</u> permitted on-site?	\boxtimes			N/O		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes				
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes				
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes				
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O		
F9	Is 'Permit to Work' system implemented?		\boxtimes				
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes				
F11a	For piping assembly or conduit construction , are all valves and seals closed immediately after installation?				N/A		
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A		
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A		
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A		
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes				

	*LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?	\boxtimes	
F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance	\boxtimes	
F15a	with the action plan in Table 7.6 of EIA Report. Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?	\boxtimes	
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes	
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and	\boxtimes	

	Periodically throughout the working day whilst workers are in excavation.				
F19	For excavations 300mm to 1m, are measurements		\boxtimes		
	conducted?			Ш	
	Directly after excavation has been completed;				
	and Periodic all whilst excavation remains open.				
F20	For excavations < 300mm, are monitoring omitted	П	\boxtimes		
	at the discretion of Safety Officer or appropriately qualified person?				
	qualified person?				
		N/A or Not			
G	Landscape and Visual Impacts	Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond	П	\boxtimes	П	
	the perimeter of the <u>tree protection zone</u> of each individual tree?				
Advor					
G4a	le early planting using fact growing plants and tall				
G 4 a	Is early planting using fast growing plants and tall shrubs at strategic locations within site		\boxtimes		
	implemented?				
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u>		\boxtimes	П	
	species planted around the site perimeter?		<i>[-3]</i>		
-	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope		\boxtimes		
	cover?				
Existi	ng tree preservation				
G7	Are existing and affected tree which identified as	П	\boxtimes	П	
	ecological significant preserved whenever possible?		<u> </u>		
	possibio:				
		N/A or Not	\ <u>'</u>		B
Н	Ecology	Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained		\boxtimes		
	and monitored regularly?				
ı	Environmental Complaint	N/A or Not	Yes	No	Remarks / Photo
- I1	•	Observed			
	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas		\boxtimes		
	identified to prevent loss of vegetation				

North East New Territories (NENT) Landfill Extension			Report No. <u>0060-2023072</u>			
(Construction Phase)			Environmental Site Inspection Checklist (Rev. 3)			
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these		\boxtimes			

portable toilets?

Follow up action for previous Site Inspection:

Waiting for Contractor's Input

Observation(s):

- 1. Dusty materials are entering in the exist channel in Portion A.
- 2. Earth bund shall be constructed at the edge of the slope to prevent surface runoff flowing outside the site in Portion Δ
- 3. The work area in Portion A is dry and dusty.

Reminder(s):

1. The accumulated silt in sedimentation basin Portion E3 shall be removed regularly.

<u>Corretive Actions – Mitigation Measures Implemented or Proposed (if any):</u>

Observation(s):

- 1. Earth bund or sand barriers shall be provided along the existing channels in Portion A.
- 2. The Contractor has been recommended to construction earth bund along the edge of the slope in Portion A.
- 3. The Contractor has been advised to schedule watering in the work area and review the coverage of the water sprinkler.

Reminder(s):

4. The Contractor has been reminded to clear up the accumulated silt regularly to ensure the proper function of the sedimentation basin.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:	Mi	/ .	M	#7
Name:	Andy Ng	1	Kristy Wong	Sylvia Ho
Date:	24 July 2023	1.	24 July 2023	24 July 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

<u>SBA</u>

5 June 2023

Portion E3-1

Observation:

The stagnant water and silt in the drip trays shall be clear off in Portion B2 and SBA.

Follow-up status

Waiting for Contractor's Input

dusty stockpile with impervious sheets.

Observation and Recommendation Follow-up status 26 June 2023 Waiting for Contractor's Input Observation: The sediment at the drainage system and site boundary, especially at the lower elevations should be kept cleaning regularly. (Most of sediment was found at the lower elevations of Portion A). The contractor should ensure no untreated construction runoff discharging directly outside the site boundary of the project. 3 July 2023 Waiting for Contractor's Input Observation: Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used. The Contractor was reminded to cover the

Observation and Recommendation Follow-up status 3 July 2023 Waiting for Contractor's Input Observation: Muddy water is observed at the vehicular etrance in Portion A. The Contractor was reminded to clear the muddy water and divert the muddy water to wastewater treatment facility. Waiting for Contractor's Input Observation: The loaded dump truck without covered by impervious sheeting was found. The contractor has been advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.

Observation and Recommendation

10 July 2023

Observation:

The stagnant water, floating leaves, deposited silt and grit were found at the sedimentation basin near the wheel washing facilities at the Portion B1. The contractor has been recommended that the stagnant water should be collected to silt removal facilities for treatment before reusing for wheel washing. The floating leaves, deposited silt and grit should be removed regularly.

10 July 2023

Observation:

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

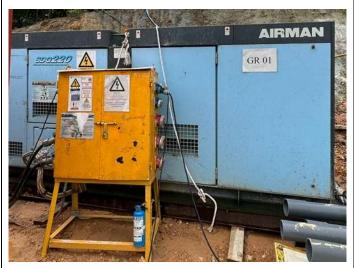
Waiting for Contractor's Input

The exposed slopes were covered with impervious sheets in Portion E3.

Observation and Recommendation

Follow-up status

18 July 2023



Waiting for Contractor's Input

Observation:

The earth bund along the edge of the slope in Portion A is collapsed.

18 July 2023

Waiting for Contractor's Input

Observation

The stagnant water in the drip trays should be cleared off In Portion A.

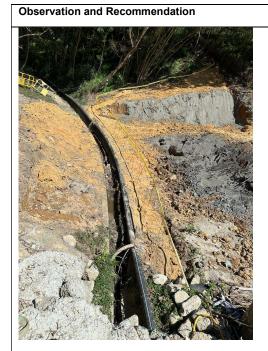
18 July 2023

Waiting for Contractor's Input

Observation:

EP shall be displayed at the entrance of portion.

18 July 2023


Waiting for Contractor's Input

Observation

Holes were found on the site fencing.

Follow-up status

PART II Observation and recommendation identified during the environmental site inspection

Observation:

Dusty materials are entering in the exist channel in Portion A.

Observation:

Earth bund shall be constructed at the edge of the slope to prevent surface runoff flowing outside the site in Portion A.

Observation:

The work area in Portion A is dry and dusty.

Reminder:

The accumulated silt in sedimentation basin Portion E3 shall be removed regularly.

PART III Temporary Surface Water Drainage System (TSWD) Photo Record during the environmental site inspection

Portion A: Silt Removal Facility

Portion A: Surface Protection

Portion A: Surface Protection and Earth Bund

Portion E: Surface Protection

Portion E: Surface Protection

Portion E3: Surface Protection and Sedimentaion Basin

Portion E3: Surface Protection, Silt Removal Facility and Sedimentaion Basin

(Construction Phase)

Inspection Date:	31 July 2023	Inspected By:	Jason Man			
Time:	14:00	Weather Condition:	Fine			
Participants:	Kim Tang (ER), Kristy Wong (Contractor), Jason Man (ET)					

A	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo			
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes					
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes					
A3	Is wastewater discharge licence available for inspection?		\boxtimes					
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes					
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes					
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo			
B1	Is <u>open burning</u> avoided?		\boxtimes					
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes					
В3	Any remedial action undertaken?	\boxtimes			N/A			
B4	Are the worksites wetted with water regularly?							
B5	Are NRMM labels properly affixed on the PMEs?		\boxtimes					
В6	Observed dust source(s)							
		☑ Wind eros	sion					
		Vehicle/ E	quipment	Moveme	nts			
		Loading/	unloading	of materia	als			
		Others:						
Air Po	ollution Control (Construction Dust) Regulation							
Part I	Control Requirements for Notifiable Works							
Demo	lition of building							
В7	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities?	N/A						
Cons	truction of the superstructure of a building							
B8	Is <u>scaffolding</u> erected around the perimeter of a building under construction?	\boxtimes			N/A			

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	Il General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure	П	\boxtimes	П	
5 4 6	water jet provided at all site exits if practicable?				
B12	Are the <u>areas of washing facilities</u> and the <u>road</u> <u>section between the washing facilities</u> and the <u>exit point</u> paved with concrete, bituminous materials or hardcores?		\boxtimes		
B13	Are the <u>hoarding</u> ≥ 2.4m tall provided at the site boundary near a road, street, service lane or other area accessible to the public?		\boxtimes		
Asses	ss road				
B14	Are every main haul road (having a vehicle passing rate of higher than 4 in any 30 minutes) paved with concrete, bituminous materials, hardcorres or metal plates, and kept clear of dusty materials?		\boxtimes		
B15	Are every <u>main haul road</u> sprayed with water or a dust suppression chemical?		\boxtimes		
B16	Is the portion of any road leading only to construction site (within 30m of a vehicle entrance or exit) kept clear of dusty materials?		\boxtimes		
B17	Are appropriate speed limit sign displayed?		\boxtimes		
B18	Is <u>unpaved main haul road</u> wet by water spraying?			\boxtimes	Refer to Observation 3
Ceme	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or dry pulverized fuel ash (PFA) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?	×			N/A
B20	Are the <u>activities of loading, unloading, transfer,</u> handing or storage of bulk cement or dry PFA <u>carried</u> out in a totally enclosed system or facility?	\boxtimes			N/A
B21	Is any vent or exhaust fitted with an <u>effective fabric</u> <u>filter or equipment air pollution control system</u> ?	\boxtimes			N/A
Expo	sed earth				
B22	Is the exposed earth properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within 6 months after last construction activity on the construction site or part of the construction site where the exposed earth lies?		×		
				•	·

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?		\boxtimes			
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers, fencing or traffic cones</u> ?		\boxtimes			
Loadi	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use o	f vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?	\boxtimes			N/O	
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>				N/A	
<u>Debri</u>	s handling					
B31	Are any debris covered entirely by <u>impervious</u> sheeting or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris is dumped</u> into a debris chute?	\boxtimes			N/A	

(Construction Phase)

Exca	vation or earth moving		
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
Site o	<u>elearance</u>		
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?	\boxtimes	

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo		
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes				
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes				
С3	Is the noise directed away from nearby NSRs?		\boxtimes				
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O		
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes				
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes				
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O		
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O		
C9	Is the sequencing <u>operation</u> of <u>construction plants</u> where practicable?		\boxtimes				
C10	Is the hoarding maintained properly?		\boxtimes				
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?		\boxtimes				
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes				
C13	QPME used with valid noise labels?		\boxtimes				
C14	Major noise source(s)	T					
		X Traffic					
		Construction activities inside of site					
		Construction activities outside of site					
		Others:					

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?				Refer to Observation
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?		\boxtimes		
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?			\boxtimes	Refer to Observation
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?		\boxtimes		
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?		\boxtimes		
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?		\boxtimes		
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface. Refer to Observation
D5a	Have the <u>overall slope</u> of the site should be kept a minimum?		\boxtimes		2
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?		\boxtimes		
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?			\boxtimes	Refer to Observation 3 and Reminder 1
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?			\boxtimes	Refer to Observation 3 and Reminder 1
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to Observation 3 and Reminder 1
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?		\boxtimes		

(Construction Phase)

D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes		
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?			\boxtimes	Refer to Observation 4
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u>				
	should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly.				
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 				(i) Refer to
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.				Observation 4
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.				
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.				
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)				
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> 		\boxtimes		
	(e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. All temporary covers to slopes and stockpiles should be secured.				
	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94)				
D10d	i. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.			\boxtimes	Refer to Observation 4
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes		
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes		
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes		
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?				
D11f	Is the treated wastewater reused for <u>vehicle</u> washing, <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes		
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes			N/A

D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?		\boxtimes		
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?				
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?		\boxtimes		
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surface Water Drainage System					
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of <u>channel</u> as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes		

North East New Territories (NENT) Landfill Extension	Report No. <u>0061-2023073</u>
(Construction Phase)	Environmental Site Inspection Checklist (Rev. 3

D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?	\boxtimes	
	blockage of the passage of waste now in six ferior:		

N/A or Not **Waste / Chemical Management** Yes No Remarks / Photo Observed **Waste Management General Waste** Is the general waste generated on-site stored in X E1 enclosed bins or compaction units separately from the construction and chemical wastes? Is the general waste collected properly by using the XE2a waste separation facilities for paper, aluminium cans, plastic bottles etc.? X E2b Does accumulation of waste avoid? XE2c Is waste disposed regularly? Regular waste collection by approved waste X E2d collector in purpose-built vehicles? X E3 **Burning of refuse** on construction site prohibited? **C&D Materials** E4a Are there any **contract documents** provided to allow X and promote the use of recycled aggregates where E4b Are the **C&D materials** sorted and recycled on-site? X E5a Is the durable formwork or plastic facing for X construction works used? E5b Do the wooden hoardings avoid to be used? X Is metal hoarding used to enhance the possibility of E5c X recycling? E6a Are the concrete and masonry used as **general fill**? X E6b Are the steel reinforcement bars used by scrap Xsteel mills? E6c Is the **segregation** and **storage** of C&D wastes X undertaken in designated area? E6d Does the use of reusable steel formwork \boxtimes maximise? Are the temporary stockpiles maintained regularly? E7a XE7b Is the excavated fill material reused for backfilling Xand reinstatement? E8a Are the excavated slope, stockpile material and X bund walls covered by tarpaulin? E8b Are covering trucks or transporting wastes in X enclosed containers when transportation of waste? E8c Are waste storage area properly cleaned and do not X cause windblown litter and dust nuisance? E9 Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and X prevent soil erosion? E10 Is the nomination of approved personnel to be responsible for good site practices and making

arrangements for collection of all wastes generated

on-site and effective disposal implemented?

X

E11	Are the training of site personnel for cleanliness,						
	proper waste management procedures including						
	chemical waste handling, and waste reduction, reuse						
	and recycling concept implemented?						
E12	Are the <u>regular cleaning</u> and <u>maintenance</u>						
	<pre>programme for drainage systems, sumps, oil interceptors?</pre>						
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?		\boxtimes				
E13b	Do the excavated materials appear contaminated?						
				\boxtimes			
E13c	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A		
E14	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes				
E15	Are the public fill and C&D waste segregated and						
	stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?						
Chemi	ical Waste / Waste Oil						
E16	Are <u>chemicals</u> and <u>waste oil</u> recycled or disposed properly?			\boxtimes	Refer to Observation 5		
Chemi	ical Packaging						
E17a	Have the <u>containers</u> a capacity of <u><450 L</u> unless the	\boxtimes			N/A		
E17b	specification has been approved by EPD? Are the containers (holding, resistant to corrosion,						
E176	maintained in a good condition, and securely closed)				N/A		
	used for storage of chemical wastes?						
Chemi	Chemical Labelling						
E18	Is chemical waste or waste oil stored and labelled in						
	English and Chinese properly in designated area?						
	Capacity of Dimensions of Label						
	Container						
	< 50L No less than 90 x 100mm						
	50 to 450L No less than 120 x 150mm						
	> 450L No less than 180 x 200mm						
Chemical Waste / Fuel Storage Area							
E19a	Are the storage area are clearly labelled and						
	separated (if needed)?						
E19b	Are the storage area enclosed 3 sides by walls/						
	fence of ≥2m tall and bounded with adequate bund						
	capacity (>110% of largest container) or do the	\boxtimes		\boxtimes	N/O		
	storage area allow storage of 20% of total volume						
	of waste?						
E19c	Do the storage areas have adequate ventilation						
	and be covered to prevent rainfall entering and	\boxtimes		\boxtimes	N/O		
	reduce heat from sunlight?						
E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u>	\boxtimes	\boxtimes	\boxtimes	N/O		
	provided with locks and sited on sealed areas?				IN/O		
E20	Is chemical waste collected by <u>licensed waste</u>						
	$\underline{\text{collectors}}$ and disposed of at $\underline{\text{licensed facility}}$ eg.		\boxtimes				
	Chemical Waste Treatment Centre?						

Reco	<u>Records</u>						
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?		\boxtimes				
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?		\boxtimes				
E23	For the demolition material / waste, is the <u>number of</u> <u>loads</u> for each day recorded as appropriate?		\boxtimes				

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo			
Within	Within NENT Landfill Extension							
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O			
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes					
F3	Is <u>no smoking</u> or <u>burning</u> permitted on-site?	\boxtimes			N/O			
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O			
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes					
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes					
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes					
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O			
F9	Is 'Permit to Work' system implemented?		\boxtimes					
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes					
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A			
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A			
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A			
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A			
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?		\boxtimes					

	*LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?	\boxtimes	
F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance	\boxtimes	
F15a	with the action plan in Table 7.6 of EIA Report. Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?	\boxtimes	
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes	
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and	\boxtimes	

1 11 J	Environmental Complaint received during this week? General Housekeeping / Others Are the defined boundaries of working areas	N/A or Not Observed	Yes	No	Remarks / Photo
				I]
ı	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
	and monitored regularly:				
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
				I	
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes		
Existi	ng tree preservation				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover?		\boxtimes		
Tempo	orary landscape treatment as green surface cover				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Bound	dary Green Belt planting				
G4b	implemented? Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site		\boxtimes		
Advan	nced screening tree planting				
GS	the perimeter of the <u>tree protection zone</u> of each individual tree?				
G2 G3	Is <u>damage</u> to surrounding areas <u>avoided</u> ? Are the protective fencing erected along or beyond				
G1	Is the work site confined within site boundaries?				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?				
F20	Periodic all whilst excavation remains open.				
	conducted? • Directly after excavation has been completed;		\boxtimes		
F19	workers are in excavation. For excavations 300mm to 1m, are measurements				

North East New Territories (NENT) Landfill Extension				Report No. <u>0061-2023</u>			
(Construction Phase)			Environmental Site Inspection Checklist (Rev.			pection Checklist (Rev. 3)	
J2	Are the portable toilets maintained in a state, which]			
1	will not dotor the workers from utilizing these			ı			

portable toilets?

Follow up action for previous Site Inspection:

Nil

Observation(s):

- 1. Earth bunds and ditches should be established at the boundary of the +52 mpd Platform of the Portion A.
- 2. The slope surface at the Portion E4 shall be coved by impervious sheet.
- 3. The assess road at the Portion E4 is dry.
- 4. The accumulated silt and grit were found near the sandbags barriers of the Portion E3-1 silt removal facilities.
- 5. The accumulated water at the drip tray under the silt removal facilities is found.

Reminder(s):

1. The contractor has been reminded that the particular attention should be paid to the control of silty surface runoff during upcoming storm event in accordance with Appendix A2 of ProPECC PN/94.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

Observation(s):

- The contractor has been advised that the earth bunds and ditches should be constructed at the boundary of the +52
 mpd Platform of the Portion A. The sandbags barriers or other control of surface runoff measures should be provided
 at the boundary in short term to avoid the surface runoff flow to the earth bunds at the boundary of the +38 mpd
 platform directly.
- 2. The contractor has been recommended that the exposed slope at the Portion E4 should be covered by impervious sheet. The exposed slope at the Portion E4 should be treated with shotcrete for long term.
- 3. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.
- 4. The contractor has been advised that the silt and grit should be removed near the sandbags barriers of the Portion E3-1 silt removal facilities after heavy rain.
- The contractor has been recommended to remove the accumulated water at the drip tray to minimize the potential chemical waste.

Reminder(s):

1. The contractor has been reminded that the particular attention should be paid to the control of silty surface runoff during upcoming storm event in accordance with Appendix A2 of ProPECC PN/94.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:			Zem	.40
Name:	Jason Man	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$	C Lau. Kristy Wong.	Sylvia Ho
Date:	31 July 2023	1	31 July 2023	31 July 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

Follow-up status

5 June 2023

<u>SBA</u>

Portion E3-1

Observation:

The stagnant water and silt in the drip trays shall be clear off in Portion B2 and SBA.

Waiting for Contractor's Input

Observation and Recommendation Follow-up status 26 June 2023 Waiting for Contractor's Input Observation: The sediment at the drainage system and site boundary, especially at the lower elevations should be kept cleaning regularly. (Most of sediment was found at the lower elevations of Portion A). The contractor should ensure no untreated construction runoff discharging directly outside the site boundary of the project. 3 July 2023 Waiting for Contractor's Input Observation: Dusty stockpiles in Portion A shall be covered with impervious sheets when they are not in used. The Contractor was reminded to cover the dusty stockpile with impervious sheets.

Observation and Recommendation	Follow-up status
3 July 2023	
Observation: Muddy water is observed at the vehicular etrance in Portion A. The	Waiting for Contractor's Input
Contractor was reminded to clear the muddy water and divert the muddy water to wastewater treatment facility.	
Observation: The loaded dump truck without covered by impervious sheeting was found. The contractor has been advised that the loaded dump trucks should be covered by impervious sheeting when transportation of materials was conducting at the assess road.	Waiting for Contractor's Input

	Observation and Recommendation	Follow-up status
	10 July 2023	
(Observation:	Waiting for Contractor's Input
	The stagnant water, floating leaves, deposited silt and grit were found at the sedimentation basin near the wheel washing facilities at the Portion B1. The contractor has been recommended that the stagnant water should be collected to silt removal facilities for treatment before reusing for wheel washing. The floating leaves, deposited silt and grit should be removed regularly.	

10 July 2023

Observation:

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

Follow-up status

The exposed slopes were covered with impervious sheets in Portion E3.

18 July 2023

Observation:

The earth bund along the edge of the slope in Portion A is collapsed. The earth bund along the edge of the slope in Portion A should be reconstructed to prevent surface runoff flowing outside the site boundary. The Contractor has been recommended to review the height of the earth bund to ensure the surface runoff should not flow outside the site boundary.

Waiting for Contractor's Input

Follow-up status

18 July 2023

Waiting for Contractor's Input

Observation:

The stagnant water in the drip trays should be cleared off In Portion A. The Contractor was reminded to clear the drip tray after the rainfall.

Follow-up status

18 July 2023

Waiting for Contractor's Input

Observation:

All environmental licence/permits shall be displayed at the entrance of portion. The Contractor was reminded to display all environmental licence/permits at the entrance of each portion.

18 July 2023

Waiting for Contractor's Input

Observation

Holes were found on the silt fence. The Contractor was recommended to review and replace the damage silt fence in SBA to fulfill FEP condition 2.13b.

Follow-up status

24 July 2023

Waiting for Contractor's Input

Observation:

Dusty materials are entering in the exist channel in Portion A. Earth bund or sandbags barriers shall be provided along the existing channels in Portion A.

24 July 2023

Waiting for Contractor's Input

Observation:

Earth bund shall be constructed at the edge of the slope to prevent surface runoff flowing outside the site in Portion A. The Contractor was recommended to construction earth bund along the edge of the slope in Portion A.

Observation: Observation: Observation: The work area in Portion A is dry and dusty. The Contractor was recommended to schedule watering in the work area and review the coverage of the water sprinkler.

Portion A. The sandbags barriers or other control of surface runoff measures should be provided at the boundary in short term to avoid the surface runoff flow to the earth bunds at the

boundary of the +38 mpd platform directly.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation Follow-up status Waiting for Contractor's Input Observation: Earth bunds and ditches should be established at the boundary of the +52 mpd Platform of the Portion A. The contractor has been advised that the earth bunds and ditches should be constructed at the boundary of the +52 mpd Platform of the

Waiting for Contractor's Input

Observation:

The slope surface at the Portion E4 shall be coved by impervious sheet. The contractor has been recommended that the exposed slope at the Portion E4 should be covered by impervious sheet. The exposed slope at the Portion E4 should be treated with shotcrete for long term.

Waiting for Contractor's Input

Observation:

 The assess road at the Portion E4 is dry. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.

Follow-up status

Observation and Recommendation

Waiting for Contractor's Input

Observation:

4. The accumulated silt and grit were found near the sandbags barriers of the Portion E3-1 silt removal facilities. The contractor has been advised that the silt and grit should be removed near the sandbags barriers of the Portion E3-1 silt removal facilities after heavy rain.

Observation:

5. The accumulated water at the drip tray under the silt removal facilities is found. The contractor has been reminded that the particular attention should be paid to the control of silty surface runoff during upcoming storm event in accordance with Appendix A2 of ProPECC PN/94.

Follow-up status

Waiting for Contractor's Input

Waiting for Contractor's Input

Reminder:

 The contractor has been reminded that the particular attention should be paid to the control of silty surface runoff during upcoming storm event in accordance with Appendix A2 of ProPECC PN/94.

PART III Temporary Surface Water Drainage System (TSWD) Photo Record during the environmental site inspection

Photo 1 TSWD at Portion D

Photo 3 TSWD at Portion D

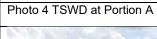


Photo 2 TSWD at Portion D

Photo 5 Silt Removal Facilities at Portion A

Photo 6 Silt Removal Facilities at Portion A

Photo 7 Silt Removal Facilities at Portion A

Photo 9 TSWD at Portion D



Photo 10 Cut-off drain with site fence at Portion B2 (Infront)

Photo 11 Cut-off drain with site fence at Portion B2 (Back)

Photo 12 Cut-off drain with site fence at Portion B2 (Back)

Photo 13 Channel at Portion E3-1

Appendix K Environmental Mitigation Implementation Schedule (EMIS)

Environm	ental Mitigati	on Implementation Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref.	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Air Qua	lity						
S3.8.	S3.1.8	 The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation. Dust emission from construction vehicle movement is confined within the worksites area. Watering facilities will be provided at every designated vehicular exit point. Good site practice is recommended during construction phase. 	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	Entire NENT Landfill Extension site	To control the dust impact to within the HKAQO and TM - EIA criteria (Ref. 1-hr and 24hr TSP levels are 500 μg/m ⁻³ and 260 μg/m ⁻³ , respectively)	✓
Constru	ıction Noise						
S4	S4.9	 Use of good site practices to limit noise emissions by considering the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise by means of good site practices	Contractor	Entire construction site	Noise Control Ordinance	√
S4	S4.9	2) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	Entire construction site	Noise Control Ordinance & its TM Annex 5, TM-EIA	✓

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the	standards for the	
	Ref	necessary)	Measures & Main	the	measures	measures to achieve?	
			Concerns to address	measures?			
Constru	ction Runo	ff			1		
35.8.1	S5.2.1	Construction on Site Runoff	Control construction	Contractor	Entire	ProPECC PN 1/94	✓
		At the start of site establishment, perimeter cut-off drains to direct	runoff and erosion		construction		
		off-site water around the site should be constructed with internal	from site surface,		site	Water Pollution Control	
		drainage works and erosion and sedimentation control facilities	drainage channel,			Ordinance	
		implemented. Channels (both temporary and permanent drainage	stockpiles, wheel				
		pipes and culverts), earth bunds or sand bag barriers should be	washing facilities, etc				
		provided on site to direct stormwater to silt removal facilities.	to minimize water				
		The dikes or embankments for flood protection should be	quality during				
		implemented around the boundaries of earthwork areas. Temporary	construction stage				
		ditches should be provided to facilitate the runoff discharge into an					
		appropriate watercourse, through a silt/sediment trap. The					
		sediment/silt traps should be incorporated in the permanent					
		drainage channels to enhance deposition rates.					
		The design of efficient silt removal facilities should be based on the					
		guidelines in Appendix A1 of ProPECC PN 1/94, which states that					
		the retention time for silts and sediment traps should be 5 minutes					
		under maximum flow conditions.					
		Construction works should be programmed to minimize surface					
		excavation works during the rainy seasons (April to September). All					
		exposed earth areas should be completed and vegetated as soon					
		as possible after earthworks have been completed, or alternatively,					
		within 14 days of the cessation of earthworks where practicable. If					
		excavation of soil cannot be avoided during the rainy season, or at					
		any time of year when rainstorms are likely, exposed slope surfaces					
		should be covered by tarpaulin or other means.					
		The overall slope of the site should be kept to a minimum to reduce					
		the erosive potential of surface water flows, and all traffic areas and					
		access roads protected by coarse stone ballast. An additional					
		advantage accruing from the use of crushed stone is the positive					
		traction gained during prolonged periods of inclement weather and					
		the reduction of surface sheet flows.					
		All drainage facilities and erosion and sediment control structures					
		should be regularly inspected and maintained to ensure proper and					
		efficient operation at all times and particularly following rainstorms.					
		Deposited silt and grit should be removed regularly and disposed of					
		by spreading evenly over stable, vegetated areas.					

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the	standards for the	
	Ref	, , ,	Measures & Main	the	measures	measures to achieve?	
			Concerns to address	measures?			
Construc	ction Runo	ff (Cont'd)	-				
5.8.1	S5.2.1	Measures should be taken to minimise the ingress of site drainage into	Control construction	Contractor	Entire	ProPECC PN 1/94	✓
		excavations. If the excavation of trenches in wet periods is necessary,	runoff and erosion		Construction		•
		they should be dug and backfilled in short sections wherever	from site surface,		site	Water Pollution Control	
		practicable. Water pumped out from trenches or foundation	drainage channel,			Ordinance	
		excavations should be discharged into storm drains via silt removal	stockpiles, wheel				
		facilities.	washing facilities, etc				
		Open stockpiles of construction materials (for example, aggregates,	to minimize water				
		sand and fill material) of more than 50 m ³ should be covered with	quality during				
		tarpaulin or similar fabric during rainstorms. Measures should be taken	construction stage				
		to prevent the washing away of construction materials, soil, silt or					
		debris into any drainage system.					
		Manholes (including newly constructed ones) should always be					
		adequately covered and temporarily sealed so as to prevent silt,					
		construction materials or debris being washed into the drainage					
		system and storm runoff being directed into foul sewers.					
		Precautions to be taken at any time of year when rainstorms are likely,					
		actions to be taken when a rainstorm is imminent or forecasted, and					
		actions to be taken during or after rainstorms are summarised in					
		Appendix A2 of ProPECC PN 1/94. Particular attention should be paid					
		to the control of silly surface runoff during storm events, especially for					
		areas located near steep slopes.					
		All vehicles and plant should be cleaned before leaving a construction					
		site to ensure no earth, mud, debris and the like is deposited by them					
		on roads. An adequately designed and sited wheel washing bay					
		should be provided at every construction site exit. Wash-water should					
		have sand and silt settled out and removed at least on a weekly basis					
		to ensure the continued efficiency of the process. The section of					
		access road leading to, and exiting from, the wheel-wash bay to the					
		public road should be paved with sufficient backfall toward the wheel-					
		wash bay to prevent vehicle tracking of soil and silly water to public					
		roads and drains.					
		Oil interceptors should be provided in the site drainage system					
		downstream of any oil/fuel pollution sources. The oil interceptors					
		should be emptied and cleaned regularly to prevent the release of oil					
		and grease into the storm water drainage system after accidental					
		spillage. A bypass should be provided for the oil interceptors to					
		prevent flushing during heavy rain.					

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Constru	ction Runo	ff					
S5.8.1	S5.2.1	 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. Requirements for solid waste management are detailed in Section 6 of this Report. All fuel tanks and storage areas should be provided with docks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. To prevent pollution risks arising from works area (waste reception area) and haul roads, intercepting bund or barrier along the roadside should be constructed. 	Control construction runoff and erosion from site surface, drainage channel, stockpiles, wheel washing facilities, etc to minimize water quality during construction stage	Contractor	Entire construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	√
S5.8.1	S5.2.1	Sewage Effluent from Workforce Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. Notices will be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. Regular environmental audit on the construction site can provide an effective control of any malpractices and can achieve continual improvement of environmental performance on site.	Control sewage effluent arising from the sanitary facilities provided for the on- site construction workforce	Contractor	On-site sanitary facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√
S5.8.1	S5.2.1	Accidental Spillage of Chemical Any service workshop and maintenance facilities shall be located within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of equipment involving activities with potential for leakage and spillage will only be undertaken within the areas.	Control of chemical leakage	Contractor	Service workshop and maintenance facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the	standards for the	
	Ref		Measures & Main	the	measures	measures to achieve?	
			Concerns to	measures?			
			address				
Erosion	Control Me	easures		•			•
35.8.2	S5.2.2	Erosion Control /Measures	Erosion control	Contractor	Drainage	ProPECC PN 1/94	✓
		a. Preserve Natural Vegetation			system		
		This Best Management Practices will involve preserving natural				Water Pollution Control	
		vegetation to the greatest extent possible during the construction				Ordinance	
		process. and after construction where appropriate. Maintaining natural					
		vegetation is the most effective and inexpensive form of erosion					
		prevention control.					
		b. Provision of Buffer Zone					
		A buffer zone consists of an undisturbed area or strip of natural vegetation					
		or an established suitable planting adjacent to a disturbed area that					
		reduces erosion and runoff. The rooted vegetation holds soils acts as a					
		wind break and filters runoff that may leave the site.					
		c. Seeding (Temporary/Permanent)					
		A well-established vegetative cover is one of the most effective methods					
		of reducing erosion. Vegetation should be established on construction					
		sites as the slopes are finished, rather than waiting until all the grading is					
		complete. Besides, Hydroseeding will be applied on the surface of					
		stockpiled soil and on temporary soil covers for inactive tipping areas to					
		prevent soil erosion during rainy season.					
		d. Ground Cover					
		Ground Cover is a protective layer of straw or other suitable material					
		applied to the soil surface. Straw mulch and/or hydromulch are also used					
		in conjunction with seeding of critical areas for the establishment of					
		temporary or permanent vegetation. Ground cover provides immediate					
		temporary protection from erosion. Mulch also enhances plant					
		establishment by conserving moisture, holding fertilizer, seed, and topsoil					
		in place, and moderating soil temperatures.					

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S5.8.2	\$5.2.2	e. Hydraulic Application Hydraulic application is a mechanical method of applying erosion control materials to bare soil in order to establish erosion-resistant vegetation on disturbed areas and critical slopes. By using hydraulic equipment, soil amendments, mulch, tackifying agents, Bonded Fiber Matrix (BFM) and liquid co-polymers can be uniformly broadcast, as homogenous slurry, onto the soil. These erosion and dust control materials can often be applied in one operation. f. Sod Establishes permanent turf for immediate erosion protection and stabilizes rainageways. g. Matting There are numerous erosion control products available that can be described in various ways, such as matting, blankets, fabric and nets. These products are referred as matting. A wide range of materials and combination of materials are used to produce matting including, but not limited to: straw, jute, wood fiber, coir (coconut fiber), plastic netting, and Bonded Fiber Matrix. The selection of matting materials for a site can make a significant difference in the effectiveness of the Best Management Practices. h. Plastic Sheeting Plastic Sheeting will provide immediate protection to slopes and stockpiles. However, it has been known to transfer erosion problems because water will sheet flow off the plastic at high velocity. This is usually attributable to poor application, installation and maintenance. i. Dust Control Dust Control is one preventative measure to minimize the wind transport of soil, prevent traffic hazards and reduce sediment transported by wind and deposited in water resources.	Erosion control	Contractor	Drainage system	ProPECC PN 1/94 Water Pollution Control Ordinance	

EIA Ref.	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to implement	Location of the	What requirement	Status
	Log Ref	(to be implemented when the trigger level is exceeded, where	Recommended	the measures?	measures	or standards for the	
		necessary)	Measures & Main			measures to	
			Concerns to			achieve?	
			address				
Surface W	ater Draina	ge System					
\$5.8.2	S5.2.2	Temporary surface water drainage system will be provided to	Surface Water	Contractor	Surface water	Water Pollution	✓
		manage runoff during construction and operation. This system will	Management/		system	Control Ordinance	
		consist of channels as constructed around the perimeter of the site	Control run off		Construction		
		area. This system will collect surface water from the areas of higher				TM-water	
		elevations to those of lower elevations and ultimately to the point					
		of discharge. Erosion will therefore be minimised.					
		The temporary surface water drainage system will include the use					
		of a silt fence around the soil stockpile areas to prevent sediment					
		from entering the system. Regular cleaning will be carried out to					
		prevent blockage of the passage of water flow in silt fence.					
		Intermediate drainage system will be installed for filled cell/phase.					
		The major purpose of the intermediate drainage system is to					
		prevent the clean surface water run-off from the filled phases					
		coming into contact with the waste mass in active cell and to					
		prevent excessive surface water infiltration through the					
		intermediate cover, thus contribute to increasing volume of					
		leachate. The intermediate drainage system will collect the clean					
		surface water run-off and divert it to the permanent discharge					
		channels connected to the public drainage system.					
		In addition, surface flow from the haul road (especially near the					
		wheel washing facility) will be collected to a dry weather flow					
		interceptor and conveyed to the on-site leachate treatment plant					
		for further treatment.					

EIA	EM&A	ation Implementation Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
	Manageme	ent					
S6	WM1	C&D Materials Implement proper waste management measures during construction phase as stipulated in the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 Environmental Management in Construction Sites. Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010. Copies/counterfoils from trip-tickets (with quantities of C&D Materials off-site) should be kept for record purposes. Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005. Make provisions in Contract documents to allow and promote the use of recycled aggregates where appropriate. Ensure material balance in terms of excavated C&D materials in the design of NENT landfill extension project. The contract specifications should specify no excavated materials should be removed from the landfill extension site, but should be fully reused. Careful design, planning and good site management to minimise over-ordering and waste materials such as concrete, mortars and cement grouts. The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic fencing should be considered to increase the potential for reuse. The Contractor should recycle as much as possible the C&D waste on-site through proper waste segregation on-site. Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills. Proper areas should be designated for waste segregation and storage wherever site conditions permit. Maximise the use of reusable steel formwork to reduce the amount of C&D material. Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. On-site sorting and segregation facility of all type of wastes is considered as one of the best practice in waste management and hence, should be implemented in all projects generating cons	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	√

EIA	EM&A	ation Implementation Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	Cidido
S6	WM1	C&D Materials (Cont'd) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. Minimise excessive ordering of concrete, mortars and cement grout by doing careful check before ordering.	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	
S6	WM2	Chemical Waste Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Plant/equipment maintenance schedule should be designed to optimise maintenance effectiveness and to minimise the generation of chemical wastes. Where possible, chemical wastes (e.g. waste lube oil) should be recycled by licensed treatment facilities	Ensure proper disposal of chemical waste generated on-site to minimise the associated hazards on human health and environment	Contractor	Entire construction site	Waste Disposal (Chemical Waste) General Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	✓

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
S6	WM2	Chemical Waste (Cont'd) Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD. Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulation. The storage area for chemical wastes should be clearly labelled and used solely for storage of chemical waste, enclosed with at least 3 sides, having an impermeable floor and bund of sufficient capacity to accommodate 110% of volume of the largest container or 20 % of total volume of waste stored in that area, whichever is the greatest, having adequate ventilation, being covered to prevent rainfall entering, and being arranged so that incompatible materials are adequately separated. Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g. Chemical Waste Treatment Centre.	Ensure proper disposal of chemical waste generated on-site to minimise the associated hazards on human health and environment.	Contractor	Entire construction site	Waste Disposal (Chemical Waste) General Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	√
S6	WM3	General Refuse General refuse generated on-site should be properly stored in enclosed bins or compaction units separately from construction and chemical wastes. All recyclable materials (separated from the general waste) should be stored on-site in appropriate containers with cover prior to collection by a local recycler for subsequent reuse and recycling. Residual, non-recyclable, general waste should be stored in appropriate containers to avoid odour. Regular collection should be arranged by an approved waste collector in purpose-built vehicles that minimise environmental impacts during transportation Reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans should be separated from general waste stream and collected by recyclers. Proper collection bins should be provided on- site to facilitate the waste sorting.	Minimise generation of general refuse to avoid odour, pest and visual nuisance	Contractor	Entire construction site	Waste Disposal Ordinance	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the measures	requirement or	
	Ref		Measures & Main	the		standards for the	
			Concerns to	measures?		measures to	
			address			achieve?	
S6	WM3	General Refuse (Cont'd)	Minimise	Contractor	Entire	Waste Disposal	✓
		Office waste paper should recycled if the volume warrant collection by recyclers.	generation of		construction	Ordinance	
		Participation in community waste paper recycling programme should be considered by	general refuse to		site		
		the Contractor, including waste paper, aluminium cans, plastic bottles, waste batteries,	avoid odour, pest				
		etc.	and visual				
			nuisance				

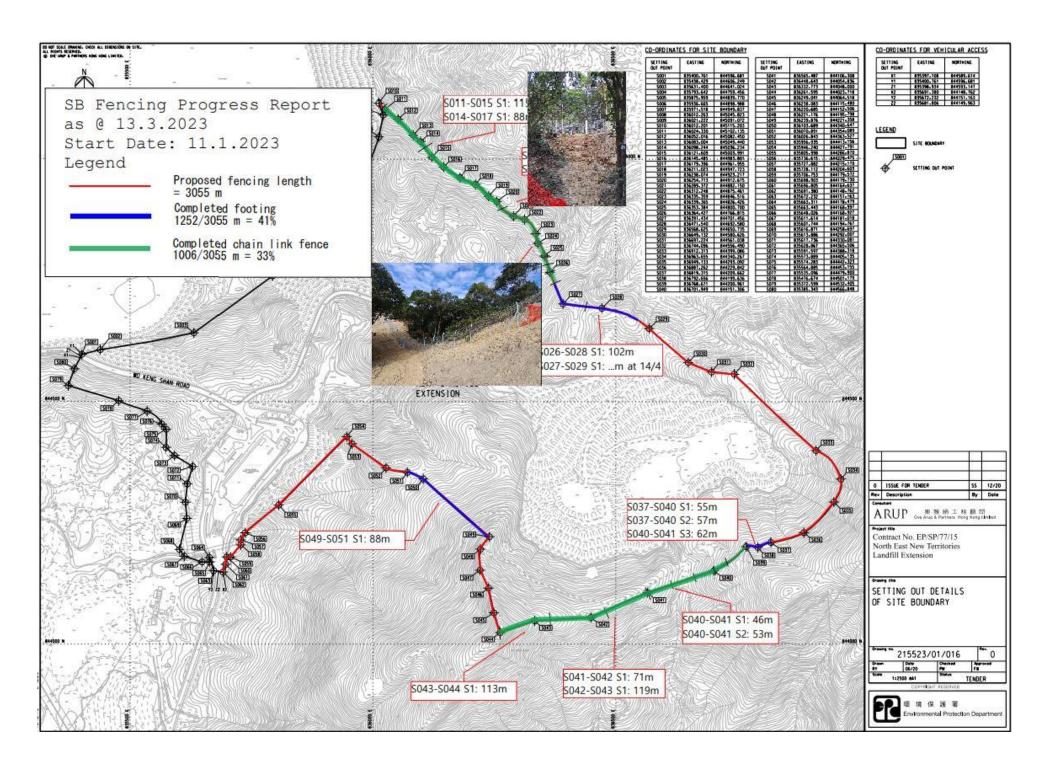
EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	standards for the measures to achieve?	
LFG							
		dfill Extension		T =	T = -		
S7	LFG1	Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	✓
S7	LFG2	Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.				F&IU (Confined Spaces) Regulations	✓
S7	LFG3	No smoking or burning should be permitted on-site.				Code of Practice on Safety	✓
S7	LFG4	Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.				and Health at Work in Confined Spaces	✓
S7	LFG5	No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.					✓
S7	LFG6	Adequate fire fighting equipment should be provided on-site.					✓
S7	LFG7	Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.					√
S7	LFG8	Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.					✓
S7	LFG9	'Permit to Work' system should be implemented.					✓
S7	LFG10	Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.					✓
S7	LFG11	For piping assembly or conduit construction, all valves and seals should be closed immediately after installation to avoid accumulation and migration of LFG. If installation of large diameter pipes (diameter >600mm) is required, the pipe ends should be sealed on one side during installation. Forced ventilation is required prior to operation of installed pipeline. Forced ventilation should also be required for works inside trenches deeper than 1m.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces) Regulations Code of Practice on Safety	√
S7	LFG12	Frequency and location of LFG monitoring within excavation area should be determined prior to commencement of works. LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.				and Health at Work in Confined Spaces	✓

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status			
	thin NENT Landfill Extension									
S7	LFG13	For excavation works, LFG monitoring should be conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces)	~			
S7	LFG14	Any cracks on ground level encountered on-site should be monitored for LFG periodically. Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.				Regulations Code of Practice on Safety and Health at Work in	√			
S7	LFG15	LFG precautionary measures involved in excavation and piping works should be provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase. Temporary offices or buildings should be located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm.				Confined Spaces	✓			
S7	LFG16	For large development such as NENT landfill extension, a Safety Officer trained in the use of gas detection equipment and LFG-related hazards should be present on-site throughout the groundwork phase. The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%					✓			
S7	LFG17	Periodically during groundwork construction, the works area should be monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person. Routine monitoring should be carried out in all excavations, manholes, created by temporary storage of building materials on-site. All measurements in excavations should be made with monitoring tube located not more than 10mm from exposed ground surface.					✓			

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
		dfill Extension (Cont'd)			T = -		I
S7	LFG18	For excavations deeper than 1m, measurements should be	To minimise the	Contractor	Entire construction	Landfill Gas Hazard	✓
	Conducted.	risk of LFG		site	Assessment		
		 At ground surface before excavation commences; 	hazards to			Guidance Note	
		Immediately before any worker enters the excavation;	personnel in construction site			(EPD/TR8/97)	
		At the beginning of each working day for entire period the	CONSTRUCTION SILC				
		excavation remains open; and				F&IU (Confined	
		Periodically throughout the working day whilst workers are in				Spaces) Regulations	
		excavation.					
S7	LFG19	For excavations between 300mm and 1m, measurements should be				Code of Practice on	✓
	conducted:				Safety and Health at Work in Confined		
		Directly after excavation has been completed; and				Spaces	
		Periodic all whilst excavation remains open.					
S7	LFG20	For excavations less than 300mm, monitoring may be omitted at the discretion of Safety Officer or appropriately qualified person.					✓

	invironmental Mitigation Implementation Schedule (EMIS) Construction Phase								
EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status		
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures			
	Ref	necessary)	Measures & Main	the		to achieve?			
			Concerns to	measures?					
			address						
Lands	andscape and Visual Phases								
S8	LV1	Advanced screening tree planting	To minimise the	Contractor	Entire	DEVB TC(W) No. 4/2020 -	Advanced screen tree		
		Early planting using fast growing trees and tall shrubs at	impact on existing		construction	Tree Preservation	planting is under planning.		
		strategic locations within site to block major view corridors	vegetation retained		site				
		to the site from the VSRs, and to locally screen haul roads,	by personnel in			DEVB TC(W)) No. 6/2015 -			
		excavation works and site preparation works.	construction			Maintenance of Vegetation			
		Roadside planter and shrub planting design in front of	To provide initiation			and Hard Landscape			
		Cheung Shan Temple.	on permanent			Features			
S8	LV2	Boundary Green Belt planting	landscape and				To be implemented during		
		Considerable planting belts proposed around the site	visual mitigation			DEVB TC(W) No. 6/2011 -	operation phase		
		perimeter and the construction of temporary soil bunds will	measures			Maintenance of Man-made			
		screen the landfill operations to a certain degree. Fast				Slopes and Emergency			
		growing and fire resistant plant species will be used.				Repair on Stability of Land			
S8	LV3	Temporary landscape treatment as green surface cover					Grass hydroseeding will be		
		For certain areas where landfilling operations would have					applied at Portion E3-2.		
		to be suspended temporarily for periods of years, simple							
		temporary landscape treatment such as hydroseeding							
		should be considered. During construction and operational							
		phases, grass hydroseeding or synthetic covering material							
		of green colour should also be used as a temporary slope							
		cover if applicable.							
S8	LV4	Existing tree preservation					√		
	- ۷ -	Transplant existing trees and vegetation, which are					'		
		identified as ecologically significant in Ecological Impact							
		Assessment and as rare tree species recorded in the tree							
		survey, under circumstances where technically feasible.							
		For all affected trees, the principle of avoidance of tree							
		felling and tree transplanting of tree before felling should							
		apply whenever possible. A tree felling application should							
		be submitted to DEVB-GLTMS and be approved before							
		any trees are felled or transplanted.							

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures to	
	Ref	necessary)	Measures & Main	the		achieve?	
			Concerns to	measures?			
			address				
Ecolog	ЭУ						
Gener	al Protection	on Measures:					
S10	E1	Restriction of construction activities to the work areas that	To minimise	Contractor	Entire	Practice Note for Professional	✓
		would be clearly demarcated.	environmental		construction	Persons (ProPECC),	
S10	E2	Reinstatement of the work areas immediately after completion	impacts and		site	Construction Site Drainage	✓
		of the works.	therefore potential			(PN1/94)	
S10	E3	Only well-maintained plant should be operated on-site and plant	ecological impacts				✓
		should be serviced regularly during the construction	within and near the			Code of Practice on the	
		programme.	construction site			Packaging, Labelling and	
S10	E4	Machines and plant (such as trucks, cranes) that may be in				Storage of Chemical Wastes,	✓
		intermittent use should be shut down between work periods or				EPD (1992)	·
		should be throttled down to a minimum.					
S10	E5	Plant known to emit noise strongly in one direction, where				ETWB TC(W)) No. 33/2002	√
		possible, be orientated so that the noise is directed away from				Management of Construction	, The state of the
		nearby NSRs.				and Demolition Material	
S10	E6	Silencers or mufflers on construction equipment should be				Including Rock	To be implemented
		properly fitted and maintained during the construction works.					
S10	E7	Mobile plant should be sited as far away from NSRs as possible				DEVB TC(W) No. 6/2010 Trip	✓
0.0		and practicable.				Ticket System for Disposal of	*
S10	E8	Material stockpiles, site office and other structures should be				Construction and Demolition	√
5.0		effectively utilised, where practicable, to screen noise from on-				Materials	T
		site construction activities.					
		Site Seriou deurinos.				ETWB TC(W)No.19/2005	
S10	E9	Use of "quiet" plant and working methods.				Environmental Management	✓
S10	E10	Construction phase mitigation measures in the Practice Note				on Construction Sites	√
		for Professional Persons on Construction Site Drainage.					


EIA Ref.	0,	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S10	E11	tion Measures: Design and set up of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction.	To minimise environmental impacts and	Contractor	Entire construction	WBTC No. 12/2002, Specifications Facilitating the Use of Recycled Aggregates	✓
S10	E12	Design and incorporation of silt/sediment traps in the permanent drainage channels to enhance deposition rates and regular removal of reposited silt and grit.	therefore potential ecological impacts within and near the			WBTC Nos. 25/99,25/99A and 25/99C. Incorporation of Information on Construction	✓
S10	E13	Minimization of surface excavation works during the rainy seasons (April to September), and in particular, control of silty surface runoff during storm events, especially for areas located near steep slopes.	construction site			and Demolition Material Management in Public Works Subcommittee Papers	✓
S10	E14	Regular inspection and maintenance of all drainage facilities and erosion and sediment control structures to ensure proper and efficient operation at all times and particularly following rainstorms.					✓
S10	E15	Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					✓

Appendix L Construction Site Activities

Construction Activities	Photos	Where	Who	What - ENV Impacts	Mitigation Measures
Material loading and unloading, site traffic	TE OC TO	Portion A, SBA to Alternative Disposal Ground	PYE	Dust, bringing mud to the common haul road	Speed limit, covering of materials and water spraying, lorry washing at the exit of the site
Permanent site office foundation works with pouring of concrete		Portion D	PYE	Washout flowing to site water discharge point, dust emissions	Avoid the spillage of concrete, lorry washing at designated area, operation and maintenance of water treatment facility at discharge point
Site clearance		Portion A, Portion E3-1, Portion E4, Portion E1/B2	PYE	Wash out going to surface water channel and site water discharge point, generation of yard waste	Cover exposed slope by tarpaulin, diversion of surface water, operation and maintenance of water treatment facility at discharge point, implementation of trip ticket system
Installation of permanent fencing		Portion A, Portion B1, Portion E4	PYE	Dust	Covering of cement storage area, enclosure of mixing area
Site formation		Portion A, Portion E3-1	PYE	Generation of C&D waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Tree Felling		Portion E3-1, E4, E1/B2	PYE	Generation of yard waste	Implementation of trip ticket system, waste recycling, internal waste transfer

Remark:
PYE is the Sub-contractor for this project.

Appendix M Mitigation Measures of Cultural Landscape Features

Appendix N Ecological Monitoring Record

Post-translocation monitoring photo record extracted from post-translocation report (July 2023)

Hand netting to search for *S. zanklon*

Kick-netting to search for S. zanklon

Direct Observation to search for *S. zanklon*

B.1 Incense Tree Aquilaria sinensis

Photo B.1.1.: General view of the transplanted individual AS-03.

Photo B.1.3.: General view of the transplanted individual AS-02.

Photo B.1.2.: Stem condition of the transplanted individual AS-03.

Photo B.1.4.: Stem condition of the transplanted individual AS-02.

B.2 Lamb of Tartary Cibotium barometz

Photo B.2.1.: General view of the transplanted individual CB-01.

Photo B.2.2.: Leaf condition of the new foliage.

Photo B.2.3.: Leaf condition of the new foliage.

Photo B.2.4.: Leaf condition of the new foliage.

B.3 Bottlebrush Orchid Goodyera procera

Photo B.3.1: Individual GP-01.

Photo B.3.3: Individual GP-03.

Photo B.3.2: Individual GP-02.

Photo B.3.4: Individual GP-03.

Photo B.3.5: Individual GP-06.

Photo B.3.6: Individual GP-06. Chlorotic leaf.

Photo B.3.7: Individual GP-07.

Photo B.3.8: Individual GP-08.

Photo B.3.9: Individual GP-09.

Photo B.3.11: Individual GP-11.

Photo B.3.12: Individual GP-12.

Photo B.3.13: Individual GP-13.

Photo B.3.15: Individual GP-14.

Photo B.3.14: Individual GP-13. Chlorotic leaves.

Photo B.3.16: Individual GP-15.

Photo B.3.17: Individual GP-16.

Photo B.3.18: Individual GP-17.

Photo B.3.19: Individual GP-19.

Appendix O Detail Status of EP Submission

Detail Status of Submissions required under the FEP & EP

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submission Date (12 Oct 2022)
2.2	2.4	Setting up of Community Liaison Group (CLG)	Submission Date (12 Oct 2022)
			1 st CLG meeting (12 Jan 2023)
2.3	2.5	Submission of EM&A Manual	Submission Date (12 Oct 2022)
2.4	2.6	Submission of Preservation of Cultural Landscape Features	Survey and Preservation of Grave Records: Submission Date (15 Oct 2022)
			Survey and Preservation of Boulder Paths: Submission Date (12 Oct 2022)
2.5	2.7	Submission of Vegetation Survey Submission Date (2 Septer (Transplantation Proposal) 2022)	
2.6	2.8	Submission of translocation proposal	Submission Date (8 July 2022)
2.7	2.9	Submission of Transplantation Report and Post-Transplantation	Submission Date (19 Jan 2023)
		Monitoring	1st monitoring (24 Nov 2022)
			2 nd monitoring (9 Dec 2022)
			3 rd monitoring (21 Dec 2022)
			4 th monitoring (13 Jan 2023)
			5 th monitoring (26 Jan 2023)
			6 th monitoring (8 Feb 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (21 Apr 2023)
			10 th monitoring (17 May 2023)
			11 th monitoring (16 Jun 2023)
			12 th monitoring (12 Jul 2023)

FEP Condition	EP Condition	Submission / Measures	Status
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out in July 2022
			Submission Date (27 December 2022)
			1 st monitoring (29 Aug 2022)
			2 nd monitoring (28 Sep 2022)
			3 rd monitoring (28 Oct 2022)
			4 th monitoring (28 Oct 2022)
			5 th monitoring (29 Dec 2022)
			6 th monitoring (30 Jan 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (19 Apr 2023)
			10 th monitoring (12 May 2023)
			11 th monitoring (7 Jun 2023)
			12 th monitoring (18 Jul 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submission Date (6 Oct 2022)
2.10	2.12	Submission of Waste Management Plan	Submission Date (30 December 2022)
3.2	3.2	Submission of Baseline Monitoring Report	Submission Date (30 Nov 2022)

Appendix P Cumulative complaint / enquiry log, Summaries of complaints and enquiries & Environmental complaint reports

Environmental Complaints Log

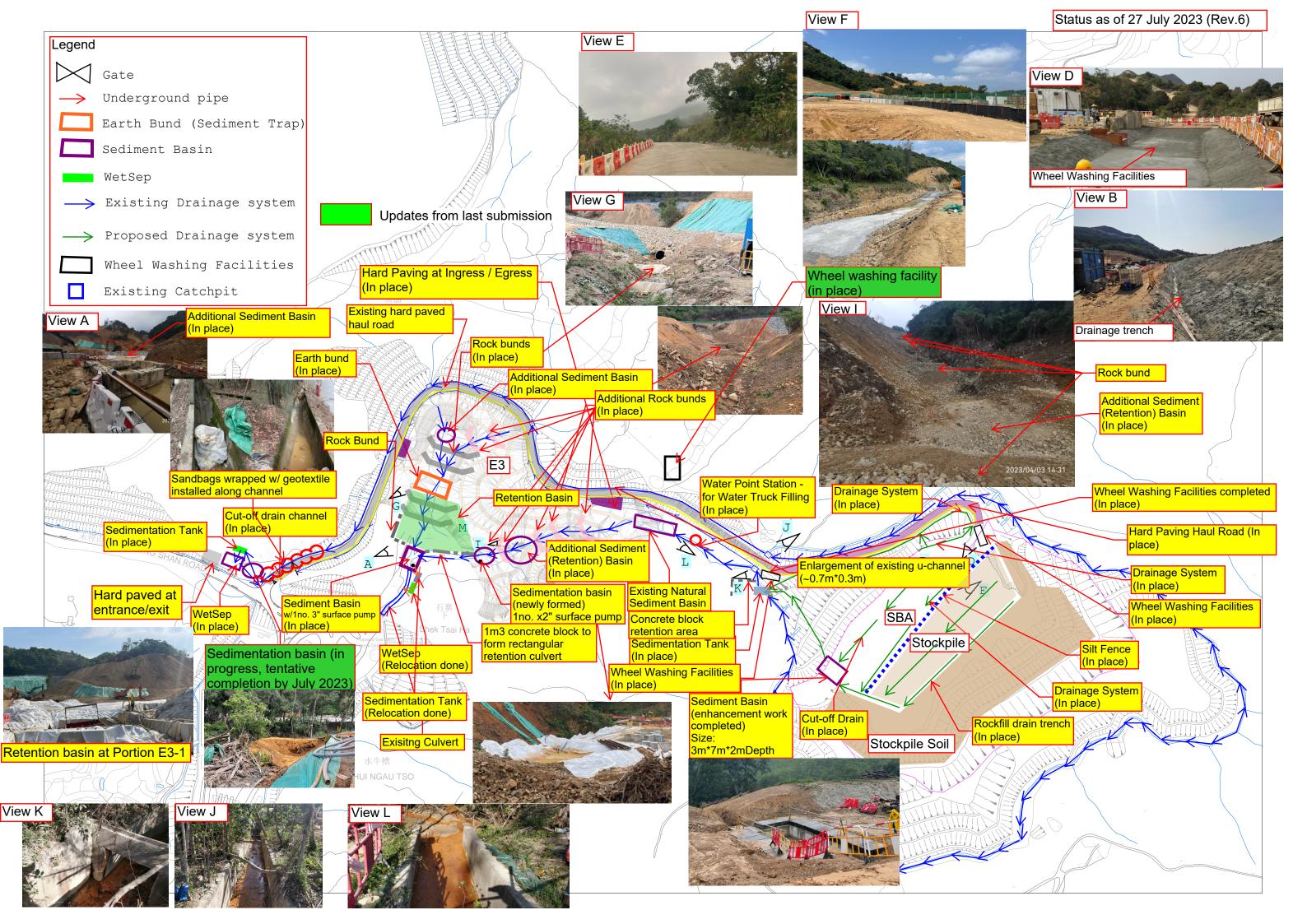
Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C001_20221220	21 Dec 2022	Veolia (Contractor)	ET	Air Quality (Construction Dust)	5, 12 & 19 Dec 2022	It was noted from Veolia's email to the ET on 20 December 2022 that Veolia received complaint lodged regarding presenting much dusty materials at roundabout at Wo Keng Shan Road & dusty flying problem at Kowloon-bound traffic at Lung Shan Tunnel. No dusty materials and wastes were transported out from the NENTX site during the complaint period. During the regular weekly site inspection on 5, 12 & 19 December 2022, it was observed that the wheel washing facilities with high-pressure water jets have been provided at all site exits of NENTX and cleaned all vehicles before allowing them to leave the construction site to ensure that no mud or debris would be brought to the public area. All site vehicles of NENTX are also required to go through the auto wheel washing facility, which is managed by the operator of the NENT landfill, before entering the public area. The road section between the washing facilities and the exit point was paved with concrete, or bituminous materials were implemented in all site entrances. No mud generated from vehicles under the NENTX project after exiting the site entrance was observed. In conclusion, there is no direct evidence showing that the complaint is likely related to the NENTX project.	5 Jan 2023
C002_20230614	14 June 2023	EPD-RNG	ET	Water Quality	TBC	It was noted from EPD-RNG's email to the ET on 14 June 2023 that EPD received complaint lodged regarding the muddy water was observed at Lin MA Hang International Bridge. Investigation results and conclusion will be presented when the investigation finished.	ТВС

Remarks:

- "ET" equal to "Environmental Team"
 "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"

Environmental Enquiries Log

Enquiry Ref. No.	Date of Enquiry Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
E001_20230615	15 Jun 2023	EPD-RNG	ET	Water Quality	ТВС	It was noted from EPD-RNG's email to the ET on 15 June 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD). Investigation results and conclusion will be presented when the investigation finished.	ТВС


Remarks:

- 1. "ET" equal to "Environmental Team"
- 2. "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"

Cumulative Statistics on Complaints

Aspects	Cumulative No. Brought	No. of Complaints This	Cumulative Project-to-
	Forward	Month	Date
Air Quality	1	0	1
Noise	0	0	0
Water Quality	0	1	1
Waste Management	0	0	0
Total	1	1	2

Appendix Q Implementation Status on Environmental Mitigation Measures

Slope Protection

Hydroseeding

Hydroseeding

Hydroseeding

Prepared by:

Aurecon Hong Kong Limited
Unit 1608, 16/F, Tower B, Manulife Financial Centre,
223 – 231 Wai Yip Street, Kwun Tong,
Kowloon Hong Kong S. A. R.

T: +852 3664 6888 F: +852 3664 6999

aurecon

E:

Bringing ideas

hongkong@aurecongroup.com