Appendix 4.4c **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section in front of Tuen Mun Town Plaza Block 1 & 2

Two-way Enclosure - Normal Condition

Ī	un	nel	Pa	rai	me	ter
---	----	-----	----	-----	----	-----

(Averaged width)

Tunnel Parameter

Tunnel length (m), L = 73

Tunnel height (m), H = 6

Tunnel width (m), W = 34.5 (A

Tunnel size (m2), At = H * W207

Equivalent diameter (m), dt = $(4*At/\pi)^{\circ}0.5$ 16.23456

Effective length of the tunnel (m), Le = L + 2*3*dt170.4073

Emission Data

Traffic Breakdown (%)

170.4073

					Non-	Non-										Double	
					franchised	franchised	Non-	Private	Private	Diesel					Single Deck	Deck	
		Motor	Petrol PC		Buses	Buses 6.4-	franchised	Light Buses	Light Buses	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	Buses >15t	<3.5t	>3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
108	390	0.01	0.30	0.17	0.00	0.06	0.00	0.00	0.02	0.02	0.09	0.08	0.13	0.01	0.01	0.04	0.06
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
149	903	0.01	0.30	0.22	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.05	0.01	0.01	0.09	0.14
Total	7606	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.05	0.31	0.02	0.002	0.02	0.03
NOx Emission Factor (g/m	ile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77

Weighted NOX E.F. (g/km/veh) = 2.0513

NO2 emission factor per unit length (g/m/s), w1 = 12.5% * Weight NOX E.F. * Traffic flow

= 5.42E-04

NO2 emission transferring from neighboring enclosures (g/s) 20% * (IN B2 + IN E2)

= 5.21E-02 Length of Enclosure E1 (m) = 73

NO2 emission transferring from neighboring enclosures (g/m/s), w2 = 7.14E-04

Total NO2 emission factor per unit length (g/m/s), w = w1+w2

= 1.26E-03

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12

(Note: For the amounts of IN B2 and IN E2 in normal condition, please refer to Appendix 4.4)

Appendix 4.4c Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Tuen Mun Town Plaza Block 1 & 2

Two-way Enclosure - Normal Condition

Double Deck Franchised Buses 2.5 4.6 12 Public Light Buses 2 3 6.5

Nominal cross-sectional area (m2) = (1.7*1.5*0.01)+(1.7*1.5*0.38)+(1.7*1.5*0.03)+(2.1*1.6*0.01)+(2.1*1.6*0.05)+(2.1*1.6*0.05)+(2.1*1.6*0.03)+(2.5*4.6*0.02)+(2.5*3.5*0.002)+

= 6.04396

Number of lanes per direction, nl = 4

Equivalent cross-sectional area for each direction (m2), Av = 24.17584

Equivalent diameter of vehicle (m), dv = $(4*Av/\pi)^0.5$

= 5.548122

Traffic density (traffic flow /s), N = 2.112778Average vehicle speed (m/s), v = 50 km/hr= 13.88889Head to head distance on a lane (m), I = $2^*\text{nl}^*\text{v/N}$ = 52.59006

Diffusion Parameters

Reynolds number, Re = $(v^*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 4939568

According to Figure 16 (Ohashi and Koso)

Since I / dt = 3.23939D / (N * dt^2 * Re^0.13) = 0.33

Longitudinal

diffusion coefficient (m2/s), D = $0.33 * (N * dt^2 * Re^0.13)$

= 1362.788

Maximum Concentration of NO2

Cmax (μ g/m3) = $w * Le^2 / (8 * D * At)$

(without background) = 16

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4c Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Tuen Mun Town Plaza Block 1 & 2

Two-way Enclosure - Worse Condition

Tunnel Parameter	
Tunnel length (m), L	= 73
Tunnel height (m), H	= 6
Tunnel width (m), W	= 34.5 (Averaged width)
Tunnel size (m2), At	= H * W
	207
Equivalent diameter (m), dt	$= (4*At/\pi)^0.5$
	16.23456
Effective length of the tunnel (m), Le	= L + 2*3*dt

Emission Data

		Traffic Bre	akdown (%)														
					Non-	Non-	Non-	Private	Private						Single	Double	
					franchised	franchised	franchised	Light	Light	Diesel	Diesel				Deck	Deck	Public
		Motor	Petrol PC		Buses	Buses 6.4-	Buses	Buses	Buses	PC&LGV	LGV 2.5-	Diesel			Franchised	Franchised	Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	>15t	<3.5t	>3.5t	<2.5t	3.5t	LGV >3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
108	390	0.01	0.30	0.17	0.00	0.06	0.00	0.00	0.02	0.02	0.09	0.08	0.13	0.01	0.01	0.04	0.06
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
149	903	0.01	0.30	0.22	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.05	0.01	0.01	0.09	0.14
Total	7606	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.05	0.31	0.02	0.002	0.02	0.03
NOx Emission Factor (g/mil	e)	1.02	0.38	0.38	0.00	10.41	0.00	0.00	1.21	1.55	0.86	5.57	11.82	15.06	9.45	10.26	1.14

Weighted NOX E.F. (g/km/veh) = 3.0747

NO2 emission factor per unit length (g/m/s), w1 = 12.5% * Weight NOX E.F. * Traffic flow

= 8.12E-04

NO2 emission transferring from neighboring enclosures (g/s) = 20% * (IN B2 + IN E2)

170.4073

= 8.35E-02

Length of Enclosure E1 (m) = 73
NO2 emission transferring from neighboring enclosures (g/m/s), w2 = 1.14E-03
Total NO2 emission factor per unit length (g/m/s), w = w1+w2
1.96E-03

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12

(Note: For the amounts of IN B2 and IN E2 in worse condition, please refer to Appendix 4.4)

Appendix 4.4c **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section in front of Tuen Mun Town Plaza Block 1 & 2

Two-way Enclosure - Worse Condition

Double Deck Franchised Buses 2.5 4.6 12 Public Light Buses 3 6.5

 $= (1.7^*1.5^*0.01) + (1.7^*1.5^*0.38) + (1.7^*1.5^*0.38) + (1.7^*1.5^*0.07) + (2.5^*3.5^*0.02) + (2.7^*1.6^*0.01) + (2.1^*1.6^*0.06) + (2.1^*1.6^*0.05) + (2.5^*4.6^*0.02) + (2.5^*3.5^*0.002) + (2.5^*3.5^*$ Nominal cross-sectional area (m2) = 6.04396 Number of lanes per direction, nl = 4

Equivalent cross-sectional area for each direction (m2), Av

24.17584

Equivalent diameter of vehicle (m), dv $= (4*Av/\pi)^0.5$ = 5.548122

Equivalent length of each vehicle (m) $= (4.6^{*}0.01) + (4.6^{*}0.38) + (4.6^{*}0.07) + (12^{*}0.02) + (6.5^{*}0.006) + (5.2^{*}0.011) + (5.2^{*}0.06) + (5.2^{*}0.05) + (16^{*}0.31) + (16^{*}0.02) + (12^{*}0.002) + (12^{*}0.002) + (6.5^{*}0.03) + (16^{*}0.01) + (16^{$

= 8.809598

Distance between vehicle (m) = 1 (worst case)

Head to head distance on a lane (m), I = 9.809598 Traffic density (traffic flow /s), N = 2.112778 = I*N/(2*nI)Average vehicle speed (m/s), v = 2.590688

Diffusion Parameters

Reynolds number, Re $= (v*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 921375.1

According to Figure 16 (Ohashi and Koso)

Since = 0.604242I / dt D / (N * dt^2 * Re^0.13) = 0.14

Longitudinal

diffusion coefficient (m2/s), D = 0.14 * (N * dt^2 * Re^0.13)

= 464.7714

Maximum Concentration of NO2

Cmax (µg/m3) = w * Le^2 / (8 * D * At)

(without background) = 74

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4c Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section in front of Tuen Mun Town Plaza Block 1 & 2

Overall Concentrations

Six assessment points (ASRs E21-E26) at the boundary of the enclosure are chosen.

Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 6 assessment points at different levels are calculated. The highest concentration among the six assessment points is assumed to be the background concentration inside the proposed enclosure section.

Elevation	NO2 Concentrations (ug/m3) at Various Levels							
	(mAG)	NO_2						
E21	0.0	282						
	3.0	271						
	6.0	252						
E22	0.0	316						
	3.0	298						
	6.0	255						
E23	0.0	361						
	3.0	295						
	6.0	238						
E24	0.0	281						
	3.0	271						
	6.0	265						
E25	0.0	249						
	3.0	244						
	6.0	241						
E26	0.0	276						
	3.0	254						
	6.0	221						

Therefore, the NO2 background concentration inside the enclosure is

361 ug/m³

Total Maximum NO2 concentration inside enclosure of			
Tuen Mun Road in front of Tuen Mun Town Plaza Block 1 & 2 (Normal Speed)	=	16 + 361	
	=	378	ug/m3
Total Maximum NO2 concentration inside enclosure of			
Tuen Mun Road in front of Tuen Mun Town Plaza Block 1 & 2 (Worse Case)	=	74 + 361	
	=	435	ug/m3