Normal Condition

Tunnel Parameter

Tunnel length (m), L = 96 Tunnel height (m), H = 6 Tunnel width (m), W

= 36.5 (Averaged width)

Tunnel size (m2), At

= H * W 219

Equivalent diameter (m), dt

 $= (4*At/\pi)^0.5$ 16.69849

Effective length of the tunnel (m), Le

= L + 2*3*dt196.191

Emission Data

Traffic Breakdown (%)

					Non-	Non-										Double	
					franchised	franchised	Non-	Private	Private	Diesel					Single Deck	Deck	
		Motor	Petrol PC		Buses	Buses 6.4-	franchised	Light Buses	Light Buses	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	Buses >15t	<3.5t	>3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
126-125+179	878	0.01	0.35	0.13	0.00	0.03	0.00	0.00	0.01	0.01	0.06	0.04	0.26	0.02	0.00	0.02	0.04
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
149	903	0.01	0.30	0.22	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.05	0.01	0.01	0.09	0.14
Total	8094	0.01	0.39	0.08	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.05	0.31	0.02	0.002	0.02	0.03
NOx Emission Factor (g/m	nile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77

Weighted NOX E.F. (g/km/veh) = 2.0575

NO2 emission factor per unit length (g/m/s), w1 12.5% * Weight NOX E.F. * Traffic flow

= 5.78E-04

NO2 emission transferring from neighboring enclosures (g/s)

20% * (IN C2) 8.51E-03

Length of Enclosure E1 (m)

= 96

NO2 emission transferring from neighboring enclosures (g/m/s), w2

= 8.87E-05 w1+w2

Total NO2 emission factor per unit length (g/m/s), w

= 6.67E-04

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Total Maximum NO2 concentration under	1.7	1.5	4.6
Tuen Mun Town Plaza (Normal Speed)	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Total Maximum NO2 concentration under	2.5	3.5	12

(Note: For the amounts of IN C2 in normal condition, please refer to Appendix 4.4)

Normal Condition

 Tuen Mun Town Plaza (Worse Case)
 2.5
 4.6
 12

 Public Light Buses
 2
 3
 6.5

Nominal cross-sectional area (m2) = (1.7*1.5*0.01)+(1.7*1.5*0.39)+(1.7*1.5*0.03)+(2.1*1.6*0.01)+(2.1*1.6*0.05)+(2.1*1.6*0.05)+(2.5*4.6*0.02)+(2.5*3.5*0.002)

= 6.05914

Number of lanes per direction, nl = 5

Equivalent cross-sectional area for each direction (m2), Av = 30.29574

Equivalent diameter of vehicle (m), dv = $(4*Av/\pi)^0.5$

= 6.210778

Traffic density (traffic flow /s), N = 2.248333Average vehicle speed (m/s), v = 50 km/hrHead to head distance on a lane (m), I = 2 'nl'v/N

= 61.77415

Diffusion Parameters

Reynolds number, Re = $(v^*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 5529539

According to Figure 16 (Ohashi and Koso) Since I / dt

Since I / dt = 3.699385D / (N * dt^2 * Re^0.13) = 0.34

Longitudinal

diffusion coefficient (m2/s), D = $0.34 * (N * dt^2 * Re^0.13)$

= 1604.146

Maximum Concentration of NO2

Cmax (μ g/m3) = $w * Le^2 / (8 * D * At)$

(without background) = 9

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Worse Condition

Tunnel Parameter

 $\begin{array}{lll} \text{Tunnel length (m), L} & = 96 \\ \text{Tunnel height (m), H} & = 6 \\ \text{Tunnel width (m), W} & = 36.5 & \text{(Averaged width)} \end{array}$

Tunnel size (m2), At = H * W 219
Equivalent diameter (m), dt $= (4*At/\pi)^{\circ}0.5$ 16.69849
Effective length of the tunnel (m), Le $= L + 2^{\circ}3^{\circ}dt$

Emission Data

Traffic Breakdown (%)

196,191

					Non-	Non-	Non-	Private	Private						Single	Double	
					franchised	d franchised	franchised	Light	Light	Diesel	Diesel				Deck	Deck	Public
		Motor	Petrol PC		Buses	Buses 6.4-	Buses	Buses	Buses	PC&LGV	LGV 2.5-	Diesel			Franchised	Franchised	Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	>15t	<3.5t	>3.5t	<2.5t	3.5t	LGV >3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
126-125+179	878	0.01	0.35	0.13	0.00	0.03	0.00	0.00	0.01	0.01	0.06	0.04	0.26	0.02	0.00	0.02	0.04
109	2828	0.01	0.38	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.05	0.04	0.36	0.02	0.00	0.01	0.02
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
149	903	0.01	0.30	0.22	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.05	0.01	0.01	0.09	0.14
Total	8094	0.01	0.39	0.08	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.05	0.31	0.02	0.002	0.02	0.03
NOx Emission Factor (g/mile)	1.02	0.38	0.38	0.00	10.41	0.00	0.00	1.21	1.55	0.86	5.57	11.82	15.06	9.45	10.26	1.14

Weighted NOX E.F. (g/km/veh) = 3.0834

NO2 emission factor per unit length (g/m/s), w1 = 12.5% * Weight NOX E.F. * Traffic flow

8.67E-04

NO2 emission transferring from neighboring enclosures (g/s) = 20% * (IN C2) = 1.36E-02 Length of Enclosure E1 (m) = 96 NO2 emission transferring from paighboring enclosures (g/m/s) w2 = 1.42E-04

NO2 emission transferring from neighboring enclosures (g/m/s), w2 = 1.42E-04
Total NO2 emission factor per unit length (g/m/s), w = w1+w2 = 1.01E-03

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Total Maximum NO2 concentration under	1.7	1.5	4.6
Tuen Mun Town Plaza (Normal Speed)	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Total Maximum NO2 concentration under	2.5	3.5	12
Tuen Mun Town Plaza (Worse Case)	2.5	4.6	12
Public Light Buses	2	3	6.5

^{*} No dimensions for motor cycles and non-franchised buses are provided.

(Note: For the amounts of IN C2 in worse condition, please refer to Appendix 4.4)

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Worse Condition

Nominal cross-sectional area (m2) $= (1.7^*1.5^*0.01) + (1.7^*1.5^*0.39) + (1.7^*1.5^*0.08) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.01) + (2.1^*1.6^*0.01) + (2.1^*1.6^*0.05) + (2.5^*4.6^*0.02) + (2.5^*4.6^*0$

Equivalent length of each vehicle (m) = (4.6*0.01)+(4.6*0.39)+(4.6*0.08)+(12*0.02)+(6.5*0.01)+(5.2*0.01)+(5.2*0.05)+(16*0.31)+(16*0.02)+(12*0.002)+(12*0.002)+(6.5*0.03)

= 8.834445

Distance between vehicle (m) = 1 (worst case)

Head to head distance on a lane (m), I = 9.834445
Traffic density (traffic flow/s), N = 2.248333
Average vehicle speed (m/s), v = I*N/(2*nI) = 2.211111

Diffusion Parameters

Reynolds number, Re = $(v^*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$

= 880302.6

According to Figure 16 (Ohashi and Koso)

Since I / dt = 0.588942D / (N * dt^2 * Re^0.13) = 0.14

Longitudinal

= 0.14 * (N * dt^2 * Re^0.13) = 520.1702

= 520.1

Maximum Concentration of NO2

diffusion coefficient (m2/s), D

Cmax (μ g/m3) = $w * Le^2 / (8 * D * At)$

(without background) = 43

Overall Concentrations

Six assessment points (ASRs F1-F6) at the boundary of the deckover are chosen.

Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 6 assessment points at different levels are calculated. The highest concentration among the six assessment points is assumed to be the background concentration inside the deckover section.

Elevation	NO2 Conce	ntrations (ug/m3) at Various Lev	els
	(mAG)	NO_2	
F1	0.0	300	
	3.0	294	
	6.0	284	
F2	0.0	281	
	3.0	288	
	6.0	291	
F3	0.0	312	
	3.0	301	
	6.0	285	
F4	0.0	246	
	3.0	243	
	6.0	237	
F5	0.0	332	
	3.0	315	
	6.0	280	
F6	0.0	254	
	3.0	247	
	6.0	245	

Therefore, the NO2 background concentration inside the deckover is

332 ug/m³

Total Maximum NO2 concentration under Tuen Mun Town Plaza (Normal Speed)	=	9 + 332 341	ug/m3
Total Maximum NO2 concentration under Tuen Mun Town Plaza (Worse Case)	=	43 + 332 375	ug/m3