

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for June 2017

[07/2017]

	Name	Signature
Prepared & Checked:	Y T Tang	Cagillatin
Reviewed, Approved and Certified:	Echo Leong (ETL)	Envloor

Version:	Rev. 0	Date:	14 July 2017
----------	--------	-------	--------------

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_5586L.17

14 July 2017

By Fax (3698 5999) and By Post

Ove Arup & Partners Hong Kong Ltd. Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong

Attention: Mr. Paul Appleton

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)

Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and

Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2010/02 - HZMB HKBCF - Reclamation Works Monthly Environmental Monitoring & Audit Report for June 2017

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for June 2017 certified by the ET Leader (ET's ref.: "60249820/C/RMKY17071401" dated 14 July 2017) and provided to us via e-mail on 14 July 2017.

We are pleased to inform you that we have no further comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 5.4 of EP-353/2009/K and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only). Please be reminded that our verification of this report does not release any obligations under the EM&A Manual or under the applicable Environmental Permit(s) for this Project.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of

Ramboll Environ Hong Kong Limited

Raymond Dai

Independent Environmental Checker

c.c. HyD Mr. Vico Cheung (By Fax: 3188 6614)

 HyD
 Mr. Wai-Ping Lee
 (By Fax: 3188 6614)

 AECOM
 Ms. Echo Leong
 (By Fax: 2317 7609)

 CHEC
 Mr. Lim Kim Chuan
 (By Fax: 2578 0413)

Internal: DY, YH, PSC, ENPO Site

			Page
EXI	ECUTI	VE SUMMARY	3
1	INTF	RODUCTION	5
	1.3	Background Scope of Report Contract Organization Summary of Construction Works Summary of EM&A Programme Requirements	5 5 6 6 7
2.	AIR	QUALITY MONITORING	8
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	8 8 9 9 11
3.	NOIS	SE MONITORING	12
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Monitoring Results	12 12 12 13 13 13
4.	WAT	ER QUALITY MONITORING	15
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Monitoring Requirements Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	15 15 15 16 17 18
5.	DOL	PHIN MONITORING	20
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Monitoring Requirements Monitoring Equipment Monitoring Frequency and Conditions Monitoring Methodology and Location Monitoring Procedures Monitoring Schedule for the Reporting Month Results and Observations	20 20 20 20 22 22 22 23
6	ENV	IRONMENTAL SITE INSPECTION AND AUDIT	26
	6.2 6.3 6.4 6.5 6.6	Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Notification of Summons and Successful Prosecutions	27 28 29 30 30
7	FUT	URE KEY ISSUES	31
	7.1 7.2 7.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	31 32 32
8	CON	ICLUSIONS AND RECOMMENDATIONS	33

	No. HY/2010/02	
-	g-Zhuhai-Macao Bridge g Boundary Crossing Facilities – Reclamation Works	Monthly EM&A Report for June 20
8.1	Conclusions	Noticity Livida Report for June 20
8.2	Recommendations	3
List of Ta	bles	
Table 1.1	Contact Information of Key Personnel	
Table 2.1	Air Quality Monitoring Equipment	
Table 2.2	Locations of Impact Air Quality Monitoring Stations	
Table 2.3	Air Quality Monitoring Parameters, Frequency and Dura	
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Repo	
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Rep	porting Period
Table 3.1	Noise Monitoring Equipment	
Table 3.2	Locations of Impact Noise Monitoring Stations	
Table 3.3	Noise Monitoring Parameters, Frequency and Duration	
Table 3.4	Summary of Construction Noise Monitoring Results in the	ne Reporting Period
Table 4.1	Water Quality Monitoring Equipment	
Table 4.2	Impact Water Quality Monitoring Parameters and Frequ	ency
Table 4.3	Impact Water Quality Monitoring Stations	
Table 4.4	Laboratory Analysis for Suspended Solids	
Table 4.5	Summary of Water Quality Exceedances	
Table 5.1	Dolphin Monitoring Equipment	(Dravidad by AECD)
Table 5.2	Impact Dolphin Monitoring Line Transect Co-ordinates (
Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effo	in by Area and Beauton Sea State
Table 5.4 Table 5.5	Impact Dolphin Monitoring Survey Detail June 2017 The Encounter Rate of Number of Dolphin Sightings & Tolphin Sightin Sightings & Tolphin Sightings & Tolphin Sightings & Tolphin Sighting	Total Number of Delphine per Area
Table 5.5	Summary of Environmental Licensing and Permit Status	
Table 0.1	Summary of Environmental Licensing and Fermit Status	5
Figures		
Figure 1	General Contract Layout Plan	
Figure 2	Impact Air Quality and Noise Monitoring Stations and V	Vind Station
Figure 3	Impact Water Quality Monitoring Stations	
Figure 4	Impact Dolphin Monitoring Line Transect Layout Map	
Figure 5	Impact Dolphin Monitoring Survey Efforts and Sightings	s in June 2017
Figure 6	Environmental Complaint Handling Procedures	

List of Appendices

Appenaix A	Contract Organization for Environmental Works
Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and their Graphical Presentation
Appendix H	Meteorological Data for Monitoring Periods on Monitoring Dates in June 2017
Appendix I	Impact Construction Noise Monitoring Results and their Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and their Graphical Presentation
Appendix K	Impact Dolphin Monitoring Survey Sighting Summary
Appendix L	Event Action Plan
Appendix M	Monthly Summary of Waste Flow Table
Appendix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful
	Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated Project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.

Ramboll Environ Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2017. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Maintenance of silt curtain

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring5 sessions1-hour TSP monitoring5 sessionsNoise monitoring4 sessionsImpact water quality monitoring13 sessionsImpact dolphin monitoring4 surveysJoint Environmental site inspection5 sessions

Breaches of Action and Limit Levels for Air Quality

For impact air quality monitoring, no exceedance of 1-Hour TSP or 24-Hour TSP was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Summary of Impact Dolphin Monitoring

Dolphin surveys were conducted on 12, 15, 26 and 27 June 2017. A total of 206.3km of transect line was conducted; 196.3 km of transect line was travelled during Beaufort Sea State 3 or better (favourable water conditions). A total of 2 sightings were made, both "opportunistic" sightings, one sighting was made on 12 June 2017 and one sighting was made on 26 June 2017 in WL. One group was feeding and the other was engaged in multiple activities. Two resightings were observed in May 2017, both on 11 May 2017 in NWL. HZMB 098 (NL 104) is a well-known individual that was sighted 10 different days during impact monitoring. The last time this individual was noted was January 2017. HZMB 054 (CH34) is also a well-known individual and has been sighted 15 times during impact monitoring. The last time this individual was noted was November 2016.

Complaint, Notification of Summons and Successful Prosecution

No complaint, notification of summons or prosecution was received in the reporting period.

Reporting Change

No reporting change in this reporting month

Future Key Issues

Key issues to be considered in the coming month included:

- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic:
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G), January 2015 (EP-353/2009/H), July 2015 (EP-353/2009/I), February 2016 (EP-353/2009/J) and April 2016 (EP-353/2009/K). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D)
- 1.1.4 The Project is a designated Project and is governed by the current permits for the Project, i.e. the amended EPs issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Contract Specific EM&A Manual, which included all Contract -relation contents from the original EM&A Manuals for the Contract, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.
- 1.1.8 Ramboll Environ Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012.
- 1.1.11 According to the Contract Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Contract commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the sixty-fourth monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Contract in June 2017.

1.3 Contract Organization

1.3.1 The Contract organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Paul Appleton	3698 5889	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(Ramboll Environ Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3465 2850	3465 2899
Contractor (China Harbour	Environmental Officer	Louie Chan	3693 2254	2578 0413
Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:

Marine-base

- Maintenance of silt curtain

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Contract is shown in Appendix B.
- 1.4.4 The general layout plan of the Contract site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2. AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Contract Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Contract Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Contract Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 The impact air quality monitoring station AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) has been relocated to AMS7 (Hong Kong SkyCity Marriott Hotel) on 30 December 2015. The impact air quality monitoring was conducted at AMS7 (Hong Kong SkyCity Marriott Hotel) since January 2016, action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel has been adopted for this air quality monitoring location.

Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 **Locations of Impact Air Quality Monitoring Stations**

Monitoring Station	Location	Description
AMS2	Tung Chung Development Pier	Rooftop of the premise
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise

^{*}Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the Contract. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP	Three times every 6 days while the highest dust impact was expected	
24-hour TSP	Once every 6 days	

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - No two samplers should be placed less than 2 meters apart.
 - The distance between the HVS and any obstacles, such as buildings, was at least twice (iii) the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - No furnace or incinerator flues nearby. (vi)
 - Airflow around the sampler was unrestricted. (vii)
 - Permission was obtained to set up the samplers and access to the monitoring stations. (viii)
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- Glass fibre filters, G810 were labelled and sufficient filters that were clean and without (i) pinholes were selected.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. (ii) The conditioning environment temperature was around 25 °C and not variable by more

than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.

- (xi) Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in June 2017 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	71	68-75	374	500
AMS3B	71	67-74	368	500
AMS7	71	67-75	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	25	16-39	176	260
AMS3B	19	12-26	167	260
AMS7	35	29-45	183	260

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3. NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Contract Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Contract Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station Location		Description		
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise		
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.		

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). Leq, L10 and L90 would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 07:00 1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in June 2017 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
NMS2	66	66-67*	75
NMS3B	66	65-69*	70/65^

^{*+3}dB(A) Façade correction included

- 3.7.2 The measured noise level on 5 June 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works is 63.4 dB(A) which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.
- 3.7.3 The measured noise level on 16 June 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it was below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.
- 3.7.4 Other major noise sources during the noise monitoring included construction activities of the Contract, construction activities by other contracts and nearby traffic noise. Nonetheless, the Contractor of Contract No.HY/2010/02 was reminded to continue to properly implement all noise mitigation measures.
- 3.7.5 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4. WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Contract Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidity Meter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Contract Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS10(N), IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3, SR4(N), SR5(N), SR6, SR7, SR10A&SR10B(N)	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Contract Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Due to marine work of the Expansion of Hong Kong International Airport into a Three-Runway System (3RS Project), original locations of water quality monitoring stations SR5, IS10 and CS(Mf)3 are enclosed by works boundary of 3RS Project. Alternative impact water quality monitoring stations, naming as SR5(N), IS10(N) and CS(Mf)3(N) was approved in 12 May 2017 and were adopted starting from 15 May 2017 to replace the original locations of water quality monitoring. For details and status of the proposed changes, please refer to section 6.4.9
- 4.4.4 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.5 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10(N)	Impact Station (Close to HKBCF construction site)	812942	820881
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5(N)	Sensitive receivers (Artificial Reef in NE Airport)	812569	821475
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3(N)	Control Station	808814	822355
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004

Station	Description	East	North
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	eters Instrumentation Analytical Method		Reporting Limit	Detection Limit		
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L		

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

- 4.5.3 Maintenance and Calibration
 - (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
 - (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
 - (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

- 4.6.1 The schedule for impact water quality monitoring in June 2017 is provided in Appendix F.
- 4.6.2 Due to Tropical Cyclone Warning Signal, No. 3 was issued by Hong Kong Observatory at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on June 2017 was cancelled. No substitution monitoring was provided.

4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M)	DO (B	ottom)	Tur	bidity		SS	To	otal
	20001	Ebb	Flood	Ebb	Floo d	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
133	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Action	0	0	0	0	0	0	0	0	0	0
13(111)0	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
156	Limit	0	0	0	0	0	0	0	0	0	0
IC/Mf\0	Action	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Limit	0	0	0	0	0	0	0	0	0	0
IC40(NI)	Action	0	0	0	0	0	0	0	0	0	0
IS10(N)	Limit	0	0	0	0	0	0	0	0	0	0
IC/Mf)11	Action	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(111)16	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1317	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
SKS	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
3K4(IV)	Limit	0	0	0	0	0	0	0	0	0	0
SR5(N)	Action	0	0	0	0	0	0	0	0	0	0
SK5(N)	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0

Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for June 2017

Station Exceedance Level		DO (S&M)	DO (B	ottom)	Tur	bidity		SS	Te	otal
	Level	Ebb	Flood	Ebb	Floo d	Ebb	Flood	Ebb	Flood	Ebb	Flood
	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
SK1	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
SKIUA	Limit	0	0	0	0	0	0	0	0	0	0
SR10B	Action	0	0	0	0	0	0	0	0	0	0
(N)	Limit	0	0	0	0	0	0	0	0	0	0
Total	Action	0	0	0	0	0	0	0	0		0
	Limit	0	0	0	0	0	0	0	0		0

Note: S: Surface; and M: Mid-depth.

- 4.7.2 There was no exceedance recorded at all monitoring stations in the reporting month.
- 4.7.3 The event action plan is annexed in Appendix L.

5. DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

	HK Grid	System	Long Lat	in WGS84
ID	Х	Y	Long	Lat

Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for June 2017

1 804671 815456 113.870287 22.277676 1 804671 831404 113.869975 22.421696 2 805476 820800 113.878079 22.32595 2 805476 826654 113.878079 22.37881 3 806464 821150 113.887615 22.32913 3 806464 822911 113.897650 22.34503 4 807518 821500 113897663 22.40211 5 808504 821850 113.907397 22.33548 5 808504 821850 113.907397 22.33548 5 808504 828602 113.907252 22.39646 6 809490 822150 113.916965 22.338216 6 809490 825352 113.916884 22.367126 7 810499 822000 113.926749 22.336706 8 811508 821123 113.936688 22.36046 8 811508 824254) - - - - - - - - -
2 805476 820800 113.878079 22.32595 2 805476 826654 113.878079 22.37881 3 806464 821150 113.887615 22.32913 3 806464 822911 113.887550 22.34503 4 807518 8221500 113.897633 22.323230 4 807518 829230 113.897663 22.40211 5 808504 821850 113.907397 22.335486 6 808504 828602 113.907252 22.396466 6 809490 822150 113.916965 22.338216 6 809490 822352 113.916965 22.3367126 7 810499 822000 113.926749 22.3367126 7 810499 824613 113.936638 22.36046 8 811508 821123 113.936486 22.35724 9 812516 821303 113.946320 22.33606 9 812516 821303)
2 805476 826654 113.878079 22.378814 3 806464 821150 113.887615 22.32913 3 806464 821150 113.887550 22.34503 4 807518 821500 113.897663 22.40211 5 808504 821850 113.907397 22.33548 5 808504 828602 113.907252 22.39646 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367120 7 810499 822000 113.926688 22.336702 7 810499 822000 113.936688 22.336046 8 811508 821123 113.936539 22.328960 8 811508 821123 113.936486 22.35724 9 812516 821303 113.946320 22.33600 9 812516 821303 113.946279 22.35725 10 813525 820827)
2 805476 826654 113.878079 22.378814 3 806464 821150 113.887615 22.32913 3 806464 822911 113.887550 22.34503 4 807518 821500 113897833 22.33230 4 807518 829230 113.897663 22.402111 5 808504 821850 113.907397 22.33548 5 808504 828602 113.907252 22.39646 6 809490 822150 113.916965 22.338216 6 809490 825352 113.916884 22.367126 7 810499 822000 113.926749 22.336702 7 810499 824613 113.926688 22.36046 8 811508 821123 113.936486 22.33724 9 812516 821303 113.946320 22.338060 9 812516 821303 113.946279 22.35725 10 813525 820827)) }
3 806464 821150 113.887615 22.32913 3 806464 822911 113.887550 22.34503 4 807518 821500 113897633 22.33230 4 807518 829230 113.897663 22.40211; 5 808504 821850 113.907397 22.33548; 5 808504 828602 113.907252 22.33646; 6 809490 822150 113.916965 22.338216 6 809490 825352 113.916884 22.367126 7 810499 822000 113.926749 22.336706 7 810499 824613 113.926688 22.36046 8 811508 821123 113.936539 22.32896 8 811508 824254 113.936486 22.336724 9 812516 821303 113.946220 22.33606 9 812516 824254 113.946279 22.35725 10 813525 820827)) }
3 806464 822911 113.887550 22.345030 4 807518 821500 113897833 22.332306 4 807518 829230 113.897663 22.40211 5 808504 821850 113.907397 22.33548 5 808504 828602 113.907252 22.396466 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367120 7 810499 822000 113.926749 22.336708 7 810499 824613 113.926688 22.36046 8 811508 821123 113.936539 22.32896 8 811508 824123 113.936486 22.35724 9 812516 821303 113.946320 22.336060 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.304856 11 814556 818853) }
4 807518 821500 113897833 22.332306 4 807518 829230 113.897663 22.402113 5 808504 821850 113.907397 22.33548 5 808504 828602 113.907252 22.39646 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367126 7 810499 822000 113.926749 22.336705 7 810499 824613 113.926688 22.360466 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.357247 9 812516 821303 113.946320 22.336060 9 812516 824254 113.956112 22.357252 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.300485 11 814556 818853<	}
4 807518 829230 113.897663 22.402113 5 808504 821850 113.907397 22.335486 5 808504 828602 113.907252 22.396466 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367126 7 810499 822000 113.926688 22.336702 7 810499 824613 113.926688 22.36046 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.35724 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.360906 11 814556 818853 113.966125 22.304856 12 815542 818807	}
5 808504 821850 113.907397 22.335488 5 808504 828602 113.907252 22.396462 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367120 7 810499 822000 113.926749 22.336700 7 810499 824613 113.926688 22.360460 8 811508 821123 113.936539 22.328960 8 811508 824254 113.936486 22.357244 9 812516 821303 113.946320 22.330600 9 812516 824303 113.946279 22.357254 10 813525 820827 113.956112 22.326326 10 813525 824657 113.956012 22.360906 11 814556 818853 113.966155 22.304856 12 815542 818807 113.975726 22.308106 12 815542 8	
5 808504 828602 113.907252 22.396462 6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367128 7 810499 822000 113.926749 22.336708 7 810499 824613 113.926688 22.360464 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.357244 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.357255 10 813525 820827 113.956112 22.326326 10 813525 824657 113.956066 22.360906 11 814556 818853 113.966155 22.304856 11 814556 818807 113.976726 22.307826 12 815542 818807 113.975647 22.362966 13 816506	
6 809490 822150 113.916965 22.338210 6 809490 825352 113.916884 22.367120 7 810499 822000 113.926749 22.336700 7 810499 824613 113.926688 22.360464 8 811508 821123 113.936539 22.328960 8 811508 824254 113.936486 22.357244 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.357250 10 813525 820827 113.956112 22.326322 10 813525 824657 113.956066 22.360906 11 814556 818853 113.966155 22.304856 11 814556 820992 113.966125 22.37726 12 815542 818807 113.975726 22.304856 13 816506 819480 113.985072 22.314192 13 816506	
6 809490 825352 113.916884 22.367128 7 810499 822000 113.926749 22.336708 7 810499 824613 113.926688 22.360464 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.35724 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.36090 11 814556 818853 113.956066 22.30485 11 814556 820992 113.966125 22.327820 12 815542 818807 113.975726 22.30810 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985005 22.314192 13 816506 8248)
7 810499 822000 113.926749 22.336709 7 810499 824613 113.926688 22.360464 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.35724 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.360906 11 814556 818853 113.966155 22.304856 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985005 22.314192 13 816506 824859 113.995070 22.320827 14 817537	,
7 810499 824613 113.926688 22.360464 8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.35724 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956012 22.360908 11 814556 818853 113.956066 22.304858 11 814556 820992 113.966125 22.304858 12 815542 818807 113.975726 22.308108 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.995070 22.320877 14 817537 820220 113.995070 22.320805 15 818568 <td< th=""><th></th></td<>	
8 811508 821123 113.936539 22.328966 8 811508 824254 113.936486 22.35724 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327820 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.995070 22.3208277 14 817537 820220 113.995018 22.360556 15 818568 820735 114.005071 22.325556 15 818568 <	
8 811508 824254 113.936486 22.35724* 9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.357256 10 813525 820827 113.956112 22.32632* 10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304856 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277* 14 817537 820220 113.995018 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005030 22.35894*	
9 812516 821303 113.946320 22.330606 9 812516 824254 113.946279 22.357256 10 813525 820827 113.956112 22.326327 10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320863 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325560 15 818568 824433 114.005030 22.358947	
9 812516 824254 113.946279 22.35725 10 813525 820827 113.956112 22.326327 10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308108 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985005 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325556 15 818568 824433 114.005030 22.358947	
10 813525 820827 113.956112 22.32632 10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308108 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325556 15 818568 824433 114.005030 22.358947	
10 813525 824657 113.956066 22.360908 11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327826 12 815542 818807 113.975726 22.308108 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	
11 814556 818853 113.966155 22.304858 11 814556 820992 113.966125 22.327820 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	
11 814556 820992 113.966125 22.327820 12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	
12 815542 818807 113.975726 22.308109 12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.320883 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	
12 815542 824882 113.975647 22.362962 13 816506 819480 113.985072 22.314192 13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.32083 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	,
13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.32083 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325556 15 818568 824433 114.005030 22.358947	
13 816506 824859 113.985005 22.36277 14 817537 820220 113.995070 22.32083 14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325556 15 818568 824433 114.005030 22.358947	
14 817537 824613 113.995018 22.360556 15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358947	
15 818568 820735 114.005071 22.325550 15 818568 824433 114.005030 22.358943	,
15 818568 824433 114.005030 22.358947	;
	ı
4.6 04.0520 024.420 44.4.04.4420 22.224.743	,
16 819532 821420 114.014420 22.331747	
16 819532 824209 114.014390 22.356933	i
17 820451 822125 114.023333 22.338117	
17 820451 823671 114.023317 22.352084	
18 821504 822371 114.033556 22.340353	
18 821504 823761 114.033544 22.352903	
19 822513 823268 114.043340 22.348458	
19 822513 824321 114.043331 22.35797	
20 823477 823402 114.052695 22.349680	
20 823477 824613 114.052686 22.360610	
21 805476 827081 113.877878 22.382668	
21 805476 830562 113.877811 22.414103	
22 806464 824033 113.887520 22.35516 ⁴	
22 806464 829598 113.887416 22.405423	
23 814559 821739 113.966142 22.334574	
23 814559 824768 113.966101 22.361920	
24 805476 815900 113.878028 22.281702	
24 805476 819100 113.878028 22.310600	j

Remarks:

- (a) *Due to the presence of deployed silt curtain systems at the site boundaries of the Contract, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site.
- (b) Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015.
- (c) Due to marine work of the Expansion of Hong Kong International Airport into a Three-Runway System (3RS Project), original transect lines of dolphin monitoring 2, 3, 4, 5, 6 and 7 are enclosed by

works boundary of 3RS Project. Alternative dolphin monitoring transect lines 2, 3, 4, 5, 6, 7 and 24 are adopted starting from 17 May 2017 to replace the original transect lines.

(d) Coordinates for transect lines 2, 3, 4, 5, 6 and 7 have been updated and transect line 24 has been adopted in respect to the Proposal for Alteration of Transect Line of Dolphin Monitoring and Alternative Monitoring Location for Impact Water Quality Monitoring (IWQM) Stations Due to Commencement of Third Runway Project approved by EPD on 12 May 2017. The total transect length for both NEL and NWL combined is reduced to approximately 99km.

5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 24 transects in total, are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in June 2017 is provided in Appendix F.
- 5.6.2 Dolphin monitoring on 13 June 2017 was rescheduled to 15 June 2017 due to adverse weather condition.
- 5.6.3 Two surveys covering both study areas were completed.

5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 12, 15, 26 and 27 June 2017. A total of 206.3km of transect line was conducted; 196.3 km of transect line was travelled during Beaufort Sea State 3 or better (favourable water conditions). The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in June 2017 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)
	06/12/2017	NWL	2	13.3	
	06/12/2017	NWL	3	6.9	
	06/15/2017	NWL	2	23.7	
	06/15/2017	NWL	3	18.4	99.6
	06/15/2017	NEL	1	6.3	
	06/15/2017	NEL	2	28.7	
	06/15/2017	NEL	3	2.3	
	06/26/2017	NWL	1	6.5	
	06/26/2017	NWL	2	17.9	
	06/26/2017	NWL	3	29.5	
	06/26/2017	NWL	4	10	106.7
	06/26/2017	NWL	2	5.2	
	06/27/2017	NEL	1	14.1	
	06/27/2017	NEL	2	23.5	
TOTAL in June 2017					206.3

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Detail June 2017

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NWL/WL*	0	1
06/12/2017	NEL	0	0
	NWL	0	0
06/15/2017	NEL	0	0
	NWL/WL*	0	1
06/26/2017	NEL	0	0
	NWL	0	0
06/27/2017	NEL	0	0

^{*}Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL.

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

pei Aiea							
Encounter Rate of Number of Dolphin Sightings (STG)*							
Date	NEL Track (km)	NWL Track (km)	NEL Sighting s	NWL Sighting s	NEL Encounter Rate	NWL Encounter Rate	
12 & 15 June 17	37.3	62.3	0	0	0	0	
26 & 27 June 17	37.6	59.1	0	0	0	0	
Encounter Rate of Total Number of Dolphins (ANI)**							
Date	NEL Track (km)	NWL Track (km)	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate	
12 & 15 June 17	37.3	62.3	0	0	0	0	
26 & 27 June 17	37.6	59.1	0	0	0	0	

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of 2 sightings were made, both "opportunistic" sightings, one sighting was made on 12 June 2017 and one sighting was made on 26 June 2017 in WL. One group was feeding and the other was engaged in multiple activities. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.3 Two resightings were observed in May 2017, both on 11 May 2017 in NWL. HZMB 098 (NL 104) is a well-known individual that was sighted 10 different days during impact monitoring. The last time this individual was noted was January 2017. HZMB 054 (CH34) is also a well-known individual and has been sighted 15 times during impact monitoring. The last time this individual was noted was November 2016.
- 5.7.4 Noteworthy Observation1:
- 5.7.4.1 The HKBCF and adjoining "Southern Landfall" Projects effected line 11. The view of the area was partially blocked by the working vessels and in water structures which do not belong to HKBCF Reclamation Works. There are very few working vessels within the HKBCF area which unlikely belongs to this Contract and these were noted only twice during June 2017 surveys causing limited temporary effects to survey protocol and survey data collection. In time, the fixed structures which do not belong to HKBCF Reclamation Works will affect all survey protocols and dolphin ecology in the long term.
- 5.7.4.2 Fishing Vessels were noted anchored on line 1. Previously, dolphins have been known to be attracted to fishing vessels, both active and anchored, and as such the anchored vessels may have temporarily affected the dolphins distribution.
- 5.7.4.3 Travel to the northern end of lines 10 was slightly impeded by anchorages. After checking with the Contractor, there are no trans-boundary vessels that are required to anchor at northern ends of line 10 during this reporting period, as such they are unlikely to be related to this Contract. As there are variable numbers of ships in this anchorage through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.4.4 Anchored vessels (usually single) were noted on lines 1, 5, 8, 11, 13, 15, 18, 22, 23 and 24 which caused the monitoring vessel to divert slightly from the trackline or blocked the transect area view. It is unknown

_

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

there are no trans-boundary vessels that are required to anchor at lines 1, 5, 8, 11, 13, 15, 18, 22, 23 and 24 during this reporting period, as such they are unlikely to be related to this Contract. As there are variable numbers of ships in anchor on the line through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.

- 5.7.4.5 New projects, associated with the Third Runway System (3RS) works, including anchored barges and vessels, silt curtain areas and working barges, which do not belongs to this Contract, were noted on lines 1, 2, 4, 6 and 8 which severely restricted the transect area view. These projects have increased dramatically in extent and site access is totally restricted and some areas have silt curtains in place. It is considered that these new projects will affect survey protocol, survey data collection and dolphin habitat use in the long term and to a great degree.
- 5.7.4.6 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. The transect lines can no longer be accessed fully due to 3RS and a shortened set of transect lines have been approved on 12 May 2017 by the Authority.
- 5.7.4.7 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.5 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Contract. In the reporting month, 5 site inspections were carried out on 1, 8, 15, 22, 29 June 2017.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 Discoloured NRMM label was affixed on excavator and a drilling rig machine respectively, the Contractor was reminded to affix appropriate label on the excavator. As informed by Contractor, the concerned excavator was not used by this contract or other contractor. The Contractor subsequently affixed appropriate NRMM on concerned drilling rig machine. (Closed)
- 6.1.4 Inappropriate size of NRMM label affixed onto the drilling rig machine on the working platform in the vicinity of Portion E1 was observed. The contractor was reminded to affix an appropriate NRMM label. The Contractor subsequently affixed appropriate NRMM label on the concerned drilling rig machine. (Closed)

Noise

6.1.5 No relevant adverse impact was observed in the reporting month.

Water Quality

6.1.6 It was observed that silt curtain near Portion E1 was disconnected. The Contractor was reminded to reinstall silt curtain at the concerned area and provide maintenance regularly. (Pending for Contractor's rectification)

Chemical and Waste Management

6.1.7 The Contractor was reminded to clean up the site and dispose general refuse properly. (Reminder)

Landscape and Visual Impact

6.1.8 No relevant adverse impact was observed in the reporting month.

Others

6.1.9 No relevant adverse impact was observed in the reporting month.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 392kg of paper/cardboard packaging and 39m³ of others, e.g. general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.
- 6.2.5 After checking with the Contractor, surcharge material was removed off site to Macau from 27 April 2016 and it is continued in the reporting month. Surplus surcharge was exported to Macau during the reporting month. The Contractor was reminded to ensure consistency in quantities in case of any C&D material disposed off-site and/or no surcharge material removed off site.
- 6.2.6 As advised by the Contractor, no surplus surcharge was exported to Macau during the reporting month.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Contract and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid	Period	License/ Permit	Remarks
Reference			From	То	Holder	
	Environmental	EP- 353/2009/K	11/04/2016	N/A		Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities
EIAO	Permit	EP- 354/2009/D	13/03/2015	N/A	НуD	Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3
APCO	NA notification		25/07/2014		CHEC	Works Area WA1
WDO	Chemical Waste Producer Registration	5213-951- C1186-30	28/10/2015	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA1)
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA2)
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02
NCO	Construction Noise Permit	GW-RS0320- 17	11/04/2017	10/08/2017	CHEC	Reclamation Works in Contract HY/2010/02

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the mal-function period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Contract site and associated works areas throughout the construction phase.
- 6.4.7 After review, no floating grout production was in operation at any time in June 2017 for Contract No.HY/2010/02. Condition 3.26A of EP-353/2009/K for Contract No.HY/2010/02 is complied with during the reporting month.
- 6.4.8 Further to our letter (ET's letter's ref.: 60249820/rmky16033001) dated 30/3/2016 regarding the notification of silt curtain removal programme and arrangement, as informed by RSS on 18 May 2016, the Contractor provided an updated programme on 31 October 2016 to indicate the current site situation. According to CHEC's latest removal programme during the reporting month, stage 2 (east side of the perimeter silt curtain removal work has been completed and dates for the subsequent stages have also been updated in the reporting month, while the overall phasing arrangement has not changed. A notification email has been sent to IEC/ENPO to inform them that the completion of removal of perimeter silt curtain of Stages 2 and the tentative date for silt curtain removal work of stage 3, 4 and 5. With referred to previous IEC/ENPO comment received on 7 June 2016 if update of proposal was mainly on time schedule and they have no objection in principle. However prior to IEC/ENPO's reply to confirm ET's updated proposal, ET was requested to provide site photos to show ET's checking of the current site condition with respect to the reminders given in their previous letter (Our Ref.: HYDHZMBEEM00_0_4102L.16 dated 22 April 2016).
- 6.4.9 Due to the commencement of marine work of the Expansion of Hong Kong International Airport into a Three-Runway System (3RS Project), a large portion of works site boundary will be established at the northern part of the existing airport Island. The recent arrangement of works boundary of 3RS Project which delineates the boundary of the designated 3RS Project (for the indicative 3RS boundary, please refer to Figure 5). The works area of 3RS project will affect several water quality monitoring stations and the dolphin monitoring transect lines which are being used for conducting monitoring under Contract No. HY/2010/02. The EM&A Programme for the HZMB HKBCF Project will therefore be affected. As a result, a proposal was prepared by ET in accordance with condition 5.1 of EP-353/2009/K and condition 4.1 of EP-354/2009/D, to relocate water quality monitoring stations from SR5, IS10, CS(Mf)3 and alternate the transect lines of dolphin monitoring 2, 3, 4, 5, 6 and 7. A revised proposal has been updated and sent to IEC/ENPO for their further review on 24 March 2017 and IEC/ENPO verified the revised proposal on the same date. The revised proposal has been sent to authority by

project team for review and approval on 3 April 2017. The authority subsequently approved the proposal on 12 May 2017.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.4 For dolphin monitoring, Dolphin surveys were conducted on 12, 15, 26 and 27 June 2017. A total of 206.3km of transect line was conducted; 196.3 km of transect line was travelled during Beaufort Sea State 3 or better (favourable water conditions). A total of 2 sightings were made, both "opportunistic" sightings, one sighting was made on 12 June 2017 and one sighting was made on 26 June 2017 in WL. One group was feeding and the other was engaged in multiple activities. Two resightings were observed in May 2017, both on 11 May 2017 in NWL. HZMB 098 (NL 104) is a well-known individual that was sighted 10 different days during impact monitoring. The last time this individual was noted was January 2017. HZMB 054 (CH34) is also a well-known individual and has been sighted 15 times during impact monitoring. The last time this individual was noted was November 2016.
- 6.5.5 Environmental site inspection was carried out 5 times in June 2017. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.6 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 No complaint, notification of summons or prosecution was received in the reporting period.
- 6.6.2 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.3 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Contract in July and August 2017 will be * as follows:

Marine-base

- Maintenance of localized silt curtain
- Reinstatement of seawall
- Outfall installation
- Additional GI Works

Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance of Temporary Marine Access at Works Area WA2

*Construction activities in July and August 2017 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic:
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring of July 2017 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.3 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.4 Dolphin surveys were conducted on 12, 15, 26 and 27 June 2017. A total of 206.3km of transect line was conducted; 196.3 km of transect line was travelled during Beaufort Sea State 3 or better (favourable water conditions). A total of 2 sightings were made, both "opportunistic" sightings, one sighting was made on 12 June 2017 and one sighting was made on 26 June 2017 in WL. One group was feeding and the other was engaged in multiple activities. Two resightings were observed in May 2017, both on 11 May 2017 in NWL. HZMB 098 (NL 104) is a well-known individual that was sighted 10 different days during impact monitoring. The last time this individual was noted was January 2017. HZMB 054 (CH34) is also a well-known individual and has been sighted 15 times during impact monitoring. The last time this individual was noted was November 2016.
- 8.1.5 No complaint, notification of summons or prosecution was received in the reporting period.
- 8.1.6 Environmental site inspection was carried out 5 times in June 2017. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

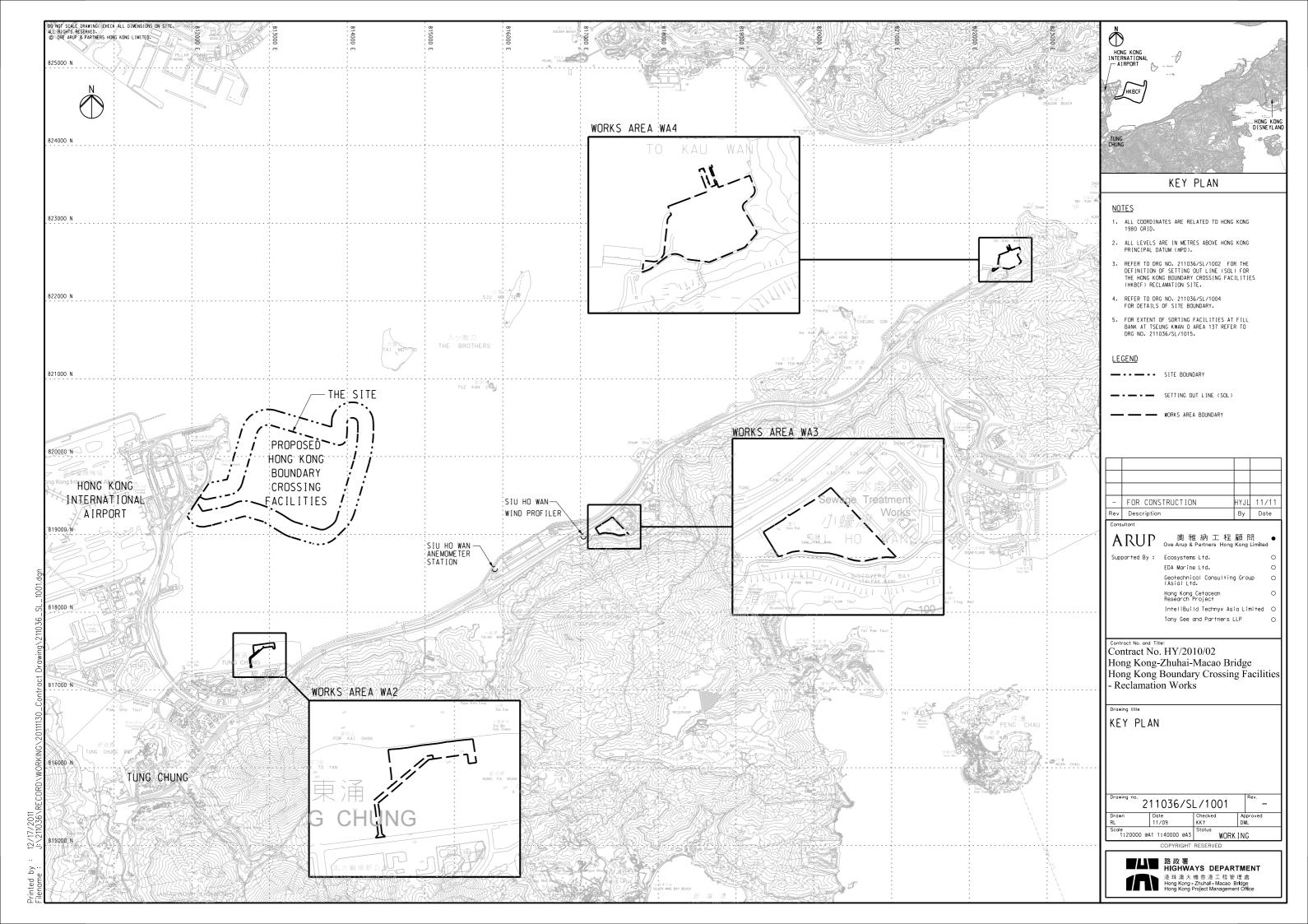
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

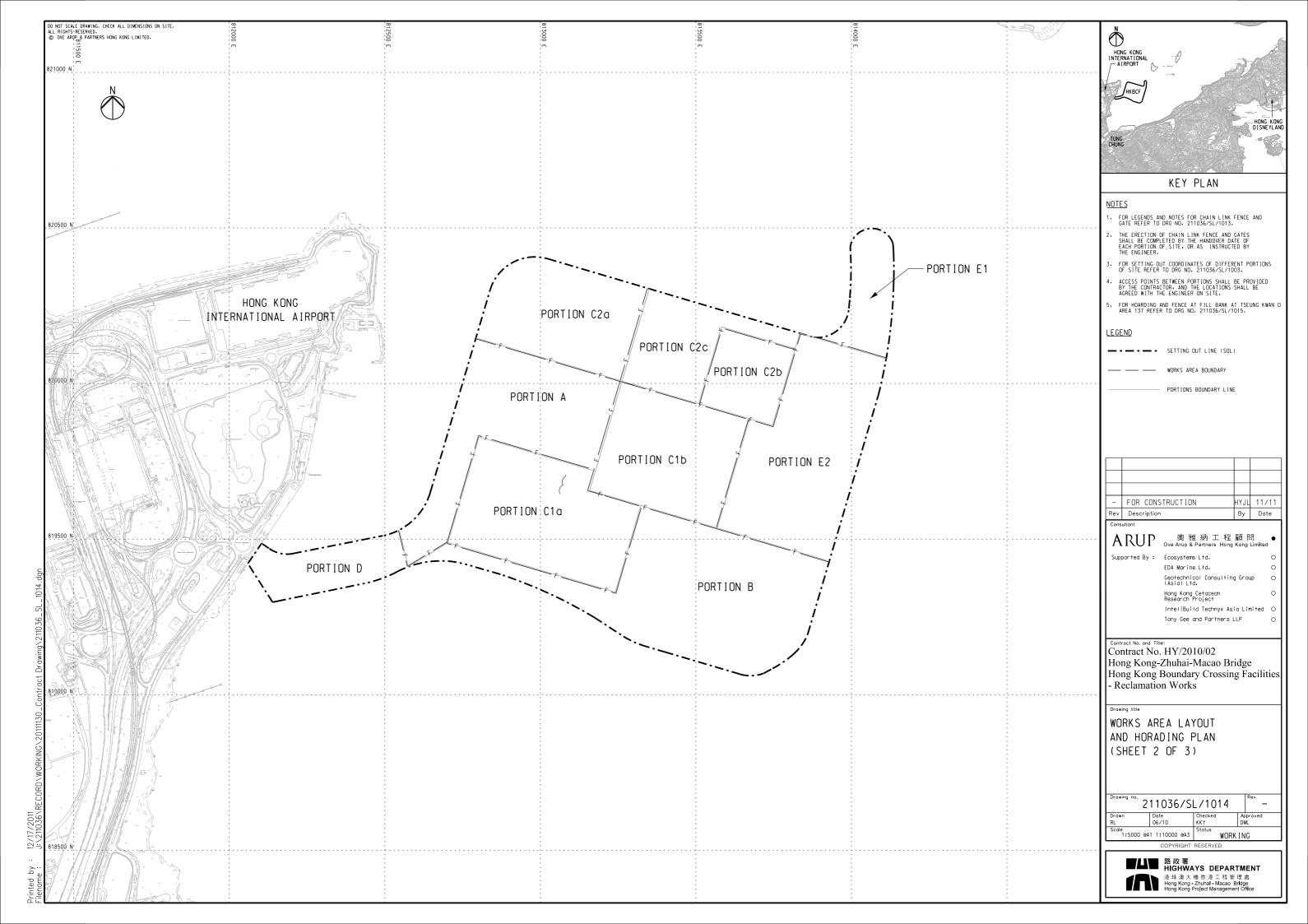
Construction Noise Impact

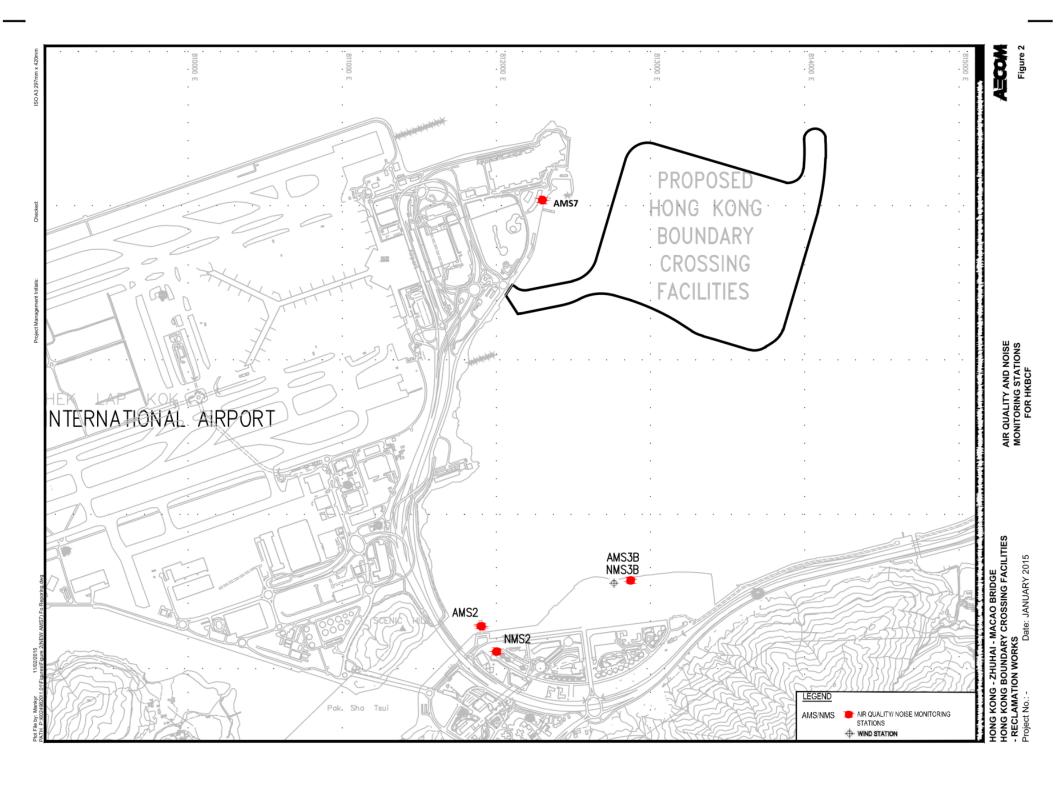
- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

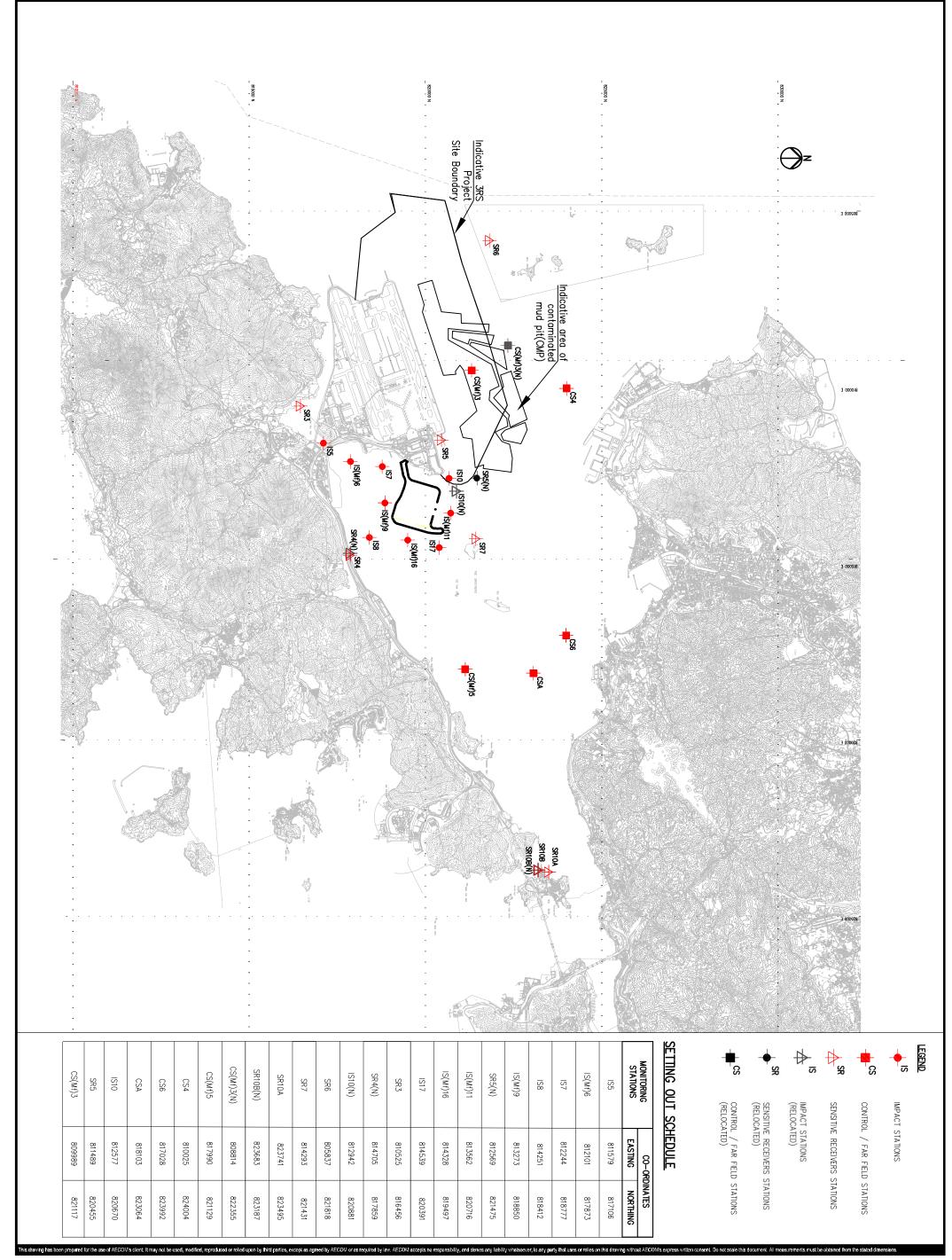
Water Quality Impact

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter u-channels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.

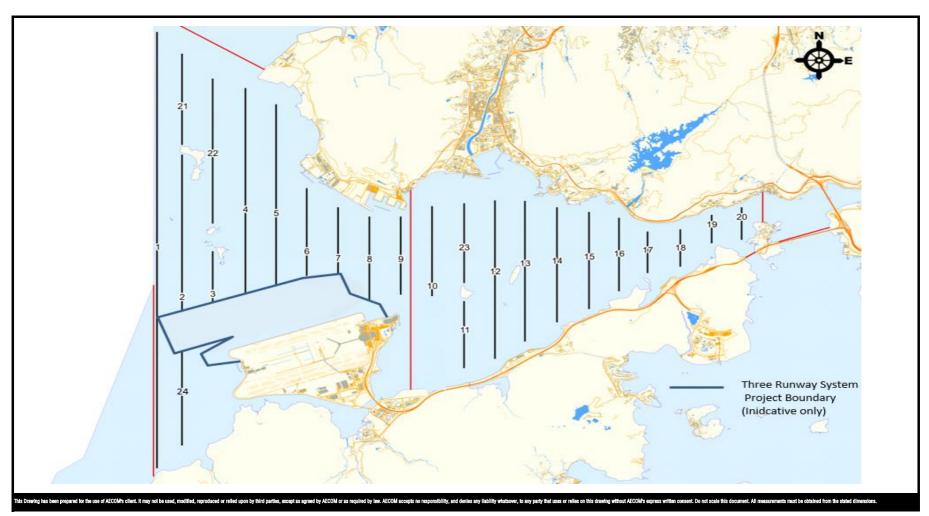

Chemical and Waste Management




- All types of wastes, both on land and floating in the sea, should be collected and sorted properly and disposed of timely and properly. They should be properly stored in designated areas within works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures,
 like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.

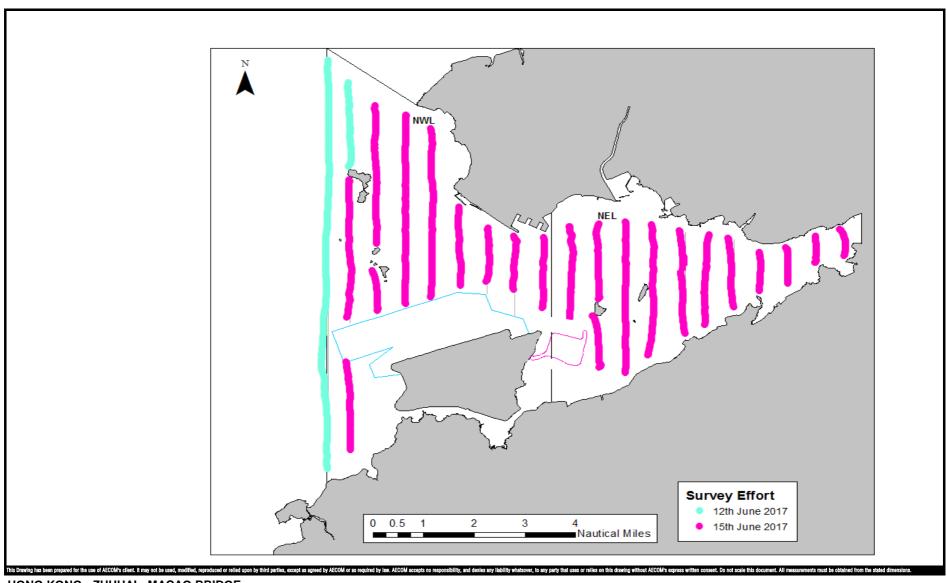

Landscape and Visual Impact

- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Project No.: 60249820 Date: AUG 2016

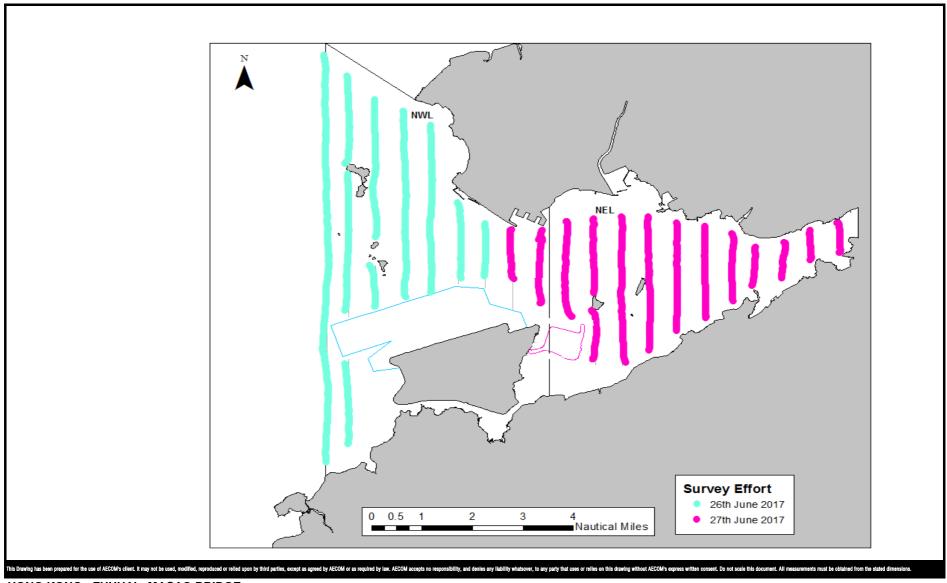
AECOM



Remarks:

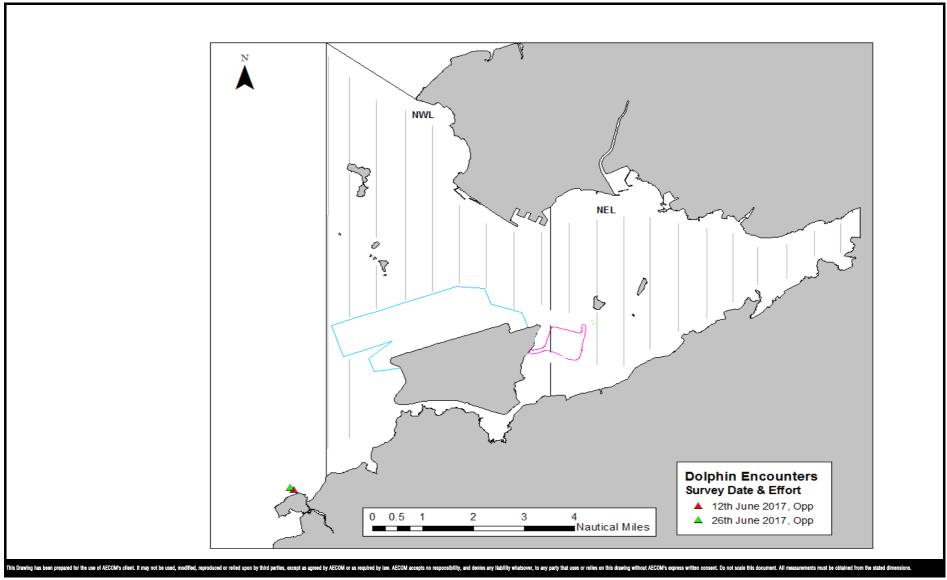
^Coordinates for transect lines 2, 3, 4, 5, 6 and 7 have been updated and line 24 was added in respect to the Proposal for Alteration of Transect Line of Dolphin Monitoring and Alternative Monitoring Location for Impact Water Quality Monitoring (IWQM) Stations due to Commencement of Third Runway Project (3RS) which was approved by EPD on 12 May 2017. The total transect length for both NEL and NWL combined is reduced to approximately 99km.
New projects, large number of barges/vessels were anchored densely at north of Three Runway System project boundary, access to the transect area on lines 1, 2, 4, 6 and 8 were blocked or affected in Jun 2017.

HONG KONG BOUNDARY CORSSING FACILITIES
- RECLAMATION WORKS
Project No.: 60249820 Date: July 2017


Impact Dolphin Monitoring
Line Transect Layout Map

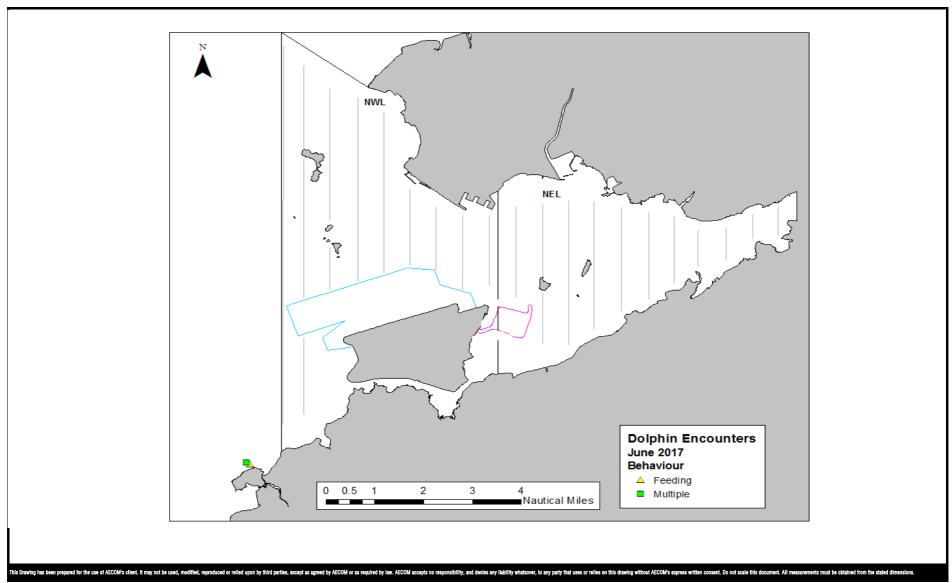
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: July 2017

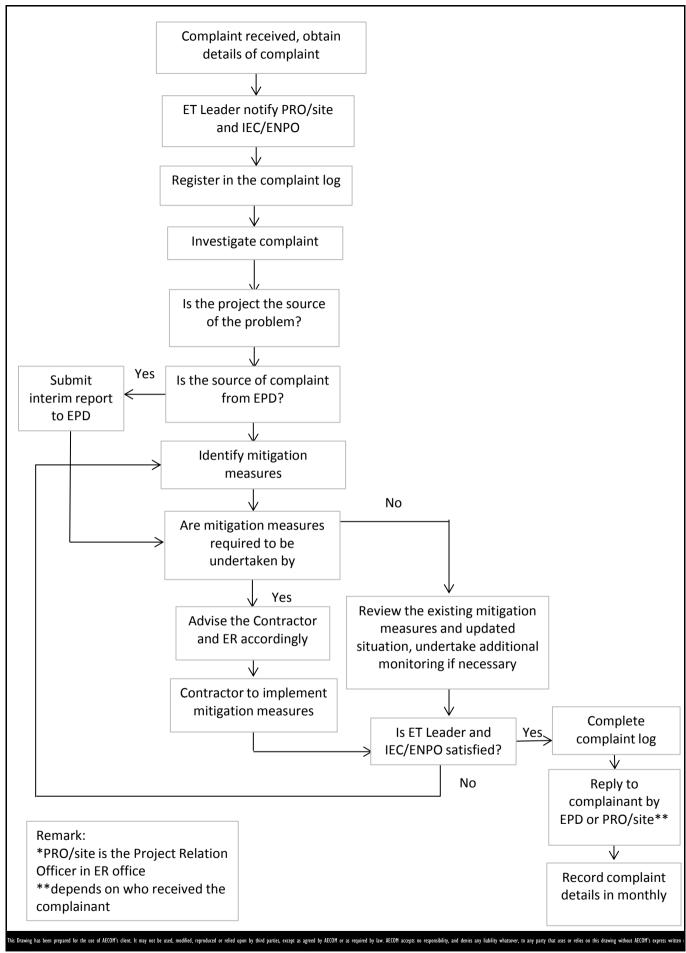

Impact Dolphin Monitoring Survey Efforts on 12 & 15 June 2017

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

- RECLAMATION WORKS Project No.: 60249820


Date: July 2017

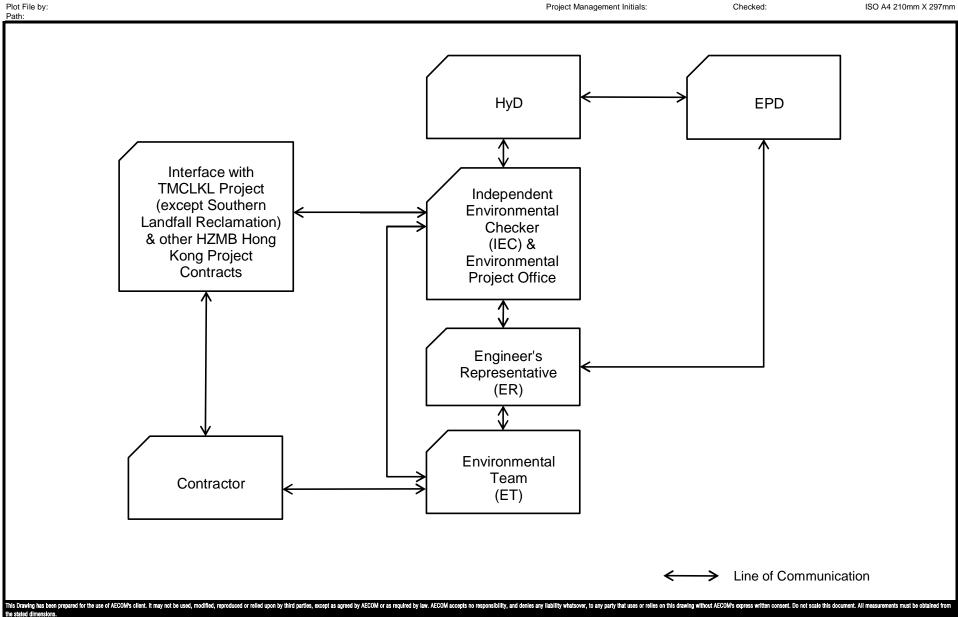
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES


- RECLAMATION WORKS

Project No.: 60249820 Date: July 2017

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: July 2017

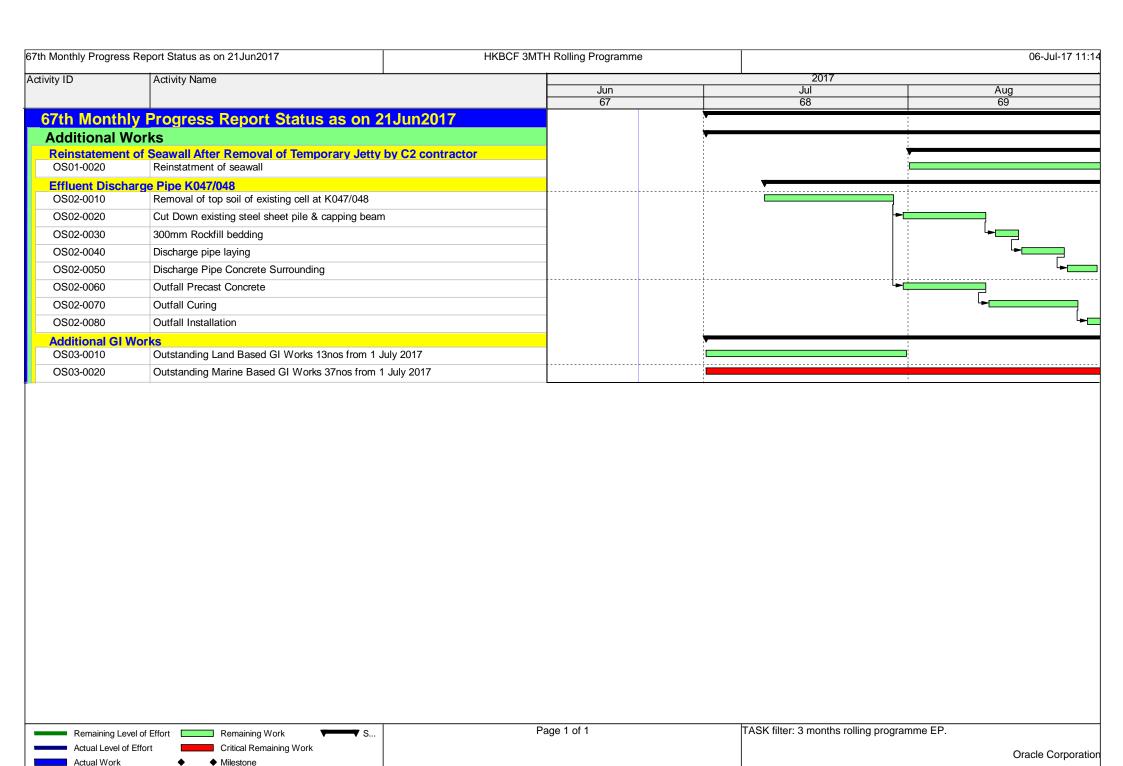

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

AECOM

- RECLAMATION WORKS

Environmental Complaint Handling Procedure

Project No.: 60249820 Date: July 2012 Figure 6



HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES -- RECLAMATION WORKS

Project No.: 60249820 Date: April 2013

Contract Organisation for Environmental Works

Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should		
		be provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 		
		Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 		
		Any skip hoist for material transport should be totally enclosed by impervious sheeting;		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material.		
		No burning of debris or other materials on the works areas is allowed;		
		Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created;		
		Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport. Materials having the potential to create dust shall not be loaded to a level higher		
		than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control		
		system; and		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable.		
		surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of HKBCFEIA and S4.8.1 of TKCLKLEIA	А3	The Contractor should undertake proper watering on all exposed spoil and associated work areas (with at least 8 times per day) throughout the construction phase.	All construction sites	V
S5.5.6.4 of HKBCFEIA and S4.11 of TKCLKLEIA	A4	Implement regular dust monitoring under EM&A programme during the construction stage.	Selected representative dust monitoring station	V
S5.5.7.1 of HKBCFEIA	A5	 The following mitigation measures should be adopted to prevent fugitive dust emissions for concrete batching plant: Loading, unloading, handling, transfer or storage of any dusty materials should be carried out in totally enclosed system; All dust-laden air or waste gas generated by the process operations should be properly extracted and vented to fabric filtering system to meet the emission limits for TSP; Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be fitted with fabric filtering system; 	All construction sites	N/A

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		
		All receiving hoppers should be enclosed on three sides up to 3m above		
		unloading point;		
		All conveyor transfer points should be totally enclosed;		
		All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of	A6	The following mitigation measures should be adopted to prevent	All construction sites	N/A
HKBCFEIA		fugitive dust emissions at barging point:		(Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bor	ne)	1	
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be		
		serviced regularly during the construction programme;		
		machines and plant (such as trucks, cranes) that may be in intermittent use		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		should be shut down between work periods or should be throttled down to a minimum;		
		 plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; 		
		silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		 material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 		
S6.4.11 of HKBCFEIA	N2	Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	All construction sites	V
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Const	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA				
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	7 111 0011011 0011011 01100	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;	All construction sites	
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of		
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		facilities with a view to recovering broken concrete effectively for recycling purpose, where possible;		
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; 		
		Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage onsite sorting of C&D materials and to minimize their generation during the course of		
		 In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and 		
S8.3.9-	WM5	The surplus surcharge should be transferred to a fill bank. CRD Wester	All construction sites	V
S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	VVIVIS	Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering	All construction sites	V

EIA Ref. EN	M&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		and wastage.		
		The Contractor should recycle as much of the C&D materials as possible on-site.		
		Public fill and C&D waste should be segregated and stored in different containers		
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of HKBCFEIA and S12.6 of TMCLKLEIA		 Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 rainfall entering; and arranged so that incompatible materials are adequately separated. Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD. 		
S8.3.16 of HKBCFEIA and S12.6 of TMCLKLEIA	WM7	 Sewage Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state, which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly. 	All construction sites	V
S8.3.17 of HKBCFEIA and S12.6 of TMCLKLEIA	WM8	 General Refuse The site and surroundings shall be kept tidy and litter free. General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		
		considered by the Contractor. In addition, waste separation facilities for paper,		
		aluminum cans, plastic bottles etc., should be provided.		
		Training should be provided to workers about the concepts of site cleanliness and		
		appropriate waste management procedure, including reduction, reuse and		
		recycling of wastes.		
		Sufficient dustbins shall be provided for storage of waste as required		
		under the Public Cleansing and Prevention of Nuisances By-laws. In addition,		
		general refuse shall be cleared daily and shall be disposed of to the nearest		
		licensed landfill or refuse transfer station.		
		All waste containers shall be in a secure area on hardstanding.		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation				
	Ref			Status				
Water Quality	Water Quality (Construction Phase)							
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have	During filling	V				
		been recommended and will comprise a series of measures that restrict the method and						
		sequencing of backfilling, as well as protection measures. Details of the measures are						
		provided below:						
		Reclamation filling for the Project shall not proceed until at least 200m of leading						
		seawall at the reclamation area formed above +2.2mPD, unless otherwise						
		agreement was obtained from EPD, except for the 300m gaps for marine access.						
		All underwater filling works shall be carried out behind seawalls to avoid dispersion						
		of suspended solids outside the Project limit;						
		Except for the filling of the cellular structures, not more than 15% public fill shall be						
		used for reclamation filling below +2.5mPD during construction of the seawall;						
		After the seawall is completed except for the 300m marine access as indicated in						
		the EPs, not more than 30% public fill shall be used for reclamation filling below						
		+2.5mPD, unless otherwise agreement from EPD was obtained;						
		Upon completion of 200m leading seawall, no more than a total of 60 filling barge						
		trips per day shall be made with a cumulative maximum daily filling rate of 60,000						
		m3 for HKBCF and TMCLKL southern landfall reclamation during the filling						
		operation; and						
		Upon completion of the whole section of seawall except for the 300m marine						

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		access as indicated in the EPs, no more than a total of 190 filling barge trips per		
		day shall be made with a cumulative maximum daily filling rate of 190,000 m3 for		
		the remaining filling operations for HKBCF and TMCLKL southern landfall		
		reclamation.		
		Floating type perimeter silt curtains shall be around the HKBCF site before the		
		commencement of marine works. Staggered layers of silt curtain shall be provided		
		to prevent sediment loss at navigation accesses. The length of each staggered		
		layers shall be at least 200m;		
		Single layer silt curtain to be applied around the North-east airport water intake;		
		The silt-curtains should be maintained in good condition to ensure the sediment		
		plume generated from filling be confined effectively within the site boundary;		
		The filling works shall be scheduled to spread the works evenly over a working day;		
		Cellular structure shall be used for seawall construction;		
		A layer of geotextile shall be placed on top of the seabed before any filling activities		
		take place inside the cellular structures to form the seawall;		
		The conveyor belts shall be fitted with windboards and conveyor release points		
		shall be covered with curtain to prevent any spillage of filling materials onto the		
		surrounding waters; and		
		An additional layer of silt curtain shall be installed near the active stone column		

Ref			
			Status
	installation points. A layer of geotextile with stone blanket on top shall be placed		
	on the seabed prior to stone column installation works.		
S9.11.1.3 of HKBCFEIA and S6.10 of TMCLKLEIA	 Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include: wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels 	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		at the onset of and after each rainstorm;		
		temporary access roads should be surfaced with crushed stone or gravel;		
		rainwater pumped out from trenches or foundation excavations should be		
		discharged into storm drains via silt removal facilities;		
		 measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; 		
		 open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms; 		
		manholes (including any newly constructed ones) should always be adequately		
		covered and temporarily sealed so as to prevent silt, construction materials or		
		debris from getting into the drainage system, and to prevent storm run-off		
		from getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in		
		order not to unduly overload the foul sewerage system;		
		all vehicles and plant should be cleaned before they leave the construction site to		
		ensure that no earth, mud or debris is deposited by them on roads. A wheel		
		washing bay should be provided at every site exit;		
		wheel wash overflow shall be directed to silt removal facilities before being		
		discharged to the storm drain;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		the section of construction road between the wheel washing bay and the public		
		road should be surfaced with crushed stone or coarse gravel;		
		wastewater generated from concreting, plastering, internal decoration, cleaning		
		work and other similar activities, shall be screened to remove large objects;		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall		
		be located under roofed areas. The drainage in these covered areas shall be		
		connected to foul sewers via a petrol interceptor in accordance with the		
		requirements of the WPCO or collected for offsite disposal;		
		the contractors shall prepare an oil / chemical cleanup plan and ensure that		
		leakages or spillages are contained and cleaned up immediately;		
		waste oil should be collected and stored for recycling or disposal, in accordance		
		with the Waste Disposal Ordinance;		
		all fuel tanks and chemical storage areas should be provided with locks and be		
		sited on sealed areas. The storage areas should be surrounded by bunds with a		
		capacity equal to 110% of the storage capacity of the largest tank; and		
		surface run-off from bunded areas should pass through oil/grease traps prior to		
		discharge to the storm water system		
S9.14 of	W3	Implement a water quality monitoring programme	At identified	V
HKBCFEIA			monitoring location	
and S6.10 of				

EIA Ref.	EM&A Log Ref	Environmental Mitigation Measures	Location	Implementation Status
TMCLKLEIA				
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable Good site practices Strict enforcement of no marine dumping Site runoff control Spill response plan 	Seawall, reclamation area	V
S10.7 of HKBCFEIA	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats; Site runoff should be desilted, to reduce the potential for suspended sediments, organics and other contaminants to enter streams and standing freshwater.	Land-based works areas	V
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E3	Good site practices, including strictly following the permitted works hours, using quieter machines where practicable, and avoiding excessive lightings during night time.	Land-based works areas	V
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA				
		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA		Treadmined and regular reaces for working vessels, avoid brothers islands		
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		

Monthly EM&A Report for Jun 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		
		rock materials and planting strip area accommodating screen buffer to		
		enhance "natural-look" of new coastline.		
S10.9 of	LV2	Mitigate Landscape Impacts	All construction site	V
TMCLKLEIA		CM7 Ensure no run-off into water body adjacent to the Project Area.	areas	
S14.3.3. 3 of	LV4	Mitigate Visual Impacts	All construction site	V
HKBCFEIA		V1 Minimize time for construction activities during construction period.	areas	
S10.9 of	LV5	Mitigate Visual Impacts	All construction site	V
TMCLKLEIA		CM6 Control night-time lighting and glare by hooding all lights.	areas	
EM&A	•		•	
S15.2.2 of	EM1	An Independent Environmental Checker needs to be employed as per the EM&A	All construction site	V
HKBCFEIA		Manual.	areas	

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Table 1 - Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
AMS2	374 μg/m³	500 μg/m³
AMS3B*	368 μg/m³	500 μg/m³
AMS6	360 μg/m³	500 μg/m³
AMS7	370 μg/m³	500 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 - Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m³
AMS3B*	167 μg/m³	260 μg/m³
AMS6	173 μg/m³	260 μg/m³
AMS7	183 μg/m³	260 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 -	
	1900 hours on normal	
NMS3B	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Table 4 – Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	<u>Bottom</u>	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and 130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Notes:

- "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau Social Cluster	
	NEL	NWL
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &
	(ANI < 70% of baseline)	(ANI < 70% of baseline)
Limit Level	[(STG < 40% of baseline) & (ANI < 40% of baseline)] AND	
	[(STG < 40% of baseline) & (ANI < 40% of baseline)]	

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau Social Cluster	
	NEL	NWL
Action Level	(STG < 4.2) &	(STG < 6.9) &
	(ANI < 15.5)	(ANI < 31.3)
Limit Level	[(STG < 2.4) & (ANI <8.9)] AND	
	[(STG < 3.9)& (ANI < 17.9)]	

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Tung Chung Dev	elopment Pier (A	MS2)	Operator:	Choi W	ing Ho	
al. Date: 12-May-17				Next Due Date:	12-Ju	ıl-17	-:
quipment No.:	A-001-78T			Serial No.	33	83	
			Ambient	Condition			
Temperatur	re, Ta (K)	302.0	Pressure, F	Pa (mmHg)		756.9	
					×		
			Orifice Transfer S	tandard Informatio	n		
Serial	No:	988	Slope, mc	1.99349	Interce	ept, bc	-0.0273
Last Calibra	tion Date:	31-May-16		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	31-May-17		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
	•						
			Calibration of	of TSP Sampler			
		C	rfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	7.1		2.64	1.34	46.0	45.60)
13 6.1			2.45	1.24	41.0	40.64	
10	4.9		2.19	1.11	35.0	34.70)
7	3.7		1.91	0.97	29.0	28.75)
5	2.8		1.66	0.85	23.0	22.80)
Slope , mw =	_	_	9989	Intercept, bw =	-15.8	8026	-
TOOTOIGEON OO		onook and roodin					
# TOD F	110 11 11 0	11.011	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	Calculation			
		irve, take Qstd =					
rom the Regress	sion Equation, the	e "Y" value accor	ding to				
		mw	v Oetd + bw = IC	x [(Pa/760) x (298/	Ta)1 ^{1/2}		
			A QUICE - DIV TO	X [(1 41 00) X (200)	1 4/1		
herefore, Set Po	oint; IC = (mw x 0	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	98)] ^{1/2} =		43.90	
							_
			3 T THE 6		1 - 140 - 1 - 1		
Remarks:	and the second s	7 (C)	And the second s				
							M 25-
							1

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Site Boundary of	f Site Office (WA2)) (AMS3B)	Operator:	Leung \	/iu Ting	
Cal. Date:	28-Apr-17			Next Due Date:	28-Jı	ın-17	-
Equipment No.:	A-001-79T	_		Serial No.	33	84	-
			Ambien	t Condition			
Temperatu	re Ta(K)	297.0		Pa (mmHg)		758.1	
Tomporata	iio, ra (ry	207.0	T TOOGGTO,	r u (mmig)		700.1	
		(Orifice Transfer S	Standard Information	on		
Serial	l No:	988	Slope, mc	1.99349	Interce	ept, bc	-0.0273
Last Calibra	ation Date:	31-May-16		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	31-May-17		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
		*11.5	Calibration	of TSP Sampler	Non-September 1986		
		0	rfice	or tor Sampler	HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CF	
18	7.0		2.65	1.34	50.0	50.02)
13	6.2		2.49	1.26	44.0	44.02)
10	5.0		2.24	1.14	37.0	37.02)
7	3.3		1.82	0.93	23.0	23.01	
5	2.3		1.52	0.77	15.0	15.01	
Slope , mw = Correlation Coe		_	9981 orate.	Intercept, bw =	-33.3	3851	_
			Set Point	Calculation			
rom the TSP Fie	eld Calibration Cu	urve, take Qstd = 1					
		e "Y" value accord					
			. 0-44 10	I/D - I700\ (000	= \1/2		
		mw x	x wsiu + DW = IC	x [(Pa/760) x (298/	i a)]		
herefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		46.87	-
				4-20 <u></u>			
Remarks:							
		The second secon	1000			w-	
,		,					
QC Reviewer:	WS CH	IAN !	Signature:	4		Date: 28/4	10/

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Hong Kong SkyC	City Marriott Hotel	(AMS7)	Operator:	Leung \	Yiu Ting	
Cal. Date:	28-Apr-17			Next Due Date:	28-Ju	ın-17	
Equipment No.:	A-001-80T	_		Serial No.	33	85	
			Ambient	t Condition			
Temperatur	re, Ta (K)	297.0	Pressure,	Pa (mmHg)		758.1	
		3. 35					
		(Orifice Transfer S	tandard Informatio	n		
Serial	No:	988	Slope, mc	1.99349	Interce	ept, bc	-0.0273
Last Calibra	tion Date:	31-May-16		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	31-May-17		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc	
			Calibration	of TSP Sampler			
		0	rfice	or Tor Sampler	HVS	S Flow Recorder	
Resistance	DIL ('S '	T					
Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (C	
18	7.0		2.65	1.34	47.0	47.0	02
13	6.2		2.49	1.26	42.0	42.0	02
10	5.0		2.24	1.14	35.0	35.0	02
7	3.4		1.84	0.94	24.0	24.0	01
5	2.3		1.52	0.77	16.0	16.0)1
By Linear Regres Slope , mw = Correlation Coef	54.6881 ficient* =		987 vrate.	Intercept, bw =	-26.8	3465	5. 5
			Set Daint	Calculation			
rom the TSP Fie	ld Calibration Cu	rve, take Qstd = 1		Calculation			
		e "Y" value accord					
Tom the regress	non Equation, the	o i value accord	iiig to				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/Л	a)] ^{1/2}		
herefore, Set Po	int; IC = (mw x 0	Qstd + bw) x [(76	0 / Pa) x (Ta / 29	98)] ^{1/2} =		44.23	
Remarks:							
Remarks: - -							

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator	ay 31, 2016 Tisch	Rootsmeter Orifice I.I	-/	438320 0988	Ta (K) - Pa (mm) -	298 - 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.3670 0.9750 0.8700 0.8260 0.6830	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

0.9957 0.9915 0.9894 0.9884 0.9831	0.7284 1.0170 1.1373 1.1967 1.4394	0.8888 1.2570 1.4054 1.4740 1.7777
intercept coefficie	(b) = ent (r) =	1.24829 -0.01727 0.99988
	0.9915 0.9894 0.9884 0.9831 Qa slope intercept coefficie	0.9915 1.0170 0.9894 1.1373 0.9884 1.1967 0.9831 1.4394 Qa slope (m) = intercept (b) =

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:	: ifacturer/Brand:			-		ust Mon	itor		
	el No.:				SIBATA				
	oment No.:			-	LD-3				
	itivity Adjustment	t Soolo S	attin		A.005.0				
Selisi	itivity Adjustineni	i Scale S	ettin	g: _	557 CP	M			
Opera	ator:			-	Mike Sh	ek (MSKI	M)		
Standa	ard Equipment								
Equip	ment:	Ri	ınnr	acht & Da	atashnick	TEOM®			
Venue					Ying Sec		ohoo!)		
Mode	77.17			1400AB	ring Sect	orluary S	crioor)		
Serial	-	-	ontro		0AB2198	00803			
			enso	-	00C1436		K _o : 1250	20	
Last C	Calibration Date*			2017	0001430	09000	No. 1250	00	
*Remar	rks: Recommend	ded interv	al fo	r hardwa	re calibra	tion is 1	vear		
	tion Result								
Sensit Sensit	tivity Adjustment tivity Adjustment	Scale Se	etting etting	g (Before g (After C	Calibration	on):):		CPM CPM	
Hour	Date	I	Time		Λ	-11	0 1 11 1		Т =
11001	(dd-mm-yy)		1 11110	3	0.00	pient	Concentration ¹	Total	Count/
	(dd iiiii yy)					dition	(mg/m³)	Count ²	Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	06-05-17	12:30	_	13:30	27.5	78	0.04741	1894	24.57
2	06-05-17	13:30		14:30	27.6	78	0.04823	1933	31.57
3	06-05-17	14:30	_	15:30	27.6	79	0.04968	1933	32.22
4	06-05-17	15:30	-	16:30	27.6	79	0.04785	1915	31.92
Note:	1. Monitoring of	lata was	mea				shnick TEOM®	1010	01.32
	Total Count Count/minut	was logg	ged b	y Laser [Dust Mon	itor	OTHIOR TEOM		
By Linea	ar Regression of	Y or X							
Slope	(K-factor):		(0.0015					
Correla	ation coefficient:		_	0.9957					
Validity	y of Calibration F	Record:	_6	May 201	18				
Remarks	s:								
					,				
QC Re	viewer: YW F	ung		Signati	ure:	/	Dat	e: 08 May	2017

Type: Manufa Model N	cturer/Brand: No.:			Laser D SIBATA LD-3	ust Moi	nitor			
	ent No.:		-	A.005.0	8a	***			
Sensitiv	vity Adjustment	Scale Set	tting:	702 CF	M				
Operato	or:			Mike Sh	ek (MSF	(M)			
Standard	d Equipment								
Equipm	ent·	Rur	precht & Pa	atachnick	TEOMS)			
Venue:			perport (Pui						
Model N	No.:		ies 1400AB		ondary (3011001)			
Serial N	lo:			0AB2198	399803				
				00C1436		Ko: 128	500		
Last Ca	libration Date*	: 6 M	lay 2017						
*Remarks	s: Recommend	led interva	l for hardwa	re calibra	ation is 1	year		-	
Calibrati	on Result								
	rity Adjustment rity Adjustment					702 702	CPM CPM		
	,				-7-	-,02	0.1.11		
Hour	Hour Date (dd-mm-yy)								
				(°C)	(%)	W			
1	06-05-17		- 13:45	27.5	78	0.04885	1831	30.52	
2	06-05-17	13:45	- 14:45	27.6	78	0.05077	1905	31.75	
3	06-05-17	200000000000000000000000000000000000000	- 15:45	27.6	79	0.05196	1946	32.43	
4 Note:	06-05-17		- 16:45	27.6	79	0.04903	1842	30.70	
By Linear Slope (ł	2. Total Count 3. Count/minu Regression of (-factor): tion coefficient:	was logge te was cale Y or X	ed by Laser	Dust Mor	nitor	tashnick TEOM®			
Validity	of Calibration F	Record:	6 May 20	18					
Remarks	:		1		40				
				- 91 - 50		/			
QC Rev	iewer: YW F	ung	Signa	ture:	V	D	ate: 08	3 May 2017	

Type:			p-		ust Mon	itor		
Mode	facturer/Brand:		-	SIBATA				
			-	LD-3				
	ment No.:	01-0		A.005.09				
Sensi	tivity Adjustment	Scale Se	tting:	797 CP	M			
Opera	ator:			Mike Sh	ek (MSKI	M)		
Standa	ard Equipment							
	200							
	ment:		oprecht & Pa					
Venue			perport (Pui	Ying Seco	ondary S	chool)		
Mode	TO SECURE OF THE PROPERTY OF T		ies 1400AB					
Serial	No:			0AB2198				
1 1 6				00C1436	59803	K₀: 1250	0	
Last	Calibration Date*	6 M	lay 2017					
*Remar	ks: Recommend	led interva	l for hardwa	re calibra	tion is 1 y	year		
Calibra	tion Result				w			
Sensit	tivity Adjustment	Scale Set	ting (Before	Calibratio	n):	797 C	PM	
Sensit	tivity Adjustment	Scale Set	ting (After C	alibration): [′]		PM	
Hour	Date	Т	ime	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	06-05-17	12:00	- 13:00	27.5	78	0.04715	1881	31.35
2	06-05-17	13:00	- 14:00	27.6	78	0.04843	1939	32.32
3	06-05-17	14:00	- 15:00	27.6	79	0.04987	1992	33.20
4	06-05-17	15:00	- 16:00	27.6	79	0.04794	1916	31.93
Note:	1. Monitoring d	lata was m	neasured by	Rupprec	nt & Pata	shnick TEOM®		
	2. Total Count	was logge	ed by Laser I	Dust Mon	itor			
	Count/minut	e was cald	culated by (I	otal Cou	nt/60)			
By Lines	ar Regression of	VorV						
_	(K-factor):	1 01 1	0.0015					
	ation coefficient:		0.9961					
0011016	ation coemcient.		0.9901					
Validity	y of Calibration F	Record:	6 May 20	18				
	,		o may 20	70				
Remarks	s:							
00.0					N			
QC Re	viewer: YW F	ung	Signat	ure:	1/	Date	e: 08 May	2017

Type:			_	Laser D	ust Mon	itor		
	facturer/Brand:		_	SIBATA				
Model			_	LD-3				
	ment No.:		_	A.005.10			in.	
Sensit	tivity Adjustment	Scale Settin	g: _	753 CP	M			
Opera	ator:		_	Mike She	ek (MSKI	M)		
Standa	rd Equipment							
Equip	ment:	Runnr	echt & Pa	stachnick	TEOM®			
Venue			port (Pui			chool)		
Model			1400AB	ring sect	niuary 3	crioory		
Serial		Contro		0AB2198	00803			
Contai	110.	Senso		00C1436		K _o : 12500	-	
Last C	Calibration Date*			0001400	0000	10. 12500		
*Remar	ks: Recommend	led interval fo	or hardwa	re calibra	tion is 1	year		
	tion Result							- 1
Sensit	ivity Adjustment	Scale Setting	a (Before	Calibratio	on):	753 CP	M	
	ivity Adjustment					753 CP		
			J		,			
Hour	Date	Tim	е	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)	0000040-000			dition	(mg/m³)	Count ²	Minute
				Temp	R.H.	Y-axis	000	X-axis
				(°C)	(%)			71 0.5110
1	07-05-17	10:00 -	11:00	25.5	81	0.04331	1734	28.90
2	07-05-17	11:00 -	12:00	25.6	81	0.04465	1789	29.82
3	07-05-17	12:00 -	13:00	25.6	82	0.04559	1823	30.38
4	07-05-17	13:00 -	14:00	25.7	81	0.04672	1867	31.12
Note:						ashnick TEOM®		
	Total Count	was logged l	by Laser I	Dust Mon	itor			
	Count/minut	te was calcul	ated by (1	Total Cou	nt/60)			
-	ar Regression of							
	(K-factor):		0.0015					
Correl	ation coefficient:		0.9986					
Validit	y of Calibration F	Popord:	7 May 20	10				
validit	y or Calibration r	Necord.	7 May 20	10				
_								
Remark	s:							
OC B	Wiowen MA/	Lung	0:	i	0			00:-
WC KE	eviewer: YW F	-ung	Signa	ture:	/	Date	: _08 Ma	y 2017

Mode	facturer/Brand:			-	Laser Di SIBATA LD-3 A.005.11		itor		
	tivity Adjustment	Scale Se	tting:	-	799 CP				
Opera	ator:			11 55	Mike She	ek (MSKI	М)		
Standa	rd Equipment								
Equip		Ruj	preci	nt & Pa	tashnick	TEOM®			
Venue					Ying Seco	ondary S	chool)		
Model		_		100AB					
Serial	No:		ntrol:		0AB2198				
Last C	Calibration Date*		nsor: <i>lay 20</i>		00C1436	59803	K₀: <u>125</u>	00	
*Remar	ks: Recommend	ed interva	l for h	ardwa	re calibra	tion is 1	/ear		
	tion Result			-					4
Sensit Sensit	ivity Adjustment ivity Adjustment	Scale Set Scale Set	ting (E ting (A	Before After Ca	Calibration	n):):		CPM CPM	
Hour	Date	Т	ime		Amb	ient	Concentration	1 Total	Count/
	(dd-mm-yy)				Cond		(mg/m³)	Count ²	Minute ³
					Temp (°C)	R.H. (%)	Y-axis	Count	X-axis
1	07-05-17	09:15	- 1	10:15	25.5	81	0.04372	1749	29.15
2	07-05-17	10:15	- 1	11:15	25.5	81	0.04501	1804	30.07
3	07-05-17	11:15		2:15	25.6	81	0.04536	1817	30.28
4	07-05-17	12:15		3:15	25.6	82	0.04688	1873	31.22
	2. Total Count 3. Count/minut ar Regression of	was logge e was cald	ed by l culate	₋aser [d by (T	Dust Moni	tor	shnick TEOM®		
	(K-factor): ation coefficient:			015					
	of Calibration R	lecord:		975 May 20	018				
Remarks	S:								
							8		
QC Rev	viewer: <u>YW F</u>	ung	_ ;	Signatı	ure:	1/	Da	ite: _08 May	2017

Type: Manu	facturer/Brand:				aser D BATA	ust Mon	itor		
Mode	l No.:				D-3B				
Equip	ment No.:				005.13	3a			
Sensi	tivity Adjustmen	t Scale Se	tting:	-	3 CP				
Opera	ator:			Mi	ike Sh	ek (MSKI	M)		
Standa	ard Equipment								
Fauin	ment:	Pur	nnracht	9 Dotos	مام مام	TEOM			
Venue				& Patas		ondary S	ahaal)		
Mode			ries 140		y seco	ondary St	cnooi)		
Serial			ntrol:		D2100	99803			
			nsor:		C1436		V . 4050	0	
Last C	Calibration Date*		lay 201		51430	09003	K _o : <u>1250</u>	0	
*Remar	ks: Recommend				calibra	tion is 1 v	/ear		
	tion Result								1
			9						
Sensit Sensit	tivity Adjustment tivity Adjustment	Scale Set	tting (Be	efore Ca	libration	on):)·		PM PM	
8	• •				, auon	,.		FIVI	
Hour	Date	Т	ime		Amb	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)					dition	(mg/m³)	Count ²	Minute
				T	emp	R.H.	Y-axis	Count	X-axis
					(°C)	(%)	· uxio		N-dais
1	07-05-17	09:45	- 10		25.5	81	0.04337	1737	28.95
2	07-05-17	10:45	- 11	:45 2	25.6	81	0.04542	1816	30.27
3	07-05-17	11:45	- 12	:45 2	25.6	82	0.04619	1843	30.72
4	07-05-17	12:45			25.7	81	0.04715	1889	31.48
Note:	1. Monitoring of	lata was m	neasure	d by Ru	pprecl	nt & Pata	shnick TEOM®		
	2. Total Count	was logge	ed by La	ser Dus	t Mon	itor			
	Count/minut	e was cal	culated	by (Tota	al Cour	nt/60)			
By Linos	or Pograssian of	V V							
~:	ar Regression of	YOUX	0.00	4.5					
	(K-factor): ation coefficient:		0.001						
			0.997	/1					
Validity	of Calibration F	Record:	_7 Ma	y 2018					
Remarks	s:								
						, ,		10-2	
QC Re	viewer: YW F	una	0.	an ct.		N/			
CO INE	VIEWEL. TVVF	urig	Si	gnature	:	/	Date	e: 08 May	2017

Type:	facturer/Brand:		-	Laser D	ust Moni	tor		
Model			-	LD-3B				
	ment No.:		_	A.005.14	la			
	tivity Adjustment	Scale Set	ting:	786 CP				
Opera	itor:		_	Mike She	ek (MSKI	M)		
Standa	rd Equipment	5						
Equip	ment:	Dum	nrocht 9 De	da a b w i a l c	TEOM			
Venue			precht & Pa erport (Pui `			ahaal)		
Model			ies 1400AB	ring seco	onuary S	criooi)		
Serial	- 11.200 April 12.000 April 12.			0AB2198	00803			
Corrai	110.			00C1436		K _o : 12500		
Last C	alibration Date*:		ay 2017	0001400	00000	10/2000		,
*Remar	ks: Recommend	ed interva	l for hardwa	re calibra	tion is 1 v	vear		
								4
Calibra	tion Result							
Sensit	ivity Adjustment	Scale Set	ting (Before	Calibratio	on):	786 CF	PM	
	ivity Adjustment					786 CF	PM	
Hour	Date	Т	ime	Λml	bient	Concentration ¹	Total	Count
11001	(dd-mm-yy)	'	iiiie	1	dition	(mg/m ³)	Count ²	Count/ Minute
	(dd iiiii yy)			Temp	R.H.	Y-axis	Count	X-axis
				(°C)	(%)	I date		N-uxi3
1	07-05-17	13:45	- 14:45	25.7	81	0.04335	1856	30.93
2	07-05-17	14:45	- 15:45	25.8	82	0.04461	1913	31.88
3	07-05-17	15:45	- 16:45	25.8	82	0.04602	1972	32.87
4	07-05-17	16:45	- 17:45	25.9	81	0.04714	2024	33.73
Note:						shnick TEOM®		
	Total CountCount/minut							
	o. Countrillia	ic was call	diated by (i	otal Cou	11000)			
	ar Regression of	Y or X						
	(K-factor):		0.0014					
Correl	ation coefficient:		0.9989					
Validit	y of Calibration F	Record:	7 May 20	18				
Remark	s:							
						•		
					11/			
QC Re	eviewer: YW F	una	Signat	ture:	0//	Date	e: 08 May	v 2017

Mode	facturer/Brand:			Laser D SIBATA LD-3B A.005.10		itor		
	tivity Adjustment	Scale Se	tting:	521 CP				
Opera	ator:			Mike She	ek (MSKI	M)		
Standa	rd Equipment							
Equipo Venue Model Serial	e: No.:	Cyl. Ser Cor		i Ying Seco	ondary S 99803	chool) Ko: 12500)	
Last C	Calibration Date*:		lay 2016					
*Remar	ks: Recommend	ed interva	al for hardw	are calibra	tion is 1	year		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment						PM PM	
Hour	Date (dd-mm-yy)	Т	Time		dition R.H. (%)	Concentration ¹ (mg/m³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	16-07-16	10:15	- 11:15		76	0.05319	2135	35.58
2	16-07-16	11:15	- 12:15	30.3	76	0.05615	2247	37.45
3	16-07-16	13:00	- 14:00		77	0.05984	2392	39.87
4	16-07-16	14:00	- 15:00		77	0.05786	2313	38.55
Slope	2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logge e was cal	ed by Lasei	Dust Mon	itor	ashnick TEOM®		
Validity	y of Calibration R	Record:	16 July	2017				
Remark	s:							
QC Re	viewer: YW F	ung	Sign	ature:	7/	Date	e:18 July	2016

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

to:

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA1201 01

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd. NC-73

Type/Model No.: Serial/Equipment No.: NC-73 10307223 CN.004.08)

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO. LTD.

Address of Customer:

Request No.: Date of receipt:

01-Dec-2016

Date of test:

05-Dec-2016

Reference equipment used in the calibration

2412857 673 2239857 610 2346941 0 61227 A US36087050 GB41300350	19-Apr-2017	Traceable (SCL CEPREI CEPREI CEPREI CEPREI CEPREI
MY40003662	2 19-Apr-2017	CEPREI
	180 2412857 573 2239857 510 2346941 0 61227 4 US36087050 GB41300350	180 2412857 14-Apr-2017 1673 2239857 28-Apr-2017 1610 2346941 26-Apr-2017 10 61227 18-Apr-2017 10 US36087050 18-Apr-2017 10 GB41300350 19-Apr-2017

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Peng Jun Qi

Approved Signatory:

Date:

08-Dec-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com *

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0704 03-01

Page

of

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

2

Manufacturer: Type/Model No.:

B&K

2238

4188

Serial/Equipment No.: Adaptors used:

2800927 / N.009.06

2791211

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

04-Jul-2016

Date of test:

07-Jul-2016

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226

Serial No. 2288444

Expiry Date: 18-Jun-2017

Traceable to:

Signal generator Signal generator

DS 360 DS 360 33873 61227

18-Apr-2017 18-Apr-2017

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Huang Jian

Approved Signatory:

Date:

09-Jul-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Min/Feng Jun Qi

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Work Order:

HK1716025

Sub-batch:

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

25/04/2017

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 20 April, 2017

Date of next Calibration:

20 July, 2017

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.0	-1.3
6667	6640	-0.4
12890	12750	-1.1
58670	58560	-0.2
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

2.42	
2.42	I
3.42	+0.02
5.47	-0.03
7.61	-0.04
	5.47

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	10.41	-0.1
20.0	20.05	+0.1
37.5	37.52	+0.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Work Order:

HK1716025

Sub-Batch:

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

25/04/2017

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 20 April, 2017

Date of next Calibration:

20 July, 2017

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.05	+0.5
20	20.07	+0.4
30	30.05	+0.2
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.1	+2.5
10	10.2	+2.0
20	20.4	+2.0
50	49.7	-0.6
100	99.6	-0.4
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.03	+0.03
10.0	10.02	+0.02

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Work Order:

HK1716023

Sub-batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

25/04/2017

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.: Equipment No.: 12D100972

Date of Calibration: 20 April, 2017

W.026.36

Date of next Calibration:

20 July, 2017

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	147.0	+0.1
6667	6620	-0.7
12890	12820	-0.5
58670	58710	+0.1
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.40	3.42	+0.02
5.50	5.48	-0.02
7.65	7.62	-0.03
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	10.46	-0.0
20.0	19.94	-0.1
37.5	37.47	-0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Work Order:

HK1716023

Sub-Batch:

0

Client:

AECOM ASIA COMPANY LIMITED

Date of Issue:

25/04/2017

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

6820 V2

Serial No.:

12D100972

Equipment No.:

W.026.36

Date of Calibration: 20 April, 2017

Date of next Calibration:

20 July, 2017

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.03	+0.3
20	20.06	+0.3
30	30.04	+0.1
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.0	0.0
10	9.8	-2.0
20	20.1	+0.5
50	49.6	-0.8
100	99.7	-0.3
	Tolerance Limit (%)	+10.0

pH Value

Method Ref: APHA (21st edition), 4500H:R

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.02	+0.02
10.0	10.00	0.00
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for Jun 2017

			onitoring Schedule for			
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jun	2-Jun	3-Jun
						
					Mid-Ebb 8:03	
					Mid-Flood 13:22	
4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun
	Mid-Ebb 10:48		Mid-Ebb 11:57		Mid-Flood 6:14	24-hour TSP
	Mid-Flood 16:59		Mid-Flood 18:39		Mid-Ebb 13:03	1-hour TSP
	24-hour TSP					
	1-hour TSP					
	Noise					
11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun
	Mid-Flood 7:48		Mid-Flood 9:01		Mid-Flood 10:39	
	Mid-Ebb 14:42		Mid-Ebb 15:57		Mid-Ebb 17:28	
				Dolphin Monitoring		
					24-hour TSP	
	Dolphin Monitoring				1-hour TSP	
	'				Noise	
18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun
	Mid-Ebb 9:07		Mid-Ebb 10:44		Mid-Ebb 12:17	
	Mid-Flood 14:47		Mid-Flood 17:10		Mid-Flood 19:15	
	14.47		17.10	1-hour TSP	19.15	
				Noise		
				140136		
25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	
25-Juli	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	
	Mid-Flood 7:41		Mid-Flood 9:19		Mid-Flood 11:18	
	Mid-Ebb 14:40		Mid-Ebb 16:16		Mid-Ebb 17:57	
	Dalahia Manitaria	Dolphin Monitoria	24-hour TSP			
	Dolphin Monitoring	Dolphin Monitoring	1-hour TSP			
			Noise			

^{*}Due to Tropical Cyclone Warning Signal, No. 3 issued by Hong Kong Observatory, impact water quality monitoring at 14:42 Ebb tide on 12 Jun 2017 was cancelled.

[#] CWD monitoring on 13 Jun 2017 was rescheduled to 15 Jun 2017 due to adverse weather condition.

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for Jul 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Guilday	ivioriuay	ruesuay	vveuriesuay	Hursuay	i iluay	Saturday 1-Jul
						. 60.
2-Jul	3-Ju	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul
	Mid-Ebb 9:25 Mid-Flood 15:37 24-hour TSP 1-hour TSP Noise		Mid-Ebb 10:58 Mid-Flood 17:47		Mid-Ebb 12:09 Mid-Flood 19:14	24-hour TSP 1-hour TSP
9-Jul	10-Ju	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul
	Mid-Flood 6:55 Mid-Ebb 13:52		Mid-Flood 8:12 Mid-Ebb 15:01		Mid-Flood 9:38 Mid-Ebb 16:17 Dolphin Monitoring 24-hour TSP 1-hour TSP Noise	
16-Jul	17-Ju	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul
	Mid-Ebb 7:19 Mid-Flood 13:01		Mid-Ebb 9:24 Mid-Flood 15:57		Mid-Ebb 11:15 Mid-Flood 18:18	
23-Jul	24-Ju	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul
	Mid-Flood 6:44 Mid-Ebb 13:41 Dolphin Monitoring	Dolphin Monitoring	Mid-Flood 8:20 Mid-Ebb 15:11 24-hour TSP 1-hour TSP Noise		Mid-Flood 9:56 Mid-Ebb 16:34	
30-Jul	31-Ju					
	Mid-Ebb 7:15 Mid-Flood 13:26					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix G Impact Air Quality Monitoring Results

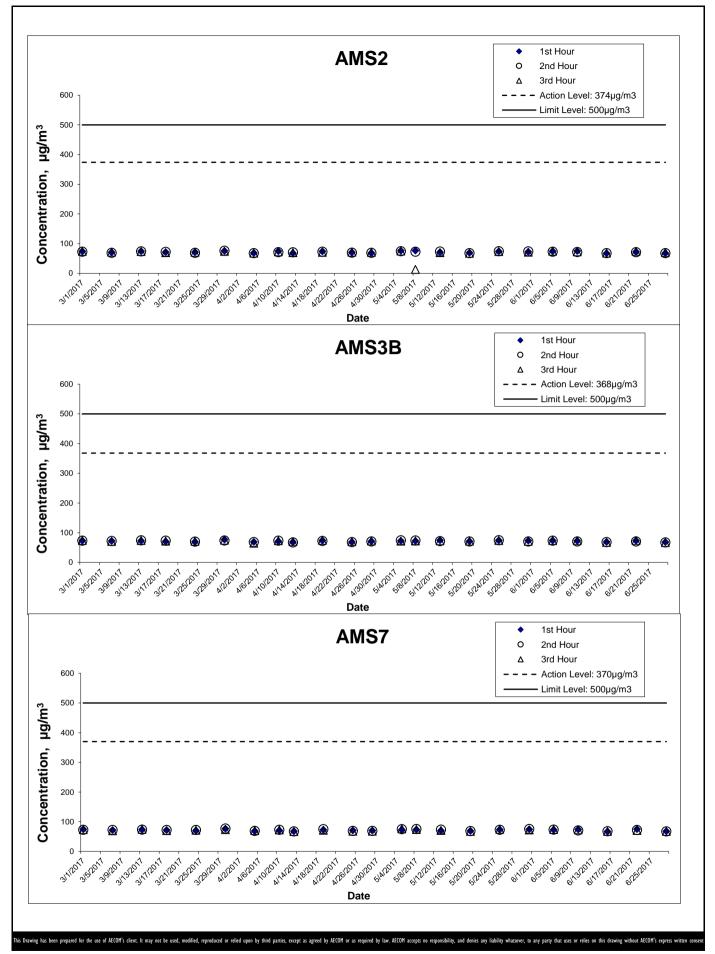
1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
5-Jun-17	1st Hour	Sunny	0.50	10:12	75	374	500
5-Jun-17	2nd Hour	Sunny	2.38	11:12	73	374	500
5-Jun-17	3rd Hour	Sunny	0.00	12:12	74	374	500
10-Jun-17	1st Hour	Fine	0.06	10:05	75	374	500
10-Jun-17	2nd Hour	Fine	0.03	11:05	72	374	500
10-Jun-17	3rd Hour	Fine	1.55	12:05	72	374	500
16-Jun-17	1st Hour	Cloudy	4.13	9:50	68	374	500
16-Jun-17	2nd Hour	Cloudy	0.92	10:50	68	374	500
16-Jun-17	3rd Hour	Cloudy	3.38	11:50	68	374	500
22-Jun-17	1st Hour	Sunny	2.15	10:15	72	374	500
22-Jun-17	2nd Hour	Sunny	0.00	11:15	71	374	500
22-Jun-17	3rd Hour	Sunny	0.15	12:15	74	374	500
28-Jun-17	1st Hour	Fine	2.29	10:13	68	374	500
28-Jun-17	2nd Hour	Fine	0.34	11:13	68	374	500
28-Jun-17	3rd Hour	Fine	2.52	12:13	70	374	500
				Average	71		
				Min	68		
				Max	75		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³) ^	Limit Level (µg/m³)
5-Jun-17	1st Hour	Sunny	0.00	11:20	74	368	500
5-Jun-17	2nd Hour	Sunny	0.28	12:20	73	368	500
5-Jun-17	3rd Hour	Sunny	2.91	13:20	74	368	500
10-Jun-17	1st Hour	Fine	0.06	10:20	73	368	500
10-Jun-17	2nd Hour	Fine	0.03	11:20	71	368	500
10-Jun-17	3rd Hour	Fine	1.55	12:20	73	368	500
16-Jun-17	1st Hour	Cloudy	4.13	10:15	69	368	500
16-Jun-17	2nd Hour	Cloudy	0.92	11:15	69	368	500
16-Jun-17	3rd Hour	Cloudy	3.38	12:15	68	368	500
22-Jun-17	1st Hour	Sunny	0.00	11:15	73	368	500
22-Jun-17	2nd Hour	Sunny	0.15	12:15	71	368	500
22-Jun-17	3rd Hour	Sunny	0.24	13:15	74	368	500
28-Jun-17	1st Hour	Fine	2.29	10:24	69	368	500
28-Jun-17	2nd Hour	Fine	0.34	11:24	67	368	500
28-Jun-17	3rd Hour	Fine	2.52	12:24	67	368	500
			_	Average	71		
				Min	67	1	

Max


Min Max

Remarks:

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
5-Jun-17	1st Hour	Sunny	2.38	10:46	73	370	500
5-Jun-17	2nd Hour	Sunny	0.00	11:46	74	370	500
5-Jun-17	3rd Hour	Sunny	0.28	12:46	74	370	500
10-Jun-17	1st Hour	Fine	0.03	10:45	74	370	500
10-Jun-17	2nd Hour	Fine	1.55	11:45	71	370	500
10-Jun-17	3rd Hour	Fine	0.22	12:45	73	370	500
16-Jun-17	1st Hour	Cloudy	0.92	10:50	67	370	500
16-Jun-17	2nd Hour	Cloudy	3.38	11:50	68	370	500
16-Jun-17	3rd Hour	Cloudy	1.83	12:50	68	370	500
22-Jun-17	1st Hour	Sunny	1.40	13:30	75	370	500
22-Jun-17	2nd Hour	Sunny	2.39	14:30	72	370	500
22-Jun-17	3rd Hour	Sunny	0.97	15:30	71	370	500
28-Jun-17	1st Hour	Fine	2.29	9:58	68	370	500
28-Jun-17	2nd Hour	Fine	0.34	10:58	68	370	500
28-Jun-17	3rd Hour	Fine	2.52	11:58	68	370	500
•				Average	71		

[^] Action Level set out at AMS3 Ho Yu College is adopted.

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 1-hour TSP

Monitoring Results

AECOM

Project No.: 60249820 Date: Jul 2017 Appendix G

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Action Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
5-Jun-17	9:00	6-Jun-17	9:00	Sunny	30.3	1006.2	1.33	1.33	1.33	1909.4	2.7938	2.8407	0.0469	8088.04	8112.04	24.00	25	176	260
9-Jun-17	16:00	10-Jun-17	16:00	Fine	29.5	1009.2	1.33	1.33	1.33	1909.4	2.7931	2.8241	0.0310	8112.04	8136.04	24.00	16	176	260
15-Jun-17	16:00	16-Jun-17	16:00	Fine	29.2	1007.6	1.33	1.33	1.33	1909.4	2.8310	2.9049	0.0739	8136.04	8160.04	24.00	39	176	260
21-Jun-17	16:00	22-Jun-17	16:00	Cloudy	27.4	1005.3	1.33	1.33	1.33	1909.4	2.8150	2.8654	0.0504	8160.04	8184.04	24.00	26	176	260
27-Jun-17	16:00	28-Jun-17	16:00	Sunny	29.5	1009.5	1.33	1.33	1.33	1909.4	2.8339	2.8701	0.0362	8184.04	8208.04	24.00	19	176	260

 Average
 25

 Min
 16

 Max
 39

12

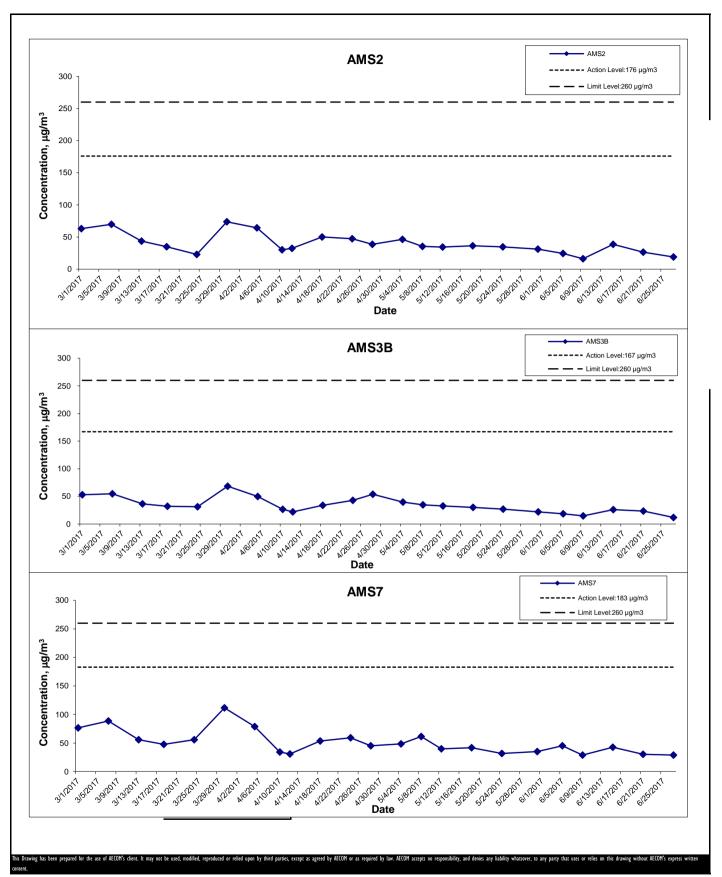
26

Min Max

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.	Action Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
5-Jun-17	9:00	6-Jun-17	9:00	Sunny	30.3	1006.2	1.34	1.34	1.34	1923.8	2.8122	2.8478	0.0356	8839.38	8863.38	24.00	19	167	260
9-Jun-17	16:00	10-Jun-17	16:00	Fine	29.5	1009.2	1.34	1.34	1.34	1923.8	2.8014	2.8295	0.0281	8863.38	8887.38	24.00	15	167	260
15-Jun-17	16:00	16-Jun-17	16:00	Fine	29.2	1007.6	1.34	1.34	1.34	1923.8	2.8349	2.8850	0.0501	8887.38	8911.38	24.00	26	167	260
21-Jun-17	16:00	22-Jun-17	16:00	Cloudy	27.4	1005.3	1.34	1.34	1.34	1923.8	2.8213	2.8664	0.0451	8911.38	8935.38	24.00	23	167	260
27-Jun-17	16:00	28-Jun-17	16:00	Sunny	29.5	1009.5	1.34	1.34	1.34	1923.8	2.8048	2.8278	0.0230	8935.38	8959.38	24.00	12	167	260
																Average	10		

^ Action Level set out at AMS3 Ho Yu College is adopted.


24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Action Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
5-Jun-17	9:00	6-Jun-17	9:00	Sunny	30.3	1006.2	1.30	1.30	1.30	1869.1	2.7960	2.8804	0.0844	8044.91	8068.91	24.00	45	183	260
9-Jun-17	16:00	10-Jun-17	16:00	Fine	29.5	1009.2	1.30	1.30	1.30	1869.1	2.7898	2.8438	0.0540	8068.91	8092.91	24.00	29	183	260
15-Jun-17	16:00	16-Jun-17	16:00	Fine	29.2	1007.6	1.30	1.30	1.30	1869.1	2.8252	2.9047	0.0795	8902.91	8926.91	24.00	43	183	260
21-Jun-17	16:00	22-Jun-17	16:00	Cloudy	27.4	1005.3	1.30	1.30	1.30	1869.1	2.7986	2.8552	0.0566	8926.91	8950.91	24.00	30	183	260
27-Jun-17	16:00	28-Jun-17	16:00	Sunny	29.5	1009.5	1.30	1.30	1.30	1869.1	2.7974	2.8513	0.0539	8950.91	8974.91	24.00	29	183	260

 Average
 35

 Min
 29

 Max
 45

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Graphical Presentation of Impact 24-hour TSP
Monitoring Results

AECOM

Project No.: 60249820 Date: Jul 2017 Appendix G

WIND DATA

WIND DATA	T		
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
5/6/2017	07:47:40	0.07	154
5/6/2017	08:47:40	0.95	341
5/6/2017	09:47:40	0.50	264
5/6/2017	10:47:40	2.38	132
5/6/2017	11:47:40	0.00	286
5/6/2017	12:47:40	0.28	39
5/6/2017	13:47:40	2.91	332
5/6/2017	14:47:40	0.91	43
5/6/2017	15:47:40	0.04	177
5/6/2017	16:47:40	0.06	10
5/6/2017	17:47:40	0.70	330
5/6/2017	18:47:40	0.04	279
5/6/2017	19:47:40	2.10	5
5/6/2017	20:47:40	1.04	333
5/6/2017	21:47:40	0.18	280
5/6/2017	22:47:40	0.94	11
5/6/2017	23:47:40	0.15	325
6/6/2017	00:47:40	1.80	48
6/6/2017	01:47:40	0.78	328
6/6/2017	02:47:40	0.87	346
6/6/2017	03:47:40	2.06	186
6/6/2017	04:47:40	0.71	145
6/6/2017	05:47:40	2.08	148
6/6/2017	06:47:40	0.15	220
6/6/2017	07:47:40	1.23	8
6/6/2017	08:47:40	1.73	264
6/6/2017	09:47:40	0.00	146
6/6/2017	10:47:40	0.00	145
9/6/2017	14:47:40	0.00	98
9/6/2017	15:47:40	1.16	330
9/6/2017	16:47:40	0.41	4
9/6/2017	17:47:40	0.36	57
9/6/2017	18:47:40	2.49	116
9/6/2017	19:47:40	0.43	147
9/6/2017	20:47:40	0.38	313
9/6/2017	21:47:40	0.13	318
9/6/2017	22:47:40	0.83	133
9/6/2017	23:47:40	1.41	119
10/6/2017	00:47:40	1.09	342
10/6/2017	01:47:40	0.01	328
10/6/2017	02:47:40	0.24	28
10/6/2017	03:47:40	0.13	318
10/6/2017	04:47:40	0.03	88
10/6/2017	05:47:40	0.87	122
10/6/2017	06:47:40	0.29	159
10/6/2017	07:47:40	0.50	143
10/6/2017	08:47:40	0.22	133
10/6/2017	09:47:40	0.06	97
10/6/2017	10:47:40	0.03	325
10/6/2017	11:47:40	1.55	164
10/6/2017	12:47:40	0.22	39
10/6/2017	13:47:40	0.03	129
10/6/2017	14:47:40	2.06	298
10/6/2017	15:47:40	0.01	257
10/6/2017	16:47:40	1.17	326
10/6/2017	17:47:40	0.52	299
15/6/2017	14:47:40	2.13	332
15/6/2017	15:47:40	0.00	-53
15/6/2017	16:47:40	2.46	344
15/6/2017	17:47:40	0.04	80
15/6/2017	18:47:40	0.71	63
15/6/2017	19:47:40	0.27	72
15/6/2017	20:47:40	0.28	46
15/6/2017	21:47:40	1.71	250
15/6/2017	22:47:40	1.55	333
15/6/2017	23:47:40	0.42	332
16/6/2017	00:47:40	0.21	43
16/6/2017	01:47:40	1.30	12
16/6/2017	02:47:40	0.62	56
16/6/2017	03:47:40	0.11	35
16/6/2017	04:47:40	2.01	323
16/6/2017	05:47:40	1.05	32
16/6/2017	06:47:40	0.04	320
16/6/2017	07:47:40	2.67	274
16/6/2017	08:47:40	4.10	274
16/6/2017	09:47:40	4.13	302
16/6/2017	10:47:40	0.92	316
16/6/2017	11:47:40	3.38	4

16/6/2017	12:47:40	1.83	314
16/6/2017	13:47:40	2.87	305
16/6/2017	14:47:40	2.95	266
16/6/2017	15:47:40	0.91	259
16/6/2017	16:47:40	0.55	143
16/6/2017	17:47:40	2.45	281
21/6/2017	14:47:40	0.77	19
21/6/2017	15:47:40	0.41	43
21/6/2017	16:47:40	0.17	293
21/6/2017	17:47:40	0.20	86
21/6/2017	18:47:40	0.43	347
21/6/2017	19:47:40	0.35	56
21/6/2017	20:47:40	0.07	22
21/6/2017	21:47:40	0.06	121
21/6/2017	22:47:40	0.22	4
21/6/2017	23:47:40	0.07	127
22/6/2017	00:47:40	0.55	63
22/6/2017	01:47:40	0.10	203
22/6/2017	02:47:40	0.00	19
22/6/2017	03:47:40	0.00	157
22/6/2017	04:47:40	0.00	152
22/6/2017	05:47:40	0.00	35
22/6/2017	06:47:40	2.38	154
22/6/2017	07:47:40	0.14	193
22/6/2017	08:47:40	0.00	344
22/6/2017	09:47:40	2.15	318
22/6/2017	10:47:40	0.00	340
	11:11:41		
22/6/2017		0.15	-53
22/6/2017	12:11:41	0.24	314
22/6/2017	13:11:41	1.40	341
22/6/2017	14:11:41	2.39	39
22/6/2017	15:11:41	0.97	102
22/6/2017	16:11:41	0.00	52
22/6/2017	17:11:41	0.34	64
27/6/2017	14:11:41	0.06	337
27/6/2017	15:11:41	0.00	345
27/6/2017	16:11:41	0.29	346
27/6/2017	17:11:41	2.27	328
27/6/2017	18:11:41	0.03	264
27/6/2017	19:11:41	0.15	326
27/6/2017	20:11:41	0.22	71
27/6/2017	21:11:41	0.07	323
27/6/2017	22:11:41	0.97	12
27/6/2017	23:11:41	0.85	266
28/6/2017	00:11:41	0.00	91
28/6/2017	01:11:41	0.27	12
28/6/2017	02:11:41	0.00	289
28/6/2017	03:11:41	0.13	67
28/6/2017	04:11:41	0.84	38
28/6/2017	05:11:41	0.07	303
28/6/2017	06:11:41	0.03	346
28/6/2017	07:11:41	0.03	3
28/6/2017	08:11:41	0.00	346
28/6/2017	09:11:41	0.46	286
28/6/2017	10:11:41	2.29	314
28/6/2017	11:11:41	0.34	318
28/6/2017	12:11:41	2.52	323
28/6/2017	13:11:41	1.45	310
28/6/2017	14:11:41	0.38	64
28/6/2017	15:11:41	0.29	51
28/6/2017	16:11:41	0.55	60
28/6/2017	17:11:41	0.66	339

Appendix I Impact Daytime Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Average

Average

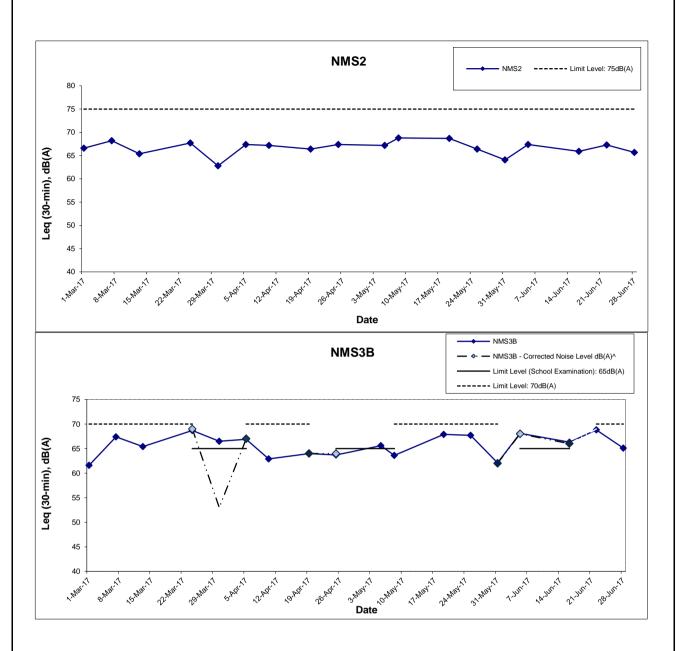
		Nois	se Level for 30	O-min, dB(A)					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
5-Jun-17	Sunny	10:31	65	69	67	<5m/s	62.9	75	N
16-Jun-17	Cloudy	10:39	64	68	66	<5m/s	62.9	75	N
22-Jun-17	Sunny	10:30	65	69	67	<5m/s	62.9	75	N
28-Jun-17	Fine	10:40	67	68	66	<5m/s	62.9	75	N
		Min	64	68	66			·	·
		May	67	60	67				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

		Nois	se Level for 30	O-min, dB(A)#					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
5-Jun-17	Sunny	11:20	66	69	68>	<5m/s	66.3	65	N
16-Jun-17	Cloudy	11:24	64	69	66#	<5m/s	66.3	65	N
22-Jun-17	Sunny	11:15	66	70	69	<5m/s	66.3	70	N
28-Jun-17	Fine	11:29	63	67	65	<5m/s	66.3	70	N
		Min	63	67	65				
		Max	66	70	69				

Remark:

#The measured noise level on 16 Jun 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it was below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.


[#] A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

>The measured noise level on 5 Jun 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but is higher than the baseline. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works 63.4 dB(A) respectively which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.

Remarks: Effective from July 2012, the Limit Level at NMS3B was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

- > The measured noise level on 30 Mar 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works 53 dB(A) respectively which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.
- > The measured noise level on 5 May 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it was below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.
- >The measured noise level on 5 Jun 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works 63.4 dB(A) respectively which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.
- >The measured noise level on 16 Jun 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it was below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.

his Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and detains any liability whatavoer, to any party that uses or relies on this drawing without AECOM's express written cons

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Daytime Construction Noise Monitoring Results

Project No.: 60249820 Date: Jul 2017 Appendix I

Water Quality Monitoring Results at CS(Mf)3(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:59		Surface	1.0	27.8 27.7	27.7	8.0 8.0	8.0	21.1 21.1	21.1	94.8 96.2	95.5	6.6 6.7	6.7		8.1 8.3	8.2		4.6 3.3	4.0	
				6.3	Middle	3.2	27.7	27.7	8.0	8.0	21.3	21.3	95.3	95.7	6.7	6.7	6.7	8.3	8.4	8.8	3.9	4.0	4.0
					Bottom	5.3	27.7 27.7	27.7	8.0	8.0	21.2 21.6	21.6	96.0 95.8	96.1	6.7 6.7	6.7	6.7	8.5 9.7	9.8		4.0	3.9	1
5 lun 47	Fina	Madazata	40.00		Douto	0.0	27.7 28.7		8.0 8.1	0.0	21.6 20.2	20	96.3 95.7	00.1	6.7 6.6	0		9.8 6.1	0.0	<u> </u>	3.5 7.2	0.0	
5-Jun-17	Fine	Moderate	10:36		Surface	1.0	28.6	28.7	8.1	8.1	20.2	20.2	96.0	95.9	6.7	6.6	6.5	6.1	6.1		7.4	7.3	
				9.1	Middle	4.6	28.6 28.4	28.5	8.1 8.0	8.0	20.1 21.9	21.0	92.1 94.6	93.4	6.3 6.6	6.4		6.3 6.2	6.3	6.3	6.9 8.0	7.5	7.5
					Bottom	8.1	28.3 28.4	28.4	8.0 8.0	8.0	22.3 21.5	21.9	92.6 90.6	91.6	6.4 6.2	6.3	6.3	6.4 6.5	6.5		6.9 8.3	7.6	1
7-Jun-17	Sunny	Moderate	11:52		Surface	1.0	29.5 29.4	29.4	8.0 8.0	8.0	20.2 20.2	20.2	100.4 99.3	99.9	6.9 6.8	6.9		4.4 4.4	4.4		3.1 2.7	2.9	
				8.8	Middle	4.4	29.3	29.1	8.0 7.9	8.0	20.7	20.8	98.9 98.3	98.6	6.8 6.8	6.8	6.9	4.8	4.8	4.8	3.5 4.5	4.0	3.9
					Bottom	7.8	28.8	29.0	7.9	7.9	21.7	20.9	97.5	97.2	6.7	6.7	6.7	5.0	5.1		4.7	4.9	1
9-Jun-17	Cloudy	Moderate	11:49				29.2 28.9	28.9	7.9 8.0		20.2		96.9 92.2		6.6			5.1 8.6			5.0 10.7		
	,				Surface	1.0	28.9 28.8		8.0 8.0	8.0	21.0 21.9	21.0	92.1 89.4	92.2	6.3 6.1	6.3	6.2	8.5 8.2	8.6		10.4 9.7	10.6	
				6.8	Middle	3.4	28.8	28.8	8.0	8.0	22.2	22.1	89.1 89.9	89.3	6.1	6.1		8.0 8.4	8.1	8.4	10.2	10.0	10.4
					Bottom	5.8	28.6	28.5	8.0	8.0	24.5	24.4	90.7	90.3	6.1	6.1	6.1	8.8	8.6		11.3	10.6	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom			-		-		-		-		-	-		-		-	-	
14-Jun-17	Rainy	Moderate	14:57		Surface	1.0	28.2 28.2	28.2	8.0 8.0	8.0	17.6 18.0	17.8	92.2 91.7	92.0	6.5 6.5	6.5		7.2 7.3	7.3		3.5 2.3	2.9	
				9.1	Middle	4.6	28.2	28.2	8.0 8.0	8.0	18.1	18.2	91.6 91.4	91.5	6.5 6.5	6.5	6.5	7.4 7.5	7.5	7.5	2.5 3.5	3.0	3.0
					Bottom	8.1	28.2	28.2	8.0	8.0	18.4 18.4	18.4	91.5	91.3	6.5	6.4	6.4	7.7	7.8		2.9	3.2	
16-Jun-17	Cloudy	Moderate	16:31		Surface	1.0	28.2 28.7	28.7	8.0	8.0	18.4 15.1	15.1	91.0 94.5	95.6	6.4	6.8		7.8 8.2	8.2		3.4 6.6	7.1	
				0.0	-		28.7 28.6		8.0 8.0		15.1 15.2		96.6 87.7		6.9 6.3		6.6	8.1 8.2			7.6 7.4		7.0
				6.3	Middle	3.2	28.6 28.5	28.6	8.0	8.0	15.3 16.6	15.3	92.5 87.1	90.1	6.6 6.2	6.4		8.2 8.1	8.2	8.2	7.2 6.8	7.3	7.0
10.1.17					Bottom	5.3	28.6	28.5	8.0	8.0	17.2	16.9	94.2	90.7	6.6	6.4	6.4	8.0	8.1		6.4	6.6	
19-Jun-17	Rainy	Moderate	09:38		Surface	1.0	28.1 28.1	28.1	7.8 7.8	7.8	9.4 9.4	9.4	73.0 73.7	73.4	5.4 5.5	5.4	5.2	10.5 10.7	10.6		5.0 5.1	5.1	
				6.7	Middle	3.4	27.9 27.9	27.9	7.7 7.7	7.7	16.1 13.4	14.8	71.5 70.5	71.0	5.1 5.0	5.0		10.9 10.8	10.9	10.7	7.2 5.3	6.3	5.5
					Bottom	5.7	27.6 27.9	27.7	7.7 7.6	7.7	22.4 21.2	21.8	70.8 68.3	69.6	5.0 5.0	5.0	5.0	10.6 10.3	10.5		5.1 4.9	5.0	
21-Jun-17	Cloudy	Moderate	11:04		Surface	1.0	27.7 27.7	27.7	7.8 7.8	7.8	12.5 13.1	12.8	72.1 72.9	72.5	5.3 5.4	5.4	_	9.3 9.5	9.4		5.9 6.5	6.2	
				7.1	Middle	3.6	27.2 27.2	27.2	7.7 7.7	7.7	20.4	20.4	71.9 72.0	72.0	5.3	5.3	5.4	10.6 10.3	10.5	10.6	6.1 7.9	7.0	6.7
					Bottom	6.1	27.1	27.2	7.7	7.7	20.3	20.9	72.9	72.7	5.3 5.4	5.3	5.3	11.5	11.8		6.8	6.8	
			l	l		-	27.2		7.7		20.9		72.4		5.3			12.1	<u> </u>		6.7		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:09		Surface 1.	0 27.8 28.5	28.2	7.7 7.7	7.7	16.1 13.6	14.9	76.2 76.6	76.4	5.4 5.4	5.4	5.4	9.7 9.9	9.8		3.9 5.0	4.5	
				9.1	Middle 4.	6 27.7 27.7	27.7	7.7 7.7	7.7	17.5 17.7	17.6	75.9 75.6	75.8	5.4 5.4	5.4	5.4	10.1 10.2	10.2	10.2	5.0 5.0	5.0	5.2
					Bottom 8.	1 27.7 27.7	27.7	7.7 7.7	7.7	18.0 18.4	18.2	74.8 75.1	75.0	5.3 5.3	5.3	5.3	10.5 10.4	10.5		6.7 5.5	6.1	
26-Jun-17	Cloudy	Moderate	13:44		Surface 1.	0 28.7 29.0	28.9	8.0 8.0	8.0	12.9 13.0	12.9	73.3 75.1	74.2	5.3 5.4	5.3	5.3	7.1 7.6	7.4		6.4 6.4	6.4	
				7.1	Middle 3	6 28.2 28.4	28.3	8.0 8.0	8.0	13.9 13.9	13.9	71.5 72.8	72.2	5.2 5.2	5.2	0.0	7.9 7.3	7.6	8.1	6.1 6.0	6.1	6.1
					Bottom 6	1 27.8 27.9	27.8	7.9 8.0	8.0	18.3 18.1	18.2	69.8 69.6	69.7	5.0 5.0	5.0	5.0	9.0 9.7	9.4		5.7 6.1	5.9	
28-Jun-17	Fine	Moderate	15:27		Surface 1.	0 29.0 29.0	29.0	7.9 7.9	7.9	15.1 15.1	15.1	76.4 77.0	76.7	5.4 5.5	5.4	5.3	4.2 4.1	4.2		5.9 6.7	6.3	
				7.2	Middle 3	27.7	27.8	7.9 7.9	7.9	18.1 17.7	17.9	71.4 73.4	72.4	5.1 5.2	5.1	5.5	4.5 4.6	4.6	4.5	6.4 7.2	6.8	6.7
					Bottom 6	2 27.3 27.3	27.3	7.9 7.9	7.9	21.3 21.2	21.2	69.1 69.6	69.4	4.9 4.9	4.9	4.9	4.6 4.5	4.6		6.9 7.2	7.1	
30-Jun-17	Fine	Moderate	17:00		Surface 1.	0 29.9 29.8	29.9	7.9 7.9	7.9	13.0 13.0	13.0	74.3 74.3	74.3	5.3 5.3	5.3	5.2	3.9 3.9	3.9		3.9 4.0	4.0	
				6.6	Middle 3	28.2	28.2	7.9 7.8	7.9	16.5 17.2	16.9	72.7 72.8	72.8	5.1 5.2	5.1	J.2	3.8 4.0	3.9	4.1	7.5 6.0	6.8	6.3
					Bottom 5	6 27.4 27.8	27.6	7.8 7.8	7.8	22.2 21.8	22.0	73.3 73.0	73.2	5.2 5.1	5.1	5.1	4.5 4.4	4.5		8.2 8.2	8.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

Remarks:

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:38		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	21.2 21.2	21.2	95.5 95.3	95.4	6.7 6.7	6.7		9.0 8.9	9.0		3.5 3.4	3.5	
				6.2	Middle	3.1	27.7	27.7	8.0	8.0	21.2	21.3	94.9	95.1	6.6	6.7	6.7	9.2	9.2	9.2	4.4	4.1	3.8
					Bottom	5.2	27.7 27.7	27.7	8.0	8.0	21.3 22.6	22.3	95.3 94.6	94.7	6.7 6.6	6.6	6.6	9.2	9.4		3.8	3.7	•
5 lun 47	Fina	Madazata	40.44		Bottom	0.2	27.7 29.0		8.0 8.0	0.0	21.9		94.7 104.1	0	6.6 7.2	0.0	0.0	9.4	0	<u> </u>	3.7 1.3	0.7	<u> </u>
5-Jun-17	Fine	Moderate	16:41		Surface	1.0	29.5	29.2	8.1	8.1	20.1	20.1	104.0	104.1	7.2	7.2	7.1	4.2	4.2		1.5	1.4	<u> </u>
				9.1	Middle	4.6	29.0 28.7	28.8	8.0 8.0	8.0	20.3 20.3	20.3	102.8 100.8	101.8	7.1 7.0	7.0		4.6 4.5	4.6	4.5	2.5 2.8	2.7	2.2
					Bottom	8.1	28.8 28.8	28.8	8.0 8.0	8.0	21.4 20.9	21.1	99.3 98.1	98.7	6.9 6.8	6.9	6.9	4.8 4.7	4.8		2.7 2.3	2.5	
7-Jun-17	Sunny	Moderate	18:20		Surface	1.0	29.8 29.9	29.9	8.2 8.2	8.2	20.0 20.2	20.1	110.6 109.9	110.3	7.6 7.6	7.6		5.3 5.2	5.3		2.5 2.5	2.5	
				8.9	Middle	4.5	29.7	29.7	8.2	8.2	20.5	20.6	109.5	109.3	7.5	7.5	7.6	5.6	5.5	5.5	4.8	4.9	4.2
					Bottom	7.9	29.8 29.3	29.4	8.2 8.2	8.2	20.7	21.0	109.1 107.0	107.5	7.4	7.3	7.3	5.4 5.8	5.8		5.0 5.5	5.1	•
9-Jun-17	Cloudy	Moderate	06:22				29.5 29.0		8.2 8.0		20.5 20.7		108.0 92.3		7.3 6.7		7.0	5.7 6.9			4.6 3.4		
	,				Surface	1.0	29.0	29.0	8.0	8.0	20.9	20.8	91.8 91.4	92.1	6.7	6.7	6.7	7.7	7.3		2.7	3.1	-
				6.8	Middle	3.4	28.8	28.8	8.0	8.0	21.9	21.9	91.0	91.2	6.6	6.6		7.5	7.5	7.9	4.9	5.7	4.8
					Bottom	5.8	28.6 28.6	28.6	8.0 8.0	8.0	24.1 24.1	24.1	91.6 92.0	91.8	6.6 6.6	6.6	6.6	8.8 8.9	8.9		5.7 5.6	5.7	
12-Jun-17	Sunny	Moderate	07:56		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	22.2 22.1	22.1	87.5 86.5	87.0	6.0 5.9	5.9	5.8	10.1 10.4	10.3		5.1 4.4	4.8	
				6.4	Middle	3.2	28.5 28.7	28.6	7.9 7.9	7.9	24.8 24.0	24.4	83.6 83.7	83.7	5.7 5.7	5.7	5.6	11.4 11.7	11.6	11.5	5.3 5.4	5.4	5.0
					Bottom	5.4	28.5 28.5	28.5	7.9 8.0	7.9	25.4 25.3	25.4	84.5 84.4	84.5	5.7 5.7	5.7	5.7	13.0 12.2	12.6		4.7 5.0	4.9	
14-Jun-17	Rainy	Moderate	09:28		Surface	1.0	28.2	28.2	7.8	7.8	17.8	17.7	86.7	87.0	6.1	6.2		7.9	7.9		7.6	7.4	
				0.4			28.1 28.2	-	7.8 7.8		17.6 17.9		87.3 86.7		6.2 6.1		6.2	7.8 8.1			7.2 8.7		7.0
				9.1	Middle	4.6	28.1 28.1	28.2	7.8 7.8	7.8	18.0 19.6	17.9	86.5 86.2	86.6	6.1 6.0	6.1		8.2 8.3	8.2	8.2	8.2 7.8	8.5	7.8
					Bottom	8.1	28.1	28.1	7.8	7.8	19.6	19.6	84.9	85.6	6.0	6.0	6.0	8.4	8.4		7.2	7.5	
16-Jun-17	Cloudy	Moderate	10:36		Surface	1.0	28.6 28.5	28.5	7.9 7.9	7.9	16.7 16.7	16.7	87.1 93.4	90.3	6.2 6.6	6.4	6.3	8.7 8.6	8.7		5.9 6.6	6.3	
				6.2	Middle	3.1	28.4 28.4	28.4	7.9 7.9	7.9	18.2 18.3	18.2	87.6 85.7	86.7	6.2 6.0	6.1	0.5	8.8 8.6	8.7	8.7	5.4 5.8	5.6	6.0
					Bottom	5.2	28.5	28.5	7.9 7.9	7.9	18.3 18.4	18.4	87.7 85.2	86.5	6.2 6.0	6.1	6.1	8.6 9.0	8.8		6.0 6.4	6.2	
19-Jun-17	Cloudy	Moderate	13:49		Surface	1.0	28.4	28.4	7.7	7.7	11.0	10.8	72.4	73.1	5.2	5.3		8.5	8.3		5.7	6.0	
				6.7	Middle	3.4	28.5 27.8	27.7	7.6 7.7	7.7	10.6 15.0	15.3	73.7 72.3	72.0	5.3 5.2	5.2	5.3	8.1 8.5	8.5	8.5	6.3 8.9	8.3	7.5
				6.7	-		27.7 28.0		7.7 7.6		15.7 25.5		71.7 70.2		5.2 5.0			8.4 8.6		0.5	7.7 8.2		7.5
04 lun 47	Commen	Madasak	40:40		Bottom	5.7	27.5	27.7	7.6	7.6	25.2	25.4	69.6	69.9	5.1	5.1	5.1	8.5	8.6		8.3	8.3	
21-Jun-17	Sunny	Moderate	16:12		Surface	1.0	28.2 28.3	28.3	7.9 7.9	7.9	10.4 9.4	9.9	74.8 72.8	73.8	5.5 5.3	5.4	5.3	9.9	10.0		6.7	6.8]
				6.8	Middle	3.4	27.7 27.7	27.7	7.9 7.9	7.9	13.8 14.2	14.0	70.8 71.2	71.0	5.2 5.2	5.2		11.7 12.2	12.0	11.6	7.0 8.6	7.8	7.3
					Bottom	5.8	27.2 27.4	27.3	7.8 7.8	7.8	19.9 20.4	20.2	72.3 72.0	72.2	5.2 5.2	5.2	5.2	12.8 13.0	12.9		7.2 7.2	7.2	
							41.7		7.0		20.7	1	12.0		J. <u>L</u>			10.0			1.4		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:56		Surface 1.0	28.7 28.8	28.8	7.8 7.8	7.8	12.3 12.4	12.4	75.1 75.4	75.3	5.3 5.3	5.3	5.3	14.8 14.7	14.8		12.9 12.2	12.6	
				9.2	Middle 4.6	28.6 28.5	28.5	7.8 7.8	7.8	13.7 11.4	12.6	74.4 74.8	74.6	5.3 5.3	5.3	5.5	15.0 15.1	15.1	15.1	13.4 11.6	12.5	12.6
					Bottom 8.2	28.5 28.3	28.4	7.7 7.7	7.7	12.3 12.7	12.5	73.8 73.8	73.8	5.2 5.2	5.2	5.2	15.3 15.4	15.4		12.4 13.0	12.7	
26-Jun-17	Cloudy	Moderate	08:00		Surface 1.0	28.2 28.3	28.3	8.0 8.0	8.0	14.5 13.9	14.2	78.7 75.3	77.0	5.7 5.4	5.5	5.5	9.6 9.7	9.7		8.2 8.1	8.2	
				7.1	Middle 3.6	27.7 27.9	27.8	8.0 8.0	8.0	16.8 17.4	17.1	75.5 74.5	75.0	5.4 5.4	5.4	3.3	10.3 9.4	9.9	9.9	9.8 9.1	9.5	9.4
					Bottom 6.1	27.4 27.3	27.4	7.9 8.0	7.9	20.0 21.2	20.6	75.7 74.8	75.3	5.4 5.4	5.4	5.4	9.8 10.3	10.1		10.3 10.8	10.6	
28-Jun-17	Fine	Moderate	09:44		Surface 1.0	27.9 27.9	27.9	7.7 7.6	7.7	14.8 14.7	14.7	73.3 74.0	73.7	5.4 5.4	5.4	5.4	8.6 8.5	8.6		5.2 6.4	5.8	
				7.1	Middle 3.6	27.4	27.4	7.6 7.6	7.6	19.5 19.1	19.3	73.2 70.4	71.8	5.4 5.2	5.3	5.4	8.5 8.8	8.7	8.6	5.0 5.7	5.4	6.1
					Bottom 6.1	27.2 27.6	27.4	7.6 7.6	7.6	20.8 20.5	20.7	69.8 72.3	71.1	5.1 5.3	5.2	5.2	8.8 8.4	8.6		6.9 7.1	7.0	
30-Jun-17	Fine	Moderate	11:18		Surface 1.0	28.8 28.9	28.8	7.8 7.8	7.8	14.1 14.5	14.3	73.9 73.3	73.6	5.4 5.3	5.4	5.4	4.9 4.7	4.8		5.0 4.6	4.8	
				6.8	Middle 3.4	28.0	28.0	7.7 7.7	7.7	18.2 18.2	18.2	72.9 74.0	73.5	5.3 5.4	5.3	5.4	5.5 6.0	5.8	5.8	4.3 3.4	3.9	4.4
					Bottom 5.8	27.2 27.3	27.3	7.7 7.7	7.7	23.1 23.5	23.3	73.4 75.0	74.2	5.3 5.4	5.4	5.4	6.6 6.7	6.7		3.9 5.0	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ıration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	09:16		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	21.2 21.2	21.2	94.7 95.6	95.2	6.6 6.7	6.7		9.9 9.9	9.9		4.7 5.3	5.0	
				16.3	Middle	8.2	27.7	27.7	8.0	8.0	21.5	21.5	95.7	95.2	6.7	6.6	6.7	10.1	10.1	10.1	4.3	4.8	4.8
					Bottom	15.3	27.7 27.7	27.7	8.0 8.0	8.0	21.5 21.7	21.7	94.7 95.5	95.1	6.6	6.6	6.6	10.0	10.3		5.3 4.7	4.5	1
5 lun 47	F:	Madazata	40.50				27.7 28.5		8.0 8.1		21.6 20.4		94.6 90.4	1	6.6			7.5			4.2 5.6		
5-Jun-17	Fine	Moderate	10:59		Surface	1.0	28.6	28.6	8.1	8.1	20.4	20.4	90.3	90.4	6.3	6.3	6.3	7.3	7.4		5.7	5.7	
				15.3	Middle	7.7	28.4 28.4	28.4	8.0 8.0	8.0	21.3 21.8	21.6	90.3 89.6	90.0	6.2 6.2	6.2	0.0	7.6 7.5	7.6	7.6	5.0 6.6	5.8	6.4
					Bottom	14.3	28.4 28.3	28.3	8.0 8.0	8.0	22.2 22.4	22.3	89.9 89.1	89.5	6.2 6.1	6.2	6.2	7.8 7.8	7.8		7.2 8.2	7.7	
7-Jun-17	Sunny	Moderate	12:13		Surface	1.0	29.2 29.5	29.3	8.0 8.0	8.0	20.4 20.0	20.2	98.0 97.3	97.7	6.7 6.7	6.7		4.4 4.3	4.4		3.5 4.7	4.1	
				15.5	Middle	7.8	29.1	28.9	7.9	8.0	20.7	20.4	95.2	96.4	6.6	6.7	6.7	4.8	4.8	4.8	3.7	3.6	4.1
					Bottom	14.5	28.8	28.8	8.0 8.0	8.0	20.1	21.1	97.5 94.0	94.5	6.7	6.5	6.5	4.7 5.4	5.3		3.5 5.2	4.7	1
9-Jun-17	Cloudy	Moderate	11:29				28.9 28.9		7.9 8.0		21.2 21.0		95.0 91.5		6.6			5.2 10.0			4.2 9.8		
5 dun 17	Oloudy	Woderate	11.20		Surface	1.0	29.0	28.9	8.0 8.0	8.0	21.0 25.4	21.0	93.5 88.0	92.5	6.4	6.3	6.1	9.8	9.9		9.0	9.4	
				16.5	Middle	8.3	28.4	28.4	8.0	8.0	25.1	25.3	87.2	87.6	5.9	5.9		11.5	11.3	10.6	10.9	10.5	10.3
					Bottom	15.5	28.4 28.3	28.4	8.0 8.0	8.0	25.6 25.6	25.6	90.0 89.1	89.6	6.1 6.0	6.0	6.0	10.7 10.7	10.7		11.1 10.6	10.9	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	<u>=</u>
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	14:36		Surface	1.0	28.2	28.2	8.0	8.0	16.5	17.1	91.6	91.7	6.5	6.5		8.1	8.1		4.4	4.2	
				15.4	Middle	7.7	28.2 28.2	28.2	8.0 8.0	8.0	17.7 18.3	18.4	91.7 91.1	91.6	6.5 6.4	6.4	6.5	8.0 8.3	8.3	8.3	4.0 4.4	4.6	4.5
				15.4			28.2 28.2		8.0 8.0		18.5 18.9		92.0 89.3		6.5			8.2 8.4		0.3	4.7 4.6		4.5
					Bottom	14.4	28.2	28.2	8.0	8.0	18.8	18.8	90.0	89.7	6.3	6.3	6.3	8.4	8.4		5.0	4.8	
16-Jun-17	Cloudy	Moderate	16:09		Surface	1.0	28.7 28.7	28.7	8.1 8.1	8.1	15.1 15.1	15.1	91.4 93.4	92.4	6.5 6.6	6.6	6.5	8.2 8.5	8.4		6.4 6.4	6.4	
				16.2	Middle	8.1	28.6 28.6	28.6	8.1 8.0	8.0	16.6 16.4	16.5	90.6 90.9	90.8	6.4 6.4	6.4	6.5	8.3 8.2	8.3	8.4	5.8 5.8	5.8	6.2
					Bottom	15.2	28.6 28.6	28.6	8.1 8.0	8.0	18.8 18.7	18.7	94.3 93.1	93.7	6.6	6.5	6.5	8.5 8.3	8.4		6.2	6.5	1
19-Jun-17	Rainy	Moderate	09:59		Surface	1.0	28.1	28.1	7.8	7.8	9.4	9.5	75.7	74.6	5.4	5.4		11.4	11.6		5.9	5.8	
				16.5	Middle	8.3	28.1 27.9	27.7	7.8 7.7	7.7	9.5 18.4	18.4	73.5 72.9	72.9	5.5 5.3	5.3	5.4	11.7 11.6	11.6	11.5	5.7 6.0	5.3	5.8
				. 5.5		15.5	27.6 28.0	27.9	7.6 7.7	7.6	18.5 21.6	21.7	72.8 70.7	70.5	5.3 5.1		5.0	11.5 11.5	11.4		4.6 5.6	6.4	5.0
21-Jun-17	Cloudy	Moderate	11:25		Bottom		27.8 27.5		7.6 7.8		21.8 14.2		70.2 70.8		5.0 5.3	5.0	5.0	11.2 9.2			7.1 5.2		
21 0011 17	Oloddy	Moderate	11.20		Surface	1.0	27.6 27.1	27.5	7.8 7.8	7.8	13.0	13.6	71.4 69.9	71.1	5.3 5.1	5.3	5.2	9.5	9.4		5.5 4.8	5.4	1
				16.3	Middle	8.2	27.1	27.1	7.8	7.8	21.3	21.2	70.2	70.1	5.2	5.1		9.8	10.0	10.5	4.8	4.8	5.1
					Bottom	15.3	27.1 27.2	27.1	7.7 7.7	7.7	21.6 22.4	22.0	70.4 70.6	70.5	5.2 5.2	5.2	5.2	12.3 11.8	12.1		5.5 4.8	5.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:29		Surface 1.	0 28.5 28.1	28.3	7.8 7.7	7.7	13.7 16.4	15.0	78.8 79.7	79.3	5.6 5.7	5.6	5.6	9.7 9.6	9.7		4.8 4.5	4.7	
				15.7	Middle 7.	9 27.7 27.7	27.7	7.7 7.7	7.7	17.3 17.5	17.4	78.1 79.1	78.6	5.5 5.6	5.6	3.0	9.9 9.7	9.8	9.9	4.8 5.0	4.9	5.6
					Bottom 14	.7 27.6 27.7	27.6	7.7 7.7	7.7	18.7 17.4	18.1	78.4 77.7	78.1	5.6 5.5	5.5	5.5	10.1 10.2	10.2		7.1 7.5	7.3	
26-Jun-17	Cloudy	Moderate	13:24		Surface 1.	0 28.9 29.0	28.9	8.0 8.0	8.0	12.8 12.9	12.8	71.7 73.0	72.4	5.2 5.3	5.2	5.1	11.4 11.1	11.3		5.2 5.4	5.3	
				16.3	Middle 8.	2 27.9 27.9	27.9	8.0 8.0	8.0	17.2 17.2	17.2	70.6 70.4	70.5	5.0 5.0	5.0	0.1	11.8 11.5	11.7	11.7	7.3 6.0	6.7	6.4
					Bottom 15	.3 27.9 28.1	28.0	8.0 8.0	8.0	18.1 18.2	18.2	72.2 72.6	72.4	5.1 5.1	5.1	5.1	12.2 11.7	12.0		8.4 6.1	7.3	
28-Jun-17	Fine	Moderate	15:04		Surface 1.	0 29.1 29.1	29.1	8.0 8.0	8.0	15.0 15.1	15.1	76.9 77.0	77.0	5.4 5.4	5.4	5.4	6.1 6.6	6.4		6.4 6.6	6.5	
				16.0	Middle 8.	27.7	27.6	8.0 7.9	7.9	19.5 19.4	19.5	76.2 75.2	75.7	5.3 5.3	5.3	5.4	6.5 6.4	6.5	6.5	6.6 5.1	5.9	6.5
					Bottom 15	.0 27.7 27.5	27.6	8.0 7.9	8.0	21.7 20.5	21.1	68.6 68.1	68.4	4.9 4.8	4.8	4.8	6.5 6.6	6.6		7.3 6.7	7.0	
30-Jun-17	Fine	Moderate	16:40		Surface 1.	0 30.0 30.0	30.0	8.0 7.9	8.0	12.7 12.6	12.6	74.0 74.9	74.5	5.2 5.3	5.3	5.2	3.6 3.6	3.6		4.6 4.3	4.5	
				16.3	Middle 8.	27.1	27.1	7.8 7.8	7.8	23.0 23.1	23.0	72.0 72.2	72.1	5.1 5.1	5.1	5.2	3.2 3.3	3.3	3.5	4.8 5.8	5.3	5.3
					Bottom 15	.3 27.2 26.9	27.0	7.8 7.8	7.8	24.2 24.4	24.3	72.7 73.0	72.9	5.1 5.1	5.1	5.1	3.4 3.5	3.5		5.6 6.3	6.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

Remarks:

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Ti	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:20		Surface	1.0	27.7 27.8	27.8	8.0 8.0	8.0	21.1 21.0	21.1	95.3 94.8	95.1	6.7 6.6	6.6		7.9 7.8	7.9		4.3 3.2	3.8	1
				16.2	Middle	8.1	27.7 27.7	27.7	8.0 8.0	8.0	21.4 21.4	21.4	95.1 95.0	95.1	6.6 6.6	6.6	6.6	8.7 8.8	8.8	8.7	3.6 3.3	3.5	3.7
					Bottom	15.2	27.7	27.7	8.0	8.0	21.9	22.4	94.7 95.2	95.0	6.6	6.6	6.6	9.5 9.5	9.5		3.9	3.7	
5-Jun-17	Fine	Moderate	16:20		0 (29.5		8.0 8.1		20.2	22.2	106.3	407.4	6.6 7.4			4.4			1.1		
					Surface	1.0	29.5 28.7	29.5	8.1 8.0	8.1	20.2 20.1	20.2	107.8 105.0	107.1	7.4 7.3	7.4	7.4	4.3 4.6	4.4		1.6 1.7	1.4	
				15.5	Middle	7.8	28.9	28.8	8.0 8.0	8.0	20.4	20.2	106.5	105.8	7.3 7.0	7.3		4.6 4.8	4.6	4.6	1.3	1.5	1.3
					Bottom	14.5	29.1	28.8	8.0	8.0	20.8	21.1	101.2	101.1	7.0	7.0	7.0	4.8	4.8		1.1	1.1	
7-Jun-17	Sunny	Moderate	17:59		Surface	1.0	29.9 29.8	29.9	8.2 8.2	8.2	20.1 20.1	20.1	110.4 109.1	109.8	7.6 7.4	7.5	7.5	5.2 5.3	5.3		4.3 4.5	4.4	
				15.6	Middle	7.8	29.6 29.6	29.6	8.2 8.2	8.2	20.4 20.4	20.4	109.3 108.6	109.0	7.4 7.5	7.5	7.0	5.5 5.6	5.6	5.6	3.7 5.0	4.4	4.9
					Bottom	14.6	29.4 29.3	29.4	8.2 8.2	8.2	21.2 21.4	21.3	105.8 105.8	105.8	7.3 7.3	7.3	7.3	5.8 5.9	5.9		5.3 6.4	5.9	
9-Jun-17	Cloudy	Moderate	06:40		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	20.5 20.5	20.5	90.2 90.5	90.4	6.6 6.6	6.6		5.9 6.2	6.1		5.5 5.3	5.4	
				16.3	Middle	8.2	28.4	28.5	8.0	8.0	24.8	24.7	88.8	89.1	6.4	6.4	6.5	8.2	8.0	7.9	4.1	4.7	5.4
					Bottom	15.3	28.5	28.4	8.0	8.0	24.5 25.9	25.8	90.1	89.8	6.5	6.5	6.5	7.8 9.3	9.7		5.2 6.6	6.0	
12-Jun-17	Sunny	Moderate	08:15		Surface	1.0	28.6 29.0	29.0	8.0 8.0	8.0	25.8 22.3	22.2	89.5 87.0	86.9	6.5 5.9	5.9		7.9	8.1		5.3 5.9	5.6	
				15.6	Middle	7.8	29.0 28.3	28.3	8.0 7.9	7.9	22.1 26.0	26.2	86.7 82.4	81.9	5.9 5.6	5.5	5.7	8.2 8.9	9.1	8.9	5.3 4.8	4.9	5.1
				13.0			28.4 28.3		7.9 7.9		26.5 26.6		81.4 83.1		5.5 5.6			9.2 9.3		0.9	5.0 4.6		3.1
14-Jun-17	Rainy	Moderate	09:49		Bottom	14.6	28.2 28.1	28.2	7.9 7.8	7.9	26.7 17.6	26.6	82.8 86.8	83.0	5.6 6.1	5.6	5.6	9.8	9.6		5.0 7.9	4.8	
14 Guil 17	rtairy	Woderate	00.40		Surface	1.0	28.1	28.1	7.8 7.8	7.8	17.6 17.8	17.6	87.3 86.6	87.1	6.2	6.2	6.2	7.9 8.1	8.0		8.1 8.1	8.0	
				15.4	Middle	7.7	28.1	28.1	7.8	7.8	17.9	17.9	85.8	86.2	6.1 6.1	6.1		8.1	8.1	8.1	9.3	8.7	8.5
					Bottom	14.4	28.1 28.1	28.1	7.8 7.8	7.8	19.2 18.8	19.0	85.6 85.4	85.5	6.1 6.0	6.0	6.0	8.3 8.3	8.3		8.4 8.9	8.7	
16-Jun-17	Cloudy	Moderate	10:56		Surface	1.0	28.6 28.6	28.6	7.9 7.9	7.9	16.7 16.7	16.7	86.7 85.4	86.1	6.1 6.0	6.1	5.9	9.2 9.1	9.2		6.2 7.2	6.7	
				16.3	Middle	8.2	28.3 28.4	28.3	7.8 7.8	7.8	18.6 18.5	18.6	82.4 80.8	81.6	5.8 5.7	5.7	3.5	9.9 10.0	10.0	9.6	6.7 6.2	6.5	6.6
					Bottom	15.3	28.3	28.2	7.8 7.8	7.8	21.0	21.1	85.1 80.7	82.9	5.9 5.6	5.8	5.8	9.7 9.5	9.6		6.5 6.4	6.5	
19-Jun-17	Cloudy	Moderate	13:26		Surface	1.0	28.3 28.3	28.3	7.7 7.7	7.7	11.7 11.3	11.5	71.2 71.3	71.3	5.1	5.2		10.2	10.4		6.8 5.3	6.1	
				17.0	Middle	8.5	27.8	27.7	7.6	7.7	19.8	20.2	70.8	70.5	5.2	5.1	5.2	10.5	10.8	10.6	8.4	7.7	7.1
					Bottom	16.0	27.6 27.9	27.7	7.7 7.6	7.6	20.5 24.7	24.9	70.2 69.6	68.8	5.0 4.8	4.8	4.8	10.6 10.5	10.5		7.0	7.5	
21-Jun-17	Sunny	Moderate	15:52			1.0	27.4 28.1	28.2	7.5 8.0	7.9	25.0 9.6	9.8	67.9 73.2	72.8	4.9 5.4			10.5 10.8	10.7		7.5 7.7	7.9	
	•				Surface		28.4 27.2		7.9 7.9		10.0 19.9		72.4 70.3		5.3 5.1	5.3	5.2	10.6 11.4			8.0 7.9		
				16.1	Middle	8.1	27.2	27.2	7.9 7.9	7.9	19.9	19.9	70.1 71.8	70.2	5.1 5.2	5.1		10.9 11.2	11.2	11.0	6.8	7.4	7.3
					Bottom	15.1	27.3 27.2	27.2	7.9	7.9	19.8	19.9	71.6 71.5	71.7	5.2 5.1	5.2	5.2	10.7	11.0		6.5	6.7	l

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	pl	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:37		Surface 1.0	28.5 28.7	28.6	7.8 7.9	7.8	11.4 13.9	12.6	77.9 78.1	78.0	5.5 5.5	5.5	5.5	14.9 14.8	14.9		13.5 13.7	13.6	
				15.8	Middle 7.9	28.4 28.4	28.4	7.8 7.8	7.8	12.3 11.9	12.1	77.6 77.3	77.5	5.5 5.5	5.5	5.5	15.1 15.2	15.2	15.2	13.0 12.0	12.5	13.1
					Bottom 14.	8 28.3 28.3	28.3	7.8 7.8	7.8	14.7 13.0	13.9	76.7 76.3	76.5	5.4 5.4	5.4	5.4	15.6 15.5	15.6		13.1 13.4	13.3	
26-Jun-17	Cloudy	Moderate	08:20		Surface 1.0	28.3 28.2	28.3	8.0 8.0	8.0	14.6 14.8	14.7	74.8 73.9	74.4	5.4 5.4	5.4	5.3	9.8 9.5	9.7		9.8 10.9	10.4	
				16.2	Middle 8.	26.8 26.9	26.9	8.0 8.0	8.0	22.4 20.5	21.4	71.4 72.0	71.7	5.1 5.2	5.1	5.5	9.4 9.1	9.3	10.1	10.1 11.1	10.6	10.3
					Bottom 15.	2 26.9 26.8	26.9	8.0 7.9	7.9	23.9 23.7	23.8	73.6 71.5	72.6	5.2 5.1	5.2	5.2	11.0 11.3	11.2		9.3 10.2	9.8	
28-Jun-17	Fine	Moderate	10:02		Surface 1.0	27.8 28.0	27.9	7.6 7.6	7.6	15.9 15.1	15.5	78.8 75.9	77.4	5.7 5.6	5.7	5.6	6.5 6.6	6.6		4.6 5.9	5.3	
				16.8	Middle 8.4	27.2	27.2	7.6 7.6	7.6	23.3 21.2	22.2	73.1 75.3	74.2	5.4 5.6	5.5	3.0	6.5 6.5	6.5	6.5	8.4 7.7	8.1	7.0
					Bottom 15.	8 27.2 27.5	27.3	7.6 7.6	7.6	21.0 21.1	21.0	69.1 70.7	69.9	5.0 5.1	5.1	5.1	6.5 6.4	6.5		7.0 7.9	7.5	
30-Jun-17	Fine	Moderate	11:38		Surface 1.0	28.9 29.0	28.9	7.8 7.8	7.8	13.5 13.5	13.5	72.2 72.1	72.2	5.3 5.3	5.3	5.3	4.3 4.1	4.2		5.4 5.3	5.4	
				16.2	Middle 8.	27.6	27.5	7.7 7.7	7.7	20.8 20.7	20.8	71.2 71.6	71.4	5.2 5.2	5.2	5.5	5.9 5.8	5.9	5.4	5.6 5.6	5.6	5.8
					Bottom 15.	2 27.2 27.2	27.2	7.6 7.7	7.7	23.7 23.7	23.7	71.7 72.0	71.9	5.2 5.2	5.2	5.2	5.9 6.3	6.1		7.1 5.7	6.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	07:15		Surface	1.0	27.8 27.8	27.8	8.3 8.3	8.3	22.3 22.4	22.4	97.2 97.0	97.1	6.7 6.7	6.7		3.7 3.8	3.8		1.2 1.9	1.6	
				13.3	Middle	6.7	27.8	27.8	8.3	8.3	23.4	23.2	96.7	96.6	6.7	6.7	6.7	3.5	3.6	3.6	1.8	1.8	2.1
					Bottom	12.3	27.7 27.7	27.7	8.3 8.3	8.3	23.1 23.3	23.5	96.4 96.8	96.8	6.7 6.7	6.7	6.7	3.7 3.6	3.4		3.2	3.0	1
5-Jun-17	Fine	Moderate	10:17		Dotto		27.7 28.6		8.3 8.2		23.7 22.5		96.7 94.5		6.7 6.5	0	0	3.2 2.8			2.7 1.7		<u> </u>
5-Juli-17	Fille	ivioderate	10.17		Surface	1.0	28.3	28.4	8.2	8.2	22.7	22.6	93.2	93.9	6.4	6.4	6.3	3.0	2.9		1.6	1.7	
				13.3	Middle	6.7	27.5 27.4	27.4	8.2 8.2	8.2	28.2 28.3	28.2	91.6 89.5	90.6	6.2 6.0	6.1		3.0 3.1	3.1	3.0	1.9 1.7	1.8	1.8
					Bottom	12.3	27.6 27.3	27.4	8.2 8.2	8.2	28.8 29.3	29.1	93.0 89.5	91.3	6.2 6.0	6.1	6.1	2.9 3.2	3.1		1.9 1.9	1.9	1
7-Jun-17	Sunny	Moderate	11:39		Surface	1.0	29.0 29.1	29.1	8.3 8.3	8.3	20.7 20.8	20.7	96.8 98.6	97.7	6.6 6.8	6.7		4.6 4.4	4.5		5.3 4.6	5.0	
				12.5	Middle	6.3	27.8	27.9	8.3	8.3	25.0	25.0	95.1	94.9	6.4	6.3	6.5	4.5	4.5	4.5	4.2	4.2	5.2
					Bottom	11.5	28.1 27.3	27.3	8.3 8.2	8.2	25.0 30.6	30.5	94.7 92.5	92.5	6.3	6.3	6.3	4.5 4.3	4.4		6.4	6.5	1
9-Jun-17	Cloudy	Moderate	07:02				27.3 29.3		8.2 8.4		30.4 21.6		92.5 98.1		6.3		0.0	4.5 7.4			6.5 9.7		
3 0011 17	Oloudy	Woderate	07.02		Surface	1.0	29.1	29.2	8.4	8.4	21.7	21.7	94.6	96.4	6.5	6.6	6.8	7.5	7.5		9.1	9.4	
				3.2	Middle	1.6	29.3 29.3	29.3	8.4 8.4	8.4	21.6 21.6	21.6	103.8 103.6	103.7	7.1 7.0	7.0		6.6	6.5	6.8	8.0 8.7	8.4	9.3
					Bottom	2.2	29.3 29.3	29.3	8.4 8.4	8.4	21.6 21.6	21.6	103.6 103.2	103.4	7.0 7.0	7.0	7.0	6.6 6.1	6.4		10.0 10.2	10.1	
12-Jun-17	-	-	-		Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-		-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:56		Surface	1.0	28.3	28.3	8.2	8.2	18.7	18.7	84.0	84.1	5.9	5.8		8.8	8.6		3.2	2.8	
				12.3	Middle	6.2	28.3 28.1	28.1	8.2 8.2	8.2	18.6 19.8	19.7	84.1 81.9	82.7	5.8 5.7	5.7	5.8	8.4 8.6		8.6	2.4 3.3	3.5	3.4
				12.3			28.2 28.2		8.2 8.2		19.5 25.1		83.5 80.8		5.7 5.7			8.5 8.5	8.6	8.6	3.6 4.0		3.4
					Bottom	11.3	28.0	28.1	8.2	8.2	25.1	25.1	79.1	80.0	5.5	5.6	5.6	8.5	8.5		3.9	4.0	
16-Jun-17	Cloudy	Moderate	17:22		Surface	1.0	28.8 28.7	28.8	8.3 8.3	8.3	16.2 16.4	16.3	88.7 85.6	87.2	6.3 6.0	6.2	6.0	6.9 6.8	6.9		4.3 4.5	4.4	
				12.3	Middle	6.2	28.3 28.5	28.4	8.2 8.3	8.3	18.2 18.3	18.2	84.5 81.2	82.9	5.7 5.7	5.7	0.0	6.8 6.9	6.9	6.9	4.3 4.4	4.4	4.3
					Bottom	11.3	28.0 28.0	28.0	8.2 8.2	8.2	23.0 26.4	24.7	80.7 77.2	79.0	5.6 5.4	5.5	5.5	6.8	6.9		4.0	4.2	1
19-Jun-17	Rainy	Moderate	08:32		Surface	1.0	27.6	27.6	8.2	8.2	10.4	10.4	71.8	71.5	5.2	5.2		5.4	5.6		7.3	7.1	
				13.4	Middle	6.7	27.6 26.8	26.8	8.2 8.0	8.0	10.4 26.0	25.5	71.2 71.4	71.2	5.2 5.2	5.1	5.2	5.7 5.5	5.6	5.7	6.9	6.4	6.7
				13.4			26.9 26.7		8.0 7.9		24.9 27.2		70.9 71.5		5.1 5.2			5.7 5.8		5.1	6.5 7.0	-	0.7
21-Jun-17	Cloudy	Moderate	10:37		Bottom	12.4	26.8 27.6	26.7	8.0	8.0	26.4 14.6	26.8	72.1 72.3	71.8	5.2	5.2	5.2	5.7 7.2	5.8		6.3	6.7	<u> </u>
ZI-Juli-17	Cloudy	Woderate	10.37		Surface	1.0	27.6	27.6	8.0	8.0	14.8	14.7	73.8	73.1	5.2 5.3	5.3	5.2	7.5	7.4		7.3	6.7	
				12.2	Middle	6.1	27.0 26.8	26.9	8.0 8.0	8.0	19.8 20.0	19.9	71.0 71.1	71.1	5.0 5.1	5.0		7.5 7.5	7.5	7.5	6.2 7.2	6.7	6.7
					Bottom	11.2	25.7 25.7	25.7	7.9 7.9	7.9	29.1 29.3	29.2	70.1 70.3	70.2	4.9 4.9	4.9	4.9	7.6 7.7	7.7		6.4 7.2	6.8	ĺ
<u> </u>					1		20.1		1.0		20.0		10.0		7.0						1.4		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:58		Surface 1	.0 28.4 28.6	28.5	8.0 8.0	8.0	15.9 15.7	15.8	72.6 74.5	73.6	5.1 5.2	5.2	5.1	8.8 8.7	8.8		6.6 6.8	6.7	
				12.3	Middle 6	.2 26.8 27.1	27.0	8.0 8.0	8.0	19.7 19.5	19.6	72.4 73.0	72.7	5.0 5.0	5.0	3.1	8.8 8.8	8.8	8.8	6.9 7.2	7.1	7.6
					Bottom 11	1.3 26.7 27.2	26.9	7.9 7.9	7.9	25.4 24.7	25.1	70.4 70.7	70.6	5.0 5.0	5.0	5.0	8.8 8.9	8.9		8.8 9.4	9.1	
26-Jun-17	Cloudy	Moderate	14:39		Surface 1	.0 28.8 28.8	28.8	8.0 8.0	8.0	16.3 16.3	16.3	77.0 77.4	77.2	5.4 5.3	5.4	5.4	4.3 4.5	4.4		8.1 5.7	6.9	
				12.3	Middle 6	.2 27.1 27.1	27.1	8.0 8.0	8.0	20.0 20.0	20.0	75.7 76.9	76.3	5.3 5.3	5.3	0.4	4.4 4.3	4.4	4.4	8.3 5.5	6.9	5.9
					Bottom 11	1.3 27.0 26.4	26.7	8.0 8.0	8.0	26.0 26.8	26.4	72.1 72.3	72.2	5.1 5.1	5.1	5.1	4.2 4.4	4.3		5.0 2.8	3.9	
28-Jun-17	Fine	Moderate	16:40		Surface 1	.0 28.7 28.7	28.7	8.1 8.1	8.1	18.4 18.5	18.4	79.8 80.1	80.0	5.6 5.6	5.6	5.6	4.5 4.5	4.5		5.8 6.4	6.1	
				13.7	Middle 6	28.6	28.7	8.1 8.1	8.1	18.6 18.6	18.6	79.7 79.6	79.7	5.6 5.6	5.6	3.0	4.5 4.7	4.6	4.6	8.4 7.8	8.1	7.8
					Bottom 12	28.7 28.6	28.7	8.1 8.1	8.1	18.6 18.8	18.7	79.4 79.4	79.4	5.5 5.5	5.5	5.5	4.8 4.8	4.8		9.8 8.5	9.2	
30-Jun-17	Fine	Moderate	17:51		Surface 1	.0 29.5 29.5	29.5	8.3 8.3	8.3	15.0 14.8	14.9	87.9 81.2	84.6	6.2 5.7	5.9	5.8	4.9 5.0	5.0		3.7 4.6	4.2	
				11.6	Middle 5	26.9	27.0	8.2 8.1	8.1	22.5 23.3	22.9	83.0 81.2	82.1	5.7 5.6	5.6	5.0	5.6 5.5	5.6	5.4	5.3 5.2	5.3	5.0
					Bottom 10).6 25.6 25.7	25.7	8.1 8.2	8.1	30.4 30.4	30.4	70.1 72.7	71.4	4.9 5.1	5.0	5.0	5.5 5.6	5.6		5.4 5.4	5.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	13:40		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	21.6 21.6	21.6	97.4 97.5	97.5	6.8 6.8	6.8		5.6 5.5	5.6		3.5 4.4	4.0	
				13.5	Middle	6.8	27.7 27.7	27.7	8.3 8.3	8.3	23.0 23.1	23.0	95.8 95.5	95.7	6.6 6.6	6.6	6.7	5.9 6.0	6.0	5.8	4.1	4.0	4.1
					Bottom	12.5	27.7	27.7	8.3 8.3	8.3	23.4	23.4	95.6 95.7	95.7	6.6	6.6	6.6	5.6 5.7	5.7		3.9 4.9	4.4	
5-Jun-17	Fine	Moderate	17:06		Surface	1.0	28.9	28.9	8.3	8.3	21.1	21.0	100.6	100.0	6.9	6.9		3.1	3.2		2.4	2.9	
				13.5	Middle	6.8	28.8 28.2	28.0	8.3 8.2	8.2	20.9 24.0	24.5	99.3 95.7	95.1	6.8 6.5	6.5	6.7	3.2	3.2	3.2	3.3 2.5	2.5	2.7
				13.5	-		27.8 27.8		8.2 8.2		25.0 25.6		94.4 97.0		6.5 6.6			3.1 3.1		3.2	2.4		2.1
7 lun 47	C	Madasata	40.40		Bottom	12.5	28.0	27.9	8.2	8.2	25.0	25.3	98.9	98.0	6.7	6.7	6.7	3.4	3.3		2.7	2.8	
7-Jun-17	Sunny	Moderate	18:40		Surface	1.0	30.1 30.3	30.2	8.5 8.5	8.5	20.4 20.2	20.3	123.9 123.4	123.7	8.4 8.3	8.4	8.3	8.4 8.5	8.5		5.1 6.3	5.7	
				12.7	Middle	6.4	29.4 29.1	29.3	8.4 8.4	8.4	21.9 22.2	22.0	116.1 123.1	119.6	7.9 8.3	8.1		8.5 8.4	8.5	8.5	4.8 4.9	4.9	5.5
					Bottom	11.7	28.3 28.2	28.3	8.4 8.3	8.4	25.1 25.3	25.2	111.5 106.2	108.9	7.6 7.2	7.4	7.4	8.6 8.5	8.6		5.8 6.1	6.0	
9-Jun-17	Cloudy	Moderate	11:48		Surface	1.0	29.2 29.2	29.2	8.4 8.4	8.4	21.7 21.8	21.8	102.4 103.1	102.8	7.0 7.0	7.0		7.1 7.4	7.3		6.6 6.9	6.8	
				3.3	Middle	1.7	29.2	29.2	8.4	8.4	21.7	21.8	102.4	102.8	7.0	7.0	7.0	7.5	7.5	7.5	5.7	5.6	7.1
					Bottom	2.3	29.2	29.2	8.4	8.4	21.8	21.9	103.1	102.1	7.0 6.9	6.9	6.9	7.6	7.7		9.0	8.9	
12-Jun-17	Sunny	Moderate	07:29		Surface	1.0	29.2 28.9	28.8	8.4 8.3	8.3	22.0 21.2	21.3	102.3 84.1	85.1	7.0 5.8	5.8		7.7 3.4	3.3		8.8 2.7	3.2	
				12.5	Middle	6.3	28.6 27.6	27.7	8.3 8.3	8.3	21.4 27.6	26.7	86.1 82.8	81.1	5.8 5.7	5.5	5.7	3.2	3.3	3.3	3.6	2.9	3.3
				12.5	-		27.9 27.2		8.3 8.3		25.9 29.3	-	79.3 77.7		5.4 5.3			3.4 3.3		3.3	2.4 4.1		3.3
44 lua 47	Dein	Madasata	00.54		Bottom	11.5	27.5	27.4	8.3	8.3	29.1	29.2	80.0	78.9	5.4	5.3	5.3	3.5	3.4		3.4	3.8	<u> </u>
14-Jun-17	Rainy	Moderate	08:51		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	17.2 17.3	17.3	79.9 80.6	80.3	5.6 5.7	5.7	5.5	8.3 8.5	8.4		5.2 6.1	5.7	
				12.5	Middle	6.3	27.7 28.1	27.9	8.2 8.2	8.2	19.5 19.3	19.4	76.1 75.1	75.6	5.4 5.3	5.3		8.4 8.5	8.5	8.4	5.4 6.8	6.1	6.0
					Bottom	11.5	27.1 28.0	27.6	8.2 8.2	8.2	27.3 27.2	27.3	74.5 75.5	75.0	5.2 5.4	5.3	5.3	8.2 8.5	8.4		6.0 6.5	6.3	
16-Jun-17	Cloudy	Moderate	10:26		Surface	1.0	28.7 28.7	28.7	8.2 8.2	8.2	16.5 16.6	16.6	80.9 81.6	81.3	5.7 5.8	5.7		7.2 7.5	7.4		6.3 5.0	5.7	
				12.4	Middle	6.2	28.1 28.2	28.1	8.1 8.1	8.1	20.6 20.6	20.6	79.7 76.6	78.2	5.4 5.2	5.3	5.5	7.8 7.7	7.8	7.7	6.2 5.7	6.0	5.7
					Bottom	11.4	27.9	27.7	8.1	8.1	25.6	25.7	75.0	74.3	5.2	5.2	5.2	7.9	7.9		5.4	5.5	
19-Jun-17	Cloudy	Moderate	15:03		Surface	1.0	27.6 28.2	28.2	8.1 8.1	8.1	25.8 14.3	14.4	73.6 72.9	72.1	5.1 5.2	5.2		7.8 6.7	6.8		5.6 4.0	4.4	
				13.3	Middle	6.7	28.2 27.5	27.4	8.1 8.1	8.1	14.5 20.6	22.8	71.2 73.6	72.3	5.1 5.3	5.2	5.2	6.8		6.8	4.8 5.4	4.7	5.1
				13.3	-		27.3 27.8		8.0 8.1		25.0 22.0		71.0 75.2		5.1 5.4	-		6.7 6.5	6.8	0.0	4.0 5.8		5.1
21-Jun-17	Suppy	Moderate	17:20	<u> </u>	Bottom	12.3	27.7	27.8	8.0	8.1	24.0	23.0	72.0	73.6	5.2	5.3	5.3	6.8	6.7		6.6	6.2	
∠1-Ju∏-1/	Sunny	wouerate	17:20		Surface	1.0	27.9 28.0	27.9	8.1 8.1	8.1	14.2 14.6	14.4	78.0 74.1	76.1	5.4 5.3	5.4	5.3	4.9 4.7	4.8		4.7 3.8	4.3	
				12.4	Middle	6.2	26.7 26.9	26.8	8.0 8.0	8.0	21.8 21.4	21.6	73.5 73.3	73.4	5.3 5.1	5.2		4.8 4.8	4.8	4.8	5.5 6.5	6.0	5.4
					Bottom	11.4	26.8 27.1	27.0	7.9 8.0	7.9	26.0 25.9	25.9	70.6 71.1	70.9	5.0 5.0	5.0	5.0	4.8 4.9	4.9		6.2 5.3	5.8	i

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Temp	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:21		Surface 1	.0 28.5 28.5	28.5	8.0 8.0	8.0	16.3 16.5	16.4	82.3 78.9	80.6	5.7 5.5	5.6	5.5	8.3 8.5	8.4		6.7 6.6	6.7	
				12.4	Middle 6	i.2 27.5 27.7	27.6	7.9 7.9	7.9	20.0 20.1	20.1	79.0 77.4	78.2	5.5 5.4	5.4	3.3	11.5 11.4	11.5	10.4	7.5 6.5	7.0	6.8
					Bottom 1	1.4 27.3 27.4	27.4	7.9 7.9	7.9	23.1 22.9	23.0	76.7 73.9	75.3	5.4 5.2	5.3	5.3	11.2 11.5	11.4		6.3 6.9	6.6	
26-Jun-17	Cloudy	Moderate	07:19		Surface 1	.0 27.5 27.5	27.5	8.0 8.0	8.0	20.5 20.5	20.5	74.3 74.3	74.3	5.4 5.4	5.4	5.3	4.4 4.3	4.4		5.7 5.6	5.7	
				12.6	Middle 6	25.6 25.7	25.6	8.0 8.0	8.0	29.4 29.5	29.4	72.4 72.2	72.3	5.1 5.1	5.1	0.0	5.6 5.6	5.6	5.2	6.8 4.7	5.8	5.2
					Bottom 1	1.6 25.0 25.2	25.1	8.0 8.0	8.0	34.3 34.5	34.4	70.0 70.0	70.0	5.0 5.0	5.0	5.0	5.5 5.6	5.6		3.8 4.3	4.1	
28-Jun-17	Fine	Moderate	08:46		Surface 1	.0 28.3 28.3	28.3	8.0 8.0	8.0	14.6 14.5	14.5	72.5 72.2	72.4	5.2 5.2	5.2	5.2	4.2 4.1	4.2		6.0 5.2	5.6	
				13.7	Middle 6	28.1 28.0	28.1	8.0 8.0	8.0	16.0 16.5	16.2	71.3 71.4	71.4	5.1 5.1	5.1	5.2	4.4 4.3	4.4	4.3	6.4 5.9	6.2	5.9
					Bottom 12	27.9 28.1	28.0	7.9 7.9	7.9	19.1 19.3	19.2	70.8 70.5	70.7	5.1 5.1	5.1	5.1	4.4 4.4	4.4		6.2 5.7	6.0	
30-Jun-17	Fine	Moderate	10:49		Surface 1	.0 28.4 28.6	28.5	8.1 8.1	8.1	17.4 17.3	17.3	72.5 73.4	73.0	5.1 5.2	5.1	5.1	2.7 2.7	2.7		5.4 5.3	5.4	
				12.5	Middle 6	27.0 26.7	26.9	8.1 8.1	8.1	23.8 24.7	24.2	71.6 72.5	72.1	5.1 5.1	5.1	5.1	5.1 5.5	5.3	4.5	5.5 7.0	6.3	5.9
					Bottom 1	1.5 25.0 25.0	25.0	8.0 8.0	8.0	32.3 32.4	32.4	71.1 70.8	71.0	5.1 5.0	5.0	5.0	5.5 5.6	5.6		5.2 6.8	6.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTI	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	07:36		Surface	1.0	27.6 27.6	27.6	8.0 8.0	8.0	23.0 22.9	23.0	94.4 94.3	94.4	6.6 6.5	6.5		4.3 4.4	4.4		4.4 3.8	4.1	
				10.0	Middle	5.0	27.5	27.6	7.9	7.9	23.4	23.4	94.3	94.2	6.5	6.5	6.5	4.1	4.2	4.2	2.9	3.0	3.9
					Bottom	9.0	27.6 27.5	27.5	7.9 7.9	7.9	23.3 23.7	23.7	94.0 93.9	93.9	6.5 6.5	6.5	6.5	4.2 4.0	4.1		3.0 4.8	4.5	
5-Jun-17	Fine	Moderate	09:16				27.5 28.5		7.9 8.0		23.7 22.1		93.8 98.9		6.5		0.5	4.1 3.1			4.2 6.6		
3-5un-17	i iiie	Woderate	03.10		Surface	1.0	28.4	28.5	8.0	8.0	22.5	22.3	98.9	98.9	6.7	6.8	6.8	3.1	3.1		7.6	7.1	
				10.4	Middle	5.2	28.2 28.3	28.3	8.0 8.0	8.0	23.8 23.8	23.8	98.0 98.3	98.2	6.7 6.7	6.7		3.2 3.3	3.3	3.2	8.8 9.0	8.9	7.9
					Bottom	9.4	28.1 28.3	28.2	8.0 8.0	8.0	24.4 24.2	24.3	96.1 96.5	96.3	6.6 6.6	6.6	6.6	3.3 3.3	3.3		7.4 7.7	7.6	
7-Jun-17	Sunny	Moderate	10:25		Surface	1.0	28.5 28.5	28.5	8.0 8.0	8.0	23.9 23.7	23.8	103.0 103.7	103.4	7.0 7.1	7.0		6.5 6.6	6.6		5.0 4.5	4.8	
				10.1	Middle	5.1	28.4	28.4	8.0	8.0	24.3	24.8	101.8	101.3	6.9	6.9	7.0	6.9	6.9	6.9	6.6	6.1	6.4
					Bottom	9.1	28.3 28.2	28.2	8.0	8.0	25.2 25.6	25.8	100.8 99.5	99.5	6.8	6.7	6.7	6.9 7.2	7.3		5.6 8.5	8.2	
9-Jun-17	Cloudy	Moderate	13:03		Surface	1.0	28.1 28.8	28.8	8.0 8.1	8.1	26.0 23.2	23.3	99.4 99.7	99.4	6.7		0	7.3 5.7	5.6		7.8 7.6	6.9	
	,						28.7 28.1		8.1 8.0		23.3 26.6		99.1 96.3		6.7 6.5	6.8	6.6	5.4 5.6			6.2 8.2		
				9.8	Middle	4.9	28.0	28.1	8.0	8.0	27.3	26.9	95.2	95.8	6.4	6.4		5.4	5.5	5.5	7.2	7.7	7.8
					Bottom	8.8	27.8 28.2	28.0	8.0 8.0	8.0	28.2 27.4	27.8	97.4 99.7	98.6	6.5 6.7	6.6	6.6	5.0 5.5	5.3		8.9 8.7	8.8	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	16:31		Surface	1.0	28.3	28.3	7.9	7.9	18.1	18.0	87.9	88.4	6.2	6.2		6.4	6.3		4.6	4.9	
				10.1	Middle	5.1	28.3 28.2	28.2	7.9 7.9	7.9	17.9 18.4	18.3	88.9 87.4	87.5	6.3 6.2	6.2	6.2	6.2 6.5	6.5	6.5	5.1 6.4	5.9	5.5
				10.1			28.2 28.2		7.9 7.9		18.2 18.4		87.5 87.2		6.2		6.4	6.4 6.6		0.0	5.4 6.1		0.0
16-Jun-17	Cloudy	Moderate	17:41		Bottom	9.1	28.2 28.8	28.2	7.9 7.9	7.9	18.4 15.8	18.4	86.8 91.7	87.0	6.1 6.5	6.1	6.1	6.7 7.4	6.7		5.3 3.8	5.7	
10-5411-17	Cloudy	Woderate	17.41		Surface	1.0	28.8	28.8	8.0	8.0	15.3	15.6	94.7	93.2	6.7	6.6	6.5	7.3	7.4		4.0	3.9	
				9.8	Middle	4.9	28.7 28.7	28.7	8.0 7.9	8.0	17.1 17.3	17.2	92.1 91.1	91.6	6.5 6.4	6.4		8.1 7.9	8.0	7.8	4.3 4.0	4.2	4.2
					Bottom	8.8	28.6 28.6	28.6	7.9 8.0	8.0	17.6 17.8	17.7	93.4 94.5	94.0	6.6 6.6	6.6	6.6	7.8 8.3	8.1		4.5 4.2	4.4	
19-Jun-17	Rainy	Moderate	08:11		Surface	1.0	28.0 28.1	28.0	7.8 7.8	7.8	14.6 12.1	13.3	72.0 72.1	72.1	5.2 5.3	5.2		5.1 5.1	5.1		6.3 5.9	6.1	
				10.3	Middle	5.2	27.6	27.7	7.7	7.7	20.7	19.6	70.2	70.5	5.0	5.1	5.2	5.1	5.2	5.1	4.1	5.0	6.0
					Bottom	9.3	27.7 27.3	27.3	7.7	7.7	18.6 22.8	22.1	70.8 69.4	69.1	5.1 4.9	4.9	4.9	5.2 5.2	5.1		5.9 8.0	7.0	
21-Jun-17	Cloudy	Moderate	09:51				27.3 27.5	27.6	7.7 7.7		21.4 13.2		68.8 72.5		4.8 5.3			5.0 6.0			6.0 5.3		
					Surface	1.0	27.6 27.0		7.7 7.7	7.7	13.2 20.4	13.2	73.1 71.5	72.8	5.4 5.2	5.3	5.3	6.2 5.7	6.1		4.2 5.4	4.8	
				10.3	Middle	5.2	27.1	27.0	7.7	7.7	19.2	19.8	71.5	71.5	5.2	5.2		5.9	5.8	5.9	6.6	6.0	5.3
					Bottom	9.3	26.9 27.2	27.0	7.6 7.7	7.7	20.9 19.5	20.2	72.9 72.4	72.7	5.3 5.3	5.3	5.3	5.7 6.0	5.9		5.2 4.7	5.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	10:42		Surface	1.0	28.3 28.2	28.3	7.8 7.8	7.8	16.2 16.3	16.3	76.4 76.2	76.3	5.2 5.3	5.3	5.3	7.7 7.6	7.7		5.0 5.9	5.5	
				10.3	Middle	5.2	27.2 27.2	27.2	7.7 7.7	7.7	20.4 20.8	20.6	75.4 75.7	75.6	5.2 5.2	5.2	5.5	7.9 7.9	7.9	7.9	6.7 5.5	6.1	6.2
					Bottom	9.3	26.8 26.8	26.8	7.7 7.7	7.7	22.9 23.1	23.0	74.5 74.4	74.5	5.2 5.1	5.2	5.2	8.1 8.0	8.1		7.6 6.3	7.0	
26-Jun-17	Cloudy	Moderate	15:03		Surface	1.0	27.9 28.3	28.1	8.0 8.0	8.0	16.2 15.8	16.0	73.0 74.3	73.7	5.2 5.3	5.3	5.2	9.8 10.0	9.9		4.5 5.2	4.9	
				10.2	Middle	5.1	27.1 27.1	27.1	8.0 8.0	8.0	21.0 21.2	21.1	72.0 72.4	72.2	5.1 5.1	5.1	0.2	9.9 10.4	10.2	10.1	5.7 5.5	5.6	5.4
					Bottom	9.2	27.1 27.0	27.1	8.0 7.9	8.0	21.6 21.6	21.6	74.0 74.9	74.5	5.2 5.3	5.2	5.2	10.0 10.4	10.2		5.3 6.3	5.8	
28-Jun-17	Fine	Moderate	16:53		Surface	1.0	29.1 29.1	29.1	7.8 7.8	7.8	15.1 15.1	15.1	75.4 76.8	76.1	5.3 5.4	5.4	5.4	4.4 4.3	4.4		5.9 5.3	5.6	
				10.1	Middle	5.1	28.8 28.4	28.6	7.8 7.8	7.8	16.7 18.5	17.6	76.7 73.7	75.2	5.4 5.2	5.3	5.4	4.6 4.5	4.6	4.6	6.0 5.5	5.8	5.9
					Bottom	9.1	27.2 27.2	27.2	7.7 7.7	7.7	21.8 22.3	22.1	69.8 70.6	70.2	4.9 5.0	4.9	4.9	4.8 4.6	4.7		6.3 6.2	6.3	
30-Jun-17	Fine	Moderate	18:14		Surface	1.0	29.2 29.1	29.1	7.9 7.9	7.9	15.3 15.3	15.3	77.6 77.1	77.4	5.4 5.4	5.4	5.4	2.9 2.6	2.8		3.9 4.2	4.1	
				10.3	Middle	5.2	28.2 28.0	28.1	7.8 7.8	7.8	19.3 19.8	19.5	76.5 75.7	76.1	5.3 5.3	5.3	5.4	2.8 2.5	2.7	2.7	4.1 4.1	4.1	4.2
					Bottom	9.3	28.4 28.0	28.2	7.8 7.8	7.8	21.0 22.3	21.6	77.3 78.2	77.8	5.4 5.4	5.4	5.4	2.6 2.7	2.7		4.7 4.0	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	13:50		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	22.9 23.0	23.0	94.3 93.9	94.1	6.5 6.5	6.5		4.2 4.2	4.2		1.6 1.4	1.5	
				10.0	Middle	5.0	27.5 27.5	27.5	8.0 8.0	8.0	23.4 23.4	23.4	92.2 92.0	92.1	6.4 6.4	6.4	6.5	4.2 4.2	4.2	4.2	1.3 1.5	1.4	1.6
					Bottom	9.0	27.3 27.2	27.3	8.0 8.0	8.0	26.1 26.6	26.3	91.6 91.0	91.3	6.3	6.2	6.2	4.2	4.2		1.9	1.8	
5-Jun-17	Fine	Moderate	17:57		Surface	1.0	29.4	29.4	8.1	8.0	20.7	20.6	95.8	95.3	6.5	6.4		3.3	3.3		2.4	3.1	
				10.5	Middle	5.3	29.5 28.6	28.3	8.0 8.0	8.0	20.6 21.8	23.3	94.7 93.6	94.0	6.4	6.4	6.4	3.2	3.4	3.4	3.7 2.8	2.8	3.0
				10.5			28.0 27.8	27.7	8.0 8.0	8.0	24.9 26.9	27.2	94.3 90.4	91.0	6.5 6.2		6.2	3.4 3.5		5.4	2.8 3.6	3.0	3.0
7-Jun-17	Sunny	Moderate	19:30		Bottom	9.5	27.6 29.7		8.0 8.1		27.5 20.4		91.5 115.3		6.2 7.8	6.2	6.2	3.5	3.5		2.3 4.3		<u> </u>
7 0011 17	Culliny	Woderate	10.00		Surface	1.0	29.7	29.7	8.1 8.1	8.1	20.4	20.4	115.4 114.9	115.4	7.8 7.8	7.8	7.8	3.8	3.9		4.6	4.5	
				10.3	Middle	5.2	29.6	29.6	8.1	8.1	20.5	20.7	115.4	115.2	7.8	7.8		4.1	4.1	4.1	3.0	3.6	4.4
					Bottom	9.3	29.5 29.6	29.6	8.1 8.1	8.1	22.1 20.6	21.3	114.2 110.9	112.6	7.8 7.6	7.7	7.7	4.2 4.3	4.3		4.7 5.2	5.0	
9-Jun-17	Cloudy	Moderate	05:17		Surface	1.0	28.2 28.3	28.2	7.9 7.9	7.9	23.9 25.6	24.8	91.6 91.9	91.8	6.6 6.7	6.7	6.7	3.8 3.7	3.8		5.2 4.4	4.8	
				10.1	Middle	5.1	27.8 27.8	27.8	7.9 7.9	7.9	28.6 29.0	28.8	91.2 90.7	91.0	6.6 6.5	6.6		4.7 4.4	4.6	4.4	5.9 6.4	6.2	6.1
					Bottom	9.1	27.7 27.7	27.7	7.9 7.9	7.9	29.2 29.5	29.4	92.2 91.2	91.7	6.6 6.6	6.6	6.6	4.9 4.4	4.7		7.2 7.5	7.4	
12-Jun-17	Sunny	Moderate	06:44		Surface	1.0	28.4 28.3	28.4	7.9 7.9	7.9	25.3 25.7	25.5	89.8 88.7	89.3	6.1 6.0	6.0		3.7 3.6	3.7		2.9 3.9	3.4	
				10.1	Middle	5.1	28.3 28.3	28.3	7.9 7.9	7.9	25.8 25.6	25.7	89.1 88.7	88.9	6.0 6.0	6.0	6.0	3.4 3.6	3.5	3.7	3.2 3.3	3.3	3.4
					Bottom	9.1	28.3 28.1	28.2	7.9 7.9	7.9	26.1 26.7	26.4	89.0 89.5	89.3	6.0 6.0	6.0	6.0	3.8 4.1	4.0		3.6 3.5	3.6	
14-Jun-17	Rainy	Moderate	08:13		Surface	1.0	28.1 28.1	28.1	7.8 7.8	7.8	18.9 18.6	18.7	84.9 84.8	84.9	6.0 5.9	5.9		6.2 6.1	6.2		6.4 5.8	6.1	
				10.2	Middle	5.1	28.1	28.1	7.8 7.8	7.8	20.6	19.8	83.3 84.0	83.7	5.8 5.9	5.9	5.9	6.3	6.4	6.4	5.2 5.2	5.2	6.1
					Bottom	9.2	28.1	28.0	7.8	7.8	20.6	21.8	81.9	82.3	5.8	5.7	5.7	6.5	6.6		6.8	7.0	
16-Jun-17	Cloudy	Moderate	09:33		Surface	1.0	27.9 28.6	28.6	7.7	7.8	23.0 17.1	17.1	82.7 86.1	84.6	5.7 6.1	6.0		6.6	6.1		7.1 3.6	3.1	
				9.6	Middle	4.8	28.5 28.5	28.5	7.8 7.8	7.8	17.2 18.2	18.2	83.0 82.7	82.9	5.9 5.8	5.8	5.9	6.0 5.9	5.9	6.0	2.6	2.9	3.1
					Bottom	8.6	28.5 28.5	28.4	7.8 7.8	7.8	18.3 18.8	18.9	83.0 83.7	83.1	5.8 5.9	5.8	5.8	5.9 6.0	5.9		3.0	3.2	
19-Jun-17	Cloudy	Moderate	15:20		1	1.0	28.4 28.3	28.3	7.8 7.8	7.8	19.0 10.7	10.7	82.4 74.4	74.3	5.8 5.5		5.0	5.8 6.5			3.3 6.2		
	,				Surface		28.3 27.0		7.8 7.7	_	10.6 21.2		74.1 72.5		5.4 5.2	5.5	5.4	6.5 6.2	6.5		5.3 6.1	5.8	
				10.4	Middle	5.2	27.4 26.8	27.2	7.7	7.7	21.1	21.2	72.9 70.1	72.7	5.3 5.0	5.2		6.2	6.2	6.3	7.5	6.8	6.6
24 lun 47	Cuppy	Madarata	17.27		Bottom	9.4	26.8	26.8	7.6	7.6	27.4	28.0	70.5	70.3	5.1	5.0	5.0	6.2	6.2		6.5	7.2	
21-Jun-17	Sunny	Moderate	17:37		Surface	1.0	27.7 27.7	27.7	7.8 7.8	7.8	15.8 15.7	15.7	75.0 75.0	75.0	5.5 5.4	5.4	5.3	5.9 5.9	5.9		4.5 5.6	5.1	
				10.4	Middle	5.2	27.6 27.6	27.6	7.8 7.8	7.8	16.1 16.2	16.2	73.1 73.3	73.2	5.1 5.3	5.2		5.9 6.0	6.0	6.0	6.3	6.6	6.2
					Bottom	9.4	27.6 27.4	27.5	7.8 7.8	7.8	16.1 16.6	16.4	75.5 76.6	76.1	5.4 5.4	5.4	5.4	5.9 6.1	6.0		7.7 6.2	7.0	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	20:06		Surface 1	.0 28.3 28.4	28.3	7.8 7.8	7.8	15.8 15.7	15.8	74.4 74.2	74.3	5.3 5.3	5.3	5.3	8.4 8.6	8.5		7.2 6.7	7.0	
				10.4	Middle 5	5.2 28.3 28.3	28.3	7.8 7.8	7.8	15.9 15.8	15.9	73.8 73.7	73.8	5.3 5.3	5.3	5.5	8.7 8.8	8.8	8.8	8.0 7.1	7.6	7.5
					Bottom 9	28.2 28.3	28.3	7.8 7.8	7.8	16.3 16.2	16.3	73.2 73.3	73.3	5.2 5.2	5.2	5.2	9.0 9.1	9.1		7.3 8.5	7.9	
26-Jun-17	Cloudy	Moderate	06:48		Surface 1	.0 26.7 26.6	26.6	8.0 8.0	8.0	23.4 23.4	23.4	75.3 73.6	74.5	5.4 5.3	5.3	5.3	7.9 8.1	8.0		10.4 7.9	9.2	
				10.3	Middle 5	5.2 26.3 25.9	26.1	8.0 8.0	8.0	25.2 26.0	25.6	73.1 72.9	73.0	5.2 5.2	5.2	5.5	8.2 8.5	8.4	8.3	7.6 7.6	7.6	8.4
					Bottom 9	25.7 26.0	25.9	8.0 8.0	8.0	29.6 25.8	27.7	73.5 73.8	73.7	5.2 5.3	5.2	5.2	8.7 8.1	8.4		8.2 8.8	8.5	
28-Jun-17	Fine	Moderate	08:26		Surface 1	.0 27.9 27.9	27.9	7.6 7.6	7.6	15.1 15.2	15.1	73.6 73.5	73.6	5.4 5.4	5.4	5.3	3.7 3.7	3.7		5.8 4.6	5.2	
				10.3	Middle 5	5.2 27.1 27.1	27.1	7.5 7.5	7.5	22.2 21.7	21.9	73.2 72.7	73.0	5.2 5.2	5.2	5.5	3.5 3.5	3.5	3.6	6.9 5.5	6.2	5.7
					Bottom 9	25.6 25.7	25.7	7.4 7.4	7.4	30.0 29.8	29.9	69.3 69.4	69.4	5.0 5.0	5.0	5.0	3.6 3.7	3.7		5.9 5.5	5.7	
30-Jun-17	Fine	Moderate	10:12		Surface 1	.0 28.3 28.7	28.5	7.8 7.8	7.8	15.8 15.3	15.5	72.7 72.6	72.7	5.3 5.2	5.2	5.2	3.0 3.1	3.1		4.1 6.2	5.2	
				10.2	Middle 5	5.1 27.6 27.6	27.6	7.7 7.7	7.7	21.0 20.9	20.9	72.2 72.4	72.3	5.2 5.2	5.2	5.2	3.0 3.1	3.1	3.1	6.3 5.3	5.8	5.5
					Bottom 9	27.5 27.6	27.5	7.7 7.7	7.7	22.0 20.9	21.5	72.8 72.3	72.6	5.2 5.2	5.2	5.2	2.9 3.0	3.0		5.1 6.0	5.6	İ

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	07:18		Surface	1.0	27.6 27.6	27.6	7.9 7.9	7.9	22.8 22.7	22.7	94.9 95.3	95.1	6.6 6.6	6.6		4.8 4.8	4.8		2.7 2.3	2.5	
				34.5	Middle	17.3	27.6 27.6	27.6	7.9 7.9	7.9	23.1	23.1	94.3 93.9	94.1	6.5 6.5	6.5	6.6	4.4 4.5	4.5	4.5	3.1 3.3	3.2	2.9
					Bottom	33.5	27.5 27.5	27.5	7.9 7.9	7.9	23.5	23.6	93.4 93.5	93.5	6.5 6.5	6.5	6.5	4.3 4.2	4.3		3.3	3.1	
5-Jun-17	Fine	Moderate	09:06		Surface	1.0	28.5	28.6	8.0	8.0	22.0	22.0	98.7	98.7	6.8	6.8		3.0	3.0		3.4	3.7	
				34.5	Middle	17.3	28.6 28.3	28.3	8.0 8.0	8.0	21.9 23.3	23.5	98.6 98.2	97.6	6.8	6.7	6.8	2.9 3.2	3.3	3.3	3.9 5.6	6.3	5.5
				34.3			28.3 28.2		8.0		23.6 24.5		96.9 95.6		6.6		0.5	3.3		5.5	6.9		3.5
7-Jun-17	Sunny	Moderate	10:12		Bottom	33.5	28.1 28.5	28.1	8.0	8.0	24.6	24.6	95.8 101.7	95.7	6.5 6.9	6.5	6.5	3.6 6.2	3.6		6.3 5.8	6.4	<u></u>
7-3411-17	Sullily	Moderate	10.12		Surface	1.0	28.5	28.5	8.0	8.0	24.0	24.0	101.9	101.8	6.9	6.9	6.9	6.3	6.3		5.9	5.9	1
				34.3	Middle	17.2	28.3 28.4	28.4	8.0 8.0	8.0	24.6 24.6	24.6	101.1 99.1	100.1	6.8 6.7	6.8		6.5 6.5	6.5	6.5	7.3 7.3	7.3	6.5
					Bottom	33.3	28.2 28.1	28.1	8.0 8.0	8.0	26.1 26.3	26.2	99.9 97.1	98.5	6.8 6.6	6.7	6.7	6.7 6.9	6.8		5.9 6.6	6.3	
9-Jun-17	Cloudy	Moderate	13:17		Surface	1.0	28.9 28.9	28.9	8.1 8.1	8.1	23.0 23.1	23.1	106.6 103.3	105.0	7.2 7.0	7.1	6.8	5.2 5.1	5.2		5.5 7.1	6.3	1
				34.4	Middle	17.2	27.9 27.8	27.8	8.0 8.0	8.0	28.1 28.2	28.1	95.3 95.4	95.4	6.4 6.4	6.4	6.8	4.6 4.4	4.5	4.8	7.7 9.2	8.5	7.5
					Bottom	33.4	27.8 27.8	27.8	8.0 8.0	8.0	28.8 28.6	28.7	97.3 98.0	97.7	6.5 6.6	6.5	6.5	4.6 4.5	4.6		8.0 7.4	7.7	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	<u>-</u>
					Bottom	-	-	_	-	_	-	-	-	_	-	-		-	_		-	-	-
14-Jun-17	Rainy	Moderate	16:44		Surface	1.0	28.3	28.3	7.9	7.9	18.0	18.1	87.8	87.8	6.2	6.2		6.3	6.4		4.4	5.0	
				34.5	Middle	17.3	28.3 28.2	28.2	7.9 7.9	7.9	18.1 18.4	18.3	87.8 87.6	87.7	6.2	6.2	6.2	6.4	6.4	6.4	5.6 3.8	3.9	4.5
				00	Bottom	33.5	28.2 28.2	28.2	7.9 7.9	7.9	18.3 18.5	18.4	87.8 87.2	87.4	6.2 6.1	6.2	6.2	6.4 6.5	6.5	0	3.9 4.6	4.5	
16-Jun-17	Cloudy	Moderate	17:54				28.2		7.9 7.9		18.4 15.4		87.5 91.8	_	6.2		0.2	6.5 7.5			4.4 5.0		
	,				Surface	1.0	28.8 28.6	28.8	7.9 7.9	7.9	15.4 18.1	15.4	91.0 87.8	91.4	6.5 6.2	6.5	6.4	7.3 7.9	7.4		5.9 5.7	5.5	
				34.7	Middle	17.4	28.6 28.5	28.6	7.9 7.9	7.9	18.0	18.1	89.6 89.6	88.7	6.3	6.2		7.9 7.8	7.9	7.7	4.8	5.3	5.2
					Bottom	33.7	28.6	28.6	7.9	7.9	18.3	18.4	92.4	91.0	6.5	6.4	6.4	7.5	7.7		4.9	4.9	
19-Jun-17	Rainy	Moderate	08:03		Surface	1.0	28.1 28.1	28.1	7.8 7.8	7.8	11.7 10.7	11.2	71.4 71.8	71.6	5.2 5.3	5.3	5.2	4.9 4.9	4.9		6.2 5.4	5.8	
				34.9	Middle	17.5	26.9 26.7	26.8	7.7 7.7	7.7	26.7 26.7	26.7	70.7 70.5	70.6	5.1 5.1	5.1	5.2	4.8 4.8	4.8	4.8	6.2 5.8	6.0	5.8
					Bottom	33.9	26.7 26.5	26.6	7.6 7.6	7.6	28.7 29.6	29.1	69.4 69.8	69.6	4.9 4.9	4.9	4.9	4.8 4.8	4.8		6.5 4.8	5.7	
21-Jun-17	Cloudy	Moderate	09:37		Surface	1.0	27.6 27.5	27.5	7.8 7.8	7.8	13.3 16.5	14.9	72.2 72.4	72.3	5.3 5.3	5.3		6.1 5.9	6.0		7.4 6.2	6.8	
				34.8	Middle	17.4	26.9	26.9	7.7	7.7	21.2	21.1	72.0	71.9	5.2	5.2	5.3	5.7	5.7	5.9	9.8	10.2	8.8
					Bottom	33.8	26.9 26.9	26.9	7.7 7.6	7.7	21.0 21.4	21.2	71.7 72.5	72.6	5.2 5.3	5.3	5.3	5.6 5.9	5.9		9.3	9.5	
					201.0.11	30.0	26.9	20.0	7.7		21.1		72.6	. 2.0	5.3	0.0	0.0	5.9	0.0		9.6	0.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Temper	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	10:33		Surface 1.0	28.3 28.5	28.4	7.7 7.7	7.7	16.2 16.1	16.1	76.7 76.1	76.4	5.2 5.2	5.2	5.2	7.5 7.4	7.5		6.5 6.3	6.4	
				35.1	Middle 17.6	27.2 26.9	27.1	7.7 7.7	7.7	20.6 22.1	21.3	74.0 75.5	74.8	5.2 5.2	5.2	3.2	7.6 7.5	7.6	7.7	5.5 5.2	5.4	6.5
					Bottom 34.1	26.9 26.8	26.8	7.6 7.7	7.7	22.9 23.2	23.1	75.1 75.0	75.1	5.1 5.2	5.1	5.1	7.9 7.8	7.9		7.5 8.0	7.8	
26-Jun-17	Cloudy	Moderate	15:15		Surface 1.0	28.3 28.2	28.3	8.0 8.0	8.0	15.5 16.0	15.7	73.5 74.3	73.9	5.3 5.4	5.3	5.2	8.9 9.0	9.0		5.3 4.7	5.0	
				35.4	Middle 17.7	27.1 27.2	27.2	8.0 8.0	8.0	21.5 20.7	21.1	70.2 71.1	70.7	5.0 5.1	5.0	0.2	8.6 8.7	8.7	8.8	4.8 4.3	4.6	4.6
					Bottom 34.4	27.1 27.2	27.1	8.0 8.0	8.0	21.7 21.5	21.6	71.3 72.9	72.1	5.1 5.2	5.1	5.1	8.7 8.5	8.6		4.2 4.2	4.2	
28-Jun-17	Fine	Moderate	17:03		Surface 1.0	29.2 29.2	29.2	7.8 7.8	7.8	15.1 15.1	15.1	76.7 77.2	77.0	5.4 5.4	5.4	5.4	4.8 4.9	4.9		5.3 5.2	5.3	
				33.8	Middle 16.9	27.3 27.3	27.3	7.7 7.7	7.7	20.8 20.9	20.8	75.5 76.5	76.0	5.3 5.4	5.4	3.4	4.9 4.8	4.9	4.9	7.0 7.0	7.0	6.5
					Bottom 32.8	27.3 27.3	27.3	7.8 7.7	7.8	21.7 21.8	21.7	70.4 69.5	70.0	4.9 4.9	4.9	4.9	4.9 4.9	4.9		7.7 6.8	7.3	
30-Jun-17	Fine	Moderate	18:28		Surface 1.0	29.1 29.2	29.1	7.9 7.9	7.9	15.6 15.4	15.5	79.3 77.9	78.6	5.5 5.5	5.5	5.4	2.7 2.8	2.8		4.6 4.6	4.6	
				35.1	Middle 17.6	27.0	27.1	7.8 7.8	7.8	23.0 23.7	23.4	74.2 74.3	74.3	5.1 5.2	5.2	5.4	2.8 2.8	2.8	2.8	3.2 4.5	3.9	4.7
					Bottom 34.1	27.1 27.1	27.1	7.8 7.8	7.8	23.7 23.9	23.8	75.1 75.6	75.4	5.2 5.2	5.2	5.2	2.6 2.9	2.8		6.4 4.5	5.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	14:03		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	23.0 23.1	23.1	95.4 95.2	95.3	6.6 6.6	6.6		4.1 4.2	4.2		2.3 2.5	2.4	
				34.6	Middle	17.3	27.6	27.6	8.0	8.0	23.2	23.2	94.9	95.0	6.6	6.6	6.6	4.2	4.2	4.2	2.7	3.2	4.1
					Bottom	33.6	27.6 27.6	27.6	8.0	8.0	23.3 23.4	23.4	95.1 94.7	94.8	6.6 6.6	6.6	6.6	4.1	4.3		3.6 7.0	6.6	
5-Jun-17	Fine	Moderate	18:09				27.6 29.0		8.0		23.4 20.4		94.9 101.1		6.6		0.0	4.3 3.3			6.2 1.7		<u> </u>
3-Jun-17	Tille	Woderate	10.03		Surface	1.0	29.5	29.2	8.1	8.0	21.9	21.2	101.4	101.3	6.9	6.9	6.8	3.2	3.3		1.7	1.7	
				34.7	Middle	17.4	28.4 28.5	28.4	8.0 8.0	8.0	22.0 22.2	22.1	97.9 97.7	97.8	6.7 6.6	6.7		3.4 3.4	3.4	3.4	1.6 1.9	1.8	2.6
					Bottom	33.7	27.5 27.7	27.6	8.0 8.0	8.0	27.8 27.3	27.5	95.5 94.4	95.0	6.6 6.5	6.5	6.5	3.6 3.5	3.6		4.6 3.7	4.2	
7-Jun-17	Sunny	Moderate	19:43		Surface	1.0	29.7 29.7	29.7	8.1 8.1	8.1	20.3 20.4	20.3	115.6 114.8	115.2	7.9 7.8	7.8		3.7 3.8	3.8		5.5 4.9	5.2	
				34.5	Middle	17.3	29.6	29.6	8.1	8.1	20.9	20.7	111.7	111.3	7.6	7.6	7.7	3.9	3.9	4.0	4.4	5.0	5.1
					Bottom	33.5	29.6 28.3	28.7	8.1 8.1	8.1	20.5 25.4	23.8	110.9 110.7	110.2	7.5 7.5	7.5	7.5	3.9 4.2	4.2		5.5 5.0	5.0	,
9-Jun-17	Cloudy	Moderate	05:04			1.0	29.0 28.2		8.1 7.9	7.9	22.1 26.4		109.7 91.1		7.4 6.6		7.0	4.1 3.5			4.9		<u> </u>
	,				Surface		28.2 27.5	28.2	7.9 7.9		26.3 30.0	26.4	91.4 90.5	91.3	6.6	6.6	6.6	3.4 4.1	3.5		4.7 5.5	4.7	-
				34.5	Middle	17.3	27.6	27.5	7.9	7.9	29.4	29.7	90.2	90.4	6.5	6.5		3.9	4.0	3.8	5.4	5.5	4.9
					Bottom	33.5	27.4 27.3	27.3	7.9 7.9	7.9	31.5 31.4	31.4	90.9 91.0	91.0	6.5 6.6	6.5	6.5	3.8 4.0	3.9		4.4 4.3	4.4	
12-Jun-17	Sunny	Moderate	06:32		Surface	1.0	28.6 29.1	28.9	8.0 8.0	8.0	24.4 21.2	22.8	91.4 93.2	92.3	6.2 6.4	6.3	6.2	3.6 3.8	3.7		3.4 3.0	3.2	ļ
				34.9	Middle	17.5	28.5 28.6	28.6	8.0 8.0	8.0	25.0 24.2	24.6	90.1 91.5	90.8	6.1 6.2	6.1	0.2	3.5 3.7	3.6	3.7	3.8 3.1	3.5	3.4
					Bottom	33.9	28.7 28.5	28.6	8.0 8.0	8.0	24.0 25.1	24.6	91.8 92.1	92.0	6.2 6.2	6.2	6.2	3.9 3.7	3.8		3.3	3.6	,
14-Jun-17	Rainy	Moderate	08:01		Surface	1.0	28.1	28.1	7.8	7.8	18.6	18.5	84.8	85.1	6.0	6.0		6.3	6.4		4.3	4.7	
				34.7	Middle	17.4	28.1 28.1	28.2	7.8 7.8	7.8	18.5 20.2	19.7	85.3 84.1	84.1	6.0 5.9	5.9	6.0	6.4	6.6	6.6	5.0 6.0	6.0	5.8
				34.7			28.2 28.1		7.8 7.8		19.2 20.5		84.0 83.2		5.9 5.8			6.6 6.8		0.0	5.9 7.1		5.6
16-Jun-17	Clavely	Moderate	00:40		Bottom	33.7	28.1	28.1	7.8 7.8	7.8	20.4 17.2	20.5	83.8 83.7	83.5	5.9 5.9	5.8	5.8	6.8	6.8		6.3 5.5	6.7	<u> </u>
16-Jun-17	Cloudy	woderate	09:19		Surface	1.0	28.6	28.6	7.8	7.8	17.2	17.2	83.8	83.8	5.9	5.9	5.8	6.1	6.2		6.2	5.9	
				34.8	Middle	17.4	28.2 28.4	28.3	7.8 7.8	7.8	19.4 19.3	19.3	81.6 80.9	81.3	5.7 5.7	5.7		6.3 6.2	6.3	6.3	5.3 4.9	5.1	5.6
					Bottom	33.8	28.1 28.3	28.2	7.7 7.7	7.7	22.7 22.3	22.5	86.4 84.0	85.2	6.0 5.8	5.9	5.9	6.5 6.3	6.4		5.8 5.6	5.7	
19-Jun-17	Cloudy	Moderate	15:32		Surface	1.0	28.3 28.3	28.3	7.8 7.8	7.8	10.8 10.7	10.7	72.5 73.9	73.2	5.3 5.4	5.4		6.5 6.4	6.5		4.5 5.8	5.2	
				34.8	Middle	17.4	26.9	26.8	7.6	7.7	27.3	27.8	71.3	71.5	5.1	5.1	5.3	6.3	6.4	6.4	4.9	4.8	5.6
					Bottom	33.8	26.6 26.6	26.7	7.7 7.6	7.6	28.3 30.1	30.2	71.7 70.1	70.4	5.2 5.0	5.0	5.0	6.4	6.4		7.0	6.8	
21-Jun-17	Sunny	Moderate	17:51				26.8 27.6		7.6 7.8		30.2 15.7		70.6 77.9		5.1 5.7		0.0	6.2		<u> </u>	6.5 6.2		
	,				Surface	1.0	27.7	27.6	7.8	7.8	15.8 17.9	15.8	76.7 72.7	77.3	5.6	5.7	5.5	5.9	6.0		6.9 5.1	6.6	-
				35.1	Middle	17.6	27.5	27.4	7.8	7.8	16.9	17.4	72.4	72.6	5.3	5.3		6.0	6.1	6.1	5.8	5.5	6.2
					Bottom	34.1	27.5 27.4	27.5	7.8 7.8	7.8	16.9 18.3	17.6	73.2 74.0	73.6	5.3 5.4	5.3	5.3	6.2 6.1	6.2		5.6 7.1	6.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	20:18		Surface 1.0	28.3 28.2	28.3	7.8 7.8	7.8	16.2 16.1	16.2	74.9 75.0	75.0	5.4 5.4	5.4	5.4	9.1 9.1	9.1		7.5 8.6	8.1	
				35.2	Middle 17.6	28.2 28.3	28.2	7.8 7.8	7.8	16.5 16.1	16.3	74.2 74.1	74.2	5.3 5.3	5.3	5.4	9.3 9.2	9.3	9.3	7.8 7.1	7.5	8.7
					Bottom 34.2	28.2	28.2	7.8 7.8	7.8	16.5 16.6	16.6	73.4 73.5	73.5	5.3 5.2	5.2	5.2	9.5 9.6	9.6		10.1 10.8	10.5	
26-Jun-17	Cloudy	Moderate	06:38		Surface 1.0	26.6 26.6	26.6	8.0 8.0	8.0	23.4 23.6	23.5	73.9 73.7	73.8	5.3 5.3	5.3	5.3	8.2 8.4	8.3		10.8 8.9	9.9	
				35.1	Middle 17.6	26.3 26.2	26.3	8.0 8.0	8.0	25.0 24.9	25.0	72.7 72.2	72.5	5.2 5.1	5.2	5.5	8.8 8.7	8.8	8.5	8.3 7.4	7.9	9.2
					Bottom 34.	25.6 25.3	25.5	8.0 8.0	8.0	29.6 30.7	30.1	74.1 75.2	74.7	5.2 5.3	5.3	5.3	8.4 8.5	8.5		9.3 10.2	9.8	
28-Jun-17	Fine	Moderate	08:17		Surface 1.0	28.0 28.2	28.1	7.5 7.5	7.5	15.3 14.4	14.9	70.6 74.3	72.5	5.0 5.5	5.3	5.2	3.6 3.4	3.5		4.7 5.0	4.9	
				34.5	Middle 17.3	25.6 26.2	25.9	7.5 7.5	7.5	29.8 29.0	29.4	70.5 70.3	70.4	5.2 5.0	5.1	5.2	3.5 3.5	3.5	3.5	5.4 5.0	5.2	5.2
					Bottom 33.5	25.6 25.6	25.6	7.5 7.5	7.5	29.8 29.6	29.7	66.5 66.9	66.7	4.8 4.8	4.8	4.8	3.4 3.5	3.5		5.3 5.5	5.4	
30-Jun-17	Fine	Moderate	09:59		Surface 1.0	28.4 28.2	28.3	7.8 7.8	7.8	16.1 16.2	16.1	73.6 72.8	73.2	5.3 5.3	5.3	5.3	2.8 2.6	2.7		5.5 4.5	5.0	
				34.8	Middle 17.4	26.9	27.0	7.7 7.7	7.7	22.2 23.9	23.1	74.0 72.3	73.2	5.3 5.2	5.3	0.0	2.2 2.1	2.2	2.4	5.0 6.0	5.5	5.8
					Bottom 33.8	26.5 25.8	26.1	7.7 7.7	7.7	26.5 26.3	26.4	72.8 75.7	74.3	5.2 5.4	5.3	5.3	2.5 2.3	2.4		8.0 5.9	7.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:36		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	23.6 23.6	23.6	106.9 107.6	107.3	7.3 7.4	7.4		6.8 6.9	6.9		6.1 6.0	6.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	6.9	-	-	6.3
					Bottom	2.4	28.1	28.1	8.4 8.3	8.4	23.6	23.6	107.4 106.6	107.0	7.4 7.3	7.3	7.3	6.8 7.0	6.9		6.8	6.4	1
5-Jun-17	Fine	Moderate	11:42				29.3		8.4		21.5	24.5	119.8		8.2			4.0	4.0		3.2		
0 04.11		Moderate			Surface	1.0	29.3	29.3	8.4	8.4	21.5	21.5	118.3	119.1	8.0	8.1	8.1	4.4	4.2		4.0	3.6	
				3.4	Middle	-	29.0	-	8.3	-	22.1	-	114.2	-	7.8	-		7.3	-	5.7	5.5	-	4.5
					Bottom	2.4	29.1	29.1	8.4	8.3	21.7	21.9	118.6	116.4	8.1	7.9	7.9	6.9	7.1		5.3	5.4	
7-Jun-17	Sunny	Moderate	12:47		Surface	1.0	29.8 29.7	29.7	8.4 8.4	8.4	21.2 21.3	21.3	108.1 110.3	109.2	7.3 7.5	7.4	7.4	7.8 7.6	7.7		7.8 7.2	7.5	
				3.3	Middle		-	-	-	-	-	-	-	-		-	7.4	-	-	7.8	-	-	7.6
					Bottom	2.3	29.5 29.5	29.5	8.4 8.4	8.4	21.5 21.7	21.6	104.9 108.7	106.8	7.1 7.4	7.2	7.2	7.8 7.9	7.9		7.1 8.2	7.7	
9-Jun-17	Cloudy	Moderate	05:59		Surface	1.0	27.0 27.0	27.0	8.3 8.3	8.3	30.0 30.1	30.0	84.2 83.5	83.9	5.7 5.6	5.7		4.5 4.5	4.5		8.7 8.1	8.4	
				2.1	Middle	-	-	-	-	-	- 30.1	-		-	-	-	5.7	- 4.5	-	4.0	-	-	8.3
					Bottom	1.1	28.2	28.3	8.3	8.3	25.3	25.2	93.8	94.0	6.4	6.3	6.3	3.5	3.4		8.2	8.1	1
12-Jun-17	-	-	-		Surface	•••	28.3	-	8.3	-	25.1	-	94.2	-	6.3	0.0	0.0	3.3	-		7.9	-	
							-		-		-		-		-	_	-	-	-		-		. !
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
44 1 47	Dain	Madasata	44.40		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	14:48		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	20.2 20.2	20.2	86.2 91.0	88.6	6.0 6.3	6.2	6.2	11.4 11.7	11.6		11.0 11.8	11.4	
				3.3	Middle	-	-	-	-	-	-	-	-	-		-		-	-	11.6	-	-	11.6
					Bottom	2.3	28.2 28.2	28.2	8.2 8.2	8.2	20.5 20.4	20.5	87.4 85.0	86.2	6.1 5.9	6.0	6.0	11.5 11.7	11.6		11.9 11.4	11.7	
16-Jun-17	Cloudy	Moderate	16:15		Surface	1.0	28.6 28.6	28.6	8.3 8.2	8.3	17.3 17.4	17.3	91.0 89.2	90.1	6.4 6.3	6.3		9.1 9.6	9.4		7.4 7.0	7.2	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	9.5	-	-	7.1
					Bottom	2.1	28.6	28.6	8.2	8.3	17.7	17.7	89.5 93.7	91.6	6.3	6.4	6.4	9.5 9.5	9.5		6.8	7.0	1
19-Jun-17	Rainy	Moderate	10:06		Surface	1.0	27.9	27.9	8.3 8.1	8.1	17.7	15.8	79.6	78.4	5.7	5.6		7.0	7.1		5.9	5.1	
				3.3	Middle	-	27.9		8.1	-	15.4		77.1		5.5 -		5.6	7.2		7.3	4.3	-	4.6
				0.0		2.3	27.8	27.9	8.0	8.0	- 17.8	17.9	- 75.7	76.9	5.5	5.5	5.5	7.6	7.5	7.0	4.1	4.1	7.0
21-Jun-17	Cloudy	Moderate	11:47		Bottom		27.9 27.6		8.0 8.0		18.0 16.0		78.0 72.4		5.6 5.2	5.5	5.5	7.4 6.7			4.1 6.1		
	,				Surface	1.0	27.7	27.6	8.0	8.0	16.2	16.1	74.7	73.6	5.4	5.3	5.3	6.7	6.7		6.2	6.2	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.8	-	-	6.4
					Bottom	2.2	27.1 27.6	27.4	7.9 8.0	8.0	18.1 17.0	17.6	71.6 72.9	72.3	5.1 5.2	5.2	5.2	6.9 6.7	6.8		6.5 6.6	6.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	13:05		Surface	1.0	28.4 28.5	28.4	8.0 8.0	8.0	18.8 18.7	18.8	84.6 84.3	84.5	5.9 5.9	5.9	5.9	6.2 6.2	6.2		5.6 5.4	5.5	
				3.1	Middle	,	-	-	-	-	-	-	-	-	-	-	5.5	-	-	6.3	-	-	5.4
					Bottom	2.1	28.0 28.2	28.1	8.0 8.0	8.0	20.3 21.1	20.7	84.0 84.4	84.2	5.8 5.8	5.8	5.8	6.2 6.3	6.3		5.3 5.2	5.3	
26-Jun-17	Cloudy	Moderate	13:27		Surface	1.0	28.6 28.5	28.5	8.1 8.1	8.1	14.8 15.0	14.9	84.8 77.8	81.3	6.0 5.5	5.8	5.8	9.7 9.5	9.6		11.8 10.2	11.0	
				3.2	Middle	-	-	-	1 1	-	-	-	1 1	-	-	-	0.0	-	-	9.6	-	-	10.6
					Bottom	2.2	28.3 28.4	28.4	8.1 8.1	8.1	16.0 15.8	15.9	79.3 76.3	77.8	5.7 5.5	5.6	5.6	9.6 9.5	9.6		9.3 10.8	10.1	
28-Jun-17	Fine	Moderate	15:30		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	18.7 18.7	18.7	87.4 87.1	87.3	6.1 6.1	6.1	6.1	7.9 7.8	7.9		10.7 10.4	10.6	
				3.4	Middle	•	-	-		-	-	-	1 1	-	-	-	0.1	-	-	8.0	-	-	11.0
					Bottom	2.4	28.8 28.6	28.7	8.1 8.2	8.2	18.7 18.8	18.8	85.9 85.1	85.5	6.0 5.9	6.0	6.0	8.1 8.1	8.1		11.7 11.1	11.4	
30-Jun-17	Fine	Moderate	16:42		Surface	1.0	30.2 30.2	30.2	8.7 8.7	8.7	15.4 15.4	15.4	160.2 149.7	155.0	11.1 10.4	10.7	10.7	4.9 5.1	5.0		7.6 7.8	7.7	
				3.3	Middle	-	-	-		-	-	-		-	-	-	10.7	-	-	5.0	-	-	7.5
					Bottom	2.3	30.2 29.9	30.1	8.7 8.6	8.7	15.4 15.7	15.5	152.9 148.6	150.8	10.6 10.3	10.5	10.5	4.9 4.9	4.9		6.6 7.8	7.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:06		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	23.6 23.7	23.6	105.8 107.9	106.9	7.2 7.4	7.3		7.9 7.7	7.8		5.1 4.1	4.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	8.0	-	-	5.3
					Bottom	2.2	28.2 28.3	28.2	8.4 8.4	8.4	23.7 23.5	23.6	106.7 103.5	105.1	7.3 7.1	7.2	7.2	8.0 8.4	8.2		5.8 5.9	5.9	
5-Jun-17	Fine	Moderate	15:29		Surface	1.0	29.8	29.7	8.4	8.4	20.1	20.1	128.9	126.8	8.8	8.6		6.6	6.5		4.0	3.7	
				3.2	Middle		29.7		8.4	-	20.1	-	124.7	-	8.5	0.0	8.6	6.3	0.0	7.5	3.4	-	3.2
				5.2	Bottom	2.2	29.0	29.3	8.3	8.4	20.7	20.5	- 121.9	123.9	8.4	8.5	8.5	8.5	0.5	7.5	2.6	2.7	5.2
7-Jun-17	Sunny	Moderate	17:27				29.5 30.2		8.4 8.6		20.4		125.9 138.8		8.6 9.4		8.5	8.4 8.2	8.5		2.7 5.2		
7 0011 17	Culliny	Woderate	17.27		Surface	1.0	30.3	30.2	8.6	8.6	20.2	20.2	142.4	140.6	9.6	9.5	9.5	7.8	8.0		5.1	5.2	.
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.1	-	-	5.2
	2				Bottom	2.4	30.0 29.7	29.9	8.6 8.5	8.6	20.0	20.2	141.6 138.2	139.9	9.6 9.3	9.4	9.4	8.1 8.2	8.2		5.1 5.2	5.2	
9-Jun-17	Cloudy	Moderate	12:55		Surface	1.0	28.0 27.5	27.8	8.3 8.3	8.3	28.0 28.6	28.3	91.8 89.7	90.8	6.2 6.1	6.2	6.2	7.0 7.2	7.1		6.9 5.9	6.4	
				2.0	Middle	-	-	-	-	-		-		-		-	-	-	-	7.2	-	-	7.2
					Bottom	1.0	29.1 29.1	29.1	8.4 8.4	8.4	21.5 21.8	21.6	105.9 104.5	105.2	7.2 7.1	7.2	7.2	7.4 7.1	7.3		7.7 8.0	7.9	
12-Jun-17	Sunny	Moderate	08:30		Surface	1.0	29.6 29.6	29.6	8.4 8.4	8.4	21.7 20.6	21.1	108.0 108.6	108.3	7.4 7.4	7.4	7.4	4.3 4.2	4.3		3.2 2.9	3.1	
				3.5	Middle	0.0	0.0 0.0	0.0	-	-	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	7.4	0.0 0.0	0.0	4.3	-	-	4.9
					Bottom	2.5	29.6 29.6	29.6	8.4 8.4	8.4	20.7	20.7	108.3 107.1	107.7	7.4 7.3	7.4	7.4	4.3 4.1	4.2		7.1 6.3	6.7	
14-Jun-17	Rainy	Moderate	09:50		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	18.2 18.3	18.3	86.0 86.1	86.1	6.1 6.1	6.1		9.6 9.5	9.6		8.4 7.5	8.0	
				3.5	Middle	_	-	-	-	-	-	-	-	-	-	-	6.1	- 9.5	-	9.7	-	-	8.1
					Bottom	2.5	28.2	28.2	8.2	8.2	18.5	18.6	85.9	86.1	6.0	6.1	6.1	9.8	9.8		8.5	8.1	
16-Jun-17	Cloudy	Moderate	11:28		Surface	1.0	28.2 28.4	28.4	8.2 8.2	8.2	18.6 18.8	18.8	86.3 85.1	88.5	6.1	6.2		9.8	12.3		7.6 10.0	9.9	
				3.7	Middle		28.4		8.2	-	18.8	-	91.8	-	6.4	-	6.2	12.1		12.5	9.7	-	9.7
				0	Bottom	2.7	28.4	28.4	8.1	8.2	19.0	19.0	84.5	86.1	5.9	6.0	6.0	12.8	12.7	12.0	9.5	9.4	
19-Jun-17	Cloudy	Moderate	13:29				28.4 28.4		8.2 8.1		18.9 14.2		87.6 81.4		6.1 5.9		0.0	12.5 6.3			9.2 3.9		
	,				Surface	1.0	28.1	28.3	8.1	8.1	14.9	14.5	82.8	82.1	6.0	5.9	5.9	6.5	6.4		4.4	4.2	.
				3.3	Middle	-	- 28.1	-	- 8.1	-	- 15.2	-	83.1	-	6.0	-		- 6.6	-	6.6	- 5.5	-	5.2
04 10 47	Construction	Madeet	40.05		Bottom	2.3	28.2	28.1	8.1	8.1	15.0	15.1	81.7	82.4	5.9	5.9	5.9	6.7	6.7		6.7	6.1	
21-Jun-17	Sunny	Moderate	16:05		Surface	1.0	28.1 28.0	28.0	8.0 8.0	8.0	15.1 15.2	15.2	72.8 76.1	74.5	5.2 5.5	5.3	5.3	4.8 4.9	4.9		6.0 5.1	5.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.9	-	-	5.6
					Bottom	2.3	27.9 27.7	27.8	8.0 8.0	8.0	16.0 16.2	16.1	72.3 73.7	73.0	5.2 5.3	5.3	5.3	4.8 4.9	4.9		5.7 5.4	5.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:05		Surface	1.0	29.0 29.0	29.0	8.1 8.1	8.1	17.4 17.4	17.4	87.2 86.2	86.7	6.1 6.0	6.1	6.1	4.5 4.5	4.5		5.0 4.3	4.7	
				3.2	Middle	-	-	-		-	-	-	1 1	-	-	-	0.1	-	-	4.5		-	5.1
					Bottom	2.2	28.9 28.9	28.9	8.1 8.1	8.1	17.5 17.5	17.5	88.1 86.7	87.4	6.2 6.1	6.1	6.1	4.6 4.4	4.5		4.9 6.0	5.5	
26-Jun-17	Cloudy	Moderate	08:19		Surface	1.0	28.4 28.3	28.4	8.1 8.1	8.1	17.4 17.4	17.4	73.8 74.3	74.1	5.2 5.3	5.2	5.2	5.8 5.7	5.8		8.2 7.1	7.7	
				3.2	Middle	-	-	-		-	-	-		-	-	-	0.2	-	-	5.8		-	8.7
					Bottom	2.2	28.3 28.3	28.3	8.1 8.1	8.1	17.4 17.4	17.4	74.1 73.9	74.0	5.2 5.2	5.2	5.2	5.6 5.8	5.7		9.9 9.5	9.7	
28-Jun-17	Fine	Moderate	09:54		Surface	1.0	28.5 28.6	28.6	8.1 8.1	8.1	16.5 16.3	16.4	83.1 82.6	82.9	5.9 5.9	5.9	5.9	3.7 3.8	3.8		3.6 3.7	3.7	
				3.5	Middle	-	-	-		-	-	-		-	-	-	5.5	-	-	3.9		-	4.9
					Bottom	2.5	28.5 28.4	28.5	8.1 8.1	8.1	17.2 16.7	16.9	82.3 82.7	82.5	5.8 5.8	5.8	5.8	3.9 3.9	3.9		6.9 5.3	6.1	
30-Jun-17	Fine	Moderate	11:53		Surface	1.0	28.6 28.7	28.7	8.1 8.1	8.1	17.6 17.3	17.4	84.9 92.0	88.5	5.9 6.4	6.2	6.2	11.2 11.1	11.2		5.4 5.5	5.5	
				3.4	Middle	-	-	-	-	-	-	-	1 1	-	-	-	0.2	-	-	11.2		-	5.7
					Bottom	2.4	28.6 28.7	28.7	8.1 8.1	8.1	18.2 18.3	18.3	87.0 83.4	85.2	6.1 5.9	6.0	6.0	11.1 11.1	11.1		6.4 5.3	5.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:21		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	23.3 23.4	23.3	104.2 106.5	105.4	7.2 7.3	7.2		7.3 7.2	7.3		5.3 5.3	5.3	
				3.5	Middle	-	-	-	-	-		-	-	-	-	-	7.2	-	-	7.6	-	-	5.9
					Bottom	2.5	28.0 28.1	28.1	8.4 8.4	8.4	23.2 23.4	23.3	101.4 105.4	103.4	7.0 7.2	7.1	7.1	7.8 8.0	7.9		6.9 6.1	6.5	
5-Jun-17	Fine	Moderate	11:25		Surface	1.0	29.2	29.2	8.3	8.4	21.5	21.4	113.4	113.6	7.7	7.7		4.0	4.1		8.9	9.1	
				3.5		1.0	29.2	29.2	8.4	-	21.4	-	113.8	-	7.8	7.7	7.7	4.2	4.1	4.5	9.2	9.1	8.7
				3.5	Middle	-	29.1		8.4		- 21.4		- 110.4		- 7.5	7.0	7.0	4.7		4.5	8.3		8.7
					Bottom	2.5	29.0	29.0	8.3	8.4	21.8	21.6	112.3	111.4	7.7	7.6	7.6	5.0	4.9		8.3	8.3	
7-Jun-17	Sunny	Moderate	12:33		Surface	1.0	29.6 29.6	29.6	8.5 8.5	8.5	21.2 21.3	21.3	122.4 118.1	120.3	8.3 8.0	8.1	8.1	5.7 5.5	5.6		7.6 6.3	7.0	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	• • •	-	-	5.7	-	-	9.3
					Bottom	2.5	29.5 29.4	29.4	8.4 8.4	8.4	21.5 21.8	21.7	119.1 114.9	117.0	8.1 7.8	7.9	7.9	5.7 5.6	5.7		11.0 11.9	11.5	
9-Jun-17	Cloudy	Moderate	06:19		Surface	1.0	28.0	28.1	8.3	8.3	25.0	25.1	92.0	93.0	6.2	6.3		4.6	4.6		6.0	5.5	
				10.8	Middle	-	28.1	-	8.3	-	25.2		93.9	-	6.3	-	6.3	4.5	-	4.6	5.0	-	6.1
				10.0	Bottom	9.8	27.5	27.7	8.3	8.3	28.2	28.0	90.8	91.3	6.2	6.2	6.2	4.6	4.6	4.0	6.4	6.7	0.1
12 lun 17					DOLLOIII	9.0	27.8	21.1	8.3	0.5	27.8	20.0	91.8	91.3	6.2	0.2	0.2	4.6	4.0	<u> </u>	7.0	0.7	1
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:04		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	19.2 19.1	19.2	86.8 88.9	87.9	6.1 6.2	6.2	6.2	9.4 9.1	9.3		6.6 5.1	5.9	
				3.6	Middle		-	-		-	-	-	-	-		-	0.2	-	-	9.4	-		5.7
					Bottom	2.6	28.3 28.3	28.3	8.2 8.2	8.2	20.0 20.2	20.1	87.8 91.5	89.7	6.1 6.4	6.2	6.2	9.2 9.5	9.4		5.3 5.5	5.4	
16-Jun-17	Cloudy	Moderate	16:27		Surface	1.0	28.6 28.6	28.6	8.2 8.2	8.2	17.8 17.8	17.8	89.5 91.8	90.7	6.3 6.4	6.4		11.2 11.4	11.3		8.4 8.5	8.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	11.4	-	-	8.5
					Bottom	2.7	28.6	28.6	8.2	8.2	18.1	18.2	89.2	89.6	6.3	6.3	6.3	11.5	11.4		9.0	8.5	
19-Jun-17	Rainy	Moderate	09:50		Surface	1.0	28.6	28.0	8.2 8.1	8.1	18.2	14.7	90.0 78.0	77.9	6.3 5.6	5.6		6.6	6.6		7.9 4.1	3.7	
				3.4	Middle	-	28.0	-	8.1	-	14.7	-	77.8	-	5.6 -	_	5.6	6.5	-	7.0	3.2	-	4.1
				0	Bottom	2.4	27.9	27.9	8.1	8.0	18.0	17.9	77.1	77.7	5.5	5.6	5.6	7.1	7.3		4.5	4.5	
21-Jun-17	Cloudy	Moderate	11:34				27.9 27.5	27.6	8.0 8.0		17.7 16.3		78.3 74.3		5.6 5.3		5.0	7.4 5.9			4.5 4.7		
	•				Surface	1.0	27.6	21.0	8.0	8.0	16.4	16.4	74.9	74.6	5.4	5.3	5.3	5.9	5.9	5.0	3.8	4.3	5.0
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.9	-	-	5.6
					Bottom	2.6	27.1 27.5	27.3	7.9 8.0	8.0	21.8 21.0	21.4	77.2 74.8	76.0	5.4 5.2	5.3	5.3	5.7 6.0	5.9		7.2 6.4	6.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:52		Surface	1.0	28.4 28.3	28.3	8.0 8.0	8.0	18.6 18.7	18.7	81.6 79.9	80.8	5.7 5.6	5.6	5.6	6.7 6.3	6.5		6.7 6.1	6.4	
				3.6	Middle	-	-	-		-		-	-	-	1 1	-	3.0	-	-	6.5	-	-	6.3
					Bottom	2.6	28.0 27.4	27.7	8.0 8.0	8.0	23.2 23.0	23.1	80.6 79.6	80.1	5.5 5.5	5.5	5.5	6.5 6.5	6.5		6.2 6.2	6.2	
26-Jun-17	Cloudy	Moderate	13:42		Surface	1.0	28.8 28.7	28.8	8.1 8.1	8.1	14.4 14.4	14.4	88.6 83.4	86.0	6.3 5.9	6.1	6.1	5.4 5.4	5.4		6.3 4.0	5.2	
				3.8	Middle	-	-	-		-		-	-	-		-	0.1	-	-	5.5	-	-	5.3
					Bottom	2.8	28.7 28.7	28.7	8.1 8.1	8.1	15.6 15.7	15.6	84.8 82.2	83.5	6.1 5.9	6.0	6.0	5.5 5.4	5.5		5.7 5.1	5.4	
28-Jun-17	Fine	Moderate	15:47		Surface	1.0	29.0 28.9	29.0	8.2 8.2	8.2	17.1 17.2	17.2	95.6 94.7	95.2	6.7 6.6	6.7	6.7	4.4 4.4	4.4		6.9 7.0	7.0	
				3.5	Middle	-	-	-		-		-	-	-		-	0.7	-	-	4.5	-	-	7.5
					Bottom	2.5	28.9 28.9	28.9	8.2 8.2	8.2	17.2 17.1	17.1	93.6 93.3	93.5	6.6 6.5	6.5	6.5	4.5 4.4	4.5		8.4 7.6	8.0	
30-Jun-17	Fine	Moderate	16:57		Surface	1.0	30.3 29.6	30.0	8.6 8.5	8.5	15.3 15.6	15.4	114.7 115.5	115.1	7.9 8.1	8.0	8.0	6.4 6.4	6.4		7.8 8.0	7.9	
				3.5	Middle	-	-	-	-	-	1 1	-	-	-		-	0.0	-	-	6.4	-	-	7.9
					Bottom	2.5	29.1 29.1	29.1	8.5 8.6	8.5	16.3 16.1	16.2	114.6 103.0	108.8	8.0 7.2	7.6	7.6	6.1 6.5	6.3		8.2 7.6	7.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:20		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	23.7 23.7	23.7	109.3 109.8	109.6	7.5 7.5	7.5		7.6 7.5	7.6		6.0 6.2	6.1	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	7.7	-	-	6.3
					Bottom	2.3	28.3	28.2	8.4	8.4	23.7	23.8	109.5	109.2	7.5	7.5	7.5	7.6	7.7		6.9	6.5	
5-Jun-17	Fine	Moderate	15:46				28.2 29.8		8.4 8.5		23.8		108.8 142.4		7.4 9.7			7.8 10.0			6.1 3.6		
5-Juli-17	rille	ivioderate	15.46		Surface	1.0	29.8	29.8	8.5	8.5	20.4	20.4	141.9	142.2	9.6	9.6	9.6	9.1	9.6		3.7	3.7	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.4	-	-	3.8
					Bottom	2.6	29.7 29.7	29.7	8.5 8.5	8.5	20.6 20.7	20.6	142.3 142.3	142.3	9.7 9.7	9.7	9.7	10.8 11.6	11.2		3.8 3.7	3.8	
7-Jun-17	Sunny	Moderate	17:46		Surface	1.0	30.2 30.1	30.2	8.6 8.5	8.5	20.8 20.7	20.7	136.0 133.5	134.8	9.2 9.0	9.1		10.5 10.4	10.5		11.8 11.1	11.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	9.1	-	-	10.6	-	-	12.4
					Bottom	2.7	29.8	29.9	8.5 8.5	8.5	21.1	21.0	130.2	130.7	8.8 8.8	8.8	8.8	10.5	10.6		13.4	13.2	
9-Jun-17	Cloudy	Moderate	12:31		Surface	1.0	30.0 28.3	28.5	8.4	8.4	20.9	22.5	99.7	97.4	6.7	6.6		6.2	6.3		13.0 5.3	4.9	
				10.4	Middle	-	28.7	_	8.4	_	22.4	_	95.0	_	6.5 -	_	6.6	6.3	_	6.3	4.4	_	6.6
				10.4	-	9.4	- 27.7	27.7	8.3	8.3	28.1	28.0	96.6	95.8	6.6	6.5	6.5	6.0	6.2	0.0	8.0	8.3	0.0
12-Jun-17	Sunny	Moderate	08:18		Bottom		27.7 29.6		8.3 8.3		28.0 20.0		94.9 94.7		6.4 6.5		6.5	6.3 8.6			8.5 3.5		
12 0011 17	Curity	Woderate	00.10		Surface	1.0	29.6 0.0	29.6	8.3	8.3	20.0	20.0	95.2	95.0	6.6	6.5	6.5	8.1	8.4		3.3	3.4	
				3.7	Middle	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	8.5	-	-	4.1
					Bottom	2.7	29.5 29.5	29.5	8.3 8.3	8.3	21.7 21.5	21.6	94.9 94.1	94.5	6.5 6.5	6.5	6.5	8.6 8.6	8.6		4.4 5.2	4.8	
14-Jun-17	Rainy	Moderate	09:35		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	18.2 18.2	18.2	88.1 90.3	89.2	6.2 6.4	6.3	6.3	10.3 10.8	10.6		9.5 9.6	9.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.3	-	-	10.7	-	-	9.7
					Bottom	2.7	28.2 28.2	28.2	8.2 8.2	8.2	18.3 18.3	18.3	89.4 93.0	91.2	6.3 6.6	6.4	6.4	10.8 10.8	10.8		10.4 9.0	9.7	
16-Jun-17	Cloudy	Moderate	11:15		Surface	1.0	28.4 28.4	28.4	8.1 8.1	8.1	18.9 18.9	18.9	86.3 90.9	88.6	6.0 6.4	6.2		12.7 12.7	12.7		7.9 9.2	8.6	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	12.8	- 9.2	-	9.6
					Bottom	2.6	28.4	28.4	8.1	8.1	18.9	18.9	87.9	86.7	6.2	6.1	6.1	12.8	12.8		10.3	10.6	
19-Jun-17	Cloudy	Moderate	13:44		Surface	1.0	28.4 28.6	28.6	8.1 8.2	8.2	18.9 14.6	14.6	85.5 83.7	84.0	6.0	6.1		12.8 12.0	12.4		10.9 10.9	10.7	
				0.0		1.0	28.6		8.2		14.6		84.2		6.1	0.1	6.1	12.7	12.4	40.7	10.5		40.0
				3.2	Middle	-	- 28.5	-	- 8.2	-	- 14.6	-	- 85.5	-	- 6.2	-		13.0	-	12.7	9.0	-	10.2
24 hrs 47	Commission	Madaget	40:04	<u> </u>	Bottom	2.2	28.6	28.6	8.2	8.2	14.6	14.6	83.9	84.7	6.1	6.1	6.1	12.9	13.0		10.2	9.6	
21-Jun-17	Sunny	Moderate	16:21		Surface	1.0	28.0 28.1	28.0	8.0 8.0	8.0	15.4 15.4	15.4	84.8 79.8	82.3	6.1 5.7	5.9	5.9	5.3 5.3	5.3		7.9 7.5	7.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.4	-	-	7.1
					Bottom	2.8	27.8 28.0	27.9	8.0 8.0	8.0	16.2 16.0	16.1	81.4 78.6	80.0	5.9 5.6	5.7	5.7	5.4 5.3	5.4		6.0 6.7	6.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:20		Surface	1.0	28.7 28.8	28.8	8.0 8.1	8.0	16.1 15.7	15.9	78.8 84.1	81.5	5.6 6.0	5.8	5.8	5.1 5.1	5.1		6.4 6.9	6.7	
				3.6	Middle	-	-	-		-	1 1	-	1 1	-		-	5.0	-	-	5.1		-	6.7
					Bottom	2.6	28.7 28.7	28.7	8.0 8.1	8.1	16.2 16.3	16.3	81.1 88.6	84.9	5.7 6.3	6.0	6.0	5.2 5.0	5.1		6.2 7.1	6.7	
26-Jun-17	Cloudy	Moderate	08:08		Surface	1.0	28.0 28.0	28.0	8.1 8.1	8.1	16.7 17.5	17.1	75.7 75.4	75.6	5.5 5.5	5.5	5.5	6.1 6.1	6.1		6.4 6.8	6.6	
				3.8	Middle	-	-	-		-	1 1	-	1 1	-		-	0.0	-	-	6.2		-	7.2
					Bottom	2.8	27.8 27.9	27.8	8.1 8.1	8.1	18.9 18.8	18.9	75.0 75.4	75.2	5.4 5.5	5.4	5.4	6.3 6.2	6.3		6.7 8.9	7.8	
28-Jun-17	Fine	Moderate	09:38		Surface	1.0	28.4 28.4	28.4	8.0 8.0	8.0	15.9 15.7	15.8	80.5 80.7	80.6	5.7 5.8	5.8	5.8	5.3 5.2	5.3		8.0 8.0	8.0	
				3.6	Middle	-	-	-		-	1 1	-	1 1	-		-	5.0	-	-	5.4		-	8.0
					Bottom	2.6	28.4 28.3	28.4	8.0 8.0	8.0	15.9 15.7	15.8	78.2 77.2	77.7	5.6 5.5	5.5	5.5	5.4 5.5	5.5		7.6 8.2	7.9	
30-Jun-17	Fine	Moderate	11:40		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	17.4 17.4	17.4	87.6 82.9	85.3	6.1 5.8	6.0	6.0	10.7 10.8	10.8		9.8 8.1	9.0	
				3.7	Middle	-	-	-		-	1 1	-	1 1	-		-	0.0	-	-	10.7		-	10.9
					Bottom	2.7	28.6 28.7	28.7	8.1 8.1	8.1	18.1 17.6	17.9	83.7 81.9	82.8	5.9 5.7	5.8	5.8	10.5 10.5	10.5		12.8 12.5	12.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:33		Surface	1.0	27.8 27.8	27.8	8.0 8.0	8.0	20.8 20.8	20.8	98.4 98.5	98.5	6.9 6.9	6.9		6.4 6.5	6.5		2.6 2.7	2.7	
				9.8	Middle	4.9	27.7	27.7	8.1	8.0	21.4	21.3	97.9	98.1	6.8	6.9	6.9	8.3	8.4	8.0	2.6	3.1	3.1
					Bottom	8.8	27.7 27.7	27.7	8.0 8.0	8.0	21.2 21.6	21.7	98.3 95.9	95.5	6.9 6.7	6.7	6.7	8.5 8.9	9.0		3.6	3.5	1
5 lun 47	F:	Madazata	40.00				27.7 28.7		8.0 8.1		21.8		95.1 96.2		6.7			9.0 5.4		l	3.1 4.5		<u> </u>
5-Jun-17	Fine	Moderate	10:09		Surface	1.0	28.6	28.7	8.1	8.1	20.6	20.5	94.9	95.6	6.6 6.5	6.5	6.5	5.5	5.5		4.9	4.7	
				12.0	Middle	6.0	28.3 28.4	28.4	8.0 8.0	8.0	21.9 20.8	21.3	93.8 94.1	94.0	6.5 6.6	6.5	0.0	5.7 5.6	5.7	5.7	4.8 4.9	4.9	5.5
					Bottom	11.0	28.5 28.3	28.4	8.0 8.0	8.0	22.6 22.6	22.6	93.2 92.5	92.9	6.5 6.4	6.4	6.4	5.8 5.9	5.9		6.5 7.0	6.8	1
7-Jun-17	Sunny	Moderate	11:18		Surface	1.0	29.6	29.6	8.0	8.0	20.3	20.3	101.3	100.8	7.0	6.9		4.3	4.3		3.8	4.1	
				11.8	Middle	5.9	29.6 29.2	29.1	8.0	8.0	20.3	20.5	98.3	98.3	6.9	6.8	6.9	4.3	4.6	4.6	5.3	4.9	5.0
					Bottom	10.8	29.0 28.9	28.9	7.9 7.9	8.0	20.3	20.9	98.2 96.7	96.4	6.8	6.6	6.6	4.6 5.0	4.9		6.6	6.1	
0.147	Ol. I	Madagas	40.44		Dottom	10.0	28.8	20.5	8.0	0.0	20.9	20.3	96.1	30.4	6.6	0.0	0.0	4.8	4.5		5.5	0.1	igwdapprox
9-Jun-17	Cloudy	Moderate	12:11		Surface	1.0	28.9 28.8	28.9	8.0 8.0	8.0	21.3 21.4	21.4	92.1 92.7	92.4	6.3 6.4	6.3	6.2	7.6 7.6	7.6		11.8 11.3	11.6	
				10.3	Middle	5.2	28.3 28.2	28.3	8.0 8.0	8.0	25.9 26.2	26.1	89.4 89.0	89.2	6.0 6.0	6.0		7.7 7.8	7.8	7.9	13.3 13.3	13.3	12.3
					Bottom	9.3	28.2 28.2	28.2	8.0 8.0	8.0	27.1 26.5	26.8	91.8 91.0	91.4	6.2 6.1	6.1	6.1	8.2 8.5	8.4		11.6 12.6	12.1	
12-Jun-17	-	-	-		Surface	1	-	-		-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-	<u> </u>
					Bottom	_	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:30				28.2		8.0		18.6		90.2		6.4			7.2			5.9		\vdash
	,				Surface	1.0	28.2	28.2	8.0	8.0	18.7	18.7	90.6	90.4	6.4	6.4	6.4	7.2	7.2		6.2 5.1	6.1	
				11.8	Middle	5.9	28.2	28.2	8.0 8.0	8.0	18.6	18.7	90.0 89.8	89.9	6.3	6.3		7.4	7.5	7.5	5.8	5.5	5.7
					Bottom	10.8	28.2 28.2	28.2	8.0 8.0	8.0	18.8 18.8	18.8	89.8 89.3	89.6	6.3 6.3	6.3	6.3	7.7 7.6	7.7		5.7 5.4	5.6	
16-Jun-17	Cloudy	Moderate	16:51		Surface	1.0	28.7 28.7	28.7	8.0 8.0	8.0	15.0 15.0	15.0	91.0 92.5	91.8	6.5 6.6	6.5		8.4 8.3	8.4		6.6 5.6	6.1	
				10.6	Middle	5.3	28.6 28.5	28.5	8.0 8.0	8.0	17.9 17.6	17.7	88.5 86.7	87.6	6.2 6.1	6.2	6.4	8.5 8.5	8.5	8.6	5.6 6.2	5.9	6.0
					Bottom	9.6	28.5	28.5	8.0	8.0	18.8	18.7	88.5	90.8	6.2	6.3	6.3	8.9	8.8		6.2	6.1	
19-Jun-17	Rainy	Moderate	09:15		Surface	1.0	28.6 28.1	28.1	7.7	7.7	18.6 11.7	11.4	93.0 73.8	73.4	6.5 5.3	5.2		8.6 10.4	10.4		6.0	6.1	
				44.5			28.1 27.6		7.7 7.7		11.1 21.4		72.9 70.8		5.2 5.1		5.2	10.3 10.5		40.4	5.7 6.0		6.0
				11.5	Middle	5.8	27.5 26.3	27.5	7.7 7.6	7.7	23.2 31.3	22.3	70.5 70.1	70.7	5.1 5.0	5.1		10.4 10.5	10.5	10.4	5.6 6.5	5.8	6.3
04 by 47	Clavelin	Madagas	40:44		Bottom	10.5	26.1	26.2	7.6	7.6	31.6	31.5	70.2	70.2	5.0	5.0	5.0	10.3	10.4		7.2	6.9	<u> </u>
21-Jun-17	Cloudy	Moderate	10:41		Surface	1.0	27.6 27.6	27.6	7.8 7.8	7.8	13.5 13.5	13.5	74.3 74.4	74.4	5.5 5.5	5.5	5.5	8.2 7.9	8.1		3.7 2.9	3.3	
				10.9	Middle	5.5	27.3 27.3	27.3	7.8 7.8	7.8	18.7 19.0	18.8	74.0 74.0	74.0	5.5 5.5	5.5		8.8 8.6	8.7	8.8	3.2 3.8	3.5	3.2
					Bottom	9.9	27.2 27.2	27.2	7.8 7.8	7.8	20.1 20.4	20.3	75.2 74.3	74.8	5.5 5.5	5.5	5.5	9.6 9.3	9.5		3.0 2.8	2.9	İ
					1		41.4		7.0		20.7		14.0		0.0			3.0			2.0		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (n	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:36		Surface	1.0	28.3 28.2	28.3	7.8 7.8	7.8	14.1 14.5	14.3	76.5 76.8	76.7	5.4 5.4	5.4	5.4	6.3 6.2	6.3		3.9 3.7	3.8	
				12.1	Middle	6.1	28.0 28.0	28.0	7.7 7.7	7.7	15.9 15.8	15.9	76.4 75.7	76.1	5.3 5.3	5.3	5.4	6.4 6.5	6.5	6.5	4.4 4.5	4.5	4.4
					Bottom	11.1	27.9 27.8	27.9	7.7 7.8	7.7	16.1 16.3	16.2	75.2 75.5	75.4	5.3 5.3	5.3	5.3	6.7 6.8	6.8		5.3 4.2	4.8	
26-Jun-17	Cloudy	Moderate	14:08		Surface	1.0	29.0 28.9	29.0	7.9 8.0	7.9	12.8 12.7	12.8	72.6 72.6	72.6	5.3 5.3	5.3	5.2	10.8 11.2	11.0		5.1 5.2	5.2	
				10.7	Middle	5.4	27.8 27.9	27.9	7.9 7.9	7.9	17.3 17.4	17.4	70.4 69.4	69.9	5.1 5.0	5.0	0.2	12.7 12.5	12.6	12.0	6.6 5.0	5.8	5.6
					Bottom	9.7	27.9 27.8	27.8	7.9 7.9	7.9	18.2 18.5	18.3	73.1 70.5	71.8	5.2 5.1	5.1	5.1	12.8 12.2	12.5		6.6 5.0	5.8	
28-Jun-17	Fine	Moderate	15:52		Surface	1.0	29.3 29.3	29.3	7.9 7.9	7.9	14.3 14.3	14.3	77.4 77.3	77.4	5.5 5.5	5.5	5.3	5.4 5.4	5.4		5.2 4.6	4.9	
				10.7	Middle	5.4	27.6 27.6	27.6	7.8 7.8	7.8	19.4 19.5	19.4	70.6 72.1	71.4	5.1 5.1	5.1	5.5	5.5 5.5	5.5	5.5	5.6 4.9	5.3	5.4
					Bottom	9.7	26.0 26.0	26.0	7.8 7.7	7.8	27.9 28.4	28.2	70.4 72.2	71.3	4.9 5.0	4.9	4.9	5.6 5.6	5.6		6.2 5.7	6.0	
30-Jun-17	Fine	Moderate	17:21		Surface	1.0	29.7 29.4	29.6	7.9 7.9	7.9	13.3 13.4	13.3	73.4 73.5	73.5	5.2 5.2	5.2	5.1	3.6 3.3	3.5		4.9 4.8	4.9	
				10.8	Middle	5.4	27.1 27.5	27.3	7.8 7.8	7.8	21.9 19.8	20.8	71.4 71.5	71.5	5.0 5.0	5.0	0.1	3.2 3.1	3.2	3.7	4.5 5.9	5.2	5.2
					Bottom	9.8	27.0 27.0	27.0	7.8 7.8	7.8	23.7 24.7	24.2	72.5 73.0	72.8	5.1 5.1	5.1	5.1	4.4 4.1	4.3		5.9 4.9	5.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	13:03		Surface	1.0	27.7 27.7	27.7	8.0 8.0	8.0	21.1 21.2	21.1	95.0 94.8	94.9	6.6 6.6	6.6		8.2 8.2	8.2		3.3 4.4	3.9	
				9.9	Middle	5.0	27.7 27.7	27.7	8.0 8.0	8.0	21.5 21.3	21.4	94.7 94.8	94.8	6.6 6.6	6.6	6.6	8.6 8.5	8.6	8.5	4.2 3.8	4.0	4.5
					Bottom	8.9	27.7	27.7	8.0 8.0	8.0	22.0	22.1	94.5 94.6	94.6	6.6 6.6	6.6	6.6	8.9 8.7	8.8		5.3 6.1	5.7	
5-Jun-17	Fine	Moderate	17:08		Surface	1.0	29.4	29.4	8.1	8.1	20.1	20.2	104.8	105.5	7.3	7.3		4.4	4.4		1.4	1.4	
				12.0	Middle	6.0	29.4 28.8	28.9	8.1 8.0	8.0	20.2	20.2	106.2 102.9	103.4	7.3 7.1	7.1	7.2	4.4	4.6	4.6	1.3 0.8	0.8	1.1
				12.0			28.9 28.8		8.0		20.2		103.9 102.2		7.2 7.1		7.0	4.5 4.8		4.0	0.8	0.0	'
7-Jun-17	Sunny	Moderate	18:44		Bottom	11.0	28.8 29.6	28.8	8.0 8.1	8.0	20.4	20.4	99.7 100.3	101.0	6.9	7.0	7.0	4.7	4.8		- 5.9	-	<u></u>
7-Juli-17	Suring	Woderate	10.44		Surface	1.0	29.8	29.7	8.1	8.1	20.2	20.1	100.0	100.2	6.9	6.8	6.8	4.9	4.9		5.4	5.7	
				11.9	Middle	6.0	29.0 29.6	29.3	8.1 8.1	8.1	20.9 20.8	20.8	97.4 97.0	97.2	6.7 6.7	6.7		5.4 5.2	5.3	5.3	5.3 4.8	5.1	5.6
					Bottom	10.9	28.5 29.1	28.8	8.1 8.1	8.1	22.5 22.0	22.3	96.2 95.0	95.6	6.5 6.5	6.5	6.5	5.7 5.6	5.7		5.9 5.8	5.9	
9-Jun-17	Cloudy	Moderate	06:02		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.3 21.2	21.3	93.5 93.3	93.4	6.8 6.8	6.8	6.8	10.1 9.8	10.0		10.5 11.7	11.1	
				10.4	Middle	5.2	28.4 28.4	28.4	7.9 7.9	7.9	25.1 24.9	25.0	92.5 91.8	92.2	6.7 6.6	6.7	6.8	10.6 9.7	10.2	10.2	13.3 13.1	13.2	12.4
					Bottom	9.4	28.2	28.4	7.9 7.9	7.9	26.3 26.0	26.2	94.5 92.6	93.6	6.8 6.7	6.8	6.8	10.8 10.0	10.4		12.8	12.9	
12-Jun-17	Sunny	Moderate	07:34		Surface	1.0	29.0	29.0	8.0	8.0	22.1	22.2	87.4	86.6	6.0	5.9		10.2	10.4		5.8	5.7	
				10.6	Middle	5.3	28.9 28.5	28.5	8.0	8.0	22.3 25.2	25.2	85.7 83.7	84.2	5.8 5.7	5.7	5.8	10.5	10.9	11.0	5.6 5.5	5.7	5.4
					Bottom	9.6	28.5 28.5	28.6	7.9 8.0	8.0	25.3 25.3	25.3	84.6 85.4	85.9	5.7 5.8	5.8	5.8	11.0 11.4	11.7		5.8 4.7	4.7	
14-Jun-17	Rainy	Moderate	08:58			1.0	28.7 28.1	28.1	7.9 7.8	7.8	25.3 18.1		86.3 89.4		5.8 6.3		5.0	7.2			4.7 7.4		
	•				Surface		28.1 28.1		7.8 7.8	_	17.9 19.4	18.0	89.7 88.0	89.6	6.3	6.3	6.3	7.1 7.3	7.2		8.8 8.6	8.1	
				12.0	Middle	6.0	28.1	28.1	7.8 7.8	7.8	17.9 19.6	18.7	88.0 86.5	88.0	6.2	6.2		7.3	7.3	7.3	9.5 7.6	9.1	8.4
					Bottom	11.0	28.1	28.1	7.8	7.8	19.9	19.8	87.6	87.1	6.1	6.1	6.1	7.5	7.5		8.3	8.0	
16-Jun-17	Cloudy	Moderate	10:15		Surface	1.0	28.6 28.6	28.6	7.8 7.8	7.8	16.6 16.6	16.6	88.2 85.8	87.0	6.2 6.1	6.2	6.0	9.2 9.0	9.1		6.0 5.9	6.0	
				10.5	Middle	5.3	28.3 28.3	28.3	7.8 7.8	7.8	19.7 18.4	19.1	82.9 80.0	81.5	5.8 5.6	5.7		11.2 10.8	11.0	10.5	7.3 6.0	6.7	6.6
					Bottom	9.5	28.2 28.2	28.2	7.8 7.8	7.8	20.1 20.4	20.2	80.0 85.1	82.6	5.6 5.9	5.8	5.8	11.3 11.6	11.5		6.4 7.5	7.0	
19-Jun-17	Cloudy	Moderate	14:12		Surface	1.0	28.5 28.5	28.5	7.7 7.7	7.7	10.7 10.7	10.7	72.7 73.1	72.9	5.2 5.3	5.3		8.8 8.7	8.8		5.7 6.6	6.2	
				12.1	Middle	6.1	27.5 27.5	27.5	7.6 7.6	7.6	21.1	21.1	71.5 70.5	71.0	5.2 5.0	5.1	5.2	10.6	10.5	10.0	5.7	5.7	5.9
					Bottom	11.1	27.3	27.2	7.6	7.5	28.4	29.0	70.0	70.3	4.9	4.9	4.9	10.5	10.6		5.6 5.7	5.8	
21-Jun-17	Sunny	Moderate	16:34		Surface	1.0	27.1 27.7	27.7	7.5 7.8	7.8	29.6 14.6	14.4	70.5 74.7	74.0	5.0 5.6	5.5		7.3	7.3		5.9 7.6	6.9	
				10.8		5.4	27.8 27.7	27.6	7.8 7.8	7.9	14.2 15.3	15.3	73.2 72.2	72.0	5.5 5.4	5.3	5.4	7.2 7.2		7.6	6.2 6.2	6.4	6.7
				10.8	Middle		27.5 27.4		7.9 7.8		15.3 19.0		71.7 72.5		5.3 5.4			7.7 8.0	7.5	7.6	6.6 6.7		6.7
					Bottom	9.8	27.6	27.5	7.8	7.8	17.0	18.0	73.8	73.2	5.5	5.4	5.4	7.7	7.9		7.0	6.9	l

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:16		Surface 1	.0 28.9 28.8	28.8	7.7 7.7	7.7	12.4 10.0	11.2	75.4 75.1	75.3	5.3 5.3	5.3	5.3	14.4 14.5	14.5		10.0 10.3	10.2	
				12.2	Middle 6	.1 28.6 28.6	28.6	7.7 7.7	7.7	12.9 11.1	12.0	74.9 74.6	74.8	5.3 5.3	5.3	5.5	14.6 14.7	14.7	14.7	11.6 9.9	10.8	10.5
					Bottom 11	.2 28.6 28.6	28.6	7.7 7.7	7.7	11.9 11.8	11.8	74.2 74.5	74.4	5.3 5.3	5.3	5.3	14.9 14.8	14.9		11.1 9.8	10.5	
26-Jun-17	Cloudy	Moderate	07:38		Surface 1	.0 27.8 27.6	27.7	8.0 8.0	8.0	17.2 17.3	17.2	75.8 76.9	76.4	5.5 5.6	5.5	5.4	11.3 10.9	11.1		4.6 7.1	5.9	
				11.1	Middle 5	.6 26.7 26.6	26.6	8.0 8.0	8.0	23.8 23.9	23.8	74.2 72.8	73.5	5.3 5.3	5.3	5.4	11.2 10.9	11.1	11.0	8.0 6.0	7.0	6.4
					Bottom 10).1 26.6 26.5	26.5	8.0 8.0	8.0	24.1 25.2	24.7	75.8 73.0	74.4	5.4 5.2	5.3	5.3	10.8 11.0	10.9		6.2 6.2	6.2	
28-Jun-17	Fine	Moderate	09:24		Surface 1	.0 28.1 28.2	28.2	7.6 7.6	7.6	14.4 14.5	14.5	75.5 76.5	76.0	5.6 5.6	5.6	5.4	10.5 10.8	10.7		7.7 7.9	7.8	
				11.2	Middle 5	.6 27.3 27.3	27.3	7.6 7.6	7.6	20.0 19.7	19.9	71.5 74.8	73.2	5.1 5.3	5.2	5.4	10.6 10.4	10.5	10.6	7.2 6.3	6.8	7.7
					Bottom 10).2 27.1 27.0	27.0	7.5 7.5	7.5	25.2 24.9	25.0	70.0 69.5	69.8	5.1 5.1	5.1	5.1	10.5 10.5	10.5		8.5 8.3	8.4	
30-Jun-17	Fine	Moderate	10:58		Surface 1	.0 28.8 28.7	28.7	7.7 7.7	7.7	16.1 16.1	16.1	77.4 77.1	77.3	5.6 5.6	5.6	5.5	5.0 5.5	5.3	•	6.2 6.4	6.3	
				11.1	Middle 5	27.8	27.8	7.7 7.7	7.7	19.6 19.9	19.7	73.4 74.2	73.8	5.3 5.4	5.4	5.5	6.4 6.2	6.3	6.2	6.2 5.5	5.9	6.3
					Bottom 10).1 27.7 27.4	27.6	7.7 7.7	7.7	21.6 21.7	21.7	75.9 73.8	74.9	5.5 5.4	5.4	5.4	7.0 6.8	6.9		6.0 7.1	6.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:25		Surface	1.0	27.8 27.7	27.8	8.0 8.0	8.0	20.4 20.4	20.4	96.4 97.1	96.8	6.8 6.8	6.8		7.1 7.0	7.1		2.6 2.6	2.6	1
				10.3	Middle	5.2	27.7 27.7	27.7	8.0	8.0	21.2 21.6	21.4	96.3 96.9	96.6	6.7 6.8	6.7	6.8	7.2 7.2	7.2	7.2	3.3 3.6	3.5	3.1
					Bottom	9.3	27.7 27.7	27.7	8.0 8.0	8.0	22.8 22.9	22.9	96.6 96.4	96.5	6.7 6.7	6.7	6.7	7.3 7.5	7.4		3.1 3.4	3.3	
5-Jun-17	Fine	Moderate	10:00		Surface	1.0	28.7	28.8	8.1	8.1	20.2	20.2	98.0	98.9	6.8	6.9		4.5	4.5		5.3	4.9	
				10.7	Middle	5.4	28.8 28.7	28.6	8.1 8.1	8.1	20.3 21.5	21.4	99.8 96.8	97.1	7.0 6.7	6.7	6.8	4.4	4.5	4.6	4.4	4.4	4.7
					Bottom	9.7	28.6 28.3	28.4	8.1 8.0	8.0	21.4 22.1	21.9	97.3 95.3	95.1	6.7 6.7	6.6	6.6	4.5 4.6	4.7		4.7	4.7	
7-Jun-17	Sunny	Moderate	11:08		Surface	1.0	28.5 29.5	29.5	8.0	8.0	21.6 20.3	20.3	94.8 96.8	96.9	6.6	6.7	0.0	4.7 4.5	4.6		4.8	5.3	
				40.0			29.4 29.1		8.0 8.0		20.4		96.9 95.2		6.7		6.6	4.6 5.0		4.0	6.0 6.5		
				10.8	Middle	5.4	28.8 28.9	29.0	8.0 8.0	8.0	20.2	20.5	95.1 94.4	95.2	6.5 6.5	6.5		4.9 5.1	5.0	4.9	7.2 6.1	6.9	6.0
9-Jun-17	Cloudy	Moderate	12:21		Bottom	9.8	28.6 28.7	28.7	8.0	8.0	22.1 21.4	21.5	93.4 91.2	93.9	6.4	6.5	6.5	5.2 7.6	5.2		5.7 9.2	5.9	<u></u>
9-3un-17	Cloudy	Woderate	12.21		Surface	1.0	28.9	28.8	8.0 8.0	8.0	21.3	21.3	93.3 88.2	92.3	6.4 6.0	6.3	6.2	7.8 8.5	7.7		9.8	9.5	
				10.8	Middle	5.4	28.2 28.1	28.2	8.0	8.0	26.9	26.4	89.4	88.8	6.0	6.0		8.4	8.5	8.3	8.3 9.5	8.9	9.8
					Bottom	9.8	28.1 28.2	28.1	8.0 8.0	8.0	27.0 27.0	27.0	91.6 90.5	91.1	6.2 6.1	6.1	6.1	8.9 8.3	8.6		11.6 10.5	11.1	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-		-		-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:41		Surface	1.0	28.3 28.3	28.3	8.0 8.0	8.0	17.3 16.8	17.0	96.3 96.0	96.2	6.8 6.8	6.8		6.2 6.1	6.2		3.0 3.2	3.1	
				10.8	Middle	5.4	28.2 28.2	28.2	8.0 8.0	8.0	17.7 18.0	17.8	95.2 95.5	95.4	6.7 6.7	6.7	6.8	6.4 6.5	6.5	6.4	4.4 5.2	4.8	4.6
					Bottom	9.8	28.2	28.2	8.0 8.0	8.0	18.6 18.0	18.3	94.5 94.6	94.6	6.7 6.7	6.7	6.7	6.6 6.6	6.6		5.3 6.5	5.9	
16-Jun-17	Cloudy	Moderate	17:00		Surface	1.0	28.7 28.7	28.7	8.0 8.1	8.0	14.6 14.8	14.7	91.1 93.3	92.2	6.5	6.6		8.8	8.7		5.2	4.9	
				10.4	Middle	5.2	28.6	28.6	8.0	8.0	17.6	17.7	90.2	90.0	6.6	6.3	6.5	9.2	9.1	9.1	4.5	4.9	5.5
					Bottom	9.4	28.5 28.7	28.6	8.0 8.0	8.0	17.8 17.7	17.8	89.8 94.7	94.0	6.3 6.6	6.6	6.6	8.9 9.5	9.4		7.0	6.8	
19-Jun-17	Rainy	Moderate	09:06		Surface	1.0	28.5 28.1	28.1	7.8	7.8	17.9 10.4	10.5	93.3 71.9	72.4	6.6 5.2	5.2		9.2 8.3	8.4		6.5	6.4	
				10.5	Middle	5.3	28.1 27.7	27.7	7.7 7.6	7.7	10.6 20.1	20.2	72.8 71.0	71.3	5.3 5.1	5.0	5.1	8.4 8.5	8.6	8.5	6.8 5.7	5.5	5.8
				10.5			27.7 27.9		7.7 7.6		20.2 23.1		71.5 70.6		5.0 4.9		4.0	8.6 8.5		0.0	5.3 5.5		0.0
21-Jun-17	Cloudy	Moderate	10:32		Bottom	9.5	27.9 27.7	27.9	7.6 7.8	7.6	23.1	23.1	70.6 72.0	70.6	4.9 5.3	4.9	4.9	8.6 7.2	8.6		5.5 4.5	5.5	
21-Juli-17	Oloudy	Woderate	10.02		Surface	1.0	27.7 27.4	27.7	7.8 7.7	7.8	14.0	14.0	71.5 70.8	71.8	5.3 5.2	5.3	5.3	7.5 7.7	7.4		4.6	4.6	
				10.7	Middle	5.4	27.5	27.4	7.7	7.7	17.0	17.0	70.6	70.7	5.2	5.2		7.8	7.8	7.7	3.8	4.3	4.8
					Bottom	9.7	27.4 27.6	27.5	7.7 7.7	7.7	19.0 19.1	19.1	71.4 71.4	71.4	5.2 5.2	5.2	5.2	8.0 7.9	8.0		5.8 5.1	5.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:26		Surface 1.	0 28.6 28.7	28.6	7.8 7.8	7.8	13.2 13.2	13.2	76.6 76.3	76.5	5.3 5.3	5.3	5.2	6.2 6.1	6.2		5.0 4.8	4.9	
				10.6	Middle 5.	3 27.9 28.3	28.1	7.7 7.8	7.8	15.8 13.6	14.7	74.8 74.4	74.6	5.2 5.1	5.1	5.2	6.3 6.3	6.3	6.3	4.5 5.2	4.9	5.4
					Bottom 9.	6 27.9 28.0	27.9	7.7 7.7	7.7	15.8 16.2	16.0	74.3 74.1	74.2	5.1 5.1	5.1	5.1	6.5 6.4	6.5		6.7 5.9	6.3	
26-Jun-17	Cloudy	Moderate	14:16		Surface 1.	0 29.1 29.0	29.0	8.0 8.0	8.0	12.8 12.9	12.8	72.5 71.7	72.1	5.3 5.2	5.2	5.1	12.3 11.1	11.7		5.2 4.5	4.9	
				10.6	Middle 5	27.5	27.5	7.9 7.9	7.9	19.4 19.1	19.2	70.3 70.6	70.5	5.0 5.1	5.0	0.1	12.6 13.0	12.8	12.4	6.5 6.0	6.3	5.7
					Bottom 9	6 27.2 27.5	27.4	7.9 7.9	7.9	21.0 20.6	20.8	73.0 73.0	73.0	5.2 5.2	5.2	5.2	12.5 12.6	12.6		6.8 5.2	6.0	
28-Jun-17	Fine	Moderate	16:03		Surface 1.	0 29.2 29.2	29.2	7.8 7.8	7.8	15.1 15.1	15.1	76.9 75.3	76.1	5.4 5.3	5.4	5.4	4.5 4.7	4.6		4.6 4.1	4.4	
				11.0	Middle 5	5 27.3 27.5	27.4	7.8 7.8	7.8	17.5 17.7	17.6	76.0 74.0	75.0	5.3 5.2	5.3	5.4	4.8 4.8	4.8	4.8	6.6 5.6	6.1	6.2
					Bottom 10	.0 27.0 27.1	27.0	7.7 7.7	7.7	22.9 23.2	23.0	68.0 71.1	69.6	4.9 5.1	5.0	5.0	4.8 4.9	4.9		7.1 8.8	8.0	
30-Jun-17	Fine	Moderate	17:29		Surface 1.	0 29.5 28.9	29.2	7.9 7.9	7.9	12.6 13.5	13.1	74.2 73.8	74.0	5.2 5.2	5.2	5.2	3.9 3.8	3.9		5.1 5.2	5.2	
				10.6	Middle 5.	27.2	27.5	7.8 7.8	7.8	20.0 21.2	20.6	73.1 71.5	72.3	5.1 5.0	5.1	5.2	4.2 4.6	4.4	4.4	4.0 5.6	4.8	5.1
					Bottom 9	6 26.9 26.8	26.8	7.8 7.8	7.8	25.5 25.1	25.3	72.7 74.8	73.8	5.1 5.2	5.1	5.1	4.8 4.7	4.8		5.3 5.4	5.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	uration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	13:14		Surface	1.0	27.8 27.8	27.8	8.0 8.0	8.0	20.9 20.8	20.8	97.3 97.2	97.3	6.8 6.8	6.8		6.0 5.9	6.0		3.1 3.7	3.4	
				10.5	Middle	5.3	27.8	27.8	8.0	8.0	20.9	20.9	95.6	95.9	6.7	6.7	6.8	6.8	6.8	6.7	3.0	3.5	3.7
					Bottom	9.5	27.8 27.7	27.7	8.0 8.0	8.0	20.9 22.3	22.3	96.1 95.0	95.3	6.7 6.6	6.6	6.6	6.7 7.3	7.2		3.9 4.7	4.2	
5 lun 47	F:	Madazata	47.40				27.7 29.1		8.0		22.2		95.5 111.3		6.7			7.1 4.9		l	3.6 1.7		<u> </u>
5-Jun-17	Fine	Moderate	17:16		Surface	1.0	29.1	29.1	8.1 8.1	8.1	20.4	20.5	110.2	110.8	7.6 7.5	7.6	7.5	4.8	4.9		1.6	1.7	
				10.9	Middle	5.5	29.0 29.2	29.1	8.1 8.1	8.1	20.8 21.3	21.1	108.1 108.2	108.2	7.4 7.4	7.4		5.3 5.1	5.2	5.2	0.6 0.9	8.0	1.7
					Bottom	9.9	29.1 29.1	29.1	8.1 8.1	8.1	21.9 21.5	21.7	107.7 105.1	106.4	7.4 7.2	7.3	7.3	5.4 5.3	5.4		2.2 3.2	2.7	
7-Jun-17	Sunny	Moderate	18:52		Surface	1.0	29.8 29.8	29.8	8.2 8.1	8.2	20.9 20.7	20.8	111.2 111.5	111.4	7.7 7.7	7.7		4.5 4.4	4.5		4.8 5.9	5.4	
				10.9	Middle	5.5	29.5	29.6	8.1	8.1	21.0	21.2	110.8	110.8	7.6	7.6	7.7	4.8	4.7	4.8	5.1	4.6	5.8
					Bottom	9.9	29.6 29.5	29.5	8.1 8.1	8.1	21.4 21.9	21.8	110.7 107.2	107.9	7.5 7.4	7.5	7.5	4.6 5.1	5.1		8.0	7.5	1 '
9-Jun-17	Cloudy	Moderate	05:55		Dottom	3.3	29.6 28.8	29.5	8.1 8.0	0.1	21.8 21.5	21.0	108.6 91.3	107.9	7.5 6.6	7.5	7.5	5.0 7.5	3.1	<u> </u>	7.0 7.1	7.5	<u> </u>
9-3411-17	Cloudy	ivioderate	05.55		Surface	1.0	28.8	28.8	8.0	8.0	21.5	21.5	90.0	90.7	6.5	6.6	6.6	7.3	7.4		6.4	6.8	 -
				10.7	Middle	5.4	28.0 28.0	28.0	7.9 7.9	7.9	27.8 26.9	27.3	89.5 90.0	89.8	6.5 6.5	6.5		7.8 7.7	7.8	7.8	5.9 7.5	6.7	7.3
					Bottom	9.7	28.4 27.9	28.1	7.9 7.9	7.9	27.8 28.1	28.0	90.1 90.6	90.4	6.5 6.5	6.5	6.5	7.9 8.3	8.1		9.2 7.6	8.4	
12-Jun-17	Sunny	Moderate	07:27		Surface	1.0	29.1 29.4	29.2	8.0 8.0	8.0	21.1 21.3	21.2	85.8 87.2	86.5	5.9 6.0	6.0		8.8 9.1	9.0		3.2 3.7	3.5	
				10.4	Middle	5.2	28.3 28.0	28.1	7.9 7.9	7.9	25.5 26.3	25.9	83.4 79.2	81.3	5.6	5.5	5.8	9.3 9.6	9.5	9.5	5.5 5.2	5.4	4.5
					Bottom	9.4	27.7	27.8	7.9	7.9	29.2	29.0	80.1	84.1	5.4 5.4	5.6	5.6	10.3	10.0		4.8	4.6	
14-Jun-17	Rainy	Moderate	08:50				27.9 28.0		7.9 7.8		28.8 19.8		88.0 82.7		5.9 5.7			9.7			10.8		
14-3ull-17	reality	Woderate	00.50		Surface	1.0	28.0	28.0	7.8	7.8	19.7	19.8	82.7	82.7	5.8	5.7	5.8	10.4	10.5		10.1	10.5	 -
				10.8	Middle	5.4	28.0 28.0	28.0	7.8 7.8	7.8	19.8 19.8	19.8	82.3 82.3	82.3	5.8 5.8	5.8		10.6 10.7	10.7	10.7	10.7 10.7	10.7	10.3
					Bottom	9.8	27.9 28.0	28.0	7.8 7.8	7.8	21.5 21.8	21.7	81.3 81.5	81.4	5.7 5.7	5.7	5.7	11.0 10.9	11.0		9.6 9.9	9.8	
16-Jun-17	Cloudy	Moderate	10:08		Surface	1.0	28.7 28.7	28.7	7.8 7.8	7.8	16.0 16.0	16.0	83.3 81.9	82.6	5.9 5.8	5.9		8.0 7.9	8.0		4.5 4.1	4.3	
				10.6	Middle	5.3	27.9	27.9	7.7	7.7	21.9	21.9	76.1	76.4	5.3	5.3	5.6	9.8	10.0	9.1	4.5	4.6	4.5
					Bottom	9.6	27.9 28.1	28.0	7.7	7.7	21.8 24.9	24.7	76.7 80.6	79.8	5.3 5.5	5.4	5.4	9.2	9.4		4.6 5.0	4.7	1 '
19-Jun-17	Cloudy	Moderate	14:23				28.0 28.3		7.7		24.5 10.6		79.0 73.2		5.4 5.3			9.5			4.4 6.5		<u> </u>
	,				Surface	1.0	28.2 27.9	28.3	7.7 7.7	7.7	10.9 19.4	10.7	72.8 70.6	73.0	5.3 5.2	5.3	5.2	10.1 10.0	10.1		7.3 6.6	6.9	-
				10.8	Middle	5.4	27.9	27.9	7.6	7.6	19.2	19.3	70.8	70.7	5.0	5.1		10.6	10.3	10.3	6.4	6.5	6.4
					Bottom	9.8	28.1 27.8	28.0	7.6 7.6	7.6	20.6 19.5	20.1	67.4 69.1	68.3	4.8 4.9	4.8	4.8	10.5 10.4	10.5		6.0 5.7	5.9	
21-Jun-17	Sunny	Moderate	16:42		Surface	1.0	27.8 27.9	27.9	7.9 7.9	7.9	13.9 13.7	13.8	72.7 72.3	72.5	5.4 5.4	5.4	F 2	7.2 7.3	7.3		6.2 5.9	6.1	
				10.5	Middle	5.3	27.5 27.5	27.5	7.8 7.8	7.8	16.7 16.8	16.8	71.5 70.2	70.9	5.2 5.2	5.2	5.3	8.2 8.0	8.1	7.8	5.5 5.4	5.5	5.9
					Bottom	9.5	27.5	27.5	7.8	7.8	17.0	17.1	73.4	72.7	5.3	5.3	5.3	8.2	8.0		5.7	6.0	1
			l	l			27.5		7.8		17.1	l	71.9		5.3			7.8			6.2		<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:23		Surface	1.0	28.7 28.9	28.8	7.7 7.7	7.7	11.1 10.7	10.9	74.1 73.8	74.0	5.4 5.3	5.4	5.4	14.2 14.0	14.1		9.5 10.8	10.2	
				10.7	Middle	5.4	28.7 28.6	28.7	7.7 7.7	7.7	11.2 11.4	11.3	73.4 73.3	73.4	5.3 5.3	5.3	5.4	14.5 14.6	14.6	14.5	11.3 10.9	11.1	10.5
					Bottom	9.7	28.6 28.7	28.6	7.7 7.7	7.7	12.2 11.4	11.8	72.2 72.5	72.4	5.2 5.3	5.2	5.2	14.9 14.8	14.9		10.3 10.1	10.2	
26-Jun-17	Cloudy	Moderate	07:28		Surface	1.0	27.8 27.7	27.8	8.0 8.0	8.0	17.1 17.3	17.2	73.5 72.6	73.1	5.3 5.3	5.3	5.2	8.7 8.7	8.7		6.2 6.1	6.2	
				10.5	Middle	5.3	27.4 27.4	27.4	8.0 8.0	8.0	19.3 18.8	19.1	72.0 71.5	71.8	5.1 5.0	5.1	5.2	8.4 8.8	8.6	8.6	8.3 7.5	7.9	7.6
					Bottom	9.5	27.4 27.3	27.3	8.0 8.0	8.0	20.3 20.3	20.3	71.9 71.1	71.5	5.1 5.0	5.0	5.0	8.5 8.5	8.5		7.6 9.9	8.8	
28-Jun-17	Fine	Moderate	09:11		Surface	1.0	28.1 27.8	27.9	7.6 7.6	7.6	15.8 15.9	15.9	75.3 72.7	74.0	5.5 5.4	5.4	5.4	12.5 12.8	12.7		17.7 18.4	18.1	
				10.9	Middle	5.5	27.1 27.2	27.2	7.6 7.6	7.6	21.5 21.6	21.5	74.4 75.1	74.8	5.3 5.4	5.4	5.4	13.5 13.1	13.3	13.1	18.2 19.4	18.8	18.5
					Bottom	9.9	26.9 27.3	27.1	7.5 7.6	7.6	23.5 23.2	23.4	72.9 71.7	72.3	5.3 5.2	5.2	5.2	13.2 13.3	13.3		18.5 18.6	18.6	
30-Jun-17	Fine	Moderate	10:49		Surface	1.0	28.4 28.4	28.4	7.7 7.7	7.7	17.4 17.4	17.4	72.3 73.0	72.7	5.3 5.3	5.3	5.3	5.5 5.1	5.3		6.9 7.4	7.2	
				10.5	Middle	5.3	27.6 27.7	27.7	7.7 7.7	7.7	20.5 19.8	20.2	71.9 72.4	72.2	5.2 5.3	5.2	5.5	6.6 6.3	6.5	6.3	6.6 7.1	6.9	7.0
					Bottom	9.5	27.6 27.8	27.7	7.7 7.7	7.7	21.7 22.7	22.2	73.0 72.4	72.7	5.3 5.3	5.3	5.3	7.2 6.8	7.0		6.2 7.5	6.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	07:49		Surface	1.0	27.9 27.9	27.9	8.3 8.3	8.3	21.8 21.8	21.8	100.9 101.3	101.1	7.0 7.0	7.0		7.2 7.1	7.2		6.2 5.7	6.0	
				6.3	Middle	3.2	27.9	27.9	8.3	8.3	22.1	22.2	100.9	101.1	7.0	7.0	7.0	6.6	6.8	6.9	6.0	6.1	6.4
					Bottom	5.3	27.9 27.9	27.9	8.3 8.3	8.3	22.2 22.3	22.4	101.2 100.9	100.9	7.0 7.0	7.0	7.0	6.9 6.6	6.6		7.0	7.2	
5-Jun-17	Fine	Moderate	10:53				27.9 28.8		8.3 8.2		22.5 20.5		100.8 97.0		7.0 6.7			6.6 4.4			7.4 4.8		
5-Jun-17	Fille	ivioderate	10.55		Surface	1.0	28.8	28.8	8.2	8.2	20.5	20.5	95.6	96.3	6.6	6.6	6.6	4.8	4.6		4.0	4.4	
				6.3	Middle	3.2	28.7 28.6	28.7	8.2 8.2	8.2	21.2 21.3	21.3	96.2 93.0	94.6	6.6 6.4	6.5		5.2 5.4	5.3	5.0	5.2 4.3	4.8	4.8
					Bottom	5.3	28.7 28.2	28.4	8.2 8.2	8.2	23.5 23.1	23.3	95.6 90.4	93.0	6.5 6.2	6.4	6.4	5.0 5.2	5.1		5.1 5.3	5.2	1
7-Jun-17	Sunny	Moderate	12:06		Surface	1.0	29.8 29.6	29.7	8.4 8.4	8.4	21.5 21.5	21.5	115.5 116.4	116.0	7.8 7.8	7.8		11.5 11.2	11.4		6.2 6.9	6.6	
				6.1	Middle	3.1	29.1 29.1	29.1	8.4 8.4	8.4	22.9 22.8	22.9	115.4 106.1	110.8	7.8 7.2	7.5	7.7	11.2 11.2	11.2	11.3	8.6 9.3	9.0	8.0
					Bottom	5.1	28.9	29.1	8.4	8.4	23.9	23.7	104.0	108.6	7.0	7.3	7.3	11.1	11.4		8.4	8.3	
9-Jun-17	Cloudy	Moderate	06:38		Surface	1.0	29.4 29.0	29.1	8.4 8.4	8.4	23.4 21.6	21.3	113.2 99.0	100.9	7.7 6.8	6.0		11.6 5.3	F 2		8.2 8.6	8.7	
	·						29.2 29.2		8.4 8.4		21.1 20.7		102.8 102.0		7.0	6.9	6.9	5.3 6.5	5.3		8.7 8.0	-	ļ
				4.2	Middle	2.1	29.1	29.1	8.4 8.4	8.4	20.8	20.8	98.7 98.3	100.4	6.8	6.9		6.2	6.4	6.0	9.6 8.7	8.8	8.8
					Bottom	3.2	29.1	29.1	8.4	8.4	21.5	21.6	100.7	99.5	6.9	6.8	6.8	6.3	6.4		9.1	8.9	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-		-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:24		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	19.6 19.8	19.7	82.8 88.5	85.7	5.7 6.1	5.9		12.5 13.1	12.8		7.8 8.8	8.3	
				6.1	Middle	3.1	28.3	28.3	8.2	8.2	20.1	20.1	84.4	83.2	5.9	5.8	5.9	13.9	13.7	13.4	9.7	9.1	8.5
					Bottom	5.1	28.3 28.2	28.2	8.2 8.2	8.2	20.1 21.1	21.2	81.9 81.6	82.6	5.7 5.7	5.8	5.8	13.4 13.6	13.6		8.4 8.1	8.2	1
16-Jun-17	Cloudy	Moderate	16:51				28.2 28.6		8.2 8.3		21.2 18.5		83.6 93.7		5.8 6.6			13.5 9.9			8.3 8.8		
10 04.11	Cicacy	modorato	10.01		Surface	1.0	28.6	28.6	8.3 8.3	8.3	18.5 18.5	18.5	89.3 88.4	91.5	6.3	6.4	6.4	10.0	10.0		7.2	8.0	
				6.3	Middle	3.2	28.5	28.5	8.3	8.3	18.5	18.5	90.6	89.5	6.3	6.3		10.6	10.5	10.3	8.3	8.2	8.7
					Bottom	5.3	28.6 28.5	28.5	8.3 8.3	8.3	18.5 18.6	18.6	88.3 89.8	89.1	6.2 6.3	6.2	6.2	10.2 10.5	10.4		9.5 10.3	9.9	
19-Jun-17	Rainy	Moderate	09:17		Surface	1.0	27.9 27.9	27.9	8.1 8.1	8.1	15.1 16.0	15.6	78.6 77.7	78.2	5.7 5.6	5.6	5.0	5.6 5.2	5.4		5.4 6.8	6.1	
				6.5	Middle	3.3	27.9 27.8	27.9	8.1 8.1	8.1	18.0 18.1	18.0	76.9 77.7	77.3	5.6 5.6	5.6	5.6	5.5 5.6	5.6	5.7	8.5 7.3	7.9	7.3
					Bottom	5.5	27.9 27.6	27.7	8.1 8.1	8.1	18.3 18.6	18.4	78.3 79.7	79.0	5.6 5.8	5.7	5.7	5.9	6.1		7.8 7.8	7.8	
21-Jun-17	Cloudy	Moderate	11:09		Surface	1.0	27.5	27.5	8.0	8.0	16.8	16.9	76.5	77.2	5.4	5.5		10.4	10.4		6.0	6.0	
				6.3	Middle	3.2	27.6 27.3	27.3	7.9	8.0	17.0 19.2	18.8	77.9 74.7	75.5	5.5 5.4	5.4	5.5	10.4 10.5	10.5	10.4	6.0	6.2	6.0
				0.5		5.3	27.3 27.2	27.3	8.0 7.9	7.9	18.4 20.0	20.4	76.2 74.3	74.0	5.4 5.3		5.3	10.5 10.2	10.3	10.4	6.3 5.6	5.8	5.0
					Bottom	ე.კ	27.4	21.3	7.9	7.9	20.8	20.4	73.6	74.0	5.2	5.3	5.3	10.6	10.4		6.0	5.8	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:29		Surface 1.	0 28.3 28.4	28.4	8.0 8.0	8.0	16.3 16.2	16.2	79.0 79.4	79.2	5.5 5.6	5.6	5.6	6.0 6.0	6.0		9.4 10.0	9.7	
				6.1	Middle 3.	1 27.9 27.7	27.8	8.0 8.0	8.0	16.9 17.6	17.3	78.6 78.7	78.7	5.5 5.5	5.5	3.0	6.9 6.7	6.8	6.5	9.3 9.9	9.6	9.7
					Bottom 5.	1 27.8 27.5	27.7	8.0 8.0	8.0	18.8 18.8	18.8	77.4 77.3	77.4	5.5 5.5	5.5	5.5	6.6 6.6	6.6		10.6 9.2	9.9	
26-Jun-17	Cloudy	Moderate	14:05		Surface 1.	0 28.4 28.4	28.4	8.1 8.0	8.1	16.0 16.4	16.2	71.7 73.8	72.8	5.1 5.2	5.1	5.1	8.3 8.7	8.5		10.7 11.7	11.2	
				6.2	Middle 3.	28.0	28.0	8.0 8.0	8.0	17.6 17.8	17.7	71.3 72.0	71.7	5.1 5.1	5.1	0.1	8.4 8.6	8.5	8.5	12.9 13.0	13.0	11.9
					Bottom 5.	2 27.7 28.2	27.9	8.0 8.0	8.0	19.3 18.6	19.0	71.2 70.4	70.8	5.1 5.0	5.0	5.0	8.5 8.3	8.4		10.9 11.9	11.4	
28-Jun-17	Fine	Moderate	16:08		Surface 1.	28.6 28.0	28.3	8.1 8.1	8.1	18.2 19.7	19.0	79.2 78.7	79.0	5.6 5.5	5.5	5.5	4.3 4.2	4.3		6.3 6.7	6.5	
				6.6	Middle 3.	28.1	27.9	8.1 8.1	8.1	20.9 20.1	20.5	77.2 77.4	77.3	5.4 5.4	5.4	3.3	4.5 4.6	4.6	4.6	9.8 9.1	9.5	8.4
					Bottom 5.	6 27.9 27.7	27.8	8.1 8.1	8.1	21.2 21.9	21.5	76.4 76.8	76.6	5.3 5.3	5.3	5.3	4.7 4.8	4.8		9.7 8.6	9.2	
30-Jun-17	Fine	Moderate	17:23		Surface 1.	0 29.6 29.4	29.5	8.4 8.4	8.4	16.7 16.6	16.6	107.4 100.8	104.1	7.5 7.0	7.2	7.1	8.6 8.4	8.5		6.0 5.8	5.9	
				6.1	Middle 3.	28.8	28.7	8.3 8.3	8.3	17.5 17.4	17.5	102.6 96.2	99.4	7.2 6.8	7.0	7.1	8.5 8.7	8.6	8.6	8.5 9.4	9.0	8.0
					Bottom 5.	1 28.5 28.4	28.5	8.4 8.3	8.3	18.5 18.4	18.4	97.2 92.9	95.1	6.8 6.5	6.7	6.7	8.6 8.5	8.6		9.1 9.0	9.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:57		Surface	1.0	28.2 28.2	28.2	8.3 8.3	8.3	21.0 20.9	21.0	103.9 104.0	104.0	7.2 7.2	7.2		5.2 5.4	5.3		3.1 2.4	2.8	
				6.3	Middle	3.2	28.2 28.2	28.2	8.4 8.4	8.4	21.6 21.5	21.6	104.1 104.0	104.1	7.2 7.2	7.2	7.2	4.5 4.3	4.4	4.8	4.2 5.3	4.8	4.8
					Bottom	5.3	28.2	28.2	8.3 8.4	8.3	22.6	22.5	103.6 103.3	103.5	7.1 7.1	7.1	7.1	4.7	4.7		7.1 6.3	6.7	
5-Jun-17	Fine	Moderate	16:25		Surface	1.0	29.3	29.3	8.3	8.3	20.7	20.6	109.7	109.9	7.5	7.5		5.9	6.1		1.7	1.6	
				6.1	Middle	3.1	29.3 28.9	28.8	8.3 8.3	8.3	20.6 21.3	21.3	110.0 107.7	105.2	7.5 7.4	7.2	7.4	6.3 7.5	7.5	7.7	1.5 2.2	2.7	2.8
					Bottom	5.1	28.8 29.0	28.8	8.3 8.3	8.3	21.3 21.4	21.9	102.7 110.1	105.7	7.0 7.5	7.2	7.2	7.4 9.6	9.4		3.2	4.1	-
7-Jun-17	Sunny	Moderate	18:12				28.7 30.1		8.3 8.5		22.4		101.3 133.0		6.9 9.0		1.2	9.1 7.1			4.9 5.9		
7 0011 17	Cuiniy	Moderate	10.12		Surface	1.0	30.1	30.1	8.5 8.5	8.5	20.9	20.9	130.5	131.8	8.8	8.9	8.8	7.1	7.1		5.7	5.8	
				6.2	Middle	3.1	30.0 29.6	30.0	8.5 8.5	8.5	20.7	20.7	129.5	129.4	8.7 8.1	8.7		7.2	7.2	7.2	5.8	5.0	5.3
	2				Bottom	5.2	30.2	29.9	8.5	8.5	21.8	22.1	121.1	120.5	8.2	8.1	8.1	7.5	7.4		5.2	5.0	
9-Jun-17	Cloudy	Moderate	12:11		Surface	1.0	29.3 29.3	29.3	8.5 8.4	8.4	21.8 21.6	21.7	111.9 104.8	108.4	7.6 7.1	7.4	7.6	6.4 6.2	6.3		5.7 6.8	6.3	
				4.0	Middle	2.0	29.3 29.3	29.3	8.5 8.4	8.5	21.0 20.8	20.9	112.5 113.0	112.8	7.7 7.7	7.7		5.2 5.1	5.2	5.6	6.1 6.2	6.2	6.2
					Bottom	3.0	29.3 29.3	29.3	8.5 8.4	8.4	21.3 22.0	21.6	112.2 110.9	111.6	7.6 7.6	7.6	7.6	5.1 5.2	5.2		6.2 6.2	6.2	
12-Jun-17	Sunny	Moderate	07:53		Surface	1.0	29.6 29.5	29.6	8.3 8.3	8.3	20.7 20.7	20.7	89.8 89.1	89.5	6.2 6.2	6.2	0.0	8.7 8.2	8.5		3.2 2.8	3.0	
				6.3	Middle	3.2	29.2 29.0	29.1	8.3 8.3	8.3	20.6 21.0	20.8	89.3 89.8	89.6	6.1 6.1	6.1	6.2	8.5 8.6	8.6	8.5	3.9 3.1	3.5	3.5
					Bottom	5.3	29.2 28.9	29.1	8.3 8.3	8.3	22.0 23.5	22.7	88.2 87.4	87.8	6.0 6.0	6.0	6.0	8.4 8.5	8.5		4.1	4.1	
14-Jun-17	Rainy	Moderate	09:12		Surface	1.0	28.2	28.2	8.2	8.2	18.6	18.6	84.8	84.9	6.0	6.0		7.5	7.4		3.8	3.7	
				6.2	Middle	3.1	28.2 28.2	28.2	8.2 8.2	8.2	18.7 18.8	18.8	85.0 84.6	84.7	6.0 5.9	5.9	6.0	7.2	7.4	7.3	3.6 4.7	5.3	4.7
					Bottom	5.2	28.2 28.2	28.2	8.2 8.2	8.2	18.8 18.8	18.8	84.7 84.4	84.5	6.0 5.9	5.9	5.9	7.5 7.2	7.2		5.9 4.5	5.1	1
16-Jun-17	Cloudy	Moderate	10:54		Surface	1.0	28.2 28.5	28.5	8.2 8.2	8.2	18.8 18.0	18.1	84.5 87.9	86.2	5.9 6.2	6.0	0.0	7.2 8.5	8.6		5.7 2.3	2.9	
				6.2		3.1	28.5 28.4	28.4	8.2 8.2	8.2	18.1 18.6	18.6	84.5 83.0	84.3	5.9 5.8	5.9	6.0	8.6 11.4		10.4	3.4 3.1	2.7	2.7
				6.2	Middle		28.4 28.5		8.2 8.2		18.6 18.6		85.6 82.8		6.0 5.8			11.2 11.4	11.3	10.4	2.3		2.7
19-Jun-17	Cloudy	Moderate	14:23		Bottom	5.2	28.4 28.6	28.4	8.2 8.1	8.2	18.7 12.0	18.7	85.3 77.3	84.1	6.0 5.6	5.9	5.9	11.2 8.3	11.3		2.4 6.4	2.4	<u> </u>
19-5411-17	Cloudy	Woderate	14.23		Surface	1.0	28.4	28.5	8.2	8.2	12.1	12.0	77.3 77.9	77.3	5.6	5.6	5.6	8.5	8.4		5.6	6.0	
				6.5	Middle	3.3	28.0 28.1	28.1	8.1 8.1	8.1	14.5 14.5	14.5	75.1	76.5	5.6 5.4	5.5		10.6 10.6	10.6	10.1	8.8 7.8	8.3	7.4
					Bottom	5.5	28.1 27.5	27.8	8.0 8.0	8.0	22.7 24.0	23.4	77.4 81.8	79.6	5.6 5.9	5.7	5.7	11.3 11.0	11.2		8.4 7.3	7.9	
21-Jun-17	Sunny	Moderate	16:44		Surface	1.0	28.0 28.0	28.0	8.1 8.1	8.1	14.9 14.9	14.9	73.4 72.3	72.9	5.3 5.2	5.3	5.2	8.4 8.5	8.5		4.3 3.9	4.1	
				6.2	Middle	3.1	27.6 27.8	27.7	8.0 8.1	8.1	15.5 15.2	15.4	71.5 73.0	72.3	5.0 5.1	5.1	5.2	8.8 8.8	8.8	8.7	5.6 6.1	5.9	5.2
					Bottom	5.2	27.1 27.4	27.2	8.0 8.0	8.0	22.6 23.7	23.1	69.0 68.1	68.6	5.0 4.9	5.0	5.0	8.8 8.6	8.7		5.4 5.7	5.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:44		Surface	1.0	28.8 28.8	28.8	8.0 8.0	8.0	15.8 15.8	15.8	73.5 73.0	73.3	5.2 5.1	5.2	5.2	5.8 5.7	5.8		7.2 7.0	7.1	
				6.2	Middle	3.1	28.4 28.2	28.3	8.0 8.0	8.0	16.6 16.7	16.7	71.7 72.2	72.0	5.1 5.1	5.1	5.2	5.9 5.8	5.9	5.9	7.5 7.4	7.5	7.3
					Bottom	5.2	28.3 27.9	28.1	8.0 7.9	7.9	19.6 21.2	20.4	67.7 69.7	68.7	4.8 4.9	4.8	4.8	5.9 5.8	5.9		7.3 7.3	7.3	
26-Jun-17	Cloudy	Moderate	07:46		Surface	1.0	27.7 27.6	27.6	8.1 8.1	8.1	17.9 17.9	17.9	75.3 75.5	75.4	5.5 5.5	5.5	5.5	4.4 4.5	4.5		4.7 4.8	4.8	
				6.1	Middle	3.1	27.4 27.3	27.3	8.1 8.1	8.1	21.2 21.1	21.2	75.2 75.3	75.3	5.4 5.4	5.4	0.0	4.6 4.6	4.6	4.5	4.6 4.4	4.5	4.6
					Bottom	5.1	27.5 27.2	27.3	8.1 8.1	8.1	21.9 22.4	22.2	74.8 75.0	74.9	5.4 5.4	5.4	5.4	4.5 4.5	4.5		5.1 3.8	4.5	
28-Jun-17	Fine	Moderate	09:16		Surface	1.0	28.3 28.4	28.3	8.0 8.0	8.0	15.2 15.1	15.1	73.3 73.5	73.4	5.3 5.2	5.2	5.2	6.2 6.3	6.3		7.0 6.8	6.9	
				6.6	Middle	3.3	28.3 28.3	28.3	8.0 8.0	8.0	16.0 16.0	16.0	73.3 73.3	73.3	5.2 5.2	5.2	5.2	6.5 6.7	6.6	6.6	9.8 9.8	9.8	8.8
					Bottom	5.6	28.3 28.4	28.3	8.0 8.0	8.0	16.1 16.2	16.2	73.1 73.2	73.2	5.2 5.2	5.2	5.2	6.8 6.9	6.9		9.7 9.8	9.8	
30-Jun-17	Fine	Moderate	11:17		Surface	1.0	28.7 28.9	28.8	8.1 8.1	8.1	16.8 16.5	16.6	78.1 77.0	77.6	5.5 5.4	5.5	5.5	4.5 4.5	4.5		4.2 4.7	4.5	
				6.2	Middle	3.1	28.5 28.4	28.4	8.1 8.1	8.1	17.1 16.9	17.0	77.8 74.6	76.2	5.4 5.3	5.4	5.5	4.6 4.6	4.6	4.6	4.3 4.2	4.3	4.4
					Bottom	5.2	28.1 28.7	28.4	8.0 8.1	8.1	20.0 20.0	20.0	74.4 77.0	75.7	5.2 5.4	5.3	5.3	4.6 4.6	4.6		5.0 4.0	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

2-Jun-17	Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	ended Solid	s (mg/L)
Sum Moderate Ref Moderate Ref Moderate Ref Moderate Ref Moderate Ref Ref Moderate Ref				Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
Solumin Solu	2-Jun-17	Sunny	Moderate	08:46		Surface	1.0		28.1		8.4		22.1		102.9		7.1			7.0			4.2	
Solution Fine Moderate 11:52 Surface 10 29.3 28.0 8.4 8.4 23.0 10:15 10:21 7.0 7.0 7.0 6.9					8.6	Middle	4.3	28.0	28.0	8.3	8.3	22.5	22.5	102.4	101.9	7.1	7.0	7.1	7.0	7.1	7.0	5.6	5.0	4.6
S-Jun-17 Fine Moderate 11:52 84 Surface 10:28 29:2 83 83. 29:2 29:2 84 82. 29:3 84 82. 29:3 84 82.						Bottom	7.6	28.0	28.0	8.3	8.4	23.0	23.0	101.5	102 1	7.0	7.0	7.0	6.9	6.9		4.7	47	1 '
Middle 42 28.5 8.2 8.2 23.3 5.3 5.3 5.8 5.8 6.0	5 lun 47	Fina	Madazata	44.50		50	7.0		20.0		0		20.0		102.1		7.0	7.10		0.0	<u> </u>		***	
Reference Refe	5-Jun-17	rine	woderate	11:52		Surface	1.0	29.2	29.2	8.3	8.3	21.8	21.7	96.5	96.3	6.6	6.5	6.4	8.7	8.7		4.9	4.7	
Follow Fig.				8.4	Middle	4.2	28.5	28.5		8.2	23.2	23.5	88.0	90.6	6.0	6.2		7.9	7.8	8.5	4.1	4.3	4.3	
Surface 10 28.6 28.5 8.4 6.4 21.6 21.0 101.3 101.5 6.9						Bottom	7.4		28.4		8.2		24.7		92.0		6.2	6.2		8.9			4.0	
Middle	7-Jun-17	Sunny	Moderate	12:57		Surface	1.0		29.5		8.4		21.6		101.6		6.9		-	9.4			5.3	
Solution Polyment				8.7	Middle	4.4	28.8	28.5	8.3	8.3	24.2	24.7	90.2	93.4	6.1	6.3	6.6	9.8	9.7	9.6	6.2	5.8	6.3	
9-Jun-17 Cloudy Moderate 05:21						Bottom	7.7	27.8	27.8	8.3	8.3	27.1	27.1	87.0	87.9	5.9	5.9	5.9	9.6	9.7		8.4	7.9	1
2.2 Middle 1.0 27.4 27.5 8.3 29.7 28.9 92.7 39.4 6.0 6.0 6.1 3.5 3	9-Jun-17	Cloudy	Moderate	05:21															0.0					
12-Jun-17 Rainy Moderate 14:41 8.0 Middle 4.0 28.1 28.2 8.2 8.2 8.2 8.2 8.2 8.2 19.7 19.7 84.3 83.7 83.4 5.8								27.4		8.3		29.7		92.7		6.3		6.1	3.5			6.5]
12-Jun-17 2 3 28.2 8.3 8.3 25.1 25.7 92.1 93.8 6.2 6.3 6.3 3.4 3.3 7.8 8.4					2.2	Middle	1.1	27.1	27.2	8.3	8.3	30.3	30.1	89.0	89.4	6.0	6.0		3.5	3.5	3.5	7.5	7.5	7.5
Surface - - - - - - - - -						Bottom	1.2		28.2		8.3		25.7		93.8		6.3	6.3		3.3			8.4	
Moderate 14:41 Rainy Moderate 14:41 Rottom 7.0 28.2 28.2 8.2 8.2 8.2 19.7 19.7 84.3 84.1 5.9 5.9 11.4 11.7 11.9 11.9 12.9 12.4 12.7 12.4 12.7 12.4 12.7 12.4 12.5	12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
14-Jun-17					-	Middle	-	-	-		-		-		-	-	-	-		-	=	-	-	=
8.0 Middle 4.0 28.2 8.2 8.2 8.2 19.7 19.8 83.9 84.1 5.9 5.9 11.9 11.7 12.9 12.7 10.0 10.0 10.1 10.1 10.1 10.1 10.1 10						Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	
Rottom R	14-Jun-17	Rainy	Moderate	14:41		Surface	1.0		28.2		8.2		19.7		84.1		5.9			11.7			9.7	
Sufface 10 28.1 28.2 19.8 83.7 5.8 12.4 9.2 10.1 1					8.0		4.0		28.2		8.2		10.8		83.4			5.9			12.4			9.9
16-Jun-17 Cloudy Moderate 16:06 Surface 1.0 28.7 28.7 28.7 8.3 8.3 15.6 15.5 84.8 85.9 6.2 6.0 6.1 6.1 10.6 10.5 10.6 10.5 5.5 5.5 10.6 10.5 10.6 10.5 10.5 10.6 10.5 10.5 10.6 10.5 1					0.0					_								5.0			12.4			. 5.5
8.1 Middle 4.1 28.6 28.6 8.2 8.2 15.8 16.4 86.6 85.7 6.1 6.0 10.5 10.6 10.5 5.0 5.8 5.7						Bottom	7.0		28.1		8.2		20.7		82.8	4.4	5.8	5.8		12.7			10.1	
8.1 Middle 4.1 28.6 28.6 8.2 8.2 15.8 16.4 86.6 85.7 6.1 6.0 10.5 10.6 10.5 5.8 5.7 5.7 8.1 8.2 8.2 8.2 18.5 18.5 18.5 18.5 18.5 81.4 82.8 5.7 5.9 5.9 5.9 10.5 10.4 10.5 5.9 5.9 10.3 10.4 10.5 5.9 5.9 10.5 10.4 10.5 5.9 5.9 10.5 10.4 10.5 5.9 5.9 10.5 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	16-Jun-17	Cloudy	Moderate	16:06		Surface	1.0		28.7		8.3	15.4	15.5		85.9		6.1	6.1		10.5		5.0	5.5	
Bottom 7.1 28.6 28.4 8.2 8.2 18.5 18.5 84.1 82.8 6.0 5.9 5.9 10.3 10.4 5.9 5.3 19-Jun-17 Rainy Moderate 10:17 Surface 1.0 27.9 27.9 8.1 8.1 15.3 15.5 81.1 79.6 5.8 5.7 9.2 9.0 4.4 4.3					8.1	Middle	4.1		28.6		8.2		16.4		85.7		6.0	0.1		10.6	10.5		5.7	5.5
19-Jun-17 Rainy Moderate 10:17 Surface 10 27.9 27.9 8.1 8.1 15.3 15.5 81.1 79.6 5.8 5.7 9.2 9.0 4.4 4.3						Bottom	7.1		28.4		8.2		18.5		82.8		5.9	5.9		10.4			5.3	
II Outlide 1.0 0.7 27.0 0.1 4.0 10.0 70.4 10.0 60 0.1 0.0 0.0 4.1 4.3	19-Jun-17	Rainy	Moderate	10:17		Surface	1.0	27.9	27.9	8.1	8.1	15.3	15.5	81.1	79.6	5.8	5.7		9.2	9.0		4.4	4.3	
8.2 Middle 4.1 27.3 27.3 8.0 8.0 25.1 24.9 73.0 74.2 5.3 5.3 5.5 8.8 5.0 4.1 4.1 4.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2					8.2	Middle	<i>4</i> 1		27.3		8.0		24.9		74.2		53	5.5		9.0	9.5		5.2	5.2
27.3 8.0 24.6 75.3 5.4 9.0 5.3 5.3 27.2 8.0 27.2 8.0 5.3 5.4 9.0 5.3 5.3 5.4 9.0 5.3 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4					0.2													F.C			0.0			. 0.2
Bottom 7.2 27.4 8.0 8.0 20.2 26.4 79.2 78.1 5.7 5.6 5.6 10.5 10.4 0.0 6.0 21-Jun-17 Cloudy Moderate 11:58 0.0 4.0 27.5 0.75 8.1 0.4 14.8 44.0 77.4 74.0 5.3 5.0 4.9 4.9 4.0 5.3 6.0	21lun-17	Cloudy	Moderate	11:58	<u> </u>											0.0		0.0				0.0		
Surface 1.0 27.5 27.5 8.1 8.1 15.1 14.9 70.5 74.0 5.1 5.2 5.2 4.9 4.9 6.8 6.1	21 Juli-17	Cidudy	woderate	11.50		Surface	1.0	27.5	27.5	8.1	8.1	15.1	14.9	70.5	74.0	5.1	5.2	5.2	4.9	4.9		6.8	6.1	-
8.2 Middle 4.1 26.8 26.8 8.0 8.0 26.0 26.2 69.8 70.0 5.0 5.1 4.8 4.8 4.8 6.5 6.5					8.2	Middle	4.1	26.8	26.8	8.0	8.0	26.0	26.2	69.8	70.0	5.0	5.1		4.8	4.8	4.8	6.5	6.5	6.3
Bottom 7.2 26.6 26.9 8.0 8.0 28.2 28.1 69.0 69.0 69.0 4.8 4.9 4.8 4.8 6.6 6.1 6.4						Bottom	7.2		26.9		8.0		28.1		69.0		4.9	4.9		4.8			6.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	iture (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	13:17		Surface	1.0	28.4 28.4	28.4	8.0 8.1	8.1	19.2 19.6	19.4	79.0 78.7	78.9	5.4 5.5	5.4	5.3	5.7 5.7	5.7		6.7 7.1	6.9	
				8.2	Middle	4.1	27.1 27.0	27.1	8.0 8.0	8.0	25.7 26.1	25.9	75.3 77.0	76.2	5.2 5.3	5.2	5.5	5.5 5.5	5.5	5.6	8.2 8.3	8.3	8.5
					Bottom	7.2	26.7 26.7	26.7	8.0 8.0	8.0	29.4 29.5	29.5	72.7 73.2	73.0	5.0 5.0	5.0	5.0	5.6 5.5	5.6		10.9 9.4	10.2	
26-Jun-17	Cloudy	Moderate	13:22		Surface	1.0	28.6 28.5	28.5	8.1 8.0	8.1	13.8 13.7	13.8	72.2 76.0	74.1	5.2 5.4	5.3	5.2	8.8 8.6	8.7		13.5 14.6	14.1	
				8.5	Middle	4.3	28.0 28.1	28.1	8.0 8.0	8.0	18.1 14.6	16.3	71.8 72.4	72.1	5.1 5.2	5.1	0.2	10.3 10.5	10.4	9.9	12.6 11.2	11.9	12.7
					Bottom	7.5	27.5 27.9	27.7	8.0 8.1	8.1	19.0 19.4	19.2	71.0 68.2	69.6	5.1 4.8	5.0	5.0	10.5 10.4	10.5		11.4 13.0	12.2	
28-Jun-17	Fine	Moderate	15:25		Surface	1.0	28.8 28.7	28.7	8.2 8.2	8.2	16.6 16.4	16.5	83.9 82.8	83.4	5.9 5.8	5.9	5.9	8.3 8.2	8.3		12.5 12.8	12.7	
				8.6	Middle	4.3	28.4 28.5	28.5	8.1 8.2	8.2	18.0 17.1	17.6	82.6 81.9	82.3	5.8 5.8	5.8	5.5	8.4 8.7	8.6	8.5	12.5 11.5	12.0	12.3
					Bottom	7.6	28.6 28.5	28.5	8.2 8.2	8.2	18.0 17.2	17.6	80.3 80.6	80.5	5.7 5.7	5.7	5.7	8.6 8.8	8.7		11.8 12.5	12.2	
30-Jun-17	Fine	Moderate	16:36		Surface	1.0	29.3 29.2	29.2	8.4 8.3	8.3	14.9 15.5	15.2	99.7 95.3	97.5	7.0 6.7	6.9	6.6	6.9 7.3	7.1		7.7 7.3	7.5	
				8.6	Middle	4.3	28.9 28.3	28.6	8.3 8.2	8.3	16.5 17.8	17.2	88.1 91.7	89.9	6.2 6.4	6.3	0.0	8.5 8.8	8.7	8.1	9.2 9.7	9.5	8.6
					Bottom	7.6	27.0 27.4	27.2	8.3 8.3	8.3	23.0 21.2	22.1	88.5 81.9	85.2	6.2 5.8	6.0	6.0	8.5 8.5	8.5		9.9 7.8	8.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Ti	urbidity(NTI	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	11:54		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	21.9 22.0	22.0	104.3 103.3	103.8	7.2 7.1	7.2		6.7 6.8	6.8		4.2 4.8	4.5	
				8.6	Middle	4.3	28.0	28.0	8.3	8.3	22.4	22.2	101.9	102.4	7.0	7.1	7.2	7.0	6.9	6.8	3.9	4.3	4.4
				0.0			28.0 28.0		8.4 8.3		22.0 23.0		102.8 102.5		7.1 7.1			6.7 6.6		0.0	4.7		
					Bottom	7.6	28.0	28.0	8.3	8.3	22.7	22.9	103.1	102.8	7.1	7.1	7.1	6.5	6.6		4.4	4.5	
5-Jun-17	Fine	Moderate	15:20		Surface	1.0	30.0 29.6	29.8	8.4 8.4	8.4	20.5 20.5	20.5	128.3 132.0	130.2	8.7 9.0	8.8		10.5 9.3	9.9		4.1 4.4	4.3	
				8.3	Middle	4.2	28.9	28.9	8.3	8.3	20.8	20.8	117.9	114.3	8.1	7.9	8.4	10.3	10.1	10.6	4.2	4.4	4.2
					Deller	7.0	28.8 29.2	00.0	8.3 8.4	0.0	20.7 21.8	00.0	110.7 119.5	440.0	7.6 8.2	0.0		9.8 12.2	44.0		4.6 3.8	0.0	
					Bottom	7.3	28.6	28.9	8.3	8.3	22.2	22.0	119.1	119.3	8.2	8.2	8.2	11.5	11.9		3.9	3.9	
7-Jun-17	Sunny	Moderate	17:21		Surface	1.0	30.3 30.2	30.2	8.6 8.5	8.5	20.9 20.3	20.6	128.1 122.8	125.5	8.8 8.3	8.5	8.4	10.4 10.1	10.3		7.2 6.6	6.9	
				8.8	Middle	4.4	29.0 29.3	29.1	8.4 8.4	8.4	20.6 21.0	20.8	118.3 126.5	122.4	8.1 8.6	8.3	8.4	10.2 10.2	10.2	10.3	8.0 7.3	7.7	7.4
					Bottom	7.8	28.9	29.0	8.4	8.4	22.2	21.9	112.9	115.0	7.8	7.9	7.9	10.2	10.4		8.0	7.7	1 '
9-Jun-17	Cloudy	Moderate	13:31				29.0 28.9		8.5		21.6 22.1		117.1		8.0		7.9	10.2 7.0			7.4 8.0		<u> </u>
9-Jun-17	Cloudy	Woderate	13.31		Surface	1.0	28.9	28.9	8.4 8.4	8.4	22.1	22.1	104.7 103.9	104.3	7.1 7.0	7.1	7.1	7.2	7.1		9.8	8.9	
				2.1	Middle	1.1	28.9 28.8	28.9	8.4 8.4	8.4	24.2 23.8	24.0	103.7 102.9	103.3	7.1 7.0	7.0		7.3 7.0	7.2	7.3	8.5 8.1	8.3	9.7
					Bottom	1.1	29.1	29.1	8.4	8.4	21.8	21.8	107.0	106.7	7.3	7.3	7.3	7.5	7.5		11.5	11.8	
12-Jun-17	Sunny	Moderate	08:43				29.1 29.6		8.4 8.4		21.8		106.4 102.1		7.2			7.4 6.5			12.0 4.4		
12 0011 17	Guilly	Woderate	00.40		Surface	1.0	29.6	29.6	8.4	8.4	21.7	21.3	106.0	104.1	7.2	7.1	6.8	6.5	6.5		4.2	4.3	
				8.6	Middle	4.3	29.4 29.3	29.4	8.4 8.3	8.4	20.3 20.3	20.3	101.3 87.9	94.6	6.9 6.0	6.5		6.6 6.6	6.6	6.6	5.0 4.7	4.9	4.7
					Bottom	7.6	29.1	29.3	8.3	8.4	21.9	21.9	86.0	92.8	5.9	6.3	6.3	6.7	6.7		5.0	4.8	
14-Jun-17	Rainy	Moderate	09:58		Surface	1.0	29.4 28.3	28.3	8.4 8.2	8.2	22.0 19.5	19.5	99.6 84.1	82.0	6.8 5.8	5.7		6.7 10.6	10.7		4.6 6.9	7.4	
	·				Surface	1.0	28.3	20.3	8.2 8.2	0.2	19.5 19.9	19.5	79.9 79.6	62.0	5.6 5.5	5.7	5.7	10.8	10.7		7.8	7.4	-
				8.6	Middle	4.3	28.2 28.3	28.3	8.2 8.2	8.2	19.9	19.8	79.6 81.3	80.5	5.5 5.7	5.6		10.6 10.6	10.6	10.6	8.8 8.7	8.8	8.8
					Bottom	7.6	28.2 28.2	28.2	8.2 8.2	8.2	21.8 21.7	21.7	78.3 80.5	79.4	5.5 5.6	5.5	5.5	10.5 10.5	10.5		9.6 10.8	10.2	
16-Jun-17	Cloudy	Moderate	11:37		Surface	1.0	28.6	28.6	8.2	8.2	18.3	18.4	85.8	85.1	6.0	5.9		11.5	11.4		6.1	6.2	
							28.5 28.4		8.1 8.1		18.5 19.4		84.4 82.4		5.9 5.8		5.9	11.2 11.2			6.2		
				8.6	Middle	4.3	28.5	28.4	8.1	8.1	18.5	18.9	84.7	83.6	5.9	5.8		11.5	11.4	11.4	6.0	6.0	6.3
					Bottom	7.6	28.3 28.5	28.4	8.1 8.1	8.1	19.7 19.9	19.8	82.7 81.2	82.0	5.8 5.7	5.7	5.7	11.6 11.1	11.4		6.7 6.9	6.8	
19-Jun-17	Cloudy	Moderate	13:19		Surface	1.0	28.1	28.2	8.2	8.2	14.0	13.9	74.7	75.3	5.4	5.4		11.8	11.7		4.8	4.1	
				0.0	N# 1 II .		28.2 27.6	07.0	8.2 8.0	0.4	13.9 21.7	04.4	75.9 72.6	74.4	5.5 5.2		5.4	11.5 12.2	40.0	40.0	3.3	4.0	
				8.2	Middle	4.1	27.6	27.6	8.1	8.1	21.1	21.4	75.5	74.1	5.4	5.3		11.7	12.0	12.2	4.5	4.2	4.1
					Bottom	7.2	27.5 27.7	27.6	8.0 8.0	8.0	22.9 23.1	23.0	75.2 74.2	74.7	5.4 5.4	5.4	5.4	12.6 13.1	12.9		4.0 4.0	4.0	
21-Jun-17	Sunny	Moderate	15:55		Surface	1.0	27.9 27.9	27.9	8.1 8.0	8.1	14.5 14.7	14.6	78.4 76.9	77.7	5.5 5.4	5.5		4.3 4.2	4.3		3.6 4.9	4.3	
				8.5	Middle	4.3	27.7	27.7	8.0	8.0	16.3	16.2	75.7	76.3	5.4	5.5	5.5	4.2	4.2	4.2	5.4	5.8	5.3
				0.0			27.7 27.3		8.0 8.0		16.2 20.5		76.8 73.9		5.5 5.3			4.2 4.1		7.2	6.1		5.5
					Bottom	7.5	27.6	27.5	8.0	8.0	20.7	20.6	73.7	73.8	5.3	5.3	5.3	4.1	4.1		5.5	5.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling) Te	perature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m) Va	ie Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	17:56		Surface	1.0 28	28.6	8.0 8.1	8.1	16.3 16.0	16.1	71.6 73.4	72.5	5.1 5.1	5.1	5.1	10.8 10.9	10.9		10.4 11.0	10.7	
				8.3	Middle	4.2 28 28		8.0 8.1	8.1	17.0 17.2	17.1	70.7 71.5	71.1	5.0 5.1	5.0	3.1	11.4 11.5	11.5	11.3	10.8 11.4	11.1	11.3
					Bottom	7.3 28 27	28.0	8.1 8.0	8.0	19.6 20.4	20.0	67.7 69.3	68.5	4.8 4.9	4.8	4.8	11.2 11.5	11.4		11.6 12.7	12.2	
26-Jun-17	Cloudy	Moderate	08:29		Surface	1.0 28		8.3 8.2	8.3	17.5 17.7	17.6	78.1 77.7	77.9	5.4 5.4	5.4	5.4	7.9 7.4	7.7		7.1 9.1	8.1	
				8.6	Middle	4.3 28		8.3 8.3	8.3	18.1 18.1	18.1	77.3 75.9	76.6	5.4 5.3	5.4	0.4	7.5 7.5	7.5	7.6	8.7 9.2	9.0	8.7
					Bottom	7.6 28 28	28.1	8.3 8.3	8.3	20.1 20.3	20.2	74.9 75.3	75.1	5.2 5.3	5.3	5.3	7.5 7.6	7.6		8.4 9.3	8.9	
28-Jun-17	Fine	Moderate	10:06		Surface	1.0 28	28.5	8.1 8.1	8.1	16.8 16.6	16.7	86.6 87.0	86.8	6.1 6.2	6.1	6.1	4.2 4.1	4.2		5.0 5.3	5.2	
				8.6	Middle	4.3 28		8.1 8.1	8.1	16.7 17.0	16.9	84.3 85.6	85.0	5.9 6.1	6.0	0.1	4.3 4.4	4.4	4.4	5.9 5.0	5.5	5.2
					Bottom	7.6 28 28	28.4	8.1 8.1	8.1	16.9 17.8	17.3	82.2 82.4	82.3	5.8 5.8	5.8	5.8	4.6 4.7	4.7		5.4 4.6	5.0	
30-Jun-17	Fine	Moderate	12:04		Surface	1.0 28		8.2 8.2	8.2	16.6 16.4	16.5	79.4 80.8	80.1	5.6 5.7	5.6	5.4	7.5 7.2	7.4	_	7.1 6.7	6.9	
				8.6	Middle	4.3 28 27		8.1 8.1	8.1	19.3 20.8	20.1	76.9 72.9	74.9	5.3 5.0	5.2	5.4	7.5 7.5	7.5	7.5	6.4 6.1	6.3	6.5
					Bottom	7.6 26 26		8.1 8.1	8.1	26.3 26.1	26.2	70.8 67.9	69.4	5.0 4.8	4.9	4.9	7.5 7.5	7.5		6.2 6.5	6.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:28		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	23.5 23.5	23.5	107.4 107.7	107.6	7.4 7.4	7.4		6.8 7.2	7.0		5.5 5.4	5.5	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	7.3	-	-	5.7
					Bottom	2.3	28.1	28.1	8.4 8.4	8.4	23.5	23.6	107.4 107.2	107.3	7.4 7.4	7.4	7.4	7.4 7.8	7.6		6.0 5.6	5.8	1
5-Jun-17	Fine	Moderate	11:33				29.1		8.3		21.6	24.0	112.7		7.7			6.8			9.9		
0 04.11 17		Moderate	11.00		Surface	1.0	29.2	29.2	8.3	8.3	21.5	21.6	114.1	113.4	7.8	7.7	7.7	7.4	7.1		9.4	9.7]
				3.4	Middle	-	29.1	-	- 8.3	-	- 21.9	-	113.6	-	- 7.7	-		8.0	-	7.5	9.2	-	9.6
					Bottom	2.4	29.0	29.1	8.3	8.3	22.0	22.0	112.3	113.0	7.7	7.7	7.7	7.7	7.9		9.7	9.5	
7-Jun-17	Sunny	Moderate	12:39		Surface	1.0	29.4 29.6	29.5	8.4 8.4	8.4	21.3 21.2	21.2	120.5 120.9	120.7	8.2 8.2	8.2	8.2	5.6 5.5	5.6		8.9 9.1	9.0	l
				3.0	Middle	-	-	-	-	-	-	-		-		-		-	-	5.6	-	-	8.6
					Bottom	2.0	29.4 29.3	29.3	8.4 8.4	8.4	21.5 21.5	21.5	119.5 120.6	120.1	8.1 8.2	8.2	8.2	5.6 5.6	5.6		8.4 7.7	8.1	
9-Jun-17	Cloudy	Moderate	05:59		Surface	1.0	28.7 28.6	28.6	8.4 8.3	8.3	22.5 22.9	22.7	89.8 87.8	88.8	6.1 5.9	6.0		4.2 4.5	4.4		6.9 6.4	6.7	
				7.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	4.5	-	-	8.6
					Bottom	6.2	27.0 27.0	27.0	8.3	8.3	29.8	29.8	86.8	86.4	5.9 5.9	5.9	5.9	4.5 4.5	4.5		10.0	10.4	
12-Jun-17	-	-	-		Surface	-	-	_	8.3	-	29.8	_	86.0	-	-	-		- 4.5	-		-	-	
				_	Middle	_	-	_	-	-	-	_	-	_	-	_	-	-	_	<u>-</u>	-	_	- -
					Bottom	_	-	_	-	_	-	_	-	_	-	_		-	_	-	-	_	- 1
44.147	D-1	Martinet	44.55		Dottom		-		-		-		-		-			-			-		
14-Jun-17	Rainy	Moderate	14:55		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	20.2 20.1	20.1	83.3 83.3	83.3	5.8 5.8	5.8	5.8	10.4 10.7	10.6		9.9 9.1	9.5]
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.6	-	-	10.0
					Bottom	2.2	28.2 28.2	28.2	8.2 8.2	8.2	20.6 20.5	20.5	83.3 83.4	83.4	5.8 5.8	5.8	5.8	10.5 10.7	10.6		10.8 10.0	10.4	
16-Jun-17	Cloudy	Moderate	16:22		Surface	1.0	28.6 28.6	28.6	8.2 8.2	8.2	17.4 17.5	17.4	88.0 87.1	87.6	6.2 6.1	6.2	6.2	9.5 9.5	9.5		7.4 7.3	7.4	
				3.2	Middle	-	-	-	-	-	-	-		-	-	-	6.∠	-	-	9.6	-	-	7.2
					Bottom	2.2	28.5 28.6	28.6	8.2 8.2	8.2	17.9 17.6	17.8	86.8 87.6	87.2	6.1 6.2	6.1	6.1	9.6 9.6	9.6		7.2 6.7	7.0	
19-Jun-17	Rainy	Moderate	09:57		Surface	1.0	28.0 28.0	28.0	8.1 8.1	8.1	14.5 14.5	14.5	81.2 81.6	81.4	5.9 5.9	5.9		5.8 6.2	6.0		5.4 5.0	5.2	
				3.5	Middle	-	- 28.0	-	- 8.1	-	- 14.5	-	- 81.6	-	- 5.9	-	5.9	- 0.2	-	6.7	- 5.0	-	4.9
					Bottom	2.5	28.0	27.9	8.0	8.0	18.0	18.3	81.5	81.3	5.9	5.9	5.9	7.1	7.4		4.6	4.6	
21-Jun-17	Cloudy	Moderate	11:40	<u> </u> 	Surface	1.0	27.8 27.6	27.6	8.0	8.0	18.5 16.4	16.3	81.0 72.1	72.9	5.9 5.2	5.2		7.6 6.2	6.3		4.5 6.3	6.7	
				3.1	Middle	1.0	27.6	27.0	8.0	0.0	16.2	10.0	73.6	72.0	5.3	0.2	5.2	6.4	0.5	6.4	7.0	0.7	6.9
				3.1		-	27.5	07.0	- 7.9	7.0	- 18.6	40.0	72.9	70.0	5.2	-		6.4		0.4	7.2		6.9
					Bottom	2.1	27.1	27.3	7.9	7.9	18.0	18.3	71.6	72.3	5.1	5.2	5.2	6.5	6.5		6.9	7.1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:59		Surface	1.0	28.5 28.5	28.5	8.0 8.0	8.0	18.6 18.4	18.5	84.7 81.2	83.0	5.9 5.6	5.8	5.8	6.5 6.5	6.5		5.4 4.0	4.7	
				3.1	Middle			-		-	-	-	-	-	1 1	-	3.0	-	-	6.5	-	-	4.7
					Bottom	2.1	27.4 28.3	27.8	8.0 8.0	8.0	22.1 19.7	20.9	79.3 83.0	81.2	5.5 5.8	5.6	5.6	6.6 6.4	6.5		4.4 4.7	4.6	
26-Jun-17	Cloudy	Moderate	13:35		Surface	1.0	28.6 28.5	28.6	8.1 8.1	8.1	14.9 15.0	14.9	73.7 71.9	72.8	5.3 5.1	5.2	5.2	9.9 9.8	9.9		10.3 9.2	9.8	
				3.3	Middle	-		-		-	-	-	-	-		-	0.2	-	-	9.9	-	-	10.7
					Bottom	2.3	28.4 28.0	28.2	8.1 8.1	8.1	15.6 15.9	15.8	72.3 71.4	71.9	5.2 5.1	5.1	5.1	9.8 9.8	9.8		10.7 12.4	11.6	
28-Jun-17	Fine	Moderate	15:39		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	18.9 18.8	18.9	84.6 84.4	84.5	5.9 5.9	5.9	5.9	7.6 7.7	7.7		10.7 10.2	10.5	
				3.3	Middle			-		-	-	-	-	-		-	5.5	-	-	8.0	-	-	11.2
					Bottom	2.3	28.8 28.8	28.8	8.1 8.1	8.1	18.9 18.9	18.9	84.2 84.4	84.3	5.9 5.9	5.9	5.9	8.1 8.2	8.2		12.0 11.5	11.8	
30-Jun-17	Fine	Moderate	16:49		Surface	1.0	30.2 30.1	30.1	8.7 8.6	8.6	15.5 15.5	15.5	152.0 144.9	148.5	10.5 10.1	10.3	10.3	4.5 4.2	4.4		6.9 8.0	7.5	
				3.4	Middle	-		-	-	-	-	-	-	-	-	-	10.5	-	-	4.5	-	-	8.1
					Bottom	2.4	30.0 29.4	29.7	8.6 8.5	8.6	15.6 16.5	16.1	148.3 143.9	146.1	10.3 10.0	10.2	10.2	4.5 4.5	4.5		7.9 9.3	8.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:13		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	23.7 23.7	23.7	108.9 109.2	109.1	7.4 7.5	7.5		7.3 7.5	7.4		6.2 5.5	5.9	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	7.7	-	-	5.6
					Bottom	2.2	28.2	28.2	8.4 8.4	8.4	23.8	23.8	108.4	108.7	7.4 7.5	7.4	7.4	8.0 7.9	8.0		4.9 5.4	5.2	
5-Jun-17	Fine	Moderate	15:38		0 (4.0	29.9	00.0	8.5	0.5	20.2	00.0	137.8	139.5	9.3	0.5		11.5	44.4		3.0		
				0.0	Surface	1.0	29.9	29.9	8.5	8.5	20.2	20.2	141.1		9.6	9.5	9.5	11.2	11.4	40.0	2.4	2.7	
				3.3	Middle	-	29.9	-	- 8.5	-	20.3	-	139.8	-	9.5	-		12.7	-	12.0	3.5	-	2.9
					Bottom	2.3	29.8	29.8	8.5	8.5	20.3	20.3	135.0	137.4	9.2	9.3	9.3	12.2	12.5		2.4	3.0	
7-Jun-17	Sunny	Moderate	17:35		Surface	1.0	30.2 30.2	30.2	8.6 8.6	8.6	20.4 20.5	20.4	139.3 141.8	140.6	9.4 9.6	9.5	9.5	6.0 6.1	6.1		4.4 5.3	4.9	
				3.4	Middle	-		-	-	-		-		-	-	-	0.0	-	-	6.2	-	-	6.2
					Bottom	2.4	30.0 29.8	29.9	8.6 8.5	8.5	20.2 20.6	20.4	142.3 134.4	138.4	9.6 9.1	9.4	9.4	6.1 6.2	6.2		7.2 7.8	7.5	
9-Jun-17	Cloudy	Moderate	12:54		Surface	1.0	29.0 29.0	29.0	8.4 8.4	8.4	21.5 21.3	21.4	95.6 97.0	96.3	6.5 6.6	6.6		7.1 7.1	7.1		7.0 6.9	7.0	
				7.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	7.2	-	-	8.2
					Bottom	6.2	28.2	28.1	8.3 8.3	8.3	25.4 25.4	25.4	96.2 93.8	95.0	6.4 6.3	6.4	6.4	7.2 7.1	7.2		8.9 9.9	9.4	
12-Jun-17	Sunny	Moderate	08:24		Surface	1.0	29.6	29.6	8.4	8.4	20.7	20.8	106.7	105.9	7.3	7.2		4.9	5.0		5.0	4.9	
				3.4	Middle	0.0	29.6 0.0	0.0	8.4	-	0.0	0.0	0.0	0.0	7.2 0.0	0.0	7.2	0.0	0.0	5.0	4.8	-	4.7
					Bottom	2.4	0.0 29.6	29.6	8.4	8.4	20.8	20.8	0.0 103.8	104.8	7.1	7.2	7.2	0.0 4.9	4.9		4.7	4.5	
14-Jun-17	Rainy	Moderate	09:41				29.6 28.2		8.4 8.2		20.7 18.2		105.8 86.4		7.2 6.1			4.9 11.3			9.4		<u> </u>
14-3ull-17	reality	Woderate	03.41		Surface	1.0	28.2	28.2	8.2	8.2	18.2	18.2	86.7	86.6	6.1	6.1	6.1	11.5	11.4		8.5	9.0	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.3	-	-	9.6
					Bottom	2.4	28.2 28.2	28.2	8.2 8.2	8.2	18.3 18.4	18.4	86.5 87.0	86.8	6.1 6.1	6.1	6.1	11.2 11.2	11.2		10.5 9.9	10.2	
16-Jun-17	Cloudy	Moderate	11:21		Surface	1.0	28.4 28.4	28.4	8.1 8.1	8.1	18.9 18.9	18.9	84.7 85.0	84.9	5.9 5.9	5.9	5.9	11.9 11.9	11.9		9.9 11.1	10.5	ļ
				3.7	Middle			-	-	-	-	-		-			5.5	-	-	11.9	-	-	10.5
					Bottom	2.7	28.4 28.4	28.4	8.1 8.1	8.1	18.9 18.9	18.9	84.7 84.6	84.7	5.9 5.9	5.9	5.9	11.8 11.8	11.8		10.1 10.9	10.5	
19-Jun-17	Cloudy	Moderate	13:37		Surface	1.0	28.2	28.2	8.1 8.1	8.1	14.9 14.8	14.9	81.2 82.0	81.6	5.8 5.9	5.8		6.0 6.5	6.3		3.4 3.4	3.4	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	6.4	-	-	4.3
					Bottom	2.4	28.1	28.1	8.1	8.1	15.3	15.2	80.6	81.1	5.8	5.8	5.8	6.3	6.4		5.9	5.1	
21-Jun-17	Sunny	Moderate	16:12		Surface	1.0	28.2	28.1	8.0	8.0	15.2 15.2	15.1	81.6 71.0	71.0	5.8 5.1	5.1		6.5 4.8	4.8		5.3	5.6	
				3.2	Middle	_	28.0	_	8.0	_	15.1	_	70.9	-	5.1	_	5.1	4.8	_	4.9	5.9	-	6.5
				J.2	Bottom	2.2	27.9	27.9	8.0	8.0	16.1	16.2	71.0	70.9	5.1	5.1	5.1	4.9	4.9		6.8	7.3	
					BOILOITI	۷.۷	27.9	21.3	8.0	0.0	16.2	10.2	70.8	10.5	5.1	J. I	J. I	4.8	4.3		7.7	1.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:13		Surface	1.0	29.0 29.0	29.0	8.1 8.1	8.1	17.4 17.4	17.4	83.4 82.0	82.7	5.8 5.7	5.8	5.8	4.2 4.2	4.2		6.6 7.7	7.2	
				3.4	Middle	,	-	-	-	-	-	-	-	-	-		5.0	-	-	4.2	-	-	7.0
					Bottom	2.4	28.5 28.9	28.7	8.1 8.1	8.1	18.4 18.1	18.2	81.4 82.8	82.1	5.7 5.8	5.7	5.7	4.2 4.2	4.2		7.1 6.5	6.8	
26-Jun-17	Cloudy	Moderate	08:14		Surface	1.0	28.4 28.4	28.4	8.1 8.1	8.1	17.3 17.3	17.3	76.7 79.5	78.1	5.4 5.6	5.5	5.5	5.5 5.5	5.5		6.4 6.7	6.6	
				3.3	Middle			-		-	-	-	-	-		-	5.5	-	-	5.5	-	-	6.8
					Bottom	2.3	28.4 28.4	28.4	8.1 8.1	8.1	17.2 17.3	17.3	77.6 75.8	76.7	5.5 5.4	5.4	5.4	5.5 5.5	5.5		6.9 6.8	6.9	
28-Jun-17	Fine	Moderate	09:46		Surface	1.0	28.6 28.4	28.5	8.1 8.1	8.1	16.3 16.5	16.4	83.9 83.8	83.9	5.9 5.9	5.9	5.9	6.1 6.1	6.1		4.3 5.2	4.8	
				3.4	Middle			-		-		-		-		-	5.5	-	-	6.2	-	-	4.8
					Bottom	2.4	28.4 28.3	28.4	8.1 8.1	8.1	17.0 17.2	17.1	83.1 82.9	83.0	5.9 5.9	5.9	5.9	6.3 6.3	6.3		4.1 5.2	4.7	
30-Jun-17	Fine	Moderate	11:47		Surface	1.0	28.8 28.9	28.9	8.1 8.1	8.1	17.2 17.1	17.2	81.1 81.1	81.1	5.7 5.7	5.7	5.7	8.8 8.5	8.7		12.6 13.1	12.9	
				3.3	Middle	-		-		-	-	-		-		-	5.7	-	-	8.8	-	-	12.6
					Bottom	2.3	28.5 28.8	28.6	8.1 8.1	8.1	17.9 17.6	17.7	80.3 81.1	80.7	5.7 5.7	5.7	5.7	8.8 8.7	8.8		11.3 13.3	12.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:01		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	23.3 23.1	23.2	108.4 106.3	107.4	7.5 7.3	7.4		8.6 8.8	8.7		6.6 7.2	6.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	9.0	-	-	8.0
					Bottom	2.8	28.1	28.1	8.4	8.4	23.0	23.1	103.4	105.2	7.1	7.2	7.2	9.4	9.2		8.6	9.1	1
5-Jun-17	Fine	Moderate	11:06				28.1 29.2		8.4 8.3		23.2 21.4		107.0 110.8		7.4 7.5			9.0 7.1			9.5 11.5		
3-3un-17	rine	Woderate	11.00		Surface	1.0	29.1	29.2	8.3	8.3	21.3	21.4	107.1	109.0	7.3	7.4	7.4	7.5	7.3		10.5	11.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.5	-	-	11.8
					Bottom	2.8	29.0 29.0	29.0	8.3 8.3	8.3	21.7 22.2	21.9	104.2 108.9	106.6	7.1 7.4	7.3	7.3	7.6 7.8	7.7		12.3 12.8	12.6	
7-Jun-17	Sunny	Moderate	12:14		Surface	1.0	29.6 29.6	29.6	8.4 8.4	8.4	21.4 21.5	21.5	110.1 112.1	111.1	7.5 7.6	7.5	7.5	10.2 10.1	10.2		7.9 6.6	7.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	10.5	-	-	7.1
					Bottom	3.1	29.6 29.6	29.6	8.4 8.4	8.4	21.6 21.5	21.5	111.1 107.3	109.2	7.5 7.3	7.4	7.4	10.6 10.7	10.7		7.1 6.6	6.9	
9-Jun-17	Cloudy	Moderate	06:25		Surface	1.0	28.8	28.8	8.4	8.4	21.6	21.6	98.2	98.5	6.7	6.7		4.0	4.1		5.9	5.5	
				4.3	Middle	_	28.9	_	8.4	_	21.5	_	98.7	-	6.8	_	6.7	4.1	_	4.0	5.1	-	6.0
					Bottom	3.3	28.3	28.4	8.3	8.3	24.8	24.7	97.6	97.6	6.7	6.6	6.6	3.8	3.9		6.3	6.5	1
12-Jun-17	-	-	-			5.5	28.6	20.4	8.3	0.0	24.5	<u> </u>	97.6	1	6.6	0.0	0.0	4.0			6.7		
					Surface	-	-		-		-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:17		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	19.4 19.3	19.4	88.9 89.0	89.0	6.2 6.2	6.2	6.2	8.1 8.1	8.1		5.7 5.8	5.8	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	8.2	-	-	5.6
					Bottom	3.0	28.3 28.3	28.3	8.2 8.2	8.2	20.1 19.7	19.9	88.3 88.8	88.6	6.2 6.2	6.2	6.2	8.2 8.3	8.3		5.1 5.7	5.4	
16-Jun-17	Cloudy	Moderate	16:43		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	17.7 17.8	17.7	91.0 90.8	90.9	6.4 6.4	6.4		11.5 11.4	11.5		5.7 5.6	5.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	11.6	-	-	5.4
					Bottom	3.1	28.7 28.7	28.7	8.3 8.3	8.3	18.2 18.3	18.2	90.9 91.5	91.2	6.4 6.4	6.4	6.4	11.6 11.5	11.6		5.0 5.0	5.0	1
19-Jun-17	Rainy	Moderate	09:30		Surface	1.0	28.0	28.0	8.1	8.1	14.8	15.1	80.2	80.4	5.8	5.8		5.4	5.5		4.7	4.4	
				4.0	Middle	_	28.0	_	8.1	_	15.4	_	80.5	_	5.8 -	_	5.8	5.5	-	5.8	4.0	_	4.4
					Bottom	3.0	27.9	27.9	8.0	8.1	17.6	17.7	80.8	80.5	5.8	5.8	5.8	6.0	6.1	0.0	4.3	4.3	"'
21-Jun-17	Cloudy	Moderate	11:16	<u> </u>			28.0 27.6		8.1 8.0		17.9 15.5		80.1 73.6		5.8 5.3		5.0	6.1 10.6			4.3 4.5		
	,		-		Surface	1.0	27.7	27.7	8.0	8.0	15.3	15.4	75.0	74.3	5.4	5.3	5.3	10.5	10.6		3.8	4.2	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.7	-	-	4.4
					Bottom	3.3	27.6 27.2	27.4	7.9 7.9	7.9	20.7 21.2	21.0	75.2 79.1	77.2	5.3 5.6	5.4	5.4	10.7 10.8	10.8		4.8 4.3	4.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:36		Surface	1.0	28.0 28.1	28.1	8.1 8.0	8.0	18.8 18.8	18.8	80.9 79.7	80.3	5.6 5.6	5.6	5.6	9.4 9.8	9.6		9.3 9.9	9.6	
				4.2	Middle	-	-	-		-	-	-	-			-	5.0	-	-	9.6	-	-	9.5
					Bottom	3.2	27.4 27.8	27.6	8.0 8.0	8.0	23.5 24.1	23.8	80.8 79.9	80.4	5.6 5.5	5.5	5.5	9.5 9.6	9.6		9.2 9.6	9.4	
26-Jun-17	Cloudy	Moderate	13:58		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	14.7 14.8	14.8	80.8 80.7	80.8	5.8 5.7	5.7	5.7	3.8 3.8	3.8		4.1 3.9	4.0	
				4.0	Middle	-	-	-		-	-	-	-			-	5.7	-	-	3.9	-	-	5.4
					Bottom	3.0	28.8 28.4	28.6	8.1 8.1	8.1	16.0 16.2	16.1	80.8 79.8	80.3	5.7 5.7	5.7	5.7	3.9 3.8	3.9		5.5 7.9	6.7	
28-Jun-17	Fine	Moderate	16:02		Surface	1.0	28.8 28.9	28.9	8.2 8.2	8.2	17.1 17.3	17.2	87.2 87.9	87.6	6.1 6.1	6.1	6.1	4.7 4.6	4.7		9.0 9.5	9.3	
				3.7	Middle	-	-	-		-	-	-		-		-	0.1	-	-	4.8	-	-	9.2
					Bottom	2.7	28.4 28.8	28.6	8.1 8.1	8.1	19.5 18.7	19.1	86.4 87.3	86.9	6.1 6.1	6.1	6.1	4.9 4.8	4.9		9.1 9.1	9.1	
30-Jun-17	Fine	Moderate	17:18		Surface	1.0	29.3 29.7	29.5	8.4 8.3	8.3	16.3 16.1	16.2	98.9 97.2	98.1	6.9 6.8	6.8	6.8	6.3 6.3	6.3		5.4 6.7	6.1	
				3.7	Middle	-	-	-	1 1	-	-	-		-		-	0.0	-	-	6.4	-	-	6.4
					Bottom	2.7	29.2 27.5	28.3	8.3 8.2	8.3	17.8 20.1	19.0	89.9 87.9	88.9	6.3 6.2	6.2	6.2	6.4 6.5	6.5		5.6 7.5	6.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:40		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	22.9 22.9	22.9	112.4 111.9	112.2	7.7 7.7	7.7		6.3 6.2	6.3		6.0 5.2	5.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	6.7	-	-	5.8
					Bottom	2.7	28.0	28.1	8.4 8.4	8.4	23.5	23.4	111.6 111.8	111.7	7.7	7.7	7.7	7.0	7.1		5.5 6.4	6.0	
5-Jun-17	Fine	Moderate	16:08				29.4		8.4		21.0		111.8		7.7			12.9			4.3		
o dun 17	1 1110	Woderate	10.00		Surface	1.0	29.4	29.4	8.3	8.3	20.9	20.9	110.9	112.6	7.6	7.7	7.7	13.4	13.2		3.2	3.8	<u> </u>
				3.7	Middle	-	29.2	-	- 8.3	-	20.9	-	- 113.1	-	7.7	-		13.6	-	13.2	- 5.1	-	4.2
					Bottom	2.7	29.4	29.3	8.3	8.3	21.0	20.9	113.2	113.2	7.7	7.7	7.7	12.7	13.2		4.0	4.6	<u> </u>
7-Jun-17	Sunny	Moderate	18:03		Surface	1.0	29.9 30.1	30.0	8.5 8.5	8.5	20.9 20.9	20.9	128.5 126.7	127.6	8.6 8.5	8.6	8.6	13.4 13.3	13.4		12.6 11.0	11.8	
				4.2	Middle	-	-	-	-	-	-	-	-	-		-	0.0	-	-	13.4	-	-	11.9
					Bottom	3.2	29.3 29.8	29.6	8.4 8.5	8.5	22.1 22.0	22.0	122.5 127.3	124.9	8.3 8.6	8.4	8.4	13.3 13.2	13.3		12.5 11.2	11.9	ļ
9-Jun-17	Cloudy	Moderate	12:25		Surface	1.0	28.9 29.2	29.1	8.4 8.4	8.4	21.1 21.0	21.1	98.3 99.4	98.9	6.7 6.8	6.8		4.4 4.4	4.4		7.1 7.0	7.1	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	4.5	-	-	7.7
					Bottom	3.4	28.4	28.6	8.4 8.4	8.4	23.6 23.6	23.6	98.5 96.4	97.5	6.7 6.5	6.6	6.6	4.5 4.5	4.5		8.8 7.7	8.3	
12-Jun-17	Sunny	Moderate	08:01		Surface	1.0	29.6	29.6	8.3	8.3	20.0	20.1	97.8	96.5	6.7	6.6		8.7	8.7		5.9	5.1	
				4.1	Middle	0.0	29.5 0.0	0.0	8.3	_	20.1 0.0	0.0	95.2 0.0	0.0	6.5 0.0	0.0	6.6	8.6 0.0	0.0	8.6	4.3	_	5.7
					Bottom	3.1	0.0 29.5	29.5	8.3	8.3	0.0 21.5	21.5	0.0 94.7	95.5	0.0 6.5	6.6	6.6	0.0 8.5	8.5		6.0	6.2	
44 1 47	Dein	Madazata	00.40		Dottom	0.1	29.5	20.0	8.3	0.0	21.5	21.0	96.3	55.5	6.6	0.0	0.0	8.5	0.0		6.3	0.2	
14-Jun-17	Rainy	Moderate	09:18		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	18.0 18.1	18.1	96.7 90.3	93.5	6.8 6.4	6.6	6.6	6.8 6.8	6.8		5.4 6.5	6.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-		-		-	-	6.8	-	-	6.9
					Bottom	3.3	28.2 28.2	28.2	8.2 8.2	8.2	18.1 18.2	18.1	92.6 88.1	90.4	6.5 6.2	6.4	6.4	6.7 6.6	6.7		7.7 7.6	7.7	
16-Jun-17	Cloudy	Moderate	11:01		Surface	1.0	28.5 28.5	28.5	8.2 8.2	8.2	17.9 18.1	18.0	87.0 89.2	88.1	6.1 6.3	6.2	6.2	9.4 9.2	9.3		7.0 8.7	7.9	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	9.3	-	-	8.3
					Bottom	3.0	28.5 28.4	28.4	8.2 8.2	8.2	18.5 18.6	18.5	86.8 87.6	87.2	6.1 6.2	6.1	6.1	9.1 9.2	9.2		8.7 8.5	8.6	
19-Jun-17	Cloudy	Moderate	14:04		Surface	1.0	28.3 28.3	28.3	8.1 8.1	8.1	14.0 13.9	14.0	79.4 79.8	79.6	5.7 5.7	5.7		11.2 10.7	11.0		9.2 9.1	9.2	
				3.8	Middle	-	- 28.3	-	- 8.1	-	-	-	- 19.8	-	-	-	5.7	-	-	11.6	9.1	-	8.9
					Bottom	2.8	28.0	28.1	8.1	8.1	16.7	16.7	79.3	79.5	5.7	5.7	5.7	12.1	12.1		8.6	8.5	
21-Jun-17	Sunny	Moderate	16:37		Surface	1.0	28.3 27.8	27.8	8.1 8.0	8.0	16.7 15.7	15.8	79.7 74.7	73.3	5.7 5.3	5.2	-	12.0 11.5	11.4		8.4 8.2	8.2	
				4.0	Middle	1.0	27.8	27.0	8.0	0.0	15.8 -	10.0	71.9 -	70.0	5.2	0.2	5.2	11.3	-	11.5	8.1	0.2	8.4
				4.0		-	27.5	07.0	- 8.0	-	- 19.9	100	- 69.6		4.9	4.0	4.0	- 11.5		11.5	9.1		0.4
					Bottom	3.0	27.7	27.6	8.0	8.0	18.5	19.2	67.7	68.7	4.9	4.9	4.9	11.4	11.5		8.0	8.6	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:36		Surface	1.0	28.8 28.7	28.7	8.0 8.0	8.0	15.9 16.0	16.0	75.5 74.9	75.2	5.3 5.3	5.3	5.3	5.7 5.6	5.7		4.5 5.3	4.9	
				4.0	Middle		-	-	-	-	-	-	-	-	-	-	5.5	-	-	5.7	-	-	6.5
					Bottom	3.0	28.7 28.7	28.7	8.0 8.0	8.0	16.5 16.2	16.3	75.1 75.9	75.5	5.3 5.4	5.3	5.3	5.8 5.6	5.7		7.6 8.5	8.1	
26-Jun-17	Cloudy	Moderate	07:53		Surface	1.0	27.9 27.8	27.9	8.1 8.1	8.1	17.1 17.1	17.1	74.8 73.1	74.0	5.2 5.2	5.2	5.2	7.2 7.4	7.3		3.9 3.3	3.6	
				4.3	Middle	-		-		-	-	-	-			-	5.2	-	-	7.4	-	-	3.7
					Bottom	3.3	27.8 27.7	27.8	8.0 8.0	8.0	19.0 19.2	19.1	70.9 72.4	71.7	5.0 5.1	5.0	5.0	7.5 7.5	7.5		4.2 3.3	3.8	
28-Jun-17	Fine	Moderate	09:25		Surface	1.0	28.4 28.4	28.4	8.0 8.0	8.0	15.0 15.1	15.0	73.8 73.8	73.8	5.3 5.3	5.3	5.3	4.9 5.2	5.1		7.2 6.8	7.0	
				3.8	Middle	-		-		1	-	-		-		-	5.5	-	-	5.4	-	-	7.1
					Bottom	2.8	28.3 28.3	28.3	8.0 8.0	8.0	16.2 16.0	16.1	73.9 73.8	73.9	5.3 5.3	5.3	5.3	5.6 5.5	5.6		6.7 7.5	7.1	
30-Jun-17	Fine	Moderate	11:24		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	17.3 17.2	17.3	85.4 82.6	84.0	6.0 5.8	5.9	5.9	10.6 10.5	10.6		5.6 8.3	7.0	
				4.4	Middle	-		-		-	-	-		-		-	5.5	-	-	10.6	-	-	11.5
					Bottom	3.4	28.8 28.7	28.8	8.1 8.1	8.1	17.4 17.5	17.4	82.3 83.1	82.7	5.8 5.8	5.8	5.8	10.5 10.5	10.5		16.9 15.1	16.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Condition Cond	Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solid	s (mg/L)
11.1 Moderate 12.00 Mode					Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
11.1 Middle 5.6 27.9 27.9 27.9 8.3 8.3 22.2 22.1 101.6 101.3 7.0 7.0 7.0 7.0 4.1 4.5 4.3 4.9 5.6 5.8 5.6 5.8 5.6 5.8 5.6 5.8	2-Jun-17	Sunny	Moderate	07:36		Surface	1.0		27.9		8.3		21.6		101.4		7.1			5.6			5.3	
Bottom B					11.1	Middle	5.6	27.9	27.9	8.3	8.3	22.2	22.1	101.6	101.3	7.0	7.0	7.1	4.5	4.3	4.9	5.6	5.6	5.5
Suffice 10.37						Bottom	10.1	27.9	27.9	8.3	8.4	22.4	21.9	101.0	99.8	7.0	6.9	6.9	4.7	4.9		5.2	5.6	1
Surface 10 286 28.0 8.2 8.2 20.8 20.9 8.2 8.2 20.8 20.9 8.2 8.2 8.2 20.8 20.9 8.2 8.2 8.2 20.8 20.9 8.2 8.2 20.8 20.9	5 Jun 17	Eino	Moderate	10:27																				
No. Moderate 12-00 Surface 1.0 Sur	3-3un-17	TING	Woderate	10.57		Surface	1.0	28.6	28.6	8.2	8.2	20.6	20.5	90.3	90.1	6.2	6.2	6.1	5.5	5.7		4.0	4.8	
Surface County Moderate 12:00 Moderate 10:0 Surface 10:0 Surfa					10.8	Middle	5.4	27.8	27.9		8.2	25.7	25.0	87.5	87.2	6.0	6.0		6.8	6.9	6.3	5.9	5.2	4.8
Surface 10 29.4 29.2 8.4 6.4 21.7 21.8 91.6 92.4 6.3 6.3 6.3 6.3 7.5 7.4 9.4 9.1 9.2 6.2 6.1 6.3 6.3 7.5 7.4 9.4 9.1 9.2 6.1 5.9 9.4 9.1 9.2 9.2 8.4 8.3 8.3 22.9 9.3 91.3 91.3 91.3 91.3 91.3 91.3 91.						Bottom	9.8		27.8		8.2		26.5		89.5		6.1	6.1		6.2			4.3	
10.7 Middle 5.4 28.3 28.3 8.3 8.3 22.9 23.0 91.3 91.0 6.2 6.3 6.2 6.3 9.4 9.3 91.0	7-Jun-17	Sunny	Moderate	12:00		Surface	1.0		29.2		8.4		21.8		92.4		6.3			7.4			6.0	
Bottom 9.7 28.1 8.2 8.3 8.3 25.8 8.3 8.3 25.8 8.4 89.1 6.1 6.1 9.6 9.6 5.6 5.9					10.7	Middle	5.4	28.3	28.3	8.3	8.3	23.1	23.0	91.3	91.0	6.2	6.2	6.3	9.4	9.3	8.8	5.7	5.9	5.9
9-Jun-17 Cloudy Moderate 06:48						Bottom	9.7	28.1	28.2	8.3	8.3	25.8	25.9	89.8	89 1	6.2	6.1	6.1	9.6	9.6		6.1	5.9	1
2.1 Middle 1.1 29.1 29.1 29.1 8.4 8.4 21.4 104.6 105.7 7.2 7.2 7.2 4.6 4.5 4.5 4.5 9.7 10.6 10.2 1	0 Jun 17	Cloudy	Moderate	06:49														0	0.0					
2.1 Microsoft 1.1 29.1 29.1 29.1 29.1 8.4 8.4 21.4 21.4 105.5 105.1 7.2 7.2 7.2 4.5 4.5 4.5 4.5 10.6 10.2	9-Juli-17	Oloudy	Woderate	00.40		Surface	1.0	29.2	29.2	8.4	8.4	20.7	20.8	104.8	105.7	7.1	7.2	7.2	4.6	4.6		8.4	9.0]
12-Jun-17 12-Jun-17 13-Jun-17 14-Jun-17 15-September 16-September 1					2.1	Middle	1.1	29.1	29.1	8.4	8.4	21.4	21.4	105.5	105.1	7.2	7.2		4.5	4.5	4.8	10.6	10.2	9.7
Surface						Bottom	1.1		29.2		8.4		20.8		102.6		7.0	7.0		5.2			10.0	
Moderate 15:32 Surface 1.0 28.3 28.3 8.2 8.2 18.7 18.7 86.1 87.5 5.9 6.0 6.0 7.5 7.6	12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
14-Jun-17 Rainy Moderate 15:32 Surface 1.0 28.3 28.3 8.2 8.2 18.7 18.7 88.9 87.5 5.9 6.0 6.0 7.7 7.5 7.6					-	Middle	-	-	-		-		-		-	-	-	-		-	=	-	-	=
10.4 Middle 5.2 28.2 28.2 8.2 8.2 19.3 19.4 85.6 85.0 6.0 7.7 7.5 7.6						Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1
10.4 Middle 5.2 28.2 28.2 8.2 19.3 19.4 85.6 85.0 6.0 5.9 6.0 7.7 7.6	14-Jun-17	Rainy	Moderate	15:32		Surface	1.0	28.3	28.3	8.2	8.2	18.7	18.7	86.1	87.5	5.9	6.0		7.3	7.5		2.8	33	
10.4 Middle 5.2 28.1 28.2 8.2 19.5 19.4 84.3 63.0 5.9 5.9 5.9 7.6 7.6 7.6 7.6 5.7 6.2					40.4													6.0			7.0			
16-Jun-17 Cloudy Moderate 16:56 Surface 1.0 28.7 28.7 28.7 28.7 28.8 3.3 3.3 16.6 16.0 91.2 82.9 83.2 5.8 5.8 5.8 7.6 7.6 7.6 6.6 6.2					10.4			28.1		8.2		19.5		84.3		5.9			7.6		7.6	4.0		4.7
10.2 Surface 1.0 28.7 28.7 8.3 6.3 15.5 16.0 87.1 89.2 6.2 6.2 6.2 6.1 7.3 7.3 7.3 8.3 4.1 10.2 8.6 8.2 8.2 8.2 18.2 18.2 18.2 82.4 85.0 5.6 5.6 5.6 5.6 8.8 8.7 8.3 5.4 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0						Bottom	9.4	28.2	28.1	8.2	8.2	24.1	24.2	82.9	83.2	5.8	5.8	5.8	7.6	7.6		6.6	6.2	
10.2 Middle 5.1 28.5 28.5 8.2 8.2 18.2 18.2 18.2 85.4 85.0 6.2 5.9 8.6 8.8 8.7 8.3 5.4 5.0 5.0 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	16-Jun-17	Cloudy	Moderate	16:56		Surface	1.0		28.7		8.3		16.0		89.2		6.2	6.1		7.3			4.1	
Surface 1.0 28.0 27.6					10.2	Middle	5.1		28.5		8.2		18.2		85.0		5.9	0.1		8.7	8.3		5.0	4.7
19-Jun-17 Rainy Moderate 08:59 Surface 1.0 28.0 27.9 28.0 8.1 8.1 15.2 77.3 76.8 5.6 5.5 5.6 6.5 6.5 8.0 8.1 8.1 15.1 15.2 76.3 76.8 76.5 76.7 5.5 5.6 8.0 8.1 7.4 5.1 5.1 5.4						Bottom	9.2	28.0	28.2	8.2	8.2	24.0	23.8	77.9	80.3	5.5	5.6	5.6	8.7	8.8		5.2	5.1	
10.8 Middle 5.4 27.6 27.6 8.1 8.1 15.1 76.3 5.5 5.6 6.5 4.5 4.5 5.1 5.4	19-Jun-17	Rainy	Moderate	08:59		Surface	1.0	28.0	28.0	8.1	8.1	15.2	15.2	77.3	76.8	5.6	5.6		6.5	6.5		3.0	3.8	
1 10.5 Wildele 5.4 27.7 27.5 8.1 5.1 18.7 10.5 76.9 76.7 5.6 5.5 8.1 5.7 5.7 5.7 5.7					10.8	Middle	5.4		27.6	_	8.1		18.6		76.7			5.6			7.4		5.4	5.7
772 94 727 700 57 70					10.0				_									<i>-</i>			/			5.,
31 Jun 17 Cloudy Moderate 11:03 80 8.0 23.9 23.3 77.4 78.1 5.6 5.7 5.7 7.2 7.5 7.3 7.9	21- lun-17	Cloudy	Moderato	11:03	<u> </u>			27.2		8.0		23.9		77.4		5.6		5./	7.2			7.3		<u> </u>
Surface 1.0 27.8 27.8 7.9 8.0 14.3 14.2 75.0 73.0 5.2 5.1 5.1 7.1 7.0 6.7 7.2	21-Juli-17	Cidudy	Woderate	11.03		Surface	1.0	27.8	27.8	7.9	8.0	14.3	14.2	75.0	73.0	5.2	5.1	5.1	7.1	7.0		6.7	7.2	_
10.5 Middle 5.3 26.8 27.0 7.9 7.9 7.9 21.2 21.4 70.6 70.9 5.0 5.1 8.7 8.9 8.8 8.2 8.7 7.4 8.1					10.5	Middle	5.3	27.1	27.0	7.8	7.9	21.7	21.4	71.2	70.9	5.1	5.1		8.9	8.8	8.2	7.4	8.1	7.7
Bottom 9.5 26.7 26.8 7.6 7.7 27.8 27.3 68.3 68.9 4.8 4.8 4.8 8.8 8.8 8.8 8.8 8.1 7.5 7.8						Bottom	9.5		26.8		7.7		27.3		68.9		4.8	4.8		8.8			7.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:22		Surface	1.0	28.5 28.4	28.4	8.0 8.0	8.0	16.0 15.9	16.0	77.9 76.8	77.4	5.5 5.4	5.4	5.3	5.9 5.8	5.9		7.2 6.8	7.0	
				10.5	Middle	5.3	27.5 27.6	27.5	8.0 8.0	8.0	18.4 18.2	18.3	76.2 72.9	74.6	5.3 5.1	5.2	5.5	6.4 6.4	6.4	6.3	8.2 9.5	8.9	8.4
					Bottom	9.5	27.3 26.9	27.1	7.9 7.9	7.9	21.2 22.7	22.0	73.9 72.1	73.0	5.2 5.1	5.1	5.1	6.5 6.5	6.5		10.1 8.7	9.4	
26-Jun-17	Cloudy	Moderate	14:11		Surface	1.0	28.7 28.8	28.8	8.0 8.0	8.0	16.3 16.3	16.3	72.1 72.3	72.2	5.1 5.1	5.1	5.1	5.6 5.5	5.6		6.7 8.6	7.7	
				10.1	Middle	5.1	27.5 27.9	27.7	8.0 8.0	8.0	17.8 17.6	17.7	71.8 71.6	71.7	5.1 5.1	5.1	0.1	5.8 5.6	5.7	5.7	5.9 6.9	6.4	7.9
					Bottom	9.1	26.7 26.8	26.7	8.0 8.0	8.0	23.3 23.2	23.3	68.0 70.1	69.1	4.8 4.9	4.9	4.9	5.6 5.8	5.7		8.7 10.6	9.7	
28-Jun-17	Fine	Moderate	16:20		Surface	1.0	28.3 28.3	28.3	8.1 8.1	8.1	18.9 19.1	19.0	76.4 76.8	76.6	5.3 5.3	5.3	5.3	4.4 4.2	4.3		9.1 8.5	8.8	
				11.2	Middle	5.6	27.9 27.8	27.9	8.1 8.1	8.1	20.3 20.4	20.4	75.7 76.0	75.9	5.3 5.3	5.3	5.5	4.4 4.5	4.5	4.5	9.6 8.9	9.3	8.9
					Bottom	10.2	28.3 27.6	27.9	8.1 8.1	8.1	21.3 22.0	21.7	74.9 75.5	75.2	5.3 5.3	5.3	5.3	4.6 4.6	4.6		8.5 8.6	8.6	
30-Jun-17	Fine	Moderate	17:30		Surface	1.0	29.3 29.5	29.4	8.3 8.3	8.3	15.5 15.1	15.3	86.1 83.7	84.9	6.0 5.8	5.9	5.8	5.1 4.9	5.0		4.8 5.4	5.1	
				10.0	Middle	5.0	27.9 28.3	28.1	8.2 8.2	8.2	18.8 17.9	18.4	83.1 82.0	82.6	5.8 5.7	5.7	5.0	4.9 4.9	4.9	5.0	5.1 4.9	5.0	5.0
					Bottom	9.0	25.9 26.0	25.9	8.2 8.2	8.2	28.6 28.5	28.6	74.2 75.4	74.8	5.2 5.3	5.3	5.3	5.1 4.9	5.0		4.6 5.3	5.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Condition Condition Time Depth (m) Depth (m) Value Average Average Value Average Average Average Value Average A	3 21.0 21.0 21.0 4 22.8 22.8 22.8 23.5 24.2 23.9 20.6 20.7 3 21.1 21.0 21.0 21.0 3 21.1 21.0 21.0 3 21.1 22.2 21.6	104.2 104.5 103.8 104.1 103.0 103.0 103.4 104.1 103.0 103.2 114.0 114.7 110.9 112.7 112.8	Value Average DA* 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.8 7.8 7.8 7.6 7.6 7.7	Value Average DA* 5.3 5.2 5.0 4.9 4.5 4.7 5.7 5.7 6.7 6.3 6.1 6.3 6.7 5.7	Value Average DA* 4.6 4.5 4.5 4.4 4.0 4.6 4.8 5.1 4.9 5.2 5.4 2.9 3.2 3.4 3.2
10.8 Middle 1.0 28.2 28.2 8.3 8.3 8.4	3 21.0 21.0 4 22.8 22.8 22.8 3 23.5 23.9 24.2 20.6 20.7 3 21.1 21.0 21.0 3 22.1 21.6	104.5 104.4 103.8 104.1 103.0 103.4 114.0 114.7 110.9 112.7 112.5 112.8	7.3 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.8 7.8 7.6 7.6 7.6	5.0 5.2 4.9 4.7 5.2 5.7 5.7 5.7 6.5 6.1 6.3	4.4 4.5 4.0 4.6 4.8 5.1 4.9 5.2 5.4 5.2
10.8 Middle 5.4 28.1 28.1 8.3 8.4 8.4 8.5 Bottom 9.8 27.9 28.0 8.3 8.3 8.5 5-Jun-17 Fine Moderate 16:43 Surface 1.0 29.5 29.5 8.3 8.3 8.5 10.8 Middle 5.4 29.0 29.1 8.3 8.5 8.5 10.8 Middle 5.4 29.0 29.1 8.3 8.5 8.5 8.5 10.8 Middle 5.4 29.0 29.1 8.3 8.5 8.5 10.8 Middle 5.4 29.0 29.1 8.3 8.5 8.5 10.8 Middle 5.4 29.0 29.1 8.3	4 22.8 22.8 22.8 3 23.5 24.2 23.9 3 20.6 20.7 3 21.1 21.0 3 21.1 22.2 21.6	103.8 104.3 103.0 103.4 114.0 114.7 110.9 112.7 112.5 112.8	7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.8 7.8 7.8 7.6 7.6 7.6	4.9 4.5 5.7 5.7 6.5 6.1 6.3	4.0 5.1 4.9 5.4 5.2 2.9 3.2
Bottom 9.8 27.9 28.0 8.3 8. 5-Jun-17 Fine Moderate 16:43 Surface 1.0 29.5 29.5 8.3 8. 10.8 Middle 5.4 29.0 29.1 8.3 8.	3 23.5 24.2 23.9 3 20.6 20.7 20.7 3 21.1 21.0 21.0 3 22.1 21.6	103.0 103.4 114.0 114.7 110.9 112.7 112.5 112.8	7.1 7.1 7.1 7.8 7.8 7.8 7.6 7.6 7.6	5.7 5.7 6.5 6.1 6.3	4.9 5.4 5.2 2.9 3.2
5-Jun-17 Fine Moderate 16:43 Surface 1.0 29.5 29.5 8.3 8. 10.8 Middle 5.4 29.0 29.1 8.3 8.	3 20.6 20.7 20.7 3 21.1 21.0 21.0 3 22.2 21.6	103.4 114.0 114.7 110.9 112.7 112.5 112.8	7.1 7.8 7.8 7.8 7.6 7.6 7.7	5.7 6.5 6.1 6.3	2.9
Surface 1.0 29.4 29.5 8.3 8. 10.8 Middle 5.4 29.0 29.1 8.3 8.	3 20.7 20.7 3 21.1 21.0 21.0 3 21.1 22.2 21.6	114.7 114.4 110.9 111.8 112.7 112.8	7.8 7.8 7.6 7.6	6.1	
	3 21.0 21.0 3 21.1 21.6	112.7 111.8 112.5 112.8	7.6	E 7	J. T
29.5	22.2	1 112 8	1.1	5.7 5.5 5.9	4.0 2.6 3.3 3.2
Bottom 9.8 29.3 29.1 8.3 8.		113.0	7.7 7.7 7.7 7.7	5.7 5.9 5.8	2.9 3.3 3.1
7-Jun-17 Sunny Moderate 18:17 Surface 1.0 30.1 30.2 8.5 8.	5 20.8 20.4	122.0	7.9 8.6 8.2	9.2 9.2 9.2	3.4 3.5 3.5
10.7 Middle 5.4 29.9 29.9 8.4 8	4 21.2 21.2	109.3	7.4 7.5	9.6 9.5 9.5	5.2 4.9 4.8
Bottom 9.7 28.4 28.2 8.3 8.	3 25.1 25.1	106.0	7.6 7.1 7.2 7.2	9.4 9.5 9.7	5.8 6.1
9-Jun-17 Cloudy Moderate 12:02 Surface 1.0 29.4 20.4 8.5 8.	5 25.2 20.1	105.9	7.2	9.8	6.3
Surace 1.0 29.4 29.4 8.5 6.	20.9	115.5	7.9	5.3	6.3
2.1 Middle 1.1 29.3 29.4 8.5 8.5 8.5	21.1	116.1	7.8 7.9	5.3 5.5 5.4 5.5	7.8 8.6 8.2 7.9
Bottom 1.1 29.4 29.4 8.5 8.5 8.	5 20.8 20.8 20.8		7.6 7.5 7.6 7.6	5.6 6.0 5.8	9.7 9.7
12-Jun-17 Sunny Moderate 07:47 Surface 1.0 29.6 29.4 29.5 8.3 8.3	3 20.6 20.6		6.1 6.0	6.3 6.3 6.3	2.5 3.9 3.2
10.6 Middle 5.3 28.9 28.9 8.3 8.	3 22.1 21.8 21.9	87.2 _{85.4}	5.9 5.7 5.8	6.5 6.5 6.5	4.0 4.2 4.1 3.3
Bottom 9.6 29.2 28.9 8.3 8.	23.0	85.5	5.8 5.7 5.8 5.8	6.7 6.6 6.7	2.8 2.6 2.7
14 Jun 17 Painy Moderate 00:06	17.0	96.0	60	7.2	22
28.2	18.5	92.4	5.9 5.8 5.9 5.9	7.2 7.1 7.4 7.5	4.2 3.7
10.7 Nildale 5.4 28.1 26.1 8.2 6.	18.8	84.2	5.9	7.5 7.5 7.4 7.5 7.5	4.0 4.7 4.2 4.0 4.0
28.1 8.2	2 24.2 23.9 23.9	81.9	5.8 5.8 5.8 5.8	7.5	4.3
16-Jun-17 Cloudy Moderate 10:45 Surface 1.0 28.5 28.5 8.2 8.2	2 18.1 17.7 17.4 17.7	/94	5.6 5.6 5.5	10.1 10.0	5.1 4.8 5.0
10.5 Middle 5.3 28.2 28.3 8.1 8.	1 19.3 18.8 19.1		5.4 5.4 5.4	10.4 10.2 10.3 10.3	4.6 4.9 4.8 4.6
Bottom 9.5 28.1 28.1 8.1 8.	21.5	76.5	5.4 5.4 5.4 5.4 5.4	10.5 10.4 10.5	4.1 3.8 4.0
19-Jun-17 Cloudy Moderate 14:42 Surface 1.0 28.4 28.4 8.1 8	2 12.5 12.4	75.9 76.1	5.5 5.5	9.9 9.6	5.6 5.4
11.1 Middle 5.6 27.5 27.5 8.0 8	0 23.2 23.0	76.3 73.5 74.4	5.5 5.4	9.2	6.2 6.9 6.7
27.5 8.0	22.9	75.3	5.4	10.7	7.5
Bottom 10.1 27.6 27.5 8.0 8.	24.4	77.2	5.5 5.5 5.5	11.8	8.0
Surface 1.0 28.0 28.0 8.0 8.	0 14.5 14.5 14.7 14.5	71.2	5.1 5.2	3.6 3.5	5.1
10.9 Middle 5.5 27.0 27.1 8.0 8.0 8.	19.2	73.0	5.0 5.1 5.1	5.7 5.6 4.9	5.4 6.1 5.8 5.7
Bottom 9.9 27.0 27.1 8.0 7.9 8.	0 22.9 23.2		5.0 5.0 5.0 5.0	5.5 5.5	5.7 6.2 6.0

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	iture (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:51		Surface	1.0	28.7 28.7	28.7	7.9 8.0	8.0	16.5 13.8	15.1	70.7 75.6	73.2	5.1 5.3	5.2	5.1	7.1 7.0	7.1		7.3 7.2	7.3	
				10.2	Middle	5.1	27.4 27.6	27.5	8.0 7.9	7.9	19.9 19.9	19.9	70.4 70.3	70.4	5.0 5.0	5.0	5.1	7.5 7.4	7.5	7.3	6.0 6.1	6.1	7.5
					Bottom	9.2	27.4 28.1	27.8	7.9 7.9	7.9	22.8 22.7	22.7	68.2 68.9	68.6	4.8 4.9	4.9	4.9	7.2 7.5	7.4		9.9 8.5	9.2	
26-Jun-17	Cloudy	Moderate	07:39		Surface	1.0	27.8 27.8	27.8	8.0 8.1	8.1	17.7 17.3	17.5	80.8 75.8	78.3	5.7 5.5	5.6	5.6	5.6 5.4	5.5		5.1 6.3	5.7	
				10.8	Middle	5.4	26.4 27.1	26.7	8.0 8.0	8.0	22.5 22.8	22.7	77.9 74.9	76.4	5.7 5.3	5.5	5.0	5.5 5.5	5.5	5.5	5.3 5.4	5.4	5.4
					Bottom	9.8	26.0 25.7	25.9	8.0 8.0	8.0	29.4 30.2	29.8	73.1 77.0	75.1	5.3 5.6	5.4	5.4	5.6 5.6	5.6		4.3 6.0	5.2	
28-Jun-17	Fine	Moderate	09:10		Surface	1.0	28.3 28.3	28.3	8.0 8.0	8.0	16.2 16.3	16.2	73.9 73.7	73.8	5.3 5.3	5.3	5.3	4.1 4.2	4.2		6.3 5.3	5.8	I
				11.3	Middle	5.7	28.0 28.1	28.1	8.0 8.0	8.0	16.7 16.7	16.7	72.7 72.8	72.8	5.2 5.2	5.2	5.5	4.3 4.4	4.4	4.4	5.2 6.0	5.6	6.2
					Bottom 1	10.3	28.1 28.0	28.0	8.0 8.0	8.0	17.7 17.8	17.7	72.2 72.4	72.3	5.1 5.1	5.1	5.1	4.5 4.6	4.6		7.6 6.5	7.1	
30-Jun-17	Fine	Moderate	11:10		Surface	1.0	28.7 28.5	28.6	8.1 8.1	8.1	15.9 16.0	16.0	82.9 78.7	80.8	5.7 5.4	5.6	5.6	3.1 3.2	3.2		5.0 6.0	5.5	
				10.6	Middle	5.3	27.5 27.7	27.6	8.1 8.1	8.1	19.3 19.4	19.3	76.5 78.9	77.7	5.4 5.6	5.5	5.0	3.2 3.0	3.1	3.2	5.4 6.1	5.8	5.7
					Bottom	9.6	26.9 27.1	27.0	8.0 8.1	8.1	25.8 25.6	25.7	75.2 76.6	75.9	5.3 5.4	5.4	5.4	3.2 3.3	3.3	į i	5.9 5.5	5.7]

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	28.1 28.1	28.1	8.4 8.4	8.4	22.2 22.2	22.2	104.8 104.7	104.8	7.2 7.2	7.2	7.2	6.6 6.8	6.7	6.7	4.1 5.5	4.8	4.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1
5-Jun-17	Fine	Moderate	-		Surface	-	-	-	-	_	-	_	-	-	-	_		-	-		-	_	
				1.6	Middle	0.8	29.4 29.4	29.4	8.3 8.3	8.3	22.0 22.0	22.0	103.5 103.6	103.6	7.0 7.0	7.0	7.0	6.1 6.1	6.1	6.1	5.6 6.5	6.1	6.1
					Bottom	-		-		-		-		-	-	-	-	-	-		-	-	
7-Jun-17	Sunny	Moderate	-		Surface	-	-	-	-	_	-	_	-	-	-	_		-	-		-	_	
				1.6	Middle	0.8	29.7	29.7	8.4	8.4	21.3	21.3	109.4	109.7	7.4	7.4	7.4	7.6	7.7	7.7	7.0	6.9	6.9
					Bottom	-	29.7	-	8.4	-	21.3	-	110.0	-	7.4	-	-	7.8	-		6.8	-	
9-Jun-17	Cloudy	Moderate	-		Surface	_	-	_	-	-	-	_	-	-	-	_		-	-		-	-	
				9.2	Middle	4.6	27.1	27.4	8.3	8.3	31.7	31.1	87.3	90.0	5.8	6.0	6.0	3.6	3.6	3.6	6.4	5.8	5.8
					Bottom	-	27.6	-	8.3	-	30.5	-	92.7	-	6.2	-	-	3.6	-		5.1	-	
12-Jun-17	-	-	-		Surface	_	-	_	-	_	-	_	-	-	-	_		-	_		-	_	
				_	Middle	_	-	_	-	-	-	_	-	-	-	_	-	-	-	<u>-</u>	-	-	<u>=</u>
					Bottom	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14-Jun-17	Rainy	Moderate	-				-	_	-	_	-	_	-	_	-			-			-		
	•			1.8	Surface Middle	0.9	28.2	28.2	8.3	8.3	- 19.4	19.4	88.9	88.5	6.2	6.2	6.2	10.6	10.5	10.5	10.2	9.7	9.7
				1.0	Bottom	0.9	28.2	-	8.3	0.3	19.5 -	19.4	88.0	00.5	6.2	0.2		10.4	10.5	10.5	9.2	9.7	9.7
16-Jun-17	Cloudy	Moderate	-			-	-		-		-		-		-			-			-	_	
10 04.11	Cicacy	Modorato			Surface	-	28.7	-	- 8.5	-	- 14.5	-	96.6	-	- 6.9	-	6.9	7.2	-		4.6	-	
				1.4	Middle	0.7	28.7	28.7	8.4	8.5	14.8	14.7	95.8	96.2	6.8	6.9		7.3	7.3	7.3	5.2	4.9	4.9
19-Jun-17	Rainy	Moderate	_		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-5411-17	Rainy	Woderate			Surface	-	27.9	-	- 8.1	-	- 15.2	-	- 81.0	-	- 5.8	-	5.8	7.7	-		9.0	-	
				1.6	Middle	8.0	27.9	27.9	8.1	8.1	15.3	15.3	81.5	81.3	5.8	5.8		7.0	7.4	7.4	9.4	9.2	9.2
04 lun 47	Clavelin	Madasak			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
21-Jun-17	Cloudy	Moderate	-		Surface	-	27.5	-	8.0	-	- - 15.1	-	69.8	-	- - 5.1	-	5.0	5.1	-		7.0	-	
				1.4	Middle	0.7	27.6	27.6	8.0	8.0	14.8	15.0	69.0	69.4	5.0	5.0		5.1	5.2	5.2	6.4	6.7	6.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
				1.2	Middle	0.6	28.4 28.4	28.4	8.0 8.0	8.0	19.2 19.2	19.2	84.7 85.9	85.3	5.9 6.0	5.9	5.9	6.1 6.2	6.2	6.2	8.9 8.8	8.9	8.9
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	
26-Jun-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-		-	6.2	-	-		-	-	
				1.4	Middle	0.7	28.6 28.7	28.6	8.0 8.0	8.0	13.3 12.9	13.1	89.6 82.7	86.2	6.5 6.0	6.2	0.2	9.6 9.9	9.8	9.8	10.4 11.9	11.2	11.2
					Bottom	-	-	-		-		-	-	-		-	-	-	-		-	-	
28-Jun-17	Fine	Moderate	-		Surface	-	-	-		-		-	-	-		-	6.4	-	-		-	-	
				1.4	Middle	0.7	28.7 28.7	28.7	8.4 8.3	8.3	15.6 15.8	15.7	90.5 90.7	90.6	6.4 6.4	6.4	0.4	8.0 8.0	8.0	8.0	10.0 11.1	10.6	10.6
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	
30-Jun-17	Fine	Moderate	-		Surface	-	-	-		-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.2	Middle	0.6	29.6 29.6	29.6	8.8 8.6	8.7	14.0 14.2	14.1	105.9 110.0	108.0	7.5 7.8	7.6	7.0	4.9 5.0	5.0	5.0	7.7 6.8	7.3	7.3
					Bottom	-		-		-		-	-	-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	-		Surface		-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	28.2 28.2	28.2	8.4 8.4	8.4	21.6 21.6	21.6	105.8 105.9	105.9	7.3 7.3	7.3	7.3	6.4 6.5	6.5	6.5	5.2 5.5	5.4	5.4
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-Jun-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	30.1 30.1	30.1	8.5 8.5	8.5	20.6 20.7	20.7	114.9 116.3	115.6	7.8 7.8	7.8	7.8	5.6 5.5	5.6	5.6	5.4 4.9	5.2	5.2
					Bottom	-		-	-	-		-	-	-	-	-	-	-	-		-	-	
7-Jun-17	Sunny	Moderate	-		Surface	-	-	-	-	_	-	_	-	_	-	_		-	_		-	_	
				1.4	Middle	0.7	30.3	30.3	8.6	8.7	20.3 20.1	20.2	137.1 130.7	133.9	9.3 8.9	9.1	9.1	5.2 5.2	5.2	5.2	7.6 7.3	7.5	7.5
					Bottom	-	30.3	-	8.7	-	-	-	-	-	-	-	-	-	-		-	-	
9-Jun-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				8.6	Middle	4.3	28.8 29.0	28.9	8.4 8.4	8.4	22.3 22.2	22.2	102.5 105.1	103.8	7.0 7.2	7.1	7.1	7.2 7.2	7.2	7.2	8.6 8.5	8.6	8.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
12-Jun-17	Sunny	Moderate	0		Surface	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		-	-	
				1.6	Middle	0.8	29.8 29.8	29.8	8.4 8.4	8.4	20.1 20.1	20.1	104.4 104.7	104.6	7.1 7.2	7.1	7.1	0.0 4.5 4.5	4.5	4.5	3.3	3.8	3.8
					Bottom	0.0	0.0	0.0		-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		-	-	
14-Jun-17	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	28.3 28.3	28.3	8.2 8.2	8.2	19.6 19.5	19.5	82.0 81.9	82.0	5.7 5.7	5.7	5.7	8.4 8.1	8.3	8.3	11.0 10.7	10.9	10.9
					Bottom	-	-	-		-		-		-		-	-	-	-		-	-	
16-Jun-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	28.6 28.6	28.6	8.2 8.2	8.2	18.3 18.3	18.3	86.3 87.1	86.7	6.0 6.1	6.1	6.1	7.8 7.9	7.9	7.9	7.0 7.9	7.5	7.5
					Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
19-Jun-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.8	Middle	0.9	28.3 28.3	28.3	8.3 8.2	8.3	12.9 13.2	13.1	86.6 86.0	86.3	6.2 6.2	6.2	6.2	5.2 5.5	5.4	5.4	2.6 2.6	2.6	2.6
					Bottom	-		-		-		-	-	-	-	-	-	-	-			-	
21-Jun-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	28.0 28.0	28.0	8.1 8.2	8.2	14.0 13.7	13.8	76.1 80.9	78.5	5.5 5.9	5.7	5.7	4.0 4.2	4.1	4.1	7.6 7.8	7.7	7.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
			l	1	<u> </u>		-	1	_	1		1		1					<u> </u>	l		l .	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
				1.4	Middle	0.7	28.6 28.7	28.7	8.2 8.2	8.2	15.1 15.1	15.1	80.1 77.9	79.0	5.7 5.5	5.6	5.6	9.6 9.3	9.5	9.5	9.4 10.4	9.9	9.9
					Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
26-Jun-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-		-	-	
				1.6	Middle	8.0	28.3 28.3	28.3	8.3 8.3	8.3	17.7 17.7	17.7	79.3 78.9	79.1	5.5 5.5	5.5	3.3	6.1 5.9	6.0	6.0	7.5 8.1	7.8	7.8
					Bottom	-	-	-	-	-		-	-	-	1 1	-	-	-	-		-	1	
28-Jun-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	
				1.4	Middle	0.7	28.4 28.3	28.3	8.1 8.1	8.1	17.2 17.7	17.5	80.7 80.8	80.8	5.7 5.7	5.7	5.7	4.3 4.3	4.3	4.3	4.0 2.8	3.4	3.4
					Bottom	-	-	-	-	-		-	-	-	1 1	-	-	-	-		-	1	<u> </u>
30-Jun-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	29.3 29.3	29.3	8.3 8.3	8.3	16.5 16.5	16.5	101.3 103.3	102.3	7.1 7.2	7.2	1.2	3.3 3.3	3.3	3.3	7.7 7.7	7.7	7.7
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solid	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:11		Surface	1.0	28.1 28.1	28.1	8.4 8.4	8.4	23.4 23.5	23.4	109.4 109.6	109.5	7.5 7.5	7.5		8.4 8.9	8.7		9.1 9.6	9.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	8.7	-	-	9.2
					Bottom	2.7	28.1 28.1	28.1	8.4 8.4	8.4	23.4 23.4	23.4	109.4 109.2	109.3	7.5 7.5	7.5	7.5	8.7 8.7	8.7		8.4 9.4	8.9	
5-Jun-17	Fine	Moderate	11:16		Surface	1.0	29.1	29.1	8.3	8.3	21.7	21.7	112.1	111.7	7.6	7.6		6.2	6.4		12.7	11.9	
				3.8	Middle		29.1		8.3	-	21.7		111.3	-	7.6	_	7.6	6.6	_	6.7	11.0	-	13.1
				0.0	Bottom	2.8	29.0	29.0	8.3	8.3	22.2	22.2	111.2	112.1	7.6	7.6	7.6	6.8	7.0	0.7	14.1	14.2	10.1
7-Jun-17	Sunny	Moderate	12:21				29.0 29.7		8.3 8.4		22.1 21.4		112.9 115.6		7.7		7.0	7.2 7.6			14.2 7.7		
	,				Surface	1.0	29.7	29.7	8.4	8.4	21.5	21.4	114.0	114.8	7.7	7.8	7.8	7.2	7.4		7.9	7.8	
				3.7	Middle	-	29.5	-	8.4	-	21.8	-	113.4	-	7.7	-		8.2	-	7.8	6.0	-	7.1
0 lun 47	Classalis	Madagas	00.00		Bottom	2.7	29.6	29.6	8.4	8.4	21.6	21.7	114.7 97.4	114.1	7.8	7.7	7.7	8.2	8.2		6.6	6.3	
9-Jun-17	Cloudy	Moderate	06:26		Surface	1.0	28.6 28.2	28.4	8.4 8.3	8.3	25.1 25.5	25.3	96.3	96.9	6.6 6.5	6.6	6.6	4.0 3.8	3.9		7.8 8.6	8.2	
				2.0	Middle	-		-	-	-	-	-	-	-		-		-	-	4.2	-	-	7.8
					Bottom	1.0	28.9 29.0	28.9	8.4 8.4	8.4	21.4 21.4	21.4	95.9 96.8	96.4	6.6 6.6	6.6	6.6	4.4 4.5	4.5		7.5 7.2	7.4	
12-Jun-17	-	-	-		Surface	-		-		-		-		-		-	_	-	-		-	-	
				-	Middle	-		-		-		-		-				-	-	=	-	-	<u> </u>
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	15:11		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	19.3 19.2	19.3	89.1 90.0	89.6	6.2 6.3	6.3		7.5 7.3	7.4		4.8 5.3	5.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	7.5	-	-	6.0
					Bottom	2.7	28.3 28.3	28.3	8.2 8.2	8.2	20.0 19.8	19.9	91.9 89.7	90.8	6.4 6.3	6.3	6.3	7.3 7.7	7.5		7.2 6.4	6.8	
16-Jun-17	Cloudy	Moderate	16:36		Surface	1.0	28.8	28.8	8.3	8.3	17.4	17.4	93.7	94.3	6.6	6.6		11.4	11.5		5.5	6.2	
				3.7	Middle	_	28.8	-	8.3	-	17.3	-	94.9	-	6.7	-	6.6	11.5	-	11.6	6.8	-	5.7
					Bottom	2.7	28.8	28.7	8.3	8.3	18.1	18.1	94.2	95.9	6.6	6.7	6.7	11.6	11.6		5.0	5.1	
19-Jun-17	Rainy	Moderate	09:39		Surface	1.0	28.6 28.0	28.0	8.3 8.1	8.1	18.1 15.1	15.1	97.5 78.1	77.8	6.8 5.6	5.6		7.5	7.4		5.1 3.4	4.0	
				3.9	Middle	-	28.0	-	8.1	-	15.2	-	77.4	-	5.6 -		5.6	7.3	-	7.1	4.6		4.1
				5.5		2.9	28.0	28.0	8.1	8.1	17.9	17.8	77.9	77.6	5.6	5.6	5.6	6.6	6.7	7.1	3.6	4.2	7.1
21-Jun-17	Cloudy	Moderate	11:23		Bottom		28.0 27.7		8.1 8.0		17.7 15.7		77.2 72.8		5.6 5.2		0.0	6.8 11.4			4.7 3.5		
	,				Surface	1.0	27.7	27.7	8.0	8.0	15.7	15.7	72.1	72.5	5.2	5.2	5.2	11.6	11.5		4.4	4.0	
				3.8	Middle	-	27.1	-	7.9	-	21.2	-	71.2	-	5.1	-		11.5	-	11.5	3.4	-	3.8
					Bottom	2.8	27.1	27.2	7.9	7.9	20.7	21.0	71.2	71.3	5.1	5.1	5.1	11.4	11.5		3.5	3.5	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:43		Surface	1.0	28.3 28.2	28.2	8.0 8.0	8.0	18.6 18.9	18.8	79.8 81.4	80.6	5.6 5.7	5.6	5.6	6.7 6.9	6.8		5.3 4.8	5.1	
				3.8	Middle	-		•		-		-		-		-	3.0	-	-	6.8	-	-	5.6
					Bottom	2.8	27.7 28.2	28.0	8.0 8.0	8.0	20.4 23.8	22.1	78.0 81.4	79.7	5.4 5.5	5.5	5.5	6.8 6.8	6.8		5.9 6.0	6.0	
26-Jun-17	Cloudy	Moderate	13:51		Surface	1.0	29.0 28.7	28.9	8.1 8.1	8.1	14.8 14.9	14.9	83.8 85.6	84.7	5.9 6.1	6.0	6.0	5.5 5.6	5.6		7.5 5.8	6.7	
				3.8	Middle	-		-		-	-	-	-	-		-	0.0	-	-	5.6	-	-	5.5
					Bottom	2.8	28.7 28.5	28.6	8.1 8.1	8.1	15.7 16.1	15.9	83.1 83.5	83.3	5.9 5.9	5.9	5.9	5.3 5.6	5.5		3.5 4.9	4.2	
28-Jun-17	Fine	Moderate	15:53		Surface	1.0	29.1 29.0	29.0	8.2 8.2	8.2	16.9 18.9	17.9	92.7 93.2	93.0	6.5 6.5	6.5	6.5	4.9 4.8	4.9		7.9 7.8	7.9	
				3.7	Middle	•		-		-		-		-		-	0.5	-	-	5.0	-	-	8.2
					Bottom	2.7	29.0 29.1	29.0	8.2 8.2	8.2	17.6 17.0	17.3	92.0 92.1	92.1	6.4 6.4	6.4	6.4	5.0 5.1	5.1		8.9 8.0	8.5	
30-Jun-17	Fine	Moderate	17:10		Surface	1.0	29.0 29.0	29.0	8.3 8.3	8.3	16.5 16.5	16.5	93.3 92.3	92.8	6.6 6.5	6.5	6.5	7.6 7.5	7.6	_	9.0 9.9	9.5	
				3.8	Middle	-	1 1	-	1 1	-		-		-		-	0.5	-	-	7.5	-	-	10.0
					Bottom	2.8	29.4 28.9	29.1	8.4 8.3	8.3	16.6 17.4	17.0	88.6 94.2	91.4	6.2 6.6	6.4	6.4	7.5 7.2	7.4		9.5 11.3	10.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:29		Surface	1.0	28.3 28.3	28.3	8.4 8.4	8.4	22.8 22.7	22.8	111.6 110.3	111.0	7.7 7.6	7.6		6.2 6.6	6.4		6.0 6.8	6.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	7.0	-	-	6.5
					Bottom	2.7	28.1 28.0	28.0	8.4 8.4	8.4	23.4 23.3	23.4	110.9 103.0	107.0	7.6 7.1	7.3	7.3	7.3 7.8	7.6		6.6 6.6	6.6	
5-Jun-17	Fine	Moderate	15:55		Surface	1.0	29.3	29.4	8.3	8.3	20.7	20.7	111.7	113.4	7.6	7.7		12.9	11.8		3.6	3.6	
				3.7	Middle		29.5	_	8.3	_	20.6	_	115.1	_	7.8	_	7.7	10.7	<u> </u>	13.0	3.6	-	3.7
				0.7	Bottom	2.7	29.3	29.3	8.4	8.3	20.8	20.9	111.0	111.5	7.6	7.6	7.6	12.7	14.2	10.0	4.0	3.8	0.7
7-Jun-17	Sunny	Moderate	17:56				29.2 30.1		8.3 8.5		21.0 20.9		112.0 127.0		7.7 8.5		7.0	15.7 9.7			3.5 11.5		
	Jan,				Surface	1.0	30.2	30.1	8.6	8.6	20.8	20.8	133.4	130.2	9.0	8.8	8.8	9.8	9.8		11.4	11.5	
				3.9	Middle	-	- 29.4	-	8.4	-	21.7	-	- 121.0	-	8.2	-		9.6	-	9.8	12.2	-	11.6
	01 1		1001		Bottom	2.9	29.8	29.6	8.5	8.5	21.3	21.5	123.5	122.3	8.3	8.3	8.3	9.8	9.7		11.1	11.7	
9-Jun-17	Cloudy	Moderate	12:24		Surface	1.0	28.3 28.3	28.3	8.4 8.3	8.4	25.1 25.5	25.3	96.3 97.4	96.9	6.5 6.6	6.6	6.6	4.4 4.5	4.5		5.6 4.8	5.2	
				2.2	Middle	-	-	-	-	-		-		-		-		-	-	5.4	-	-	6.4
					Bottom	1.2	29.1 29.1	29.1	8.4 8.4	8.4	21.7 21.3	21.5	100.6 101.0	100.8	6.9 6.9	6.9	6.9	6.3 6.1	6.2		7.0 8.0	7.5	
12-Jun-17	Sunny	Moderate	08:08		Surface	1.0	29.6 29.6	29.6	8.3 8.3	8.3	20.0 20.0	20.0	94.7 94.2	94.5	6.5 6.5	6.5	0.5	8.5 8.4	8.5		2.9 3.3	3.1	
				3.7	Middle	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	0.0	6.5	0.0	0.0	8.6	-	-	3.4
					Bottom	2.7	29.5 29.5	29.5	8.3 8.3	8.3	21.5 21.7	21.6	94.4 93.9	94.2	6.5 6.4	6.4	6.4	8.6 8.6	8.6		3.7 3.7	3.7	
14-Jun-17	Rainy	Moderate	09:26		Surface	1.0	28.2	28.2	8.2	8.2	18.1	18.2	86.1	86.3	6.1	6.1		7.3	7.2		6.7	6.8	
				3.7	Middle	_	28.2	-	8.2	-	18.2	-	86.4	-	6.1	-	6.1	7.1	-	7.2	6.9	-	8.1
					Bottom	2.7	28.2	28.2	8.2	8.2	18.3	18.3	86.2	86.3	6.1	6.1	6.1	7.0	7.2		9.2	9.3	
16-Jun-17	Cloudy	Moderate	11:08		Surface	1.0	28.2 28.5	28.5	8.2 8.2	8.2	18.3 17.8	17.7	86.3 86.3	86.3	6.1 6.1	6.1	0	7.3	10.0		9.3 9.7	9.0	
				2.0		1.0	28.5	-	8.2	-	17.7	-	86.3	-	6.1	0.1	6.1	9.9	-	9.9	8.3	9.0	0.0
				3.8	Middle		28.4		8.2		18.6		86.1		6.0	-		9.8		9.9	8.5		8.8
19-Jun-17	Cloudy	Moderate	13:53		Bottom	2.8	28.5	28.5	8.2 8.2	8.2	18.6 13.9	18.6	86.2 81.6	86.2	6.0 5.9	6.0	6.0	9.8	9.8		8.7	8.6	
19-Juli-17	Cloudy	Moderate	13.55		Surface	1.0	28.5	28.5	8.2	8.2	13.9	13.9	80.9	81.3	5.8	5.8	5.8	10.2	10.5		10.1	9.3	
				3.6	Middle	-	-	-	-	-	-	-	-	-		-		-	-	10.7	-	-	10.0
					Bottom	2.6	28.5 28.4	28.4	8.2 8.1	8.2	14.7 15.9	15.3	80.1 81.6	80.9	5.8 5.9	5.8	5.8	10.7 11.0	10.9		10.8 10.5	10.7	<u> </u>
21-Jun-17	Sunny	Moderate	16:31		Surface	1.0	27.9 28.0	28.0	8.0 8.0	8.0	15.3 15.5	15.4	73.7 76.0	74.9	5.3 5.5	5.4	5.4	11.5 11.5	11.5		7.4 8.8	8.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	11.5	-	-	10.3
					Bottom	2.7	27.8 27.7	27.8	8.0 8.0	8.0	18.7 19.1	18.9	75.4 80.3	77.9	5.3 5.7	5.5	5.5	11.6 11.2	11.4		12.4 12.5	12.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	F	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:30		Surface	1.0	28.7 28.7	28.7	8.0 8.0	8.0	16.0 16.0	16.0	75.4 76.0	75.7	5.3 5.4	5.4	5.4	5.3 5.1	5.2		6.6 7.5	7.1	
				3.7	Middle	-	-	•		-	-	i		-		-	5.4	-	-	5.2	-	1	7.6
					Bottom	2.7	28.7 28.7	28.7	8.0 8.0	8.0	16.4 16.4	16.4	76.2 75.6	75.9	5.4 5.3	5.4	5.4	5.2 5.2	5.2		8.0 8.2	8.1	
26-Jun-17	Cloudy	Moderate	07:58		Surface	1.0	28.0 27.9	28.0	8.1 8.1	8.1	16.9 16.9	16.9	71.4 71.9	71.7	5.0 5.1	5.1	5.1	6.0 5.6	5.8		4.9 4.3	4.6	
				3.9	Middle	-	-	-		-	-	-		-	1 1	-	0.1	-	-	5.7	-	-	5.0
					Bottom	2.9	27.9 27.7	27.8	8.1 8.1	8.1	18.8 19.0	18.9	71.3 71.1	71.2	5.0 5.0	5.0	5.0	5.6 5.6	5.6		4.5 6.0	5.3	
28-Jun-17	Fine	Moderate	09:33		Surface	1.0	28.3 28.3	28.3	8.0 8.0	8.0	16.0 16.0	16.0	72.9 73.1	73.0	5.2 5.2	5.2	5.2	5.7 5.8	5.8		7.6 8.6	8.1	
				3.8	Middle	-	-	-		-	-	-		-		-	5.2	-	-	6.1	-	-	8.9
					Bottom	2.8	28.3 28.3	28.3	8.0 8.0	8.0	16.1 16.2	16.1	72.6 72.7	72.7	5.2 5.2	5.2	5.2	6.2 6.3	6.3		9.1 10.1	9.6	
30-Jun-17	Fine	Moderate	11:30		Surface	1.0	28.8 28.8	28.8	8.1 8.1	8.1	17.3 17.3	17.3	81.1 80.3	80.7	5.7 5.6	5.7	5.7	11.9 11.6	11.8		17.6 16.0	16.8	
				3.8	Middle	-	-	-	-	-	-	-	1 1	-		-	5.7	-	-	11.7	-	-	12.9
					Bottom	2.8	28.5 28.6	28.5	8.1 8.1	8.1	19.3 17.7	18.5	83.5 80.2	81.9	5.8 5.6	5.7	5.7	11.5 11.5	11.5		8.8 9.1	9.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:45		Surface	1.0	27.7 27.8	27.8	8.0 8.0	8.0	20.9 20.8	20.9	96.7 96.5	96.6	6.8 6.8	6.8		7.1 7.1	7.1		3.7 2.4	3.1	1
				9.2	Middle	4.6	27.7 27.7	27.7	8.0 8.0	8.0	20.8 21.0	20.9	97.3 97.0	97.2	6.8 6.8	6.8	6.8	8.2 8.1	8.2	8.1	3.3 3.2	3.3	3.2
					Bottom	8.2	27.7	27.7	8.0 8.0	8.0	21.8	21.8	96.6 96.9	96.8	6.7 6.8	6.7	6.7	8.9 9.0	9.0		3.1	3.2	
5-Jun-17	Fine	Moderate	10:20		Surface	1.0	28.6	28.6	8.1	8.1	20.2	20.2	95.3	94.4	6.6	6.5		6.1	6.1		4.5	5.1	
				8.5	Middle	4.3	28.6 28.4	28.4	8.1 8.1	8.1	20.1	21.6	93.4 92.7	92.8	6.5 6.4	6.4	6.5	6.1	6.3	6.3	5.7 4.0	4.2	5.3
				0.5			28.4		8.1 8.1		21.9 22.5		92.8 91.6		6.5		0.4	6.2		0.5	6.4		3.5
7-Jun-17	Sunny	Moderate	11:33		Bottom	7.5	28.3 29.6	28.3	8.0	8.1	22.6 20.3	22.5	92.9 97.9	92.3	6.4	6.4	6.4	6.4 5.5	6.4		6.7 4.9	6.6	<u></u>
7-3411-17	Sullily	Woderate	11.55		Surface	1.0	29.5	29.6	8.0	8.0	20.4	20.4	98.2	98.1	6.8	6.7	6.7	5.5	5.5		4.8	4.9	1
				8.3	Middle	4.2	28.6 28.8	28.7	7.9 8.0	7.9	20.9 20.4	20.7	97.4 96.8	97.1	6.7 6.7	6.7		5.8 5.7	5.8	5.8	5.0 5.5	5.3	5.7
					Bottom	7.3	28.3 28.4	28.3	7.9 7.9	7.9	23.7 23.5	23.6	92.8 94.1	93.5	6.3 6.4	6.4	6.4	6.1 6.2	6.2		6.8 7.2	7.0	
9-Jun-17	Cloudy	Moderate	12:02		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.7 21.6	21.6	95.5 96.0	95.8	6.5 6.6	6.5	6.4	7.7 7.2	7.5		10.5 10.9	10.7	1
				8.9	Middle	4.5	28.4 28.3	28.4	8.0 8.0	8.0	25.2 25.3	25.2	92.5 94.0	93.3	6.3 6.4	6.3	6.4	7.2 7.6	7.4	7.5	11.0 10.8	10.9	10.8
					Bottom	7.9	28.5 28.3	28.4	8.0 8.0	8.0	25.6 26.3	26.0	94.3 97.5	95.9	6.4 6.6	6.5	6.5	7.3 7.8	7.6		11.1	10.9	
12-Jun-17	-	-	-		Surface	_	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				_	Middle	_	-	-	-	-	-	-	-	_	-	_	-	-	_	_	-	_	<u> </u>
					Bottom	_	-	_	-	_	-	_	-	_	-	_		-		-	-	_	- ,
14-Jun-17	Rainy	Moderate	15:14		Surface	1.0	28.2	28.2	8.0	8.0	18.2	18.3	91.3	91.3	6.4	6.4		7.3	7.3		3.1	3.7	
							28.2 28.2		8.0 8.0		18.3 18.7		91.3 91.0		6.4		6.4	7.2 7.4			4.3 5.6		
				8.3	Middle	4.2	28.2	28.2	7.9 7.9	8.0	18.6	18.6	90.9	91.0	6.4	6.4		7.5 7.8	7.5	7.5	6.8	6.2	5.6
40.147	01: 1	Malaria	10.11		Bottom	7.3	28.2	28.2	8.0	8.0	18.7	18.8	90.8	90.7	6.4	6.4	6.4	7.6	7.7		7.0	7.0	
16-Jun-17	Cloudy	Moderate	16:44		Surface	1.0	28.7 28.7	28.7	8.0 8.1	8.1	15.0 15.0	15.0	92.2 95.4	93.8	6.6 6.8	6.7	6.5	8.5 8.3	8.4		5.4 4.0	4.7	l
				8.7	Middle	4.4	28.5 28.6	28.6	8.0 8.0	8.0	16.6 15.9	16.3	89.0 89.9	89.5	6.3 6.4	6.3		8.5 8.8	8.7	8.5	6.0 5.8	5.9	5.3
					Bottom	7.7	28.5 28.5	28.5	8.0 8.0	8.0	18.1 18.2	18.2	91.0 91.3	91.2	6.4 6.4	6.4	6.4	8.2 8.4	8.3		5.2 5.4	5.3	
19-Jun-17	Rainy	Moderate	09:26		Surface	1.0	28.1 28.1	28.1	7.7 7.7	7.7	11.7 11.6	11.7	70.9 71.8	71.4	5.1 5.2	5.1		9.9 9.6	9.8		6.7 5.9	6.3	
				7.7	Middle	3.9	27.7 27.8	27.8	7.7 7.7	7.7	14.9 15.3	15.1	70.2 69.9	70.1	5.1 5.1	5.1	5.1	12.4 12.2	12.3	11.5	7.0 5.9	6.5	6.4
					Bottom	6.7	27.8 27.4	27.6	7.6 7.6	7.6	23.7	23.8	69.0 69.1	69.1	5.1 5.0	5.0	5.0	12.5 12.2	12.4		6.3	6.4	
21-Jun-17	Cloudy	Moderate	10:51		Surface	1.0	27.6	27.6	7.8	7.8	13.4	13.5	75.7	75.8	5.4	5.5		7.7	7.7		6.1	5.6	
				8.5	Middle	4.3	27.6 27.3	27.3	7.8 7.7	7.7	13.5 18.5	18.5	75.9 76.3	76.0	5.6 5.4	5.5	5.5	7.7 8.4	8.3	8.2	5.0 4.6	4.7	5.2
				0.0	Bottom	7.5	27.3 27.4	27.3	7.7 7.7	7.7	18.5 18.5	18.5	75.6 74.7	75.3	5.6 5.5	5.6	5.6	8.2 8.2	8.5	0.2	4.8	5.3	J
					סטווטווו	7.5	27.3	21.3	7.7	1.1	18.5	10.0	75.9	10.0	5.6	0.0	0.0	8.7	0.0		5.7	ა.ა	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:49		Surface 1.	0 27.9 27.8	27.9	7.7 7.7	7.7	15.6 16.4	16.0	76.9 77.4	77.2	5.4 5.4	5.4	5.4	7.4 7.3	7.4		3.9 4.5	4.2	
				8.6	Middle 4.	3 27.8 27.8	27.8	7.7 7.7	7.7	17.8 16.4	17.1	76.5 76.9	76.7	5.4 5.4	5.4	3.4	7.6 7.5	7.6	7.6	5.9 4.1	5.0	5.2
					Bottom 7.	6 27.7 28.2	28.0	7.7 7.7	7.7	16.9 14.7	15.8	75.9 75.7	75.8	5.3 5.3	5.3	5.3	7.8 7.7	7.8		5.9 6.8	6.4	
26-Jun-17	Cloudy	Moderate	13:59		Surface 1.	0 28.9 29.0	28.9	8.0 8.0	8.0	12.9 12.8	12.8	73.5 75.0	74.3	5.3 5.5	5.4	5.3	8.5 8.2	8.4		5.4 5.9	5.7	
				8.2	Middle 4.	1 28.4 28.3	28.3	-	-	15.1 14.1	14.6	71.9 72.0	72.0	5.2 5.2	5.2	0.0	9.3 9.7	9.5	9.4	4.8 5.7	5.3	5.6
					Bottom 7.	2 28.0 28.1	28.1	8.0 8.0	8.0	16.8 17.0	16.9	72.9 72.9	72.9	5.1 5.2	5.2	5.2	10.4 9.9	10.2		5.4 5.9	5.7	
28-Jun-17	Fine	Moderate	15:41		Surface 1.	0 29.1 29.2	29.2	7.9 7.9	7.9	14.5 14.7	14.6	77.2 79.3	78.3	5.5 5.6	5.5	5.4	7.1 7.1	7.1		5.7 6.2	6.0	
				8.2	Middle 4.	1 28.8 29.0	28.9	7.9 7.9	7.9	15.9 15.1	15.5	74.8 73.8	74.3	5.3 5.2	5.2	3.4	6.8 7.1	7.0	7.1	5.0 5.3	5.2	5.6
					Bottom 7.	2 27.5 27.2	27.4	7.8 7.8	7.8	20.6 20.6	20.6	70.5 71.7	71.1	5.0 5.1	5.0	5.0	7.1 7.1	7.1		5.0 6.0	5.5	
30-Jun-17	Fine	Moderate	17:13		Surface 1.	0 29.2 29.7	29.5	7.9 7.9	7.9	13.5 13.3	13.4	76.4 76.2	76.3	5.4 5.4	5.4	5.4	3.1 3.5	3.3		3.9 2.8	3.4	
				7.9	Middle 4.	0 28.2 28.3	28.3	7.8 7.8	7.8	17.7 17.8	17.8	76.0 74.9	75.5	5.3 5.3	5.3	5.4	3.0 3.2	3.1	3.4	4.5 3.8	4.2	4.1
					Bottom 6	9 27.1 27.3	27.2	7.8 7.8	7.8	24.2 23.6	23.9	77.9 75.6	76.8	5.5 5.3	5.4	5.4	3.5 3.8	3.7		4.5 4.7	4.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:51		Surface	1.0	27.8 27.8	27.8	8.0 8.0	8.0	21.1 20.9	21.0	95.2 95.4	95.3	6.7 6.7	6.7		7.5 7.4	7.5		4.6 4.5	4.6	
				9.2	Middle	4.6	27.7 27.7	27.7	8.0 8.0	8.0	21.1 21.4	21.3	94.9 95.0	95.0	6.6 6.6	6.6	6.7	8.4 8.4	8.4	8.2	3.7 3.9	3.8	4.0
					Bottom	8.2	27.7 27.7	27.7	8.0 8.0	8.0	22.0	22.0	94.7 94.7	94.7	6.6 6.6	6.6	6.6	8.7 8.7	8.7		3.5 3.9	3.7	
5-Jun-17	Fine	Moderate	16:58		Surface	1.0	29.4	29.4	8.1	8.1	20.2	20.1	102.6	102.9	7.1	7.1		4.3	4.4		1.4	1.2	
				8.7	Middle	4.4	29.4 28.7	28.8	8.1 8.0	8.0	20.0	20.3	103.2 98.6	99.7	7.2 6.8	6.9	7.0	4.5 4.5	4.6	4.6	1.0	1.3	1.4
					Bottom	7.7	28.9 28.6	28.7	8.0	8.0	20.4	21.0	100.8 92.5	93.3	7.0 6.4	6.4	6.4	4.6 4.6	4.7		1.4	1.7	
7-Jun-17	Sunny	Moderate	18:34		Surface	1.0	28.8 30.1	29.9	8.0 8.2	8.2	20.7	20.4	94.0 112.7	112.5	6.5 7.8	7.7	0.4	4.7	4.4		1.8 3.7	3.1	
				0.4			29.7 29.8		8.1 8.2		20.5		112.3 110.9		7.7 7.6		7.7	4.4		4.0	2.5 3.0		
				8.4	Middle	4.2	29.1 29.7	29.4	8.1 8.2	8.1	20.7 22.4	20.5	110.4 105.0	110.7	7.7 7.2	7.6		4.8 5.1	4.8	4.8	2.8 4.0	2.9	3.3
9-Jun-17	Cloudy	Moderate	06:09		Bottom	7.4	28.6 28.9	29.1	8.1 8.0	8.1	22.5	22.4	105.9 94.1	105.5	7.2 6.8	7.2	7.2	5.2 9.4	5.2		3.5 9.9	3.8	<u> </u>
9-Juli-17	Cloudy	Moderate	00.09		Surface	1.0	28.9 28.5	28.9	8.0 7.9	8.0	21.4	21.4	94.0	94.1	6.8 6.7	6.8	6.8	10.4	9.9		10.4 10.1	10.2	
				9.2	Middle	4.6	28.4	28.5	7.9	7.9	24.8	24.8	91.9	92.1	6.7	6.7		9.3	9.6	9.8	10.3	10.2	10.1
					Bottom	8.2	28.3 28.3	28.3	7.9 7.9	7.9	25.9 26.3	26.1	91.8 92.7	92.3	6.6 6.7	6.7	6.7	10.2 9.5	9.9		10.6 9.2	9.9	
12-Jun-17	Sunny	Moderate	07:42		Surface	1.0	29.1 29.1	29.1	8.0 8.0	8.0	21.1 21.2	21.2	86.8 87.0	86.9	5.9 5.9	5.9	5.8	10.9 11.6	11.3		5.5 6.0	5.8	
				8.8	Middle	4.4	28.6 28.5	28.5	7.9 7.9	7.9	24.6 24.9	24.8	84.6 83.9	84.3	5.7 5.7	5.7	0.0	12.3 11.8	12.1	12.2	5.8 6.1	6.0	6.1
					Bottom	7.8	28.5 28.6	28.5	7.9 7.9	7.9	25.1 25.0	25.0	84.8 85.8	85.3	5.7 5.8	5.8	5.8	13.3 13.0	13.2		6.2 6.9	6.6	
14-Jun-17	Rainy	Moderate	09:12		Surface	1.0	28.1 28.1	28.1	7.8 7.8	7.8	17.7 17.8	17.7	88.0 87.4	87.7	6.2 6.2	6.2		6.7 6.8	6.8		7.5 7.4	7.5	
				8.4	Middle	4.2	28.1	28.1	7.8 7.8	7.8	18.1 17.8	17.9	87.5 87.0	87.3	6.1 6.2	6.2	6.2	6.9 7.1	7.0	7.1	8.5 8.2	8.4	8.0
					Bottom	7.4	28.1	28.1	7.8 7.8	7.8	20.0 19.5	19.7	86.8 86.8	86.8	6.1 6.1	6.1	6.1	7.4 7.5	7.5		7.7 8.5	8.1	
16-Jun-17	Cloudy	Moderate	10:23		Surface	1.0	28.6	28.6	7.9	7.9	16.6	16.6	85.9	86.4	6.1	6.1		8.8	8.7		5.8	5.9	
				9.1	Middle	4.6	28.6	28.5	7.9 7.8	7.8	16.6	17.8	86.8 83.5	84.1	6.1 5.9	5.9	6.0	8.6	8.7	8.8	6.0	6.2	5.9
					Bottom	8.1	28.5 28.5	28.4	7.8 7.8	7.8	17.9 18.0	18.3	84.6 87.0	85.4	6.0 6.1	6.0	6.0	8.6 9.0	9.0		5.6 5.1	5.7	Ì
19-Jun-17	Cloudy	Moderate	14:00		Surface	1.0	28.3 28.4	28.4	7.8	7.7	18.6 10.7	10.7	83.8 78.6	75.7	5.9 5.4	5.3		9.0 8.5	8.5		6.2	6.6	
				8.0	Middle	4.0	28.5 27.9	28.0	7.7 7.6	7.6	10.7 14.3	14.3	72.8 70.6	71.6	5.3 5.1	5.2	5.3	8.4 8.7	8.6	8.6	7.0 6.9	6.7	6.8
				0.0	-		28.1 27.9		7.6 7.5		14.3 24.3		72.5 70.0		5.3 4.9	-	5.0	8.5 8.6		0.0	6.4 7.2		0.0
21-Jun-17	Sunny	Moderate	16:26		Bottom	7.0	27.6 27.7	27.8	7.5 7.9	7.5	24.6 14.9	24.5	70.3 75.9	70.2	5.1 5.7	5.0	5.0	8.5 7.8	8.6		6.8	7.0	
21 0011 17	Odiniy	Moderate	10.20		Surface	1.0	27.7 27.6	27.7	7.9 7.9	7.9	15.0 15.4	15.0	75.7 74.3	75.8	5.6 5.5	5.6	5.5	7.3	7.6		6.9	6.8	ł
				8.5	Middle	4.3	27.6	27.6	7.9	7.9	15.5	15.4	73.8	74.1	5.1	5.3		7.3	7.3	7.4	6.6	7.0	6.7
					Bottom	7.5	27.6 27.6	27.6	7.9 7.9	7.9	15.8 15.7	15.8	75.2 75.5	75.4	5.6 5.2	5.4	5.4	7.3 7.2	7.3		6.0 6.6	6.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (n	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:07		Surface	1.0	28.8 28.8	28.8	7.7 7.7	7.7	12.2 12.5	12.4	75.8 75.9	75.9	5.4 5.4	5.4	5.4	14.2 14.3	14.3		10.1 11.7	10.9	
				8.7	Middle	4.4	28.6 28.6	28.6	7.7 7.7	7.7	11.2 11.1	11.2	75.2 75.4	75.3	5.3 5.3	5.3	5.4	14.4 14.6	14.5	14.6	10.0 11.0	10.5	10.8
					Bottom	7.7	28.7 28.6	28.7	7.7 7.7	7.7	11.7 11.3	11.5	74.5 74.8	74.7	5.3 5.3	5.3	5.3	14.9 14.8	14.9		10.4 11.3	10.9	
26-Jun-17	Cloudy	Moderate	07:45		Surface	1.0	27.9 27.9	27.9	8.1 8.1	8.1	17.0 17.0	17.0	76.5 76.9	76.7	5.5 5.5	5.5	5.5	9.1 9.1	9.1		7.5 6.8	7.2	
				8.3	Middle	4.2	27.1 26.9	27.0		-	21.8 23.1	22.4	76.1 75.3	75.7	5.4 5.4	5.4	0.0	10.2 10.6	10.4	10.0	6.0 7.2	6.6	6.7
					Bottom	7.3	26.8 26.9	26.8	8.0 8.0	8.0	23.6 23.5	23.5	75.5 76.5	76.0	5.4 5.5	5.5	5.5	10.4 10.7	10.6		6.7 5.8	6.3	
28-Jun-17	Fine	Moderate	09:33		Surface	1.0	28.1 28.1	28.1	7.6 7.6	7.6	14.6 15.0	14.8	74.4 75.6	75.0	5.5 5.6	5.5	5.4	10.4 10.5	10.5		9.4 9.8	9.6	
				8.2	Middle	4.1	27.4 27.5	27.5	7.6 7.6	7.6	19.5 19.3	19.4	72.0 71.8	71.9	5.2 5.2	5.2	5.4	10.8 10.8	10.8	10.7	8.7 9.1	8.9	9.5
					Bottom	7.2	27.3 26.6	26.9	7.6 7.6	7.6	21.0 21.4	21.2	71.3 70.5	70.9	5.2 5.1	5.1	5.1	10.8 10.6	10.7		9.7 10.5	10.1	
30-Jun-17	Fine	Moderate	11:04		Surface	1.0	28.7 28.5	28.6	7.7 7.7	7.7	16.2 16.8	16.5	73.8 73.8	73.8	5.4 5.4	5.4	5.4	5.4 5.3	5.4		5.8 4.8	5.3	
				7.8	Middle	3.9	28.0 28.0	28.0	7.7 7.7	7.7	17.9 18.6	18.3	73.1 73.0	73.1	5.3 5.3	5.3	5.4	5.8 5.5	5.7	6.0	5.9 5.3	5.6	5.3
					Bottom	6.8	27.2 27.3	27.3	7.7 7.7	7.7	22.7 22.6	22.7	73.3 72.8	73.1	5.3 5.3	5.3	5.3	7.2 6.8	7.0		4.0 6.0	5.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	09:27		Surface	1.0	27.8 27.7	27.8	8.0 8.0	8.0	21.0 21.1	21.1	94.7 94.4	94.6	6.6 6.6	6.6		7.4 7.5	7.5		4.2 5.0	4.6	
				4.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	7.6	-	-	4.8
					Bottom	3.5	27.7	27.7	8.0	8.0	21.1	21.2	94.8 94.3	94.6	6.6	6.6	6.6	7.6 7.7	7.7		4.8 5.2	5.0	
5-Jun-17	Fine	Moderate	11:20				28.5		8.1		20.5		92.1		6.4			6.4			6.1		
0 04.11		Moderate	20		Surface	1.0	28.7	28.6	8.1	8.1	20.3	20.4	93.9	93.0	6.4	6.4	6.4	6.5	6.5		6.0	6.1	ļ
				4.1	Middle	-	28.3	-	8.0	-	22.3	-	92.3	-	6.4	-		7.0	-	6.8	5.6	-	5.8
					Bottom	3.1	28.5	28.4	8.0	8.0	22.2	22.2	92.1	92.2	6.4	6.4	6.4	7.1	7.1		5.4	5.5	
7-Jun-17	Sunny	Moderate	12:31		Surface	1.0	28.9 28.8	28.9	8.0 8.0	8.0	20.8 20.7	20.8	94.1 93.4	93.8	6.5 6.4	6.4	6.4	5.7 5.7	5.7		4.3 3.0	3.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0	-	-	6.0	-	-	4.3
					Bottom	3.1	28.8 28.7	28.7	7.9 8.0	8.0	21.7 21.8	21.7	92.1 91.6	91.9	6.4 6.3	6.4	6.4	6.2 6.1	6.2		4.9 4.7	4.8	
9-Jun-17	Cloudy	Moderate	11:18		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.0 21.1	21.0	96.1 96.3	96.2	6.6 6.6	6.6		8.4 8.9	8.7		10.5 10.4	10.5	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	8.7	-	-	11.2
					Bottom	3.2	28.9	28.9	8.0	8.0	21.4	21.7	96.4	96.7	6.6	6.6	6.6	8.8 8.3	8.6		11.5 12.3	11.9	
12-Jun-17	-	-	-		Surface	_	28.9	_	8.0 -	-	21.9	_	96.9	-	6.6 -	_		- 8.3	-		- 12.3	-	
				_	Middle	_	-	_	-	_	-	_	-	_	-	_	-	-	_	<u>-</u>	-	_	<u>.</u>
					Bottom	_	-	_	-	_	-	_	-	_	-	_		-	_	-	-	_	-
					Bottom		-	_	-		-	_	-	<u> </u>	-			-			-		
14-Jun-17	Rainy	Moderate	14:15		Surface	1.0	28.2 28.2	28.2	8.0 8.0	8.0	15.6 17.8	16.7	92.9 94.0	93.5	6.6 6.6	6.6	6.6	7.2 7.3	7.3		2.6 3.6	3.1]
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.4	-	-	4.3
					Bottom	3.2	28.2 28.2	28.2	8.0 8.0	8.0	18.4 18.3	18.4	92.2 92.3	92.3	6.5 6.6	6.5	6.5	7.5 7.4	7.5		5.8 5.0	5.4	
16-Jun-17	Cloudy	Moderate	15:49		Surface	1.0	28.7 28.7	28.7	8.1 8.2	8.1	15.2 15.2	15.2	97.7 96.0	96.9	6.9 6.8	6.9	0.0	8.0 8.1	8.1		6.2 5.8	6.0	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	8.1	-	-	6.4
					Bottom	3.2	28.7 28.7	28.7	8.1 8.2	8.2	15.3 15.3	15.3	96.4 96.0	96.2	6.9 6.8	6.8	6.8	8.1 8.1	8.1		6.8 6.6	6.7	
19-Jun-17	Rainy	Moderate	10:25		Surface	1.0	28.1 28.1	28.1	7.7 7.8	7.8	9.3 9.4	9.3	79.7 76.9	78.3	5.9 5.7	5.8		8.0	8.1		5.4 6.2	5.8	
				4.3	Middle	-	- 28.1	-	-	-	- 9.4	-	- 76.9	-	-	-	5.8	8.2	-	8.1	- 0.2	-	5.8
					Bottom	3.3	28.0	28.0	7.6	7.7	15.7	14.6	77.5	78.3	5.6	5.7	5.7	8.1	8.1		6.3	5.7	
21-Jun-17	Cloudy	Moderate	11:45		Surface	1.0	28.1 27.2	27.3	7.7 7.8	7.8	13.5 13.4	14.0	79.1 72.4	72.5	5.7 5.4	5.4		8.0 8.9	9.0		5.1 3.9	4.3	
				4.1	Middle		27.4	-	7.8	-	14.6		72.6		5.4		5.4	9.1	-	9.7	4.6		5.5
				7.1	Bottom	3.1	27.1	27.2	7.8	7.8	20.6	20.6	72.3	72.3	5.4	5.4	5.4	10.3	10.4	3.1	7.1	6.6	3.5
					BOLLOIN	3.1	27.2	21.2	7.8	7.8	20.6	20.6	72.3	12.3	5.4	5.4	5.4	10.5	10.4		6.0	0.0	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Tempera	ature (°C)	p	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	12:54		Surface	1.0	28.3 28.4	28.3	7.7 7.7	7.7	13.7 13.7	13.7	79.3 78.8	79.1	5.6 5.6	5.6	5.6	8.5 8.4	8.5		4.6 3.6	4.1	
				4.2	Middle	-	-	•		-	-	i		-		-	5.0	-	-	8.7	-	1	4.4
					Bottom	3.2	27.7 27.8	27.8	7.7 7.7	7.7	17.3 17.3	17.3	78.4 78.1	78.3	5.6 5.6	5.6	5.6	8.9 8.9	8.9		4.5 4.9	4.7	
26-Jun-17	Cloudy	Moderate	13:04		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	12.7 12.8	12.8	75.3 76.3	75.8	5.4 5.5	5.4	5.4	6.9 7.1	7.0		5.6 5.0	5.3	
				4.3	Middle	-	-	•		-	-	i		-		-	5.4	-	-	7.0	-	1	7.4
					Bottom	3.3	28.7 28.7	28.7	8.0 8.0	8.0	14.1 14.1	14.1	75.8 75.0	75.4	5.4 5.4	5.4	5.4	7.0 6.9	7.0		8.4 10.3	9.4	
28-Jun-17	Fine	Moderate	14:46		Surface	1.0	29.0 28.9	29.0	8.1 8.2	8.1	15.1 15.1	15.1	84.0 82.2	83.1	5.9 5.8	5.9	5.9	4.9 4.9	4.9		5.1 5.7	5.4	
				4.3	Middle	-	-	-		-	-	-		-		-	5.5	-	-	4.9	-	-	5.9
					Bottom	3.3	28.5 28.9	28.7	8.2 8.1	8.2	16.0 16.2	16.1	81.3 83.2	82.3	5.8 5.9	5.8	5.8	4.8 4.8	4.8		6.0 6.8	6.4	
30-Jun-17	Fine	Moderate	16:19		Surface	1.0	29.9 29.5	29.7	8.0 8.1	8.0	12.8 13.6	13.2	76.2 76.3	76.3	5.4 5.4	5.4	5.4	3.9 4.1	4.0		3.7 4.0	3.9	
				4.2	Middle	-	-	-		-	-	-	1 1	-		-	5.4	-	-	4.1	-	-	4.8
					Bottom	3.2	29.1 28.6	28.8	8.0 8.0	8.0	15.4 15.7	15.6	76.2 76.7	76.5	5.4 5.4	5.4	5.4	4.0 4.1	4.1		5.7 5.6	5.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	12:06		Surface	1.0	27.8 27.8	27.8	8.0 8.0	8.0	20.9 21.0	21.0	94.7 95.5	95.1	6.6 6.7	6.7		6.6 6.8	6.7		4.5 4.0	4.3	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	7.6	-	-	4.4
					Bottom	4.4	27.7 27.7	27.7	8.0	8.0	21.2	21.2	95.4 94.5	95.0	6.7	6.6	6.6	8.5 8.3	8.4		3.9	4.4	
5-Jun-17	Fine	Moderate	16:00				29.5		8.0		20.8		104.1		7.1			5.2			1.4		
o dun 17	1 1110	Woderate	10.00		Surface	1.0	28.8	29.1	8.1	8.1	20.9	20.9	104.3	104.2	7.2	7.2	7.2	5.1	5.2		1.5	1.5	<u> </u>
				4.1	Middle	-	28.7	-	8.2	-	21.2	-	98.3	-	6.8	-		5.5	-	5.4	1.8	-	1.6
					Bottom	3.1	28.7	28.7	8.1	8.1	21.9	21.6	97.9	98.1	6.7	6.8	6.8	5.4	5.5		1.6	1.7	
7-Jun-17	Sunny	Moderate	17:40		Surface	1.0	29.8 29.8	29.8	8.3 8.3	8.3	20.5 21.0	20.7	108.1 109.3	108.7	7.5 7.5	7.5	7.5	4.8 4.7	4.8		3.2 3.3	3.3	ļ
				4.2	Middle			-		-		-		-		-	7.5	-	-	4.9	-	-	3.5
					Bottom	3.2	29.6 29.6	29.6	8.4 8.3	8.3	21.5 21.4	21.4	106.8 107.8	107.3	7.3 7.4	7.3	7.3	4.9 5.0	5.0		3.8 3.5	3.7	
9-Jun-17	Cloudy	Moderate	07:00		Surface	1.0	29.0 29.0	29.0	8.0 8.0	8.0	20.5	20.5	92.4 92.6	92.5	6.7 6.7	6.7		4.8 4.9	4.9		4.7 5.9	5.3	
				4.1	Middle	-	-	-	-	-	-	-	- 92.0	-	-	-	6.7	- 4.9	-	4.8	- 5.9	-	7.5
					Bottom	3.1	28.8	28.9	8.0	8.0	22.1	22.1	91.8	91.9	6.6	6.6	6.6	4.6	4.7		9.3	9.7	'
12-Jun-17	Sunny	Moderate	08:33		Surface	1.0	28.9 29.0	29.0	8.0	8.0	22.1 22.1	22.3	92.0 85.6	87.2	6.7 5.8	5.9		4.8 7.9	7.7		10.1 5.6	5.7	
				4.4		0.0	29.0	0.0	8.0	0.0	22.4 0.0	0.0	88.7 0.0	0.0	6.0 0.0	0.0	5.9	7.5 0.0		8.5	5.8	-	5.6
				4.1	Middle		0.0 28.6		7.9		0.0 24.7		0.0 84.7		0.0 5.7			0.0 9.4	0.0	8.5	5.0		5.0
14 lup 17	Rojav	Moderate	10:10		Bottom	3.1	28.5	28.6	7.9	7.9	24.7	24.7	83.1	83.9	5.6	5.7	5.7	9.1	9.3		5.9	5.5	<u> </u>
14-Jun-17	Rainy	Moderate	10:10		Surface	1.0	28.1 28.1	28.1	7.8 7.8	7.8	17.6 17.6	17.6	87.2 87.5	87.4	6.2 6.2	6.2	6.2	8.1 8.2	8.2		6.9 7.1	7.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.4	-	-	7.7
					Bottom	3.3	28.1 28.1	28.1	7.8 7.8	7.8	19.2 19.1	19.2	87.0 87.0	87.0	6.1 6.1	6.1	6.1	8.4 8.5	8.5		7.9 8.6	8.3	
16-Jun-17	Cloudy	Moderate	11:14		Surface	1.0	28.5 28.6	28.6	7.9 7.9	7.9	16.8 16.7	16.8	86.1 85.7	85.9	6.1 6.1	6.1	6.1	8.7 8.8	8.8		6.8 7.2	7.0	ļ
				4.0	Middle	-		-	-	-	-	-		-		-	6.1	-	-	8.8	-	-	7.0
					Bottom	3.0	28.5 28.4	28.5	7.9 7.9	7.9	17.2 17.7	17.4	86.6 84.2	85.4	6.1 5.9	6.0	6.0	8.8 8.7	8.8		7.0 7.0	7.0	
19-Jun-17	Cloudy	Moderate	13:07		Surface	1.0	28.2 28.2	28.2	7.7 7.8	7.8	11.6 11.6	11.6	72.5	74.7	5.3 5.5	5.4		8.1	8.2		6.0 6.1	6.1	
				4.2	Middle	-	- 28.2	-	- 7.8	-	- 11.6	-	76.8	-	- 5.5	-	5.4	8.2	-	8.2	- 6.1	-	6.0
					Bottom	3.2	28.0	28.0	7.8	7.7	14.7	14.8	73.7	73.0	5.4	5.3	5.3	8.2	8.2		6.2	5.9	
21-Jun-17	Sunny	Moderate	15:30		Surface	1.0	28.0 28.2	28.1	7.7	7.9	14.9 10.3	10.8	72.2 76.5	76.2	5.2 5.5	5.5	0	8.1 8.0	7.8		5.6 8.9	9.2	
				4.0		1.0	27.9	20.1	7.9		11.2	10.0	75.9 -	10.2	5.5 -	3.3	5.5	7.6			9.4		
				4.0	Middle	-	27.9	-	- 7.9	-	13.2	-	76.7	-	- 5.5	-		7.6	-	7.7	8.9	-	9.0
					Bottom	3.0	27.7	27.8	7.9	7.9	14.0	13.6	75.3	76.0	5.4	5.5	5.5	7.4	7.5		8.7	8.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	ŀ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	18:17		Surface	1.0	28.5 28.5	28.5	7.9 8.0	8.0	14.2 13.8	14.0	77.3 77.4	77.4	5.5 5.5	5.5	5.5	15.2 15.1	15.2		8.5 8.4	8.5	
				4.3	Middle			-		-	-	-	-			-	5.5	-	-	15.3	-	-	10.0
					Bottom	3.3	28.3 28.8	28.5	7.9 8.1	8.0	13.2 13.9	13.5	76.5 76.2	76.4	5.4 5.4	5.4	5.4	15.3 15.3	15.3		11.2 11.7	11.5	
26-Jun-17	Cloudy	Moderate	08:40		Surface	1.0	28.1 28.2	28.2	8.0 8.0	8.0	14.7 14.7	14.7	74.8 75.1	75.0	5.4 5.4	5.4	5.4	9.3 9.3	9.3		8.0 8.3	8.2	
				4.1	Middle			-		-	-	-	-			-	5.4	-	-	9.2	-	-	8.4
					Bottom	3.1	28.0 28.1	28.0	8.0 8.0	8.0	16.5 16.3	16.4	74.0 75.2	74.6	5.3 5.4	5.4	5.4	9.0 9.0	9.0		7.6 9.5	8.6	
28-Jun-17	Fine	Moderate	10:30		Surface	1.0	27.8 27.7	27.8	7.6 7.6	7.6	15.0 14.9	15.0	74.1 73.8	74.0	5.5 5.5	5.5	5.5	8.5 8.5	8.5		6.3 6.8	6.6	I
				4.3	Middle	•		-		-	-	-		-		-	5.5	-	-	8.5	-	-	7.3
					Bottom	3.3	27.3 27.7	27.5	7.6 7.6	7.6	20.2 19.8	20.0	74.7 74.4	74.6	5.4 5.4	5.4	5.4	8.6 8.4	8.5		8.0 8.0	8.0	
30-Jun-17	Fine	Moderate	11:59		Surface	1.0	28.6 28.7	28.7	7.7 7.7	7.7	14.5 15.6	15.0	73.0 72.9	73.0	5.3 5.3	5.3	5.3	4.0 3.7	3.9		5.7 6.8	6.3	
				4.0	Middle	-		-		-	-	-		-		-	5.5	-	-	4.6	-	-	7.4
					Bottom	3.0	28.4 28.3	28.4	7.7 7.7	7.7	17.8 17.7	17.8	72.7 72.6	72.7	5.3 5.3	5.3	5.3	5.0 5.3	5.2		8.1 8.9	8.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	08:11		Surface	1.0	27.8 27.7	27.8	8.0 8.0	8.0	20.5 22.0	21.2	97.1 97.8	97.5	6.8 6.8	6.8		7.3 7.4	7.4		2.8 2.6	2.7	
				4.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	7.5	-	-	2.8
					Bottom	3.5	27.7	27.7	8.0	8.0	21.8	21.6	98.4	98.5	6.9	6.9	6.9	7.5	7.6		2.8	2.9	
5-Jun-17	Fine	Moderate	09:50				27.7 28.8		8.0 8.1		21.3		98.5 100.6		6.9 7.0			7.6 4.5			3.0 1.8		
3-3un-17	rine	Woderate	09.30		Surface	1.0	28.7	28.7	8.1	8.1	20.4	20.5	99.7	100.2	7.0	7.0	7.0	4.6	4.6		1.8	1.8	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.7	-	-	2.1
					Bottom	3.2	28.6 28.7	28.6	8.1 8.1	8.1	21.3 21.4	21.3	98.1 99.1	98.6	6.8 6.9	6.9	6.9	4.7 4.6	4.7		2.2 2.3	2.3	
7-Jun-17	Sunny	Moderate	10:57		Surface	1.0	29.4 29.4	29.4	8.0 8.0	8.0	20.4 20.4	20.4	97.0 96.1	96.6	6.7 6.6	6.6	6.6	5.2 5.2	5.2		4.9 5.6	5.3	
				4.0	Middle	-	-	-	-	-		-		-		-	0.0	-	-	5.5	-		5.6
					Bottom	3.0	28.6 28.7	28.6	8.0 8.0	8.0	22.4 21.9	22.2	95.4 95.6	95.5	6.6 6.5	6.6	6.6	5.6 5.7	5.7		5.3 6.4	5.9	
9-Jun-17	Cloudy	Moderate	12:29		Surface	1.0	29.0 28.9	28.9	8.0 8.0	8.0	21.2 21.3	21.2	99.2 97.1	98.2	6.8 6.7	6.7		6.4 6.7	6.6		9.6 8.2	8.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	6.4	-	-	9.4
					Bottom	3.1	28.6	28.7	8.0	8.0	23.3 23.3	23.3	95.8	97.0	6.5 6.7	6.6	6.6	6.0 6.2	6.1		9.1 10.7	9.9	
12-Jun-17	-	-	-		Surface	-	28.8	_	- 8.0	_	- 23.3	_	98.1	-	-	_		- 6.2	-		- 10.7	-	
				_	Middle	_	-	_	-	_	-	_	-	_	-	_	-	-	_	<u>-</u>	-	_	=
					Bottom	_	-	_	-	_	-	-	-	_	-	_	_	-	_	_	-	_	-
44 1 47	D-1	Madagas	45.50		Dottom		-		-		- 47.0		-		-			-			-		
14-Jun-17	Rainy	Moderate	15:53		Surface	1.0	28.2 28.3	28.3	8.0 8.0	8.0	17.6 17.2	17.4	91.9 92.3	92.1	6.5 6.5	6.5	6.5	7.2 7.2	7.2		5.7 5.2	5.5	
				4.0	Middle	-	-	-	-	-		-		-		-		-	-	7.4	-	-	5.2
					Bottom	3.0	28.2 28.2	28.2	8.0 8.0	8.0	18.6 18.2	18.4	89.4 91.3	90.4	6.3 6.4	6.4	6.4	7.5 7.4	7.5		5.2 4.5	4.9	
16-Jun-17	Cloudy	Moderate	17:06		Surface	1.0	28.7 28.7	28.7	8.1 8.1	8.1	14.6 14.6	14.6	94.9 96.6	95.8	6.8 6.9	6.8	6.8	8.4 7.9	8.2		5.0 5.8	5.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	8.3	-	-	5.3
					Bottom	3.1	28.7 28.7	28.7	8.0 8.0	8.0	15.9 16.2	16.1	96.0 94.9	95.5	6.8 6.7	6.8	6.8	8.3 8.2	8.3		5.4 4.9	5.2	
19-Jun-17	Rainy	Moderate	08:56		Surface	1.0	28.1 28.1	28.1	7.8 7.7	7.8	10.5 11.0	10.7	74.8 73.5	74.2	5.4 5.3	5.4		7.3 7.4	7.4		4.5 5.8	5.2	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	7.3	-	-	5.3
					Bottom	3.2	28.0	28.1	7.7	7.7	14.2	14.8	73.0	72.8	5.4	5.3	5.3	7.0	7.2		5.1	5.4	
21-Jun-17	Cloudy	Moderate	10:24		Surface	1.0	28.1	27.7	7.7	7.8	15.5 14.0	14.0	72.5 74.4	74.0	5.3 5.5	5.5		6.7	6.8		5.6	5.9	
				4.2	Middle	_	27.7		7.7	-	14.0		73.5		5.5 -	_	5.5	6.8	-	6.8	6.4	-	7.1
					Bottom	3.2	27.7	27.7	7.8	7.8	14.1	14.7	74.9	74.4	5.5	5.5	5.5	6.7	6.8	0.0	8.7	8.3	
					BOILOITI	J.Z	27.7	21.1	7.7	1.0	15.4	14.7	73.9	74.4	5.4	5.5	J.J	6.8	0.0		7.8	0.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:13		Surface	1.0	28.6 28.5	28.5	7.8 7.9	7.8	13.2 13.4	13.3	76.3 76.7	76.5	5.2 5.2	5.2	5.2	7.2 7.1	7.2		3.9 4.9	4.4	
				4.1	Middle	-		-		-	-	-	-			-	5.2	-	-	7.4	-	-	5.2
					Bottom	3.1	28.0 27.8	27.9	7.8 7.9	7.8	16.0 16.6	16.3	74.5 74.7	74.6	5.2 5.2	5.2	5.2	7.5 7.4	7.5		5.7 6.1	5.9	
26-Jun-17	Cloudy	Moderate	14:24		Surface	1.0	29.0 29.0	29.0	7.9 7.9	7.9	12.6 12.7	12.6	76.3 74.6	75.5	5.6 5.4	5.5	5.5	7.3 7.4	7.4		5.0 6.1	5.6	
				4.2	Middle	-		-		-	-	-	-			-	5.5	-	-	8.0	-	-	5.0
					Bottom	3.2	28.5 28.5	28.5	7.8 7.9	7.9	15.8 15.4	15.6	73.5 75.7	74.6	5.3 5.5	5.4	5.4	8.4 8.7	8.6		3.8 4.8	4.3	
28-Jun-17	Fine	Moderate	16:12		Surface	1.0	29.2 29.2	29.2	7.8 7.8	7.8	15.1 15.1	15.1	76.9 80.5	78.7	5.5 5.7	5.6	5.6	3.8 3.9	3.9		6.5 5.2	5.9	
				4.3	Middle	-		-		-	-	-		-		-	5.0	-	-	3.9	-	-	6.2
					Bottom	3.3	29.2 28.8	29.0	7.8 7.8	7.8	15.2 15.4	15.3	78.6 75.8	77.2	5.6 5.4	5.5	5.5	3.9 3.9	3.9		6.4 6.3	6.4	
30-Jun-17	Fine	Moderate	17:35		Surface	1.0	29.2 29.5	29.4	7.9 7.9	7.9	12.6 12.5	12.6	76.7 75.9	76.3	5.4 5.4	5.4	5.4	3.3 3.5	3.4	_	6.5 5.6	6.1	
				4.3	Middle	-	1 1	-	1 1	-	-	-		-		-	5.4	-	-	3.5	-	-	6.0
					Bottom	3.3	28.9 28.2	28.5	7.8 7.8	7.8	17.5 18.0	17.8	76.3 75.3	75.8	5.3 5.3	5.3	5.3	3.4 3.7	3.6		5.6 5.9	5.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	13:26		Surface	1.0	27.8 27.7	27.8	8.0 8.0	8.0	20.8 21.3	21.1	96.0 95.2	95.6	6.7 6.7	6.7		6.7 6.6	6.7		4.3 3.8	4.1	
				4.5	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	7.4	-	-	4.1
					Bottom	3.5	27.7 27.7	27.7	8.0	8.0	22.2 21.8	22.0	95.6 95.0	95.3	6.7	6.7	6.7	8.1 8.0	8.1		4.3	4.1	
5-Jun-17	Fine	Moderate	17:26		Surface	1.0	29.5	29.5	8.1	8.1	20.9	20.5	110.9	111.1	7.6	7.6		3.9	3.9		2.8	2.8	
				4.0		1.0	29.5		8.1		20.1		111.3		7.7	7.0	7.6	3.9	3.9	4.0	2.7		
				4.2	Middle		29.2	-	8.1	-	21.8	-	110.8	-	7.6			4.0	-	4.0	2.4	-	2.8
7 1 47	Common	Madasata	40.04		Bottom	3.2	29.5	29.4	8.1 8.2	8.1	21.1	21.5	110.5	110.7	7.6	7.6	7.6	4.0	4.0		3.2	2.8	
7-Jun-17	Sunny	Moderate	19:01		Surface	1.0	29.9 29.9	29.9	8.2	8.2	20.3 20.3	20.3	113.2 113.9	113.6	7.8 7.9	7.9	7.9	4.7	4.7		3.9 4.4	4.2	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.8	-	-	5.0
					Bottom	3.1	29.6 29.5	29.6	8.1 8.1	8.1	20.8 20.9	20.8	113.0 113.2	113.1	7.8 7.7	7.7	7.7	4.7 4.8	4.8		6.1 5.2	5.7	
9-Jun-17	Cloudy	Moderate	05:49		Surface	1.0	28.9 28.9	28.9	8.0 8.0	8.0	21.4 21.2	21.3	92.3 93.2	92.8	6.7 6.8	6.7		5.8 5.9	5.9		8.4 8.2	8.3	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	6.0	-	-	8.1
					Bottom	2.9	28.7 28.8	28.7	7.9	8.0	24.2 24.0	24.1	94.3 92.5	93.4	6.8 6.7	6.7	6.7	6.2 5.9	6.1		8.4 7.4	7.9	
12-Jun-17	Sunny	Moderate	07:19		Surface	1.0	29.4	29.4	8.0	8.0	20.1	20.1	92.2	91.6	6.3	6.3		7.3	7.4		3.7	4.1	
				4.2	Middle	0.0	29.3 0.0	0.0	8.0	_	20.2 0.0	0.0	91.0 0.0	0.0	6.3 0.0	0.0	6.3	7.4 0.0	0.0	8.1	4.4	_	3.8
					Bottom	3.2	0.0 28.9	29.1	8.0	8.0	0.0 22.4	22.3	0.0 92.6	92.0	0.0 6.3	6.2	6.2	0.0 8.5	8.7		3.6	3.5	
14-Jun-17	Rainy	Moderate	08:39			1.0	29.2 28.0	28.0	7.9 7.8	7.8	22.2 19.7	19.7	91.3 84.5	84.6	6.2 5.9		0.2	8.8 10.6	10.6		3.4 11.8		
	,				Surface	1.0	28.0	28.0	7.8		19.7	19.7	84.7	84.6	6.0	6.0	6.0	10.5			11.0	11.4	
				4.1	Middle	-	28.0	-	7.8	-	- 19.8	-	- 84.1	-	- 5.9	-		- 10.7	-	10.7	- 12.1	-	11.4
10.1.1.	0: :		10.00		Bottom	3.1	28.0	28.0	7.8	7.8	20.7	20.3	84.2	84.2	5.9	5.9	5.9	10.8	10.8		10.7	11.4	
16-Jun-17	Cloudy	Moderate	10:00		Surface	1.0	28.6 28.6	28.6	7.8 7.8	7.8	16.3 16.2	16.2	90.8 94.5	92.7	6.4 6.7	6.6	6.6	7.2 7.2	7.2		3.4 4.0	3.7	
				4.1	Middle	-	-	-	-	-		-		-		-		-	-	7.2	-	-	3.7
					Bottom	3.1	28.6 28.6	28.6	7.8 7.8	7.8	16.4 16.4	16.4	86.6 88.6	87.6	6.1 6.3	6.2	6.2	7.3 7.1	7.2		3.2 4.1	3.7	
19-Jun-17	Cloudy	Moderate	14:31		Surface	1.0	28.3 28.3	28.3	7.7 7.7	7.7	10.5 10.4	10.5	74.8 74.0	74.4	5.5 5.4	5.5		8.2 8.6	8.4		7.4 6.6	7.0	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	8.3	-	-	7.4
					Bottom	3.2	28.1	28.1	7.6	7.6	13.2	13.2	74.7	74.6	5.4	5.4	5.4	8.2	8.2		8.0	7.7	
21-Jun-17	Sunny	Moderate	16:50		Surface	1.0	28.2 27.9	27.9	7.6 7.8	7.8	13.2 13.6	13.6	74.4 77.7	76.6	5.4 5.8	5.7		8.2 6.7	6.8		7.4 4.4	4.7	
				4.3	Middle		27.9	-	7.8	-	13.6	-	75.5 -	-	5.6 -		5.7	6.8	-	7.0	5.0	-	5.1
				7.5			27.7		7.8		15.4		72.8		5.4	-	F.0	7.1		7.0	5.7		J.1
					Bottom	3.3	27.8	27.7	7.8	7.8	15.7	15.6	76.9	74.9	5.7	5.6	5.6	7.0	7.1		5.2	5.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ŀ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:37		Surface	1.0	28.7 28.8	28.7	7.7 7.7	7.7	10.8 10.9	10.9	75.6 75.4	75.5	5.4 5.3	5.4	5.4	13.7 13.8	13.8		8.9 8.8	8.9	
				4.2	Middle		-	-	-	-	-	-	-	-	-		5.4	-	-	14.0	-	-	9.1
					Bottom	3.2	28.5 28.6	28.5	7.7 7.7	7.7	13.1 12.5	12.8	74.7 74.9	74.8	5.3 5.3	5.3	5.3	14.1 14.2	14.2		8.8 9.6	9.2	
26-Jun-17	Cloudy	Moderate	07:21		Surface	1.0	28.0 28.0	28.0	8.0 8.0	8.0	16.7 16.7	16.7	79.5 78.1	78.8	5.7 5.6	5.7	5.7	8.4 8.5	8.5		6.5 6.2	6.4	
				4.2	Middle			-		-	-	-	-			-	5.7	-	-	8.6	-	-	6.6
					Bottom	3.2	27.9 27.8	27.9	8.0 8.0	8.0	17.0 17.2	17.1	76.9 76.4	76.7	5.5 5.5	5.5	5.5	8.5 8.9	8.7		6.7 6.8	6.8	
28-Jun-17	Fine	Moderate	09:00		Surface	1.0	28.1 27.8	27.9	7.6 7.6	7.6	16.1 16.9	16.5	70.8 74.5	72.7	5.1 5.3	5.2	5.2	11.8 11.4	11.6		15.2 15.7	15.5	I
				4.3	Middle	-		-		-	-	-		-		-	5.2	-	-	11.6	-	-	18.0
					Bottom	3.3	27.7 27.5	27.6	7.6 7.6	7.6	19.0 19.0	19.0	70.8 71.7	71.3	5.0 5.1	5.1	5.1	11.5 11.5	11.5		19.9 21.0	20.5	
30-Jun-17	Fine	Moderate	10:40		Surface	1.0	28.5 28.5	28.5	7.8 7.8	7.8	17.3 17.3	17.3	76.9 74.8	75.9	5.6 5.5	5.5	5.5	4.3 4.4	4.4		5.4 6.6	6.0	
				4.1	Middle	-	-	-		-	-	-		-		-	5.5	-	-	4.5	-	-	7.5
					Bottom	3.1	28.4 28.4	28.4	7.8 7.8	7.8	17.4 17.5	17.5	75.8 75.9	75.9	5.5 5.5	5.5	5.5	4.4 4.5	4.5		7.9 9.8	8.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	06:35		Surface	1.0	27.8 27.8	27.8	8.3 8.3	8.3	22.7 22.6	22.6	97.7 97.9	97.8	6.8 6.8	6.8		3.8 3.8	3.8		2.4 2.3	2.4	
				6.7	Middle	3.4	27.8 27.8	27.8	8.3 8.3	8.3	22.9 22.7	22.8	97.7 97.8	97.8	6.8 6.8	6.8	6.8	3.4 3.7	3.6	3.8	2.8	2.8	2.9
					Bottom	5.7	27.8 27.8	27.8	8.3 8.3	8.3	23.0	23.1	97.4 97.5	97.5	6.7 6.7	6.7	6.7	3.8	3.9		3.1	3.5	
5-Jun-17	Fine	Moderate	09:39		Surface	1.0	28.2	28.3	8.2	8.2	24.6	23.8	92.6	93.4	6.3	6.4		3.6	3.6		8.6	8.7	
				6.6	Middle	3.3	28.5 28.0	28.1	8.2 8.2	8.2	22.9 24.7	24.8	94.2 92.0	91.9	6.4	6.3	6.4	3.5	3.4	3.5	8.7 6.9	7.2	7.6
					Bottom	5.6	28.1 27.5	27.7	8.2 8.2	8.2	24.9 27.7	27.3	91.8 90.9	91.4	6.3 6.2	6.2	6.2	3.3	3.4		7.4 6.8	6.8	
7-Jun-17	Sunny	Moderate	11:06		Surface	1.0	27.9 29.3	29.3	8.2 8.3	8.3	27.0	20.6	91.8 103.0	102.8	7.0	7.0		3.4 4.3	4.4		6.8 4.8	4.7	
				0.0			29.3 28.8		8.3 8.3		20.8 22.5		102.5 101.0		7.0 6.8		6.9	4.4		4.0	4.5 4.0		4.5
				6.6	Middle	3.3	28.8 28.3	28.8	8.3 8.3	8.3	22.7 25.5	22.6	101.6 100.0	101.3	6.9 6.8	6.8		4.3 4.2	4.4	4.3	4.0	4.0	4.5
9-Jun-17	Cloudy	Moderate	07:11		Bottom	5.6	28.7 29.1	28.5	8.3 8.4	8.3	24.5 21.7	25.0	100.8 96.5	100.4	6.9 6.5	6.8	6.8	4.2 7.5	4.2		4.5 5.9	4.7	
3-Juli-17	Cloudy	Woderate	07.11		Surface	1.0	29.1	29.1	8.4 8.3	8.4	21.9	21.8	98.4 93.9	97.5	6.7 6.4	6.6	6.6	7.6 7.6	7.6		5.6 6.8	5.8	
				2.0	Middle	1.0	29.2	28.9	8.4	8.4	23.3	23.6	97.4	95.7	6.6	6.5		7.8	7.7	7.6	7.6	7.2	7.0
					Bottom	1.0	29.3 29.3	29.3	8.4 8.4	8.4	21.6 21.6	21.6	100.4 101.5	101.0	6.8 6.9	6.9	6.9	7.5 7.5	7.5		8.4 7.4	7.9	
12-Jun-17	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-		-	-	-		-		-		-	-	=	-	-	=
					Bottom	-	-	-		-	-	-		-		-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	16:28		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	18.8 18.8	18.8	88.1 88.0	88.1	6.2 6.2	6.2	0.0	6.6 6.5	6.6		5.9 4.4	5.2	
				6.3	Middle	3.2	28.3 28.3	28.3	8.2 8.2	8.2	19.0 18.9	18.9	87.8 87.7	87.8	6.1 6.2	6.1	6.2	6.6 6.8	6.7	6.7	6.2 5.0	5.6	5.6
					Bottom	5.3	28.3 28.4	28.4	8.2 8.2	8.2	19.2 19.0	19.1	87.2 87.7	87.5	6.1 6.1	6.1	6.1	6.8 6.8	6.8		5.7 6.3	6.0	
16-Jun-17	Cloudy	Moderate	17:59		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	16.5 16.0	16.3	90.5 90.0	90.3	6.4 6.4	6.4		6.8 6.7	6.8		5.8 5.6	5.7	
				6.4	Middle	3.2	28.6 28.6	28.6	8.3 8.3	8.3	17.3 17.5	17.4	90.3 89.0	89.7	6.4 6.3	6.3	6.4	6.8	6.8	6.8	5.5 5.7	5.6	5.7
					Bottom	5.4	28.6	28.6	8.3	8.3	18.4	18.4	88.0	89.2	6.2	6.2	6.2	6.8	6.9		6.2	5.8	
19-Jun-17	Rainy	Moderate	07:54		Surface	1.0	28.7	28.1	8.3 8.1	8.1	18.4	10.8	90.3 73.5	73.7	5.3	5.3		7.9	7.9		7.9	8.2	
				6.7	Middle	3.4	28.1 27.8	27.8	8.1 8.1	8.1	10.9 12.2	13.1	73.8 73.3	73.2	5.3 5.3	5.3	5.3	7.8 6.8	6.7	7.0	7.1	7.5	7.7
				0	Bottom	5.7	27.7 27.2	27.0	8.1 8.0	8.0	14.0 24.9	24.3	73.1 74.0	74.1	5.3 5.3	5.3	5.3	6.6 6.0	6.3		7.8 6.7	7.3	
21-Jun-17	Cloudy	Moderate	09:56		Surface	1.0	26.9 27.6	27.6	8.0 7.9	7.9	23.8 15.3	15.2	74.2 76.1	76.2	5.4 5.5		0.0	6.5 7.1			7.9 8.0	8.1	
				0.0			27.6 27.5		7.9 7.9		15.1 16.6		76.3 75.9		5.5 5.4	5.5	5.5	7.1 7.0	7.1	7.4	8.1 8.3		
				6.8	Middle	3.4	27.5 27.4	27.5	7.9 7.9	7.9	16.3 18.6	16.4	76.2 75.2	76.1	5.4 5.4	5.4		7.2	7.1	7.1	8.7	8.5	8.8
					Bottom	5.8	27.3	27.4	7.9	7.9	18.9	18.8	74.6	74.9	5.4	5.4	5.4	6.9	7.0		9.7	9.9	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:22		Surface 1.	28.3 27.9	28.1	8.0 8.0	8.0	15.7 16.2	16.0	77.0 77.6	77.3	5.3 5.4	5.4	5.4	6.6 6.7	6.7		10.5 10.9	10.7	
				6.4	Middle 3.	2 27.6 27.7	27.6	7.9 8.0	8.0	17.7 17.6	17.7	76.6 75.6	76.1	5.4 5.4	5.4	5.4	6.5 6.6	6.6	6.6	9.3 9.4	9.4	10.1
					Bottom 5.	4 27.3 27.8	27.6	7.9 7.9	7.9	19.3 19.1	19.2	75.1 76.2	75.7	5.3 5.4	5.3	5.3	6.5 6.4	6.5		10.9 9.4	10.2	
26-Jun-17	Cloudy	Moderate	15:11		Surface 1.	0 28.4 28.6	28.5	8.0 8.0	8.0	16.5 16.5	16.5	78.3 78.5	78.4	5.5 5.6	5.5	5.5	4.5 4.2	4.4		6.8 6.4	6.6	
				6.1	Middle 3.	1 28.1 28.1	28.1	8.0 8.0	8.0	17.3 17.0	17.2	77.5 78.4	78.0	5.5 5.5	5.5	0.0	4.7 4.6	4.7	4.6	4.8 5.0	4.9	5.8
					Bottom 5.	1 28.1 27.3	27.7	8.0 8.0	8.0	17.9 18.6	18.3	77.0 77.1	77.1	5.4 5.4	5.4	5.4	4.7 4.6	4.7		6.3 5.3	5.8	
28-Jun-17	Fine	Moderate	17:03		Surface 1.	28.7 28.7	28.7	8.1 8.1	8.1	18.3 18.4	18.3	82.8 82.2	82.5	5.8 5.7	5.8	5.8	4.3 4.3	4.3		6.5 7.8	7.2	
				6.6	Middle 3.	28.7	28.7	8.1 8.1	8.1	18.4 18.4	18.4	82.1 82.1	82.1	5.7 5.7	5.7	3.0	4.6 4.5	4.6	4.6	6.3 6.5	6.4	7.2
					Bottom 5.	6 28.7 28.7	28.7	8.1 8.1	8.1	18.4 18.4	18.4	81.9 82.1	82.0	5.7 5.7	5.7	5.7	4.8 4.7	4.8		8.1 7.9	8.0	
30-Jun-17	Fine	Moderate	18:26		Surface 1.	0 29.6 29.6	29.6	8.3 8.3	8.3	14.7 14.6	14.6	94.4 91.0	92.7	6.6 6.4	6.5	6.4	3.4 3.5	3.5		3.4 4.1	3.8	
				6.6	Middle 3.	29.1	29.3	8.3 8.2	8.3	15.0 16.1	15.6	92.6 87.9	90.3	6.5 6.2	6.3	0.4	3.7 3.8	3.8	3.7	5.5 4.1	4.8	4.6
					Bottom 5.	6 26.9 27.8	27.4	8.2 8.3	8.2	22.5 20.8	21.6	82.8 90.9	86.9	5.8 6.4	6.1	6.1	3.8 3.8	3.8		5.5 5.1	5.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	14:20		Surface	1.0	28.0 28.0	28.0	8.3 8.3	8.3	21.7 21.7	21.7	98.1 98.3	98.2	6.8 6.8	6.8		5.6 5.6	5.6		3.8 3.6	3.7	
				6.7	Middle	3.4	27.9 27.9	27.9	8.3 8.3	8.3	21.8 22.0	21.9	97.8 97.8	97.8	6.8 6.8	6.8	6.8	5.9 6.0	6.0	5.6	4.6 3.8	4.2	3.9
					Bottom	5.7	27.8	27.8	8.3	8.3	22.5	22.5	97.6	97.6	6.8	6.8	6.8	5.2	5.2		3.4	3.7	
5-Jun-17	Fine	Moderate	17:47				27.8 28.8		8.3 8.3		22.6 21.2	04.0	97.6 102.3	400.5	6.8 7.0			5.2 3.3			3.9 6.0		
o oun m		Moderate			Surface	1.0	28.9	28.9	8.3 8.3	8.3	21.2	21.2	104.6 102.6	103.5	7.2	7.1	7.1	3.2	3.3		5.2	5.6	,
				6.6	Middle	3.3	28.5	28.6	8.2	8.3	21.6	21.6	100.1	101.4	6.9	7.0		3.2	3.3	3.3	7.9	7.1	6.4
					Bottom	5.6	28.6 28.2	28.4	8.3 8.2	8.2	22.4 22.7	22.5	102.7 100.2	101.5	7.0 6.9	7.0	7.0	3.3 3.3	3.3		6.6 6.6	6.6	
7-Jun-17	Sunny	Moderate	19:14		Surface	1.0	30.1 30.2	30.1	8.5 8.5	8.5	20.1 20.9	20.5	128.3 132.3	130.3	8.7 8.9	8.8		7.7 7.4	7.6		5.6 5.2	5.4	
				6.8	Middle	3.4	29.9 30.0	29.9	8.5 8.5	8.5	21.3 21.2	21.2	125.5 131.6	128.6	8.5 8.9	8.7	8.8	7.5 7.5	7.5	7.6	5.5 5.3	5.4	7.0
					Bottom	5.8	29.4	29.7	8.5	8.5	21.9	21.6	123.0	126.7	8.3	8.5	8.5	7.5	7.6		9.7	10.1	
9-Jun-17	Cloudy	Moderate	11:41		Surface	1.0	30.0 29.1	29.1	8.5 8.4	8.4	21.3 21.4	21.4	130.3 99.7	98.9	8.8 6.8	6.7		7.6 8.2	8.2		10.5 6.7	6.7	
				2.0	Middle	1.0	29.1 29.0	29.1	8.4 8.4	8.4	21.4 22.5	22.3	98.1 97.5	98.3	6.7	6.7	6.7	8.2 8.2	8.2	7.9	6.6	6.0	6.9
				2.0			29.1 29.2		8.4 8.4		22.0 21.7		99.1 103.2		6.8 7.0			8.1 7.5		7.9	5.6 8.2		0.9
40.147	0	Ma Israela	00.50		Bottom	1.0	29.2	29.2	8.4	8.4	21.7	21.7	103.4	103.3	7.0	7.0	7.0	7.1	7.3		7.7	8.0	<u> </u>
12-Jun-17	Sunny	Moderate	06:56		Surface	1.0	28.9 28.9	28.9	8.3 8.3	8.3	21.3 21.4	21.4	89.8 89.5	89.7	6.2 6.1	6.1	6.1	3.0 3.0	3.0		2.5 2.9	2.7	
				6.6	Middle	3.3	28.4 28.5	28.5	8.3 8.3	8.3	23.6 23.5	23.6	89.1 89.1	89.1	6.0 6.0	6.0	-	3.2 3.1	3.2	3.1	2.7 3.1	2.9	2.7
					Bottom	5.6	28.3 28.6	28.4	8.3 8.3	8.3	25.3 25.5	25.4	88.0 88.2	88.1	6.0 6.0	6.0	6.0	3.1 3.1	3.1		2.5 2.3	2.4	
14-Jun-17	Rainy	Moderate	08:11		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	17.1 17.2	17.2	83.6 84.6	84.1	5.9 6.0	6.0		5.8 5.8	5.8		6.9 6.4	6.7	
				6.5	Middle	3.3	28.2	28.2	8.2	8.2	17.7	17.7	83.6	82.4	5.9	5.8	5.9	5.7	5.8	5.8	5.5	5.6	6.8
					Bottom	5.5	28.1 28.1	27.9	8.2 8.2	8.2	17.7 19.6	20.4	81.1 83.5	82.3	5.7 5.9	5.8	5.8	5.8 5.7	5.8		5.7 8.8	8.2	
16-Jun-17	Cloudy	Moderate	09:56				27.7 28.7		8.2 8.1	_	21.2 16.7	_	81.0 83.4		5.7 5.9		0.0	5.8 6.1			7.5 7.2		
					Surface	1.0	28.7 28.6	28.7	8.1 8.1	8.1	16.7 17.3	16.7	83.8 81.6	83.6	5.9 5.7	5.9	5.9	6.2 6.1	6.2		7.5 6.4	7.4	
				6.3	Middle	3.2	28.6	28.6	8.1	8.1	17.2 19.1	17.3	82.9 82.8	82.3	5.8	5.8		6.1 5.7	6.1	6.1	6.8	6.6	6.9
					Bottom	5.3	28.4 28.3	28.4	8.1 8.1	8.1	20.5	19.8	80.9	81.9	5.8 5.6	5.7	5.7	6.1	5.9		6.5	6.7	
19-Jun-17	Cloudy	Moderate	15:43		Surface	1.0	28.4 28.3	28.3	8.1 8.1	8.1	14.4 15.3	14.8	71.3 71.0	71.2	5.1 5.1	5.1	5.1	6.6 7.0	6.8		6.2 5.8	6.0	1
				6.4	Middle	3.2	27.9 27.9	27.9	8.1 8.1	8.1	17.0 18.0	17.5	70.6 70.9	70.8	5.1 5.1	5.1	5.1	6.7 6.7	6.7	6.7	5.1 5.4	5.3	5.5
					Bottom	5.4	27.7 27.9	27.8	8.0 8.0	8.0	20.0 19.9	20.0	71.3 70.4	70.9	5.1 5.0	5.1	5.1	6.8	6.5		5.2 5.3	5.3	
21-Jun-17	Sunny	Moderate	17:56		Surface	1.0	27.9	27.9	8.0	8.0	14.3	14.3	74.5	74.0	5.4	5.3		4.8	4.8		4.7	4.4	
				6.5	Middle	3.3	27.9 27.3	27.3	8.0	8.0	14.2 16.4	16.6	73.4 72.6	72.4	5.3 5.2	5.2	5.3	4.8 5.7	5.8	5.5	3.2	3.2	4.3
				0.5			27.2 27.3		8.0 8.0		16.8 21.1		72.1 72.4		5.1 5.2			5.9 5.8		5.5	3.1 4.6		4.0
					Bottom	5.5	27.0	27.2	8.0	8.0	21.3	21.2	70.5	71.5	5.0	5.1	5.1	5.8	5.8		5.8	5.2	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Temp	erature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	19:56		Surface 1	.0 28.6 28.6	28.6	8.0 8.0	8.0	16.3 15.9	16.1	81.5 81.4	81.5	5.7 5.7	5.7	5.7	6.9 6.9	6.9		6.0 7.1	6.6	
				6.4	Middle 3	28.1 28.0	28.1	7.9 7.9	7.9	17.6 17.7	17.7	80.8 80.6	80.7	5.6 5.7	5.6	3.7	6.8 6.8	6.8	6.9	7.9 7.4	7.7	7.6
					Bottom 5	28.1 27.8	27.9	7.9 7.9	7.9	20.1 19.9	20.0	79.7 79.2	79.5	5.6 5.6	5.6	5.6	6.8 6.9	6.9		9.0 8.0	8.5	
26-Jun-17	Cloudy	Moderate	06:50		Surface 1	.0 27.5 27.3	27.4	8.0 8.0	8.0	20.8 21.0	20.9	76.3 75.6	76.0	5.5 5.5	5.5	5.5	3.7 4.1	3.9		6.1 5.5	5.8	
				6.5	Middle 3	26.8 26.6	26.7	8.0 8.0	8.0	23.9 24.0	23.9	75.7 75.4	75.6	5.4 5.4	5.4	0.0	4.0 4.1	4.1	4.1	8.5 6.6	7.6	6.6
					Bottom 5	26.5 26.1	26.3	8.0 8.0	8.0	30.2 30.4	30.3	75.2 74.7	75.0	5.3 5.3	5.3	5.3	4.2 4.3	4.3		5.4 7.3	6.4	
28-Jun-17	Fine	Moderate	08:27		Surface 1	.0 28.3 28.2	28.3	8.0 8.0	8.0	14.7 14.6	14.6	72.1 72.2	72.2	5.2 5.2	5.2	5.2	4.1 4.1	4.1		3.8 5.0	4.4	
				6.7	Middle 3	27.9 28.1	28.0	7.9 7.9	7.9	18.0 16.0	17.0	71.5 71.6	71.6	5.2 5.1	5.1	5.2	4.2 4.3	4.3	4.3	5.9 6.4	6.2	5.4
					Bottom 5	28.2 27.9	28.1	7.9 7.9	7.9	19.3 19.1	19.2	71.3 71.2	71.3	5.1 5.1	5.1	5.1	4.5 4.6	4.6		5.4 6.0	5.7	
30-Jun-17	Fine	Moderate	10:16		Surface 1	.0 28.5 28.6	28.6	8.1 8.1	8.1	17.1 16.7	16.9	74.0 74.3	74.2	5.2 5.2	5.2	5.2	1.9 1.9	1.9		3.3 2.7	3.0	
				6.7	Middle 3	27.9	27.8	8.1 8.1	8.1	18.4 18.2	18.3	73.9 72.6	73.3	5.2 5.1	5.1	5.2	2.0 1.9	2.0	2.0	3.9 2.3	3.1	3.6
					Bottom 5	27.8 26.7	27.3	8.0 8.0	8.0	22.5 23.4	22.9	72.6 71.3	72.0	5.1 5.1	5.1	5.1	1.9 2.0	2.0		5.2 3.9	4.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	Sampling		Temperature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	06:23		Surface	1.0	27.8 27.8	27.8	8.3 8.3	8.3	23.4 24.2	23.8	97.6 97.6	97.6	6.7 6.7	6.7		4.3 4.1	4.2		3.5 3.5	3.5	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	4.2	-	-	3.7
					Bottom	4.4	27.8 27.8	27.8	8.3 8.3	8.3	24.0	24.4	97.4 97.4	97.4	6.7	6.7	6.7	4.0	4.2		3.8	3.8	
5-Jun-17	Fine	Moderate	09:26				28.2		8.2		25.2		92.9		6.3			3.4			7.4		
0 04.11 17		Moderate	00.20		Surface	1.0	28.1	28.2	8.2	8.2	25.7	25.5	93.0	93.0	6.3	6.3	6.3	3.7	3.6		6.0	6.7	
			5.3	Middle	-	28.1	-	8.2	-	25.6	-	92.8	-	6.3	-		3.5	-	3.6	6.3	-	6.5	
					Bottom	4.3	28.1	28.1	8.2	8.2	26.4	26.0	92.8	92.8	6.3	6.3	6.3	3.6	3.6		6.2	6.3	
7-Jun-17	Sunny	Moderate	10:57		Surface	1.0	29.1 29.2	29.1	8.3 8.3	8.3	21.5 21.3	21.4	101.7 103.0	102.4	6.9 7.0	7.0	7.0	4.2 4.2	4.2		5.8 4.9	5.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.2	-	-	5.0
					Bottom	4.1	28.9 28.6	28.7	8.3 8.3	8.3	24.5 25.4	25.0	101.8 100.6	101.2	6.9 6.8	6.8	6.8	4.1 4.2	4.2		4.8 4.3	4.6	
9-Jun-17	Cloudy	Moderate	07:19		Surface	1.0	29.3 29.3	29.3	8.4 8.4	8.4	21.6 21.6	21.6	102.1 102.6	102.4	6.9 7.0	7.0		6.2 6.3	6.3		7.4 6.6	7.0	
				2.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	6.9	-	-	8.1
					Bottom	1.1	29.3	29.3	8.4	8.4	21.6	21.7	98.6	99.0	6.7	6.7	6.7	7.3	7.5		8.8	9.1	
12-Jun-17	-	-	-	<u> </u>	Surface	_	29.2	_	8.4	_	21.7	_	99.3	_	6.7	_		7.7	-		9.3	-	
				_	Middle		-	_	-	_	-	_	-	_	-	_	-	-	_	_	-	_	_
							-	_	-	_	-	_	-	_	-			-		=	-	_	=
			40.00		Bottom	-	-	-	-	_	-	-	-	-	-	-	-	-	-		-	-	
14-Jun-17	Rainy	Moderate	16:38		Surface	1.0	28.3 28.3	28.3	8.2 8.2	8.2	18.9 18.8	18.8	87.9 88.4	88.2	6.2 6.2	6.2	6.2	6.6 6.2	6.4		6.2 5.6	5.9	
				5.1	Middle	-	-	-	-	-	-	-		-		-		-	-	6.5	-	-	5.5
					Bottom	4.1	28.3 28.4	28.4	8.2 8.2	8.2	18.9 19.1	19.0	88.1 87.9	88.0	6.2 6.2	6.2	6.2	6.6 6.4	6.5		4.9 5.0	5.0	
16-Jun-17	Cloudy	Moderate	18:09		Surface	1.0	28.7 28.7	28.7	8.3 8.3	8.3	16.3 16.2	16.2	91.2 91.2	91.2	6.4 6.4	6.4		6.8 6.9	6.9		5.6 4.0	4.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	6.9	-	-	5.3
					Bottom	4.2	28.7 28.6	28.7	8.3 8.3	8.3	17.5 17.8	17.6	91.3 90.3	90.8	6.4 6.3	6.4	6.4	6.9 6.7	6.8		5.7 5.8	5.8	
19-Jun-17	Rainy	Moderate	07:41		Surface	1.0	28.0	28.0	8.0	8.0	11.3	11.4	75.5	76.4	5.5	5.5		7.0	6.9		8.9	8.6	
				5.1	Middle	_	28.0	_	8.0	-	11.4	-	77.2	_	5.6 -	_	5.5	6.8	-	7.2	8.2	-	8.0
				0	Bottom	4.1	27.7	27.8	7.9	7.9	17.3	17.3	76.5	78.1	5.5	5.6	5.6	7.6	7.5		6.8	7.3	0.0
21-Jun-17	Cloudy	Moderate	09:46	<u> </u>			27.8 27.5		8.0 7.9		17.4 16.0		79.7 82.3		5.8 5.9		5.0	7.3 6.8			7.7 8.8		
	•				Surface	1.0	27.5	27.5	7.9	7.9	15.8	15.9	78.2	80.3	5.6	5.7	5.7	7.0	6.9		7.9	8.4	
				5.3	Middle	-	- 27.5	-	- 7.9	-	- 18.2	-	- 79.1	-	- 5.6	 - 		6.8	-	6.9	10.3	-	9.2
					Bottom	4.3	27.4	27.4	7.9	7.9	18.9	18.5	79.1	79.3	5.7	5.7	5.7	6.7	6.8		9.4	9.9	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Sunny	Moderate	11:11		Surface	1.0	28.1 28.3	28.2	8.0 8.0	8.0	15.8 15.6	15.7	76.8 75.9	76.4	5.4 5.4	5.4	5.4	7.4 7.4	7.4		7.4 7.0	7.2	
				5.2	Middle	•		•		-	-	-	-	-	1 1	-	5.4	-	-	7.5	-	-	8.0
					Bottom	4.2	27.7 27.3	27.5	7.9 7.9	7.9	18.6 19.0	18.8	76.7 73.2	75.0	5.4 5.2	5.3	5.3	7.7 7.5	7.6		9.1 8.5	8.8	
26-Jun-17	Cloudy	Moderate	15:20		Surface	1.0	28.5 28.6	28.5	8.1 8.1	8.1	16.5 16.4	16.4	79.7 78.7	79.2	5.6 5.5	5.6	5.6	4.3 4.0	4.2		6.0 8.8	7.4	
				5.0	Middle	-		-	1 1	-	-	-	-	-		-	0.0	-	-	4.2	-	-	6.7
					Bottom 4.0	4.0	28.5 28.0	28.2	8.1 8.1	8.1	17.2 18.0	17.6	79.4 77.8	78.6	5.6 5.5	5.5	5.5	4.1 4.1	4.1		6.1 5.8	6.0	
28-Jun-17	Fine	Moderate	17:12		Surface	1.0	28.7 28.8	28.7	8.1 8.1	8.1	18.4 18.3	18.3	81.8 81.9	81.9	5.7 5.7	5.7	5.7	4.6 4.6	4.6		8.4 9.2	8.8	
				5.0	Middle	-		-		-	-	-	-	-		-	5.7	-	-	4.7	-	-	8.5
					Bottom	4.0	28.7 28.7	28.7	8.1 8.1	8.1	18.5 18.4	18.5	81.4 81.6	81.5	5.7 5.7	5.7	5.7	4.7 4.8	4.8		8.1 8.2	8.2	
30-Jun-17	Fine	Moderate	18:36		Surface	1.0	29.5 29.5	29.5	8.4 8.3	8.4	14.9 15.0	14.9	103.2 100.3	101.8	7.3 7.0	7.1	7.1	3.7 3.8	3.8		2.4 2.9	2.7	
				5.1	Middle	-		-		-	-	-	-	-	1 1	-	7.1	-	-	3.8	-	-	3.3
					Bottom	4.1	29.5 29.2	29.3	8.3 8.3	8.3	17.4 17.9	17.6	100.5 100.0	100.3	7.0 7.0	7.0	7.0	3.8 3.8	3.8		3.9 3.8	3.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

*Due to Tropical Cyclone Warning Signal No.3 was issued by HKO at 10:40am on 12 June 2017, the monitoring scheduled at 14:42 mid ebb tide on 12 June 2017 was cancelled, no subsitute monitroing was conducted.

Remarks:

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	Sampling		Temperature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jun-17	Sunny	Moderate	14:32		Surface	1.0	28.0 27.9	28.0	8.3 8.3	8.3	21.7 21.8	21.8	98.2 98.3	98.3	6.8 6.8	6.8		5.5 5.6	5.6		3.9 4.0	4.0	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	6.2	-	-	3.8
					Bottom	4.2	27.9 27.8	27.9	8.3 8.3	8.3	21.9	22.0	98.0 97.9	98.0	6.8	6.8	6.8	6.7	6.7		3.5	3.5	•
5-Jun-17	Fine	Moderate	18:00				29.0		8.3		21.3		107.0		7.3			3.0			5.2	+	
0 04.1 17		Moderate	10.00		Surface	1.0	28.9	28.9	8.3	8.3	21.4	21.3	107.2	107.1	7.3	7.3	7.3	3.2	3.1		3.9	4.6	_
				5.6	Middle	-	28.8	-	- 8.3	-	21.7	-	106.3	-	7.3	-		3.1	-	3.2	7.4	-	5.8
					Bottom	4.6	28.8	28.8	8.3	8.3	21.5	21.6	106.9	106.6	7.3	7.3	7.3	3.3	3.2		6.3	6.9	
7-Jun-17	Sunny	Moderate	19:25		Surface	1.0	30.1 30.2	30.2	8.5 8.5	8.5	20.1 20.8	20.5	132.2 132.4	132.3	9.1 9.1	9.1	9.1	6.8 7.2	7.0		5.6 4.2	4.9	
				5.3	Middle		-	-	-	-		-	-	-		-	3.1	-	-	7.0	-	-	6.4
					Bottom	4.3	30.1 30.0	30.1	8.5 8.5	8.5	21.2 21.0	21.1	131.2 132.7	132.0	8.8 8.9	8.9	8.9	6.9 6.8	6.9		8.5 7.0	7.8]
9-Jun-17	Cloudy	Moderate	11:30		Surface	1.0	29.1 29.1	29.1	8.4 8.4	8.4	21.2 21.2	21.2	100.6	101.0	6.9 6.9	6.9		6.8 7.2	7.0		7.1 7.2	7.2	
				2.0	Middle	-	- 29.1	-	-	-		-	101.4	-	-	-	6.9	-	-	7.6	-	-	6.8
					Bottom	1.0	29.1	29.1	8.4	8.4	21.3	21.3	100.2	99.8	6.8	6.8	6.8	8.1	8.2		6.1	6.4	-
12-Jun-17	Sunny	Moderate	06:46				29.1 28.9		8.4 8.3		21.2 22.0		99.3 88.8	87.9	6.8 6.1			8.2 3.0			6.6 2.8		
	,				Surface	1.0	28.7 0.0	28.8	8.3	8.3	22.7 0.0	22.4	86.9 0.0		5.9 0.0	6.0	6.0	3.0 0.0	3.0		2.5	2.7	
				5.4	Middle	0.0	0.0	0.0	- 8.3	-	0.0 25.4	0.0	0.0 87.3	0.0	0.0	0.0		0.0	0.0	3.0	2.5	-	2.6
					Bottom	4.4	28.1	28.3	8.3	8.3	26.7	26.0	86.3	86.8	5.8	5.9	5.9	2.9	3.0		2.5	2.5	
14-Jun-17	Rainy	Moderate	08:04		Surface	1.0	28.2 28.2	28.2	8.2 8.2	8.2	17.1 17.6	17.3	90.7 94.0	92.4	6.4 6.7	6.5	6.5	5.8 5.8	5.8		8.9 8.2	8.6	
				5.5	Middle	-	-	-	-	-		-	-	-		-	0.0	-	-	5.8	-	-	8.0
					Bottom	4.5	28.2 28.2	28.2	8.2 8.1	8.2	18.3 20.4	19.3	88.6 93.4	91.0	6.3 6.5	6.4	6.4	5.6 5.8	5.7		7.1 7.4	7.3	
16-Jun-17	Cloudy	Moderate	09:46		Surface	1.0	28.6 28.6	28.6	8.1 8.1	8.1	17.1 17.0	17.0	88.9 84.9	86.9	6.2 6.0	6.1		6.4 6.6	6.5		7.5 7.4	7.5	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	6.4	-	-	7.1
					Bottom	3.7	28.5	28.5	8.1	8.1	18.0	18.2	86.2	85.5	6.1	6.0	6.0	6.0	6.2		6.0	6.6	•
19-Jun-17	Cloudy	Moderate	15:56		Surface	1.0	28.5 28.3	28.4	8.1 8.1	8.1	18.4 13.0	13.6	70.6	70.9	6.0 5.1	5.1		6.4	6.6		7.1 5.7	5.7	
				5.3	Middle	-	28.4		8.1	-	14.1		71.1	-	5.1 -		5.1	6.5		6.6	5.6	-	6.0
				0.0	Bottom	4.3	27.9	27.9	8.1	8.1	19.2	19.3	71.2	71.1	5.1	5.1	5.1	6.6	6.6	0.0	5.8	6.3	- 0.0
21-Jun-17	Sunny	Moderate	18:06	<u> </u>			27.9 27.6		8.1 8.0		19.4 14.5		71.0 74.9		5.1 5.4		J. I	6.5 4.2			6.7 5.6		
	,				Surface	1.0	27.8	27.7	8.0	8.0	14.6	14.5	76.7	75.8	5.5	5.5	5.5	4.2	4.2		6.3	6.0	<u> </u>
				5.5	Middle	-	-	-	-	-	-	-	-	-		-		-	-	4.3	-	-	6.5
					Bottom	4.5	27.2 27.8	27.5	8.0 8.0	8.0	19.3 19.3	19.3	76.6 76.5	76.6	5.4 5.4	5.4	5.4	4.2 4.3	4.3		7.1 6.7	6.9	

Remarks:

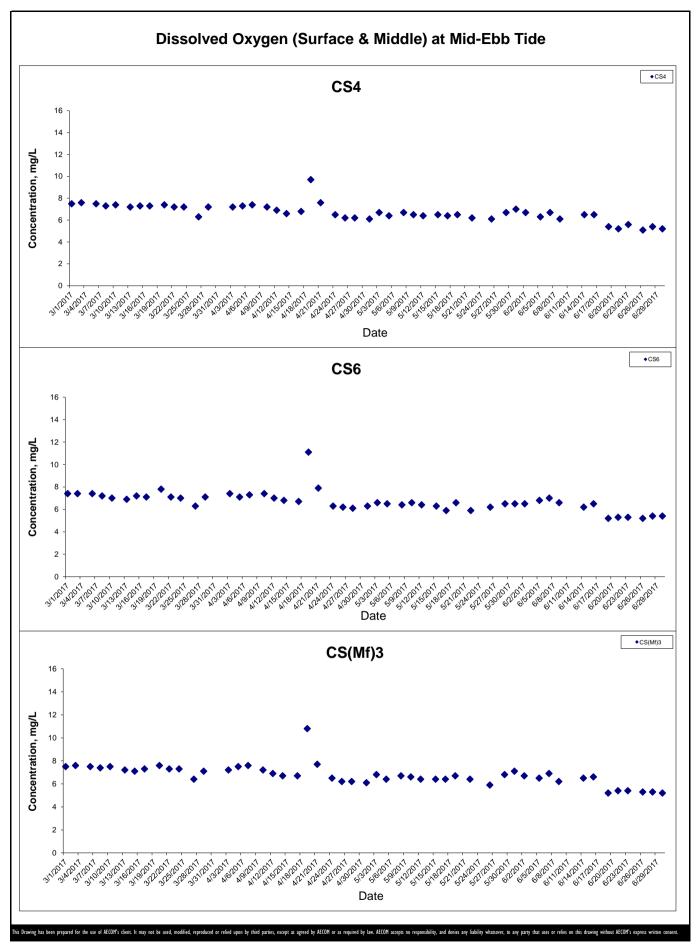
* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

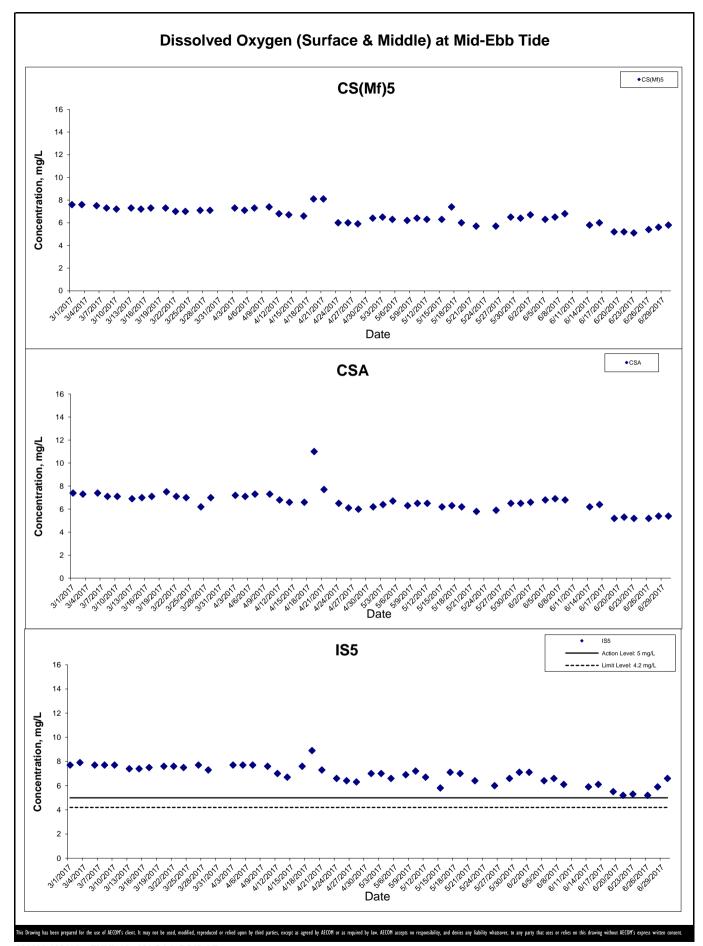
Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
23-Jun-17	Fine	Moderate	20:05		Surface	1.0	28.4 28.2	28.3	8.0 8.0	8.0	16.1 15.8	15.9	80.5 80.1	80.3	5.7 5.7	5.7	5.7	6.5 6.8	6.7		8.5 8.6	8.6	
				5.0	Middle		-	-	-	-	-	-	-	-	-		5.7	-	-	6.8	-	-	9.5
					Bottom	4.0	28.1 27.7	27.9	7.9 7.9	7.9	19.5 19.9	19.7	80.5 80.6	80.6	5.6 5.6	5.6	5.6	6.8 6.8	6.8		9.9 10.8	10.4	
26-Jun-17	Jun-17 Cloudy Moderate 06:40	06:40		Surface	1.0	27.4 27.3	27.4	8.0 8.0	8.0	22.0 21.5	21.7	79.2 77.5	78.4	5.6 5.6	5.6	5.6	4.2 3.9	4.1		4.9 7.1	6.0		
				5.3	Middle	-		-	-	-	-	-	-			-	5.0	-	-	4.2	-	-	5.5
					Bottom	4.3	26.8 27.0	26.9	8.0 8.0	8.0	28.1 26.2	27.2	78.0 77.2	77.6	5.6 5.5	5.5	5.5	4.2 4.1	4.2		4.6 5.4	5.0	
28-Jun-17	Fine	Moderate	08:19		Surface	1.0	28.2 28.3	28.3	8.0 8.0	8.0	15.0 15.1	15.0	71.8 71.8	71.8	5.2 5.1	5.2	5.2	4.1 3.7	3.9		5.2 5.0	5.1	
				5.1	Middle	-		-		-	-	-		-		-	J.Z	-	-	4.1	-	-	5.2
					Bottom	4.1	28.2 28.2	28.2	7.9 7.9	7.9	17.1 19.2	18.1	71.4 71.4	71.4	5.1 5.1	5.1	5.1	4.3 4.3	4.3		5.0 5.5	5.3	
30-Jun-17	Fine	Moderate	10:06		Surface	1.0	28.7 28.6	28.6	8.1 8.1	8.1	15.9 15.4	15.7	76.3 74.2	75.3	5.4 5.3	5.3	5.3	1.9 1.9	1.9		2.5 3.0	2.8	
				5.2	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	J.3	-	-	2.0	-	-	3.3
					Bottom	4.2	28.2 27.6	27.9	8.1 8.1	8.1	20.0 20.6	20.3	75.5 74.1	74.8	5.3 5.2	5.2	5.2	2.0 2.1	2.1		4.5 3.1	3.8	

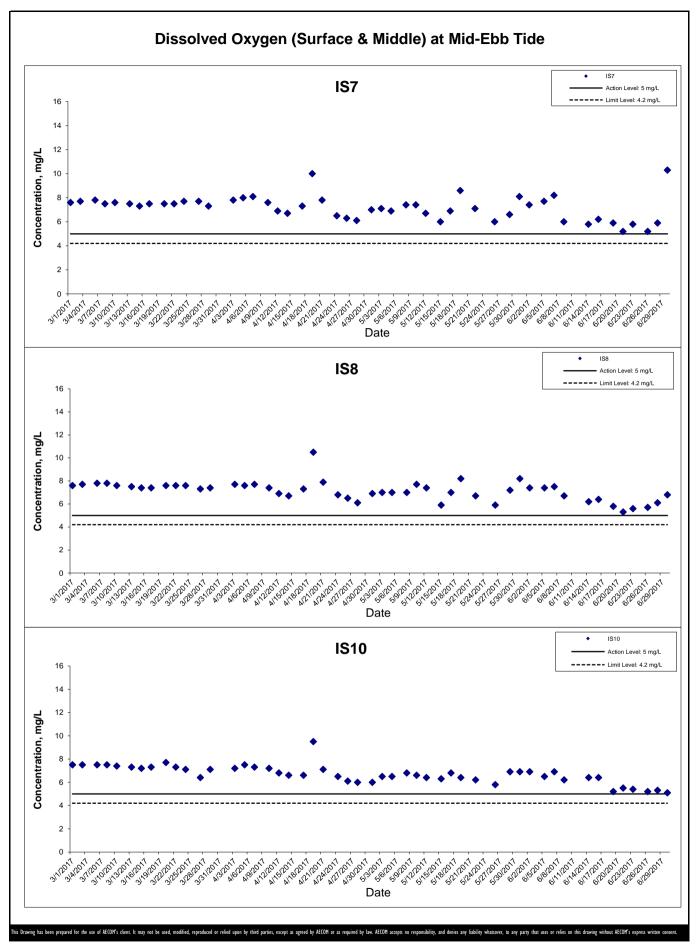
Remarks:


Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

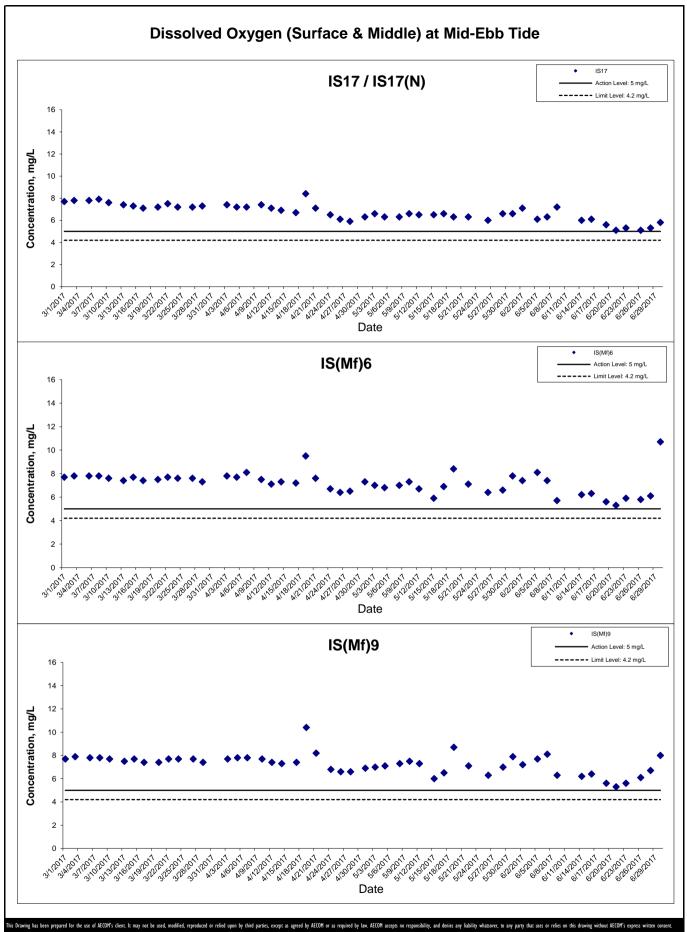

Remarks:

^{*} DA: Depth-Averaged


^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

AECOM

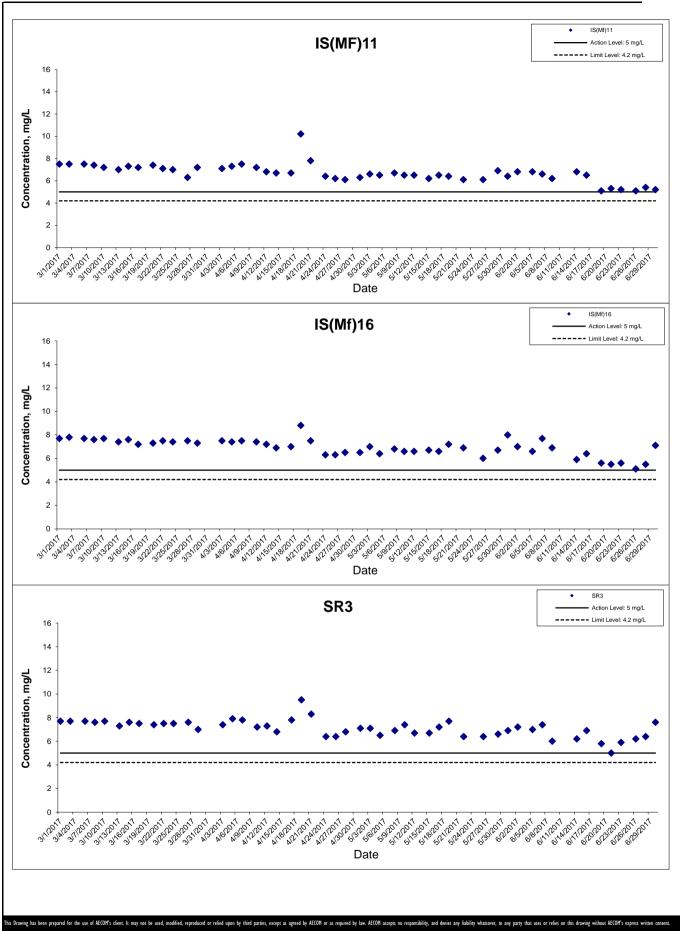
AECOM



AECOM

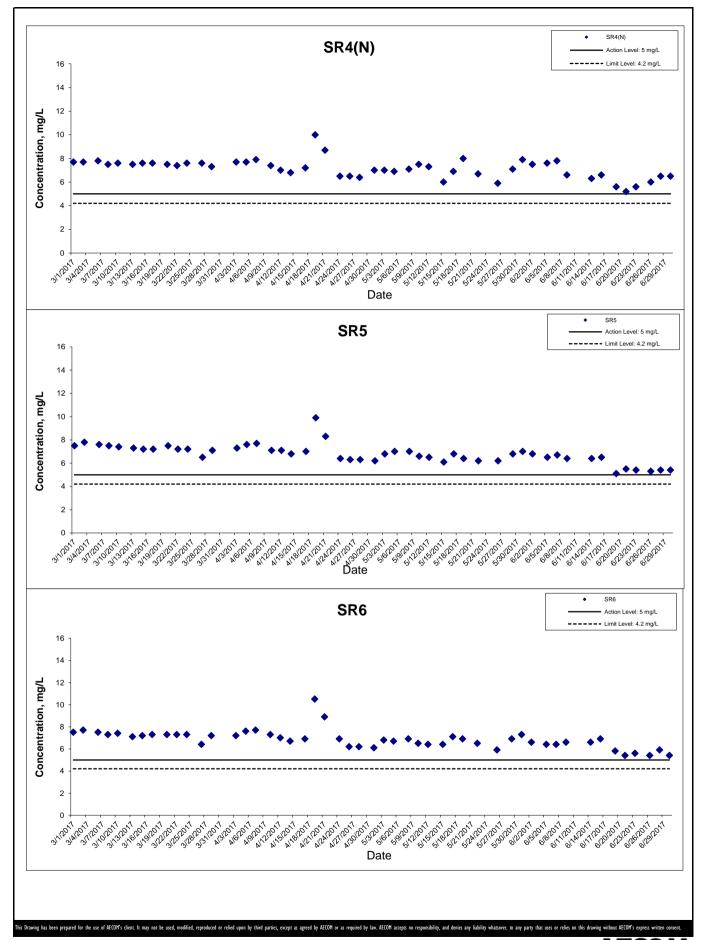
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality


Monitoring Results

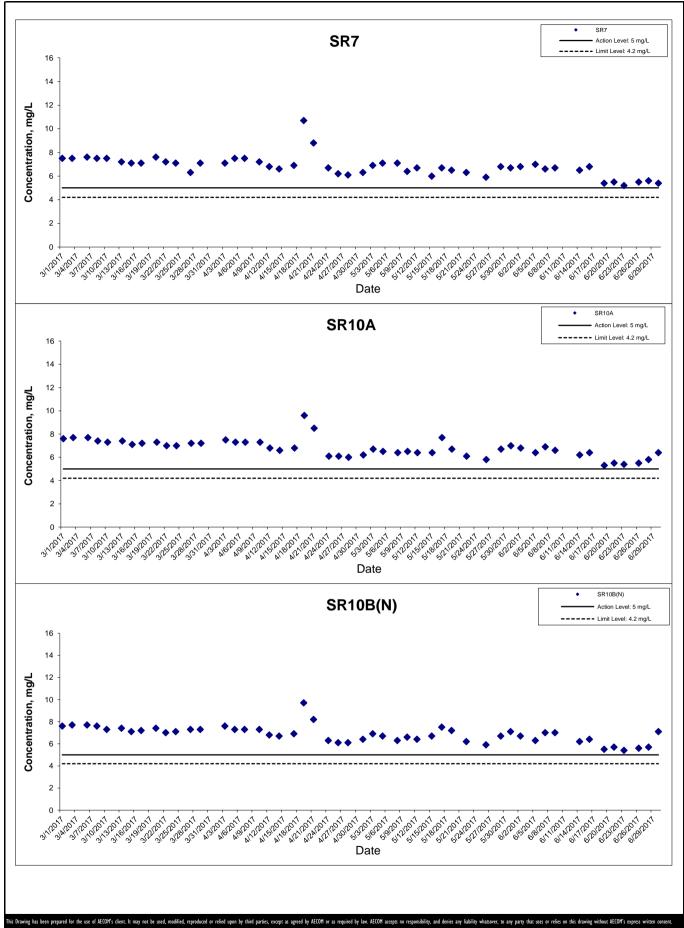
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

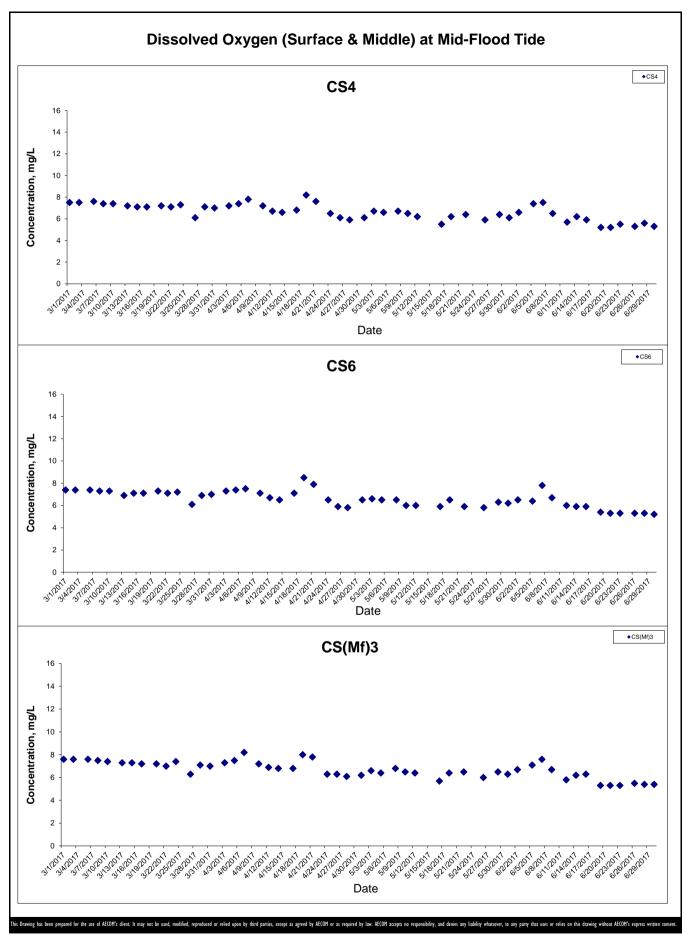
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

AECON

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

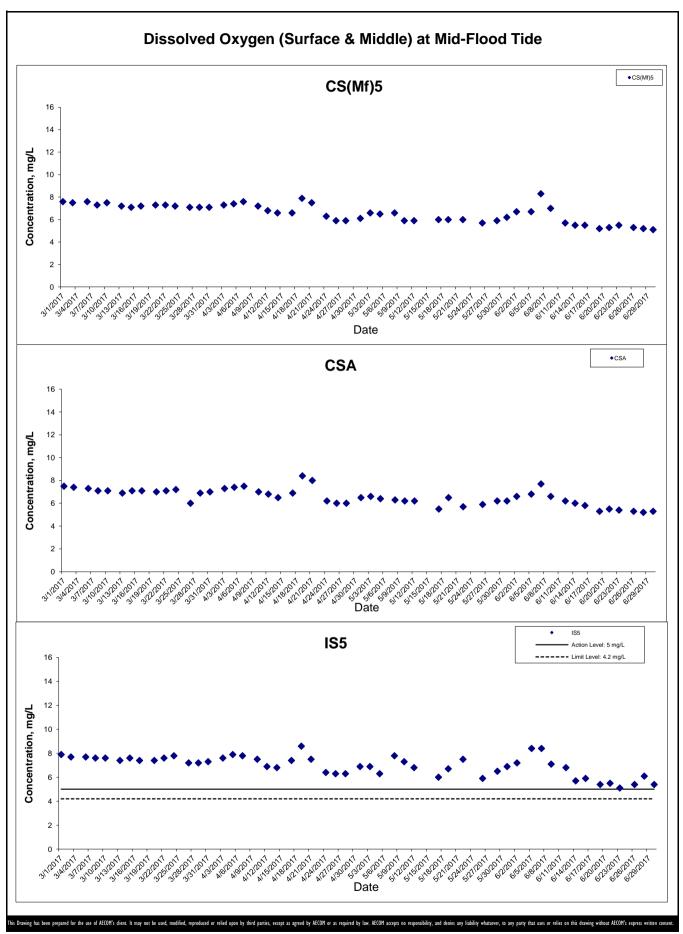
Monitoring Results



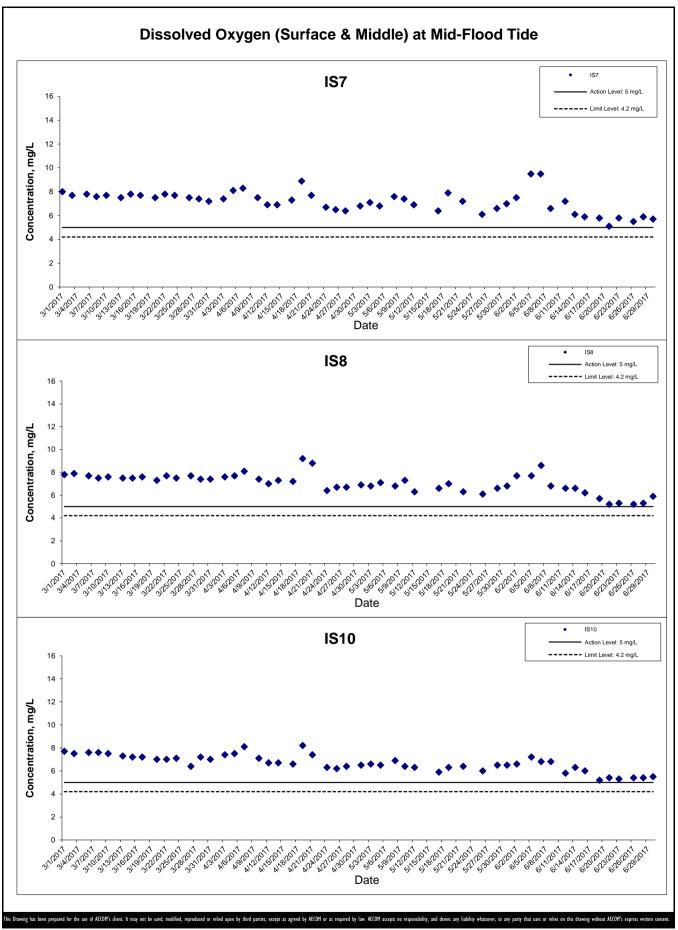
- RECLAMATION WORKS

ES
Graphical Presentation of Impact Water Quality

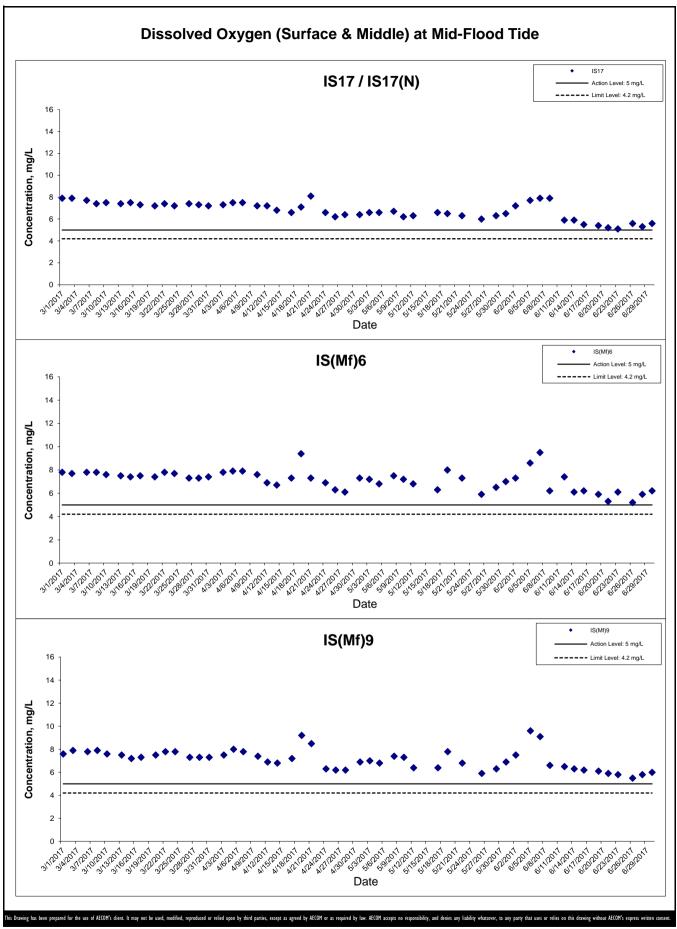
Project No.: 60249820 Date: Jul 2017 Appendix J


Monitoring Results

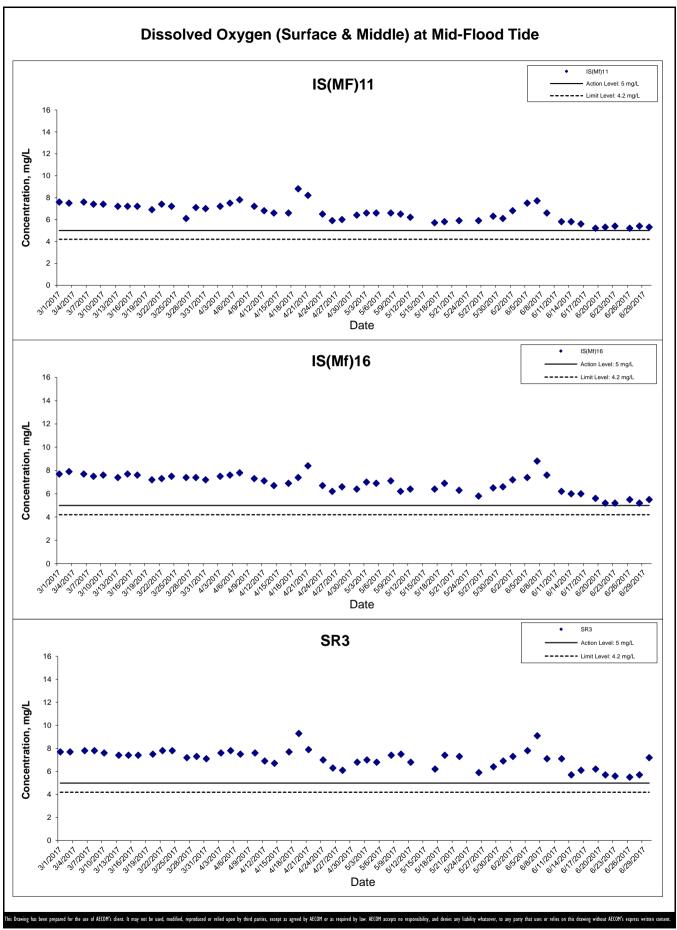
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI


ES
Graphical Presentation of Impact Water Quality

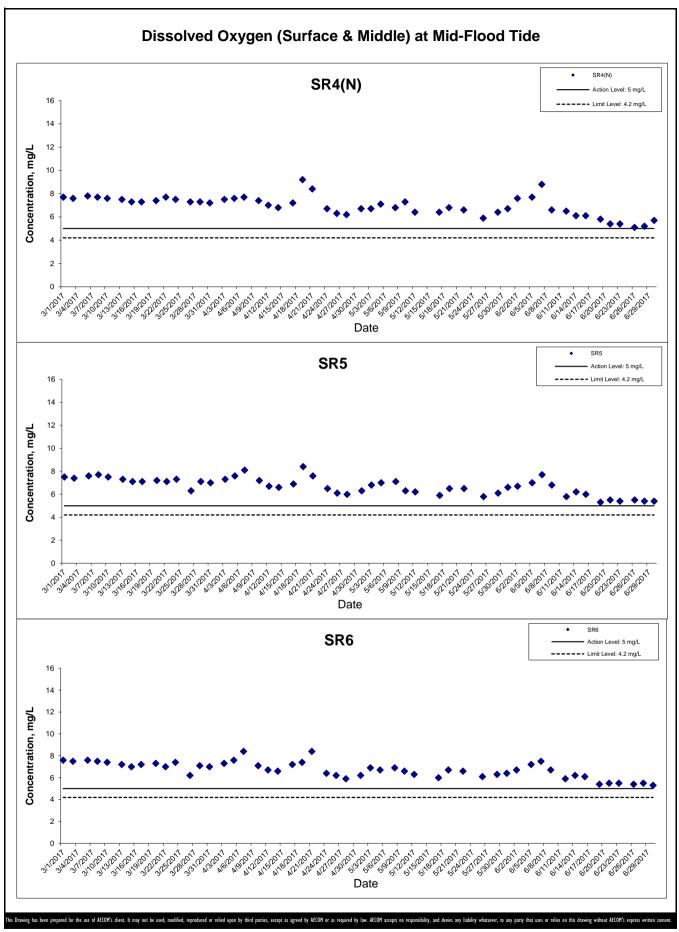
Monitoring Results
Project No.: 60249820 Date: Jul 2017 Appendix J


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


- RECLAMATION WORKS

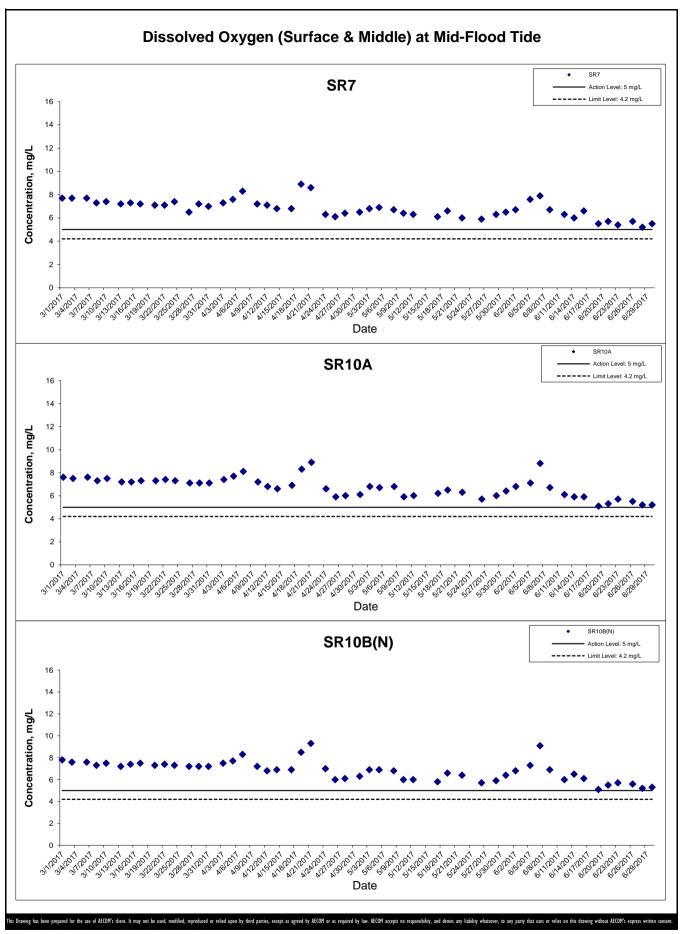
Graphical Presentation of Impact Water Quality
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

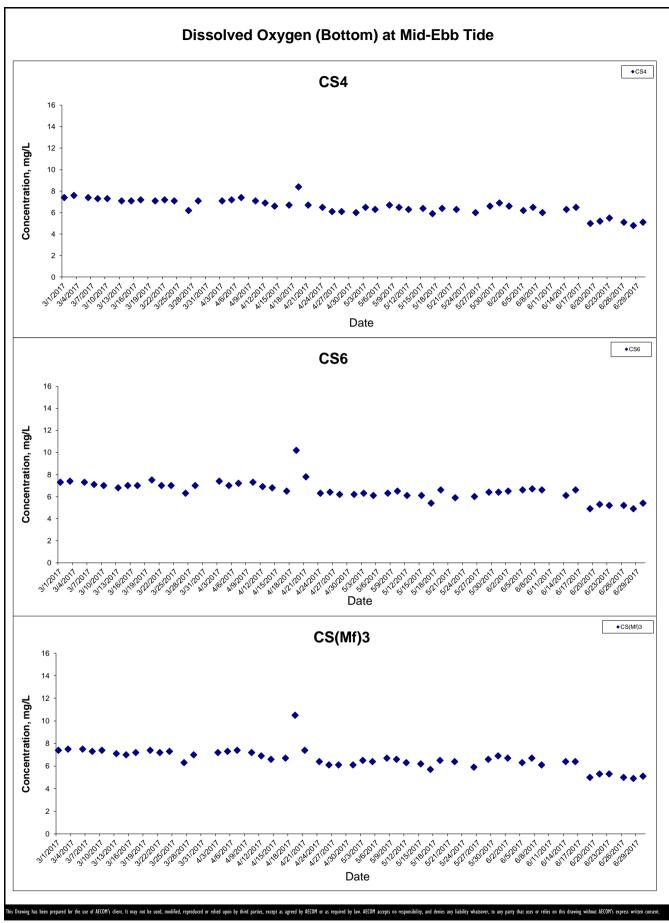


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

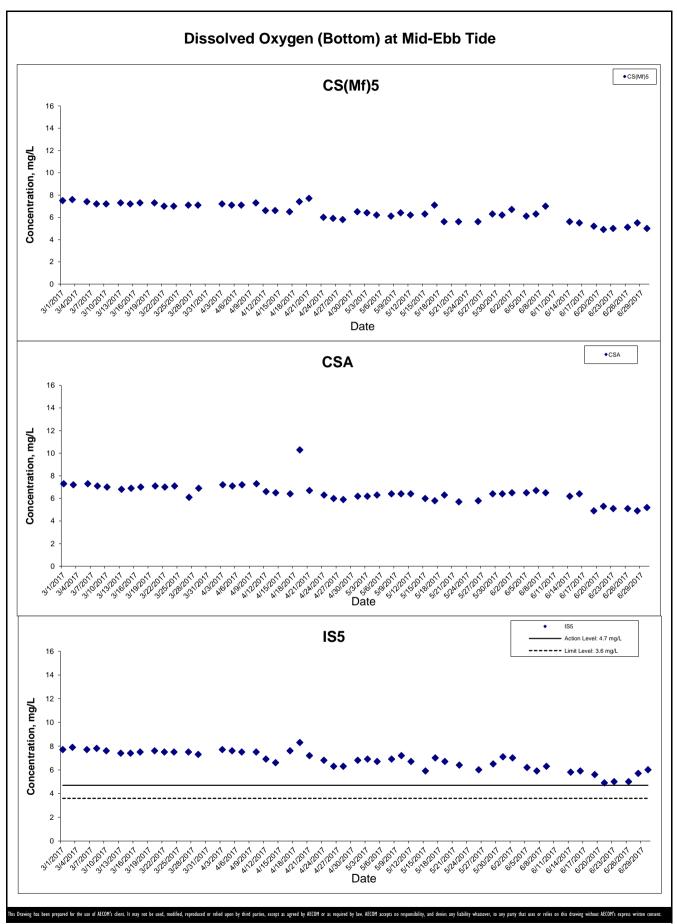
AECOM



- RECLAMATION WORKS

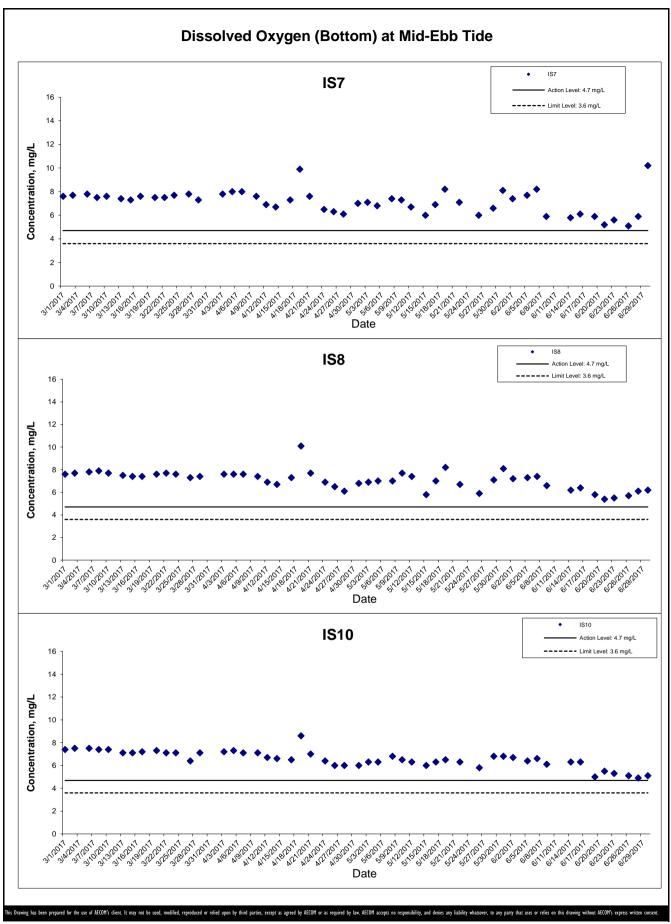
Graphical Presentation of Impact Water Quality

Monitoring Results


AECOM

AECOM

- RECLAMATION WORKS

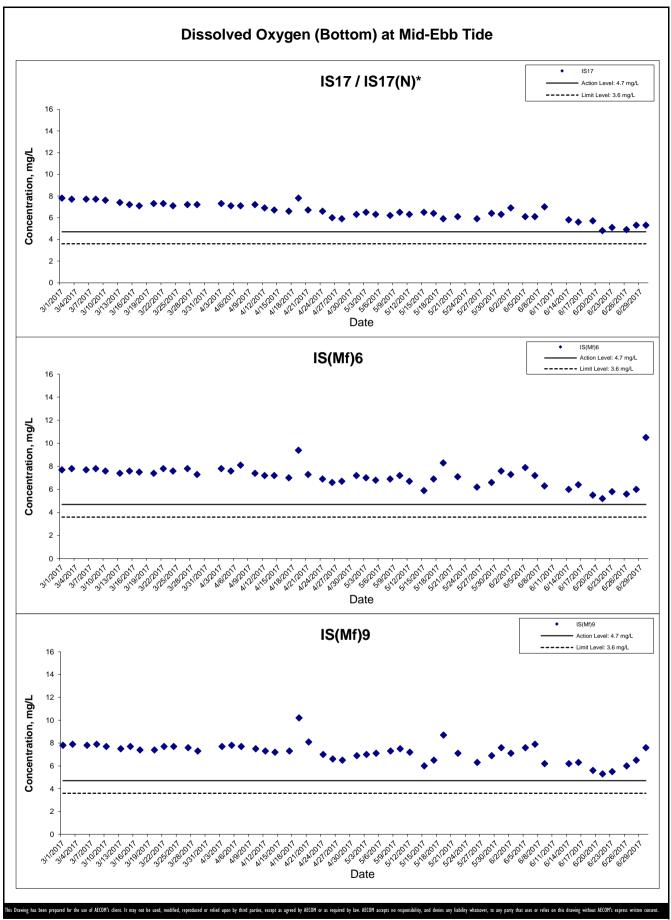

Graphical Presentation of Impact Water Quality
Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

Date: Jul 2017

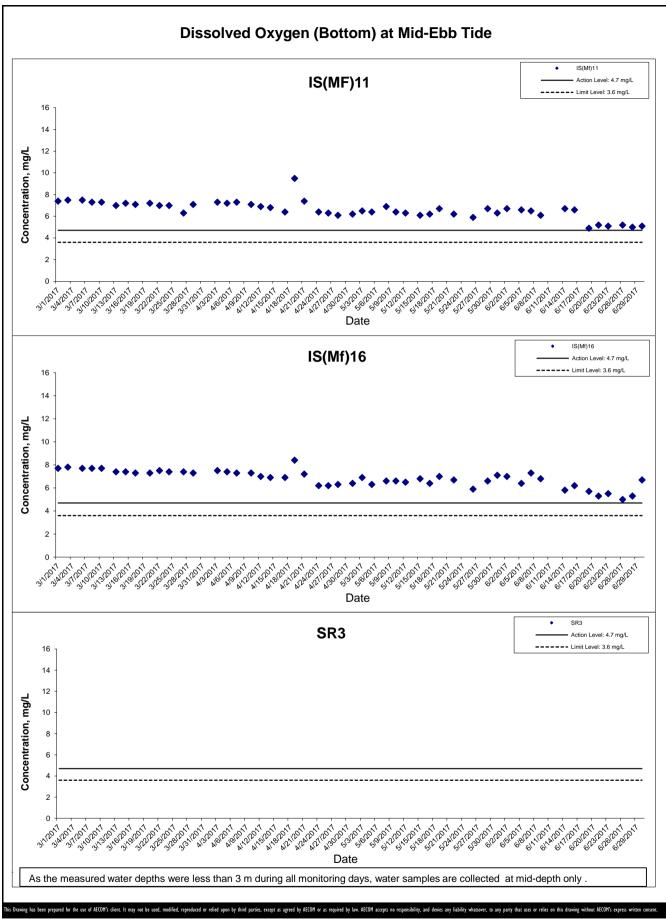

- RECLAMATION WORKS

Project No.: 60249820

AECOM

Appendix J

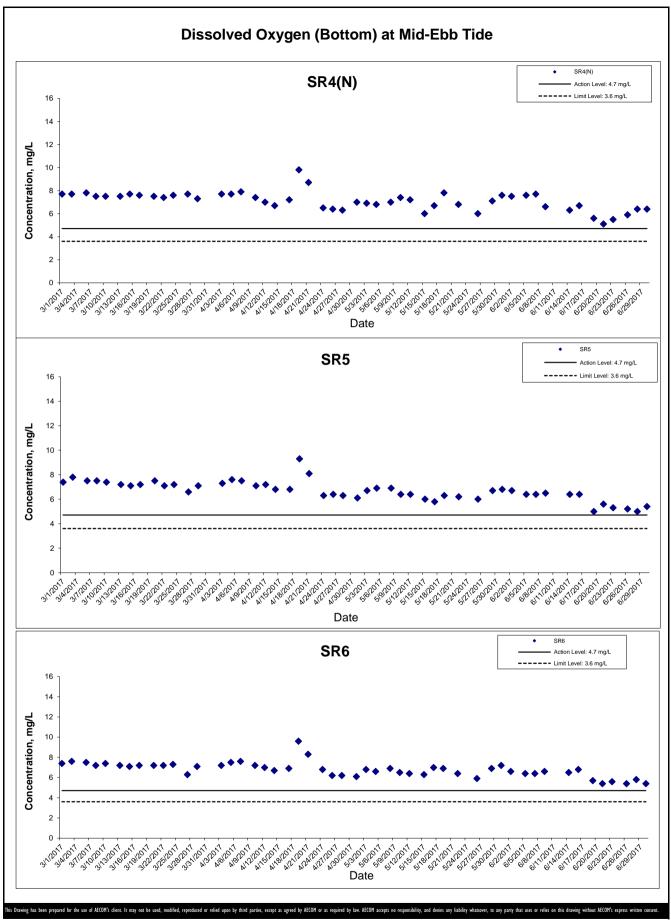
Graphical Presentation of Impact Water Quality
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

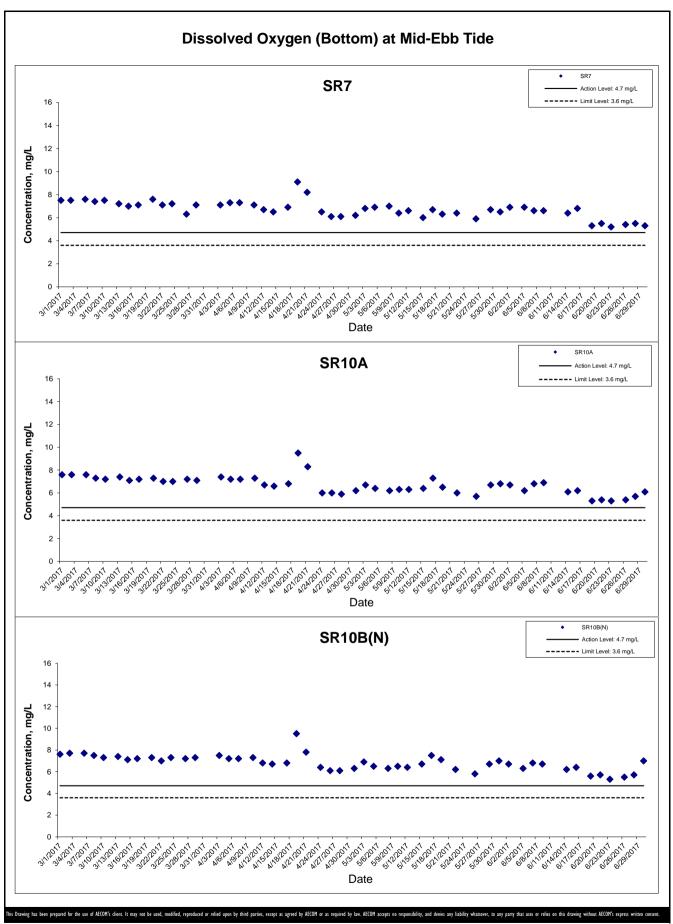
AECOM

Appendix J


Monitoring Results
Project No.: 60249820 Date: Jul 2017

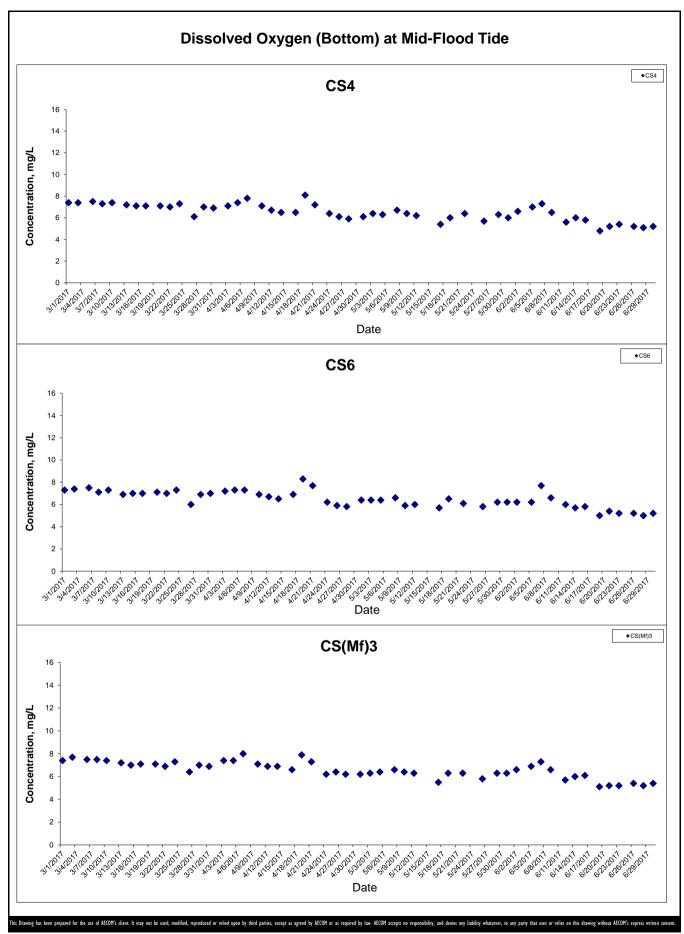
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM


Graphical Presentation of Impact Water Quality
Monitoring Results

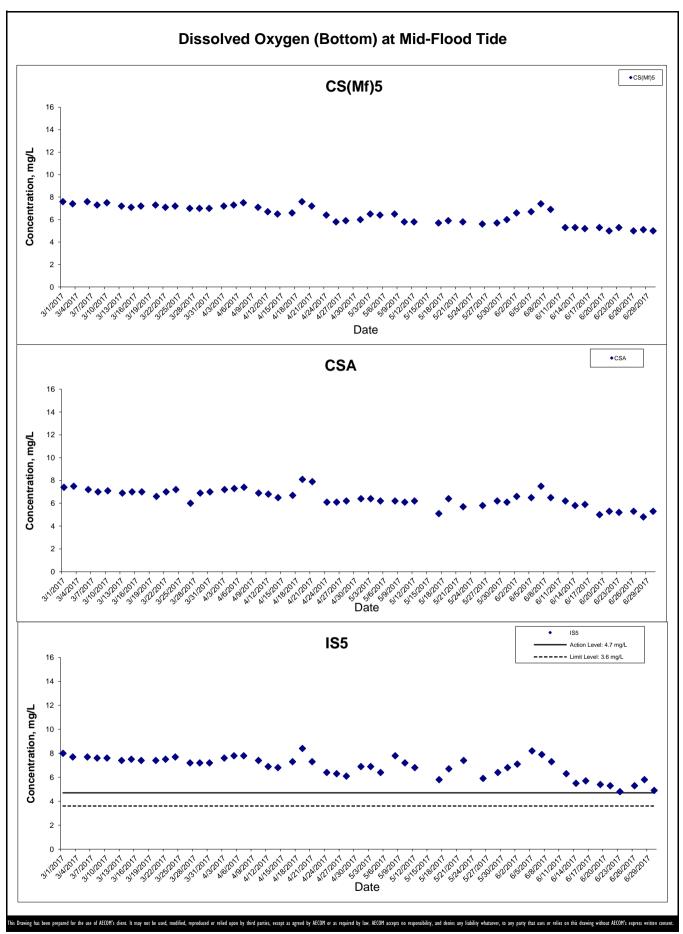
AECOM

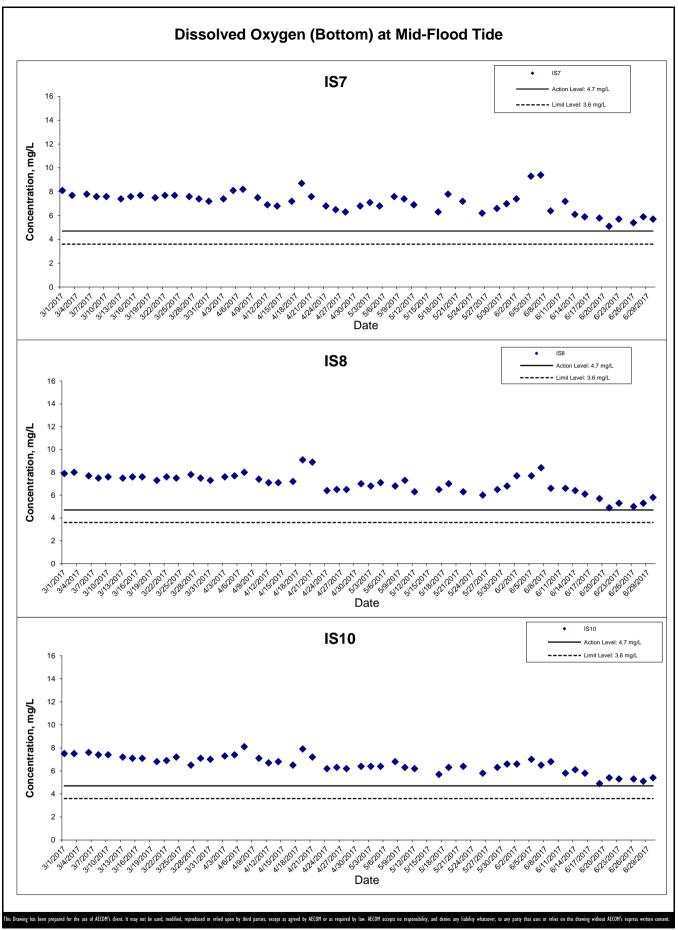
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact Water Quality

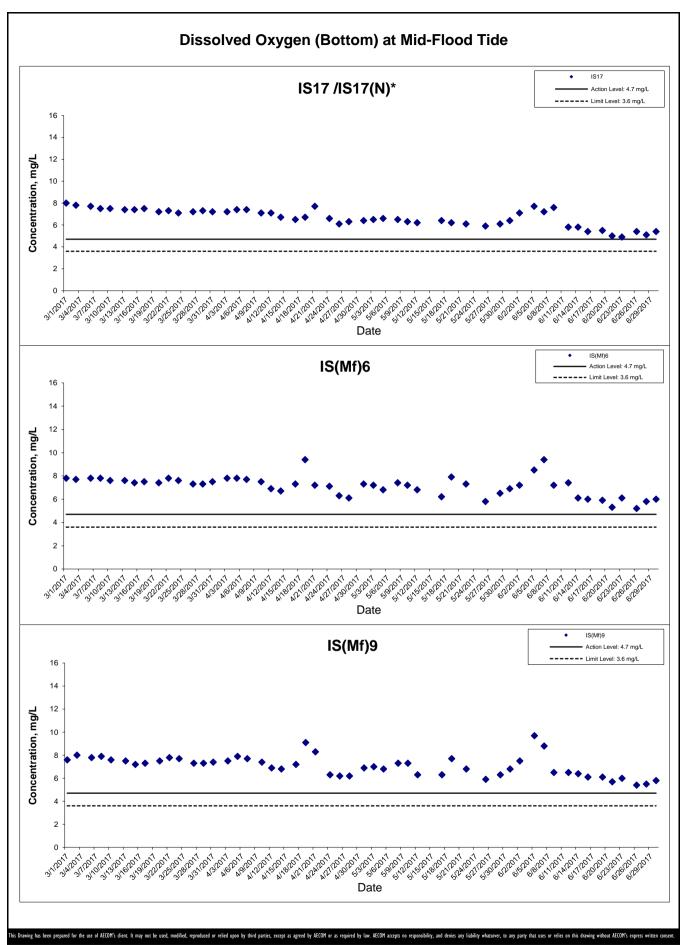

Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

ES
Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: Jul 2017 Appendix J

AECOM

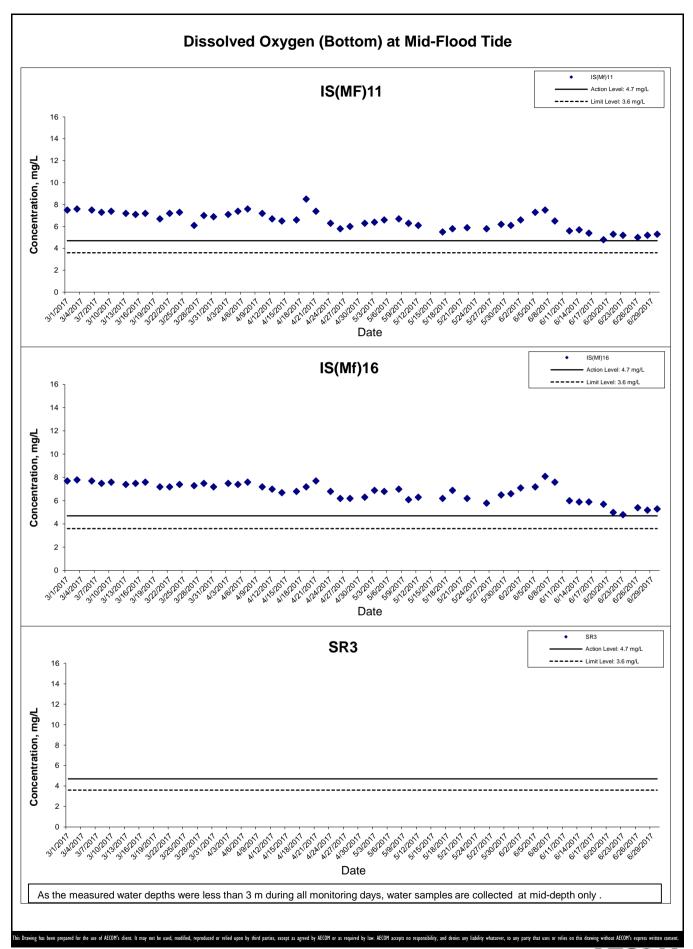


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820 Date: Jul 2017 Appendix J

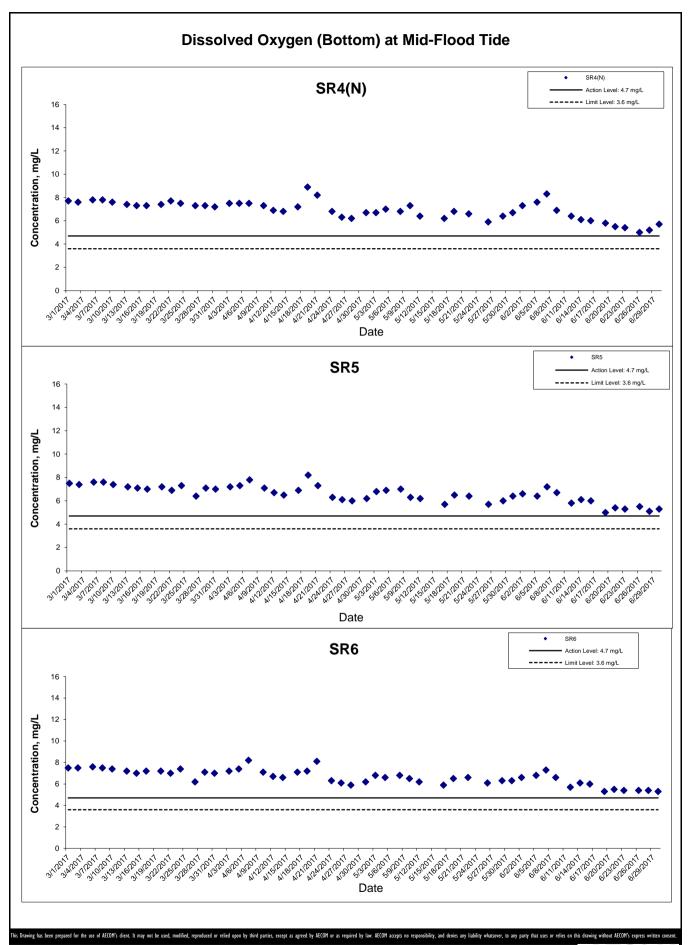
AECOM



- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

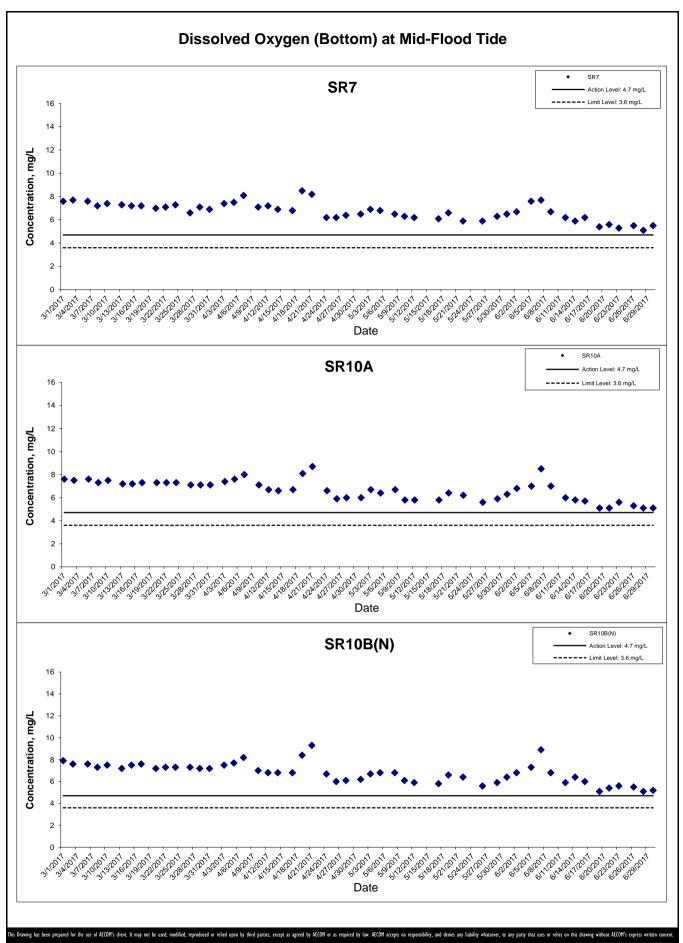
Monitoring Results


AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

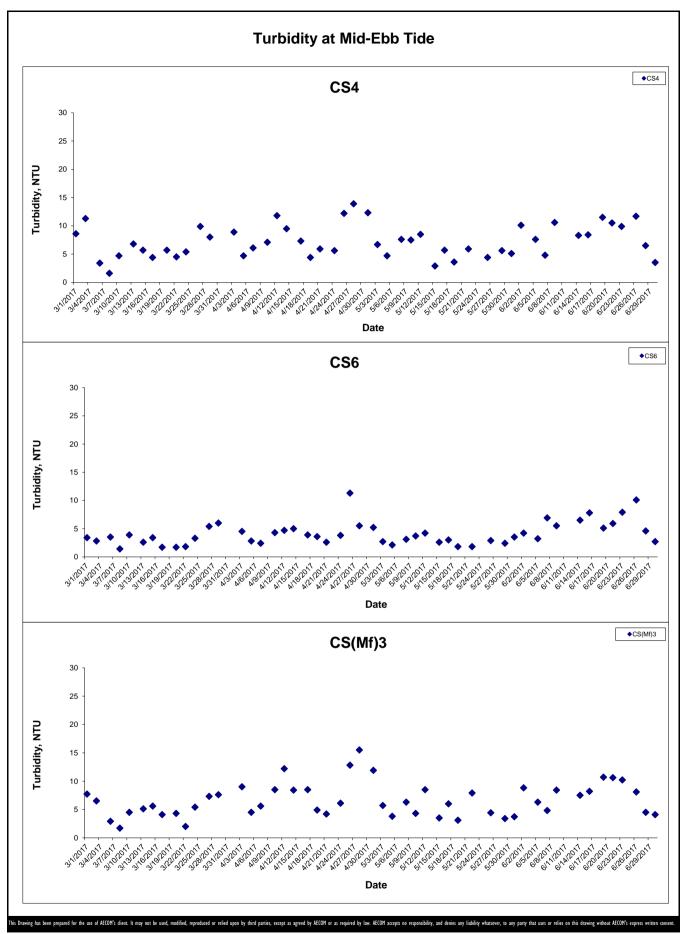


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

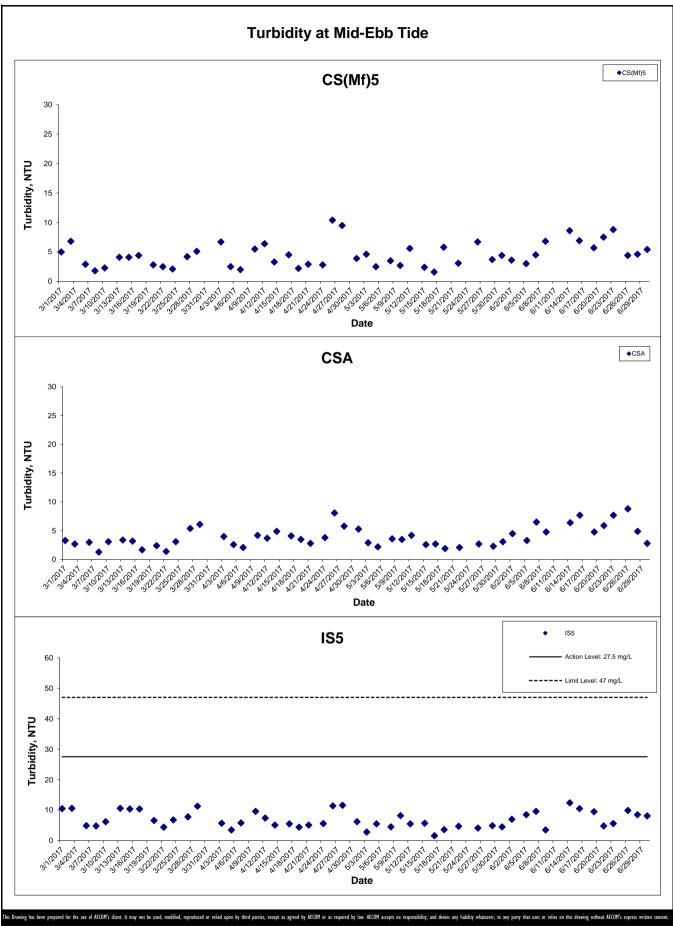
Monitoring Results

AECOM



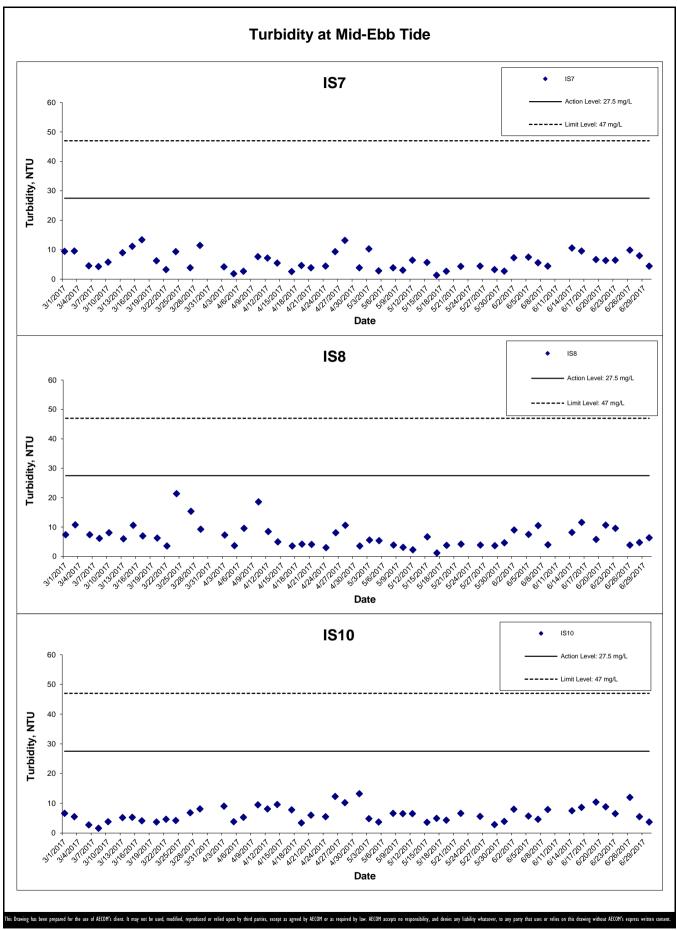
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results
Project No.: 60249820 Date: Jul 2017



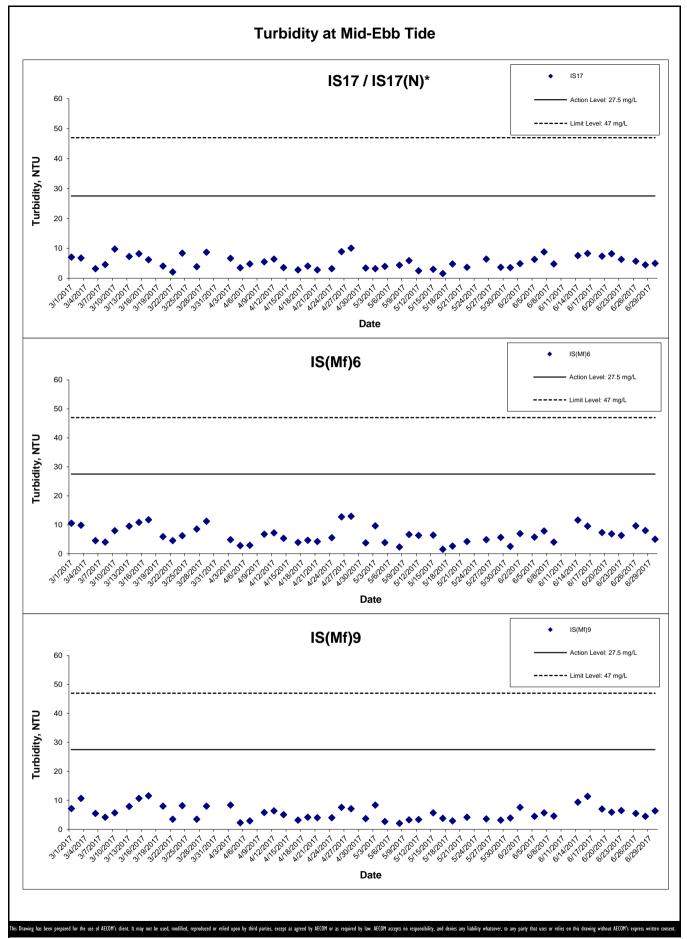
Appendix J

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
GI


A=COM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

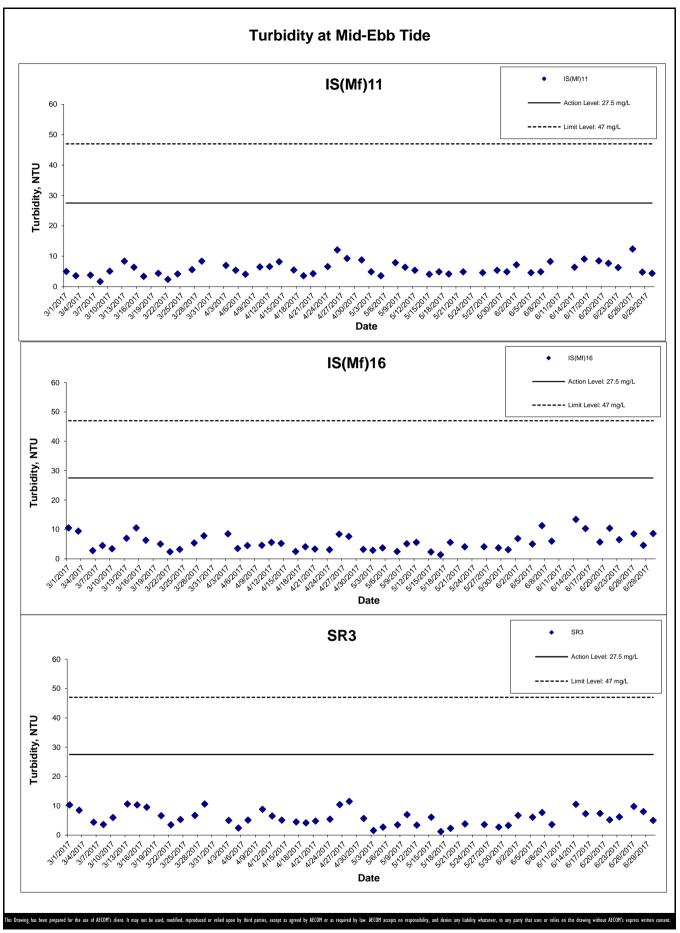
Monitoring Results


AECOM

A=COM

- RECLAMATION WORKS

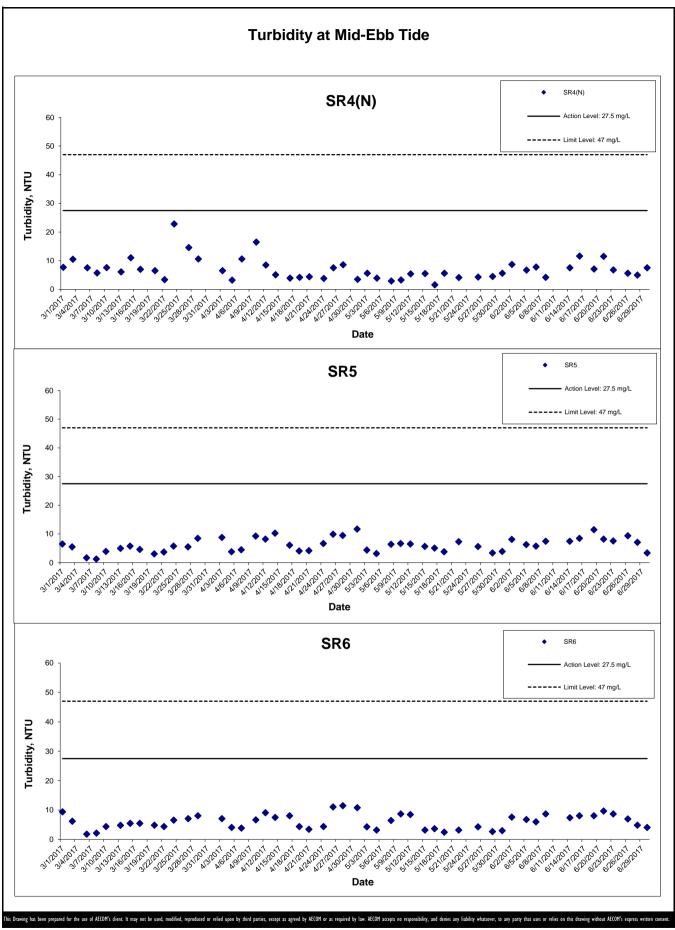
Graphical Presentation of Impact Water Quality
Monitoring Results



AECOM

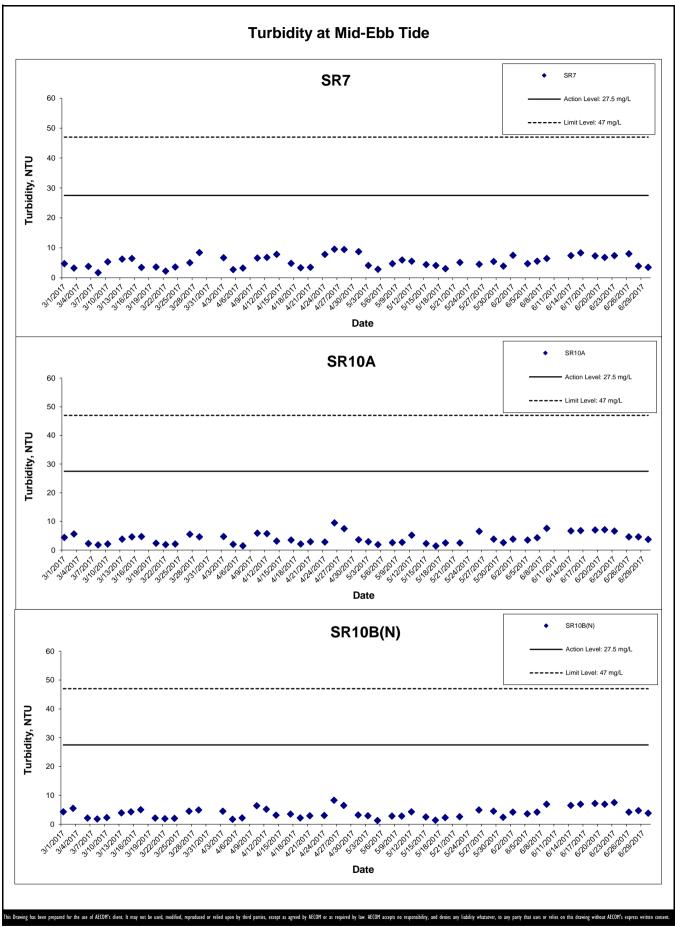
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality


Monitoring Results

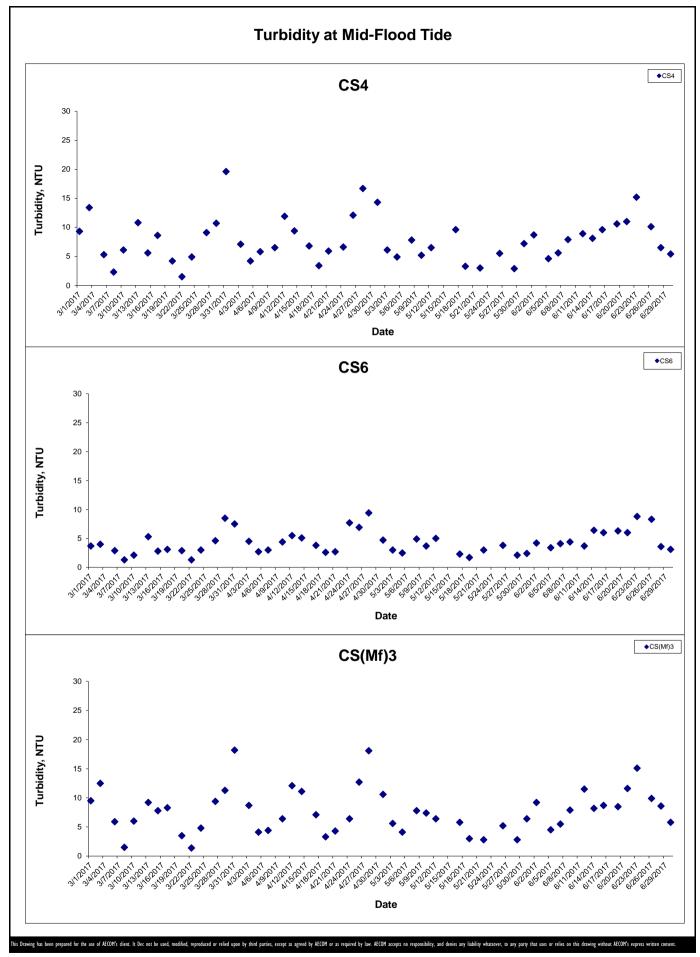
- RECLAMATION WORKS

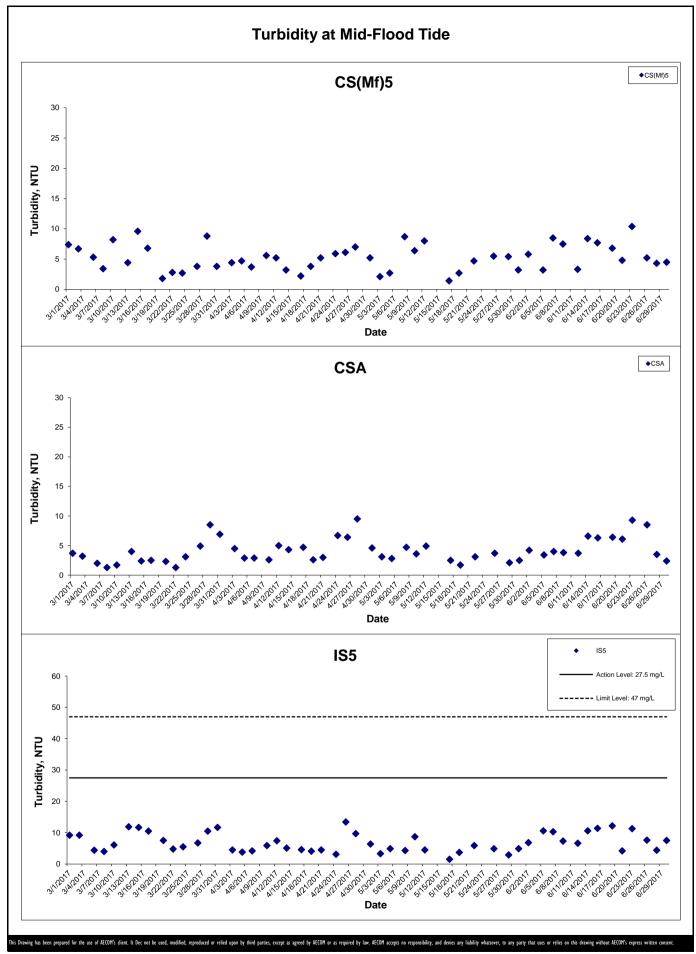
ES
Graphical Presentation of Impact Water Quality


Monitoring Results
Project No.: 60249820 Date: Jul 2017 Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

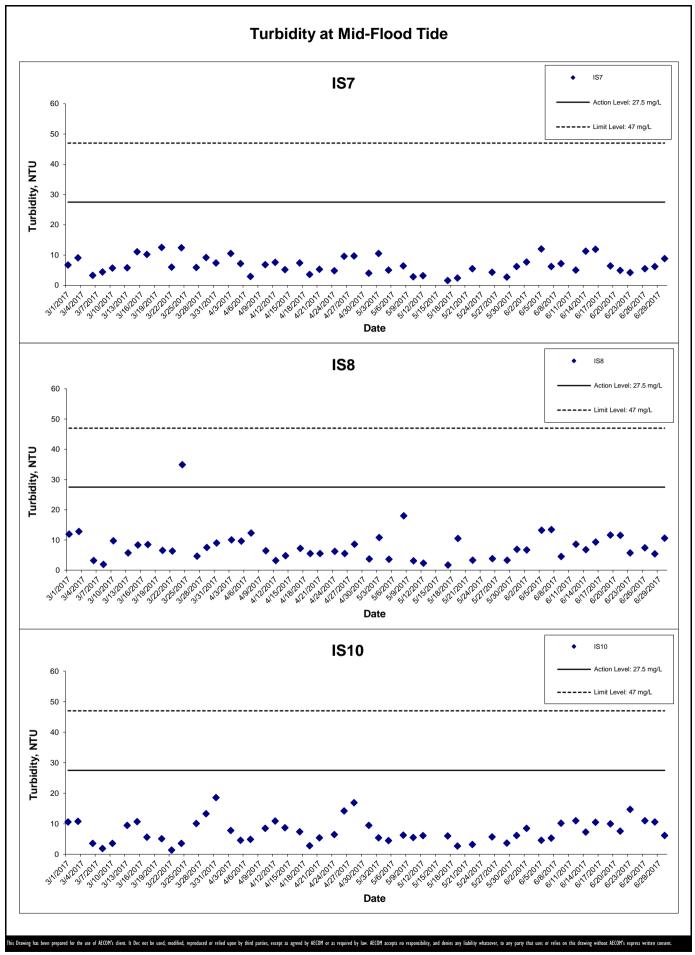

AECOM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

AECOM



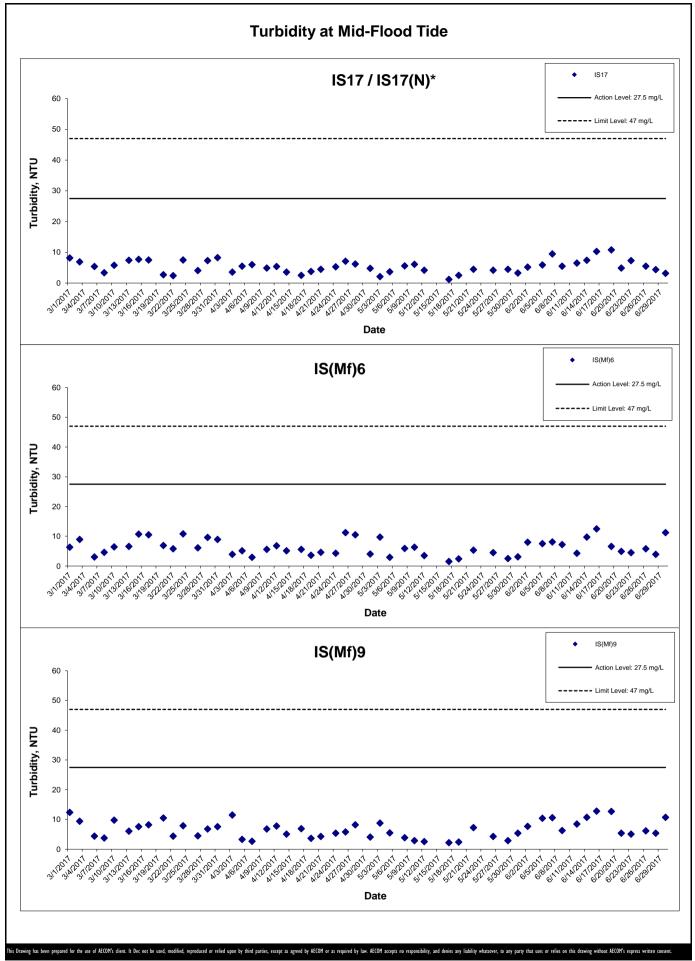
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality Monitoring Results

Appendix J

Project No.: 60249820 **Date: Jul 2017**

Graphical Presentation of Impact Water Quality

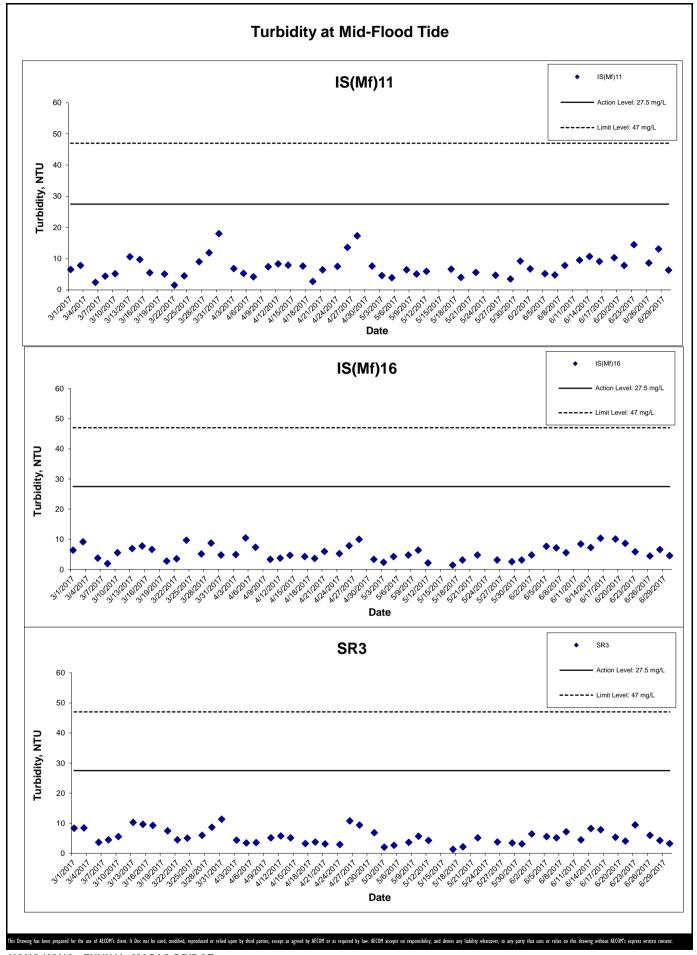

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Project No.: 60249820 Date: Jul 2017

Appendix J

Project No.: 60249820


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

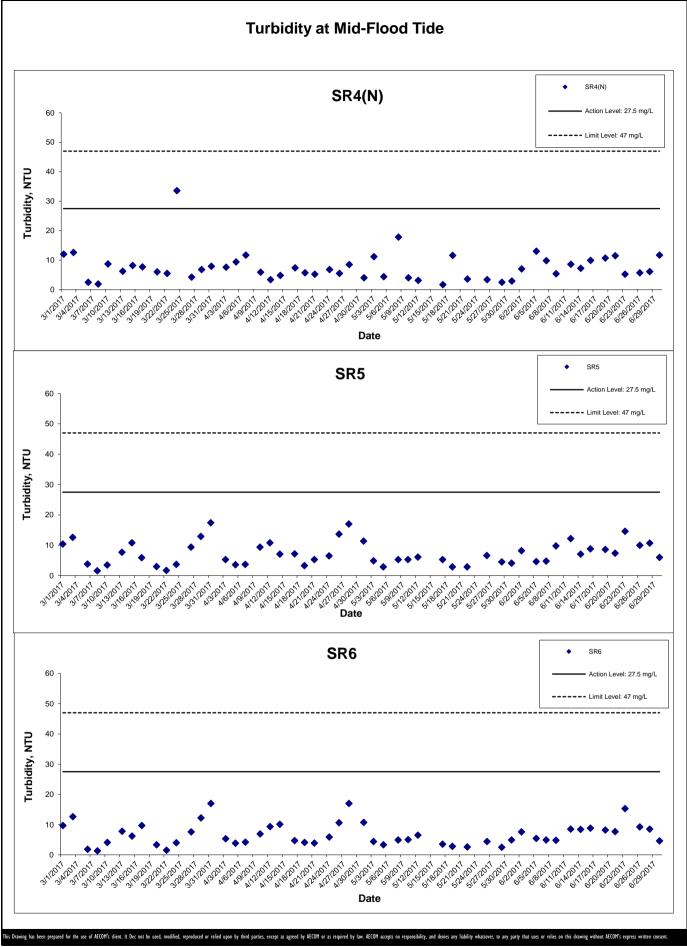
Monitoring Results

Date: Jul 2017

AECOM

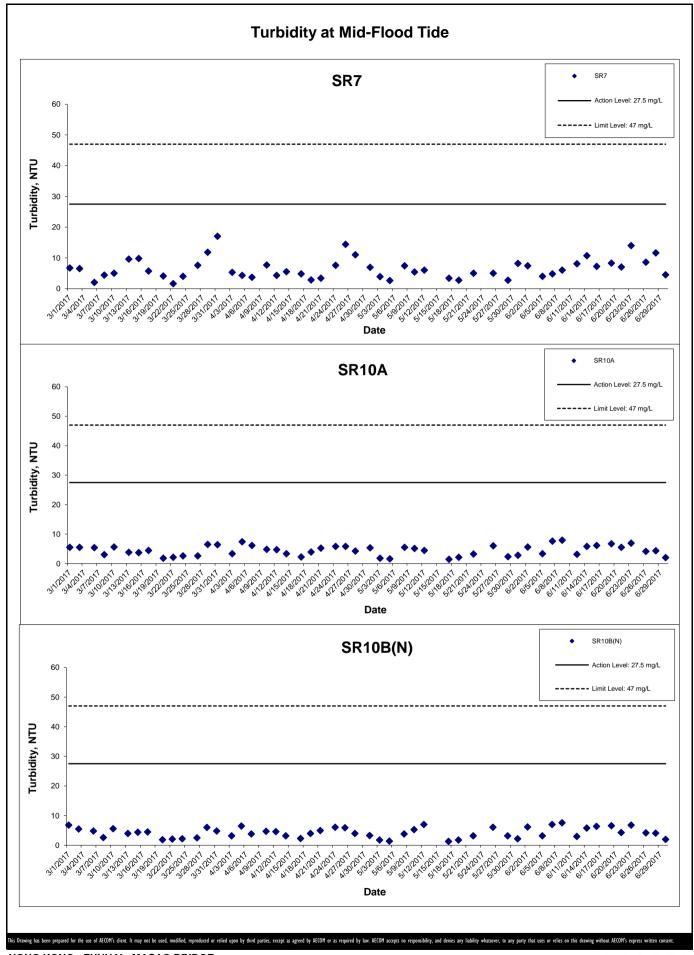
Appendix J

AECOM

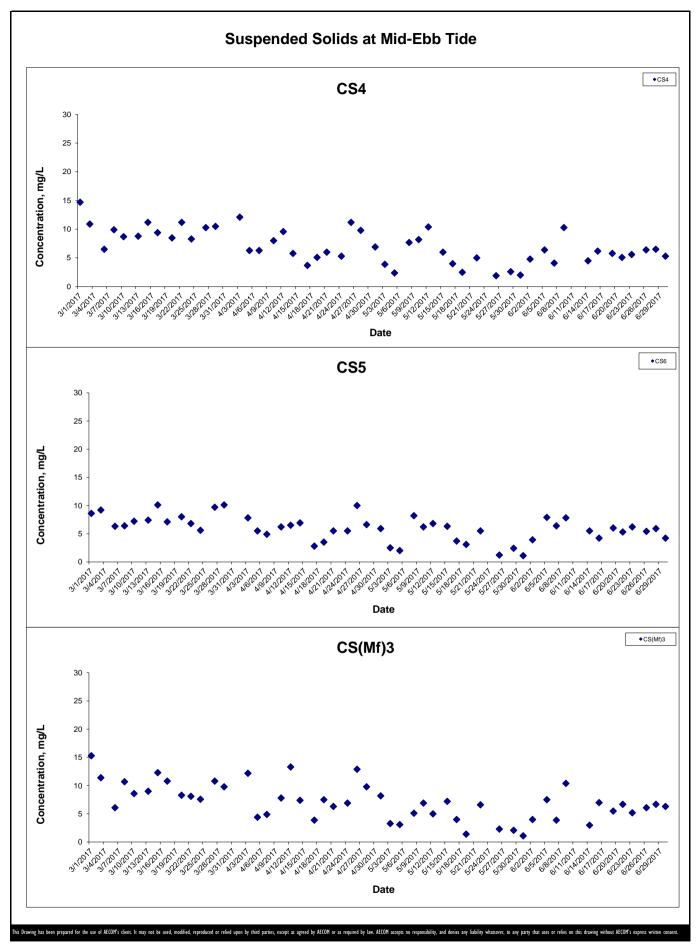

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

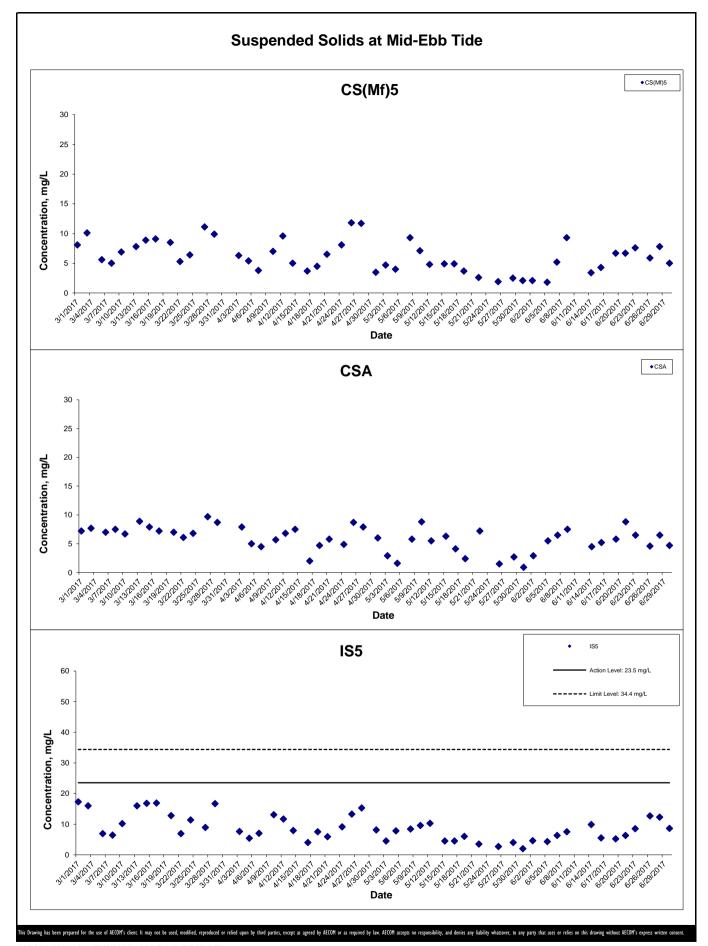
Monitoring Results


Project No.: 60249820

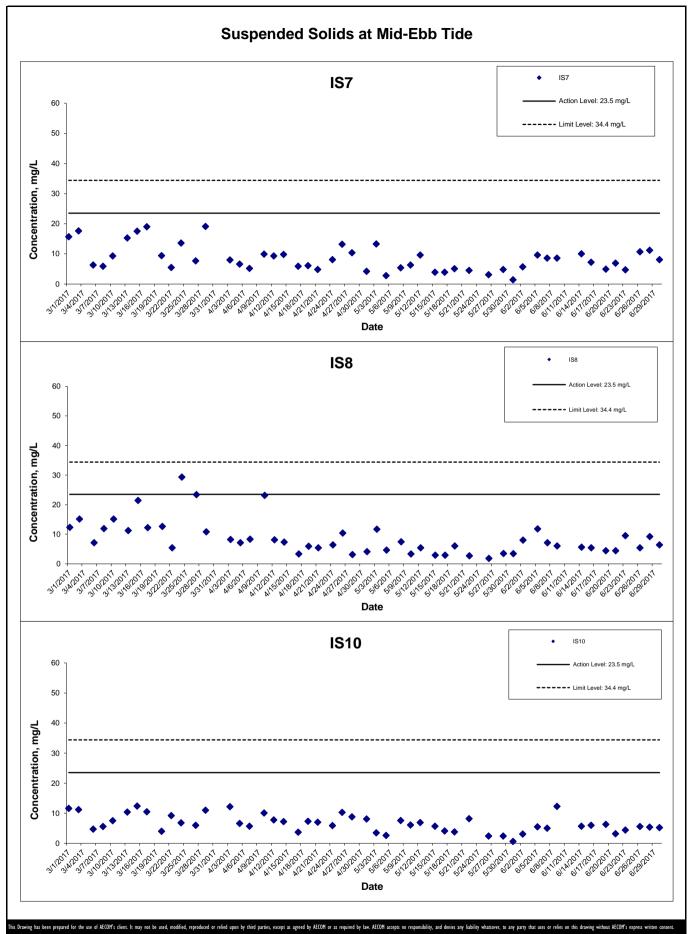
Date: Jul 2017


- RECLAMATION WORKS

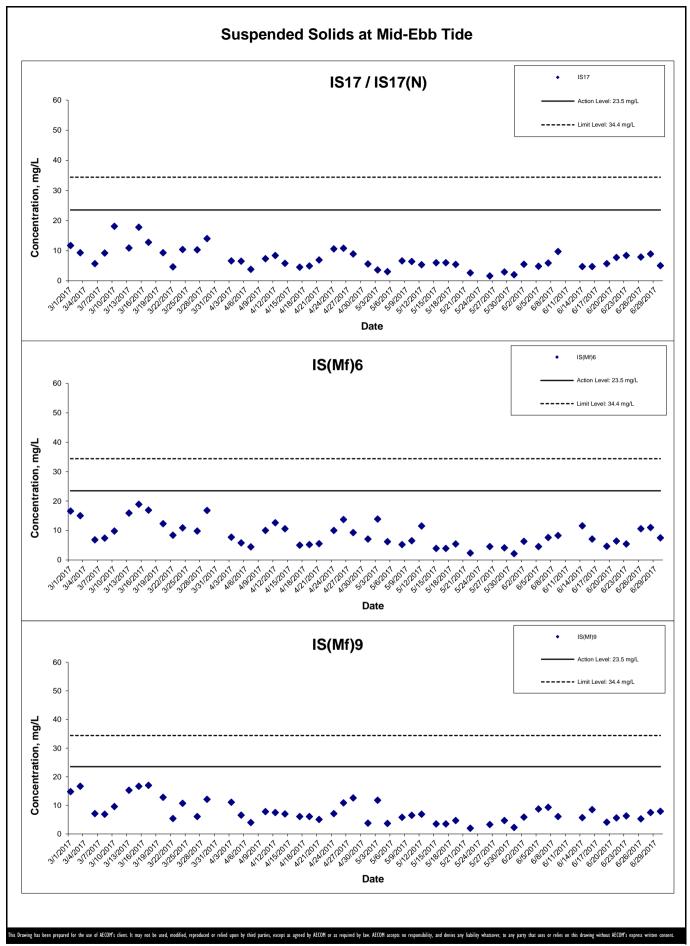
Graphical Presentation of Impact Water Quality
Monitoring Results


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality Monitoring Results

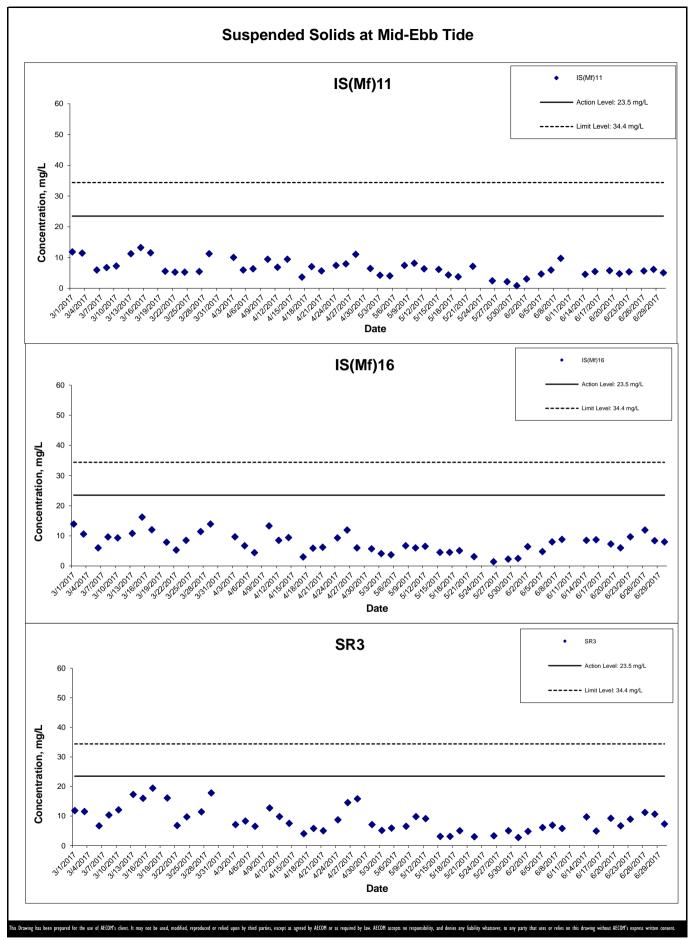

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

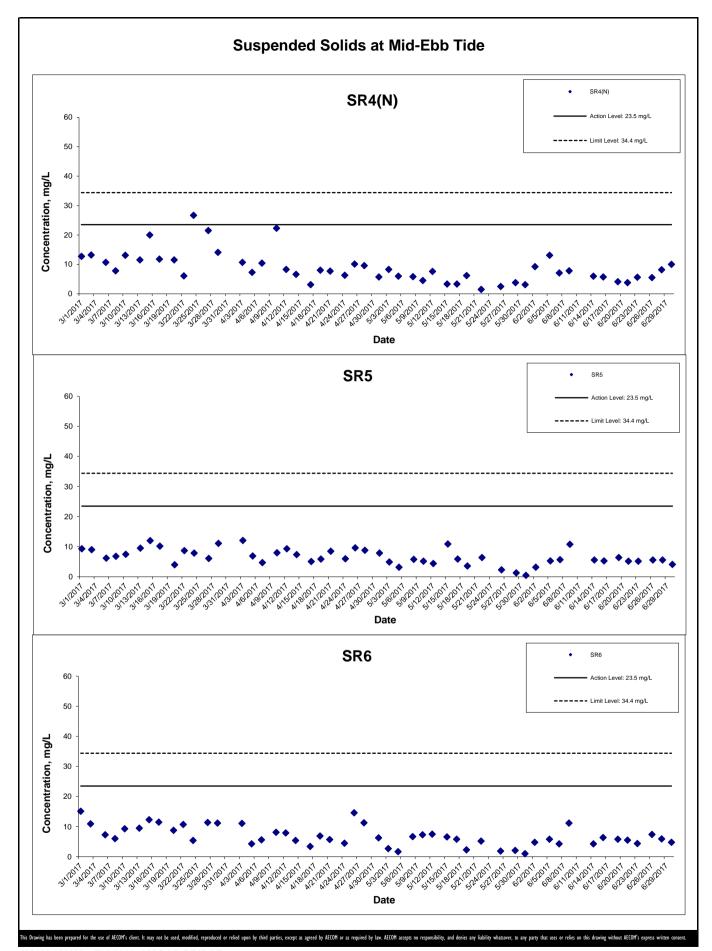


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

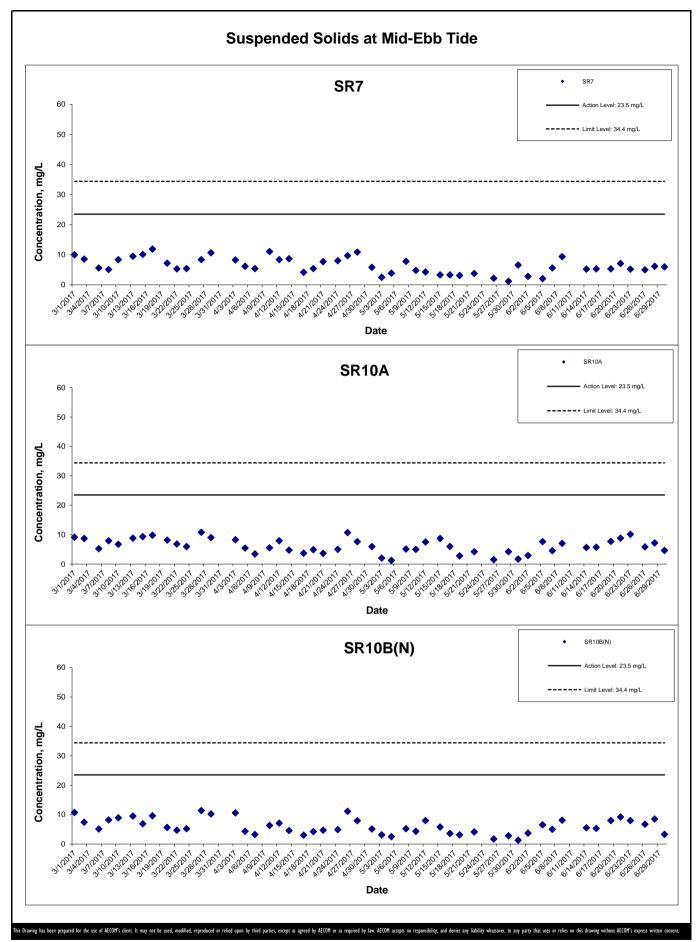


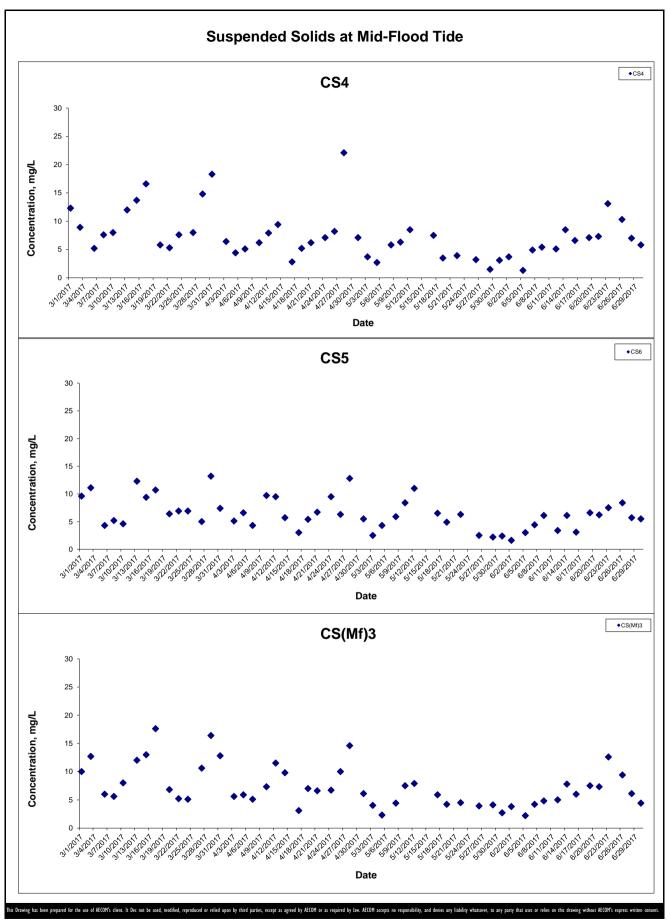
Graphical Presentation of Impact Water Quality - RECLAMATION WORKS **Monitoring Results**



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM


AECOM


AECOM

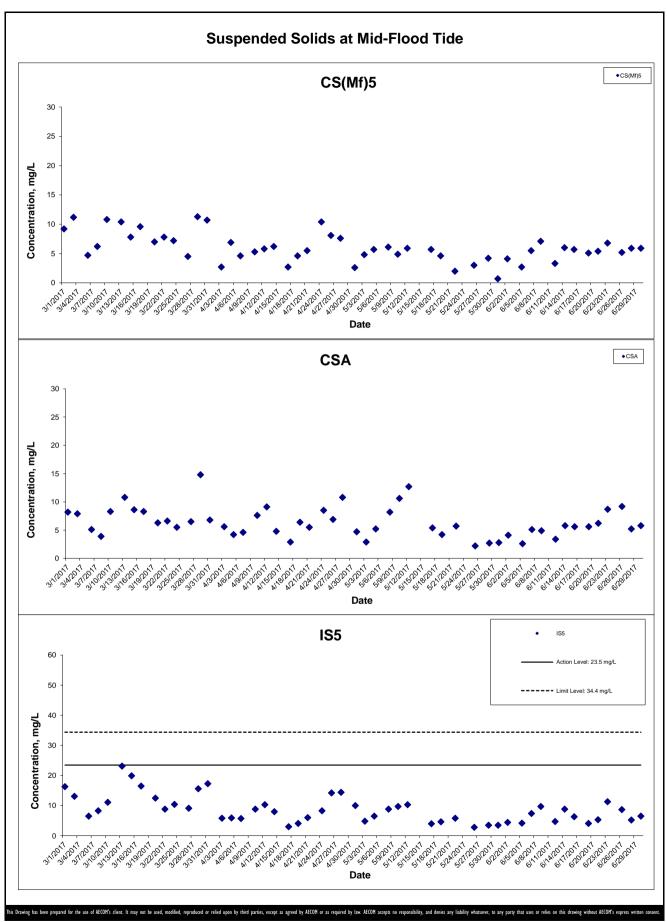
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE

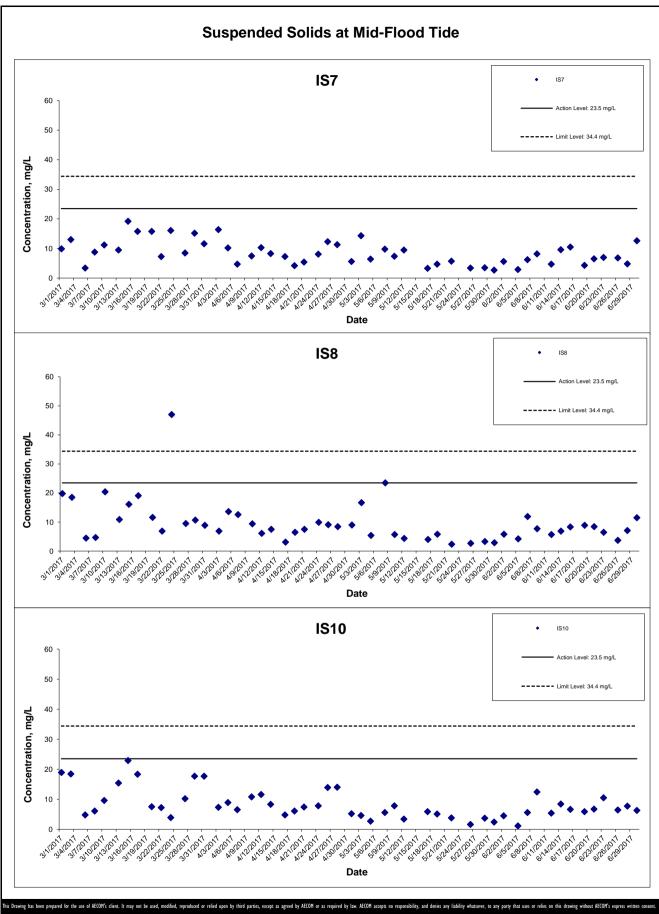
HONG KONG BOUNDARY CROSSING FACILITIES


Date: Jul 2017

- RECLAMATION WORKS

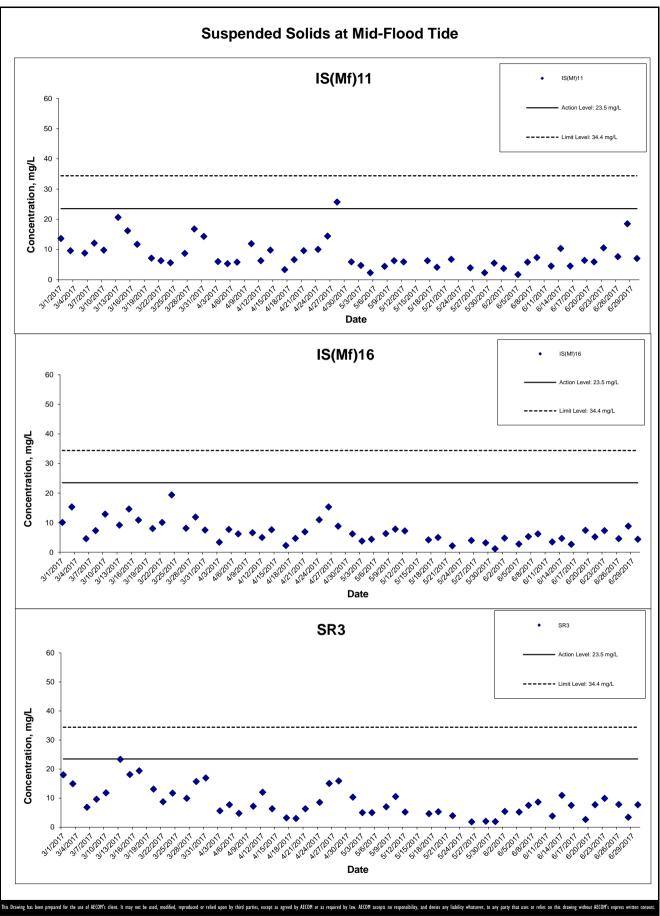
Project No.: 60249820

Graphical Presentation of Impact Water Quality Monitoring Results


Appendix J

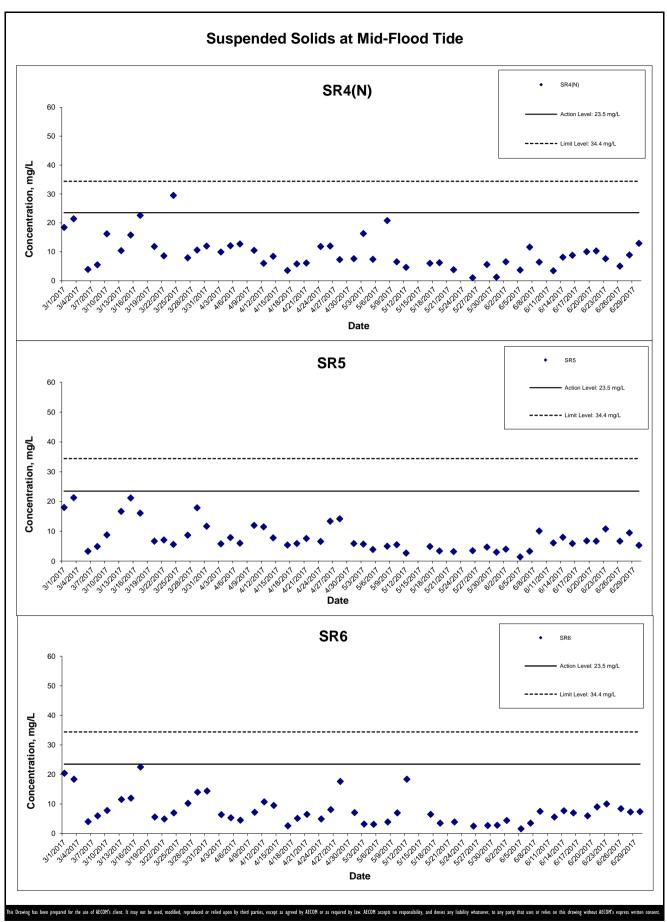
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


A=COM

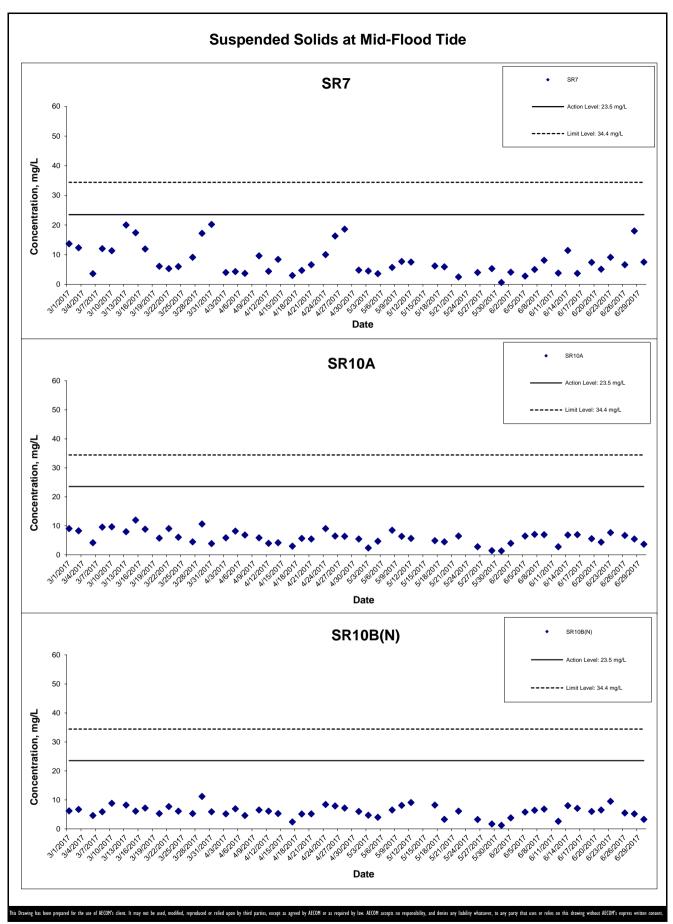
- RECLAMATION WORKS Graphical P

Graphical Presentation of Impact Water Quality
Monitoring Results


AECOM

AECOM

- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECON

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size	Area	Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Boat Association
i i ojeci	Contract	Date	140.	Tillic	Size	Aita	Deautoit	ם כו	LIIOIL	Type	Northing	Lasting	Scason	Association
HKBCF	HY/2010/02	12-Jun-17	1399	9:08:26	4	WL*	2	N/A	Орр	Impact	813631	803570	Summer	No
HKBCF	HY/2010/02	26-Jun-17	1403	9:16:36	3	WL*	1	N/A	Орр	Impact	813714	803550	Summer	No

^{*}Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL.

KEY:

Sighting Opp Opportunistic On On effort

PSD Perpendicular Sighting Distance NEL North East Lantau Group Size Represents best estimate for group encountered NWL North West Lantau

PS = Purse Seine trawler (active)

HT = Hang Trawler (not active but sorting fish and cleaning nets)

GN = Gill Net

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for June 2017

Annex I May 2017 Photo Identification Information

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
HZMB 134		2016/05/23	1251	NWL
HZMB 132		2016/05/23	1244	NWL
HZMB 131		2016/03/22	1215	NWL
HZMB 130		2016/09/05	1301	NWL
HZIVID 130		2016/02/04	1199	NWL
		2017/01/05	1354	NWL
		2017/01/05	1353	NWL
LIZMD 400		2016/01/07	1189	NWL
HZMB 129		2015/10/22	1156	NWL
		2015/09/07	1143	NWL
		2015/08/25	1138	NWL
HZMB 128		2015/01/03	1056	NWL
HZMB 127		2015/01/03	1056	NWL
		2016/05/23	1244	NWL
HZMB 126		2015/02/23	1068	NWL
		2015/01/03	1054	NWL
		2016/05/23	1249	NWL
HZMB 125		2016/03/07	1208	NWL
		2014/10/13	1019	NWL
HZMB 124		2014/09/22	1005	NWL
HZMB 123		2014/08/25	998	NWL
LIZMD 400		2015/10/22	1156	NWL
HZMB 122		2014/08/04	989	NWL
LIZMD 404		2016/07/18	1276	NWL
HZMB 121		2014/07/14	968	NWL
HZMB 120		2014/05/31	951	NWL
HZMB 119		2014/04/19	940	NWL
HZMB 118		2014/01/06	890	NWL
117MD 447		2014/06/17	964	NWL
HZMB 117		2014/01/06	888	NWL
HZMB 116		2014/08/25	999	NWL
		2014/07/14	972	NWL
		2014/07/14	971	NWL
HZMB 115		2013/12/26	879	NWL
		2013/12/26	879	NWL
LIZMO 444		2017/01/05	1351	NWL
HZMB 114		2016/11/03	1328	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2016/06/06	1261	NWL
		2015/11/05	1162	NWL
		2013/10/24	827	NWL
HZMB 113		2013/10/24	827	NWL
HZMB 112		2013/10/15	815	NWL
HZMB 111		2013/10/15	815	NWL
LIZMD 440		2016/01/18	1193	NWL
HZMB 110		2013/10/15	812	NWL
LIZMD 400		2015/06/11	1118	NWL
HZMB 108		2013/08/30	780	NEL
		2015/07/28	1126	NWL
LIZMD 407		2014/10/13	1019	NWL
HZMB 107		2014/05/31	951	NWL
		2013/08/21	770	NWL
HZMB 106		2013/08/21	769	NWL
1.17MD 405		2014/05/31	951	NWL
HZMB 105		2013/07/08	711	NWL
HZMB 104		2013/07/08	711	NWL
HZMB 103		2013/07/08	711	NWL
HZMB 102		2013/07/08	706	NWL
HZMB 101		2013/07/08	706	NWL
HZMB 100		2013/07/08	706	NWL
LIZA 4D 000		2013/06/13	681	NWL
HZMB 099		2013/06/13	680	NWL
		2017/05/11	1393	NWL
		2017/01/05	1353	NWL
		2015/02/23	1077	NWL
		2014/12/18	1044	NWL
		2014/08/04	992	NWL
		2014/01/06	888	NWL
HZMB 098	NL104	2013/11/02	849	NWL
		2013/11/02	845	NWL
		2013/10/24	831	NWL
		2013/07/08	711	NWL
		2013/05/24	659	NWL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/10/28	Baseline	NWL
		2011/09/23	Baseline	NWL
		2011/09/16	Baseline	NWL
HZMB 097		2013/05/09	647	NWL
HZMB 096		2013/04/01	621	NWL
		2013/08/30	780	NEL
LIZMD OOF		2013/06/25	697	NWL
HZMB 095		2013/06/13	682	NWL
		2013/04/01	621	NWL
		2016/08/30	1299	NWL
		2014/10/13	1019	NWL
		2014/05/31	954	NWL
HZMB 094		2014/02/17	910	NWL
		2013/06/26	703	NWL
		2013/06/25	698	NWL
		2013/03/18	601	NWL
LIZMD 000		2013/05/24	657	NWL
HZMB 093		2013/02/21	587	NWL
		2015/04/20	1097	NWL
HZMB 092		2013/02/21	589	NWL
		2013/02/15	581	NWL
HZMB 091		2013/02/15	579	NWL
		2013/06/25	697	NWL
HZMB 090		2013/06/13	682	NWL
		2013/02/15	579	NWL
HZMB 089		2013/02/15	579	NWL
HZMB 088		2013/02/15	579	NWL
HZMB 087		2013/02/15	579	NWL
		2015/03/19	1086	NWL
HZMD 006	NI 242	2013/05/09	642	NWL
HZMB 086	NL242	2013/02/15	579	NWL
		2011/10/10	Baseline	NWL
LIZMD OOF		2014/10/13	1019	NWL
HZMB 085		2014/05/31	954	NWL
HZMB 084		2013/06/26	703	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/02/15	579	NWL
		2013/02/14	575	NWL
		2016/11/03	1332	NWL
		2016/08/30	1298	NWL
		2015/12/01	1180	NWL
		2015/05/11	1104	NWL
		2013/12/19	863	NWL
		2013/03/28	607	NWL
117MD 000	NII 400	2013/02/15	579	NWL
HZMB 083	NL136	2013/01/28	568	NWL
		2013/01/28	564	NWL
		2012/04/19	267	NWL
		2011/10/28	Baseline	NWL
		2011/10/28	Baseline	NWL
		2011/10/10	Baseline	NEL
		2011/09/06	Baseline	NWL
		2014/10/20	1024	NWL
1171 AD 000		2013/02/21	587	NWL
HZMB 082		2013/02/15	579	NWL
		2013/01/28	563	NWL
11714D 004		2013/01/28	559	NWL
HZMB 081		2013/01/28	557	NWL
HZMB 080		2013/01/28	556	NWL
HZMB 079		2013/01/28	556	NWL
117MD 070		2013/02/15	579	NWL
HZMB 078		2013/01/08	552	NWL
		2013/12/26	878	NWL
HZMB 077		2013/07/08	706	NWL
		2012/12/11	541	NWL
117MD 070		2013/07/08	706	NWL
HZMB 076		2012/12/11	541	NWL
HZMB 075		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 074		2013/04/01	621	NWL
		2013/02/21	594	NEL
		2012/12/10	529	NEL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
LIZMD 070		2013/04/01	621	NWL
HZMB 073		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
HZMB 072		2012/10/24	476	NWL
LIZMD 074		2012/10/24	475	NWL
HZMB 071		2012/10/12	466	NWL
HZMB 070		2012/10/24	476	NWL
		2015/06/04	1116	NWL
1.17MD 000		2013/08/21	774	NWL
HZMB 069		2013/07/08	711	NWL
		2012/10/24	476	NWL
		2014/10/20	1025	NWL
HZMB 068		2013/11/01	839	NWL
		2012/10/24	476	NWL
HZMB 067		2012/10/24	475	NWL
		2013/01/28	559	NWL
		2012/12/11	537	NWL
		2012/10/24	475	NWL
HZMB 066	NL93	2012/10/12	466	NWL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
		2015/03/19	1086	NWL
		2014/06/17	964	NWL
		2013/05/09	647	NWL
HZMB 064		2013/01/28	561	NWL
		2012/10/24	475	NWL
		2012/10/12	466	NWL
11714D 000		2013/05/09	647	NWL
HZMB 063		2012/10/12	466	NWL
11714D 000		2012/12/06	525	NEL
HZMB 062		2012/10/11	457	NWL
HZMB 060		2012/09/18	447	NWL
HZMB 059		2013/02/21	591	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2012/09/18	445	NWL
HZMB 057		2012/09/18	440	NWL
HZMB 056		2012/09/18	442	NWL
HZIVID USU		2012/09/05	433	NEL
HZMB 055		2012/09/04	425	NWL
		2017/05/11	1393	NWL
		2016/11/03	1331	NWL
		2016/05/12	1238	NWL
		2015/12/01	1180	NWL
		2015/04/20	1097	NWL
		2015/01/15	1062	NWL
		2014/05/31	953	NWL
		2014/01/06	888	NWL
		2013/11/07	854	NWL
		2013/11/02	845	NWL
LIZMD OF A	CH34	2013/10/24	831	NWL
HZMB 054		2013/08/30	780	NEL
		2013/07/08	711	NWL
		2013/09/18	448	NWL
		2012/09/05	432	NEL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/10/28	Baseline	NWL
		2011/10/06	Baseline	NWL
HZMB 053		2012/09/04	425	NWL
HZMB 052		2012/09/04	423	NWL
		2015/05/11	1104	NWL
		2014/08/04	989	NWL
		2013/05/09	644	NWL
LIZMD 054	NII 242	2013/04/01	622	NWL
HZMB 051	NL213	2013/02/15	582	NWL
		2013/02/15	581	NWL
		2013/01/28	559	NWL
		2013/01/28	556	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2012/09/04	422	NWL
		2014/07/14	971	NWL
		2014/01/10	900	NWL
HZMB 050		2014/01/06	888	NWL
		2013/02/15	579	NWL
		2012/09/04	421	NWL
		2015/10/09	1151	NWL
HZMB 049		2014/07/29	982	NWL
		2012/09/03	419	NWL
HZMB 048		2012/09/03	419	NWL
117MD 047		2015/04/28	1100	NWL
HZMB 047		2012/09/03	412	NWL
HZMB 046		2012/09/03	412	NWL
		2016/05/23	1249	NWL
		2014/02/17	910	NWL
HZMB 045		2013/06/13	682	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2017/01/05	1350	NWL
		2016/05/23	1247	NWL
		2016/01/18	1194	NWL
		2014/10/13	1019	NWL
		2014/02/17	910	NWL
		2013/12/19	864	NWL
		2013/11/02	845	NWL
		2013/11/01	842	NWL
		2013/10/15	819	NWL
HZMB 044	NL98	2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/10/06	Baseline	NEL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
HZMB 043		2012/09/03	407	NWL
		2015/10/22	1156	NWL
LIZMD 040	NII OOO	2013/12/19	863	NWL
HZMB 042	NL260	2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2014/06/05	960	NEL
		2014/02/17	910	NWL
		2013/11/02	845	NWL
		2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 041	NL24	2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/06	Baseline	NEL
		2011/11/05	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/10/10	Baseline	NWL
		2014/02/17	910	NWL
		2014/01/06	893	NWL
		2013/10/15	821	NWL
HZMB 040		2013/07/08	714	NWL
		2013/07/08	711	NWL
		2013/02/21	589	NWL
		2012/11/01	493	NWL
H7MD 020		2016/05/23	1246	NWL
HZMB 038		2012/11/01	490	NWL
HZMB 037		2012/11/01	490	NWL
		2017/01/05	1351	NWL
HZMB 036		2017/01/05	1350	NWL
HEIVID USU		2012/09/03	407	NWL
		2012/11/01	490	NWL
LIZMD 025		2013/02/15	579	NWL
HZMB 035		2012/11/01	490	NWL
HZMB 034		2012/11/01	493	NWL
HZMB 028		2014/11/17	1035	NWL
I IZIVID UZO		2013/04/01	625	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2012/08/06	373	NWL
		2013/12/19	863	NWL
		2013/02/15	579	NWL
HZMB 027		2013/01/28	568	NWL
		2013/01/28	564	NWL
		2012/06/14	299	NWL
		2014/10/13	1018	NWL
		2013/06/25	697	NWL
HZMB 026		2013/05/09	642	NWL
		2013/01/28	561	NWL
		2012/06/13	295	NEL
		2013/02/22	596	NEL
		2013/02/21	591	NWL
HZMB 025		2012/12/06	525	NEL
		2012/10/11	457	NWL
		2012/06/13	295	NEL
LIZMB 004		2013/03/18	601	NWL
HZMB 024		2012/06/13	295	NEL
		2017/01/05	1353	NWL
		2016/11/03	1330	NWL
		2015/10/09	1153	NWL
		2015/10/09	1152	NWL
		2015/04/20	1097	NWL
		2014/12/18	1044	NWL
L 171 AD 000		2014/11/17	1035	NWL
HZMB 023		2014/01/06	888	NWL
		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2017/01/05	1353	NWL
		2016/11/03	1330	NWL
HZMB 022		2016/04/21	1219	NWL
		2015/09/07	1143	NWL
		2015/04/20	1097	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
		2014/08/04	991	NWL
		2014/01/06	888	NWL
		2013/10/24	827	NWL
		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2016/03/22	1215	NWL
HZMB 021	NL37	2012/07/10	330	NWL
		2011/09/16	Baseline	NWL
HZMB 020		2012/07/10	330	NWL
HZMB 019		2012/07/10	330	NWL
		2014/02/17	910	NWL
		2013/05/09	647	NWL
HZMB 018		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/07/10	330	NWL
HZMB 017		2012/07/10	330	NWL
		2013/07/08	706	NWL
		2012/12/11	539	NWL
HZMB 016		2012/09/18	446	NWL
		2012/09/04	421	NWL
		2012/07/10	330	NWL
HZMB 015		2012/07/10	330	NEL
		2015/08/25	1139	NWL
		2013/12/26	880	NWL
		2012/08/06	373	NWL
HZMB 014	NL176	2012/06/13	295	NEL
		2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
HZMB 013		2012/05/28	281	NWL
HZMB 012		2012/05/28	281	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/02/22	597	NEL
		2013/02/21	592	NEL
		2013/02/14	572	NEL
LIZMD 044	EL01	2012/11/06	517	NEL
HZMB 011	ELUI	2012/09/19	452	NWL
		2012/03/31	261	NEL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
117MD 000		2015/03/19	1084	NWL
HZMB 009		2012/05/28	281	NWL
1.171.4D 000		2015/07/06	1122	NWL
HZMB 008		2012/05/28	281	NWL
		2012/12/10	529	NEL
HZMB 007	NL246	2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL
		2015/10/22	1158	NWL
		2013/02/21	594	NEL
HZMB 006		2012/12/11	539	NWL
		2012/11/01	495	NWL
		2012/03/29	250	NWL
		2015/02/09	1070	NWL
		2015/02/09	1069	NWL
		2013/11/09	860	NWL
LIZMAD OOF		2013/11/07	858	NWL
HZMB 005		2013/10/15	813	NWL
		2012/12/10	532	NWL
		2012/08/06	374	NWL
		2012/05/28	287	NWL
		2015/07/28	1126	NWL
HZMB 004		2012/09/04	421	NWL
		2012/03/31	262	NWL
		2013/10/15	812	NWL
		2013/06/25	697	NWL
LIZMAD 000	NII 470	2012/12/10	529	NEL
HZMB 003	NL179	2012/03/31	261	NWL
		2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2014/05/31	951	NWL
		2013/12/26	878	NWL
		2013/12/19	863	NWL
		2013/11/01	839	NWL
		2013/10/15	819	NWL
		2013/09/24	798	NWL
LIZMD 000	WL111	2013/02/14	573	NWL
HZMB 002	VVLIII	2012/12/11	536	NWL
		2012/12/11	535	NWL
		2012/10/12	466	NWL
		2012/10/24	475	NWL
		2012/05/28	281	NWL
		2012/03/29	250	NWL
		2011/11/02	Baseline	NWL
	WL46	2016/07/18	1276	NWL
		2016/05/23	1251	NWL
		2014/08/25	997	NWL
1.17MD 004		2013/08/21	771	NWL
HZMB 001		2013/06/13	681	NWL
		2013/04/01	617	NWL
		2013/02/14	573	NWL
		2012/03/29	250	NWL
	CH98	2011/11/02	Baseline	NWL
	NII 44	2011/11/02	Baseline	NWL
	NL11	2011/11/07	Baseline	NWL
	NL12	2011/11/02	Baseline	NWL
		2011/09/23	Baseline	NWL
	NII 22	2011/11/01	Baseline	NEL
	NL33	2011/11/05	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL46	2011/10/28	Baseline	NWL
	CH153	2011/10/11	Baseline	NWL
		2001/11/07	Baseline	NWL
	NL48	2011/11/02	Baseline	NWL
		2011/09/16	Baseline	NWL
	NII 75	2011/09/16	Baseline	NWL
	NL75	2011/09/16	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/01	Baseline	NEL
	NL80	2011/11/02	Baseline	NWL
	NL118	2011/09/06	Baseline	NWL
	NL120	2011/11/06	Baseline	NEL
	INLIZU	2011/10/10	Baseline	NWL
		2011/11/06	Baseline	NEL
	NL123	2011/10/10	Baseline	NWL
		2011/10/06	Baseline	NWL
		2011/11/01	Baseline	NEL
	NL139	2011/10/10	Baseline	NEL
		2011/09/16	Baseline	NWL
	NL165	2011/11/05	Baseline	NWL
	INLIES	2011/11/02	Baseline	NWL
	NL170	2011/10/06	Baseline	NEL
		2011/11/07	Baseline	NWL
	NL188	2011/11/01	Baseline	NWL
		2011/10/28	Baseline	NWL
	NL191	2011/09/07	Baseline	NWL
	NL202	2011/11/07	Baseline	NWL
	INLZUZ	2011/10/28	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL210	2011/11/05	Baseline	NWL
	INLZ IU	2011/11/02	Baseline	NWL
		2011/09/07	Baseline	NWL
		2011/11/05	Baseline	NWL
	NL214	2011/11/02	Baseline	NWL
		2011/10/28	Baseline	NWL
	NL220	2011/10/10	Baseline	NEL
	NL224	2011/10/28	Baseline	NWL
	NL226	2011/11/05	Baseline	NWL
	INLZZŪ	2011/10/17	Baseline	WL
	NL230	2011/11/02	Baseline	NWL
	INLZOU	2011/10/17	Baseline	WL
		2011/10/28	Baseline	NWL
	NL233	2011/10/06	Baseline	NWL
		2011/09/16	Baseline	NWL
	NL241	2011/11/07	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/02	Baseline	NWL
		2011/09/16	Baseline	NWL
		2011/11/01	Baseline	NEL
	NL244	2011/11/01	Baseline	NWL
		2011/09/05	Baseline	WL
	NL256	2011/11/02	Baseline	NWL
	NII 250	2011/09/16	Baseline	NWL
	NL258	2011/09/05	Baseline	WL
	NL259	2011/11/07	Baseline	NWL
	NL261	2011/11/01	Baseline	NEL
		2011/11/06	Baseline	NEL
	NL264	2011/10/06	Baseline	NEL
		2011/09/23	Baseline	NWL
	NL269	2011/11/02	Baseline	NWL
		2011/11/05	Baseline	NWL
	NII 070	2011/11/02	Baseline	NWL
	NL272	2011/10/28	Baseline	NWL
		2011/09/16	Baseline	NWL
	NL278	2011/11/02	Baseline	NWL
	NL279	2011/11/02	Baseline	NWL
	SL42	2011/11/02	Baseline	NWL
	SL43	2011/10/28	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
	WL04	2011/10/17	Baseline	WL
		2011/10/10	Baseline	NWL
		2011/09/16	Baseline	NWL
	WL05	2011/11/01	Baseline	NEL
	VVLUS	2011/11/01	Baseline	NEL
	WL11	2011/11/07	Baseline	NWL
		2011/10/17	Baseline	WL
	WL25	2011/09/23	Baseline	WL
		2011/09/16	Baseline	NWL
	\\/\ 00	2011/11/02	Baseline	WL
	WL88	2011/09/16	Baseline	NWL
	WL116	2011/09/16	Baseline	NWL
	WL124	2011/11/02	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
	WL156	2011/10/28	Baseline	NWL
	WL130	2011/09/23	Baseline	WL
	WL162	2011/09/16	Baseline	NWL
	NL275	2011/09/23	Baseline	WL
		2011/11/02	Baseline	WL
	- - - - - - - - - -	2011/10/17	Baseline	WL
		2011/09/23	Baseline	WL
	CH108	2011/11/02	Baseline	WL
	CITIOO	2011/11/02	Baseline	WL
	CH157	2011/11/02	Baseline	WL
	NL206	2011/10/07	Baseline	WL
	WL28	2011/09/23	Baseline	WL
	WL42	2011/11/02	Baseline	WL
	VVL42	2011/09/05	Baseline	WL
	WL47	2011/10/17	Baseline	WL
	WL61	2011/10/17	Baseline	WL
	VVLOT	2011/09/23	Baseline	WL
	WL66	2011/11/07	Baseline	WL
	WL68	2011/09/05	Baseline	WL
	VVLOO	2011/09/05	Baseline	WL
		2011/11/02	Baseline	WL
	WL72	2011/11/02	Baseline	WL
		2011/09/23	Baseline	WL
	WL87	2011/09/23	Baseline	WL
	WL88	2011/11/02	Baseline	WL
	VVLOO	2011/09/16	Baseline	WL
	WL116	2011/09/16	Baseline	WL
	WL118	2011/11/02	Baseline	WL
	VVLIIO	2011/11/02	Baseline	WL
	WL123	2011/11/02	Baseline	WL
	WL124	2011/11/02	Baseline	WL
	WL128	2011/11/07	Baseline	WL
	VVL128	2011/11/02	Baseline	WL
		2011/11/02	Baseline	WL
	WL131	2011/11/02	Baseline	WL
		2011/09/23	Baseline	WL
	WL132	2011/09/23	Baseline	WL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
	WL137	2011/11/02	Baseline	WL
	WL138	2011/11/02	Baseline	WL
	WL144	2011/11/02	Baseline	WL
	WL145	2011/09/05	Baseline	WL
	WL146	2011/10/17	Baseline	WL
	WL153	2011/11/07	Baseline	WL
	WL157	2011/09/23	Baseline	WL
	WL158	2011/09/23	Baseline	WL
	WL163	2011/11/07	Baseline	WL
	VVL 103	2011/11/02	Baseline	WL
	WL165	2011/10/17	Baseline	WL
	WL167	2011/10/17	Baseline	WL
	WL170	2011/11/07	Baseline	WL
	WL171	2011/10/28	Baseline	WL

HZMB 054 WL 2017-05-11_11-18-31 MED

HZMB 098 LL 2017-05-11_11-15-54 MED

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event	Action				
	ET Leader	IEC	ER	Contractor	
Action Level					
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.	
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

Event		Action				
	ET Leader	IEC	ER	Contractor		
Limit Level						
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		

Event	Action				
	ET Leader	IEC	ER	Contractor	
	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is	

Event / Action Plan for Construction Noise

Event		Action	1	
	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented.	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Water Quality

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented. 	 Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of noncompliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action							
	ET Leader	IEC	ER	Contractor				
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; 4. Assess the effectiveness of the implemented mitigation measures.	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if 				

Event	Action					
	ET Leader	IEC	ER	Contractor		
Limit level being exceeded by two or more consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly. 	mitigation measures to be implemented; 5. Ensure mitigation measures are properly implemented; 6. Assess the effectiveness of the implemented mitigation measures; 7. Consider and instruct, if	 Inform the ER and confirm notification of the noncompliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 		

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted by ET and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring lophin monitoring

6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.	Contractor and advise ER/SOR of the results and findings accordingly. 5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly.	Supervise the implementation of additional monitoring and/or any other mitigation measures.	and/or any other mitigation measures.
--	--	---	---------------------------------------

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for <u>June / 2017</u> (year)

Project : Ho	ong Kong – Zhu	ıhai – Macao Bri	dge, Hong Kon	g Boundary Cı	rossing Facili	ties – Reclam	ation Works				Contract No.: H	IY/2010/02
		Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Surplus Surcharge exported to Macau	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. genera refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-17	0.0000	0.0000	0.0000	15.6100	73.2375	0.0000	18.8927	0.0000	0.3640	0.0000	0.0000	0.0455
Feb-17	0.0000	0.0000	0.0000	39.0950	182.3675	0.0000	17.5747	0.0000	0.3920	0.0000	0.0000	0.0260
Mar-17	0.0000	0.0000	0.0000	60.6496	171.6925	0.0000	20.6013	0.0000	0.0000	0.0000	0.0000	0.0585
Apr-17	0.0000	0.0000	0.0000	2.4750	55.3140	0.0000	39.9607	0.0000	0.4480	0.0000	0.0000	0.0325
May-17	0.0000	0.0000	0.0000	0.0000	4.5540	0.0000	22.4307	0.0000	0.0000	0.0000	0.0000	0.0455
Jun-17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3920	0.0000	0.0000	0.0390
Sub-total	0.0000	0.0000	0.0000	117.8296	487.1655	0.0000	119.4601	0.0000	1.5960	0.0000	0.0000	0.2470
Jul-17												
Aug-17												
Sep-17												
Oct-17												
Nov-17												
Dec-17												
Total	0.0000	0.0000	0.0000	117.8296	487.1655	0.0000	119.4601	0.0000	1.5960	0.0000	0.0000	0.2470

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles / containers / sheets / foam / barrier from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since
		month	project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	-
Noise	Action	-	-
	Limit	-	-
Water Quality	Action	-	2
	Limit	-	3
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date	Subject	Status	Total no.	Total no.
	Received			received	received since
				in this	project
				month	commencement
Environmental					
complaints	-	-	-	-	46
Notification of					
summons	-	-	-	-	2
Successful	_	_		_	2
Prosecutions	-	-	_	-	2