

Vol. 2 of 3

FEP-01/457/2013/C

Central Kowloon Route

Kai Tak West

Contract No. HY/2014/07

November 2018

Environmental Permit No. EP-457/2013/C

Central Kowloon Route

Independent Environmental Checker Verification

Works Contract:

Kai Tak West (HY/2014/07)

Reference Document/Plan

Document/Plan to be Certified/ Verified:	Monthly EM&A Report No.8 (November 2018)
Date of Report:	13 December 2018 (Rev. 2)
Date received by IEC:	13 December 2018

Reference EP Condition

Environmental Permit Condition: 3.4

Submission of Monthly EM&A Report of the Project

3.4 Four hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month throughout the entire construction period. The EM&A Reports shall include a summary of all non-compliance. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the submission shall be provided to the Director upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-457/2013/C and FEP-01/457/2013/C.

Ms Mandy To

Date:

13 December 2018

Independent Environmental Checker

Gammon Construction Limited**Central Kowloon Route****Works Contract HY/2014/07 –
Central Kowloon Route – Kai Tak West****Monthly EM&A Report for November 2018**

[December 2018]

	Name	Signature
Prepared & Checked:	Ray Cheng	
Reviewed, Approved & Certified:	Y T Tang	

Version: 0

Date: 13 December 2018

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Gammon Construction Limited and is given for its sole benefit in relation to and pursuant to Contract HY/2014/07 and may not be disclosed to, quoted to or relied upon by any person other than Gammon Construction Limited without our prior written consent. No person (other than Gammon Construction Limited into whose possession a copy of this report comes) may rely on this plan without our express written consent and Gammon Construction Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong
Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

	Page
EXECUTIVE SUMMARY	3
1 INTRODUCTION.....	6
1.1 Purpose of the Report	6
1.2 Report Structure.....	6
2 PROJECT INFORMATION.....	7
2.1 Background	7
2.2 Site Description.....	7
2.3 Construction Programme and Activities	8
2.4 Project Organization	9
2.5 Status of Environmental Licences, Notification and Permits	10
3 ENVIRONMENTAL MONITORING REQUIREMENTS	11
3.1 Construction Dust Monitoring	11
3.2 Construction Noise Monitoring	14
3.3 Construction Water Monitoring	16
3.4 Landscape and Visual	17
4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES.....	18
5 MONITORING RESULTS	19
5.1 Construction Dust Monitoring	19
5.2 Regular Construction Noise Monitoring.....	19
5.3 Construction Water Monitoring	20
5.4 Waste Management.....	21
5.5 Landscape and Visual	21
6 ENVIRONMENTAL SITE INSPECTION AND AUDIT.....	22
7 ENVIRONMENTAL NON-CONFORMANCE.....	23
7.1 Summary of Monitoring Exceedances.....	23
7.2 Summary of Environmental Non-Compliance	23
7.3 Summary of Environmental Complaints.....	23
7.4 Summary of Environmental Summon and Successful Prosecutions	23
8 FUTURE KEY ISSUES	24
8.1 Construction Programme for the Next Three Month.....	24
8.2 Key Issues for the Coming Month.....	24
8.3 Monitoring Schedule for the Coming Month	24
9 CONCLUSIONS AND RECOMMENDATIONS	25
9.1 Conclusions.....	25
9.2 Recommendations	25

List of Tables

Table 2.1	Construction Activities in the reporting month	8
Table 2.2	Contact Information of Key Personnel	9
Table 2.3	Status of Environmental Licenses, Notifications and Permits	10
Table 3.1	Air Quality Monitoring Equipment	11
Table 3.2	Location of Construction Dust Monitoring Station.....	11
Table 3.3	Noise Monitoring Parameters, Frequency and Duration.....	14
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring.....	14
Table 3.5	Noise Monitoring Stations during Construction Phase	14
Table 3.6	Noise Monitoring Parameters, Frequency and Duration.....	15
Table 3.7	Water Quality Monitoring Equipment	16
Table 3.8	Impact Water Quality Monitoring Stations.....	16
Table 3.9	Water Quality Monitoring Parameters, Frequency and Duration	17
Table 4.1	Status of Required Submission under Environmental Permit.....	18
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period	19
Table 5.2	Summary of 1-hour TSP Monitoring Result in the Reporting Period	19
Table 5.3	Summary of Construction Noise Monitoring Results in the Reporting Period	19
Table 5.4	Summary of Impact Water Quality Monitoring Results	20
Table 5.5	Summary of Water Quality Exceedances	20
Table 6.1	Observations and Recommendations of Site Audit	22
Table 8.1	Construction Activities in the coming three month.....	24

List of Figures

Figure 1.1	Site Layout Plan
Figure 3.1	Location of Air Quality Monitoring Station
Figure 3.2	Locations of Noise Monitoring Station
Figure 3.3	Locations of Water Monitoring Station

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organization Structure
Appendix C	Implementation Schedule of Environmental Mitigation Measures
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Water Monitoring Results
Appendix J	Details of Exceedances Recorded for Water Quality Monitoring
Appendix K	Event and Action Plan
Appendix L	Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions
Appendix M	Monthly Summary Waste Flow Table
Appendix N	Proactive Environmental Proforma

EXECUTIVE SUMMARY

Central Kowloon Route – Kai Tak West (CKR-KTW; Contract No. HY/2014/07) (hereafter called “the Project”) covers part of the construction of the Central Kowloon Route (CKR).

The Project comprises the follow works:

- 50x30m access shaft with noise enclosure at Ma Tau Kok (MTK);
- 100m long cut-and-cover (C&C) tunnel at MTK;
- Demolition and re-provisioning of MTK Public Pier;
- 160m long underwater tunnel (UWT) (Stage 1);
- 210m long UWT (Stage 2);
- 60m long C&C tunnel at Kai Tak;
- 130m long depressed road and 200m long underpass at Kai Tak;
- 390m long underground tunnel ventilation adit at Kai Tak;
- Seawall demolition and construction of new landing steps; and
- Barging Point enclosure and conveyor system.

The EM&A programme commenced on 4 April 2018. The impact EM&A for the Project includes air quality and noise monitoring.

This is the eighth monthly EM&A Report presenting the EM&A works carried out during the period between 1 and 30 November 2018. As informed by the Contractor, major activities in the reporting period were:

Locations	Site Activities
Kai Tak	<ul style="list-style-type: none"> • Pipe piling • Sheet piling • Formation of site access • Setup of excavated soil storage area • Excavation for Ventilation Adit • Watermain diversion • Construction of Ventilation Adit
Ma Tau Kok	<ul style="list-style-type: none"> • Site clearance • Temporary Traffic Management implementation • Pipe piling works • King post construction • Existing drainage diversion works • Fresh water pipe installation works
Kowloon Bay	<ul style="list-style-type: none"> • Seawall Removal • Advanced works for pile pile construction • Sheetpile and pipe pile construction for stage 1 temporary reclamation
Barging Point	<ul style="list-style-type: none"> • Site clearance • Barging point construction and operation

Breaches of Action and Limit Levels for Air Quality

All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.

All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.

Breaches of Action and Limit Levels for NoiseRegular Noise Monitoring

One (1) noise related complaint was received in the reporting month. Based on the investigation result, the noise nuisance in case was not related to the project. Therefore, no exceedance of action level of noise was considered.

No exceedance of Limit Level of noise was recorded in the reporting month.

Breaches of Action and Limit Levels for Water

No Action level and Limit level exceedance were recorded at measured DO and Total PAHs.

Three (3) Action Level and five (5) Limit level were recorded exceedances at measured turbidity level in the reporting month.

Six (6) Action Level and sixteen (16) Limit Level exceedances were recorded at measured SS level in the reporting month.

Nine (9) Limit Level exceedances and no Action level exceedances were recorded at measured Copper Level.

Based on the findings from the completed IRs, the exceedance were unrelated to the Project, except for the exceedances on 3, 6, 10, 15, 17, 20, 22, 24, 27 and 29 November 2018, where the investigation is undergoing and the investigation results will be presented in the next monthly EM&A report. Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains.

Complaint, Notification of Summons and Successful Prosecution

Two (2) complaint (received by Environmental Protection Department on 1 and 5 November 2018) were both referred by the Contractor on 21 November 2018, the investigation report was finalized on 28 November 2018. No notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

According to Section 14.3 of the EM&A Manual, at times during the construction phase the Contractor may submit method statements for various aspects of construction. This state of affairs would only apply to those construction methods that the EIA has not imposed conditions while for construction methods that have been assessed in the EIA, the Contractor is bound to follow the requirements and recommendations in the EIA study. The Contractor's options for alternative construction methods may introduce adverse environmental impacts into the Project. It is the responsibility of the Contractor and ET, in accordance with established standards, guidelines and EIA study recommendations and requirements, to review and determine the adequacy of the environmental protection and pollution control measures in the Contractor's proposal in order to ensure no unacceptable impacts would result. To achieve this end, the ET shall provide a copy of the Proactive Environmental Protection Proforma to the IEC for approval. The IEC should audit the review of the construction method and endorse the proposal on the basis of no adverse environmental impacts

To achieve this end, the copy of the Proactive Environmental Protection Proforma is provided in **Appendix N**.

Future Key Issues

Key issues to be considered in the next three months included:

Locations	Site Activities
Kai Tak	<ul style="list-style-type: none">• Pipe piling• Formation of site access• Setup of excavated soil storage area• Watermain diversion, construction of ventilation adit• Excavation & construction of at-grade road
Ma Tau Kok	<ul style="list-style-type: none">• Site clearance• Temporary Traffic Management implementation• Pipe piling works• King post construction• Existing drainage diversion works• Fresh water pipe installation works• Project signboard construction
Kowloon Bay	<ul style="list-style-type: none">• Advanced works for pile pile construction• Sheetpile and pipe pile construction for stage 1 temporary reclamation• Marine piling works and platform erection
Barging Point	<ul style="list-style-type: none">• Site Clearance• Barging point construction and operation

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water pollution control, and waste management.

1 INTRODUCTION

Gammon Construction Limited was commissioned by the Highways Department as the Civil Contractor for Works Contract HY/2014/07. AECOM Asia Company Limited (AECOM) was appointed by Gammon Construction Limited as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the eighth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 and 30 November 2018.

1.2 Report Structure

1.2.1 This monthly EM&A Report is organized as follows:

- Section 1: Introduction
- Section 2: Project Information
- Section 3: Environmental Monitoring Requirement
- Section 4: Implementation Status of Environmental Mitigation Measures
- Section 5: Monitoring Results
- Section 6: Environmental Site Inspection and Audit
- Section 7: Environmental Non-conformance
- Section 8: Future Key Issues
- Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

2.1.1 CKR is a dual 3-lane trunk road across central Kowloon linking the West Kowloon in the west and the Kai Tak Development (KTD) in the east. The CKR will be about 4.7 km long with an underground tunnel section of about 3.9 km long, in particular, there will be an underwater tunnel of about 370 m long in Kowloon Bay to the north of the To Kwa Wan Typhoon Shelter. It will connect the West Kowloon Highway at Yau Ma Tei Interchange with the road network at Kowloon Bay and the future Trunk Road T2 at KTD which will connect to the future Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) and Cross Bay Link (CBL). CKR, Trunk Road T2 and TKO-LTT will form a strategic highway link, namely Route 6, connecting West Kowloon and Tseung Kwan O. In addition, 3 ventilation buildings, which will be located in Ya Ma Tei, Ho Man Tin and ex-Kai Tak airport area, are proposed to ensure acceptable air quality within the tunnel.

2.1.2 The Environmental Impact Assessment (EIA) Report for Central Kowloon Route (Register No.: AEIAR-171/2013) was approved on 11 July 2013 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) for CKR was granted on 9 August 2013 (EP No.: EP- 457/2013) for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-457/2013/C) was issued by the Director of Environmental Protection (DEP) on 16 January 2017. Further Environmental Permit (EP No. FEP-01/457/2013/C) for CKR – Kai Tak West was issued on 28 February 2018.

2.1.3 The construction of the CKR had been divided into different sections. This Work Contract HY/2014/07 – Kai Tak West (KTW) (“The Project”) will include a road which is a trunk road, including new roads, and major extensions or improvements to existing roads; a road fully enclosed by decking above and by structure on the sides for more than 100 m; and reclamation works (including associated dredging works) more than 1 ha in size and a boundary of which is less than 100 m from an existing residential area.

2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

2.2.1 The major construction activities under this Project include:

- (a) construction of approximately 160m long cut-and-cover tunnel and 370m long underwater tunnel between the tunnel section at Ma Tau Kok and the depressed road of the CKR within Kai Tak Development;
- (b) reconstruction of the seawall at Ma Tau Kok public pier, and the sloping seawall at the Former Kai Tak Airport Runway;
- (c) construction of approximately 125m long depressed road and 200m long underpass of the CKR within Kai Tak Development;
- (d) construction of approximately 360m long underground tunnel ventilation adit of the CKR;
- (e) reconstruction of Kowloon City Ferry Pier Public Transport Interchange; and
- (f) other associated works.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarized in **Table 2.1**.

Table 2.1 Construction Activities in the reporting month

Locations	Site Activities
Kai Tak	<ul style="list-style-type: none"> • Pipe piling • Sheet piling • Formation of site access • Setup of excavated soil storage area • Excavation for Ventilation Adit • Watermain diversion • Construction of Ventilation Adit
Ma Tau Kok	<ul style="list-style-type: none"> • Site clearance • Temporary Traffic Management implementation • Pipe piling works • King post construction • Existing drainage diversion works • Fresh water pipe installation works
Kowloon Bay	<ul style="list-style-type: none"> • Seawall Removal • Advanced works for pile pile construction • Sheetpile and pipe pile construction for stage 1 temporary reclamation
Barging Point	<ul style="list-style-type: none"> • Site clearance • Barging point construction and operation

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organization

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 2.2**.

Table 2.2 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
Arup-Mott MacDonald Joint Venture	Residential Engineer (ER)	Engineer's Representative	Mr. Jeffrey Lau	2268 3640	2268 3954
ERM	Independent Environmental Checker (IEC)	Independent Environmental Checker	Ms. Mandy To	2271 3313	2723 5660
Gammon	Contractor	Contracts Manager	Mr. Alan Yan	2516 8823	2516 6260
		Environmental Manager	Ms Michelle Tang	9267 8866	2516 6260
		Environmental Officer	Ms. Phoebe Ng	9869 1105	
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9392	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.3**.

Table 2.3 Status of Environmental Licenses, Notifications and Permits

Permit / License No. / Notification/ Reference No.	Valid Period		Status	Remarks
	From	To		
Further Environmental Permit				
FEP-01/457/2013/C	28 Feb 2018	End of Project	Valid	--
Wastewater Discharge License				
WT00030290-2018	22 Mar 2018	31 May 2023	Valid	Ma Tau Kok
WT00030668-2018	27 Apr 2018	30 Apr 2023	Valid	Site Office at Kai Tak West
WT00030358-2018	27 Apr 2018	30 Apr 2023	Valid	Kai Tak West
WT00030333-2018	27 Apr 2018	30 Apr 2023	Valid	Barging Point at Portions 4B & 4C
WT00030330-2018	27 Apr 2018	30 Apr 2023	Valid	Kowloon Bay
Construction Noise Permit				
GW-RE0188-18	1 Sep 2018	28 Feb 2019	Valid	General Works at Kai Tak Barging Point
GW-RE0610-18	10 Sep 2018	9 Nov 2018	Superseded by GW-RE0770-1	Kai Tak Pumping Test & General Works
GW-RE0770-18	9-Nov-18	8-Jan-19	Valid	Kai Tak Pumping Test & General Works
PP-RE0045-18	6 Oct 2018	30 Mar 2019	Valid	Percussive Piling at Kai Tak Area (at grade road and underpass)
PP-RE0052-18	20 Nov 18	18 May 19	Valid	Percussive Piling at Stage 1 Temporary Reclamation Area
Chemical Waste Producer Registration				
5118-247-G2347-47	30 Jan 2018	End of Project	Valid	--
5118-247-G2347-48	30 Jan 2018	End of Project	Valid	--
Marine Dumping Permit				
EP/MD/19-043	29-Oct-18	28-Nov-18	Valid until 28 Nov 2018	Permit for T3 sediments disposal trial using T2 sediments
Billing Account for Construction Waste Disposal				
7029909	22 Jan 2018	End of Project	Account Active	--
7031949	2-Oct-18	1/2/2019	Account Active	Billing Account for Disposal of Construction Waste (by vessels)
Notification Under Air Pollution Control (Construction Dust) Regulation				
429442	5 Jan 2018	5 Jul 2025	Notified	--

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manual, measurement of 24-hour and 1-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days, and 1-hour TSP monitoring should be done at least 3 times every 6 days while the highest dust impact is expected. The Action and Limit Levels of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring station. The HVS meets all the requirements of the EM&A Manual.

3.1.3 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.

3.1.4 Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170)
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3B & LD-3)

Monitoring Locations

3.1.5 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for the Project. The location of the construction dust monitoring station is summarized in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Location of Construction Dust Monitoring Station

Location	Monitoring Station	Description
E-A14a ^[1]	Block B of Merit Industrial Centre	Rooftop (13/F)

Note:

[1] The air monitoring station proposed in the EM&A Manual (i.e. Wyler Gardens with ID: E-A14) was not available for impact dust monitoring, therefore impact monitoring was conducted at E-A14a as an alternative which was agreed by the ER, IEC and EPD.

Monitoring Methodology

3.1.6 24-hour TSP Monitoring

(a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-

- (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- (ii) Two samplers should not be placed less than 2m apart from each other;
- (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
- (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- (vi) No furnace or incinerator flues nearby.

- (vii) Airflow around the sampler was unrestricted.
- (viii) The sampler was located more than 20 meters from any dripline.
- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ± 3 °C; the relative humidity (RH) was < 50% and not variable by more than $\pm 5\%$. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

3.1.7 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG]
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

- (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.8 The schedule for environmental monitoring in November 2018 is provided in **Appendix F**.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarizes the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit Levels of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238)
Acoustic Calibrator	B&K (Model No. 4231)

Monitoring Locations

3.2.3 The monitoring stations for construction noise monitoring pertinent to the Project have been identified based on the approved EM&A Manual for the Project. Locations of the noise monitoring stations are summarized in **Table 3.5** and shown in **Figure 3.2**.

Table 3.5 Noise Monitoring Stations during Construction Phase

Location	Monitoring Station	Description	Measurement
E-N12a ^[1]	19 Hing Yan Street	Rooftop (9/F)	Façade
E-N21a ^[1]	Block B of Merit Industrial Centre	Rooftop (13/F)	Free field ^[2]

Notes:

[1] The noise monitoring stations proposed in the EM&A Manual (i.e. Grand Waterfront Tower 3 with ID: E-N12 and Hang Chien Court Block J with ID: E-N21) were not available for impact noise monitoring, therefore impact monitoring was conducted at E-N12a and E-N21a as an alternative which was agreed by the ER, IEC and EPD.

[2] A correction of +3 dB(A) was made to the free field measurements.

Monitoring Parameters, Frequency and Duration

3.2.4 **Table 3.6** summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.6 Noise Monitoring Parameters, Frequency and Duration

Location	Parameter and Duration	Frequency
E-N12a and E-N21a	30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

Monitoring Methodology**3.2.5 Monitoring Procedure**

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground.
- (b) Façade measurement was made at E-N12a.
- (c) Free field measurements was made at monitoring location E-N21a. A correction of +3 dB(A) shall be made to the free field measurements.
- (d) The battery condition was checked to ensure the correct functioning of the meter.
- (e) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq}(30\text{-minutes})$ during non-restricted hours i.e. 0700 – 1900 on normal weekdays.
- (f) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (g) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (h) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (i) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.6 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month**3.2.7** The schedule for environmental monitoring in November 2018 is provided in **Appendix F**.

3.3 Construction Water Monitoring

Monitoring Requirements

- 3.3.1 According to the Contractor information, intermittent dredging activity will be carried out in November and December 2018.
- 3.3.2 In accordance with the approval EM&A Manual, the impact monitoring shall be conducted during dredging period. The monitoring shall normally be established by measuring the Dissolved Oxygen (DO), temperature, turbidity, pH, salinity, Suspended Solids (SS) and copper level and total PAHs at all designated locations. The Action and Limit Levels of the water quality monitoring is provided in **Appendix D**.
- 3.3.3 The measurement shall be taken at all designated monitoring stations including control stations, 3 days per week, at mid-flood and mid-ebb tides. Tidal range of individual flood and ebb tides should be not less than 0.5m. The interval between two sets of monitoring shall not be less than 36 hours.
- 3.3.4 All the monitoring shall be taken at 3 water depths, namely 1m below water surface, mid-depth station and 1m above sea bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station will be monitored.

Monitoring Equipment

- 3.3.5 The brand and model of water quality monitoring equipment is given in **Table 3.7**.

Table 3.7 Water Quality Monitoring Equipment

Equipment	Brand and Model	Detection Limit
Dissolved Oxygen Meter	YSI 6820	0 – 20 mg/L and 0-200% saturation
Water Temperature Meter		0-45 degree Celsius
Salinity Meter		0-40 parts per thousand (ppt)
Turbiditimeter		0-1000 NTU
pH meter		pH 0.0 to 14.0
Water Sampler	Kahlsico Water Sampler	N.A
Echo Sounder	Eagle Cuda-168	N.A
Global Positioning System	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551	N.A

Monitoring Locations

- 3.3.6 In accordance with the Updated EM&A Manual, the water monitoring stations for baseline water quality monitoring is presented in **Table 3.8** and shown in **Figure 3.3**.

Table 3.8 Impact Water Quality Monitoring Stations

Type of Station	Station	Location	Easting	Northing
Water Quality Monitoring Station	IS1	Planned Kai Tak Cooling Water Intake (subject to its implementation)	839050	819377
	IS2	To Kwa Wan Typhoon Shelter	838450	819399
	IS3	Tai Wan Salt Water Intake	837948	818202
Control Station	C1	Control Station 1	837787	817712
	C2	Control Station 2	838237	818804

Type of Station	Station	Location	Easting	Northing
	C3	Control Station 3	839105	819019

Monitoring Parameters, Frequency and Duration

3.3.7 The monitoring parameters, frequency and duration of water quality monitoring are summarized in **Table 3.9**.

Table 3.9 Water Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
Dissolved Oxygen, Temperature, Turbidity, pH value, Salinity, Suspended Solids, Copper and Total PAH	Three days per week, at mid-flood and mid-ebb tides

Monitoring Methodology

3.3.8 The water quality monitoring procedures are presented in the following:

- All monitoring equipment were checked and calibrated before use. Responses of sensors and electrodes were also checked with certified standard solutions before each use.
- The interval between 2 sets of monitoring was not less than 36 hours.
- Individual flood and ebb tides not less than 0.5m.
- At least 3 replicate in-situ measurements and water sampling were carried out in each sampling event.
- Measurements were taken at 3 water depths, namely 1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored.
- Analysis of suspended solids was carried out by ALS Technichem (HK) Pty Ltd. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The analysis followed the standard methods as described in APHA Standard Methods for the Examination of Water and Wastewater, 19th Edition (APHA 2540D for SS).
- Analysis of copper was carried out by ALS Technichem (HK) Pty Ltd. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The analysis followed the standard methods as described in USEPA Method for inductively coupled plasma-mass spectrometry (ICP-MS), Revision 1 (ICP-MS USEPA 6020A for copper).
- Analysis of total polycyclic aromatic hydrocarbon (PAHs) was carried out by ALS Technichem (HK) Pty Ltd. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The analysis followed the standard methods as described in USEPA Methods for Gas Chromatography-Mass Spectrometry Detector, Revision 3, (GC-MSD USEPA 3510C, USEPA 3630C, USEPA 8270C for total PAHs).
- Water samples for suspended solids measurements were collected in high density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.

3.3.9 All monitoring equipment were certified by a laboratory accredited under HOKLAS. Calibration certificates of all monitoring equipment are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.3.10 The schedule for environmental monitoring in November 2018 is provided in **Appendix F**.

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6**.

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C**. Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 of EP- 457/2013/C and Condition 3.4 of FEP-01/457/2013/C	Monthly EM&A Report for October 2018	13 November 2018
Condition 3.3 of EP- 457/2013/C and Condition 3.3 of FEP-01/457/2013/C	Water Quality Baseline Monitoring Report (Version 1)	1 November 2018
Condition 2.14 of EP- 457/2013/C and Condition 2.14 of FEP-01/457/2013/C	Revised Supplementary Contamination Assessment Report	22 November 2018

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP and 1-hour TSP are summarized in **Table 5.1** and **Table 5.2** respectively. Detailed air quality monitoring results and daily extract of meteorological observations are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average ($\mu\text{g}/\text{m}^3$)	Range ($\mu\text{g}/\text{m}^3$)	Action Level ($\mu\text{g}/\text{m}^3$)	Limit Level ($\mu\text{g}/\text{m}^3$)
E-A14a	51.8	19.7 – 91.7	197.3	260

Table 5.2 Summary of 1-hour TSP Monitoring Result in the Reporting Period

ID	Average ($\mu\text{g}/\text{m}^3$)	Range ($\mu\text{g}/\text{m}^3$)	Action Level ($\mu\text{g}/\text{m}^3$)	Limit Level ($\mu\text{g}/\text{m}^3$)
E-A14a	67.4	64.7 – 71.3	302.4	500

5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.

5.1.3 No Action and Limit Level exceedance was recorded for 1-hour TSP monitoring at the monitoring location in the reporting month.

5.1.4 The event and action plan is annexed in **Appendix K**.

5.1.5 Major dust sources during the monitoring included construction dust and nearby traffic emission.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.3** and the monitoring data is provided in **Appendix H**.

Table 5.3 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), $L_{\text{eq}}(30 \text{ mins})$	Limit Level, dB(A), $L_{\text{eq}}(30 \text{ mins})$
E-N12a	62.3 – 64.7	75
E-N21a	61.5 – 66.7	75

5.2.2 One (1) noise complaint was received in the reporting month. Based on the investigation result, the noise nuisance in case was not related to the project. Therefore, no exceedance of action level of noise was considered.

5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.

5.2.4 The event and action plan is annexed in **Appendix K**.

5.2.5 Major noise sources during the monitoring included construction noise from the Project site and nearby traffic noise.

5.3 Construction Water Monitoring

5.3.1 The impact water quality monitoring for 6 locations were carried out 3 days per week in November 2018. The impact monitoring data are presented in **Appendix I**.

5.3.2 The weather condition during the monitoring period were mainly sunny and fine and occasionally cloudy and rainy. No major pollution source and extreme weather, which might affect the results, was observed during the impact monitoring period.

5.3.3 The impact water quality monitoring results are summarized in **Table 5.4**.

Table 5.4 Summary of Impact Water Quality Monitoring Results

Locations		Parameters								
		Temperature (°C)	pH value	Dissolved Oxygen (mg/L)		Turbidity (NTU)	Salinity (ppt)	Suspended Solids (mg/L)	Copper (µg/L)	Total PAHs (µg/L)
				Surface & Middle	Bottom					
CS1	Avg.	23.89	8.14	5.61	5.56	2.78	33.79	5.34	1.63	1.60
	Min.	22.53	7.97	4.58	4.59	1.12	33.10	1.67	1.00	1.60
	Max.	25.10	8.30	6.90	6.82	5.82	34.34	11.29	8.67	1.60
CS2	Avg.	23.90	8.16	5.60	5.58	2.42	33.76	5.80	1.57	1.60
	Min.	22.54	8.03	4.45	4.38	0.86	33.07	2.01	1.00	1.60
	Max.	25.10	8.26	7.02	6.96	4.88	34.34	12.04	8.22	1.60
CS3	Avg.	23.91	8.16	5.62	5.59	2.35	33.75	5.36	1.58	1.60
	Min.	22.54	8.02	4.69	4.60	0.82	33.08	1.89	1.00	1.60
	Max.	25.10	8.27	7.08	7.02	4.74	34.31	9.56	8.22	1.60
IS1	Avg.	23.92	8.16	5.60	5.58	2.40	33.75	5.67	1.60	1.60
	Min.	22.52	8.02	4.46	4.45	0.91	33.07	2.06	1.00	1.60
	Max.	25.12	8.28	7.08	7.03	4.17	34.31	12.09	8.33	1.60
IS2	Avg.	23.92	8.17	5.65	5.60	2.39	33.75	5.80	1.63	1.60
	Min.	22.48	8.03	4.40	4.38	0.84	33.06	1.46	1.00	1.60
	Max.	25.11	8.29	7.01	6.97	5.00	34.32	11.53	8.56	1.60
IS3	Avg.	23.89	8.16	5.62	5.59	2.75	33.77	5.90	1.70	1.60
	Min.	22.54	8.01	4.54	4.46	0.87	33.10	1.63	1.00	1.60
	Max.	25.10	8.28	7.02	6.91	4.84	34.34	10.11	8.00	1.60

5.3.4 Exceedances were recorded for turbidity, suspended solids and copper in the reporting month. Number of exceedances recorded in the reporting month at each impact station are summarised in **Table 5.5** and **Appendix J**.

Table 5.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M)		DO (Bottom)		Turbidity		SS		Copper		Total PAHs (µg/L)		Total	
		Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS1	Action	0	0	0	0	0	1	2	2	0	0	0	0	2	3
	Limit	0	0	0	0	0	1	1	2	1	1	0	0	2	4
IS2	Action	0	0	0	0	0	1	0	1	0	0	0	0	0	2
	Limit	0	0	0	0	0	1	2	4	1	2	0	0	3	7
IS3	Action	0	0	0	0	0	1	1	1	0	0	0	0	1	2
	Limit	0	0	0	0	1	2	3	4	1	3	0	0	5	9
Total		Action	0	0	0	0	0	3	3	4	0	0	0	0	10
		Limit	0	0	0	0	1	4	6	10	3	6	0	0	30

5.3.5 The event and action plan is annexed in **Appendix K**.

5.4 Waste Management

- 5.4.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.4.2 As advised by the Contractor, Total 1923 m³ of inert C&D material was generated, 849 m³ were disposed of as public fill and 1075 m³ were reused in other project in the reporting month. 14,060 kg general refuse was generated and sent to NENT Landfill in the reporting month. 6 kg of metals and 8 kg of plastics and no paper/cardboard packaging were collected by recycle contractor in the reporting month. No chemical waste was collected by licensed contractor in the reporting period. 225 m³ Type 2 Marine sediment and no Type 1 Marine sediment was disposed at Confined Marine Disposal Facility to the East of Sha Chau. The waste flow table is annexed in **Appendix M**.
- 5.4.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.4.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.5 Landscape and Visual

- 5.5.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 7 and 21 November 2018. A summary of the site inspection is provided in **Appendix C**. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.

6.1.2 In the reporting month, 4 site inspections were carried out on 7, 14, 21 and 28 November 2018. Joint inspections with the IEC, ER, the Contractor and the ET were conducted on 21 November 2018. In addition, no joint inspection with EPD, ER and the Contractor was conducted in the reporting month. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	14 November 2018	<p>Reminder:</p> <ul style="list-style-type: none"> The Contractor was reminded to provide the proper cover for the cement bags at Ma Tau Kok. 	The item was rectified by the Contractor on 16 November 2018.
	21 November 2018	<p>Reminder:</p> <ul style="list-style-type: none"> The Contractor was reminded to provide the proper cover for stockpiles at Kai Tak. 	The item was rectified by the Contractor on 21 November 2018.
	31 October 2018	<p>Reminder:</p> <ul style="list-style-type: none"> Inadequate watering for dry exposed area at Kai Tak was observed. The Contractor was advised to spray the dry exposed area with water regularly for dust suppression. 	The item was rectified by the Contractor on 28 October 2018.
Noise	07 November 2018	<ul style="list-style-type: none"> Noise Emission Label should be provided on the hand-held breaker at Ma Tau Kok. 	The item was rectified by the Contractor on 14 November 2018.
Water Quality	28 November 2018	<p>Reminder:</p> <ul style="list-style-type: none"> The Contractor was reminded to clean up the oil stain on the ground at Ma Tau Kok. 	The item was rectified by the Contractor on 30 November 2018.
Waste/Chemical Management	Nil	Nil	Nil
Landscape & Visual	Nil	Nil	Nil
Permits/Licenses	14 November 2018	<ul style="list-style-type: none"> Valid environmental permit was not observed at the vehicle entrance of Ma Tau Kok. The Contractor was reminded to display valid environmental permit at the vehicle entrance of Ma Tau Kok. 	The item was rectified by the Contractor on 15 November 2018.

6.1.3 Most of follow-up actions requested by Contractor's ET during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period. Some of the observation will follow up in next reporting month. No follow-up action requested by EPD during the site inspection in the reporting month.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 7.1.2 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 7.1.3 One (1) noise related complaint was received in the reporting month. Based on the investigation result, the noise nuisance in case was not related to the project. Therefore, no exceedance of action level of noise was considered.
- 7.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 7.1.5 No Action level and Limit level exceedance were recorded at measured DO and Total PAHs.
- 7.1.6 Three (3) Action Level and five (5) Limit level were recorded exceedances at measured turbidity level in the reporting month
- 7.1.7 Six (6) Action Level and sixteen (16) Limit Level exceedances were recorded at measured SS level in the reporting month
- 7.1.8 Nine (9) Limit Level exceedances and no Action level exceedances were recorded at measured Copper Level.
- 7.1.9 Based on the findings from the completed IRs, the exceedance were unrelated to the Project, except for the exceedances on 3, 6, 10, 15, 17, 20, 22, 24, 27 and 29 November 2018, where the investigation is undergoing and the investigation results will be presented in the next monthly EM&A report. Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains.

7.2 Summary of Environmental Non-Compliance

- 7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

- 7.3.1 Two (2) complaint (received by Environmental Protection Department on 1 and 5 November 2018) were both referred by the Contractor on 21 November 2018, both investigation reports were finalized on 28 November 2018. Notification of summons and successful prosecution were received in the reporting month.

7.4 Summary of Environmental Summon and Successful Prosecutions

- 7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix L**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works between December 2018 and February 2019 is provided in **Table 8.1**.

Table 8.1 Construction Activities in the coming three month

Locations	Site Activities
Kai Tak	<ul style="list-style-type: none"> • Pipe piling • Formation of site access • Setup of excavated soil storage area • Watermain diversion, construction of ventilation adit • Excavation & construction of at-grade road
Ma Tau Kok	<ul style="list-style-type: none"> • Site clearance • Temporary Traffic Management implementation • Pipe piling works • King post construction • Existing drainage diversion works • Fresh water pipe installation works • Project signboard construction
Kowloon Bay	<ul style="list-style-type: none"> • Advanced works for pile pile construction • Sheetpile and pipe pile construction for stage 1 temporary reclamation • Marine piling works and platform erection
Barging Point	<ul style="list-style-type: none"> • Site Clearance • Barging point construction and operation

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, and waste management.

8.3 Monitoring Schedule for the Coming Month

8.3.1 The tentative schedule for environmental monitoring in December 2018 is provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 All 1-hour TSP result was below the Action and Limit Levels at all monitoring locations in the reporting month.
- 9.1.4 One (1) noise complaint was received in the reporting month. Based on the investigation result, the noise nuisance in case was not related to the project. Therefore, no exceedance of action level of noise was considered.
- 9.1.5 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.6 No Action level and Limit level exceedance were recorded at measured DO and Total PAHs.
- 9.1.7 Three (3) Action Level and five (5) Limit level were recorded exceedances at measured turbidity level in the reporting month.
- 9.1.8 Six (6) Action Level and sixteen (16) Limit Level exceedances were recorded at measured SS level in the reporting month.
- 9.1.9 Nine (9) Limit Level exceedances and no Action level exceedances were recorded at measured Copper Level.
- 9.1.10 Based on the findings from the completed IRs, the exceedance were unrelated to the Project, except for the exceedances on 3, 6, 10, 15, 17, 20, 22, 24, 27 and 29 November 2018, where the investigation is undergoing and the investigation results will be presented in the next monthly EM&A report. Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains.
- 9.1.11 4 nos. of environmental site inspections and no of the site inspections with EPD were carried out in November 2018. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.12 Two (2) complaint (received by Environmental Protection Department on 1 and 5 November 2018) were both referred by the Contractor on 21 November 2018, the investigation report was finalized on 28 November 2018. No notification of summons and successful prosecution were received in the reporting month.

9.2 Recommendations

- 9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

- The Contractor was reminded to provide proper cover on the stockpiles; and
- The Contractor was reminded to spray water regularly on the exposed area;

Construction Noise Impact

- The Contractor was reminded to display the noise emission label for hand-held breaker.

Water Quality Impact

- The Contractor was reminded to clean up the oil stain on the ground.

Chemical and Waste Management

- No specific observation was identified in the reporting month.

Landscape & Visual Impact

- No specific observation was identified in the reporting month.

Permits/licenses

- The Contractor was reminded to display valid environmental permit at the vehicle entrance.

FIGURES

This drawing is the property for the use of AT&T's clients. It may not be used, modified, reproduced or distributed by third parties, except as agreed by AT&T or its agents. AT&T's express written consent is required for any sale or transfer of this drawing. All fees and expenses must be obtained from the stated drawee/seller.

ISO A1 594mm x 841mm

Approved:

Checked:

Designer:

Project Management Initiator:

Plot File by: S USERS
S Date\$:
Path \$ Files:

CKR ALIGNMENT UNDER
CONTRACT NO. HY/2014/07

SITE BOUNDARY

UNDERWATER TUNNEL

CUT AND COVER TUNNEL

ACCESS SHAFT

UNDERPASS

DEPRESSED ROAD

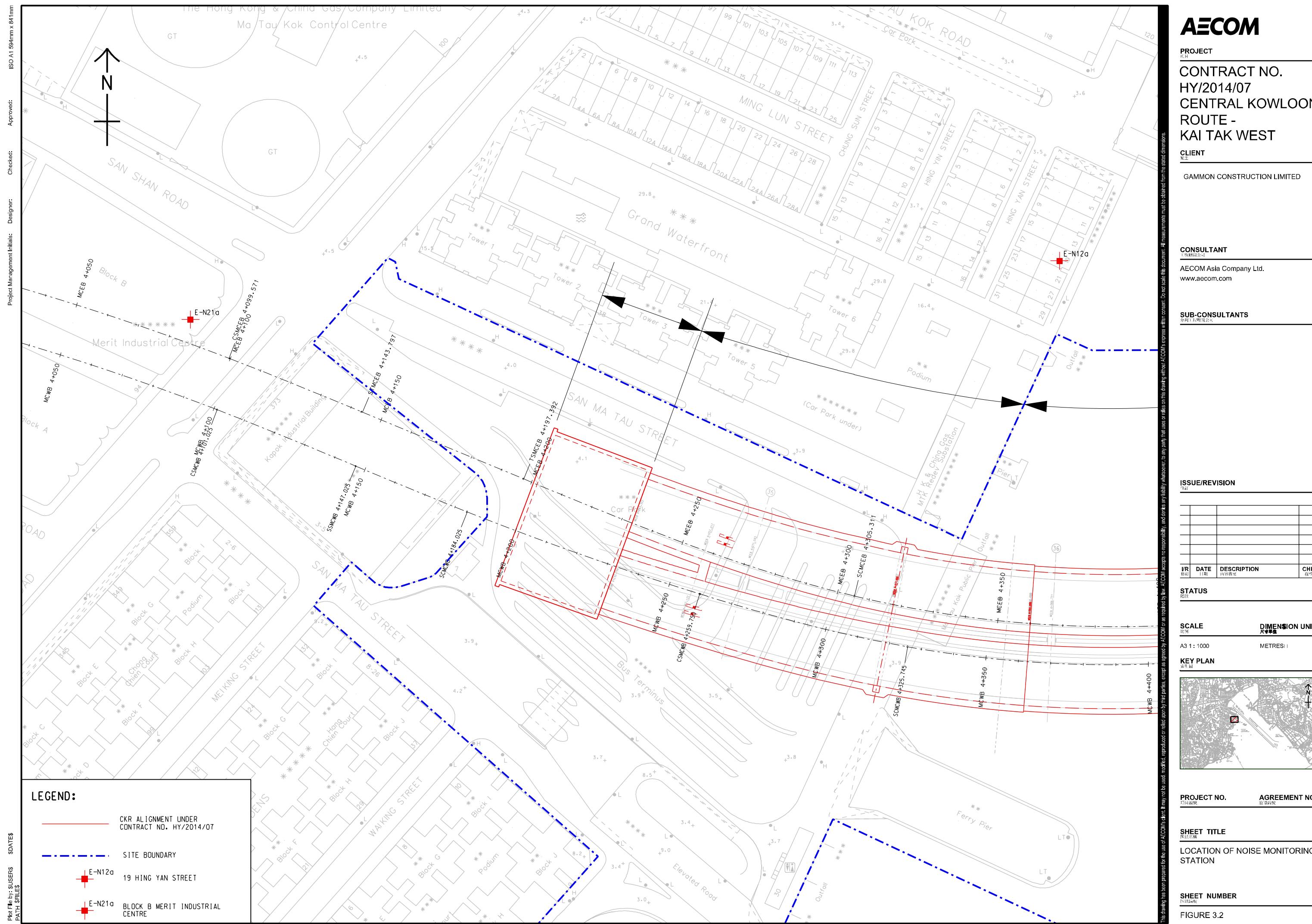
AT-GRADE ROAD

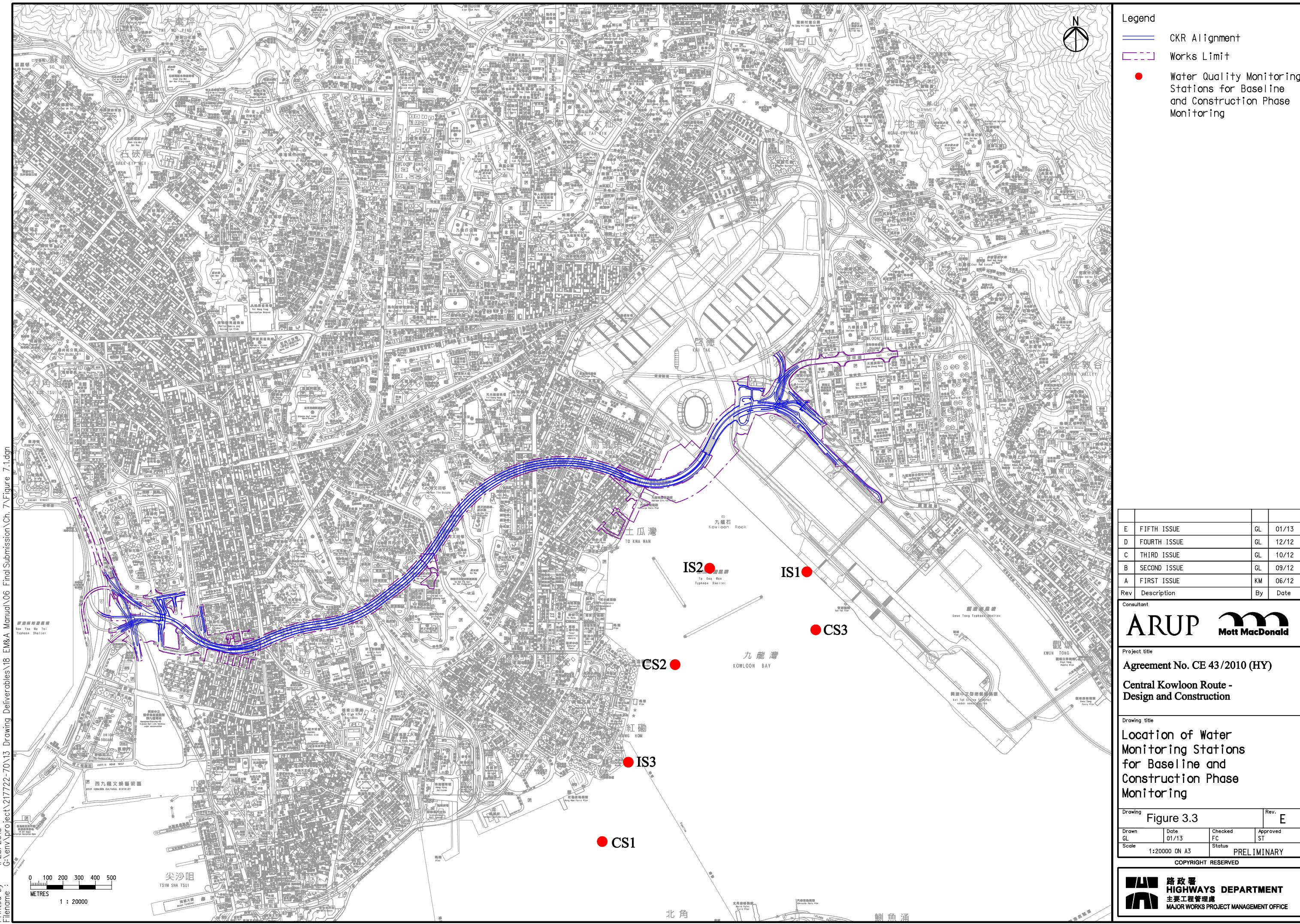
KOWLOON BAY

CREEK

Woolston Rock

LEGEND:


CKR ALIGNMENT UNDER
CONTRACT NO. HY/2014/07


SITE BOUNDARY

This drawing has been prepared for the use of AECOM's clients. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility and denies any liability whatsoever, to any party that uses or relies on this drawing without AECOM's express written consent. Do not scale this document. All measurements must be deducted from the stated dimensions.

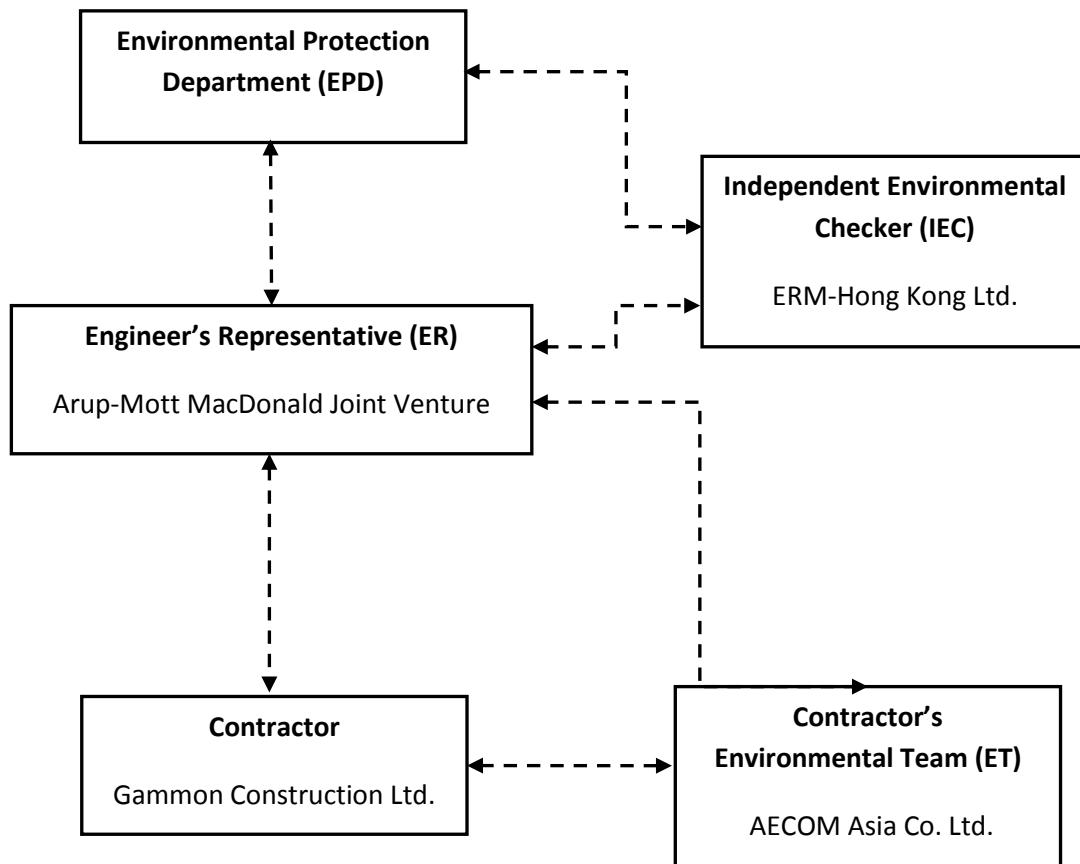
Plot File by: \$USERS \$DATE\$
PATH \$FILE\$

APPENDIX A

Construction Programme

CONTRACT NO. HY2014/07
CENTRAL KOWLOON ROUTE - KAI TAK WEST
INITIAL WORKS PROGRAMME (IWP)

ID	Activity	Days	Start	Finish	2018	2019	2020	2021	2022	2023	2024	2025					
					J	F	A	J	J	A	J	J	A	J	F	A	J
S706	Kingposts	16	16/05/19	03/06/19													
S710	ELS (Contaminated Sediment)	2	07/12/21	08/12/21													
S711	ELS (Uncontaminated Sediment)	2	09/12/21	10/12/21													
S712	ELS (Soil)	139	11/12/21	06/06/22													
S713	ELS (Rock)	8	07/06/22	15/06/22													
S720	C&C Tunnel Structure	72	16/06/22	08/09/22													
S722	Backfill	49	09/09/22	08/11/22													
S725	Ma Tau Kok Seawall Reinstatement	53	29/11/22	04/02/23													
S730	KD 6A	0		06/05/23*													
U Trough Structures and At-Grade Road Area (KD07)																	
S740	Repossess Portion 3D	0	05/10/21*														
S745	Sheetpile & Pumping Test	68	05/10/21	23/12/21													
S750	ELS (Soil)	143	24/12/21	23/06/22													
S760	Construct Trough Structure	120	24/06/22	15/11/22													
S770	Backfill & Remove Sheetpile	120	03/09/22	31/01/23													
S775	Roadwork for At-Grade Road	77	01/02/23	06/05/23													
S780	KD 07	0		06/05/23*													
Kowloon City Ferry Pier Public Transport Interchange Reinstatement (KD09)																	
S790	All works Completed at Ma Tau Kok Side	0		06/05/23													
S800	Remove Decking, Roads and Drains (TTM Stages 7-10)	344	08/05/23	04/07/24													
S810	KD 09	0		05/07/24*													
Preservation and Protection of Trees (KD13)																	
S820	Trees Survey, Proposal, and Approval	90	05/01/18	27/04/18													
S830	Implement measures for Trees Protection/Preservation	365	28/04/18	22/07/19*													
S840	KD 13	0		05/07/24*													
All Remaining Works and Roadwork for Opening to the Public (KD08)																	
S850	All works Completed at both Kai Tak & Ma Tau Kok Sides	0		04/07/24													
S860	Reinstate Affected Road Areas & Traffic Diversions	120	05/07/24	25/11/24													
S870	Reinstate Affected Areas	30	26/11/24	02/01/25													
S880	KD 08	0		02/01/25*													
Establishment Works (KD11)																	
S890	Establishment Works (Except in Portion 1E) Period	365	06/07/24	05/07/25													
S900	KD 11	0		05/07/25*													



APPENDIX B

Project Organization Structure

Appendix B Project Organization Structure

APPENDIX C

**Implementation Schedule of Environmental Mitigation
Measures**

Appendix C – Environmental Mitigation Implementation Schedule

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Air Quality (Construction Phase)							
S4.3.10	D1	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	V
S4.3.10	D2	<ul style="list-style-type: none"> Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.3 L/m² to achieve the dust removal efficiency. 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	@
S4.3.10	D3	<ul style="list-style-type: none"> Proper watering of exposed spoil should be undertaken throughout the construction phase; Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period; 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	V @ V V V V V V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<ul style="list-style-type: none"> The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting; Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					V V V V V @ V V V
S4.3.10	D5	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected representative dust monitoring station	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construction Noise (Airborne)							
S5.4.1	N1	<p>Implement the following good site practices:</p> <ul style="list-style-type: none"> only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise	Contractor	All construction sites	Construction stage	V V V V V V
S5.4.1	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	V
S5.4.1	N3	Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressors, generators and handheld breakers etc..	Screen the noisy plant items to be used at all construction sites	Contractor	All construction sites where practicable	Construction stage	N/A
S5.4.1	N4	Use "Quiet plants"	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	V
S5.4.1	N5	Loading/unloading activities should be carried out inside the full enclosure of mucking out points	Reduce the noise levels of loading/unloading activities	Contractor	Mucking out locations	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S5.4.1	N6	Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	V
S5.4.1	N7	Implement a noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected representative noise monitoring station	Construction stage	V
S5.5.2	N8	Install temporary noise barriers along the works area at temporary Kowloon City Ferry Pier Public Transport Interchange	Reduce temporary PTI noise	Contractor	Kowloon City Ferry Pier	Different construction stages	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Quality (Construction Phase)							
S6.9.1.1	W1	<p>In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), construction phase mitigation measures shall include the following:</p> <p><u>Construction Runoff</u></p> <ul style="list-style-type: none"> At the start of site establishment (including the barging facilities), perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m³/s a sedimentation basin of 30m³ would be required and for a flow rate of 0.5 m³/s the basin would be 150 m³. The detailed design of the sand/silt traps shall be undertaken by the contractor prior to the commencement of construction. All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means. The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement weather 	To minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction stage	@ V V V V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<p>and the reduction of surface sheet flows.</p> <ul style="list-style-type: none"> ● All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. ● Measures should be taken to prevent the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. ● Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. ● Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. ● Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are detailed in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. ● All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. 				V V V V V V	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<ul style="list-style-type: none"> Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. Adopt best management practices All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. 				@ V V V V	
S6.9.1.2	W2	<u>Tunnelling Works and Underground Works</u> <ul style="list-style-type: none"> Cut-&-cover Tunnelling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater. Direct discharge of the bentonite slurry (as a result of D-wall and bored Tunnelling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	To minimize construction water quality impact from tunneling works	Contractor	All tunneling portion	Construction stage	
S6.9.1.3	W3	<u>Sewage Effluent</u> <ul style="list-style-type: none"> Portable chemical toilets and sewage holding tanks are recommended for handling 	To minimize water quality	Contractor	All construction sites	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	from sewage effluent		where practicable		
S6.9.1.5	W4	<p><u>Groundwater from Potential Contaminated Area:</u></p> <ul style="list-style-type: none"> ● No direct discharge of groundwater from contaminated areas should be adopted. ● A discharge license under the WPCO through the Regional Office of EPD for groundwater discharge should be applied. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-DSS) and the existence of prohibited substance should be confirmed. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. ● If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be discharged into the foul sewers. ● If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited 	To minimize groundwater quality impact from contaminated area	Contractor	Excavation areas where contamination is found.	Construction stage	V V V V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		substances such as TPH products should be removed as necessary by installing the petrol interceptor.					
S6.7.2.1	W5	<p><u>Temporary Reclamation</u></p> <ul style="list-style-type: none"> During temporary reclamation, regular litter / rubbish clearance and avoidance of illegal discharges within the embayed marine water should be undertaken. During temporary reclamation, the perimeter silt curtain should be deployed. 	To minimize water quality impact from temporary reclamation	Contractor	Temporary Reclamation	Construction stage	N/A
S6.9.1.6	W6	<p><u>Accidental spillage</u></p> <p>In order to prevent accidental spillage of chemicals, the following is recommended:</p> <ul style="list-style-type: none"> All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains. The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize water quality impact from accidental spillage	Contractor	All construction sites where practicable	Construction stage	V V V
S6.9.2.2	W7	<p><u>Dredging Works</u></p> <ul style="list-style-type: none"> The following good practice shall apply for the dredging works: Install efficient silt curtains, i.e. at least 75% SS reduction, at the point of seawall dredging to control the dispersion of SS; Implement water quality monitoring to ensure effective control of water pollution and recommend additional mitigation measures required; The decent speed of grabs should be controlled to minimize the seabed impact and to reduce the volume of over-dredging; All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; The dredging rates by closed grab dredgers for temporary marine channel outside pipepile wall shall be less than 1,500 m³/day and 125 m³/hour (without concurrent dredging with T2 in dry season only) or 750 m³/day and 62.5 m³/hour for other conditions respectively. 	To minimize sediment suspension during dredging	Contractor	Kai Tak Barging Point during dredging works	Dredging period	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<ul style="list-style-type: none"> ● Dredging works shall be only for the provision marine channel. No dredging work is required for temporary reclamation; and ● The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater. 					
S6.9.2.2	W8	<ul style="list-style-type: none"> ● While WSR 2 (Planned Kai Tak Cooling Water Intake). is a planned receiver, the project proponent shall liaise with the project proponent of District Cooling System (DCS) for Kai Tak Development on the implementation programme prior to wet season dredging. In case the DCS would be operated during the dredging period of CKR, additional silt screen to the cooling water intake shall be provided to WSR 2. The following specific mitigation measures shall apply for the dredging works: ● In dry season, the dredging rate shall be less than 1500m³/day if no concurrent projects. ● In all other scenario, the dredging rate shall be less than 750m³/day ● Dredging works shall be only for the provision marine channel. No dredging work is required for temporary reclamation. ● The workfront of temporary reclamation shall be surrounded by cofferdams and the associated excavation and backfilling works for temporary reclamation shall have no contact with seawater. ● In case the DCS would be operated during the dredging period of CKR, silt screen shall be provided for WSR2. 	<p>To minimize sediment suspension during dredging if the District Cooling System for Kai Tak Development would be operated in the same period</p>	Contractor	Kai Tak Barging Point during dredging works	Dredging period	N/A
S6.9.2	W9	<ul style="list-style-type: none"> ● Handling of Dredged Sediment / Barging Operation ● All barges should be fitted with tight bottom seals to prevent leakage of materials during transport; ● Barges or hoppers should not be filled to a level that will cause overflow of materials or polluted water during loading or transportation; ● All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and ● Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. ● Mitigation measures for land-based activities as outlined above should be applied 	<p>To minimize and mitigate the water disturbance during dredged sediment handling/barging operation</p>	Contractor	All land-based site and proposed Kwai Chung barging point	Construction stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		to minimise water quality impacts from site runoff and open stockpile spoils at the proposed barging facilities where appropriate.					
S6.9	W10	Implement a marine water quality monitoring programme	Monitor marine water quality prior to and during dredging period	Contractor	At identified monitoring location	Prior to and during dredging period	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Waste Management (Construction Waste)							
S7.4.1	WM1	<p><u>On-site sorting of C&D material</u></p> <ul style="list-style-type: none"> Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored. 	Separation of unsuitable rock from ending up at concrete batching plants and be turned into concrete for structural use	Contractor	All construction sites	Construction stage	V
S7.5.1	WM2	<p><u>Construction and Demolition Material</u></p> <ul style="list-style-type: none"> Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; Carry out on-site sorting; Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	V
S7.5.1	WM3	<p><u>C&D Waste</u></p> <ul style="list-style-type: none"> Standard formwork or pre-fabrication should be used as far as practicable in order to 	Good site practice to minimize the waste	Contractor	All construction	Construction stage	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<p>minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage.</p> <ul style="list-style-type: none"> ● The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage. 	<p>generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal</p>		sites		V
S7.5.1	WM5	<p><u>Land-based and Marine-based Sediment</u></p> <ul style="list-style-type: none"> ● All construction plant and equipment shall be designed and maintained to minimize the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location; ● All vessels shall be sized such that adequate draft is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; ● Before moving the vessels which are used for transporting dredged material, excess material shall be cleaned from the decks and exposed fittings of vessels and the excess materials shall never be dumped into the sea except at the approved locations; ● Adequate freeboard shall be maintained on barges to ensure that decks are not washed by wave action. ● The Contractors shall monitor all vessels transporting material to ensure that no dumping outside the approved location takes place. The Contractor shall keep and produce logs and other records to demonstrate compliance and that journeys are consistent with designated locations and copies of such records shall be submitted to the engineers; ● The Contractors shall comply with the conditions in the dumping licence. ● All bottom dumping vessels (Hopper barges) shall be fitted with tight fittings seals to their bottom openings to prevent leakage of material; ● The material shall be placed into the disposal pit by bottom dumping; ● Contaminated marine mud shall be transported by spit barge of not less than 750m³ capacity and capable of rapid opening and discharge at the disposal site; 	<p>To control pollution due to marine sediment</p>	Contractor	Along CKR alignment	Construction Stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<ul style="list-style-type: none"> ● Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Material adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. ● For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit would be a possible arrangement. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 					
S7.5.1	WM6	<p><u>Chemical Waste</u></p> <ul style="list-style-type: none"> ● Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. ● Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. ● The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. ● Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	V V V V
S7.5.1	WM7	<p><u>General Refuse</u></p> <ul style="list-style-type: none"> ● General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. ● A reputable waste collector should be employed by the Contractor to remove general 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	V @

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		<p>refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law.</p> <ul style="list-style-type: none"> Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. 					V V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Contamination							
S8.10, S8.12 & Appendix 8.4	LC1	<p><u>Remaining SI Works</u></p> <p>The potential for land contamination issues at EBH1, EBH2, and EBH3 will be confirmed by site investigation after site possession and utility diversion by the construction contractor. Following the completion of the remaining SI works, the Project Proponent would prepare and submit a Second Supplementary CAR/RAP to EPD to present the findings of the SI works and to recommend specific remediation measures, if required. Upon completion of the remediation works, if any, a Remediation Report (RR) would be prepared and submitted to EPD for agreement prior to commencement of the construction works.</p>	<p>Investigation of the potential land contamination issues at EBH1, EBH2 and EBH3 which cannot be completed at the EIA stage due to underground utility and site access constraints.</p>	Contractor	EBH1, EBH2 and EBH3	<p>Prior to commencement of construction works at the Kowloon City Ferry Pier Public Transport Interchange (PTI) (for EBH1 & EBH2) and the works area adjacent to the To Kwa Wan Vehicle Examination Centre (for EBH3)</p>	V

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Landscape & Visual							
S10.10.1 Table 10.11	LV3	<ul style="list-style-type: none"> <u>Good Site Management</u> Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance. 	Minimize visual impact	Contractor	Within Project Site	Construction Phase	@
S10.10.1 Table 10.11	LV4	<ul style="list-style-type: none"> <u>Screen Hoarding</u> Decorative screen hoarding should be erected to screen the public from the construction area. It should be designed to be compatible with the existing urban context. 	Minimize visual impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV5	<ul style="list-style-type: none"> <u>Lighting Control during Construction</u> All lighting in the construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residencies and GIC. The contractor shall consider other security measures, which shall minimize the visual impacts. 	Minimize visual impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV6	<ul style="list-style-type: none"> <u>Erosion Control</u> The potential for soil erosion shall be reduced by minimizing the extent of vegetation disturbance on site and by providing a protective cover over newly exposed soil. 	Minimize landscape impact	Contractor	Within Project Site	Construction Phase	V
S10.10.1 Table 10.11	LV7	<ul style="list-style-type: none"> <u>Tree Protection & Preservation</u> Carefully protected during construction. Tree protection measures will be detailed at the Tree Removal Application stage and plans submitted to the relevant Government Department for approval in due course in accordance with ETWB TC no.3/2006. 	Minimize landscape and visual impact	Contractor	Within Project Site	Design and Construction Phase	V
S10.10.1 Table 10.11	LV9	<ul style="list-style-type: none"> <u>Compensatory Planting</u> For trees unavoidably affected by the Project that have to be removed, where practical transplantation will be chosen as the top priority method of removal but if this is not possible or practical compensatory planting will be provided for trees unavoidably felled. All felled trees shall be compensated for by planting trees to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006. Compensatory tree planting may be incorporated into public open spaces and along roadside amenity areas affected by the construction works and therefore be part of the bigger wider planting plans. Onsite compensation planting is preferred but if necessary, 	Minimize landscape and visual impact	Contractor	Within Project Site and designated off-site locations	Construction Phase	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		additional receptor sites outside the Works Area shall be agreed separately with Government during the Tree Felling Application process.					
S10.10.1 Table 10.11	LV10	<ul style="list-style-type: none"> <u>Screen Planting</u> Tall screen/buffer trees, shrubs and climbers should be planted, in so far as is possible, to soften and screen proposed structures such as roads and central strip, vertical edges and buildings and to enhance streetscape greening effect where appropriate. Indiscriminate use of trees for screening must be avoided and the principle of 'right tree for the right place' must be followed. This detail will be provided at the Detailed Design stage. This measure may additionally form part of the compensatory planting and will improve and create a pleasant pedestrian environment. 	Minimize visual impact and also enhance landscape.	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV11	<ul style="list-style-type: none"> <u>Green Roof</u> Roof greening will be established on ventilation and administration buildings to reduce exposure to untreated concrete surfaces and particularly mitigate visual impact to VSRs at high levels. 	Minimize landscape and visual impact	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV12	<ul style="list-style-type: none"> <u>Reinstatement</u> All works areas, excavated areas and disturbed areas for tunnel construction and temporary road diversion or any other proposed works shall be reinstated to former conditions or better, with reasonable landscape treatment and to the satisfaction of the relevant Government departments. (Specific mitigation for disturbance to public open space is detailed separately under LV14) 	Minimize landscape impact	Contractor	Within Project Site	Construction Phase	N/A
S10.10.1 Table 10.11	LV14	<ul style="list-style-type: none"> <u>Landscape enhancement</u> Implement a comprehensive landscape plan to maximize the greening opportunity and create a unique landscape for the project to blend in with the surrounding, including in re-provisioned areas. In particular: <ul style="list-style-type: none"> - landscape enhancement of re-provisioned Public Transport Interchange; - landscape deck on tunnel portals; - viaduct planters for trailer planting; - vertical greening of piers and walls with climbers or trailer planting; - roadside planting i.e. planting along central dividers and on road islands e.g. in the middle of roundabouts. (Roadside planting i.e. at the road edge and not in the central divider or road island, and vertical greening may be considered part of Screen Planting). - Purpose-built maintenance access without temporary traffic arrangement must be 	Minimize landscape and visual impact	Contractor	Along tunnel alignment	Construction phase	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
		provided and detailed design of landscape decks and planting, including details of maintenance access locations, will be sent to maintenance and management parties for endorsement and ensures these mitigation measures are feasible.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural Heritage Impact (Construction and Operational Phase)							
S11.4.4	CH1	<ul style="list-style-type: none"> The contractor should be alerted during the construction on the possibility of locating archaeological remains and as a precautionary measure, AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject sites. 	To preserve any cultural heritage items which may be removed and damaged by the excavation.	Contractor	During construction works for cut and cover tunnels	During the construction phase	N/A
S11.6 para 3	CH2	<ul style="list-style-type: none"> The dredging contractor should be alerted during the construction on the possibility of locating archaeological remains, such as cannon and AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject areas. 	To preserve any cultural heritage items which may be removed and damaged by the dredging.	Contractor	During construction of underwater tunnel (north of To Kwa Wan Typhoon Shelter)	During the construction phase	N/A
S12.6.1, Table 12.2	CH8	<ul style="list-style-type: none"> A monitoring system for settlement, vibration and tilting will be determined and implemented pending determination of the future grading. A monitoring proposal will be submitted to AMO before commencement of work if a historic building grade is accorded. 	Protect the structure from damage from construction works	Contractor	Kowloon City Ferry Pier (CKR-13)	During the construction phase	N/A
S12.6.1, Table 12.2	CH9	<ul style="list-style-type: none"> No mitigation is required at present. If the public pier is granted Grade 1, Grade 2 or Grade 3 status, the mitigation will be revised to adhere to the requirements for protective measures for Graded Historic Buildings 	To be determined	Contractor	Ma Tau Kok Public Pier (CKR-16)	During the construction phase	N/A
S12.6.1, Table 12.2	CH10	<ul style="list-style-type: none"> A monitoring system for settlement, vibration and tilting will be determined and implemented pending determination of the future grading. A monitoring proposal will be submitted to AMO before commencement of work if a historic building grade is accorded. 	Protect the structure from damage from construction works	Contractor	The Kowloon City Vehicular Ferry Pier (CKR-17)	During the construction phase	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
EM&A Project							
S13.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	Control EM&A Performance	Highways Department	All construction sites	Construction stage	V
S13.2 –13.4	EM2	1) An Environmental Team needs to be employed as per the EM&A Manual. 2) Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. 3) An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with.	Perform environmental monitoring & auditing	Highways Department / Contractor	All construction sites	Construction stage	V V V

Legends:

V = implemented;

X = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D – Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	197.3 $\mu\text{g}/\text{m}^3$	260 $\mu\text{g}/\text{m}^3$

Table 2 Action and Limit Levels for 1-hour TSP

ID	Location	Action Level	Limit Level
E-A14a	Block B of Merit Industrial Centre	302.4 $\mu\text{g}/\text{m}^3$	500 $\mu\text{g}/\text{m}^3$

**Table 3 Action and Limit Levels for Construction Noise
(0700 – 1900 hrs of normal weekdays)**

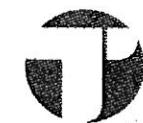
ID	Location	Action Level	Limit Level
E-N12a	19 Hing Yan Street	When one documented complaint is received	75 dB(A)
E-N21a	Block B of Merit Industrial Centre	When one documented complaint is received	75 dB(A)

Table 4 Derived Action and Limit Levels for Water Quality

Parameters	Action Level	Limit Level
Dissolved Oxygen (DO) in mg/L ⁽¹⁾	<u>Surface & Middle:</u> 4.03 (5th percentile of baseline data for surface and middle layer) <u>Bottom:</u> 3.94 (5th percentile of baseline data for bottom layer)	<u>Surface & Middle:</u> 3.88 (1st percentile of baseline data for surface and middle layer) <u>Bottom:</u> 2.00
Suspended Solids (SS) in mg/L ⁽²⁾	13.80 (95th percentile of baseline data) or 120% of upstream control station's SS at the same tide of the same day	18.70 (99th percentile of baseline data) or 130% of upstream control station's SS at the same tide of the same day
Turbidity in NTU ⁽²⁾	7.00 (95th percentile of baseline data) or 120% of upstream control station's Turbidity at the same tide of the same day	8.40 (99th percentile of baseline data) or 130% of upstream control station's Turbidity at the same tide of the same day
Copper in µg/L ⁽²⁾	2.00 (95th percentile of baseline data) or 120% of upstream control station's nutrient level at the same tide of the same day	3.00 (99th percentile of baseline data) or 130% of upstream control station's nutrient level at the same tide of the same day or whichever is the less
Total PAH in µg/L ⁽²⁾	1.60 (95th percentile of baseline data) or 120% of upstream control station's nutrient level at the same tide of the same day	1.60 (99th percentile of baseline data) or 130% of upstream control station's nutrient level at the same tide of the same day or whichever is the less

Note: 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, Copper and Total PAH, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.



APPENDIX E

Calibration Certificates of Equipments

RECALIBRATION

DUE DATE:

December 26, 2018

Certificate of Calibration

Calibration Certification Information

Cal. Date:	December 26, 2017	Rootsmeter S/N:	438320	Ta:	291	°K
Operator:	Jim Tisch			Pa:	763.3	mm Hg
Calibration Model #:	TE-5025A	Calibrator S/N: 0843				

Run	Vol. Init (m ³)	Vol. Final (m ³)	ΔVol. (m ³)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H ₂ O)
1	1	2	1	1.4140	3.2	2.00
2	3	4	1	1.0010	6.4	4.00
3	5	6	1	0.8910	7.9	5.00
4	7	8	1	0.8480	8.8	5.50
5	9	10	1	0.7030	12.7	8.00

Data Tabulation

Vstd (m ³)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$ (y-axis)	Va	Qa (x-axis)	$\sqrt{\Delta H \left(\frac{Ta}{Pa} \right)}$ (y-axis)
1.0241	0.7243	1.4342	0.9958	0.7042	0.8732
1.0198	1.0188	2.0283	0.9916	0.9906	1.2349
1.0178	1.1423	2.2677	0.9896	1.1107	1.3807
1.0166	1.1988	2.3783	0.9885	1.1656	1.4481
1.0113	1.4386	2.8684	0.9834	1.3988	1.7464
QSTD	m=	2.00314	QA	m=	1.25433
	b=	-0.01725		b=	-0.01050
	r=	0.99996		r=	0.99996

Calculations

$$Vstd = \Delta Vol \left(\frac{(Pa - \Delta P)}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)$$

$$Va = \Delta Vol \left(\frac{(Pa - \Delta P)}{Pa} \right)$$

$$Qstd = Vstd / \Delta Time$$

$$Qa = Va / \Delta Time$$

For subsequent flow rate calculations:

$$Qstd = 1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} - b \right)$$

$$Qa = 1/m \left(\sqrt{\Delta H \left(\frac{Ta}{Pa} \right)} - b \right)$$

Standard Conditions

Tstd: 298.15 °K

Pstd: 760 mm Hg

Key

 ΔH: calibrator manometer reading (in H₂O)

ΔP: rootsmeter manometer reading (mm Hg)

Ta: actual absolute temperature (°K)

Pa: actual barometric pressure (mm Hg)

b: intercept

m: slope

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

AECOM Asia Company Limited
Tisch TSP Mass Flow Controlled High Volume Air Sampler
Field Calibration Report

Station	Block B, Merit Industrial Centre (E-A14a)	Operator:	Shum Kam Yuen
Cal. Date:	28-Sep-18	Next Due Date:	28-Nov-18
Model No.:	TE-5170	Serial No.	10380
Equipment No.:	A-001-15T		

Ambient Condition			
Temperature, Ta (K)	304.3	Pressure, Pa (mmHg)	755.4

Orifice Transfer Standard Information					
Serial No:	843	Slope, mc	2.00314	Intercept, bc	-0.01725
Last Calibration Date:	26-Dec-17	$mc \times Q_{std} + bc = [H \times (Pa/760) \times (298/Ta)]^{1/2}$			
Next Calibration Date:	26-Dec-18				

Calibration of TSP Sampler					
Resistance Plate No.	Orifice			HVS Flow Recorder	
	DH (orifice), in. of water	$[DH \times (Pa/760) \times (298/Ta)]^{1/2}$	$Q_{std} (\text{m}^3/\text{min}) \times \text{-axis}$	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.0	2.61	1.31	46.0	45.38
13	6.2	2.46	1.23	42.0	41.44
10	4.8	2.16	1.09	36.0	35.52
7	3.7	1.90	0.96	30.0	29.60
5	2.3	1.50	0.76	22.0	21.71

By Linear Regression of Y on X

Slope , mw = 42.3419 **Intercept, bw = -10.5433**

Correlation Coefficient* = 0.9988

*If Correlation Coefficient < 0.990, check and recalibrate.

Set Point Calculation

From the TSP Field Calibration Curve, take $Q_{std} = 1.30 \text{ m}^3/\text{min}$

From the Regression Equation, the "Y" value according to

$$mw \times Q_{std} + bw = IC \times [(Pa/760) \times (298/Ta)]^{1/2}$$

Therefore, Set Point; $IC = (mw \times Q_{std} + bw) \times [(760 / Pa) \times (Ta / 298)]^{1/2} = 45.11$

Remarks: _____

QC Reviewer: WS

Signature: WS

Date: 28/9/18

AECOM Asia Company Limited
Tisch TSP Mass Flow Controlled High Volume Air Sampler
Field Calibration Report

Station	Block B, Merit Industrial Centre (E-A14a)	Operator:	Shum Kam Yuen
Cal. Date:	28-Nov-18	Next Due Date:	28-Jan-19
Model No.:	TE-5170	Serial No.	10380
Equipment No.:	A-001-15T		

Ambient Condition			
Temperature, Ta (K)	295	Pressure, Pa (mmHg)	763.2

Orifice Transfer Standard Information					
Serial No.:	843	Slope, mc	2.00314	Intercept, bc	-0.01725
Last Calibration Date:	26-Dec-17		$mc \times Q_{std} + bc = [H \times (Pa/760) \times (298/Ta)]^{1/2}$		
Next Calibration Date:	26-Dec-18				

Calibration of TSP Sampler					
Resistance Plate No.	Orifice			HVS Flow Recorder	
	DH (orifice), in. of water	$[DH \times (Pa/760) \times (298/Ta)]^{1/2}$	Qstd (m^3/min) X axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.1	2.68	1.35	47.0	47.34
13	6.2	2.51	1.26	43.0	43.31
10	4.8	2.21	1.11	36.0	36.26
7	3.6	1.91	0.96	30.0	30.22
5	2.3	1.53	0.77	22.0	22.16

By Linear Regression of Y on X

Slope, mw = 43.5769

Intercept, bw = -11.6684

Correlation Coefficient* = 0.9992

*If Correlation Coefficient < 0.990, check and recalibrate.

Set Point Calculation

From the TSP Field Calibration Curve, take Qstd = $1.30 m^3/min$

From the Regression Equation, the "Y" value according to

$$mw \times Q_{std} + bw = IC \times [(Pa/760) \times (298/Ta)]^{1/2}$$

Therefore, Set Point; IC = $(mw \times Q_{std} + bw) \times [(760 / Pa) \times (Ta / 298)]^{1/2} =$ 44.66

Remarks: _____

QC Reviewer: WS CHAN

Signature: WT

Date: 28/11/18

EQUIPMENT CALIBRATION RECORD

Type: Laser Dust Monitor
 Manufacturer/Brand: SIBATA
 Model No.: LD-3B
 Equipment No.: A.005.16a
 Sensitivity Adjustment Scale Setting: 521 CPM
 Operator: Mike Shek (MSKM)

Standard Equipment

Equipment: Rupprecht & Patashnick TEOM®
 Venue: Cyberport (Pui Ying Secondary School)
 Model No.: Series 1400AB
 Serial No: Control: 140AB219899803
 Sensor: 1200C143659803 Ko: 12500
 Last Calibration Date*: 3 May 2018

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): 521 CPM
 Sensitivity Adjustment Scale Setting (After Calibration): 521 CPM

Hour	Date (dd-mm-yy)	Time	Ambient Condition		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/Minute ³ X-axis
			Temp (°C)	R.H. (%)			
1	14-07-18	10:15 - 11:15	29.1	79	0.04328	1742	29.03
2	14-07-18	11:15 - 12:15	29.1	78	0.04673	1874	31.23
3	14-07-18	12:15 - 13:15	29.2	79	0.04904	1961	32.68
4	14-07-18	13:15 - 14:15	29.2	79	0.04734	1897	31.62

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®
 2. Total Count was logged by Laser Dust Monitor
 3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor): 0.0015
 Correlation coefficient: 0.9974

Validity of Calibration Record: 14 July 2019

Remarks:

QC Reviewer: YW Fung Signature: Date: 16 July 2018

EQUIPMENT CALIBRATION RECORD

Type: Laser Dust Monitor
 Manufacturer/Brand: SIBATA
 Model No.: LD-3
 Equipment No.: A.005.07a
 Sensitivity Adjustment Scale Setting: 557 CPM
 Operator: Mike Shek (MSKM)

Standard Equipment

Equipment: Rupprecht & Patashnick TEOM®
 Venue: Cyberport (Pui Ying Secondary School)
 Model No.: Series 1400AB
 Serial No: Control: 140AB219899803
 Sensor: 1200C143659803 Ko: 12500
 Last Calibration Date*: 3 May 2018

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): 557 CPM
 Sensitivity Adjustment Scale Setting (After Calibration): 557 CPM

Hour	Date (dd-mm-yy)	Time	Ambient Condition		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
			Temp (°C)	R.H. (%)			
1	05-05-18	09:15 - 10:15	27.6	79	0.05367	2151	35.85
2	05-05-18	10:15 - 11:15	27.6	80	0.05864	2347	39.12
3	05-05-18	11:15 - 12:15	27.7	80	0.06661	2679	44.65
4	05-05-18	12:15 - 13:15	27.7	79	0.06335	2546	42.43

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®
 2. Total Count was logged by Laser Dust Monitor
 3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor): 0.0015
 Correlation coefficient: 0.9994

Validity of Calibration Record: 5 May 2019

Remarks:

QC Reviewer: YW Fung Signature: Date: 07 May 2018

EQUIPMENT CALIBRATION RECORD

Type: Laser Dust Monitor
 Manufacturer/Brand: SIBATA
 Model No.: LD-3
 Equipment No.: A.005.10a
 Sensitivity Adjustment Scale Setting: 753 CPM
 Operator: Mike Shek (MSKM)

Standard Equipment

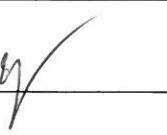
Equipment: Rupprecht & Patashnick TEOM®
 Venue: Cyberport (Pui Ying Secondary School)
 Model No.: Series 1400AB
 Serial No.: Control: 140AB219899803
 Sensor: 1200C143659803 Ko: 12500
 Last Calibration Date*: 3 May 2018

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): 753 CPM
 Sensitivity Adjustment Scale Setting (After Calibration): 753 CPM

Hour	Date (dd-mm-yy)	Time	Ambient Condition		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
			Temp (°C)	R.H. (%)			
1	05-05-18	10:00 - 11:00	27.7	80	0.05415	2164	36.06
2	05-05-18	11:00 - 12:00	27.7	80	0.05973	2375	39.58
3	05-05-18	12:00 - 13:00	27.7	79	0.06718	2693	44.88
4	05-05-18	13:00 - 14:00	27.7	80	0.06486	2587	43.11


Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®
 2. Total Count was logged by Laser Dust Monitor
 3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor): 0.0015
 Correlation coefficient: 0.9986

Validity of Calibration Record: 5 May 2019

Remarks:

QC Reviewer: YW Fung Signature: Date: 07 May 2018

綜合試驗有限公司
SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓
12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.
E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860
Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.: 18CA0914 03

Page 1 of 2

Item tested

Description:	Sound Level Meter (Type 1)	Microphone
Manufacturer:	B & K	B & K
Type/Model No.:	2238	4188
Serial/Equipment No.:	2800927	2791211
Adaptors used:	-	-

Item submitted by

Customer Name:	AECOM ASIA CO., LTD.
Address of Customer:	-
Request No.:	-
Date of receipt:	14-Sep-2018

Date of test: 17-Sep-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGISMEC
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Signal generator	DS 360	61227	23-Apr-2019	CEPREI

Ambient conditions

Temperature:	21 ± 1 °C
Relative humidity:	55 ± 10 %
Air pressure:	1005 ± 5 hPa

Test specifications

1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng Junqi

Date: 18-Sep-2018

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 18CA0914 03

Page 2 of 2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertainty (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL Frequency weightings	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	A	Pass	0.3	
	C	Pass	0.3	
Time weightings	Lin	Pass	0.3	
	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response R.M.S. accuracy	Single 100µs rectangular pulse	Pass	0.3	
	Crest factor of 3	Pass	0.3	
	Single burst 5 ms at 2000 Hz	Pass	0.3	
Time weighting I	Repeated at frequency of 100 Hz	Pass	0.3	
	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range Sound exposure level Overload indication	Single burst 10 ms at 4 kHz	Pass	0.4	
	Single burst 10 ms at 4 kHz	Pass	0.4	
	SPL	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertainty (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:		Checked by:	
Date:	17-Sep-2018	Date:	18-Sep-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

CERTIFICATE OF CALIBRATION

Certificate No.: 18CA0406 02-01

Page 1 of 2

Item tested

Description:	Sound Level Meter (Type 1)	Microphone
Manufacturer:	B & K	B & K
Type/Model No.:	2238	4188
Serial/Equipment No.:	2285692	2250455
Adaptors used:	-	-

Item submitted by

Customer Name:	AECOM ASIA CO., LTD.
Address of Customer:	-
Request No.:	-
Date of receipt:	06-Apr-2018

Date of test: 10-Apr-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	08-Sep-2018	CIGISMEC
Signal generator	DS 360	33873	25-Apr-2018	CEPREI

Ambient conditions

Temperature:	21 ± 1 °C
Relative humidity:	50 ± 10 %
Air pressure:	1005 ± 5 hPa

Test specifications

1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responses of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng Jun Qi

Date: 11-Apr-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 18CA0406 02-01

Page 2 of 2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "--" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertainty (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL Frequency weightings	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	A	Pass	0.3	
	C	Pass	0.3	
Time weightings	Lin	Pass	0.3	
	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100 μ s rectangular pulse	Pass	0.3	
	Crest factor of 3	Pass	0.3	
R.M.S. accuracy	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	SPL	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertainty (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:	Fung Chi Yip	- End -	Checked by:	Lam Tze Wai
Date:	0-Apr-2018		Date:	11-Apr-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

綜合試驗有限公司
SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓
12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.
E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860
Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.: 18CA0406 02-02

Page: 1 of 2

Item tested

Description: Acoustical Calibrator (Class 1)
Manufacturer: B & K
Type/Model No.: 4231
Serial/Equipment No.: 3006428 / N004.03
Adaptors used: -

Item submitted by

Customer: AECOM ASIA CO LIMITED
Address of Customer: -
Request No.: -
Date of receipt: 06-Apr-2018

Date of test: 09-Apr-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	33873	25-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature: $21 \pm 1^\circ\text{C}$
Relative humidity: $50 \pm 10\%$
Air pressure: $1005 \pm 5 \text{ hPa}$

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Feng Jun Qi

Date: 11-Apr-2018

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.: 18CA0406 02-02

Page: 2 of 2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	(Output level in dB re 20 μ Pa) Estimated Expanded Uncertainty dB
1000	94.00	94.20	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz STF = 0.015 dB

Estimated expanded uncertainty 0.005 dB

3. Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz Actual Frequency = 999.96 Hz

Estimated expanded uncertainty 0.1 Hz Coverage factor k = 2.2

4. Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz TND = 0.4 %

Estimated expanded uncertainty 0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:	Fung Chi Yip	Checked by:	Lam Tze Wai
Date:	09-Apr-2018	Date:	11-Apr-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1853965

SUB-BATCH: 0

DATE OF ISSUE: 18-Oct-2018

CLIENT: AECOM ASIA COMPANY LIMITED

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: 6820 V2

Serial No.: 12A101545

Equipment No.: W.026.35

Date of Calibration: 11 October, 2018

Date of Next Calibration:

11 January, 2019

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading ($\mu\text{S}/\text{cm}$)	Displayed Reading ($\mu\text{S}/\text{cm}$)	Tolerance (%)
146.9	150.0	+ 2.1
6667	6650	- 0.3
12890	12770	- 0.9
58670	58050	- 1.1
Tolerance Limit (%)		± 10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.46	- 0.04
5.45	5.42	- 0.03
7.60	7.58	- 0.02
Tolerance Limit (mg/L)		± 0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.98	- 0.02
7.0	7.01	+ 0.01
10.0	10.00	+ 0.00
Tolerance Limit (pH unit)		± 0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

A handwritten signature in black ink, appearing to read "Chan Siu Ming".

Mr Chan Siu Ming, Vice
Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1853965

SUB-BATCH: 0

DATE OF ISSUE: 18-Oct-2018

CLIENT: AECOM ASIA COMPANY LIMITED

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: 6820 V2

Serial No.: 12A101545

Equipment No.: W.026.35

Date of Calibration: 11 October, 2018

Date of Next Calibration:

11 January, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	--
4	4.1	+ 2.5
10	9.7	- 3.0
20	19.7	- 1.5
50	50.1	+ 0.2
100	99.7	- 0.3
Tolerance Limit (%)		± 10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.01	--
10	10.04	+ 0.4
20	20.02	+ 0.1
30	29.92	- 0.3
Tolerance Limit (%)		± 10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vice
Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1853965

SUB-BATCH: 0

DATE OF ISSUE: 18- Oct- 2018

CLIENT: AECOM ASIA COMPANY LIMITED

Equipment Type: Multifunctional Meter

Brand Name: YSI

Model No.: 6820 V2

Serial No.: 12A101545

Equipment No.: W.026.35

Date of Calibration: 11 October, 2018

Date of Next Calibration:

11 January, 2019

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	10.48	- 0.0
20.0	20.07	+ 0.1
38.5	38.47	- 0.0
Tolerance Limit (°C)		± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vice
Manager - Inorganic

APPENDIX F

EM&A Monitoring Schedules

Contract No. HY/2014/07
Central Kowloon Route – Kai Tak West
Impact Environmental Monitoring Schedule for November 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Nov	2-Nov	3-Nov
4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov
		24-hour TSP 1-hour TSP Noise				
11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov
	24-hour TSP 1-hour TSP Noise					24-hour TSP 1-hour TSP
18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov
					24-hour TSP 1-hour TSP Noise	
25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov	
				24-hour TSP 1-hour TSP Noise		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

E-A14a: Block B of Merit Industrial Centre

Noise Monitoring Stations

E-N12a: 19 Hing Yan Street

E-N21a: Block B of Merit Industrial Centre

Monitoring Frequency

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

Monitoring Frequency

Once per week

Contract No. HY/2014/07
Central Kowloon Route – Kai Tak West
Tentative Impact Environmental Monitoring Schedule for December 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
							1-Dec
2-Dec	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	
			24-hour TSP 1-hour TSP Noise				
9-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	
		24-hour TSP 1-hour TSP Noise					
16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	
	24-hour TSP 1-hour TSP Noise						24-hour TSP 1-hour TSP
23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	
					24-hour TSP 1-hour TSP Noise		
30-Dec	31-Dec						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

E-A14a: Block B of Merit Industrial Centre

Noise Monitoring Stations

E-N12a: 19 Hing Yan Street

E-N21a: Block B of Merit Industrial Centre

Monitoring Frequency

24-hour TSP: Once every 6 days

1-hour TSP: 3 times every 6 days (as required in case of complaints)

Monitoring Frequency

Once per week

Central Kowloon Route - Kai Tak West
Impact Water Quality Monitoring Schedule

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	29-Oct-18	30-Oct-18	31-Oct-18	1-Nov-18	2-Nov-18	3-Nov-18
				Mid-Ebb Mid-Flood ⁽¹⁾	6:05 14:14	Mid-Ebb Mid-Flood
4-Nov-18	5-Nov-18	6-Nov-18	7-Nov-18	8-Nov-18	9-Nov-18	10-Nov-18
		Mid-Ebb Mid-Flood	11:20 17:24	Mid-Flood Mid-Ebb	6:50 12:45	Mid-Ebb Mid-Flood
11-Nov-18	12-Nov-18	13-Nov-18	14-Nov-18	15-Nov-18	16-Nov-18	17-Nov-18
		Mid-Ebb Mid-Flood	2:51 11:05	Mid-Ebb Mid-Flood	4:43 17:16	Mid-Ebb Mid-Flood
18-Nov-18	19-Nov-18	20-Nov-18	21-Nov-18	22-Nov-18	23-Nov-18	24-Nov-18
		Mid-Ebb Mid-Flood	9:58 16:29	Mid-Ebb Mid-Flood	11:31 17:24	Mid-Flood Mid-Ebb
25-Nov-18	26-Nov-18	27-Nov-18	28-Nov-18	29-Nov-18	30-Nov-18	
		Mid-Ebb Mid-Flood	2:45 9:59	Mid-Ebb Mid-Flood	4:39 12:11	

Remark:

(1) Impact water quality monitoring for Mid-Flood was cancelled on 1 November 2018 due to the tropical cyclone warning signal no.3 was announced at 12:40.

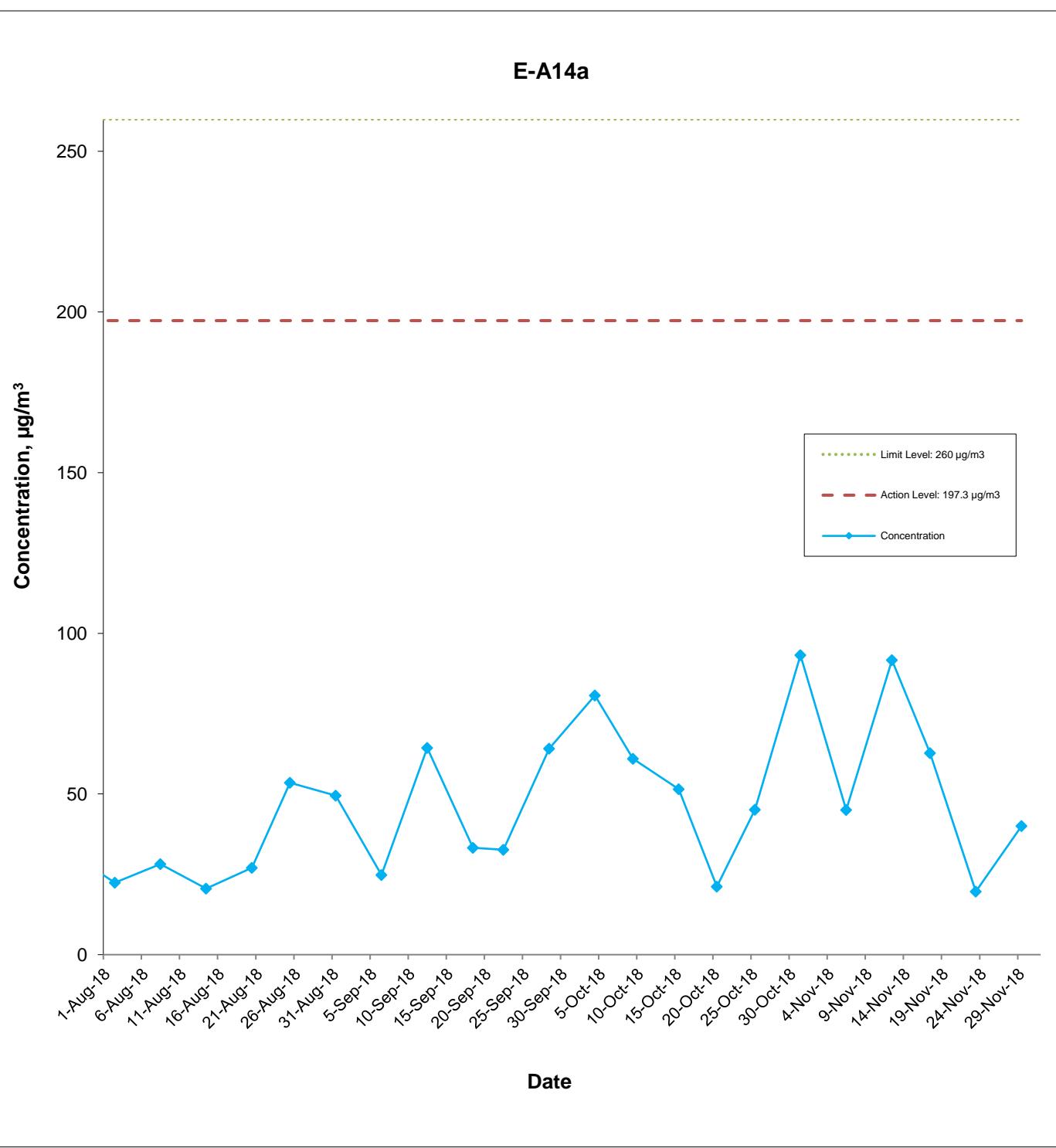
Central Kowloon Route - Kai Tak West
Tentative Impact Water Quality Monitoring Schedule on December 2018

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G
Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)


Date	Weather Condition	Air Temp. (°C)	Atmospheric Pressure (hPa)	Flow Rate (m ³ /min.)		Av. flow (m ³ /min)	Total vol. (m ³)	Filter Weight (g)		Particulate weight(g)	Elapse Time		Sampling Time(hrs.)	Conc. (µg/m ³)
				Initial	Final			Initial	Final		Initial	Final		
6-Nov-18	Sunny	24.7	1017.5	1.31	1.31	1.31	1892.2	2.6677	2.7528	0.0851	7241.32	7265.32	24.00	45.0
12-Nov-18	Sunny	24.9	1014.2	1.31	1.31	1.31	1892.2	2.6798	2.8533	0.1735	7265.32	7289.32	24.00	91.7
17-Nov-18	Sunny	23.5	1015.8	1.31	1.31	1.31	1892.2	2.6677	2.7864	0.1187	7289.32	7313.32	24.00	62.7
23-Nov-18	Sunny	20.9	1020.1	1.31	1.31	1.31	1892.2	2.6811	2.7183	0.0372	7313.32	7337.32	24.00	19.7
29-Nov-18	Sunny	21.3	1021.0	1.31	1.31	1.31	1892.2	2.6647	2.7403	0.0756	7337.32	7361.32	24.00	40.0
										Average				51.8
										Minimum				19.7
										Maximum				91.7

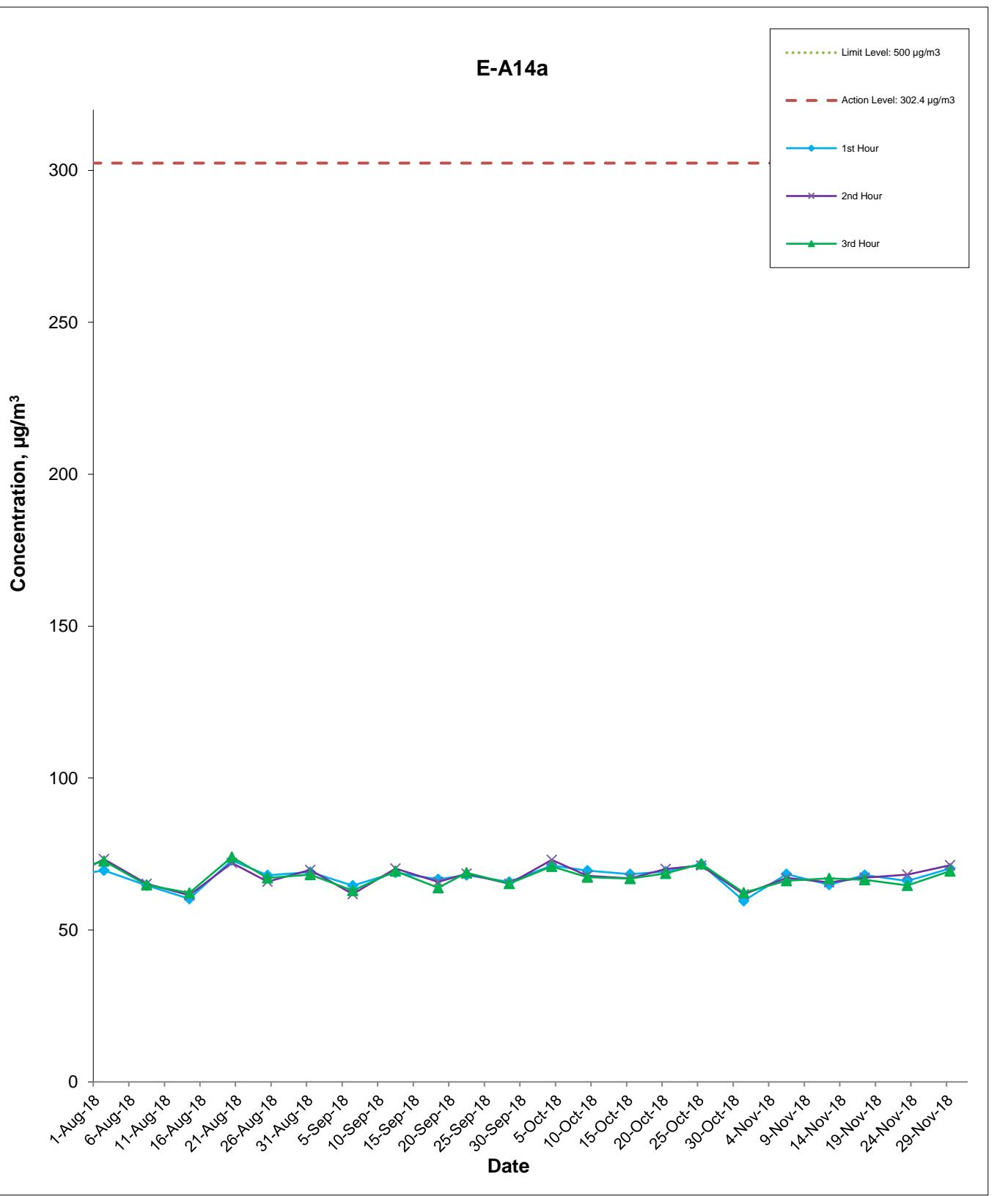
Appendix G

Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station E-A14a (Block B, Merit Industrial Centre)

Date	Start Time (hh:mm)	Weather Condition	1st Hour	2nd Hour	3rd Hour
			Conc. (µg/m³)	Conc. (µg/m³)	Conc. (µg/m³)
6-Nov-18	9:50	Fine	68.4	67.1	66.2
12-Nov-18	12:09	Fine	64.9	65.7	67.0
17-Nov-18	13:35	Sunny	68.1	67.2	66.5
23-Nov-18	11:45	Sunny	66.1	68.2	64.7
29-Nov-18	13:05	Fine	70.2	71.3	69.4
			Average	67.4	
			Min	64.7	
			Max	71.3	

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that uses or relies on this drawing without AECOM's express written consent.


Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

AECOM

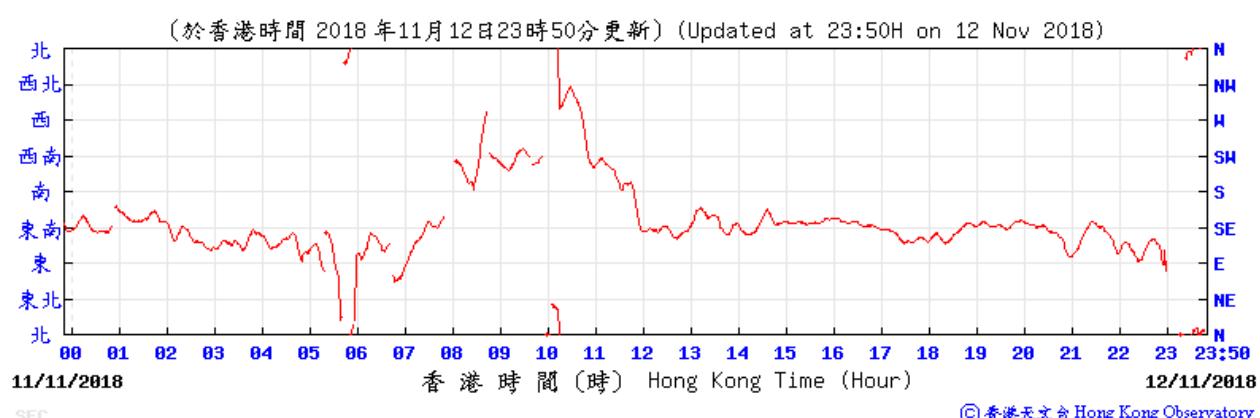
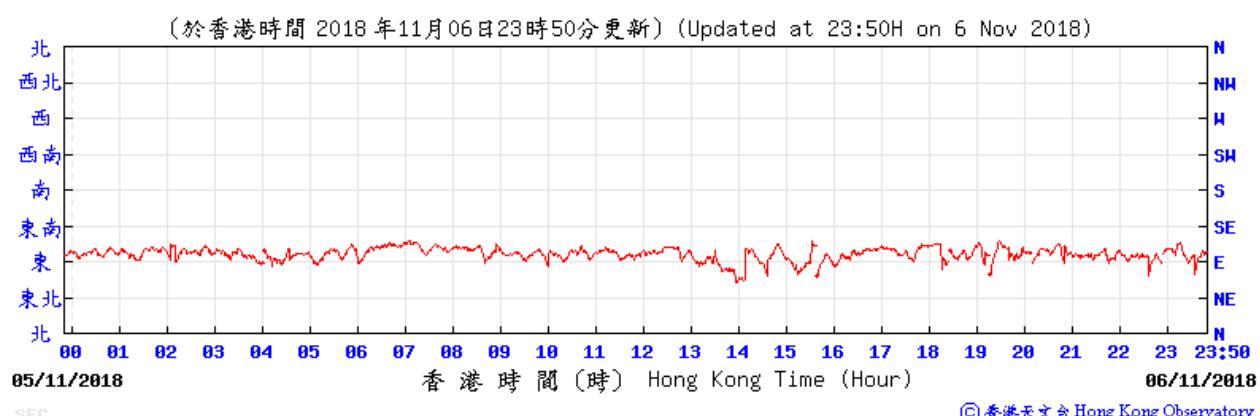
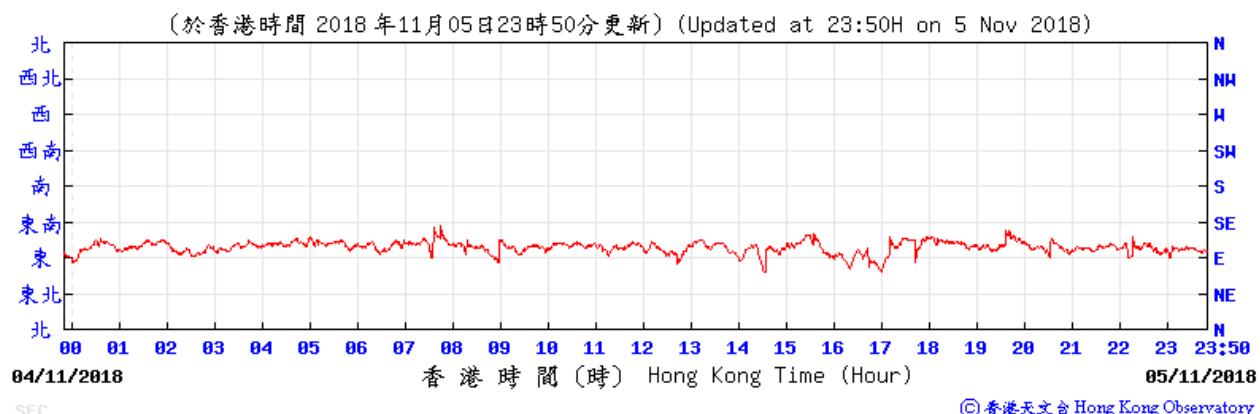
Graphical Presentation of Impact 24-hour TSP Monitoring Results

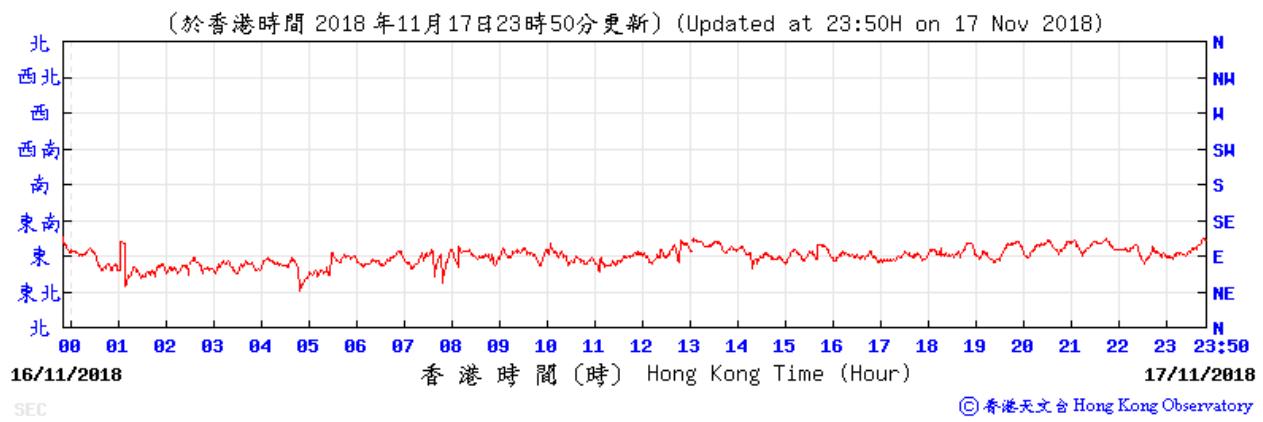
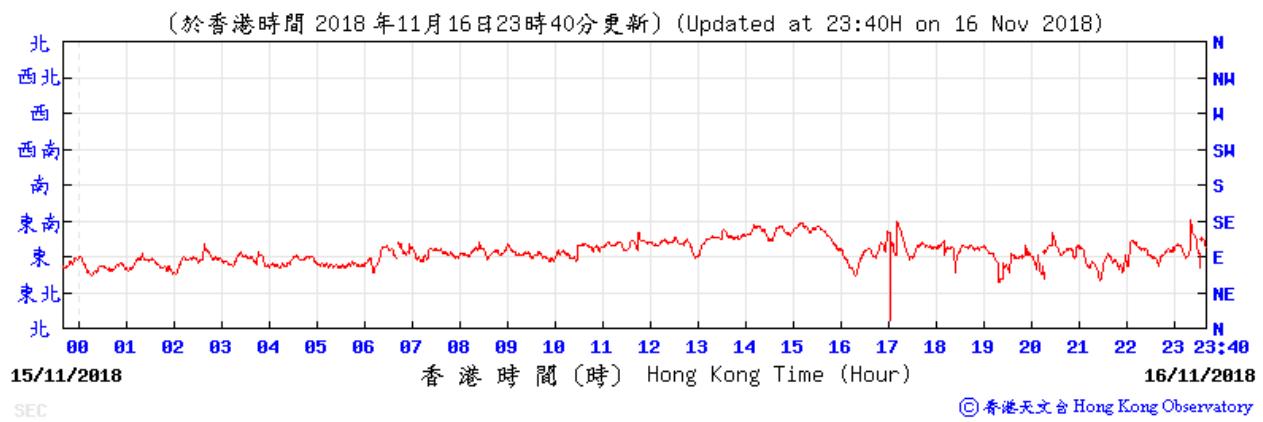
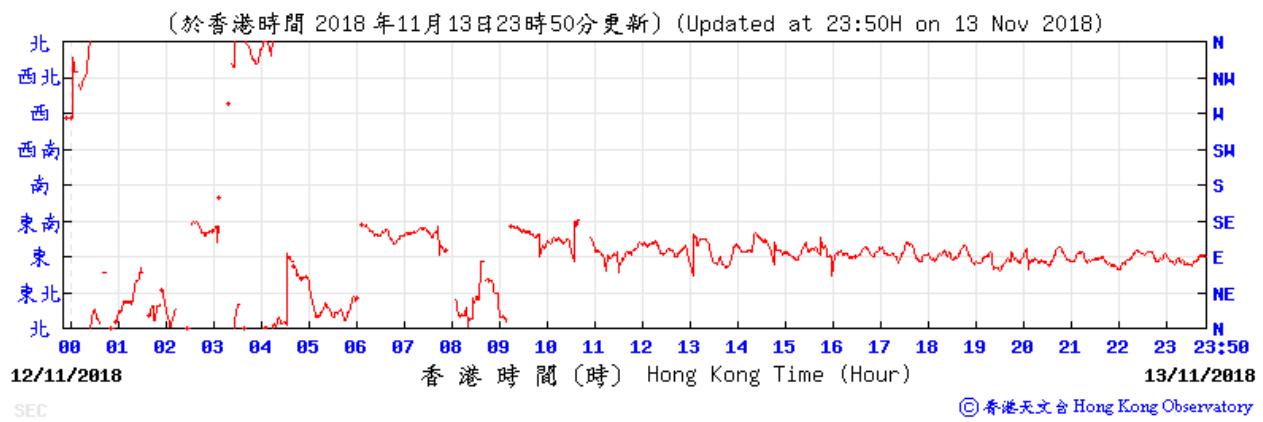
Date: December 2018

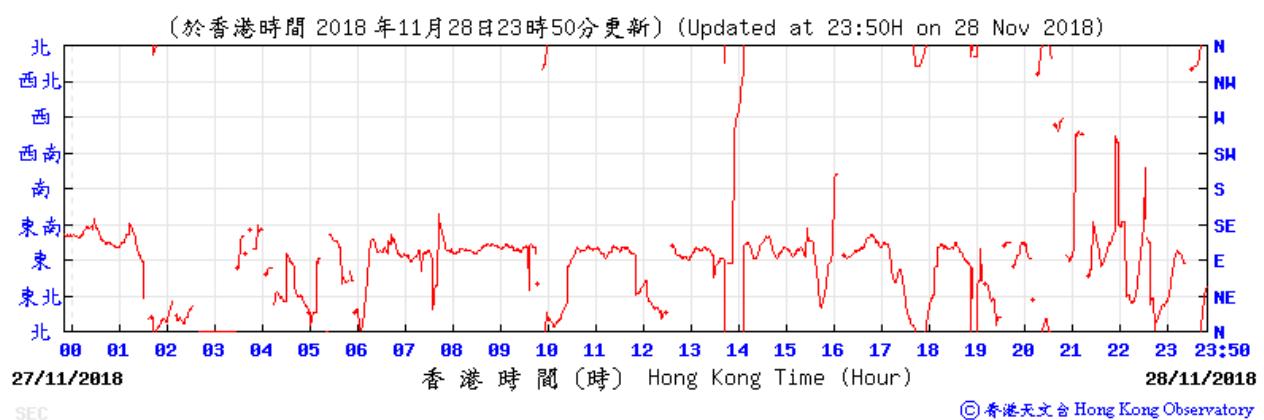
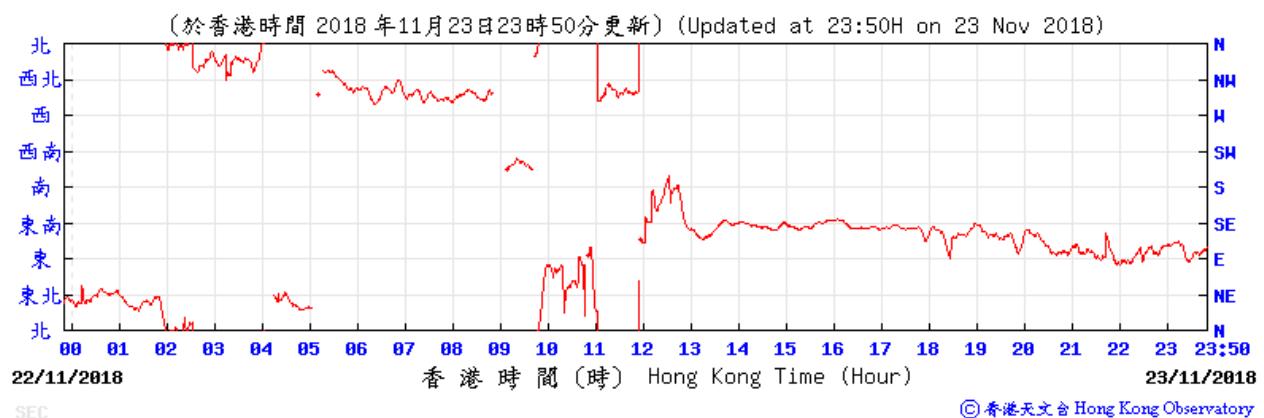
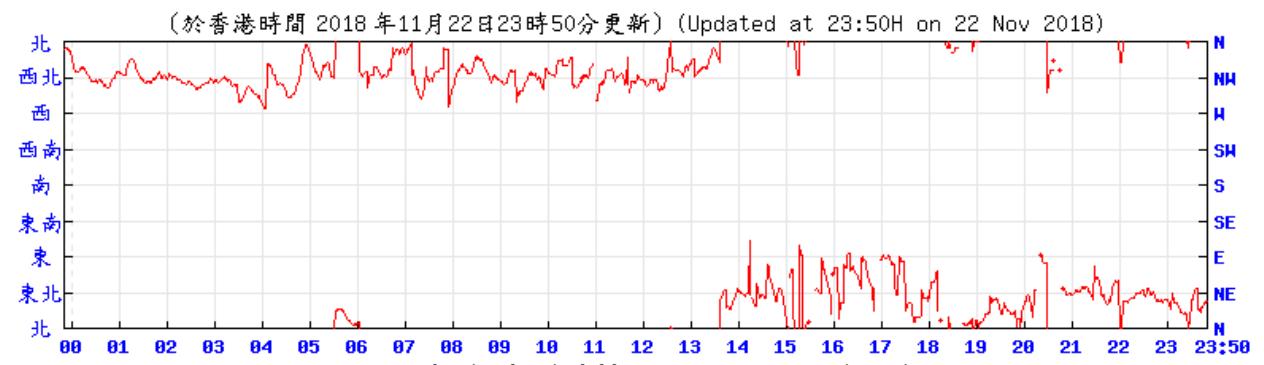
Appendix G

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that uses or relies on this drawing without AECOM's express written consent.

Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

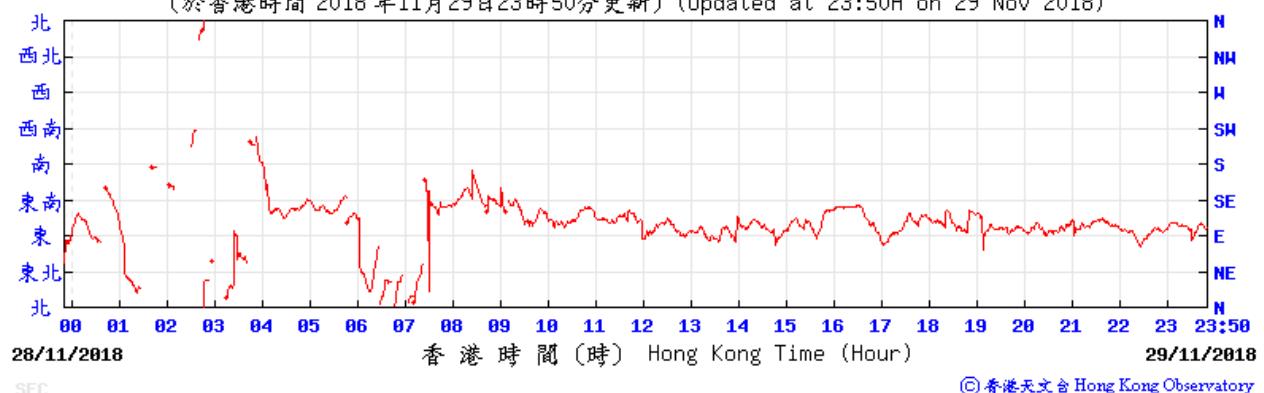



AECOM




Graphical Presentation of Impact 1-hour TSP Monitoring Results

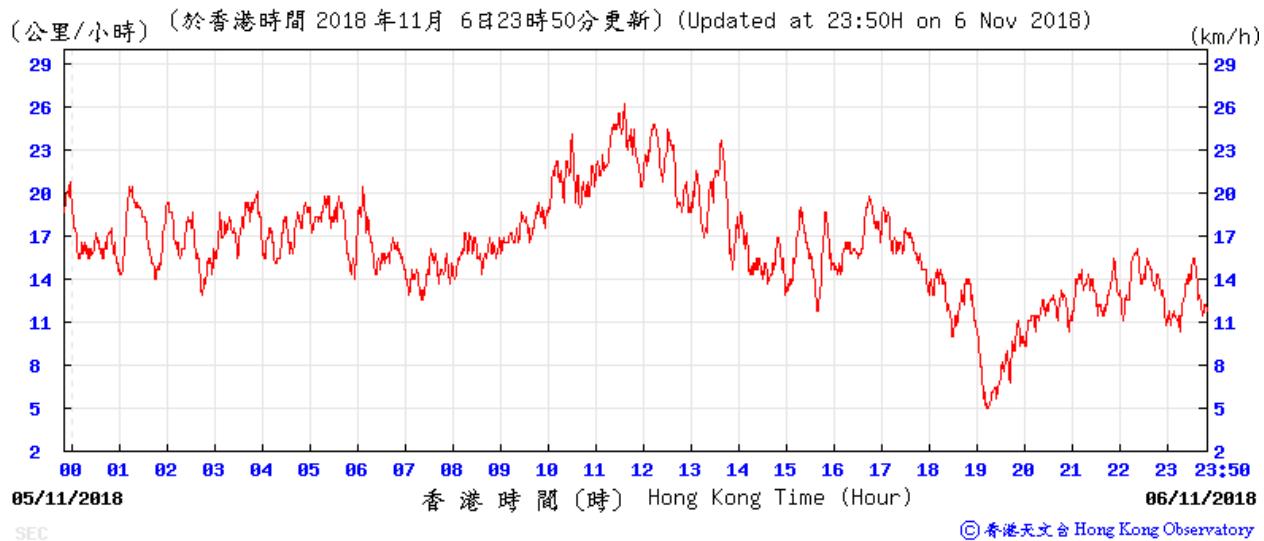



Date: December 2018

Appendix G

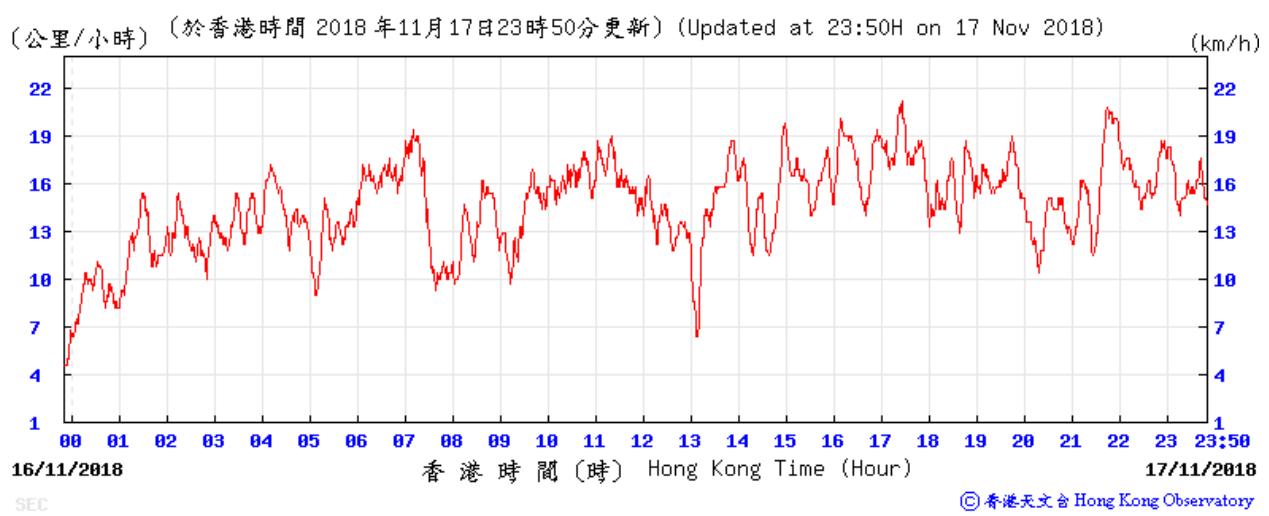
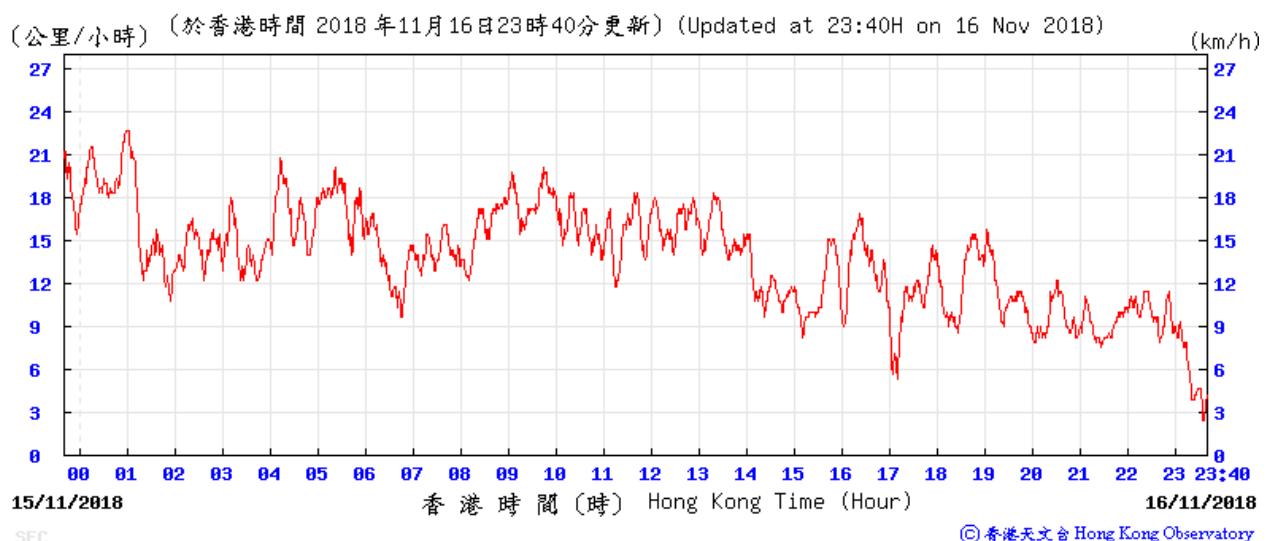
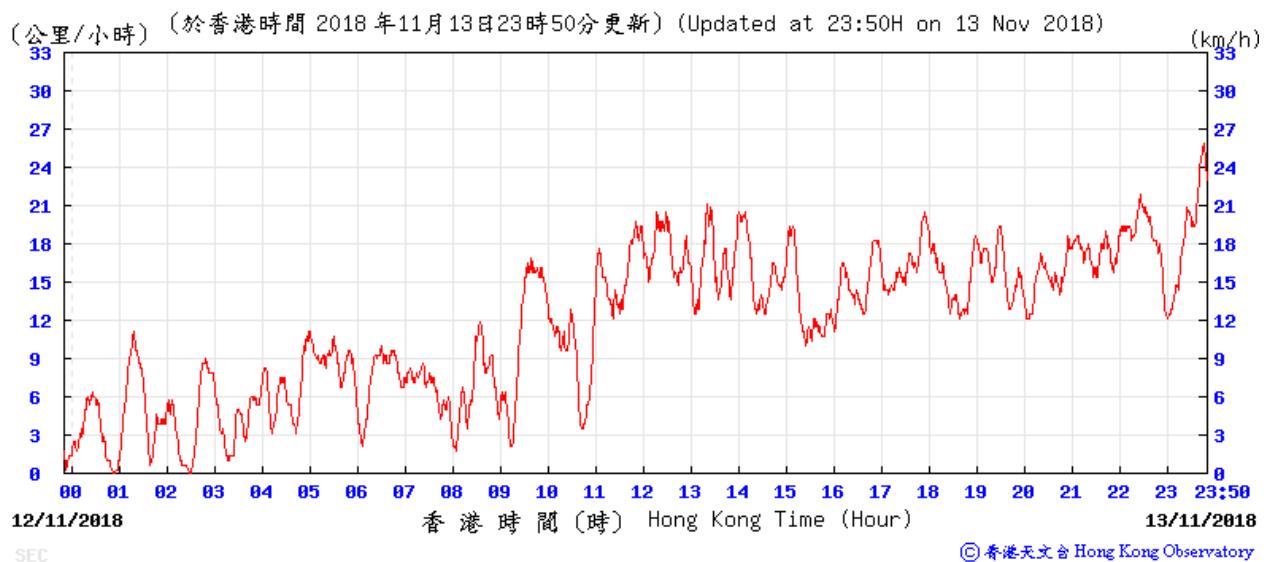
Data of Wind Direction Extracted from Kai Tak Wind Station of the Hong Kong Observatory

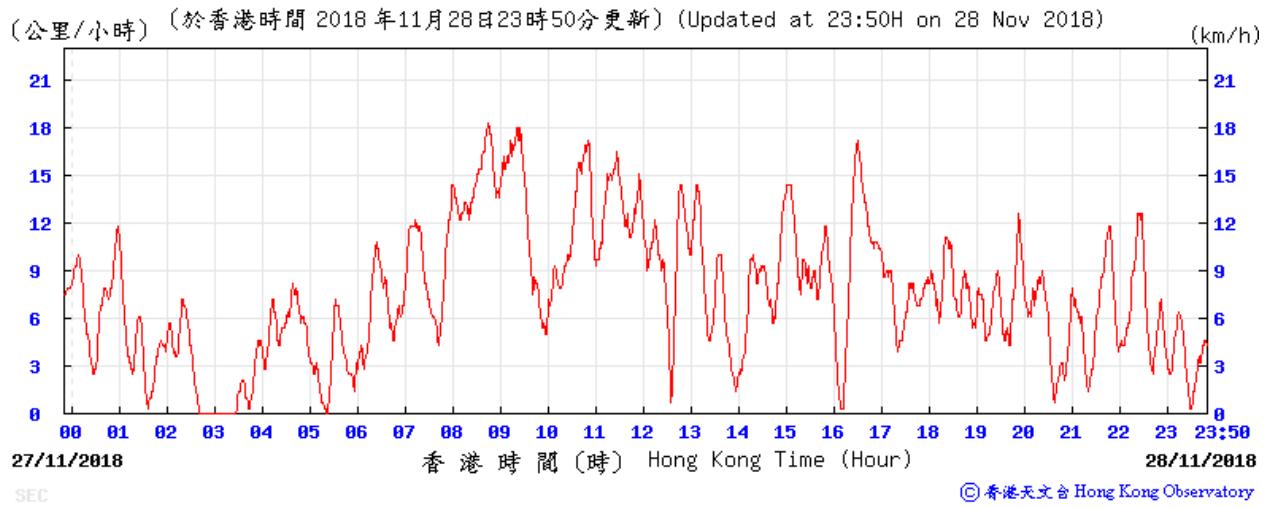
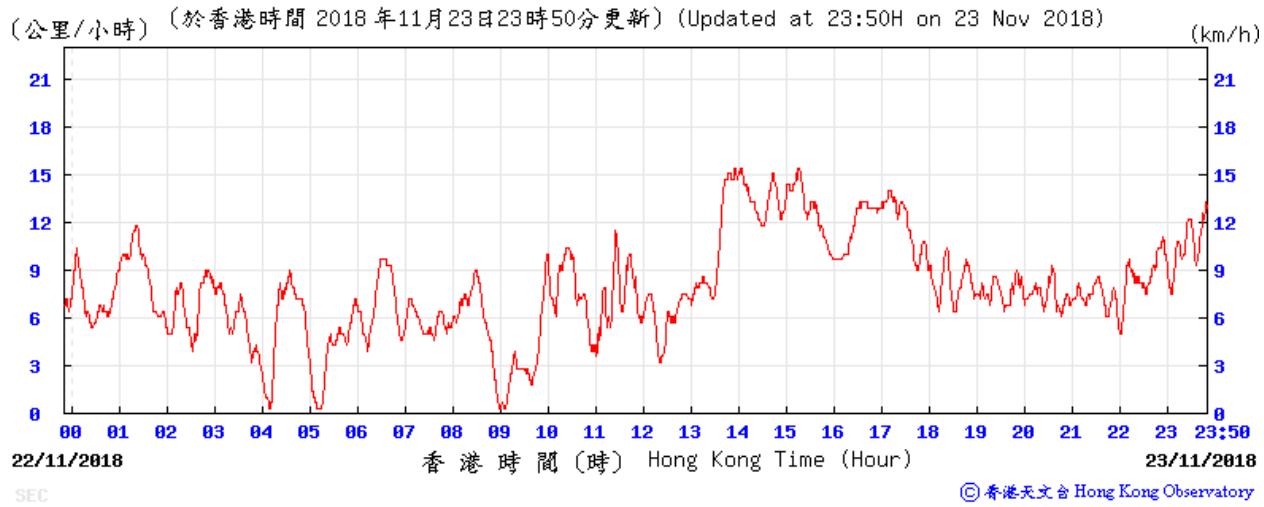
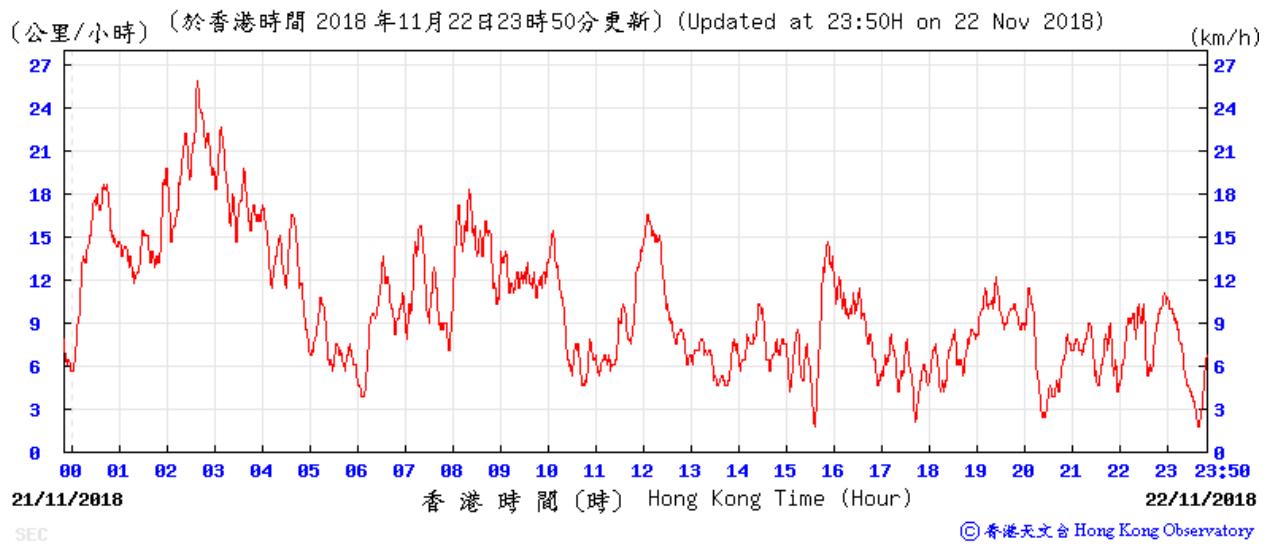


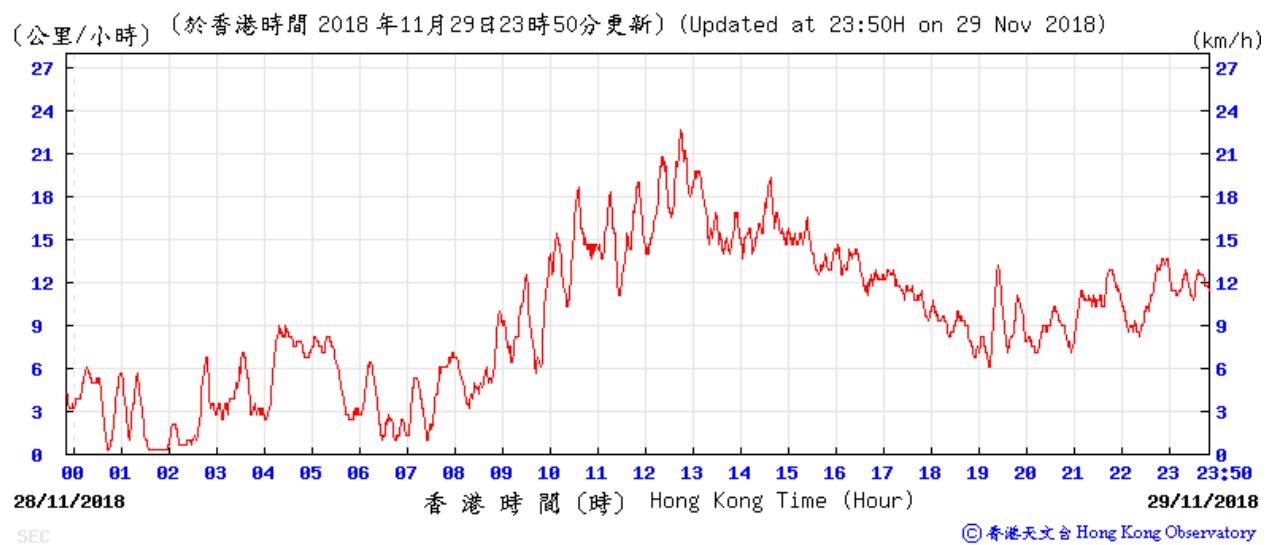
©香港天文台 Hong Kong Observatory



©香港天文台 Hong Kong Observatory




©香港天文台 Hong Kong Observatory




(於香港時間 2018 年 11 月 29 日 23 時 50 分更新) (Updated at 23:50H on 29 Nov 2018)



Data of Wind Speed Extracted from Kai Tak Wind Station of the Hong Kong Observatory

APPENDIX H

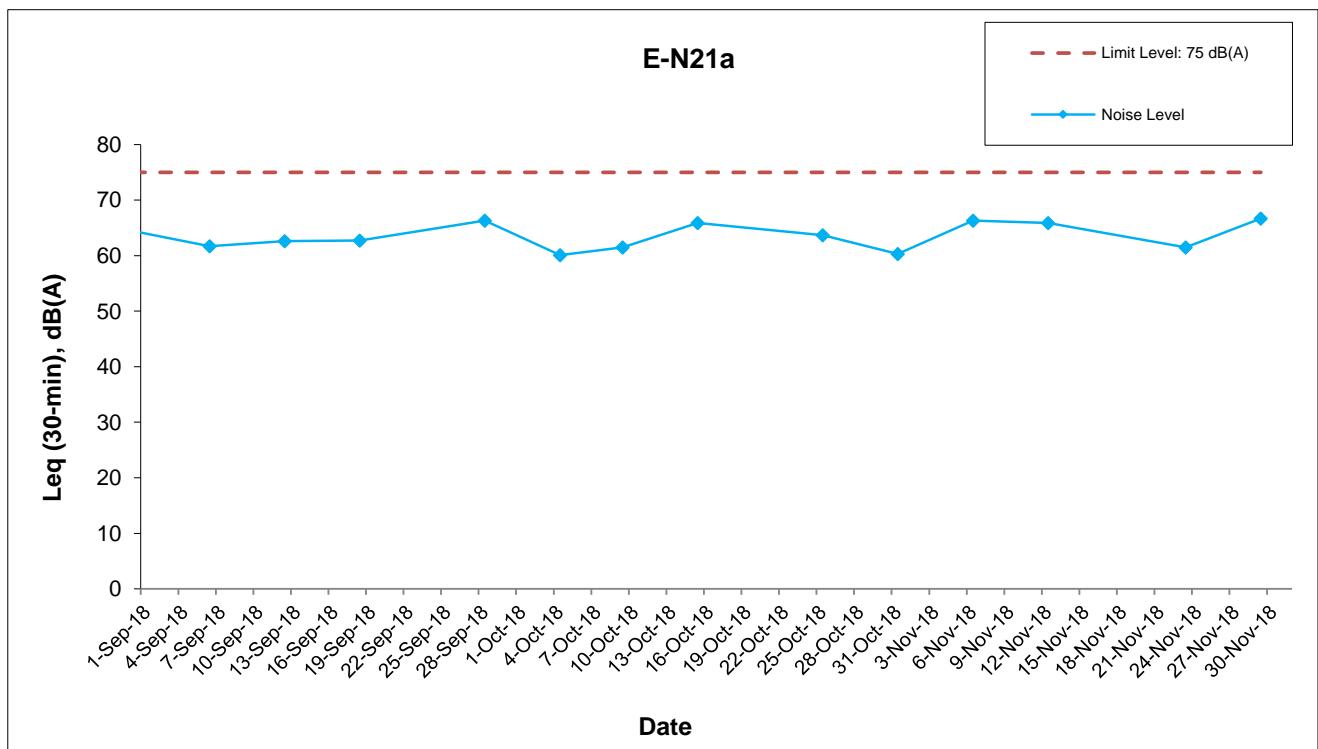
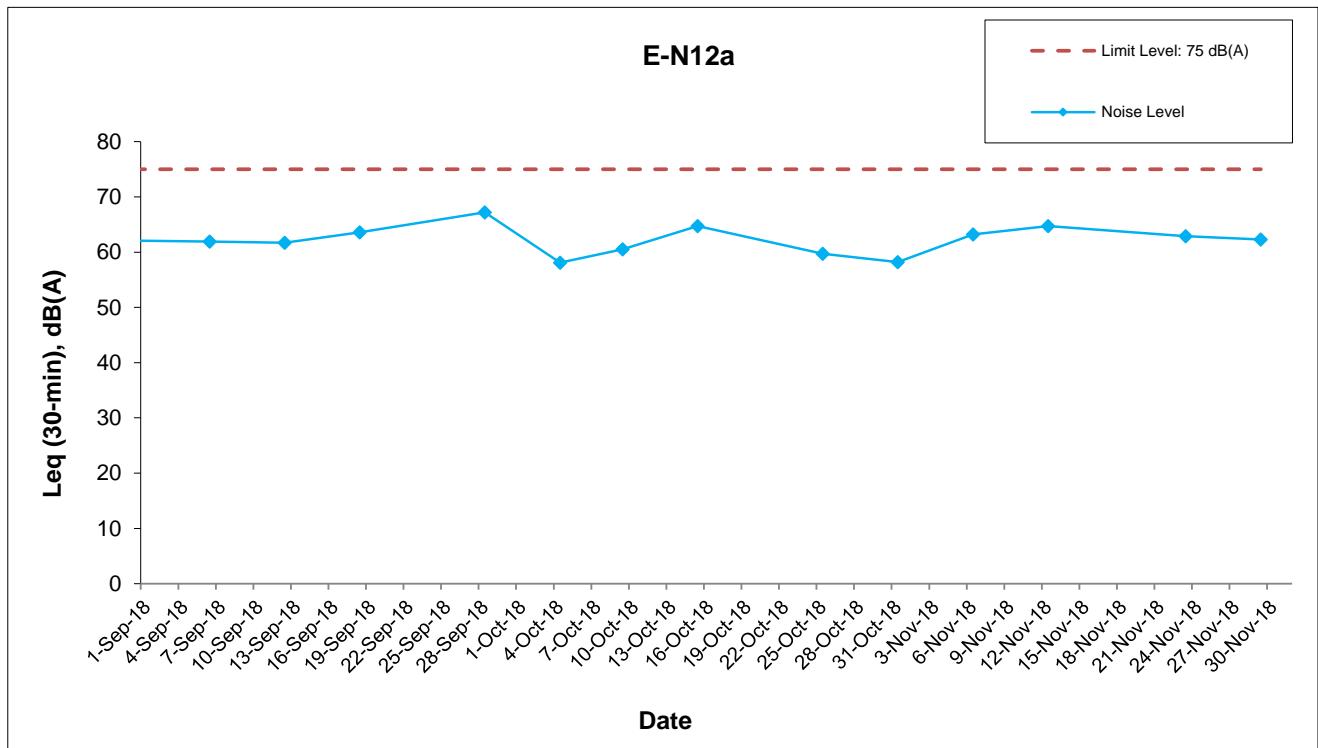
Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station E-N12a (19 Hing Yan Street)

Date	Weather Condition	Noise Level for 30-min, dB(A) ⁺				Limit Level, dB(A)	Exceedance (Y/N)
		Time	L90	L10	Leq		
6-Nov-18	Fine	10:50	61.7	65.1	63.2	75	N
12-Nov-18	Fine	14:50	62.5	66.9	64.7	75	N
23-Nov-18	Sunny	14:45	59.8	63.6	62.9	75	N
29-Nov-18	Fine	10:40	60.2	64.8	62.3	75	N

Daytime Noise Monitoring Results at Station E-N21a (Block B of Merit Industrial Centre)



Date	Weather Condition	Noise Level for 30-min, dB(A) [#]				Limit Level, dB(A)	Exceedance (Y/N)
		Time	L90	L10	Leq		
6-Nov-18	Fine	10:01	64.2	68.7	66.3	75	N
12-Nov-18	Fine	13:05	63.7	67.4	65.9	75	N
23-Nov-18	Sunny	14:00	58.5	61.8	61.5	75	N
29-Nov-18	Fine	14:45	64.2	68.9	66.7	75	N

⁺ - Façade measurement.

[#] - A correction of +3dB(A) was made to the free field measurement.

⁺⁺ - Free field measurement

^{*} - Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsoever, to any party that uses or relies on this drawing without AECOM's express written consent.

Central Kowloon Route - Kai Tak West (Contract No. HY/2014/07)

AECOM

Graphical Presentation of Impact Noise Monitoring Results

APPENDIX I

Water Monitoring Results

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)						
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*				
1-Nov-18	Cloudy	Moderate	4:52	Surface	1	25.1	25.1	33.1	33.1	8.21	8.22	99.80	102.90	101.57	6.82	7.03	6.94	6.90	2.4	2.4	2.4	5.1	5.2	5.4	1.0	1.0	<1.6				
					25.1	25.1	33.1	33.1	8.22	8.22	102.00	102.00	6.97	6.97	2.3	2.4	2.4		5.6	5.8	5.7	1.0	1.0	1.0	<1.6	1.6	1.6				
					25.1	25.1	33.2	33.2	8.19	8.20	99.50	100.20	101.50	6.80	6.85	6.86	2.5	2.5	5.6	5.8	1.0	1.0	<1.6	1.6							
				Middle	10.1	25.1	25.1	33.2	33.2	8.20	8.20	100.20	101.50	100.40	6.94	6.94	6.94	2.5	2.5	2.5	7.5	7.8	7.7	1.0	1.0	1.0	<1.6	1.6	1.6		
					25.1	25.1	33.2	33.2	8.20	8.20	100.60	100.60	99.73	6.81	6.88	6.82	6.82	2.5	2.5		7.8	7.8		1.0	1.0		<1.6	1.6			
					25.1	25.1	33.3	33.3	8.19	8.19	99.50	100.60	99.73	6.88	6.88	6.82		2.5	2.4		7.7	7.7		<1	<1		<1.6	1.6			
				Bottom	19.0	25.1	25.1	33.3	33.3	8.20	8.20	99.50	100.60	99.73	6.81	6.88	6.82	2.3	2.3		6.2	1.0	1.0	1.0	1.0	1.0	1.0	<1.6	1.6	1.6	
					25.1	25.1	33.3	33.3	8.18	8.18	99.10	99.10	99.10	6.78	6.78	6.78	2.3	2.3	7.5		7.8	1.0	1.0	<1.6	1.6						
					25.1	25.1	33.3	33.3	8.18	8.18	99.10	99.10	99.10	6.78	6.78	6.78	2.3	2.3	7.7		7.7	<1	<1	<1.6	1.6						
3-Nov-18	Fine	Moderate	7:53	Surface	1	24.7	24.7	32.9	32.9	8.21	8.21	96.90	97.07	97.07	6.66	6.64	6.67	6.69	3.0	2.9	2.9	4.0	4.2	4.1	<1	<1	1.0	<1.6	1.6	1.6	
					24.8	24.7	32.9	32.9	8.20	8.21	96.70	96.70	96.70	6.70	6.70	6.70	3.2	3.2	3.4	5.4	5.3	5.4	<1	<1	1.0	<1.6	1.6	1.6			
					24.7	24.7	32.9	32.9	8.21	8.21	98.10	97.77	97.77	6.70	6.70	6.71	3.1	3.1		5.4	5.3		<1	<1		<1.6	1.6				
				Middle	11.1	24.7	24.7	33.3	33.2	8.22	8.22	97.60	97.60	97.60	6.70	6.70	6.71	2.9		2.9	5.1	5.8	5.7	5.8	<1	<1	1.0	<1.6	1.6	1.6	
					24.7	24.7	33.2	33.2	8.21	8.21	98.10	98.10	98.10	6.73	6.73	6.73	4.3	4.3		6.0	6.0	<1	<1	<1.6	1.6						
					24.7	24.7	33.3	33.3	8.22	8.22	97.70	97.70	97.70	6.71	6.71	6.72	4.3	4.3		6.0	6.0	<1	<1	<1.6	1.6						
				Bottom	21.1	24.7	24.7	33.3	33.3	8.21	8.22	98.40	97.90	97.90	6.70	6.70	6.72	5.87	3.9	3.8	4.2	6.6	6.4	6.4	<1	<1	1.0	<1.6	1.6	1.6	
					24.7	24.7	33.3	33.3	8.22	8.22	97.70	97.70	97.70	6.71	6.71	6.72	3.8	3.8	4.2	6.7	6.4	6.4	<1	<1	1.0	<1.6	1.6	1.6			
					24.7	24.8	33.3	33.3	8.21	8.21	98.20	98.13	98.13	6.75	6.75	6.75	4.6	4.6		6.1	6.1		<1	<1		<1.6	1.6				
6-Nov-18	Sunny	Moderate	10:08	Surface	1	24.8	24.8	33.1	33.1	8.19	8.19	85.30	85.53	85.53	5.86	5.89	5.88	5.87	3.7	3.8	4.2	6.6	6.4	6.4	<1	<1	1.0	<1.6	1.6	1.6	
					24.8	24.8	33.1	33.1	8.19	8.19	85.60	85.60	85.60	5.88	5.88	5.88	3.8	3.8	4.2	6.7	6.4	6.4	<1	<1	1.0	<1.6	1.6	1.6			
					24.8	24.8	33.1	33.1	8.19	8.19	85.40	85.23	85.23	5.85	5.87	5.86	4.5	4.5		6.1	6.1		<1	<1		<1.6	1.6				
				Middle	10.9	24.8	24.8	33.1	33.1	8.19	8.19	85.10	85.20	85.20	5.85	5.85	5.85	5.87		4.4	4.5	4.2	5.0	4.8	5.5	<1	<1	1.0	<1.6	1.6	1.6
					24.8	24.8	33.1	33.1	8.19	8.19	85.10	85.13	85.13	5.85	5.85	5.85	4.3	4.4		5.2	5.2	<1	<1	<1.6	1.6						
					24.8	24.8	33.1	33.1	8.19	8.19	85.20	85.20	85.20	5.85	5.85	5.85	4.5	4.4		5.2	5.2	<1	<1	<1.6	1.6						
8-Nov-18	Cloudy	Moderate	12:04	Surface	1	25.3	25.3	33.0	33.0	8.18	8.18	80.10	79.90	80.20	5.46	5.45	5.47	5.43	3.1	3.0	3.8	8.7	7.9	7.9	<1	<1	1.0	<1.6	1.6	1.6	
					25.3	25.3	33.0	33.0	8.18	8.18	80.60	80.60	80.60	5.49	5.49	5.49	3.0	3.0	3.8	7.7	8.0	7.7	<1	<1	1.0	<1.6	1.6	1.6			
					25.3	25.3	33.0	33.0	8.18	8.18	78.80	78.80	78.80	5.40	5.37	5.38	3.6	3.6		7.5	7.5		<1	<1	1.0	<1.6	1.6	1.6			
				Middle	11.2	24.9	24.9	33.2	33.2	8.18	8.18	78.30	78.50	78.50	5.38	5.38	5.38	5.43	4.6	4.6	4.7	5.7	5.4	5.4	<1	<1	1.0	<1.6	1.6	1.6	
					24.9	24.9	33.2	33.2	8.18	8.18	78.40	78.40	78.40	5.38	5.38	5.38	3.8	3.8	5.1	5.1		<1	<1		<1.6	1.6					
					24.9	24.9	33.2	33.2	8.18	8.18	78.80	79.03	79.03	5.43	5.44	5.43	4.7	4.7	4.9	4.9		<1	<1		<1.6	1.6					
10-Nov-18	Sunny	Calm	0:36	Surface	1	24.2	24.1	34.2	34.2	8.17	8.17	80.90	82.00	81.40	5.59	5.66	5.62	5.59	2.2	2.1	2.3	8.8	8.2	3.2	<1	<1	1.0	<1.6	1.6	1.6	
					24.1	24.1	34.2	34.2	8.17	8.17	81.30	81.30	81.30	5.61	5.61	5.61	2.0	2.0	2.3	3.5	3.9	3.9	<1	<1	1.0	<1.6	1.6	1.6			
					24.1	24.2	34.2	34.2	8.17	8.16	80.40	80.40	80.40	5.55	5.55	5.55	2.3	2.2		4.2	4.2		<1	<1		<1.6	1.6				
				Middle	10.8	24																									

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)					
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
15-Nov-18	Fine	Moderate	4:11	Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.06 8.04 8.05	73.30 75.90 74.30	74.50	5.08 5.26 5.15	5.16	5.11	2.1 2.2 2.1	2.1	2.2	3.6 3.0 2.9	3.2	3.0	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.05 8.05 8.06	73.60 72.40 72.50	72.83	5.10 5.02 5.03	5.05		2.2 2.4 2.3	2.3		3.9 4.2 3.4	3.8		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	21.3	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.04 8.06 8.06	73.60 73.10 72.90	72.90	5.10 5.07 5.05	5.05		2.1 2.3 2.4	2.3		2.2 1.9 2.3	2.1		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	7.99 7.98 7.97	69.80 70.30 69.80	69.97	4.85 4.89 4.85	4.86	4.85	1.1 1.1 1.0	1.1	1.2	2.7 2.9 3.1	2.9	2.6	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	7.99 7.97 7.98	69.00 69.60 70.20	69.60	4.79 4.83 4.88	4.83		1.2 1.1 1.1	1.1		2.5 3.4 2.3	2.7		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	21.2	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	7.98 7.97 7.97	69.70 70.40 70.40	70.17	4.84 4.89 4.89	4.87		1.3 1.3 1.4	1.3		2.2 2.0 2.5	2.2		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.09 8.07 8.07	76.90 76.10 76.50	76.50	5.34 5.28 5.31	5.31	5.28	2.0 2.1 2.1	2.1	2.3	6.0 6.2 6.1	6.1	6.6	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.0	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.07 8.07 8.10	75.50 75.40 75.70	75.53	5.24 5.24 5.26	5.25		2.2 2.4 2.3	2.3		6.7 6.9 6.8	6.8		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	21.0	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.08 8.11	75.50 75.30 75.50	75.43	5.24 5.23 5.24	5.24		2.4 2.4 2.5	2.4		7.1 6.8 7.0	7.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
22-Nov-18	Cloudy	Moderate	10:30	Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2 34.2 34.2	8.07 8.08 8.05	85.30 85.60 85.70	85.53	5.94 5.96 5.97	5.96	5.94	2.2 2.0 2.0	2.1	2.4	3.7 4.0 4.2	4.0	4.0	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.1	23.6 23.5 23.6	23.5 34.3 34.3	34.3 34.3 34.3	8.10 8.10 8.08	84.60 85.10 85.30	85.00	5.90 5.94 5.94	5.93		2.5 2.5 2.3	2.4		3.9 4.4 3.6	4.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	21.2	23.5 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.10 8.10 8.10	84.10 84.60 85.00	84.57	5.87 5.90 5.93	5.90		2.6 2.6 2.7	2.6		3.8 3.6 4.6	4.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.3 23.3 23.3	23.3 33.3 33.3	33.3 33.3 33.3	8.15 8.15 8.15	79.50 79.00 79.30	79.27	5.58 5.55 5.56	5.56	5.55	4.4 4.4 4.3	4.4	5.8	4.8 4.4 4.9	4.7	5.0	<1 <1 <1	1.0	1.2	<1.6 <1.6 <1.6	1.6	1.6
				Middle	10.7	23.2 23.2 23.2	23.2 33.3 33.3	33.3 33.3 33.3	8.16 8.15 8.15	78.80 79.40 79.00	79.07	5.52 5.57 5.54	5.54		6.6 6.5 6.6	6.6		4.7 4.4 4.2	4.4		1.0 2.0 1.0	1.3		<1.6 <1.6 <1.6	1.6	
				Bottom	20.3	23.2 23.2 23.2	23.2 33.3 33.2	33.3 33.3 33.2	8.15 8.16 8.15	78.80 78.10 78.50	78.47	5.53 5.48 5.51	5.51		6.5 6.5 6.6	6.5		5.7 5.9 5.8	5.8		2.0 1.0 <1	1.3		<1.6 <1.6 <1.6	1.6	
27-Nov-18	Fine	Moderate	2:14	Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.07 8.06 8.07	84.90 80.30 83.20	82.80	6.00 5.68 5.88	5.85	5.72	4.4 4.3 4.5	4.4	5.5	10.1 11.1 9.5	10.2	10.0	1.0 1.0 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.2	22.8 22.8 22.8	22.8 34.0 34.0	34.0 34.0 34.0	8.08 8.06 8.09	78.90 78.20 78.70	78.93	5.65 5.53 5.56	5.58		6.0 6.1 6.1	6.0		10.2 10.8 10.5	10.5		1.0 1.0 1.0	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	21.3	22.8 22.8 22.8	22.8 34.0 34.0	34.0 34.0 34.0	8.07 8.09 8.05	79.00 78.50 79.00	78.83	5.59 5.55 5.58	5.57		6.2 6.1 6.4	6.2		9.4 8.9 9.6	9.3		<1 8.9 9.6	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	22.6 22.6 22.6	22.6 33.8 33.8	33.8 33.8 33.8	8.27 8.29 8.28	83.40 81.10 81.30	81.93	5.92 5.75 5.77	5.81	5.77	3.1 3.2 3.2	3.2	3.4	10.4 10.4 9.3	10.0	8.2	9.0 9.0 9.0	9.0	8.7	<1.6 <1.6 <1.6	1.6	1.6
				Middle	11.2	22.5 22.5 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.30 8.30 8.28	82.10 80.20 80.00	80.77	5.83 5.69 5.68	5.73		3.3 3.3 3.4	3.3		8.0 7.7 7.2	7.6		9.0 9.0 8.0	8.7		<1.6 <1.6 <1.6	1.6	
				Bottom	21.3	22.5 22.5 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.30 8.30 8.30	80.10 81.40 79.70	80.40	5.69 5.77 5.65	5.70		3.6 3.8 3.9	3.8		7.6 6.3 6.8	6.9		8.0 9.0 8.0	8.3		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)					
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3-Nov-18	Fine	Moderate	16:51	Surface	1	24.8	24.8	33.2	33.2	8.25	8.25	99.10	98.97	6.80	6.79	1.9	2.0	2.0	4.1	3.8	4.0	<1	1.0	<1.6	1.6	<1.6
				Middle	11.2	24.8	24.8	33.2	33.2	8.25	8.25	98.50	98.47	6.76	6.76	1.9	2.2	2.3	4.0	4.1	4.2	<1	1.0	<1.6	1.6	<1.6
				Bottom	21.3	24.8	24.8	33.2	33.2	8.25	8.25	99.00	98.77	6.79	6.78	1.9	2.3	2.5	4.8	4.6	4.7	1.0	1.0	<1.6	1.6	<1.6
6-Nov-18	Sunny	Moderate	17:37	Surface	1	24.8	24.8	33.1	33.1	8.23	8.23	84.70	84.50	5.82	5.81	2.8	2.9	2.9	5.1	6.6	5.8	<1	1.0	<1.6	1.6	<1.6
				Middle	11.1	24.8	24.8	33.1	33.1	8.24	8.24	84.50	84.47	5.80	5.80	2.8	2.8	2.8	5.5	6.2	6.2	<1	1.0	<1.6	1.6	<1.6
				Bottom	21.0	24.8	24.8	33.1	33.1	8.23	8.23	84.30	84.27	5.77	5.78	2.9	2.7	2.8	7.8	7.4	7.2	<1	1.0	<1.6	1.6	<1.6
8-Nov-18	Cloudy	Moderate	6:08	Surface	1	24.8	24.8	33.1	33.1	8.19	8.19	79.20	79.13	5.42	5.41	1.5	1.6	1.6	4.1	4.7	4.6	<1	1.0	<1.6	1.6	<1.6
				Middle	11.3	24.6	24.6	33.3	33.3	8.06	8.13	79.20	79.10	5.42	5.42	1.9	1.9	1.9	4.5	4.9	4.3	<1	1.0	<1.6	1.6	<1.6
				Bottom	21.6	24.4	24.4	33.5	33.5	8.22	8.14	79.50	79.40	5.46	5.45	2.6	2.4	2.5	5.4	5.5	5.5	<1	1.0	<1.6	1.6	<1.6
10-Nov-18	Sunny	Calm	8:59	Surface	1	24.2	24.2	34.1	34.1	8.18	8.18	80.10	80.03	5.52	5.52	2.0	1.9	1.9	5.2	4.7	4.7	2.0	1.3	<1.6	1.6	<1.6
				Middle	11.0	24.2	24.2	34.1	34.1	8.20	8.19	79.90	79.87	5.51	5.51	2.2	2.0	2.1	4.1	3.7	4.0	1.0	1.0	<1.6	1.6	<1.6
				Bottom	21.1	24.2	24.2	34.1	34.1	8.21	8.19	79.80	79.77	5.50	5.50	2.4	2.3	2.3	4.4	4.2	4.4	3.0	3.3	<1.6	1.6	<1.6
13-Nov-18	Fine	Moderate	11:45	Surface	1	24.4	24.4	33.8	33.8	8.07	8.07	71.80	69.30	4.95	4.78	2.1	2.2	2.2	1.1	1.1	1.1	1.0	1.0	<1.6	1.6	<1.6
				Middle	10.6	24.3	24.3	33.8	33.8	8.08	8.07	70.20	68.57	4.84	4.73	2.4	2.6	2.5	1.6	1.8	1.6	1.0	1.3	<1.6	1.6	<1.6
				Bottom	20.2	24.3	24.3	33.8	33.8	8.08	8.07	70.00	68.40	4.81	4.71	2.6	2.7	2.6	2.2	2.7	2.4	1.0	1.0	<1.6	1.6	<1.6

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value
15-Nov-18	Fine	Moderate	17:49	Surface	1	23.9 23.9 23.9	23.9 34.0 34.0	34.0 34.0 34.0	8.08 8.09 8.08	74.10 76.10 73.70	74.63 5.14 5.11	5.18 5.28 5.11	2.3 2.0 2.1	4.4 4.6 5.3	4.8	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6	1.0	1.6	1.6	
				Middle	10.8	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.14 8.16 8.14	71.90 72.80 72.60	72.43 5.05 5.04	5.03 2.2 2.0	2.2 2.3 2.2	3.6 2.8 3.3	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6					
				Bottom	20.6	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.13 8.14 8.16	70.00 71.20 70.20	70.47 4.94 4.87	4.89 2.3 2.4	2.1 2.3 2.4	3.3 3.3 3.7	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6					
17-Nov-18	Cloudy	Moderate	15:34	Surface	1	23.8 23.8 23.8	23.8 34.0 34.0	34.0 34.0 34.0	8.06 8.06 8.06	65.90 65.60 65.80	65.77 4.56 4.57	4.57 4.57 4.57	1.1 1.1 1.1	3.3 2.4 2.3	2.7	1.0 1.0 <1	1.0	<1.6 <1.6 <1.6	1.6	1.0	1.6	1.6	
				Middle	11.3	23.8 23.8 23.8	23.8 34.0 34.0	34.0 34.0 34.0	8.07 8.06 8.06	66.30 66.00 65.50	65.93 4.59 4.55	4.58 4.58 4.55	1.2 1.1 1.1	2.9 3.3 2.7	3.0	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
				Bottom	21.6	23.8 23.8 23.8	23.8 34.0 34.0	34.1 34.0 34.0	8.06 8.07 8.06	66.10 66.50 65.40	66.00 4.59 4.55	4.59 4.63 4.59	1.1 1.2 1.1	3.0 3.0 3.1	3.0	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
20-Nov-18	Cloudy	Moderate	17:05	Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.15 8.16 8.16	82.30 82.60 82.60	82.50 5.72 5.74	5.73 5.74 5.74	2.2 2.3 2.2	4.1 4.4 4.3	4.3	2.0 2.0 2.0	2.0	<1.6 <1.6 <1.6	1.6	1.3	1.6	1.6	
				Middle	11.1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	81.60 81.80 81.90	81.77 5.67 5.68	5.68 5.68 5.69	2.5 2.3 2.3	6.2 6.4 6.5	6.4	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6				
				Bottom	21.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.15 8.15 8.16	82.10 81.80 82.20	82.03 5.70 5.71	5.70 5.69 5.70	2.5 2.4 2.5	6.8 6.6 7.0	6.8	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
22-Nov-18	Cloudy	Moderate	17:59	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.13 8.13 8.13	83.10 83.50 83.20	83.27 5.80 5.80	5.81 5.81 5.80	1.9 2.0 1.9	3.5 3.6 3.7	3.6	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6	1.0	1.6	1.6	
				Middle	11.2	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.16 8.16 8.16	83.70 83.40 83.60	83.57 5.83 5.83	5.83 5.82 5.83	2.4 2.6 2.4	5.1 5.0 5.2	5.1	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
				Bottom	21.4	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.17 8.17 8.17	83.40 83.10 83.30	83.27 5.81 5.81	5.81 5.80 5.81	3.1 3.2 3.2	5.0 4.8 5.1	5.0	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
24-Nov-18	Fine	Moderate	6:58	Surface	1	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.11 8.10 8.11	81.70 82.70 80.80	81.73 5.73 5.66	5.73 5.81 5.66	2.2 2.3 2.1	6.2 6.2 6.2	6.2	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6	1.0	1.6	1.6	
				Middle	10.5	23.1 23.1 23.1	23.1 33.2 33.2	33.2 33.2 33.2	8.11 8.11 8.11	81.60 81.10 80.60	81.10 5.72 5.68	5.69 5.68 5.66	2.2 2.3 2.3	6.2 7.3 7.1	6.9	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
				Bottom	20.0	23.1 23.1 23.0	23.1 33.2 33.2	33.2 33.2 33.2	8.10 8.11 8.11	80.70 80.60 80.30	80.53 5.66 5.63	5.65 5.66 5.63	2.2 2.2 2.3	6.2 6.8 5.9	6.3	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
27-Nov-18	Fine	Moderate	10:50	Surface	1	22.8 22.8 22.8	22.8 34.1 34.0	34.0 34.1 34.0	8.17 8.15 8.16	83.90 83.20 84.40	83.83 5.94 5.89	5.93 5.97 5.97	2.6 2.9 2.8	10.1 11.0 11.4	10.8	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6	1.1	1.6	1.6	
				Middle	11.1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.21 8.20 8.19	83.50 83.70 83.20	83.47 5.91 5.88	5.90 5.92 5.88	2.9 2.9 3.0	11.8 10.7 10.8	11.1	<1 <1 <1	1.0	<1.6 <1.6 <1.6	1.6				
				Bottom	21.1	22.7 22.7 22.8	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.22 8.18	83.10 83.00 82.30	82.80 5.88 5.83	5.86 5.87 5.83	3.0 3.3 3.1	12.3 12.6 10.9	11.9	1.0 2.0 1.0	<1.6 <1.6 <1.6	1.6					
29-Nov-18	Sunny	Moderate	12:41	Surface	1	22.7 22.7 22.7	22.7 33.8 33.8	33.8 33.8 33.8	8.21 8.22 8.23	79.60 79.90 80.10	79.87 5.65 5.67	5.67 5.67 5.68	2.6 2.7 2.7	7.3 7.2 7.6	7.4	9.0 8.0 8.0	8.0 8.0 8.0	<1.6 <1.6 <1.6	1.6	7.3	1.6	1.6	
				Middle	11.1	22.7 22.7 22.7	22.7 33.8 33.9	33.8 33.8 33.9	8.22 8.22 8.24	78.60 78.90 79.50	79.00 5.57 5.60	5.60 5.60 5.64	2.9 3.1 2.8	7.8 8.7 8.2	8.2	9.0 8.0 8.0	8.0 7.7 8.0	<1.6 <1.6 <1.6	1.6				
				Bottom	20.9	22.7 22.7 22.7	22.7 33.8 33.9	33.9 33.8 33.9	8.22 8.22 8.25	78.30 79.10 78.70	78.70 5.55 5.58	5.58 5.58 5.58	2.9 3.1 3.0	6.7 7.5 7.8	7.3	9.0 8.0 6.0	8.0 7.7 6.3	<1.6 <1.6 <1.6	1.6				

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)					
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*			
1-Nov-18	Cloudy	Moderate	5:36	Surface	1	25.1	25.1	33.1	33.1	8.23	8.23	102.70	103.00	102.93	7.02	7.04	7.04	7.02	2.0	1.9	1.9	7.1	6.9	7.2	1.0	1.0	1.0	<1.6	<1.6	1.6
					25.1	25.1	33.1	33.1	8.24	8.23	103.00	103.10	102.93	7.04	7.05	7.05	7.02	1.9	1.8	1.8	7.5	7.5	7.5	1.0	1.0	1.0	<1.6	<1.6	1.6	
					25.1	25.1	33.1	33.1	8.22	8.22	102.60	101.70	102.33	7.02	6.95	7.00		2.0	1.9	1.9	7.4	7.5	7.5	1.0	1.0	1.0	<1.6	<1.6	1.6	
				Middle	6.1	25.1	25.1	33.1	33.1	8.22	8.22	101.70	102.70	102.33	7.02	7.02	7.00	7.02	2.0	2.0	2.0	8.8	9.0	8.8	1.0	1.0	1.0	<1.6	<1.6	1.6
					25.1	25.1	33.1	33.1	8.22	8.22	101.60	102.30	101.73	6.95	6.99	6.96	2.0	2.0	2.0	8.8	9.0	8.8	1.0	1.0	1.0	<1.6	<1.6	1.6		
					25.1	25.1	33.1	33.1	8.22	8.22	101.30	101.30	101.30	6.93	6.93	6.93	2.0	2.0	2.0	8.7	9.0	8.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Bottom	11.0	25.1	25.1	33.1	33.1	8.22	8.22	101.73	101.73	101.73	6.95	6.96	6.96	7.02	2.0	2.0	2.0	8.8	9.0	8.8	1.0	1.0	1.0	<1.6	<1.6	1.6
					25.1	25.1	33.1	33.1	8.22	8.22	101.70	101.70	101.70	6.93	6.93	6.93	2.0	2.0	2.0	8.7	9.0	8.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
					25.1	25.1	33.1	33.1	8.22	8.22	101.30	101.30	101.30	6.93	6.93	6.93	2.0	2.0	2.0	8.7	9.0	8.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
3-Nov-18	Fine	Moderate	8:36	Surface	1	24.7	24.7	33.1	33.1	8.23	8.23	97.20	97.00	97.00	6.67	6.66	6.66	6.68	2.5	2.7	2.7	5.2	5.2	5.2	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.7	24.7	33.1	33.0	8.24	8.23	97.00	96.80	96.80	6.66	6.65	6.65	2.9	2.7	2.7	5.2	5.3	5.3	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.8	24.8	33.0	33.0	8.23	8.23	97.00	96.80	96.80	6.65	6.65	6.65	4.0	3.8	3.8	5.0	5.1	5.1	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Middle	6.2	24.7	24.7	33.3	33.3	8.25	8.25	97.70	97.50	97.43	6.71	6.70	6.69	6.68	3.6	3.7	3.7	5.2	5.3	5.3	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.7	24.7	33.3	33.3	8.25	8.25	97.10	97.00	97.00	6.67	6.67	6.67	3.7	3.8	3.8	5.2	5.3	5.3	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.7	24.7	33.3	33.3	8.25	8.25	96.90	96.80	96.83	6.65	6.65	6.65	4.9	4.9	4.9	5.7	5.5	5.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Bottom	11.3	24.7	24.7	33.3	33.3	8.25	8.25	96.60	96.60	96.60	6.63	6.63	6.63	6.68	5.0	5.0	5.0	5.9	5.5	5.7	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.7	24.7	33.3	33.3	8.25	8.25	96.60	96.60	96.60	6.63	6.63	6.63	4.7	4.7	4.7	5.9	5.5	5.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.7	24.7	33.3	33.3	8.25	8.25	96.60	96.60	96.60	6.63	6.63	6.63	4.7	4.7	4.7	5.9	5.5	5.7	1.0	1.0	1.0	<1.6	<1.6	1.6		
6-Nov-18	Sunny	Moderate	10:48	Surface	1	24.9	24.9	33.1	33.1	8.22	8.22	87.90	87.40	87.50	6.03	5.99	6.00	6.01	3.6	3.5	3.5	5.7	5.6	6.0	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.9	24.9	33.1	33.1	8.22	8.23	87.40	87.20	87.20	5.98	5.98	5.98	3.5	3.4	3.4	6.6	6.7	6.4	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.9	24.9	33.1	33.1	8.22	8.23	88.60	88.80	88.80	5.98	6.08	6.01	3.5	3.6	3.6	6.7	6.7	6.4	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Middle	6.0	24.6	24.7	33.1	33.1	8.23	8.23	88.50	87.30	87.37	5.98	6.08	6.01	6.01	3.4	3.6	3.6	6.0	6.0	6.0	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.6	24.6	33.1	33.1	8.23	8.23	88.60	88.80	88.80	5.98	6.08	6.01	3.4	3.6	3.6	6.0	6.0	6.0	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.7	24.7	33.1	33.1	8.23	8.23	89.50	89.40	87.70	6.17	6.17	6.04	6.01	3.6	3.3	3.4	6.5	6.7	6.5	1.0	1.0	1.0	<1.6	<1.6	1.6	
8-Nov-18	Cloudy	Moderate	11:14	Surface	1	25.4	25.4	33.0	33.0	8.16	8.16	77.10	76.90	77.23	5.25	5.23	5.26	5.29	1.6	1.6	1.6	5.8	6.1	5.7	1.0	1.0	1.0	<1.6	<1.6	1.6
					25.4	25.4	33.0	33.0	8.16	8.16	77.70	77.50	77.50	5.29	5.29	5.29	1.5	2.1	2.1	7.1	7.2	7.3	1.0	1.0	1.0	<1.6	<1.6	1.6		
					25.4	25.4	33.0	33.0	8.16	8.16	77.70	77.50	77.50	5.29	5.30	5.32	2.1	2.4	2.4	7.5	7.2	7.3	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Middle	6.2	24.8	24.8	33.2	33.2	8.19	8.19	77.20	77.30	77.50	5.31	5.30	5.32	6.01	2.4	2.0	2.2	7.8	7.5	7.6	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.8	24.8	33.2	33.2	8.19	8.19	78.00	78.00	78.00	5.35	5.35	5.38	2.0	2.2	2.2	7.8	7.5	7.6	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.8	24.8	33.2	33.2	8.19	8.19	77.30	77.30	77.10	5.30	5.30	5.32	2.8	3.0	3.0	7.8	7.5	7.6	1.0	1.0	1.0	<1.6	<1.6	1.6		
10-Nov-18	Sunny	Calm	1:17	Surface	1	24.3	24.2	34.1	34.1	8.15	8.15	79.10	81.60	80.20	5.46	5.63	5.53	5.46	2.1	2.0	2.1	3.1	3.2	2.9	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.3	24.3	34.1	34.1	8.15	8.15	79.90	79.90	79.90	5.51	5.51	5.51	2.1	2.1	2.2	3.0	3.3	3.1	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.3	24.3	34.1	34.1	8.15	8.15	78.20	78.00	78.10	5.39	5.38	5.38	2.2	2.2	2.2	3.0	3.3	3.1	1.0	1.0	1.0	<1.6	<1.6	1.6		
				Middle	6.0	24.2	24.2	34.1	34.1	8.15	8.15	78.00	78.20	78.10	5.38	5.38	5.38	6.01	2.2	2.2	2.2	3.1	3.3	3.1	1.0	1.0	1.0	<1.6	<1.6	1.6
					24.2	24.2	34.1	34.1	8.15	8.15	77.70	77.70	77.70	5.36	5.36	5.36	2.2	2.2	2.2	3.1	3.3	3.4	1.0	1.0	1.0	<1.6	<1.6	1.6		
					24.2	24.2	34.1	34.1	8.15	8.15	77.70	77.70	77.70	5.36	5.36	5.36	2.2	2.2	2.2	3.1	3.3	3.4	1.0	1.0	1.0	<1.6	<			

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)							
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*			
15-Nov-18	Fine	Moderate	4:53	Surface	1	23.8 23.8 23.8	23.8 33.3 34.2	34.1 33.8 34.2	8.08 8.04 8.09	8.07 70.30 70.40	70.60 70.30 70.40	70.43	4.89 4.87 4.88	4.88 4.87 4.87	4.87	2.4 2.3 2.3	2.3 2.3 2.5	2.4	4.7 4.8 4.6	4.7 4.7 4.6	4.6	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6	
					Middle	6.1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.10 8.08 8.09	8.09 70.20 70.20	70.30 70.20 70.20	70.23	4.87 4.87 4.86	4.87 4.87 4.87	2.5 2.4 2.5	2.5 2.4 2.5	4.0 4.7 5.1	4.6 4.6 4.5	<1 <1 <1	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6					
					Bottom	11.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.08 8.10	8.09 70.00 69.60	69.93	4.86 4.85 4.85	4.85 4.85 4.85	2.4 2.4 2.6	2.4 2.4 2.5	4.9 4.0 4.5	4.5 4.0 4.5	<1 <1 <1	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6						
			Cloudy	7:31	Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.02 8.02 8.02	8.02 67.80 67.50	67.60 67.80 67.50	67.63	4.70 4.71 4.69	4.70 4.70 4.68	4.69	0.8 0.9 0.8	0.8 2.0 2.2	0.9	1.9 2.0 2.2	1.0 1.0 1.0	2.2	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	6.2	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.02 8.02 8.02	8.02 67.60 67.40	67.00 67.60 67.40	67.33	4.66 4.69 4.68	4.68 4.69 4.68		0.8 1.0 0.8	0.8 2.1 2.2		2.1 2.6 2.2	2.3 2.3 2.4		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	11.4	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.03 8.03 8.02	8.03 66.90 67.70	68.20 66.90 67.70	67.60	4.74 4.64 4.70	4.69 4.64 4.69		0.9 0.9 0.8	0.9 2.0 2.8		2.0 2.4 2.8	2.4 2.4 2.4		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
			Cloudy	9:59	Surface	1	23.9 23.9 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.07	8.06 76.80 76.00	76.70 76.80 76.00	76.50	5.32 5.33 5.28	5.31 5.31 5.28	5.28	2.1 2.1 2.2	2.1 2.1 2.2	2.2	6.7 6.3 6.8	6.6 6.6 6.6	7.3	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	6.1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.07 8.07 8.07	8.07 75.70 75.20	75.70 75.20 76.00	75.63	5.25 5.23 5.28	5.25 5.23 5.25		2.3 2.2 2.2	2.2 2.2 2.2		7.0 6.9 7.0	7.0 7.0 7.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	11.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.07 8.07 8.07	8.07 75.50 75.20	75.47	75.50	5.24 5.26 5.22	5.24 5.24 5.24	5.24 5.23 5.24	2.3 2.3 2.4	2.3 2.3 2.4	8.3 8.1 8.4	8.3 8.3 8.4	<1 <1 <1	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
			Cloudy	11:16	Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2 34.2 34.2	8.12 8.11 8.13	8.12 83.90 84.40	84.20 83.90 84.40	84.17	5.86 5.85 5.88	5.86 5.85 5.86	5.88	2.0 1.9 2.1	2.0 2.0 2.0	2.6	4.1 4.7 3.8	4.2 4.2 4.2	4.4	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	6.2	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.16 8.15 8.15	8.15 84.50 85.10	84.50 85.10 84.50	84.70	5.89 5.93 5.89	5.90 5.93 5.90		2.9 2.6 2.4	2.6 2.6 2.4		3.5 3.5 4.0	3.7 3.7 4.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	11.4	23.5 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.16 8.16 8.18	8.17 84.00 84.30	84.40 84.00 84.30	84.23	5.89 5.86 5.88	5.88 5.86 5.88		3.1 2.9 3.2	3.1 2.9 3.2		5.4 5.3 5.0	5.2 5.2 5.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
			Sunny	12:41	Surface	1	23.3 23.3 23.3	23.3 33.2 33.2	33.2 33.2 33.2	8.15 8.15 8.17	8.16 80.80 80.90	80.80 80.30 80.90	80.67	5.67 5.63 5.68	5.66 5.63 5.68	5.64	2.4 2.4 2.4	2.4 2.4 2.4	2.5	5.7 5.5 5.5	5.6 5.6 5.6	5.9	1.0 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	5.9	23.2 23.2 23.2	23.2 33.2 33.2	33.3 33.2 33.2	8.16 8.15 8.18	8.16 80.80 80.10	79.80 80.80 80.10	80.23	5.59 5.66 5.62	5.62 5.66 5.62		2.5 2.6 2.6	2.6 2.6 2.6		6.5 5.8 6.2	6.2 6.2 6.2		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	10.8	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.16 8.16 8.15	8.17 79.50 80.40	79.70 79.50 80.40	79.87	5.58 5.59 5.64	5.60 5.60 5.64		2.5 2.5 2.6	2.5 2.5 2.6		5.9 5.5 6.2	5.9 5.5 6.2		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
			Fine	2:59	Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.10 8.10 8.10	8.10 78.20 78.90	78.30 78.20 78.90	78.47	5.54 5.53 5.58	5.55 5.53 5.58	5.51	4.6 4.7 4.9	4.7 4.7 4.7	4.9	8.9 9.4 9.9	9.4 9.4 9.9	9.6	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	6.1	22.8 22.8 22.9	22.8 33.9 33.9	33.9 33.9 33.9	8.11 8.10 8.11	8.11 77.40 77.20	77.50 77.40 77.20	77.37	5.48 5.47 5.46	5.47 5.47 5.46		4.8 5.0 4.7	4.8 4.8 4.7		9.1 9.7 9.0	9.3 9.3 9.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	11.2	22.9 22.8 22.9	22.9 34.0 34.0	33.9 33.9 34.0	8.11 8.10 8.12	8.11 77.50 77.30	77.20 77.50 77.30	77.33	5.46 5.48 5.47	5.47 5.48 5.47		5.2 5.1 5.1	5.1 5.1 4.9		10.0 9.5 11.2	10.2 10.2 11.2		1.0 1.0 1.0	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
			Fine	4:57	Surface	1	22.6 22.6 22.6	22.6 33.8 33.7	33.8 33.8 33.7	8.24 8.24 8.24	8.24 81.00 80.70	81.00 81.00 80.70	80.90	5.75 5.74 5.73	5.74 5.74 5.73	5.71	2.3 2.2 2.2	2.2 2.2 2.2	2.7	7.9 8.3 8.0	8.1 8.1 8.0	7.3	9.0 9.0 8.0	8.7 8.7 8.0	8.2	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	6.3	22.5 22.5 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.26 8.26 8.25	8.26 79.50 80.60	80.40 79.50 80.60	80.17	5.70 5.64 5.72	5.69 5.64 5.72		2.9 2.8 2.8	2.8 2.8 2.8		6.1 6.2 7.0	6.4 6.4 8.0		8.0 8.0 8.0	8.0 8.0 8.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
					Bottom	11.7	22.6 22.6 22.5	22.6 33.8 33.8	33.8 33.8 33.8	8.26 8.26 8.28	8.26 79.60 80.40	80.33	80.90	5.65 5.75 5.70	5.70 5.75 5.70		3.2 3.0 3.0	2.8 2.8 3.0		7.7 6.9 7.4	7.3 7.3 7.4		8.0 8.0 8.0	8.0 8.0 8.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)				
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*			
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
3-Nov-18	Fine	Moderate	16:00	Surface	1	24.8	24.8	33.2	33.2	8.25	8.25	98.90	98.90	6.79	6.79	1.8	1.9	4.0	4.1	<1	1.0	<1.6	1.6		
				Middle	6.1	24.8	24.8	33.2	33.2	8.25	8.25	98.60	98.60	6.77	6.77	1.9	2.1	4.3	4.4	<1	1.0	<1.6	1.6		
				Bottom	11.1	24.8	24.8	33.2	33.2	8.25	8.25	98.70	98.70	6.76	6.76	2.0	2.1	4.4	4.4	<1	1.0	<1.6	1.6		
6-Nov-18	Sunny	Moderate	16:58	Surface	1	24.9	24.9	33.1	33.1	8.25	8.25	85.90	85.90	5.89	5.93	2.2	2.2	5.9	6.4	<1	1.0	<1.6	1.6		
				Middle	6.2	24.9	24.9	33.1	33.1	8.25	8.25	85.90	85.90	5.89	5.91	2.1	2.2	6.5	6.5	<1	1.0	<1.6	1.6		
				Bottom	11.5	24.9	24.9	33.1	33.1	8.25	8.25	85.90	85.90	5.89	5.90	2.5	2.6	8.5	8.7	<1	1.0	<1.6	1.6		
8-Nov-18	Cloudy	Moderate	6:50	Surface	1	24.8	24.8	33.1	33.1	8.18	8.18	79.30	79.30	79.47	79.47	5.43	5.44	1.0	1.1	5.6	4.7	1.0	1.0	<1.6	1.6
				Middle	6.3	24.7	24.7	33.2	33.1	8.19	8.19	79.40	79.40	79.47	79.47	5.44	5.45	1.2	1.2	4.3	4.3	<1	1.0	<1.6	1.6
				Bottom	11.6	24.6	24.6	33.2	33.2	8.20	8.20	79.30	79.30	5.44	5.46	2.0	2.1	8.5	8.7	<1	1.0	<1.6	1.6		
10-Nov-18	Sunny	Calm	8:21	Surface	1	24.2	24.2	34.1	34.1	8.17	8.17	77.80	77.80	5.37	5.37	1.7	1.8	5.0	4.6	4.0	3.0	3.0	2.0	<1.6	1.6
				Middle	6.2	24.2	24.2	34.1	34.1	8.17	8.17	77.70	77.70	5.36	5.36	2.0	2.1	5.5	5.1	2.0	1.7	2.0	1.0	<1.6	1.6
				Bottom	11.5	24.2	24.2	34.1	34.1	8.17	8.18	77.60	77.60	5.35	5.34	2.2	2.1	4.8	5.4	1.0	1.0	1.0	1.0	<1.6	1.6
13-Nov-18	Fine	Moderate	10:58	Surface	1	24.4	24.4	33.8	33.8	8.07	8.07	68.50	68.50	4.73	4.78	2.4	2.4	4.5	4.2	<1	1.0	<1.6	1.6		
				Middle	6.0	24.3	24.3	33.8	33.8	8.07	8.07	67.30	67.30	4.64	4.71	2.4	2.5	4.1	4.1	<1	1.0	<1.6	1.6		
				Bottom	11.1	24.3	24.3	33.8	33.8	8.07	8.07	69.10	69.10	4.77	4.69	2.5	2.4	5.4	4.6	1.0	1.0	<1.6	1.6		

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)			
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
15-Nov-18	Fine	Moderate	17:04	Surface	1	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.14 8.15 8.14	77.60 76.70 78.00	77.43	5.38 5.32 5.41	5.37	5.37	1.7 1.7 1.7	1.7	1.7	1.8	2.2 2.2 1.8	2.1	2.0	<1 <1 <1	1.0	1.6 1.6 1.6	1.6			
				Middle	6.2	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.16 8.14 8.14	77.60 76.90 77.40	77.30	5.38 5.33 5.37	5.36		1.7 1.9 1.8	1.8	1.8		2.3 2.8 2.2	2.4			1.0			1.6 1.6 1.6		
				Bottom	11.3	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.14 8.14 8.16	76.70 76.20 77.90	76.93	5.32 5.29 5.40	5.34		1.8 1.8 1.8	1.8	1.8		1.3 1.5 1.8	1.5			1.0					
				Surface	1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	67.60 67.10 67.30	67.33	4.70 4.66 4.68	4.68	4.68	1.2 1.1 1.2	1.2	1.2	1.3	3.1 2.7 2.8	2.9	3.3	<1 <1 <1	1.0	1.6 1.6 1.6	1.6			
				Middle	6.3	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	66.80 67.80 67.20	67.27	4.65 4.71 4.67	4.68		1.3 1.3 1.5	1.4	1.4		3.4 3.9 3.7	3.7			1.0	1.6 1.6 1.6				
				Bottom	11.6	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.07 8.06 8.06	67.30 67.20 66.70	67.07	4.68 4.67 4.64	4.66		1.2 1.4 1.1	1.2	1.2		4.0 3.6 2.9	3.5			1.0					
				Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.17 8.17 8.17	84.00 83.80 83.70	83.83	5.84 5.82 5.82	5.83	5.81	1.8 1.7 1.8	1.8	1.8	2.0	6.2 6.8 6.5	6.5	7.4	<1 <1 <1	1.0	1.6 1.6 1.6	1.6			
				Middle	6.2	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.17 8.17	83.30 83.10 83.20	83.20	5.79 5.78 5.78	5.78		2.2 1.9 2.1	2.1	2.1		7.3 7.4 7.0	7.2			1.0	1.6 1.6 1.6				
				Bottom	11.4	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	83.10 83.30 83.00	83.13	5.78 5.79 5.77	5.78		2.2 2.3 2.2	2.2	2.2		8.5 8.4 8.1	8.3			1.0					
22-Nov-18	Cloudy	Moderate	17:14	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.13 8.13 8.13	83.20 83.60 83.40	83.40	5.80 5.83 5.81	5.81	5.82	1.6 1.7 1.8	1.7	1.7	2.8	4.1 4.6 4.8	4.5	5.0	<1 <1 <1	1.0	1.6 1.6 1.6	1.6			
				Middle	6.3	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.15 8.16 8.16	83.60 83.60 83.70	83.63	5.82 5.83 5.83	5.83		2.4 2.6 2.7	2.6	2.6		5.1 4.8 4.4	4.8			1.0	1.6 1.6 1.6				
				Bottom	11.6	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.17 8.18 8.18	83.50 83.40 83.30	83.40	5.82 5.81 5.81	5.81		4.2 4.1 4.0	4.1	4.1		5.7 5.4 5.9	5.7			1.0					
				Surface	1	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.13 8.13 8.14	84.10 82.30 81.60	82.67	5.90 5.77 5.72	5.80	5.78	1.9 1.9 1.8	1.9	1.9	1.9	5.5 6.0 6.0	5.8	6.7	<1 <1 <1	1.0	1.6 1.6 1.6	1.6			
				Middle	6.0	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.13 8.13 8.13	82.60 81.60 82.10	82.10	5.79 5.72 5.75	5.78		2.0 1.9 1.9	1.9	1.9		5.9 6.1 7.1	6.4			1.0	1.6 1.6 1.6				
				Bottom	11.0	23.2 23.2 23.1	23.1 33.2 33.2	33.2 33.2 33.2	8.14 8.13 8.13	82.40 81.80 81.80	81.83	5.77 5.73 5.70	5.73		1.9 1.9 2.0	1.9	1.9		6.6 8.3 8.6	7.8			1.0					
27-Nov-18	Fine	Moderate	10:06	Surface	1	22.7 22.7 22.8	22.7 34.2 34.1	34.2 34.2 34.1	8.21 8.19 8.17	86.40 86.10 85.80	86.10	6.11 6.09 6.07	6.09	6.04	2.8 2.7 2.7	2.7	2.7	2.8	11.7 11.1 11.4	11.4	12.0	<1 <1 <1	1.0 1.0 1.0	1.6 1.6 1.6	1.6			
				Middle	6.2	22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.22 8.20	85.10 84.50 84.73	84.73	5.98 5.99 5.99	6.00		2.8 2.9 2.8	2.8	2.8		11.9 11.5 12.4	11.9			1.0	1.6 1.6 1.6				
				Bottom	11.4	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.23 8.20	85.40 84.40 84.80	84.80	6.04 5.97 5.98	6.00		3.2 3.0 2.7	3.0 2.7 2.7	3.0		13.5 12.8 12.1	12.8			1.0					
				Surface	1	22.7 22.7 22.7	22.7 34.0 34.0	33.9 34.0 34.0	8.25 8.24 8.24	82.50 82.20 82.50	82.40	5.85 5.83 5.85	5.84	5.83	2.5 2.3 2.5	2.4	2.4	2.5	7.6 7.9 7.8	7.8	8.4	<1 <1 <1	7.0 7.0 7.0	1.6 1.6 1.6	1.6			
				Middle	6.4	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.24 8.25 8.26	82.60 81.60 82.30	82.17	5.85 5.78 5.83	5.82		2.3 2.4 2.4	2.4	2.4		7.5 8.1 8.7	8.1			7.1	1.6 1.6 1.6				
				Bottom	11.8	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.27 8.24 8.25	81.40 81.00 82.30	81.57	5.77 5.74 5.83	5.78		2.6 2.7 2.4	2.7 2.7 2.4	2.6		9.1 9.8 9.4	9.4			7.1					

Water Quality Monitoring Results at CS3 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Nov-18	Cloudy	Moderate	5:53	Surface	1	25.1	25.1	33.1	33.1	8.24	8.24	103.40	103.80	103.77	7.07	7.10	7.09	7.08	1.6	1.5	1.6	6.4	6.2	7.5	1.0	1.0	<1.6
					25.1	25.1	33.1	33.1	8.24	8.24	104.10	103.70	103.70	7.11	7.06	7.06	1.5	1.5	6.0	6.1	<1.6	<1.6	1.6				
					25.1	25.1	33.1	33.1	8.23	8.23	103.30	102.80	103.27	7.06	7.02	7.06	1.6	1.6	7.8	7.5	<1.6	<1.6					
				Middle	3.8	25.1	25.1	33.1	33.1	8.24	8.24	102.80	102.70	102.70	7.09	7.02	7.02	1.6	1.6	7.5	7.6	<1.6	<1.6	1.6			
					25.1	25.1	33.1	33.1	8.23	8.23	102.70	102.70	102.70	7.02	7.02	7.02	1.6	1.6	8.6	8.8	<1.6	<1.6					
					25.1	25.1	33.1	33.1	8.23	8.23	102.60	102.60	102.60	7.01	7.01	7.01	1.6	1.6	8.5	8.8	<1.6	<1.6					
				Bottom	6.4	25.1	25.1	33.1	33.1	8.23	8.23	102.80	102.70	102.70	7.02	7.02	7.02	7.02	1.6	1.6	1.6	8.6	8.8	7.5	<1.6	<1.6	1.6
					25.1	25.1	33.1	33.1	8.23	8.23	102.70	102.60	102.60	7.01	7.01	7.01	1.6	1.6	8.5	8.8	<1.6	<1.6					
					25.1	25.1	33.1	33.1	8.23	8.23	102.60	102.60	102.60	7.01	7.01	7.01	1.6	1.6	8.5	8.8	<1.6	<1.6					
3-Nov-18	Fine	Moderate	9:02	Surface	1	24.8	24.8	33.0	33.1	8.23	8.23	96.20	96.60	96.47	6.60	6.63	6.62	6.65	2.7	2.6	2.6	4.9	4.9	5.2	<1	<1	1.6
					24.8	24.8	33.0	33.1	8.23	8.24	96.60	96.60	96.60	6.63	6.63	6.63	2.6	2.6	5.0	4.8	<1	<1					
					24.8	24.8	33.0	33.1	8.23	8.24	96.60	96.60	96.60	6.63	6.63	6.63	3.3	3.3	5.1	4.9	<1	<1	1.6				
				Middle	3.9	24.7	24.7	33.2	33.2	8.24	8.24	97.50	97.30	97.23	6.69	6.68	6.67	3.3	3.3	5.2	5.1	<1	<1				
					24.7	24.7	33.2	33.2	8.24	8.24	96.90	96.90	96.90	6.65	6.65	6.65	3.4	3.4	5.2	5.1	<1	<1					
					24.7	24.7	33.2	33.2	8.25	8.25	97.00	97.20	96.97	6.66	6.67	6.66	3.5	3.7	5.6	6.0	<1	<1					
				Bottom	6.9	24.7	24.7	33.2	33.2	8.25	8.25	96.70	96.70	96.70	6.64	6.64	6.64	3.5	3.7	5.6	6.0	<1	<1				
					24.7	24.7	33.2	33.2	8.25	8.25	96.70	96.70	96.70	6.64	6.64	6.64	3.5	3.7	5.6	6.0	<1	<1					
					24.7	24.7	33.2	33.2	8.25	8.25	96.70	96.70	96.70	6.64	6.64	6.64	3.5	3.7	5.6	6.0	<1	<1					
6-Nov-18	Sunny	Moderate	11:12	Surface	1	24.9	24.9	33.1	33.1	8.23	8.23	86.70	86.60	86.40	5.95	5.93	5.93	5.94	2.6	2.7	2.7	7.0	6.6	5.7	<1	<1	1.6
					24.9	24.9	33.1	33.1	8.23	8.23	85.90	85.90	85.90	5.90	5.90	5.90	2.7	2.7	5.8	5.9	<1	<1					
					24.9	24.9	33.1	33.1	8.23	8.23	86.20	86.30	86.33	5.94	5.94	5.94	2.8	2.8	5.1	4.6	<1	<1					
				Middle	3.7	24.8	24.7	33.1	33.1	8.23	8.23	86.30	86.50	86.50	5.95	5.95	5.95	2.8	2.8	5.1	4.8	<1	<1	1.6			
					24.8	24.7	33.1	33.1	8.23	8.23	86.30	86.10	86.17	5.94	5.93	5.93	3.0	2.8	5.1	5.9	<1	<1					
					24.7	24.6	33.1	33.1	8.23	8.23	86.10	86.10	86.17	5.93	5.93	5.93	2.8	2.8	5.1	5.6	<1	<1					
				Bottom	6.3	24.7	24.6	33.1	33.1	8.23	8.23	86.10	86.10	86.17	5.92	5.92	5.92	3.0	2.8	5.8	5.6	<1	<1				
					24.6	24.6	33.1	33.1	8.23	8.23	86.10	86.10	86.17	5.92	5.92	5.92	2.8	2.8	5.8	5.6	<1	<1					
					24.6	24.6	33.1	33.1	8.23	8.23	86.10	86.10	86.17	5.92	5.92	5.92	3.0	2.8	5.8	5.6	<1	<1					
8-Nov-18	Cloudy	Moderate	10:47	Surface	1	25.3	25.3	33.0	33.0	8.18	8.17	78.40	78.40	78.27	5.34	5.34	5.34	5.34	2.1	2.2	2.0	8.3	8.1	7.5	<1	<1	1.6
					25.3	25.3	33.0	33.0	8.18	8.17	78.40	78.40	78.27	5.35	5.34	5.34	2.2	2.2	7.5	7.7	<1	<1					
					25.3	25.3	33.0	33.0	8.18	8.18	78.00	78.00	78.00	5.36	5.34	5.34	2.4	2.4	7.0	7.4	<1	<1	1.6				
				Middle	3.8	25.0	24.7	33.1	33.1	8.18	8.18	78.40	77.30	77.30	5.34	5.33	5.33	2.6	2.6	7.0	7.7	<1	<1				
					25.0	24.7	33.1	33.1	8.18	8.18	77.60	77.60	77.60	5.32	5.32	5.32	2.8	2.8	7.0	7.5	<1	<1					
					24.0	24.0	33.1	33.1	8.18	8.18	77.60	77.60	77.60	5.32	5.32	5.32	3.9	3.9	7.0	7.5	<1	<1					
				Bottom	6.6	25.0	25.0	33.1	33.1	8.18	8.18	78.70	78.23	78.23	5.36	5.36	5.36	3.9	3.9	7.4	7.3	<1	<1	1.6			
					25.0	25.0	33.1	33.1	8.18	8.18	77.80	77.80	77.80	5.36	5.36	5.36	4.1	4.1	7.4	7.3	<1	<1					
					25.0	25.0	33.1	33.1	8.18	8.18	77.80	77.80	77.80	5.36	5.36	5.36	4.1	4.1	7.4	7.3	<1	<1					
10-Nov-18	Sunny	Calm	1:39	Surface	1	24.3	24.3	34.1	34.1	8.17	8.16	77.30	77.40	77.37	5.33	5.34	5.34	5.33	2.1	2.2	2.1	3.3	3.4	3.6	<1	<1	1.6
					24.3	24.3	34.1	34.1	8.17	8.16	77.40	77.50	77.40	5.34	5.34	5.34	2.1	2.1	3.6	3.5	<1	<1					
					24.3	24.3	34.1	34.1	8.17	8.17	77.30	77.30	77.30	5.33	5.33	5.33	2.3	2.3	3.2	3.1	<1	<1					
				Middle	3.7	24.2	34.1																				

Water Quality Monitoring Results at CS3 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)				
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
15-Nov-18	Fine	Moderate	5:16	Surface	1	23.8 23.8 23.8	23.8 33.1 33.1	33.3 33.2	8.03 8.05 8.03	8.04 69.70 68.50	68.00 69.40 4.77	4.73 4.86 4.79	4.80	2.2 2.3 2.3	2.3 2.5 2.4	1.9	1.3 1.3 1.8	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6	
				Middle	3.8	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2	8.09 8.09 8.09	8.09 69.30 69.70	69.47	4.81 4.81 4.83	4.82	2.4	2.4	1.9	1.8 1.0 1.8	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Bottom	6.5	23.8 23.8 23.8	23.8 34.1 34.2	34.2 34.1	8.08 8.07 8.10	8.08 67.70 69.00	68.23	4.71 4.70 4.73	4.73	2.6 2.6 2.4	2.6 2.9 2.7	1.9	1.3 1.3 1.8	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1	8.02 8.03 8.02	8.02 67.60 67.70	67.63	4.69 4.70 4.70	4.69	0.8 0.9 0.8	0.8 2.1 2.5	2.4	0.8	2.7 2.1 2.5	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6
				Middle	3.8	23.7 23.7 23.7	23.7 34.1 34.1	34.1	8.02 8.02 8.03	8.02 67.50 67.40	67.40	4.67 4.69 4.68	4.68	0.8 0.8 0.8	0.8 1.6 1.7	2.0	0.8	2.6 <1 <1 <1	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	
				Bottom	6.6	23.7 23.7 23.7	23.7 34.1 34.1	34.1	8.02 8.02 8.03	8.02 67.20 67.10	67.10	4.66 4.67 4.66	4.66	0.8 0.8 0.9	0.8 3.9 3.5	3.4	1.0 1.0 1.0	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2	8.10 8.11 8.10	8.10 78.90 78.20	78.57	5.46 5.47 5.45	5.45	1.8 1.8 1.8	1.8 6.3 6.4	6.6	1.8 1.8 1.8	1.8 6.1 6.1 6.5	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6	
				Middle	3.8	23.8 23.8 23.8	23.8 34.2 34.2	34.2	8.11 8.10 8.10	8.10 78.60 78.10	78.43	5.45 5.46 5.42	5.44	1.8 1.9 1.8	1.8 6.1 6.1 6.5	6.2	1.8 7.2 7.2 7.4	1.0 1.0 1.0 1.0	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Bottom	6.6	23.8 23.8 23.8	23.8 34.2 34.2	34.2	8.11 8.11 8.11	8.11 78.30 78.20	78.17	5.42 5.44 5.43	5.43	1.8 1.9 1.8	1.8 7.2 7.2 7.4	7.1	1.8 6.8 6.8 7.4	1.0 1.0 1.0 1.0	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
22-Nov-18	Cloudy	Moderate	11:41	Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2	8.14 8.13 8.13	8.13 84.20 84.50	84.37	5.88 5.86 5.89	5.88	2.1 2.1 2.1	2.0 4.2 4.1	4.4	2.0 4.4 4.1	2.0 4.1 4.1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6	
				Middle	3.7	23.6 23.6 23.6	23.6 34.3 34.3	34.3	8.16 8.16 8.15	8.16 84.50 84.40	84.57	5.91 5.89 5.88	5.89	2.2 2.2 2.2	2.3 2.3 2.3	2.3	2.2 4.8 4.1	2.3 4.3 4.1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Bottom	6.4	23.5 23.5 23.5	23.5 34.3 34.3	34.3	8.17 8.16 8.16	8.16 84.30 84.20	84.30	5.89 5.88 5.87	5.88	2.4 2.3 2.3	2.3 2.3 2.3	2.3	2.4 4.9 4.7	2.3 4.6 4.7	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Surface	1	23.3 23.3 23.3	23.3 33.2 33.2	33.2	8.15 8.14 8.16	8.15 81.20 81.40	81.13	5.66 5.70 5.70	5.69	2.3 2.4 2.3	2.3 2.4 2.4	2.3	3.1 3.4 5.0	3.8	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6	
				Middle	3.8	23.3 23.3 23.2	23.2 33.2 33.3	33.3	8.14 8.15 8.17	8.15 80.60 80.60	80.80	5.69 5.65 5.65	5.66	2.3 2.5 2.4	2.4 2.5 2.4	2.4	4.6 4.5 4.9	4.7	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Bottom	6.6	23.2 23.2 23.2	23.2 33.2 33.2	33.2	8.18 8.16 8.16	8.16 80.30 80.30	80.50	5.63 5.67 5.63	5.64	2.5 2.5 2.5	2.5 2.5 2.5	2.5	4.5 5.1 5.4	5.0	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9	8.10 8.10 8.10	8.10 77.00 76.80	76.87	5.43 5.45 5.43	5.44	4.6 4.4 4.6	4.5 4.5 4.5	4.5	10.0 11.4 10.4	10.6	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6	
				Middle	3.9	22.9 22.9 22.9	22.9 33.9 33.9	33.9	8.11 8.11 8.10	8.10 77.00 76.80	76.83	5.43 5.44 5.43	5.43	4.6 4.8 5.1	4.5 4.8 5.1	4.5	8.4 8.7 9.1	8.7	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
				Bottom	6.8	22.9 22.9 22.9	22.9 33.9 33.9	33.9	8.10 8.10 8.12	8.11 76.60 76.70	76.73	5.42 5.42 5.44	5.43	4.8 4.8 5.0	4.8 4.8 4.9	4.9	9.9 8.9 9.2	9.3	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6		
29-Nov-18	Fine	Moderate	5:22	Surface	1	22.6 22.6 22.6	22.6 33.7 33.7	33.7	8.24 8.23 8.23	8.24 80.90 80.90	80.93	5.75 5.74 5.74	5.74	2.3 2.0 2.2	2.2	2.2	6.0 6.4 7.2	6.5	8.0 8.0 8.0	8.0	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6
				Middle	3.8	22.5 22.6 22.5	22.5 33.8 33.8	33.7	8.25 8.24 8.23	8.25 80.70 80.70	80.70	5.73 5.72 5.73	5.73	2.3 2.5 2.3	2.4	2.4	7.5 8.3 8.4	8.1	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6	
				Bottom	6.6	22.5 22.5 22.5	22.5 33.8 33.8	33.8	8.24 8.23 8.26	8.24 80.60 79.90	80.27	5.70 5.72 5.67	5.70	2.5 2.3 2.4	2.4	2.4	8.1 8.4 8.8	8.4	9.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6	
				Surface	1	22.6 22.6 22.6	22.6 33.7 33.7	33.7	8.23 8.23 8.23	8.23 80.90 80.90	80.93	5.75 5.74 5.74	5.74	5.74 5.72 5.74	5.74	7.7	7.7	8.0 8.0 8.0	8.0	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.8	22.5 22.6 22.5	22.5 33.8 33.8	33.8	8.24 8.23 8.23	8.24 80.70 80.70	80.70	5.73 5.72 5.73	5.73	5.73 5.72 5.73	5.73	7.7	7.7	8.0 8.0 8.0	8.3	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Bottom	6.6	22.5 22.5 22.5	22.5 33.8 33.8	33.8	8.24 8.23 8.26	8.24 80.60 79.90	80.27	5.70 5.72 5.67	5.70	5.70 5.72 5.67	5.70	7.7	7.7	8.0 8.0 8.0	8.3	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Surface	1	22.6 22.6 22.6	22.6 33.7 33.7	33.7	8.23 8.23 8.23	8.23 80.90 80.90	80.93	5.75 5.74 5.74	5.74	5.74 5.72 5.74	5.74	7.7	7.7	8.0 8.0 8.0	8.3	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.8	22.5 22.6 22.5	22.5 33.8 33.8	33.8	8.24 8.23 8.23	8.24 80.70 80.70	80.70	5.73 5.72 5.73	5.73	5.73 5.72 5.73	5.73	7.7	7.7	8.0 8.0 8.0	8.3	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Bottom	6.6	22.5 22.5 22.5	22.5 33.8 33.8	33.8	8.24 8.23 8.26	8.24 80.60 79.90	80.27	5.70 5.72 5.67	5.70	5.70 5.72 5.67	5.70	7.7	7.7	8.0 8.0 8.0	8.3	8.0 8.0 8.0	8.3	1.0	<1.6 <1.6 <1.6	1.6	1.6

Water Quality Monitoring Results at CS3 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3-Nov-18	Fine	Moderate	15:37	Surface	1	24.8	24.8	33.2	8.25	8.25	98.50	98.90	6.76	6.79	1.8	1.7	3.9	4.1	<1	1.0	<1.6	1.6	1.6
				Middle	4.0	24.8	24.8	33.2	8.25	8.25	98.50	98.83	6.76	6.78	6.79	2.0	5.1	5.2	<1	1.0	<1.6	<1.6	
				Bottom	7.1	24.8	24.8	33.2	8.25	8.25	99.10	98.93	6.80	6.79	6.79	2.0	5.3	5.2	<1	1.0	<1.6	<1.6	
6-Nov-18	Sunny	Moderate	16:27	Surface	1	25.0	25.0	33.0	8.26	8.26	87.00	86.83	5.96	5.95	5.94	2.4	8.6	8.6	<1	1.0	<1.6	<1.6	1.6
				Middle	3.7	24.9	24.9	33.1	8.25	8.26	86.60	86.50	5.94	5.93	5.94	2.4	6.5	5.7	<1	1.0	<1.6	<1.6	
				Bottom	6.5	24.8	24.9	33.1	8.26	8.26	85.80	86.27	5.89	5.92	5.92	2.4	5.6	5.7	<1	1.0	<1.6	<1.6	
8-Nov-18	Cloudy	Moderate	7:16	Surface	1	24.7	24.7	33.1	8.17	8.17	78.80	78.93	5.40	5.41	5.41	2.0	4.3	5.0	<1	1.0	<1.6	<1.6	1.6
				Middle	3.9	24.7	24.7	33.1	8.18	8.18	78.50	78.90	5.39	5.41	5.41	2.0	5.3	6.0	<1	1.0	<1.6	<1.6	
				Bottom	6.8	24.6	24.6	33.1	8.18	8.18	79.10	79.03	5.43	5.42	5.42	2.0	4.2	4.0	<1	1.0	<1.6	<1.6	
10-Nov-18	Sunny	Calm	8:00	Surface	1	24.2	24.3	34.1	8.16	8.15	79.20	79.17	5.46	5.46	5.46	2.0	7.6	7.5	<1	1.0	<1.6	<1.6	1.6
				Middle	3.8	24.2	24.2	34.1	8.16	8.16	78.00	78.23	5.38	5.40	5.40	2.0	5.4	5.4	<1	1.0	<1.6	<1.6	
				Bottom	6.6	24.2	24.2	34.2	8.14	8.16	77.70	77.77	5.37	5.37	5.37	2.0	6.5	5.7	<1	1.0	<1.6	<1.6	
13-Nov-18	Fine	Moderate	10:30	Surface	1	24.4	24.4	33.8	8.06	8.06	72.20	69.67	4.98	4.80	4.75	1.9	4.1	4.9	<1	1.0	<1.6	<1.6	1.6
				Middle	3.8	24.3	24.3	33.8	8.06	8.06	67.80	68.97	4.68	4.76	4.72	2.0	5.0	4.8	<1	1.0	<1.6	<1.6	
				Bottom	6.3	24.3	24.3	33.8	8.06	8.06	67.60	68.57	4.67	4.73	4.71	2.0	4.5	4.3	<1	1.0	<1.6	<1.6	

Water Quality Monitoring Results at CS3 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)				
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
15-Nov-18	Fine	Moderate	16:40	Surface	1	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.15 8.14 8.14	78.80 78.40 77.20	78.13 5.44 5.35	5.42 5.42 5.40	5.41	1.6 1.7 1.8	1.7 1.7 1.8	1.9	2.8 3.2 2.7	2.9 1.0	3.9	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.8	23.9 23.9 23.9	23.9 34.3 34.2	34.2 34.2 34.2	8.14 8.15 8.14	78.30 78.50 76.90	77.90 5.43 5.33	5.40 5.42 5.42		1.8 1.7 1.8	1.8 2.7 2.9		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6				
				Bottom	6.7	23.9 23.9 23.9	23.9 34.2 34.3	34.2 34.2 34.3	8.14 8.16 8.15	77.70 78.30 78.50	78.17 5.43 5.44	5.42 5.42 5.42		2.4 2.2 2.3	2.3 5.7 5.8		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6				
17-Nov-18	Cloudy	Moderate	14:28	Surface	1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	67.30 67.50 67.80	67.53 4.68 4.69	4.69 4.69 4.69	4.70	1.3 1.3 1.2	1.3 3.9 3.3	1.4	3.2 3.9 3.3	3.5 1.0	3.4	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	67.10 67.40 68.20	67.57 4.67 4.74	4.70 4.69 4.74		1.4 1.4 1.4	1.4 3.4 3.2		4.9 3.4 3.2	3.8 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.8	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.07	67.60 67.20 68.50	67.77 4.70 4.76	4.71 4.67 4.71		1.5 1.6 1.5	1.5 2.9 2.7		3.3 2.9 3.0	3.0 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
20-Nov-18	Cloudy	Moderate	15:54	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	83.90 83.70 83.50	83.70 5.82 5.81	5.82 5.82 5.82	5.81	2.2 2.0 1.9	2.0 3.3 3.6	2.1	3.3 3.7 3.8	3.4 1.0	4.1	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	83.20 83.70 83.10	83.33 5.79 5.78	5.80 5.82 5.78		2.1 2.0 2.1	2.1 2.0 2.1		4.2 3.7 3.8	3.9 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.8	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.17 8.17 8.17	83.60 83.00 82.90	83.17 5.77 5.76	5.78 5.78 5.78		2.1 2.1 2.3	2.1 4.6 5.1		5.1 4.6 5.1	4.9 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
22-Nov-18	Cloudy	Moderate	16:44	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.12 8.12 8.13	83.30 83.10 82.90	83.10 5.79 5.78	5.79 5.79 5.79	5.80	1.7 1.9 1.9	1.8 4.2 3.9	2.1	4.2 4.2 4.2	4.1 1.0	4.5	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.8	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.14 8.14 8.14	83.40 83.20 83.10	83.23 5.80 5.79	5.80 5.82 5.79		2.3 2.4 2.2	2.3 2.4 2.2		4.4 4.4 4.0	4.2 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.6	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.15 8.16 8.14	83.30 83.00 83.10	83.13 5.78 5.79	5.78 5.78 5.79		2.2 2.4 2.3	2.2 4.8 5.2		5.2 4.8 5.1	5.1 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
24-Nov-18	Fine	Moderate	7:53	Surface	1	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.15 8.14 8.14	86.40 82.60 81.60	83.53 5.95 5.72	6.05 5.79 5.72	5.82	2.0 1.9 2.0	2.0 4.2 4.8	2.1	4.0 4.2 4.8	4.3 1.0	4.4	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.8	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.14 8.16 8.14	81.50 84.60 82.10	82.73 5.71 5.75	5.79 5.92 5.75		2.2 2.0 2.2	2.1 4.4 4.6		4.2 4.4 4.0	4.2 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.6	23.1 23.1 23.2	23.1 33.2 33.2	33.2 33.2 33.2	8.15 8.14 8.17	81.90 81.30 83.80	82.33 5.74 5.87	5.77 5.97 5.77		2.1 2.1 2.0	2.1 4.1 4.6		4.0 4.1 4.2	4.2 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
27-Nov-18	Fine	Moderate	9:39	Surface	1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.20 8.19 8.19	84.70 84.90 84.90	84.83 6.01 6.00	6.00 5.91 5.90	5.99	3.0 3.1 2.9	3.0 10.1 10.5	3.5	10.0 8.2 9.4	10.2 8.9 9.1	9.4	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	4.1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.21 8.20 8.19	84.50 84.50 84.50	84.50 5.98 5.98	5.98 5.98 5.98		3.6 3.7 3.6	3.6 9.1 8.7		9.4 8.2 8.7	8.9 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.9	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.21 8.21 8.19	84.40 84.40 84.50	84.43 5.97 5.98	5.97 5.97 5.98		3.8 3.7 3.7	3.8 9.0 9.6		8.7 8.8 9.0	9.0 1.0		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
29-Nov-18	Sunny	Moderate	11:33	Surface	1	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.25 8.27 8.24	83.00 82.10 81.40	82.17 5.82 5.77	5.89 5.83 5.77	5.83	2.5 2.4 2.5	2.5 5.5 5.1	2.6	5.6 5.8 5.1	5.5 8.3	6.3	8.0 9.0 8.0	8.3	8.2	<1.6 <1.6 <1.6	1.6	1.6
				Middle	4.0	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.26 8.25 8.25	82.50 83.00 81.30	82.27 5.85 5.76	5.83 5.89 5.76		2.6 2.6 2.5	2.6 6.3 6.7		5.9 6.2 6.7	6.3 7.7		8.0 8.0 7.0	8.3		<1.6 <1.6 <1.6	1.6	
				Bottom	7.1	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.27 8.26 8.25	81.20 82.30 81.50	81.67 5.76 5.78	5.79 5.84 5.78		2.7 2.7 2.7	2.7 7.0 7.0		7.0 7.0 7.0	7.0 8.7		8.0 8.0 9.0	8.3		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)					
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*			
1-Nov-18	Cloudy	Moderate	6:14	Surface	1	25.1	25.1	33.1	33.1	8.24	8.24	103.80	104.20	103.80	7.09	7.12	7.09	7.08	2.0	2.1	4.3	4.1	3.9	4.0	<1	1.0	<1.6	<1.6	1.6	1.6
					25.2	25.1	33.1	33.1	8.24	8.24	103.40	103.40	103.40	7.07	7.07	7.06	2.1	2.1	3.9	3.9	3.9	1.0	<1.6	<1.6						
					25.1	25.1	33.1	33.1	8.23	8.23	103.60	103.50	103.33	7.08	7.07	7.06	2.2	2.2	4.2	4.2	4.3	1.0	<1.6	<1.6						
				Middle	3.6	25.1	25.1	33.1	33.1	8.23	8.23	103.60	103.50	103.33	7.08	7.07	7.06	2.2	2.2	4.4	4.4	4.3	4.3	1.0	<1.6	<1.6	<1.6	1.6		
					25.1	25.1	33.1	33.1	8.23	8.23	103.40	102.50	102.87	7.07	7.01	7.03	2.2	2.2	4.6	4.5	4.7	1.0	<1.6	<1.6						
					25.1	25.1	33.1	33.1	8.23	8.23	102.70	102.70	102.70	7.02	7.02	7.03	2.3	2.3	4.9	4.9	4.9	1.0	<1.6	<1.6						
				Bottom	6.2	25.1	25.1	33.1	33.1	8.23	8.23	103.40	102.50	102.87	7.07	7.01	7.03	2.2	2.2	4.6	4.5	4.7	1.0	<1.6		<1.6				
					25.1	25.1	33.1	33.1	8.23	8.23	102.70	102.70	102.70	7.02	7.02	7.03	2.3	2.3	4.9	4.9	4.9	1.0	<1.6	<1.6						
					25.1	25.1	33.1	33.1	8.23	8.23	102.70	102.70	102.70	7.02	7.02	7.03	2.3	2.3	4.9	4.9	4.9	1.0	<1.6	<1.6						
3-Nov-18	Fine	Moderate	9:20	Surface	1	24.8	24.8	32.9	32.9	8.23	8.23	95.20	95.00	95.37	6.54	6.53	6.55	6.58	2.4	2.5	4.3	4.2	4.3	4.3	<1	1.0	<1.6	<1.6	1.6	1.6
					24.8	24.8	32.9	32.9	8.23	8.23	95.00	95.90	95.90	6.54	6.53	6.55	2.4	2.4	4.5	4.5	4.5	1.0	<1.6	<1.6						
					24.8	24.7	32.9	32.9	8.23	8.23	95.60	96.40	96.40	6.58	6.63	6.61	2.7	2.8	5.0	5.0	4.8	1.0	<1.6	<1.6						
				Middle	3.7	24.7	24.7	33.2	33.2	8.24	8.24	95.90	96.60	96.40	6.59	6.63	6.61	2.8	2.8	5.2	5.4	5.3	4.8	1.0	<1.6	<1.6	1.6	1.6		
					24.7	24.7	33.2	33.2	8.25	8.25	96.10	96.50	96.13	6.60	6.62	6.60	3.0	3.4	5.4	5.4	5.3	1.0	<1.6	<1.6						
					24.7	24.7	33.2	33.2	8.25	8.25	96.50	96.50	96.13	6.60	6.62	6.60	3.6	3.4	5.4	5.4	5.3	1.0	<1.6	<1.6						
				Bottom	6.2	24.7	24.7	33.2	33.2	8.25	8.25	95.80	95.80	95.80	6.57	6.62	6.60	2.9	2.8	4.6	4.7	4.8	1.0	<1.6		<1.6				
					24.7	24.7	33.2	33.2	8.25	8.25	95.80	95.80	95.80	6.57	6.62	6.60	3.0	3.4	5.2	5.4	5.3	1.0	<1.6	<1.6						
					24.7	24.7	33.2	33.2	8.25	8.25	95.80	95.80	95.80	6.57	6.62	6.60	3.6	3.4	5.4	5.4	5.3	1.0	<1.6	<1.6						
6-Nov-18	Sunny	Moderate	11:40	Surface	1	24.9	24.9	33.1	33.1	8.23	8.23	87.00	87.30	86.97	5.98	5.99	5.97	5.96	2.7	2.8	4.8	5.8	6.1	6.1	<1	1.0	<1.6	<1.6	1.6	1.6
					24.9	24.9	33.1	33.1	8.23	8.23	86.60	86.60	86.60	5.94	5.94	5.95	2.8	2.8	4.2	4.2	4.3	1.0	<1.6	<1.6						
					24.8	24.8	33.1	33.1	8.23	8.23	87.00	86.63	86.63	5.97	5.99	5.95	2.7	2.8	4.0	4.0	4.0	1.0	<1.6	<1.6						
				Middle	3.6	24.9	24.8	33.1	33.1	8.23	8.23	87.30	87.30	86.63	5.98	5.99	5.95	2.7	2.8	4.0	4.0	4.1	4.8	1.0	<1.6	<1.6	1.6	1.6		
					24.7	24.7	33.1	33.1	8.23	8.23	85.50	86.40	86.40	5.89	5.96	5.94	2.9	2.9	4.0	3.6	3.9	1.0	<1.6	<1.6						
					24.7	24.7	33.1	33.1	8.23	8.23	86.70	87.00	87.00	5.89	5.96	5.94	2.9	2.9	4.1	4.1	4.1	1.0	<1.6	<1.6						
				Bottom	6.1	24.7	24.8	33.1	33.1	8.23	8.23	87.00	87.00	86.40	5.94	5.96	5.94	2.9	2.8	4.0	3.6	3.9	1.0	<1.6		<1.6				
					24.7	24.7	33.1	33.1	8.23	8.23	87.00	87.00	86.40	5.94	5.96	5.94	2.9	2.8	4.0	3.6	3.9	1.0	<1.6	<1.6						
					24.9	24.9	33.1	33.1	8.23	8.23	87.00	87.00	86.40	5.94	5.96	5.94	2.9	2.8	4.0	3.6	3.9	1.0	<1.6	<1.6						
8-Nov-18	Cloudy	Moderate	10:32	Surface	1	25.1	25.1	33.1	33.1	8.18	8.18	78.50	78.70	78.80	5.35	5.38	5.38	5.36	2.2	2.2	4.3	9.6	9.0	9.1	<1	1.0	<1.6	<1.6	1.6	1.6
					25.1	25.1	33.1	33.1	8.18	8.18	79.20	79.20	79.20	5.41	5.41	5.41	2.1	2.1	7.3	7.3	7.3	4.8	1.0	<1.6	<1.6	1.6	1.6			
					25.0	25.0	33.1	33.1	8.17	8.17	78.10	78.00	77.87	5.34	5.33	5.33	2.6	2.7	7.4	7.4	7.4		1.0		<1.6	<1.6				
				Middle	3.6	25.0	25.0	33.1	33.1	8.17	8.17	77.50	77.50	77.50	5.31	5.31	5.31	2.7	2.7	6.6	7.4	7.3	1.0	<1.6	<1.6					
					25.0	25.0	33.1	33.1	8.17	8.17	77.90	77.90	77.87	5.41	5.33	5.37	3.2	3.2	4.1	4.1	4.1	4.8	1.0	<1.6	<1.6	1.6	1.6			
					25.0	24.9	33.1	33.1	8.17	8.17	77.80	77.80	77.80	5.37	5.33	5.37	3.2	3.2	4.0	4.0	4.4		1.0		<1.6	<1.6				
					24.9	24.9	33.1	33.1	8.17	8.17	77.40	77.40	77.40	5.34	5.34	5.34	3.2	3.2	4.0	4.0	4.4		1.0		<1.6	<1.6				
10-Nov-18	Sunny	Calm	1:59	Surface	1	24.3	24.3	34.1	34.1	8.17	8.17	78																		

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH	DO Saturation (%)	Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)		
					Value	Average	Value	Average			Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
15-Nov-18	Fine	Moderate	5:34	Surface	1	23.8 23.8 23.8	23.8 33.4 33.2	33.2 33.3 33.3	8.04 8.06 8.04	8.05 70.20 68.50	68.10 4.88 4.77	4.74 4.88 4.80	4.80	2.2 2.3 2.3	2.3 2.3 2.3	2.6	6.5 5.4 5.6	6.2 5.2 5.6	5.4	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.6	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.10 8.10 8.09	8.10 68.60 69.20	69.90 4.76 4.80	4.84 4.76 4.80	2.6 2.6 2.7	2.6 2.6 2.8	<1 <1 <1	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6						
					Bottom	6.3	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.09 8.10 8.11	8.10 68.20 67.70	68.00 4.72 4.69	4.72 4.71 4.69	3.0 2.5 2.8	2.8 2.8 2.8	<1 <1 <1	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6						
				Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.01 8.02 8.02	8.02 65.80 66.30	66.30 4.58 4.61	4.61 4.58 4.60	4.61	0.8 0.8 0.8	0.8 0.8 0.8	0.9	3.5 4.5 3.1	3.7 1.8 1.8	2.7	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.7	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.02 8.02 8.02	8.02 66.60 66.40	66.70 4.63 4.61	4.63 4.63 4.62	0.9 0.9 1.0	0.9 0.9 1.0	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6						
					Bottom	6.4	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.02 8.02 8.02	8.02 66.40 67.10	67.30 4.67 4.66	4.67 4.62 4.65	1.0 1.0 1.0	1.0 1.0 1.0	2.9 2.2 2.7	2.7 2.2 2.9	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.10 8.10 8.10	8.10 77.80 78.40	78.40 5.40 5.45	5.44 5.40 5.43	5.42	1.8 1.9 1.8	1.8 1.9 1.8	1.9	4.5 4.7 4.4	4.5 4.5 4.5	5.2	<1 1.0 1.0	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.6	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.11 8.10 8.10	8.10 77.50 78.10	77.80 5.38 5.42	5.38 5.42 5.40	1.9 1.8 1.9	1.8 1.8 1.9	5.2 5.7 5.4	5.4 5.4 5.4	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
					Bottom	6.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.11 8.11 8.12	8.11 77.40 77.40	77.20 5.43 5.39	5.43 5.39 5.39	1.9 2.0 2.0	1.9 2.0 2.0	5.8 5.7 5.6	5.7 5.7 5.6	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2 34.2 34.2	8.13 8.13 8.13	8.13 84.60 84.70	85.00 84.77 84.70	5.92 5.89 5.90	5.89	2.3 2.3 2.2	2.3 2.3 2.3	2.4	4.9 4.1 4.2	4.4 4.4 4.4	4.0	<1 1.0 1.0	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.6	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.17 8.16 8.16	8.16 84.70 84.40	84.10 5.86 5.88	5.86 5.90 5.88	2.5 2.5 2.5	2.4 2.4 2.4	4.8 4.7 4.4	4.6 4.6 4.4	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
					Bottom	6.2	23.6 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.16 8.17 8.18	8.17 84.20 83.80	84.10 5.86 5.84	5.86 5.87 5.86	2.4 2.7 2.6	2.6 2.7 2.6	3.2 3.0 2.9	3.0 3.0 2.9	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	23.3 23.3 23.3	23.3 33.2 33.2	33.2 33.2 33.2	8.14 8.14 8.14	8.14 81.30 81.10	81.40 5.70 5.68	5.70 5.71 5.70	5.69	2.2 2.2 2.1	2.2 2.2 2.1	2.4	4.9 4.7 5.3	5.0 5.0 6.9	6.0	<1 1.0 1.0	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.8	23.3 23.2 23.3	23.3 33.2 33.2	33.2 33.2 33.2	8.15 8.14 8.14	8.16 80.90 81.20	81.20 5.69 5.69	5.69 5.68 5.69	2.5 2.5 2.4	2.5 2.5 2.4	4.8 4.7 4.4	4.6 4.6 4.4	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
					Bottom	6.5	23.2 23.2 23.3	23.2 33.2 33.2	33.2 33.2 33.2	8.16 8.14 8.14	8.15 80.60 81.00	80.70 5.66 5.68	5.66 5.65 5.66	2.6 2.5 2.4	2.6 2.5 2.4	6.4 6.6 6.6	6.5 6.5 6.5	1.0 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.11 8.12 8.12	8.12 76.70 77.80	77.50 5.48 5.50	5.48 5.42 5.47	5.45	3.6 4.0 4.2	3.9 3.9 3.9	4.2	13.5 13.0 13.7	13.4 13.4 12.2	12.1	<1 1.0 1.0	1.0 1.0 1.0	1.1	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.7	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.13 8.11 8.12	8.12 76.60 76.80	76.60 5.42 5.43	5.42 5.42 5.42	4.4 4.2 4.2	4.3 4.3 4.3	12.0 11.6 10.4	11.9 11.9 10.9	2.0 1.0 1.0	1.3 1.3 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
					Bottom	6.2	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.14 8.12 8.13	8.13 76.60 76.70	76.50 5.41 5.42	5.41 5.42 5.42	4.4 4.0 4.5	4.3 4.0 4.3	10.4 10.9 11.5	10.9 10.9 11.5	<1 1.0 1.0	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	22.6 22.6 22.5	22.5 33.7 33.8	33.7 33.7 33.8	8.24 8.23 8.23	8.23 80.50 80.20	78.90 5.60 5.71	5.60 5.71 5.67	5.66	2.2 2.1 2.3	2.2 2.1 2.3	2.7	8.6 7.9 8.0	8.2 8.2 8.3	8.2	8.0 8.0 8.0	8.0 8.0 8.3	8.1	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
					Middle	3.5	22.5 22.5 22.5	22.5 33.8 33.7	33.8 33.8 33.7	8.24 8.23 8.25	8.24 80.10 78.60	79.90 5.67 5.69	5.67 5.69 5.58	2.9 2.7 2.8	2.8 2.7 2.8	8.5 8.5 7.9	8.3 8.3 7.9	7.0 8.0 9.0	8.0 8.0 8.0	<1.6 <1.6 <1.6	1.6 1.6 1.6				
					Bottom	5.9	22.5 22.5 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.27 8.24 8.23	8.25 78.30 80.30	78.30 5.56 5.64	5.56 5.64 5.63	3.1 3.3 3.0	3.1 3.3 3.0	8.5 7.6 8.0	8.0 8.0 7.9	8.0 9.0 8.0	8.0 8.0 8.3	<1.6 <1.6 <1.6	1.6 1.6 1.6				

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3-Nov-18	Fine	Moderate	15:19	Surface	1	24.8	24.8	33.2	8.25	99.40	6.82	6.81	6.82	1.7	1.7	1.7	5.1	5.0	<1	1.0	<1.6	1.6	<1.6
				Middle	3.8	24.8	24.8	33.2	8.25	99.10	6.80	6.83	6.82	1.7	1.8	1.8	5.8	5.6	<1	1.0	<1.6	1.6	<1.6
				Bottom	6.3	24.8	24.8	33.2	8.25	99.50	6.83	6.84	6.82	2.5	2.4	2.4	7.6	7.8	<1	1.0	<1.6	1.6	<1.6
6-Nov-18	Sunny	Moderate	16:08	Surface	1	25.0	25.0	33.0	8.27	87.10	5.97	5.97	5.97	2.5	2.5	2.5	5.6	5.5	<1	1.0	<1.6	1.6	<1.6
				Middle	3.7	24.9	24.9	33.1	8.26	87.30	5.98	5.97	5.97	3.2	3.2	3.2	8.7	8.3	<1	1.0	<1.6	1.6	<1.6
				Bottom	6.4	24.9	24.9	33.1	8.26	86.80	5.95	5.98	5.98	3.1	3.0	3.1	7.0	7.3	<1	1.0	<1.6	1.6	<1.6
8-Nov-18	Cloudy	Moderate	7:35	Surface	1	24.7	24.7	33.1	8.17	78.90	5.41	5.42	5.42	2.5	2.8	2.8	9.7	10.8	<1	1.0	<1.6	1.6	<1.6
				Middle	3.7	24.7	24.7	33.1	8.18	78.70	5.40	5.42	5.42	4.0	4.1	4.0	9.5	10.1	2.0	1.3	<1.6	1.6	<1.6
				Bottom	6.4	24.6	24.6	33.2	8.19	80.10	5.49	5.42	5.45	4.6	4.8	4.8	10.5	11.5	<1	1.0	<1.6	1.6	<1.6
10-Nov-18	Sunny	Calm	7:40	Surface	1	24.4	24.4	34.0	8.15	78.40	5.40	5.41	5.41	1.8	1.8	1.8	4.7	4.5	2.0	1.3	<1.6	1.6	<1.6
				Middle	3.7	24.4	24.3	34.0	8.13	78.70	5.42	5.42	5.41	1.7	1.9	1.9	4.4	5.0	<1	1.0	<1.6	1.6	<1.6
				Bottom	6.5	24.3	24.2	34.1	8.15	78.20	5.39	5.40	5.39	2.2	2.4	2.3	6.0	5.7	<1	1.0	<1.6	1.6	<1.6
13-Nov-18	Fine	Moderate	10:13	Surface	1	24.4	24.4	33.8	8.06	68.10	4.70	4.70	4.70	1.7	1.7	1.7	1.7	2.2	1.0	1.3	<1.6	1.6	<1.6
				Middle	3.8	24.3	24.3	33.8	8.06	68.00	4.69	4.70	4.69	1.7	1.9	1.8	1.9	2.3	1.0	1.0	<1.6	1.6	<1.6
				Bottom	6.5	24.4	24.3	33.8	8.07	68.30	4.69	4.70	4.69	1.8	1.9	1.8	4.1	3.9	1.0	1.0	<1.6	1.6	<1.6

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)			
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average
15-Nov-18	Fine	Moderate	16:23	Surface	1	23.9 23.9 23.9	23.9 34.3 34.3	34.2 34.2 34.2	8.14 8.14 8.14	79.60 78.60 79.10	79.10 5.45 5.48	5.48 5.49 5.49	1.8 1.8 1.8	1.8 1.8 1.8	5.49	3.4 4.6 4.6	3.9 4.8 4.8	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.7	23.9 23.9 23.9	23.9 34.2 34.3	34.3 34.3 34.3	8.14 8.14 8.14	78.70 79.20 79.60	79.17 5.46 5.49	5.49 5.52 5.52	1.8 1.9 1.7	1.8 1.9 1.8	1.9	5.6 4.2 4.2	4.8 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.4	23.9 23.9 23.9	23.9 34.3 34.3	34.3 34.3 34.3	8.14 8.14 8.14	78.80 78.30 78.60	78.57 5.46 5.45	5.43 5.45 5.45	2.1 2.0 2.0	2.1 2.0 2.0	5.45	4.9 4.7 5.4	5.0 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
17-Nov-18	Cloudy	Moderate	14:14	Surface	1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	67.30 67.30 67.30	67.30 4.68 4.68	4.68 4.67 4.67	1.3 1.3 1.3	1.3 1.3 1.3	1.3	3.5 3.5 3.5	3.5 3.0 3.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.8	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.06 8.06	67.70 67.20 67.30	67.40 4.70 4.68	4.70 4.67 4.68	1.5 1.4 1.3	1.5 1.4 1.3	1.4	2.5 2.5 2.5	2.6 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.6	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.06 8.07 8.06	67.40 67.90 67.70	67.67 4.68 4.71	4.68 4.72 4.70	1.4 1.6 1.5	1.4 1.6 1.5	4.70	2.2 3.7 3.1	3.0 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
20-Nov-18	Cloudy	Moderate	15:38	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	83.00 83.10 83.00	83.03 5.77 5.77	5.77 5.78 5.77	2.0 2.0 1.9	2.0 2.0 1.9	5.75	4.2 4.6 4.5	4.4 5.2 5.2	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.7	23.7 23.7 23.7	23.7 34.3 34.2	34.2 34.3 34.2	8.16 8.16 8.16	82.70 82.20 82.40	82.43 5.75 5.72	5.75 5.72 5.73	2.1 2.0 2.2	2.1 2.0 2.2	2.1	5.1 5.2 5.3	5.2 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.4	23.7 23.7 23.7	23.7 34.3 34.3	34.3 34.3 34.3	8.16 8.16 8.16	82.20 82.30 82.70	82.40 5.72 5.75	5.72 5.73 5.73	2.2 2.3 2.2	2.2 2.3 2.2	5.73	5.1 5.4 5.1	5.2 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
22-Nov-18	Cloudy	Moderate	16:27	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.12 8.12 8.12	83.40 83.20 83.50	83.37 5.81 5.81	5.81 5.80 5.82	1.8 1.7 1.9	1.8 1.7 1.9	5.81	4.8 4.1 4.6	4.5 4.5 4.5	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.7	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.13 8.14 8.13	83.60 83.70 83.20	83.50 5.82 5.80	5.82 5.83 5.80	2.1 2.1 2.2	2.1 2.1 2.2	2.1	4.4 4.7 4.5	4.5 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.4	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.14 8.14 8.14	83.30 83.00 83.30	83.20 5.79 5.81	5.80 5.79 5.81	2.3 2.3 2.4	2.3 2.3 2.4	5.80	4.2 4.7 4.4	4.4 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
24-Nov-18	Fine	Moderate	8:12	Surface	1	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.14 8.14 8.14	81.20 81.10 81.10	81.13 5.69 5.69	5.69 5.68 5.69	2.1 2.2 2.1	2.1 2.2 2.1	5.68	4.6 4.3 4.4	4.4 4.0 4.0	1.3 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.1 1.1 1.1	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.7	23.1 23.1 23.1	23.1 33.2 33.2	33.2 33.2 33.2	8.14 8.14 8.15	81.10 81.00 80.80	80.97 5.67 5.67	5.67 5.68 5.67	2.1 2.2 2.4	2.1 2.2 2.4	2.2	3.5 3.1 5.4	4.0 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.5	23.1 23.1 23.1	23.1 33.2 33.2	33.2 33.2 33.2	8.14 8.16 8.14	80.80 80.50 81.00	80.77 5.67 5.68	5.67 5.65 5.68	2.3 2.3 2.3	2.3 2.3 2.3	5.67	5.4 5.4 5.0	5.3 1.0 1.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
27-Nov-18	Fine	Moderate	9:13	Surface	1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.19 8.20	85.30 86.10 84.80	85.40 6.04 6.00	6.04 6.09 6.00	3.4 3.1 3.3	3.3 2.9 3.3	6.04	7.7 9.0 9.0	7.7 8.9 8.9	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.6	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.21 8.20 8.19	84.80 86.20 84.90	85.30 6.10 6.00	6.03 6.09 6.00	3.5 3.3 3.5	3.3 3.6 3.5	6.04	9.0 8.6 8.6	8.9 10.4 10.2	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.21 8.22	84.70 84.50 86.20	85.13 5.98 6.10	5.99 5.98 6.10	3.9 3.6 3.8	3.9 3.6 3.8	6.02	10.4 10.2 9.9	10.2 10.2 10.2	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
29-Nov-18	Sunny	Moderate	11:17	Surface	1	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.27 8.27 8.28	81.90 83.40 82.70	82.67 5.91 5.86	5.81 5.91 5.86	2.5 2.4 2.3	2.5 2.4 2.3	5.85	7.8 7.7 7.7	8.3 8.9 8.9	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Middle	3.6	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.28 8.28 8.28	81.70 82.30 83.00	82.33 5.79 5.84	5.79 5.84 5.89	2.5 2.4 2.5	2.5 2.4 2.5	6.04	7.7 8.8 8.8	8.2 10.4 10.2	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6
				Bottom	6.3	22.7 22.7 22.7	22.7 34.0 34.0	34.0 34.0 34.0	8.28 8.28 8.28	82.60 81.70 82.00	82.10 5.79 5.82	5.82 5.79 5.81	2.6 2.6 2.3	2.6 2.6 2.3	5.82	7.9 8.2 8.2	8.3 9.0 9.0	1.0 1.0 1.0	<1 <1 <1	<1 <1 <1	<1.6 <1.6 <1.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)		Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity (NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)		
				Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average
1-Nov-18	Cloudy	Moderate	6:36	Surface	1	25.2	33.1	8.24	102.80	7.02	1.7	4.0	7.01	1.8	1.8	4.1	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					25.1	25.1	33.1	8.23	102.90	7.03	1.8	4.1															
					25.1	33.1	8.24	102.80	7.03	1.8	4.1	4.0															
				Middle	3.6	25.1	33.1	8.23	102.20	6.98	1.8	4.2	1.8	1.8	4.3	4.4	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					25.1	25.1	33.1	8.23	102.40	102.27	7.00	6.99															
					25.1	33.1	8.23	102.20	102.40	6.99	1.8	4.2															
				Bottom	6.0	25.1	33.1	8.23	102.00	6.97	1.9	4.4	1.9	1.9	4.4	4.5	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					25.1	25.1	33.1	8.23	101.80	101.97	6.96	6.97															
					25.1	33.1	8.23	102.10	102.00	6.98	1.9	4.2															
3-Nov-18	Fine	Moderate	9:53	Surface	1	24.7	32.7	8.22	94.40	6.50	2.5	4.3	6.57	2.5	4.1	4.0	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.8	32.8	8.23	95.30	95.13	6.55	2.5	3.9															
					24.8	32.9	8.23	95.70	95.13	6.57	2.4	4.0															
				Middle	3.8	24.7	33.2	8.25	96.60	6.63	2.8	4.3	6.57	2.9	4.2	4.4	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.7	33.3	8.25	95.80	96.23	6.58	2.9	4.0															
					24.7	33.2	8.25	96.30	96.23	6.61	3.0	4.4															
				Bottom	6.7	24.7	33.2	8.25	95.20	6.53	3.0	4.5	6.57	3.0	4.6	4.6	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.7	33.2	8.25	95.80	95.53	6.57	3.0	4.6															
					24.7	33.2	8.25	95.60	95.53	6.56	2.8	4.6															
6-Nov-18	Sunny	Moderate	11:54	Surface	1	24.9	33.1	8.23	87.40	87.70	5.99	2.1	5.99	2.1	4.7	4.6	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.9	33.1	8.23	87.40	87.50	6.01	2.1	4.5															
					24.9	33.1	8.23	87.30	87.23	5.99	2.1	5.4															
				Middle	3.7	24.9	33.1	8.23	87.30	87.30	5.99	2.0	5.99	2.1	4.7	4.7	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.9	33.1	8.23	87.10	87.17	5.98	2.0	6.1															
					24.9	33.1	8.23	87.10	87.17	5.98	2.1	5.7															
				Bottom	6.5	24.8	33.1	8.23	87.30	87.17	5.98	2.1	5.99	2.1	4.7	4.7	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.8	33.1	8.23	87.10	87.00	5.98	2.2	9.0															
					24.8	33.1	8.23	87.00	87.10	5.98	2.3	10.3															
8-Nov-18	Cloudy	Moderate	10:05	Surface	1	25.0	33.1	8.18	79.10	5.41	1.7	9.6	5.42	1.8	1.8	1.8	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					25.0	33.1	8.18	79.20	79.07	5.41	1.8	10.4															
					25.0	33.1	8.18	79.80	79.70	5.40	1.8	9.9															
				Middle	3.9	25.0	33.1	8.18	79.00	5.42	2.7	9.0	5.42	2.5	2.5	2.5	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					25.0	33.1	8.18	79.19	79.30	5.42	2.4	10.3															
					25.0	33.1	8.18	79.30	79.50	5.44	2.5	14.5															
				Bottom	6.8	24.9	33.1	8.18	79.40	79.50	5.45	2.5	5.45	3.8	3.9	3.8	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.9	33.1	8.18	79.40	79.70	5.45	2.6	14.1															
					24.9	33.1	8.18	79.80	79.50	5.47	2.6	13.7															
10-Nov-18	Sunny	Calm	2:21	Surface	1	24.3	34.1	8.17	77.30	5.33	2.1	4.6	5.33	2.1	4.4	4.4	<1	1.0	1.6	<1.6	1.6	1.6	1.6	1.6	1.6	1.6	
					24.3	34.1	8.17	77.30	77.33	5.33	2.2	4.3															
					24.3	34.1	8.17	77.40	77.33	5.34	2.2	4.3															

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)					
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
15-Nov-18	Fine	Moderate	6:00	Surface	1	23.8 23.8 23.8	23.8 33.3 33.2	33.4 33.3 33.2	8.06 8.05 8.04	70.00 69.80 68.80	69.53	4.87 4.86 4.79	4.84 4.82 4.83	4.84	2.2 2.4 2.3	2.3	2.7	5.6 5.9 5.7	5.7	5.5	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	4.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.09 8.09 8.10	70.20 69.77 69.60	69.77	4.82 4.87 4.83	4.84 4.84 4.84		2.8 3.0 2.8	2.9		5.3 5.9 5.9	5.7		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	7.1	23.8 23.8 23.8	23.8 34.0 34.0	34.2 34.0 34.0	8.11 8.08 8.07	68.90 68.60 68.80	68.83	4.78 4.82 4.71	4.77 4.77 4.77		2.7 2.8 3.0	2.8		5.0 4.9 5.6	5.2		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.02 8.02 8.02	64.60 64.90 65.00	64.83	4.49 4.51 4.52	4.51 4.51 4.51	4.53	0.8 0.8 0.7	0.8	0.8	2.9 2.1 2.0	2.3	2.5	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.03 8.02 8.02	65.30 65.30 65.60	65.40	4.54 4.54 4.56	4.55 4.55 4.56		0.9 0.8 0.8	0.8		2.8 2.4 2.6	2.6		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.8	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.03 8.04 8.03	65.80 65.90 65.80	65.83	4.57 4.57 4.57	4.57 4.57 4.57		0.9 1.0 0.9	0.9		2.4 2.8 2.5	2.6		1.0 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.10 8.10 8.10	78.30 78.00 78.00	78.10	5.44 5.41 5.42	5.42 5.42 5.42	5.40	1.9 1.8 1.9	1.9	2.0	4.2 4.6 4.3	4.4	5.3	<1 <1 <1	1.0	1.1	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.10 8.11 8.11	77.50 77.40 77.30	77.40	5.38 5.37 5.37	5.37 5.37 5.37		1.9 2.0 2.0	2.0		5.5 5.4 5.4	5.4		2.0 1.0 1.0	1.3		<1.6 <1.6 <1.6	1.6	
				Bottom	6.8	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.13 8.11 8.11	77.00 77.00 77.20	77.07	5.34 5.35 5.36	5.35 5.35 5.36		2.1 2.0 2.1	2.1		6.3 6.0 6.2	6.2		1.0 1.0 1.0	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2 34.2 34.2	8.13 8.13 8.14	84.20 84.10 84.20	84.17	5.87 5.86 5.87	5.87 5.86 5.87	5.88	2.0 2.0 2.2	2.1	2.3	5.2 4.8 5.0	5.0	4.4	<1 <1 <1	1.0	1.0	<1.6 <1.6 <1.6	1.6	1.6
				Middle	4.0	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.16 8.16 8.16	84.50 84.70 84.50	84.57	5.90 5.90 5.89	5.90 5.90 5.89		2.4 2.2 2.4	2.3		4.3 4.4 3.9	4.2		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	7.0	23.5 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.17 8.17 8.18	84.50 84.10 84.00	84.20	5.90 5.86 5.86	5.87 5.87 5.87		2.5 2.5 2.6	2.5		4.3 3.9 4.1	4.1		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	23.3 23.3 23.3	23.3 33.2 33.2	33.2 33.2 33.2	8.14 8.14 8.14	81.20 80.90 81.30	81.13	5.69 5.67 5.69	5.69 5.67 5.69	5.68	1.9 1.9 1.9	1.9	2.1	5.2 4.3 4.8	4.8	5.0	<1 <1 <1	1.0	1.1	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.7	23.3 23.3 23.3	23.3 33.2 33.2	33.2 33.2 33.2	8.15 8.15 8.15	80.80 80.80 81.30	80.97	5.67 5.67 5.70	5.68 5.68 5.70		2.2 2.2 2.3	2.2		4.6 4.6 5.4	4.9		1.0 2.0 <1	1.3		<1.6 <1.6 <1.6	1.6	
				Bottom	6.4	23.3 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.15 8.15 8.14	81.00 80.20 80.70	80.63	5.68 5.62 5.65	5.65 5.65 5.65		2.2 2.2 2.3	2.2		5.1 5.0 5.7	5.3		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.12 8.13 8.12	77.30 78.50 77.40	77.73	5.46 5.55 5.47	5.49 5.49 5.47	5.49	4.6 4.9 5.0	4.8	5.0	11.7 11.2 10.9	11.3	11.5	<1 <1 <1	1.3	1.1	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	22.8 22.8 22.9	22.8 34.0 33.9	34.0 33.9 33.9	8.13 8.13 8.14	77.30 77.10 78.30	77.57	5.47 5.46 5.54	5.49 5.49 5.54		4.8 5.2 5.0	5.0		12.6 11.9 10.8	11.8		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Bottom	6.9	22.9 22.9 22.9	22.9 33.9 34.0	33.9 33.9 34.0	8.14 8.15 8.14	77.20 76.80 77.10	77.03	5.46 5.43 5.45	5.45 5.45 5.45		4.9 5.3 5.3	5.2		11.2 11.4 12.1	11.6		<1 <1 <1	1.0		<1.6 <1.6 <1.6	1.6	
				Surface	1	22.6 22.6 22.6	22.6 33.7 33.7	33.7 33.7 33.7	8.23 8.23 8.24	79.60 80.00 79.80	79.80	5.65 5.68 5.66	5.66 5.66 5.66	5.64	2.6 2.4 2.7	2.6	3.1	5.6 5.7 6.2	5.8	6.8	9.0 8.0 8.0	8.3	8.6	<1.6 <1.6 <1.6	1.6	1.6
				Middle	3.9	22.5 22.5 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.24 8.23 8.26	79.40 79.30 78.70	79.13	5.64 5.63 5.59	5.62 5.62 5.59		3.2 2.9 3.0	3.0		7.9 7.2 7.5	7.5		8.0 8.0 9.0	8.7		<1.6 <1.6 <1.6	1.6	
				Bottom	6.8	22.5 22.5 22.5	22.5 33.9 33.8	33.9 33.9 33.8	8.25 8.24 8.27	79.40 79.60 78.40	79.13	5.64 5.65 5.57	5.62 5.62 5.62		3.6 3.8 3.6	3.7		6.5 7.2 7.2	7.0		8.0 9.0 9.0	8.7		<1.6 <1.6 <1.6	1.6	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3-Nov-18	Fine	Moderate	14:52	Surface	1	24.8	24.8	33.2	33.2	8.24	8.24	98.70	98.80	6.77	6.78	2.3	2.4	4.7	4.7	<1	1.0	<1.6	1.6
				Middle	3.9	24.8	24.8	33.2	33.2	8.24	8.24	98.90	98.90	6.79	6.79	2.2	2.1	5.3	5.2	<1	1.0	<1.6	1.6
				Bottom	6.9	24.8	24.8	33.2	33.2	8.24	8.24	99.70	98.90	6.84	6.79	3.0	3.2	6.6	6.9	<1	1.0	<1.6	1.6
6-Nov-18	Sunny	Moderate	15:43	Surface	1	25.0	25.0	32.9	32.9	8.28	8.28	87.90	89.07	6.02	6.10	1.7	1.6	7.1	7.3	<1	1.0	<1.6	1.6
				Middle	3.8	25.0	25.0	32.9	33.0	8.28	8.27	89.40	88.57	6.12	6.07	1.8	1.8	7.4	6.7	<1	1.0	<1.6	1.6
				Bottom	6.7	24.9	24.8	33.0	33.1	8.27	8.27	89.20	88.10	6.12	6.04	1.9	2.0	6.2	6.8	<1	1.0	<1.6	1.6
8-Nov-18	Cloudy	Moderate	7:59	Surface	1	24.7	24.7	33.1	33.1	8.19	8.19	79.80	79.70	79.77	5.46	1.5	1.5	10.9	9.7	<1	1.0	<1.6	1.6
				Middle	4.0	24.7	24.7	33.1	33.1	8.18	8.19	79.60	79.90	5.45	5.47	2.5	2.6	9.1	8.5	<1	1.0	<1.6	1.6
				Bottom	7.0	24.7	24.7	33.1	33.1	8.18	8.19	79.90	80.07	5.47	5.48	2.9	3.0	7.0	7.0	<1	1.0	<1.6	1.6
10-Nov-18	Sunny	Calm	7:17	Surface	1	24.4	24.4	34.0	34.0	8.16	8.18	79.50	79.43	5.48	5.47	1.8	1.9	4.4	4.2	1.0	1.3	<1.6	1.6
				Middle	3.9	24.3	24.3	34.1	34.0	8.17	8.20	79.20	79.07	5.46	5.44	1.9	2.0	3.2	3.8	2.0	1.7	1.3	1.6
				Bottom	6.7	24.2	24.3	34.1	34.1	8.25	8.21	78.70	78.83	5.43	5.44	2.4	2.3	4.0	4.0	1.0	1.0	<1.6	1.6
13-Nov-18	Fine	Moderate	9:47	Surface	1	24.4	24.4	33.8	33.8	8.09	8.09	68.80	69.23	4.75	4.78	2.1	2.1	2.4	2.3	1.0	1.0	<1.6	1.6
				Middle	3.9	24.3	24.3	33.8	33.8	8.08	8.10	68.40	68.90	4.71	4.75	2.3	2.3	2.9	2.5	1.0	1.3	<1.6	1.6
				Bottom	6.6	24.3	24.3	33.8	33.8	8.08	8.10	68.30	68.77	4.71	4.74	2.3	2.3	2.3	2.1	2.1	2.1	<1.6	1.6

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)			Copper (µm/L)			Total PAH (µm/L)								
					Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*						
1-Nov-18	Cloudy	Moderate	5:19	Surface	1	25.1	25.1	33.1	33.1	8.23	8.23	103.40	102.60	102.73	7.07	7.02	7.03	7.02	1.7	1.6	2.1	4.7	4.9	5.2	<1	1.0	1.1	<1.6	<1.6	1.6			
					25.1	25.1	33.1	33.1	8.23	8.23	102.50	102.20	102.53	7.01	7.03	7.01	1.6	1.6	5.0	5.1	2.0	1.0	<1.6	<1.6									
					25.1	25.1	33.2	33.2	8.21	8.22	102.50	102.20	102.53	6.98	7.01	7.01	2.3	2.2	5.2	5.2	1.0	1.3	<1.6	<1.6									
				Middle	8.0	25.1	25.1	33.2	33.2	8.21	8.22	102.50	102.20	102.53	6.98	7.01	7.01	2.2	2.2	5.2	5.4	1.0	1.3	<1.6	<1.6								
					25.1	25.1	33.2	33.2	8.21	8.21	101.40	101.00	101.17	6.93	6.90	6.91	6.91	2.4	2.5	5.2	5.6	1.0	1.0	<1.6	<1.6								
					25.1	25.1	33.2	33.2	8.21	8.21	101.00	101.17	101.17	6.91	6.90	6.91		2.5	2.5	5.2	5.9	1.0	1.0	<1.6	<1.6								
					25.1	25.1	33.2	33.2	8.21	8.21	101.10	101.10	101.10	6.91	6.90	6.91		2.5	2.5	5.2	5.7	1.0	1.0	<1.6	<1.6								
				Bottom	15.1	25.1	25.1	33.2	33.2	8.21	8.21	101.40	101.00	101.17	6.93	6.90	6.91	2.4	2.5	5.2	5.6	1.0	1.0	<1.6	<1.6								
					25.1	25.1	33.2	33.2	8.21	8.21	101.00	101.17	101.17	6.91	6.90	6.91	2.5	2.5	5.2	5.9	1.0	1.0	<1.6	<1.6									
					25.1	25.1	33.2	33.2	8.21	8.21	101.10	101.10	101.10	6.91	6.90	6.91	2.5	2.5	5.2	5.7	1.0	1.0	<1.6	<1.6									
3-Nov-18	Fine	Moderate	8:18	Surface	1	24.7	24.7	33.2	33.2	8.23	8.23	97.60	97.40	97.47	6.70	6.69	6.69	6.71	3.8	3.8	4.5	4.6	4.6	5.6	<1	1.0	1.0	<1.6	<1.6	1.6			
					24.7	24.7	33.2	33.2	8.23	8.23	97.40	97.40	97.47	6.69	6.69	6.69	4.0	4.0	4.5	4.5	5.5	5.5	<1	<1									
					24.7	24.7	33.3	33.3	8.24	8.24	98.10	97.70	97.80	6.74	6.71	6.72	4.3	4.3	4.4	4.3	5.6	5.6	<1	<1									
				Middle	8.8	24.7	24.7	33.3	33.3	8.24	8.24	98.10	97.70	97.80	6.74	6.71	6.72	4.3	4.3	4.4	4.3	4.8	4.8	<1	<1								
					24.7	24.7	33.3	33.3	8.24	8.24	97.70	97.70	97.87	6.71	6.71	6.72	4.3	4.3	4.4	4.3	6.8	6.8	<1	<1									
					24.6	24.7	24.7	33.3	33.3	8.24	8.24	97.70	97.70	97.87	6.71	6.71	6.72	4.3	4.3	4.4	4.3	6.6	6.6	<1	<1								
				Bottom	16.6	24.7	24.7	33.3	33.3	8.24	8.24	98.20	98.20	98.20	6.74	6.74	6.74	5.6	5.6	5.6	5.6	6.9	6.9	<1	<1								
					24.6	24.7	24.7	33.3	33.3	8.24	8.24	98.20	98.20	98.20	6.74	6.74	6.74	5.6	5.6	5.6	5.6	6.9	6.9	<1	<1								
					24.6	24.7	24.8	33.3	33.3	8.24	8.24	98.20	98.20	98.20	6.74	6.74	6.74	5.6	5.6	5.6	5.6	6.9	6.9	<1	<1								
6-Nov-18	Sunny	Moderate	10:33	Surface	1	24.9	24.9	33.1	33.1	8.19	8.19	85.50	85.50	85.53	5.87	5.87	5.87	5.87	3.5	3.5	5.8	5.4	5.5	5.8	<1	1.0	1.0	<1.6	<1.6	1.6			
					24.9	24.9	33.1	33.1	8.19	8.19	85.50	85.60	85.60	5.88	5.88	5.88	3.4	3.4	5.4	5.4	6.2	6.2	<1	<1									
					24.9	24.9	33.1	33.1	8.19	8.19	85.50	85.40	85.50	5.86	5.86	5.86	3.6	3.6	5.4	5.4	6.1	6.1	<1	<1									
				Middle	8.5	24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.5	3.5	5.1	5.1	5.8	5.8	<1	<1								
					24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.6	3.6	5.1	5.1	6.1	6.1	<1	<1									
					24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.7	3.7	5.1	5.1	6.0	6.0	<1	<1									
				Bottom	15.8	24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.6	3.6	5.1	5.1	5.8	5.8	<1	<1								
					24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.7	3.7	5.1	5.1	6.0	6.0	<1	<1									
					24.8	24.8	33.1	33.1	8.19	8.19	85.50	85.50	85.50	5.86	5.86	5.86	3.7	3.7	5.1	5.1	5.8	5.8	<1	<1									
8-Nov-18	Cloudy	Moderate	11:31	Surface	1	25.2	25.2	33.0	33.0	8.18	8.18	79.40	79.80	79.57	5.43	5.45	5.44	5.41	2.0	2.0	2.9	14.2	13.7	13.9	<1	1.0	1.0	<1.6	<1.6	1.6			
					25.2	25.2	33.0	33.0	8.18	8.18	79.40	79.50	79.50	5.43	5.45	5.44	2.0	2.0	8.4	8.4	13.9	13.8	<1	<1									
					25.2	25.2	33.0	33.0	8.18	8.18	79.40	79.50	79.50	5.43	5.45	5.44	2.0	2.0	8.4	8.4	13.8	13.8	<1	<1									
				Middle	8.9	24.8	24.8	33.2	33.2	8.19	8.19	78.10	78.20	78.30	5.36	5.37	5.37	5.41	2.8	2.8	2.9	8.4	8.7	8.5	13.9	13.8	13.9	<1	1.0	1.0	<1.6	<1.6	1.6
					24.8	24.8	33.2	33.2	8.19	8.19	78.10	78.20	78.30	5.36	5.37	5.37	2.8	2.8	8.4	8.7	8.5	8.4	13.8	13.8	<1	<1							
					24.8	24.8	33.2	33.2	8.19	8.19	78.10	78.20	78.30	5.36	5.37	5.37	2.8	2.8	8.4	8.7	8.4	8.4	13.8	13.8	<1	<1							
				Bottom	16.8	24.8	24.8	33.2	33.2	8.19	8.19	78.77	78.80	79.80	5.40	5.41	5.41	5.41	4.0	4.0	4.0	8.2	8.2	7.9	13.9	13.8	13.9	<1	1.0	1.0	<1.6	<1.6	1.6

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)				
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
15-Nov-18	Fine	Moderate	4:36	Surface	1	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.07 8.08	8.08 71.20 70.60	70.97 4.93 4.90	4.92 4.87 5.03	4.94	2.3 2.4 2.4	2.5 2.3 2.2	2.4	4.8 5.5 6.0	4.9 5.6 6.2	5.6	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	9.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.07 8.07	8.07 71.80 72.60	71.57 4.98 5.03	4.96 4.88 4.93		2.4 2.4 2.4	2.3 2.3 2.4		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Bottom	17.2	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.07 8.08	8.08 70.60 72.50	71.17 4.89 5.02	4.93 4.93 4.93		2.3 2.4 2.5	2.4 2.4 2.5		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6				
				Surface	1	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.00 8.01 8.02	8.01 68.70 68.60	68.73 4.77 4.76	4.77 4.74 4.72	4.75	0.8 0.8 0.8	0.8 1.0 0.9	0.9	1.5 1.8 1.6	1.3 2.0 1.9	1.8	1.0 1.0 1.0	1.3 1.6 1.6	1.4	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	9.0	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.01 8.01 8.02	8.01 67.90 67.80	67.97 4.71 4.71	4.72 0.9 0.9		0.8 1.0 0.9	0.8 1.0 1.5		1.0 1.6 1.5	2.0 1.0 1.5		1.0 1.0 1.0	1.0 1.6 1.6		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	17.0	23.7 23.7 23.7	23.7 34.1 34.1	34.1 34.1 34.1	8.01 8.02 8.01	8.01 68.50 68.40	68.40 4.76 4.74	4.75 0.9 0.9		0.9 0.9 0.9	0.9 2.5 2.5		1.6 2.0 2.2	2.5 2.0 2.0		2.0 2.0 2.0	<1.6 <1.6 <1.6	1.6 1.6 1.6			
				Surface	1	23.8 23.8 23.8	23.8 34.1 34.2	34.2 34.1 34.2	8.07 8.07 8.07	8.07 76.70 76.20	76.40 5.32 5.29	5.30 5.30 5.30	5.28	2.0 2.0 2.1	2.0 2.4 2.4	2.3	5.7 5.9 5.5	5.7 5.9 5.8	6.3	<1 <1 <1	1.0 1.0 1.0	4.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	8.9	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.07 8.07 8.07	8.07 75.80 75.40	75.70 5.26 5.26	5.26 5.23 5.28		2.4 2.4 2.5	2.4 2.4 2.5		7.0 7.5 7.7	7.4 7.5 7.7		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	16.8	23.8 23.8 23.8	23.8 34.2 34.2	34.2 34.2 34.2	8.08 8.07 8.07	8.07 75.70 75.50	75.50 5.25 5.24	5.24 5.23 5.24		2.6 2.6 2.6	2.6 2.4 2.6		26.0 3.0	10.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
22-Nov-18	Cloudy	Moderate	10:56	Surface	1	23.6 23.6 23.6	23.6 34.2 34.2	34.2 34.2 34.2	8.10 8.11 8.10	8.10 85.30 85.60	85.50 5.94 5.96	5.95 5.95 5.96	5.93	2.2 2.3 2.0	2.2 2.3 2.0	2.5	4.0 4.1 4.5	4.2 4.2 4.5	4.0	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	8.8	23.5 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.14 8.14 8.13	8.13 84.70 84.60	84.73 5.91 5.91	5.91 5.91 5.92		2.5 2.4 2.6	2.5 2.4 2.6		4.5 3.9 3.7	4.0 4.0 3.7		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	16.7	23.5 23.5 23.5	23.5 34.3 34.3	34.3 34.3 34.3	8.14 8.14 8.14	8.14 84.30 84.30	84.37 5.88 5.89	5.88 5.88 5.90		2.8 2.8 2.8	2.8 2.8 2.8		3.6 3.3 4.1	3.7 3.7 4.1		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
24-Nov-18	Sunny	Moderate	12:58	Surface	1	23.3 23.3 23.3	23.3 33.2 33.3	33.3 33.2 33.3	8.14 8.14 8.15	8.14 80.30 86.00	82.43 5.71 5.79	5.71 5.61 6.04	5.73	4.6 4.6 4.7	4.6 4.4 4.8	4.7	5.4 5.4 5.9	5.6 5.6 5.2	6.1	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	8.5	23.2 23.2 23.2	23.2 33.2 33.3	33.2 33.2 33.3	8.14 8.14 8.14	8.10 80.10 82.80	80.80 5.62 5.67	5.62 5.81 5.57		4.8 4.8 4.7	4.8 4.8 4.7		5.1 5.1 6.0	5.2 5.2 6.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	16.1	23.2 23.2 23.2	23.2 33.2 33.3	33.3 33.2 33.3	8.16 8.16 8.14	8.14 81.90 80.00	80.30 5.74 5.64	5.64 5.62 5.55		4.8 4.8 4.7	4.8 4.8 4.7		6.8 7.7 7.9	7.5 7.7 7.9		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
27-Nov-18	Fine	Moderate	2:40	Surface	1	22.9 22.9 22.9	22.9 33.9 33.9	33.9 33.9 33.9	8.08 8.08 8.09	8.08 77.60 79.00	78.43 5.57 5.59	5.55 5.49 5.59	5.52	3.8 3.8 4.0	3.9 3.9 4.0	4.8	9.3 9.2 8.9	9.0 10.0 10.3	9.8	<1 <1 <1	1.0 1.0 1.0	1.0	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	9.2	22.8 22.8 22.8	22.8 34.0 34.0	34.0 33.9 34.0	8.11 8.09 8.09	8.10 77.60 77.60	77.63 5.49 5.49	5.49 5.49 5.49		5.1 5.1 5.5	5.4 5.4 5.4		10.2 10.2 10.3	10.0 10.0 10.3		1.0 1.0 1.0	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	17.3	22.8 22.9 22.9	22.9 34.0 33.9	34.0 33.9 33.9	8.09 8.11 8.10	8.10 77.30 77.40	77.37 5.47 5.48	5.47 5.48 5.48		5.2 5.2 5.3	5.3 5.3 5.4		10.0 10.3 11.0	10.4 10.3 11.0		<1 <1 <1	1.0 1.0 1.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
29-Nov-18	Fine	Moderate	4:40	Surface	1	22.6 22.6 22.6	22.6 33.8 33.8	33.8 33.8 33.8	8.27 8.26 8.28	8.27 80.80 81.00	80.90 5.74 5.75	5.74 5.73 5.75	5.73	2.9 3.1 2.9	3.0 3.1 2.9	3.1	7.5 7.8 8.0	7.8 7.8 8.0	7.6	8.0 8.0 8.0	8.0 8.0 8.0	7.9	<1.6 <1.6 <1.6	1.6 1.6 1.6	1.6
				Middle	9.1	22.5 22.6 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.28 8.29 8.28	8.28 80.90 80.40	80.57 5.71 5.71	5.72 5.74 5.71		3.3 3.2 3.2	3.2 3.2 3.2		7.1 7.1 7.1	7.0 7.0 7.1		6.0 6.0 6.0	7.3 7.3 8.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	
				Bottom	17.1	22.5 22.6 22.5	22.5 33.8 33.8	33.8 33.8 33.8	8.27 8.28 8.29	8.28 80.90 79.10	79.77 5.63 5.61	5.66 5.66 5.61		3.4 3.2 3.0	3.2 3.2 3.0		7.6 8.2 8.4	8.1 8.1 8.4		9.0 8.0 8.0	8.3 8.3 8.0		<1.6 <1.6 <1.6	1.6 1.6 1.6	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)		
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
1-Nov-18	Sunny	Moderate	-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
3-Nov-18	Fine	Moderate	16:19	Surface	1	24.8	24.8	33.2	8.25	8.25	99.00	99.07	6.79	1.8	2.0	6.79	2.8	3.1	<1	1.0	1.6	1.6	
				Middle	8.9	24.8	24.8	33.2	8.25	8.25	98.80	98.67	6.78	2.2	2.0	2.4	4.8	4.9	<1	1.0	1.6	1.6	
				Bottom	16.7	24.8	24.8	33.2	8.25	8.25	98.60	98.70	6.77	2.3	2.2	6.78	4.8	4.9	<1	1.0	1.6	1.6	
6-Nov-18	Sunny	Moderate	17:12	Surface	1	24.9	24.9	33.1	8.24	8.23	85.00	85.43	5.83	3.2	3.2	5.84	8.2	8.1	<1	1.0	1.6	1.6	
				Middle	8.4	24.9	24.8	33.1	8.23	8.23	85.00	84.90	5.83	3.2	3.2	3.4	8.8	8.0	<1	1.0	1.6	1.6	
				Bottom	15.6	24.9	24.9	33.1	8.23	8.23	84.80	84.73	5.82	3.6	3.6	6.78	8.2	8.0	7.1	1.0	1.6	1.6	
8-Nov-18	Cloudy	Moderate	6:33	Surface	1	24.8	24.8	33.1	8.22	8.21	79.60	79.30	79.37	1.7	1.8	5.43	1.8	1.9	8.9	9.2	<1	1.0	1.6
				Middle	9.0	24.6	24.6	33.2	8.22	8.23	79.00	79.50	79.27	1.8	1.9	5.43	2.2	2.1	9.2	9.5	<1	1.0	1.6
				Bottom	17.0	24.5	24.5	33.2	8.26	8.26	79.20	79.50	79.27	2.0	2.1	5.44	2.6	2.5	9.5	9.7	<1	1.0	1.6
10-Nov-18	Sunny	Calm	8:40	Surface	1	24.2	24.2	34.2	8.17	8.17	81.10	81.60	81.20	2.1	2.1	5.57	2.0	2.1	4.5	5.2	<1	1.0	1.6
				Middle	8.3	24.2	24.2	34.2	8.17	8.17	80.10	80.20	80.17	2.1	2.1	5.57	2.1	2.1	4.5	5.2	<1	1.0	1.6
				Bottom	15.6	24.2	24.2	34.2	8.17	8.17	80.00	79.90	79.97	2.1	2.1	5.52	2.2	2.2	4.0	4.3	<1	1.0	1.6
13-Nov-18	Fine	Moderate	11:18	Surface	1	24.4	24.4	33.8	8.07	8.07	67.40	67.80	68.50	1.9	1.8	4.70	1.8	1.8	2.0	2.1	<1	1.0	1.6
				Middle	9.3	24.3	24.3	33.8	8.07	8.07	67.40	67.30	67.83	1.9	1.9	4.70	1.9	1.9	2.2	2.4	<1	1.0	1.6
				Bottom	17.6	24.3	24.3	33.8	8.07	8.07	67.20	68.30	67.50	2.0	2.0	4.65	1.9	1.9	2.4	2.6	<1	1.0	1.6

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather Condition	Sea Condition**	Sampling Time	Depth (m)	Temperature (°C)		Salinity (ppt)		pH		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)		Suspended Solids (mg/L)		Copper (µm/L)		Total PAH (µm/L)			
					Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	Value	Average
15-Nov-18	Fine	Moderate	17:22	Surface	1	23.9 23.9 23.9	23.9 34.2 34.2	34.1 34.1 34.1	8.11 8.14 8.15	75.50 77.20 76.40	76.37	5.24 5.35 5.30	5.30	2.0 1.9 1.8	1.9 1.9 2.0	5.5 5.1 4.7	5.1 4.6 3.9 3.6	4.8	<1 <1 <1 <1 <1 <1 <1	1.0	<1.6 <1.6 <1.6 <1.6 <1.6 <1.6 <1.6	1.6	1.6	1.6
				Middle	8.9	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.14 8.16 8.14	76.90 76.10 76.10	76.37	5.34 5.28 5.28	5.30	1.9 2.2 2.0	2.0 2.2 2.0	4.6 3.9 3.6	4.0	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	16.8	23.9 23.9 23.9	23.9 34.2 34.2	34.2 34.2 34.2	8.14 8.14 8.17	76.60 76.00 76.20	76.27	5.31 5.27 5.28	5.29	2.7 2.8 3.0	2.8 2.8 3.0	5.2 5.3 4.9	5.1	1.0	<1.6 <1.6 <1.6	1.6	1.6			
17-Nov-18	Cloudy	Moderate	15:07	Surface	1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.04 8.06 8.06	70.70 69.80 69.20	69.90	4.91 4.86 4.81	4.86	1.4 1.5 1.4	1.4 1.5 1.4	2.3 2.2 2.3	2.3	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	9.1	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.04 8.06 8.05	70.80 69.00 70.10	69.97	4.92 4.80 4.87	4.86	1.4 1.4 1.6	1.5 1.5 1.6	1.6 2.3 2.2	2.1	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	17.2	23.8 23.8 23.8	23.8 34.1 34.1	34.1 34.1 34.1	8.05 8.05 8.04	69.20 70.20 71.10	70.17	4.81 4.88 4.94	4.88	1.4 1.6 1.4	1.5 1.6 1.4	2.1 1.5 2.2	1.9	1.0	<1.6 <1.6 <1.6	1.6	1.6			
20-Nov-18	Cloudy	Moderate	16:38	Surface	1	23.8 23.7 23.8	23.7 34.2 34.2	34.2 34.2 34.2	8.17 8.17 8.17	83.30 83.40 83.20	83.30	5.79 5.80 5.78	5.79	1.8 2.2 2.1	2.0	6.0 6.5 6.3	6.3	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	9.1	23.7 23.7 23.8	23.7 34.2 34.2	34.2 34.2 34.2	8.16 8.16 8.16	82.20 82.30 82.30	82.27	5.72 5.72 5.72	5.72	2.5 2.6 2.6	2.6	7.2 7.3 7.0	7.2	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	17.0	23.7 23.7 23.7	23.7 34.2 34.2	34.3 34.2 34.2	8.16 8.16 8.16	82.70 82.40 82.50	82.53	5.76 5.73 5.74	5.74	2.9 2.8 3.0	2.9 2.8 3.0	6.9 6.6 6.8	6.8	1.0	<1.6 <1.6 <1.6	1.6	1.6			
22-Nov-18	Cloudy	Moderate	17:28	Surface	1	23.7 23.7 23.7	23.7 34.2 34.2	34.2 34.2 34.2	8.13 8.13 8.13	83.00 82.80 82.80	82.87	5.79 5.77 5.77	5.78	2.0 1.7 1.8	1.8	5.1 5.0 4.7	4.9	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	8.7	23.6 23.6 23.6	23.6 34.3 34.3	34.2 34.3 34.3	8.14 8.15 8.15	83.30 83.50 83.40	83.40	5.81 5.82 5.82	5.82	2.5 2.6 2.8	2.6	4.7 4.3 4.3	4.4	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	16.4	23.6 23.6 23.6	23.6 34.3 34.3	34.3 34.3 34.3	8.17 8.17 8.17	83.10 83.10 83.10	83.10	5.80 5.79 5.79	5.79	3.7 3.5 3.7	3.6	4.0 4.0 4.7	4.2	1.0	<1.6 <1.6 <1.6	1.6	1.6			
24-Nov-18	Fine	Moderate	7:22	Surface	1	23.2 23.2 23.2	23.2 33.2 33.2	33.2 33.2 33.2	8.12 8.13 8.12	81.50 81.63 83.00	81.63	5.72 5.63 5.83	5.73	3.3 3.2 3.4	3.3	5.1 4.8 4.6	4.8	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	8.4	23.1 23.1 23.1	23.1 33.2 33.2	33.2 33.2 33.2	8.13 8.12 8.12	80.10 81.00 81.60	80.90	5.62 5.67 5.72	5.67	3.3 3.4 3.3	3.3	5.4 5.6 5.6	5.8	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	15.9	23.0 23.0 23.1	23.1 33.2 33.2	33.3 33.2 33.2	8.13 8.13 8.12	79.80 81.10 80.70	80.53	5.59 5.69 5.66	5.65	3.3 3.3 3.3	3.3	6.3 8.3 8.3	7.6	1.0 1.0 1.0	<1.6 <1.6 <1.6	1.6	1.6			
27-Nov-18	Fine	Moderate	10:25	Surface	1	22.8 22.8 22.8	22.8 34.1 34.1	34.1 34.1 34.1	8.18 8.17 8.18	85.80 84.70 85.70	85.40	6.07 6.00 6.06	6.04	3.2 3.0 3.2	3.1	9.5 10.7 10.9	10.4	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	9.1	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.19 8.20	85.70 84.10 85.50	85.10	5.95 6.05 6.05	6.02	3.4 3.3 3.4	3.4	9.9 9.1 9.7	9.6	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	16.9	22.7 22.7 22.7	22.7 34.2 34.2	34.2 34.2 34.2	8.19 8.20 8.19	85.40 84.50 85.10	85.00	6.04 5.98 6.02	6.01	3.5 3.5 3.2	3.4	9.7 9.3 9.8	9.6	1.0	<1.6 <1.6 <1.6	1.6	1.6			
29-Nov-18	Sunny	Moderate	12:16	Surface	1	22.7 22.7 22.7	22.7 33.8 33.8	33.9 33.8 33.8	8.23 8.22 8.22	80.50 80.40 80.10	80.33	5.71 5.70 5.69	5.70	2.5 2.4 2.5	2.5	7.9 7.7 9.6	7.5	1.0	<1.6 <1.6 <1.6	1.6	1.6	1.6		
				Middle	8.3	22.7 22.7 22.7	22.7 33.9 33.9	33.8 33.9 33.9	8.22 8.24 8.22	79.70 79.50 78.80	79.33	5.66 5.64 5.59	5.63	2.5 2.5 2.6	2.5	9.6 9.3 9.3	9.4	1.0	<1.6 <1.6 <1.6	1.6	1.6			
				Bottom	16.6	22.7 22.7 22.7	22.7 33.9 33.8	33.9 33.9 33.8	8.23 8.22 8.22	79.90 80.80 80.40	79.70	5.67 5.59 5.70	5.65	2.6 2.7 2.7	2.7	7.9 7.7 10.2	8.0 8.3 9.8	1.0	<1.6 <1.6 <1.6	1.6	1.6			

APPENDIX J
Details of Exceedances Recorded for Water Quality
Monitoring

Appendix J - Details of Exceedances Recorded for Water Quality Monitoring

Turbidity

Date	Monitoring Location	Tidemode	Depth Average	Action Level		Limit Level		Remark
				120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	
3-Nov-18	IS3	Mid-Ebb	4.51	4.09	7.00	4.43	8.40	
3-Nov-18	IS2	Mid-Flood	2.56	2.41	7.00	2.61	8.40	
6-Nov-18	IS1	Mid-Flood	2.94	2.83	7.00	3.07	8.40	
6-Nov-18	IS3	Mid-Flood	3.44	2.83	7.00	3.07	8.40	
8-Nov-18	IS1	Mid-Flood	3.83	3.50	7.00	3.80	8.40	The exceedance were not considered as caused by the construction of the Project, It is because upstream result level and this situation were also occurred during the baseline water quality monitoring. It was proved that that such exceedances were due to the similar water quality conditions in both impact station & upstream control station and might not related to the construction activity.
22-Nov-18	IS3	Mid-Flood	2.70	2.57	7.00	2.78	8.40	
24-Nov-18	IS2	Mid-Flood	3.42	2.47	7.00	2.68	8.40	
24-Nov-18	IS3	Mid-Flood	3.31	2.47	7.00	2.68	8.40	The investigation is undergoing and the investigation result will be presented in the next monthly report.

SS

Date	Monitoring Location	Tidemode	Depth Average	Action Level		Limit Level		Remark
				120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	
3-Nov-18	IS1	Mid-Flood	6.16	5.96	13.80	6.46	18.70	The investigation is undergoing and the investigation result will be presented in the next monthly report.
8-Nov-18	IS2	Mid-Ebb	11.38	8.40	13.80	9.10	18.70	
8-Nov-18	IS3	Mid-Ebb	10.11	8.40	13.80	9.10	18.70	
8-Nov-18	IS1	Mid-Flood	10.80	8.11	13.80	8.79	18.70	
8-Nov-18	IS2	Mid-Flood	8.40	8.11	13.80	8.79	18.70	
8-Nov-18	IS3	Mid-Flood	10.02	8.11	13.80	8.79	18.70	
10-Nov-18	IS2	Mid-Ebb	5.37	4.42	13.80	4.78	18.70	
10-Nov-18	IS3	Mid-Ebb	6.17	4.42	13.80	4.78	18.70	
15-Nov-18	IS1	Mid-Ebb	5.40	3.65	13.80	3.95	18.70	
15-Nov-18	IS2	Mid-Ebb	5.53	3.65	13.80	3.95	18.70	
15-Nov-18	IS3	Mid-Ebb	5.60	3.65	13.80	3.95	18.70	
15-Nov-18	IS3	Mid-Flood	4.76	4.66	13.80	5.04	18.70	
20-Nov-18	IS1	Mid-Flood	4.94	4.90	13.80	5.30	18.70	
20-Nov-18	IS2	Mid-Flood	7.24	4.90	13.80	5.30	18.70	
20-Nov-18	IS3	Mid-Flood	6.73	4.90	13.80	5.30	18.70	
24-Nov-18	IS1	Mid-Ebb	6.01	5.98	13.80	6.47	18.70	
24-Nov-18	IS3	Mid-Ebb	6.07	5.98	13.80	6.47	18.70	
24-Nov-18	IS2	Mid-Flood	6.89	5.24	13.80	5.68	18.70	
24-Nov-18	IS3	Mid-Flood	6.10	5.24	13.80	5.68	18.70	
27-Nov-18	IS1	Mid-Ebb	12.09	12.01	13.80	13.01	18.70	
29-Nov-18	IS1	Mid-Flood	8.27	7.51	13.80	8.14	18.70	
29-Nov-18	IS2	Mid-Flood	8.27	7.51	13.80	8.14	18.70	
29-Nov-18	IS3	Mid-Flood	8.90	7.51	13.80	8.14	18.70	

Copper

Date	Monitoring Location	Tidemode	Depth Average	Action Level		Limit Level		Remark
				120% of Upstream Control Station	95th Percentile of Baseline Data	130% of Upstream Control Station	99th Percentile of Baseline Data	
10-Nov-18	IS2	Mid-Flood	1.33	1.20	2.00	1.30	3.00	
17-Nov-18	IS3	Mid-Ebb	1.44	1.20	2.00	1.30	3.00	
20-Nov-18	IS3	Mid-Ebb	4.00	1.20	2.00	1.30	3.00	
29-Nov-18	IS1	Mid-Ebb	8.11	10.40	2.00	11.27	3.00	
29-Nov-18	IS2	Mid-Ebb	8.56	10.40	2.00	11.27	3.00	
29-Nov-18	IS3	Mid-Ebb	7.89	10.40	2.00	11.27	3.00	
29-Nov-18	IS1	Mid-Flood	8.33	9.86	2.00	10.69	3.00	
29-Nov-18	IS2	Mid-Flood	8.44	9.86	2.00	10.69	3.00	
29-Nov-18	IS3	Mid-Flood	8.00	9.86	2.00	10.69	3.00	

Remark:

Text with Bold: Result over the Action Level.

Text with Bold and underline: Result over the Limit Level.

APPENDIX K

Event and Action Plan

Appendix K Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT	ACTION			
	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	<ol style="list-style-type: none"> 1. Inform the Contractor, IEC and ER; 2. Discuss with the Contractor and IEC on the remedial measures required; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency 	<ol style="list-style-type: none"> 1. Check monitoring data submitted by the ET; 2. Check Contractor's working method; 3. Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	<ol style="list-style-type: none"> 1. Confirm receipt of notification of exceedance in writing. 	<ol style="list-style-type: none"> 1. Identify source(s), investigate the causes of exceedance and propose remedial measures; 2. Implement remedial measures; 3. Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	<ol style="list-style-type: none"> 1. Inform the Contractor, IEC and ER; 2. Discuss with the ER, IEC and Contractor on the remedial measures required; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency to daily; 5. If exceedance continues, arrange meeting with the IEC, ER and Contractor; 6. If exceedance stops, cease additional monitoring. 	<ol style="list-style-type: none"> 1. Check monitoring data submitted by the ET; 2. Check Contractor's working method; 3. Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	<ol style="list-style-type: none"> 1. Confirm receipt of notification of exceedance in writing; 2. Review and agree on the remedial measures proposed by the Contractor; 3. Supervise Implementation of remedial measures. 	<ol style="list-style-type: none"> 1. Identify source and investigate the causes of exceedance; 2. Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; 3. Implement the agreed proposals; 4. Amend proposal as appropriate.

Appendix K Event Action Plan

EVENT	ACTION			
	ET	IEC	ER	Contractor
LIMIT LEVEL				
Exceedance for one sample	<ol style="list-style-type: none"> 1. Inform the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency to daily; 4. Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	<ol style="list-style-type: none"> 1. Check monitoring data submitted by the ET; 2. Check the Contractor's working method; 3. Discuss with the ET, ER and Contractor on possible remedial measures; 4. Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	<ol style="list-style-type: none"> 1. Confirm receipt of notification of exceedance in writing; 2. Review and agree on the remedial measures proposed by the Contractor; 3. Supervise implementation of remedial measures. 	<ol style="list-style-type: none"> 1. Identify source(s) and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; 4. Implement the agreed proposals; 5. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	<ol style="list-style-type: none"> 1. Notify Contractor, IEC, EPD and ER ; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency to daily; 4. Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; 7. If exceedance stops, cease additional monitoring. 	<ol style="list-style-type: none"> 1. Check monitoring data submitted by the ET; 2. Check the Contractor's working method; 3. Discuss with ET, ER, and Contractor on the potential remedial measures; 4. Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	<ol style="list-style-type: none"> 1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Supervise the implementation of remedial measures; 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	<ol style="list-style-type: none"> 1. Identify source(s) and investigate the causes of exceedance; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; 4. Implement the agreed proposals; 5. Revise and resubmit proposals if problem still not under control; 6. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix K Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT	ACTION			
	ET	IEC	ER	Contractor
Exceedance of Action Level	<ol style="list-style-type: none"> Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	<ol style="list-style-type: none"> Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	<ol style="list-style-type: none"> Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	<ol style="list-style-type: none"> Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals.
Exceedance of Limit Level	<ol style="list-style-type: none"> Notify the Contractor, IEC, EPD and ER ; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	<ol style="list-style-type: none"> Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	<ol style="list-style-type: none"> Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	<ol style="list-style-type: none"> Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix K Event Action Plan

Event and Action Plan for Continuous Noise Monitoring

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action/Limit Level	<ol style="list-style-type: none"> Identify source ; Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; If exceedance is confirmed, notify IEC, ER and Contractor; Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented; Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results. 	<ol style="list-style-type: none"> Check monitoring data submitted by the Works Contract 1123 ET; Check the Contractor's working method; Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	<ol style="list-style-type: none"> Confirm receipt of notification of exceedance in writing; In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; Ensure the proper implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	<ol style="list-style-type: none"> Identify source with the Works Contract 1123 ET; If exceedance is confirmed, investigation the cause of exceedance and take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification; Implement the agreed proposals; Liaise with ER to optimize the effectiveness of the agreed mitigation; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix K Event Action Plan

Event and Action Plan for Water Quality Monitoring

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	<ol style="list-style-type: none"> 1. Inform IEC, contractor and ER; 2. Check monitoring data, all plant, equipment and Contractor's working methods; and 3. Discuss remedial measures with IEC and Contractor and ER. 	<ol style="list-style-type: none"> 1. Discuss with ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	<ol style="list-style-type: none"> 1. Discuss with IEC, ET and Contractor on the implemented mitigation measures; 2. Make agreement on the remedial measures to be implemented; 3. Supervise the implementation of agreed remedial measures. 	<ol style="list-style-type: none"> 1. Identify source(s) of impact; 2. Inform the ER and confirm notification of the non-compliance in writing; 3. Rectify unacceptable practice; 4. Check all plant and equipment; 5. Consider changes of working methods; 6. Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and 7. Implement the agreed mitigation measures.
Action level being exceeded by more than one consecutive sampling days	<ol style="list-style-type: none"> 1. Repeat in-situ measurement on next day of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Check monitoring data, all plant, equipment and Contractor's working methods; 4. Discuss remedial measures with IEC, contractor and ER; 5. Ensure remedial measures are implemented. 	<ol style="list-style-type: none"> 1. Discuss with ER, Contractor and ER on the implemented mitigation measures; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	<ol style="list-style-type: none"> 1. Discuss with ER, IEC and Contractor on the proposed mitigation measures; 2. Make agreement on the remedial measures to be implemented; and 3. Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	<ol style="list-style-type: none"> 1. Identify source(s) of impact; 2. Inform the ER and confirm notification of the non-compliance in writing; 3. Rectify unacceptable practice; 4. Check all plant and equipment and consider changes of working methods; 5. Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and 6. Implement the agreed mitigation measures.

Appendix K Event Action Plan

Event and Action Plan for Water Quality Monitoring

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Limit Level being exceed by one sampling day	<ol style="list-style-type: none"> 1. Repeat measurement on next day of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Rectify unacceptable practice; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Consider changes of working methods; 6. Discuss mitigation measures with IEC, ER and Contractor; and 7. Ensure the agreed remedial measures are implemented. 	<ol style="list-style-type: none"> 1. Discuss with ET, Contractor and ER on the implemented mitigation measures; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	<ol style="list-style-type: none"> 1. Discuss with ET, IEC and Contractor on the implemented remedial measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the remedial measures to be implemented; and 4. Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	<ol style="list-style-type: none"> 1. Identify source(s) of impact; 2. Inform the ER and confirm notification of the non-compliance in writing; 3. Rectify unacceptable practice; 4. Check all plant and equipment and consider changes of working methods; 5. Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and 6. Implement the agreed remedial measures.
Limit Level being exceed by more than one consecutive sampling days	<ol style="list-style-type: none"> 1. Inform IEC, contractor and ER; 2. Check monitoring data, all plant, equipment and Contractor's working methods; 3. Discuss mitigation measures with IEC, ER and Contractor; and 4. Ensure mitigation measures are implemented; and 5. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	<ol style="list-style-type: none"> 1. Discuss with ET, Contractor and ER on the implemented mitigation measures; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	<ol style="list-style-type: none"> 1. Discuss with ET, IEC and Contractor on the implemented remedial measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the remedial measures to be implemented; 4. Discuss with ET and IEC on the effectiveness of the implemented mitigation measures; and 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the dredging activities 	<ol style="list-style-type: none"> 1. Identify source(s) of impact; 2. Inform the ER and confirm notification of the non-compliance in writing; 3. Rectify unacceptable practice; 4. Check all plant and equipment and consider changes of working methods; 5. Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and 6. Implement the agreed remedial measures. 7. As directed by the ER, to slow down or stop all or part of the

Appendix K Event Action Plan

			until no exceedance of Limit level.	dredging activities until no exceedance of Limit level
--	--	--	-------------------------------------	--

APPENDIX L

**Cumulative Statistics on Complaints, Notification of
Summons and Successful Prosecutions**

Appendix L

Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions

	Date received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	1 November 2018 (Referred by the Contractor on 21 November 2018)	<p>Environmental Complaint No: EC-004-CKRKWT20181121_01_C009</p> <p><u>Details of Complaint:</u> A complaint (EPD ref.: 18-30023) was received by Environmental Protection Department on 01 November 2018. The complaint was referred by the Contractor on 21 November 2018. The complaint concerned about general construction noise from the site at San Ma Tau Street, Ma Tau Kok, Kowloon and ensure the work fulfill the relevant environmental legislation and take necessary measures to reduce the nuisance.</p> <p><u>Details of Investigation and findings:</u> According to the information provided by the Contractor, the construction activities on 01 November 2018 were relocation of water filled barrier, hole coring for corbel at Vehicular Ferry, site clearance at new bus stop for Temporary Traffic Management stage 5 and drilling activity.</p> <p>Mitigation measure for the noise nuisance source were implemented by Contractor, such as the acoustic sheet deployed for engine of the construction equipment during the observation of weekly site inspection on 31 October 2018 and 07 November 2018.</p> <p>It is considered that the potential source of noise nuisances from the site was minimized by the proper mitigation measure. In conclusion, the noise nuisance in this case was considered to be not project related. However, the mitigation measures should be reviewed daily before commencement of and during construction.</p> <p>The investigation report was finalized on 28 November 2018.</p>	Closed	2	5

Date received	Subject	Status	Total no. received in this month	Total no. received since project commencement
5 November 2018 (Referred by the Contractor on 21 November 2018)	<p>Environmental Complaint No: EC-005-CKRKTW20181121_01_C010</p> <p>Details of Complaint: A complaint (EPD ref.: 18-30337) was received by Environmental Protection Department on 05 November 2018. The complaint was referred by the Contractor on 21 November 2018. The complaint concerned about dust from grinding work for construction site of Central Kowloon Route at Kowloon City Bus Terminus, Ma Tau Kok, Kowloon and ensure the work fulfill the relevant environmental legislation and take necessary measures to prevent the nuisance.</p> <p>Details of Investigation and findings: According to the information provided by the Contractor, the construction activities on 05 November 2018 were Installation of panel for water filled barrier, hole coring for corbel at Vehicular Ferry Pier, modification of Tactile near Lucky Building and drilling activity.</p> <p>Mitigation measure for the potential air nuisance source were implemented by Contractor, such as proper cover was provided on the stockpiles and the water spraying was provided regularly and most of the surface at Ma Tau Kok was paved during the observation of weekly site inspection on 07 November 2018.</p> <p>It is considered that the potential source of air nuisances from the site was minimized by the proper mitigation measure. In conclusion, the air nuisance in this case was considered to be not project related. However, the mitigation measures should be reviewed daily before commencement of and during construction.</p> <p>The investigation report was finalized on 28 November 2018.</p>			
Notification of summons	--	--	--	0 0
Successful prosecutions	--	--	--	0 0

APPENDIX M

Monthly Summary Waste Flow Table

Appendix M
Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for 2018

Month	Actual Quantities of Inert C&D Materials Generated Monthly (Note 1)												Actual Quantities of Non-inert C&D Materials (i.e. C&D Wastes) Generated Monthly						Actual Quantities of Contaminated Soil Monthly		Actual Quantities of Land-based Sediment Monthly		Actual Quantities of Marine-based sediment Monthly		
	Generated				Disposed				Reused				Recycled			Disposed		Reused	Reused	Disposed		Disposed			
	Fill Material	Artificial Material			Total Quantity Generated	Disposed as Public Fills at TKO137	Disposed as Public Fills at TM38	Disposed as Public Fills at CWPFBP	Total Quantity Disposal	Reused in the Contract	Reused in Other Projects	Total Quantity Reused	Metals	Paper/ cardboard packaging (Note 3)	Plastics	Chemical Waste	General Refuse (Note 2)	Reused in the Contract	Reused in the Contract	Disposed at Designated Site		Disposed at Designated Site			
		Soil and Rock	Broken Concrete	Asphalt	Building Derbis															Type 1 (Cat. L)	Type 1 (Cat. M ₁)	Type 2 (Cat. M ₂ , Cat. H, Cat. H ₂)	Type 1 (Cat. L, Cat. M ₁)	Type 2 (Cat. M ₂)	Type 3 (Cat. H ₂)
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000L)	('000Kg)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)		
Jan	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Feb	0.008	0.000	0.015	0.000	0.023	0.000	0.023	0.000	0.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	37.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Mar	0.015	0.000	0.023	0.000	0.038	0.000	0.038	0.000	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	12.210	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Apr	0.091	0.000	0.000	0.000	0.091	0.000	0.091	0.000	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	34.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
May	0.336	0.040	0.063	0.029	0.468	0.000	0.468	0.000	0.468	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.000	27.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun	0.456	0.107	0.000	0.019	0.582	0.000	0.582	0.000	0.582	0.000	0.000	0.000	66.990	0.000	0.000	0.000	40.830	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SUB-TOTAL	0.906	0.147	0.101	0.047	1.201	0.000	1.201	0.000	1.201	0.000	0.000	0.000	66.990	0.000	0.000	5.000	152.390	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul	1.302	0.220	0.032	0.074	1.628	0.000	1.628	0.000	1.628	0.000	0.000	0.000	27.280	0.000	0.004	0.000	18.990	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aug	1.349	0.016	0.000	0.000	1.365	0.000	1.365	0.000	1.365	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.600	19.830	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep	0.311	0.021	0.000	0.000	0.332	0.000	0.332	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	30.810	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oct	0.431	0.000	0.000	0.000	0.431	0.000	0.431	0.000	0.431	0.000	0.000	0.000	0.006	0.120	0.008	0.000	36.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov	1.923	0.000	0.000	0.000	1.923	0.000	0.849	0.000	0.849	0.000	1.075	1.075	0.000	0.000	0.000	0.000	14.060	0.000	0.000	0.000	0.000	0.000	0.225	0.000	
Dec	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
TOTAL	6.221	0.404	0.133	0.121	6.879	0.000	5.805	0.000	5.805	0.000	1.075	1.075	94.276	0.120	0.012	6.600	272.370	0.000	0.000	0.000	0.000	0.000	0.225	0.000	

Notes:

1. Assume the density of fill is 2 ton/m³.

2. Refuse disposed to NENT landfill.

APPENDIX N

Proactive Environmental Proforma

Proactive Environmental Protection Proforma

Ref: 201801

Ref ⁽¹⁾	Proposed Construction Method ⁽²⁾	Location/ Working Period	Anticipated Impacts	Recommended Mitigation Measures
EIA Ref 6.7.3 and 6.7.4	Marine Deck Support Pile (details refer to the attached document)	Open Water in Kowloon Bay for 10 months	According to EIA Section 6.7.4, minor seabed disturbance is anticipated by pipe wall installed.	<p>Good site practices such as silt curtain and regular inspections is consider adequate to minimize the water quality impact.</p> <ul style="list-style-type: none"> ▪ Following the FEP- 01/457/2013/C, the Contractor will be ensure the silt curtains (at least 75% SS reduction) will be deployed to fully enclose and the pipepile / sheetpile installation / demolition point in accordance with Condition 2.13(b). ▪ The temporary reclamation will be fully enclosed by silt curtain. ▪ Daily review of the silt curtain will be carried out to ensure the implementation of the recommended mitigation measures, provide effective control of any malpractices, and provide continuous improvements to the environmental conditions.

Notes:

(1) EIA Ref/EM&A Log Ref/Design Document Ref

(2) Details of equipment, vehicles, plants, processes, technologies for the option of construction method

Reviewed by Environmental Team Leader: _____
 Date: 05 December 2018

Approved by Independent Checker (Environment): Mandy
 Date: 10 December 2018

Contract No. HY/2014/07

Contract Title: Central Kowloon Route – Kai Tak West

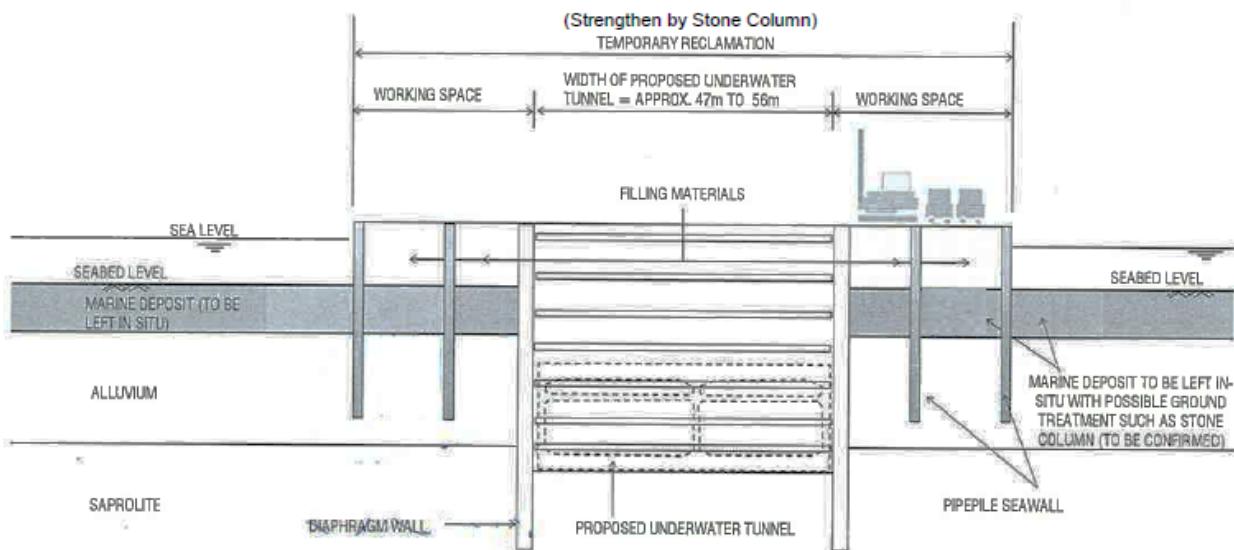
Proactive Environmental Protection Proforma for Alternative Construction Method for Temporary Reclamation

Introduction

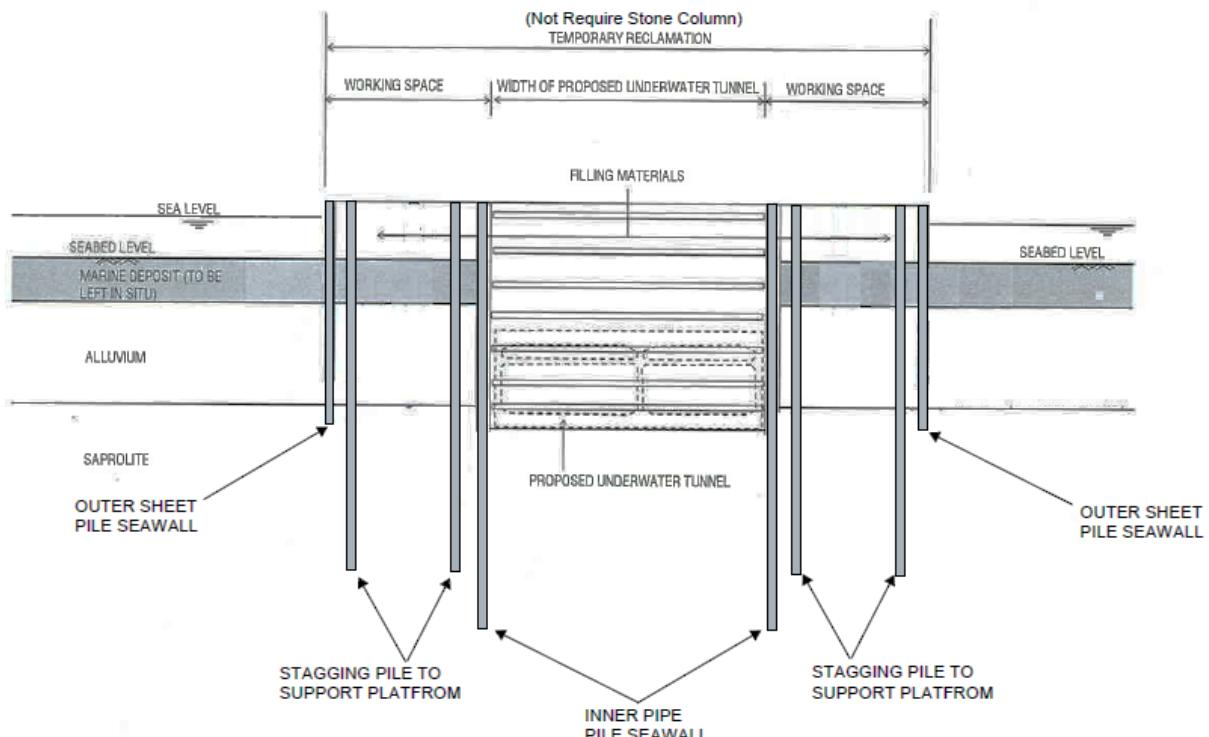
Gammon Construction Limited (GCL) was commissioned by the Highways Department as the Civil Contractor for Works Contract HY/2014/07. AECOM Asia Company Limited (AECOM) was appointed by GCL as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

The Environmental Impact Assessment (EIA) Report for Central Kowloon Route (CKR EIA) (Register No.: AEIAR-171/2013) was approved on 11 July 2013 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) for CKR was granted on 9 August 2013 (EP No.: EP- 457/2013) for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-457/2013/C) was issued by the Director of Environmental Protection (DEP) on 16 January 2017. Further Environmental Permit (EP No. FEP-01/457/2013/C) for CKR – Kai Tak West was issued on 28 February 2018.

At times during the construction phase the Contractor may submit method statements for various aspects of construction. This state of affairs would only apply to those construction methods that the EIA has not imposed conditions while for construction methods that have been assessed in the EIA, the Contractor is bound to follow the requirements and recommendations in the EIA study. The Contractor's options for alternative construction methods may introduce adverse environmental impacts into the Project. According to Section 14.3 of the EM&A Manual, it is the responsibility of the Contractor and ET, in accordance with established standards, guidelines and EIA study recommendations and requirements, to review and determine the adequacy of the environmental protection and pollution control measures in the Contractor's proposal in order to ensure no unacceptable impacts would result. To achieve this end, the ET shall provide a copy of the Proactive Environmental Protection Proforma to the IEC for approval. The IEC should audit the review of the construction method and endorse the proposal on the basis of no adverse environmental impacts.


In this project, a 370 m long section of the CKR tunnel between the Kowloon City Ferry Pier to the Kai Tak Development Area will pass through the seabed of Kowloon Bay. According to Section 3.5.1 of the CKR EIA Report, due to various site constraints, this underwater tunnel will have to be constructed using the alternative temporary reclamation method. This method would require constructing pipe pile or similar wall system along either side of the underwater tunnel as temporary seawall and backfilling between them to create a dry working platform.

Original Scheme for Temporary Reclamation in the CKR EIA Report


The temporary seawall structure is envisaged to consist of double-layer pipe pile wall, or a combined wall type make up of pipe pile wall and sheetpile wall or similar to be installed to predetermined level. The double layer walls are interconnected by diaphragm pipe pile wall or tie rod. The space between the double layer walls will then be backfilled by suitable filling materials for the completion of the temporary seawall structure. Prior to the construction of the temporary seawall structure, ground treatment, such as stone columns, will be carried out at the marine deposit layer to be left in-situ in front or under the proposed temporary seawall structure to enhance the stability of the seawall structure. After the completion of the temporary seawall structure, reclamation will be carried out within the temporary seawall to +4.0mPD to form a temporary working platform. A diaphragm wall will

then be constructed within the temporary working platform and the subsequent excavation and underwater tunnel construction works will be carried out within the area enclosed by the temporary seawall by cut-and-cover method with corresponding temporary lateral support system.

A typical section of the original temporary reclamation for construction of underwater tunnel is shown in **Figure 1**.

Figure 1 – Original Scheme for Temporary Reclamation stated in the CKR EIA Report

Figure 2 – Proposed Scheme for Temporary Reclamation

Proposed Scheme for Temporary Reclamation

GCL proposes alternative construction method for the temporary reclamation. Instead of adopting ground treatment using the stone column, GCL proposes to erect prefabricated temporary steel deckings above seawater level in order to provide a dry working platform for constructional plants to be operated for forthcoming tunnel construction works. These temporary steel deckings will be mainly supported by staging piles. Furthermore, the inner wall will be constructed using clutched pipe piles and no additional diaphragm wall is required in the proposed scheme.

A typical section for the proposed temporary reclamation for construction of underwater tunnel is shown in **Figure 2**.

Anticipated Environmental Impacts and Recommended Mitigation Measures of Proposed Scheme

In the proposed scheme, the construction does not involve ground treatment works, i.e. stone column installation is omitted. Instead of the ground treatment method, the staging piles will be installed to support the steel deckings and will be constructed disturbing the seabed. A comparison on the volume of temporary seabed disturbance involved was made between the two schemes was estimated as attached in **Annex A**. Based on the estimation, minimal temporary seabed disturbance was anticipated in the proposed scheme. Similar to the original scheme, excavation of marine deposit under the temporary wall structure is not required.

According to Section 6.7.3 and 6.7.4 of the CKR EIA Report, a direct comparison can be made as a reference for the anticipated environmental impacts between stone column installation and pipepile wall installation. For ease of reference, those sections in the CKR EIA Report were enclosed in **Annex B**.

Mitigation measures required for the stone column installation in the CKR EIA Report are listed below:

1. Geotextile layers are required will be installed to cover the sea bed to prevent re-suspension and seabed disturbance;
2. A silt curtain will be deployed to the stone column working vessels during installation; and
3. In order to ensure the acceptance of water quality during stone column installation, performance review for stone column installation is proposed.

For the pipepile wall installation as stated in the CKR EIA Report, silt curtain is only required prior to the installation works. Minimal seabed disturbance is anticipated and the water quality impact could be mitigated by good site practices such as perimeter silt curtain. Following to the FEP-01/457/2013/C, GCL should ensure the silt curtains (at least 75% SS reduction) will be deployed to fully enclose and the pipepile / sheetpile installation / demolition point in accordance with Condition 2.13(b). Daily review of the silt curtain will be carried out to ensure the implementation of the recommended mitigation measures, provide effective control of any malpractices, and provide continuous improvements to the environmental conditions.

Based on the extent of the mitigation measures required, a conclusion can be made that minimal water quality impacts are anticipated when comparing the proposed scheme with the original scheme in the CKR EIA Report.

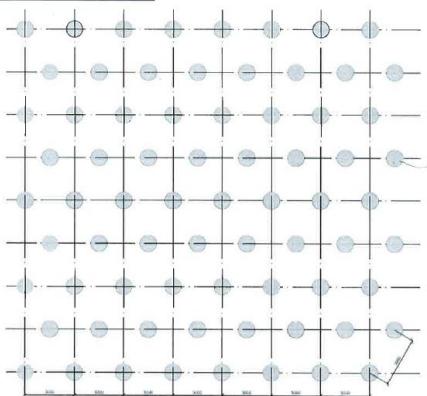
During the construction of the temporary reclamation, silt curtain will be deployed to fully enclose the staging pile construction.

Annex A – Comparison on volume of seabed disturbance for two schemes

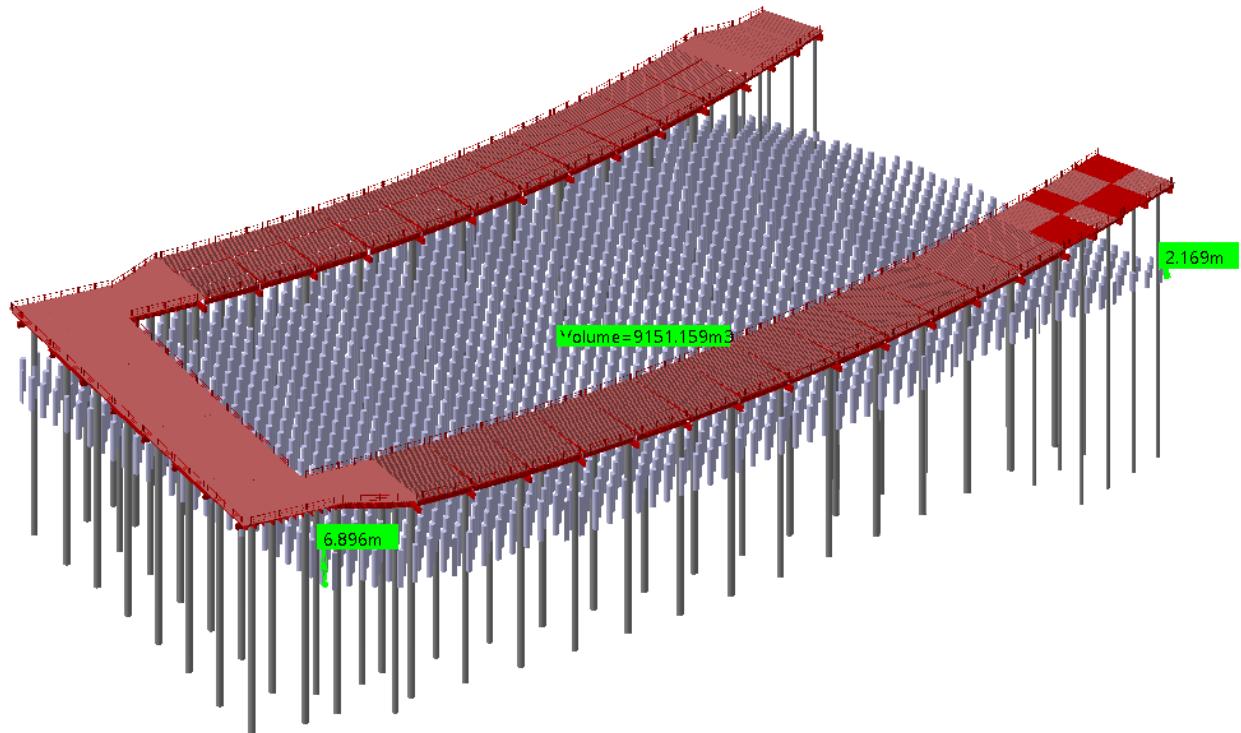
Annex B – Abstract of Section 6.7.3 and 6.7.4 of the EIA Report

Annex A - Comparison of volume between marine deck support pile and stone column

30 Oct 2018


试验桩布置

碎石桩设计桩径
1.0m


间距按正三角形
3.0m布置

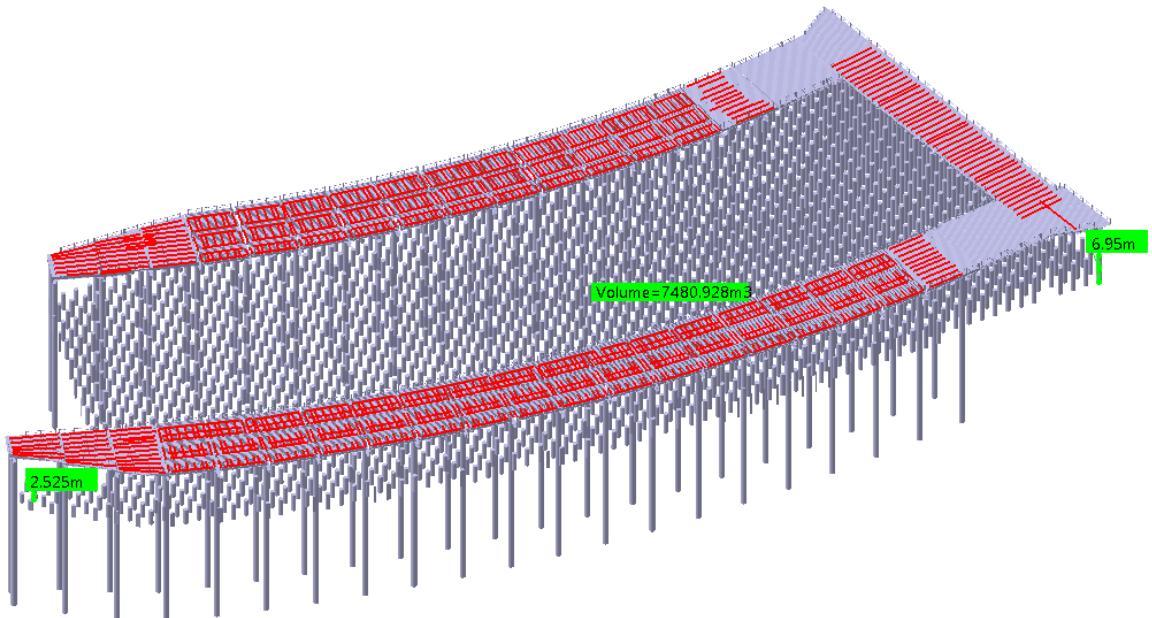
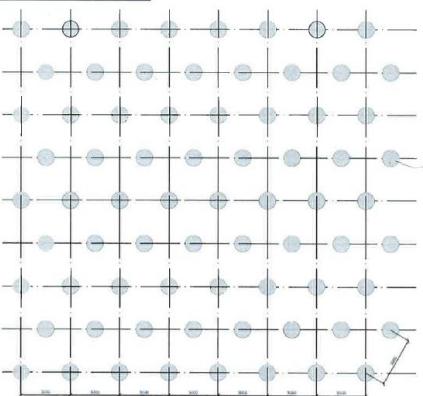
共布置碎石桩72
根

每排8

Stone Column (Stage 1)

- Volume (from MD to Alluvium): $\sim 9151.159\text{m}^3$

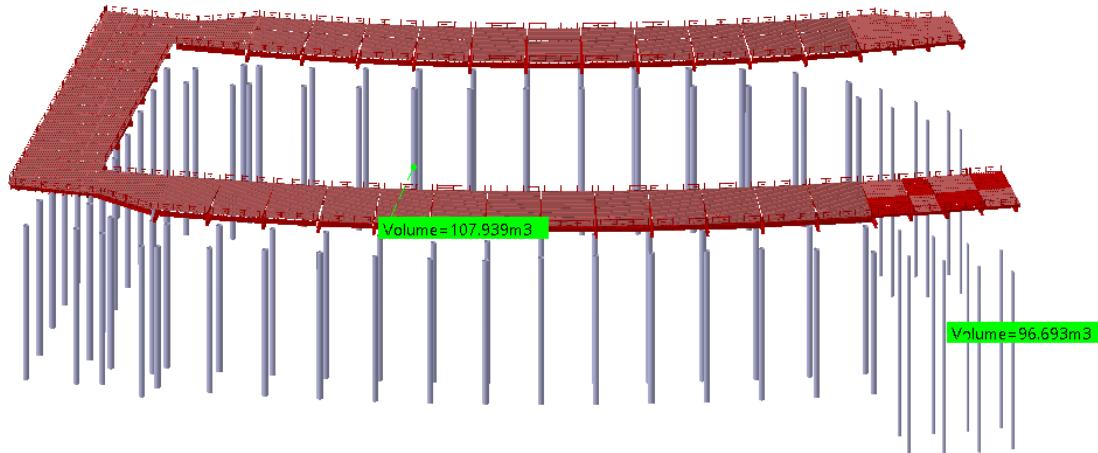
Stone Column (Stage 2)



试验桩布置

碎石桩设计桩径
1.0m

间距按正三角形
3.0m布置

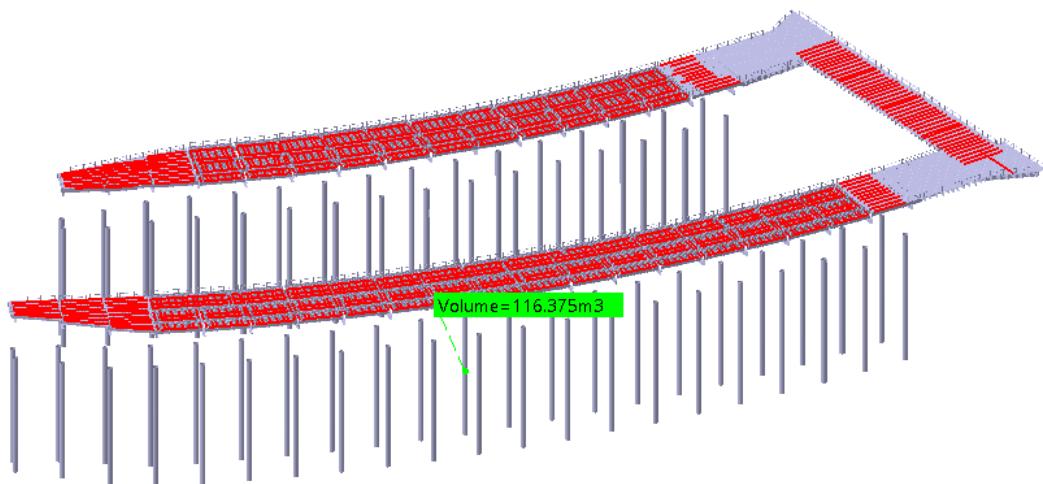
共布置碎石桩72
根


分为9排，每排8
根

- Volume (from MD to Alluvium): $\sim 7480.928\text{m}^3$

Pile Column (Stage 1)

- Volume of Pile in Type A Platform (thickness + inside – from MD to foundation level): $\sim 96.693\text{m}^3$
- Volume of others Pipe pile (thickness – from MD to foundation level): $\sim 107.939\text{m}^3$



Volume of pile in
type A (inside +
thickness)

Volume of pile
(thickness)

Pile Column (Stage 2)

- Volume of Pipe pile (thickness – from MD to foundation level):
 $\sim 116.375\text{m}^3$

Volume of pile
(thickness)

6.7.3 Stone Column Installation

Stone columns will be installed prior to pipepile seawall erection. Stone columns will be installed to accelerate the settlement and improve the strength of marine deposits and foundation of temporary reclamation, as shown in **Figure 6.4**. The stone columns will be installed under seabed levels both inside and outside pipepile walls and a geotextile layers will be installed to cover the seabed to prevent re-suspension and seabed disturbance. A silt curtain will be deployed to the stone column working vessels during penetrations. In addition to the perimeter silt curtain to the entire marine works area, minor disturbance to water column is anticipated during installation/removal of jet. In order to ensure the acceptance of water quality during stone column installation, performance review for stone column installation is proposed and the details are provided in the EM&A manual.

6.7.4 Installation/Demolition Temporary Reclamation

Temporary reclamation will be installed by pipepile wall method. A perimeter silt curtain will be deployed prior to pipepile wall installation and no dredging work is required (**Figure 6.5**). Minor seabed disturbance is anticipated and the water quality impact could be mitigated by good site practices such as perimeter silt curtain.

During demolition of temporary reclamation, the perimeter silt curtain will be deployed. Demolition of temporary reclamation will involve excavation of bulk fill. The proposed construction method adopts an approach where the double-layer seawall would not be removed until completion of all excavation works within the temporary reclamation area enclosed by the double-layer seawall. The double-layer seawall will then be demolished by first removing the soil infill within the double-layer steel pipepile/sheetpiles, followed by the removal of the steel pipepile/sheetpiles. Thus, excavation of bulk fill will be carried out within the area enclosed by the double-layer seawall and the sediment plume can be effectively contained within the works area. Hence, all these works will have no contact with water body and adverse water quality impact is not anticipated. The last stage of demolition of double-layer seawall will involve removal of pipe piles/sheet piles only, which will be trimmed on the seabed and involve minor seabed disturbance. No additional dredging is required during pile trimming. The water quality impact could be mitigated by good site practice such as the deployment of perimeter silt curtain and no significant SS impact would be anticipated. Fines content in the filling materials in the seawall would be negligible and loss of fill material during temporary reclamation demolition is not expected. No stone column will be demolished and the perimeter silt curtain will not be removed during the whole demolition process.

The construction details for installation/demolition of temporary reclamation are given in **Section 3.5.1**.

6.7.5 Dumping of Marine Sediment

The total quantity of marine sediment generated (including both from land-based excavations and marine dredging) is 218.894 m³. 500m³ of Category L land-based sediment will be reused on site, 71,159m³ of which requires Type 1 – Open Sea Disposal, 4,070 m³ requires Type 1 – Open Sea (Dedicated Sites) Disposal,