Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Kam Fai Garden

One-way Enclosure - Normal Condition

Tunnel Parameter

Length L = 180 = 8 Height H m Width W = 15 m Cross-sectional area A_T = H x W = 120 m² Perimeter P 46 m

Emission Data

Traffic Breakdown (%)

						INOII-												
Tunnel					Non-	franchised	Non-			Diesel					Single Deck	Double Deck		
Traffic (Link			Petrol PC		franchised	Buses 6.4-	franchised	Private Light	Private Light	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light	
no.)	Traffic flow (veh/hr)	Motor Cycles	&LGV	Taxi	Buses <6.4t	15t	Buses >15t	Buses <3.5t	Buses >3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses	
177	5514	0.02	0.40	0.05	0.00	0.03	0.00	0.00	0.01	0.01	0.08	0.06	0.25	0.01	0.00	0.03	0.05	
NOx Emission F	actor (g/mile)	1.14	0.28	0.28	0.00	7.07	0.00	0.00	0.82	1.07	0.59	3.76	7.89	10.01	5.44	5.81	0.77	

NO₂ emission rate = total NO_x emission factor x traffic flow x tunnel length x NO₂ conversion factor where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_x and 5% of NO₂/NO_x for tunnel air)

Weighted NOX E.F. (g/km/veh) 1.826 g/km/veh NO₂ emission factor inside tunnel (g/s) 6.29E-02 g/sec

NO₂ emission factor transferred from Enclosure I (g/s) = 20% x IJ (Note: For the amount of IJ in normal condition, please refer to Appendix 4.4)

1.11E-02 g/sec 7.40E-02

Total NO2 emission (g/s)

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

W /m	H/m	L/m
1.7	1.5	4.6
1.7	1.5	4.6
1.7	1.5	4.6
2.5	3.5	12
2.5	3.5	12
2.5	3.5	12
2	3	6.5
2	3	6.5
2.1	1.6	5.2
2.1	1.6	5.2
2.1	1.6	5.2
2.5	4.6	16
2.5	4.6	16
2.5	3.5	12
2.5	4.6	12
2	3	6.5
	1.7 1.7 1.7 2.5 2.5 2.5 2 2 2.1 2.1 2.1 2.5 2.5 2.5 2.5 2.5	1.7 1.5 1.7 1.5 1.7 1.5 1.7 1.5 2.5 3.5 2.5 3.5 2.5 3.5 2 3 2.1 1.6 2.1 1.6 2.5 4.6 2.5 4.6 2.5 3.5 2.5 4.6 2.5 4.6

^{*} No dimensions for motor cycles and non-franchised buses are provided.

Nominal cross-sectional area $A_C = (1.7^*1.5^*0.02) + (1.7^*1.5^*0.04) + (1.7^*1.5^*0.04) + (1.7^*1.5^*0.04) + (2.5^*3.5^*0.03) + (2.5^*3.5^*0.03) + (2.1^*1.6^*0.01) + (2.1^*1.6^*0.08) + (2.1^*1.6^*0.06) + (2.5^*4.6^*0.02) + (2.5^*4.6^*0.01) + (2.5^*4.6^*0.0$

= 5.6600

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Kam Fai Garden

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

$$F_c = \frac{1}{2} \rho \left(V_c - V_T \right)^2 C_d A_c N$$

Resisting Force by tunnel:

$$F_{T} = \frac{1}{2}\rho V_{T}^{2} \left(K_{in} + K_{out} + \frac{fL}{D}\right) A_{T}$$

External Wind at the Entrance and Exit Portals:

$$F_W = \frac{1}{2} \rho \ C_W (V_W \cos \theta)^2 A_T$$

where ρ = Air density 1.2 kg/m³

= Velocity of vehicle, m/s

= Velocity of air flow in tunnel, m/s

= Vehicle drag coefficient 0.645 Vehicle frontal area 5.66 m²

= No. of vehicles in tunnel

 Inlet loss coefficient 0.5 K_{out} = Outlet loss coefficient 1.0 = Tunnel friction factor 0.0155 = Length of tunnel 180 m

= Hydraulic diameter of tunnel = 4A_T/P = 10.4347826 m, P is the Perimeter of tunnel

= Cross-sectional area of tunnel 120 m² = External wind coefficient 0.3

= Velocity of wind at Tuen Mun Station 2.36 m/s (Weighted average of 2006 Tuen Mun Station data)

= Angle of the wind velocity component parallel to the roadway

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance : $F_C - F_T - F_w = 0$

 $a V_T^2 + b V_T + c = 0$ Solving the equation,

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For normal traffic condition

$$\begin{array}{cccc} traffic flow \, Q & = & 1.531666667 \ veh/s \\ Vehicle speed \, V_{C} & = & 50 \ km/h \\ & = & 13.88888889 \ m/s \\ Number of vehicles in tunnel \, N & = & QL/V_{C} \\ Solving for \, V_{T} \, by \, equation \, (1) & & 10.000 \end{array}$$

a = -139.62b = -2013.00

c = 13779.40tunnel air flow velocity V_T = 5.065527839 m/sec -19.483499 m/sec

Inside tunnel concentration = emission rate / (tunnel air flow x tunnel cross-sectional area) 122 ug/m³ NO_2

Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Kam Fai Garden

One-way Enclosure - Worse Condition

Tunnel Parameter

Length L	= 180	m	
Height H	= 8	m	
Width W	= 15	m	
Cross-sectional area A _T	= H x W =		120 m ²
Perimeter P	=	46 m	

Emission Data

Traffic Breakdown (%)

						Non-											
Tunnel					Non-	franchised	Non-			Diesel					Single Deck	Double Deck	
Traffic (Link			Petrol PC		franchised	Buses 6.4-	franchised	Private Light	Private Light	PC&LGV	Diesel LGV	Diesel LGV			Franchised	Franchised	Public Light
no.)	Traffic flow (veh/hr)	Motor Cycles	&LGV	Taxi	Buses <6.4t	15t	Buses >15t	Buses <3.5t	Buses >3.5t	<2.5t	2.5-3.5t	>3.5t	HGV<15t	HGV>15t	Buses	Buses	Buses
177	5514	0.02	0.40	0.05	0.00	0.03	0.00	0.00	0.01	0.01	0.08	0.06	0.25	0.01	0.00	0.03	0.05
NOx Emission F	Factor (g/mile)	1.02	0.38	0.38	0.00	10.41	0.00	0.00	1.21	1.55	0.86	5.57	11.82	15.06	9.45	10.26	1.14

 NO_2 emission rate = total NO_X emission factor x traffic flow x tunnel length x NO_2 conversion factor where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_X and 5% of NO_Z/NO_X for tunnel air)

Weighted NOX E.F. (g/km/veh) = 2.737 g/km/veh NO₂ emission factor inside tunnel (g/s) = 9.43E-02 g/sec NO₂ emission factor transferred from Enclosure I (g/s) = 20 $^{\circ}$

NO₂ emission factor transferred from Enclosure I (g/s) = 20% x IJ (Note: For the amount of IJ in worse condition, please refer to Appendix 4.4) = 1.80E-02 g/sec

Total NO2 emission (g/s) = 1.12E-01

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W /m	H/m	L/n
Motor Cycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Buses <6.4t	2.5	3.5	12
Non-franchised Buses 6.4-15t	2.5	3.5	12
Non-franchised Buses >15t	2.5	3.5	12
Private Light Buses <3.5t	2	3	6.5
Private Light Buses >3.5t	2	3	6.5
Diesel PC&LGV <2.5t	2.1	1.6	5.2
Diesel LGV 2.5-3.5t	2.1	1.6	5.2
Diesel LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Buses	2	3	6.5

^{*} No dimensions for motor cycles and non-franchised buses are provided.

Nominal cross-sectional area $A_{\mathbb{C}} = (1.7^*1.5^*0.02) + (1.7^*1.5^*0.02) + (1.7^*1.5^*0.05) + (2.5^*3.5^*0.03) + (2.3^*0.01) + (2.1^*1.6^*0.01) + (2.1^*1.6^*0.08) + (2.1^*1.6^*0.06) + (2.5^*4.6^*0.25) + (2.5^*4.6^*0.01) + (2.5^*4.6^*0.03) + (2^*3^*0.05) + (2.5^*4.6^*0.03) +$

 $= 5.6600 \text{ m}^2$

^{*} For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.

Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Kam Fai Garden

Tunnel Airflow

For Uni-directional Traffic.

Push Force by vehicles:

$$F_{C} = \frac{1}{2} \rho (V_{C} - V_{T})^{2} C_{d} A_{C} N$$

Resisting Force by tunnel:

$$F_T = \frac{1}{2}\rho \ V_T^2 \left(K_{in} + K_{out} + \frac{fL}{D}\right) A_T$$

External Wind at the Entrance and Exit Portals:

$$F_W = \frac{1}{2} \rho C_W (V_W \cos \theta)^2 A_T$$

1.2 kg/m³ = Air density Velocity of vehicle, m/s V_T = Velocity of air flow in tunnel, m/s Vehicle drag coefficient 0.645 Vehicle frontal area 5.66 m² = No. of vehicles in tunnel 0.5 Inlet loss coefficient Outlet loss coefficient 1.0 Tunnel friction factor 0.0155 Length of tunnel 180 m = Hydraulic diameter of tunnel = 4A_T/P = 10.4347826 m, P is the Perimeter of tunnel

 A_T = Cross-sectional area of tunnel = 120 m²

C_W = External wind coefficient = 0.3

V_{W(ref)} = Velocity of wind at Tuen Mun Station = 2.36 m/s (Weighted average of 2006 Tuen Mun Station data)

 θ = Angle of the wind velocity component parallel to the roadway

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance : $F_C - F_T - F_w = 0$

Solving the equation,

$$a V_T^2 + b V_T + c = 0$$

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For congested traffic condition

tunnel air flow velocity
$$V_T = 1.346691391 \text{ m/sec}$$
 or 20.2942365 m/sec (rejected)

Inside tunnel concentration = emission rate / (tunnel air flow x tunnel cross-sectional area) NO_2 = 695 ug/m^3

Appendix 4.4h Detailed Calculations of In-Tunnel Air Quality along Tuen Mun Road Town Centre Section near Kam Fai Garden

Overall Concentrations

Four assessment points (ASRs J1-J4) at the boundary of the enclosure are chosen.

Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the four assessment points is assumed to be the background concentration inside the proposed enclosure section.

Elevation	NO2 Concentrations (ug/m3) at Various Levels								
	(mAG)	NO_2							
J1	0.0	392							
	4.0	358							
	8.0	302							
J2	0.0	434							
	4.0	381							
	8.0	316							
J3	0.0	288							
	4.0	308							
	8.0	307							
J4	0.0	236							
	4.0	240							
	8.0	239							

Therefore, the NO2 background concentration inside the enclosure is

434 ug/m³

Total Maximum NO2 concentration inside enclosure of Tuen Mun Road near Kam Fai Garden (Normal Speed)	= =	122 + 434 556	ug/m3
Total Maximum NO2 concentration inside enclosure of Tuen Mun Road near Kam Fai Garden (Worse Case)	= =	695 + 434 1129	ug/m3