Agreement No. CE 20/2004(EP) North East New Territories (NENT) Landfill Extension

Monthly Environmental Monitoring and Audit Report (No. 10) – September 2023 2023-10-13

Environment Ltd

香港黃竹坑道33-35號

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com

10/F Genesis

Hong Kong

創協坊10樓

Meinhardt Infrastructure and

邁進基建環保工程顧問有限公司

33-35 Wong Chuk Hang Road

Our Ref.: Date: CL/91823/0736-VES 13 October 2023

By Email

Veolia Hong Kong Holding Limited 40/F, One Taikoo Place 979 King's Road Quarry Bay Hong Kong

Attn.: Mr. Colin Mitchell

Dear Sir

Re: Contract No. EP/SP/77/15

North-East New Territories Landfill Extension (NENTX) Monthly Environmental Monitoring and Audit Report (No.10) –

September 2023

I refer to Condition 3.3 under Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, regarding the submission of a monthly Environmental Monitoring and Audit report. I hereby verify the captioned "Monthly Environmental Monitoring and Audit Report (No.10) – September 2023" dated 13 October 2023.

Should you have any queries, please do not hesitate to contact the undersigned at 2859 5409.

Yours faithfully

MEINHARDT INFRASTRUCTURE AND ENVIRONMENT LTD

Claudine Lee

Independent Environmental Checker

Aurecon Hong Kong Limited Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong Hong Kong T +852 3664 6888 F +852 3664 6999 E hongkong@aurecongroup.com w aurecongroup.com

Ref: P521530-0000-REP-NN-0073

13 October 2023

Meinhardt Infrastructure & Environment Ltd. 10/F Genesis 33-35 Wong Chuk Hand Road Hong Kong

Attn: Ms. Claudine Lee,

Dear Claudine,

Re: Contract No. EP/SP/77/15

Northeast New Territories Landfill Extension

Submission of Monthly Environmental Monitoring and Audit Report (No.10) – September

2023

In accordance with the requirement specified in Condition 3.3 of Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-02/292/2007, we are pleased to submit the certified "Monthly Environmental Monitoring and Audit Report (No.10) – August 2023" dated 13 October 2023 for your verification.

Should you require any further information or clarification, please do not hesitate to contact the undersigned or our Mr. Keith Chau on 3664 6788.

Yours faithfully, For and on behalf of Aurecon Hong Kong Limited

Fredrick Leong

Environmental Team Leader

Encl.

CC.

IEC Representative – Ms. Echo Hung (By email: echohung@meinhardt.com.hk)

^{1.} Monthly Environmental Monitoring and Audit Report (No.10) – September 2023

^{1.} IEC - Ms. Claudine Lee (By email: claudinelee@meinhardt.com.hk)

Document Control Record

Document prepared by:

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223 – 231 Wai Yip Street, Kwun Tong, Kowloon

Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Doc	Document control aurecon						
Report title		Monthly Environmental Monitoring and Audit Report (No. 10) – September 2023					
Document ID			Project number				
File path							
Clien	t	Veolia Hong Kong Holding Ltd.					
Clien	t contact		Client reference				
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver	
0	7 October 2023	Submit to IEC	J Man	K.Chau		FL	
1	13 October 2023	Submit to IEC	J Man	K.Chau		FL	
Curre	Current revision 0						

Approval			
Reviewer's signature	A STATE OF THE STA	Approver's signature	Tul
Name	Keith Chau	Name	Fredrick Leong
Title	Associate, Environmental	Title	Environmental Team Leader

Contents

Ex	ecutive SummaryIntroduction	1
1.	Introduction	3
2.	Project Information	5
3.	Air Quality Monitoring	10
4	Noise Monitoring	19
5	Water Quality Monitoring	24
6	Waste Management	34
7	Landfill Gas Monitoring	35
8	Landscape and Visual	39
9	Cultural Heritage	40
10	Ecological Monitoring	41
11	Site Inspection and Audit	42
12	Environmental Non-conformance	45
13	Implementation Status on Environmental Mitigation Measures	46
14	Future Key Issues	47
15	Conclusion	48

Figure

Figure 1	Location of the Project Site
Figure 2	Impact Air Quality, Noise & Surface Water Monitoring Locations
Figure 3	Landfill Gas Monitoring Locations

Construction Programme

Appendix

Appendix A

1 1	
Appendix B	Project Organization Chart & Management Structure
Appendix C	Monitoring Schedule for Reporting Month & Next Month
Appendix D	Calibration Certificates
Appendix E	Monitoring Results
Appendix F	Graphical Presentations
Appendix G	Notification of Environmental Quality Limits Exceedance
Appendix H	Wind Data
Appendix I	Waste Flow Table
Appendix J	Joint Environmental Site Inspection Records
Appendix K	Environmental Mitigation Implementation Schedule (EMIS)
Appendix L	Construction Site Activities
Appendix M	Mitigation Measures of Cultural Landscape Features
Appendix N	Ecological monitoring record
Appendix O	Detail Status of FEP & EP Submission
Appendix P	Cumulative complaint / enquiry log, Summaries of complaints and enquiries &
	Environmental complaint reports
Appendix Q	Implementation Status on Environmental Mitigation Measures

All rights reserved | The information/data furnished in our document is confidential and competitive information proprietary to Aurecon or its sub-contractors, the release of which would harm the competitive position of Aurecon or its sub-contractors/consultants. This information/data shall not be reproduced, stored in a retrieval system, transmitted in any form or by any means, used or disclosed in whole or in part, for any purpose other than to evaluate and adjudicate this document. If Aurecon is shortlisted or a contract is awarded to Aurecon as a result of this solicitation, or in connection with the submission of such information/data, the right (and the extent thereof) to reproduce, store, transmit, use or disclose this information/data must, by agreement, be included in such contract.

Executive Summary

Aurecon Hong Kong Limited (Aurecon) was appointed to undertake the role of Environmental Team (ET) and carry out Environmental Monitoring and Audit for the North East New Territories (NENT) Landfill Extension.

The construction phase and EM&A programme of the Project commenced on 1 December 2022.

This 10th Monthly EM&A Report presents the EM&A works conducted from 1 to 30 September 2023 in accordance with the EM&A Manual.

Summary of Construction Works undertaken during Report Period

The major construction works undertaken during the reporting period include:

-	Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
-	Construction of site buildings at Portion D
-	Site clearance at Portion A, B2/E1, E3-1 & E4
-	Installation of permanent fencing at Portion A, B1 & E4
-	Site formation at Portion A & E3-1
-	Tree felling at Portion B2/E1, E3-1 & E4
-	Shotcreting (Permanent and Temporary)

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	6 times	4, 11, 14, 20, 26 & 28 September 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	11, 14, 20 & 26 September 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	20 September 2023
-	Additional Surface Water Quality Monitoring during normal weekdays at WM2 and GR3 (EPD Monitoring Location)	1 time	28 September 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	22 times	4 to 9, 11 to 16, 18 to 23, 25 to 29 September 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	15 September 2023
-	Joint Environmental Site Inspection	4 times	4, 11, 18 & 25 September 2023
_	General Site Inspection by EPD-RNG	2 times	7 & 13 September 2023

Environmental Exceedance

Air Quality, Noise, Surface Water Quality Monitoring & Landfill Gas Monitoring

No exceedance of the Action and Limit Levels were recorded at designated monitoring stations during the reporting period.

Environmental Non-conformance/Compliant/Summons and Prosecution

One warning regarding suspected non-compliance event with Condition 1.7 and 2.15(a) of the EP & Condition 1.7 and 2.13(a) of the FEP-01 & FEP-02 was recorded during the reporting period. The related rectified actions are being taken in progress by the contractor.

One complaint received on 14 September 2023 was recorded during the reporting period. The related rectified actions should be conducted by the contractor as soon as possible.

No summons/prosecutions were received in this reporting period.

Reporting Change

There was no reporting change in the reporting period.

Future Key Issues

Works to be undertaken in the next month include:

- Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
- Construction of site buildings at Portion D
- Site clearance at Portion A, B2/E1, E3-1 & E4
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A & E3-1
- Tree felling at Portion B2/E1, E3-1 & E4
- Shotcreting (Permanent and Temporary)

Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

1. Introduction

1.1. Background

- 1.1.1. The North East New Territories Landfill Extension (the NENTX Project) is located adjacent to the existing North East New Territories (NENT) Landfill at Ta Kwu Ling. The extension site is located in a valley covering mainly the existing NENT Landfill Stockpile and Borrow Area that was formed to the east of the existing landfill as part of the original site development of the landfill, and layout plan shown in **Figure 1**.
- 1.1.2. The NENTX is a designated project. The Environmental Impact Assessment (EIA) Report (AEIAR-111/2007) and an Environmental Monitoring and Audit Manual were approved on 20 September 2007. The project is governed by an Environmental Permit (EP) (EP-292/2007) which was granted on 26 November 2007. A further of EP (FEP) was applied and the FEP (FEP-01/292/2007) was subsequently granted on 28 April 2022. Another further of EP (FEP-02/292/2007) was subsequently granted on 23 August 2023.
- 1.1.3. In accordance with the requirements specified in Section 2.6 to 2.10 and Section 12.3 of the approved Environmental Monitoring and Audit (EM&A) Manual and Environmental Permit (EP and FEP) condition 3.3, Monthly EM&A report should be submitted to the Director of Environmental Protection (DEP), within 2 weeks after the end of the reporting month. The submissions shall be certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC).
- 1.1.4. The construction phase and EM&A programme of the Project commenced on 1 December 2022.

1.2. Nature, Scale and Scope of the captioned Designated Project

1.2.1 The Nature, Scale and Scope of the captioned Designated Project is presented in **Table 1-**

Table 1-1 Nature, Scale and Scope of the captioned Designated Project

Item(s)	Content
Nature of Designated Project	Construction and operation of a landfill for waste as defined in the "Waste Disposal Ordinance" (Cap. 354)
Scale and Scope of	The Project mainly consists of the followings: -
Designated Project	Construction and operation of a landfill extension of about 70 hectares with a target void space of at least 19 million cubic metres on the eastern side of the existing NENT Landfill, including the followings: -
	 Site formation and preparation;
	ii. Installation of liner system;
	iii. Installation of leachate collection, treatment and disposal facilities;
	 iv. Installation of gas collection, utilization and management facilities;
	v. Utilities provisions and drainage diversion;
	vi. Landfilling operation;
	vii. Restoration and aftercare in subsequent stages; and
	viii. Measures to mitigate environmental impacts as well as environmental monitoring and auditing to be implemented.

1.3. Purpose of this Report

1.3.1. This is the 10th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 01 to 30 September 2023.

1.4. Structure of the Report

1.4.1. The structure of the report is as follows:

Section 1 – Introduction

- details the background, purpose and structure of the report.

Section 2 – Project Information

 summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permit(s)/License(s) during the reporting period.

Section 3 - Air Quality Monitoring

Construction Dust

Section 4 - Noise Monitoring

Section 5 - Water Quality Monitoring

- Groundwater Monitoring
- Surface Water Monitoring

Section 6 - Waste Management

Section 7 - Landfill Gas Monitoring

Section 8 - Landscape and Visual

Section 9 – Cultural Heritage

Section 10 - Ecological Monitoring

Section 11 – Site Inspection and Audit

Section 12 - Environmental Non-Conformance

Section 13 – Implementation Status on Environmental Mitigation Measures

Section 14 - Future Key Issues

2. **Project Information**

2.1. **Construction Activities**

A summary of the major construction activities undertaken in this reporting period is shown 2.1.1. in Appendix L. Construction programme is illustrated in Appendix A.

2.2. **Project Organization & Management Structure**

2.2.1. The Project Organization Chart & Management Structure are shown in Appendix B. The key personnel contact information is summarized in Table 2-1.

Table 2-1 **Contact Information of Key Personnel**

Party	Name	Contact Number
Contractor (Veolia Hong Kong Holding Ltd.)	Mr. Matt Choy	2902 5296
Independent Environmental Checker (IEC)	Ms. Claudine Lee	2859 5409
(Meinhardt Infrastructure and Environment Ltd.)		
Environmental Team Leader (ETL) (Aurecon Hong Kong Limited)	Mr. Fredrick Leong	3664 6888

2.3. Status of Submission required under the FEP & EP during reporting period

2.3.1. The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP during reporting period are presented in Table 2-2. The detail status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP for NENTX project are shown in Appendix Ο.

Table 2-2 Status of Submissions required under the FEP & EP during reporting period

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submitted
2.2	2.4	Setting up of Community Liaison Group (CLG)	Community Liaison Group was set up.
2.3	2.5	Submission of EM&A Manual	Submitted
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submitted
2.6	2.8	Submission of translocation proposal	Submitted
2.7	2.9	Submission of Transplantation Report and Post-Transplantation Monitoring	Submitted 14 th post-transplantation monitoring (15 Sep 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submitted
2.10	2.12	Submission of Waste Management Plan	Submitted
3.2	3.2	Submission of Baseline Monitoring Report	Submitted

2.4. **Status of Environmental Approval Document**

2.4.1. A summary of the relevant valid permits, licences, and/or notifications on environmental protection for this Project since the granting of the FEP & EP is presented in Table 2-3.

Table 2-3 Summary of the relevant valid permits, licences, and/or notifications on environmental protection

Permit / Licenses / Notification	Reference	Expiry Date	Remark
Environmental Permit (EP)	EP-292/2007	Throughout the Contract	Permit granted on 26 November 2007
Further Environmental Permit (FEP)	FEP-01/292/2007	Throughout the Contract	Permit granted on 28 April 2022
Further Environmental Permit (FEP)	FEP-02/292/2007	Throughout the Contract	Permit granted on23 August 2023
Notification of Construction Works as required under Air Pollution Control (Construction Dust) Regulation	479809	Throughout the Construction Phase	Notified on 13 May 2022
Registration of Waste Producer under Waste Disposal Ordinance	7043692	Throughout the Contract	Registered on 13 April 2022
Registration as Chemical Waste Producer	5213-642-P1034-18	Throughout the Contract	Registered on 11 July 2022
Construction Noise Permit	GW-RN0619-23	22 September 2023	Permit granted on 16 June 2023
Construction Noise Permit	GW-RN1012-23	22 December 2023	Permit granted on 22 September 2023 (Replaced CNP No. GW-RN0619-23)
Effluent Discharge License under Water Pollution Control Ordinance	WT00042301-2022	31 October 2027	Permit granted on 18 October 2022 Variation of Licence (Permit granted on 7 February 2023)

2.5. Environmental Monitoring and Audit Progress

2.5.1. A summary of the monitoring activities in this reporting period is presented in **Table2-4**.

Table 2-4 Summary of the Monitoring Activities in this reporting period

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	6 times	4, 11, 14, 20, 26 & 28 September 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	11, 14, 20 & 26 September 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	20 September 2023
-	Additional Surface Water Quality Monitoring during normal weekdays at WM2 and GR3 (EPD Monitoring Location)	1 time	28 September 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	22 times	4 to 9, 11 to 16, 18 to 23, 25 to 29 September 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	15 September 2023
-	Joint Environmental Site Inspection	4 times	4, 11, 18 & 25 September 2023
-	General Site Inspection by EPD-RNG	2 times	7 & 13 September 2023

Air Quality

6 sets of 1-hr & 24-hr TSP construction dust measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.

Noise

4 sets of 30-minute construction noise measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period.

Groundwater

Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

Surface Water Quality

1 set of surface water quality measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Limit Level of surface water quality at each monitoring stations was recorded during the reporting period.

1 set of additional surface water quality measurement were carried out at WM2 and GR3 (EPD Monitoring Location) on 28 September 2023 of the reporting period based on the environmental complaint received on 14 September 2023. No exceedance of Limit Level of surface water quality at each monitoring stations was recorded during the reporting period.

Landfill Gas

22 sets of landfill gas measurement were carried out at the designated monitoring locations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of landfill gas was recorded during the reporting period.

Landscape and Visual

All the specified and affected LCAs, LRs and VSRs have been monitored during the reporting period. No exceedance of Action and Limit Levels of landscape and visual was recorded during the reporting period.

Cultural Heritage

Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Ecology

1 set of post-transplantation monitoring and audit for transplanted plants and receptor sites during normal weekdays of the reporting period was carried out. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Environmental Site Inspection

4 weekly environmental site inspections were carried out during the reporting period. A joint environmental site inspection was carried out by the representatives of the Employer's Representative (ER), the Contractor, IEC and the ET on 18 September 2023. The Contractor has generally implemented part of the mitigation measures as recommended. Two general site inspection on 7 & 13 September 2023 was conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG).

3. **Air Quality Monitoring**

3.1 **Construction Dust**

3.1.1 **Monitoring Requirement**

In accordance with the EM&A Manual, 1-hr & 24-hr Total Suspended Particulates (TSP) levels 3.1.1.1 should be measured at the designated air quality monitoring stations in every 6 days to ensure that any deteriorating air quality could be readily detected, and timely action shall be undertaken to rectify such situation. For 1-hr TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs. The specific time to start and stop the 24- hr TSP monitoring shall be clearly defined for each location.

3.1.2 Monitoring Parameters, Frequency and Location

- 3.1.2.1 According to the EM&A Manual, three monitoring stations namely AM(D)1, AM(D)2 and AM(D)3 are selected for the impact monitoring.
- A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including 3.1.2.2 the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at AM(D)1, AM(D)2 and AM(D)3, the adjusted stations at AM1, AM2 and AM3 were agreed with IEC prior to the baseline and impact monitoring. The locations of adjusted dust monitoring locations are shown in Figure 2.
- The detailed monitoring schedule is shown in **Appendix C**. The locations of dust monitoring 3.1.2.3 stations are shown in **Table 3-1**. The monitoring parameters, frequency and duration are shown in Table 3-2.

Table 3-1 **Locations of Dust Monitoring Stations**

Monitoring Station	Representative For	Monitoring Parameters
AM1	Tung Lo Hang	1-hr and 24-hr TSP
AM2	Heung Yuen Wai	1-hr and 24-hr TSP
AM3	Wo Keng Shan Tsuen	1-hr and 24-hr TSP

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

AM(D)1 Tung Lo Hang, AM(D)2 Heung Yuen Wai, AM(D)3 Wo Keng Shan Tsuen are the air monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative air monitoring locations (AM1, AM2 & AM3) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comment received from EPD.

Due to the adjustment of the location of AM(D)1, AM(D)2 & AM(D)3to AM1, AM2 & AM3, the measured air quality levels at AM1, AM2 & AM3 would represent the air quality levels at AM(D)1, AM(D)2 & AM(D)3.

Table 3-2 Dust Impact Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
AM4 AM9 AM9	1-hr TSP	At least 3 times per 6 days
AM1, AM2, AM3	24-hr TSP	1 time per 6 days

3.1.3 Monitoring Equipment

- 3.1.3.1 High volume samplers (HVSs) were used for carrying out 24-hr TSP monitoring. For 1-hr TSP monitoring, direct reading dust meters were used to measure 1-hr TSP levels.
- 3.1.3.2 **Table 3-3** summarises the equipment that were used in the dust monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 3-3 Dust Monitoring Equipment

Equipment	Model	Expiry Date	Monitoring Station	
	TE-5170X (S/N: 1105)	3 Nov 2023	AM1	
High Volume Sampler (HVS)	TE-5170X (S/N: 1106)		AM2	
	TE-5170X (S/N: 1856)		AM3	
	Sibata LD- 5R (S/N: 0Z4545)	2 Dec 2023		
	Sibata LD- 5R (S/N: 882106)		AM1 to AM3	
Direct Reading Dust Meter	Sibata LD- 5R (S/N: 882110)			
	Sibata LD- 5R (S/N: 942532)			
Calibration Kit (for HVS)	TE-5025A (S/N: 4166)	19 Jun 2024	AM1 to AM3	

Remarks:

The Expiry Date of Calibration Kit (for HVS) reflected that the calibration certificate fulfils the bi-monthly calibration interval requirement for the HVS.

3.1.4 Monitoring Methodology

1-hr TSP Monitoring

3.1.4.1 The 1-hr TSP impact monitoring was conducted using a portable direct reading dust meter.

Measuring Procedures

3.1.4.2 The measuring procedures of the 1-hr dust meter has been undertaken in accordance with the Manufacturer's Instruction Manual as follows:

Procedure of starting monitoring

- Place the 1-hr dust meter at least 1.3m above ground;
- Turn on the "On/Off" button at the side of instrument. Program will be changed to "BG" mode and leave it for 1 minute.
- Pull out the Suction adaptor and turn the button at the side. Cover with hand at the suction adaptor measure the background for 10 seconds.
- Press " UP" and " DOWN" for choosing "SPAM Mode" for SPAM Measurement.
- Press "Up" and "Down" to select "Measurement Mode" with 60 minutes interval and unit in ug/m3.
- Press "Start/Stop" to start monitoring.

Procedure of setting measurement timer

- Press "Up" or "Down" to find "Setting LOG".
- Select "Record Cycle" and change the record time subject to different project requirement. For example, setting the record cycle as 60 minutes for normal operation.
- Press "ESCAPE" back to the main page.
- Press "Up" or "Down" to access "Measurement Timer" and select "Measurement time" to change the time to 3 hours.
- Information such as sampling date, time, count value and site condition will be recorded during the monitoring period.

Calibration & Maintenance

- 3.1.4.3 The direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.
- 3.1.4.4 All digital dust indicator will be calibrated with on-site HVS annually. Calibration certificate will be provided after calibration. The Calibration process shall eyewitness with the representative of ET & IEC.

Quality Audit

- 3.1.4.5 Checklist of regular checking for digital dust meter will be conducted bi-weekly by environmental technician to ensure the all-digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- 3.1.4.6 Logbook is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.

24-hr TSP Monitoring

3.1.4.7 The 24-hr TSP monitoring has been conducted using a High-Volume Sampler (HVS).

Measuring Procedures

- 3.1.4.8 The HVS has been set-up at the monitoring location with a fixed power supply for operation. The measuring procedures of the 24-hr TSP measurements has been undertaken in accordance with the specifications listed in the EM&A Manual. Each HVS includes a motor, a filter holder, a flow controller and a sampling inlet in accordance with the performance specification of the USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50), Appendix B. The measuring procedures of the 24-hr dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - The power supply will be checked to ensure the HVS works properly;
 - The filter holder and the area surrounding the filter will be cleaned;
 - The filter holder will be removed by loosening the four bolts and a new filter on a supporting screen will be aligned carefully;
 - The filter will be properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts will be fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid will be closed and secured with the aluminium strip;
 - The HVS will be warmed-up to establish run-temperature conditions;
 - A new flowrate record sheet will be set into the flow recorder;
 - The programmable timer will be set for a sampling period of 24 hour, and the starting time, weather condition and the filter number will be recorded;
 - · The initial elapsed time will be recorded;
 - At the end of sampling, the sampled filter will be removed carefully and folded in halflength so that only surfaces with collected particulate matter will be in contact;
 - The sample will be placed in a clean plastic envelope and sealed;
 - All monitoring information will be recorded on a standard data sheet; and
 - The filters will be taken back to HOKLAS accredited laboratory for analysis.
- 3.1.4.9 In addition, site conditions and dust sources were recorded in a standard form for direct input into a database.

Calibration & Maintenance

- 3.1.4.10 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 3.1.4.11 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually.

The detail procedure of calibration of HVS is listed below:

- 1. Make sure the electrical circuit is connected properly. The motor should be directly connected to the power source.
- 2. Open the top cover and unlock the screws at the four corners.
- 3. Install the orifice and adapter plate to high volume air sample. Tighten the nut securely. Turn the knob of orifice clock-wise to close the four holes on the bottom open.
- 4. Hold the water manometer on the cover of mass flow controller vertically. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave opposite side of the manometer open to the atmosphere.
- 5. Turn on the sampler
- 6. Five flow rates are achieved by changing the different plates to change the resistance. Record the manometer reading and the reading from continuous flow recorder. At least 5 sets of data should be recorded.
- 3.1.4.12 The Calibration process shall eyewitness with the representative of ET & IEC.

3.1.5 Monitoring Results

3.1.5.1 The impact dust monitoring results are summarized in **Table 3-4** and **Table 3-5**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 3-4 Summary of Impact 1-hr TSP Monitoring Results

Dust Monitoring Station	Average 1-hr TSP Concentration, μg/m³ (Range)	Action Level, µg/m³	Limit Level, μg/m³
AM1	44 (36 – 54)	>285	>500
AM2	39 (36 – 42)	>279	>500
AM3	45 (36 – 53)	>285	>500

Table 3-5 Summary of Impact 24-hr TSP Monitoring Results

Dust Monitoring Station	Average 24-hr TSP Concentration, μg/m³ (Range)	Action Level, μg/m³	Limit Level, μg/m³
AM1	40 (32 – 48)	>164	>260
AM2	41 (30 – 53)	>152	>260
AM3	51 (36 – 67)	>163	>260

3.1.5.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance are shown in **Table 3-6**. The Notification of Environmental Quality Limits Exceedances are presented in **Appendix G**.

Table 3-6 Summary of Impact 1-hr & 24-hr TSP Exceedance during the reporting period

Dust	Parameter	4 hr TCD	24 hr TCD	Exceedance	
Monitoring Station	Level Exceedance	1-hr TSP	24-hr TSP	Count	
AM1	Action	0	0	0	
	Limit	0	0	0	
AM2	Action	0	0	0	
	Limit	0	0	0	
AM3	Action	0	0	0	
	Limit	0	0	0	

Remarks: * equal to non-project related

3.1.5.3 No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

3.1.6 Wind Data Monitoring

3.1.6.1 During the monitoring period. wind data from existing weather station in the vicinity of the designated monitoring location, i.e Ta Kwu Ling station operated by Hong Kong Observatory was adopted. It is considered that the wind data obtained from Ta Kwu Ling station are representative of the Project area and could be used for the construction dust monitoring programme for the Project. The results for wind data monitoring are presented in **Appendix H**.

3.1.7 Recommended Mitigation Measures

- 3.1.7.1 The recommended dust mitigation measures from EIA report are listed as followed:
 - The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.
 - Dust emission from construction vehicle movement is confined within the worksites area.

- Watering facilities will be provided at every designated vehicular exit point.
- Good site practice is recommended during construction phase.

3.1.8 **Event and Action Plan**

3.1.8.1 Should non-compliance of the criteria occur, action in accordance with the action plan in Table 3-7 shall be carried out.

Table 3-7 **Event and Action Plan for dust impact**

Event	ET	IEC	Contractor
Exceedance of Action Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures 	 Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform Contractor and IEC Repeat measurements to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Continue monitoring at daily intervals if exceedance is due to the Project If no exceedance for 3 consecutive days, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review with analysed results submitted by ET Review the proposed remedial measures by Contractor Supervise the implementation of remedial measures 	 Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate

Event	ET	IEC	Contractor
Exceedance of Limit Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below limit level Assess effectiveness of Contractor's remedial actions and keep EPD and IEC informed of the results 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor potential remedial actions Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform IEC and EPD the causes and actions taken for the exceedances Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and informed of the results Increase monitoring frequency to confirm findings If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss amongst ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works until the exceedance is abated

4 Noise Monitoring

4.1 Monitoring Requirement

4.1.1 In accordance with the EM&A manual, noise impact monitoring shall be carried out at 2 monitoring stations NM1 and NM2 once a week during normal construction working hour (0700-1900 Monday to Saturday). The minimum logging interval shall be 30 minutes with average of 6 consecutive Leq 5 mins. L10 and L90 shall also be measured at 5 mins intervals.

4.2 Monitoring Locations, Parameters and Frequency

- **4.2.1** According to the EM&A Manual, two monitoring stations namely NM1 and NM2 are selected for the impact monitoring.
- 4.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at NM1 and NM2, the adjusted stations at NM1a and NM2a were agreed with IEC prior to the baseline and impact monitoring. The noise monitoring locations are summarized in Table 4-1 and shown in Figure 2.
- **4.2.3** The detailed monitoring schedule is shown in **Appendix C**. The frequency and duration are shown in **Table 4-2**.

Table 4-1	Noise Monitoring Locations
-----------	----------------------------

Monitoring Station	Representative for	Type of Measurement
NM1a	Wo Keng Shan Tsuen	Free field
NM2a	Lin Ma Hang	Free field

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

NM1 Wo Keng Shan Tsuen & NM2 Lin Ma Hang are the noise monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative noise monitoring locations (NM1a & NM2a) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comments received from EPD. Noise measurement at NM1a & NM2a will be considered as free-field and a correction of +3dB(A) would be made to the noise monitoring results.

Due to the adjustment of the location of NM1 & NM2 to NM1a & NM2a, the measured noise levels at NM1 & NM2 would represent the noise levels at NM1 & NM2.

Table 4-2 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
NM1a and NM2a	L _{Aeq} (30mins) average of 6 consecutive L _{eq} (5min); L10 (5min) & L90 (5min)	Once a week during normal construction working hour (0700-1900 Monday to Saturday)

4.3 Monitoring Equipment

- 4.3.1 Integrating Sound Level Meters (SLMs) was used for noise impact monitoring. The SLM complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out noise monitoring. The accuracy of the SLM was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements shall be accepted as valid only if the calibration level from prior to and after the noise measurement agrees to within 1.0dB.
- **4.3.2** A portable wind speed meter was used for measuring wind speeds in m/s.
- **4.3.3 Table 4-3** summarises the equipment that have been used in the impact noise monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 4-3 Noise Monitoring Equipment

Equipment	Model	Expiry Date
Sound Level Meter	NTi XL2 (S/N: A2A-13663-F0)	14 Feb 2024
Sound Level Meter	NTi XL2 (S/N: A2A-17638-E0)	3 Apr 2024
Acoustic Calibrator	Rion NC-75 (S/N: 35124530)	1 Nov 2023
Anemometer	RS PRO RS-90 (S/N: 210722208)	12 Feb 2025

4.4 Monitoring Methodology

- **4.4.1** The details of noise measurement procedures are described as follows:
 - Free-field measurements were made at the monitoring locations.
 - For free field, the Sound Level Meter was set at a height of 1.2 m above the ground. The battery condition was checked to ensure the proper functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weighting: A
 - Time weighting: Fast
 - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
 - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after

measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.

- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
- All noise monitoring will be conducted with the wind speed not exceeding 5m/s and no gusts exceeding 10m/s.

Calibration & Maintenance

- **4.4.2** The sound level meter, sound calibrator, and anemometer should be properly maintained to ensure that the equipment and a continuous power supply were in good working condition. The sound level meter and sound calibrator will be calibrated annually. The anemometer will be calibrated two years interval in accordance with the HOKLAS Supplementary Criteria No.2. Calibration certificate will be provided after calibration.
- **4.4.3** The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

4.5 Monitoring Results

4.5.1 The impact noise monitoring results are summarized in **Table 4-4**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 4-4 Summary of Noise Monitoring Results during normal working hours (07:00-19:00, Monday to Saturday)

Noise Monitoring Station	Average Leq, 30min, dB(A) (Range)	Action Level	Limit Level	
NM1a	58.3 (56.6 – 59.3)	When one documented	75 (D/A)	
NM2a	53.6 (49.8 – 54.7)	complaint is received	>75dB(A)	

Remark:

- **4.5.2** No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **4.5.3** No particular observations are identified near the monitoring stations during the monitoring period.

^{(1) *} A correction of +3 dB(A) was made to the free field measurements

⁽²⁾ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

4.6 Recommended Mitigation Measures

- **4.6.1** The recommended noise mitigation measures from EIA report are listed as followed:
 - 1. Use of good site practices to limit noise emissions by considering the following:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;
 - Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
 - Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;
 - Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;
 - Mobile plant should be sited as far away from NSRs as possible and practicable;
 - Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from onsite construction activities.
 - 2. Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.

4.7 Event and Action Plan

4.7.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 4.5** shall be carried out.

Table 4-5 Event and action plan for construction noise monitoring

Event	ET	IEC	Contractor
Exceedance of Action Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Report the results of investigation to IEC, and Contractor Discuss with Contractor and IEC for formulate remedial measures Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	Submit noise mitigation proposals to IEC Implement the agreed noise mitigation proposals
Exceedance of Limit Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurements to confirm findings Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC and EPD informed of the results Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by project proponent until the exceedance is abated.

5 Water Quality Monitoring

5.1 Groundwater Monitoring

5.1.1 Monitoring Requirement

5.1.1.1 In accordance with the EM&A manual, groundwater quality monitoring shall be carried out at least once per month at the 35 designated groundwater monitoring locations (i.e ED1 to ED35). Based on the existing construction programme, site clearance and site formation works for future landfilling area are in progress. The groundwater monitoring locations ED1 to ED35 will be installed after the site formation work of the landfilling area. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

5.2 Surface Water Monitoring

5.2.1 Monitoring Requirement

5.2.1.1 In accordance with the EM&A manual, impact surface water quality monitoring was carried out at the two designated surface water discharge points (i.e WM1 and WM2) for once per month from commencement of construction works of the Project. An Additional impact surface water quality monitoring was carried out at WM2 and GR3 (EPD Monitoring Location) based the environmental complaint received on 14 September.

5.2.2 Monitoring Locations, Parameters and Frequency

- 5.2.2.1 Impact surface water monitoring was carried out at WM1 and WM2. Additional surface water monitoring was carried out at WM2 and GR3 (EPD Monitoring Location). The monitoring locations are indicated in **Table 5-1** and **Figure 2**.
- 5.2.2.2 The monitoring parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-2**. The additional parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-3**. Detailed monitoring schedule is presented in **Appendix C**.

Table 5-1 Surface water quality monitoring locations

Monitoring Station	Location	Coordinates (HK Grid)		
	Location	Easting	Northing	
WM1	Upstream of Lin Ma Hang River	836665	845020	
WM2	Ping Yuen River	835592	844186	
GR3*	Ping Yuen River	835361	844134	

Remarks:

[&]quot;*" The monitoring location only conducted based on the environmental complaint.

Table 5-2 Surface water quality monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, Alkalinity, COD, BOD ₅ , TOC, Ammonia-nitrogen, TKN, Nitrate, Sulphate, Sulphite, Phosphate, Chloride, Sodium, Mg, Ca, K, Fe, Ni, Zn, Mn, Cu, Pb, Cd, Coliform Count, Oil and Grease	Once per month

Table 5-3 Additional surface water quality monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, COD, BOD ₅ , Ammonia-nitrogen, Chloride, Fe, Zn, and Coliform Count	Based on the case of Environmental Complaint

5.2.3 Monitoring Equipment

5.2.3.1 The measurements of pH, electrical conductivity (EC), DO, turbidity, water temperature and air temperature were undertaken in situ. In situ monitoring instruments in compliance with the specifications listed under Section 5.5 of the EM&A Manual were used to undertake the surface water quality monitoring for the Project. **Table 5-4** summarises the equipment used in the impact surface water quality monitoring works. Copies of the calibration certificates are attached in **Appendix D**.

Table 5-4 Surface Water Quality Monitoring Equipment

Equipment	Model	Expiry Date
Water Quality Meter	HORIBA U-53 (S/N: PPHNOMXY)	21 Nov 2023
Water Flow Meter	Global Water FP211 (S/N: 22K100859)	6 Nov 2023

Remarks:

"TBC" equal to To Be Confirm

5.2.4 Summary of Surface Water Quality Monitoring Procedure

Operational/ Analytical Procedures

5.2.4.1 In general, water samples were collected from within 500 mm of the water surface. Water was collected by a small clean open-mouthed bucket with the lip pointing upstream. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on. For samples that were preserved with acid or alkalis prior to transport to the laboratory, the samples bottles were filled to the level specified by the analytical laboratory.

5.2.4.2 Analyses shall be carried out in accordance with methods described in ASTM or APHA - AWWA-WEF Standard.

Laboratory Analytical Methods

5.2.4.3 The testing of parameters presented in **Table 5-5** for all stations was conducted by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results. The detection limits are provided in **Table 5-5.**

Table 5-5 Surface Water Monitoring Detection Limits and Limit of Reporting

Parameters	Detection Limit (in EM&A Manual)	Limit of Reporting	Method Reference
pН	0.1	0.1	APHA 4500 H+ B
Electrical conductivity	1 μS/cm	1 μS/cm	APHA 2510 B
Alkalinity	1 mg/L	1 mg/L	APHA 2320 B
COD	10 mg/L	5 mg/L	APHA 5220 C
BOD ₅	3 mg/L	2 mg/L	APHA 5210 B
TOC	1 mg/L	1 mg/L	APHA 5310 B
SS	0.1 mg/L	0.1 mg/L	APHA 2540 D
Ammonia-nitrogen	0.2 mg/L	0.01 mg/L	APHA 4500 NH3 G
TKN	0.4 mg/L	0.1 mg/L	APHA 4500Norg: D
Nitrate	0.5 mg/L	0.01 mg/L	APHA 4500 NO3 I
Sulphate	5 mg/L	1 mg/L	USEPA 375.4
Sulphite	2 mg/L	2 mg/L	APHA 4500 SO3 B
Phosphate	0.01 mg/L	0.01 mg/L	APHA 4500-P B & F
Chloride	0.5 mg/L	0.5 mg/L	USEPA 325.1
Sodium	50 μg/L	50 μg/L	USEPA 6010C
Mg	50 μg/L	50 μg/L	USEPA 6010C
Са	50 μg/L	50 μg/L	USEPA 6010C
K	50 μg/L	50 μg/L	USEPA 6010C
Fe	50 μg/L	10 μg/L	USEPA 6010C
Ni	1 μg/L	1 μg/L	USEPA 6020A
Zn	10 μg/L	10 μg/L	USEPA 6020A
Mn	1 μg/L	1 μg/L	USEPA 6020A
Cu	1 μg/L	1 μg/L	USEPA 6020A
Pb	1 μg/L	1 μg/L	USEPA 6020A
Cd	0.2 μg/L	0.2 μg/L	USEPA 6020A
Coliform Count	1 cfu/ 100mL	1 cfu/ 100mL	DoE section 7.8, 7.9.4.1 & 3
Oil and Grease	5 mg/L	5 mg/L	APHA 5520 B

QA/ QC Requirements

5.2.4.4 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at the intervals according to manufacturer's requirement throughout all stages of the surface water quality monitoring programme. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three-month interval. Calibration of water flow is conducted annually. Responses of sensors and electrodes were checked with certified standard solutions before each use. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. For the on-site calibration of field equipment, the requirements of the BS 1427:2018, "Guide to on-site test methods for the analysis of waters" was observed.

Decontamination Procedures

5.2.4.5 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.

Sampling Management and Supervision

5.2.4.6 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Quality Control Measures for Sample Testing

- 5.2.4.7 The samples testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory:
 - · One method blank; and
 - One sample duplicate.

5.2.5 Monitoring Results

- 5.2.5.1 Impact surface water quality monitoring was conducted at WM1 and WM2 on 20 September 2023. The additional surface water quality monitoring was conducted at WM2 and GR3 (EPD Monitoring Location) on 28 September 2023. No adverse weather was observed during reporting period. The detailed monitoring schedule is shown in Appendix C.
- 5.2.5.2 The summary of monitoring results is presented in **Table 5-6** and **Table 5-7**. Detailed monitoring results at each monitoring station and graphical presentations of surface water quality (DO, SS and Turbidity) at the monitoring stations are given in **Appendix E** and **Appendix F**.
- 5.2.5.3 No particular observations are identified near the monitoring stations during the monitoring period.

Summary of Impact Surface Water Monitoring Results Table 5-6

	Monitoring Station						
Monitoring	WM1 WM2						
Parameter(s)	Monitoring Results	Action Level	Limit Level	Monitoring Results	Action Level	Limit Level	
рН	7.2	>7.7	>7.8	7.2	>7.6	>7.7	
DO in mg/L	7.8	<7.4	<4	7.6	<5	<4	
Turbidity in NTU	4.3	>9.2	>9.5	12.0	>108.3	>108.9	
Electrical Conductivity in µS/cm	47			125			
SS in mg/L	3.0	>9.7	>11.4	7.6	>94.5	>94.7	
Alkalinity in mg/L	11			31			
COD in mg/L	9			6			
BOD₅ in mg/L	<2			<2			
TOC in mg/L	2			2			
Ammonia-nitrogen in mg/L	0.04			0.13			
TKN in mg/L	0.4			0.3			
Nitrate in mg/L	0.05			0.24			
Sulphate in mg/L	4			20			
Sulphite in mg/L	<2			<2			
Phosphorus in mg/L	0.02			<0.01			
Chloride in mg/L	6			4			
Sodium in µg/L	6340						
Magnesium in μg/L	430	-		1290			
Calcium in µg/L	<0.2			<0.2			
Potassium in µg/L	680			1450			
Iron in μg/L	270			670			
Nickel in µg/L	<1			<1			
Zinc in µg/L	14			10			
Manganese in µg/L	32			563			
Copper in µg/L	1						
Lead in ⊬g/L	<1						
Cadmium in µg/L	<0.2			<0.2			
Coliform Count in cfu/100mL	240						
Oil and Grease in mg/L	<5			<5			

Table 5-7 Summary of Additional Impact Surface Water Monitoring Results

	Monitoring Station					
Monitoring Parameter(s)		GR3 (EPD Monitoring Location)				
	Monitoring Results	Monitoring Results				
рН	7.5	>7.6	>7.7	7.4		
DO in mg/L	7.8	<5	<4	7.6		
Turbidity in NTU	8.8	>108.3	>108.9	13.1		
Electrical Conductivity in µS/cm	71			108		
SS in mg/L	5.5	>94.5 >94.7		4.9		
COD in mg/L	<5			6		
BOD₅ in mg/L	<2			<2		
TOC in mg/L	2			2		
Ammonia-nitrogen in mg/L	0.12		0.10			
Iron in µg/L	910		670			
Zinc in µg/L	13		20			
Coliform Count in cfu/100mL	3400			380		

- 5.2.5.4 No exceedance of Action and Limit Level of surface water quality at designated locations was recorded during the reporting period. The Notification of Environmental Quality Limits Exceedance is presented in **Appendix G**.
- 5.2.5.5 The Summary of Impact Surface Water Quality Exceedance are shown in Table 5-8.

Table 5-8 Summary of Impact Surface Water Quality Exceedance during the reporting period

Water	Parameter					F
Quality Monitoring Station	Level Exceedance	pН	DO	Turbidity	SS	Exceedance Count
WM1	Action	0	0	0	0	0
	Limit	0	0	0	0	0
WM2	Action	0	0	0	0	0
	Limit	0	0	0	0	0

Remarks:

- (1) # The investigation results will be presented in the report after the investigation.
- (2) * equal to non-project related

5.2.6 Recommended Mitigation Measure

- 5.2.6.1 The recommended surface water mitigation measures from EIA report are listed as followed:
 - Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.

- The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows.
- The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.
- All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads.
- Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
- Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

5.2.7 Implementation of the temporary surface water drainage system

- 5.2.7.1 The site inspection and audits were carried out by ER, IC, ET & Contractor on weekly basis (IEC on monthly basis) to monitor the construction progress, maintenance performance and effectiveness of temporary surface water drainage system in the Project Site to fulfil the FEP Condition 2.13, EP Condition 2.15 and the section 5.2.1.1 of the EM&A Manual. The layout of the temporary surface water drainage system is presented in Appendix Q. The joint environmental site inspection records are shown in Appendix J.
- 5.2.7.2 All construction site runoff would be treated by silt removal facilities to fulfil the requirement of WPCO licenses from the project. Construction site runoff from the project after treatment was discharged to Ping Yuen River. The surface water monitoring results at WM2 (after the discharge point of silt removal facilities) can reflect the water quality at Ping Yuen River during the reporting period.

5.2.8 Event and Action Plan

5.2.8.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 5-9** shall be carried out.

Table 5-9 Event and Action Plan for Water Quality

Event	ET	IEC	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Repeat measurement on next day of exceedance 	Verify Notification of Exceedance Check monitoring data and Contractor's working methods	Rectify unacceptable practice Amend working methods if appropriate
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Discuss with Contractor and IEC for remedial measures Ensure mitigation measures are implemented Increase the monitoring frequency to daily until no exceedance of Action level Repeat measurement on next day of exceedance 	 Verify Notification of Exceedance Check monitoring data and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Submit proposal of additional mitigation measures to IEC of notification Implement the agreed mitigation measures Amend proposal if appropriate

Event	ET	IEC	Contractor
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted By ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted by ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures Resubmit proposals if problem still not under control Slow down or to stop relevant activity until exceedance is abated

6 Waste Management

- 6.1.1 Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials were made up of general refuse, steels and paper/cardboard packaging materials. Steel materials generated from the Project were also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Appendix I.
- 6.1.2 A total of 42,676 tonnes of C&D materials was reused at alternative disposal ground (NENT Landfill) during the reporting period. No Yard waste (collected to Y-Park) was generated during the reporting period. A total of 33.38 tonnes of general refuse and No non-recyclable yard waste was generated during the reporting period. The general refuse generated from the Project were disposed of at the NENT Landfill.
- **6.1.3** The recommended waste management mitigation measures from EIA report are listed as followed:
 - Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010.
 - Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills.
 - Proper areas should be designated for waste segregation and storage wherever site conditions permit.
 - Maximise the use of reusable steel formwork to reduce the amount of C&D material.
 - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement.
 - On-site sorting and segregation facility of all type of wastes is considered as one
 of the best practice in waste management and hence, should be implemented in
 all projects generating construction waste.
 - The sorted public fill and C&D waste should be properly reused.
 - Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather.

7 Landfill Gas Monitoring

7.1 Monitoring Requirement during Construction

Monitoring for Construction Works

- 7.1.1 Intrinsically safe portable gas detectors should be used during or when working in any confined spaces, which have the potential for presence of LFG and risk of explosion or asphyxiation. The monitoring equipment should alarm, both audibly and visually, when the concentrations of the following gases were exceeded:
 - CH₄: >10% Lower Explosion Limit (LEL);
 - CO₂: >0.5%; and
 - O₂: <18% by volume.

7.2 Monitoring Locations

- 7.2.1 During the construction works within the NENT Landfill Extension site with excavation of 1m deep or more, LFG concentrations should be monitored before entry and periodically during the progress of works. If drilling is required, the procedures for safety management and working procedures as stipulated in EPD's Landfill Gas Hazard Assessment Guidance Note should be strictly adopted.
- **7.2.2** The monitoring frequency and areas to be monitored should be set down prior to commencement of groundworks by the Safety Officer. All measurements in excavations should be made with the monitoring tube located not more than 10mm from the exposed ground surface. Monitoring of excavations should be undertaken as follows:
- **7.2.3** For excavation works deeper than 1m, measurements should be made:
 - · at ground surface prior to excavation;
 - immediately before any worker enters the excavation;
 - at the beginning of each working day for the entire period the excavation remains open; and
 - periodically through the working day whilst workers are in the excavation.
- **7.2.4** For excavation between 300mm and 1m deep, measurements should be made:
 - · directly after the excavation has been completed; and
 - periodically whilst the excavation remains open.
- **7.2.5** For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer.
- **7.2.6** The locations of LFG monitoring locations during reporting period are shown in **Table 7-1**. The Site formation layout plan is shown in **Figure 2** and the Layout of LFG monitoring locations is presented in **Figure 3**.

Table 7-1 Locations of LFG Monitoring during reporting period

Monitoring Location	Type of works
Portion A +50 mpD to 70 mpD Platform	Excavation Works

7.3 Monitoring Equipment

7.3.1.1 Gas Detector was used for carrying out LFG monitoring for Construction Works. **Table 7-2** summarises the equipment that were used in the LFG monitoring programme. The calibration certificates are shown in **Appendix D**. The detection limits are provided in **Table 7-3**.

Table 7-2 LFG Monitoring Equipment

Monitoring Parameters	Equipment	Model	Expiry Date
CH ₄ & O ₂	Gas Detector	PS200 (S/N: 373075)	16 Nov 2023
CO ₂	Gas Analyser	GEM5000 (S/N: G505207)	30 Aug 2024

Table 7-3 Landfill Gas Monitoring Detection Limits

Parameters	Detection Limit
CH ₄	1% LEL
O ₂	0.1%
CO ₂	0.1%

7.4 Event and Action Plan (EAP)

7.4.1 Should non-compliance of the criteria occur, action in accordance with the action plan in Table 7-4 shall be carried out.

Table 7-4 Action Plan for the monitoring during construction phase

Parameter	Monitoring Result	Action
	Action Level <19% O ₂	Ventilate trench/void to restore O ₂ to >19%
Oxygen (O ₂)	Limit Level <18% O ₂	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore O ₂ to >19%
	Action Level >10% LEL*	Prohibit hot works Increase ventilation to restore CH ₄ to <10% LEL
Methane (CH₄)	Limit Level >20% LEL*	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore CH ₄ to <10% LEL
	Action Level** >0.5%** CO ₂	Ventilate to restore CO ₂ to <0.5%
Carbon dioxide (CO ₂)	Limit Level >1.5% CO ₂	Stop works Evacuate personnel / prohibit entry Increase ventilation to restore CO ₂ to <0.5%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

Depending on the baseline CO₂ levels, the Action Level at a particular location will be changed.

^{**} This Action Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

7.5 Monitoring Results

- **7.5.1** The LFG monitoring was carried out two rounds (at the beginning of works in the morning and after lunch) at the working days. The monitoring period of each round of LFG monitoring is around 5 minutes.
- **7.5.2** The LFG monitoring was conducted at Portion A +50 mpD to 70 mpD Platform in September 2023 (Conducted on working days). The LFG monitoring results are summarized in **Table 7-5**.

Table 7-5 Summary of LFG Monitoring Results

Table 7-5	Summary o	f LFG Monitori	ng Results		
LFG	Monitoring		Monitorin	g Parameter(s)	
Monitoring	Date	CH ₄ in %	LEL in %/v	CO ₂ in %	O₂ in %
Station			Average Mo	nitoring Results	
	4 Sep 2023	0	0	0	20.2
	5 Sep 2023	0	0	0	20.1
	6 Sep 2023	0	0	0	20.2
	7 Sep 2023	0	0	0	20.2
	9 Sep 2023	0	0	0	20.2
	11 Sep 2023	0	0	0	20.2
	12 Sep 2023	0	0	0	20.2
	13 Sep 2023	0	0	0	20.2
	14 Sep 2023	0	0	0	20.2
	15 Sep 2023	0	0	0	20.2
Portion A +50	16 Sep 2023	0	0	0	20.2
mpD to 70 mpD Platform	18 Sep 2023	0	0	0	20.1
'	19 Sep 2023	0	0	0	20.2
	20 Sep 2023	0	0	0	20.1
	21 Sep 2023	0	0	0	20.2
	22 Sep 2023	0	0	0	20.1
	23 Sep 2023	0	0	0	20.1
	25 Sep 2023	0	0	0	20.2
	26 Sep 2023	0	0	0	20.2
	27 Sep 2023	0	0	0	20.1
	28 Sep 2023	0	0	0	20.1
	29 Sep 2023	0	0	0	20.1
Action	Level	>10% LEL		>0.5%** CO ₂	<19%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

- **7.5.3** No exceedance of Limit Levels of LFG was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **7.5.4** No effect that arose from the other special phenomena and work progress of the concerned site was noted during the current monitoring month.

7.6 Recommended Mitigation Measures

7.6.1 The recommended landfill gas mitigation measures from EIA report are listed as followed:

^{**} This Limit Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

- Special LFG precautions should be taken due to close proximity of NENT landfill
 extension site to existing landfill to avoid potential hazards of LFG exposure (ignition,
 explosion, asphyxiation, toxicity).
- Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.
- No smoking or burning should be permitted on-site.
- Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.
- No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.
- Adequate fire fighting equipment should be provided on-site.
- Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.
- Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.
- 'Permit to Work' system should be implemented.
- Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.

8 Landscape and Visual

8.1 Monitoring Requirement

- 8.1.1 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.
- **8.1.2** All relevant environmental mitigation measures listed in the approved EIA Report and the EM&A Manual and their implementation status are summarised in **Appendix K**.

8.2 Result and Observation

- **8.2.1** Measures to mitigate the landscape and visual impacts during the construction phase has been checked to ensure compliance with the intended aims of the measures within the reporting period. The progress of the engineering works are regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken.
- 8.2.2 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

9 Cultural Heritage

- 9.1.1 The Mitigation measures for preservation of the cultural landscape feature located within the project area was conducted before commencement of construction of the project based on the requirement of Survey Report and Mapping Records for Boulder Paths BP1 & 2 & Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX.
- **9.1.2** The survey and mapping works carried out on 23 August 2022 and the verification works carried out on 23 August 2022 confirmed that both 2 boulder paths BP1 and BP2 are fall outside the site boundary and the Project area.
- 9.1.3 All the affected graves within the waste boundary have been removed in accordance with section 119(1) of the Public Health and Municipal Services Ordinance (Cap 132). Removal of the graves as shown on Figure 2 attached to the FEP was proven by the visit of graves on 8 July 2022. All the graves as shown on Figure 2 attached to the FEP were abandoned and removed and no mitigation or preservation measures is necessary.
- 9.1.4 The Survey Report and Mapping Records for Boulder Paths BP1 & 2 was certified by ET on 10 Oct 2022, was verified by IEC and submitted to EPD on 12 Oct 2022. The Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX was certified by ET, was verified by IEC and submitted to EPD on 15 Oct 2022. No later than four weeks before commencement of construction of the project in accordance with Condition 2.4 of the FEP-01/292/2007.
- 9.1.5 Implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit. The permanent fencing locations are shown in Appendix M. In case of any presence of undiscovered grave during construction phase, AMO will be informed as soon as possible.

10 Ecological Monitoring

- 10.1.1 The post-transplantation monitoring was conducted on 15 Sep 2023 based on the requirement of the approved Transplantation Proposal for Plant Species of Conservation Importance (Rev.1). The 14th Post-transplantation Monitoring and Audit Report (15th Sep 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in **Appendix N**. During the reporting period, the numbers, measurements, and health conditions of the transplanted plant species are recorded.
- **10.1.2** The post-translocation monitoring has been completed in July 2023. No further post-translocation monitoring will be conducted in accordance with the requirements of the Revised Translocation Proposal for the Endemic Freshwater Crab *Somanniathelphusa zanklon*.
- **10.1.3** The details of requirements, monitoring results and site inspection with photos for the post-translocation monitoring and post-transplantation monitoring would be reported separately.
- **10.1.4** The milestone of the ecological monitoring is presented in **Table 10-1**. The softcopies of the submissions are provided in https://www.nentx-ema.com/ep-submissions/.

Table 10-1 Milestone of the Ecological Monitoring

Type of Monitoring	Monitoring Event No.	Monitoring Date	
Post-	1 st	24 Nov 2022	
transplantation	2 nd	9 Dec 2022	
Monitoring	$3^{\rm rd}$	21 Dec 2022	
	4 th	13 Jan 2023	
	5 th	26 Jan 2023	
	6 th	8 Feb 2023	
	7 th	24 Feb 2023	
	8 th	20 Mar 2023	
	9 th	21 Apr 2023	
	10 th	12 May 2023	
	11 th	16 Jun 2023	
	12 th	18 Jul 2023	
	13 th	11 Aug 2023	
	14 th	15 Sep 2023	
Post-	1 st (Aug 2022)	29 Aug 2022	
translocation	2 nd (Sep 2022)	28 Sep 2022	
Monitoring	3 rd (Oct 2022)	28 Oct 2022	
	4 th (Nov 2022)	22 Nov 2022	
	5 th (Dec 2022)	29 Dec 2022	
	6 th (Jan 2023)	30 Jan 2023	
	7 th (Feb 2023)	24 Feb 2023	
	8 th (Mar 2023)	20 Mar 2023	
	9 th (Apr 2023)	19 Apr 2023	
	10 th (May 2023)	17 May 2023	
	11 th (Jun 2023)	7 Jun 2023	
	12 th (Jul 2023)	12 Jul 2023	

11 Site Inspection and Audit

- **11.1.1** Site Inspection and audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project Site.
- 11.1.2 Weekly ET environmental site inspections were conducted in the reporting period on 04, 11, 18 & 25 August 2023. A joint environmental site inspection was carried out by the representatives of the ER, the Contractor, IEC and the ET on 18 September 2023. The joint environmental site inspection records are shown in Appendix J. There was no noncompliance recorded during the site inspections.
- **11.1.3** Major findings and recommendations are summarized as follows:

04 September 2023

Observation(s):

- Over loading of accumulated waste was found at the waste skip of Portion D.
 The contractor was recommended to increase the frequency of waste collection and the amount of waste skip to avoid over loading condition of waste skip at Portion D.
- Dust drift was found at the assess road of Portion A when vehicle moving. The contractor was advised to increase the frequency of water spraying at the assess road of Portion A.
- The exposed slope surfaces at Portion B2 were not covered by impervious sheets. The contractor was recommended to cover the exposed slope surfaces at Portion B2 by impervious sheet.

11 September 2023

Observation(s):

- Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3. The Contractor should review the effectiveness of setting up sandbag barriers and modify measures to prevent the discharge of surface runoff in both short term and long term. The Contractor was advised to stop the discharge of surface runoff to channel immediately by using any mitigation measures they found appropriate. In long term, the Contractor has been recommended to construct earth bund along the channel to prevent this situation happening again.
- The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast. The Contractor was advised to cover the stockpiles with impervious sheet when they are idle.
- The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken. The broken or collapsed silt fence should be replaced and properly set up after the heavy rainfall from last week.

18 September 2023

Observation(s):

- The demolished tree, shrub or vegetation in Portion B2 should be covered with impervious sheets or placed within a shelter. The Contractor was reminded to cover the demolished tree, shrub or vegetation with impervious sheets or placed within a shelter.
- The dry PFA in Portion B2 should be covered entirely with impervious sheets.
 The Contractor was reminded to cover dry PFA entirely with impervious sheets.
- The metal plate at the vehicle entrance in Portion B2 should cover unpaved road surface in Portion B2. Vehicle entrance should be paved with concrete, bituminous materials, hardcore or metal plates, and kept clear of dusty materials.
- General refuse and non-inert waste should be stored in enclosed bins or compaction unit. General waste generated on-site should be stored in enclosed bins or compaction units separately from the construction and chemical wastes.
- Empty chemical containers in Portion E3 should be properly stored before the disposal. The Contractor was reminded to properly store empty chemical container before disposal.
- Sediment/ silt traps shall be incorporated in the temporary drainage system to enhance retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions. The Contractor was advised to reconstruct the demolished sedimentation basin to act as silt trap and to achieve 5 minutes of retention time under maximum flow condition.
- The main haul road in Portion E4 was dry ad dusty. The Contractor was advised to schedule watering and recommended to install water sprinklers or mist spray in long term.

25 September 2023

Observation(s):

- The main haul road and work site should be wetted regularly to minimize the dust dispersion. The Contractor was reminded to switch on the water sprinklers along the haul road in SBA and to schedule watering for unpaved haul road and work area. The Contractor has been advised to increase the frequency of watering if necessary under the hot weather condition to minimize dust dispersion.
- Chemical spillage was observed at Portion E4 and chemical containers should be placed on the drip tray. The Contractor was reminded to dispose chemical waste and provide drip tray for all chemical containers.
- The exposed slope surface along the channel should be paved to reduce SS level in the wastewater. The Contractor was recommended to shotcrete the exposed slope surface along the channel to reduce SS level in the wastewater.
- The accumulated sand or silt in the outlet of the silt removal facility at Portion A should be removed. The Contractor was advised to clear the accumulated sand or silt in the outlet of the silt removal facility at Portion A.

11.1.4 Two general site inspection on 7 & 13 September 2023 were conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG).

12 Environmental Non-conformance

12.1 Summary of Monitoring Exceedance

Air Quality, Noise, Surface Water Quality Monitoring & Landfill Gas Monitoring

12.1.1 No exceedance of the Action Levels and Limit Level were recorded at designated monitoring stations during the reporting period. The Notification of Environmental Quality Limits Exceedance is presented in **Appendix G**.

12.2 Summary of Environmental Non-compliance

12.2.1 One warning regarding suspected non-compliance event with Condition 1.7 and 2.15(a) of the EP & Condition 1.7 and 2.13(a) of the FEP-01 & FEP-02 was recorded during the reporting period. The related rectified actions are being taken in progress by the contractor.

12.3 Summary of Environmental Complaint

12.3.1 One complaint received on 14 September 2023 was recorded during the reporting period.

Environmental Complaint on 14 September 2023

- 12.3.2 The complaint about the water aspect was received by ET on 14 September 2023 at 17:17 via EPD-RNG email. The main content of the complaint mentioned the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Point from EPD). In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions should be conducted by the contractor as soon as possible.
- 12.3.3 The cumulative statistics on environmental complaints are presented in Table 12-1.

Table 12-1 Cumulative Statistics on Environmental Complaints

Reporting	Environmental Aspects					No. of Environmental
Period	Air Quality	Noise	Water Quality	Waste	Ecology	Complaints
Sep 2023	0	0	1	0	0	0
Accumulate of project	1*	0	5(1*)	0	0	6(2*)

Remarks:

- (1) * equal to non-project related after the investigation
- (2) # equal to the investigation results will be presented in the report after the investigation.
- **12.3.4** Cumulative complaint / enquiry log, Summaries of complaints and enquiries & Environmental complaint reports are presented in **Appendix P**.

12.4 Summary of Environmental Summons and Successful Prosecution

12.4.1 No summons and successful prosecution were received during the reporting period.

13 Implementation Status on Environmental Mitigation Measures

13.1 General

13.1.1 The Contractor has generally implemented part of environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual and the contract documents. The implementation status during the reporting period is summarized in **Appendix K**.

13.2 Temporary Surface Water Drainage System (TSWDS)

13.2.1 The effectiveness of the TSWDS is keeping reviewing and improve by the contractor. The layout of the TSWDS is presented in **Appendix Q**.

13.3 Hydroseeding

13.3.1 The implementation of hydroseeding at the site boundary is keeping conducting by the contractor. The layout of implementation of hydroseeding is presented in **Appendix Q**.

13.4 Slope Surface Protection

13.4.1 The implementation of measure for control of construction runoff is keeping conducting by the contractor. The layout & photo record of implementation of measure for control of construction runoff is presented in **Appendix Q**.

14 Future Key Issues

15.2 Key Issues for the Coming Month

- 15.2.1 Works to be undertaken for the coming monitoring periods are summarized below. Detailed construction activities and locations are summarized in **Appendix L**.
 - Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
 - Construction of site buildings at Portion D
 - Site clearance at Portion A, B2/E1, E3-1 & E4
 - Installation of permanent fencing at Portion A, B1 & E4
 - Site formation at Portion A & E3-1
 - Tree felling at Portion B2/E1, E3-1 & E4
 - Shotcreting (Permanent and Temporary)
- Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

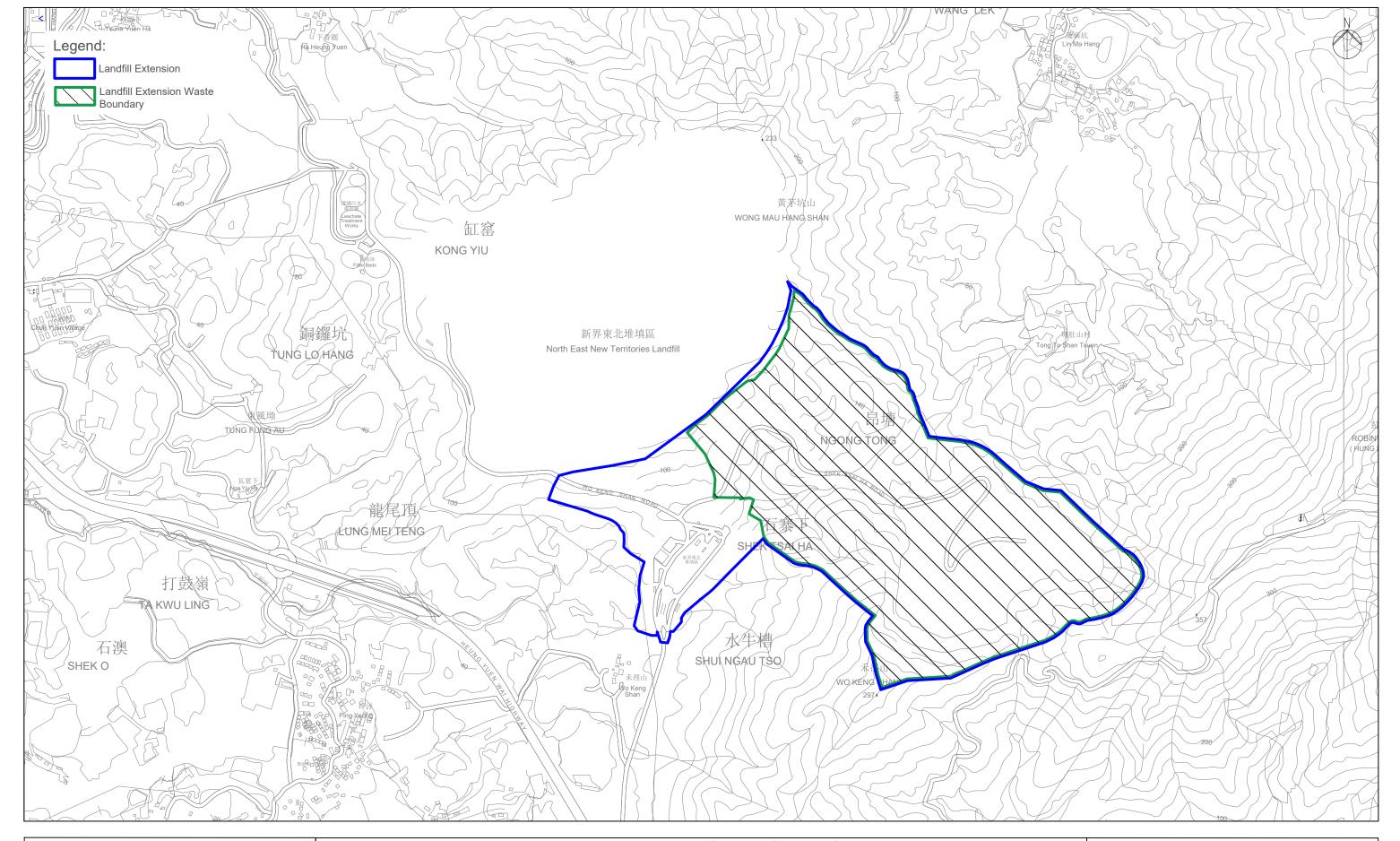
15.3 Monitoring Schedule for the Next Month

15.3.1 The tentative schedule of environmental monitoring for the next reporting period is presented in **Appendix C**.

15.4 Construction Programme for the Next Month

15.4.1 The most updated construction programme for the Project is presented in **Appendix A**.

16 Conclusion

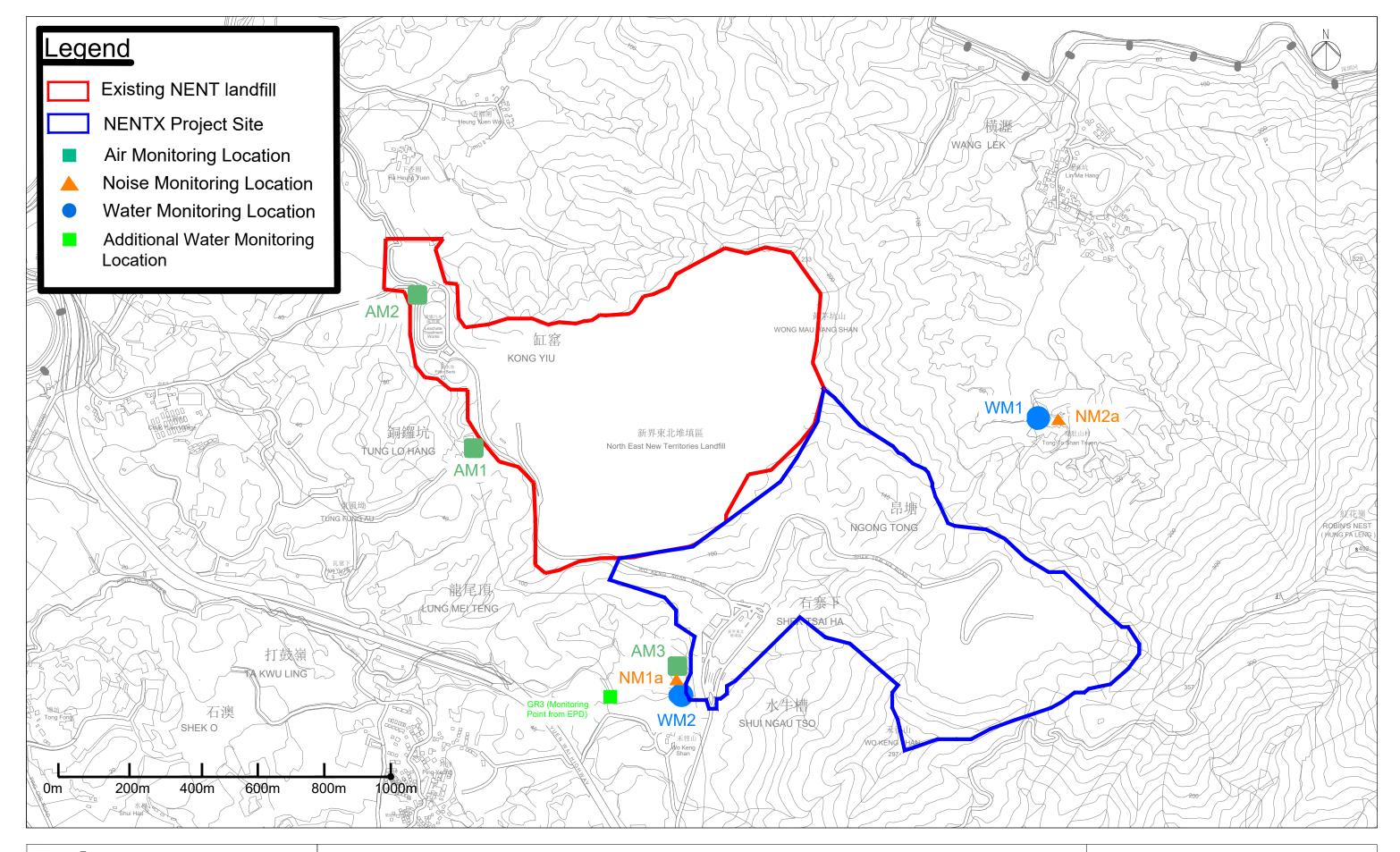

- 16.1.1 1-hr & 24-hr TSP impact monitoring was carried out in the reporting month. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.
- 16.1.2 Construction noise monitoring was carried out in the reporting month. No Action / Limit Level exceedance at NM1a & NM2a was recorded during the period.
- 16.1.3 Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.
- 16.1.4 Surface Water Quality Monitoring was carried out in the reporting month. No Action / Limit Level exceedance of surface water quality was recorded during the reporting period.
- 16.1.5 Landfill Gas Monitoring was carried out in the reporting month. No exceedance of Limit Levels of LFG was recorded during the reporting period.
- 16.1.6 In terms of cultural heritage, implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit in the reporting period. All the mitigation measures are in order.
- 16.1.7 Post-transplantation monitoring was carried out in the reporting month. The numbers, measurements and health conditions of the transplanted species are recorded.
- 16.1.8 Four environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for Permit/ Licenses were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 16.1.9 One complaint received on 14 September 2023 was recorded during the reporting period.

Environmental Complaint on 14 September 2023

- 16.1.10 The complaint about the water aspect was received by ET on 14 September 2023 at 17:17 via EPD-RNG email. The main content of the complaint mentioned the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Point from EPD). In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions should be conducted by the contractor as soon as possible.
- 16.1.11 One warning regarding suspected non-compliance event with Condition 1.7 and 2.15(a) of the EP & Condition 1.7 and 2.13(a) of the FEP-01 & FEP-02 was recorded during the reporting period. The related rectified actions are being taken in progress by the contractor.

- 16.1.12 No notification of summons and prosecution was received during the reporting period.
- 16.1.13 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Figure 1 Location of the Project Site

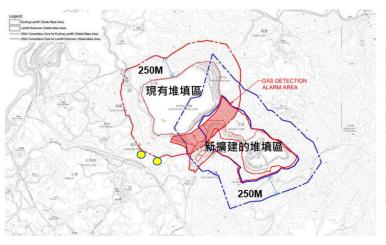


North-East New Territories (NENT) Landfill Extension Location Plan of the Project Site

Figure 1.1

Scale: 1:10000

Figure 2 Impact Air Quality, Noise & Surface Water Quality Monitoring Locations



North East New Territories (NENT) Landfill Extension Impact Monitoring Location

Figure 3 Landfill Gas Monitoring Locations

Gas Monitoring Point • Monitoring Frequency: 2 times per day

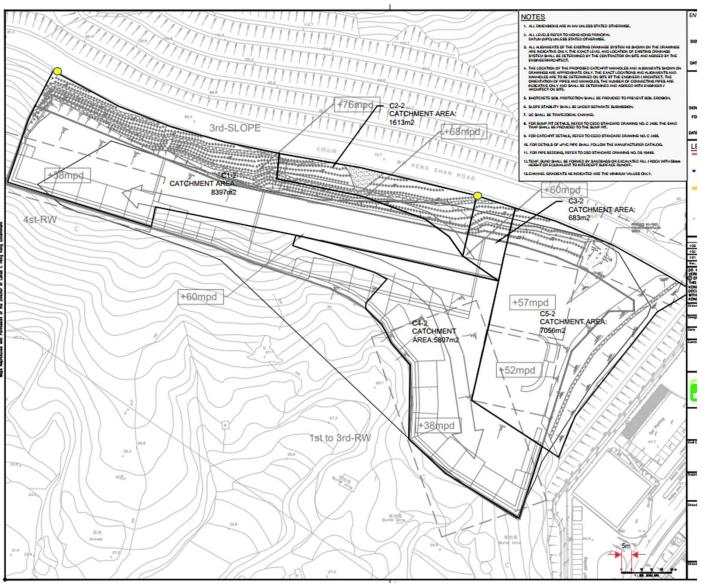
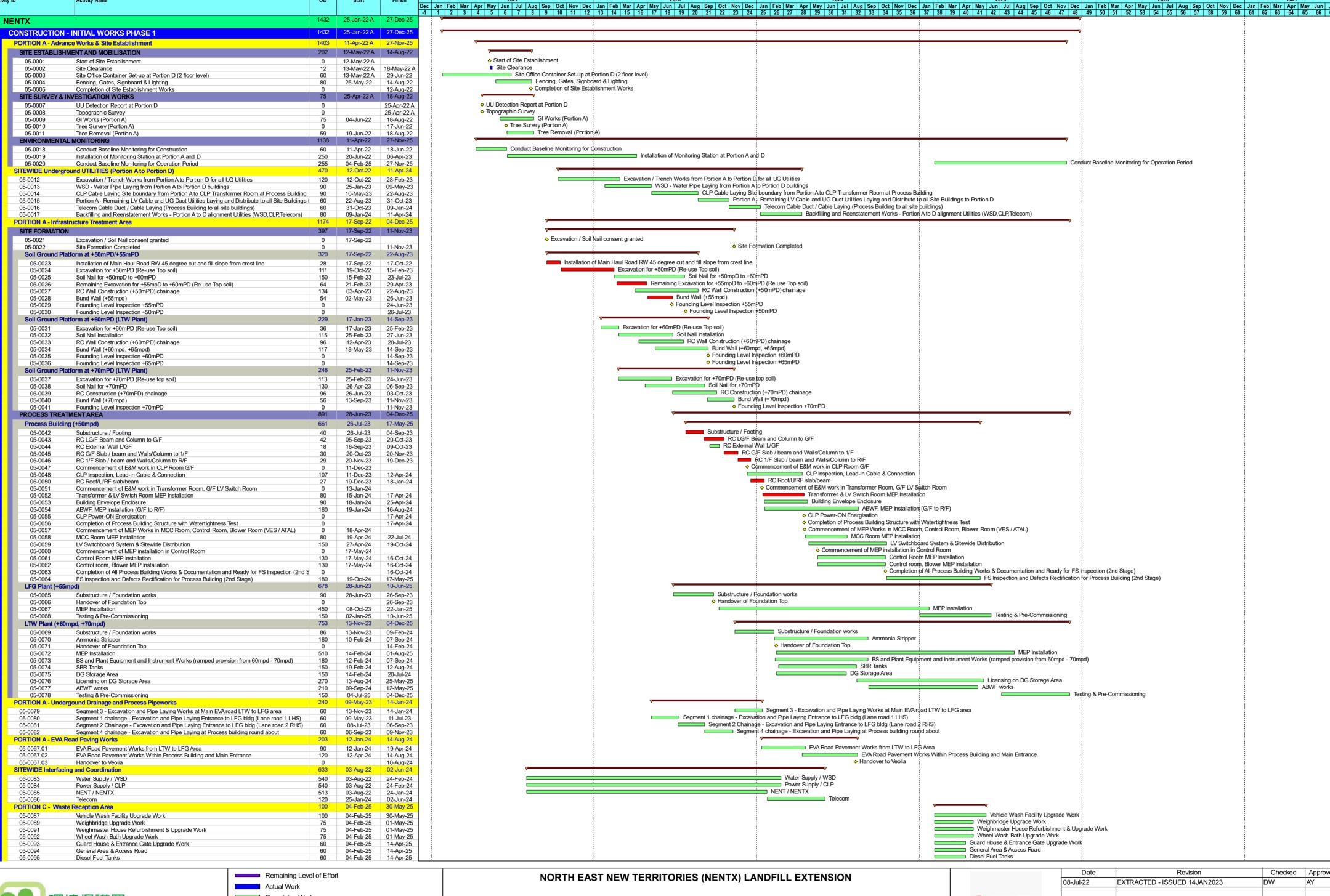
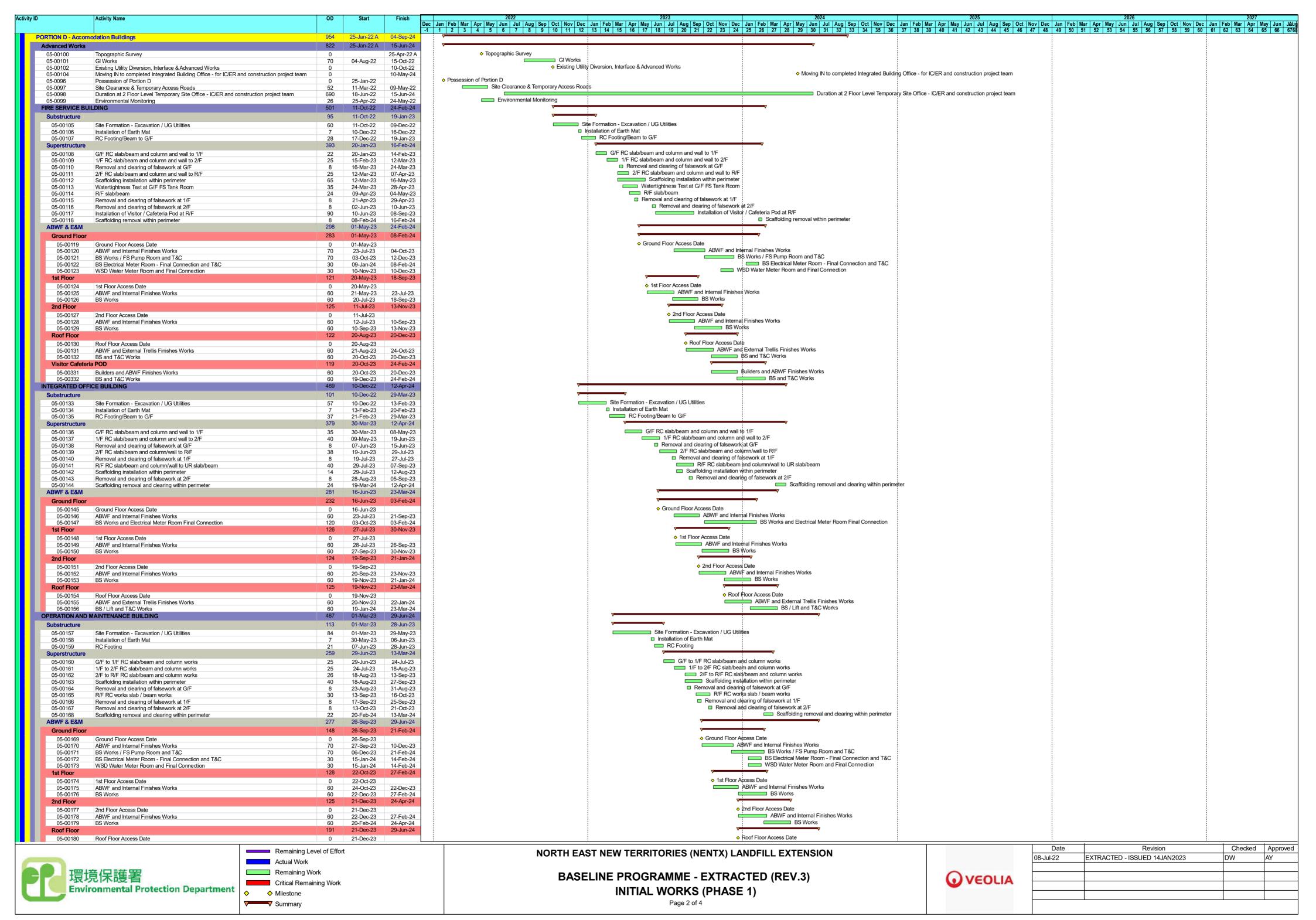
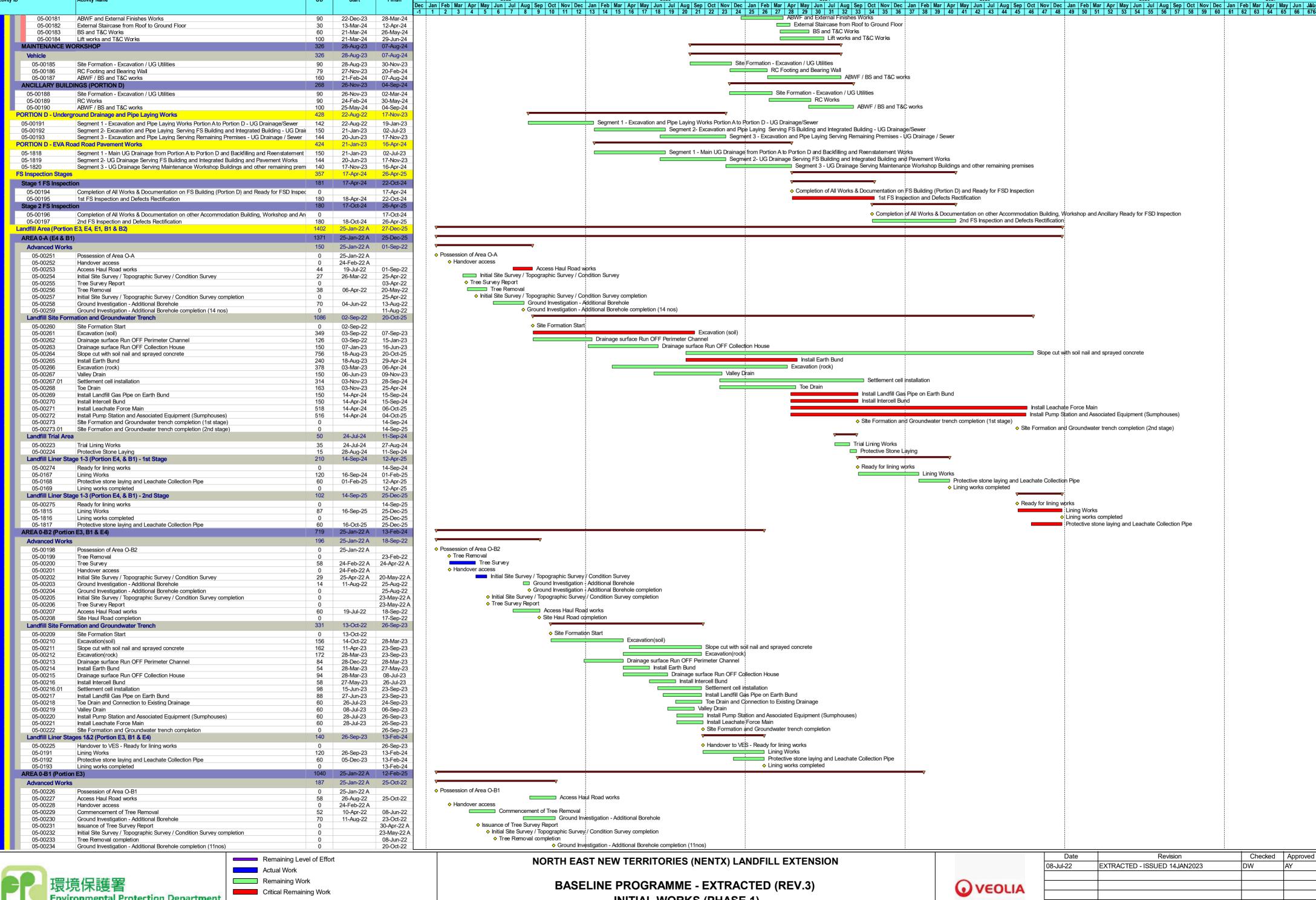



Figure 3 Landfill Gas Monitoring Locations

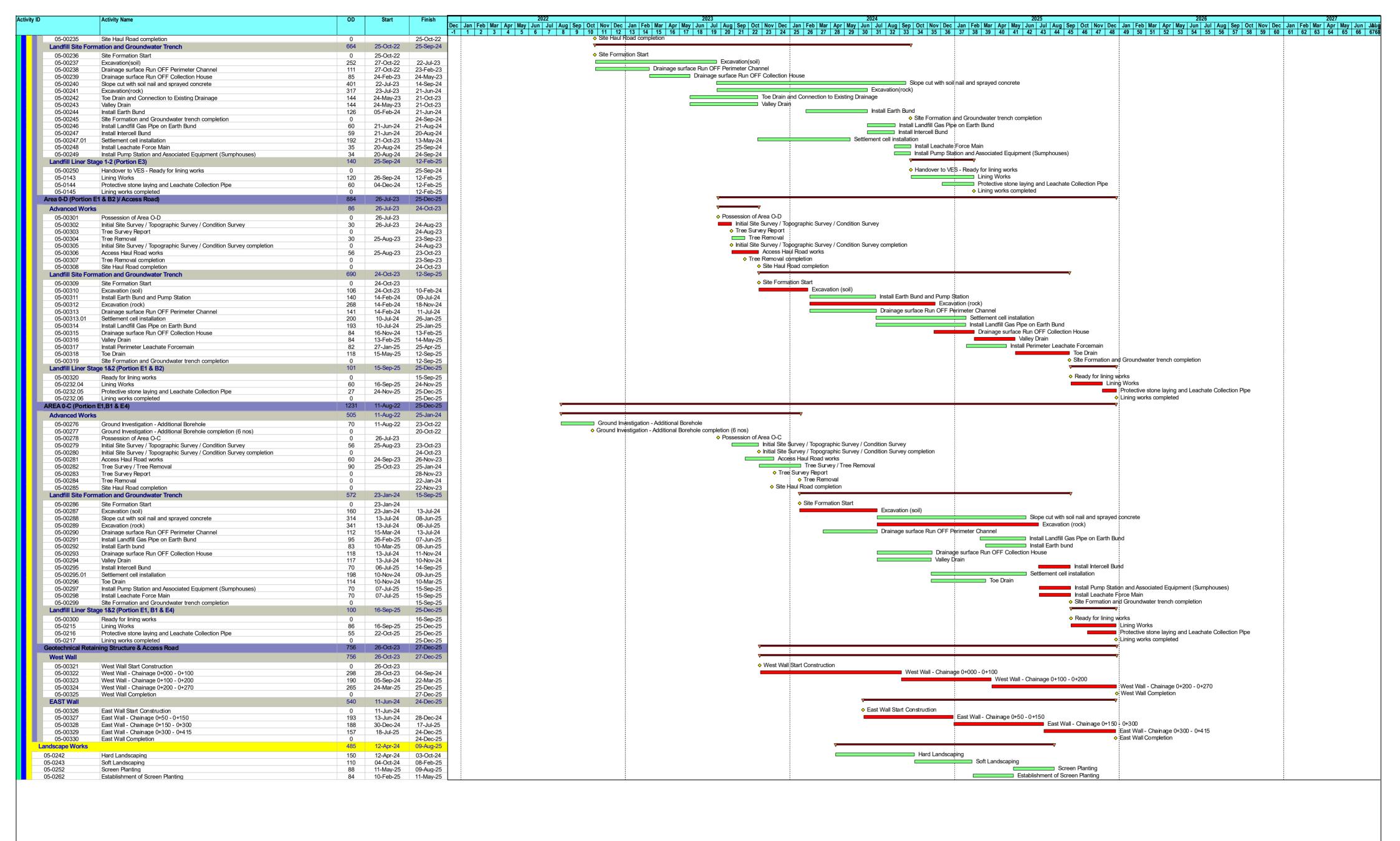
Appendix A Construction Programme





BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 1 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

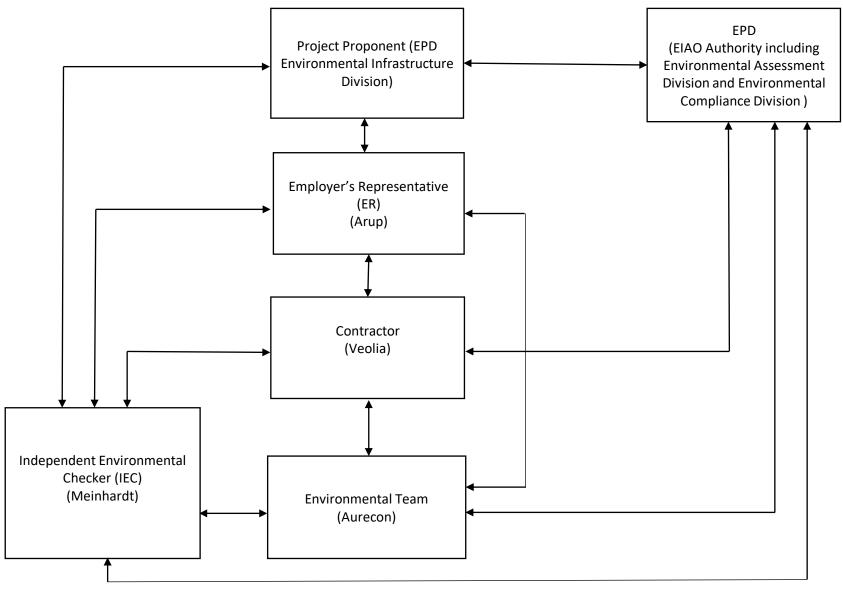


INITIAL WORKS (PHASE 1)

Page 3 of 4

0	VE	Ol	JA

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

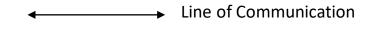


BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 4 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

Appendix B Project Organization Chart & Management Structure

Notes:


EPD - Environmental Protection Department

Arup – Ove Arup & Partners Limited

Veolia - Veolia Environmental Services Hong Kong Limited

Meinhardt - Meinhardt Infrastructure And Environment Limited

Aurecon - Aurecon Hong Kong Limited

Appendix C Monitoring Schedule for Reporting Month & Next Month

Impact Monitoring Schedule for NENT Landfill Extension (September 2023) (version 3.0)

	9-2023							
Sun	Mon	Tue	Wed	Thur	Fri	Sat		
	28	29	30	31	1	2		
3	4 Air quality monitoring at AM1, AM2 and AM3	5	6	7	8	9		
10	11 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	12	13	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	15	16		
17	18	19	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2		22	23		
24	25	26 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	27	Additional Surface water quality monitoring at AM1, AM2 and AM3 Additional Surface water quality monitoring at WM2 and GR3	29	30		
1	2	3						

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).
- 5. Air quality monitoring and noise monitoring on 2 September 2023 was postponed to 4 September 2023 due to the Typhoon Signal No.8.
- 6. Air quality monitoring and noise monitoring on 8 September 2023 was postponed to 11 September 2023 due to the Black Rainstorm Warning Signal.

Impact Monitoring Schedule for NENT Landfill Extension (October 2023) (version 2.0)

10-2023							
Sun	Mon	Tue	Wed	Thur	Fri	Sat	
1	2	3	4 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	5	6	7	
8	9	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2		12	13	14	
15	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	17	18	19	20	Air quality monitoring at AM1, AM2 and AM3	
22	23	24	25	26	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	28	
29	30	31					

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).
- 5. Please arrange a Veolia staff to accompany our staff(s) to each locations for every monitoring.

Appendix D Calibration Certificates

Air Quality

Site Information

Location:	Representative ForTung Lo Hang	Site ID:	AM1	Date:	06-Jul-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

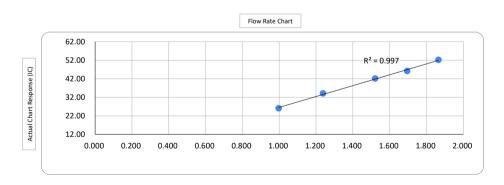
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.60	1.865	52.0	52.18
13	10.20	1.695	46.0	46.16
10	8.00	1.521	42.0	42.14
7	5.00	1.238	34.0	34.12
5	3.00	0.997	26.0	26.09

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.3019	b=	-2.7348	Corr. Coeff=	0.9985
111-	25.5015	D-	2.7340	COIT. COCII-	0.5505

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

Site Information

Location:	Representative ForTung Lo Hang	Site ID:	AM1	Date:	04-Sep-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	1002 1	Actual Temperature during Calibration (T _a) (deg K):	299.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

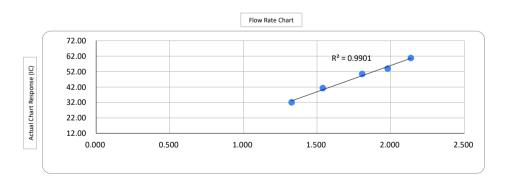
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	13.00	2.137	53.0	60.76
13	11.00	1.979	47.0	53.88
10	9.00	1.807	44.0	50.44
7	6.30	1.539	36.0	41.27
5	4.50	1.327	28.0	32.10

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	34.0375	b= -12.1429	Corr. Coeff=	0.9950

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

04-Sep-2023

Site Information

Location:	Representative For Heung Yuen Wai	Site ID:	AM2	Date:	06-Jul-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
--	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

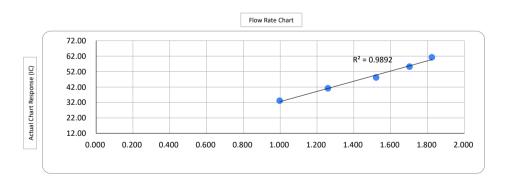
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(in) (m³/min) (chart)		(corrected)
18	12.00	1.824	61.0	61.21
13	10.30	1.702	55.0	55.19
10	8.00	1.521	48.0	48.16
7	5.20	1.259	41.0	41.14
5	3.00	0.997	33.0	33.11

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	32.9874	b= -0.4203	Corr. Coeff=	0.9946

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date: 06-Jul-2023

Site Information

Location:	Representative For Heung Yuen Wai	Site ID:	AM2	Date:	04-Sep-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	1002.1	Actual Temperature during Calibration (T _a) (deg K):	299.0
--	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

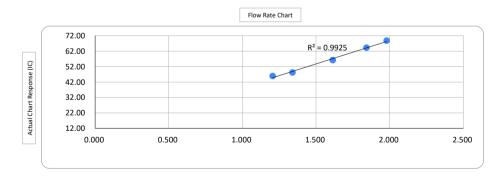
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	11.00	1.979	60.0	68.78
13	9.40	1.842	56.0	64.20
10	7.00	1.613	49.0	56.17
7	4.60	1.340	42.0	48.15
5	3.60	1.205	40.0	45.85

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	30.2611	b= 8.3322	Corr. Coeff=	0.9963

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date: 04-Sep-2023

Site Information

Location:	Representative For Wo Keng Shan Tsuen	Site ID:	АМ3	Date:	06-Jul-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	75.4 0	Actual Temperature during Calibration (T _a) (deg K):	294.0
--	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

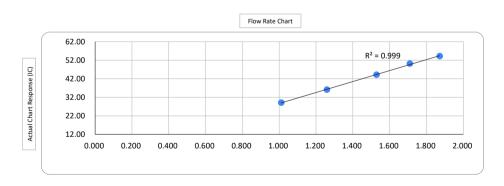
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.70	1.872	54.0	54.18
13	10.40	1.710	50.0	50.17
10	8.10	1.529	44.0	44.15
7	5.20	1.259	36.0	36.12
5	3.10	1.011	29.0	29.10

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	29.5749	b= -0.9086	Corr. Coeff=	0.9995

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date:

06-Jul-2023

Site Information

Location:	Representative For Wo Keng Shan Tsuen	Site ID:	AM3	Date:	04-Sep-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	1002 1	Actual Temperature during Calibration (T _a) (deg K):	299.0
---	--------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.10188
Serial No.:	4166	Intercept (b _c):	-0.35800
Calibration Due Date:	19-Jun-24	Corr. Coeff:	0.99998

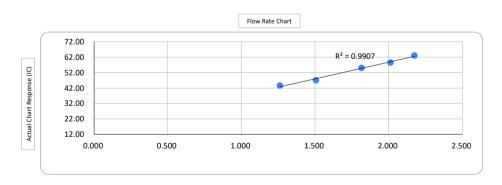
Calibration Data

Plate or	∆H ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	13.50	2.174	55.0	63.05
13	11.40	2.012	51.0	58.46
10	9.10	1.816	48.0	55.03
7	6.00	1.506	41.0	47.00
5	4.00	1.261	38.0	43.56

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m	21.58	25 b=	. 1	Corr. Coeff=	0.9953

Calculations


Qa = $1/m_c^*[Sqrt (\Delta H_2O^*(P_a/P_{Std})^*(T_{Std}/T_a))-b_c]$ $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

(m³/min)

Checked by: Tandy Tse

Senior Consultant, Environmental

Date: 04-Sep-2023

Website www acuitytk con

Unit E, 12/F, Ford Glory Plaza
Not. 37-39 Wing Hong Street,
Cheung Sha Wan, Kowloon

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

0Z4545

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.
Our Report Refrence No.

RPT-22-HVS-0026

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information									
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator						
Standard Equipment Model No.		TE-5170X	TE-5025A						
Equipment serial no.	MFC	1106	3465						
Last Calibration Date		1-Dec-22	28-Jun-22						
Next Calibration Date		31-Jan-23	27-Jun-23						

Verification	Verification Test No. Date	Time			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
Test No.		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
			10.54%		0.00114			-	

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

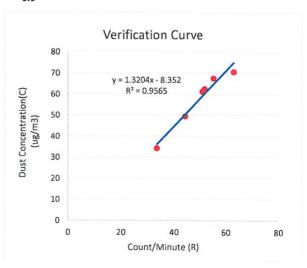
1.1

By Linear Regression of y on x:

slope, mh= 1.3204

intercept,ch= -8.3520

*Correlation Coefficient,R= 0.9780


Verification Test Result: Strong Correlation, Results were accepted.

 $\mbox{*}$ If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.:

Sibata LD-5R

Unit-under-Test Serial No.:

882106

Our Report Refrence No.:

RPT-22-HVS-0027

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information									
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator						
Standard Equipment Model No.		TE-5170X	TE-5025A						
Equipment serial no.	MFC	1106	3465						
Last Calibration Date		1-Dec-22	28-Jun-22						
Next Calibration Date		31-Jan-23	27-Jun-23						

Verification Test No. Date	Date	Time			K-Factor	Counts/ Minute (R)	Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time End-time Elapsed Time K-Factor (TC) (in min) (K=C/R) x-axis		ID No.	y axis					
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61	
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34	
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49	
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67	
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62	
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70	
					0.00107					

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

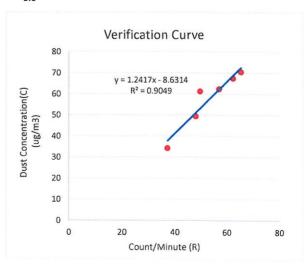
By Linear Regression of y on x:

slope, mh= 1.2417

intercept,ch= -8.6314

*Correlation Coefficient,R=

0.9513


Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

D 1 : 1)(

Date: 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

4-Dec-22 to

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

882110

Our Report Refrence No.

RPT-22-HVS-0025

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification Test No. Date	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.0

By Linear Regression of y on x:

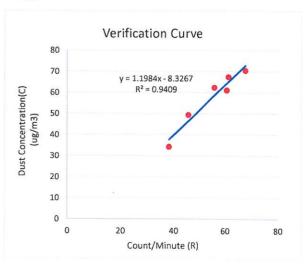
slope, mh=

1.1984

intercept,ch=

-8.3267

*Correlation Coefficient,R=


0.9700

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: _ 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

4-Dec-22

Verification Test Date:

3-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

942532

Our Report Refrence No.

RPT-22-HVS-0024

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information								
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator					
Standard Equipment Model No.		TE-5170X	TE-5025A					
Equipment serial no.	MFC	1106	3465					
Last Calibration Date		1-Dec-22	28-Jun-22					
Next Calibration Date		31-Jan-23	27-Jun-23					

Verification	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample ID No.	Dust Concentration (ug/m3), (C)
Test No.	No.	Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)		y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

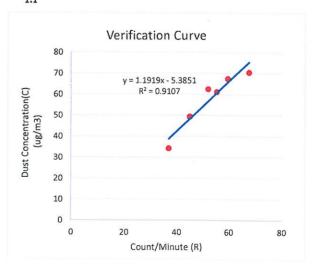
By Linear Regression of y on x:

slope, mh=

1.1919

intercept,ch=

-5.3851


*Correlation Coefficient,R=

0.9543

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Date: 05-12-2022

RECALIBRATION DUE DATE:

June 19, 2024

Certificate of Calibration

Calibration Certification Information

Cal. Date:

June 19, 2023

Rootsmeter S/N: 438320

Ta: 294
Pa: 754.9

°K

Operator:

Jim Tisch

p.

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 4166

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4500	3.2	2.0
2	3	4	1	1.0260	6.4	4.00
3	5	6	1	0.9170	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7240	12.8	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
1.0025	0.6914	1.4190	0.9958	0.6867	0.8826					
0.9983	0.9730	2.0068	0.9915	0.9664	1.2481					
0.9961	1.0863	2.2436	0.9894	1.0790	1.3955					
0.9951	1.1346	2.3532	0.9883	1.1270	1.4636					
0.9897	1.3670	2.8380	0.9830	1.3578	1.7651					
	m=	2.10188		m=	1.31616					
QSTD[b=	b= -0.03580		b=	-0.02227					
	r=	0.99998	QA	r=	0.99998					

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime		Va/ΔTime
	For subsequent flow rat	And in case of the last of the	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$		1/m((\sqrt{\Delta H(Ta/Pa)})-b

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	- Oi
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Noise

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

Device Type:

XL2 Audio and Acoustic Analyzer

Serial Number:

A2A-13663-F0

· Certificate Issued:

15 February 2023

Certificate Number

44972-A2A-13663-F0

· Results:

PASSED

(for detailed report see next page)

Tested by:

M. Frick

Signature:

Stamp:

m alten Rist 102 LI - 9494 Schaan

www.nti-audio.com

Calibration of:

XL2 Audio and Acoustic Analyzer

Serial Number:

A2A-13663-F0

Date:

15 February 2023

· Detailed Calibration Test Results:

						actual	XL2	calibration
			reference	actual	unit	error	tolerance	uncertainty ²
	RMS Level @ 1kHz, XLR	Input	0.1	0.100	V	≤0.1%	±0.5%	±0.10%
			1	0.999	V	-0.1%	±0.5%	±0.09%
			10	9.982	V	-0.2%	±0.5%	±0.09%
	Flatness, XLR Input ¹	20 Hz 20 kHz	1 1	0.995 1.003	V V	-0.5% 0.3%	±1.1% ±1.1%	±0.09% ±0.09%
	Frequency		1000	1000.00	Hz	≤0.003%	±0.003%	±0.01%
	Residual Noise	XLR		< 2 uV			<2 uV	±0.50%
	THD+N @ 0 dBu, 1 kHz,	XLR Inpu	ut	-100.5	dB		typ100 dB	±0.50%
0	Test Conditions:	Tempe	rature:	24.9	°C			
		and the second	e Humidity:	19.8	%			

· Calibration Equipment Used:

- Agilent Multimeter, Typ 34401A, Serial No. MY 5300 4607 Last calibration: 15.09.2022, Next calibration: 15.09.2023 Calibrated by ELCAL to the national standards maintained at Swiss Federal Office of Metrology. SCS 0002
- FX100 Audio Analyzer, Serial No. 10408
 Last Calibration: 11.10.2022, Next Calibration: 11.10.2023
 Manufacturer calibration based on Agilent 34410, Serial No. MY47014254,
 Last Calibration: 26.05.2022, Next Calibration: 26.05.2023
 which is calibrated by ELCAL to national standards maintained at Swiss Federal Office of Metrology. SCS 002

 $^{^{1}}$ The specified tolerance +/-0.1 dB @ 1V = +/- 1.1%

² The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-17638-E0)

Microphone:

ACO 7052 (Serial No.:84413)

Preamplifier:

NTi Audio M2211 MA220 (Serial No.:7014)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F, Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 30 March 2023

Date of calibration: 04 April 2023

Date of NEXT calibration: 03 April 2024

Calibrated by:___

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 04 April 2023

Certificate No.: APJ22-164-CC001

Page 1 of 4

(**A+A**) * L Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

21.6 °**C**

Air Pressure:

1005 hPa

Relative Humidity:

71.6 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	Setting of Unit-under-test (UUT)			Appl	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	±0.4

Linearity

Setting of Unit-under-test (UUT)			App	lied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.1	Ref
30-130	dBA	SPL	Fast	104	1000	104.1	±0.3
				114		114.1	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast 94 1000	1000	94.1	Ref	
30-130	UDA	SIL	Slow	94	1000	94.1	±0.3

Certificate No.: APJ22-164-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.1	±2.0
					63	94.1	±1.5
					125	94.1	±1.5
					250	94.0	±1.4
30-130	dI	B SPL	Fast	94	500	94.1	±1.4
					1000	94.1	Ref
					2000	94.3	±1.6
					4000	94.9	±1.6
					8000	93.9	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)			est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	inge, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
					31.5	54.7	-39.4 ±2.0
					63	67.9	-26.2 ±1.5
					125	78.0	-16.1 ±1.5
					250	85.4	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.9	-3.2 ±1.4
					1000	94.1	Ref
					2000	95.5	+1.2 ±1.6
					4000	95.9	$+1.0\pm1.6$
					8000	92.8	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	ange, dB Freq. Weighting		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.0	-3.0 ± 2.0
					63	93.3	-0.8 ± 1.5
					125	93.9	-0.2 ±1.5
					250	94.1	-0.0 ± 1.4
30-130	dBC	SPL	Fast	94	500	94.2	-0.0 ± 1.4
					1000	94.1	Ref
					2000	94.2	-0.2 ±1.6
					4000	94.1	-0.8 ± 1.6
					8000	90.9	-3.0 +2.1: -3.1

Certificate No.: APJ22-164-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ22-164-CC001

Page 4 of 4

CALIBRATION CERTIFICATE

Product

: SOUND CALIBRATOR

Type

: NC-75

Serial number

35124530

Manufacturer

: RION CO., LTD.

Calibration quantities

: Sound pressure level (with reference standard microphone)

Calibration method

: Measured by specified secondary standard microphone

according to JCSS calibration procedure specified by RION.

Ambient conditions

: Temperature 23.9 °C, Relative humidity 49 %,

Static pressure 100.6 kPa

Calibration date

02/11/2022 (DD/MM/YYYY)

Calibration location

: 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

RION CO., LTD. Calibration Room

We hereby certify that the results of this calibration were as follows.

Issue date: 09/11/2022 (DD/MM/YYYY)

Junichi Kawamura

Manager

Quality Assurance Section, Quality Assurance Department, Environmental Instrument Division,

RION CO., LTD.

3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533, Japan

This certificate is based on article 144 of the Measurement Law and indicates the result of calibration in accordance with measurement standards traceable to Primary Measurement Standards (National Standards) which realizes the physical units of measurement according to the International System of Units (SI).

The accreditation symbol is attestation of which the result of calibration is traceable to Primary Measurement Standards (National Standards).

The certificate shall not be reproduced except in full, without the written approval of the issuing laboratory.

The calibration laboratory who issued this calibration certificate conforms to ISO/IEC 17025:2017.

This calibration certificate was issued by the calibration laboratory accredited by IAJapan who is a signatory to the Mutual Recognition Arrangement (MRA) of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Accreditation Cooperation (APAC). This (These) calibration result(s) may be accepted internationally through ILAC/APAC MRA.

Certificate No. D224647E

CALIBRATION RESULT

1. Sound pressure level (with reference standard microphone)

Measured	Expanded
value	uncertainty *1
93.99 dB	0.09 dB

Specified secondary standard microphone:

Type

: 4160

Serial number : 2973341

Reference Sound pressure: 2×10.5 Pa

*1 Defines an interval estimated to have a level of confidence of approximately 95 %.

Coverage factor k=2

Calibration result is the calibration value in ambient conditions during calibration.

BE OUT OF JCSS CALIBRATION

1. Frequency

Measured value	Measurement uncertainty (k=2)
1000.0 Hz	$2.7 \times 10^{-4} \mathrm{Hz}$

Working measurement standard universal counter:

Type

: 53132A

Serial number : MY40005574

(JCSS Calibration Certificate No. 2208001889940)

2. Total distortion

Measured	
value	
0.2 %	

Working measurement standard distortion meter:

Type

: VA-2230A

Serial number : 11076061

(A2LA Calibration Certificate No. 1502-03109)

· closing ·

Calibration Certificate

Certificate No. 300737

Page

2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q30320

Date of receipt

2-Feb-23

Item Tested

Description: Hot Wire Anemometer

Manufacturer: RS PRO

I.D.

ASCL-EQ-111

Model

: RS-90

Serial No.

: 210722208

Test Conditions

Date of Test: 13-Feb-23

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: T03, Z04.

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

206240

NIM-PRC

S223C

Std. Thermometer

205617

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

13-Feb-23

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

E

Calibration Certificate

Certificate No. 300737

Page 2 of 2 Pages

Results:

1. Velocity

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.00	0.00	
2.50	2.43	
5.00	5.04	1 (2 0/ - 6 1: 1 0 2 - / 2
10.00	10.07	\pm (3 % of reading + 0.3 m/s)
15.00	15.65	· ·
19.00	19.87	

2. Temperature

Applied Value (°C)	UUT Reading (°C)	Mfr's Spec.
23.12	23.0	±2°C

Remark: 1. UUT: Unit-Under-Test

2. Uncertainty: \pm (0.9 % + 0.16 m/s) for Velocity, \pm 0.1 °C for Temperature, for a confidence probability of not less than 95 %.

3. Atmospheric Pressure: 1 002 hPa

----- END -----

Water Quality

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Amendment Test Report No.

: R-BC090067

Amendment Test Report Date of Issue

: 20 September 2023

Superseded Test Report No.

: D-BC080079

Superseded Test Report Date of Issue

: 25 August 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

HORIBA U-53

Manufacturer:

HORIBA

Serial Number:

PPHNOMXY

Date of Received:

22 August 2023

Date of Calibration :

22 August 2023

Date of Next Calibration:

21 November 2023

Request No.:

D-BC080079

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Turbidity

APHA 21e 2130 B (Nephelometric Method)

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.16	0.16	Satisfactory
7.42	7.56	0.14	Satisfactory
10.01	9.92	-0.09	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
18	19.15	1.15	Satisfactory
28	27.79	-0.21	Satisfactory
37	36.58	-0.42	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

Assistant Manager

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Amendment Test Report No.

: R-BC090067

Amendment Test Report Date of Issue

: 20 September 2023

Superseded Test Report No.

: D-BC080079

Superseded Test Report Date of Issue

: 25 August 2023

Page No.

: 2 of 2

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.11	1.10	Satisfactory
20	21.27	6.35	Satisfactory
30	32.28	7.60	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.50	7.88	0.38	Satisfactory
6.31	6.76	0.45	Satisfactory
1.11	1.29	0.18	Satisfactory
0.07	0.00	-0.07	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.98		Satisfactory
10	10.7	7.00	Satisfactory
20	20.7	3.50	Satisfactory
100	107	7.00	Satisfactory
800	807	0.90	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

- ·The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- •The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- ·"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- •The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Calibration Certificate

Certificate No. 210252

Page 2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q24081

Date of receipt

31-Oct-22

Item Tested

Description : Flow Probe

Manufacturer: Global Water

I.D.

Model

: FP111

Serial No.

: 22K100859

Test Conditions

Date of Test:

7-Nov-22

Supply Voltage : --

Ambient Temperature :

23°C

Relative Humidity: 78%

Test Specifications

Calibration check.

Ref. Document/Procedure: V12

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S179

Std. Tape

201868

NIM-PRC

S136A

Stop Watch

201878

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Kin Wong

Approved by:

This Certificate is issued by

Hong Kong Calibration Ltd.

7-Nov-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results:

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks: 1. UUT: Unit-Under-Test

2. Uncertainty: ± 1 %, for a confidence probability of not less than 95%.

----- END -----

Landfill Gas

CERTIFICATION OF CALIBRATION

Certificate Number: G505207_1/33483

Date Of Calibration: 31-Aug-2023

Issued by: QED Environmental Systems Ltd.

Customer:

Onuee Electronics Ltd

C3-E TCL Science Park No.1001 Zhong Shan Yuan Rd.

Nanshan Shenzhen 518052 CHINA

Description:

Gas Analyser

Model:

GEM5000

Serial Number: G505207

UKAS Accredited results:

Results after adjustment:

	Methane (CH₄)											
Certified Gas (%)	Certified Gas (%) Instrument Reading (%) Uncertainty (%)											
5.0	5.0	0.072										
15.0	15.1	0.13										
60.0	59.7	0.42										

	Carbon Dioxide (CO₂)										
Certified Gas (%)	Certified Gas (%) Instrument Reading (%) Uncertainty (%)										
5.0	4.8	0.074									
15.0	14.5	0.13									
40.0	39.9	0.29									

Oxygen (O ₂)									
Certified Gas (%)	Certified Gas (%) Instrument Reading (%) Uncertainty (%)								
20.2	20.3	0.25							

The inwards assessment was carried out 21-Aug-2023.

The maximum adjustment is larger than the specification limit.

Inwards assessment data is available if requested.

All concentrations are molar.

CH₄, CO₂ readings recorded at:

33.2 °C ± 2.5 °C

O2 readings recorded at:

24.4 °C ± 2.5 °C

Barometric Pressure:

0998 mbar ± 4 mbar

Method of Test: The analyser is calibrated in a temperature controlled chamber using a series of reference gases, in compliance with procedure LP004.

Instrument has passed calibration as the measurement result is within the specification limit. The specification limit takes into account the measurement uncertainty.

The results relate only to the item calibrated

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 117 IGC Instance: 117

Page 1 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

CERTIFICATION OF CALIBRATION

Date Of Calibration: 31-Aug-2023

Certificate Number: G505207_1/33483

Issued by: QED Environmental Systems Ltd.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Calibrations marked 'Non-UKAS Accredited results' on this certificate have been included for completeness.

Non-UKAS accredited results after adjustment:

Baromet	er (mbar)
Reference	Instrument Reading
998	999

	Additional Gas Cells	
Gas	Certified Gas (ppm)	Instrument Reading (ppm)
CO	501	507

Date of Issue: 07-Sep-2023

Approved by Signatory

Fani Zolota

Laboratory Inspection

End of Certificate

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Calibration Instance: 117 IGC Instance: 117

Page 2 of 2 | LP015GIUKAS-2.5

www.qedenv.com +44 (0) 333 800 0088 sales@qedenv.co.uk

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email:info@promat.hk. http://www.premat.hk

Calibration Certificate

Customer Name

Paul Y Construction Co. Ltd

Model

PS200

Serial

373075

Tested On

16 November, 2022

Cal Expires

16 November, 2023.

Audible Alarm

PASS

Visual Alarm

PASS

Calibrated For

METHANE

100% LEL Equivalent

4.4% by VOL

Overall Results

PASS

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	РРМ СО	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Calibrated By Ivan Lo:

Appendix E Monitoring Results

Air Quality

1-hour TSP Concentration (µg/m³) at Location AM1

	-nour for concentration (pg/m) at Escation Aim												
Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactoi	vveatilei	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
4/9/2023	Sibata LD-5R	942532	0.00108	Fine	8:10	9:10	10:10	45	50	49	48		
11/9/2023	Sibata LD-5R	882106	0.00107	Fine	13:12	14:12	15:12	36	39	38	38		
14/9/2023	Sibata LD-5R	942532	0.00108	Fine	8:10	9:10	10:10	36	39	37	37	285	500
20/9/2023	Sibata LD-5R	942532	0.00108	Fine	8:09	9:09	10:09	51	50	54	52	203	300
26/9/2023	Sibata LD-5R	942532	0.00108	Fine	8:06	9:06	10:06	54	50	53	52		
28/9/2023	Sibata LD-5R	942532	0.00108	Fine	8:01	9:01	10:01	39	40	39	39		
							Average		44				
							Max		EA				

Average 44

Max. 54

Min. 36

36

1-hour TSP Concentration (µg/m³) at Location AM2

Date	Equipment	Equipment Serial No.	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Duto	Brand & Model	Serial No.	it idoto.		Gumpining Time (1)	Oumping Time (2)	Camping Time (5)	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m³	μg/m ³
4/9/2023	Sibata LD-5R	882106	0.00107	Fine	8:25	9:25	10:25	36	39	38	38		
11/9/2023	Sibata LD-5R	0Z4546	0.00114	Fine	13:22	14:22	15:22	36	37	39	37		
14/9/2023	Sibata LD-5R	882106	0.00107	Fine	8:16	9:16	10:16	40	38	41	40	279	500
20/9/2023	Sibata LD-5R	882106	0.00107	Fine	8:31	9:31	10:31	40	42	41	41	219	300
26/9/2023	Sibata LD-5R	882106	0.00107	Fine	8:16	9:16	10:16	42	40	39	40		
28/9/2023	Sibata LD-5R	882106	0.00107	Fine	8:21	9:21	10:21	40	41	40	40		
							Average		39				
							Max.		42				
							Min.		36				

1-hour TSP Concentration (µg/m³) at Location AM3

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	IX-IUCIOI	Weather		Sampling Time (2)	Sampling Time (5)	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m³	μg/m³
4/9/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:40	9:40	10:40	50	51	49	50		
11/9/2023	Sibata LD-5R	942532	0.00108	Fine	13:33	14:33	15:33	41	42	40	41		
14/9/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:30	9:30	10:30	41	44	36	40	285	500
20/9/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:40	9:40	10:40	40	39	41	40	203	300
26/9/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:29	9:29	10:29	51	50	49	50		
28/9/2023	Sibata LD-5R	0Z4545	0.00114	Fine	8:30	9:30	10:30	53	49	50	51		
							Average		45				
							Maria		FO				

Min.

The Summary of TSP 24-hour Concentration (µg/m³) at Location AM1

044 D-4-	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	e Time	Sampling Time	Averaged Flow Rate	Averaged Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
Start Date	weather Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
4/9/2023	Fine	30.5	1004.6	1597.01	1621.01	1440	41	1.47	2114	2.7155	2.7840	0.0685	32		
11/9/2023	Fine	28.4	1003.5	1621.01	1645.01	1440	40	1.52	2184	2.6998	2.7769	0.0771	35		
14/9/2023	Fine	31.1	1006.0	1645.01	1669.01	1440	38	1.46	2108	2.7143	2.7942	0.0799	38	164	260
20/9/2023	Fine	30.2	1005.7	1669.01	1693.01	1440	40	1.52	2188	2.7045	2.7943	0.0898	41	104	200
26/9/2023	Fine	29.5	1002.8	1693.01	1717.01	1440	40	1.52	2187	2.6847	2.7844	0.0997	46		
28/9/2023	Fine	29.5	1002.8	1717.01	1741.01	1440	40	1.52	2189	2.6846	2.7898	0.1052	48		
	-				-							Average	40		· · · · · · · · · · · · · · · · · · ·
											i	Min	32		
												May	48	1	

The Summary of 24-hour TSP Concentration (μg/m³) at Location AM2

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure Elapse Time S		Sampling Time	Sampling Time		Total Flow Volume Filter Weight (g)		Particulate weight	Concentration	Action Level	Limit Level		
		(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
4/9/2023	Fine	30.5	1004.6	1357.28	1381.28	1440	40	1.20	1734	2.7045	2.7641	0.0596	34		
11/9/2023	Fine	28.4	1003.5	1381.28	1405.28	1440	40	1.03	1483	2.6744	2.7195	0.0451	30		
14/9/2023	Fine	31.1	1006.0	1405.28	1429.28	1440	40	1.04	1492	2.7046	2.7560	0.0514	34	152	260
20/9/2023	Fine	30.2	1005.7	1429.28	1453.28	1440	39	1.00	1440	2.7099	2.7753	0.0654	45	102	200
26/9/2023	Fine	29.5	1002.8	1453.28	1477.28	1440	40	1.02	1462	2.7251	2.7939	0.0688	47		
28/9/2023	Fine	29.5	1002.8	1477.28	1501.28	1440	42	1.08	1559	2.7180	2.8014	0.0834	53		
												Average	41		-
												Min	30		
												Max	53		

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM3

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure Elapse Time		Sampling Time	Averaged Flow Rate	Flow Rate Total Flow Volume		Filter Weight (g)		Particulate weight	Concentration	Action Level	Limit Level	
		(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m ³)	(µg/m3)
4/9/2023	Fine	30.5	1004.6	2362.46	2386.46	1440	40	1.36	1957	2.6578	2.7395	0.0817	42	163	260
11/9/2023	Fine	28.4	1003.5	2386.46	2410.46	1440	40	1.11	1596	2.7194	2.7913	0.0719	45		
14/9/2023	Fine	31.1	1006.0	2410.46	2434.46	1440	40	1.12	1608	2.7074	2.7647	0.0573	36		
20/9/2023	Fine	30.2	1005.7	2434.46	2458.46	1440	38	1.02	1470	2.7201	2.7988	0.0787	54		
26/9/2023	Fine	29.5	1002.8	2458.46	2482.46	1440	42	1.20	1732	2.7049	2.8129	0.1080	62		
28/9/2023	Fine	29.5	1002.8	2482.46	2506.46	1440	41	1.14	1637	2.7202	2.8298	0.1096	67		
												Average	51		
												Min	36		
												Max	67	1	

Remarks:
1. Orange Text equal to exceed Action Level
2. Red Text equal to exceed Limit Level

Noise

Impact Phase Construction Noise Monitoring Data at Location NM1a

		Wind speed							(dB(A	77)		I		1 (c	IB(A))					1 (c	IB(A))		\neg
Date	Weather	willu speeu	Start Time	End Time				- eq	``											- •• ·	`		
		m/s			1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
11/9/2023	Fine	1.6	13:00	13:30	57.6	58.1	59.6	57.5	56.1	57.2	57.8	59.3	59.9	61.2	59.4	60.3	60.1	46.2	47.2	46.3	46.9	46.4	47.1
14/9/2023	Fine	2.6	11:00	11:30	58.6	59.1	60.2	59.2	59.1	58.6	59.2	61.7	62.6	60.4	61.2	63.3	63.1	52.6	52.4	51.4	51.6	51.7	52.6
20/9/2023	Fine	1.6	9:30	10:00	59.1	58.2	60.1	59.2	60.2	58.4	59.3	62.2	61.6	63.6	60.2	62.1	63.3	64.1	55.2	54.4	54.3	54.6	55.4
26/9/2023	Fine	1.8	8:12	8:42	55.6	56.2	58.1	57.2	55.6	56.1	56.6	57.6	58.3	61.1	61.4	59.1	58.6	46.1	47.1	46.3	47.4	47.6	48.1

Average	58.3	
Baseline Level	55.4	
Action Level	When one vali	d documented complaint is received

Impact Phase Construction Noise Monitoring Data at Location NM2a

												_											
Date	Weather	Wind speed	Start Time	End Time				L _{eq}	, (dB(<i>l</i>	4))				L_{10} (c	IB(A))					L_{90} (c	iB(A))		
Date	weather	m/s	Start Time	End Time	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
11/9/2023	Fine	1.1	11:00	11:30	50.2	49.3	48.2	50.4	50.6	49.9	49.8	52.3	51.6	51.2	52.6	52.3	51.2	49.6	48.2	47.9	49.2	48.6	48.1
14/9/2023	Fine	2.1	15:50	16:20	54.5	53.6	55.1	53.4	54.1	53.6	54.1	58.1	57.6	60.1	61.2	60.6	59.1	50.4	61.6	51.7	50.9	52.2	51.7
20/9/2023	Fine	2.2	14:40	15:10	54.6	53.6	54.4	55.1	54.9	55.3	54.7	58.1	57.2	56.6	58.6	57.7	56.3	50.2	51.6	50.3	51.4	52.2	52.6
26/9/2023	Fine	1.7	14:06	14:36	53.2	54.3	55.2	54.6	54.6	53.3	54.3	57.1	56.2	57.9	58.1	57.6	56.3	49.1	49.2	49.9	50.2	48.2	49.1
			_					- 4	verag	е	53.6												

 Baseline Level
 54.5

 Action Level
 When one valid documented complaint is received

 Limit Level
 75

Water Quality

Monitoring Location: WM1

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)	
					(0)	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
20-Sep-23	16:49	Fine	0.05	1.0	23.6	7.8	<7.4	<4	7.2	>7.7	>7.8	4.3	>9.2	>9.5	3.0	>9.7	>11.4

Monitoring Location: WM2

	Date Time	Time	Weather	Water Depth (m)	Water Flow (L/s)	· .		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)	
						(°C)	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
20)-Sep-23	7:45	Fine	0.05	2.0	22.7	7.6	<5	<4	7.2	>7.6	>7.7	12.0	>108.3	>108.9	7.6	>94.5	>94.7

Remarks

- 1. Sample will be grabbed on surface when the water depth is less than 1m.
- 2. "TBC" equal to "To be confirm"
- Orange Text equal to exceed Action Level
 Red Text equal to exceed Limit Level

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: ACUMEN LABORATORY AND TESTING LIMITED Client

: HUNTINGTON HUI

: UNIT D, 12/F, FORD GLORY PLAZA, NOS.37-39 WING HONG Address

STREET, CHEUNG SHA WAN, KOWLOON, HONG KONG

: Huntington.Hui@aurecongroup.com E-mail

Telephone

Contact

Facsimile

: NENTX Project

Order number : ----

C-O-C number : ----

Site

Laboratory Contact

Address

: ALS Technichem (HK) Pty Ltd

Page

: 1 of 9

: Richard Fung

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Work Order

: HK2337717

Yip Street, Kwai Chung, N.T., Hong Kong

E-mail

: richard.fung@alsglobal.com

Telephone

Quote

number

: +852 2610 1044

Facsimile

: +852 2610 2021

: HKE/2751/2022_V2

Date Samples Received

: 20-Sep-2023

Issue Date

: 05-Oct-2023

: 2 No. of samples received

No. of samples analysed

: 2

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Position

Authorised results for

Fung Lim Chee, Richard

Managing Director

Inorganics

Fung Lim Chee, Richard

Managing Director

Metals ENV

A

Ng Sin Kou, May

Laboratory Manager

Microbiology_ENV

Page Number : 2 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2337717

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Testing period is from 20-Sep-2023 to 05-Oct-2023.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2337717

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.

Microbiological sample(s) was/ were collected in 250mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 18:15.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

ED037 - Titration end point for Total Alkalinity is pH 4.5 while end point for Total Alkalinity <20mg/L is pH 4.2.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

EA002 - pH value is reported as at 25°C. Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EA025 - The accredited LOR of Total Suspended Solids is 0.5mg/L. Results below this LOR are for reference only.

3 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2337717

ALS

Analytical Results

Cult Matrix MATER			0	14/1.44	VA/NAO		
Sub-Matrix: WATER			Sample ID	WM1	WM2		
		Samplii	ng date / time	20-Sep-2023	20-Sep-2023		
Compound	CAS Number	LOR	Unit	HK2337717-001	HK2337717-002		 ***************************************
EA/ED: Physical and Aggregate Properties							
EA002: pH Value		0.1	pH Unit	7.1	7.6		 mmm
EA010: Electrical Conductivity @ 25°C		1	μS/cm	50	127		 m====
EA025: Suspended Solids (SS)		0.1	mg/L	3.0	7.6		
ED037: Total Alkalinity as CaCO3		1	mg/L	11	31		
ED/EK: Inorganic Nonmetallic Parameters							
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	4	20		
ED045K: Chloride	16887-00-6	0.5	mg/L	6	4		
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.13		
EK058A: Nitrate as N	14797-55-8	0.01	mg/L	0.05	0.24	****	
EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.3		
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	<0.01		
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2		
EP: Aggregate Organics							
EP005: Total Organic Carbon		1	mg/L	2	2		
EP020: Oil & Grease		5	mg/L	<5	<5		
EP026C: Chemical Oxygen Demand		5	mg/L	9	6	****	
EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2		
EG: Metals and Major Cations - Total							
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2		
EG020: Copper	7440-50-8	1	μg/L	1	<1		
EG020: Lead	7439-92-1	1	μg/L	<1	1		
EG020: Manganese	7439-96-5	1	μg/L	32	563		
EG020: Nickel	7440-02-0	1	μg/L	<1	<1		
EG020: Zinc	7440-66-6	10	μg/L	14	10		
EG032: Calcium	7440-70-2	50	μg/L	2400	16200		
EG032: Iron	7439-89-6	10	μg/L	270	670		
EG032: Magnesium	7439-95-4	50	μg/L	430	1290		
EG032: Potassium	7440-09-7	50	μg/L	680	1450		
EG032: Sodium	7440-23-5	50	μg/L	6340	4680		

: 4 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

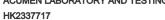
Work Order HK2337717

Sub-Matrix: WATER			Sample ID	WM1	WM2	 	
		Samplin	ng date / time	20-Sep-2023	20-Sep-2023	 	
Compound	CAS Number	LOR	Unit	HK2337717-001	HK2337717-002	 	
EM: Microbiological Testing							
EM002: E. coli		1	CFU/100mL	160	210	 	
EM003: Total Coliforms		1	CFU/100mL	240	290	 	

5 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2337717


Laboratory Duplicate (DUP) Report

Matrix: WATER					Labo	ratory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
EA/ED: Physical and Ag	gregate Properties (QC Lot: 53	13143)						
HK2337674-012	Anonymous	EA002: pH Value		0.1	pH Unit	7.7	7.8	0.0
HK2337674-018	Anonymous	EA002: pH Value		0.1	pH Unit	4.4	4.4	0.0
EA/ED: Physical and Ag	gregate Properties (QC Lot: 53	13144)	·					
HK2337674-018	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	770	770	0.0
HK2337597-001	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	239	238	0.5
EA/ED: Physical and Ag	gregate Properties (QC Lot: 53	13151)						
HK2337674-007	Anonymous	ED037: Total Alkalinity as CaCO3		1	mg/L	232	231	0.0
EA/ED: Physical and Ag	gregate Properties (QC Lot: 532	21620)						
HK2337717-001	WM1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.6	13.2
HK2337798-009	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	9.6	9.7	1.6
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 531	5990)						
HK2337598-001	Anonymous	EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 531	6003)						
HK2337717-001	WM1	ED045K: Chloride	16887-00-6	1	mg/L	6	6	0.0
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 531	6004)						
HK2337717-001	WM1	ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	4	3	0.0
∃D/EK: Inorganic Nonm	etallic Parameters (QC Lot: 532	0391)			•			
HK2337717-001	WM1	EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	0.0
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 532	7553)						
HK2338486-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	16.7	16.6	0.3
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 532	8372)			T			
HK2337717-001	WM1	EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.3	0.0
EP: Aggregate Organics	(QC Lot: 5329781)				I			
HK2337717-001	WM1	EP026C: Chemical Oxygen Demand		5	mg/L	9	9	0.0
EP: Aggregate Organics	(QC Lot: 5337320)				I			
HK2338711-006	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0
	ations - Total (QC Lot: 5315714							
HK2337717-001	WM1	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0
		EG020: Copper	7440-50-8	1	μg/L	1	<1	0.0
		EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.0

∴ 6 of 9

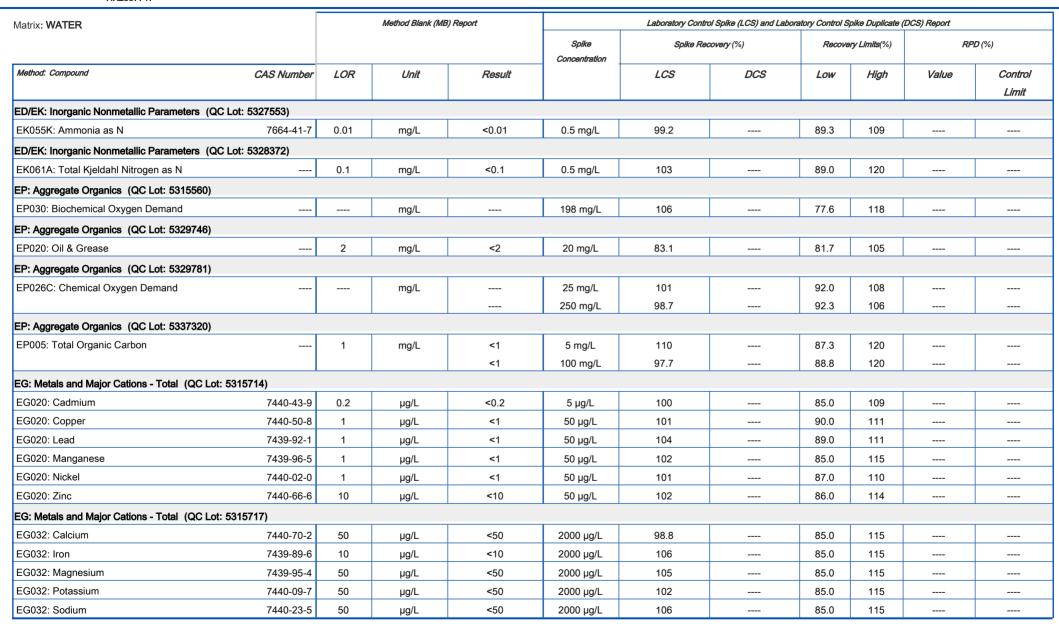
Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order

Matrix: WATER					Labora	atory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EG: Metals and Major Cat	ions - Total (QC Lot: 5315714) -	- Continued						
HK2337717-001	WM1	EG020: Manganese	7439-96-5	1	μg/L	32	33	3.5
		EG020: Nickel	7440-02-0	1	μg/L	<1	<1	0.0
		EG020: Zinc	7440-66-6	10	μg/L	14	14	0.0
EG: Metals and Major Cat	ions - Total (QC Lot: 5315717)							
HK2337717-002	WM2	EG032: Iron	7439-89-6	10	μg/L	670	660	1.7
		EG032: Calcium	7440-70-2	50	μg/L	16200	16400	1.0
		EG032: Magnesium	7439-95-4	50	μg/L	1290	1300	0.8
		EG032: Potassium	7440-09-7	50	μg/L	1450	1470	1.0
		EG032: Sodium	7440-23-5	50	μg/L	4680	4710	0.8

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	B) Report		Laboratory Contr	ol Spike (LCS) and Labor	ratory Control S	oike Duplicate (DCS) Report	
					Spike Concentration	Spike Red	covery (%)	Recove	ry Limits(%)	RP	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 5313144)										
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	146.9 µS/cm	100		93.5	106		
				<1	1412 μS/cm	96.0		94.3	105		
EA/ED: Physical and Aggregate Properties (QC	Lot: 5313151)										
ED037: Total Alkalinity as CaCO3		1	mg/L	<1	50 mg/L	103		95.0	105		
EA/ED: Physical and Aggregate Properties (QC	Lot: 5321620)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	108		86.6	113		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5315990)										
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	100		92.4	106		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5316003)										
ED045K: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	93.5		88.2	108		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5316004)										
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	<1	5 mg/L	104		91.4	109		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 5320391)										
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2							

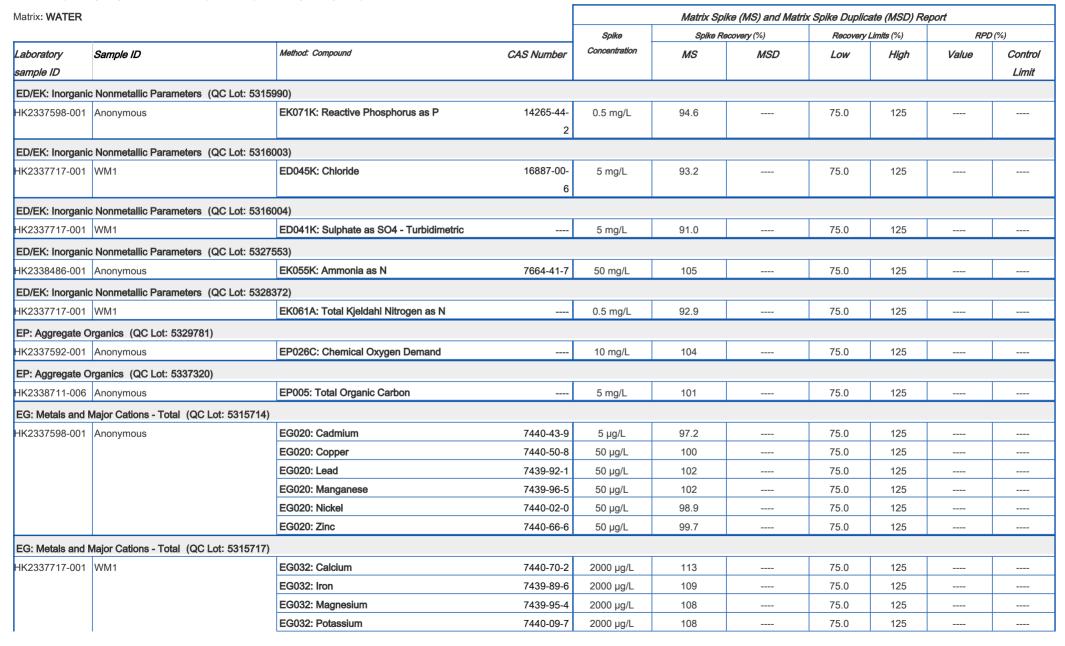

7 of 9

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order

Client

HK2337717


: 8 of 9

Client : ACUMEN

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2337717

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

: 9 of 9

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order

HK2337717

		(ALS)	
(MSD) Re	aport		
ts (%)	RPD	(%)	
High	Value	Control	

Matrix: WATER					Matrix Spi	ike (MS) and Matrix	Spike Duplica	ate (MSD) Re	port	
				Spike	Spike Re	эсоvегу (%)	Recovery I	Limits (%)	RPD) (%)
	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and I	Major Cations - Total (QC Lot: 5315717)	- Continued								
HK2337717-001	WM1	EG032: Sodium	7440-23-5	2000 μg/L	116		75.0	125		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: ACUMEN LABORATORY AND TESTING LIMITED Client

: HUNTINGTON HUI

: UNIT D, 12/F, FORD GLORY PLAZA, NOS.37-39 WING HONG

STREET, CHEUNG SHA WAN, KOWLOON, HONG KONG

: Huntington.Hui@aurecongroup.com E-mail

Telephone

Contact

Address

Facsimile

: NENTX Project

Order number : ----

C-O-C number : ----

Site

Laboratory

Contact

Address

Quote

number

: ALS Technichem (HK) Pty Ltd

: Richard Fung

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

: richard.fung@alsglobal.com E-mail

: +852 2610 1044 Telephone : +852 2610 2021 Facsimile

: HKE/2751/2022_V3

Date Samples Received

Issue Date

Authorised results for

Page

Work Order

: 28-Sep-2023 : 09-Oct-2023

: 1 of 5

: HK2338652

: 2 No. of samples received

: 2 No. of samples analysed

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Fung Lim Chee, Richard

Managing Director

Position

Inorganics

Fung Lim Chee, Richard

Managing Director

Metals ENV

Aa

Ng Sin Kou, May

Laboratory Manager

Microbiology_ENV

Page Number : 2 of 5

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2338652

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Testing period is from 28-Sep-2023 to 09-Oct-2023.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2338652

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.

Microbiological sample(s) was/ were collected in 125mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 10:05.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

EA002 - pH value is reported as at 25°C. Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EA025 - The accredited LOR of Total Suspended Solids is 0.5mg/L. Results below this LOR are for reference only.

3 of 5

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2338652

ALS

Analytical Results

Sub-Matrix: WATER			Sample ID	WM 2	GR 3	 	
		Samplir	ng date / time	28-Sep-2023	28-Sep-2023	 	
Compound	CAS Number	LOR	Unit	HK2338652-001	HK2338652-002	 	***********
EA/ED: Physical and Aggregate Properties							
EA002: pH Value		0.1	pH Unit	7.1	7.2	 	
EA010: Electrical Conductivity @ 25°C		1	μS/cm	131	129	 	
EA025: Suspended Solids (SS)		0.1	mg/L	5.5	4.9	 	
ED/EK: Inorganic Nonmetallic Parameters							
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.10	 	
EP: Aggregate Organics							
EP005: Total Organic Carbon		1	mg/L	2	2	 	
EP026C: Chemical Oxygen Demand		5	mg/L	<5	6	 	
EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
EG: Metals and Major Cations - Total							
EG020: Zinc	7440-66-6	10	μg/L	13	20	 	
EG032: Iron	7439-89-6	10	μg/L	910	670	 	
EM: Microbiological Testing							
EM002: E. coli		1	CFU/100mL	2100	220	 	
EM003: Total Coliforms		1	CFU/100mL	3400	380	 	

: 4 of 5

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2338652

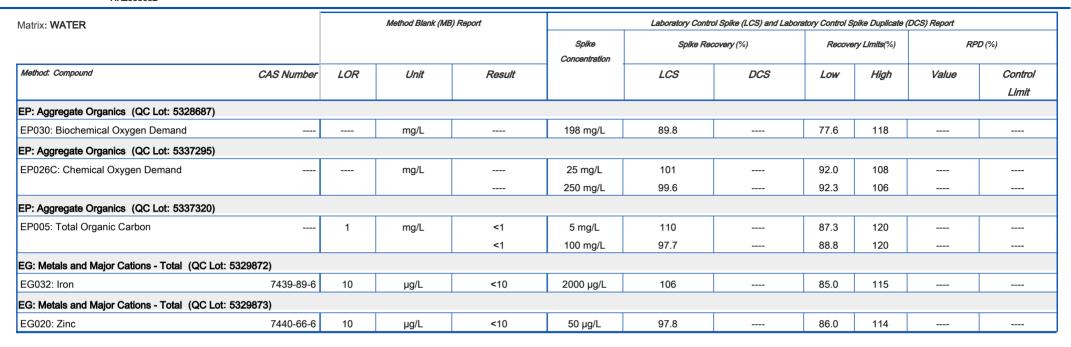
ALS

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EA/ED: Physical and Agg	regate Properties (QC Lot: 5328	751)							
HK2338652-001	WM 2	EA010: Electrical Conductivity @ 25°C		1	μS/cm	131	131	0.0	
EA/ED: Physical and Agg	regate Properties (QC Lot: 5328	752)							
HK2338652-001	WM 2	EA002: pH Value		0.1	pH Unit	7.1	7.1	0.0	
EA/ED: Physical and Agg	regate Properties (QC Lot: 5340	160)							
HK2338909-001	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	1.7	1.5	12.3	
HK2338913-001	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	4.7	4.9	4.7	
ED/EK: Inorganic Nonme	tallic Parameters (QC Lot: 53385	567)							
HK2339219-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	18.9	20.1	6.1	
EP: Aggregate Organics	(QC Lot: 5337295)								
HK2338652-002	GR 3	EP026C: Chemical Oxygen Demand		5	mg/L	6	5	0.0	
EP: Aggregate Organics	(QC Lot: 5337320)								
HK2338711-006	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	
EG: Metals and Major Ca	tions - Total (QC Lot: 5329872)								
HK2338652-002	GR 3	EG032: Iron	7439-89-6	10	μg/L	670	670	0.0	
EG: Metals and Major Ca	tions - Total (QC Lot: 5329873)								
HK2338652-002	GR 3	EG020: Zinc	7440-66-6	10	μg/L	20	19	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike Concentration	Spike Red	covery (%)	Recove	ny Limits(%)	RP	ס(%)
Method: Compound	AS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control
											Limit
A/ED: Physical and Aggregate Properties (QC Lot: 5328751)											
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	146.9 µS/cm	98.0		93.5	106		
				<1	1412 μS/cm	99.6		94.3	105		
EA/ED: Physical and Aggregate Properties (QC Lot: 53	40160)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	96.0		86.6	113		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 533	38567)										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	99.0		89.3	109		

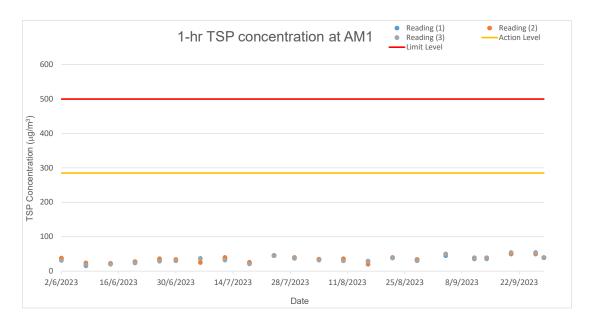

5 of 5

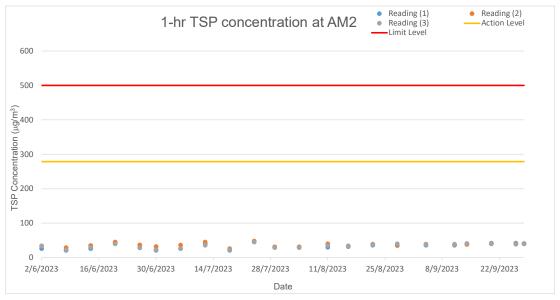
Client

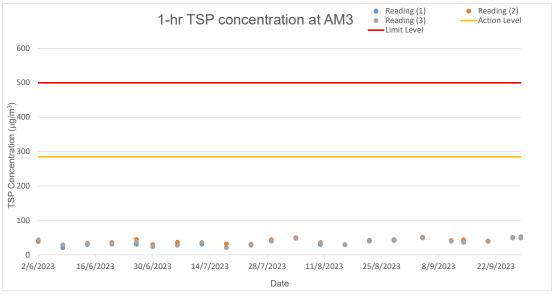
: ACUMEN LABORATORY AND TESTING LIMITED

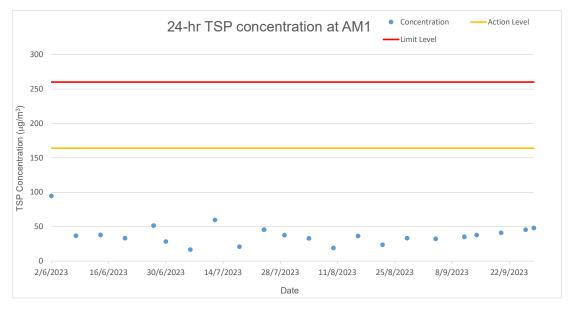
Work Order

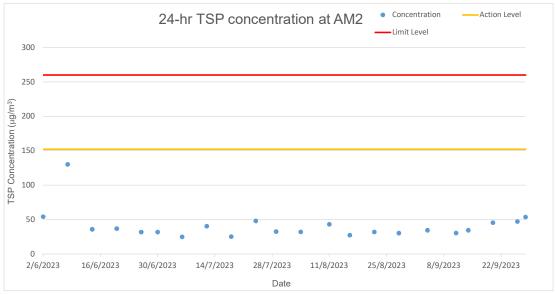
HK2338652

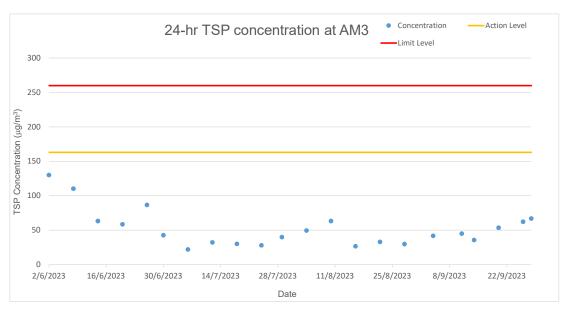


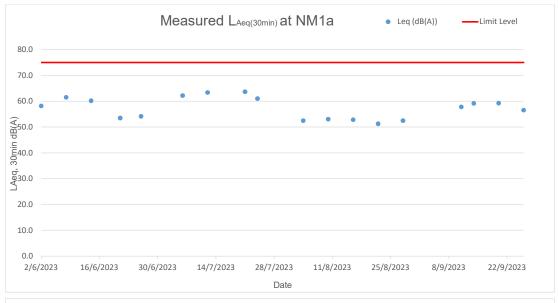

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

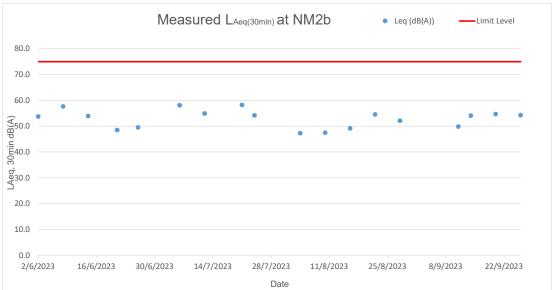

Matrix: WATER			Matrix Spil	ke (MS) and Matrix	Spike Duplic	ate (MSD) Re	eport			
						covery (%)	Recovery .	Limits (%)	RPD (%)	
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
ED/EK: Inorganio	Nonmetallic Parameters (QC Lot: 53385	567)								
HK2339219-001	Anonymous	EK055K: Ammonia as N	7664-41-7	50 mg/L	112		75.0	125		
EP: Aggregate O	Organics (QC Lot: 5337295)									
HK2338652-001	WM 2	EP026C: Chemical Oxygen Demand		10 mg/L	99.0		75.0	125		
EP: Aggregate O	Organics (QC Lot: 5337320)									
HK2338711-006	Anonymous	EP005: Total Organic Carbon		5 mg/L	101		75.0	125		
EG: Metals and M	Major Cations - Total (QC Lot: 5329872)									
HK2338652-001	WM 2	EG032: Iron	7439-89-6	2000 μg/L	105		75.0	125		
EG: Metals and I	Major Cations - Total (QC Lot: 5329873)									
HK2338652-001	WM 2	EG020: Zinc	7440-66-6	50 μg/L	97.4		75.0	125		

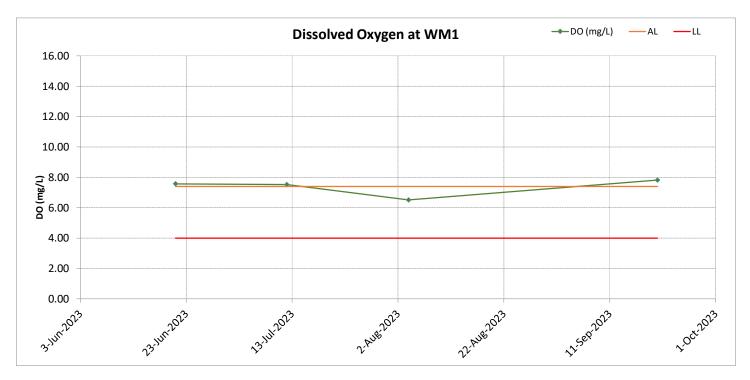

Appendix F Graphical Presentations

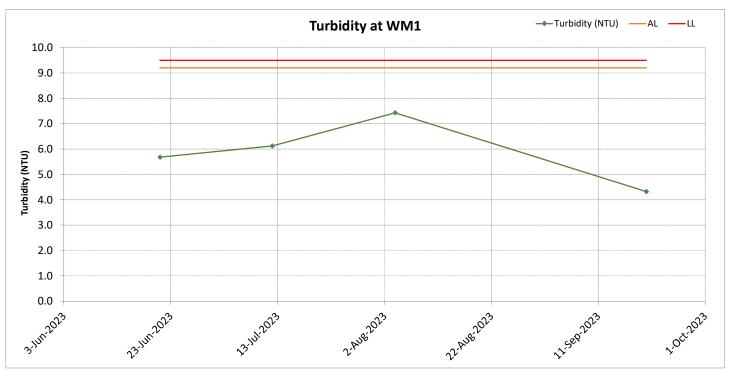

Air Quality

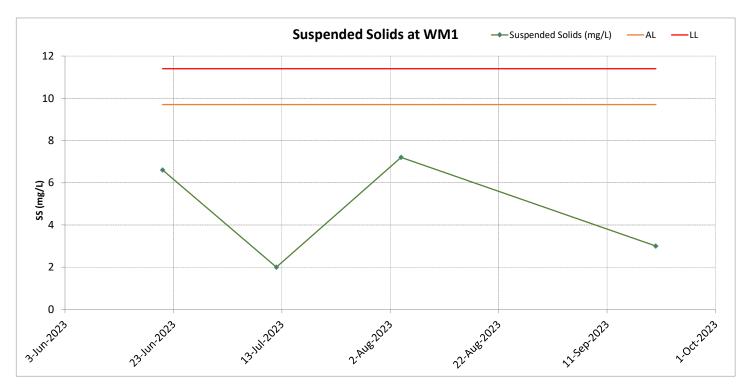


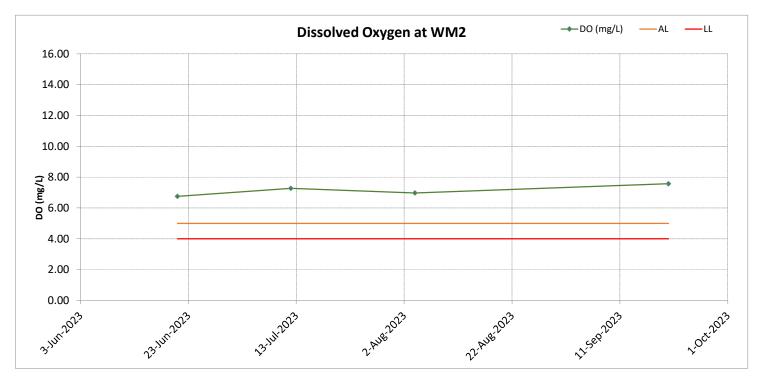


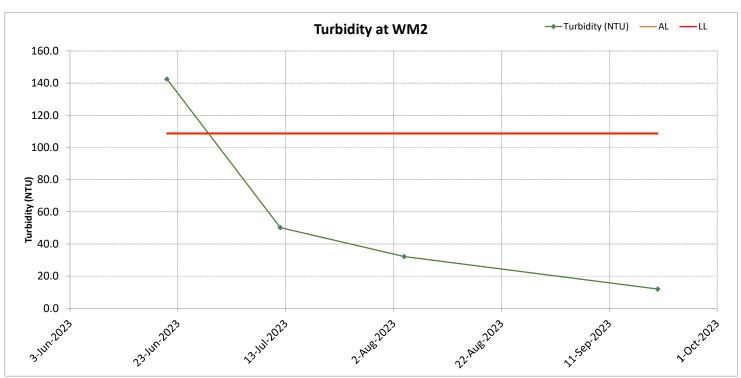


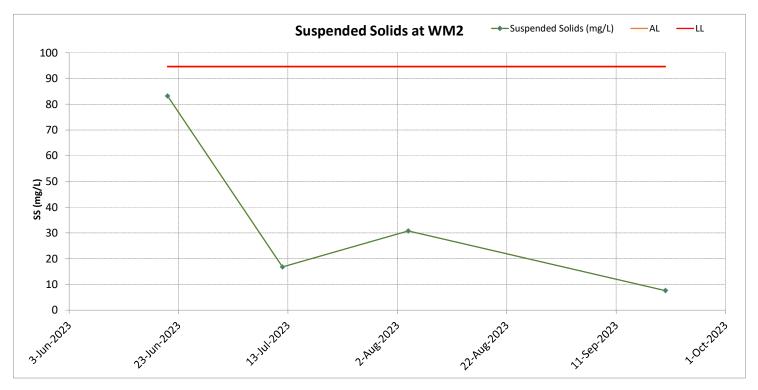



Noise




Water Quality





Appendix G Notification of Environmental Quality Limits Exceedance

Notification of Environmental Quality Limits Exceedance

Air Quality Monitoring - Construction Dust

				1-h	r TSP Exce	edance Co	unt	24-hr TSP Exceedance Count					
Dust Monitoring	Level	Monitoring F	Parameter (s)	Reportin	Reporting period		Accumulate project to date		ng period	Accumulate project to date			
Station	Exceedance	1-hr TSP	24-hr TSP	Project related	Non- project related	Project related	Non- project related	Project related	Non- project related	Project related	Non- project replated		
AM1	Action	0	0	0	0	0	0	0	0	0	2		
AIVI I	Limit	0	0	0	0	0	0	0	0	0	3		
A N A O	Action	0	0	0	0	0	0	0	0	0	0		
AM2	Limit	0	0	0	0	0	0	0	0	0	0		
4140	Action	0	0	0	0	0	0	0	0	0	4		
AM3	Limit	0	0	0	0	0	0	0	0	0	3		

Noise Monitoring

		Manitarina	LAec	q (30mins) Ex	cceedance C	ount
Noise Monitoring	Level	Monitoring Parameter	Reportir	ng period		ate project date
Station	Exceedance	LAeq (30mins)	Project related	Non- project related	Project related	Non- project related
NIN 4 4	Action	0	0	0	0	0
NM1a	Limit	0	0	0	0	0
NIMO-	Action	0	0	0	0	0
NM2a	Limit	0	0	0	0	0

Notification of Environmental Quality Limits Exceedance

Surface Water Monitoring

Surface												Ex	ceedar	nce Coi	unt						
Water	Level	Moni	Monitoring Parameter (s)					R	eportin	ıg perio	od			Accumulate project to date							
Quality Monitoring	Exceedance						Project	related	i	Noi	n-proje	ct repla	ited		Project	related	i	Noi	n-proje	ct repla	ited
Station		DO	рН	Turb	SS	DO	рН	Turb	SS	DO	рН	Turb	SS	DO	рН	Turb	SS	DO	рН	Turb	SS
WM1	Action	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
VVIVII	Limit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA/NAO	Action	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WM2	Limit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

Remarks:

- 1. "DO" equal to Dissolved Oxygen
- 2. "Turb" equal to Turbidity
- 3. "SS" equal to Suspended Solids

Landfill Gas (LFG) Monitoring

LFG Monitoring	Monitoring	No. of Exceedance				
Station	Parameter(s)	Limit Level				
	CH₄	0				
Portion A +50 mpD to +70 mpD Platform	CO ₂	0				
	O ₂	0				

Appendix H Wind Data

C11 TMMD C12 C12	Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
20230901 0010			
20230901 0030			
20230901 0030			
2023(901 0000 0.1 243 2023(901 0100 0.1 243 2023(901 0110 0.1 207 2023(901 0110 0.1 35 2023(901 0120 0.1 119 2023(901 0140 0.1 1177 2023(901 0150 1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 46 2023(901 0150 0.1 327 2023(901 0250 0.1 1327 2023(901 0250 0.1 148 2023(901 0250 0.1 16 2023(901 0250 0.1 16 2023(901 0300 0.1 198 2023(901 0300 0.1 198 2023(901 0300 0.1 119 2023(901 0300 0.1 119 2023(901 0300 0.1 119 2023(901 0300 0.1 188 2023(901 0350 0.1 1445 2023(901 0350 0.1 1445 2023(901 0350 0.1 145 2023(901 0350 0.1 145 2023(901 0440 0.1 179 2023(901 0430 0.1 124 2023(901 0430 0.1 124 2023(901 0430 0.1 124 2023(901 0430 0.1 124 2023(901 0450 0.1 124 2023(901 0450 0.1 154 2023(901 0450 0.1 154 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 117 2023(901 0550 0.1 117 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 0550 0.1 118 2023(901 05			
2023(9901 0100			
20230901 0110			
20230901 0120			
20230901 0130			
20230901 0140			110
20230901 0150			
20230901 0200 0.1			
20230901 0220		0.1	46
20230901 0230			
20230901 0240			
20230901 0250			
20230901 0300			
20230901 0310			
20230901 0320			
20230901 0330			
20230901 0350	20230901 0330	0.1	
20230901 0400 0.1 179			
20230901 0410			
20230901 0420			
20230901 0430			
20230901 0440			
20230901 0450 2.1 154			
20230901 0510			
20230901 0520		0.8	
20230901 0530			
20230901 0540 0.1 124			
20230901 0550			
20230901 0600			
20230901 0610 0.1 351 20230901 0620 0.1 153 20230901 0630 0.1 69 20230901 0640 0.1 187 20230901 0650 0.1 219 20230901 0700 0.1 161 20230901 0700 0.1 128 20230901 0730 0.1 128 20230901 0730 0.1 193 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0840 1.8 109 20230901 0840 1.8 109 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 0900 0.1 135 20230901 0850 4.1 98 20230901 0900 0.1 135 202309			
20230901 0620 0.1 153 20230901 0630 0.1 69 20230901 0640 0.1 187 20230901 0650 0.1 219 20230901 0700 0.1 161 20230901 0710 0.6 136 20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0840 1.8 109 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901			
20230901 0640 0.1 187 20230901 0650 0.1 219 20230901 0700 0.1 161 20230901 0710 0.6 136 20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 0900 0.1 37 20230901 09			
20230901 0650 0.1 219 20230901 0700 0.1 161 20230901 0710 0.6 136 20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1			
20230901 0700 0.1 161 20230901 0710 0.6 136 20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1000 3.6 13 20230901 100			
20230901 0710 0.6 136 20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0900 0.1 37 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1000 0.3 6 20230901 1000 0.3 83 20230901 1000 0.3 83 20230901 1000<			
20230901 0720 0.1 128 20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100			
20230901 0730 0.1 70 20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1050 0.6 57 20230901 1100 </td <td></td> <td></td> <td></td>			
20230901 0740 0.1 193 20230901 0750 0.1 96 20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1000 3.6 13 20230901 1000 0.3 8 20230901 1000 0.3 83 20230901 1000 0.3 83 20230901 1000 1.1 45 20230901 1000 1.1 45 20230901 1050 0.6 104 20230901 1100 </td <td></td> <td></td> <td></td>			
20230901 0800 0.1 99 20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1020 0.3 83 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100 1.6 320 20230901 1120 1.2 111 20230901 1120 1.6 320 20230901 110		0.1	193
20230901 0810 0.1 81 20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 0950 3.6 13 20230901 1000 3.6 13 20230901 1010 0.3 83 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1050 0.6 104 20230901 1050 0.6 104 20230901 1100 1.6 320			
20230901 0820 0.5 118 20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0955 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1050 0.6 104 20230901 110 1.6 320 20230901 110 3.6 57 20230901 1120 1.2 111 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0830 0.2 152 20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0840 1.8 109 20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0850 4.1 98 20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100 1.6 320 20230901 1100 1.2 111 20230901 1100 1.2 111 20230901 1120 1.2 111 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0900 0.1 135 20230901 0910 0.5 91 20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1100 1.6 320 20230901 1120 1.2 111 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0920 0.1 37 20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84		0.1	135
20230901 0930 0.1 124 20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0940 0.1 8 20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 0950 1.4 246 20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1000 3.6 13 20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1010 0.3 6 20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1020 0.3 83 20230901 1030 2.5 73 20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1040 1.1 45 20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84	20230901_1020	0.3	83
20230901 1050 0.6 104 20230901 1100 1.6 320 20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1100 1.6 320 20230901 110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901 1110 3.6 57 20230901 1120 1.2 111 20230901 1130 0.5 84			
20230901_1120			
20230901_1130		1.2	
20230901_1140 2.6 42	20230901_1140		
20230901_1150	20230901_1150	5.4	25

D . 0 TF		ı
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230901 1200	6.3	51
20230901_1210	0.3	90
20230901_1220	0.1	121
20230901 1230	0.1	36
20230901_1240	0.6	69
20230901_1250	1.9	38
20230901_1300	7.6	64
20230901_1310	0.1	356
20230901_1320 20230901_1330	0.2	5 349
20230901 1330	0.3	89
20230901_1350	3.8	41
20230901_1400	0.1	333
20230901_1410	0.1	63
20230901_1420	0.9	50
20230901_1430	0.7	41
20230901_1440	0.1	235
20230901_1450	2.7	60
20230901_1500 20230901_1510	0.6	50 52
20230901_1510	1.8 1.5	120
20230901_1520	1.4	108
20230901_1540	5.7	99
20230901 1550	1.1	100
20230901_1600	1	39
20230901_1610	4.5	93
20230901 1620	0.1	43
20230901 1630	1.3	90
20230901_1640	4.7	130
20230901_1650 20230901_1700	0.6	101 72
20230901_1700	4.7	39
20230901_1710	2.4	7
20230901_1730	0.1	323
20230901_1740	4.9	335
20230901_1750	8.2	59
20230901_1800	2.4	86
20230901_1810	3.6	15
20230901_1820	3.8	53
20230901_1830 20230901_1840	3.1 4.9	66
20230901_1850	4.9	20
20230901 1900	0.7	91
20230901_1910	4.5	8
20230901_1920	1.3	316
20230901_1930	0.6	14
20230901_1940	17.4	322
20230901_1950	10.7	52
20230901_2000 20230901_2010	5.8 6.4	43 347
20230901_2010	3.3	347
20230901_2020	4.1	59
20230901_2040	6.8	44
20230901_2050	2.3	31
20230901_2100	4.1	355
20230901 2110	4.5	135
20230901 2120	3.6	97
20230901_2130 20230901_2140	3.8	12 193
20230901_2140 20230901_2150	0.3	65
20230901_2130	5.1	344
20230901 2210	11.2	354
20230901 2220	9.5	1
20230901_2230	7.8	234
20230901_2240	3.6	102
20230901_2250	9.6	340
20230901 2300	0.2	87
20230901_2310	22.6	42
20230901_2320 20230901_2330	7.2	47 57
20230901_2330	3.3	63
20230901 2340	2.9	20
20220701_2220	2.7	

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230902 0000	6.6	337
20230902_0010	3.7	352
20230902_0020	2.4	243.5
20230902_0030	0.6	101.6
20230902_0040	0.4	243.4
20230902_0050	8.8	-0.4
20230902_0100	0.4	31.4
20230902_0110	2.3	57.5
20230902_0120	9	10.6
20230902_0130	2.8	2
20230902_0140	5.8	22.8
20230902_0150	1.7	48.1
20230902_0200	13.7	350.6
20230902 0210 20230902 0220	0.1 9.1	13.7
20230902 0220	3.7	
20230902_0230	0.3	22.5 25.7
20230902_0240	0.1	342.6
20230902 0230	6.5	50.9
20230902_0300	0.8	184.3
20230902 0320	5.1	55.7
20230902_0320	3.1	17
20230902 0340	3.2	159.4
20230902_0350	3.8	112.8
20230902_0400	11.1	0
20230902_0410	1.7	182.5
20230902 0420	1.4	45
20230902_0430	1.8	188.8
20230902 0440	2.1	11.8
20230902_0450	2.7	6.7
20230902_0500	0.2	315
20230902_0510	0.4	312
20230902 0520	0.1	262.8
20230902 0530	1.6	30.3
20230902_0540	0.1	68.9
20230902_0550 20230902_0600	0.2	104.4
	2.3	29.4 42.2
20230902_0610 20230902_0620	0.2	190.7
20230902_0020	3	349.5
20230902_0030	3.7	8.6
20230902_0650	1.4	13.5
20230902 0700	0.1	15.2
20230902 0710	8	9.8
20230902 0720	4.3	50
20230902_0730	1.1	159.1
20230902_0740	0.1	21.2
20230902_0750	0.1	333.4
20230902_0800	0.1	46.6
20230902_0810	0.4	291.3
20230902 0820	1.4	28.8
20230902_0830	1.3	150.6
20230902_0840	0.4	195.1
20230902_0850	0.1	340.6
20230902_0900	0.9	307.2 27
20230902 0910 20230902 0920	0.4	93
20230902 0920	2.3	121.5
20230902 0930	9.4	6.5
20230902_0940	0.5	1.2
20230902_0930	1.2	137.2
20230902_1000	0.2	104
20230902_1010	2.4	353.5
20230902_1020	0.1	280.8
20230902_1030	1.3	302
20230902_1050	0.2	349.2
20230902 1100	0.1	297.1
20230902_1110	1.1	79.9
20230902_1120	0.6	17.9
20230902_1130	5.4	117.4
20230902 1140	0.4	149.6
20230902_1150	0.1	109.7

		ı
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230902 1200	0.1	151
20230902_1200	0.3	125
20230902 1220	1.8	328
20230902_1230	0.1	329
20230902_1240	0.4	103
20230902_1250	0.1	181
20230902_1300	1.5	316
20230902_1310	0.6	139
20230902_1320 20230902_1330	1.3	83 297
20230902 1340	0.1	161
20230902 1350	0.1	310
20230902 1400	0.2	64
20230902 1410	0.7	73
20230902_1420	0.2	103
20230902_1430	0.5	347
20230902_1440	0.1	263
20230902 1450	0.1	110
20230902_1500 20230902_1510	7.5 1.5	51 25
20230902 1510	2.1	86
20230902_1520	0.2	16
20230902 1540	0.4	53
20230902_1550	1.3	5
20230902_1600	0.1	50
20230902_1610	0.1	159
20230902 1620	1.3	154
20230902_1630	0.8	10
20230902_1640 20230902_1650	0.1	27
20230902_1630	0.1	11 12
20230902_1700	1.4	351
20230902_1710	0.1	325
20230902_1730	0.9	100
20230902_1740	0.1	351
20230902_1750	0.1	25
20230902 1800	0.1	97
20230902_1810	0.1	123
20230902_1820 20230902_1830	0.2	114 70
20230902_1830	0.1	330
20230902_1850	0.1	294
20230902_1900	0.1	167
20230902 1910	0.1	344
20230902_1920	0.1	43
20230902_1930	0.1	98
20230902_1940	0.1	74
20230902_1950	3.6	13
20230902_2000 20230902_2010	0.1	27 80
20230902_2010	0.1	343
20230902 2020	0.1	286
20230902 2040	0.1	353
20230902_2050	0.1	354
20230902_2100	0.1	175
20230902 2110	0.1	98
20230902_2120	0.7	74
20230902_2130 20230902_2140	0.1	339 198
20230902_2140	0.2	196
20230902_2130	0.1	166
20230902 2210	0.1	94
20230902 2220	0.1	42
20230902_2230	0.3	135
20230902_2240	0.1	312
20230902_2250	0.6	57
20230902 2300	0.1	10
20230902_2310	2.6	58
20230902_2320 20230902_2330	0.3 0.7	129 165
20230902_2330	0.7	334
20230902 2340	0.1	285
20230702_2330	U.1	203

Dota & Times		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230903 0000	0.1	291
20230903_0010	0.1	87
20230903 0020	1.3	27
20230903_0030	4.2	48
20230903 0040	0.1	158
20230903_0050	0.5	227
20230903_0100	0.6	74
20230903 0110 20230903 0120	0.8	98 52
20230903 0120	0.2	96
20230903 0140	1	8
20230903_0150	1.6	93
20230903 0200	0.1	46
20230903_0210	0.1	152
20230903_0220	0.1	71
20230903_0230	0.1	270
20230903_0240	0.1	116
20230903_0250	0.1	82
20230903_0300 20230903_0310	0.1	55 352
20230903_0310	0.0	151
20230903_0320	0.1	185
20230903_0340	0.1	169
20230903_0350	0.1	267
20230903_0400	0.4	318
20230903_0410	0.1	67
20230903_0420	0.1	50
20230903_0430	0.1	103
20230903_0440 20230903_0450	0.1 0.1	137 60
20230903_0430	0.1	101
20230903_0500	1	348
20230903_0520	1.4	105
20230903_0530	0.1	136
20230903_0540	0.1	146
20230903_0550	0.1	77
20230903 0600	0.2	144
20230903_0610	0.1	137
20230903_0620 20230903_0630	0.1 7.5	152 103
20230903_0030	0.2	60
20230903_0650	0.1	133
20230903_0700	0.1	86
20230903_0710	0.1	155
20230903_0720	0.5	165
20230903_0730	0.1	233
20230903_0740	0.1	139
20230903_0750	0.3	107
20230903_0800 20230903_0810	0.1	173 3
20230903_0810	0.2	199
20230903 0830	5	347
20230903_0840	0.3	341
20230903_0850	0.1	100
20230903_0900	0.1	131
20230903_0910	0.4	132
20230903_0920	0.1	199
20230903_0930	1	133
20230903_0940 20230903_0950	0.1 0.1	65 321
20230903_0930	2.6	73
20230903 1010	0.1	112
20230903_1020	0.1	9
20230903 1030	0.1	288
20230903_1040	0.1	24
20230903 1050	3	22
20230903 1100	0.1	2
20230903_1110	0.1	334
20230903_1120 20230903_1130	0.1 2.8	177
20230903_1130	1.2	177
20230903_1140	0.1	151
20200700_1100	V-1	1.7.1

Date & Time (YYYYMMBB HH	(MM) Wind S	peed (m/s) Wind Direc	etion (Degree)
20230903 1200)	0.3	64
20230903_1210)	2.7	118
20230903_1220			92
20230903_1230			88
20230903_1240			56
20230903_1250)		354
20230903_1300			326
20230903 1310			109
20230903_1320			110
20230903_1330 20230903_1340			18 308
20230903_1340			14
20230903_1300			356
20230903 1410			280
20230903_1420			283
20230903_1430)	0.1	45
20230903_1440)	0.1	20
20230903_1450			42
20230903_1500			138
20230903_1510			120
20230903_1520			109
20230903_1530			203
20230903 1540			337
20230903_1550 20230903_1600			350 149
20230903_1610			335
20230903_1010			110
20230903_1630			339
20230903_1640			178
20230903_1650			121
20230903_1700)	0.1	58
20230903_1710)		71
20230903_1720			97
20230903_1730			116
20230903_1740			57
20230903_1750			49 54
20230903 1800 20230903 1810			40
20230903_1810			323
20230903 1830			231
20230903 1840			62
20230903 1850)	0.1	17
20230903_1900)		18
20230903_1910			44
20230903_1920			44
20230903_1930			44
20230903_1940			47
20230903_1950 20230903_2000			60 41
20230903_2000			51
20230903_2010			42
20230903 2030			53
20230903_2040		0.1	53
20230903_2050		0.1	53
20230903_2100			51
20230903_2110			51
20230903 2120			47
20230903_2130			46
20230903_2140 20230903_2150			54
20230903_2130		0.1	9
20230903 2210		0.1	9
20230903_2210			49
20230903 2230			39
20230903_2240			43
20230903 2250)		37
20230903_2300)	0.1	38
20230903_2310)	0.1	38
20230903_2320			38
20230903_2330			201
20230903 2340			201
20230903 2350	J	0.1	56

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM) 20230904 0000	0.1	56
20230904 0010	0.1	19
20230904 0020	0.1	50
20230904_0030	0.1	50
20230904 0040	0.1	50
20230904_0050	0.1	50
20230904_0100 20230904_0110	0.1	50 31
20230904_0110 20230904_0120	0.1 0.1	31
20230904 0120	0.1	31
20230904 0140	0.1	40
20230904_0150	0.1	40
20230904_0200	0.1	38
20230904_0210	0.1	27
20230904_0220	0.1	27
20230904_0230 20230904_0240	0.1 0.1	41
20230904_0250	0.1	186
20230904 0300	0.1	20
20230904 0310	0.1	39
20230904_0320	0.1	51
20230904_0330	0.1	51
20230904_0340	0.1	51
20230904_0350	0.1	51
20230904_0400 20230904_0410	0.1 0.1	51 51
20230904_0410	0.1	46
20230904 0430	0.1	325
20230904 0440	0.1	325
20230904_0450	0.1	14
20230904_0500	0.1	33
20230904 0510	0.1	322
20230904_0520	0.1	46 337
20230904_0530 20230904_0540	0.1 0.1	50
20230904_0550	0.1	46
20230904 0600	0.1	46
20230904_0610	0.1	130
20230904 0620	0.1	59
20230904_0630	0.1	208
20230904_0640 20230904_0650	0.1	76 99
20230904_0650 20230904_0700	0.1 0.1	210
20230904 0710	0.1	15
20230904 0720	0.1	165
20230904_0730	0.4	186
20230904_0740	0.1	197
20230904_0750	0.9	224
20230904_0800	0.1	129
20230904_0810 20230904_0820	2.8 0.1	275 56
20230904 0830	0.1	297
20230904 0840	0.1	7
20230904_0850	0.1	342
20230904_0900	0.1	4
20230904 0910	0.1	36
20230904_0920	0.1	47
20230904_0930 20230904_0940	0.1 1.3	347 272
20230904_0940	0.1	331
20230904_0930	4.2	89
20230904_1010	2	6
20230904_1020	0.1	28
20230904_1030	0.1	341
20230904_1040	0.1	64
20230904 1050 20230904 1100	0.1	282 20
20230904_1110	0.1 0.1	277
20230904_1110	0.1	73
20230904 1130	0.1	36
20230904 1140	0.2	33
20230904_1150	0.2	295

Doto & Timo	T	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230904 1200	0.1	158
20230904_1210	1.1	292
20230904_1220	2.3	216
20230904_1230	0.7	240
20230904 1240 20230904 1250	1.5	156
20230904_1250 20230904_1300	0.6	80 109
20230904_1310	0.1	318
20230904 1320	1	124
20230904_1330	4	218
20230904_1340	2.2	251
20230904_1350	0.1	189
20230904 1400 20230904 1410	1.6	230 123
20230904_1410	0,9	274
20230904 1430	0.1	39
20230904_1440	0.1	47
20230904_1450	0.1	60
20230904_1500	0.1	83
20230904 1510 20230904 1520	0.1	96 136
20230904_1520	0.1	81
20230904_1540	0.1	45
20230904_1550	0.1	74
20230904_1600	0.1	50
20230904_1610	0.1	77
20230904_1620	0.1	106
20230904_1630 20230904_1640	0.1	163 207
20230904_1040	0.7	126
20230904 1700	0.1	137
20230904_1710	0.1	89
20230904_1720	0.1	38
20230904_1730	0.1	93
20230904_1740 20230904_1750	0.1	22
20230904_1750 20230904_1800	0.1	98
20230904_1810	0.1	62
20230904_1820	0.1	70
20230904_1830	0.1	43
20230904_1840	0.1	-1
20230904_1850	0.1	53
20230904_1900 20230904_1910	0.1	40
20230904 1920	0.1	33
20230904_1930	0.1	59
20230904_1940	0.1	120
20230904_1950	0.1	134
20230904_2000 20230904_2010	0.1	60 170
20230904_2010	0.1	152
20230904_2020	0.1	147
20230904_2040	0.1	85
20230904_2050	0.1	194
20230904_2100	0.1	70
20230904 2110 20230904 2120	0.1	62
20230904_2120	0.1	52
20230904 2140	0.1	43
20230904_2150	0.1	20
20230904 2200	0.1	343
20230904_2210	0.1	50
20230904_2220 20230904_2230	0.1	51 334
20230904_2240	0.1	12
20230904_2250	0.2	97
20230904_2300	0.3	215
20230904_2310	0.3	334
20230904_2320	0.1	302
20230904_2330 20230904_2340	0.1	235 34
20230904 2350	0.1 0.1	273
20230701_2330	0.1	213

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230905 0000	0.1	70
20230905_0010	0.1	62
20230905 0020	0.1	327
20230905_0030	0.1	34
20230905_0040	0.1	34
20230905_0050	0.1	35
20230905_0100 20230905_0110	0.1 0.1	63 63
20230905_0110 20230905_0120	0.1	63
20230905 0120	0.1	42
20230905 0140	0.1	46
20230905_0150	0.1	46
20230905_0200	0.1	46
20230905_0210	0.1	46
20230905 0220	0.1	46
20230905_0230 20230905_0240	0.1 0.1	46 46
20230905_0240	0.1	46
20230905 0300	0.1	46
20230905 0310	0.1	51
20230905_0320	0.1	41
20230905_0330	0.1	47
20230905_0340	0.1	57
20230905_0350	0.1	57
20230905_0400 20230905_0410	0.1	57 57
20230905_0410	0.1	57
20230905 0420	0.1	57
20230905 0440	0.1	57
20230905_0450	0.1	57
20230905_0500	0.1	57
20230905_0510	0.1	57
20230905_0520	0.1	57
20230905_0530 20230905_0540	0.1	57 57
20230905_0540	0.1	57
20230905 0600	0.1	57
20230905 0610	0.1	57
20230905_0620	0.1	57
20230905_0630	0.1	57
20230905_0640	0.1	57
20230905_0650 20230905_0700	0.1 0.1	48 35
20230905 0710	0.1	103
20230905 0720	0.1	68
20230905 0730	0.1	68
20230905_0740	0.1	64
20230905 0750	0.1	21
20230905_0800	0.1	49
20230905_0810	0.1	76 77
20230905_0820 20230905_0830	0.1 0.1	79
20230905 0840	0.1	79
20230905_0850	0.1	84
20230905_0900	0.1	68
20230905_0910	0.5	161
20230905 0920	0.1	158
20230905_0930	0.9	156
20230905_0940 20230905_0950	0.2	98 146
20230905 1000	0.1	181
20230905 1010	0.1	178
20230905_1020	0.1	144
20230905_1030	0.1	125
20230905_1040	0.2	77
20230905 1050	0.4	99
20230905 1100 20230905 1110	0.5	216
20230905 1110	0.5 0.1	219 103
20230905 1130	0.4	138
20230905_1140	0.1	97
20230905 1150	0.1	89

	1	T
Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230905_1200 20230905_1210	0.1	112
20230905_1210 20230905_1220	0.9	162 196
20230905 1230	0.1	126
20230905_1230	0.1	184
20230905 1250	0.1	94
20230905 1300	1.2	217
20230905 1310	0.4	213
20230905 1320	0.1	136
20230905_1330	0.1	154
20230905_1340	1.9	150
20230905_1350	1.8	228
20230905_1400	0.1	326
20230905_1410	0.1	188
20230905 1420	1.6	229
20230905_1440	0.4	111
20230905_1440 20230905_1450	0.1	79
20230905_1450 20230905_1500	1.8 0.3	131 127
20230905_1510	0.6	228
20230905_1510	0.5	96
20230905 1530	0.1	142
20230905_1540	0.1	54
20230905_1550	0.1	90
20230905_1600	0.1	78
20230905_1610	0.1	79
20230905_1620	0.1	28
20230905_1630	0.1	100
20230905_1640	0.1	127
20230905_1650	0.1	83
20230905_1700	0.1	121
20230905_1710	0.1	57
20230905_1720	0.1	115
20230905_1730 20230905_1740	0.1	51 313
20230905_1740	0.1	350
20230905 1800	0.1	340
20230905_1810	0.1	56
20230905_1820	0.1	55
20230905_1830	0.1	62
20230905_1840	0.1	57
20230905_1850	0.1	-1
20230905_1900	0.1	49
20230905_1910	0.1	67
20230905_1920	0.1	56
20230905_1930	0.1	101
20230905_1940 20230905_1950	0.1	121 114
20230905 2000	0.1	51
20230905_2000	0.1	75
20230905 2020	0.1	90
20230905 2030	0.1	66
20230905_2040	0.1	2
20230905_2050	0.1	31
20230905_2100	0.1	41
20230905 2110	0.1	52
20230905_2120	0.1	26
20230905_2130	0.1	29
20230905_2140	0.1	29 18
20230905_2150 20230905_2200	0.1	
20230905 2210	0.1	60 59
20230905 2220	0.1	58
20230905 2230	0.1	31
20230905_2240	0.1	31
20230905_2210	0.1	31
20230905 2300	0.1	31
20230905 2310	0.1	43
20230905_2320	0.1	14
20230905_2330	0.1	32
20230905 2340	0.1	31
20230905 2350	0.1	31

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230906 0000	0.1	31
20230906_0010	0.1	31
20230906_0020	0.1	31
20230906_0030	0.1	22
20230906_0040	0.1	23 19
20230906_0050 20230906_0100	0.1 0.1	32
20230906_0100	0.1	34
20230906 0120	0.1	34
20230906_0130	0.1	7
20230906_0140	0.1	18
20230906_0150	0.1	25 22
20230906_0200 20230906_0210	0.1 0.1	30
20230906 0220	0.1	5
20230906_0230	0.1	63
20230906_0240	0.1	63
20230906_0250	0.1	290
20230906_0300	0.1	101
20230906_0310 20230906_0320	0.1 0.1	48 48
20230906_0320	0.1	50
20230906 0340	0.1	50
20230906_0350	0.1	48
20230906_0400	0.1	48
20230906_0410 20230906_0420	0.1 0.1	42 44
20230906 0420	0.1	40
20230906_0440	0.1	29
20230906_0450	0.1	29
20230906_0500	0.1	29
20230906_0510	0.1	29
20230906 0520 20230906 0530	0.1 0.1	38 38
20230906 0540	0.1	30
20230906_0550	0.1	30
20230906_0600	0.1	31
20230906_0610	0.1	30
20230906 0620 20230906 0630	0.1 0.1	30 31
20230906_0030	0.1	31
20230906 0650	0.1	30
20230906_0700	0.1	30
20230906_0710	0.1	31
20230906_0720 20230906_0730	0.1 0.1	44 81
20230906_0730	0.1	61
20230906 0750	0.1	117
20230906_0800	0.4	96
20230906_0810	0.1	70
20230906_0820	0.1	81
20230906 0830 20230906 0840	0.1 0.1	75 128
20230906_0850	0.1	108
20230906_0900	0.2	147
20230906 0910	0.1	181
20230906_0920	0.1	110
20230906_0930 20230906_0940	1.7	128
20230906_0940	0.1	201 188
20230906 1000	0.7	305
20230906_1010	0.1	92
20230906_1020	0.1	75
20230906_1030	0.1	93
20230906_1040 20230906_1050	0.1 0.1	29 115
20230906 1030	0.1	90
20230906_1110	0.1	77
20230906_1120	0.4	85
20230906_1130	1.0	100
20230906_1140	0.1	116
20230906_1150	0.1	191

D-4- 0 Time	1	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230906 1200	0.1	22
20230906_1210	0.1	57
20230906_1220	0.4	173
20230906_1230	0.1	279
20230906 1240	0.1	219
20230906_1250	0.1	62
20230906_1300	0.1	81
20230906 1310 20230906 1320	0.1	81 79
20230906_1320 20230906_1330	0.1	91
20230906_1340	0.1	207
20230906 1350	0.3	164
20230906_1400	0.1	177
20230906_1410	0.1	67
20230906_1420	0.1	20
20230906_1430	0.1	121
20230906_1440	0.2	43 113
20230906_1450 20230906_1500	0.1	100
20230906_1510	0.1	293
20230906_1520	0.1	55
20230906 1530	0.8	44
20230906_1540	0.2	353
20230906_1550	0.1	94
20230906_1600	0.1	279
20230906_1610	0.1	44
20230906_1620	0.1	75
20230906_1630 20230906_1640	0.1	27 97
20230906 1650	0.1	32
20230906_1700	0.1	89
20230906 1710	0.1	97
20230906 1720	0.1	79
20230906_1730	0.1	7
20230906_1740	0.1	3
20230906_1750	0.1	122
20230906 1800	0.1	51
20230906_1810 20230906_1820	0.1	53 343
20230906 1830	0.1	343
20230906_1840	0.1	15
20230906 1850	0.1	331
20230906_1900	0.1	10
20230906_1910	1.4	53
20230906_1920	0.1	4
20230906_1930	0.1	8
20230906_1940 20230906_1950	0.1	355 314
20230906 2000	0.1	314
20230906_2010	0.1	352
20230906_2020	0.1	336
20230906_2030	0.1	336
20230906_2040	0.1	6
20230906_2050	0.1	46
20230906_2100	0.1	50
20230906_2110	0.1	53
20230906 2120 20230906 2130	0.1	325 45
20230906_2130 20230906_2140	0.1	20
20230906_2150	0.1	20
20230906 2200	0.1	28
20230906_2210	0.1	29
20230906_2220	0.1	27
20230906_2230	0.1	276
20230906_2240	0.1	59
20230906 2250	0.1	207
20230906_2300	0.1	207
20230906_2310	0.1	30 12
20230906_2320 20230906_2330	0.1	329
20230906_2330	0.1	349
20230906_2350	0.1	344

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230907 0000	0.1	3
20230907 0010	0.1	3
20230907 0020	0.1	3
20230907 0030	0.1	3
20230907_0040	0.1	3
20230907_0050 20230907_0100	0.2 0.1	103 267
20230907_0100	0.1	233
20230907 0120	0.1	220
20230907_0130	1.5	331
20230907_0140	0.1	43
20230907_0150	0.3	52
20230907_0200 20230907_0210	0.1	36 62
20230907 0220	0.1	6
20230907_0230	0.1	59
20230907_0240	0.1	151
20230907 0250	0.1	151
20230907_0300 20230907_0310	0.1 0.1	151 70
20230907_0310	0.1	173
20230907_0330	0.1	187
20230907_0340	0.1	76
20230907 0350	0.1	147
20230907_0400 20230907_0410	0.1	42 52
20230907_0410 20230907_0420	0.1 0.1	51
20230907_0420	0.1	51
20230907 0440	0.1	51
20230907_0450	0.1	51
20230907_0500	0.1	51
20230907_0510 20230907_0520	0.1 0.1	51 51
20230907 0530	0.1	51
20230907_0540	0.1	2
20230907_0550	0.1	45
20230907_0600	0.1	299
20230907_0610 20230907_0620	0.1 0.1	240 240
20230907 0630	0.1	15
20230907_0640	0.1	15
20230907 0650	0.1	15
20230907_0700	0.1	15
20230907_0710 20230907_0720	0.1 0.1	15 15
20230907_0720	0.1	342
20230907 0740	0.1	342
20230907_0750	0.1	342
20230907_0800	0.1	346
20230907_0810 20230907_0820	0.1 0.1	15 54
20230907 0820	0.1	0
20230907 0840	0.1	27
20230907_0850	0.1	55
20230907_0900	0.1	78
20230907_0910 20230907_0920	0.1 0.1	57 74
20230907 0930	0.6	131
20230907_0940	0.1	115
20230907_0950	0.1	119
20230907_1000 20230907_1010	0.1	107
20230907_1010	0.1 0.1	35 72
20230907_1020	0.1	51
20230907_1040	0.1	64
20230907_1050	0.1	55
20230907_1100	0.1	35 14
20230907_1110 20230907_1120	0.1 0.1	9
20230907_1120	0.1	46
20230907 1140	0.1	66
20230907_1150	0.1	32

D-4- 0 Time	1	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230907 1200	0.1	96
20230907_1210	0.1	126
20230907_1220	0.1	80
20230907_1230	0.7	101
20230907 1240	0.1	38
20230907_1250	0.4	34
20230907_1300	0.1	54
20230907 1310 20230907 1320	0.1	54 110
20230907_1320	0.1	331
20230907 1340	0.1	135
20230907 1350	0.1	85
20230907_1400	0.1	12
20230907_1410	0.1	20
20230907_1420	0.1	91
20230907_1430	0.1	0
20230907_1440 20230907_1450	0.2	49 21
20230907_1450 20230907_1500	0.2	126
20230907_1510	0.1	5
20230907_1520	0.2	67
20230907 1530	0.1	95
20230907_1540	0.1	73
20230907_1550	0.1	45
20230907_1600	0.1	122
20230907_1610	0.1	108
20230907_1620	0.1	186
20230907_1630 20230907_1640	0.1	216 335
20230907_1650	0.1	345
20230907_1700	0.1	210
20230907 1710	1.1	77
20230907_1720	0.1	287
20230907_1730	0.1	208
20230907_1740	0.1	231
20230907_1750	1	335
20230907_1800	0.1	111
20230907_1810 20230907_1820	0.1	110 100
20230907 1830	0.1	291
20230907_1840	0.1	87
20230907 1850	0.1	231
20230907_1900	0.1	106
20230907_1910	0.1	336
20230907_1920	0.1	74
20230907_1930	0.1	51
20230907_1940 20230907_1950	0.3	94 254
20230907 2000	0.1	226
20230907_2000	0.1	319
20230907_2020	0.1	354
20230907 2030	0.8	106
20230907_2040	1.3	42
20230907_2050	0.1	349
20230907_2100	2.7	14
20230907_2110 20230907_2120	0.1	169 355
20230907 2120	0.1	336
20230907_2130	4	100
20230907_2150	0.1	132
20230907_2200	0.1	72
20230907_2210	0.1	247
20230907_2220	0.2	20
20230907_2230	2.8	195
20230907_2240	0.1	240
20230907_2250	0.6	186
20230907_2300 20230907_2310	0.1 3.1	1 36
20230907 2320	1.1	164
20230907_2320	0.1	0
20230907_2340	8.7	28
20230907_2350	0.1	55

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230908_0000	0.6	8
20230908_0010	0.1	0
20230908 0020	0.4	341
20230908_0030	1	337
20230908_0040	0.6	43
20230908 0050	0.5	255
20230908 0100	0.5	29
20230908 0110	0.8	16
20230908 0120	0.1	335
20230908 0130	1.4	233
20230908 0140	0.1	202
20230908 0150	1.1	40
20230908_0200	0.1	50
20230908 0210	0.1	289
20230908 0220	0.1	175
20230908 0230	0.1	37
20230908_0240	2.3	352
20230908_0250	0.1	269
20230908_0300	1.7	158
20230908_0310	0.1	16
20230908_0320	0.1	346
20230908_0330	1.2	89
20230908_0340	0.1	169
20230908_0350	0.3	351
20230908_0400	0.5	260
20230908_0410	0.5	318
20230908_0420	4.1	51
20230908 0430	2	51
20230908 0440	4.9	36
20230908 0450	0.4	100
20230908 0500	0.2	295
20230908 0510	3.3	90
20230908 0520	4.7	120
20230908 0530	0.5	44
20230908 0540	0.3	79
20230908 0550	5	45
20230908_0600	0.3	114
20230908_0610	0.1	333
20230908_0620	9.6	110
20230908 0630	1.1	97
20230908_0640	0.3	144
20230908_0040		355
	6	333
20230908_0700	0.1	
20230908_0710	0.2	57 24
20230908_0720	1.1	
20230908_0730	0.3	78
20230908_0740	0.1	32
20230908_0750	1.1	136
20230908_0800	0.1	191
20230908_0810	0.1	27
20230908 0820	0.1	129
20230908_0830	0.1	17
20230908 0840	1	279
20230908_0850	0.1	22
20230908_0900	0.1	211
20230908_0910	0.1	174
20230908_0920	0.2	146
20230908_0930	0.1	173
20230908 0940	0.1	27
20230908_0950	0.2	77
20230908 1000	0.1	35
20230908 1010	2.6	343
20230908_1020	1.5	22
20230908 1030	1	19
20230908_1030	0.1	153
20230908 1050	0.2	351
20230908_1000	1.4	26
20230908_1110	0.1	30
		117
20230908_1120 20230908_1130	0.1	25
20230908_1140	0.1	165
20230908_1150	0.1	4

Date & Time	T	T
(YYYYMMBB_HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230908_1200	0.1	188
20230908_1210	0.1	128
20230908 1220 20230908 1230	0.1	166 186
20230908_1230	0.1	255
20230908 1250	0.1	214
20230908_1300	0.1	59
20230908 1310	0.1	4
20230908_1320 20230908_1330	0.1	280 269
20230908 1340	0.3	265
20230908 1350	0.1	330
20230908 1400	0.1	234
20230908 1410	0.1	13
20230908_1420 20230908_1430	0.1	320 21
20230908_1440	0.1	337
20230908_1450	0.1	36
20230908_1500	0.3	58
20230908_1510	0.1	128
20230908_1520	0.1	124
20230908 1530 20230908 1540	0.1	206 188
20230908_1550	0.1	56
20230908_1600	0.1	77
20230908_1610	0.1	115
20230908_1620	0.1	230
20230908_1630 20230908_1640	0.1	274 222
20230908_1650	0.1	185
20230908_1700	0.1	191
20230908 1710	0.1	191
20230908 1720	0.1	254
20230908_1730 20230908_1740	0.1	141 91
20230908_1740	0.1	351
20230908 1800	0.1	51
20230908_1810	0.1	186
20230908_1820	0.1	137
20230908_1830 20230908_1840	0.1	251 98
20230908 1850	0.1	101
20230908_1900	0.2	95
20230908_1910	0.1	110
20230908_1920	0.8	86
20230908_1930 20230908_1940	0.1	85 121
20230908 1950	0.3	103
20230908_2000	0.1	147
20230908_2010	0.5	90
20230908 2020	0.1	100
20230908_2030 20230908_2040	0.3	313 173
20230908_2040 20230908_2050	0.1	335
20230908_2100	0.4	190
20230908 2110	0.1	172
20230908_2120	0.1	20
20230908_2130	1.9	326
20230908_2140 20230908_2150	0.2	59 334
20230908_2130	0.1	90
20230908_2210	0.4	55
20230908_2220	0.1	93
20230908_2230	0.1	352
20230908_2240 20230908_2250	0.1	145 35
20230908_2250	0.1	35
20230908_2300	1.4	120
20230908_2320	0.8	12
20230908_2330	0.1	66
20230908_2340	0.4	157
20230908 2350	0.1	67

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230909 0000	0.1	174
20230909_0010	0.1	302
20230909 0020	0.2	48
20230909 0030	0.1	15
20230909_0030	1.8	352
20230909_0040	0.1	302
20230909_0050	0.2	44
20230909_0100	4.3	47
20230909_0110	0.1	346
20230909_0120	0.1	13 15
20230909_0130 20230909_0140	1.3 0.1	157
20230909_0140	0.1	74
20230909 0200	0.3	57
20230909 0210	0.1	111
20230909_0220	0.2	50
20230909_0230	0.1	182
20230909_0240	0.1	353
20230909_0250	1.5	29
20230909_0300	0.8	291
20230909_0310	0.1	90 2
20230909_0320 20230909_0330	2.4 4.8	92
20230909 0330	0.3	126
20230909 0350	1.4	3
20230909_0400	0.1	120
20230909 0410	0.1	75
20230909_0420	0.1	136
20230909_0430	0.1	280
20230909_0440 20230909_0450	0.3	300 340
20230909_0450 20230909_0500	4.2 0.9	340
20230909 0500	0.9	110
20230909 0520	0.1	-1
20230909 0530	0.1	51
20230909_0540	0.1	97
20230909_0550	0.2	14
20230909_0600	0.3	118
20230909_0610	0.1	2 2
20230909_0620 20230909_0630	2.5	104
20230909 0640	0.1	50
20230909_0650	0.1	66
20230909_0700	0.1	66
20230909_0710	0.1	130
20230909_0720	0.1	138
20230909 0730	0.7	344
20230909_0740 20230909_0750	0.1 0.1	299 44
20230909_0730	0.4	106
20230909_0800	0.1	310
20230909_0820	0.6	326
20230909_0830	0.1	334
20230909_0840	0.1	34
20230909_0850	0.1	220
20230909 0900	0.1	117
20230909_0910 20230909_0920	0.1	63 355
20230909 0920	0.1	103
20230909_0940	0.1	260
20230909 0950	0.1	71
20230909 1000	0.1	93
20230909_1010	0.1	39
20230909_1020	0.1	349
20230909_1030 20230909_1040	0.1	11 132
20230909 1040	0.1	132
20230909 1100	0.1	131
20230909_1110	0.1	4
20230909_1120	0.1	184
20230909_1130	0.1	178
20230909_1140	0.1	23

Doto & Timo	1	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230909 1200	0.1	331
20230909_1210	0.2	104
20230909_1220	1.7	10
20230909_1230	1.1	333
20230909_1240	0.1	282
20230909_1250 20230909_1300	0.1	349 13
20230909_1300	0.1	7
20230909 1320	0.1	146
20230909_1330	0.7	92
20230909_1340	0.4	38
20230909_1350	0.1	39
20230909 1400 20230909 1410	0.6	0 288
20230909 1420	0.1	4
20230909 1430	0.1	320
20230909_1440	0.1	10
20230909_1450	0.1	14
20230909_1500	0.1	160
20230909 1510 20230909 1520	0.1	342 86
20230909_1520	0.1	8
20230909_1540	0.1	148
20230909_1550	0.1	175
20230909_1600	0.1	303
20230909_1610	0.1	11
20230909_1620	0.1	114
20230909_1630 20230909_1640	0.1	81 100
20230909_1040	0.1	56
20230909 1700	0.1	80
20230909 1710	0.1	352
20230909 1720	0.1	2
20230909_1730	0.1	57
20230909_1740 20230909_1750	0.1	133 43
20230909_1730	0.0	332
20230909_1810	0.1	32
20230909_1820	0.1	87
20230909_1830	0.1	64
20230909_1840	0.1	102
20230909_1850 20230909_1900	0.1	320 211
20230909 1910	0.2	279
20230909 1920	0.1	270
20230909_1930	0.1	123
20230909_1940	0.1	41
20230909_1950	0.1	335
20230909_2000 20230909_2010	0.4	203 273
20230909_2010	0.1	40
20230909_2030	0.1	309
20230909_2040	0.1	43
20230909_2050	0.1	343
20230909_2100 20230909_2110	0.1	151 55
20230909_2110	0.3	94
20230909_2130	0.1	24
20230909_2140	0.1	84
20230909_2150	0.1	67
20230909 2200	0.1	99
20230909 2210 20230909 2220	0.1	74 114
20230909 2220	0.1	106
20230909_2240	0.1	74
20230909_2250	0.1	262
20230909_2300	0.2	353
20230909 2310	0.1	145
20230909_2320	0.1	66
20230909_2330 20230909_2340	0.1	131 341
20230909 2350	0.1	18

Date & Time	W. 10 1(/)	W. 1D. (D)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230910_0000	0.1	187
20230910_0010 20230910_0020	0.1 2.3	305
20230910 0020	0.1	8 342
20230910 0030	0.6	135
20230910 0040	0.4	115
20230910_0050	1.4	143
20230910_0100	0.2	85
20230910 0110	2.5	110
20230910_0120	0.8	78
20230910_0130 20230910_0140	0.1	345 129
20230910_0140	0.4	98
20230910 0200	0.1	99
20230910 0210	0.1	177
20230910_0220	0.1	169
20230910_0230	1.9	29
20230910 0240	0.1	329
20230910_0250 20230910_0300	8.2 1.6	40 67
20230910 0300	1.7	25
20230910_0300	0.1	107
20230910_0320	4.5	48
20230910_0340	2	5
20230910_0350	2	134
20230910_0400	0.1	188
20230910 0410	1.2	13
20230910_0420	0.1	51 46
20230910_0430 20230910_0440	0.9	109
20230910 0450	0.2	317
20230910 0500	0.1	157
20230910 0510	0.1	15
20230910 0520	0.1	218
20230910_0530	1.8	354
20230910_0540 20230910_0550	2.5	25 173
20230910 0550 20230910 0600	0.5	140
20230910_0610	0.1	8
20230910_0620	0.1	31
20230910_0630	0.3	117
20230910_0640	0.1	116
20230910_0650	2.4	345
20230910_0700 20230910_0710	0.1	350 19
20230910_0710	0.5	19
20230910_0720	0.1	16
20230910 0740	1.4	128
20230910_0750	0.1	132
20230910_0800	0.2	86
20230910 0810	0.1	247
20230910_0820	0.1	129 149
20230910_0830 20230910_0840	0.1	7
20230910_0840	0.9	67
20230910 0900	0.1	180
20230910_0910	0.1	26
20230910_0920	0.1	168
20230910_0930	0.1	335
20230910_0940	0.1	26
20230910 0950 20230910 1000	0.1 0.1	245 18
20230910_1010	0.1	242
20230910_1010	3	317
20230910_1020	3.5	349
20230910_1040	4	7
20230910_1050	0.1	111
20230910_1100	1.9	20
20230910_1110	0.1	287
20230910_1120	0.2	32
20230910_1130 20230910_1140	0.6 0.2	103 344
ZUZJUJ1U_114U	V.Z	J44

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230910_1200	0.1	187
20230910_1210	0.1	305
20230910 1220	2.3	8
20230910 1230	0.1	342
20230910 1240	0.6	135
20230910_1250	0.4	115
20230910_1200	1.4	143
20230910 1310	0.2	85
20230910_1310	2.5	110
20230910 1330	0.8	78
20230910_1340	0.1	345
20230910_1350	0.2	129
20230910 1400	0.4	98
20230910_1410	0.1	99
20230910 1420	0.1	177
20230910 1430	0.1	169
20230910 1440	1.9	29
20230910 1450	0.1	329
20230910_1500	8.2	40
20230910 1510	1.6	67
20230910_1520	1.7	25
20230910 1530	0.1	107
20230910_1540	4.5	48
20230910_1550	2	5
20230910 1600	2	134
20230910_1610	0.1	188
20230910 1620	1.2	13
20230910_1630	0.1	51
20230910_1640	2.1	46
20230910 1650	0.9	109
20230910 1700	0.2	317
20230910 1710	0.1	157
20230910_1720	0.1	15
20230910_1730	0.1	218
20230910_1740	1.8	354
20230910_1750	2.5	25
20230910_1800	0.3	173
20230910_1810	1	140
20230910_1820	0.1	8
20230910_1830	0.1	31
20230910_1840	0.3	117
20230910_1850	0.1	116
20230910_1900	2.4	345
20230910_1910	0.1	350
20230910_1920	0.3	19
20230910_1930	1	19
20230910 1940	0.1	16
20230910 1950	1.4	128
20230910_2000	0.1	132
20230910_2010	0.2	86
20230910_2020	0.1	247
20230910 2030	0.1	129
20230910_2040	0.1	149
20230910_2050	0.9	7
20230910_2100	0.1	67
20230910 2110 20230910 2120	0.1	180
	0.1	26
20230910_2130 20230910_2140	0.1	168
20230910_2140 20230910_2150	0.1	335
20230910_2130	0.1	245
20230910 2200		245 18
20230910 2220	0.1	242
20230910 2220	3	317
20230910_2230	3.5	349
20230910_2240	3.3	7
20230910 2230	0.1	111
20230910 2310	1.9	20
20230910 2310	0.1	287
20230910_2320	0.1	32
20230910_2330	0.6	103
20230910 2340	0.0	344
20230710_2330	U.Z	J44

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230911_0000	0.1	187
20230911_0010	0.1	305
20230911 0020	2.3	8
20230911_0030	0.1	342
20230911_0030	0.6	135
20230911_0040	0.4	115
20230911_0050	1.4	143
20230911_0100	0.2	85
20230911 0110	2.5	110
20230911_0120	0.8	78
20230911_0130	0.1	345
20230911_0140	0.2	129
20230911_0150	0.4	98 99
20230911 0200 20230911 0210	0.1 0.1	177
20230911_0210	0.1	169
20230911_0220	1.9	29
20230911_0240	0.1	329
20230911_0250	8.2	40
20230911 0300	1.6	67
20230911_0300	1.7	25
20230911 0320	0.1	107
20230911_0330	4.5	48
20230911_0340	2	5
20230911_0350	2	134
20230911_0400	0.1	188
20230911_0410	1.2	13
20230911_0420	0.1	51
20230911_0430	2.1	46
20230911_0440	0.9	109
20230911_0450	0.2	317
20230911_0500	0.1	157
20230911_0510	0.1	15
20230911_0520	0.1	218
20230911_0530 20230911_0540	1.8	354 25
20230911_0540 20230911_0550	2.5 0.3	173
20230911_0530	1	140
20230911_0610	0.1	8
20230911 0620	0.1	31
20230911_0630	0.3	117
20230911 0640	0.1	116
20230911_0650	2.4	345
20230911_0700	0.1	350
20230911_0710	0.3	19
20230911_0720	1	19
20230911 0730	0.1	16
20230911_0740	1.4	128
20230911_0750	0.1	132
20230911_0800	0.2	86
20230911 0810 20230911 0820	0.1	247
	0.1	129 149
20230911_0830 20230911_0840	0.1 0.9	7
20230911_0840	0.9	67
20230911_0830	0.1	180
20230911 0900	0.1	26
20230911 0920	0.1	168
20230911_0930	0.1	335
20230911_0940	0.1	26
20230911_0950	0.1	245
20230911_1000	0.1	18
20230911_1010	0.1	242
20230911_1020	3	317
20230911_1030	3.5	349
20230911 1040	4	7
20230911_1050	0.1	111
20230911_1100	1.9	20
20230911_1110	0.1	287
20230911_1120 20230911_1130	0.2	32
	0.6	103 344
20230911_1140	0.2	344

D . 0 TF		ı
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230911 1200	1.6	52
20230911 1210	0.1	48
20230911_1220	0.2	104
20230911 1230	0.7	87
20230911_1240	0.1	7
20230911_1250	0.1	273
20230911_1300	0.5	15
20230911_1310	0.1	51
20230911 1320 20230911 1330	1.8	19 339
20230911 1340	0.1	281
20230911_1350	0.6	57
20230911_1400	0.1	314
20230911_1410	0.7	48
20230911_1420	0.1	347
20230911_1430	0.1	219
20230911_1440	0.1	113
20230911_1450	0.1	278
20230911 1500 20230911 1510	0.1	148 318
20230911_1510	0.1 2.5	104
20230911_1520	1.6	125
20230911_1540	1.5	23
20230911_1550	0.1	33
20230911_1600	0.1	9
20230911_1610	0.1	21
20230911 1620	0.2	99
20230911_1630	0.1	101
20230911_1640	0.1	106
20230911_1650 20230911_1700	0.8 0.1	282 310
20230911_1700	0.5	9
20230911_1710	0.1	49
20230911 1730	0.1	125
20230911_1740	0.1	260
20230911_1750	0.1	153
20230911 1800	0.1	208
20230911 1810	0.1	104
20230911_1820 20230911_1830	0.1	120 43
20230911_1840	0.1	328
20230911_1850	0.1	15
20230911_1900	1.2	67
20230911_1910	0.1	45
20230911_1920	0.1	347
20230911_1930	0.1	14
20230911_1940	0.1	356
20230911_1950	0.1	7
20230911_2000 20230911_2010	0.1	239 115
20230911_2010	0.1	163
20230911 2020	0.1	135
20230911_2040	0.1	303
20230911_2050	0.1	12
20230911_2100	0.1	243
20230911 2110	0.1	52
20230911_2120	0.1	134
20230911_2130 20230911_2140	0.1	255
20230911_2140 20230911_2150	0.1	158 110
20230911_2130	0.1	170
20230911 2210	0.1	155
20230911 2220	0.1	229
20230911_2230	0.1	11
20230911_2240	0.6	154
20230911_2250	0.1	351
20230911 2300	1.3	342
20230911_2310	0.4	45
20230911_2320 20230911_2330	0.1	42 28
20230911_2330	0.1	144
20230911_2340	0.1	165

Data 9 Time		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230912 0000	0.3	63
20230912_0010	0.4	83
20230912 0020	0.1	335
20230912_0030	0.1	159
20230912 0030	0.3	156
20230912_0040	2.7	348
20230912_0050	0.1	33 87
20230912 0100 20230912 0110	0.2	245
20230912_0110	0.1	187
20230912 0130	0.1	78
20230912_0140	0.1	31
20230912 0150	0.1	110
20230912 0200	0.1	129
20230912_0210	0.1	208
20230912_0220 20230912_0230	0.1	345
20230912_0230 20230912_0240	0.1 0.1	284 148
20230912_0240	0.1	74
20230912 0300	0.1	190
20230912 0310	1.6	88
20230912 0320	0.1	155
20230912_0330	0.1	146
20230912 0340	0.1	30
20230912_0350	0.2	58
20230912_0400	0.1	298
20230912 0410 20230912 0420	0.1 0.1	333 93
20230912 0420	0.1	113
20230912_0430	0.1	129
20230912 0450	0.1	114
20230912 0500	0.1	26
20230912 0510	0.1	131
20230912_0520	0.1	179
20230912_0530	0.1	266
20230912_0540	0.1	98
20230912_0550	0.1	140
20230912_0600 20230912_0610	0.1	133 193
20230912_0010	0.1	174
20230912_0630	0.1	351
20230912 0640	0.1	178
20230912 0650	0.1	160
20230912_0700	0.1	128
20230912_0710	0.1	158
20230912_0720	0.1	116
20230912 0730 20230912 0740	0.1 0.1	141 92
20230912_0740 20230912_0750	0.1	32
20230912_0730	0.1	41
20230912_0810	0.1	148
20230912 0820	0.1	353
20230912_0830	0.1	334
20230912_0840	0.1	242
20230912_0850	0.1	285
20230912_0900	0.1	162
20230912 0910 20230912 0920	0.1 0.4	310 13
20230912 0920	0.4	77
20230912_0930	0.1	35
20230912_0940	0.1	246
20230912_1000	0.7	131
20230912_1010	0.1	58
20230912_1020	0.4	42
20230912_1030	2.2	330
20230912_1040	0.1	168
20230912_1050 20230912_1100	0.8	32 348
20230912 1110	0.9	348 329
20230912_1110	1.5	343
20230912_1120	0.9	151
20230912_1140	2.3	340

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230912_1200 20230912_1210	8.3 1.2	22 46
20230912_1210	0.3	336
20230912_1220	0.3	68
20230912 1240	0.6	5
20230912 1250	0.1	116
20230912 1300	0.1	150
20230912 1310	0.2	49
20230912 1320	0.1	322
20230912_1330	0.1	349
20230912_1340	0.1	30
20230912_1350	0.5	7
20230912_1400	0.1	353
20230912 1410 20230912 1420	0.1	45
20230912 1420 20230912 1430	0.1 0.4	84 149
20230912_1430	0.4	149
20230912_1440	0.1	291
20230912_1430	0.1	253
20230912_1500	0.6	272
20230912_1510	0.1	344
20230912_1530	0.1	15
20230912_1540	0.1	179
20230912_1550	0.1	150
20230912_1600	0.1	214
20230912_1610	0.1	28
20230912 1620	0.1	54
20230912 1630	0.2	118
20230912_1640	0.1	97
20230912_1650 20230912_1700	0.1	308
20230912_1700 20230912_1710	0.1	166 144
20230912_1710	0.1	180
20230912_1720	0.1	150
20230912 1740	0.1	127
20230912 1750	0.3	99
20230912 1800	0.1	48
20230912 1810	0.5	21
20230912_1820	0.1	37
20230912_1830	0.7	117
20230912_1840	0.3	69
20230912_1850	0.1	86
20230912_1900	0.2	331
20230912_1910	0.1	80
20230912_1920 20230912_1930	0.1	11 350
20230912_1930 20230912_1940	0.1	174
20230912_1940	0.1	160
20230912_1930	0.1	182
20230912_2010	0.1	135
20230912 2020	0.1	185
20230912_2030	0.1	348
20230912_2040	0.1	6
20230912_2050	0.1	104
20230912_2100	0.1	172
20230912_2110	0.1	319
20230912 2120	1.6	45
20230912_2130	0.1	33
20230912_2140 20230912_2150	2.1	129
20230912_2130	0.1	335
20230912_2210	0.1	107
20230912_2210	0.1	193
20230912_2220	0.1	113
20230912_2240	0.1	102
20230912_2250	0.1	115
20230912 2300	0.1	99
20230912_2310	0.1	11
20230912_2320	0.3	81
20230912_2330	0.1	348
20230912_2340	0.1	9
20230912_2350	0.1	45

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM) 20230913 0000	0.1	38
20230913_0000	0.1	99
20230913 0020	0.1	192
20230913 0030	0.1	207
20230913_0040	0.2	40
20230913_0050	0.1	90
20230913_0100	0.1	33
20230913_0110 20230913_0120	0.1	338
20230913_0120 20230913_0130	0.1 0.5	128 326
20230913 0140	0.1	345
20230913 0150	1.4	324
20230913 0200	0.1	300
20230913_0210	0.1	310
20230913_0220	0.2	52
20230913_0230 20230913_0240	2.8	87
20230913_0240 20230913_0250	0.5	356 4
20230913 0300	0.1	251
20230913 0310	0.1	155
20230913_0320	0.1	73
20230913 0330	0.1	89
20230913 0340	0.1	280
20230913_0350	0.1	90
20230913_0400 20230913_0410	0.1	121 243
20230913_0410	0.9	286
20230913 0420	0.3	170
20230913 0440	0.1	14
20230913_0450	0.1	14
20230913_0500	0.1	42
20230913_0510	0.1	39
20230913_0520	0.1	133
20230913_0530 20230913_0540	0.1	91 118
20230913_0540	0.2	12
20230913 0600	0.1	96
20230913 0610	0.1	273
20230913_0620	0.1	156
20230913_0630	0.1	67
20230913_0640 20230913_0650	0.1	344 43
20230913_0650 20230913_0700	0.1 0.1	5
20230913_0710	0.1	41
20230913 0720	0.1	192
20230913_0730	0.1	286
20230913 0740	0.3	3
20230913 0750	0.1	335
20230913 0800 20230913 0810	0.1	283 13
20230913_0810	0.1	90
20230913 0830	0.1	120
20230913 0840	0.2	303
20230913_0850	0.1	136
20230913_0900	0.1	12
20230913_0910	0.9	351
20230913_0920 20230913_0930	0.1	34 35
20230913_0930	0.2	15
20230913_0950	0.1	68
20230913 1000	0.6	155
20230913_1010	0.1	19
20230913_1020	0.1	22
20230913_1030	0.1	281 354
20230913_1040 20230913_1050	0.3	354 7
20230913 1030	1.5	314
20230913 1110	2.1	105
20230913_1120	0.8	11
20230913_1130	3.9	38
20230913_1140	1.5	58
20230913_1150	0.1	331

D-4- 0 Tim-	1	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230913_1200	0.1	55
20230913_1210	0.1	119
20230913_1220	0.1	158
20230913_1230	0.1	1
20230913_1240	0.1	238
20230913_1250	1.2	47
20230913_1300 20230913_1310	0.2	3 340
20230913 1310	0.1	112
20230913 1330	0.2	333
20230913_1340	0.1	348
20230913_1350	0.1	147
20230913_1400	0.1	346
20230913_1410	0.3	191
20230913 1420 20230913 1430	0.1 0.1	124 21
20230913_1440	0.1	90
20230913_1450	2.9	349
20230913_1500	1.9	82
20230913_1510	2.9	46
20230913_1520	0.1	320
20230913_1530	0.1	341
20230913 1540 20230913 1550	2.6 3.5	14 -1
20230913_1550 20230913_1600	0.1	339
20230913_1610	0.1	308
20230913 1620	0.1	34
20230913_1630	0.1	271
20230913 1640	0.1	162
20230913_1650	0.1	131
20230913_1700 20230913_1710	0.1	239 110
20230913_1710 20230913_1720	0.5 0.1	147
20230913_1720	0.1	119
20230913 1740	0.2	257
20230913_1750	0.1	113
20230913_1800	1	349
20230913 1810	0.1	82
20230913_1820 20230913_1830	4.2 0.1	150 328
20230913_1840	0.1	273
20230913_1850	0.3	303
20230913_1900	0.1	233
20230913_1910	0.1	326
20230913_1920	3	48
20230913_1930	0.1	39
20230913_1940 20230913_1950	0.1 0.1	33 72
20230913_1930	0.1	103
20230913 2010	0.1	284
20230913 2020	0.1	323
20230913_2030	0.9	116
20230913 2040	0.1	132
20230913_2050 20230913_2100	1.2	14 152
20230913_2100 20230913_2110	0.8	32
20230913_2110	0.1	288
20230913_2130	0.1	89
20230913_2140	0.1	80
20230913_2150	0.1	121
20230913 2200	0.1	130
20230913 2210 20230913 2220	0.1	305 135
20230913 2220	0.1	17
20230913_2240	0.1	81
20230913_2250	0.1	148
20230913_2300	0.1	102
20230913_2310	2.3	343
20230913_2320	0.2	323
20230913_2330	0.1	25
20230913 2340 20230913 2350	0.1 0.1	49 11
20220713_2330	U.1	11

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM) 20230914 0000	0.1	110
20230914_0000	0.1	91
20230914_0020	0.5	345
20230914 0020	0.9	119
20230914 0030	0.1	152
20230914_0040	0.1	45
20230914_0050	0.1	85
20230914_0100	0.1	28
20230914_0110	0.1	4 143
20230914_0120 20230914_0130	0.3 0.1	-1
20230914_0140	0.1	179
20230914 0150	0.1	48
20230914 0200	0.4	25
20230914_0210	0.1	65
20230914_0220	0.1	115
20230914_0230	0.1	25
20230914 0240 20230914 0250	0.5 0.1	32 17
20230914 0230	0.1	263
20230914_0300	0.1	18
20230914 0320	0.1	78
20230914 0330	0.1	239
20230914 0340	0.1	175
20230914_0350	0.1	350
20230914_0400	0.1	22
20230914_0410 20230914_0420	0.1 0.1	10 257
20230914_0420	0.1	159
20230914 0440	0.1	154
20230914_0450	0.3	150
20230914 0500	0.1	4
20230914_0510	0.1	93
20230914 0520	0.2	103
20230914_0530 20230914_0540	0.1 0.1	116 100
20230914_0340	0.1	212
20230914 0600	0.1	224
20230914 0610	0.1	241
20230914_0620	0.1	225
20230914_0630	0.1	283
20230914_0640	0.1	40
20230914_0650 20230914_0700	0.1 0.1	260 11
20230914_0700	0.1	88
20230914 0720	0.1	172
20230914 0730	0.1	103
20230914 0740	0.1	256
20230914_0750	0.1	105
20230914_0800	0.1	105
20230914_0810 20230914_0820	0.1	34 277
20230914 0820	0.1 0.1	57
20230914_0840	0.1	187
20230914_0850	0.1	247
20230914 0900	0.2	212
20230914_0910	0.1	153
20230914 0920	0.1	241
20230914_0930 20230914_0940	0.1	270 137
20230914_0940	0.1	203
20230914 0930	0.1	203
20230914_1010	0.1	243
20230914_1020	0.2	217
20230914_1030	0.1	175
20230914_1040	0.1	14
20230914_1050	0.1	231
20230914_1100	0.2	203
20230914_1110 20230914_1120	0.1 0.1	189 184
20230914_1120	0.1	214
20230914_1130	0.1	209
20230717_1170	V.1	207

	1	Γ
Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230914_1200 20230914_1210	0.1	234 223
20230914_1210 20230914_1220	0.1	279
20230914_1220	0.1	217
20230914_1230	0.1	256
20230914 1250	0.1	320
20230914_1300	0.1	300
20230914 1310	0.1	174
20230914 1320	0.1	309
20230914_1330	1.8	-1
20230914_1340	0.1	304
20230914_1350	1	135
20230914_1400	1.2	-1
20230914_1410	1.4	336
20230914_1420	0.1	70
20230914_1430	0.1	25
20230914_1440	0.2	45
20230914_1450	0.1	47
20230914_1500 20230914_1510	0.1 0.1	55 347
20230914_1510	0.1	89
20230914_1520	0.1	94
20230914_1540	0.1	16
20230914_1550	0.1	31
20230914_1600	0.1	108
20230914 1610	0.1	342
20230914 1620	0.1	345
20230914_1630	0.1	138
20230914_1640	0.2	327
20230914_1650	0.4	55
20230914_1700	0.1	115
20230914_1710	0.1	348
20230914_1720	0.1	341
20230914_1730	0.5	104
20230914_1740 20230914_1750	0.1	348 139
	0.1	321
20230914_1800 20230914_1810	0.1	45
20230914_1810	0.1	67
20230914_1830	0.1	4
20230914 1840	0.1	150
20230914 1850	0.1	49
20230914_1900	0.1	69
20230914_1910	0.1	46
20230914_1920	0.1	86
20230914_1930	0.1	118
20230914 1940	0.1	151
20230914_1950	1.5	117
20230914_2000	0.1	143
20230914_2010 20230914_2020	0.1	15 99
20230914_2020 20230914_2030	0.1	164
20230914 2040	0.2	121
20230914_2040	0.9	120
20230914_2000	1.5	102
20230914 2110	0.1	159
20230914 2120	0.1	0
20230914 2130	0.2	177
20230914_2140	0.3	346
20230914_2150	0.1	47
20230914_2200	0.1	50
20230914 2210	0.1	251
20230914_2220	0.1	94
20230914_2230	0.1	17
20230914_2240 20230914_2250	0.1	17
20230914 2250	0.1 0.1	17 17
20230914 2310	0.1	17
20230914 2310	0.1	17
20230914_2320	0.1	17
20230914 2340	0.1	5
20230914 2350	0.1	5

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230915 0000	0.1	5
20230915_0010	0.1	52
20230915_0020	0.1	44
20230915_0020	0.1	13
20230915_0030	0.1	13 13
20230915_0040 20230915_0050	0.1	9
20230915_0030	0.1	9
20230915 0110	0.1	9
20230915_0120	0.1	9
20230915_0130	0.1	42
20230915_0140	0.1	56
20230915 0150 20230915 0200	0.1 0.1	20 20
20230915 0210	0.1	20
20230915 0220	0.1	20
20230915_0230	0.1	20
20230915_0240	0.1	18
20230915_0250	0.1	17
20230915_0300 20230915_0310	0.1 0.1	17 18
20230915_0310	0.1	40
20230915 0320	0.1	40
20230915_0340	0.1	40
20230915_0350	0.1	43
20230915_0400	0.1	91
20230915 0410 20230915 0420	0.1	138
20230915 0420 20230915 0430	0.1 0.1	140 140
20230915_0430	0.1	112
20230915_0450	0.1	49
20230915 0500	0.1	24
20230915_0510	0.1	24
20230915 0520 20230915 0530	0.1	311 59
20230915 0540	0.1	75
20230915_0540	0.1	82
20230915 0600	0.1	43
20230915_0610	0.1	43
20230915_0620	0.1	43
20230915_0630 20230915_0640	0.1 0.1	52 42
20230915 0650	0.1	123
20230915_0700	0.1	147
20230915_0710	0.1	248
20230915_0720	0.1	241
20230915_0730	0.1	279
20230915_0740 20230915_0750	0.6 0.1	44 23
20230915_0750	0.3	61
20230915_0810	0.1	47
20230915_0820	3.1	30
20230915 0830	0.1	194
20230915_0840 20230915_0850	0.1	238
20230915_0850 20230915_0900	0.1	10 124
20230915 0910	0.3	154
20230915_0920	0.1	155
20230915_0930	0.1	258
20230915_0940	0.6	-1
20230915 0950 20230915 1000	0.4	149 103
20230915 1010	0.5	36
20230915_1010	0.1	337
20230915_1030	0.1	10
20230915_1040	0.1	178
20230915_1050	0.1	156
20230915_1100 20230915_1110	0.1	331 162
20230915_1110	2.2	4
20230915_1130	1.9	139
20230915_1140	0.3	87

Date & HIMM Company Wind Direction (Degree) 20230915 1200 0.1 331 331 20230915 1220 3.1 345 20230915 1220 3.1 345 20230915 1240 0.1 127 20230915 1240 0.1 127 20230915 1300 0.1 0 0 20230915 1300 0.1 0 0 20230915 1310 0.2 68 20230915 1310 0.2 68 20230915 1330 1.3 5 20230915 1330 1.3 5 20230915 1350 0.1 335 20230915 1350 0.1 37 20230915 1400 0.1 338 20230915 1400 0.1 336 20230915 1400 0.1 37 20230915 1400 0.1 37 20230915 1400 0.1 37 20230915 1400 0.1 37 20230915 1400 0.1 97 20230915 1400 0.1 97 20230915 1400 0.1 97 20230915 1400 0.1 97 20230915 1400 0.1 97 20230915 1400 0.1 97 20230915 1500 0.1 10 97 20230915 1500 0.1 66 20230915 1500 0.1 66 20230915 1500 0.1 66 20230915 1500 0.1 268 20230915 1500 0.1 100 20230915 1530 0.1 100 20230915 1500 0.1 100 20230915 1500 0.1 100 20230915 1500 0.1 104 20230915 1500 0.1 104 20230915 1600 0.1 44 20230915 1600 0.1 44 20230915 1600 0.1 45 20230915 1600 0.1 46 20230915 1600 0.1 46 20230915 1600 0.1 46 20230915 1600 0.1 48 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1600 0.1 81 20230915 1700 0.1 81 20230915 1700 0.1 81 20230915 1700 0.1 81 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 103 20230915 1800 0.1 104 20230915 2000 0.1 105 20230915 2000 0.1 20230915 2000 0.1 20230915 2000 0.1 20230915 2000 0.1 20230915 2000 0.1 20230	Doto & Timo	1	<u> </u>
20230915 1200	Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
20230915 1220 3.1 345		0.1	331
20230915 1230		0.1	135
20230915 1240			
20230915 1300			
20230915 1300			
20230915 1310			
20230915 1320			
20230915 1330			
20230915 1350			
20230915 1400			
20230915 1410 3.6 20			
20230915 1420			
20230915 1430			
20230915 1440			
20230915 1450			
20230915 1510		0.3	52
20230915 1520			
20230915 1530			
20230915 1540			
20230915 1550			
20230915 1600			
20230915 1620			
20230915 1630	20230915_1610	0.1	73
20230915 1640			
20230915 1650			
20230915 1700			
20230915 1710			
20230915 1720			
20230915 1740			
20230915 1750			
20230915 1800			
20230915 1810			
20230915 1820			
20230915 1830			
20230915 1850			
20230915 1000 0.1 79 20230915 1910 0.1 79 20230915 1920 0.1 79 20230915 1930 0.1 116 20230915 1940 0.4 154 20230915 1950 4.4 32 20230915 2000 0.2 122 20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2100 1.6 134 20230915 2100 1.6 134 20230915 2100 1.6 134 20230915 2100 0.1 353 20230915 2120 0.6 104 20230915 2120 0.6 104 20230915 2140 0.2 104 20230915 2140 0.2 104 20230915 2210 0.1 130 202	20230915_1840	0.1	
20230915 1910 0.1 79 20230915 1920 0.1 79 20230915 1930 0.1 116 20230915 1940 0.4 154 20230915 1950 4.4 32 20230915 2000 0.2 122 20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2100 1.6 134 20230915 2100 0.5 20 20230915 2100 0.6 104 20230915 2100 0.1 353 20230915 2100 0.1 353 20230915 2100 0.1 353 20230915 2100 0.1 353 20230915 2210 0.1 130 20230915 2210 0.1 130 20230915 2210 0.1 133 202			
20230915 1920 0.1 79 20230915 1930 0.1 116 20230915 1940 0.4 154 20230915 1950 4.4 32 20230915 2000 0.2 122 20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2100 1.6 134 20230915 2100 0.6 104 20230915 210 0.5 20 20230915 210 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230			
20230915 1930			
20230915 1940 0.4 154 20230915 1950 4.4 32 20230915 2000 0.2 122 20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 210 0.6 104 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2210 0.1 133 20230915 2210 0.1 133 20230915 2210 0.1			
20230915 1950 4.4 32 20230915 2000 0.2 122 20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 210 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2210 0.1 130 20230915 2210 0.1 130 20230915 2210 0.1 130 20230915 2210 0.1 133 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2300 0.1 174 202			
20230915 2010 0.1 136 20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2110 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2210 0.1 133 20230915 2210 0.1 133 20230915 2210 0.1 133 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2300 0.1 174 20230915 2300 0.1 165 20230915 2300 0.1 165 20			
20230915 2020 0.1 340 20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 210 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2210 0.1 133 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2300 0.1 174 20230915 2300 0.1 165 20230915 2300 0.1			
20230915 2030 0.2 294 20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2110 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2300 0.1 174 20230915 2300 0.1 166 20230915 2310 0.1 105 20230915 2310 0.1 105 20230915 2330 0.1 139 20230915 2330 0.1 139 20230915 2340 0.1 111			
20230915 2040 0.1 170 20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2110 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2050 0.3 345 20230915 2100 1.6 134 20230915 2110 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2210 0.1 133 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2100 1.6 134 20230915 2110 0.5 20 20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2120 0.6 104 20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			134
20230915 2130 0.1 353 20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2140 0.2 104 20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2150 0.5 105 20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2200 0.1 244 20230915 2210 0.1 130 20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2210			
20230915 2220 1.6 133 20230915 2230 0.1 28 20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2240 0.1 59 20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111	20230915_2220	1.6	133
20230915 2250 0.1 174 20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111	20230915_2230		
20230915 2300 0.1 86 20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111	20230915_2240		
20230915 2310 0.1 105 20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915 2320 0.1 139 20230915 2330 0.1 144 20230915 2340 0.1 111			
20230915_2330			
20230915_2340 0.1 111	20230915_2330		
20230915 2350 0.1 62	20230915_2340	0.1	111
	20230915 2350	0.1	62

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		97
20230916_0000 20230916_0010	0.2 0.1	73
20230916_0010	0.1	333
20230916 0020	0.8	117
20230916 0030	0.3	126
20230916_0040	5	31
20230916_0050	0.1	140
20230916 0100	0.1	284
20230916_0110	0.3	9
20230916_0120	0.1	-1 93
20230916_0130 20230916_0140	0.5 0.3	109
20230916_0110	0.1	18
20230916 0200	0.6	103
20230916_0210	0.2	37
20230916_0220	0.2	103
20230916_0230	2.5	127
20230916_0240	0.1	334
20230916_0250 20230916_0300	0.1 0.1	60 236
20230916 0310	0.1	163
20230916_0310	0.2	4
20230916_0330	0.1	136
20230916_0340	0.1	136
20230916_0350	0.1	136
20230916_0400	0.1	136
20230916_0410	0.1	59
20230916 0420 20230916 0430	0.1 0.1	352 355
20230916 0440	0.1	355
20230916 0450	0.1	203
20230916 0500	0.1	223
20230916 0510	0.1	328
20230916 0520	0.1	113
20230916_0530	0.1	113
20230916_0540 20230916_0550	0.1	113
20230916 0600	0.1 0.1	206 226
20230916 0610	0.1	311
20230916 0620	0.1	311
20230916_0630	0.1	311
20230916 0640	0.1	229
20230916_0650	0.1	229
20230916_0700 20230916_0710	0.1 0.1	25 25
20230916_0710	0.1	25
20230916 0730	0.1	22
20230916 0740	0.1	22
20230916_0750	0.1	104
20230916_0800	0.1	130
20230916_0810	0.1	156
20230916_0820 20230916_0830	1.4 0.1	354 90
20230916_0840	0.1	322
20230916 0850	0.1	2
20230916 0900	0.5	271
20230916 0910	0.5	354
20230916_0920	0.4	325
20230916_0930	0.1	345
20230916_0940 20230916_0950	0.2 0.1	282 331
20230916 1000	0.1	331
20230916 1010	0.1	307
20230916_1020	0.3	130
20230916_1030	0.1	4
20230916_1040	0.2	13
20230916_1050	0.1	313
20230916_1100	0.8	354
20230916_1110 20230916_1120	0.3 0.1	14 319
20230916_1120	0.1	330
20230916 1140	0.1	318
20230710_1110	V.1	. 510

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230916_1200	0.1	124
20230916 1210	0.9	17
20230916_1220	0.3	119
20230916_1230	0.1	19
20230916_1240	0.5	342
20230916_1250	0.1	338
20230916_1300	1.1	98
20230916_1310	0.1	157
20230916_1320 20230916_1330	0.1	329 247
20230916_1330 20230916_1340	0.1 3.2	109
20230916_1350	0.1	350
20230916 1400	0.2	312
20230916_1410	0.1	57
20230916_1420	0.1	116
20230916_1430	0.3	143
20230916_1440	0.1	231
20230916_1450	0.1	245
20230916_1500	3.7	4
20230916_1510	0.2	28
20230916_1520 20230916_1530	0.2	335 42
20230916_1540	0.6	223
20230916_1550	0.0	336
20230916_1600	0.1	31
20230916_1610	0.1	80
20230916 1620	0.2	217
20230916_1630	1.3	24
20230916_1640	0.1	323
20230916_1650 20230916_1700	0.1	50
20230916_1700 20230916_1710	0.1	-1 108
20230916_1710	0.1	75
20230916_1720	0.5	116
20230916 1740	0.1	3
20230916_1750	1.1	297
20230916_1800	0.1	324
20230916 1810	0.1	63
20230916_1820	0.1	109
20230916_1830 20230916_1840	0.1	90 47
20230916_1840	0.6	317
20230916_1900	0.1	289
20230916 1910	0.1	92
20230916_1920	0.6	40
20230916_1930	1.3	116
20230916 1940	0.1	121
20230916_1950	0.1	30
20230916_2000	0.2	60
20230916_2010 20230916_2020	0.5	105 88
20230916 2020	0.1	13
20230916_2040	0.1	273
20230916_2050	0.1	191
20230916_2100	0.1	55
20230916_2110	0.6	165
20230916_2120	0.1	10
20230916_2130	0.1	103
20230916_2140 20230916_2150	0.1	215 92
20230916_2130	0.1	3
20230916_2210	1.7	33
20230916 2220	1.3	301
20230916_2230	0.1	283
20230916_2240	1	15
20230916_2250	0.3	60
20230916_2300 20230916_2310	0.1	149 126
20230916_2320	0.1	120
20230916_2320	0.1	39
20230916_2340	0.1	311
20230916 2350	0.1	98

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230917 0000	0.1	174
20230917_0010	0.1	1
20230917_0020	0.1	19
20230917_0030	0.1	291
20230917_0040	0.1	168
20230917_0050	0.1	351
20230917_0100	0.1	45
20230917_0110	0.1	53
20230917_0120 20230917_0130	0.1	132
20230917_0130 20230917_0140	0.1	246 279
20230917_0140	0.1	278
20230917_0200	0.1	193
20230917 0210	0.1	345
20230917_0220	0.1	254
20230917_0230	0.1	140
20230917_0240	0.1	310
20230917_0250	0.1	139
20230917_0300	0.1	163
20230917_0310 20230917_0320	0.1	108
20230917_0320 20230917_0330	0.1	334 321
20230917 0330	0.1	53
20230917_0350	0.1	322
20230917_0400	0.1	139
20230917_0410	0.1	101
20230917_0420	0.1	118
20230917_0430	0.1	117
20230917_0440	0.1	224
20230917_0450 20230917_0500	0.1	119
20230917_0500 20230917_0510	0.1	136 136
20230917 0510	0.1	96
20230917_0520	0.1	103
20230917 0540	0.1	129
20230917_0550	0.1	129
20230917 0600	0.1	64
20230917_0610	0.1	64
20230917_0620	0.1	27
20230917_0630 20230917_0640	0.1	26 26
20230917_0040	0.1	26
20230917_0700	0.1	26
20230917_0710	0.1	26
20230917_0720	0.1	181
20230917_0730	0.1	181
20230917 0740	0.1	181
20230917 0750	0.1	141
20230917_0800	0.1	141
20230917_0810 20230917_0820	0.1	134 132
20230917 0820	0.1	217
20230917_0830	0.1	122
20230917_0850	0.6	234
20230917_0900	0.1	163
20230917 0910	0.1	294
20230917_0920	0.1	61
20230917_0930	1	180
20230917_0940	0.1	186
20230917_0950 20230917_1000	0.1	290 35
20230917 1000	0.1 0.1	51
20230917_1010	0.9	350
20230917_1030	0.1	329
20230917_1040	2.4	303
20230917 1050	0.1	289
20230917_1100	2.6	315
20230917_1110	0.1	356
20230917_1120	1 0.2	347
20230917_1130 20230917_1140	0.3	5 84
20230917_1140	0.1	86
20220/11_1130	V.1	00

Date & Time (YYYYMBB HHMM)
20230917 1200 2.6 339
20230917 1210
20230917 1220
20230917 1240
20230917 1250
20230917 1300
20230917 1310
20230917 1320
20230917 1330
20230917 1340
20230917 1350 0.2 51
20230917 1410
20230917 1420
20230917 1430
20230917 1440
20230917 1450
20230917 1500
20230917 1510
20230917 1520
20230917 1530
20230917 1540 0.3 115
20230917 1600
20230917 1610
20230917 1620
20230917 1630
20230917 1640 0.5 24 20230917 1650 0.4 334 20230917 1700 0.1 342 20230917 1710 0.1 267 20230917 1720 0.1 82 20230917 1730 0.1 16 20230917 1740 0.1 143 20230917 1800 0.1 83 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1830 0.1 96 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1800 0.1 47 20230917 1900 0.1 47 20230917 1900 0.1 149 20230917 1900 0.1 149 20230917 1930 0.1 96 20230917 1930 0.1 96 20230917 1940 0.1 93 20230917 2000 0.1 41 20230917 2000 0.1 45 20230917 2000 </td
20230917 1650 0.4 334 20230917 1700 0.1 342 20230917 1710 0.1 267 20230917 1720 0.1 82 20230917 1730 0.1 16 20230917 1740 0.1 143 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1850 0.1 47 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1900 0.1 149 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 2000 0.1 41 20230917 2000 0.1 41 20230917 2000 0.1 45 20230917 2000
20230917 1700 0.1 342 20230917 1710 0.1 267 20230917 1720 0.1 82 20230917 1730 0.1 16 20230917 1740 0.1 143 20230917 1750 0.2 347 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 2000 0.1 41 20230917 2010 0.1 45 20230917 2010 0.1 45 20230917 2020 0.1 45 20230917 2000 0.1 45 20230917 200
20230917 1710 0.1 267 20230917 1720 0.1 82 20230917 1730 0.1 16 20230917 1740 0.1 143 20230917 1800 0.2 347 20230917 1810 0.1 83 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 47 20230917 1900 0.1 149 20230917 1900 0.1 96 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2020 0.1 45 20230917 2040 0.1 110 20230917 2050
20230917 1720 0.1 82 20230917 1730 0.1 16 20230917 1740 0.1 143 20230917 1750 0.2 347 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1950 0.1 47 20230917 1900 0.1 149 20230917 1920 0.1 302 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 2000 0.1 41 20230917 2000 0.1 41 20230917 2000 0.1 41 20230917 2000 0.1 45 20230917 2000 0.1 45 20230917 2000 0.1 45 20230917 2000 0.1 45 20230917 2000 0.1 142 20230917 2000 </td
20230917 1740 0.1 143 20230917 1750 0.2 347 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1850 0.1 47 20230917 1900 0.1 47 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 42 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 158 20230917 210 0.1 158 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210
20230917 1750 0.2 347 20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2030 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 287 20230917 210 0.1 158 20230917 2050 0.1 158 20230917 21
20230917 1800 0.1 83 20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 287 20230917 210 0.1 93 20230917 210 0.1 93 20230917 210 0.1 158 20230917 210
20230917 1810 0.1 29 20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 210 0.1 287 20230917 210 0.1 93 20230917 210 0.1 287 20230917 210 0.1 287 20230917 2100 0.1 287 20230917 210<
20230917 1820 0.1 96 20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2030 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 287 20230917 210 0.1 93 20230917 210 0.1 158 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2100 0.1 93 20230917 2100 0.1 93 20230917 2100
20230917 1830 0.1 344 20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 287 20230917 210 0.1 93 20230917 2110 0.1 93 20230917 2110 0.1 271
20230917 1840 0.1 95 20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 2000 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 210 0.1 93 20230917 210 0.1 93 20230917 210 0.1 93 20230917 210 0.1 271
20230917 1850 0.1 47 20230917 1900 0.1 149 20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1950 0.1 76 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2100 0.1 93 20230917 2100 0.1 93 20230917 2100 0.1 93 20230917 2120 0.1 271
20230917 1910 0.1 302 20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 1920 0.1 96 20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 1930 0.1 142 20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 1940 0.1 93 20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 210 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 1950 0.1 76 20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2000 0.1 41 20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2010 0.1 125 20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2020 0.1 45 20230917 2030 0.1 142 20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2040 0.1 110 20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2050 0.1 158 20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2100 0.1 287 20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2110 0.1 93 20230917 2120 0.1 271
20230917 2120 0.1 271
20230917_2140
20230917_2150
20230917_2200 0.1 123
20230917 2210 0.1 13
20230917_2220
20230917_2230
20230917 2240 0.1 190 20230917 2250 0.1 96
20230917 2250 0.1 96 20230917 2300 0.1 258
20230917 2300 0.1 238
20230917 2320 0.1 88
20230917_2330
0.1
20230917 2340 0.4 104 20230917 2350 0.1 96

D + 0 m:	1	
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230918 0000	0.1	45
20230918_0000	0.1	255
20230918 0020	0.1	136
20230918 0030	0.1	347
20230918 0040	0.1	90
20230918_0050	0.1	108
20230918_0100	0.1	346
20230918 0110	0.1	36
20230918_0120	0.1	-1
20230918 0130	0.1	89
20230918_0140	0.1	47
20230918_0150	0.1	81
20230918 0200 20230918 0210	0.1	10 49
20230918_0210	0.1	49
20230918 0230	0.1	42
20230918 0240	0.1	66
20230918 0250	0.1	66
20230918 0300	0.1	61
20230918_0310	0.1	61
20230918_0320	0.1	63
20230918 0330	0.1	42
20230918_0340	0.1	42
20230918_0350	0.1	9
20230918_0400	0.1	62
20230918_0410	0.1	26
20230918_0420	0.1	125
20230918_0430	0.1	38
20230918_0440 20230918_0450	0.1 0.1	41 135
20230918_0430	0.1	25
20230918_0500	0.1	18
20230918_0520	0.1	323
20230918 0530	0.1	259
20230918 0540	0.1	118
20230918 0550	0.1	118
20230918 0600	0.1	118
20230918_0610	0.1	45
20230918 0620	0.1	55
20230918_0630	0.1	73
20230918_0640	0.1	101
20230918_0650	0.1	20
20230918_0700	0.1	87 87
20230918_0710 20230918_0720	0.1	119
20230918_0720	0.1	119
20230918 0740	0.1	118
20230918 0750	0.1	100
20230918_0800	0.1	131
20230918_0810	0.1	135
20230918 0820	0.1	232
20230918 0830	0.1	101
20230918_0840	0.1	330
20230918_0850	0.1	85
20230918_0900	0.1	42
20230918 0910 20230918 0920	0.1	34
20230918 0920 20230918 0930	0.1 0.1	102 86
20230918 0940	0.1	109
20230918_0950	0.1	91
20230918 1000	0.1	315
20230918 1010	0.1	124
20230918_1020	0.2	116
20230918_1030	0.1	132
20230918_1040	0.5	123
20230918 1050	0.1	346
20230918_1100	1.1	185
20230918 1110	0.2	31
20230918_1120	0.1	27 256
20230918_1130 20230918_1140	2.5 0.5	256 45
20230918_1140	2.3	37
20230916_1130		31

		ı
Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM) 20230918 1200	3.1	91
20230918_1210	0.1	109
20230918_1220	0.2	46
20230918 1230	0.1	40
20230918 1240	0.1	316
20230918 1250	0.2	2
20230918_1300	0.3	117
20230918_1310	2.2	135
20230918_1320	0.1	354
20230918 1330	1.1	317
20230918_1340	2.5	310
20230918_1350	0.2	353
20230918 1400 20230918 1410	0.1	52 332
20230918 1420	3.5	-1
20230918_1430	0.4	37
20230918_1440	1.8	147
20230918_1450	0.2	81
20230918 1500	1.3	40
20230918_1510	0.1	67
20230918_1520	0.9	132
20230918_1530	0.1	170
20230918 1540	0.3	348
20230918_1550	0.1	77
20230918_1600 20230918_1610	1.3	134
20230918_1610 20230918_1620	0.1	329 109
20230918_1630	0.1	222
20230918 1640	0.1	85
20230918 1650	0.1	95
20230918 1700	0.1	177
20230918 1710	0.2	88
20230918_1720	0.1	103
20230918_1730	0.1	39
20230918_1740	0.1	100
20230918_1750	0.1	100
20230918 1800	0.1	7
20230918_1810	0.1	72 37
20230918_1820 20230918_1830	0.2	65
20230918_1840	0.1	54
20230918 1850	0.1	76
20230918_1900	0.3	99
20230918_1910	0.1	115
20230918_1920	0.1	142
20230918_1930	0.7	105
20230918_1940	0.1	107
20230918 1950	0.1	12
20230918_2000 20230918_2010	0.1	45 175
20230918 2020	0.1	31
20230918 2020	0.1	155
20230918 2040	0.1	323
20230918 2050	0.1	354
20230918_2100	0.1	68
20230918_2110	0.1	134
20230918 2120	0.1	98
20230918 2130	0.1	200
20230918_2140	0.1	329
20230918_2150	0.1	246 127
20230918 2200 20230918 2210	0.1	117
20230918 2220	0.1	135
20230918_2230	0.1	25
20230918_2240	0.1	25
20230918 2250	0.1	25
20230918 2300	0.1	25
20230918_2310	0.1	25
20230918_2320	0.1	99
20230918_2330	0.1	178
20230918_2340	0.1	263
20230918 2350	0.1	284

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230919 0000	0.1	23
20230919_0000	0.1	50
20230919 0020	0.1	50
20230919 0030	0.1	50
20230919_0040	0.1	50
20230919_0050	0.1	298
20230919_0100	0.1	96
20230919 0110	0.1	32
20230919_0120	0.1	37
20230919_0130	0.1	56
20230919_0140	0.1	56 44
20230919_0150 20230919_0200	0.1 0.1	47
20230919 0210	0.1	58
20230919 0220	0.1	51
20230919 0230	0.1	14
20230919_0240	0.1	57
20230919 0250	0.1	57
20230919_0300	0.1	152
20230919_0310	0.1	84
20230919_0320	0.1	55
20230919_0330	0.1	44
20230919_0340 20230919_0350	0.1 0.1	186 80
20230919_0330	0.1	80
20230919_0400	0.1	73
20230919 0420	0.1	73
20230919 0430	0.1	56
20230919_0440	0.1	56
20230919_0450	0.1	56
20230919_0500	0.1	34
20230919 0510 20230919 0520	0.1	155 155
20230919_0520 20230919_0530	0.1 0.1	155
20230919_0540	0.1	155
20230919 0550	0.1	155
20230919 0600	0.1	54
20230919 0610	0.1	54
20230919 0620	0.1	49
20230919_0630	0.1	25
20230919_0640 20230919_0650	0.1	25 25
20230919_0650 20230919_0700	0.1 0.1	25
20230919_0700	0.1	242
20230919 0720	0.1	242
20230919_0730	0.1	161
20230919 0740	0.1	173
20230919 0750	0.1	124
20230919_0800	0.1	105
20230919_0810	0.1	190
20230919 0820 20230919 0830	0.1	173
20230919_0830 20230919_0840	0.1 0.1	106 249
20230919 0840	0.1	180
20230919_0000	0.1	169
20230919 0910	0.1	62
20230919 0920	0.1	130
20230919_0930	0.1	273
20230919_0940	0.2	172
20230919_0950	0.1	92
20230919_1000	0.1	8
20230919_1010 20230919_1020	0.1 0.1	7 274
20230919 1020	0.1	217
20230919_1030	0.1	81
20230919_1050	0.8	20
20230919 1100	0.2	227
20230919_1110	0.1	106
20230919_1120	0.4	68
20230919_1130	0.4	32
20230919 1140 20230919 1150	0.1	307 44
20230717_1130	<u> </u>	44

Date & Time	I	Ι
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230919_1200	0.1	31
20230919_1210	1.4	71
20230919 1220	0.3	337
20230919 1230 20230919 1240	0.1	124 49
20230919_1240	0.1	342
20230919_1300	4.9	173
20230919 1310	0.3	251
20230919_1320	0.1	20
20230919 1330 20230919 1340	0.1	189 150
20230919_1340	0.1	328
20230919 1400	1.7	119
20230919_1410	4.2	151
20230919 1420	1.8	165
20230919_1430 20230919_1440	3.6	166 114
20230919_1440	1.8	125
20230919 1500	1.1	110
20230919_1510	1.2	94
20230919_1520	0.1	181
20230919_1530	2.5	45
20230919 1540 20230919 1550	0.1	53 5
20230919_1500	0.9	55
20230919_1610	0.2	-1
20230919 1620	0.1	135
20230919_1630	0.3	209
20230919_1640 20230919_1650	0.4	2 15
20230919_1030	0.3	306
20230919 1710	0.1	138
20230919_1720	0.1	191
20230919 1730	0.1	28
20230919_1740	0.1	174
20230919_1750 20230919_1800	2.6	130 46
20230919_1810	0.1	228
20230919 1820	0.3	126
20230919_1830	0.8	163
20230919_1840	0.3	145
20230919 1850 20230919 1900	0.4	115
20230919_1900 20230919_1910	0.3	109 105
20230919 1920	1.7	111
20230919_1930	1.4	73
20230919_1940	0.7	76
20230919_1950	0.1	58 236
20230919_2000 20230919_2010	1.2	321
20230919 2020	0.1	276
20230919 2030	0.1	24
20230919 2040	0.1	5
20230919_2050 20230919_2100	0.1	295 335
20230919_2100	0.0	143
20230919_2110	0.1	331
20230919_2130	0.1	314
20230919_2140	0.1	319
20230919_2150	0.1	126
20230919 2200 20230919 2210	0.1	34 250
20230919 2220	0.1	3
20230919_2220	0.1	326
20230919_2240	0.1	10
20230919_2250	0.1	40
20230919 2300	0.1	98
20230919 2310 20230919 2320	0.1	339 101
20230919_2320	0.1	101
20230919_2340	0.1	179
20230919 2350	0.1	179

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230920 0000	0.1	266
20230920 0010	0.1	97
20230920 0020	0.1	10
20230920 0030	0.2	313
20230920_0040	0.1	93
20230920_0050 20230920_0100	0.1	74 108
20230920_0100	0.4	106
20230920 0110	0.1	115
20230920 0130	0.1	316
20230920_0140	0.1	326
20230920_0150	0.1	175
20230920_0200	0.1	103
20230920_0210 20230920_0220	0.1 0.1	23 326
20230920_0220	0.1	74
20230920 0240	0.1	6
20230920 0250	0.1	32
20230920_0300	0.1	32
20230920_0310	0.1	61
20230920_0320	0.1	45
20230920 0330 20230920 0340	0.1 0.1	35 35
20230920 0340	0.1	9
20230920 0400	0.1	9
20230920_0410	0.1	16
20230920 0420	0.1	352
20230920 0430	0.1	2
20230920_0440	0.1	2 2
20230920_0450 20230920_0500	0.1 0.1	1
20230920_0500	0.1	23
20230920 0520	0.1	23
20230920 0530	0.1	23
20230920_0540	0.1	23
20230920_0550	0.1	27
20230920 0600 20230920 0610	0.1 0.1	38 12
20230920 0620	0.1	12
20230920 0630	0.1	18
20230920_0640	0.1	17
20230920_0650	0.1	17
20230920_0700	0.1	39 39
20230920_0710 20230920_0720	0.1 0.1	39
20230920 0730	0.1	39
20230920 0740	0.1	39
20230920_0750	0.1	39
20230920_0800	0.1	45
20230920_0810 20230920_0820	0.1 0.1	73 96
20230920 0820	0.1	138
20230920 0840	0.1	118
20230920_0850	0.1	179
20230920_0900	0.1	80
20230920_0910	0.1	86
20230920_0920	0.1	69
20230920_0930 20230920_0940	0.1 0.1	48 70
20230920_0940	0.1	90
20230920 1000	0.1	54
20230920 1010	0.1	99
20230920_1020	0.1	63
20230920_1030	0.2	125
20230920_1040 20230920_1050	0.1 0.1	78 79
20230920_1030	0.1	50
20230920_1100	0.2	233
20230920_1120	0.1	137
20230920_1130	0.1	86
20230920_1140	0.1	48
20230920_1150	0.1	56

D-4- 0 Time	1	<u> </u>
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230920 1200	0.2	9
20230920_1210	0.1	158
20230920 1220	0.8	10
20230920_1230	0.1	50
20230920 1240	2	114
20230920_1250	0.7	108
20230920_1300	1.8	84
20230920 1310 20230920 1320	0.1	259 112
20230920 1320	1.6	104
20230920_1340	0.1	187
20230920 1350	0.7	198
20230920_1400	2.8	151
20230920_1410	0.1	85
20230920 1420	0.8	188
20230920_1430	1.4	225
20230920_1440	0.3	267
20230920_1450 20230920_1500	0.4	125
20230920_1500 20230920_1510	0.1	76 99
20230920_1510	0.1	66
20230920_1520	0.1	77
20230920 1540	0.3	86
20230920_1550	0.1	118
20230920_1600	0.2	143
20230920_1610	0.7	196
20230920 1620	0.1	265
20230920_1630	0.1	242 305
20230920_1640 20230920_1650	0.1	145
20230920_1000	0.1	79
20230920_1700	0.1	-1
20230920_1720	0.1	42
20230920_1730	0.1	111
20230920_1740	0.1	93
20230920_1750	0.1	112
20230920_1800	0.1	292
20230920_1810	0.1	343
20230920_1820 20230920_1830	0.1	46 46
20230920_1830	0.1	19
20230920_1850	0.1	37
20230920_1900	0.1	345
20230920_1910	0.1	1
20230920_1920	0.1	24
20230920_1930	0.1	338
20230920_1940	0.1	338
20230920_1950	0.1	338
20230920_2000 20230920_2010	0.1	338 33
20230920_2010	0.1	16
20230920 2030	0.1	16
20230920_2040	0.1	90
20230920_2050	0.1	90
20230920_2100	0.1	89
20230920 2110	0.1	64
20230920_2120	0.1	33
20230920_2130 20230920_2140	0.1	36 352
20230920_2140 20230920_2150	0.1	352
20230920_2130	0.1	73
20230920 2210	0.1	72
20230920_2220	0.1	72
20230920_2230	0.1	72
20230920_2240	0.1	72
20230920 2250	0.1	72
20230920_2300	0.1	72
20230920 2310	0.1	122
20230920_2320	0.1	29 29
20230920_2330 20230920_2340	0.1	29
20230920 2340	0.1	11
20230720_2330	0.1	11

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM) 20230921 0000	0.1	352
20230921_0000	0.1	12
20230921 0020	0.1	275
20230921 0030	0.1	275
20230921_0040	0.1	41
20230921_0050	0.1	41
20230921_0100	0.1	33
20230921_0110	0.1	33 33
20230921_0120 20230921_0130	0.1 0.1	24
20230921 0140	0.1	7
20230921 0150	0.1	41
20230921 0200	0.1	14
20230921_0210	0.1	17
20230921_0220	0.1	24
20230921_0230 20230921_0240	0.1	27
20230921_0240 20230921_0250	0.1 0.1	48 31
20230921 0230	0.1	7
20230921_0300	0.1	38
20230921_0320	0.1	42
20230921 0330	0.1	13
20230921 0340	0.1	35
20230921 0350	0.1	34
20230921_0400	0.1	39
20230921_0410 20230921_0420	0.1	38 26
20230921 0420	0.1 0.1	38
20230921 0440	0.1	28
20230921 0450	0.1	31
20230921_0500	0.1	163
20230921_0510	0.1	109
20230921_0520	0.1	102
20230921 0530	0.1	82
20230921_0540 20230921_0550	0.1 0.1	58 58
20230921_0330	0.1	58
20230921 0610	0.1	58
20230921 0620	0.1	58
20230921_0630	0.1	58
20230921_0640	0.1	25
20230921_0650	0.1	43 43
20230921_0700 20230921_0710	0.1 0.1	43
20230921_0710	0.1	159
20230921 0730	0.1	165
20230921 0740	0.1	166
20230921 0750	0.1	190
20230921_0800	0.1	188
20230921_0810	0.1	132
20230921_0820 20230921_0830	0.1 0.1	114 179
20230921 0830	0.5	187
20230921 0850	0.1	136
20230921_0900	0.1	172
20230921 0910	0.1	175
20230921 0920	0.3	161
20230921_0930	0.1	207
20230921_0940 20230921_0950	0.9	194 211
20230921_0930	0.1	112
20230921 1010	0.1	253
20230921 1020	1.1	103
20230921_1030	0.1	346
20230921_1040	0.5	246
20230921_1050	0.1	96
20230921_1100	0.8	99
20230921_1110 20230921_1120	0.2 0.6	230 254
20230921_1120	0.0	37
20230921_1130	0.4	253
20230921 1150	0.3	181

Date of High High Wind Speed (m/s) Wind Direction (Degree) 20230921 1200 0.2 214 33 20230921 1200 0.1 33 20230921 1220 1.2 187 20230921 1230 0.1 266 20230921 1250 0.1 71 20230921 1300 0.1 172 20230921 1300 0.1 172 20230921 1300 0.1 105 20230921 1300 0.1 105 20230921 1300 0.1 116 20230921 1300 0.1 116 20230921 1300 0.1 116 20230921 1300 0.1 116 20230921 1300 0.1 116 20230921 1400 0.3 81 20230921 1400 0.1 121 20230921 1410 0.3 162 20230921 1420 0.1 95 20230921 1420 0.1 246 20230921 1440 0.1 246 20230921 1400 0.1 221 20230921 1500 0.2 175 20230921 1500 0.2 175 20230921 1500 0.2 175 20230921 1500 0.2 217 20230921 1500 0.2 217 20230921 1500 0.2 217 20230921 1500 0.1 143 20230921 1500 0.1 143 20230921 1500 0.1 143 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1500 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1600 0.1 20230921 1700 0.5 20230921 1700 0.5 20230921 1700 0.5 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 20230921 1700 0.1 144 20230921 1700 0.1 144 20230921 1700 0.1 144 20230921 2000 0.1 144 20230921 2000 0.1 144 20230921 2000 0.1 20230921 2000	Date & Time	1	<u> </u>
20230921 1200		Wind Speed (m/s)	Wind Direction (Degree)
20230921 1220		0.2	214
20230921 1230			
20230921 1240			
20230921 1250			
20230921 1300			
20230921 1330			
20230921 1330	20230921 1310	0.2	147
20230921 1340			
20230921 1400			
20230921 1400			
20230921 1410			
20230921 1430			
20230921 1440			
20230921 1450			
20230921 1500 0.2 176			
20230921 1510			
20230921 1530	20230921_1510	0.1	
20230921 1540			
20230921 1550			
20230921 1610			
20230921 1610			
20230921 1630			
20230921 1640			
20230921 1650			
20230921 1700			
20230921 1710			
20230921 1720			
20230921 1740			
20230921 1750			
20230921 1800			
20230921 1810			
20230921 1820			
20230921 1840			
20230921 1850 0.1 21 20230921 1900 0.1 8 20230921 1910 0.1 14 20230921 1920 0.1 11 20230921 1930 0.1 77 20230921 1940 0.1 73 20230921 2000 0.1 347 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 34 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 37 20230921 210 0.1 37 20230921 210 0.1 51 20230921 210 0.1 50 20230921 210 0.1 51 20230921 210 0.1 51 20230921 2140			
20230921 1900 0.1 8 20230921 1910 0.1 14 20230921 1920 0.1 11 20230921 1930 0.1 77 20230921 1940 0.1 73 20230921 1950 0.1 347 20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 34 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 51 20230921 2120 0.1 80 20230921 2130 0.1 80 20230921 2140 0.1 102 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 <td></td> <td></td> <td></td>			
20230921 1910 0.1 14 20230921 1920 0.1 11 20230921 1930 0.1 77 20230921 1940 0.1 73 20230921 1950 0.1 347 20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 30 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 51 20230921 2100 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2210 0.1 123 20230921 2230 </td <td></td> <td></td> <td></td>			
20230921 1920 0.1 11 20230921 1930 0.1 77 20230921 1940 0.1 73 20230921 1950 0.1 347 20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 37 20230921 210 0.1 51 20230921 210 0.1 51 20230921 210 0.1 51 20230921 210 0.1 51 20230921 210 0.1 50 20230921 210 0.1 102 20230921 2140 0.1 50 20230921 2200 0.1 103 20230921 2210 0.1 102 20230921 2210 0.1 123 20230921 2220			
20230921 1940 0.1 73 20230921 1950 0.1 347 20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2200 0.1 123 20230921 2200 0.1 24			
20230921 1950 0.1 347 20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 210 0.1 37 20230921 210 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2200 0.1 123 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2			
20230921 2000 0.1 49 20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2100 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 288 20230921			
20230921 2010 0.1 114 20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 2023092			
20230921 2020 0.1 114 20230921 2030 0.1 30 20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2240 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1			
20230921 2040 0.1 34 20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2240 0.1 251 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2330 0.1 142 20230921 2340 0.1 142 20230921 2340 0.1 104			
20230921 2050 0.1 14 20230921 2100 0.1 14 20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 251 20230921 2300 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2330 0.1 142 20230921 2340 0.1 104	20230921_2030	0.1	30
20230921 2100 0.1 14 20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2340 0.1 104			
20230921 2110 0.1 37 20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2120 0.1 51 20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2130 0.1 80 20230921 2140 0.1 50 20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2150 0.1 102 20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104	20230921_2130		
20230921 2200 0.1 103 20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2210 0.1 123 20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2220 0.1 249 20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2230 0.1 251 20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2240 0.1 251 20230921 2250 0.1 245 20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104	20230921_2230		251
20230921 2300 0.1 245 20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104	20230921_2240	0.1	251
20230921 2310 0.1 90 20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2320 0.1 288 20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2330 0.1 142 20230921 2340 0.1 104			
20230921 2340 0.1 104			
20230921 2350 0.1 105	20230921 2340	0.1	104
	20230921_2350	0.1	105

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230922 0000	0.1	114
20230922_0010	0.1	134
20230922 0020	0.1	134
20230922 0030	0.1	116
20230922_0040	0.1	109
20230922_0050	0.6	112
20230922_0100	0.1	87
20230922 0110	0.1	75
20230922 0120	0.1	53
20230922 0130 20230922 0140	0.1 0.1	35 48
20230922_0140	0.1	48
20230922_0130	0.1	48
20230922 0210	0.1	86
20230922 0220	0.1	50
20230922 0230	0.1	58
20230922_0240	0.1	77
20230922 0250	0.1	45
20230922_0300	0.1	84
20230922 0310	0.1	44
20230922_0320	0.1	40
20230922_0330	0.1	84
20230922_0340	0.1	36
20230922 0350 20230922 0400	0.1 0.1	97 47
20230922_0400	0.1	47
20230922_0410	0.1	105
20230922_0420	0.1	37
20230922 0440	0.1	47
20230922 0450	0.1	47
20230922_0500	0.1	238
20230922 0510	0.1	154
20230922_0520	0.1	150
20230922 0530	0.1	9
20230922_0540	0.1	67
20230922_0550	0.1	67
20230922 0600 20230922 0610	0.1 0.1	84 84
20230922_0010	0.1	20
20230922 0630	0.1	25
20230922 0640	0.1	7
20230922 0650	0.1	20
20230922_0700	0.1	20
20230922 0710	0.1	254
20230922_0720	0.1	128
20230922_0730	0.1	128
20230922_0740	0.1	204
20230922_0750 20230922_0800	0.1 0.1	223 123
20230922_0800	0.1	123
20230922_0810	0.1	159
20230922 0830	0.3	186
20230922_0840	0.2	172
20230922_0850	0.2	136
20230922_0900	0.1	175
20230922 0910	0.1	285
20230922_0920	0.2	87
20230922_0930	0.1	87
20230922_0940 20230922_0950	0.1	80 69
20230922_0930	0.1	94
20230922 1010	0.1	92
20230922_1010	0.3	135
20230922_1020	0.1	44
20230922 1040	0.2	329
20230922 1050	0.1	234
20230922 1100	1	180
20230922_1110	0.2	99
20230922_1120	0.7	58
20230922_1130	1.5	91
20230922 1140	0.1	71
20230922 1150	0.1	202

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230922 1200	0.5	339
20230922_1200	0.3	17
	0.1	325
20230922 1230	0.7	9
20230922_1240	2.2	211
20230922_1250	0.5	46
20230922_1300	1.9	80
20230922 1310	0.3	245
20230922_1320	2.9	146
20230922_1330	0.1	201
20230922_1340	1	301
20230922_1350	0.2	320
20230922 1400	0.1	35
20230922_1410	0.1	5
20230922 1420	0.2	14
20230922 1430	1.4	3
20230922 1440	0.1	97
20230922 1450	0.4	14
20230922_1500	0.2	0
20230922_1500	0.2	278
20230922_1510	0.3	107
20230922_1520		
	0.1	110
20230922 1540		192 51
20230922_1550	0.1	
20230922_1600	0.2	324
20230922_1610	0.1	17
20230922 1620	0.1	320
20230922_1630	0.1	90
20230922_1640	0.1	137
20230922_1650	0.1	195
20230922_1700	0.9	340
20230922_1710	0.7	329
20230922_1720	0.1	2
20230922_1730	0.6	45
20230922_1740	0.9	287
20230922_1750	0.1	186
20230922 1800	0.1	196
20230922 1810	0.1	254
20230922 1820	0.1	4
20230922 1830	0.1	142
20230922 1840	1.1	46
20230922 1850	0.1	102
20230922 1900	0.1	347
20230922 1910	0.1	103
20230922 1920	0.1	183
20230922 1930	0.5	326
20230922 1940	0.1	76
20230922_1940	0.1	100
20230922 1930	0.1	67
20230922_2000	0.1	300
20230922 2020	0.1	163
20230922_2030	0.1	238
20230922 2040	0.7	228
20230922_2050	0.1	183
20230922_2100	0.1	123
20230922 2110	0.1	165
20230922_2120	0.1	84
20230922_2130	0.1	148
20230922_2140	0.1	132
20230922_2150	0.1	88
20230922 2200	0.1	226
20230922_2210	0.1	339
20230922_2220	0.2	230
20230922_2230	0.1	178
20230922 2240	0.1	195
20230922 2250	0.1	97
20230922 2300	0.1	97
20230922 2310	0.1	97
20230922 2320	0.1	61
	0.1	50
20230922 2330		
20230922_2330 20230922_2340	0.1	250

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230923 0000	0.1	168
20230923_0000	0.1	101
20230923 0020	0.1	288
20230923 0030	0.1	136
20230923 0040	0.1	354
20230923_0050	0.1	354
20230923_0100	0.1	132
20230923 0110	0.1	223
20230923 0120	0.1	30
20230923_0130	0.1	21
20230923_0140 20230923_0150	0.1	206 184
20230923_0150 20230923_0200	0.1 0.1	150
20230923 0210	0.1	143
20230923 0220	0.1	238
20230923 0230	0.1	164
20230923_0240	0.1	125
20230923 0250	0.1	105
20230923_0300	0.1	141
20230923_0310	0.1	141
20230923_0320	0.1	141
20230923_0330 20230923_0340	0.1	141
20230923_0340 20230923_0350	0.1 0.1	99 54
20230923 0400	0.1	54
20230923_0400	0.1	56
20230923 0420	0.1	56
20230923 0430	0.1	170
20230923_0440	0.1	130
20230923_0450	0.1	138
20230923_0500	0.1	215
20230923_0510	0.1	135
20230923_0520 20230923_0530	0.1 0.1	116 234
20230923_0540	0.1	209
20230923 0550	0.1	174
20230923 0600	0.1	102
20230923_0610	0.1	102
20230923_0620	0.1	102
20230923_0630	0.1	83
20230923_0640	0.1	39
20230923_0650 20230923_0700	0.1 0.1	74 89
20230923_0700	0.1	114
20230923 0720	0.1	198
20230923 0730	0.1	134
20230923 0740	0.1	144
20230923_0750	0.1	124
20230923_0800	0.1	130
20230923_0810	0.1	96
20230923 0820	0.1	145
20230923_0830	3.5	109
20230923_0840 20230923_0850	0.1 0.1	29 96
20230923_0830	5.7	116
20230923_0900	1.1	332
20230923 0920	0.1	166
20230923_0930	0.5	28
20230923_0940	1.4	115
20230923_0950	2.9	148
20230923 1000	0.5	129
20230923_1010	1	181
20230923_1020 20230923_1030	3.4 0.6	103 121
20230923_1030	0.0	311
20230923_1040	0.2	171
20230923_1000	1.6	91
20230923_1110	0.1	335
20230923_1120	0.1	334
20230923_1130	0.7	131
20230923_1140	0.1	122
20230923_1150	1.1	64

D . 0 FF		T
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230923 1200	1.6	111
20230923_1200	2.3	78
20230923 1220	0.2	120
20230923_1230	1.3	169
20230923_1240	0.1	324
20230923_1250	0.5	32
20230923_1300	5.2	9
20230923 1310	0.5	31
20230923_1320 20230923_1330	2.4	113 139
20230923 1330	3.3	12
20230923_1350	0.4	290
20230923 1400	1.8	77
20230923_1410	0.6	81
20230923_1420	0.4	103
20230923_1430	1.7	62
20230923_1440	0.1	310
20230923 1450	0.2	119
20230923_1500 20230923_1510	1.8	10 348
20230923_1510	0.4 3.4	116
20230923_1520	1.6	146
20230923_1540	0.1	243
20230923 1550	0.1	336
20230923_1600	0.2	85
20230923_1610	1.1	75
20230923 1620	0.3	4
20230923_1630	0.2	6
20230923_1640	0.2	48
20230923_1650 20230923_1700	0.5 0.2	334 68
20230923_1700	0.1	149
20230923_1710	0.6	33
20230923 1730	1.3	132
20230923_1740	0.2	77
20230923_1750	0.1	58
20230923 1800	0.1	5
20230923 1810	0.1	96
20230923_1820 20230923_1830	2.1	111 127
20230923_1840	0.3	97
20230923_1850	2.3	116
20230923_1900	0.6	339
20230923_1910	0.4	48
20230923_1920	0.2	114
20230923_1930	0.5	134
20230923_1940	3.4	5
20230923_1950	4.9	13
20230923_2000 20230923_2010	0.1	209 121
20230923_2010	0.8	52
20230923 2020	0.3	344
20230923_2040	1.9	347
20230923_2050	2.1	353
20230923_2100	0.4	15
20230923_2110	0.3	51
20230923 2120	0.1	44
20230923_2130 20230923_2140	0.6	103
20230923_2140	0.1	350 67
20230923_2130	2.1	53
20230923 2210	2.1	106
20230923 2220	0.1	199
20230923_2230	0.1	168
20230923_2240	0.2	89
20230923_2250	0.2	181
20230923_2300	0.3	340
20230923 2310	0.1	26
20230923_2320	0.1	120 139
20230923_2330 20230923_2340	0.8	79
20230923 2340	0.8	63
20230723_2330	0.1	U UJ

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230924 0000	0.2	34
20230924 0010	1.2	118
20230924_0020	0.6	101
20230924_0030	0.1	175
20230924_0040	0.1	89
20230924_0050	0.1	60
20230924_0100 20230924_0110	0.5 0.1	101 101
20230924 0110 20230924 0120	0.6	101
20230924 0120	0.0	130
20230924 0140	0.1	126
20230924_0150	0.1	127
20230924_0200	2.2	125
20230924_0210	0.8	33
20230924_0220 20230924_0230	0.2	92 21
20230924_0230	0.1 0.2	97
20230924_0250	0.6	52
20230924 0300	0.1	93
20230924_0310	0.1	128
20230924_0320	0.2	343
20230924_0330	0.2	158
20230924 0340	0.2	103
20230924_0350 20230924_0400	0.1 0.1	191 198
20230924 0410	0.1	142
20230924_0410	0.1	296
20230924 0430	0.1	242
20230924_0440	0.1	167
20230924_0450	0.1	158
20230924_0500	0.1	137
20230924_0510	0.2	57
20230924_0520 20230924_0530	0.1 6.2	17 338
20230924_0540	0.1	97
20230924 0550	0.1	106
20230924 0600	0.1	7
20230924_0610	1.2	281
20230924_0620	0.1	216
20230924_0630	0.1	159
20230924_0640 20230924_0650	0.1 0.2	78 47
20230924 0700	0.1	-1
20230924 0710	0.1	33
20230924_0720	0.1	23
20230924_0730	0.1	347
20230924_0740	0.3	171
20230924_0750	0.1	316 82
20230924_0800 20230924_0810	0.1 0.1	70
20230924_0810	0.1	165
20230924_0830	0.8	255
20230924_0840	0.1	25
20230924_0850	0.2	109
20230924_0900	0.5	327
20230924 0910 20230924 0920	0.1 4.1	283 183
20230924 0920	0.2	41
20230924_0930	1.2	114
20230924_0950	0.1	21
20230924 1000	1.2	45
20230924_1010	0.4	42
20230924_1020	0.1	193
20230924_1030 20230924_1040	1.8	2 71
20230924_1040	0.1 0.8	237
20230924_1030	1.8	29
20230924_1110	0.1	33
20230924_1120	2.7	287
20230924_1130	0.1	178
20230924_1140	0.8	146
20230924_1150	1.5	82

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230924_1200	2.7	16
20230924 1210	0.1	257
20230924 1220	0.5	66
20230924_1230	0.2	196
20230924 1240	2.9	178
20230924_1250	0.6	267
20230924_1300	0.3	42
20230924 1310	0.1	204
20230924_1320	1.9	117
20230924 1330	0.1	51
20230924_1340	1.2	3
20230924_1350	3	337
20230924 1400	2.4	157
20230924 1410	4	352
20230924 1420	0.1	50
20230924_1430	0.1	224
20230924_1440	0.2	293
20230924 1450	1.1	183
20230924_1500	0.4	32
20230924_1510	2	24
20230924_1520	0.2	223
20230924 1530	0.2	153
20230924_1540	0.7	336
20230924_1550	0.1	114
20230924 1600	4	349
20230924_1610	0.4	128
20230924 1620	2.9	109
20230924_1630	1.7	144
20230924_1640	0.1	167
20230924 1650	0.4	346
20230924 1700	0.1	252
20230924 1710	0.1	146
20230924 1720	0.5	19
20230924_1730	2.1	34
20230924 1740	1.5	39
20230924_1750	0.5	345
20230924 1800	0.1	177
20230924_1810	0.1	327
20230924_1820	0.1	152
20230924 1830	0.1	85
20230924 1840	0.1	67
20230924 1850	0.1	37
20230924_1900	0.5	53
20230924_1910	0.1	117
20230924_1920	0.4	12
20230924 1930	0.5	41
20230924 1940	0.4	110
20230924_1950	0.8	89
20230924_2000	0.8	84
20230924_2010	0.1	109
20230924 2020	0.2	272
20230924_2030	0.4	279
20230924_2040	0.5	349
20230924_2050	0.3	125
20230924_2100	0.5	71
20230924 2110	0.1	323
20230924_2120	1.3	348
20230924_2130	0.9	116
20230924_2140	0.3	181
20230924_2150	1.2	12
20230924 2200	1	111
20230924_2210	1.8	49
20230924_2220	0.7	5
20230924_2230	0.2	68
20230924_2240	0.2	335
20230924_2250	0.6	89
20230924_2300	0.4	78
20230924_2310	0.4	130
20230924_2320	0.1	352
20230924_2330	4.3	168
20230924 2340	0.3	131
20230924_2350	3.7	15

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230925 0000	0.1	38
20230925 0010	1.6	32
20230925_0020	1.2	16
20230925_0030	0.1	98
20230925_0040	2.4	2
20230925_0050	0.2	93
20230925_0100 20230925_0110	1.1	147 319
20230925_0110 20230925_0120	6.7 1.4	519
20230925 0120	1.8	24
20230925 0140	0.2	110
20230925_0150	0.1	7
20230925_0200	0.1	282
20230925_0210	0.1	54
20230925_0220 20230925_0230	0.9	50 166
20230925_0230	0.1 2.6	346
20230925 0250	0.5	46
20230925 0300	0.1	259
20230925 0310	0.1	260
20230925_0320	1.3	115
20230925_0330	1.1	110
20230925_0340	0.2	22
20230925_0350 20230925_0400	0.1 2.9	85 128
20230925 0410	0.1	346
20230925_0410	0.7	334
20230925 0430	0.1	220
20230925_0440	0.1	107
20230925_0450	0.1	21
20230925_0500	0.1	196
20230925_0510 20230925_0520	0.8 0.6	335 131
20230925 0530	1.7	93
20230925 0540	0.2	158
20230925_0550	1.1	65
20230925 0600	0.1	90
20230925 0610	0.1	187
20230925_0620	0.2	159
20230925_0630 20230925_0640	0.1 0.8	11 309
20230925_0040	0.5	304
20230925 0700	0.2	110
20230925 0710	0.4	30
20230925_0720	0.2	343
20230925_0730	0.1	54
20230925 0740	0.2	304
20230925_0750 20230925_0800	0.1 0.1	123 16
20230925 0810	3.8	56
20230925 0820	2.4	337
20230925 0830	3.8	22
20230925_0840	0.6	72
20230925_0850	0.2	178
20230925_0900 20230925_0910	0.1 1.8	126 78
20230925 0910	4.6	163
20230925 0930	0.1	150
20230925_0940	0.5	141
20230925_0950	1.6	35
20230925_1000	0.7	142
20230925_1010	0.4	290
20230925_1020 20230925_1030	0.2 0.1	218 140
20230925_1030	0.1	355
20230925 1050	1.2	291
20230925_1100	1	336
20230925_1110	0.1	356
20230925_1120	1.4	142
20230925_1130	2.3	142
20230925_1140	0.1	352
20230925_1150	0.1	98

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230925_1200	1.3	46 131
20230925_1210	0.6	
20230925 1220	0.8	229
20230925_1230 20230925_1240	0.5	12 355
20230925 1250		
20230925_1230	0.7 7.1	6 149
20230925_1300	3.8	52
20230925 1310	1.5	226
20230925 1330	0.1	279
20230925 1340	0.1	5
20230925 1350	0.1	336
20230925 1400	0.2	136
20230925 1410	2.5	96
20230925 1420	1.5	15
20230925_1430	4.3	307
20230925_1440	0.1	142
20230925_1450	2.4	5
20230925_1500	3.7	319
20230925_1510	3.2	118
20230925_1520	0.1	96
20230925_1530	0.4	36
20230925_1540	8.7	57
20230925_1550	1.5	345
20230925_1600	1	55
20230925_1610	5.1	10
20230925 1620	5.3	315
20230925_1630	5.3	350
20230925_1640 20230925_1650	5.3 2.6	56 79
20230925 1700	0.9	203
20230925 1710	3.9	53
20230925 1710	0.5	105
20230925 1730	0.3	72
20230925 1740	0.1	80
20230925 1750	0.1	309
20230925 1800	0.1	337
20230925 1810	0.2	281
20230925 1820	0.4	93
20230925 1830	0.1	338
20230925_1840	0.3	72
20230925_1850	0.8	347
20230925_1900	0.1	26
20230925_1910	0.3	48
20230925_1920	0.8	84
20230925_1930	1.1	156
20230925_1940	0.1	79
20230925_1950	1.4	122
20230925_2000	1.7	5
20230925_2010 20230925_2020	1.9	16
20230925 2020 20230925 2030	2.5	122 42
20230925 2040	2.4 1.5	80
20230925 2050	0.1	143
20230925 2100	0.1	143
20230925_2100	0.3	90
20230925 2120	0.3	60
20230925 2130	0.1	60
20230925 2140	0.2	352
20230925 2150	2	9
20230925 2200	1.1	105
20230925 2210	0.6	76
20230925_2220	1.1	132
20230925 2230	0.3	94
20230925_2240	0.2	101
20230925_2250	0.5	119
20230925 2300	1.1	37
20230925 2310	0.1	48
20230925_2320	0.4	188
20230925_2330	0.7	125
20230925 2340	0.1	96
20230925_2350	0.9	116

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230926 0000	0.9	113
20230926 0010	0.8	109
20230926 0020	0.3	61
20230926_0030	0.3	57
20230926_0040	0.1	154
20230926_0050	0.1	28
20230926_0100	0.1	59
20230926_0110	0.1	136
20230926 0120	0.2	139
20230926_0130	0.1	289
20230926_0140	0.2	96
20230926_0150 20230926_0200	0.2	83 151
20230926 0210	0.1	-1
20230926 0220	0.5	117
20230926 0230	0.1	154
20230926 0240	3.5	340
20230926 0250	1.6	22
20230926_0300	0.4	250
20230926 0310	0.2	61
20230926_0320	0.5	86
20230926_0330	0.9	333
20230926_0340	0.1	210
20230926_0350	0.4	28
20230926_0400 20230926_0410	2.2 0.5	24 116
20230926_0410	0.1	122
20230926 0420	2.1	157
20230926 0440	0.1	151
20230926 0450	2.2	110
20230926 0500	0.5	153
20230926_0510	3.7	17
20230926_0520	0.4	140
20230926_0530	0.5	132
20230926_0540	0.3	89
20230926_0550	0.1	70
20230926 0600	0.1	106
20230926_0610 20230926_0620	0.1 4.2	352 354
20230926 0630	0.8	59
20230926_0640	0.1	71
20230926 0650	0.1	87
20230926 0700	1.1	130
20230926_0710	0.5	125
20230926_0720	3	34
20230926_0730	3.9	118
20230926_0740	0.7	36
20230926_0750	0.9	315
20230926_0800	0.1	113 159
20230926_0810 20230926_0820	0.6 3.1	335
20230926 0830	4.9	43
20230926 0840	0.6	99
20230926_0850	1.2	31
20230926_0900	1.5	62
20230926 0910	1.2	71
20230926 0920	0.7	351
20230926 0930	3.2	0
20230926_0940	0.3	17
20230926_0950	2.7	40
20230926 1000 20230926 1010	0.8 2.2	88 128
20230926 1010	5.1	31
20230926 1030	0.2	44
20230926 1040	0.8	81
20230926 1050	0.3	65
20230926_1100	1.4	332
20230926_1110	0.9	4
20230926_1120	0.7	228
20230926_1130	0.7	160
20230926 1140	0.2	79
20230926_1150	2.9	343

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)		
20230926_1200 20230926_1210	0.5	280 25
20230926_1220	2.2	92
20230926_1230	1.5	32
20230926_1240	0.6	112
20230926_1250	0.2	343
20230926_1300 20230926_1310	1.6 9.7	3 133
20230926_1310 20230926_1320	0.8	6
20230926 1330	2.9	75
20230926_1340	1.5	47
20230926_1350	0.2	59
20230926_1400	1.1	180 332
20230926_1410 20230926_1420	0.2 3.6	139
20230926_1430	1	120
20230926_1440	1.3	340
20230926_1450	0.1	354
20230926_1500	5.2	338
20230926_1510 20230926_1520	2.4	128 168
20230926_1520	0.2	311
20230926_1540	2.7	95
20230926_1550	5.2	143
20230926_1600	3.2	110
20230926_1610	0.1	65
20230926_1620 20230926_1630	2.4	158 161
20230926_1640	1	62
20230926_1650	1.2	109
20230926_1700	1.1	148
20230926 1710	4.5	144
20230926_1720 20230926_1730	2.6	105 65
20230926_1730 20230926_1740	0.2	354
20230926_1750	2.3	35
20230926 1800	0.4	110
20230926_1810	1.6	354
20230926_1820 20230926_1830	0.3	86 14
20230926_1840	6.3	48
20230926_1850	4.5	30
20230926_1900	8	31
20230926 1910	0.2	39
20230926_1920	0.2	86
20230926_1930 20230926_1940	0.2	183 98
20230926_1950	0.1	229
20230926_2000	2.3	337
20230926_2010	1.6	59
20230926_2020	0.1	104
20230926_2030 20230926_2040	1.7	169
20230926_2040 20230926_2050	0.7	116 142
20230926_2100	2.8	134
20230926_2110	0.1	187
20230926_2120	0.1	170
20230926_2130	0.1	221
20230926_2140 20230926_2150	0.1	162 105
20230926 2200	0.5	150
20230926_2210	0.6	80
20230926_2220	0.3	98
20230926_2230	0.6	85
20230926_2240	2.4	336
20230926 2250 20230926 2300	1.8	130 113
20230926 2310	0.4	68
20230926 2320	0.6	124
20230926_2330	0.2	149
20230926_2340	0.1	351
20230926_2350	0.1	101

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230927 0000	0.2	126
20230927 0010	0.1	72
20230927 0020	0.1	155
20230927 0030	0.9	146
20230927_0040	0.8	351
20230927_0050	0.5	135
20230927_0100	0.1	48
20230927 0110	0.2	103
20230927_0120	0.1	133
20230927_0130	0.1	118
20230927_0140 20230927_0150	0.6 1.9	28 170
20230927_0130	0.1	183
20230927 0210	0.7	39
20230927 0220	1.1	116
20230927_0230	0.8	100
20230927_0240	0.2	82
20230927_0250	0.1	19
20230927_0300	1.3	80
20230927_0310	0.1	138
20230927_0320	0.1	205
20230927_0330 20230927_0340	0.5 0.4	194 110
20230927_0340	0.4	91
20230927 0400	0.1	164
20230927_0410	0.1	307
20230927 0420	0.1	146
20230927_0430	0.1	72
20230927_0440	0.1	245
20230927_0450	0.1	158 117
20230927_0500 20230927_0510	0.1 0.1	212
20230927 0520	0.1	35
20230927 0530	1.1	80
20230927 0540	0.3	134
20230927_0550	1	336
20230927_0600	0.1	330
20230927_0610	0.1	96
20230927_0620	0.8	66
20230927_0630 20230927_0640	0.2 0.2	347 98
20230927_0040	0.6	140
20230927 0700	0.1	154
20230927_0710	0.1	17
20230927_0720	0.1	145
20230927_0730	0.1	180
20230927_0740	0.1	76 35
20230927_0750 20230927_0800	0.1 0.8	92
20230927_0800	0.0	72
20230927_0810	0.1	72
20230927_0830	0.5	184
20230927_0840	0.1	65
20230927_0850	1.3	104
20230927_0900	0.2	27
20230927 0910 20230927 0920	0.3 0.5	316 303
20230927 0920	0.5	142
20230927 0940	1.8	93
20230927_0950	5.7	1
20230927 1000	1.6	68
20230927_1010	0.8	133
20230927_1020	0.4	85
20230927_1030 20230927_1040	0.1	54 67
20230927_1040 20230927_1050	0.1	67 144
20230927_1100	0.4	281
20230927_1100	1	151
20230927_1120	0.2	254
20230927_1130	0.1	147
20230927_1140	0.3	119
20230927_1150	0.3	322

Date & Time	Wind Smood (m/s)	Wind Direction (Decree)
(YYYYMMBB_HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230927_1200 20230927_1210	1.6 2.5	58 51
20230927_1210	3.2	165
20230927 1230	0.2	74
20230927_1240	1.9	310
20230927_1250	1.7	26
20230927_1300 20230927_1310	0.1	221 64
20230927_1310	3.1	163
20230927_1330	2.5	85
20230927_1340	0.1	14
20230927_1350	0.6	272
20230927_1400 20230927_1410	0.1	330 350
20230927 1420	2.5	353
20230927_1430	1.4	57
20230927_1440	0.1	4
20230927_1450 20230927_1500	0.1 0.4	86 129
20230927 1510	0.1	5
20230927_1520	0.2	21
20230927 1530	0.2	24
20230927_1540	2.5 3.8	142 149
20230927_1550 20230927_1600	2.1	149
20230927 1610	2.3	34
20230927 1620	0.7	333
20230927_1630	0.2	179
20230927_1640 20230927_1650	0.3 2.6	177 345
20230927_1030	0.6	52
20230927_1710	0.5	79
20230927 1720	0.3	160
20230927_1730 20230927_1740	1.7 0.7	118 79
20230927_1740	0.7	330
20230927_1730	0.1	187
20230927 1810	0.1	171
20230927_1820	0.1	209
20230927_1830 20230927_1840	0.1 0.1	64 283
20230927_1850	0.1	288
20230927_1900	0.1	304
20230927_1910	0.1	163
20230927_1920 20230927_1930	0.1	310 99
20230927_1930	0.1	12
20230927 1950	1.4	3
20230927_2000	0.1	336
20230927_2010	0.1	65
20230927_2020 20230927_2030	0.1 0.1	53 91
20230927_2040	0.5	122
20230927_2050	0.7	349
20230927_2100	0.3	142
20230927_2110 20230927_2120	0.1	335 273
20230927_2120	0.3	22
20230927_2140	0.1	50
20230927_2150	0.4	128
20230927_2200	0.1	68
20230927_2210 20230927_2220	0.1	50 122
20230927_2220	0.1	322
20230927_2240	0.1	159
20230927_2250	0.1	159
20230927_2300	0.1	179
20230927_2310 20230927_2320	0.1	279 116
20230927_2320	0.5	127
20230927_2340	0.1	63
20230927 2350	0.2	4

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230928 0000	0.1	96
20230928 0010	0.5	352
20230928 0020	3.1	356
20230928 0030	0.1	137
20230928 0040	1.7	0
20230928 0050	0.1	347
20230928 0100	0.1	349
20230928 0110	1.4	3
20230928_0120	0.1	164
20230928_0130	2.4	71
20230928_0140	0.1	229
20230928_0150	0.2	141
20230928 0200	2.9	347
20230928 0210	0.1	25
20230928_0220	0.5	87 31
20230928_0230 20230928_0240	1.3 1.7	330
20230928_0250	0.3	56
20230928 0300	0.3	50
20230928 0310	0.1	150
20230928 0320	0.1	156
20230928 0330	0.6	90
20230928 0340	0.3	346
20230928 0350	0.4	95
20230928_0400	0.1	85
20230928_0410	0.1	49
20230928 0420	1.3	55
20230928_0430	0.1	341
20230928 0440	0.1	163
20230928_0450	0.1	83
20230928_0500	0.1	147
20230928 0510	0.1	58
20230928_0520	0.1	114
20230928 0530 20230928 0540	0.6	37 112
20230928_0550	2.8	56
20230928_0530	0.1	100
20230928 0610	0.1	86
20230928 0620	0.1	108
20230928 0630	0.1	169
20230928_0640	0.1	145
20230928_0650	0.1	37
20230928_0700	0.1	27
20230928_0710	0.1	150
20230928_0720	0.1	165
20230928_0730	0.1	116
20230928 0740	0.9	109
20230928_0750	0.4	33
20230928_0800 20230928_0810	0.9 0.1	20 347
20230928_0810	0.1	15
20230928 0830	2.9	93
20230928 0840	0.5	347
20230928 0850	0.1	352
20230928_0900	0.1	213
20230928 0910	1	141
20230928 0920	0.1	191
20230928_0930	0.3	41
20230928_0940	3.9	17
20230928_0950	3	2
20230928 1000	0.4	151
20230928_1010	2.8	113
20230928_1020 20230928_1030	0.6	144 290
20230928_1030	0.2 1.8	290 119
20230928_1040	0.8	58
20230928_1100	0.8	24
20230928 1110	0.3	13
20230928 1110	0.1	145
20230928 1130	0.4	299
20230928 1140	0.2	350
20230928 1150	4	163

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230928 1200	0.3	224
20230928_1210	1.2	34
20230928_1220	0.3	90
20230928_1230	1.7	332
20230928 1240	0.1	190
20230928_1250	0.6	313
20230928_1300	0.5	5
20230928_1310	0.7	211
20230928_1320	0.1	13
20230928_1330	0.1	285
20230928_1340	0.1	345
20230928_1350	2.1	124
20230928 1400	0.3	99
20230928_1410 20230928_1420	1.3	41
20230928_1420	0.1	102
20230928_1440	4.5	102
20230928 1450	1.1	11
20230928_1500	1.3	155
20230928 1510	1.9	172
20230928 1520	1.5	8
20230928 1530	1.6	339
20230928 1540	1.3	334
20230928_1550	2.1	2
20230928_1600	0.3	77
20230928_1610	0.5	330
20230928_1620	5	41
20230928_1630	4	277
20230928_1640	0.8	26
20230928_1650	7.6	5
20230928_1700	0.3	132 92
20230928_1710 20230928_1720	0.9	
20230928_1720	1.6	331 123
20230928_1740	0.1	34
20230928_1750	0.4	0
20230928 1800	0.1	256
20230928 1810	0.1	182
20230928_1820	0.1	306
20230928 1830	0.1	275
20230928 1840	0.7	164
20230928_1850	0.6	161
20230928_1900	0.1	310
20230928_1910	0.3	10
20230928_1920	0.1	5
20230928_1930	0.1	241
20230928 1940	1.3	5
20230928_1950	0.1	245
20230928_2000	0.4	281
20230928_2010 20230928_2020	4.1	111
20230928 2020	0.4	132
20230928 2040	0.4	52
20230928 2050	0.1	48
20230928 2100	0.2	41
20230928 2110	0.1	58
20230928_2120	0.5	67
20230928_2130	0.1	350
20230928_2140	0.1	133
20230928_2150	0.2	20
20230928_2200	0.1	290
20230928_2210	1	88
20230928 2220	0.4	60
20230928_2230	0.1	324
20230928_2240	0.1	84
20230928_2250	1.9	26
20230928_2300 20230928_2310	0.4	78
20230928_2310	0.1	6
20230928_2320	0.6	5
20230928_2330	0.2	352
20230928_2340	0.4	36

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230929 0000	0.1	117
20230929 0010	0.1	137
20230929 0020	0.1	111
20230929_0030	0.1	117
20230929_0040	0.1	178
20230929_0050	0.1	93
20230929_0100	1.1	32
20230929_0110 20230929_0120	1.8 0.1	307 64
20230929 0120	0.1	99
20230929 0140	0.1	111
20230929 0150	0.1	33
20230929 0200	0.1	56
20230929 0210	0.1	5
20230929_0220	0.1	98
20230929_0230 20230929_0240	0.1 0.1	124 104
20230929_0240	0.1	310
20230929 0300	0.1	107
20230929 0310	0.1	43
20230929_0320	0.1	33
20230929 0330	0.1	7
20230929_0340	0.8	111
20230929_0350	0.1	355
20230929_0400	0.1	52 173
20230929_0410 20230929_0420	0.1 0.1	260
20230929 0420	0.1	66
20230929 0440	0.1	182
20230929 0450	0.1	179
20230929_0500	0.2	131
20230929 0510	0.1	29
20230929_0520	0.1	330
20230929 0530	0.1	114
20230929_0540 20230929_0550	0.1 0.1	197 40
20230929_0330	0.1	157
20230929 0610	0.1	174
20230929 0620	1	88
20230929_0630	0.1	88
20230929_0640	0.1	211
20230929 0650	0.1	280
20230929_0700 20230929_0710	0.1	73 124
20230929_0710	1	138
20230929 0730	0.1	118
20230929 0740	0.1	91
20230929 0750	0.4	71
20230929_0800	0.1	118
20230929_0810	0.1	109
20230929_0820	1.9	39 328
20230929_0830 20230929_0840	0.2 0.7	328
20230929_0840	2.6	96
20230929 0900	0.1	194
20230929 0910	0.3	75
20230929 0920	0.2	1
20230929_0930	0.1	54
20230929_0940	0.4	18
20230929_0950 20230929_1000	1.7	34 36
20230929 1010	0.1	258
20230929 1010	0.1	57
20230929 1030	0.2	24
20230929_1040	0.3	332
20230929_1050	0.1	242
20230929_1100	2.6	50
20230929_1110	1.1	97
20230929_1120 20230929_1130	0.1 0.6	18 328
20230929_1130	0.0	90
20230929 1140	3.3	342
20230727_1130	J.J	JT2

Date & Time	Wind Speed (m/s)	Wind Direction (Degree)
(YYYYMMBB_HHMM)	2.1	73
20230929_1200 20230929_1210	1.9	96
20230929 1220	2.6	288
20230929_1230	0.8	29
20230929_1240	0.3	246
20230929_1250	0.2	271
20230929_1300	2.8	18
20230929_1310	0.1	126 129
20230929_1320 20230929_1330	2.1 5.1	161
20230929 1340	0.5	49
20230929_1350	1.7	89
20230929 1400	2.1	177
20230929 1410	0.7	67
20230929_1420	0.1	95
20230929_1430 20230929_1440	1.1	35
20230929_1440 20230929_1450	0.1	55 232
20230929 1500	0.8	162
20230929 1510	0.1	62
20230929_1520	1	114
20230929 1530	1.8	4
20230929_1540	0.1	339
20230929_1550	0.3	68
20230929_1600 20230929_1610	0.1	277 146
20230929_1610	1.1	348
20230929_1630	0.1	5
20230929_1640	0.1	353
20230929_1650	0.1	3
20230929_1700	0.3	20
20230929 1710	0.1	39
20230929_1720	0.4	283
20230929_1730 20230929_1740	0.1	39 111
20230929_1740	0.1	42
20230929_1800	0.2	55
20230929_1810	0.2	307
20230929_1820	0.1	62
20230929_1830	0.3	304
20230929_1840	0.2	350
20230929 1850 20230929 1900	0.1	42 349
20230929_1910	0.1	165
20230929 1920	0.2	334
20230929_1930	0.1	312
20230929_1940	0.1	333
20230929_1950	0.1	327
20230929_2000	0.1	65
20230929_2010 20230929_2020	0.1	64 330
20230929 2030	0.1	2
20230929 2040	0.1	98
20230929_2050	0.1	83
20230929_2100	0.1	351
20230929 2110	0.1	202
20230929 2120	0.1	88
20230929_2130 20230929_2140	0.1	35 127
20230929_2140 20230929_2150	0.1	9
20230929 2200	0.2	12
20230929_2210	0.1	20
20230929_2220	0.3	16
20230929_2230	0.5	62
20230929_2240	0.1	258
20230929_2250	0.1	36
20230929 2300 20230929 2310	0.6	161 245
20230929 2320	0.1	187
20230929_2330	0.1	354
20230929_2340	0.1	64
20230929_2350	0.1	178

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230930 0000	0.1	352
20230930_0010	0.1	310
20230930 0020	0.1	342
20230930 0030	0.1	297
20230930 0040	0.1	61
20230930_0050	0.1	156
20230930_0100	0.1	156
20230930_0110	0.1	156
20230930_0120	0.1	52
20230930_0130	0.1	52
20230930_0140	0.1	52 60
20230930_0150 20230930_0200	0.1 0.1	60
20230930 0200	0.1	52
20230930 0220	0.1	54
20230930 0230	0.1	17
20230930_0240	0.1	25
20230930 0250	0.1	25
20230930_0300	0.1	40
20230930_0310	0.1	54
20230930_0320	0.1	55
20230930_0330	0.1	55
20230930 0340 20230930 0350	0.1 0.1	55 55
20230930_0330	0.1	55
20230930_0400	0.1	60
20230930 0420	0.1	58
20230930 0430	0.1	51
20230930_0440	0.1	52
20230930_0450	0.1	55
20230930_0500	0.1	55
20230930_0510	0.1	55
20230930 0520 20230930 0530	0.1 0.1	55 55
20230930_0540	0.1	40
20230930 0550	0.1	8
20230930 0600	0.1	34
20230930 0610	0.1	32
20230930 0620	0.1	41
20230930_0630	0.1	19
20230930_0640 20230930_0650	0.1	19 19
20230930 0650 20230930 0700	0.1 0.1	63
20230930 0710	0.1	62
20230930 0720	0.1	60
20230930_0730	0.1	144
20230930_0740	0.1	144
20230930 0750	0.1	157
20230930_0800	0.1	139
20230930_0810	0.1	123
20230930 0820 20230930 0830	0.1 0.1	123 115
20230930 0830	0.1	117
20230930_0850	0.1	99
20230930 0900	0.3	120
20230930 0910	1	295
20230930 0920	0.1	17
20230930 0930	0.1	202
20230930_0940	0.3	96
20230930_0950	0.1	106
20230930 1000 20230930 1010	0.1	72 78
20230930 1010	0.1 0.1	51
20230930_1020	0.1	345
20230930_1040	0.7	134
20230930_1050	0.2	92
20230930_1100	0.1	30
20230930_1110	0.1	73
20230930_1120 20230930_1130	0.1	347 99
20230930_1130	0.1	113
20230930_1140	0.1	142
20230730_1130	· · · · · · · · · · · · · · · · · · ·	1 12

Date & Time	1	I
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (Degree)
20230930_1200	0.1	3
20230930_1210	0.1	87
20230930 1220	2	152
20230930 1230 20230930 1240	0.2	150 29
20230930_1240	0.7	13
20230930_1300	0.1	90
20230930 1310	0.1	215
20230930_1320	0.2	101
20230930 1330 20230930 1340	0.1	4 92
20230930_1340	2.4	200
20230930_1400	1.8	190
20230930_1410	1.2	145
20230930_1420	0.1	259
20230930_1430 20230930_1440	0.5	151 195
20230930_1440	0.4	180
20230930 1500	0.1	183
20230930_1510	0.1	145
20230930_1520	0.1	8
20230930_1530	0.1	333
20230930 1540 20230930 1550	0.1	13 269
20230930_1550	0.1	168
20230930_1610	0.5	230
20230930 1620	0.2	220
20230930_1630	0.1	269
20230930_1640 20230930_1650	0.1	153 267
20230930_1030	0.1	106
20230930_1700	0.1	106
20230930_1720	0.1	105
20230930 1730	0.1	105
20230930_1740	0.1	105
20230930_1750 20230930_1800	0.1	62 64
20230930_1810	0.1	55
20230930 1820	0.1	47
20230930_1830	0.1	28
20230930_1840	0.1	9
20230930_1850 20230930_1900	0.1	34 37
20230930_1900 20230930_1910	0.1	336
20230930 1920	0.1	10
20230930_1930	0.1	140
20230930_1940	0.1	78
20230930_1950	0.1	2
20230930_2000 20230930_2010	0.1	331 68
20230930_2010	0.1	5
20230930 2030	0.1	71
20230930_2040	0.1	1
20230930_2050	0.1	59
20230930_2100 20230930_2110	0.1	96 60
20230930 2110	0.1	52
20230930 2130	0.1	3
20230930_2140	0.1	349
20230930_2150	0.1	22
20230930 2200 20230930 2210	0.1	22 22
20230930 2220	0.1	22
20230930_2220	0.1	349
20230930_2240	0.1	7
20230930 2250	0.1	29
20230930_2300	0.1	353
20230930 2310 20230930 2320	0.1	63 63
20230930_2320	0.1	63
20230930_2340	0.1	63
20230930_2350	0.1	65

Appendix I Waste Flow Table

Waste Flow Table

		Total Quantities of Inert C&D Materials to be Generated from the Contract				Total Quantities of Recyclables Generation				Total Quantities of C&D Materials to be Generated from the Contract			
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill		Paper / Cardboard Packaging		Yard Waste (to Y-Park)	Chemical Waste	General Refuse	Others, e.g. non- recyclable yard waste
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000L)	(in tonne)	(in tonne)
Dec-22	84.77	0	0	0	0	0	0	0	0	11.49	0	7.53	65.75
Jan-23	24.51	0	0	0	0	0	0	0	0	0	0	24.51	0
Feb-23	506.45	0	0	0	0	0	0	0	0	3.16	0	5.85	497.44
Mar-23	9,581.15	0	0	9,187	0	0	0	0	0	3.69	0	6.96	383.5
Apr-23	18,532.07	0	0	18,466	0	0	0	0	0	1.97	0	5.81	58.29
May-23	28,889.61	0	0	28,473	0	0	0	0	0	0	0	7.45	409.16
Jun-23	11,574.89	0	0	11,211	0	0	0	0	0	2.38	0	14.69	346.82
Jul-23	50,595.49	0	0	50,307	0	0	0	0	0	0	0	25.54	262.95
Aug-23	63,178.52	0	0	63,076	0	0	0	0	0	0	0	30.77	71.75
Sep-23	42,709.75	0	0	42,676	0	0	0	0	0	0	0	33.38	0
Total	225,677.21	0.00	0.00	223,396.37	0.00	0.00	0.00	0.00	0.00	22.69	0.00	162.49	2,095.66

Note:

- The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix J Joint Environmental Site Inspection Records

(Construction Phase)

Inspection Date:	04 September 2023	Inspected By:	Jason Man				
Time:	14:00	Weather Condition:	Fine				
Participants:	Sylvia Ho (ER), Matt Choy (Contractor), Jason Man (ET)						

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is <u>open burning</u> avoided?		\boxtimes		
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
В3	Any remedial action undertaken?	\boxtimes			N/A
B4	Are the <u>worksites</u> wetted with water regularly?			\boxtimes	Observation 2
B5	Are NRMM labels properly affixed on the PMEs?			\boxtimes	Refer to 28 Aug 2023 Observation 4
B6	Observed dust source(s)				
		☐ Wind eros	sion		
		Vehicle/ E	quipment	Moveme	nts
		Loading/ u	unloading	of materia	als
		Others:			<u> </u>
Air Po	ollution Control (Construction Dust) Regulation				
Part I	Control Requirements for Notifiable Works				
Demo	olition of building				
В7	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities?	\boxtimes			N/A
Cons	truction of the superstructure of a building				
B8	Is <u>scaffolding</u> erected around the perimeter of a building under construction?	\boxtimes			N/A

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A
Part I	Il General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure				
	water jet provided at all site exits if practicable?				
B12	Are the areas of washing facilities and the road				
	section between the washing facilities and the				
	exit point paved with concrete, bituminous materials		\boxtimes		
	or hardcores?				
B13	Are the hoarding ≥ 2.4m tall provided at the site				
	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?				
Asses	ss road	1			
B14	Are every main haul road (having a vehicle passing				
5	rate of higher than 4 in any 30 minutes) paved with				
	concrete, bituminous materials, hardcorres or metal		\boxtimes		
	plates, and kept clear of dusty materials?				
B15	Are every <u>main haul road</u> sprayed with water or a				
2.0	dust suppression chemical?		\boxtimes		
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?				
B18	Is <u>unpaved main haul road</u> wet by water spraying?				Refer to 31 Jul 2023
				\boxtimes	Observation 3
		_	_		01 1: 0
					Observation 2
Ceme	nt and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (PFA) covered entirely by	\boxtimes			N/A
	impervious sheeting or placed in an area sheltered				14//
	on the top and 3 sides?				
B20	Are the <u>activities of loading, unloading, transfer,</u>			_	
	handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	<u>carried</u> out in a totally enclosed system or facility?				
B21	Is any vent or exhaust fitted with an effective fabric	\boxtimes			N/A
	filter or equipment air pollution control system?				14// (
Expo	sed earth				
B22	Is the exposed earth properly treated by				
=	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer	\boxtimes			N/A
	within 6 months after last construction activity on the	تت			
	construction site or part of the construction site				
	where the exposed earth lies?				

Part I	Part IV Control Requirements for Individual Activities						
Stock	piling of dusty materials						
B23	Are the stockpiling of dusty materials (a) covered entirely by <u>impervious sheeting</u> or (b) placed in an <u>area sheltered on the top and the</u> 3 sides or (c) <u>sprayed with water</u> or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the <u>excavation or unloading</u> ?			\boxtimes	Refer to 28 Aug 2023 Observation 5		
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes				
Load	ng, unloading or transfer of dusty materials						
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes				
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes				
Use c	<u>Use of vehicles</u>						
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes				
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes				
B29	Are site vehicle movements confined to designated roads?		\boxtimes				
Pneu	matic or power-driven drilling, cutting and polishing	1					
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>	\boxtimes			N/A		
Debri	s handling						
B31	Are any debris covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the 3 sides?	\boxtimes			N/A		
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A		
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris</u> is <u>dumped</u> into a debris chute?	\boxtimes			N/A		

Environmental Site Inspection Checklist (Rev. 3)

Exca	vation or earth moving		
B34	Are the working area of any excavation or earth moving operation <u>sprayed with water</u> or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
Site o	<u>clearance</u>		
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes	
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?	\boxtimes	

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the <u>hoarding</u> maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		Construction activities inside of site				
		Construction activities outside of site				
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?	\boxtimes			N/O
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?				Refer to 24 Jul 2023 Observation 2 Refer to 31 Jul 2023 Observation 1
					Refer to 21 August 2023 Observation 1 Refer to 28 Aug 2023
					Observation 7
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?	\boxtimes			N/A
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?			\boxtimes	Refer to 31 Jul 2023 Observation 1
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?	\boxtimes			N/O
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?	\boxtimes			N/A
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?	\boxtimes			N/A
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?				To be treated with shotcrete at part of slope surface.
				\boxtimes	Refer to 10 Jul 2023 Observation 5
					Refer to 28 Aug 2023 Observation 1
					Observation 3
D5a	Have the overall slope of the site should be kept a minimum?	\boxtimes			N/A
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?	\boxtimes			N/A
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		

D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and				
	<u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and		\boxtimes		
	particularly following rainstorms?				
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to 28 Aug 2023 Observation 6
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be				
	dug and backfilled in short sections?		\boxtimes		
	Is rainwater pumped out from trenches discharged				
D7b	into storm drains via silt system?		\boxtimes		
D8	Are open stockpiles of construction materials e.g.				
	aggregates and sand of more than 50m³ on site	\boxtimes			N/O
	covered with tarpaulin or similar fabric during				N/O
	rainstorms?				
D9a	Are manholes adequately covered and temporarily				
	sealed so as to prevent silt, construction materials or	\boxtimes			N/O
	debris from getting into the drainage?				
DOF	Are the <u>discharges</u> of <u>surface run-off</u> into foul		\boxtimes		
D9b	sewer always prevented?				
D10a	Are particular attention paid to the control of silty			\boxtimes	Refer to 28 Aug 2023
Diva	<pre>surface runoff during storm event?</pre>				Observation 3, 6 & 7
	Are the precautions to be taken at any time of year				
	when rainstorms are likely? (Appendix A2 of				
	ProPECC PN 1/94)				
	i. Silt removal facilities, channels and manholes				
	should be maintained and the deposited silt and				
	grit should be removed regularly.				
	ii. Temporarily exposed slope surfaces should be				
	cover by tarpaulin.				
D10b	iii. <u>Temporary access roads</u> should be protected by			\boxtimes	Refer to 28 Aug 2023
	crushed stone or gravel.		_		Observation 3, 6 & 7
	-				
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent				
	storm runoff from washing across exposed soil				
	surfaces.				
	 Trenches should be dug and backfilled in short sections. Measures should be taken to minimize 				
	the ingress of rainwater into trenches. Are the actions to be taken when a rainstorm is				
D10c	imminent or forecast? (Appendix A2 of ProPECC				
	PN 1/94)				
	,				
	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they 				Refer to 28 Aug 2023
	can function properly.			\boxtimes	Observation 3, 6 & 7
	ii. Open stockpiles of construction materials				
	(e.g. aggregates, sand and fill materials) on site				
	should be covered with tarpaulin or similar fabric.				
	iii. All temporary covers to slopes and stockpiles should be secured.				
	Are the actions to be taken <u>during</u> or <u>after</u>				
D10d	rainstorms? (Appendix A2 of ProPECC PN 1/94)				
	i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be checked and maintained to ensure	Ш	\boxtimes		
	satisfactory working conditions. Attention should				
	be given to safety when carrying out this work.				

D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes		
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes		
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes		
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?	\boxtimes			N/O
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes		
D11f	Is the treated wastewater reused for <u>vehicle</u> washing, dust suppression and general cleaning?		\boxtimes		
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes			N/A
D12b	Are the oil interceptors are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a <u>bypass</u> provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?	\boxtimes			N/O
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O

D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O				
Surfa	Surface Water Drainage System								
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes						
D22b	Does the system consist of <u>channel</u> as constructed around the perimeter of the site area?		\boxtimes						
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes						
D22d	Is the <u>erosion</u> minimised?		\boxtimes						
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?		\boxtimes						
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes						

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Gener	ral Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?			\boxtimes	Observation 1
E2c	Is <u>waste disposed</u> regularly?			\boxtimes	Observation 1
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D	<u>Materials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
Е7а	Are the temporary stockpiles maintained regularly?		\boxtimes		
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?				Refer to 10 Jul 2023 Observation 5
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes		

E11	proper waste ma	of <u>site personnel</u> for cleanliness, anagement procedures including andling, and waste reduction, reuse		\boxtimes		
		cept implemented?				
E12		r cleaning and maintenance				
	interceptors?	drainage systems, sumps, oil				
E13a	Are <u>wood</u> , <u>steel</u> a use and/or recyclin	nd other metals separated for reng?				
E13b	Do the excavated	materials appear contaminated?			\boxtimes	
E13c	If suspected conta followed?	minated, appropriate <u>procedures</u>	\boxtimes			N/A
E14	sensitive locations	<u>C&D materials</u> avoided onto any e.g. agricultural lands etc.?		\boxtimes		
E15	stored in differen	and C&D waste segregated and t containers or skips to enhance g of materials and their proper				
Chemi	ical Waste / Waste	Oil				
E16	Are <u>chemicals</u> ar properly?	nd waste oil recycled or disposed			\boxtimes	Refer to 21 August 2023 Observation 5
Chemi	cal Packaging					
E17a	specification has b	ers a capacity of <450 L unless the peen approved by EPD?	\boxtimes			N/A
E17b	maintained in a go	<u>rs</u> (holding, resistant to corrosion, and securely closed)	\boxtimes			N/A
01		of chemical wastes?				
	ical Labelling					
E18		or waste oil <u>stored</u> and <u>labelled</u> in <u>lese</u> properly in designated area? Dimensions of Label No less than 90 x 100mm No less than 120 x 150mm No less than 180 x 200mm				
Chemi	ical Waste / Fuel S	torage Area				
E19a	Are the storage separated (if need	area are clearly labelled and ed)?		\boxtimes		
E19b	fence of ≥2m tall	area enclosed 3 sides by walls/ and bounded with adequate bund of largest container) or do the	\boxtimes			N/O
		storage of 20% of total volume				14/
E19c	and be covered reduce heat from s		\boxtimes			N/O
E19d	provided with locks	s and sited on sealed areas?	\boxtimes			N/O
E20		te collected by <u>licensed waste</u> sposed of at <u>licensed facility</u> eg. reatment Centre?		\boxtimes		

Reco	<u>rds</u>		
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?	\boxtimes	
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?	\boxtimes	
E23	For the demolition material / waste, is the <u>number of</u> loads for each day recorded as appropriate?	\boxtimes	

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo
Withir	n NENT Landfill Extension				
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes		
F3	Is no smoking or burning permitted on-site?	\boxtimes			N/O
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes		
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes		
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes		
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes		
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			N/A
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> inside trenches deeper than 1m?	\boxtimes			N/A
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works? *LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		\boxtimes		
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?				

(Construction Phase)

F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.	\boxtimes	
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases:		
	•CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified		
F17b	person. Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?		
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and • Periodically throughout the working day whilst workers are in excavation.		
F19	 For excavations 300mm to 1m, are measurements conducted? Directly after excavation has been completed; and Periodic all whilst excavation remains open. 	\boxtimes	
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?	\boxtimes	

G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes		
Advar	nced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes		
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Temp	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover ?		\boxtimes		
Existi	ng tree preservation				
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
ı	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

- 1. 24 July 2023 Observation 2 The earth bunds at Portion A were constructed by contractor.
- 2. 31 July 2023 Observation 1 The earth bunds at Portion A were constructed by contractor.
- 3. 21 August 2023 Observation 1 The sandbag barriers and the trench were established by contractor.
- 4. 21 August 2023 Observation 4 The slope protection at Portion E4 was conducted by contractor.
- 5. 28 August 2023 Observation 1 The slope protection at Portion A & E4 was implemented by contractor.
- 28 August 2023 Observation 3 The accumulated sand on the outlet tray of silt removal facility in Portion A was cleared off by contractor.
- 7. 28 August 2023 Observation 4 The drip tray was provided for the air compressor in Portion A.
- 8. 28 August 2023 Observation 6 The accumulated silt in the sedimentation basin at Portion E4 as cleared off by contractor.
- 9. 28 August 2023 Observation 7 The earth bunds at the outlet of branch from Portion E4 was established and the channel at Portion E4 was paved by contractor.
- 10. 4 September 2023 Observation 1 The accumulated waste at Portion D was collected by approved waste collector.

Observation(s):

- 1. Over loading of accumulated waste is found at the waste skip of Portion D.
- Dust drift is found at the assess road of Portion A when vehicle moving.
- 3. The exposed slope surfaces at Portion B2 are not covered by impervious sheets.

Reminder(s):

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- 1. The contractor has been recommended to increase the frequency of waste collection and the amount of waste skip to avoid over loading condition of waste skip at Portion D.
- 2. The contractor has been advised to increase the frequency of water spraying at the assess road of Portion A.
- 3. The contractor has been recommended to cover the exposed slope surfaces at Portion B2 by impervious sheet.

(Construction Phase)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:			7	Ho.
Name:	Jason Man	1	Matt Choy/Kristy Wong	Sylvia Ho
Date:	4 September 2023	1	4 September 2023	4 September 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

10 July 2023 Observation 5

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

Follow-up status

The exposed slopes were covered with impervious sheets temproraly at the left side of Portion E3-1.

Waiting for Contractor's Input (Right side slope at Porttion E3-1)

24 July 2023 Observation 2

Earth bund shall be constructed at the edge of the slope to prevent surface runoff flowing outside the site in Portion A. The Contractor was recommended to construction earth bund along the edge of the slope in Portion A.

The earth bunds at Portion A were econstructed by contractor.

31 July 2023 Observation 1

Earth bunds and ditches should be established at the boundary of the +52 mpd Platform of the Portion A. The contractor has been advised that the earth bunds and ditches should be constructed at the boundary of the +52 mpd Platform of the Portion A. The sandbags barriers or other control of surface runoff measures should be provided at the boundary in short term to avoid the surface runoff flow to the earth bunds at the boundary of the +38 mpd platform directly.

Follow-up status

The earth bunds at Portion A were econstructed by contractor.

31 July 2023 Observation 3

The assess road at the Portion E4 was dry. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.

Waiting for Contractor' Input

14 August 2023 Observation 6:

The accumulated silt in the sedimentation basin at Portion E3 should be regularly removed, especially before and after rainstorm.

Follow-up status

Lower part of the sedimentation basin: Waiting for Contractor's Input

The Contractor arranged silt removal work on the upper part of the sedimentation basin.

14 August 2023 Observation 8:

The untreated wastewater was leaked into the channel at Portion E3. The channel should be kept away from untreated wastewater and general waste.

The silt along and inside the existing channel has been removed and the Contractor has placed sandbag barriers to seal the leakage points. The Contractor has been recommended to construct paved earth bund along the existing channel to prevent the leakage from happening again.

21 August 2023 Observation 1:

The edge of site boundary should be properly sealed to prevent leakage of surface runoff flowing out of the site.

The sandbag barriers and the trench were established by contractor.

21 August 2023 Observation 4:

Implementation of slope protection should be enhanced at Portion E4.

The slope protection at Portion E4 was conducted by contractor.

21 August 2023 Observation 5:

Chemical containers should be placed within the drip trays in Portion E4.

Waiting for Contractor's Input

28 August 2023 Observation 1:

Portion A

Portion B2

Follow-up status

Portion A

Portion E4

The slope protection at Portion A & E4 was implemented by contractor.

Portion B2

Waiting for contractor input

Observation and Recommendation Follow-up status Portion E4 The slope protection measures should be enhanced in Portion A, B2 and E4 prior the rainfall and the tropical cyclone. The Contractor should cover the exposed slope with the impervious sheet as temporary measure or pave slope surface for long term. 28 August 2023 Observation 2: Waiting for contractor input

NRMM label should be fixated on the generator in Portion A.

28 August 2023 Observation 3:

Accumulated sand on the outlet tray of the silt removal facility in Portion A should be regularly cleared off. Dusts are observed at the surface of the wastewater.

Follow-up status

The accumulated sand on the outlet tray of silt removal facility in Portion A was cleared off by contractor.

28 August 2023 Observation 4:

Drip tray should be provided for the air compressor in Portion A.

The drip tray was provided for the air compressor in Portion A.

Dusty stickplies should be covered with impervious sheet prior rainfall and tropical cyclone.

28 August 2023 Observation 6:

Accumulated silt in the sedimentation basin should be cleared off regularly and prior rainfall and tropical cyclone.

Follow-up status

The accumulated silt in the sedimentation basin at Portion E4 as cleared off by contractor.

28 August 2023 Observation 7:

The channel in Portion E4 should be properly paved to ensure accumulated sand or silt can be regularly removed.

The earth bunds at the outlet of branch from Portion E4 was established and the channel at Portion E4 was paved by contractor.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

4 September 2023 Observation 1

Over loading of accumulated waste is found at the waste skip of Portion D.

Follow-up status

The accumulated waste at Portion D was collected by approved waste collector. $\ensuremath{\mathsf{D}}$

4 September 2023 Observation 2

Dust drift is found at the assess road of Portion A when vehicle moving.

Waiting for contractor input

Observation and Recommendation 4 September 2023 Observation 3 Waiting for contractor input The exposed slope surfaces at Portion B2 are not covered by impervious sheets.

PART III Temporary Surface Water Drainage System (TSWDS) Photo Record during the environmental site inspection

Submersible pump at Portion D Bunds at Portion D Bunds at Portion D Existing channel at Portion A Silt removal facilityy at Portion B2 Sediment Basin at SBA

(Construction Phase) Environmental Site Inspection Checklist (Rev. 3)

Inspection Date:	11 September 2023	Inspected By:	Andy Ng			
Time:	14:00	Weather Condition:	Rainy			
Participants:	Kim Tang (ER), Matt Choy (Contractor), Andy Ng (ET)					
_						

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is <u>open burning</u> avoided?		\boxtimes		
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
В3	Any remedial action undertaken?	\boxtimes			N/A
B4	Are the worksites wetted with water regularly?			\boxtimes	Refer to 4 Sep 2023 Observation 2
B5	Are NRMM labels properly affixed on the PMEs?			\boxtimes	Refer to 28 Aug 2023 Observation 4
В6	Observed dust source(s)			•	
		☐ Wind eros	sion		
		Vehicle/ E	quipment	Moveme	nts
		Loading/	unloading	of materi	als
		Others:			<u> </u>
Air Po	ollution Control (Construction Dust) Regulation				
Part I	Control Requirements for Notifiable Works				
Demo	olition of building				
B7	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities?	\boxtimes			N/A
Cons	truction of the superstructure of a building				
B8	Is <u>scaffolding</u> erected around the perimeter of a building under construction?	\boxtimes			N/A

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u>				
	provided to enclose the scaffolding from the ground			_	
	floor level of the building, or a canopy provided from	\boxtimes			N/A
	the first floor level up to the highest level of the				
	scaffolding?				
B10	Is the skip for materials transport enclosed by	\boxtimes			N/A
	impervious sheeting?				
Part I	II General Control Requirements				
Site b	oundary and entrance				
B11	Are wheel washing facilities with high pressure		\boxtimes		
	water jet provided at all site exits if practicable?				
B12	Are the <u>areas of washing facilities</u> and the <u>road</u>				
	section between the washing facilities and the		\boxtimes		
	exit point paved with concrete, bituminous materials				
B13	or hardcores? Are the hoarding ≥ 2.4m tall provided at the site				
ыз	boundary near a road, street, service lane or other		\boxtimes		
	area accessible to the public?				
Asses	ss road				
B14	Are every main haul road (having a vehicle passing		1		
דום	rate of higher than 4 in any 30 minutes) paved with				
	concrete, bituminous materials, hardcorres or metal		\boxtimes	Ш	
	plates, and kept clear of dusty materials?				
B15	Are every main haul road sprayed with water or a				
	dust suppression chemical?		\boxtimes		
B16	Is the portion of any road leading only to construction				
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes		
	clear of dusty materials?				
B17	Are appropriate speed limit sign displayed?		\boxtimes		
B18	Is unpaved main haul road wet by water spraying?				Refer to 31 Jul 2023
					Observation 3
				\boxtimes	
					Refer to 4 Sep 2023
					Observation 2
Ceme	ent and dry pulverized fuel ash (PFA)				
B19	Is every stock of more than 20 bags of cement or				
	dry pulverized fuel ash (PFA) covered entirely by	\boxtimes	ΙП		N/A
	impervious sheeting or placed in an area sheltered	<u> </u>			·
DOO	on the top and 3 sides?				
B20	Are the <u>activities of loading, unloading, transfer,</u> handing or storage of bulk cement or dry PFA	\boxtimes			N/A
	carried out in a totally enclosed system or facility?				IN/A
B21	Is any vent or exhaust fitted with an effective fabric				
D2 1	filter or equipment air pollution control system?	\boxtimes			N/A
Expo	sed earth				
B22	Is the exposed earth properly treated by				
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,		_	_	
	shotcrete or other suitable surface stabilizer	\boxtimes			N/A
	within 6 months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?		I		

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?			\boxtimes	Refer to 28 Aug 2023 Observation 5	
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes			
Loadi	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use o	of vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site vehicle movements confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other <u>mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>				N/A	
Debri	s handling					
B31	Are any debris covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the 3 sides?	×			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris</u> is <u>dumped</u> into a debris chute?	\boxtimes			N/A	

Exca	Excavation or earth moving						
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
Site o	<u>elearance</u>						
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes				

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby NSRs ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing <u>operation</u> of <u>construction plants</u> where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are compressor operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		Construction activities inside of site				
		Construction activities outside of site				
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?	\boxtimes			N/O
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?			\boxtimes	Refer to 24 Jul 2023 Observation 2 Refer to 31 Jul 2023 Observation 1 Refer to 21 August 2023 Observation 1 Refer to 28 Aug 2023 Observation 7
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?	\boxtimes			N/A
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?			\boxtimes	Refer to 31 Jul 2023 Observation 1
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?	\boxtimes			N/O
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?	\boxtimes			N/A
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?	\boxtimes			N/A
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	To be treated with shotcrete at part of slope surface. Refer to 10 Jul 2023 Observation 5 Refer to 28 Aug 2023 Observation 1 Refer to 4 Sep 2023 Observation 3
D5a	Have the overall slope of the site should be kept a minimum?	\boxtimes			N/A
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?	\boxtimes			N/A
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		

(Construction Phase)

D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and				
	<u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to 28 Aug 2023 Observation 6
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from <u>trenches</u> discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m ³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/O
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?	\boxtimes			N/O
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes		
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?			\boxtimes	Refer to 28 Aug 2023 Observation 3, 6 & 7 Refer to Observation 1 and Reminder 1
D10b	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly. ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel. iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.				Refer to 28 Aug 2023 Observation 3, 6 & 7 Refer to Reminder 1
D10c	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured.			\boxtimes	Refer to 28 Aug 2023 Observation 3, 6 & 7 Refer to Observation 2 and Reminder 1
D10d	Are the actions to be taken <u>during</u> or <u>after</u> <u>rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be checked and maintained to ensure			\boxtimes	Refer to Reminder 1

	satisfactory working conditions. Attention should be given to safety when carrying out this work.				
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes		
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes		
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes		
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?	\boxtimes			N/O
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes		
D11f	Is the treated wastewater reused for <u>vehicle</u> washing, <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes		
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes			N/A
D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a <u>bypass</u> provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?	\boxtimes			N/O
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the service workshop and maintenance				
	<u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O

D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O		
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O		
Surface Water Drainage System							
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes				
D22b	Does the system consist of <u>channel</u> as constructed around the perimeter of the site area?		\boxtimes				
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes				
D22d	Is the <u>erosion</u> minimised?		\boxtimes				
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?			\boxtimes	Refer to Observation 3		
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes				

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo		
Waste	Waste Management						
Gener	al Waste						
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes				
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes				
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?			\boxtimes	Refer to 4 Sep 2023 Observation 1		
E2c	Is <u>waste disposed</u> regularly?			\boxtimes	Refer to 4 Sep 2023 Observation 1		
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes				
E3	Burning of refuse on construction site prohibited?		\boxtimes				
C&D	<u>Materials</u>						
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes				
E4b	Are the C&D materials sorted and recycled on-site?		\boxtimes				
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes				
E5b	Do the wooden hoardings avoid to be used?		\boxtimes				
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes				
E6a	Are the concrete and masonry used as general fill ?		\boxtimes				
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes				
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes				
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes				
E7a	Are the temporary stockpiles maintained regularly?		\boxtimes				
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes				
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?			\boxtimes	Refer to 10 Jul 2023 Observation 5		
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes				
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes				
E9	Is						

E11	Are the training of site person	nnel for cleanliness,				
	proper waste management p					
	chemical waste handling, and w	•		\boxtimes		
	and recycling concept impleme					
E12	Are the regular cleaning					
	<pre>programme for drainage s interceptors?</pre>				\boxtimes	
E13a	Are <u>wood</u> , <u>steel</u> and <u>other me</u> use and/or recycling?	tals separated for re-		\boxtimes		
E13b	Do the excavated materials ap	opear contaminated?			\boxtimes	
E13c	If suspected contaminated, app	propriate <u>procedures</u>	\boxtimes			N/A
	followed?					. 47.1
E14	Is the <u>disposal</u> of <u>C&D materi</u> sensitive locations e.g. agricultu	ural lands etc.?		\boxtimes		
E15	Are the public fill and C&D wa					
	<u>stored</u> in different containers reuse or recycling of materia disposal?	· · · · · · · · · · · · · · · · · · ·		\boxtimes		
Chemi	cal Waste / Waste Oil					
E16	Are chemicals and waste oil	recycled or disposed	П			Refer to 21 August
	properly?	•			\boxtimes	2023 Observation 5
	cal Packaging					
E17a	Have the containers a capacity specification has been approve		\boxtimes			N/A
E17b	Are the containers (holding, r					
	maintained in a good condition, and securely closed) used for storage of chemical wastes ?		\boxtimes			N/A
		<u>wasies</u> :				
Chemi	cal Labelling					
E18	Is chemical waste or waste oil s					
	English and Chinese properly	•				
	Capacity of Dimensions	of Label				
	Container					
	< 50L No less that	n 90 x 100mm		\boxtimes		
	50 to 450L No less that	n 120 x 150mm				
	> 450L No less that	n 180 x 200mm				
Chemi	cal Waste / Fuel Storage Area					
		alaanki lahallad asal		I	Π	
E19a	Are the storage area are separated (if needed)?	clearly labelled and		\boxtimes		
E19b	Are the storage area enclose	d 2 sides by wells/				
E 190	fence of ≥2m tall and bounded					
	capacity (>110% of largest of	•	\bowtie			N/O
	storage area allow storage of	*				14/0
	of waste?	20/0 Of total volume				
E19c	Do the storage areas have a	adequate ventilation				
2.00	and be covered to prevent		\boxtimes			N/O
	reduce heat from sunlight?	g and	<u> </u>			
E19d	Are the <u>fuel tanks</u> and <u>cher</u>	nical storage areas				
	provided with locks and sited or					N/O
E20	Is chemical waste collected					
	collectors and disposed of at	•		\boxtimes		
	Chemical Waste Treatment Ce	ntre?				

Reco	<u>Records</u>						
E21	Is a licensed waste hauler used for waste collection?		\boxtimes				
E22	Are the <u>records of quantities of wastes</u> generated,						
	recycled and disposed properly kept?						
E23	For the demolition material / waste, is the number of		∇				
	loads for each day recorded as appropriate?						

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo			
Within NENT Landfill Extension								
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O			
F2	Are <u>prominent safety warning signs</u> erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes					
F3	Is no smoking or burning permitted on-site?	\boxtimes			N/O			
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O			
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes					
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes					
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes					
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O			
F9	Is 'Permit to Work' system implemented?		\boxtimes					
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes					
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A			
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A			
F11c	Is <u>forced ventilation</u> implemented prior to operation of installed pipeline?	\boxtimes			N/A			
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> <u>inside trenches deeper than 1m</u> ?	\boxtimes			N/A			
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works? *LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		\boxtimes					
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?		\boxtimes					

F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site?	\boxtimes	
	*Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.		
F15a	Are <u>LFG precautionary measures</u> involved in <u>excavation</u> and <u>piping works</u> provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an		
	intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment?		
	*The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and • Periodically throughout the working day whilst workers are in excavation.		
F19	 For excavations 300mm to 1m, are measurements conducted? Directly after excavation has been completed; and Periodic all whilst excavation remains open. 		
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?	\boxtimes	

G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes		
Advar	nced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes		
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Temp	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover ?		\boxtimes		
Existi	ng tree preservation				
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
				•	
1	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Report No. <u>0067-20230911</u>

Follow up action for previous Site Inspection:

- 1. 24 July 2023 Observation 2 The earth bunds at Portion A were constructed by contractor.
- 2. 31 July 2023 Observation 1 The earth bunds at Portion A were constructed by contractor.
- 3. 21 August 2023 Observation 1 The sandbag barriers and the trench were established by contractor.
- 4. 21 August 2023 Observation 4 The slope protection at Portion E4 was conducted by contractor.
- 5. 28 August 2023 Observation 1 The slope protection at Portion A & E4 was implemented by contractor.
- 6. 28 August 2023 Observation 3 The accumulated sand on the outlet tray of silt removal facility in Portion A was cleared off by contractor.
- 7. 28 August 2023 Observation 4 The drip tray was provided for the air compressor in Portion A.
- 8. 28 August 2023 Observation 6 The accumulated silt in the sedimentation basin at Portion E4 as cleared off by contractor.
- 9. 28 August 2023 Observation 7 The earth bunds at the outlet of branch from Portion E4 was established and the channel at Portion E4 was paved by contractor.
- 10. 4 September 2023 Observation 1 The accumulated waste at Portion D was collected by approved waste collector.

Observation(s):

- Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3. The Contractor should review the effectiveness of setting up sandbag barriers and modify measures to prevent the discharge of surface runoff in both short term and long term.
- 2. The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast.
- 3. The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken.

Reminder(s):

1. The Contractor has been reminded to review the condition of silt removal facilities and channels to ensure they are functioning properly when the rainfall is forecast in the coming days.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- The Contractor has been advised to stop the discharge of surface runoff to channel immediately by using any mitigation measures they found appropriate. In long term, the Contractor has been recommended to construct earth bund along the channel to prevent this situation happening again.
- The Contractor has been advised to cover the stockpiles with impervious sheet when they are idle.
- The broken or collapsed silt fence should be replaced and properly set up after the heavy rainfall from last week.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		/	2	Ho.
Name:	Hason-Man-	1	Matt Choy/Kristy Wong	Sylvia Ho
Date:	11 September 2023	1	11 September 2023	11 September 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

10 July 2023 Observation 5

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

Follow-up status

The exposed slopes were covered with impervious sheets temproraly at the left side of Portion E3-1.

Waiting for Contractor's Input (Right side slope at Porttion E3-1)

31 July 2023 Observation 3

The assess road at the Portion E4 was dry. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.

Waiting for Contractor' Input

Observation and Recommendation	Follow-up status
21 August 2023 Observation 5: Chemical containers should be placed within the drip trays in Portion E4.	Waiting for Contractor's Input
28 August 2023 Observation 1: Portion B2	
The slope protection measures should be enhanced in Portion A, B2 and E4 prior the rainfall and the tropical cyclone. The Contractor should cover the exposed slope with the impervious sheet as temporary measure or pave slope surface for long term.	Portion B2 Waiting for contractor input

(Construction Phase) Observation and Recommendation Follow-up status 28 August 2023 Observation 2: Waiting for contractor input NRMM label should be fixated on the generator in Portion A. 28 August 2023 Observation 5:

Dusty stickpiles should be covered with impervious sheet prior rainfall and tropical cyclone.

Waiting for contractor input

impervious sheets.

Observation and Recommendation Follow-up status 4 September 2023 Observation 2 Waiting for contractor input Dust drift is found at the assess road of Portion A when vehicle moving. 4 September 2023 Observation 3 Waiting for contractor input The exposed slope surfaces at Portion B2 are not covered by

Follow-up status

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

Observation 1:

Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3. The Contractor should review the effectiveness of setting up sandbag barriers and modify measures to prevent the discharge of surface runoff in both short term and long term.

Observation and Recommendation

Observation 2:

The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast.

Observation 3:

The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken.

PART III Temporary Surface Water Drainage System (TSWDS) Photo Record during the environmental site inspection

Environmental Site Inspection Checklist (Rev. 3)

Inspection Date:	18 September 2023	Inspected By:	Andy Ng, Jason Man				
Time:	14:00	Weather Condition:	Sunny				
Participants:	Sylvia Ho (ER), Matt Choy (Contractor), Kristy Wong (Contractor), Andy Ng (ET), Jason Man (ET) Echo Hung (IEC)						

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		
А3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is <u>open burning</u> avoided?		\boxtimes		
B2	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
ВЗ	Any remedial action undertaken?	\boxtimes			N/A
B4	Are the <u>worksites</u> wetted with water regularly?			\boxtimes	Refer to 4 Sep 2023 Observation 2
B5	Are NRMM labels properly affixed on the PMEs?			\boxtimes	Refer to 28 Aug 2023 Observation 2
B6	Observed dust source(s)				
		☐ Wind eros	sion		
		Vehicle/ E	quipment	Moveme	nts
		Loading/	unloading	of materia	als
		Others:			<u> </u>
Air Po	ollution Control (Construction Dust) Regulation				
Part I	Control Requirements for Notifiable Works				
Demo	olition of building				
B7	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities?	\boxtimes			N/A
Cons	truction of the superstructure of a building				
B8	Is <u>scaffolding</u> erected around the perimeter of a building under construction?	\boxtimes			N/A
					· · · · · · · · · · · · · · · · · · ·

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground					
	floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes			N/A	
B10	Is the <u>skip</u> for materials transport enclosed by <u>impervious sheeting</u> ?	\boxtimes			N/A	
Part II	I General Control Requirements					
Site b	oundary and entrance					
B11	Are wheel washing facilities with high pressure		\boxtimes	ПП		
	water jet provided at all site exits if practicable?					
B12	Are the <u>areas of washing facilities</u> and the <u>road</u>					
	section between the washing facilities and the			\boxtimes	Refer to	
	<u>exit point</u> paved with concrete, bituminous materials or hardcore?				Observation 3	
B13	Are the <u>hoarding</u> ≥ 2.4m tall provided at the site			l —		
	boundary near a road, street, service lane or other area accessible to the public?					
Δεερ	as road					
B14	Are every main haul road (having a vehicle passing		T	Ι		
D14	rate of higher than 4 in any 30 minutes) paved with	_		_		
	concrete, bituminous materials, hardcore or metal		\boxtimes			
	plates, and kept clear of dusty materials?					
B15	Are every main haul road sprayed with water or a					
	dust suppression chemical?		\boxtimes			
B16	Is the portion of any road leading only to construction					
	site (within 30m of a vehicle entrance or exit) kept		\boxtimes			
D.1-	clear of dusty materials?					
B17	Are appropriate <u>speed limit sign</u> displayed?		\boxtimes			
B18	Is <u>unpaved main haul road</u> wet by water spraying?				Refer to 31 Jul 2023	
					Observation 3	
					Refer to 4 Sep 2023	
					Observation 2	
					Refer to	
					Observation 7	
Cement and dry pulverized fuel ash (PFA)						
B19	Is every stock of more than 20 bags of cement or					
	dry pulverized fuel ash (PFA) covered entirely by			\boxtimes	Refer to	
	impervious sheeting or placed in an area sheltered				Observation 2	
DOO	on the top and 3 sides?					
B20	Are the <u>activities of loading, unloading, transfer,</u> handing or storage of bulk cement or dry PFA	\boxtimes			N/A	
	<u>carried</u> out in a totally enclosed system or facility?				IN/A	
B21	Is any vent or exhaust fitted with an effective fabric					
	filter or equipment air pollution control system?	\boxtimes			N/A	
Expos	Exposed earth					
B22	Is the exposed earth properly treated by					
	compaction, turfing, hydroseeding, vegetation	\boxtimes			N/A	
	planting or sealing with latex, vinyl, bitumen,				IN/A	
	shotcrete or other suitable surface stabilizer					

	within 6 months after last construction activity on the construction site or part of the construction site where the exposed earth lies?					
	·					
Part I	V Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where			\boxtimes	Refer to 28 Aug 2023 Observation 5	
	practicable within 24 hours of the excavation or unloading ?					
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes			
<u>Loadi</u>	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use of vehicles						
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site <u>vehicle movements</u> confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	l				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling</u> , <u>cutting</u> , <u>polishing or other mechanical breaking operations</u> takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.	\boxtimes			N/A	
Debris handling						
B31	Are any debris covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	

North East New Territories (NENT) Landfill Extension (Construction Phase)

Report No. <u>0068-20230918</u>

B33	Are the watering spray or a dust suppression chemical conducted before debris is dumped into a debris chute?	\boxtimes			N/A
-----	---	-------------	--	--	-----

Exca	vation or earth moving			
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
Site o	<u>elearance</u>			
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?	\boxtimes		
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes	Refer to Observation 1

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby NSRs ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing <u>operation</u> of <u>construction plants</u> where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are compressor operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		Construction activities inside of site				
		Construction activities outside of site				
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo			
Const	Construction Runoff							
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?	×			N/O			
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?				Refer to 24 Jul 2023 Observation 2 Refer to 31 Jul 2023			
					Observation 1 Refer to 21 August 2023 Observation 1			
					Refer to 28 Aug 2023 Observation 7			
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?	\boxtimes			N/A			
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?			\boxtimes	Refer to 31 Jul 2023 Observation 1			
D2c	Are the <u>sediment/ silt traps</u> incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes					
D3	Are the <u>retention time for silt/s and traps</u> of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?			\boxtimes	Refer to Observation 6			
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?	\boxtimes			N/A			
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?	\boxtimes			N/A			
D4c	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Shotcrete in progress. Refer to 10 Jul 2023 Observation 5 Refer to 28 Aug 2023			
					Observation 1 Refer to 4 Sep 2023 Observation 3			
D5a	Have the overall slope of the site should be kept a minimum?	\boxtimes			N/A			
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?	\boxtimes			N/A			
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes					

D6b	Are all drainage facilities and erosion and				
200	sediment control structures maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?			\boxtimes	Refer to 28 Aug 2023 Observation 6
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from trenches discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m ³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/O
D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?	\boxtimes			N/O
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes		
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?			\boxtimes	Refer to 28 Aug 2023 Observation 3, 6 & 7
D10b	Are the precautions to be taken at any time of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly. ii. Temporarily exposed slope surfaces should be cover by tarpaulin. iii. Temporary access roads should be protected by crushed stone or gravel. iv. Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. v. Trenches should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.			\boxtimes	Refer to 28 Aug 2023 Observation 3, 6 & 7
D10c	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. <u>All temporary covers to slopes and stockpiles</u> should be secured.			\boxtimes	Refer to 28 Aug 2023 Observation 3, 6 & 7 Refer to 11 Sep 2023 Observation 2
D10d	Are the actions to be taken <u>during</u> or <u>after rainstorms</u> ? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u> should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.		\boxtimes		

D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes		
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes		
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes		
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?	\boxtimes			N/O
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes		
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes		
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes			N/A
D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?	\boxtimes			N/O
D15	Is <u>Intercepting bund</u> or <u>barrier</u> along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the notices posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
Accide	ental Spillage of Chemical (Service workshop and m	aintenance fac	ilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O

D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O			
Surfa	Surface Water Drainage System							
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes					
D22b	Does the system consist of channel as constructed around the perimeter of the site area?		\boxtimes					
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes					
D22d	Is the <u>erosion</u> minimised?		\boxtimes					
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?			\boxtimes	Refer to 11 Sep 2023 Observation 3			
D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?		\boxtimes					

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste	Management				
Gener	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?			\boxtimes	Refer to Observation 4
E2a	Is the general waste collected properly by using the <u>waste separation facilities</u> for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?			\boxtimes	Refer to 4 Sep 2023 Observation 1
E2c	Is waste disposed regularly?			\boxtimes	Refer to 4 Sep 2023 Observation 1
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D N	<u>Materials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the C&D materials sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
E7a	Are the temporary stockpiles maintained regularly?		\boxtimes		
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?			\boxtimes	Refer to 10 Jul 2023 Observation 5
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes		

E11	Are the training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concept implemented?		\boxtimes		
E12	Are the <u>regular cleaning</u> and <u>maintenance</u> <u>programme</u> for drainage systems, sumps, oil interceptors?			\boxtimes	
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?		\boxtimes		
E13b	Do the excavated materials appear contaminated?			\boxtimes	
E13c	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E14	Is the <u>disposal</u> of <u>C&D materials</u> avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E15	Are the <u>public fill</u> and <u>C&D waste segregated</u> and <u>stored</u> in different containers or skips to enhance reuse or recycling of materials and their proper disposal?		\boxtimes		
Chemi	ical Waste / Waste Oil				
E16	Are <u>chemicals</u> and <u>waste oil</u> recycled or disposed properly?			\boxtimes	Refer to 21 August 2023 Observation 5
		_	_		Refer to Observation 5
Chemical Packaging					
E17a	Have the <u>containers</u> a capacity of <u><450 L</u> unless the specification has been approved by EPD?	\boxtimes			N/A
E17b	Are the <u>containers</u> (holding, resistant to corrosion, maintained in a good condition, and securely closed) used for <u>storage of chemical wastes</u> ?	\boxtimes			N/A
Chemi	ical Labelling				
E18	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area? Capacity of Dimensions of Label Container < 50L No less than 90 x 100mm 50 to 450L No less than 120 x 150mm > 450L No less than 180 x 200mm		\boxtimes		
Chemi	ical Waste / Fuel Storage Area				
E19a	Are the <u>storage area</u> are clearly labelled and separated (if needed)?		\boxtimes		
E19b	Are the <u>storage area</u> enclosed <u>3 sides by walls/fence of ≥2m tall</u> and bounded with adequate bund capacity (<u>>110% of largest container</u>) or do the storage area allow <u>storage of 20% of total volume of waste</u> ?	\boxtimes			N/O
E19c	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering and reduce heat from sunlight?	\boxtimes			N/O
E19d	Are the <u>fuel tanks</u> and <u>chemical storage areas</u> provided with locks and sited on sealed areas?	\boxtimes			N/O

E20	Is chemical waste collected by <u>licensed waste</u> <u>collectors</u> and disposed of at <u>licensed facility</u> eg. Chemical Waste Treatment Centre?	\boxtimes	
Recor	<u>ds</u>		
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?	\boxtimes	
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?	\boxtimes	
E23	For the demolition material / waste, is the number of loads for each day recorded as appropriate?	\boxtimes	

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo			
Within	Within NENT Landfill Extension							
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O			
F2	Are <u>prominent safety warning signs</u> erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes					
F3	Is no smoking or burning permitted on-site?	\boxtimes			N/O			
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O			
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes					
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes					
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes					
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O			
F9	Is 'Permit to Work' system implemented?		\boxtimes					
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes					
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A			
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A			
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A			
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> inside trenches deeper than 1m?	\boxtimes			N/A			
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works? *LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		\boxtimes					
F13	For excavation works, Is <u>LFG monitoring</u> conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?		\boxtimes					

F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.	\boxtimes	
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?	\boxtimes	
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?	\boxtimes	
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?	\boxtimes	
F18	For excavations > 1m, are measurements conducted? • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and • Periodically throughout the working day whilst workers are in excavation.		
F19	For excavations 300mm to 1m, are measurements conducted? • Directly after excavation has been completed; and • Periodic all whilst excavation remains open.	\boxtimes	
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?	\boxtimes	

G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes		
Advar	nced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes		
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Temp	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover ?		\boxtimes		
Existi	ng tree preservation				
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
			·		
1	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Report No. 0068-20230918

Follow up action for previous Site Inspection:

- 1. 21 August 2023 Observation 5 The chemical containers were removed by contractor.
- 2. 28 August 2023 Observation 1 & 4 September 2023 Observation 3 The slope surface protection was conducted by contractor at Portion B2.
- 3. 11 September 2023 Observation 1 The Contractor used sandbag barriers to intercept surface runoff entering to the channel, constructed small sump pit to gather surface runoff and pumped out for wastewater treatment.

Observation(s):

- 1. The demolished tree, shrub or vegetation in Portion B2 should be covered with impervious sheets or placed within a shelter.
- 2. The dry PFA in Portion B2 should be covered entirely with impervious sheets.
- 3. The metal plate at the vehicle entrance in Portion B2 should cover unpaved road surface in Portion B2.
- 4. General refuse and non-inert waste should be stored in enclosed bins or compaction unit.
- 5. Empty chemical containers in Portion E3 should be properly stored before the disposal.
- 6. Sediment/ silt traps shall be incorporated in the temporary drainage system to enhance retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions.
- 7. The main haul road in Portion E4 is dry ad dusty.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- The Contractor has been reminded to cover the demolished tree, shrub or vegetation with impervious sheets or placed within a shelter.
- 2. The Contractor has been reminded to cover dry PFA entirely with impervious sheets.
- 3. Vehicle entrance should be paved with concrete, bituminous materials, hardcore or metal plates, and kept clear of dusty materials.
- 4. General waste generated on-site should be stored in enclosed bins or compaction units separately from the construction and chemical wastes.
- 5. The Contractor has been reminded to properly store empty chemical container before disposal.
- 6. The Contractor has been advised to reconstruct the demolished sedimentation basin to act as silt trap and to achieve 5 minutes of retention time under maximum flow condition.
- 7. The Contractor has been advised to schedule watering and recommended to install water sprinklers or mist spray in long term.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		Euro.	2	Ho.
Name:	Jason Man	Echo Hung	Matt Choy/Kristy Wong	Sylvia Ho
Date:	18 September 2023	18 September 2023	18 September 2023	18 September 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

10 July 2023 Observation 5

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

Follow-up status

The exposed slopes were covered with impervious sheets temproraly at the left side of Portion E3-1.

Waiting for Contractor's Input (Right side slope at Porttion E3-1)

31 July 2023 Observation 3

The assess road at the Portion E4 was dry. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.

Waiting for Contractor' Input

Observation and Recommendation

21 August 2023 Observation 5

Chemical containers should be placed within the drip trays in Portion ${\sf F4}$

Follow-up status

The chemical containers were removed by contractor.

28 August 2023 Observation 1:

Portion B2

The slope protection measures should be enhanced in Portion A, B2 and E4 prior the rainfall and the tropical cyclone. The Contractor should cover the exposed slope with the impervious sheet as temporary measure or pave slope surface for long term.

Portion B2

The slope surface protection was conducted by contractor at Portion B2.

Observation and Recommendation Follow-up status 28 August 2023 Observation 2 Waiting for contractor input NRMM label should be fixated on the generator in Portion A. 28 August 2023 Observation 5 Waiting for contractor input Dusty stickpiles should be covered with impervious sheet prior rainfall and tropical cyclone.

Observation and Recommendation

4 September 2023 Observation 2

Dust drift is found at the assess road of Portion A when vehicle

Waiting for contractor input

Follow-up status

4 September 2023 Observation 3

moving.

The exposed slope surfaces at Portion B2 are not covered by impervious sheets.

The slope surface protection was conducted by contractor at Portion B2.

Observation and Recommendation

11 September 2023 Observation 1

Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3. The Contractor should review the effectiveness of setting up sandbag barriers and modify measures to prevent the discharge of surface runoff in both short term and long term.

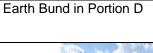
Follow-up status

The Contractor used sandbag barriers to intercept surface runoff entering to the channel, constructed small sump pit to gather surface runoff and pumped out for wastewater treatment.

Observation and Recommendation Follow-up status 11 September 2023 Observation 2 Waiting for contractor input The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast. 11 September 2023 Observation 3 Waiting for contractor input The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken.

PART II Observation and recommendation identified during the environmental site inspection

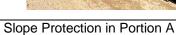
Observation and Recommendation	Follow-up status
Observation 1:	
The demolished tree, shrub or vegetation in Portion B2 should be covered with impervious sheets or placed within a shelter.	
Observation 2:	
The dry PFA in Portion B2 should be covered entirely with impervious sheets.	
Observation 3:	
The metal plate at the vehicle entrance in Portion B2 should cover unpaved road surface.	


Observation and Recommendation	Follow-up status
<u>SBA</u>	
Portion E4	
Observation 4:	
General refuse and non-inert waste should be stored in encolosed bins or compacte unit.	
SRAWI	
Observation 5:	
Empty chemical containers in Portion E3 should be properly stored before the disposal.	

Observation and Recommendation Follow-up status Observation 6: Sediment/ silt traps shall be incorporated in the temproray drainage system to enhance retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions. Observation 7: The main haul road in Portion E4 is dry ad dusty.

PART III Temporary Surface Water Drainage System (TSWDS) Photo Record during the environmental site inspection

Silt Removal Facility and Sedimentation Tank in Portion E3



Slope Protection in Portion A

Silt Removal Facility and Sedimentation Tank in Portion A

Slope Protection and Silt Removal Facility in Portion B2

25 September 2023

Inspection Date:

Environmental Site Inspection Checklist (Rev. 3)

Andy Ng

Time:		14:00 \\	Weather Condition: Sunny				
Partic	ipants:	Kim Tang (ER), Matt Choy (Contracto	or), Kris	sty Wong (Co	ontractor),	Andy Ng	(ET)
Α	Permits/Lic	enses		I/A or Not Observed	Yes	No	Remarks / Photo
A1	displayed at	mental Permit, license/ other perm major site exit and vehicle access?			\boxtimes		
A2		uction Noise Permits/ Environmenta er permit available for inspection/poste nce.			\boxtimes		
A3	Is wastewa	ater discharge licence available fo	or		\boxtimes		
A4	•	ets for chemical waste and constructionsal available for inspection?	on		\boxtimes		
A5		waste or excavated materials available	of ole		\boxtimes		
В	Air Quality			I/A or Not Observed	Yes	No	Remarks / Photo
B1		ning avoided?			\boxtimes		
B2	without black	and equipment well maintained (i.ex smoke from powered plant)?	.e.		\boxtimes		
B3	Any remedia	al action undertaken?		\boxtimes			N/A
B4	-	ksites wetted with water regularly?				\boxtimes	Refer to Observation 1
B5	Are NRMM I	abels properly affixed on the PMEs?			\boxtimes		
B6	Observed du	ust source(s)					
			\(\rangle\)	☑ Wind eros	ion		
			\(\rangle\)	Vehicle/ E	quipment	Moveme	nts
			\triangleright	☑ Loading/ ι	unloading	of materia	als
				Others:			
Air Po	ollution Cont	rol (Construction Dust) Regulation					
Part I	Control Req	uirements for Notifiable Works					
Demo	lition of build	ding					
В7	with water	involved demolition activities spraye or a dust suppression chemica prior to, during and immediately after the	al	\boxtimes			N/A
Cons	truction of th	e superstructure of a building					
B8		ng erected around the perimeter of er construction?	а	\boxtimes			N/A

Inspected By:

B9	Are effective <u>dust screens</u> , <u>sheeting</u> or <u>netting</u> provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding? Is the <u>skip</u> for materials transport enclosed by	\boxtimes			N/A			
БЮ	impervious sheeting?				N/A			
Part I	Il General Control Requirements							
Site b	Site boundary and entrance							
B11	Are <u>wheel washing facilities</u> with <u>high pressure</u> <u>water jet</u> provided at all site exits if practicable?		\boxtimes					
B12	Are the <u>areas of washing facilities</u> and the <u>road</u> <u>section between the washing facilities</u> and the <u>exit point</u> paved with concrete, bituminous materials or hardcore?		\boxtimes					
B13	Are the <u>hoarding</u> ≥ 2.4m tall provided at the site boundary near a road, street, service lane or other area accessible to the public?		\boxtimes					
Asses	ss road							
B14	Are every main haul road (having a vehicle passing rate of higher than 4 in any 30 minutes) paved with concrete, bituminous materials, hardcore or metal plates, and kept clear of dusty materials?		\boxtimes					
B15	Are every <u>main haul road</u> sprayed with water or a dust suppression chemical?		\boxtimes					
B16	Is the portion of any road leading only to construction site (within 30m of a vehicle entrance or exit) kept clear of dusty materials?		\boxtimes					
B17	Are appropriate speed limit sign displayed?		\boxtimes					
B18	Is <u>unpaved main haul road</u> wet by water spraying?			\boxtimes	Refer to Observation 1			
Ceme	ent and dry pulverized fuel ash (PFA)							
B19	Is every stock of more than 20 bags of cement or dry pulverized fuel ash (PFA) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?		\boxtimes					
B20	Are the <u>activities of loading, unloading, transfer,</u> handing or storage of bulk cement or dry PFA <u>carried</u> out in a totally enclosed system or facility?	\boxtimes			N/A			
B21	Is any vent or exhaust fitted with an <u>effective fabric</u> filter or equipment air pollution control system?	\boxtimes			N/A			
Expo	sed earth							
B22	Is the exposed earth properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within 6 months after last construction activity on the construction site or part of the construction site where the exposed earth lies?				N/A			

Part I	Part IV Control Requirements for Individual Activities					
Stock	piling of dusty materials					
B23	Are the stockpiling of dusty materials (a) covered entirely by impervious sheeting or (b) placed in an area sheltered on the top and the 3 sides or (c) sprayed with water or a dust suppression chemical to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?		\boxtimes			
B24	Is the stockpile of dusty materials avoid to be extend beyond the <u>pedestrian barriers</u> , <u>fencing or traffic cones</u> ?		\boxtimes			
Load	ng, unloading or transfer of dusty materials					
B25	Are all dusty materials sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet?		\boxtimes			
B26	Are <u>all trucks loaded</u> to a level within the side and tail boards?		\boxtimes			
Use c	f vehicles					
B27	Are <u>every vehicle washed Immediately</u> to remove any dusty materials from its body and wheels before leaving a construction site?		\boxtimes			
B28	Are <u>loaded dump trucks</u> covered by impervious sheeting appropriately before leaving the site?		\boxtimes			
B29	Are site vehicle movements confined to designated roads?		\boxtimes			
Pneu	matic or power-driven drilling, cutting and polishing	1				
B30	Are <u>surfaces</u> where any <u>pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously? *Unless the process is accompanied by the operation of an effective dust extraction and filtering device.</u>	\boxtimes			N/A	
Debris handling						
B31	Are any debris covered entirely by <u>impervious</u> <u>sheeting</u> or stored in a <u>debris collection area</u> sheltered on the top and the 3 sides?	\boxtimes			N/A	
B32	Are every <u>debris chute</u> shall be enclosed by impervious sheeting or similar materials?	\boxtimes			N/A	
B33	Are the watering spray or a dust suppression chemical conducted before <u>debris</u> is <u>dumped</u> into a debris chute?	\boxtimes			N/A	

Environmental Site Inspection Checklist (Rev. 3)

Excavation or earth moving							
B34	Are the working area of any excavation or earth moving operation sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
Site o	Site clearance						
B35	Are the working area for the <u>uprooting of trees</u> , <u>shrubs</u> , or <u>vegetation</u> or for the <u>removal of boulders</u> , <u>poles</u> , <u>pillars</u> or <u>temporary</u> or <u>permanent structures</u> sprayed with water or a dust suppression chemical immediately before, during and immediately after the operation?		\boxtimes				
B36	Are <u>all demolished items</u> (including <u>trees</u> , <u>shrubs</u> , <u>vegetation</u> , <u>boulders</u> , <u>poles</u> , <u>pillars</u> , <u>structures</u> , <u>debris</u> , <u>rubbish</u> and <u>other items arising from site</u> <u>clearance</u>) that may dislodge dust particles covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides within a day of demolition?		\boxtimes				

С	Construction Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is <u>well-maintained plant</u> operated on-site and plant served regularly?		\boxtimes			
C2	Are <u>vehicles</u> and <u>equipment</u> switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby <u>NSRs</u> ?		\boxtimes			
C4	Are the <u>silencers</u> or <u>mufflers</u> properly fitted on construction equipment and maintained regularly?	\boxtimes			N/O	
C5	Are <u>mobile</u> and/or <u>noisy plant</u> sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are <u>material stockpiles</u> , <u>mobile container officer</u> and <u>other structures</u> utilised to screen noisy activates?		\boxtimes			
C7	Is <u>temporary hoarding</u> installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/O	
C8	Are <u>noise barriers</u> (typically density @14kg/m²) <u>acoustic mat</u> or <u>full enclosure</u> close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/O	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?		\boxtimes			
C11	<u>Air compressors</u> (500 kPa or above) and <u>hand</u> <u>held percussive breaker</u> (mass of above 10 kg) with valid noise labels?		\boxtimes			
C12	Are <u>compressor</u> operated with doors closed?		\boxtimes			
C13	QPME used with valid noise labels?		\boxtimes			
C14	Major noise source(s)					
		⊠ Traffic				
		⊠ Construct	ion activiti	es inside	of site	
		Construction activities outside of site				
		Others:				

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Runoff				
D1a	At the start of site establishment, are perimeter <u>cut-off drains</u> constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?	\boxtimes			N/O
D1b	Are <u>channels</u> , <u>earth bunds</u> or <u>sandbag barriers</u> provided on site to properly direct stormwater to silt removal facilities?		\boxtimes		
D2a	Have <u>dikes</u> or <u>embankments</u> for <u>flood protection</u> implemented around the boundaries of earthwork areas?	\boxtimes			N/A
D2b	Have <u>temporary ditches</u> provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D2c	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D3	Are the retention time for silt/s and traps of the silt removal facilities be <u>5 minutes</u> under maximum flow conditions?				Refer to 18 Sep 2023 Observation 6
D4a	Are <u>surface excavation works</u> minimised during rainy seasons (April to September), as possible?	\boxtimes			N/A
D4b	Are <u>all exposed earth areas</u> completed or vegetated as soon as possible after earthworks completed, or alternatively, <u>within 14 days</u> of the <u>cessation</u> of <u>earthworks</u> where practicable?	\boxtimes			N/A
D4c	Are <u>exposed slope surfaces</u> covered by tarpaulin sheets?			\boxtimes	Shotcrete in progress. Refer to 10 Jul 2023 Observation 5
D5a	Have the overall slope of the site should be kept a minimum?	\boxtimes			N/A
D5b	Are <u>all trafficked areas</u> and <u>access roads</u> protected by coarse stone ballast?	\boxtimes			N/A
D6a	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> inspected regularly?		\boxtimes		
D6b	Are <u>all drainage facilities</u> and <u>erosion</u> and <u>sediment control structures</u> maintained to ensure proper and efficient operation at all times and particularly following rainstorms?		\boxtimes		
D6c	Is the <u>deposited silt</u> and <u>grit</u> removed regularly and disposed of by spreading evenly over stable?		\boxtimes		
D7a	Have the <u>excavation</u> of <u>trenches</u> in wet periods be dug and backfilled in short sections?		\boxtimes		
D7b	Is rainwater pumped out from trenches discharged into storm drains via silt system?		\boxtimes		
D8	Are <u>open stockpiles</u> of <u>construction materials</u> e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes		\boxtimes	N/O
	· · · · · · · · · · · · · · · · · · ·				

(Construction Phase)

D9a	Are <u>manholes</u> adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?	\boxtimes			N/O
D9b	Are the <u>discharges</u> of <u>surface run-off</u> into foul sewer always prevented?		\boxtimes		
D10a	Are particular attention paid to the control of <u>silty</u> <u>surface runoff</u> during <u>storm event</u> ?		\boxtimes		
	Are the precautions to be taken at <u>any time</u> of year when rainstorms are likely? (Appendix A2 of ProPECC PN 1/94) i. <u>Silt removal facilities</u> , <u>channels</u> and <u>manholes</u>				
	should be maintained and the <u>deposited silt</u> and <u>grit</u> should be removed regularly.				
	 ii. <u>Temporarily exposed slope surfaces</u> should be cover by tarpaulin. 	_			Refer to Observation
D10b	iii. <u>Temporary access roads</u> should be protected by crushed stone or gravel.				3 and 4
	iv. <u>Intercepting channels</u> should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.				
	v. <u>Trenches</u> should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.				
	Are the actions to be taken when a <u>rainstorm</u> is <u>imminent</u> or <u>forecas</u> t? (Appendix A2 of ProPECC PN 1/94)				
D10c	 i. <u>Silt removal facilities</u>, <u>channels</u> and <u>manholes</u> should be checked to ensure that they can function properly. ii. <u>Open stockpiles</u> of <u>construction materials</u> 			\boxtimes	Refer to 11 Sep 2023 Observation 2
	(e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric. iii. All temporary covers to slopes and stockpiles should be secured.				
	Are the actions to be taken <u>during</u> or <u>after</u> rainstorms? (Appendix A2 of ProPECC PN 1/94)				
D10d	 Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work. 				
D11a	Are <u>all vehicles</u> and <u>plant</u> cleaned before leaving a construction site?		\boxtimes		
D11b	Is the wheel washing bay provided at every site exit?		\boxtimes		
D11c	Are the <u>vehicle wash-water</u> have sand and silt settled out and removed at least on a weekly basis?		\boxtimes		
D11d	Is the <u>wheel wash</u> overflow directed to silt removal facilities before being discharged to the storm drain?	\boxtimes			N/O
D11e	Is the section of construction road between the wheel washing bay and the public road paved with backfill?		\boxtimes		
D11f	Is the treated wastewater reused for <u>vehicle</u> <u>washing</u> , <u>dust suppression</u> and <u>general cleaning</u> ?		\boxtimes		
D12a	Are <u>oil interceptors</u> provided in the site drainage system downstream of any oil/ fuel pollution sources?	\boxtimes			N/A

(Construction Phase)

D12b	Are the <u>oil interceptors</u> are emptied and cleaned regularly to prevent the release of O&G into the storm water drainage system after accidental spillage?	\boxtimes			N/A
D12c	Has a bypass provided to prevent flushing during heavy rain?		\boxtimes		
D13	Are the <u>construction solid waste</u> , <u>debris</u> and <u>rubbish</u> on site collected, handled and disposed of properly? (same with waste item)		\boxtimes		
D14	Are <u>all fuel tanks</u> and <u>storage areas</u> provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank?	\boxtimes			N/O
D15	Is Intercepting bund or barrier along the roadside constructed to prevent pollution risk arising from work area (waste reception area)?		\boxtimes		
D16	Are <u>site drainage systems</u> provided over the entire project site with sediment control facilities?		\boxtimes		
D17	Are <u>sedimentation tanks</u> provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?				
D18	Is there any sediment plume observed in nearby watercourses?			\boxtimes	
Sewag	e Effluent from Workforce (On-site sanitary facilities	<u>s)</u>			
D19a	Are <u>portable chemical toilets</u> and <u>sewage holding</u> <u>tanks</u> provided?		\boxtimes		
D19b	Is the <u>sewage generated from toilets</u> collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D20	Are the <u>notices</u> posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment?	\boxtimes			N/O
	ental Spillage of Chemical (Service workshop and m	aintenance fac	cilities)		
D21a	Are the <u>service workshop</u> and <u>maintenance</u> <u>facilities</u> located within a bunded area, and sumps and oil interceptors?	\boxtimes			N/O
D21b	Are all <u>maintenance of equipment</u> involving activities with potential for leakage and spillage undertaken within the areas?	\boxtimes			N/O
D21c	Is <u>chemical leakage</u> or <u>spillages</u> contained and cleaned up immediately?	\boxtimes			N/O
Surfac	ce Water Drainage System				
D22a	Is the <u>temporary surface water drainage system</u> provided to manage runoff?		\boxtimes		
D22b	Does the system consist of <u>channel</u> as constructed around the perimeter of the site area?		\boxtimes		
D22c	Does the system collect surface water from the <u>areas</u> of higher elevations to those of <u>lower elevations</u> and ultimately to the discharge point?		\boxtimes		
D22d	Is the <u>erosion</u> minimised?		\boxtimes		
D23a	Does the system include the <u>use of a silt fence</u> around the <u>soil stockpile areas</u> to prevent sediment from entering the system?			\boxtimes	Refer to 11 Sep 2023 Observation 3

North East New Territories (NENT) Landfill Extension	Report No. <u>0069-2023092</u>				
Construction Phase)	Environmental Site Inspection Checklist (Rev				

D23b	Is the regular <u>cleaning</u> carried out to prevent blockage of the passage of waste flow in silt fence?	\boxtimes	
	blockage of the passage of waste flow in silt fence?		

E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Waste Management					
Gener	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2a	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E2b	Does <u>accumulation</u> of <u>waste</u> avoid?		\boxtimes		
E2c	Is <u>waste disposed</u> regularly?		\boxtimes		
E2d	Regular <u>waste collection</u> by approved waste collector in purpose-built vehicles?		\boxtimes		
E3	Burning of refuse on construction site prohibited?		\boxtimes		
C&D I	<u>Materials</u>				
E4a	Are there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?		\boxtimes		
E4b	Are the <u>C&D materials</u> sorted and recycled on-site?		\boxtimes		
E5a	Is the <u>durable formwork</u> or <u>plastic facing</u> for construction works used?		\boxtimes		
E5b	Do the wooden hoardings avoid to be used?		\boxtimes		
E5c	Is <u>metal hoarding</u> used to enhance the possibility of recycling?		\boxtimes		
E6a	Are the concrete and masonry used as general fill ?		\boxtimes		
E6b	Are the <u>steel reinforcement bars</u> used by scrap steel mills?		\boxtimes		
E6c	Is the <u>segregation</u> and <u>storage</u> of C&D wastes undertaken in designated area?		\boxtimes		
E6d	Does the <u>use of reusable steel formwork</u> maximise?		\boxtimes		
Е7а	Are the temporary stockpiles maintained regularly?		\boxtimes		
E7b	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E8a	Are the <u>excavated slope</u> , <u>stockpile material</u> and <u>bund walls</u> covered by tarpaulin?			\boxtimes	Refer to 10 Jul 2023 Observation 5
E8b	Are covering trucks or transporting wastes in enclosed containers when transportation of waste ?		\boxtimes		
E8c	Are <u>waste storage area</u> properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E9	Is <u>hydroseeding</u> of the topsoil on the <u>stockpile</u> implemented to improve visual appearance and prevent soil erosion?		\boxtimes		
E10	Is the <u>nomination</u> of <u>approved personnel</u> to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal implemented?		\boxtimes		

Environmental Site Inspection Checklist (Rev. 3)

E11	Are the <u>training</u> of <u>site personnel</u> for cleanliness,					
	proper waste management procedures including		\boxtimes			
	chemical waste handling, and waste reduction, reuse and recycling concept implemented?					
E12	Are the regular cleaning and maintenance					
[12	programme for drainage systems, sumps, oil					
	interceptors?					
E13a	Are <u>wood</u> , <u>steel</u> and <u>other metals</u> separated for reuse and/or recycling?		\boxtimes			
E13b	Do the excavated materials appear contaminated?					
E13c	If suspected contaminated, appropriate procedures followed?				N/A	
E14	Is the <u>disposal</u> of <u>C&D materials</u> avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes			
E15	Are the <u>public fill</u> and <u>C&D waste segregated</u> and					
	stored in different containers or skips to enhance					
	reuse or recycling of materials and their proper		\boxtimes			
	disposal?					
Chemi	cal Waste / Waste Oil					
E16	Are chemicals and waste oil recycled or disposed				Refer to 18 Sep 2023	
	properly?				Observation 5	
				\boxtimes		
					Refer to	
					Observation 2	
Chemi	cal Packaging					
E17a	Have the containers a capacity of <450 L unless the				N/A	
E 4 31	specification has been approved by EPD?				·	
E17b	Are the <u>containers</u> (holding, resistant to corrosion,				NI/A	
	maintained in a good condition, and securely closed) used for storage of chemical wastes ?				N/A	
	cal Labelling					
E18	Is chemical waste or waste oil <u>stored</u> and <u>labelled</u> in					
	English and Chinese properly in designated area? Capacity of Dimensions of Label					
	Container					
	< 50L No less than 90 x 100mm		\boxtimes			
	50 to 450L No less than 120 x 150mm					
	> 450L No less than 180 x 200mm					
Chamical Wests / Fuel Stavens Aves						
Chemical Waste / Fuel Storage Area						
E19a	Are the <u>storage area</u> are clearly labelled and separated (if needed)?	\boxtimes			N/O	
E19b	Are the <u>storage area</u> enclosed <u>3 sides by walls/</u>					
	fence of ≥2m tall and bounded with adequate bund					
	capacity (>110% of largest container) or do the	\boxtimes			N/O	
	storage area allow storage of 20% of total volume					
	of waste?					
E19c	Do the <u>storage areas</u> have adequate <u>ventilation</u>				N/2	
	and be covered to prevent rainfall entering and				N/O	
E19d	reduce heat from sunlight? Are the <u>fuel tanks</u> and <u>chemical storage areas</u>					
Lisu	provided with locks and sited on sealed areas?	\boxtimes			N/O	

Environmental Site Inspection Checklist (Rev. 3)

E20	Is chemical waste collected by <u>licensed waste</u> <u>collectors</u> and disposed of at <u>licensed facility</u> eg. Chemical Waste Treatment Centre?	\boxtimes	
Recor	<u>ds</u>		
E21	Is a licensed waste hauler used for <u>waste</u> <u>collection</u> ?	\boxtimes	
E22	Are the <u>records of quantities of wastes</u> generated, recycled and disposed properly kept?	\boxtimes	
E23	For the demolition material / waste, is the <u>number of</u> <u>loads</u> for each day recorded as appropriate?	\boxtimes	

F	Landfill Gas (LFG)	N/A or Not Observed	Yes	No	Remarks / Photo	
Within NENT Landfill Extension						
F1	Are <u>special LFG precautions</u> taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			N/O	
F2	Are prominent safety warning signs erected on- site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes			
F3	Is no smoking or burning permitted on-site?	\boxtimes			N/O	
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?	\boxtimes			N/O	
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?		\boxtimes			
F6	Is adequate <u>fire fighting equipment</u> provided on- site?		\boxtimes			
F7	Are <u>construction equipment</u> equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?		\boxtimes			
F8	Are <u>electrical motors</u> and <u>extension cords</u> explosion-proof and intrinsically safe for use onsite?	\boxtimes			N/O	
F9	Is 'Permit to Work' system implemented?		\boxtimes			
F10	Are <u>welding</u> , <u>flame-cutting</u> or <u>other hot works</u> conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes			
F11a	For <u>piping assembly or conduit construction</u> , are all valves and seals closed immediately after installation?	\boxtimes			N/A	
F11b	Are the <u>pipe ends</u> sealed on one side during installation if installation of large diameter pipes (diameter > 600mm) is required?	\boxtimes			N/A	
F11c	Is <u>forced ventilation</u> implemented prior to <u>operation of installed pipeline</u> ?	\boxtimes			N/A	
F11d	Is <u>forced ventilation</u> implemented for <u>works</u> inside trenches deeper than 1m?	\boxtimes			N/A	
F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works? *LFG monitoring in excavations should be conducted at < 10mm from exposed ground surface.		\boxtimes			
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?		\boxtimes			

(Construction Phase)

F14	Are <u>LFG monitoring</u> conducted periodically when any cracks on ground level encountered on-site?		
	*Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.		
F15a	Are <u>LFG precautionary measures</u> involved in <u>excavation</u> and <u>piping works</u> provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		
F15b	Are <u>temporary offices</u> or <u>buildings</u> located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		
F16	Is a <u>Safety Officer trained</u> in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase?		
	*The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be		
	established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?		
F17c	Are all measurements in excavations made with monitoring tube located < 10mm from exposed ground surface?		
F18	 For excavations > 1m, are measurements conducted? At ground surface before excavation commences; Immediately before any worker enters the excavation; At the beginning of each working day for entire period the excavation remains open; and Periodically throughout the working day whilst workers are in excavation. 		
F19	 For excavations 300mm to 1m, are measurements conducted? Directly after excavation has been completed; and Periodic all whilst excavation remains open. 		
F20	For excavations < 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?	\boxtimes	

G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is <u>damage</u> to surrounding areas <u>avoided</u> ?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the <u>tree protection zone</u> of each individual tree?		\boxtimes		
Advar	nced screening tree planting				
G4a	Is early planting using fast growing plants and tall shrubs at <u>strategic locations</u> within site implemented?		\boxtimes		
G4b	Are the roadside planter and shrub planting implemented in front of Cheung Sha Temple ?		\boxtimes		
Bound	dary Green Belt planting				
G5	Are the <u>fast growing</u> and <u>fire-resistant plant</u> <u>species</u> planted around the site perimeter?		\boxtimes		
Temp	orary landscape treatment as green surface cover				
G6	Are grass hydroseeding or synthetic covering material of green colour used as a temporary slope cover ?		\boxtimes		
Existi	ng tree preservation				
G7	Are <u>existing</u> and <u>affected tree</u> which identified as ecological significant preserved whenever possible?		\boxtimes		
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?		\boxtimes		
ı	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Follow up action for previous Site Inspection:

- 1. 31 July 2023 Observation 3 and 18 September 2023 Observation 7 The Contractor arranged watering in Portion E4 to minimize dust dispersion.
- 2. 21 August 2023 Observation 5 The chemical containers were removed by contractor.
- 28 August 2023 Observation 1 & 4 September 2023 Observation 3 The slope surface protection was conducted by contractor at Portion B2.
- 4. 28 August 2023 Observation 2 The NRMM label was fixated on the generator at the Portion A by the contractor.
- 5. 28 August 2023 Observation 5 The dusty stockpile was removed by the contractor.
- 6. 11 September 2023 Observation 1 The Contractor used sandbag barriers to intercept surface runoff entering to the channel, constructed small sump pit to gather surface runoff and pumped out for wastewater treatment.
- 18 September 2023 Observation 1 The demolished tree at Portion B2 was covered with impervious sheets by the contractor.
- 8. 18 September 2023 Observation 2 The dry PFA was removed.
- 9. 18 September 2023 Observation 3 The unpaved road surface at the entrance of Portion B2 was covered with the metal plate by the contractor.
- 10. 18 September 2023 Observation 4 –The accumulated waste at SBA and at and near the enclosed bin of Portion E4 were removed by the contractor.
- 11.25 September 2023 Observation 1 The Contractor arranged watering in Portion E3 and E4 to minimize dust dispersion.
- 12. 25 September 2023 Observation 4 The accumulated sand and silt in the outlet of the silt removal facility at Portion A was removed by the contractor.

Observation(s):

- 1. The main haul road and work site should be wetted regularly to minimize the dust dispersion.
- 2. Chemical spillage is observed at Portion E4 and chemical containers should be placed on the drip tray.
- 3. The exposed slope surface along the channel should be paved to reduce SS level in the wastewater.
- 4. The accumulated sand or silt in the outlet of the silt removal facility at Portion A should be removed.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- The Contractor has been reminded to switch on the water sprinklers along the haul road in SBA and to schedule
 watering for unpaved haul road and work area. The Contractor has been advised to increase the frequency of
 watering if necessary under the hot weather condition to minimize dust dispersion.
- 2. The Contractor has been reminded to dispose chemical waste and provide drip tray for all chemical containers.
- 3. The Contractor has been recommended to shotcrete the exposed slope surface along the channel to reduce SS level in the wastewater.
- 4. The Contractor has been advised to clear the accumulated sand or silt in the outlet of the silt removal facility at Portion A.

Environmental Site Inspection Checklist (Rev. 3)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		1		
Name:	Andy Ng	1	Matt Choy/Kristy Wong	Sylvia Ho
Date:	25 September 2023	1	25 September 2023	25 September 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

10 July 2023 Observation 5

The exposed slope surfaces were not covered by tarpaulin sheets or treated with shotcrete at the Portion E3-1. The contractor has been recommended to implement the cover works of exposed slope surfaces by tarpaulin sheets or shotcrete at the Portion E3-1 to minimise the potential high concentration construction runoff to silt removal facilities.

Follow-up status

The exposed slopes were covered with impervious sheets temproraly at the left side of Portion E3-1.

Waiting for Contractor's Input (Right side slope at Porttion E3-1)

31 July 2023 Observation 3

The assess road at the Portion E4 was dry. The contractor has been advised that the assess road at the Portion E4 should be sprayed with water when the assess road is dry to minimize the dust suppression. The water sprinkler should be considered to establish at the assess road of the Portion E4.

Portion E4

The Contractor arranged watering in Portion E4 to minimize dust dispersion.

21 August 2023 Observation 5

Chemical containers should be placed within the drip trays in Portion F4

Follow-up status

The chemical containers were removed by contractor.

28 August 2023 Observation 1:

Portion B2

The slope protection measures should be enhanced in Portion A, B2 and E4 prior the rainfall and the tropical cyclone. The Contractor should cover the exposed slope with the impervious sheet as temporary measure or pave slope surface for long term.

Portion B2

The slope surface protection was conducted by contractor at Portion B2.

28 August 2023 Observation 2

NRMM label should be fixated on the generator in Portion A.

Follow-up status

The NRMM label was fixated on the generator at the Portion A by the contractor.

28 August 2023 Observation 5

Dusty stickpiles should be covered with impervious sheet prior rainfall and tropical cyclone.

The dusty stockpile was removed by the contractor.

4 September 2023 Observation 2

Dust drift is found at the assess road of Portion A when vehicle moving.

Follow-up status

The water spraying was conducted by the contractor at the assess road of Portion A.

4 September 2023 Observation 3

The slope surface protection was conducted by contractor at Portion B2.

11 September 2023 Observation 1

Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3. The Contractor should review the effectiveness of setting up sandbag barriers and modify measures to prevent the discharge of surface runoff in both short term and long term.

Follow-up status

The Contractor used sandbag barriers to intercept surface runoff entering to the channel, constructed small sump pit to gather surface runoff and pumped out for wastewater treatment.

11 September 2023 Observation 2

The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast.

Waiting for contractor input

Follow-up status

11 September 2023 Observation 3

The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken.

Waiting for contractor input

18 September 2023 Observation 1

The demolished tree, shrub or vegetation in Portion B2 should be covered with impervious sheets or placed within a shelter.

The demolished tree at Portion B2 was covered with impervious sheets by the contractor.

18 September 2023 Observation 2

The dry PFA in Portion B2 should be covered entirely with impervious sheets.

Follow-up status

The dry PFA was removed.

18 September 2023 Observation 3

The metal plate at the vehicle entrance in Portion B2 should cover unpaved road surface.

The unpaved road surface at the entrance of Portion B2 was covered with the metal plate by the contractor

18 September 2023 Observation 4

<u>SBA</u>

Portion E4

General refuse and non-inert waste should be stored in encolosed bins or compacte unit.

Follow-up status

The accumulated waste at SBA was removed by the contractor.

Portion E4

The accumulated waste at and near the enclosed bin of Portion E4 was cleared by the contractor.

18 September 2023 Observation 5

Empty chemical containers in Portion E3 should be properly stored before the disposal.

Waiting for contractor input

18 September 2023 Observation 6 Waiting for contractor input Sediment/ silt traps shall be incorporated in the temproray drainage system to enhance retention time for silt's and traps of the silt removal facilities be 5 minutes under maximum flow conditions.

18 September 2023 Observation 7

Observation 7:

The main haul road in Portion E4 was dry ad dusty.

Portion E4

The Contractor arranged watering in Portion E4 to minimize dust dispersion.

SBA

Waiting for Contractor's Input

Portion E3

The Contractor arranged watering in Portion E3 and E4 to minimize dust dispersion.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

SBA

Portion E4

Follow-up status

Portion E4

The Contractor arranged watering in Portion E4 to minimize dust dispersion.

<u>SBA</u>

Waiting for Contractor's Input

Portion E3

The Contractor arranged watering in Portion E3 and E4 to minimize dust dispersion.

Portion E3

Observation 1.

The main haul road and work site should be wetted regularly to minimize the dust dispersion.

Observation 2.

Chemical spillage is observed at Portion E4 and chemical containers should be placed on the drip tray.

Observation 3

The exposed slope surface along the channel should be paved to reduce SS level in the wastewater.

Observation 4

The accumulated sand or silt in the outlet of the silt removal facility at Portion A should be removed.

The accumulated sand and silt in the outlet of the silt removal facility at Portion A was removed by the contractor.

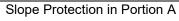
PART III Temporary Surface Water Drainage System (TSWDS) Photo Record during the environmental site inspection

Slope Protection in SBA

Slope Protection in SBA

Sedimentation Basin in SBA

Silt Removal Facility and Sedimentation tank in Portion E4


Silt Removal Facility and Sedimentation tank in Portion E4

Slope Protection in Portion A

Silt Removal Facility in Portion A

Sedimentation Tanks in Portion A

Slope Protection and silt removal facility in Portion B2

Sedimentation basin in Portion E3

Silt Removal Facility and Sedimentation tank in Portion E3

Slope Protection in Portion E3

Appendix K Environmental Mitigation Implementation Schedule (EMIS)

North East New Territories (NENT) Landfill Extension

EIA	EM&A	Weekly	ion Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Ref.	Log Ref.	Site Inspection Item	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	measures	standards for the measures to achieve?	Status
Air Qualit	y							
33.8.1	S3.1.8	B7 – B36	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.	Good construction site practices to control the dust impact at the nearby	Contractor	Entire NENT Landfill Extension site	To control the dust impact to within the criteria of EIA Report (Register No. AEIAR-111/2007)	# (Refer to Appendix J (1) 25 Sep 2023 Weekly site inspection Observation 1)
		B4, B15 & B18	Dust emission from construction vehicle movement is confined within the worksites area.	sensitive receivers to within the relevant			,	✓
		B11 – B12	Watering facilities will be provided at every designated vehicular exit point.	criteria.				✓ Vehicle washing facilities provided at vehicular exit point in Portion A, B1-2, D & E4
		-	Good site practice is recommended during construction phase.					✓
	tion Noise	_						
54	S4.9	C1	Use of good site practices to limit noise emissions by considering the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;	Control construction airborne noise by means of good site	Contractor	Entire construction site	Noise Control Ordinance	√
		C2	(b) Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;	practices				✓
		C3	(c) Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;					✓
		C4	(d) Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;					N/A
		C5	(e) Mobile plant should be sited as far away from NSRs as possible and practicable;					√
		C6	(f) Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities.					√
S4	S4.9	C11 – C13	2) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	Entire construction site	Noise Control Ordinance & its TM Annex 5, TM-EIA	√
Construc	l tion Runoff							
S5.8.1	S5.2.1	D1	Construction on Site Runoff (a) At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. (b) Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.	Control construction runoff and erosion from site surface, drainage channel, stockpiles, wheel	Contractor	Entire Construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	 (a) The perimeter cut-off drains are establishing in progress, related measure will be implemented before or on 31 Oct 2023. (b) ✓
		D2	(a) The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. (b) Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. (c) The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates.	washing facilities, etc to minimize water quality during construction stage				(a) N/A (b) N/A
		D3	The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.					# (Refer to Appendix J (1) 18 Sep 2023 Weekly site inspection Observation 6)
		D4	(a) Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). (b) All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. (c) If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.					 (a) N/A (b) ✓ (c) # (Refer to Appendix J 10 Jul 2023 Weekly site inspection Observation 5)

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

EIA Ref.	EM&A Log Ref	Weekly Site Inspection Item	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Construc	tion Runoff (11122221221			
S5.8.1	S5.2.1	D5	(a) The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. (b) An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather and the reduction of surface sheet flows.	Control construction runoff and erosion from site surface, drainage channel,	Contractor	Entire Construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	(a) N/A (b) N/A
		D6	 (a) All drainage facilities and erosion and sediment control structures should be regularly inspected and (b) maintained to ensure proper and efficient operation at all times and particularly following rainstorms. (c) Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. 	stockpiles, wheel washing facilities, etc to minimize water quality during				(a) ✓ (b) ✓ (c) ✓
		D7	 (a) Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. (b) Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. 	de. silt n3 he ed rm A2 rm				(a) N/A (b) N/A
		D8	Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50 m3 should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.					N/A
		D9	(a) Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as (b) to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.					(a) √ (b) √
		D10	 Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silly surface runoff during storm events, especially for areas located near steep slopes. 					# (Refer to Appendix J (1) 25 Sep 2023 Weekly site inspectio Observation 3 (2) 11 Sep 2023 Weekly site inspectio Observation 2)
		D11	(a) All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. (b) An adequately designed and sited wheel washing bay should be provided at every construction site exit. (c) Wash-water should have sand and silt settled out and removed at least on a weekly basis (d) to ensure the continued efficiency of the process. (e) The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silly water to public roads and drains.					(a) ✓ (b) ✓ (c) ✓ (d) ✓ (c) ✓
		D12						(a) N/A (b) N/A (c) N/A
		D13	 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. Requirements for solid waste management are detailed in Section 6 of this Report. 					✓
		D14	 All fuel tanks and storage areas should be provided with docks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. 					N/A
		D15	To prevent pollution risks arising from works area (waste reception area) and haul roads, intercepting bund or barrier along the roadside should be constructed.					N/A
Remarks:								

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

2

North East New Territories (NENT) Landfill Extension

EIA	EM&A	Weekly	tion Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Ref.	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	Cidido
τοι.	Logittoi	Inspection	(to be implemented when the thigger level to exceeded, where necessary)	Measures & Main	the	mododroo	achieve?	
		Item		Concerns to address	measures?		domeve	
Construct	i tion Runoff (Concerno to address	mododroo.			
5.8.1	S5.2.1	D19	Sewage Effluent from Workforce	Control sewage	Contractor	On-site	ProPECC PN 1/94	✓
0.0.1	00.2.1	5.10	(a) Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage	effluent arising from	Contractor	sanitary	11012001111/04	•
			generated by the workforce. (b) A licensed contractor should be employed to provide appropriate and adequate	the sanitary facilities		facilities	Water Pollution Control	
			portable toilets and be responsible for appropriate disposal and maintenance.	provided for the on-		luomitoo	Ordinance	
		D20	Notices will be posted at conspicuous locations to remind the workers not to discharge any sewage or	site construction				N/A
		D20	wastewater into the nearby environment during the construction phase of the Project.	workforce			Waste Disposal Ordinance	1973
							'	
		-	Regular environmental audit on the construction site can provide an effective control of any malpractices and					✓
			can achieve continual improvement of environmental performance on site.					
5.8.1	S5.2.1	D21	Accidental Spillage of Chemical	Control of chemical	Contractor	Service	ProPECC PN 1/94	(a) N/A
			• (a) Any service workshop and maintenance facilities shall be located within a bunded area, and sumps and oil	leakage		workshop and		(b) N/A
			interceptors shall be provided. (b) Maintenance of equipment involving activities with potential for leakage and			maintenance	Water Pollution Control	
			spillage will only be undertaken within the areas.			facilities	Ordinance	
							Manta Diamanal Outiness	
	Nominal Min						Waste Disposal Ordinance	1
	Control Meas	sures	Francian Control (Magazira)	Fracian control	Contracts	Drainage	DraDECC DN 4/04	To be implemented
5.8.2	S5.2.2	-	Erosion Control /Measures a. Preserve Natural Vegetation	Erosion control	Contractor	Drainage	ProPECC PN 1/94	To be implemented
			This Best Management Practices will involve preserving natural vegetation to the greatest extent possible			system	Water Pollution Control	
			during the construction process. and after construction where appropriate. Maintaining natural vegetation is the most effective and inexpensive form of erosion prevention control.				Ordinance	
			b. Provision of Buffer Zone					√
		-	A buffer zone consists of an undisturbed area or strip of natural vegetation or an established suitable planting					Y
			adjacent to a disturbed area that reduces erosion and runoff. The rooted vegetation holds soils acts as a wind					
			break and filters runoff that may leave the site.					
		_	c. Seeding (Temporary/Permanent)					√
			A well-established vegetative cover is one of the most effective methods of reducing erosion. Vegetation should					•
			be established on construction sites as the slopes are finished, rather than waiting until all the grading is					
			complete. Besides, Hydroseeding will be applied on the surface of stockpiled soil and on temporary soil covers					
			for inactive tipping areas to prevent soil erosion during rainy season.					
		-	d. Ground Cover					To be implemented
			Ground Cover is a protective layer of straw or other suitable material applied to the soil surface. Straw mulch					· ·
			and/or hydromulch are also used in conjunction with seeding of critical areas for the establishment of temporary					
			or permanent vegetation. Ground cover provides immediate temporary protection from erosion. Mulch also					
			enhances plant establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and					
			moderating soil temperatures.					
		-	e. Hydraulic Application					To be implemented
			Hydraulic application is a mechanical method of applying erosion control materials to bare soil in order to					
			establish erosion-resistant vegetation on disturbed areas and critical slopes. By using hydraulic equipment,					
			soil amendments, mulch, tackifying agents, Bonded Fiber Matrix (BFM) and liquid co-polymers can be					
			uniformly broadcast, as homogenous slurry, onto the soil. These erosion and dust control materials can often					
			be applied in one operation.					
			f. Sod					To be implemented
			Establishes permanent turf for immediate erosion protection and stabilizes rainageways.					
			g. Matting					To be implemented
			There are numerous erosion control products available that can be described in various ways, such as matting,					
			blankets, fabric and nets. These products are referred as matting. A wide range of materials and combination					
			of materials are used to produce matting including, but not limited to: straw, jute, wood fiber, coir (coconut					
			fiber), plastic netting, and Bonded Fiber Matrix. The selection of matting materials for a site can make a					
			significant difference in the effectiveness of the Best Management Practices.		1		1	

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

Not Applicable at this stage were conducted in the reporting period.

North East New Territories (NENT) Landfill Extension

Environmental Mitiration Implementation Schedule (FMIS) Construction Physics Provided Inc.

Environme	ntal Mitigatio	n Implementat	tion Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref	Weekly Site Inspection Item	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
		sures (Cont'd						
\$5.8.2	S5.2.2	-	 h. Plastic Sheeting Plastic Sheeting will provide immediate protection to slopes and stockpiles. However, it has been known to transfer erosion problems because water will sheet flow off the plastic at high velocity. This is usually attributable to poor application, installation and maintenance. i. Dust Control Dust Control is one preventative measure to minimize the wind transport of soil, prevent traffic hazards and reduce sediment transported by wind and deposited in water resources. 	Erosion control	Contractor	Drainage system	ProPECC PN 1/94 Water Pollution Control Ordinance	√
Surface \	Water Drain	age System	,	I .	1			
	S5.2.2	D22	 (a) Temporary surface water drainage system will be provided to manage runoff during construction and operation. (b) This system will consist of channels as constructed around the perimeter of the site area. (c) This system will collect surface water from the areas of higher elevations to those of lower elevations and ultimately to the point of discharge. (d) Erosion will therefore be minimised. (a) The temporary surface water drainage system will include the use of a silt fence around the soil stockpile areas to prevent sediment from entering the system. (b) Regular cleaning will be carried out to prevent blockage of the passage of water flow in silt fence. 	Surface Water Management/ Control run off	Contractor	Surface water system Construction	Water Pollution Control Ordinance TM-water	(a) ✓ (b) ✓ (c) ✓ (d) ✓ (a) # (Refer to Appendix J 11 Sep 2023 Weekly site inspection Observation 3)
		-	 Intermediate drainage system will be installed for filled cell/phase. The major purpose of the intermediate drainage system is to prevent the clean surface water run-off from the filled phases coming into contact with the waste mass in active cell and to prevent excessive surface water infiltration through the intermediate cover, thus contribute to increasing volume of leachate. The intermediate drainage system will collect the clean surface water run-off and divert it to the permanent discharge channels connected to the public drainage system. In addition, surface flow from the haul road (especially near the wheel washing facility) will be collected to a dry weather flow interceptor and conveyed to the on-site leachate treatment plant for further treatment. 					(b) ✓ N/A
\Masta M			ary weather now interceptor and conveyed to the on-site reachaste a carnetic plant for further a cauncing.					1
S6	wM1	-	Implement proper waste management measures during construction phase as stipulated in the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 Environmental Management in Construction Sites. Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	ctor Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	√
			verified in accordance with DEVB TC(W) No. 6/2010. Copies/counterfoils from trip-tickets (with quantities of C&D Materials off-site) should be kept for record purposes.					
		-	Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005.	1				✓
		E4	(a) Make provisions in Contract documents to allow and promote the use of recycled aggregates where appropriate. Ensure material balance in terms of excavated C&D materials in the design of NENT landfill extension project. (b) The contract specifications should specify no excavated materials should be removed from the landfill extension site, but should be fully reused.					(a) √ (b) √
		E5	Careful design, planning and good site management to minimise over-ordering and waste materials such as concrete, mortars and cement grouts. (a)(b) The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. (c) Alternatives such as steel formwork or plastic fencing should be considered to increase the potential for reuse.					(a) √ (b) √ (c) √
		E6	(a) The Contractor should recycle as much as possible the C&D waste on-site through proper waste segregation on-site. (b) Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills. (c) Proper areas should be designated for waste segregation and storage wherever site conditions permit. (d) Maximise the use of reusable steel formwork to reduce the amount of C&D material.					(a) ✓ (b) ✓ (c) ✓ (d) ✓

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Not Applicable at this stage were conducted in the reporting period.

North East New Territories (NENT) Landfill Extension

IA	EM&A	Weekly	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
ef.	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
		Inspection		Measures & Main	the		achieve?	
		Item		Concerns to address	measures?			
/aste Ma	nagement ((Cont'd)			I			
6		E7	• (a) Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. On-site	Good site practice to	Contractor	Entire	Waste Disposal Ordinance	(a) √
			sorting and segregation facility of all type of wastes is considered as one of the best practice in waste	minimise C&D waste		construction	1	(b) √
			management and hence, should be implemented in all projects generating construction waste. (b) The sorted	generation and		site	ETWB TC(W) No. 19/2005	(b) 4
			public fill and C&D waste should be properly reused.	reuse/recycle all C&D				
				on-site as far as			DEVB TC(W) No. 6/2010	
		E8	• (a) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to	possible				(a) # (Refer to Appendix J 10 Jul 2023 Week
			prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. (b)(c) Appropriate					site inspection Observation 5)
			measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by					(b) √
			transporting wastes in enclosed containers					(c) √
	-	E9	If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to	-				N/A
			hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion.					
		E10	Nomination of approved personnel to be responsible for good site practices and making arrangements for					✓
			collection of all wastes generated on-site and effective disposal.					
	-	E11	Training of site personnel for cleanliness, proper waste management procedures including chemical waste	_				✓
			handling, and waste reduction, reuse and recycling concepts.					•
			Harianny, and waste reduction, rease and recycling cornecpts.					
		E12	Regular cleaning and maintenance programme systems, sumps and oil interceptors.					✓
	-	E13	(a) Prior to disposal of C&D waste, wood, steel and other metals should be separated for re-use and/or	-				(a) √
		210	recycling to minimise the quantity of waste to be disposed of to landfill. (b)(c) Proper storage and site practices					
			should be implemented to minimise the potential for damage or contamination of construction materials.					(b) √
								(c) N/A
			Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary					✓
			generation of waste. Minimise excessive ordering of concrete, mortars and cement grout by doing careful check					
			before ordering.					
	WM2	E16 –	Chemical Waste	Ensure proper	Contractor	Entire	Waste Disposal (Chemical	# (Refer to Appendix J
		E23		disposal of chemical		construction	Waste) General	(1) 18 Sep 2023 Weekly site inspecti
			Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General)	waste generated on-		site	Regulation	Observation 5
		Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and site to mi	site to minimise the			_	(2) 25 Sep 2023 Weekly site inspecti	
			Storage of Chemical Wastes.	associated hazards			Code of Practice on the	Observation 2)
	-	_	Plant/equipment maintenance schedule should be designed to optimise maintenance effectiveness and to	on human health and			Packaging, Labelling and	✓
			minimise the generation of chemical wastes. Where possible, chemical wastes (e.g. waste lube oil) should be	environment			Storage of Chemical Waste	'
			recycled by licensed treatment facilities					
	L	=		<u> </u>				
		E17 &	Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant					✓
		E18	to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless					
			the specification has been approved by the EPD. Display a label in English and Chinese in accordance with					
			instructions prescribed in Schedule 2 of the Regulation.					
	-	E19	(a) The storage area for chemical wastes should be clearly labelled and used solely for storage of chemical	1				(a) √
			waste, (b) enclosed with at least 3 sides, having an impermeable floor and bund of sufficient capacity to					(b) N/A
			accommodate 110% of volume of the largest container or 20 % of total volume of waste stored in that area,					(c) N/A
			(c)(d) whichever is the greatest, having adequate ventilation, being covered to prevent rainfall entering, and					(d) N/A
			being arranged so that incompatible materials are adequately separated.					(-)
		===		_				
	F	E20	Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g.	I				√
		L20	Chemical Waste Should be collected by licensed waste collectors and disposed of at licensed facility, e.g. Chemical Waste Treatment Centre.					Y

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage were conducted in the reporting period.

EM& Log F	Ref Si	Veekly ite nspection em	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
1anagen	nent (Co	ont'd)			•	•		
WM3	B E	1	 General Refuse General refuse generated on-site should be properly stored in enclosed bins or compaction units separately from construction and chemical wastes. 	Minimise generation of general refuse to avoid odour, pest and	Contractor	Entire construction site	Waste Disposal Ordinance	√
	E2	2	• (a) All recyclable materials (separated from the general waste) should be stored on-site in appropriate containers with cover prior to collection by a local recycler for subsequent reuse and recycling. Residual, non-recyclable, general waste should be stored in appropriate containers to avoid odour. (b)(c)(d) Regular collection should be arranged by an approved waste collector in purpose-built vehicles that minimise environmental impacts during transportation	visual nuisance				(a) ✓ (b) ✓ (c) ✓ (d) ✓
	-		 Reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. 					√
	-		Aluminium cans should be separated from general waste stream and collected by recyclers. Proper collection bins should be provided on- site to facilitate the waste sorting.					✓
	-		 Office waste paper should recycled if the volume warrant collection by recyclers. Participation in community waste paper recycling programme should be considered by the Contractor, including waste paper, aluminium cans, plastic bottles, waste batteries, etc. 					√
		·						
IENT La	ndfill Ext	tension						
LFG1	1 F1	1	Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).	To minimise the risk of LFG hazards to	Contractor	Entire construction	Landfill Gas Hazard Assessment Guidance Note	N/A
LFG2	2 F2	1	Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.	personnel in construction site			(EPD/TR8/97)	✓
LFG3	3 F3	3	No smoking or burning should be permitted on-site.				F&IU (Confined Spaces)	✓
LFG ²	1 F4	4	Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.				Regulations	√
LFG5	5 F5	5	No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.				0.1.15.5	✓
LFG	6 F6	6	Adequate fire fighting equipment should be provided on-site.				Code of Practice on Safety and Health at Work in	√
LFG7			Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.				Confined Spaces	√
LFG8	3 F8	8	Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.					√
LFG			'Permit to Work' system should be implemented.					· •
LFG1			Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.					√
LFG1	11 F1	11	(a) For piping assembly or conduit construction, all valves and seals should be closed immediately after installation to avoid accumulation and migration of LFG. (b) If installation of large diameter pipes (diameter >600mm) is required, the pipe ends should be sealed on one side during installation. (c) Forced ventilation is required prior to operation of installed pipeline. (d) Forced ventilation should also be required for works inside trenches deeper than 1m.					(a) N/A (b) N/A (c) N/A (d) N/A
LFG1	12 F1	12	Frequency and location of LFG monitoring within excavation area should be determined prior to commencement of works. LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.					✓
LFG1	13 F1		For excavation works, LFG monitoring should be conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation.					✓
LFG1	14 F1	l l	Any cracks on ground level encountered on-site should be monitored for LFG periodically. Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.					✓
LFG1	15 F1	15	(a) LFG precautionary measures involved in excavation and piping works should be provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase. (b) Temporary offices or buildings should be located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm.					(a) N/A (b) N/A

Remark

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

North East New Territories (NENT) Landfill Extension

		ation Implementa	tion Schedule (EMIS) Construction Phase					
EIA	EM&A	Weekly Site	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Ref.	Log	Inspection	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
	Ref	Item	(,,,	Measures & Main	the		achieve?	
				Concerns to address	measures?			
LFG (C	`ont'd)			Concerns to address	mododioo.			
	,	dfill Extension						
				T	0 1 1	T = 0	1 - 1511 0 - 11 1	
S7	LFG16	F16	For large development such as NENT landfill extension, a Safety Officer trained in the use of gas detection	To minimise the risk	Contractor	Entire	Landfill Gas Hazard	✓
			equipment and LFG- related hazards should be present on-site throughout the groundwork phase. The Safety	of LFG hazards to		construction site	Assessment Guidance Note	
			Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of	personnel in			(EPD/TR8/97)	
			measuring the following gases:	construction site				
			•CH₄: 0-100% and LEL: 0-100%/v				F&IU (Confined Spaces)	
			•CO ₂ : 0-100%				Regulations	
			•O ₂ : 0-21%					
	LFG17	F17	(a) Periodically during groundwork construction, the works area should be monitored for CH ₄ CO ₂ and O ₂ using				Code of Practice on Safety	(a) N/A
			appropriately calibrated portable gas detection equipment. The monitoring frequency and areas should be				and Health at Work in	(b) N/A
			established prior to commencement of groundwork either by Safety Officer or appropriately qualified person. (b)				Confined Spaces	(c) N/A
			Routine monitoring should be carried out in all excavations, manholes, created by temporary storage of building					
			materials on-site. (c) All measurements in excavations should be made with monitoring tube located not more than					
			10mm from exposed ground surface.					
	LFG18	F18	For excavations deeper than 1m, measurements should be conducted:					✓
			At ground surface before excavation commences;					,
			Immediately before any worker enters the excavation;					
			At the beginning of each working day for entire period the excavation remains open; and					
			Periodically throughout the working day whilst workers are in excavation.					
+	LFG19	E10	For excavations between 300mm and 1m, measurements should be conducted:	-				./
	LFG19	F19						✓
			Directly after excavation has been completed; and Desired in all while the constant and are a second as a second and a second are a second as a					
-	15000	F00	Periodic all whilst excavation remains open.	_				,
	LFG20	F20	For excavations less than 300mm, monitoring may be omitted at the discretion of Safety Officer or appropriately					✓
			qualified person.					
		isual Phases						
S8	LV1	G4	Advanced screening tree planting	To minimise the	Contractor	Entire	DEVB TC(W) No. 4/2020 -	✓
			Early planting using fast growing trees and tall shrubs at strategic locations within site to block major view	impact on existing		construction site	Tree Preservation	
			corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation	vegetation retained				
			works.	by personnel in			DEVB TC(W)) No. 6/2015 -	
			Roadside planter and shrub planting design in front of Cheung Shan Temple.	construction			Maintenance of Vegetation	
S8	LV2	G5	Boundary Green Belt planting	To provide initiation			and Hard Landscape Features	To be implemented during operation phase
			Considerable planting belts proposed around the site perimeter and the construction of temporary soil bunds will	on permanent				
			screen the landfill operations to a certain degree. Fast growing and fire resistant plant species will be used.	landscape and visual			DEVB TC(W) No. 6/2011 -	
S8	LV3	G6	Temporary landscape treatment as green surface cover	mitigation measures			Maintenance of Man-made	✓
			For certain areas where landfilling operations would have to be suspended temporarily for periods of years, simple				Slopes and Emergency Repair	'
			temporary landscape treatment such as hydroseeding should be considered. During construction and operational				on Stability of Land	
			phases, grass hydroseeding or synthetic covering material of green colour should also be used as a temporary					
			slope cover if applicable.					
S8	LV4	G7	Existing tree preservation	-		1		✓
] "	Transplant existing trees and vegetation, which are identified as ecologically significant in Ecological Impact					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			Assessment and as rare tree species recorded in the tree survey, under circumstances where technically feasible.					
			For all affected trees, the principle of avoidance of tree felling and tree transplanting of tree before felling should apply who prover possible. A tree felling application should be submitted to DEVR CLTMS and be approved before					
			apply whenever possible. A tree felling application should be submitted to DEVB-GLTMS and be approved before					
			any trees are felled or transplanted.					

Remarks:

Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

North East New Territories (NENT) Landfill Extension

Environmental Mitigation Implementation Schedule (EMIS) Construction Phase

<u>ment</u>	<u>tal Mitig</u> at	<u>tion Impleme</u> nta	tion Schedule (EMIS) Construction Phase					
E	EM&A	Weekly Site	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
L	_og	Inspection	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
	Ref	Item		Measures & Main	the		achieve?	
				Concerns to address	measures?			
gy			I	Controlle to address	mododioo.			
	rata atia n	Magazzaga						
		Measures:		T=		T =	T =	
	Ξ 1	-	Restriction of construction activities to the work areas that would be clearly demarcated.	To minimise	Contractor	Entire	Practice Note for Professional	✓
				environmental		construction site	Persons (ProPECC),	
Е	Ξ2	_	Reinstatement of the work areas immediately after completion of the works.	impacts and			Construction Site Drainage	✓
				therefore potential			(PN1/94)	,
				ecological impacts				
E	≣3	-	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the	within and near the			Code of Practice on the	✓
			construction programme.	construction site			Packaging, Labelling and	
F	= 4	_	Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work	- Construction one			Storage of Chemical Wastes,	√
-	- '		periods or should be throttled down to a minimum.				EPD (1992)	Y
	_		'	_			EFD (1992)	
E	Ξ 5	-	Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed				ETIA/D TO ((A/)) N	✓
			away from nearby NSRs.				ETWB TC(W)) No. 33/2002	
-	= 6	_	Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction	+			Management of Construction	N/A
-			works.				and Demolition Material	14/7
							Including Rock	
E	= 7	-	Mobile plant should be sited as far away from NSRs as possible and practicable.					✓
							DEVB TC(W) No. 6/2010 Trip	
-	E 8	_	Material stockpiles, site office and other structures should be effectively utilised, where practicable, to screen	+			Ticket System for Disposal of	√
-			noise from on-site construction activities.				Construction and Demolition	Y
							Materials	
E	≣9	-	Use of "quiet" plant and working methods.				Iviateriais	✓
							ETIME TO (MI) NI - 40/0005	
-	=10	_	Construction phase mitigation measures in the Practice Note for Professional Persons on Construction Site	-			ETWB TC(W)No.19/2005	√
-	_10	_	Drainage.				Environmental Management	Y
				_			on Construction Sites	
E	Ξ11	-	Design and set up of the temporary on-site drainage system will be undertaken by the contractor prior to the					✓
			commencement of construction.					
-	E12	_	Design and incorporation of silt/sediment traps in the permanent drainage channels to enhance deposition rates	+				√
-	-14	_	and regular removal of reposited silt and grit.					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
L								
E	E13	-	Minimization of surface excavation works during the rainy seasons (April to September), and in particular, control					N/A
			of silty surface runoff during storm events, especially for areas located near steep slopes.					
-	<u>=</u> 14	_	Regular inspection and maintenance of all drainage facilities and erosion and sediment control structures to	-				√
-	- 14	_						Y
			ensure proper and efficient operation at all times and particularly following rainstorms.					
E	E15	-	Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					N/A
				1	1	1	1	1

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

Appendix L Construction Site Activities

Construction Activities	Where	Who	What - ENV Impacts	Mitigation Measures
Material loading and unloading, site traffic	Portion A, SBA to Alternative Disposal Ground	PYE	Dust, bringing mud to the common haul road	Speed limit, covering of materials and water spraying, lorry washing at the exit of the site
Construction of Site buildings	Portion D	PYE	Washout flowing to site water discharge point, dust emissions	Avoid the spillage of concrete, lorry washing at designated area, operation and maintenance of water treatment facility at discharge point
Site clearance	Portion A, Portion E3-1, Portion E4, Portion E1/B2	PYE	Wash out going to surface water channel and site water discharge point, generation of yard waste	Cover exposed slope by tarpaulin, diversion of surface water, operation and maintenance of water treatment facility at discharge point, implementation of trip ticket system
Installation of permanent fencing	Portion A, Portion B1, Portion E4	PYE	Dust	Covering of cement storage area, enclosure of mixing area
Site formation	Portion A, Portion E3-1	PYE	Generation of C&D waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Tree Felling	Portion E3-1, E4, E1/B2	PYE	Generation of yard waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Shotcreting (permanent and temporary)	Whole site	PYE	Dust	Covering of cement storage area, enclosure of mixing area

Remark:

PYE is the Sub-contractor for this project

Appendix M Mitigation Measures of Cultural Landscape Features

Appendix N Ecological Monitoring Record

B.1 Incense Tree Aquilaria sinensis

Photo B.1.1.: General view of the transplanted individual AS-03.

Photo B.1.3.: General view of the transplanted individual AS-02.

Photo B.1.2. : Stem condition of the transplanted individual AS-03.

Photo B.1.4.: Broken stem of the transplanted individual AS-02.

B.2 Lamb of Tartary *Cibotium barometz*

Photo B.2.1.: General view of the transplanted individual CB-01.

Photo B.2.2.: View of the transplanted individual CB-01.

Photo B.2.3.: View of the transplanted individual CB-01.

B.3 Bottlebrush Orchid Goodyera procera

Photo B.3.1: Individual GP-01.

Photo B.3.3: Individual GP-07.

Photo B.3.2: Individual GP-06.

Photo B.3.4: Individual GP-08.

Photo B.3.5: Individual GP-10.

Photo B.3.7: Individual GP-17.

Appendix O Detail Status of EP Submission

Detail Status of Submissions required under the FEP & EP

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submission Date (12 Oct 2022)
2.2	2.4	Setting up of Community Liaison Group (CLG)	Submission Date (12 Oct 2022)
			1 st CLG meeting (12 Jan 2023)
2.3	2.5	Submission of EM&A Manual	Submission Date (12 Oct 2022)
2.4	2.6	Submission of Preservation of Cultural Landscape Features	Survey and Preservation of Grave Records: Submission Date (15 Oct 2022)
			Survey and Preservation of Boulder Paths: Submission Date (12 Oct 2022)
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submission Date (2 September 2022)
2.6	2.8	Submission of translocation proposal	Submission Date (8 July 2022)
2.7	2.9	Submission of Transplantation Report and Post-Transplantation	Submission Date (19 Jan 2023)
		Monitoring	1st monitoring (24 Nov 2022)
			2 nd monitoring (9 Dec 2022)
			3 rd monitoring (21 Dec 2022)
			4 th monitoring (13 Jan 2023)
			5 th monitoring (26 Jan 2023)
			6 th monitoring (8 Feb 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (21 Apr 2023)
			10 th monitoring (17 May 2023)
			11 th monitoring (16 Jun 2023)
			12 th monitoring (12 Jul 2023)
			13th monitoring (11 Aug 2023)
			14 th monitoring (15 Sep 2023)

FEP Condition	EP Condition	Submission / Measures	Status
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out in July 2022
			Submission Date (27 December 2022)
			1 st monitoring (29 Aug 2022)
			2 nd monitoring (28 Sep 2022)
			3 rd monitoring (28 Oct 2022)
			4 th monitoring (28 Oct 2022)
			5 th monitoring (29 Dec 2022)
			6 th monitoring (30 Jan 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (19 Apr 2023)
			10 th monitoring (12 May 2023)
			11 th monitoring (7 Jun 2023)
			12 th monitoring (18 Jul 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submission Date (6 Oct 2022)
2.10	2.12	Submission of Waste Management Plan	Submission Date (30 Dec 2022)
3.2	3.2	Submission of Baseline Monitoring Report	Submission Date (30 Nov 2022)

Appendix P Cumulative complaint / enquiry log, Summaries of complaints and enquiries & Environmental complaint reports

Environmental Complaints Log

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C001_20221220	21 Dec 2022	Veolia (Contractor)	ET	Air Quality (Construction Dust)	5, 12 & 19 Dec 2022	It was noted from Veolia's email to the ET on 20 December 2022 that Veolia received complaint lodged regarding presenting much dusty materials at roundabout at Wo Keng Shan Road & dusty flying problem at Kowloon-bound traffic at Lung Shan Tunnel. No dusty materials and wastes were transported out from the NENTX site during the complaint period. During the regular weekly site inspection on 5, 12 & 19 December 2022, it was observed that the wheel washing facilities with high-pressure water jets have been provided at all site exits of NENTX and cleaned all vehicles before allowing them to leave the construction site to ensure that no mud or debris would be brought to the public area. All site vehicles of NENTX are also required to go through the auto wheel washing facility, which is managed by the operator of the NENT landfill, before entering the public area. The road section between the washing facilities and the exit point was paved with concrete, or bituminous materials were implemented in all site entrances. No mud generated from vehicles under the NENTX project after exiting the site entrance was observed. In conclusion, there is no direct evidence showing that the complaint is likely related to the NENTX project.	5 Jan 2023
C002_20230614	14 Jun 2023	EPD-RNG	ET	Water Quality	16, 21 Jun, 24, 25 Jul & 2 Aug 2023	It was noted from EPD-RNG's email to the ET on 14 Jun 2023 that EPD received complaint lodged regarding the muddy water was observed at Lin MA Hang International Bridge. In summary of the investigation, the pollutant water appeared crimson colour with bubbles ay the LMH-OP01 (Monitoring Point from EPD). The colour and pattern of pollutant water is different from the runoff at surface WQM monitoring location WM1. Hence, the project is not the major source causing the pollutant water. To minimise the potential impact of the project, the enhancement of mitigation measures at north boundary were advised to implement by contractor.	29 Jun & 21 Aug 2023

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C003_20230615	15 Jun 2023	EPD-RNG	ET	Water Quality	16, 19, 21 Jun, 18 Jul 2023	It was noted from EPD-RNG's email to the ET on 15 June 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD). In summary of the investigation, the muddy water caused from multipotential sources while the runoff from the box culvert under the Wo Keng Shan Road is the major source including runoff from Existing channel near Portion E3-1, discharge water from the silt removal facilities at Portion E3-1 of the project, runoff from branch near the entrance of Portion E3-1, runoff from weighting plaza of NENT Landfill & natural stream near Wo Keng Shan & Shui Ngau Tso etc Hence, the project is a part of factor causing the high turbidity muddy water. To minimise the potential impact of construction runoff from the project, the further mitigation measures and enhancement of the temporary surface water drainage system were advised to implement by contractor.	15 Jun, 21 Aug 2023
C004_20230803	3 Aug 2023	EPD-RNG	ET	Water Quality	18 Jul 2023	It was noted from EPD-RNG's email to the ET on 3 Aug 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD). In summary of the investigation, the muddy water caused from multipotential sources while the runoff from the box culvert under the Wo Keng Shan Road is the major source including runoff from Existing channel near Portion E3-1, discharge water from the silt removal facilities at Portion E3-1 of the project, runoff from branch near the entrance of Portion E3-1, runoff from weighting plaza of NENT Landfill & natural stream near Wo Keng Shan & Shui Ngau Tso etc Hence, the project is a part of factor causing the high turbidity muddy water. To minimise the potential impact of construction runoff from the project, the further mitigation measures and enhancement of the temporary surface water drainage system were advised to implement by contractor.	14 Aug 2023

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C005_20230818	18 Aug 2023	EPD-RNG	ET	Water Quality	18 Sep 2023	It was noted from EPD-RNG's email to the ET on 18 August 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD) on 14 August 2023. In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions should be conducted by the contractor as soon as possible.	13 October 2023
C006_20230914	14 Sep 2023	EPD-RNG	ET	Water Quality	18 Sep 2023	It was noted from EPD-RNG's email to the ET on 14 September 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD) on 11 September 2023. In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions should be conducted by the contractor as soon as possible.	13 October 2023

Remarks:

- 1. "ET" equal to "Environmental Team"
- 2. "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"
- 3. "TBC" equal to "To Be Confirm"

Environmental Enquiries Log

Enquiry Ref. No.	Date of Enquiry Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
NA	NA	NA	NA	NA	NA	NA	NA

Remarks:

- 1. "ET" equal to "Environmental Team"
- 2. "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"
- 3. "NA" equal to "Not Applicable"

Cumulative Statistics on Complaints

Aspects	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project-to- Date
Air Quality	1	0	1
Noise	0	0	0
Water Quality	0	1	5
Waste Management	0	0	0
Total	1	1	6

Environmental Complaint/ Enquiry Form

Complaint/ Enquir	Received	
Date:	14 September 2023	
Time:	17:17	
From	EPD-RNG	
Via:	Email	
Compleinent/ Eng	ino w*:	

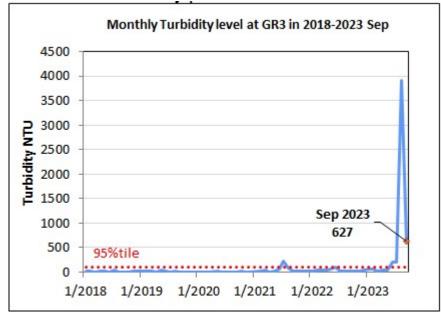
Complainant/ Enquirer*:

Name: Undisclosed
Tel.: Undisclosed
Address: Undisclosed
E-mail: Undisclosed

Complaint/ Enquiry*:

Date of complaint/ enquiry: 11 September 2023

Time of complaint/ enquiry: --:--


Aspect: Dust / Noise / Water / Other*:

1. Description

1.1 It was noted from EPD-RNG's email to the Environmental Team on 14 September 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3). The content of the complainant email is appended below.

"Further to my email on 18.08.2023, this office once more received a complaint by EPD\WQMG on the exceptionally highest turbidity (627 NTU) detected at GR3 of River Ganges on 11 September 2023, which exceeded the 95% tile of the ten-year baseline for turbidity (i.e. 95 NTU). Please refer below the photos taken and the table for easy reference."

1.2 The photos and information by WQMG were extracted as below."

Source from EPD-RNG

GR3 (monitoring location from EPD)

Source from EPD-RNG

Location of river monitoring station at River Ganges (monitoring locations from EPD):

Source from EPD-RNG

Watercourse	No	Station	Subzone	Latitude	Longitude
River Ganges	1	GR1		22° 32' 20.4"	114° 08' 42.8'
	2	GR2	Ganges Subzone	22° 31' 41.0"	114° 09' 16.0'
	3	GR3		22° 32' 13.0"	114° 10' 05.7'
	4 IN1		22° 31' 03.6"	114° 06' 54.3'	
River Indus	5	IN2	Indus Subzone	22° 30' 27.3"	114° 08' 07.1'
	6	IN3		22° 31' 11.3"	114° 10' 33.5'
River Beas	7	RB1		22° 29' 07.7"	114° 06' 10.3'
	8	RB2	Beas Subzone	22° 30' 12.2"	114° 06' 19.2'
	9	RB3	The second of the second second of the second secon	22° 30' 38.3"	114° 06' 40.1'

Source from EPD-RNG

1.3 The detailed layout with Monitoring Point from EPD, Surface Water Monitoring Location WM2 & related natural stream is presented in **Figure 1**.

Investigation	Doculte 8	Posnonso:
IIIVESHUAHOH	DESILIS O	resumse.

IEC notified on: 14 September 2023

Surface Water Monitoring Results in September 2023

- The Monthly Surface WQM was conducted on 20 September 2023 at WM2. It measured no exceedance at WM2. The detailed layout of Surface WQM location with the related streams are presented in Figure
 - 1. Details monitoring of results are shown in Table 2.1.

Table 2.1 Surface WQM Results on 20 September 2023

rabio zir Gariago II Gin ito		-		
Monitoring Location	WM2			
Date	20 September 2023			
Time	07:45			
Weather	Fine			
Water Depth (m)	0.05			
Water Flow (L/s)	2.0			
Water Temperature (°C)	22.7	Action Level	Limit Level	
DO (mg/L)	7.6	<5.0	<4.0	
рН	7.2	>7.6	>7.7	
Turbidity (NTU)	12.0	>108.3	>108.9	
SS (mg/L)	7.6	>94.5	>94.7	

Construction Activities & Related Mitigation Measures 3.

3.1 Based on the contractor's record, construction activities and mitigation measures conducted by contractor, use of machineries & potential water quality impact on 11 September 2023 were listed in **Table 3.1**.

Table 3.1 Construction Activities & Mitigation Measures on 11 September 2023

	Construction Activities	Use of Machineries	Potential Water Quality impact	Mitigation Measures
 2. 	Site formation at Portion A & E3-1 Construction of	Excavators Dump trucks	- Wastewater generated from vehicle washing	- Wastewater collected to sedimentation
•	Permanent Site office at Portion D		before leaving the site	basins/tanks and treat before
3.	Tree removal at Portion B2, E1-1 & E4		- Wastewater generated from surface runoff	discharge
4.	Material transportation		through excavated area during rainfall - Wastewater	
			generated from dust suppression measures	

3.2 The Layout of construction activities & use of Machineries is presented in Figure 2.

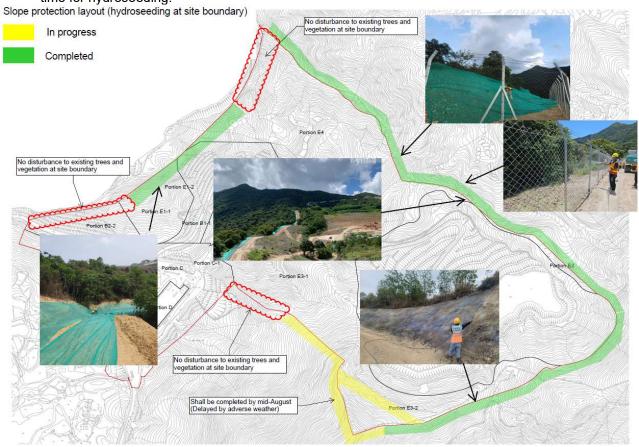
Rainfall Recorded from Hong Kong Observatory Automatic Weather Station

According to the HKO's record (Hong Kong Observatory Automatic Weather Station - North District), the hourly rainfall recorded from 7 to 11 September 2023 is listed in Table 4.1.

Table 4.1 Hourly Rainfall Recorded at HKO Weather Station – North District
--

	Time Period	
Date	03:00 to 04:00	Rainfall (mm) 0 to 6
	04:00 to 05:00	0 to 8
	04:00 to 05:00	0 to 0
	06:00 to 07:00	0 to 2
	08:00 to 09:00	0 to 1
	09:00 to 10:00	0 to 1
	10:00 to 11:00	0 to 2
7 Sep 2023	11:00 to 12:00	0 to 2
•	16:00 to 17:00	0 to 9
	17:00 to 18:00	0 to 22
	18:00 to 19:00	8 to 30
	19:00 to 20:00	0 to 79
	20:00 to 21:00	0 to 150
	21:00 to 22:00	10 to 84
	22:00 to 23:00	27 to 69
	23:00 to 00:00	21 to 89
	00:00 to 01:00	16 to 103
	01:00 to 02:00	16 to 83
	02:00 to 03:00	14 to 52
	03:00 to 04:00	12 to 47
	04:00 to 05:00	8 to 22
	05:00 to 06:00	4 to 14
	06:00 to 07:00	7 to 10
0 Can 2022	07:00 to 08:00	6 to 20
8 Sep 2023	08:00 to 09:00	14 to 29
	09:00 to 10:00	8 to 51
	10:00 to 11:00	10 to 27
	11:00 to 12:00	3 to 15
	12:00 to 13:00	1 to 5
	13:00 to 14:00	1 to 2
	14:00 to 15:00	1 to 2
	15:00 to 16:00	0 to 1
	11:00 to 12:00	0 to 2
0.0	13:00 to 14:00	0 to 1
9 Sep 2023	14:00 to 15:00	0 to 1
	15:00 to 16:00	0 to 5
	04:00 to 05:00	0 to 3
	05:00 to 06:00	0 to 1
	07:00 to 08:00	4 to 12
_	08:00 to 09:00	11 to 24
10 Sep 2023	09:00 to 10:00	1 to 5
	14:00 to 15:00	1 to 12
	15:00 to 16:00	0 to 19
	21:00 to 22:00	0 to 1
	21.00 to 22.00	0 10 1

Date	Time Period	Rainfall (mm)
	04:00 to 05:00	0 to 1
	05:00 to 06:00	0 to 1
	06:00 to 07:00	0 to 6
	08:00 to 09:00	0 to 1
11 Sep 2023	09:00 to 10:00	0 to 4
11 Sep 2023	11:00 to 12:00	0 to 2
	12:00 to 13:00	0 to 14
	13:00 to 14:00	0 to 3
	14:00 to 15:00	1 to 11
	15:00 to 16:00	0 to 1


- 4.2 According to the hourly rainfall records, it resulted there are much rainfall that affected the water quality of GR3 past 5 days, especially the time periods which rainfall were more than 10 mm (Including from 17:00 to 00:00 on 7 Sep 2023, 00:00 to 12:00 on 8 Sep 2023, 07:00 to 09:00, 14:00 to 16:00 on 10 Sep 2023, 12:00 to 13:00 on 11 Sep 2023). The extreme weather maintained from 7 to 10 September 2023. The extreme weather increased the risk of landslips, finally increasing the concentration of suspended solids for surface runoff. Most rivers/streams/channels were affected by high amount of rainfall. The Hourly and Daily Rainfall Distribution from HKO is shown in **Appendix A**.
- 4.3 The GR3 is located downstream of the water quality monitoring station WM2 of the NENTX project. The WM2 is situated at the outfall of the box culvert, which collects the water from Portion A, Portion E3-1 of the project, the natural stream, and other areas.

Source from ET

5. Environmental Mitigation Implementation Status

- 5.1 Temporary Surface Water Drainage System (TSWDS)
- 5.1.1 Based on the Contractor's TSWDS (Version updated to 12 August 2023 & version updated to 20 September 2023), the TSWDS were implemented and kept enhancing by contractor. The detail of TSWDS (Version updated to 12 August 2023 & version updated to 20 September 2023)) are presented in Appendix B.
- 5.1.2 The Enhancement items of TSWDS (updated to 20 September 2023) are listed below:
 - 1. Increasing 1 Wetsep at Portion E3-1 & 1 WetSep at Portion E4
 - 2. Establishing more 2 Sedimentation Basins at Portion B2 & 1 Sedimentation Basin near Portion E4.
 - 3. Increasing 3 cut-off drain channels at the assess road between Portion A to SBA.
- 5.2 Hydroseeding
- 5.2.1 Hydroseeding is conducted by the Contractor along the Project site boundary for the purpose of miniminizing exposed slopes and is in progress. The below figure indicates the location and estimate time for hydroseeding.

Source from Contractor (Received from ET on 3 August 2023)

6. Joint Weekly Site Inspection on 4 September 2023

- 6.1 Joint weekly site inspection was carried out with ER, IC, Contractor and ET on 4 September 2023. The observations involving Environmental Mitigation for Construction Runoff & Surface Water Drainage System are listed below:
 - 1. The exposed slope surfaces at Portion B2 were not covered by impervious sheets (See Photo 6-1).

Photo 6-1 Observation 1

Taken by ET

- 6.2 The recommendation of corrective actions for the weekly site inspection on 4 September 2023 are listed below:
 - 1. The Contractor was recommended to cover the exposed slope surfaces at Portion B2 by impervious sheet.
- 7. Follow up Action taken by Contractor (After Site Inspection on 4 September 2023)
- 7.1 The further actions taken by contractor are listed below:
 - 1. The slope surface protection was conducted by contractor at Portion B2 (See Photo 7-1).

Photo 7-1 Slope Surface Protection at Portion B2

Provided by Contractor

8. Joint Weekly Site Inspection on 11 September 2023

- 8.1 Joint weekly site inspection was carried out with ER, IC, Contractor and ET on 11 September 2023. The observations involving Environmental Mitigation for Construction Runoff & Surface Water Drainage System are listed below:
 - 1. Surface runoff should be intercepted to avoid direct discharge into the channel at Portion E3 (See Photo 8-1 to 8-2).
 - 2. The dusty stockpile in SBA should be covered with impervious sheet when the rainfall is forecast (See Photo 8-3).
 - 3. The condition of silt fence in SBA should be reviewed after the heavy rainfall over the few days and should be replaced when it is broken (See Photo 8-4).

Photo 8-1 Observation 1

Taken by ET

Photo 8-2 Observation 1

Taken by ET

Photo 8-3 Observation 2

Photo 8-4 Observation 3

Taken by ET

Taken by ET

- 8.2 The recommendation of corrective actions for the weekly site inspection on 11 September 2023 are listed below:
 - 1. The Contractor was advised to stop the discharge of surface runoff to channel immediately by using any mitigation measures they found appropriate. In long term, the Contractor was recommended to construct earth bund along the channel to prevent this situation happening again.
 - 2. The Contractor was advised to cover the stockpiles with impervious sheet when they are idle.
 - 3. The Contractor was advised that the broken or collapsed silt fence should be replaced and properly set up after the heavy rainfall from last week.

9. Follow up Action taken by Contractor (After Site Inspection on 11 September 2023)

- 9.1 The further actions taken by contractor are listed below:
 - 1. The Contractor used sandbag barriers to intercept surface runoff entering to the channel, constructed small sump pit to gather surface runoff and pumped out for wastewater treatment (See Photo 9-1).

Photo 9-1 Rectified action for Observation 1

Provided by Contractor

10. Joint Weekly Site Inspection on 18 September 2023

- 10.1 Joint weekly site inspection was carried out with ER, IC, ET, Contractor and IEC on 18 September 2023. The observations involving Environmental Mitigation for Construction Runoff & Surface Water Drainage System are listed below:
 - 1. The dry PFA in Portion B2 should be covered entirely with impervious sheets.3 (See Photo 10-1).
 - 2. The metal plate at the vehicle entrance in Portion B2 should cover unpaved road surface. (See Photo 10-2).
 - Sediment/ silt traps shall be incorporated in the temporary drainage system to enhance retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions. (See Photo 10-3).
 - 4. The main haul road in Portion E4 is dry ad dusty (See Photo 10-4 to 10-5).

Photo 10-1 Observation 1

Taken by ET

Photo 10-2 Observation 2

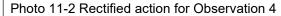
Photo 10-3 Observation 3

Taken by ET

Photo 10-4 Observation 4

Taken by ET

Photo 10-5 Observation 4



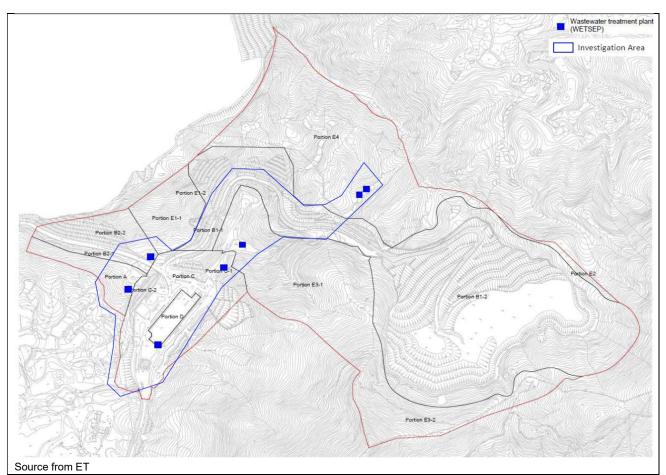
- 10.2 The recommendation of corrective actions for the weekly site inspection on 18 September 2023 are listed below:
 - 1. The Contractor has been reminded to cover dry PFA entirely with impervious sheets.
 - 2. Vehicle entrance should be paved with concrete, bituminous materials, hardcore or metal plates, and kept clear of dusty materials.
 - 3. The Contractor has been advised to reconstruct the demolished sedimentation basin to act as silt trap and to achieve 5 minutes of retention time under maximum flow condition.
 - 4. The Contractor has been advised to schedule watering and recommended to install water sprinklers or mist spray in long term.

Follow up Action taken by Contractor (After Site Inspection on 18 September 2023)

- 11.1 The further actions taken by contractor are listed below:
 - 1. The dry PFA was removed by contractor (See Photo 11-1).
 - The dust control masure was conducted by contractor at Portion E3 & E4 (See Photo 11-2 to 11-3).

Photo 11-1 Rectified action for Observation 1

Provided by Contractor


Photo 11-3 Rectified action for Observation 4

Provided by Contractor

Additional Site investigation / Audit by IC, ET & IEC on 18 September 2023

12.1 An additional site investigation & audit by IC, ET & IEC was conducted on 18 September 2023 under sunny weather. The investigation area involved the Surface Water Monitioring Location WM2, the channel between the site boundary of Portion A and WM2, Portion A, the Existing Channel near Portion C, the Outlet of the Box Culvert under Portion C and the inlet of the Box Culvert under Wo Keng Shan Road, Portion E3-1, Existing Channel & Manhole near Portion B2, Portion B2 & Portion E4. The Daily Rainfall Distribution from HKO is shown in **Appendix A**.

Surface WQM Location WM2

- 12.2 The photo record of the investigation for surface WQM Location WM2 is presented from Photo 12-1 to 12-4.
- 12.3 According to the investigation, it was observed that muddy water flows through Surface WQM Location WM2 (See Photo 12-1 to 12-3).
- 12.4 The clearing work of deposited silt and grit at the outlet of the box culvert was conducted during the investigation (See Photo 12-4). The Contractor has been recommended to establish the fixed silt curtain near the Surface WQM Location WM2 to minimise the impact of the clearing work of deposited silt and grit when the clearing work is conducted.
- 12.5 The detailed location of the photo record is presented in Figure 3.

Photo 12-1 Surface WQM Location WM2 (Face to upstream)

Taken by ET

Taken by ET

Photo 12-3 Surface WQM Location WM2 (Face to upstream)

Photo 12-4 Clearing Work of Deposited Silt and Grit at the Outlet of Box Culvert

Branch of Existing Channel from Portion A

- 12.6 The photo record of the investigation for the Branch of Existing Channel from Portion A are presented from Photo 12-5 to 12-26.
- 12.7 According to the investigation, it was observed that the high earth bunds with shotcrete can countercheck the construction runoff from Portion A to avoid the runoff discharge directly to outside the low elevation of site boundary (See Photo 12-5 to 12-11). The slope surface protecton had been implemented at Portion A by contractor (See Photo 12-12).
- To minimise the concentration of the construction runoff, the Contractor has been recommended to 12.8 enhance strengthen the slope surface protection area (e.g. shotcrete) for long term and cover the exposed slope at non-construction working period for short term at Portion A. (See Photo 12-13).
- 12.9 In addition, The Contractor was advised that the channels should be established near the site boundary of earth bunds and the low elevation of the slope (See Photo 12-6, 12-8 to 12-13). The construction runoff should be collected by the channels to silt removal facilities for treatment.
- 12.10 During the investigation, the potential sources were found by IC, ET and IEC.

<u>Under Heavy Rain: Potential Source 1 – Existing Channel from Portion A (Runoff from Wo Keng Shan</u> Road near Northing (m): 844511, Easting (m): 835655, discharge water from the silt removal facilities at Portion A & other runoff from stormwater drain)

- 12.11 The muddy water was not found at the existing channel near NENT Landfill Carpark (See Photo 12-14 to 12-15).
- 12.12 Although the muddy water was not found under investigation, it cannot be excluded that the muddy water may come from the surface runoff of the Wo Keng Shan Road (Northing (m): 844511, Easting (m): 835655), discharge water from the silt removal facilities at Portion A & other runoff from stormwater drain etc. under heavy rain. The Contractor has been reminded that the precautions should be taken at any time of year when rainstorms are likely, actions to be when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms area in accordance with Appendix A2 of ProPECC PN1/94.

<u>Under Heavy Rain: Potential Source 2 – Runoff from NENT Landfill Carpark, Water Tank & other</u> stormwater drains

- 12.13 The branch of the existing channel was found near the gate of the assess road to WM2. The muddy water was not found at the branch of the existing channel near the car park (See Photo 12-16). To track the potential source of this branch, it can be found that there is one stormwater hole near the gate (runoff from the car park of NENT Landfill can flow directly to the branch of the existing channel (See Photo 12-16 & 12-17). The stormwater drain & water tank at the car park of NENT Landfill were found (See Photo 12-18 & 12-19). The potential sources of runoff at the branch included the runoff from the car park of NENT Landfill, the stormwater drain & water tank near the car park. Although the muddy water was not found under investigation, it cannot exclude the runoff flow to the existing channel under heavy rain (See Photo 12-20).
- 12.14 The colour of runoff at the existing channel near construction dust monitoring location AM3 is shown in Photo 12-21 to 12-22.
- 12.15 The photo record of existing channel (Runoff from Wo Keng Shan Road (Northing (m): 844511, Easting (m): 835655), Discharge water from the silt removal facilities at Portion A, other runoff from stormwater drain the car park flow to the channel, NENT Landfill Carpark, Water Tank & other stormwater drains) is shown in Photo 12-23 to 12-24.

<u>Under Heavy Rain: Potential Source 3 – Outlet of stormwater drain (Runoff from Wo Keng Shan Road can be flowed directly to the existing channel)</u>

- 12.16 The outlet of the stormwater drain (runoff from Wo Keng Shan Road can flow directly to the existing channel) was found near the outlet of the branch of the existing channel from Portion A (See Photo 5-25 to 5-26. The water quality of runoff at the outlet of the branch of the existing channel from Portion A was clean.
- 12.17 In summary, it can viewed that the runoff from the branch of the existing channel from Portion A is not the main source of the high turbidity concentration of muddy water. But it may affect the concentration of the runoff under heavy rain.
- 12.18 The detailed location of the photo record is presented in Figure 3.

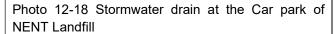

Taken by ET

Photo 12-6 Site boundary at Portion A Photo 12-5 Site boundary at Portion A Taken by ET Taken by ET Photo 12-7 Site boundary at Portion A Photo 12-8 Site boundary at Portion A Taken by ET Taken by ET Photo 12-9 Site boundary at Portion A Photo 12-10 Site boundary at Portion A

Taken by ET

Photo 12-11 Site boundary at Portion A Photo 12-12 Slope Surface Protection at Portion A Taken by ET Taken by ET Photo 12-14 Existing Channel near Car Park of NENT Photo 12-13 Portion A Landfill Taken by ET Taken by ET Photo 12-15 Existing Channel near Car Park of NENT Photo 12-16 Branch of the Existing Channel near the gate of the assess road to WM2

Photo 12-17 Stormwater hole near the gate (Runoff from Car park of NENT Landfill can be flowed directly to the existing channel)

Taken by ET

Photo 12-19 Another side of Car Park of NENT Landfill

Taken by ET

Photo 12-20 Existing Channel near the gate (Runoff from carpark flow to the channel.)

Taken by ET

Photo 12-21 Existing channel (Runoff from carpark flow to the channel.)

Taken by ET

Photo 12-22 Existing channel (Runoff from carpark flow to the channel.)

2023/09/18

Taken by ET

Photo 12-23 Existing channel (Runoff from carpark flow to the channel.)

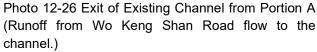

Taken by ET

Photo 12-24 Existing channel (Runoff from carpark flow to the channel.)

Taken by ET

Photo 12-25 Outlet of Stormwater Drain (Runoff from Wo Keng Shan Road can be flowed directly to the existing channel)

Taken by ET

Taken by ET

Existing Channel near Portion C, Outlet of Box Culvert under Portion C & Inlet of Box Culvert under Wo Keng Shan Road

- 12.19 The photo record of the investigation for the Outlet of the Box Culvert under Portion C & the inlet of the Box Culvert under Wo Keng Shan Raod is presented from Photo 12-27 to 12-32.
- 12.20 According to the investigation, the muddy water was found at the existing channel near Portion C (Inlet of the Box Culvert under Wo Keng Shan Road & Outlet of the Box Culvert under Portion C) (See Photo 12-27, 12-28 & 12-30).
- 12.21 It can observed that a high amount of muddy water came from the outlet of the Box Culvert under Portion C (See Photo 12-31).
 - <u>Under Heavy Rain: Potential Source 4 Branch of Natural Stream near Wo Keng Shan and;</u> Under Heavy Rain: Potential Source 5 - Branch of stormwater drain near the boundary of NENT Landfill
- 12.22 In addition, the branches of the natural stream from Wo Keng Shan (See Photo 12-29, Outlet see Photo 12-28) & branch of stormwater drain near the boundary of NENT Landfill (See Photo 12-32, Outlet see Photo 12-30) were found under investigation. But it can viewed that the water quality of the branch of the natural stream from Wo Keng Shan was clear while there is not any runoff that came from the branch of the stormwater drain near the boundary of NENT Landfill. Although the muddy water was not found under investigation, it cannot be excluded that the muddy water may come from two branches under heavy rain.

Photo 12-27 Inlet of Box Cuvlert under Wo Keng Shan Photo 12-28 Existing Channel near Portion C Raod Taken by ET Taken by ET Photo 12-29 Branch of natural stream from Wo Keng Photo 12-30 Outlet of Box Culvert under Portion C Shan Taken by ET Photo 12-32 Branch of stormwater drain near the Photo 12-31 Outlet of Box Culvert under Portion C boundary of NENT Landfill Taken by ET Taken by ET

Portion E3-1

12.23 The photo record of the investigation for the Portion E3-1 are presented from Photo 12-33 to 12-42.

<u>Potential Source 6 – Runoff from Existing Channel near Portion E3-1 & discharge water from the silt</u> removal facilities at Portion E3-1

- 12.24 According to the investigation, the sedimentation basins with Geotextile & rock bunds were broken during extreme weather from 8 to 9 September 2023. The repair of sedimentation basins & rock bunds was conducted by the contractor (See Photo 12-33 to 12-35). It was viewed that the retention time for silts and sediment traps was not enough for silt and sediment deposition (See Photo 12-33 to 12-34).
- 12.25 In addition, the slope surface protection was implemented at part of the exposed slope near the existing channel & silt removal facilities at Portion E3-1 to minimise the high suspended solids runoff created by the slope area near the existing channel (See Photo 12-35).
- 12.26 According to the observation of the silt removal facilities at Portion E3-1, one of the silt removal facilities was broken during the extreme weather from 8 to 9 September 2023. The silt removal facility was repaired by the contractor under investigation. The Contractor has been advised to repair the sedimentation basins, rock bunds & silt removal facilities at Portion E3-1 as soon as possible. Moreover, the Contractor has been recommended to review the design of silt removal facilities whether following the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediments traps should be 5 minutes under maximum flow conditions.
- 12.27 Another silt removal facility at Portion E3-1 was functional. After the check of another silt removal facility at Portion E3-1, it was observed that the muddy water was kept to discharge to the existing channel after being treated by the facility (See Photo 12-41). The condition of the silt removal facility at Portion E3-1 is shown in Photo 12-36 to 12-39). It reflected that the silt removal facilities at Portion E3-1 may involve non-compliance with the requirement of the WPCO Licenses. The Contractor has been recommended to review the capacity of silt removal facilities and sedimentation basins enough to handle the construction runoff under heavy rain to avoid the construction runoff discharge into the existing channel.
- 12.28 Although the discharge water from the silt removal facilities at Portion E3-1 did not affect the water quality in the existing channel between the boundary of the sedimentation basin at Portion E3-1 and the silt curtain near the inlet of the box culvert (upstream of the discharge point), the water quality of the existing channel was muddy (See Photo 12-36, 12-40 & 12-41). The runoff from the existing channel near Portion E3-1 was used for other use by NENT Landfill (See Photo 12-38 & 12-40). It showed that runoff at the existing channel near Portion E3-1 is the potential source. The Contractor has been advised to ensure the boundary of the sedimentation basin near the existing channel is fully blocked to avoid the construction runoff discharge directly to the existing channel (See Photo 12-34). The Contractor has been recommended to consolidate the silt curtain to ensure the effectiveness of the silt curtain.
- 12.29 On the other hand, the Contractor was advised to minimize surface excavation works during the rainy seasons. All exposed earth areas should be completed and vegetated as soon as possible after earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means at Portion E3-1. The Contractor was recommended to pay attention to the control of silty surface runoff at any time including:
 - (i) Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - (ii) Temporarily exposed slope surfaces should be covered by a tarpaulin.
 - (iii) Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.
- 12.30 The stormwater drain near the inlet of box culvert under Portion C was found under the investigation.

 Most of muddy water came from the branch of stormwater drain near the inlet of box culvert under

Portion C. The colour of the muddy water appeared dark brown colour and cannot look the bottom of the existing channel.

12.31 The detail location of the photo record are presented in Figure 3.

Photo 12-33 Repairation of Sedimentation Basins at Portion E3-1

Photo 12-34 Repairation of Sedimentation Basins at Portion E3-1

Taken by ET

Photo 12-35 Portion E3-1

Photo 12-36 Sedimentation Tank at Portion E3-1

Taken by ET

Photo 12-37 Silt Removal Facility at Portion E3-1

Photo 12-38 Silt Removal Facility at Portion E3-1

Taken by ET

Photo 12-39 Silt Removal Facility at Portion E3-1

Photo 12-41 Silt Curtain at Portion E3-1

Photo 12-40 Existing Channel near the entrance of Portion E3-1

Taken by ET

Photo 12-42 Stormwater drain near Inlet of Box Culvert under Portion C

Taken by ET

Taken by ET

Existing Channel & Manhole near Portion B2

- 12.32 The photo record of the investigation for the Existing Channel & Manhole near Portion B2 is presented from Photo 12-43 to 12-48.
- 12.33 According to the investigation, It can observed there are high amount of muddy water flowing to the manhole near Portion B2 (See Photo 12-43 to 12-44). There are two branches of the manhole which are the Branch of the Existing Channel near Portion B2 (Face to the Entrance of Portion B2) (See Photo 12-45 to 12-46) & the Branch of the Existing Channel near Portion B2 (Face to Portion B1 & E4) (See Photo 12-47 to 12-48).
- 12.34 The muddy water came from the Branch of Existing Channel near Portion B2 (Face to Portion B1 & E4). The runoff from the manhole near Portion B2 flow to the stormwater drain near inlet of box culvert under Portion C directly (See Photo 12-42).
- 12.35 The detailed location of the photo record is presented in **Figure 3**.

Taken by ET

Photo 12-43 Manhole near Portion B2 Photo 12-44 Manhole near Portion B2 Taken by ET Taken by ET Photo 12-46 Branch of Existing Channel near Portion Photo 12-45 Branch of Existing Channel near Portion B2 B2 (Face to Entrance of Portion B2) Taken by ET Taken by ET Photo 12-48 Branch of Existing Channel near Portion Photo 12-47 Branch of Existing Channel near Portion B2 (Face to Manhole near Portion B2) B2 (Face to Portion B1 & E4)

Portion B2

12.36 The photo record of the investigation for Portion B2 is presented from Photo 12-49 to 12-56.

<u>Under Heavy Rain: Potential Source 7 – Runoff from Wo Keng Shan Road near Portion B2 & Upstream point near Northing (m): 844586, Easting (m): 835427</u>

12.37 According to the investigation, It can observed there are two branches of Existing Channel near Portion B2 (Face to the Entrance of Portion B2) which one collected the runoff from Wo Keng Shan Road and another one collected from upstream point near Northing (m): 844586, Easting (m): 835427 (See Photo 12-49 to 12-50). Although the muddy water was not found under investigation, it cannot exclude the muddy water may be came from two branches under heavy rain.

<u>Potential Source 8 – Discharge water from the silt removal facilities at Portion B2</u>

- 12.38 It was observed that the measures for control of construction runoff at the entrance at Portion B2 were not enough (See Photo 12-51). The Contractor has been advised that all vehicles and plants should be cleared before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing bay should be provided at the construction site exit of Portion B2. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silly water to public roads and drains.
- 12.39 Although the slope surface protection was implemented by the contractor at Portion B2 (See Photo 12-52), the contractor has been recommended to enhance the measures for the collection of high amounts of surface runoff to silt removal facilities at Portion B2.
- 12.40 After the check of the silt removal facility at Portion B2, it was observed that the muddy water was discharged outside the facility (See Photo 12-54). The condition of the silt removal facility at Portion B2 is shown in Photo 12-53 to 12-56). It reflected that the silt removal facilities at Portion B2 may involve non-compliance with the requirement of the WPCO Licenses. The contractor has been reminded to increase the maintenance & inspection frequency for the Temporary Surface Water Drainage System (TSWDS). Moreover, the Contractor has been recommended to review the design of efficient silt removal facilities and follow the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediments traps should be 5 minutes under maximum flow conditions.
- 12.41 The detailed location of the photo record is presented in **Figure 3**.

Photo 12-49 Branch of Existing Channel near Portion B2 (Face to Manhole near Portion B2)

Taken by ET

Photo 12-50 Wo Keng Shan Road near the Entrance at Portion B2

Taken by ET

(Construction Phase) Photo 12-51 Entrance at Portion B2 Photo 12-52 Slope Surface Protection at Portion B2 Taken by ET Taken by ET Photo 12-53 Silt Removal facility at Portion B2 Photo 12-54 Silt Removal facility at Portion B2

Taken by ET

Photo 12-56 Sedimentation Tank at Portion B2

Portion E4

12.42 The photo record of the investigation for Portion E4 is presented from Photo 12-57 to 12-75.

Potential Source 9 – Wheel washing water from the site entrance at Portion E4

- 12.43 According to the investigation, slope surface protection at the part of the exposed slope at Portion E4 was implemented by contractor (See Photo 12-57). However, the condition of the main assess road at Portion E4 was the presence of a high risk of causing a high concentration of muddy water under heavy rain (See Photo 12-58). The Contractor has been advised to pave the main assess road with concrete, bituminous materials, hardcores or metal plates to minimise above risk and establish suitable channels to collect the runoff from the assess road and the slope at Portion E4 final to silt removal facilities for treatment.
- 12.44 Two sedimentation basins at Portion E4 were established by the contractor (See Photo 12-59 to 12-60). The sedimentation basins mainly collected the construction runoff from the high elevation at Portion E4. After flowing through two sedimentation basins, the construction runoff has been treated by two silt removal facilities at Portion E4 (See Photo 12-61 to 12-64).
- 12.45 It was observed that the discharge water from silt removal facilities at Portion E4 was clear, and then the discharge water was used for wheel washing at the wheel washing facility (See Photo 12-65). Although the wheel washing facility at the entrance of Portion E4 and the paved assess road was established by the contractor, the high pressure water jet and speed limit sign were not found under investigation. The Contractor has been recommended to improve the design of the entrance at Portion E4 which includes the high pressure water jet, and speed limit sign at the wheel washing and consider to increase the speed bump at the entrance of Portion E4.
- 12.46 Due to the high amount of loaded dump trucks using the wheel washing bay at Portion E4 (See Photo 12-66), and lack of the traffic control at the entrance of Portion E4, a high amount of muddy water which mixed with the runoff from upstream area (including Portion B1-2 & Portion E2(See Photo 12-70)) flowed from the TSWDS final to the manhole near Portion B2 directly (High amount of loaded dump trucks without the adequate design of wheel washing facility & traffic control left the entrance of Portion E4 which cause that the muddy water from the wheel washing facility at Portion E4 flowed to the TSWDS via the movement from loaded dump trucks.) (See Photo 12-66 to 12-75).
- 12.47 The contractor has been advised to increase the sedimentation tank & silt removal facility at the entrance of Portion E4 (Location near Photo 12-74) and establish the proper channel to collect the runoff from the wheel washing final to the silt removal facility for treatment to minimise the load of the silt removal facilities at Portion B2 (To treat high concentration of muddy water from Portion E4).
- 12.48 In addition, the Contractor has been recommended to revise the design of TSWDS to avoid the untreated runoff directly flowing to the manhole near Portion B2 final to the stormwater drain near Inlet of Box Culvert under Portion C.
- 12.49 The detailed location of the photo record is presented in **Figure 3**.

Photo 12-57 Slope Surface Protection at Portion E4

Taken by ET

2023/09/18

Taken by ET

Photo 12-59 Sedimentation Basin at Portion E4

Photo 12-60 Sedimentation Basin at Portion E4

Taken by ET

Taken by ET

Photo 12-61 Silt Removal facility at Portion E4

Photo 12-62 Silt Removal facility at Portion E4

Taken by ET

Taken by ET

Taken by ET

Photo 12-63 Silt Removal facility at Portion E4 Photo 12-64 Silt Removal facility at Portion E4 Taken by ET Taken by ET Photo 12-65 Wheel Washing Facility at Portion E4 Photo 12-66 Wheel Washing Facility at Portion E4 Taken by ET Taken by ET Photo 12-67 TSWDS at Entrance of Portion E4 Photo 12-68 TSWDS at Entrance of Portion E4

Photo 12-75 TSWDS at Entrance of Portion E4

Taken by ET

13. Further Action taken by Contractor

13.1 After the investigation and audit 18 September 2023, the related rectification work are conducted by the contactor. The detailed rectified actions & photo records will be presented in further report.

14. Additional Surface Water Monitoring Results

14.1 The Additional Surface WQM was conducted on 28 September 2023 at WM2 and GR3 (EPD Monitoring Location). It measured no exceedance at WM2 and no high turbidity level at GR3. The detailed layout of Surface WQM location with the related streams are presented in **Figure 1**. Details monitoring of results are shown in **Table 14.1**.

Table 14.1 Surface WQM Results on 28 September 2023

Monitoring Location	WM2			GR3		
Date	28 September 2023					
Time	08:08			08:28		
Weather		Fine				
Water Depth (m)	1.0			1.0		
Water Flow (L/s)	1.0			1.0		
Water Temperature (°C)	27.2	Action Level	Limit Level	27.0		
DO (mg/L)	7.8	<5.0	<4.0	7.6		
рН	7.5	>7.6	>7.7	7.4		
Turbidity (NTU)	8.8	>108.3	>108.9	13.1		
SS (mg/L)	5.5	>94.5	>94.7	4.9		

Remarks: "TBC" equal to To Be Confirm

15. Conclusion

- 15.1 Based on the surface water monitoring results, construction activities & related mitigation measures, weather record, environmental mitigation implementation status, joint weekly site inspections on 4, 11 & 18 September 2023 and additional site investigation / audit on 18 September 2023, the potential source of impact are listed below:
 - 1. Potential Source 1 Existing Channel from Portion A (Runoff from Wo Keng Shan Road near Northing (m): 844511, Easting (m): 835655, discharge water from the silt removal facilities at Portion A & other runoff from stormwater drain)
 - 2. Potential Source 2 Runoff from NENT Landfill Carpark, Water Tank & other stormwater drains
 - 3. Potential Source 3 Outlet of stormwater drain (Runoff from Wo Keng Shan Road can be flowed directly to the existing channel)
 - 4. Potential Source 4 Branch of Natural Stream near Wo Keng Shan
 - 5. Potential Source 5 Branch of stormwater drain near the boundary of NENT Landfill
 - 6. Potential Source 6 Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1
 - 7. Potential Source 7 Runoff from Wo Keng Shan Road near Portion B2 & Upstream point near Northing (m): 844586, Easting (m): 835427
 - 8. Potential Source 8 Discharge water from the silt removal facilities at Portion B2
 - 9. Potential Source 9 Wheel washing water from the site entrance at Portion E4
- 15.2 The potential source of impact under non-rainy weather are listed below:
 - Potential Source 6 Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1
 - 2. Potential Source 8 Discharge water from the silt removal facilities at Portion B2
 - 3. Potential Source 9 Wheel washing water from the site entrance at Portion E4
- In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions should be conducted by the contractor as soon as possible.

16. Recommendations/ Mitigation Measures/ Actions if necessary

In summary the results of investigation, the high turbidity concentration muddy water may involve wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 under the investigation. To avoid the potential impact of construction runoff from the project, some mitigation measures are recommended & reminded to implemented & review by the contractor. The detail mitigation measures are listed below:

Clearing work of deposited silt and grit near surface WQM location WM2

 The Contractor has been recommended to establish the fixed silt curtain near the Surface WQM Location WM2 to minimise the impact of the clearing work of deposited silt and grit when the clearing work is conducted.

Portion A

2. The Contractor has been recommended to enhance strengthen the slope surface protection area for long term and cover the exposed slope at non-construction working period for short term at Portion A.

- The Contractor was advised that the channels should be established near the site boundary of earth bunds and the low elevation of the slope. The construction runoff should be collected by the channels to silt removal facilities for treatment.
- 4. The Contractor has been reminded that the precautions should be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms area in accordance with Appendix A2 of ProPECC PN1/94.

Portion E3-1

- 5. The Contractor has been advised to repair the sedimentation basins, rock bunds & silt removal facilities at Portion E3-1 as soon as possible.
- 6. The Contractor has been recommended to review the design of silt removal facilities whether following the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediments traps should be 5 minutes under maximum flow conditions.
- 7. The Contractor has been recommended to review the capacity of silt removal facilities and sedimentation basins enough to handle the construction runoff under heavy rain to avoid the construction runoff discharge into the existing channel.
- 8. The Contractor has been advised to ensure the boundary of the sedimentation basin near the existing channel is fully blocked to avoid the construction runoff discharge directly to the existing channel.
- 9. The Contractor has been recommended to consolidate the silt curtain to ensure the effectiveness of the silt curtain.
- 10. The Contractor was advised to minimize surface excavation works during the rainy seasons. All exposed earth areas should be completed and vegetated as soon as possible after earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means at Portion E3-1.
- 11. The Contractor was recommended to pay attention to the control of silty surface runoff at any time including:
 - (i) Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - (ii) Temporarily exposed slope surfaces should be covered by a tarpaulin.
 - (iii) Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.

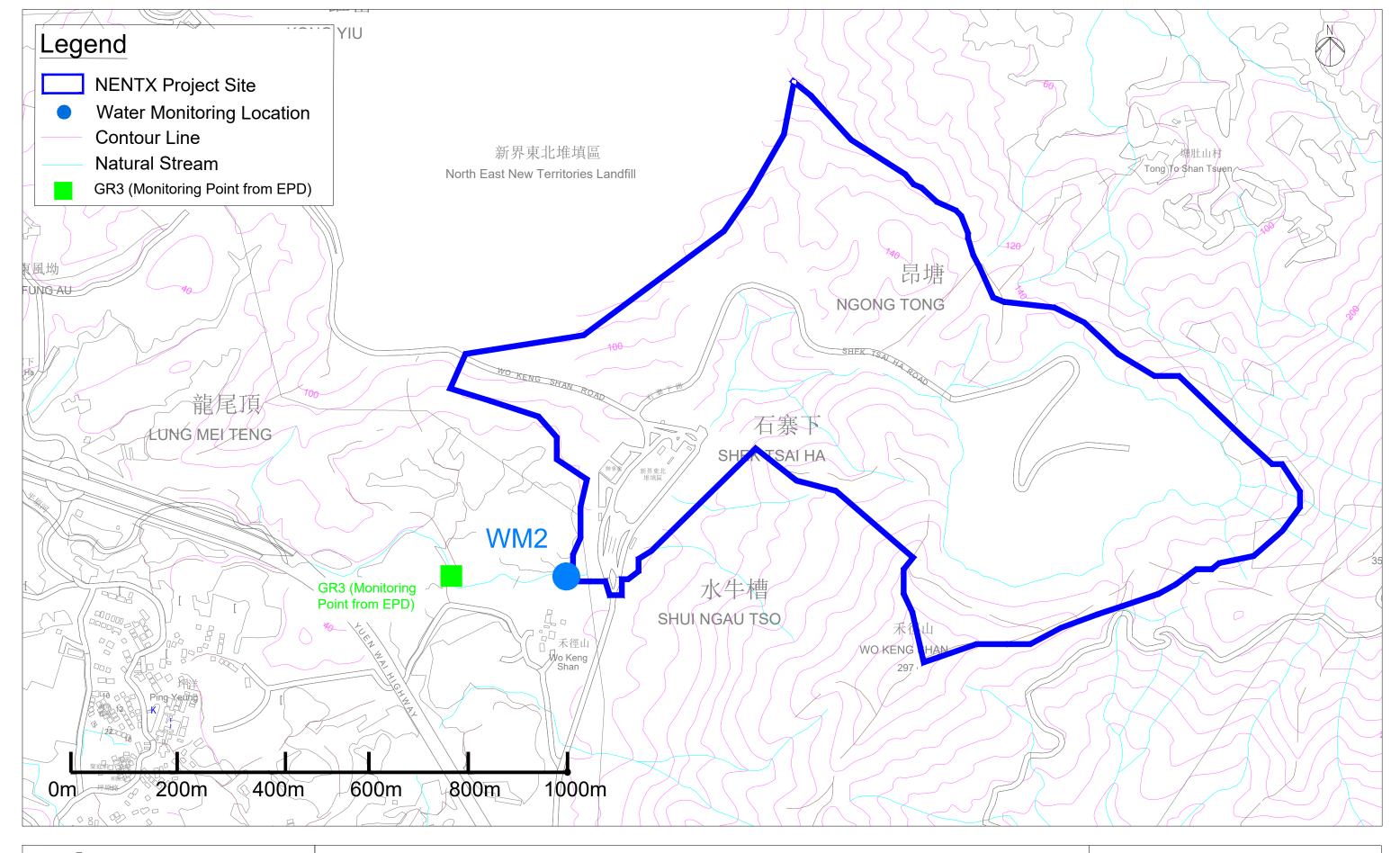
Portion B2

- 12. The Contractor has been advised that all vehicles and plants should be cleared before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing bay should be provided at the construction site exit of Portion B2. The section of access road leading to, and exiting from, the wheel wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silly water to public roads and drains.
- 13. The Contractor has been recommended to enhance the measures for the collection of high amounts of surface runoff to silt removal facilities at Portion B2.
- 14. The Contractor has been reminded to increase the maintenance & inspection frequency for the Temporary Surface Water Drainage System (TSWDS).
- 15. The Contractor has been recommended to review the design of efficient silt removal facilities and follow the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediments traps should be 5 minutes under maximum flow conditions.

Portion E4

- 16. The Contractor has been advised to pave the main assess road with concrete, bituminous materials, hardcores or metal plates to minimise above risk and establish suitable channels to collect the runoff from the assess road and the slope at Portion E4 final to silt removal facilities for treatment.
- 17. The Contractor has been recommended to improve the design of the entrance at Portion E4 which includes the high pressure water jet, and speed limit sign at the wheel washing and consider to increase the speed bump at the entrance of Portion E4.
- 18. The Contractor has been advised to increase the sedimentation tank & silt removal facility at the entrance of Portion E4 (Location near Photo 12-74) and establish the proper channel to collect the runoff from the wheel washing final to the silt removal facility for treatment to minimise the load of the silt removal facilities at Portion B2 (To treat high concentration of muddy water from Portion E4).
- 19. The Contractor has been recommended to revise the design of TSWDS to avoid the untreated runoff directly flowing to the manhole near Portion B2 final to the stormwater drain near Inlet of Box Culvert under Portion C.

Others

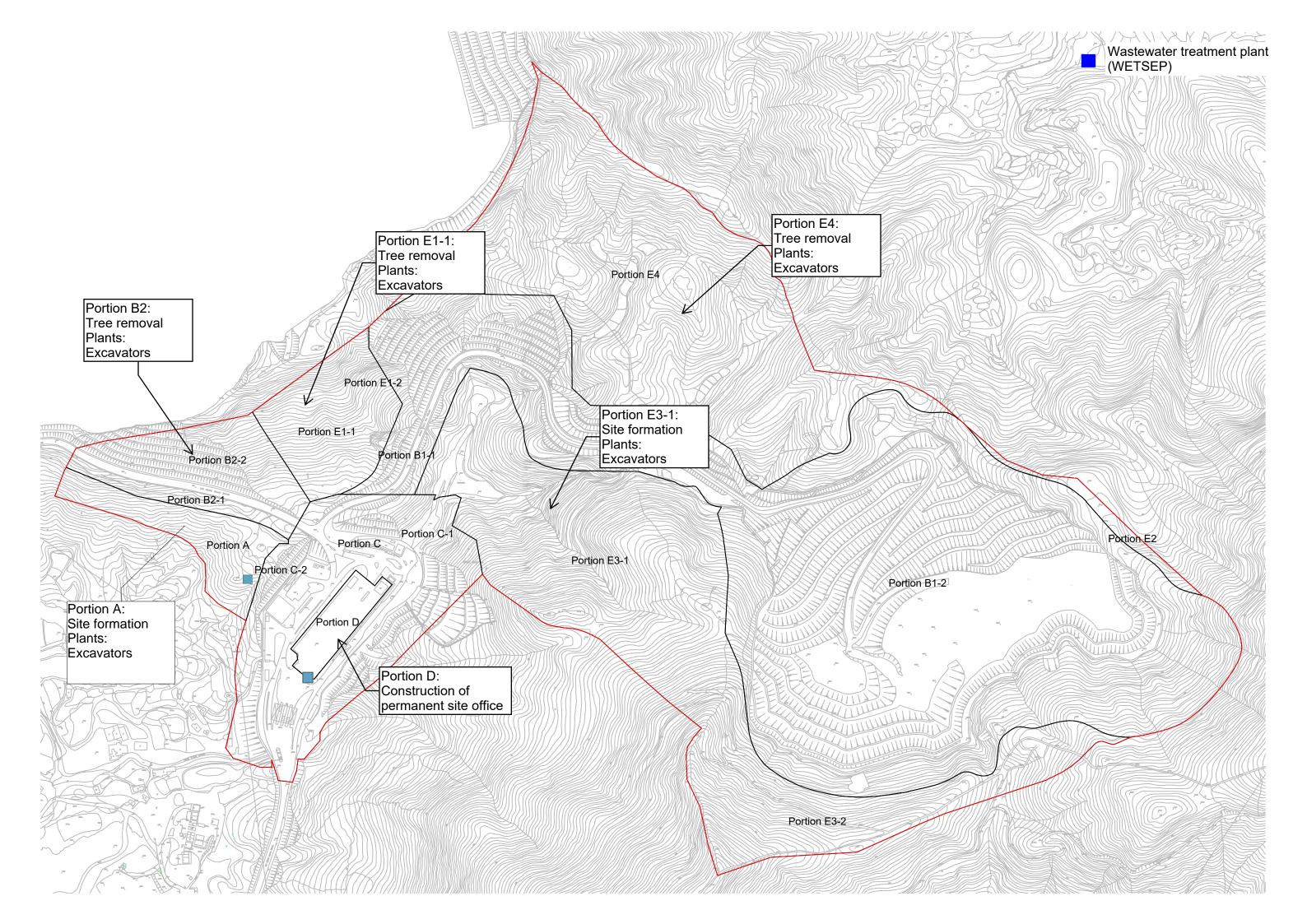

- 20. The Contractor has been reminded to keep reviewing whether the capacity of silt removal facilities and sedimentation basins are enough to handle the construction runoff under heavy rain to avoid the construction runoff discharge into the existing channel.
- 21. The Contractor has been recommended increase the maintenance frequency of the silt removal facilities after the heavy rain.
- 22. The Contractor has been reminded follow the requirements of EP and FEP conditions strictly, in particular condition 1.7 of EP & FEP, EP condition 2.15 (a) and (b) and FEP condition 2.13(a) and (b), to avoid any non-compliance of EP and FEP.
- 23. The Contractor was recommended to pay attention to the control of silty surface runoff at any time including:
 - (iv) Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - (v) Temporarily exposed slope surfaces should be covered by a tarpaulin.
 - (vi) Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.

Also, the contractor has been reminded to maintain and supervise continuously related mitigation measures at the south boundary to ensure the effectiveness of the related measures, especially if the rainstorm is imminent or forecast, during or after rainstorms & to implement the mitigation measures such as the provision of the temporary surface water drainage system to manage runoff, hydroseeding to minimise slope surface runoff and other measures specified and required in the EIA Report, the EM&A Manual and the EP/FEP.

Prepared by	:	Keith Chau	Date :	3 October 2023	
Reviewed by	:	Fredrick Leong	Date :	3 October 2023	

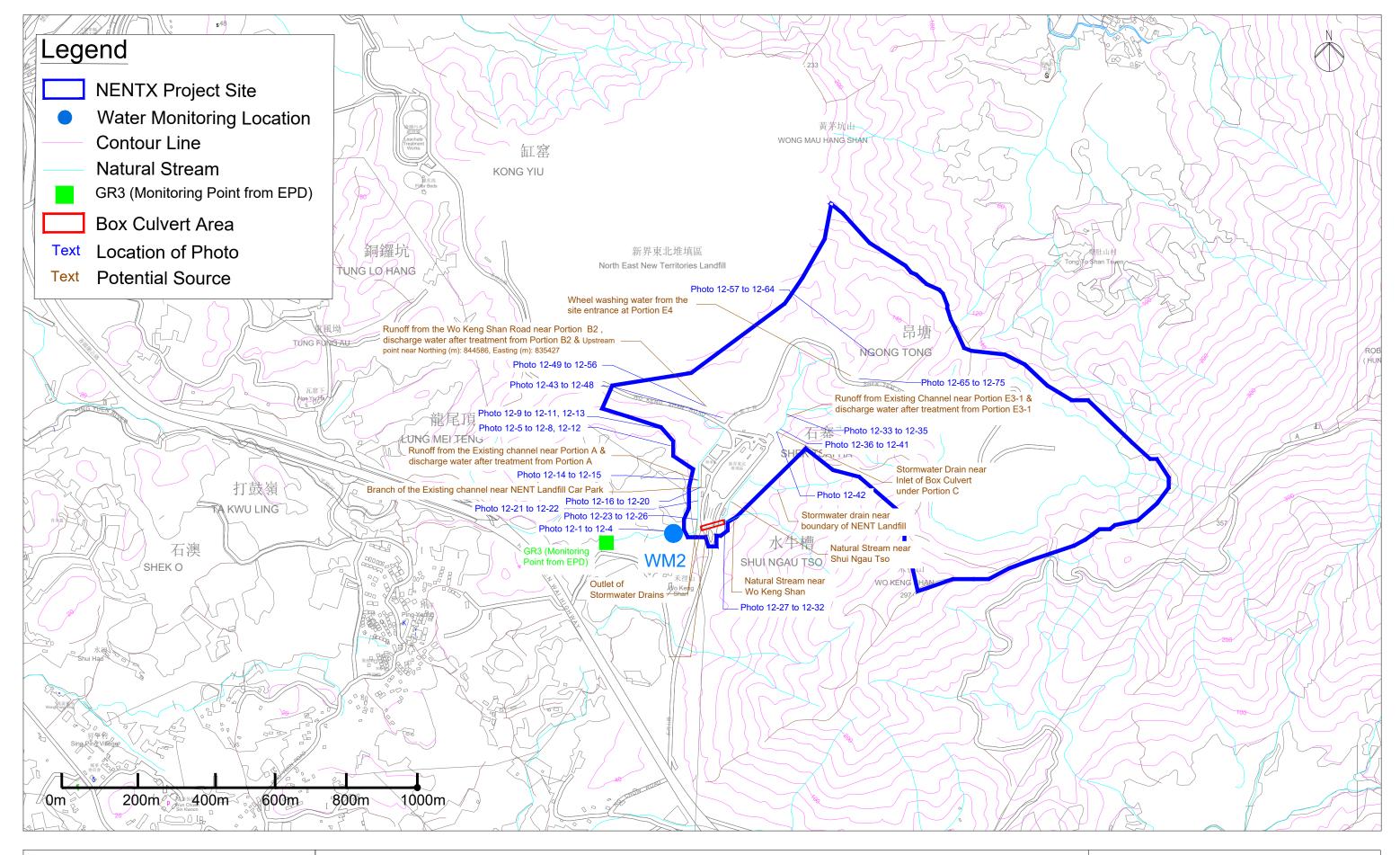
Figure 1

Layout Plan of Environmental Complaint on 14 September 2023



North East New Territories (NENT) Landfill Extension Layout Plan of the Environmental Complaint

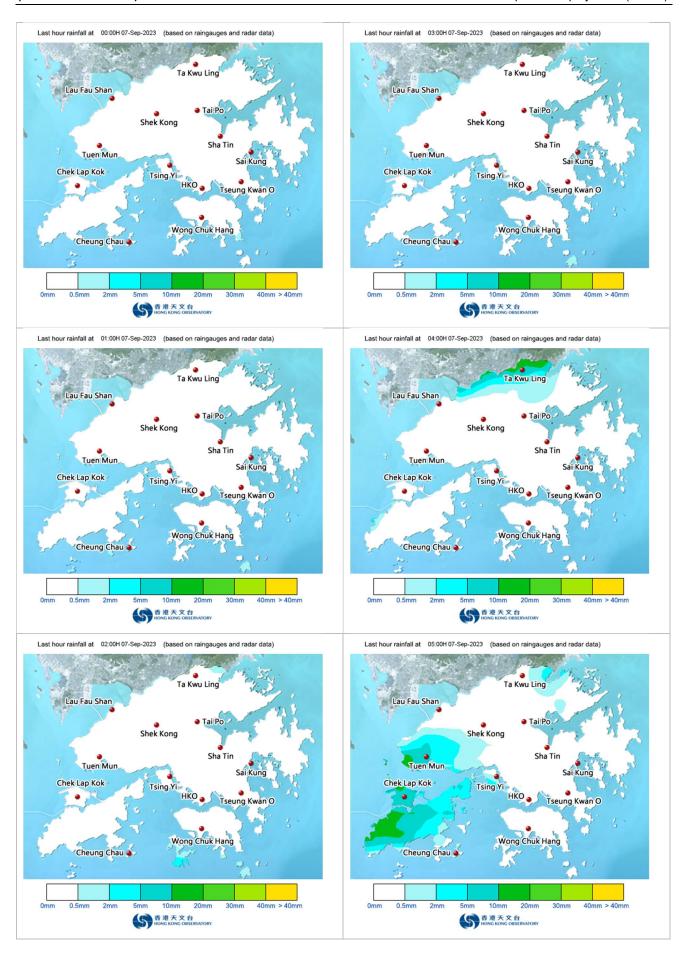
Figure 1

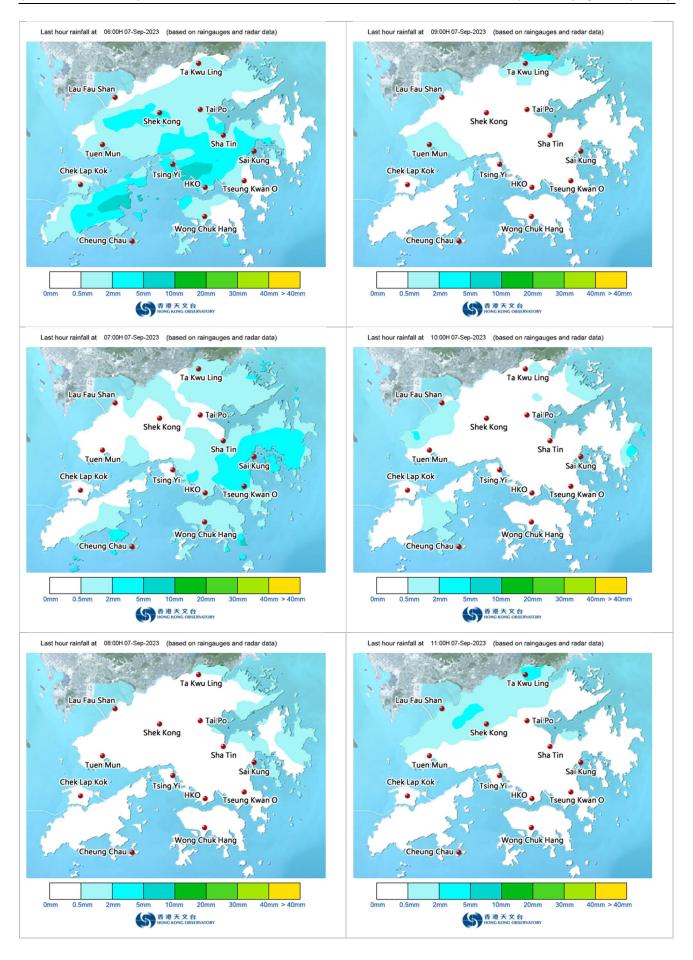

Figure 2

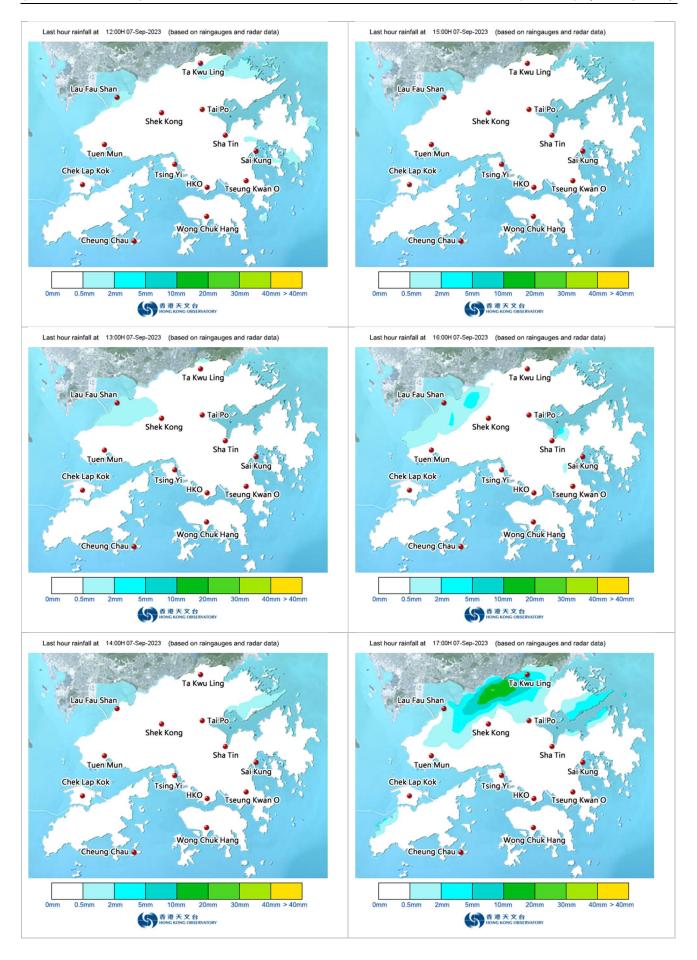
Layout Plan of Construction Activities on 11 September 2023

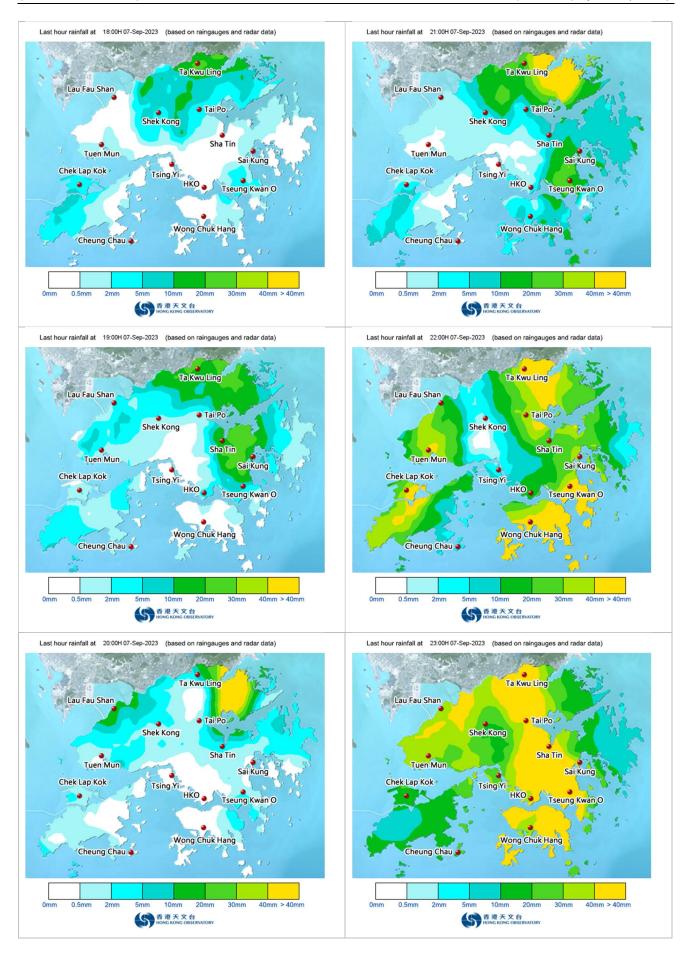
Figure 3

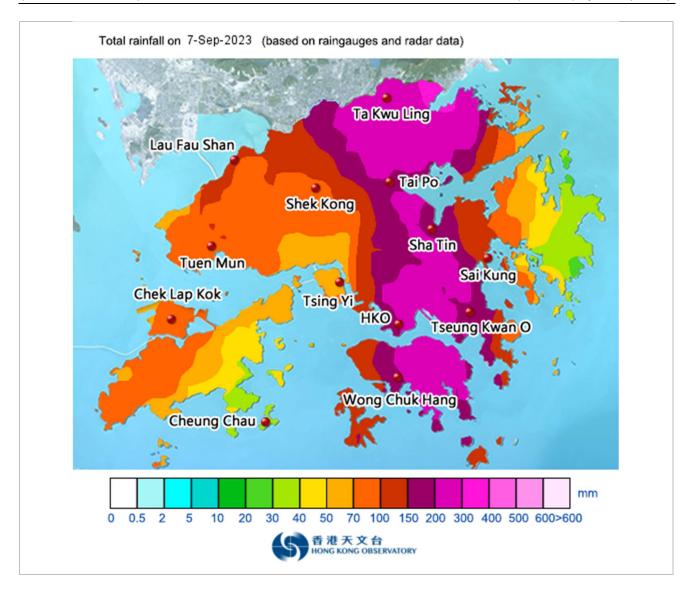
Layout Plan of Location of Photo Record and Potential Sources

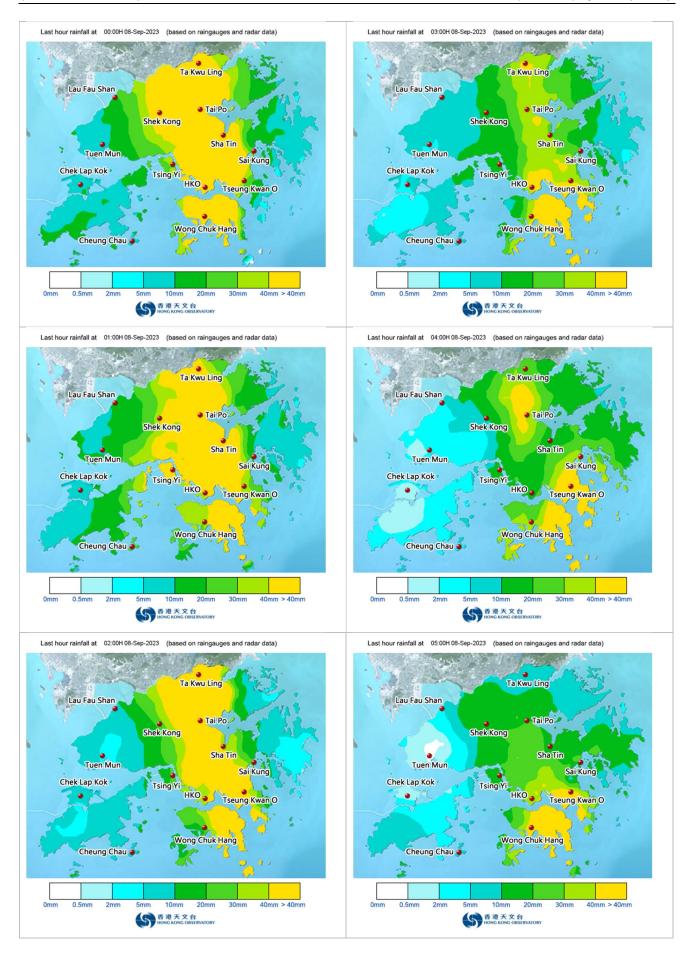


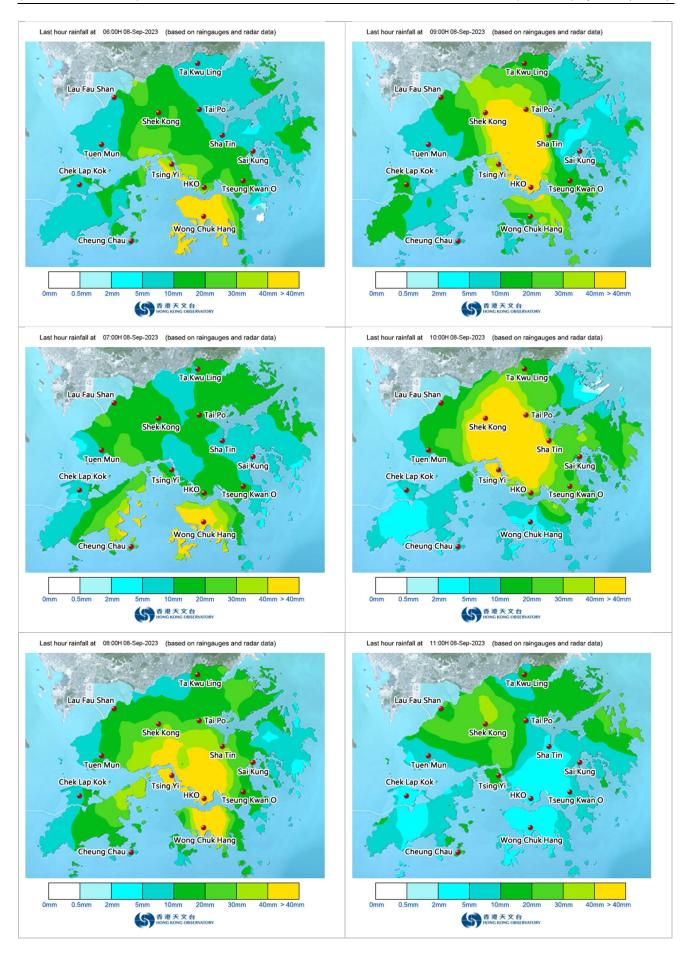


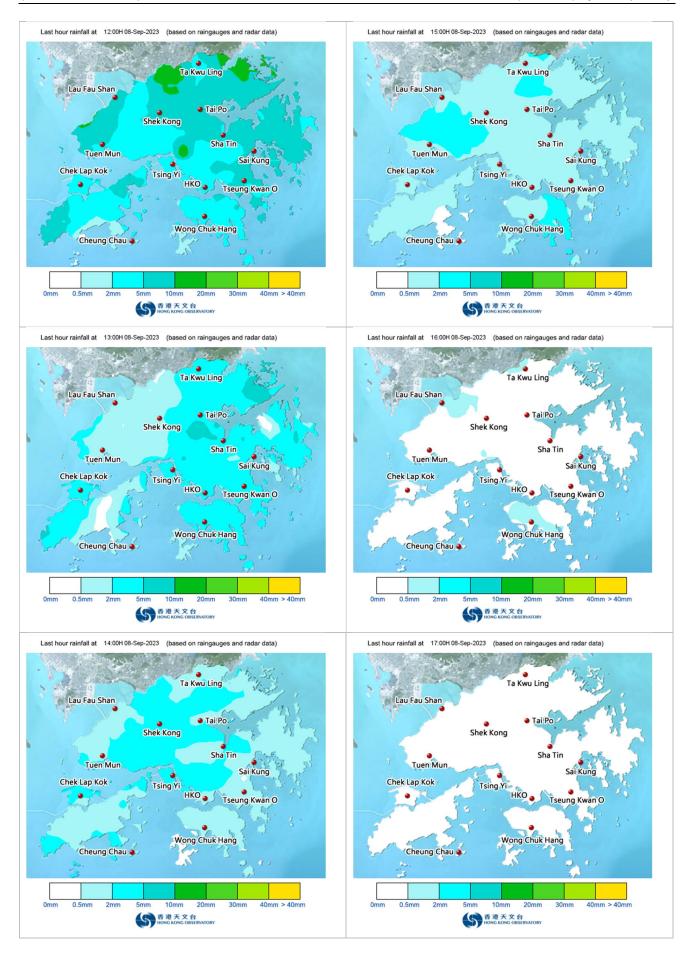

North East New Territories (NENT) Landfill Extension Layout Plan of Location of Photo Record & Potential Sources

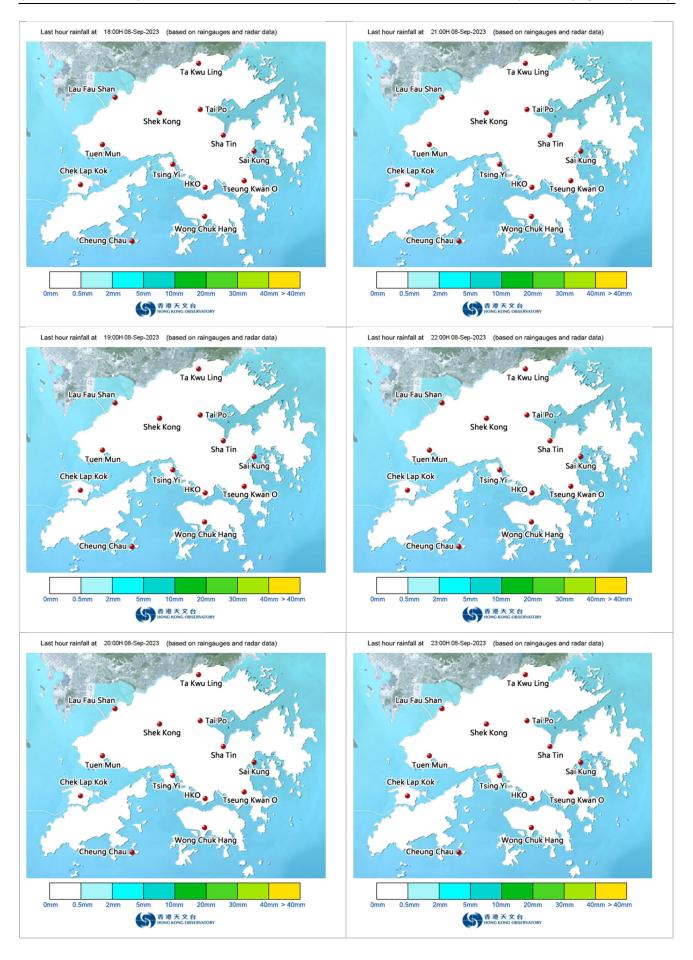

Appendix A

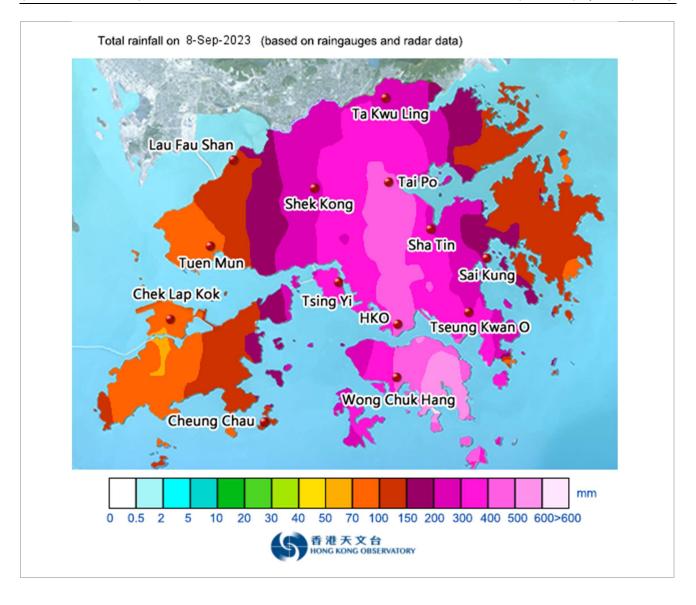

Daily Rainfall Distribution from HKO

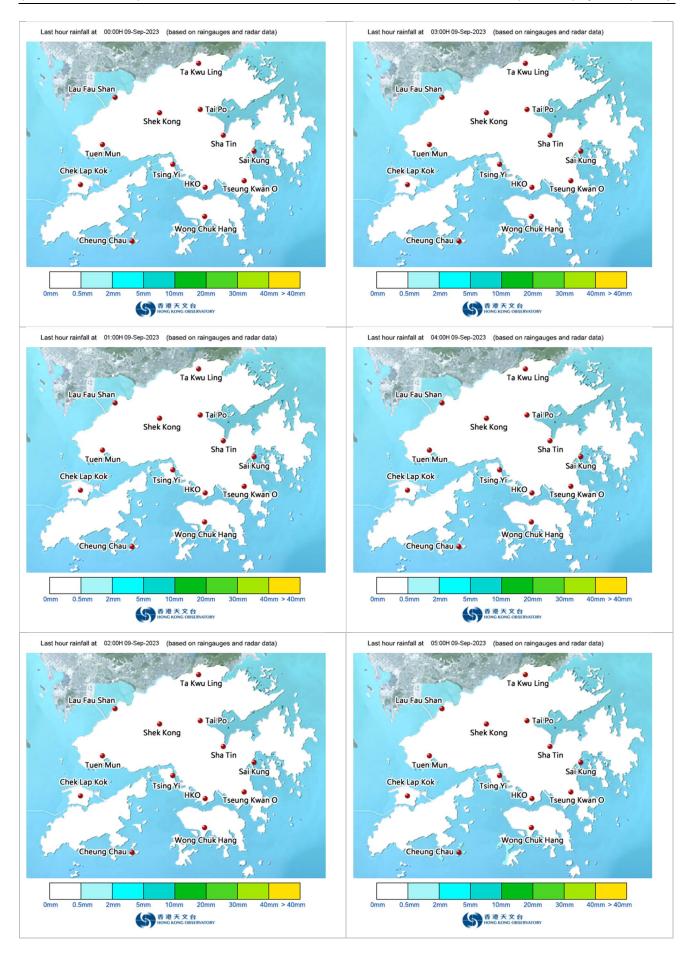


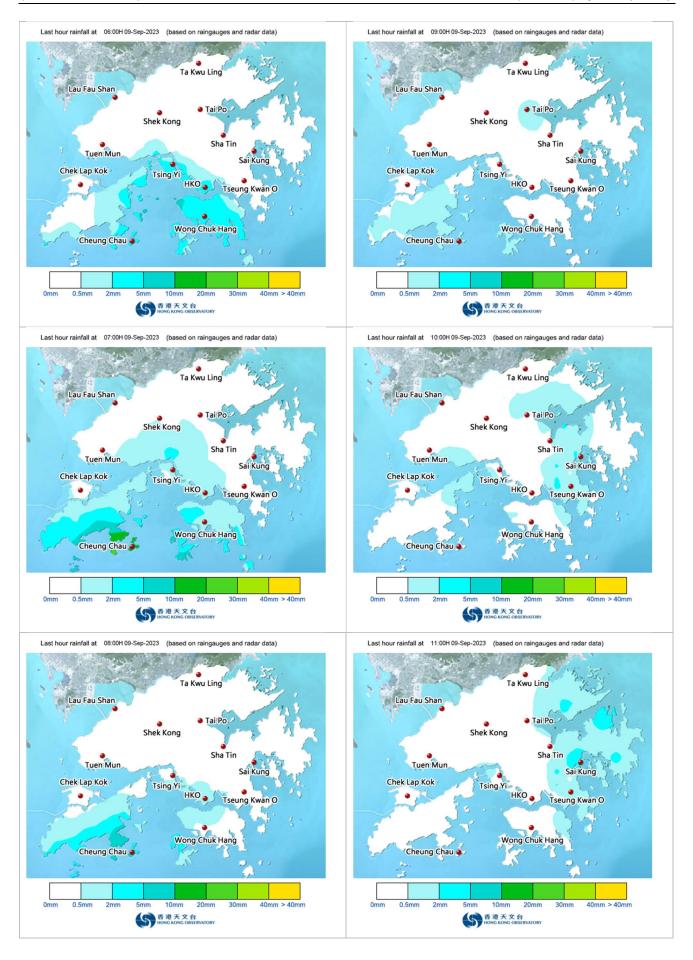


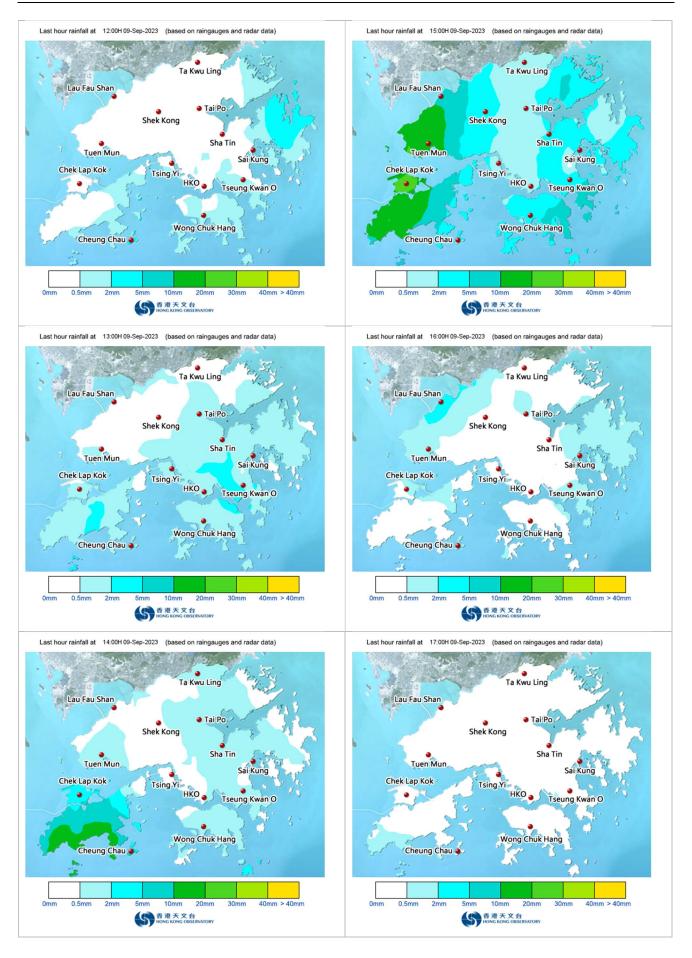


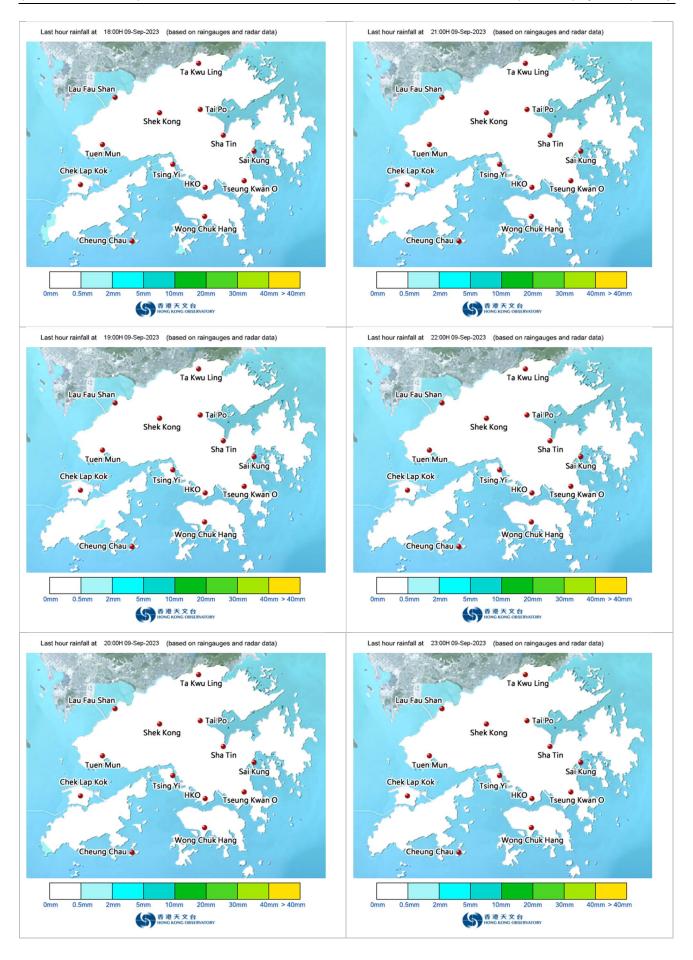


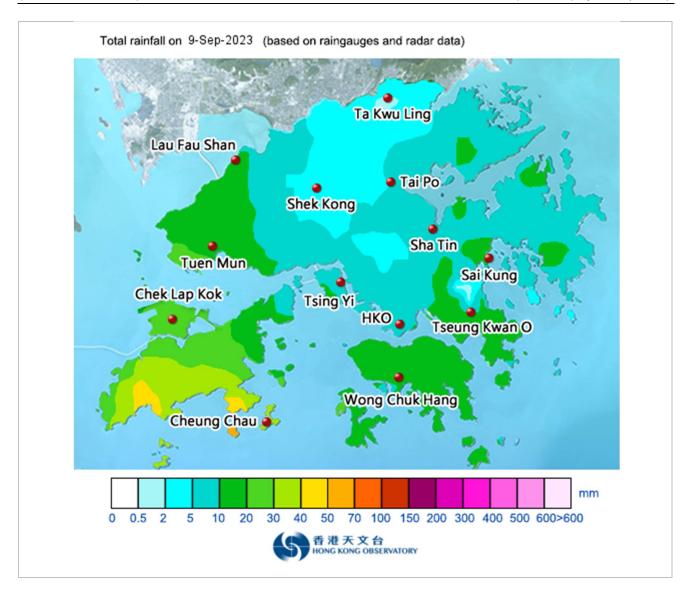


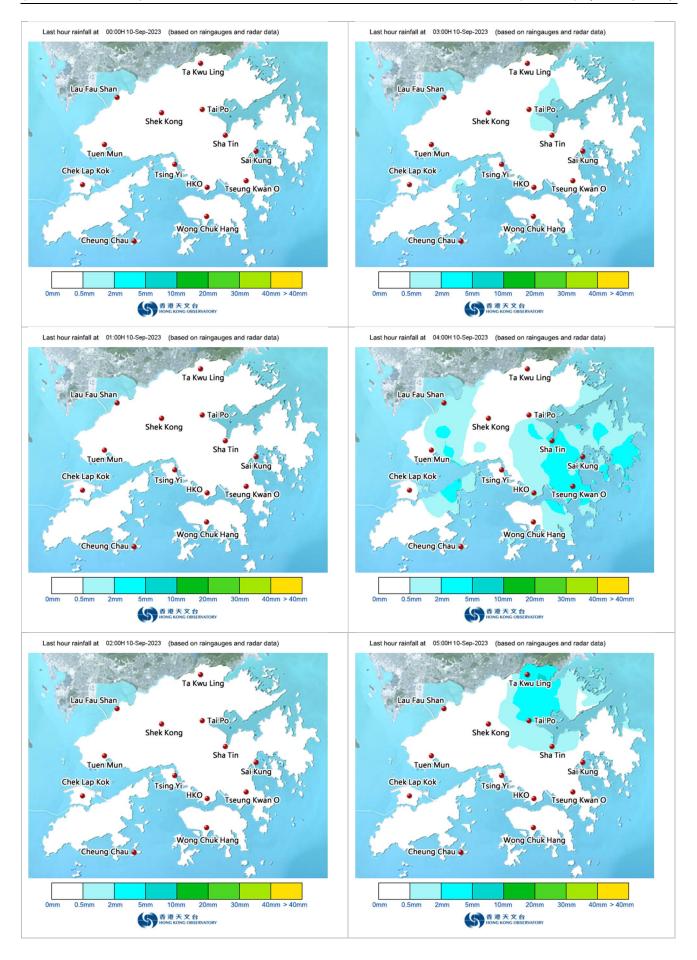


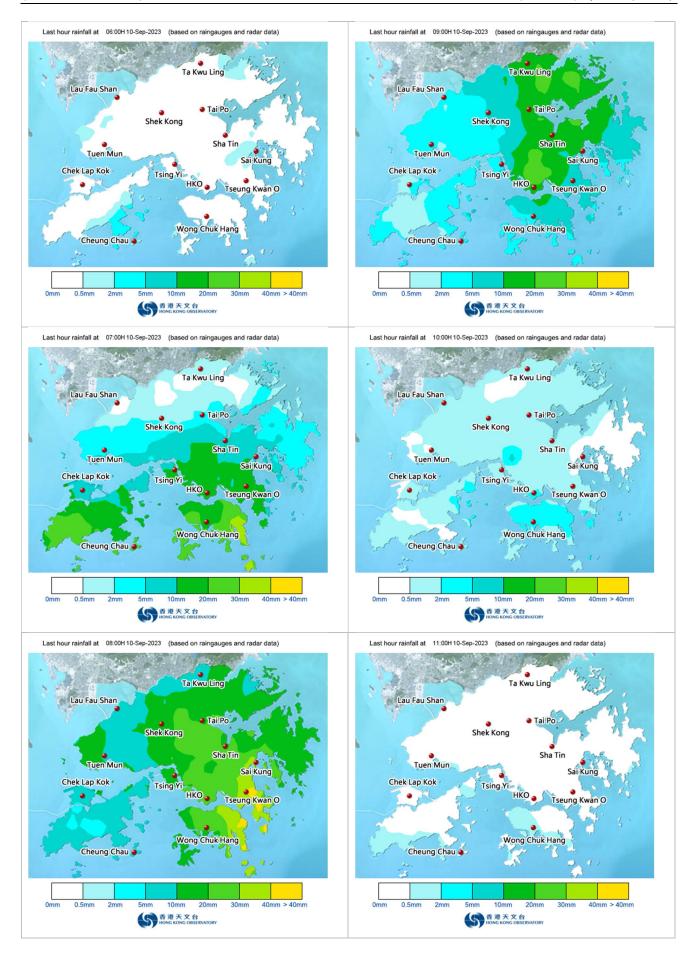


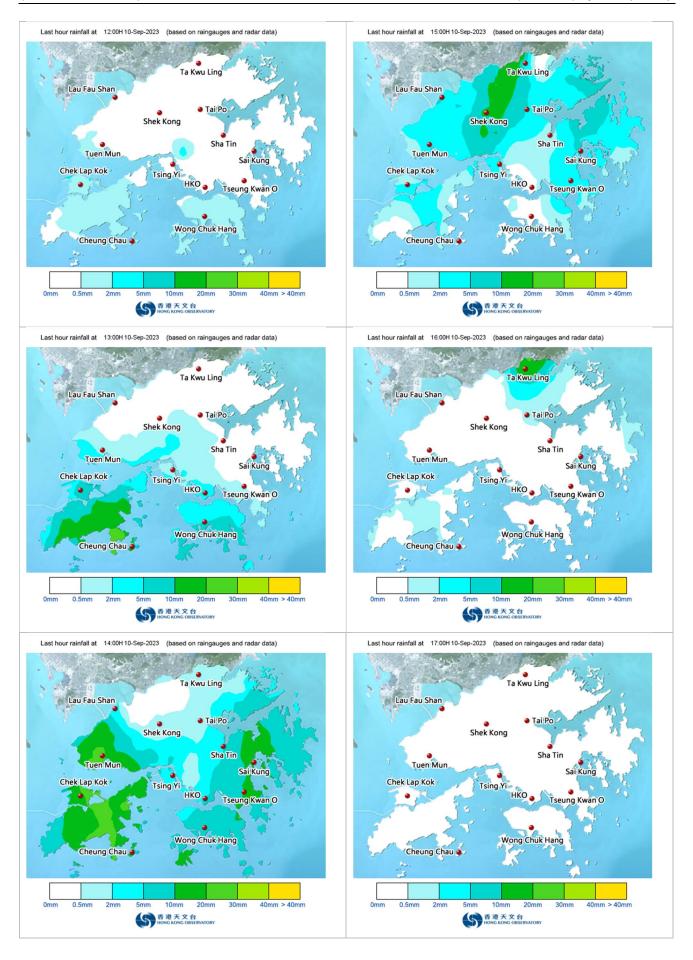


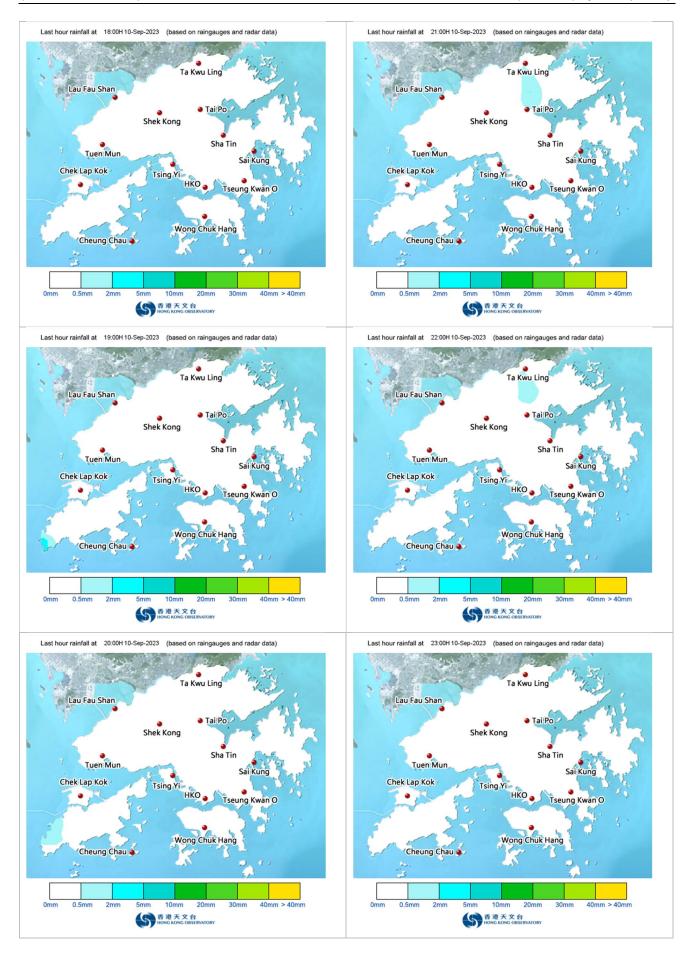


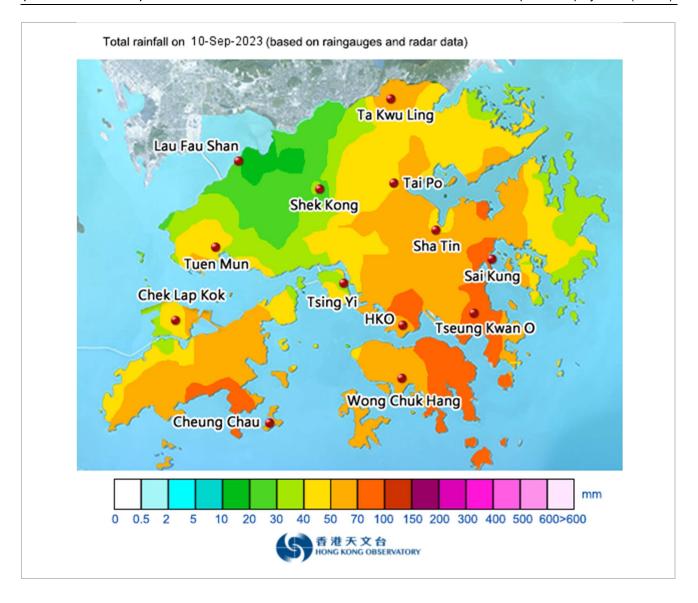


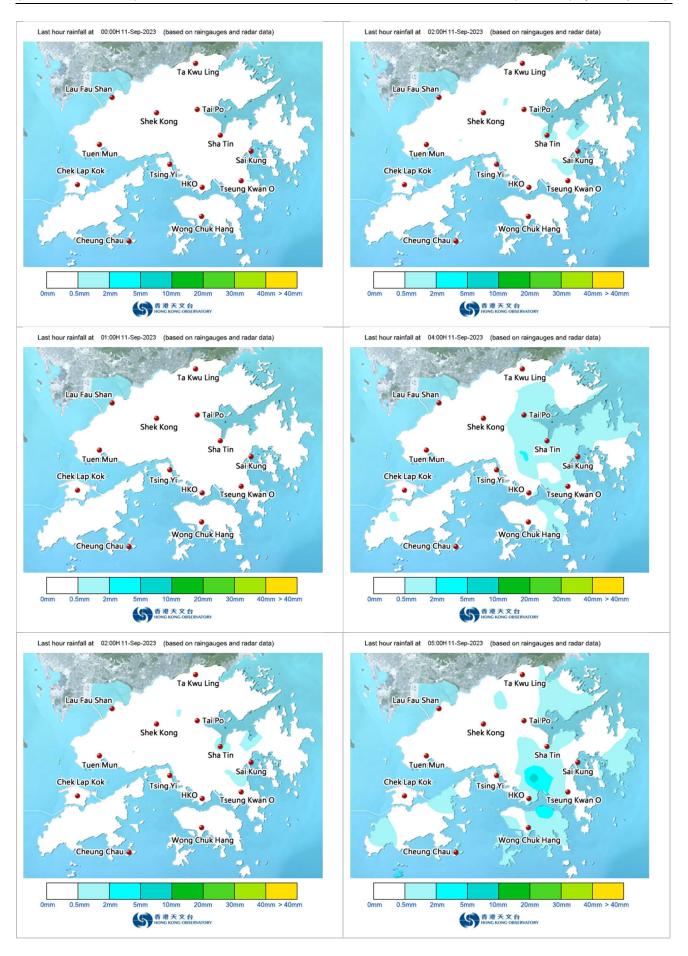


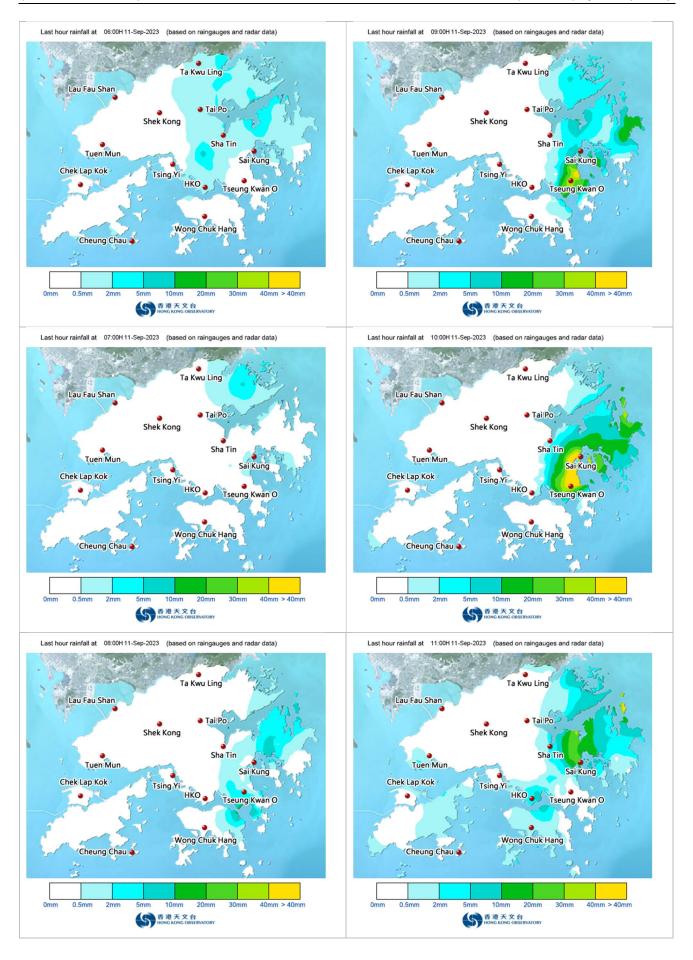


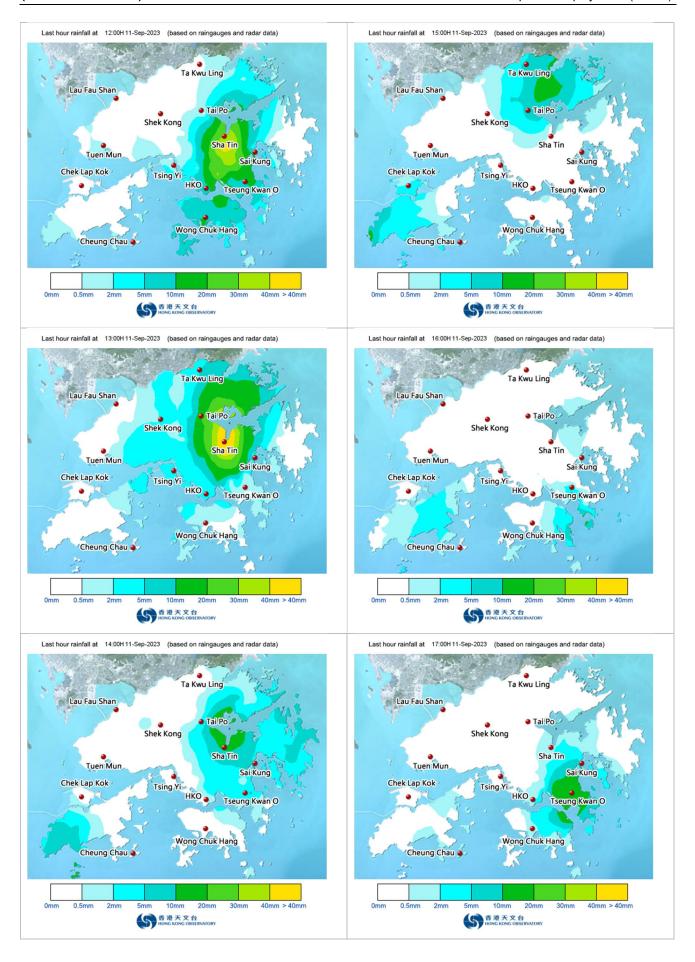


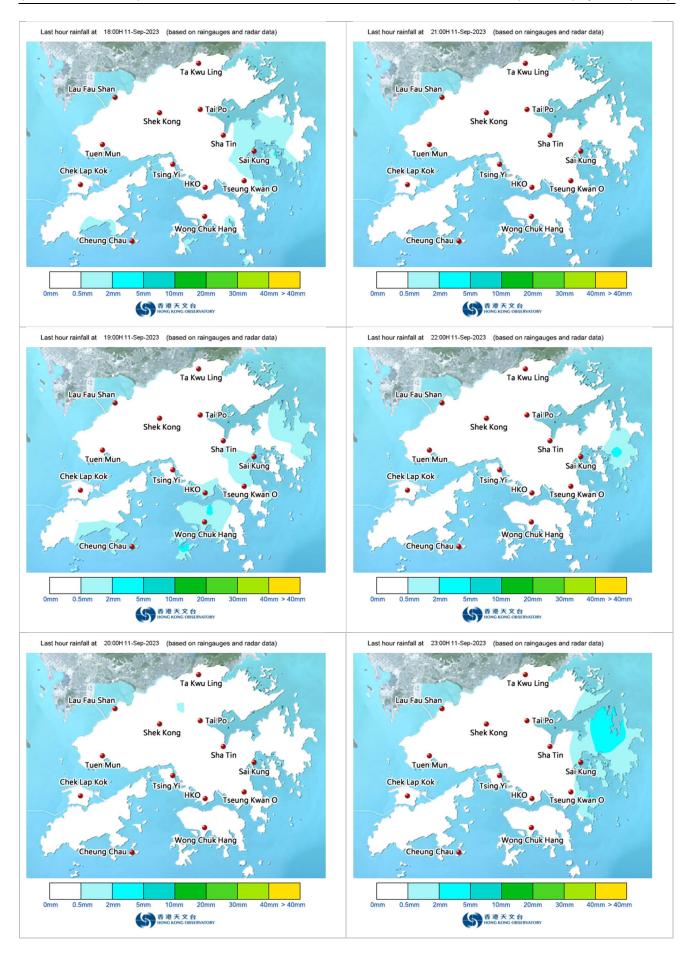


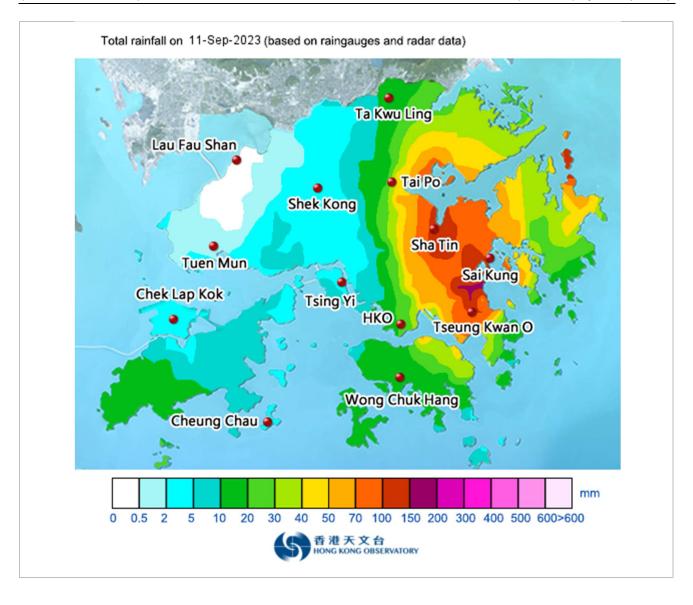


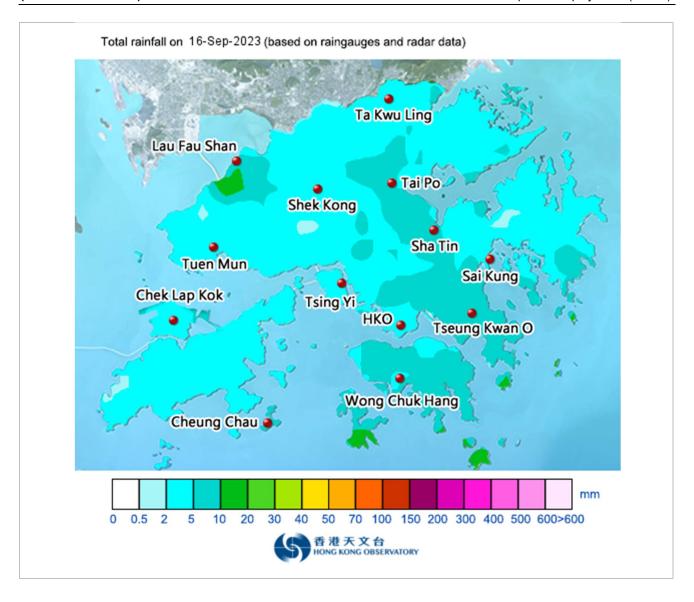


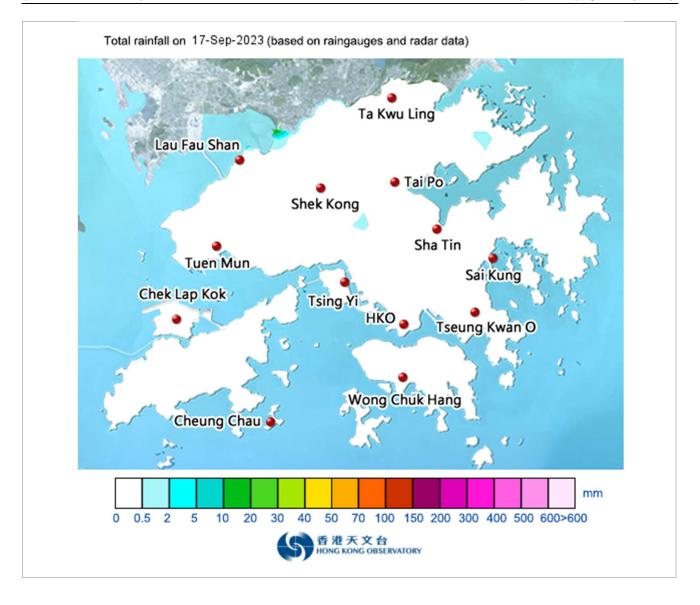


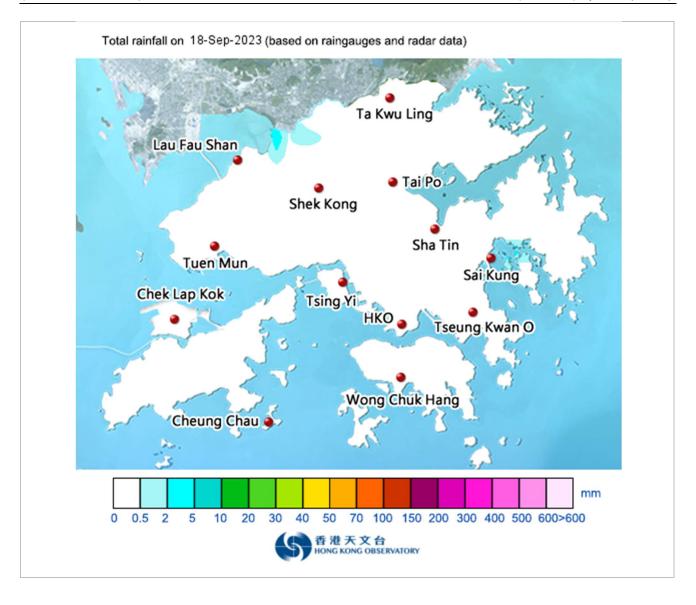


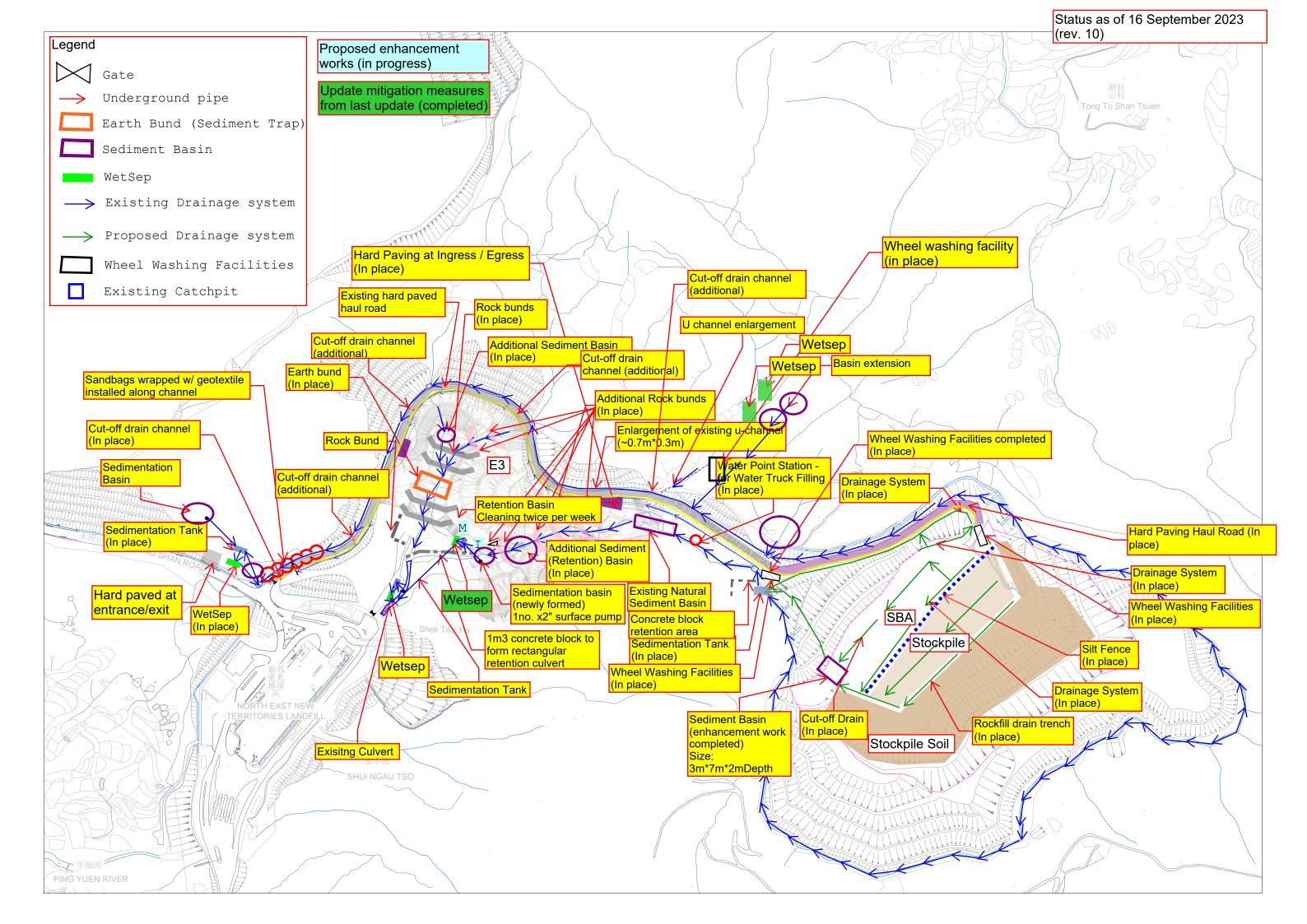


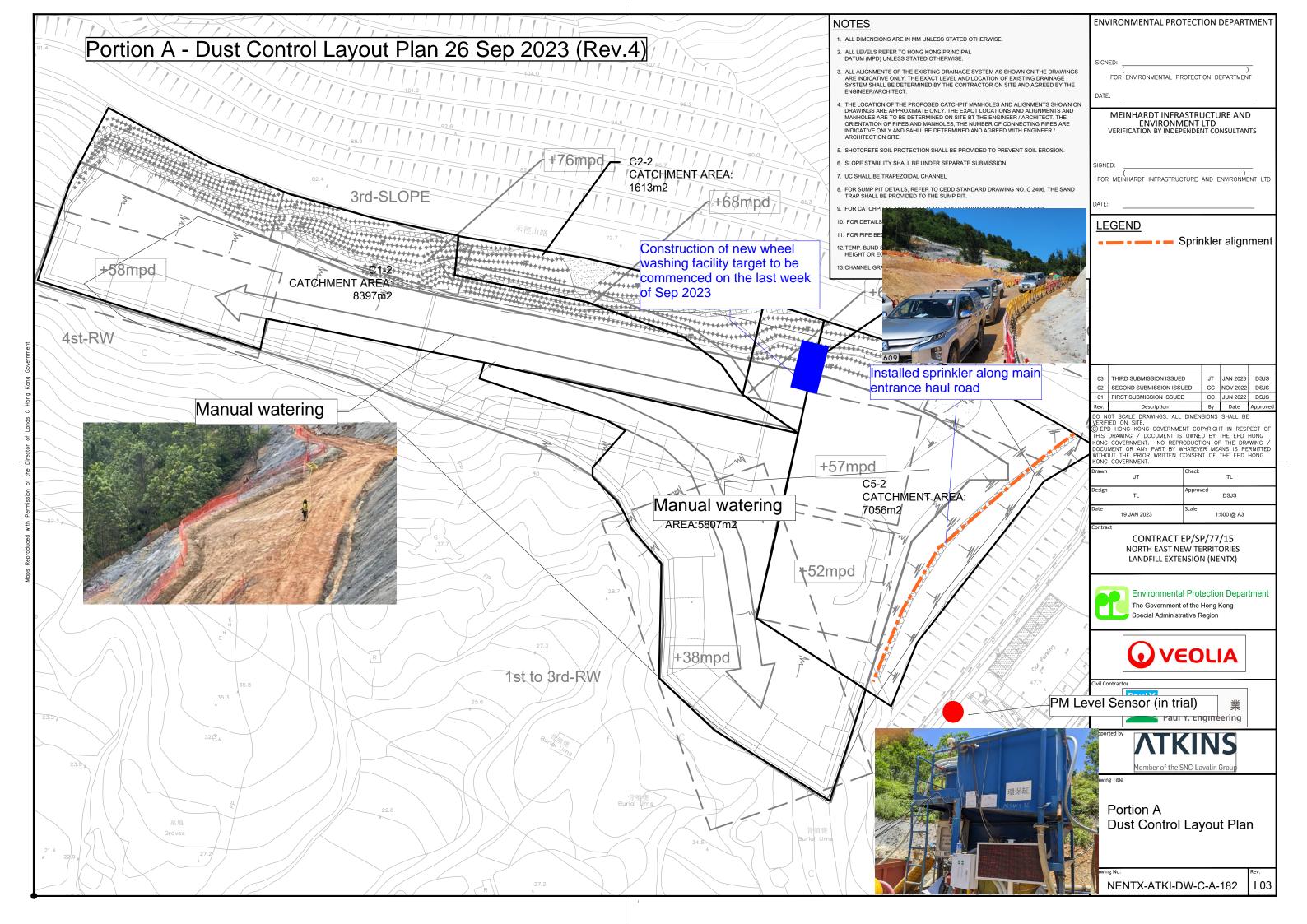












North East New Territories (NENT) Landfill Extension	Investigation No. <u>0006-20230914</u>
(Construction Phase)	Environmental Complaint/ Enquiry Form (Rev. 0)
Appendix B	
Temporary Surface Water Drainage System (TSWDS)	

Appendix Q Implementation Status on Environmental Mitigation Measures

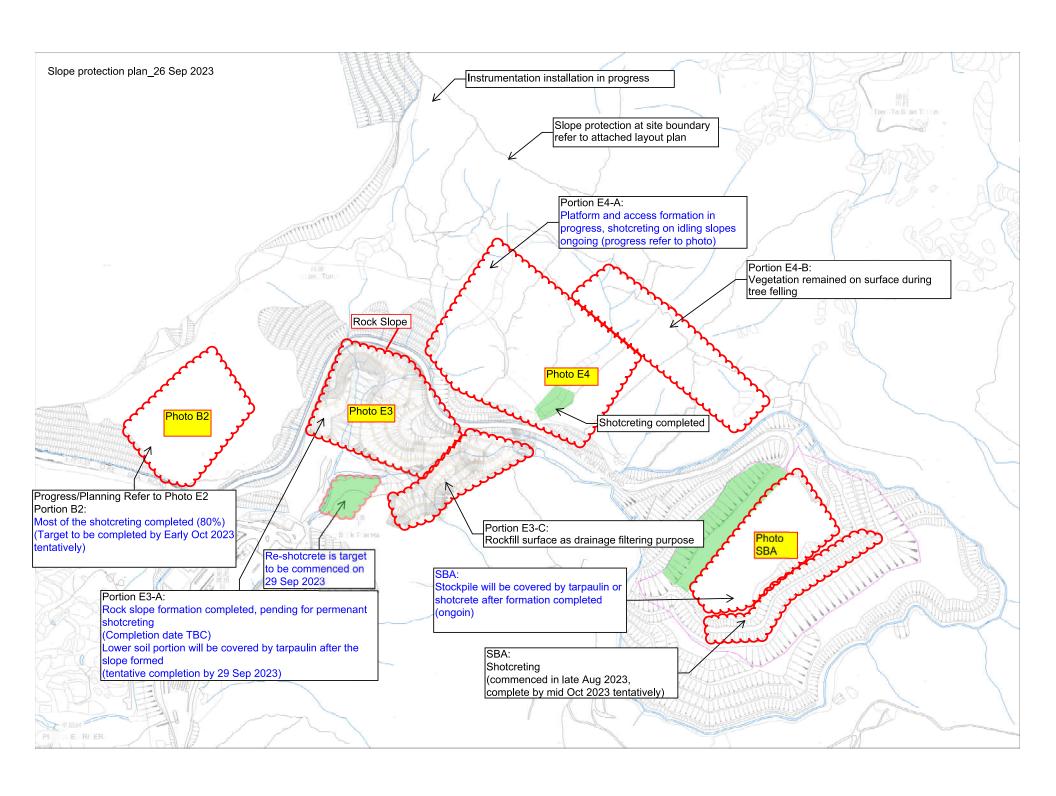


Photo E3

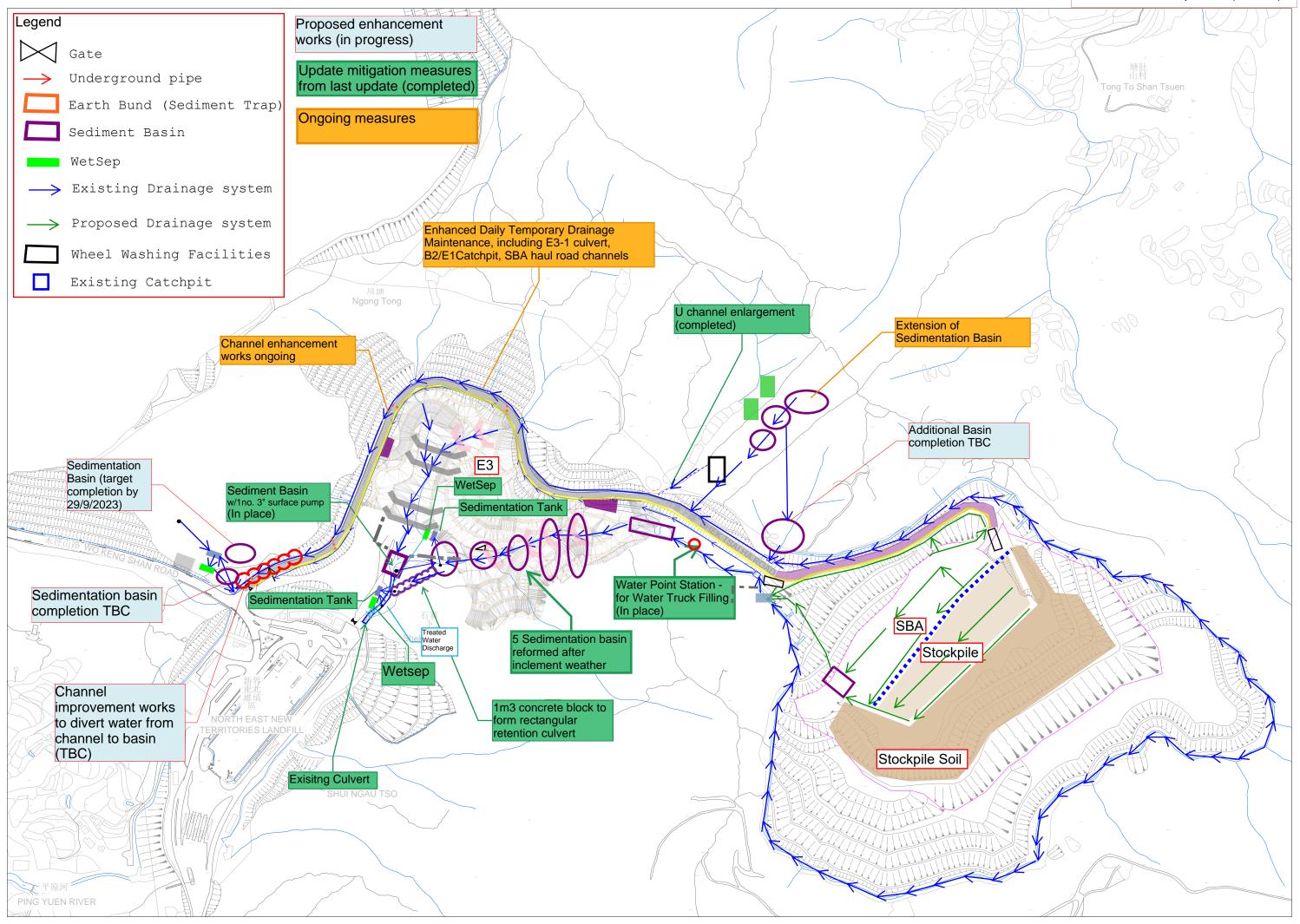

Photo E4

Photo SBA

Ongoing enhancement measures

Prepared by:

Aurecon Hong Kong Limited
Unit 1608, 16/F, Tower B, Manulife Financial Centre,
223 – 231 Wai Yip Street, Kwun Tong,
Kawasan Hong Kong C. A. B.

Kowloon Hong Kong S. A. R. T: +852 3664 6888

F: +852 3664 6999

aurecon

E:

Bringing ideas

hongkong@aurecongroup.com