Appendix 4.4e **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section near Tuen King Building

Two-way Enclosure 14, 15, 17 & 18 - Normal Condition

Tunnel Parameter

 Tunnel Parameter
 = 200

 Tunnel length (m), L
 = 8

 Tunnel width (m), W
 = 22

 Tunnel size (m2), At
 = H*W

 Equivalent diameter (m), dt
 $= (4*At/\pi)$
 $= (4*At/\pi)$ $= (4*At/\pi)$ $= (4*At/\pi)^0.5$ 14.96965 Effective length of the tunnel (m), Le = L + 2*3*dt289.8179

Emission Data

Traffic Breakdown (%)

					Non-	Non-										Double	
					franchised	franchised	Non-	Private	Private	Diesel					Single Deck	Deck	
		Motor	Petrol PC		Buses	Buses 6.4-	franchised	Light Buses	Light Buses	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	Buses >15t	<3.5t	>3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
120	619	0.01	0.31	0.23	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.04	0.00	0.01	0.09	0.14
133	4017	0.01	0.38	0.09	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.04	0.33	0.02	0.00	0.01	0.02
Total	8121	0.01	0.39	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.07	0.05	0.32	0.02	0.001	0.02	0.02
NOx Emission Factor (g/m	nile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77

Weighted NOX E.F. (g/km/veh) = 2.0594

NO2 emission factor per unit length (g/m/s), w = 12.5% * Weight NOX E.F. * Traffic flow

= 5.81E-04

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Buses	2	3	6.5

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4e Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

Two-way Enclosure 14, 15, 17 & 18 - Normal Condition

 $= (1.7^*1.5^*0.01) + (1.7^*1.5^*0.39) + (1.7^*1.5^*0.39) + (2.5^*3.5^*0.00) + (2.5^*3.5^*0.00) + (2.1^*1.6^*0.01) + (2.1^*1.6^*0.01) + (2.1^*1.6^*0.05) + (2.5^*4.6^*0.02) + (2.5^*4.6^*0.02) + (2.5^*3.5^*0.001) + (2.5^*4.6^*0.02) + (2.5^*3.5^*0.001) + (2.5^*3.5^*0.$ Nominal cross-sectional area (m2) = 6.039897 Number of lanes per direction, nl = 3 18.11969 Equivalent cross-sectional area for each direction (m2), Av Equivalent diameter of vehicle (m), dv $= (4*Av/\pi)^0.5$ = 4.8032 Traffic density (traffic flow /s), N = 2.255833 Average vehicle speed (m/s), v = 50 km/hr = 13.88889 Head to head distance on a lane (m), I = 2*nI*v/N= 36.94126 **Diffusion Parameters** Reynolds number, Re $= (v*dv)/\sigma$ where $\sigma = 15.6*10^{-6}$ = 4276353 According to Figure 16 (Ohashi and Koso) Since I / dt = 2.467744 D / (N * dt^2 * Re^0.13) = 0.3 Longitudinal diffusion coefficient (m2/s), D = 0.3 * (N * dt^2 * Re^0.13) = 1103.801 Maximum Concentration of NO2 Cmax (µg/m3) = w * Le^2 / (8 * D * At) (without background) = 31

Appendix 4.4e **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section near Tuen King Building

Two-way Enclosure 14, 15, 17 & 18 - Worse Condition

Tunnel Parameter		
Tunnel length (m), L	=	200
Tunnel height (m), H	=	8
Tunnel width (m), W	=	22
Tunnel size (m2), At	=	H * W
		176
Equivalent diameter (m), dt	=	(4*At/π)^0.5
		14.96965
Effective length of the tunnel (m), Le	=	L + 2*3*dt
		289.8179

Emission Data

Traffic Breakdown (%	fic Breakdown (%)	١
----------------------	-------------------	---

					Non-	Non-	Non-	Private	Private						Single	Double	
					franchise	d franchised	franchised	Light	Light	Diesel	Diesel				Deck	Deck	Public
		Motor	Petrol PC		Buses	Buses 6.4-	Buses	Buses	Buses	PC&LGV	LGV 2.5-	Diesel			Franchised	Franchised	Light
Tunnel traffic (Link no.)	Traffic flow (veh/hr)	Cycles	&LGV	Taxi	<6.4t	15t	>15t	<3.5t	>3.5t	<2.5t	3.5t	LGV >3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
110	3485	0.01	0.42	0.03	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.05	0.36	0.02	0.00	0.01	0.01
120	619	0.01	0.31	0.23	0.00	0.03	0.00	0.00	0.01	0.01	0.07	0.05	0.04	0.00	0.01	0.09	0.14
133	4017	0.01	0.38	0.09	0.00	0.02	0.00	0.00	0.01	0.01	0.06	0.04	0.33	0.02	0.00	0.01	0.02
Total	8121	0.01	0.39	0.07	0.00	0.02	0.00	0.00	0.01	0.01	0.07	0.05	0.32	0.02	0.001	0.02	0.02
NOx Emission Factor (g/km)	1.02	0.38	0.38	0.00	10.41	0.00	0.00	1.21	1.55	0.86	5.57	11.82	15.06	9.45	10.26	1.14

Weighted NOX E.F. (g/km/veh) = 3.0815 NO2 emission factor per unit length (g/m/s), w = 12.5% * Weight NOX E.F. * Traffic flow = 8.69E-04

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W	Н	L
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Buses	2	3	6.5

^{*} No dimensions for motor cycles and non-franchised buses are provided.

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4e Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

Two-way Enclosure 14, 15, 17 & 18 - Worse Condition

```
Nominal cross-sectional area (m2)
                                                                                                                                                                                                         = (1.7^*1.5^*0.01) + (1.7^*1.5^*0.39) + (1.7^*1.5^*0.07) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*4.6^*0.07) + (2.1^*1.6^*0.07) + (2.1^*1.6^*0.07) + (2.1^*1.6^*0.07) + (2.5^*4.6^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5^*0.02) + (2.5^*3.5
                                                                                                                                                                                                         = 6.039897
Number of lanes per direction, nl
                                                                                                                                                                                                        = 3
Equivalent cross-sectional area for each direction (m2), Av
                                                                                                                                                                                                                                                                                                                                                                            18.11969
Equivalent diameter of vehicle (m), dv
                                                                                                                                                                                                       = (4*Av/\pi)^0.5
                                                                                                                                                                                                        = 4.8032
Equivalent length of each vehicle (m)
                                                                                                                                                                                                        = (4.6^{*}0.01) + (4.6^{*}0.39) + (4.6^{*}0.37) + (12^{*}0.02) + (6.5^{*}0.01) + (5.2^{*}0.01) + (5.2^{*}0.07) + (5.2^{*}0.05) + (16^{*}0.32) + (16^{*}0.02) + (12^{*}0.001) + (12^{*}0.002) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02) + (6.5^{*}0.02)
                                                                                                                                                                                                        = 8.844179
Distance between vehicle (m)
                                                                                                                                                                                                       = 1
                                                                                                                                                                                                                                                                  (worst case)
Head to head distance on a lane (m), I
                                                                                                                                                                                                       = 9.844179
Traffic density (traffic flow /s), N
                                                                                                                                                                                                       = 2.255833
Average vehicle speed (m/s), v
                                                                                                                                                                                                      = I*N/(2*nI)
                                                                                                                                                                                                       = 3.701138
Diffusion Parameters
Reynolds number, Re
                                                                                                                                                                                                        = (v*dv)/\sigma
                                                                                                                                                                                                                                                                                                                       where \sigma = 15.6*10^{-6}
                                                                                                                                                                                                         = 1139571
According to Figure 16 (Ohashi and Koso)
                                                                                                                                                                                                        = 0.657609
Since
                                                                                                              I / dt
D / (N * dt^2 * Re^0.13)
                                                                                                                                                                                                        = 0.15
Longitudinal
diffusion coefficient (m2/s), D
                                                                                                                                                                                                       = 0.15 * (N * dt^2 * Re^0.13)
                                                                                                                                                                                                        = 464.7269
Maximum Concentration of NO2
Cmax (µg/m3)
                                                                                                                                                                                                        = w * Le^2 / (8 * D * At)
(without background)
                                                                                                                                                                                                        = 112
```

Appendix 4.4e **Detailed Calculations of In-Tunnel Air Quality** along Tuen Mun Road Town Centre Section near Tuen King Building

One-way Enclosure 16 - Normal Condition

Tunnel Parameter

Length L = 136 = 8 Height H Width W = 7 Cross-sectional area A_T = H x W = 56 m² Perimeter P 30 m

Emission Data

Traffic Breakdown (%)

						Non-											
Tunnel					Non-	franchised	Non-			Diesel					Single Deck	Double Deck	
Traffic (Link			Petrol PC		franchised	Buses 6.4-	franchised	Private Light	Private Light	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
no.)	Traffic flow (veh/hr)	Motor Cycles	&LGV	Taxi	Buses <6.4t	15t	Buses >15t	Buses <3.5t	Buses >3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
119	1272	0.02	0.40	0.13	0.00	0.07	0.00	0.00	0.02	0.02	0.15	0.11	0.03	0.00	0.00	0.02	0.03
NOx Emission	Factor (g/mile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77

NI--

Total NO₂ emission rate = total NO_x emission factor x traffic flow x tunnel length x NO₂ conversion factor where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_x and 5% of NO₂/NO_x for tunnel air)

Weighted NOX E.F. (g/km/veh) 0.984 g/km/veh Total NO₂ emission factor (g/s) 5.91E-03 g/sec

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W /m	H/m	L/m
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Buses	2	3	6.5

^{*} No dimensions for motor cycles and non-franchised buses are provided.

Nominal cross-sectional area $A_C = (1.7^*1.5^*0.02) + (1.7^*1.5^*0.4) + (1.7^*1.5^*0.4) + (1.7^*1.5^*0.13) + (2.5^*3.5^*0.07) + (2^*3^*0.02) + (2.1^*1.6^*0.02) + (2.1^*1.6^*0.15) + (2.1^*1.6^*0.11) + (2.5^*4.6^*0.03) + ($

= 3.8308

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Appendix 4.4e

Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

$$F_{c} = \frac{1}{2} \rho (V_{c} - V_{T})^{2} C_{d} A_{c} N$$

Resisting Force by tunnel:

$$F_{T} = \frac{1}{2} \rho \ V_{T}^{2} \left(K_{in} + K_{out} + \frac{fL}{D} \right) A_{T}$$

External Wind at the Entrance and Exit Portals:

$$F_W = \frac{1}{2} \rho C_W (V_W \cos \theta)^2 A_T$$

where ρ = Air density

= 1.2 kg/m³

0.645

V_C = Velocity of vehicle, m/s

 V_{T} = Velocity of air flow in tunnel, m/s

C_d = Vehicle drag coefficient

= Vehicle frontal area = 3.8308 m²

N = No. of vehicles in tunnel

D = Hydraulic diameter of tunnel = $4A_T/P = 7.46666667$ m, P is the Perimeter of tunnel

 A_T = Cross-sectional area of tunnel = 56 m^2 C_W = External wind coefficient = 0.3

V_{W(ref)} = Velocity of wind at Tuen Mun Station = 2.36 m/s (Weighted average of 2006 Tuen Mun Station data)

 θ = Angle of the wind velocity component parallel to the roadway

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance :

$$F_C - F_T - F_W = 0 ag{7}$$

Solving the equation,

$$a V_T^2 + b V_T + c = 0$$

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For normal traffic condition

$$\begin{array}{cccc} traffic flow \, Q & = & 0.353333333 \ veh/s \\ Vehicle speed \, V_{C} & = & 50 \ km/h \\ & = & 13.8888889 \ m/s \\ Number of vehicles in tunnel \, N & = & QLV_{C} \\ & = & 3.45984 \end{array}$$

$$a = -91.26$$

 $b = -237.47$

$$c = 1555.86$$

tunnel air flow velocity
$$V_T = 3.028077281 \text{ m/sec}$$
 or -5.6301327 m/sec (rejected)

Appendix 4.4e Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

One-way Enclosure 16 - Worse Condition

Tunnel Parameter

Emission Data

						Non-											
Tunnel					Non-	franchised	Non-			Diesel					Single Deck	Double Deck	
Traffic (Link			Petrol PC		franchised	Buses 6.4-	franchised	Private Light	Private Light	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
no.)	Traffic flow (veh/hr)	Motor Cycles	&LGV	Taxi	Buses <6.4t	15t	Buses >15t	Buses <3.5t	Buses >3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
119	1272	0.02	0.40	0.13	0.00	0.07	0.00	0.00	0.02	0.02	0.15	0.11	0.03	0.00	0.00	0.02	0.03
NOx Emission	Factor (g/mile)	1.02	0.38	0.38	0.00	10.41	0.00	0.00	1.21	1.55	0.86	5.57	11.82	15.06	9.45	10.26	1.14

Total NO_2 emission rate = total NO_X emission factor x traffic flow x tunnel length x NO_2 conversion factor where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_X not 5% of NO_X for tunnel air)

Weighted NOX E.F. (g/km/veh) = 1.455 g/km/veh
Total NO₂ emission factor (g/s) = 8.74E-03 g/sec

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W /m	H/m	L/m
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Buses	2	3	6.5

 $[\]ensuremath{^\star}$ No dimensions for motor cycles and non-franchised buses are provided.

Nominal cross-sectional area $A_C = (1.7*1.5*0.02) + (1.7*1.5*0.4) + (1.7*1.5*0.1) + (2.5*3.5*0.07) + (2^3*0.02) + (2.1*1.6*0.02) + (2.1*1.6*0.15) + (2.1*1.6*0.11) + (2.5*4.6*0.03) + (2.5*4.6*$

= 3.8308 m^2

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

Tunnel Airflow

For Uni-directional Traffic.

Push Force by vehicles:

$$F_{C} = \frac{1}{2} \rho (V_{C} - V_{T})^{2} C_{d} A_{C} N$$

Resisting Force by tunnel:

$$\begin{split} F_{c} &= \frac{1}{2} \rho \, \left(V_{c} - V_{T} \right)^{2} C_{d} A_{c} N \\ F_{T} &= \frac{1}{2} \rho \, \left(V_{T}^{2} \left(K_{\text{in}} + K_{\text{out}} + \frac{fL}{D} \right) \right) A_{T} \end{split}$$

External Wind at the Entrance and Exit Portals:

$$F_{W} = \frac{1}{2} \rho C_{W} (V_{W} \cos \theta)^{2} A_{T}$$

1.2 kg/m³ = Air density Velocity of vehicle, m/s = Velocity of air flow in tunnel, m/s Vehicle drag coefficient 0.645 3.8308 m² Vehicle frontal area No. of vehicles in tunnel 0.5 Inlet loss coefficient Outlet loss coefficient 1.0 Tunnel friction factor 0.0155 Length of tunnel 136 m = Hydraulic diameter of tunnel = $4A_T/P = 7.46666667$ m, P is the Perimeter of tunnel = Cross-sectional area of tunnel 56 m² 0.3 External wind coefficient 2.36 m/s (Weighted average of 2006 Tuen Mun Station data)

= Velocity of wind at Tuen Mun Station

= Angle of the wind velocity component parallel to the roadway

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance :

$$F_C - F_T - F_W = 0$$
 (1

Solving the equation,

$$a V_T^2 + b V_T + c = 0$$

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For congested traffic condition

average length of vehicle = $(4.6^*0.02) + (4.6^*0.4) + (4.6^*0.13) + (12^*0.07) + (6.5^*0.02) + (5.2^*0.02) + (5.2^*0.15) + (5.2^*0.11) + (16^*0.03) + (12^*0.02) + (6.5^*0.03) + (12^*0.02) + (12^*0.$ 5.871 m

distance between vehicle = head to head length = 6.871 m Number of vehicles per lane = 19.7933343

Number of lanes = Number of vehicles in tunnel N = 39.58666861

Solving for V_T by equation (1)

$$a = -2.00$$

 $b = -543.41$
 $c = 661.52$

-273.37207 m/sec tunnel air flow velocity V_T = 1.211963442 m/sec or

Inside tunnel concentration = emission rate / (tunnel air flow x tunnel cross-sectional area) NO_2 129 ug/m³

Appendix 4.4e Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

Overall Concentrations

Ten assessment points (ASRs G1-G10) at the boundary of the enclosure are chosen.

Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 10 assessment points at different levels are calculated. The highest concentration among the ten assessment points is assumed to be the background concentration inside the proposed enclosure section.

	1100.0	
Elevation		ntrations (ug/m3) at Various Level
	(mAG)	NO ₂
G1	0.0	263
	4.0	306
	8.0	329
G2	0.0	280
	4.0	309
	8.0	337
G3	0.0	297
	4.0	312
	8.0	323
G4	0.0	306
	4.0	292
	8.0	270
G5	0.0	271
	4.0	272
	8.0	271
G6	0.0	249
	4.0	246
	8.0	233
G7	0.0	240
	4.0	246
	8.0	234
G8	0.0	594
	4.0	480
	8.0	362
G9	0.0	358
	4.0	329
	8.0	276
G10	0.0	269
	4.0	258
	8.0	229

Therefore, the NO2 background concentration inside the two-way enclosure (G1-G5 & G8-G10) is and, the NO2 background concentration inside the one-way enclosure (G6-G7) is

594 ug/m³ 249 ug/m³

Appendix 4.4e Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Tuen King Building

For the Two-way Enclosure,			
Maximum NO2 concentration inside the Enclosure	=	31 + 594	
(Normal Speed)	=	625	ug/m3
Maximum NO2 concentration inside the Enclosure	=	112 + 594	
(Worse Case)	=	706	ug/m3
For the One-way Enclosure,			
Maximum NO2 concentration inside the Enclosure	=	35 + 249	
(Normal Speed)	=	284	ug/m3
Maximum NO2 concentration inside the Enclosure	=	129 + 249	
(Worse Case)	=	378	ug/m3
Overall,			
Total Maximum NO2 concentration inside enclosure of			
Tuen Mun Road near Tuen King Building (Normal Speed)	=	625 + 284	
. ,	=	909	ug/m3
Total Maximum NO2 concentration inside			
Tuen Mun Road near Tuen King Building (Worse Case)	=	706 + 378	
	=	1084	ug/m3