Appendix 4.4b **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section in front of Pui To Road Flyover

Two-way Enclosure - Normal Condition

Tunnel Parameter

Tunnel length (m), L = 82 Tunnel height (m), H = 8 Tunnel width (m), W = 28 (Averaged width)

= H * W

Tunnel size (m2), At 224 Equivalent diameter (m), dt $= (4*At/\pi)^0.5$

16.88804 Effective length of the tunnel (m), Le = L + 2*3*dt

Emission Data

Traffic Breakdown (%)

183.3282

						Non-										Double	
					Non-	franchised	Non-	Private	Private	Diesel					Single Deck	Deck	
		Motor	Petrol PC		franchised	Buses 6.4-	franchised	Light Buses	Light Buses	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	Buses <6.4t	15t	Buses >15t	<3.5t	>3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
108	390	0.01	0.30	0.17	0.00	0.06	0.00	0.00	0.02	0.02	0.09	0.08	0.13	0.01	0.01	0.04	0.06
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
88-90	4510	0.04	0.44	0.05	0.00	0.03	0.00	0.00	0.01	0.02	0.11	0.09	0.17	0.01	0.00	0.01	0.01
Total	7728	0.03	0.41	0.06	0.00	0.03	0.00	0.00	0.01	0.02	0.09	0.07	0.23	0.01	0.00	0.01	0.01
NOx Emission Factor (g/m	nile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77

Weighted NOX E.F. (g/km/veh) = 1.7360

= 12.5% * Weight NOX E.F. * Traffic flow NO2 emission factor per unit length (g/m/s), w1

= 4.66E-04

NO2 emission transferring from neighboring enclosures (g/s) 20% * (IN A2 + IN F2)

= 5.31E-02

Length of Enclosure E1 (m) = 82 NO2 emission transferring from neighboring enclosures (g/m/s), w2 = 6.48E-04 Total NO2 emission factor per unit length (g/m/s), w = w1+w2 = 1.11E-03

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	VV	П	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12

(Note: For the amounts of IN A2 and IN F2 in normal condition, please refer to Appendix 4.4)

Appendix 4.4b Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Pui To Road Flyover

Two-way Enclosure - Normal Condition

Public Light Buses 2 3 6.5

Nominal cross-sectional area (m2) = (1.7*1.5*0.03)+(1.7*1.5*0.04)+(1.7*1.5*0.06)+(2.5*3.5*0.03)+(2*3*0.01)+(2.1*1.6*0.02)+(2.1*1.6*0.02)+(2.1*1.6*0.07)+(2.5*4.6*0.23)+(2.5*4.6*0.01)+(2.5*3.5*0.001)+(2.5*3

Number of lanes per direction, nl = 4

Equivalent cross-sectional area for each direction (m2), Av = 21.153087

Equivalent diameter of vehicle (m), dv = $(4*Av/\pi)^0.5$

= 5.189698

Traffic density (traffic flow /s), N = 2.146667Average vehicle speed (m/s), v = 50 km/hr= 13.88889

Head to head distance on a lane (m), I = 2*nl*v/N= 51.75983

Diffusion Parameters

Reynolds number, Re = $(v^*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 4620458

According to Figure 16 (Ohashi and Koso)

Since I / dt = 3.064881D / (N * dt^2 * Re^0.13) = 0.32

Longitudinal

diffusion coefficient (m2/s), D = $0.32 * (N * dt^2 * Re^0.13)$

= 1440.397

Maximum Concentration of NO2

Cmax (μ g/m3) = $w * Le^2 / (8 * D * At)$

(without background) = 15

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4b Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Pui To Road Flyover

Two-way Enclosure - Worse Condition

Tunnel Parameter	
Tunnel length (m), L	= 82
Tunnel height (m), H	= 8
Tunnel width (m), W	= 28 (Averaged width
Tunnel size (m2), At	= H * W
	224
Equivalent diameter (m), dt	$= (4*At/\pi)^0.5$
	16.88804
Effective length of the tunnel (m), Le	= L + 2*3*dt
-	183.3282

Emission Data

NOx Emission Factor (g/mile)

					Non-	Non-	Non-	Private	Private						Single	Double	
					franchise	d franchised	franchised	Light	Light	Diesel	Diesel				Deck	Deck	Public
		Motor	Petrol PC		Buses	Buses 6.4-	Buses	Buses	Buses	PC&LGV	LGV 2.5-	Diesel			Franchised	Franchised	Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	>15t	<3.5t	>3.5t	<2.5t	3.5t	LGV >3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
108	390	0.01	0.30	0.17	0.00	0.06	0.00	0.00	0.02	0.02	0.09	0.08	0.13	0.01	0.01	0.04	0.06
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
88-90	4510	0.04	0.44	0.05	0.00	0.03	0.00	0.00	0.01	0.02	0.11	0.09	0.17	0.01	0.00	0.01	0.01
Total	7728	0.03	0.41	0.06	0.00	0.03	0.00	0.00	0.01	0.02	0.09	0.07	0.23	0.01	0.00	0.01	0.01

0.00

Weighted NOX E.F. (g/km/veh) = 2.5801

NO2 emission factor per unit length (g/m/s), w1 = 12.5% * Weight NOX E.F. * Traffic flow

= 6.92E-04

0.38

0.38

0.00

10.41

Traffic Breakdown (%)

NO2 emission transferring from neighboring enclosures (g/s) = 20% * (IN A2 + IN F2)

1.02

Length of Enclosure E1 (m) = 8.52E-02

Length of Enclosure E1 (m) = 82

NO2 emission transferring from neighboring enclosures (g/m/s), w2 = 1.04E-03

Total NO2 emission factor per unit length (g/m/s), w = w1+w2 = 1.73E-03

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12

s(g/m/s), w2 = 1.04E-03

0.00

1.21 1.55

0.86 5.57

(Note: For the amounts of IN A2 and IN F2 in worse condition, please refer to Appendix 4.4)

11.82 15.06

9.45

10.26

1.14

Appendix 4.4b Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Pui To Road Flyover

Two-way Enclosure - Worse Condition

Public Light Buses 2 3 6.5

Nominal cross-sectional area (m2) = (1.7*1.5*0.03)+(1.7*1.5*0.04)+(2.5*3.5*0.03)+(2.5*3.5*0.03)+(2.1*1.6*0.02)+(2.1*1.6*0.09)+(2.1*1.6*0.07)+(2.5*4.6*0.01)+(2.5*4.6*0.01)+(2.5*3.5*0.001)+(2.5*4.6*0.01)+(2.5*3.5*0.001)+(2

Number of lanes per direction, nl = 4

Equivalent cross-sectional area for each direction (m2), Av = 21.15309

Equivalent diameter of vehicle (m), dv = $(4*Av/\pi)^0.5$ = 5.189698

Equivalent length of each vehicle (m) = $(4.6^{\circ}0.03) + (4.6^{\circ}0.06) + (12^{\circ}0.03) + (6.5^{\circ}0.011) + (5.2^{\circ}0.018) + (5.2^{\circ}0.07) + (16^{\circ}0.23) + (16^{\circ}0.01) + (12^{\circ}0.001) + (12^{\circ}0.001) + (12^{\circ}0.011) + (12^{$

= 7.886188

Distance between vehicle (m) = 1 (worst case)

Head to head distance on a lane (m), I = 8.886188Traffic density (traffic flow /s), N = 2.146667Average vehicle speed (m/s), v = |*N/(2*n|)= 2.384461

Diffusion Parameters

Reynolds number, Re = $(v^*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 793245.6

According to Figure 16 (Ohashi and Koso) Since 1/dt = 0.526182

 $D / (N * dt^2 * Re^0.13)$ = 0.13

Longitudinal diffusion coefficient (m2/s) , D = $0.13 * (N * dt^2 * Re^0.13)$

= 465.3604

Maximum Concentration of NO2

Cmax (μ g/m3) = $w * Le^2 / (8 * D * At)$

(without background) = 70

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4b Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Pui To Road Flyover

Overall Concentrations

Six assessment points (ASRs E11-E16) at the boundary of the enclosure are chosen.

Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 6 assessment points at different levels are calculated. The highest concentration among the six assessment points is assumed to be the background concentration inside the proposed enclosure section.

Elevation	NO2 Concentrations (ug/m3) at Various Le					
	(mAG)	NO ₂				
E11	0.0	296				
	3.0	280				
	6.0	256				
E12	0.0	266				
	3.0	263				
	6.0	259				
E13	0.0	320				
	3.0	305				
	6.0	280				
E14	0.0	259				
	4.0	279				
	8.0	305				
E15	0.0	241				
	4.0	251				
	8.0	284				
E16	0.0	236				
	4.0	262				
	8.0	279				

Therefore, the NO2 background concentration inside the enclosure is

320 ug/m³

Total Maximum NO2 concentration inside enclosure of			
Tuen Mun Road in front of Pui To Road Flyover (Normal Speed)	=	15 + 320	
	=	335	ug/m3
Total Maximum NO2 concentration inside enclosure of			
Tuen Mun Road in front of Pui To Road Flyover (Worse Case)	=	70 + 320	
	=	390	ug/m3