Shatin to Central Link – Tai Wai to Hung Hom Section

Final Operational Ground-borne Noise Mitigation Measures Plan

(June 2017	')
	1 de
Verified by: Fredrick L	<u>-eong</u>
Position: Independent Envi	ironmental Checker
1 dollari. <u>inacpendent Envi</u>	<u> </u>
Date: 7 June 2	2017

Shatin to Central Link – Tai Wai to Hung Hom Section

Final Operational Ground-borne Noise Mitigation Measures Plan

(June 2017)

Certified by: Felice Wong

Position: Environmental Team Leader

Date: 7 June 2017

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Final Operational Ground-borne Noise Mitigation Measures Plan

June 2017

	Name	Signature
Prepared & Checked:	Angela Tong	Just
Reviewed & Approved:	∭Josh Lam	And

Version:	Α	Date:	6 Jun 2017

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

			Page
1	INTRO	DUCTION	
-			
	1.1 1.2	Background	
	1.3		IVIIVIF
		•	
2	IMPAC	T TESTING AND LSR	RESULTS4
	2.1		
	2.2	Prediction of Line Sou	urce Response4
3	REVIE	W OF OPERATIONAL	GROUND-BORNE NOISE PREDICTION
	3.1	Summary of Review of	of LSR Values5
	3.2	Operational Ground-b	porne Noise Prediction5
	3.3	Review of Other Assu	ımptions5
4	CONCI	USION	11
List of	Tables		
Table 2	1	Measurement and Te	sting Locations
Table 3			Measurement Data and WIL Data
Table 3	5.2	Ground-borne Noise I	Prediction Results
List of	Figures		
C11033 C11033 C11033	B/C/SCL/ B/C/SCL/ B/C/SCL/	/ACM/M53/004 /ACM/M53/005 /ACM/M53/006 /ACM/M53/007 /ACM/M53/013 – 018	Locations of Measurement Points at NSR KAT-P1-5 Locations of Measurement Points at NSR KAT-P1-7 Locations of Measurement Points at NSR DIH-P1-1 Locations of Measurement Points at NSR HOM-2-2 Locations of Representative Operational Ground-Borne Noise Sensitive Receivers
Append	dices		
Annex /	A	Operational Ground-I Methodology Plan (Re	Borne Noise Mitigation Measures Plan – Testing and Review
Annex I	B1	Excerpt of Operationa	al Ground-borne Noise Mitigation Measures Plan (Batch 1 – Ka ning House) (June 2016)
Annex I	B2	Excerpt of Operational Tak Planned Develop	al Ground-borne Noise Mitigation Measures Plan (Batch 2 – Ka oment) (June 2016)
Annex I	B3	Excerpt of Operation	nal Ground-borne Noise Mitigation Measures Plan (Batch 3 -
Annex I	B4		Estate) (September 2016) al Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lec
		Wing Building) (March	n 2017)
Annex (Operational Ground-borne Noise Assessment Results
Annex I			Ground-borne Noise Calculations
Annex I		Cumulative Operation	nal Ground-borne Noise Results

AECOM Asia Co. Ltd. i June 2017

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/K) was issued by Director of Environmental Protection (DEP) on 4 October 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd was commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (Annex A). The LSR test results conducted at the four measurement locations as recommended in T&RMP were presented in the following OGNMMPs:
 - OGNMMP (Batch 1 Kai Ching Estate, Mung Ching House) (Jun 2016);
 - OGNMMP (Batch 2 Kai Tak Planned Development) (Jun 2016);
 - OGNMMP (Batch 3 Upper Wong Tai Sin Estate) (Sept 2016); and
 - OGNMMP (Batch 4 Lee Wing Building) (Mar 2017).
- 1.1.7 These OGNMMPs were submitted to EPD and the measurement results were accepted by EPD. Excerpt of these OGNMMP are presented in Annexes B1 to B4.

AECOM Asia Co. Ltd. 2 June 2017

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This Final OGNMMP presents a summary of LSR analysis based on the results of the impact test at the four designated measurement locations and the updated operational ground-borne noise prediction results based on measurement results and the latest available information.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 presents the summary of impact test and the measured LSR results.
 - Section 3 presents the operational ground-borne noise prediction results.
 - Section 4 presents the conclusion.

2 IMPACT TESTING AND LSR RESULTS

2.1 Testing Locations

2.1.1 A summary of the information of testing locations are presented in **Table 2.1** with their locations shown in **Figure C11033/C/SCL/ACM/M53/004** to **007**. Details of testing and measurement procedures at the testing locations are provided in **Annexes B1** to **B4**.

Table 2.1 Measurement and Testing Locations

		Predicted Night-time	" INICASUICITICITE LOCATION			Location of	
١	NSR	Ground- borne Noise Levels in	Approx. Hori. Distance	Approx. Slant Distance (From	Ground Type	Hammer Impact Test (Approx.	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
KAT-P1-5 ⁽¹⁾	Kai Ching Estate – Mun Ching House	40	13 (down track)	19 (down track)	Soil	Down Track Tunnel (-8.1mPD)	1 & 2 Feb 2016
KAT-P1-7 ⁽²⁾	Residential premises near Kai Tak Station	45	0 (up track) 0 (down track)	18	Mixed rock	Down Track Tunnel (-13mPD)	15 April 2016
DIH-P1-1 ⁽³⁾	Upper Wong Tai Sin Estate – Wing Sin House	32	7 (down track)	31 (down track)	Mixed rock	Down Track Tunnel (-2.2mPD)	11 & 12 Aug 2016
HOM-2-2	Lee Wing Building	41	8 (up track)	24 (up track)	Rock	Up Track Tunnel (-11mPD)	10 Feb 2017

Notes:

2.2 Prediction of Line Source Response

2.2.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at the testing locations. The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽²⁾. The determined LSRs at the testing locations are presented in **Annexes B1 to B4**.

AECOM Asia Co. Ltd. 4 June 2017

⁽¹⁾ KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ KAT-P1-7 is a planned NSR during EIA stage. Assumptions were made on the vertical distance from tunnels (i.e. 15m from up track and 17m from down track) and noise levels were predicted based on this assumption.

⁽³⁾ DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal distance from tunnels (i.e. 0m from up track and 5m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 Summary of Review of LSR Values

- 3.1.1 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.
- 3.1.2 The LSR values determined at testing locations (**Table 2.1** refers) were compared with those used in the SCL EIA study for the same area and the same ground conditions with summary of findings presented in **Table 3.1**. Details of comparison are provided in **Annexes B1** to **B4**.

Table 3.1 Comparison between Measurement Data and WIL Data

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-5	Kai Ching Estate – Mun Ching House	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m	Measured LSR values at 18m are about at least 10dB lower than the EIA LSR values in all frequency bands. Measured LSR values at 26m are also lower than the EIA LSR values in all frequency bands.
KAT-P1-7	Planned Residential Premises near KAT	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m	Measured LSR values at both 15m and 17m are at least 8dB lower than the EIA LSR values in all frequency bands.
DIH-P1-1	Upper Wong Tai Sin Estate – Wing Sin House	WIL D002 Rockhead Depth=24m Hole Depth=34m & 20m Slant Distance=37m & 28m	Measured LSR values at both 37m & 28m are in general lower than the EIA LSR values at most frequency bands and are of similar magnitude at 63Hz and 160Hz.
HOM-2-2	Lee Wing Building	Up track: WIL D012 Rockhead Depth=34m Hole Depth=18m Slant Distance=19m Down track: WIL D002 Rockhead Depth=24m Hole Depth=20m Slant Distance=30m	Measured LSR values at both 19m & 30m are lower than the EIA LSR values at low frequency bands below 63Hz and are of similar magnitude at 100Hz to 200Hz. At high frequency band 315Hz, the measured LSR are slightly higher than the EIA LSR.

3.2 Operational Ground-borne Noise Prediction

3.3 Review of Other Assumptions

- 3.3.1 The following assumptions adopted in the EIA Reports have been reviewed for updating the ground-borne noise prediction for SCL(TAW-HUH) and SCL(HHS):
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) updated information on whether the tunnel and building (or building piles) are in rock or soft ground;
 - Geological Profile updated geological profile along the alignment;

AECOM Asia Co. Ltd. 5 June 2017

- Speed no update and therefore follows those adopted in the approval of EIA Reports;
- Turnout Adjustment updated information on the type of turnouts to be used and the adjustment of position corresponding to the type of turnouts; and
- Building information updated information including building name, position and layout in Kai Tak and Diamond Hill areas.
- 3.3.2 Ground-borne noise assessment at the representative operational ground-borne noise sensitive receivers (OGBNSRs) (Figures C11033/C/SCL/ACM/M53/013 to 018 refer) has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in Table 3.2 and Annex C, with detailed sample calculation provided in Annex D. Cumulative operational ground-borne noise levels have also been updated with results indicate compliance with the stipulated noise limits (Annex E refers).
- 3.3.3 Results indicate that the updated operational ground-borne noise levels are all below the noise criteria. As such, no mitigation measures such as trackform upgrade is required for SCL(TAW-HUH) and SCL(HHS), and EIA conclusion remains unchanged.

Table 3.2 Ground-borne Noise Prediction Results

		Lmax	Day and Evening Period (0700 - 2300 hours)				Night-time Peri 2300 - 0700 hοι	
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
SCL (TAW -	,							
DIH-1-1	Tsui Chuk Garden Block 5	45	55	34	Y	45	31	Υ
DIH-2-1	Pak Yuen House	39	55	29	Υ	45	26	Υ
DIH-3-1	Wah Yuen House	42	55	32	Υ	45	29	Y
DIH-3-2	Nga Yuen House	40	55	31	Υ	45	28	Υ
DIH-3-3	Kwai Yuen House	44	55	35	Υ	45	32	Υ
DIH-3-4	Chui Yuen House	42	55	33	Υ	45	30	Υ
DIH-4-1	Pang Ching Court	40	55	30	Y	45	27	Υ
DIH-4-2	Carbo Anglo-Chines e Kindergarden	43	55	36	Y	-	-	Y
DIH-5-1	Rainbow Home	47	55	37	Y	45	34	Y
DIH-5-2	Residential premises	45	55	36	Υ	45	33	Υ
DIH-5-5	Our Lady's Kindergarden	43	55	36	Υ	-	-	Υ
DIH 6-1	WTS Fire Station and Quarters Block A	48	55	38	Y	45	35	Y
DIH-7-1	Tropicana Gardens Block 2	39	55	29	Y	45	26	Y
DIH-7-2	Tropicana Gardens Block 3	40	55	30	Y	45	27	Y
DIH-8-1	Redemption Lutheran Church	43	55	33	Y	45	30	Y

AECOM Asia Co. Ltd. 6 June 2017

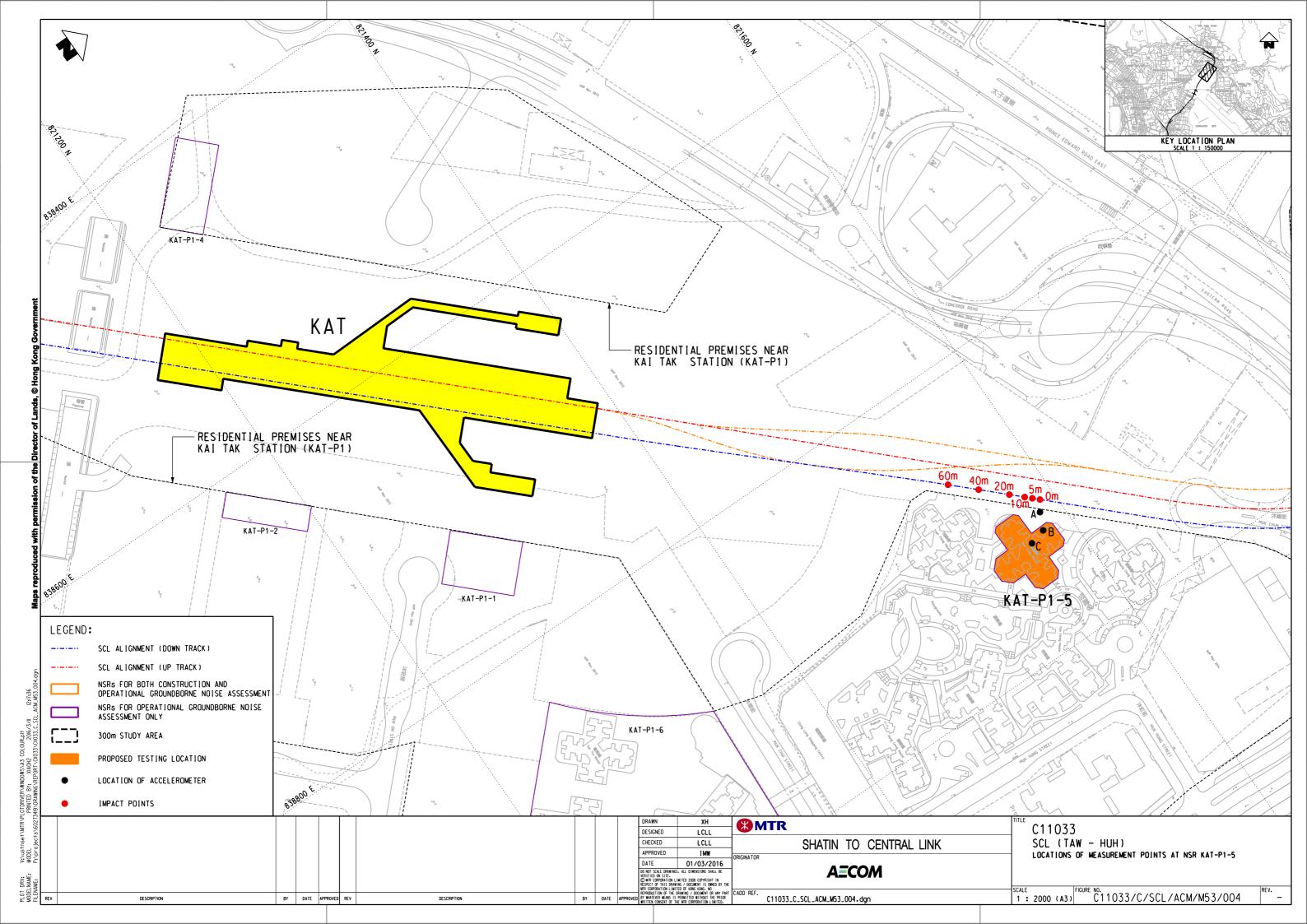
		Lmax		and Evening F 700 - 2300 hoເ			Night-time Peri	
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
DIH-9-1	Shek On Building	43	55	36	Y	-	-	Υ
DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	39	55	30	Y	45	27	Y
DIH-11-1	Lung Wan House	35	55	29	Y	45	26	Υ
DIH-12-1	Galaxia Tower B	23	55	<20	Υ	45	<20	Υ
DIH-12-2	Galaxia Tower E	21	55	<20	Y	45	<20	Y
DIH-13-1	Canossa Primary School	42	55	35	Y	-	-	Y
DIH-14-1	Rhythm Garden Block 2	41	55	33	Y	45	30	Y
DIH-14-2	Rhythm Garden Block 5	32	55	24	Y	45	21	Y
DIH-14-3	Rhythm Garden Block 8	13	55	<20	Υ	45	<20	Υ
DIH-14-4	Canossa Primary School (San Po Kong)	37	55	32	Y	-	-	Y
DIH-14-5	Rhythm Garden Block 1	41	55	33	Y	45	30	Y
DIH-14-6	Rhythm Garden Block 3	41	55	32	Υ	45	29	Υ
DIH-15-1	Kam Wan House	41	55	32	Υ	45	29	Υ
DIH-15-2	Pik Hoi House	41	55	33	Y	45	30	Y
DIH-16-1	Wong Tai Sin Temple	46	55	36	Y	45	33	Y
DIH-17-1	Chuk Yuen United Village	46	55	36	Y	45	33	Υ
DIH-18-1	Upper Wong Tai Sin Estate Po Sin House	45	55	36	Y	45	33	Y
DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	45	55	35	Y	45	32	Y
DIH-19-1	Lung Cheung Gov. Secondary School	46	55	39	Y	-	-	Y
DIH-20-1	Baptist Rainbow Primary School	45	55	38	Y	-	-	Y
DIH-21-1	Tin Wang Court Wang King House	46	55	36	Y	45	33	Y
DIH-22-1	Price Memorial Catholic Primary School	45	55	38	Y	-	-	Y
DIH-23-1	Tin Ma Court Chun On House	42	55	32	Y	45	29	Y
DIH-24-1	Shing Wong Temple	46	55	37	Y	45	34	Υ

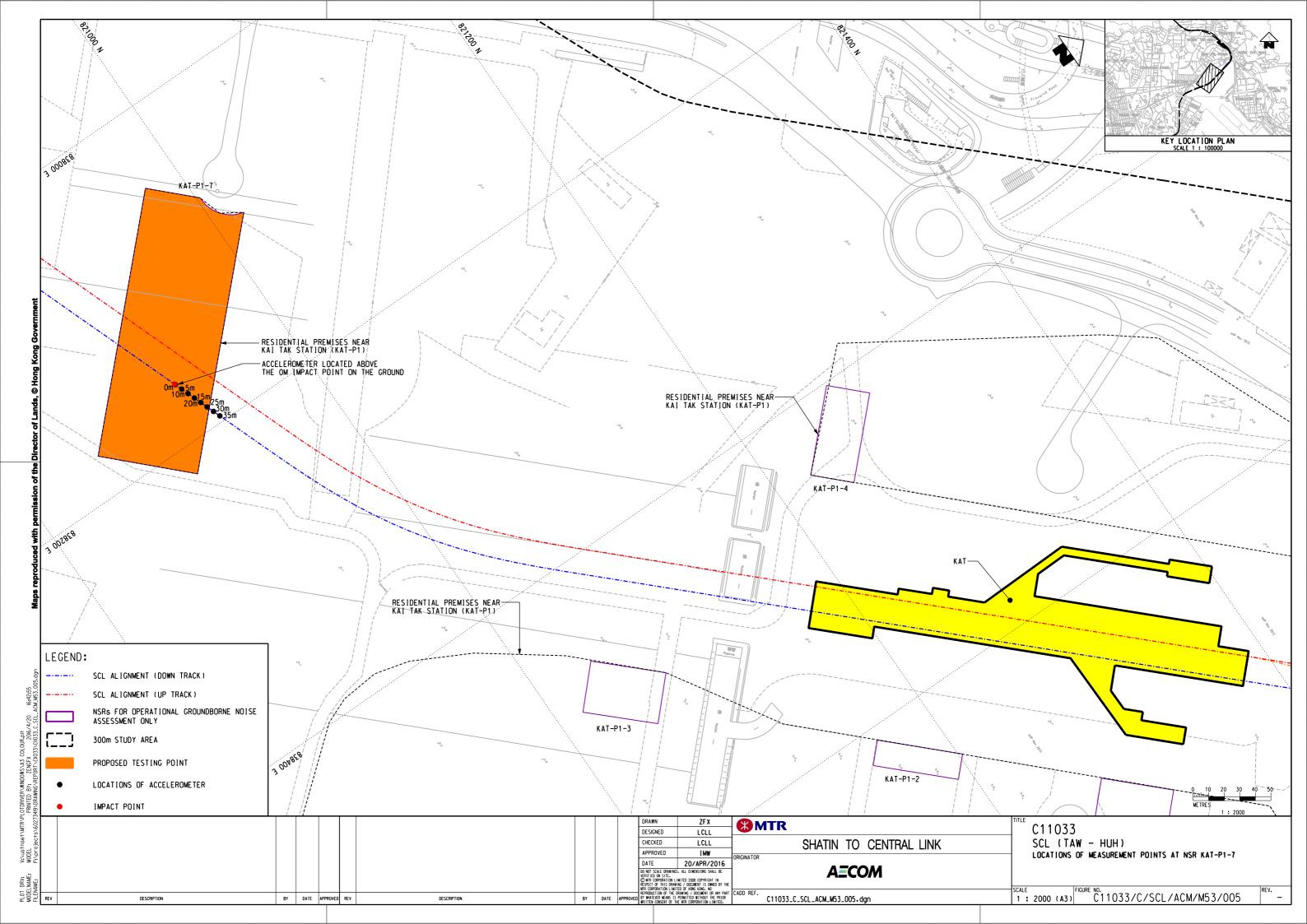
		Lmax	Day : (0'	Day and Evening Period (0700 - 2300 hours)			Night-time Period (2300 - 0700 hours)		
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	
DIH-P1-1	Upper Wong Tai Sin Estate Phase 3	44	55	34	Y	45	31	Y	
DIH-P3-1A	Planned receivers in the CDA site ⁽²⁾	35	55	27	Y	45	24	Y	
DIH-P3-2A	Planned receivers in the CDA site ⁽²⁾	38	55	30	Y	45	27	Y	
DIH-P3-4	Planned receivers in the CDA site ⁽²⁾⁽³⁾	45	55	34	Y	-	-	Y	
KAT-P1-1	Residential premises near Kai Tak Station	15	55	<20	Y	45	<20	Y	
KAT-P1-2	One Kai Tak	8	55	<20	Υ	45	<20	Y	
KAT-P1-3	Residential premises near Kai Tak Station	21	55	<20	Y	45	<20	Y	
KAT-P1-4	Residential premises near Kai Tak Station	16	55	<20	Y	45	<20	Y	
KAT-P1-5	Mun Ching House, Kai Ching Estate	42	55	34	Υ	45	31	Y	
KAT-P1-6	Tower H3, De Novo	26	55	<20	Y	45	<20	Y	
KAT-P1-7	Residential premises near Kai Tak Station	48	55	39	Y	45	36	Y	
TKW-1-1	Parc 22	37	55	28	Υ	45	25	Υ	
TKW-1-2	Sanford Mansion	37	55	28	Υ	45	25	Y	
TKW-2-1	Skytower Tower 1	28	55	<20	Y	45	<20	Y	
TKW-2-2	Skytower Tower 2	28	55	<20	Υ	45	<20	Y	
TKW-2-3	Skytower Tower 7	24	55	<20	Υ	45	<20	Y	
TKW-3-1	Prince Ritz	13	55	<20	Y	45	<20	Y	
TKW-3-2	Prosperity House	26	55	<20	Υ	45	<20	Y	
TKW-P1-1	Residential premises near To Kwa Wan Station	35	55	28	Y	45	25	Y	
MTW-6-1	Fok On Building	42	55	34	Y	45	31	Y	
MTW-6-2	HK Society for the Protection of Children	47	55	41	Y	-	-	Y	
MTW-6-3	Chung Nam Mansion	42	55	33	Y	45	30	Y	
MTW-6-4	Pok Oi Lau	46	55	38	Υ	45	35	Y	
MTW-7-1	Geranium House	46	55	37	Υ	45	34	Y	
MTW-8-1	Horae Palace	43	55	35	Y	45	32	Y	
MTW-9-1	Majestic Park	40	55	32	Y	45	29	Y	
MTW-10-1	18 Farm Road	43	55	35	Υ	45	32	Υ	

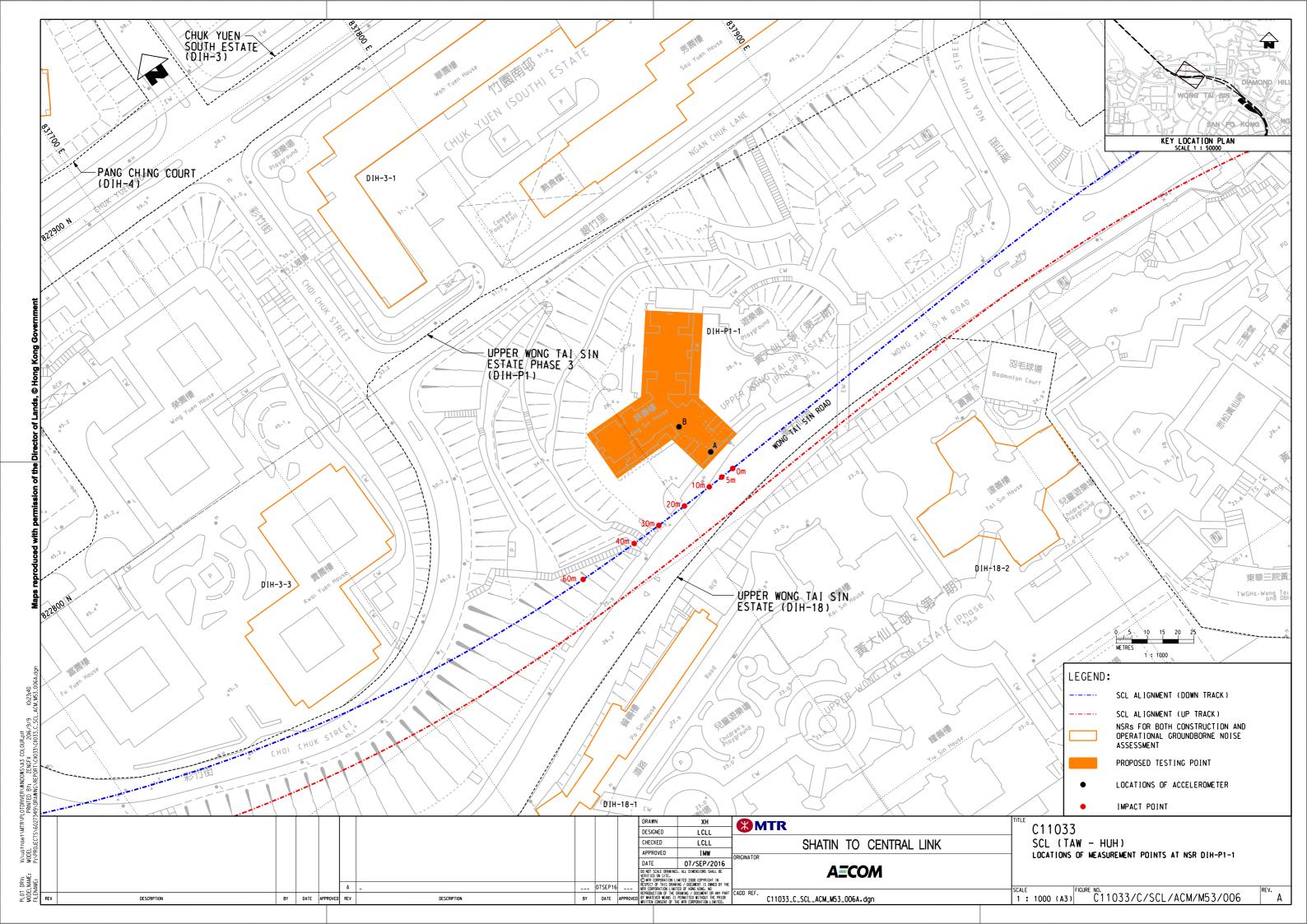
				and Evening P 700 - 2300 hou			light-time Peri 2300 - 0700 hου	
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
MTW-11-1	Farm Road Government Primary School	44	55	38	Y	-	-	Υ
MTW-12-1	Yuet Fai Mansion	47	55	38	Υ	45	35	Y
MTW-12-2	Delight Court	41	55	32	Υ	45	29	Y
MTW-12-3	Lucky Mansion	35	55	27	Υ	45	24	Y
MTW-12-4	352-354 Ma Tau Wai Road	34	55	27	Υ	45	24	Y
MTW-12-5	Seng Cheong Building	39	55	32	Υ	45	29	Υ
MTW-12-6	Great Wall Building	41	55	33	Υ	45	30	Y
MTW-12-7	197-199 Ma Tau Wai Road	45	55	37	Υ	45	34	Y
MTW-12-8	Pak Tai Mansion	47	55	39	Υ	45	36	Y
MTW-12-9	Residential premises along Hung Kwong Street	43	55	35	Y	45	32	Y
MTW-12-1 0	Lucky Building	35	55	28	Y	45	25	Y
MTW-12-1 1	Jing Ming Building	34	55	26	Υ	45	23	Y
MTW-12-1 2	One Elegance	43	55	35	Υ	45	32	Y
MTW-13-1	Cheung Chuk Shan Memorial School	43	55	37	Y	-	-	Y
MTW-14-1	PLK Lam Man Chan English Primary School	37	55	32	Υ	-	-	Y
MTW-15-1	Hung Hom Lutheran Primary School	40	55	36	Y	-	-	Y
MTW-16-1	SKH Good Shepherd Primary School	38	55	34	Υ	-	-	Y
MTW-17-1	Loyal Mansion	38	55	30	Υ	45	27	Y
MTW-18-1	Residential premises along Chi Kiang St	32	55	25	Y	45	22	Y
MTW-18-2	No. 2 Kowloon City Road	33	55	26	Y	45	23	Y
MTW-19-1	Holy Trinity Church	38	55	30	Υ	45	27	Y
HOM-1-1	Ko Shan Theartre	43	55	35	Υ	45	32	Y
HOM-2-1	Faerie Court	41	55	34	Υ	45	31	Y
HOM-2-2	Lee Wing Building	43	55	35	Υ	45	32	Υ
HOM-2-3	Wing Lam Mansion	43	55	36	Υ	45	33	Y
HOM-2-4	Tak Lee Court Chat Ma	42	55	34	Y	45	31	Y
HOM-2-5	Mansion	42	55	34	Υ	45	31	Y

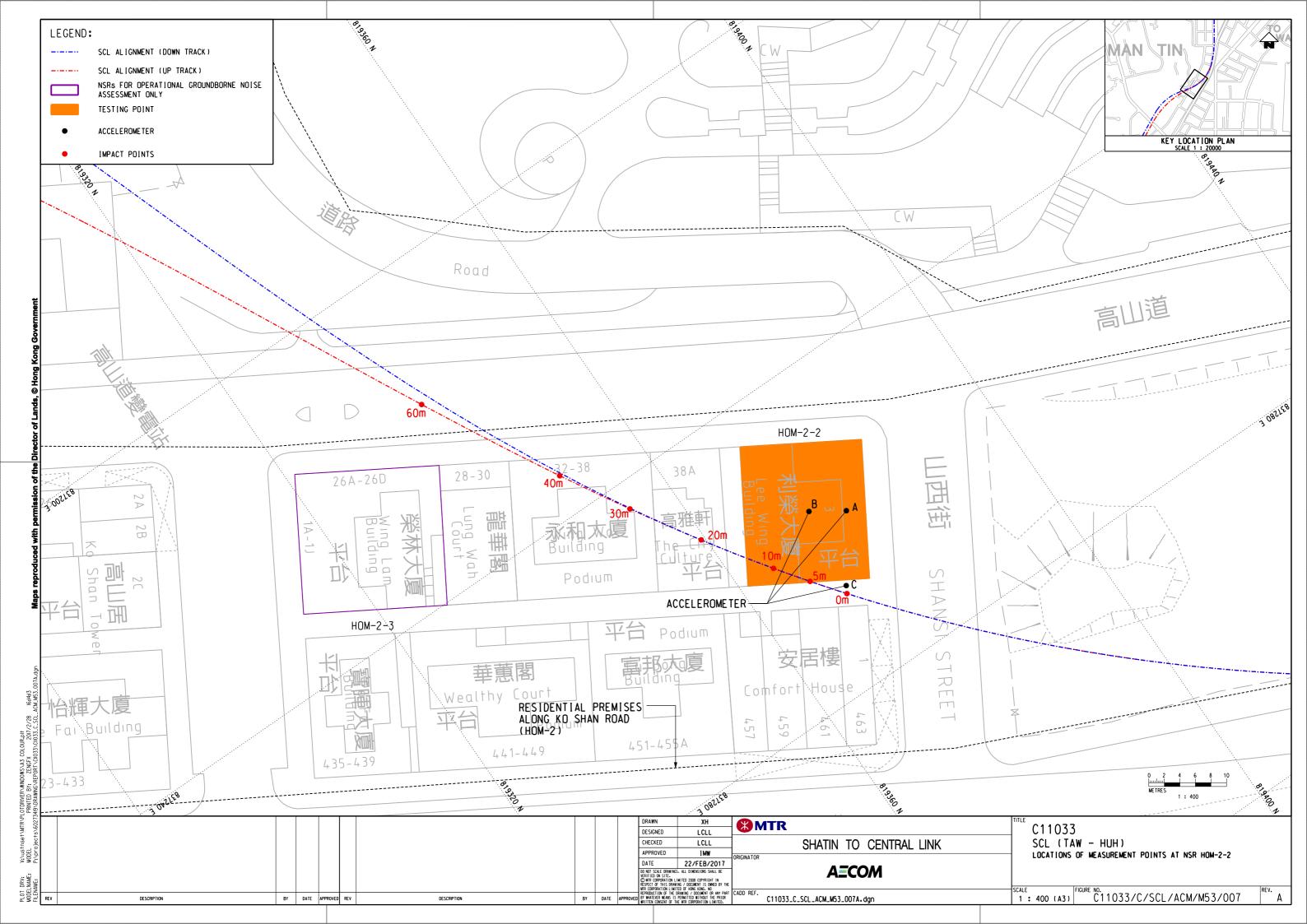
		Lmax		and Evening P 700 - 2300 hou			light-time Peri 2300 - 0700 hoເ	
NSR ID	NSR Description	Updated Results, L _{max} , dB(A)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)	Criteria, L _{eq,30min} , dB(A)	Updated Prediction, L _{eq,30min} , dB(A)	Comply with NCO (Y/N)
HOM-2-6	Chatham Mansion	45	55	37	Υ	45	34	Y
HOM-3-1	Fook Sing Mansion	39	55	31	Υ	45	28	Υ
HOM-3-2	Marigold Mansion, Block A	39	55	31	Υ	45	28	Y
HOM-4-1	Yee Fu Building	36	55	28	Υ	45	25	Υ
HOM-5-1	271 Chatham Road North	28	55	22	Υ	45	<20	Y
HOM-P2	HKPU Student Halls of Residence	35	55	28	Υ	45	25	Y
HOM-P3-1	Residential Building, HOM Station Development	37	55	30	Y	45	27	Y
HUH-1-1	Cartas Branchi College of Careers	34	55	30	Y	-	-	Y
HUH-1-2	Lok Ka House	37	55	30	Υ	45	27	Υ
HUH-1-3	Wing Fung Building	37	55	29	Υ	45	26	
SCL (HHS)								
HUH-1-3	Wing Fung Building	16	55	<20	Υ	45	<20	Y

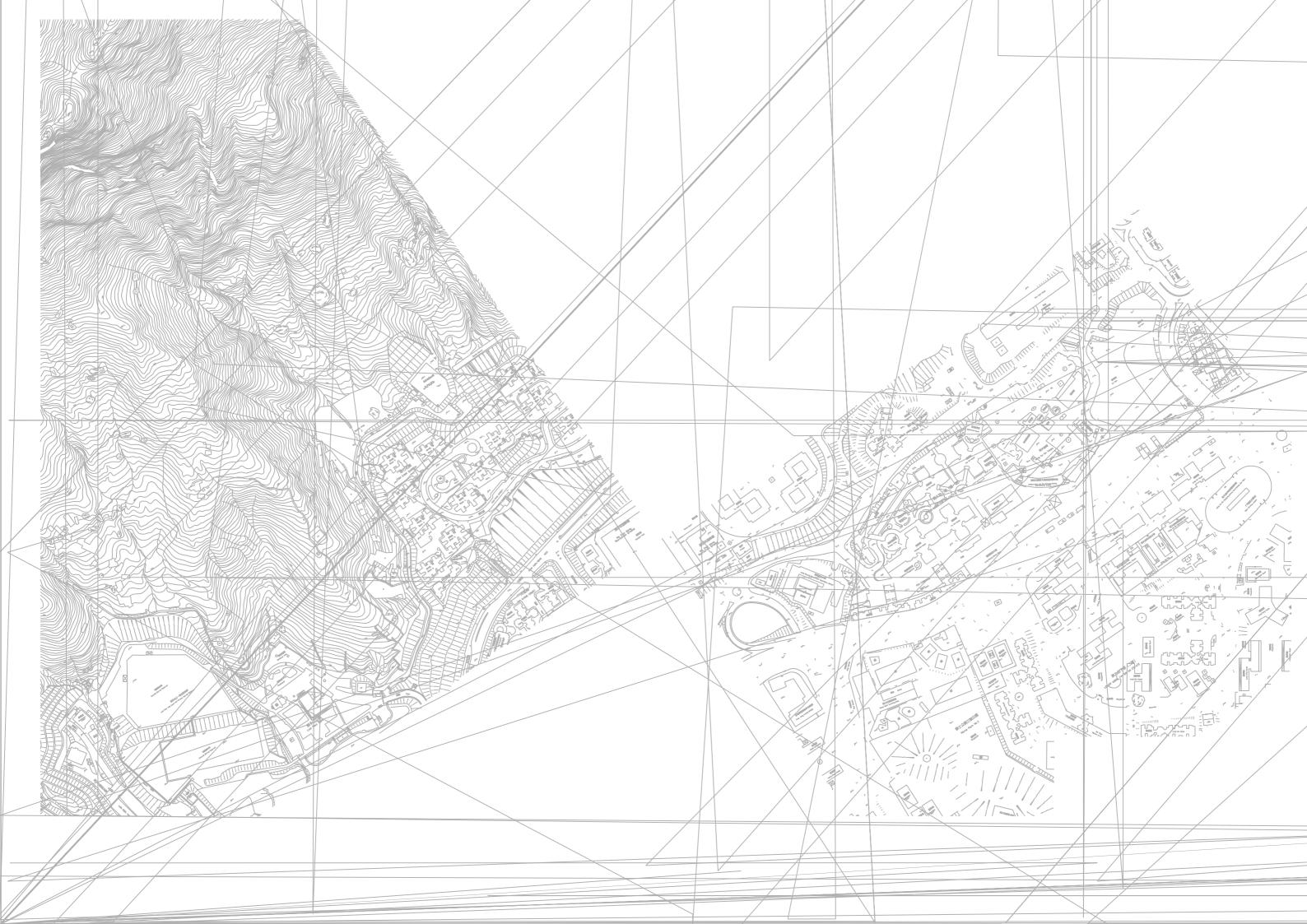
Notes:

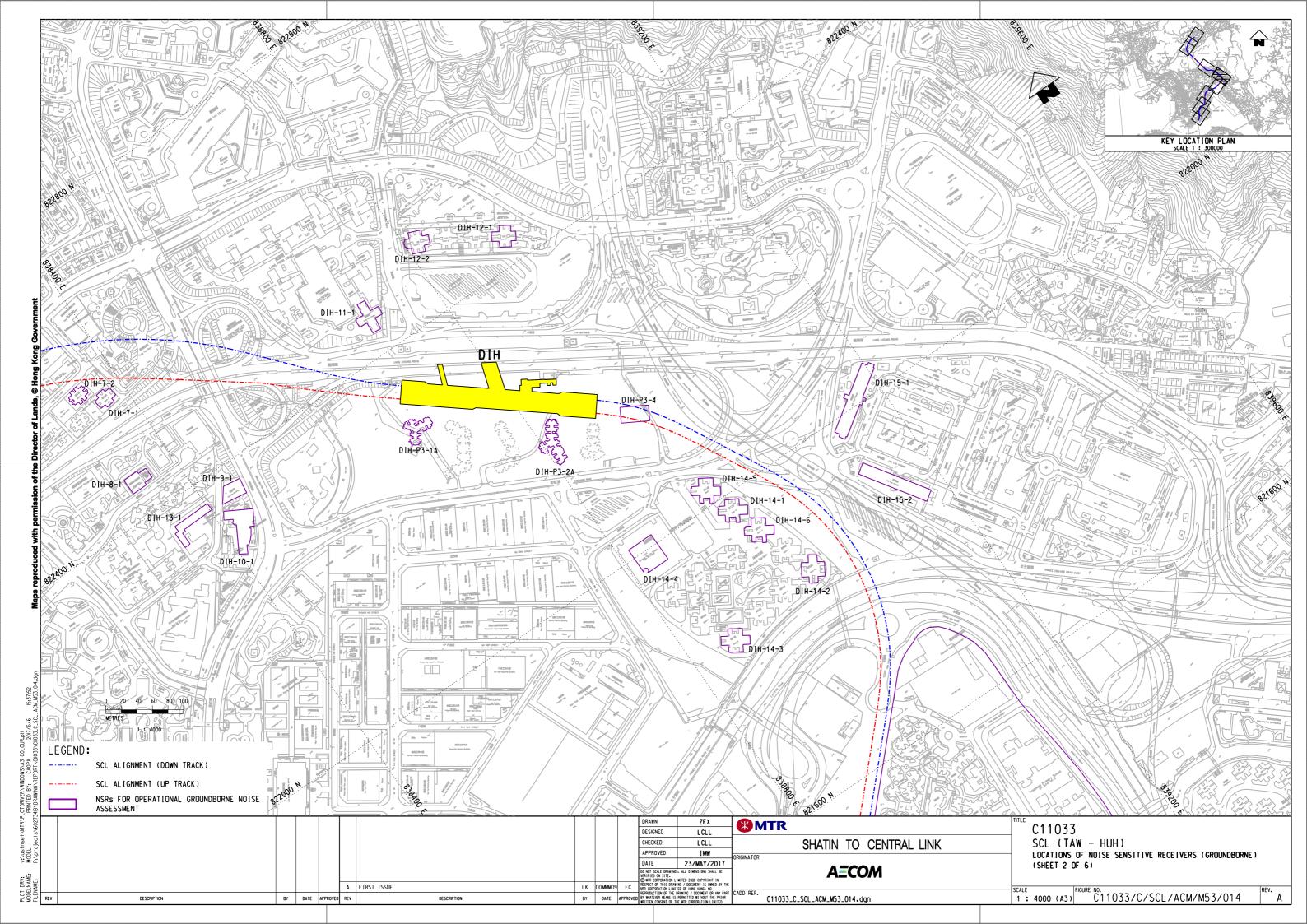

⁽¹⁾ The operational groundborne noise results are taken from either those presented in SCL(TAW-HUH) EIA Report or SCL(HHS) EIA Report KAT-P1-5 or Supporting Document for Application of VEP (Application No. VEP-370/2012) (June 2012) where applicable.

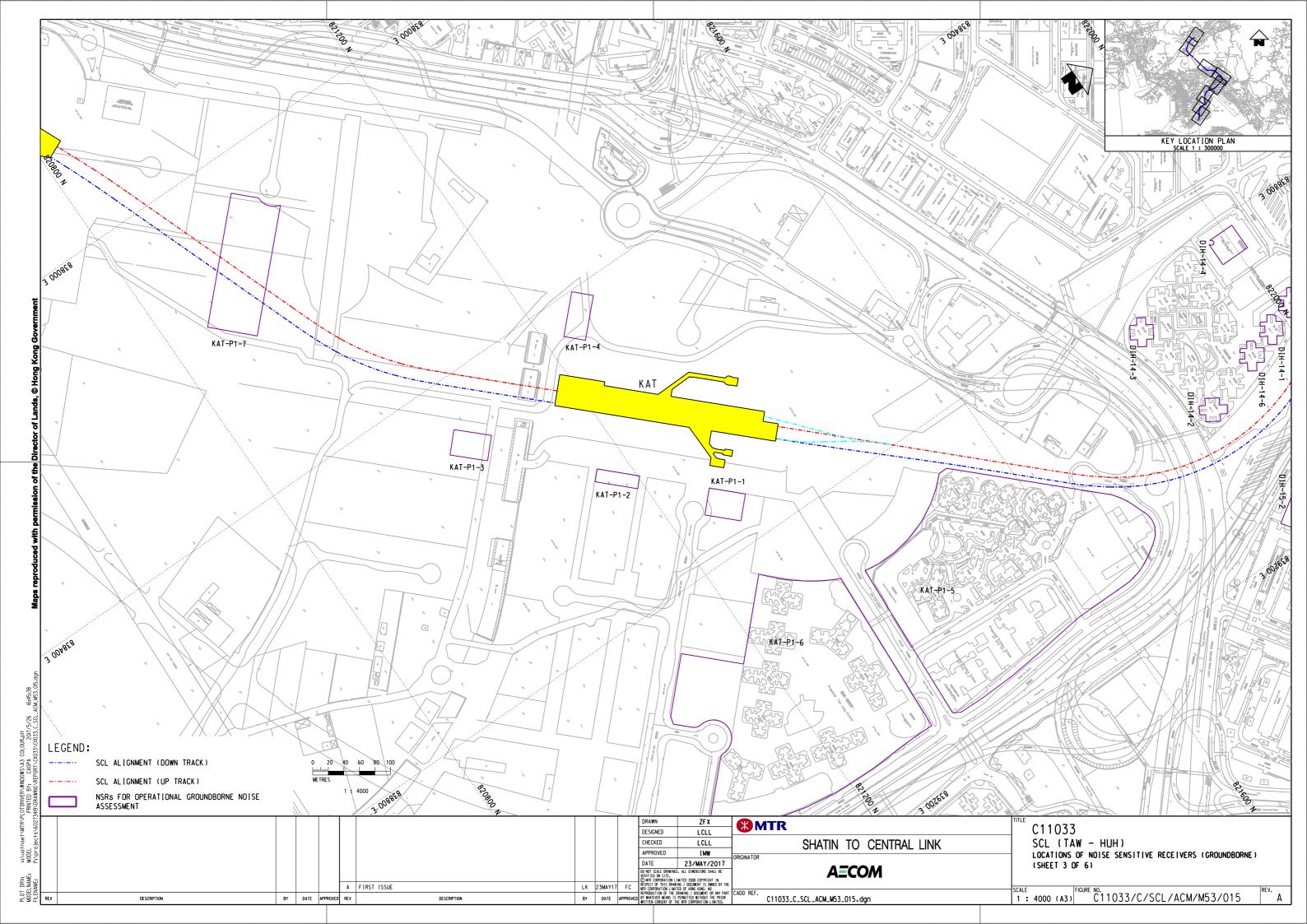

Information based on the Environmental Review Report (ERR) for Update of Fixed Plant Noise Sources at Diamond Hill Station (DIH) and Hin Keng Station (HIK), and Minor Update of HIK Footprint (August 2016) for supporting the Application of Variation of Environmental Permit (Application No.: VEP-506/2016).

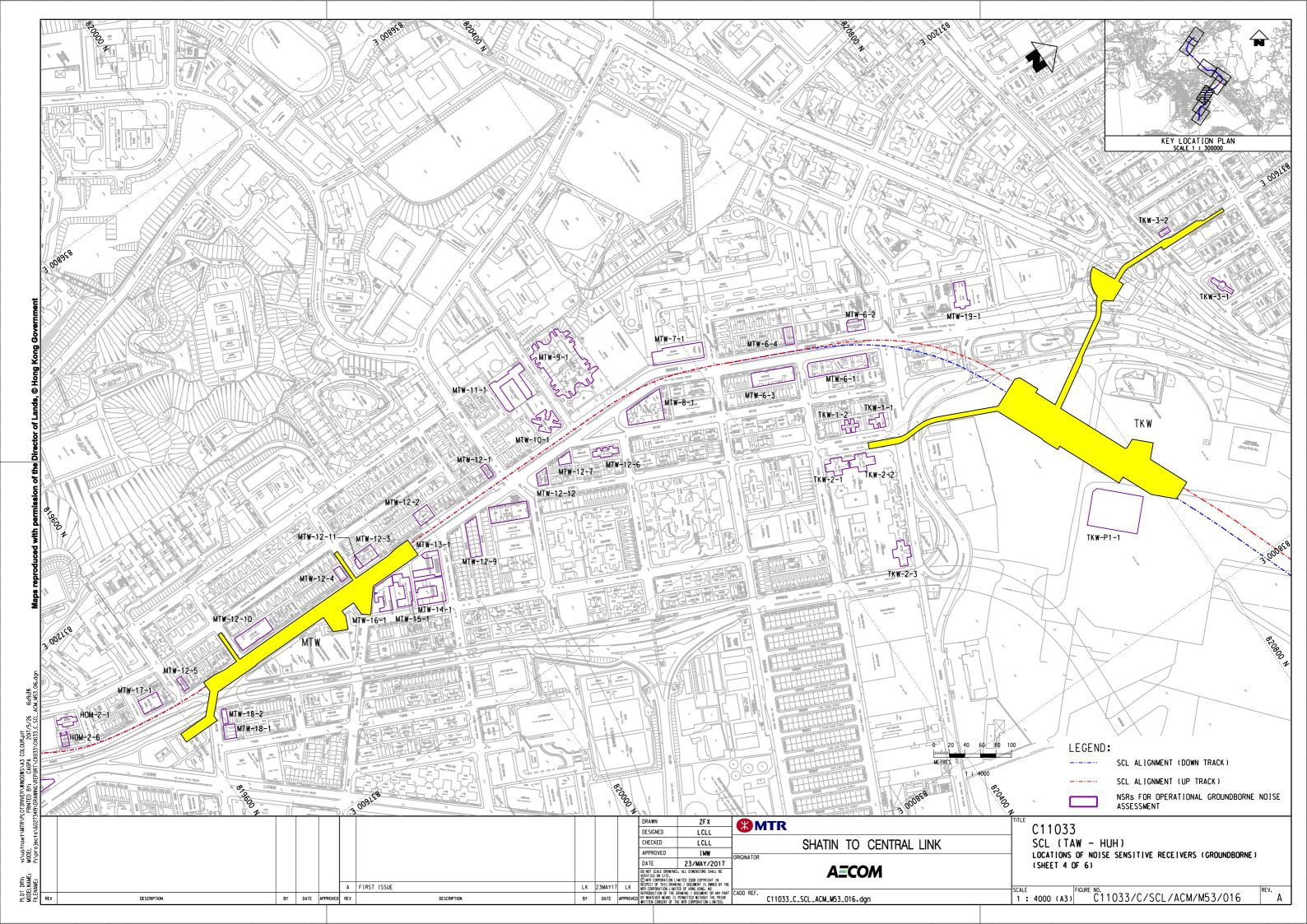

There would be no night-time operation at DIH-P3-4 according to the information in ERR.

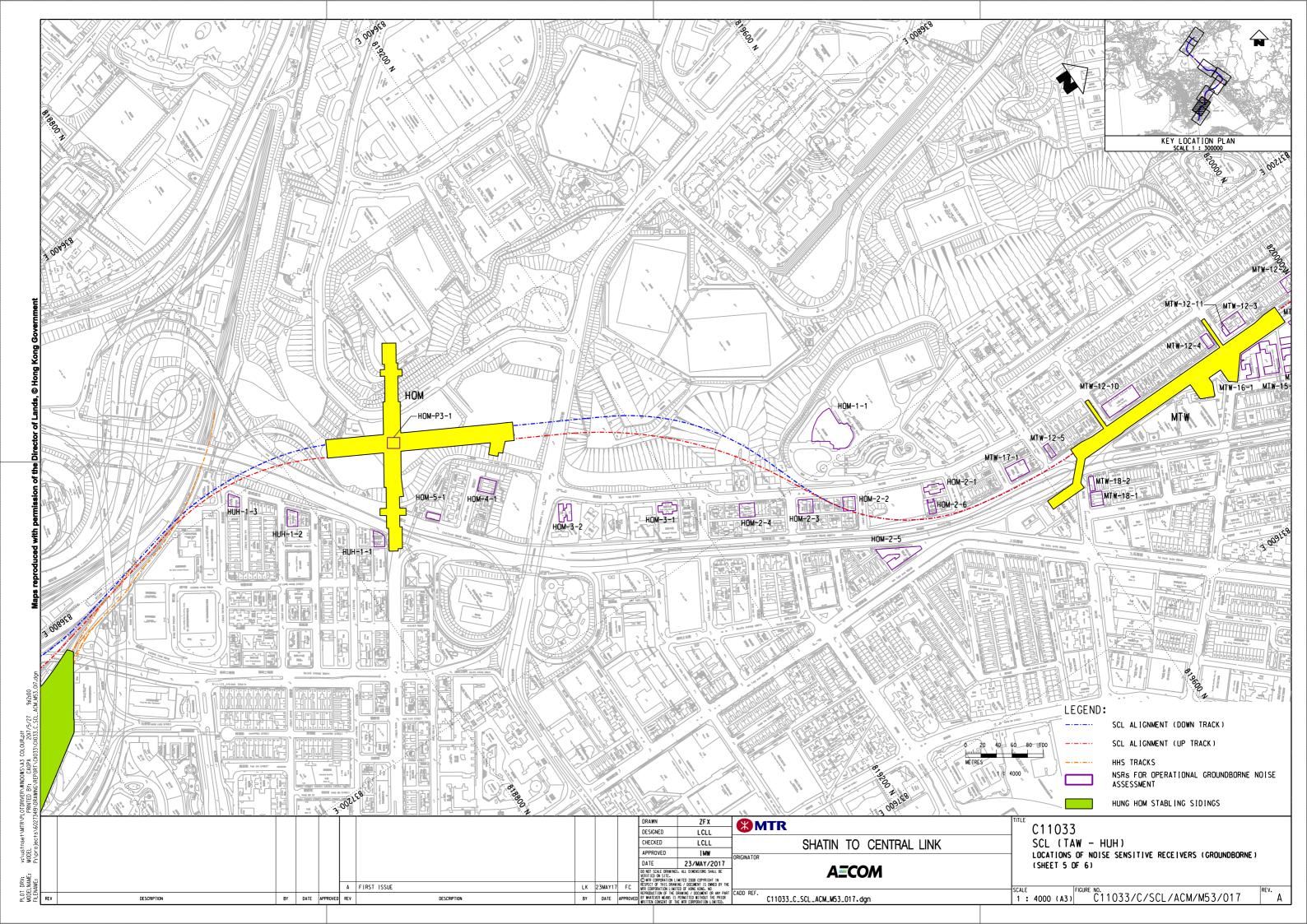

4 CONCLUSION

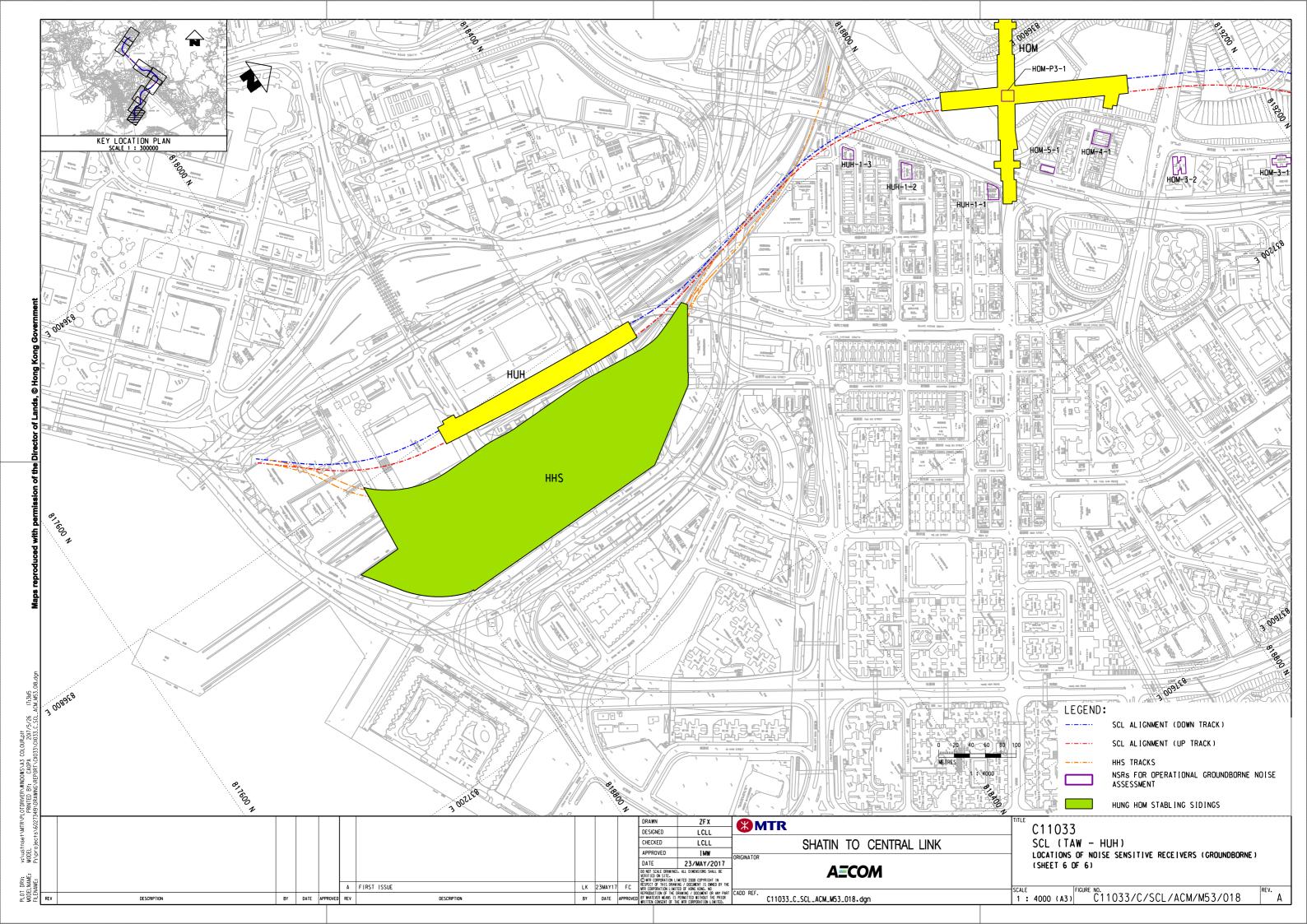

- 4.1.1 The measurement of LSR values were conducted at the recommended testing locations as stated in the agreed T&RMP. The assumptions adopted in the EIA Reports have been further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) and SCL(HHS) have been updated based on all measured LSR results in the Final OGNMMP and the latest available information.
- 4.1.2 The updated ground-borne noise levels are all below the noise criteria, and thus the conclusion in the EIA Reports remains unchanged, and no mitigation measures are required











Annex A

Operational Ground-Borne Noise Mitigation Measures Plan – Testing and Review Methodology Plan (Revision D)

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan – Testing and Review Methodology Plan

January 2016

55.5	Name	Signature
Prepared & Checked:	Jackel Law	fine
Reviewed & Approved:	Josh Lam	on fall

Version:	D	Date:	11 January 2016

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

		Pag	је
1	INTRO	DUCTION	1
	1.1 1.2 1.3	Background	2
2	TESTIN	IG AND MEASUREMENT LOCATIONS	3
	2.1	Selection of Impact Testing Locations	3
3	TESTIN	IG METHODOLOGY	5
	3.1 3.2	Instrumentations Testing and Measurement Procedures	
4	METHO	DD OF LINE SOURCE RESPONSE PREDICTION	6
	4.1 4.2	Introduction	
5	REVIE	N OF OPERATIONAL GROUND-BORNE NOISE METHODOLOGY	7
	5.1 5.2	Review of Other Assumptions	
List of	Tables		
Table 2 Table 2 Table 3	.2	Justifications for NSR selection for LSR measurement Proposed Measurement and Testing Locations Instruments to be Used in the Hammer Impact Test	
List of	Figures		
C11033	C/SCL	ACM/M53/001 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 1 of 3) (ACM/M53/002 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 2 of 3) (ACM/M53/003 Locations of Noise Sensitive Receivers (Groundborne) (Sheet 3 of 3))
Append	dices		
Append Append		Selection of Measurement Locations from the NSRs in the SCL EIA Reports Photo records of Proposed Measurement Points at selected NSRs	

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/I) was issued by Director of Environmental Protection (DEP) on 14 October 2015.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4). No ground-borne noise will be assessed for at grade section around TAW, HIK and HUH as airborne noise will be the dominant noise source that vibration generated by the tunnel is much larger than the slab track at grade. Ground-borne noise issue for NSRs around HUH will be discussed in relevant submission under EP-437/2012.
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to prepare this Testing and Review Methodology Plan (T&RMP) and to conduct the LSR test according to the approved T&RMP. The testing results and calculation, together with the approved T&RMP, will be included in the OGNMMP which will be submitted under EP Condition 2.27.

_

¹ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This T&RMP

1.2.1 This T&RMP is prepared to seek the DEP's agreement on the testing locations and methodology prior to the commencement of LSR test.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the tunnel excavation programme and proposed testing locations.
 - Section 3 presents the testing methodology.
 - Section 4 presents the method of LSR prediction.
 - Section 5 presents the review methodology of the operational ground-borne noise.

2 TESTING AND MEASUREMENT LOCATIONS

2.1 Selection of Impact Testing Locations

- 2.1.1 The selection of testing location is based on the following considerations:
 - Ground Type LSR values at different ground types (soil, rock and mixed rock) is proposed to be obtained for review in OGNMMP.
 - Accessibility The testing receiver location should be accessible for conducting the test on building structure or foundation.
 - Ambient vibration The measurement results will be affected by the ambient vibration from existing traffic. As such the measurement location should be located away from roads with heavy traffic.
 - Building Pile Type and depth of building foundation and building pile arrangement are considered. High rise building with pile down to rock head would give high noise level from tunnel and will have higher priority for selection.
 - Predicted Ground-borne Noise Levels LSR test is proposed to be conducted at the more sensitive locations in close proximity to the SCL tunnel, i.e. the ground-borne noise sensitive receivers (NSRs) predicted with relatively higher operational ground borne noise levels. The NSRs identified in the EIA Reports will be reviewed for selection of appropriate testing location(s).
 - Tunnel Depth The measurement signal would be weak if the tunnel is too deep in vertical depth and too far in horizontal distance. The slant distance between ground level of the testing location and the track level of the tunnel is preferable to be within 20m and should not be greater than 40m.
- 2.1.2 There are three different types of geological characteristics which are soil, mixed rock and rock along the alignment. Representative LSR values of these three geological characteristics will be obtained and applied in the upcoming OGNMMP.
- 2.1.3 It is important to obtain a measureable vibration impact at the NSR with minimal influences from the existing surrounding environment. Existing ambient vibration environment at the NSRs is considered as an important factor because the vibration impact source for the testing is relatively low and would be easily affected by the vibration induced from surrounding road traffic. The tunnel of this project is running under the urban area with busy roads, and most NSRs are subject to high ambient vibration environment; thus they are considered not suitable for the test. Slant distance to the tunnel is also a key factor for consideration as the larger the separation distance between tunnel and NSR, the weaker the vibration signal to be recorded at the NSR. There are many NSRs being too far away, more than 40m slant distance from the tunnel, which the vibration signal would be insignificant to measure and therefore not suitable for the test. NSRs with predicted L_{eq 30min(dB(A))} lower than 30 dB(A) in the EIA ground-borne noise prediction results would not be considered as a representative location for testing and measurement as the vibration signal is predicted to be insignificant to measure.
- 2.1.4 All NSRs in the EIA Reports were considered according to the criteria in Section 2.1.1 and reviewed in Appendix A. Based on the considerations discussed in Section 2.1.2 and 2.1.3, four out of ten NSRs were selected to be the most suitable and most representative for each geological type for the LSR measurement (Table 2.1 refers). The corresponding measurement locations at the selected NSRs are summarised in Table 2.2 and the testing locations are shown in Figure C11033/C/SCL/ACM/M53/001 003. MTR will notify the relevant representative such as management office of selected NSRs prior to the testing and measurement, and a contact would be made available for them during the test in case there is nuisance lodged by residents.

2.1.5

Table 2.1 Justifications for NSR selection for LSR measurement

Ground Type	NSRs	Justification(s)	Selected LSR Measurement Location (Y/N)
Mixed Rock	DIH-18-1	Farther distance to the tunnel compared with DIH-P1-1.	N
	DIH-18-2	Farther distance to the tunnel compared with DIH-P1-1.	N
	DIH-P1-1 ^[1]	An existing structure close to the tunnel.	Y
	DIH-P3-1	Farther distance to the tunnel and lower predicted level compared with KAT-P1-7.	N
	DIH-P3-2	Farther distance to the tunnel and lower predicted level compared with KAT-P1-7.	N
	HOM-2-1	Situated at the margin of mixed rock and rock that actual effect of hammer impact test is unknown and hence not suitable to apply to all NSRs of mixed rock type.	N
	KAT-P1-7 ^[1]	Short slant distance among relevant NSRs together with high predicted level.	Y
Soil	KAT-P1-5	The only NSR fulfils all criterions after screening.	Υ
Rock	Rock HOM-2-2 Located directly above the tunnel.		Υ
	N		

Note:

Table 2.2 Proposed Measurement and Testing Locations

NSR		Predicted Night-time		Slant		Location of	
ID	Description	Ground- borne Noise Levels in the EIA Report, dB(A)	Latest Approx. Hori. Distance from the Tunnel, m	Distance (From Ground Level to Track Level), m	Ground Type	Hammer Impact Test (Approx. Tunnel Depth)	Anticipated Testing Schedule
DIH-P1-1 ⁽¹⁾	Upper Wong Tai Sin Estate - Wing Sin House	32	20 (up track) 10 (down track)	32	Mixed Rock	Down Track Tunnel (-2.2mPD)	Mid 2016
KAT-P1-5 ⁽²⁾	Kai Ching Estate – Mun Ching House	40	25 (up track) 13 (down track)	19	Soil	Down Track Tunnel (-8.1mPD)	Early 2016
KAT-P1-7	Residential Premises near KAT	45	0 (up track) 0 (down track)	20	Mixed Rock	Down Track Tunnel (-14mPD)	Early 2016
HOM-2-2	Lee Wing Bldg	41	0 (up track) 0 (down track)	24	Rock	Up track Tunnel (-11mPD)	End 2016

Note:

⁽¹⁾ The more conservative result measured from DIH-P1-1 and KAT-P1-7 will be applied for updating LSR value of NSRs at mixed rock type.

⁽¹⁾ DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 0m from up track and 5m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

3 TESTING METHODOLOGY

3.1 Instrumentations

3.1.1 The impact force levels applied within the tunnel would be measured using a SINUS Harmonie connected to a laptop computer and vibration levels would be measured using a Bruel & Kjaer PULSE also connected to a laptop computer. Bruel & Kjaer and Wilcoxon accelerometers would be used on the surface. Details of the instruments are provided in **Table 3.1**.

Table 3.1 Instruments to be Used in the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to 4-hp air compressor to induce force (impact) at about 400kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Bruel & Kjaer PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Bruel & Kjaer type 4370V; Wilcoxon Research 731-207	Vibration transducers to measure vibration
Force transducer	PCB 207C	Fitted to pneumatic hammer to measure impact force

3.2 Testing and Measurement Procedures

- 3.2.1 The testing would be carried out after the completion of tunnel excavation. The testing and measurement procedures are summarised below:
 - The test will be carried out during night time when background vibration levels are at their lowest. All construction works inside tunnel and the adjacent tunnel shall be suspended during the testing.
 - The impact hammer will hit on the centreline of tunnel invert. The hammer will apply
 measured impact forces within the tunnel at 7 impact points in each testing location to
 represent the length of at least half a train (i.e. about 100m). The measured impact forces
 will be logged by the spectrum analyzer. Each impact points will have 10 hits at 400kN on
 the tunnel invert. The locations of impact points for selected NSRs are illustrated in Figure
 C11033/C/SCL/ACM/M53/001 003.
 - Accelerometers adhere on the ground and on the building foundation of the selected NSRs. Site photos showing the position of accelerometer are shown in **Appendix B**.
 - By communication of staff between ground and tunnel, the pneumatic hammer will be activated to apply an impact on the tunnel invert.
 - The impact force in tunnel and the vibration levels on the ground will be recorded by the two separated spectrum analyzers. Measurement will be conducted in narrow frequency bands from 6.3Hz to 500Hz.
 - Impact force and vibration measurements will be repeated for all impact location points along the tunnel at minimum distance of half train length (i.e. about 100m). Due to symmetry of the train, the point source response of transfer mobility for the another half train length can be obtained by calculation by multiplying two to the measured results. At each impact point, 10 hits will be sufficient for prediction of LSR.

4 METHOD OF LINE SOURCE RESPONSE PREDICTION

4.1 Introduction

4.1.1 The vibration response caused by a unit point source impact can be obtained from the hammer impact test and the best fit curves can be calculated to determine the LSR at the selected NSRs along the SCL alignment. The prediction of LSR is presented in this section.

4.2 Prediction Method of Line Source Response

4.2.1 The measurement data will be processed so that the specific geological conditions at selected receivers along the alignment, namely, the setback of the receiver from the alignment, the depth of the tunnel, and the depth of the receiver-building basement can be input. For the given input conditions, the best fit curves of PSR are determined from the impact database with respect to the setback, and source and receiver depth. The LSR (TM_{line}, dB re 1e⁻⁹ (m/s)/(N/m^{0.5})) will then be determined by numerical integration with the formula² as shown below, of the Point Source Response (PSR, TM_{pi}) along the length of the train centred on the receiver, while PSR will be determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log 10 \left[h \times \left(\frac{10^{\frac{TMpi}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

= Impact interval (m) (interval varying from 5m to 40m)

TMpi = Point source transfer mobility for ith impact location (dB re 1e-9 (m/s)/N)

n = Last impact location

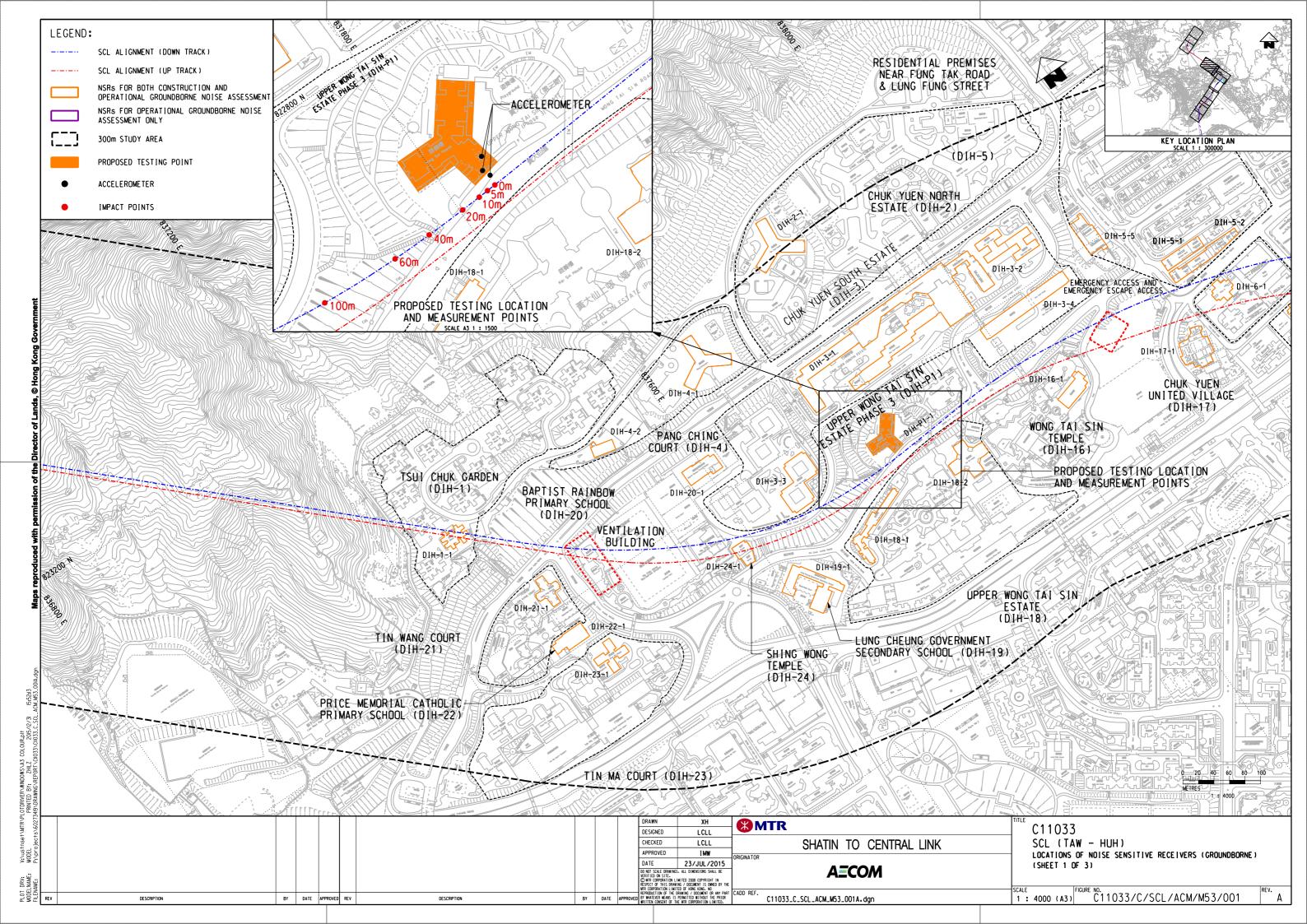
4.2.2 The calculation of LSR will follow the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual³.

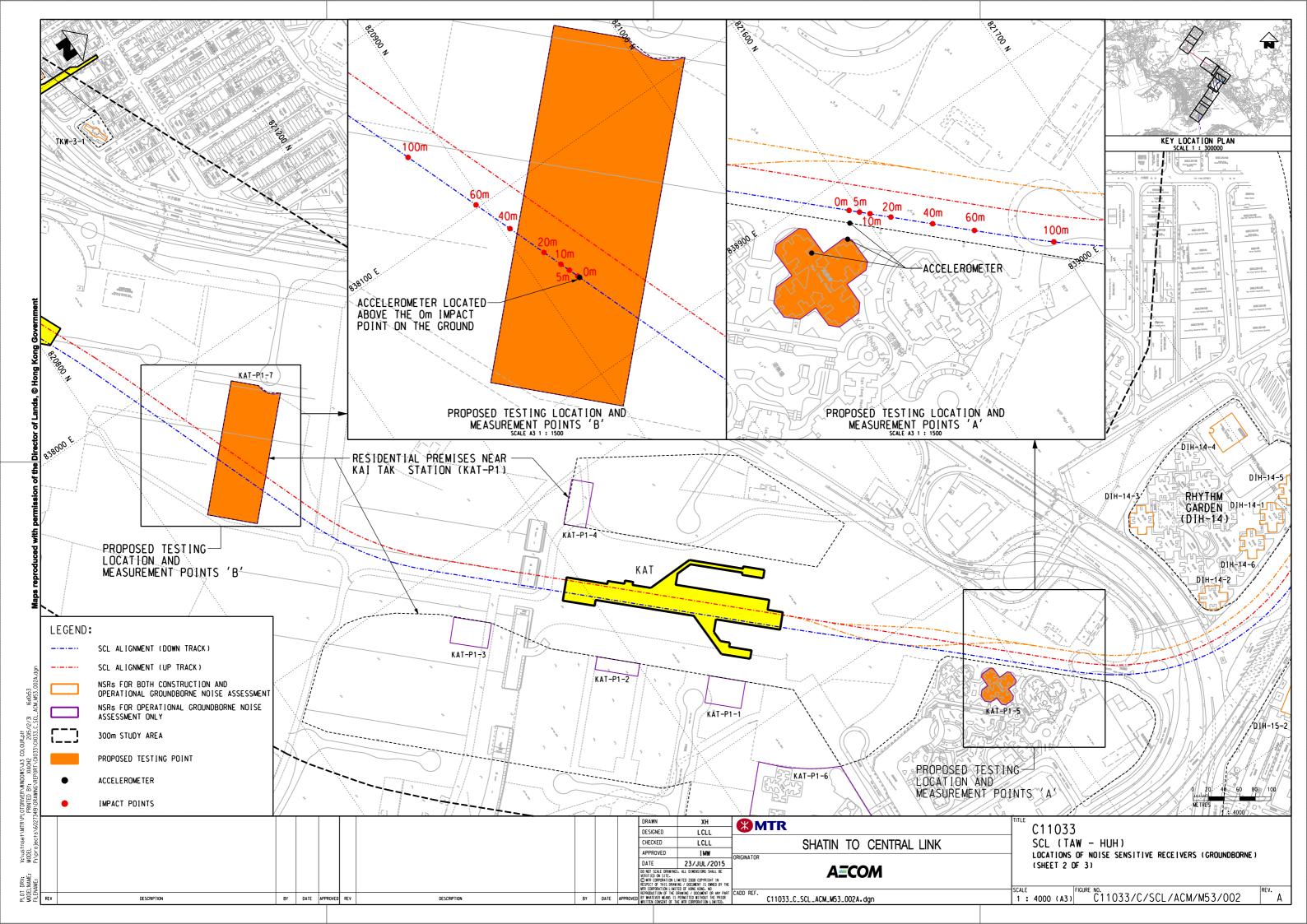
4.2.3 The measured LSR will be compared with those adopted in the EIA Reports for equivalent ground types to allow verification of the ground-borne noise calculation in the EIA Report.

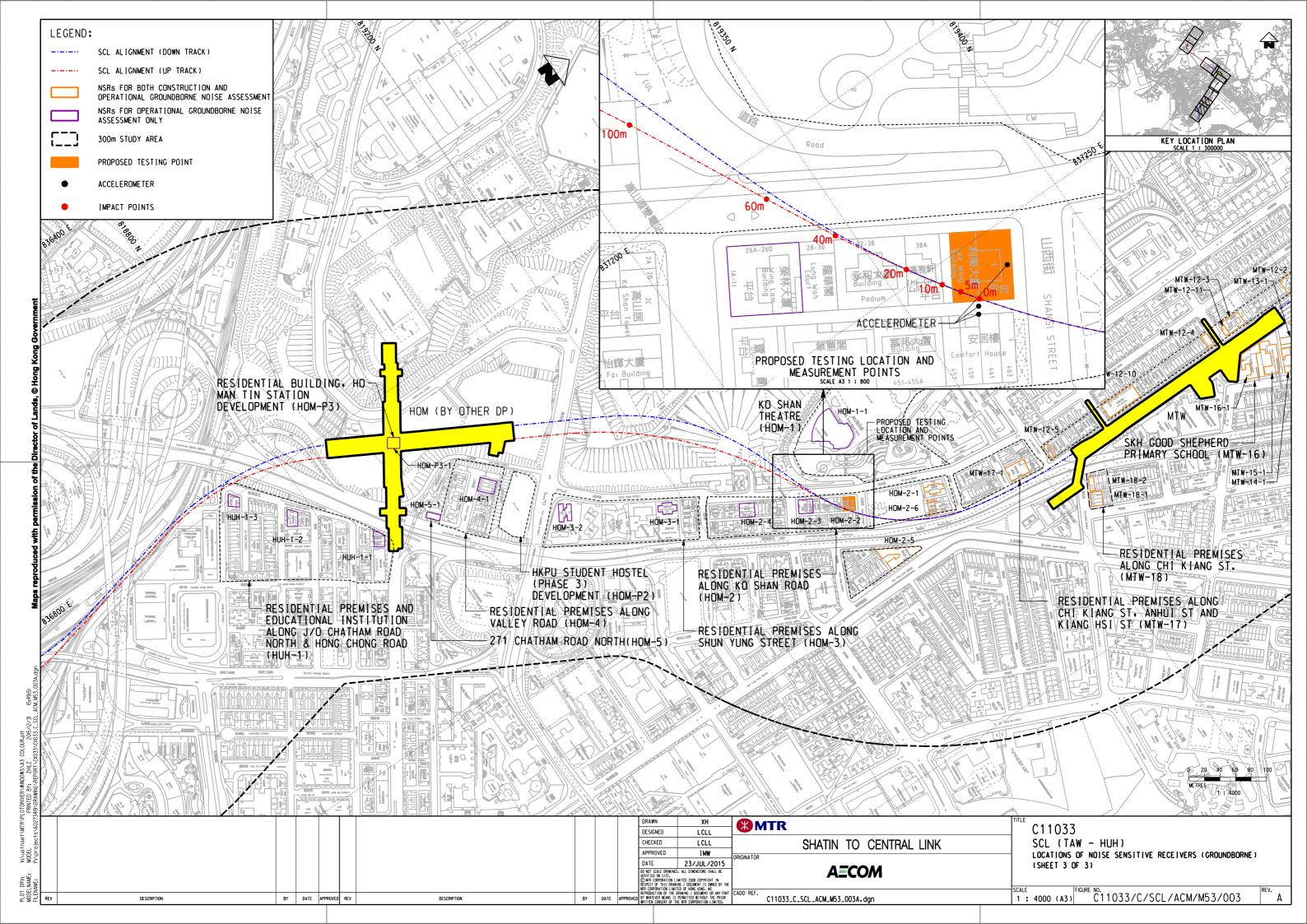
Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

_

² Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012


5 REVIEW OF OPERATIONAL GROUND-BORNE NOISE METHODOLOGY


5.1 Review of Other Assumptions


- 5.1.1 Other assumptions adopted in the EIA Reports will be reviewed and updated based on the latest available information, where necessary, in the upcoming Operational Ground-borne Noise Mitigation Measures Plan.
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

5.2 Update of Ground-borne Noise Assessment

5.2.1 Ground-borne noise assessment at the selected NSRs will be updated according to the review findings of the assumptions as discussed in **Section 5.1** and the measurement results of LSR. Assessment methodology will follow the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports.

Appendix A

Selection of Measurement Locations from NSRs in the SCL EIA Reports

			A ^[7]		B ^[10]	C [11]	D ^[12]	E ^[13]	
		Ground	Worst case	Scenario ^[6]	Building	The Nearest Slant	Ambient		Justification of not
NSR ID	NSR Description	Type [8]	Predicted	Criterion	Piles (Y/N/NA)	Distance to	Vibration (High	Accessibility (Y/N)	selected for LSR measurement
			L _{eq,30min}	L _{eq,30min}	[4]	Tunnel	/Low) ^[9]	(1/14)	measurement
			(dB(A))	(dB(A))		(m) ^[5]	72011)		
DIH-1-1	Tsui Chuk Garden Block 5	Rock	40	45	Υ	80	Low	Υ	(C)
DIH 2-1	Pak Yuen House	Mixed rock	39	45	Υ	297	Low	Υ	(C)
DIH-3-1	Wah Yuen House	Mixed rock	39	45	Υ	112	Low	Υ	(C)
DIH-3-2	Nga Yuen House	Mixed rock	39	45	Υ	128	Low	Υ	(C)
DIH-3-3	Kwai Yuen House	Mixed rock	42	45	Υ	44	Low	Υ	(C)
DIH-3-4	Chui Yuen House	Mixed rock	39	45	Υ	67	Low	Υ	(C)
DIH-4-1	Pang Ching Court	Mixed rock	39	45	Υ	207	Low	Υ	(C)
DIH-4-2	Carbo Anglo-Chinese Kindergarten ^[2]	Mixed rock	44	55	N	137	Low	Υ	(B), (C)
DIH-5-1	Rainbow Home	Rock	34	45	N	48	Low	Υ	(B), (C)
DIH-5-2	Residential premises	Rock	35	45	N	41	Low	Υ	(B), (C)
DIH-5-5	Our Lady's Kindergarten ^[2]	Mixed rock	34	55	N	94	Low	Υ	(B), (C)
DIH 6-1	WTS Fire Station and Quarters Block A	Rock	39	45	N	35	Low	Υ	(B)
DIH-7-1	Tropicana Gardens Block 2	Rock	35	45	Υ	49	High	Υ	(C), (D)
DIH-7-2	Tropicana Gardens Block 3	Rock	37	45	Υ	45	Low	Υ	(C)
DIH-8-1	Redemption Lutheran Church	Rock	25	45	N	118	Low	Υ	(A), (B), (C)
DIH-9-1	Shek On Building ^[2]	Rock	27	55	N	121	High	Υ	(A), (B), (C), (D)
DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	Rock	22	45	N	170	High	Confirm upon request	(A), (B), (C), (D)
DIH-11-1	Lung Wan House	Mixed rock	<20	45	Υ	65	High	Υ	(A), (C), (D)
DIH-12-1	Galaxia Tower B	Mixed rock	<20	45	Υ	182	Low	Υ	(A), (C)
DIH-12-2	Galaxia Tower E	Mixed rock	<20	45	Υ	163	Low	Υ	(A), (C)
DIH-13-1	Canossa Primary School ^[2]	Rock	28	55	N	162	Low Confirm upon request		(A), (B), (C)
DIH-14-1	Rhythm Garden Block 2	Mixed rock	28	45	N	43	Low	Υ	(A), (B), (C)
DIH-14-2	Rhythm Garden Block 5	Soil	30	45	N	35	High	Υ	(A), (B), (D)
DIH-14-3	Rhythm Garden Block 8	Soil	24	45	N	176	High	Υ	(A), (B), (C), (D)
DIH-14-4	Canossa Primary School ^[2] (San PoKong)	Mixed rock	<20	55	N	146	Low	Confirm upon request	(A), (B), (C)
DIH-14-5	Rhythm Garden Block 1	Mixed rock	29	45	N	36	Low	Υ	(A), (B)
DIH-14-6	Rhythm Garden Block 3	Mixed rock	28	45	N	49	Low	Υ	(A), (B), (C)
DIH-15-1	Kam Wan House	Mixed rock	26	45	Υ	89	High	Υ	(A), (C), (D)
DIH-15-2	Kam Pik House	Mixed rock	26	45	Υ	70	High	Υ	(A), (C), (D)
DIH-16-1	Wong Tai Sin Temple	Mixed rock	36	45	N	42	Low	Confirm upon request	(B), (C)
DIH-17-1	Chuk Yuen United Village	Mixed rock	36	45	N	37	High	Υ	(B), (D)
DIH-18-1	Upper Wong Tai Sin Estate Po Sin House	Mixed rock	38	45	Υ	34	Low	Υ	_ [14]
DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	Mixed rock	41	45	Υ	40	Low	Υ	_ [14]
DIH-19-1	Lung Cheung Gov.Secondary School ^[2]	Mixed rock	45	55	N	45	Low	Confirm upon request	(B), (C)
DIH-20-1	Baptist Rainbow Primary School ^[2]	Mixed rock	44	55	N	92	Low	Confirm upon request	(B), (C)

			A ^[7]		B ^[10]	C [11]	D ^[12]	E [13]	
NCDID	NSR ID NSR Description		Worst case	Scenario ^[6]	Building Piles	The Nearest Slant	Ambient		Justification of not
NSK ID	NSR Description	Type ^[8]	Predicted L _{eq,30min} (dB(A))	Criterion L _{eq,30min} (dB(A))	(Y/N/NA)	Distance to Tunnel (m) [5]	Vibration (High /Low) ^[9]	Accessibility (Y/N)	selected for LSR measurement
DIH-21-1	Tin Wang Court Wang King House	Rock	33	45	Υ	51	Low	Υ	(C)
DIH-22-1	Price Memorial Catholic Primary School ^[2]	Mixed rock	34	55	N	89	Low	Confirm upon request	(B), (C)
DIH-23-1	Tin Ma Court Chun On House	Mixed rock	29	45	Υ	108	Low	Υ	(A), (C)
DIH-24-1	Shing Wong Temple	Mixed rock	44	45	N	28	Low	Υ	(B)
DIH-P1-1	Upper Wong Tai Sin Estate Phase 3 ^[3]	Mixed rock	32	45	Υ	32	Low	Υ	_ [14]
DIH-P2-1	TBA ^[1]	Mixed rock	<20	45	NA	78	High	Confirm upon request	(A), (C), (D)
DIH-P2-2	TBA ^[1]	Mixed rock	43	45	NA	20	High	Confirm upon request	(D)
DIH-P2-3	TBA ^[1]	Mixed rock	45	45	NA	20	High	Confirm upon request	(D)
DIH-P2-4	TBA ^[1]	Mixed rock	25	45	NA	36	Low	Confirm upon request	(A)
DIH-P3-1	TBA ^[1]	Mixed rock	36	45	NA	28	Low	Confirm upon request	_[14]
DIH-P3-2	TBA ^[1]	Mixed rock	36	45	NA	30	Low	Confirm upon request	_[14]
KAT-P1-1	Residential premises near Kai Tak Station ^[1]	Soil	23	45	NA	76	Low	Υ	(A), (C)
KAT-P1-2	Residential premises near Kai Tak Station ^[1]	Soil	25	45	NA	76	Low	Υ	(A), (C)
KAT-P1-3	Residential premises near Kai Tak Station ^[1]	Soil	31	45	NA	57	Low	Υ	(C)
KAT-P1-4	Residential premises near Kai Tak Station ^[1]	Soil	<20	45	NA	67	Low	Y	(A), (C)
	Residential premises near Kai Tak Station Site 1A ^[3]	Soil	40	45	Υ	19	Low	Υ	_ [14]
KAT-P1-6	Residential premises near Kai Tak Station Site 1B	Soil	25	45	NA	166	Low	Υ	(A), (C)
KAT-P1-7	Residential premises near Kai Tak Station ^[1]	Mixed rock	45	45	NA	20	Low	Υ	_[14]
TKW-1-1	Parc 22	Soil	25	45	N	86	Low	Υ	(A), (B), (C)
TKW-1-2	Sanford Mansion	Mixed rock	25	45	N	96	Low	Υ	(A), (B), (C)
TKW-2-1	Skytower Tower 1	Soil	<20	45	Y	141	Low	Y	(A), (C)
TKW-2-2	Skytower Tower 2	Soil	<20	45	Y	141	Low	Y	(A), (C)
TKW-2-3 TKW-3-1	Skytower Tower 7 Prince Ritz	Mixed rock Mixed rock	<20 <20	45 45	Y	235 236	Low High	Y	(A), (C) (A), (C), (D)
TKW-3-1	Prosperity House	Mixed rock	<20	45	N	251	High	Y	(A), (C), (D) (A), (B), (C), (D)
TKW-9-2	Residential premises near To Kwa Wan Station ^[1]	Mixed rock	30	45	NA	27	Low	Confirm upon request	(A), (B), (C), (D)
MTW-6-1	Fok On Building	Mixed rock	37	45	N	23	High	Υ	(B), (D)
MTW-6-2	HK Society for the Protection of Children ^[2]	Mixed rock	50	55	N	18	High	Υ	(B), (D)

			A ^[7]		B ^[10]	C [11]	D ^[12]	E [13]	
			Worst case	Scenario ^[6]		The Nearest			
NSR ID	NSR Description	Ground Type ^[8]	Predicted L _{eq,30min}	Criterion L _{eq,30min}	Building Piles (Y/N/NA)	Slant Distance to Tunnel	Ambient Vibration (High /Low) [9]	Accessibility (Y/N)	Justification of not selected for LSR measurement
			(dB(A))	(dB(A))	[1]	(m) ^[5]	/Low) * ³		
MTW-6-3	Chung Nam Mansion	Mixed rock	35	45	N	25	High	Υ	(B), (D)
MTW-6-4	Pok Oi Lau	Mixed rock	45	45	N	19	High	Υ	(B), (D)
MTW-7-1	Geranium House	Rock	40	45	N	21	High	Υ	(B), (D)
MTW-8-1	Horae Palace	Rock	35	45	Υ	23	High	Υ	(D)
MTW-9-1	Majestic Park	Rock	28	45	Υ	39	High	Confirm upon request	(A), (D)
MTW-10-1	18 Farm Road	Rock	35	45	Υ	23	High	Υ	(D)
MTW-11-1	Farm Road Government Primary School ^[2]	Rock	32	55	N	67	High	Confirm upon request	(B), (C), (D)
MTW-12-1	Yuet Fai Mansion	Rock	38	45	N	25	High	Υ	(B), (D)
MTW-12-2	Delight Court	Mixed rock	33	45	Υ	27	High	Υ	(D)
MTW-12-3	Lucky Mansion	Mixed rock	29	45	N	25	High	Υ	(A), (B), (D)
MTW-12-4	352-354 Ma Tau Wai Rd	Mixed rock	29	45	N	25	High	Υ	(A), (B), (D)
MTW-12-5	Seng Cheong Building	Mixed rock	32	45	N	25	High	Υ	(B), (D)
MTW-12-6	Great Wall Building	Rock	30	45	N	35	High	Υ	(A), (B), (D)
MTW-12-7	197-199 Ma Tau Wai Rd	Rock	37	45	N	23	High	Υ	(B), (D)
MTW-12-8	Pak Tai Mansion	Rock	40	45	N	22	High	Υ	(B), (D)
MTW-12-9	Residential premises along Hung Kwong Street	Mixed rock	38	45	N	22	High	Υ	(B), (D)
MTW-12-10	Lucky Building	Mixed rock	31	45	N	23	High	Υ	(B), (D)
MTW-12-11	Jing Ming Building	Mixed rock	29	45	N	28	High	Υ	(A), (B), (D)
MTW-12-12	One Elegance	Rock	36	45	Υ	22	High	Υ	(D)
MTW-13-1	Cheung Chuk Shan Memorial School ^[2]	Mixed rock	44	55	N	22	High	Υ	(B), (D)
MTW-14-1	PLK Lam Man Chan English Primary School ^[2]	Mixed rock	29	55	N	40	High	Υ	(A), (B), (D)
MTW-15-1	Hung Hom Lutheran Primary School ^[2]	Mixed rock	43	55	N	22	High	Confirm upon request	(B), (D)
MTW-16-1	SKH Good Shepherd Primary School ^[2]	Mixed rock	42	55	N	22	High	Confirm upon request	(B), (D)
MTW-17-1	Loyal Mansion	Mixed rock	32	45	N	26	High	Υ	(B), (D)
MTW-18-1	Residential premises along Chi Kiang St	Mixed rock	21	45	N	48	Low	N (Dismantled)	(A), (B), (C), (E)
MTW-18-2	No. 2 Kowloon City Road	Mixed rock	24	45	N	33	Low	N (Dismantled)	(A), (B), (E)
MTW-19-1	Holy Trinity Church	Soil	29	45	N	58	High	Confirm upon request	(A), (B), (C), (D)
HOM-1-1	Ko Shan Theatre ^[2]	Rock	30	45	Υ	61	Low	Υ	(A), (C)
HOM-2-1	Faerie Court	Mixed rock	35 45		Υ	27	Low	Υ	- ^[14]
HOM-2-2	Lee Wing Bldg	Rock	41	45	Υ	24	Low	Υ	_ [14]
HOM-2-3	Wing Lam Mansion	Rock	36	45	Υ	25	Low	Υ	_ [14]
HOM-2-4	Tak Lee Court	Rock	35	45	Y	61	Low	Υ	(C)
HOM-2-5	Chat Ma Mansion	Rock	28	45	N	49	High	Υ	(A), (B), (C), (D)
HOM-2-6	Chatham Mansion	Mixed rock	43	45	N	19	High	Υ	(B), (D)

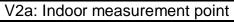
			А	[7]	B ^[10]	C [11]	D ^[12]	E [13]		
		Ground	Worst case Scenario ^[6]		Building Piles (Y/N/NA)	The Nearest Slant Distance to Tunnel (m) [5]	Ambient Vibration (High /Low) ^[9]	Accessibility (Y/N)	Justification of not selected for LSR measurement	
NSR ID	R ID NSR Description		Predicted L _{eq,30min} (dB(A))	Criterion L _{eq,30min} (dB(A))						
HOM-3-1	Fook Sing Mansion	Rock	25	45	Υ	92	Low	Confirm upon request	(A), (C)	
HOM-3-2	Marigold Mansion, Blk A	Rock	37	45	Υ	96	Low	Confirm upon request	(C)	
HOM-4-1	Yee Fu Building	Rock	33	45	Υ	60	Low	Υ	(C)	
HOM-5-1	271 Chatham Road North	Rock	28	45	N	87	High	Υ	(A), (B), (C), (D)	
HOM-P2	HKPU Phase 3 ^[2]	Rock	36	55	Υ	57	High	Confirm upon request	(C), (D)	
HOM-P3-1	Residential Building, HOM Development ^[1]	Rock	41	45	NA	45	Low	Confirm upon request	(C)	
HUH-1-1	Cartas Branchi College of Careers ^[2]	Rock	<20	55	N	100	High	Υ	(A), (B), (C), (D)	
HUH-1-2	Lok Ka House	Rock	24	45	N	58	High	Υ	(A), (B), (C), (D)	
HUH-1-3	Wing Fung Bldg	Soil	38	45	N	21	High	Υ	(D)	

Notes:

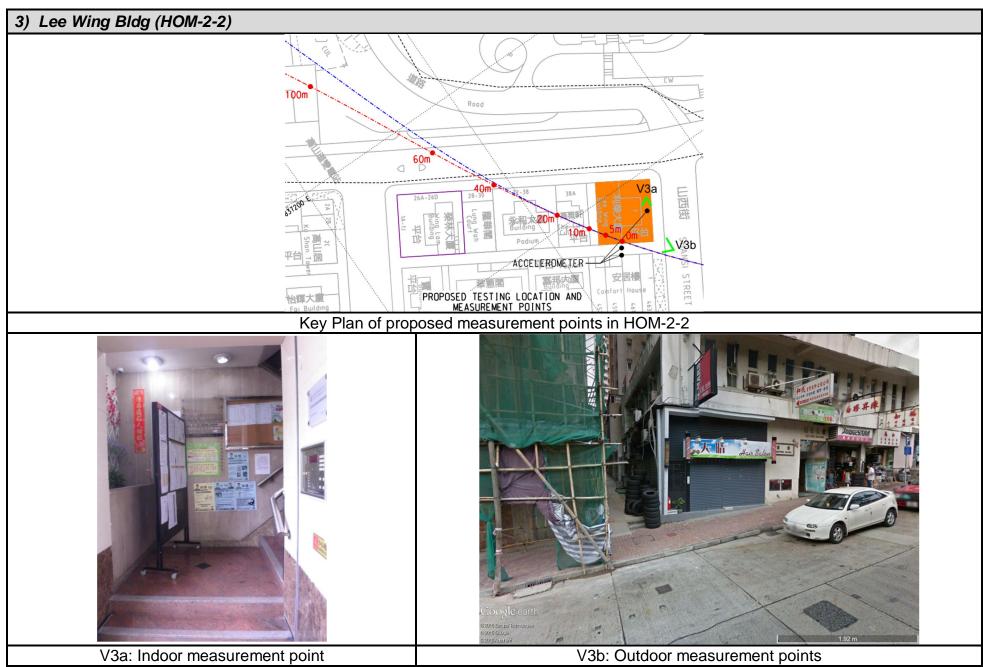
- [1] The information of unconstructed NSRs is to be confirmed. For DIH area, compared with DIH-P3-1 and DIH-P3-1, DIH-P2-1 and DIH-P2-4 are farther away from the tunnel; DIH-P2-2 and DIH-P2-3 are situated with higher ambient noise. In addition, the DIH scheme should refer to the approved SCL(HHS) EIA such that DHS will not be built. Therefore, DIH-P2-1 to DIH-P2-4 are not selected for testing locations. Nevertheless, ground-borne noise assessment will be updated according to the review findings and the measurement results.
 [2] Daytime noise criteria and operation conditions are used for the assessment of school.
- [3] The up-to-date names for DIH-P1-1 and KAT-P1-5 are Upper Wong Tai Sin Estate Wing Sin House and Kai Ching Estate Mun Ching House respectively.
- [4] Y: Building pile of the NSR founded on rock head; N: Building pile of the NSR not founded on rock head; NA: No existing piles and information of future piles is not available yet.
- [5] The nearest distance to tunnel is determined between the boundary of respective NSR and tunnel (i.e. the slant distance from ground level to track level.)
- [6] Worst case Scenario represents either Nighttime noise criteria or Daytime noise criteria adopted in EIA reports for NSRs depending on its land use.
- [7] NSRs which predicted Leq,30min(dB(A)) is lower than 30 are not considered as a representative location for testing and measurement.
- [8] The Ground Type is categorized into 3 groups which are Rock, Mixed rock and Soil. Tunnel on or under rockhead is defined as Rock; Tunnel above rockhead and below soil is defined as Mixed rock, and Tunnel in the soil is defined as Soil. For the SCL (TAW-HUH) tunnel, the condition of tunnel below rockhead and above soil does not exist.
- [9] Low: For the nearest road(s) with traffic flow AADT less than 30,000, relative low ambient vibration anticipated at NSRs; High: For the nearest road(s) with traffic flow AADT equal or higher than 30,000, relative high ambient vibration anticipated at NSRs.
- [10] NSRs with no building piles founded on rock head or no available information of building piles are less preferrable to be selected as a representative location for testing and measurement.
- [11] NSRs which have slant distance greater than 40m to the tunnel are not considered as a representative location for testing and measurement.
- [12] NSRs which have high ambient vibration are not considered as a representative location for testing and measurement.
- [13] NSRs which are inaccessible are not considered as a representative location for testing and measurement.
- [14] 4 out of 10 NSRs are selected as measurement locations and each geological characteristic is represented by at least one selected NSR. Compared with the selected NSR DIH-P1-1, DIH-18-1 and DIH-18-2 are farther away from the tunnel, and HOM-2-1 is situated at the margin of mixed rock and rock that LSR value is not suitable to apply to all NSRs at mixed rock type. Comparing 3 planned NSRs at mixed rock, KAT-P1-7 is considered more respresentative than DIH-P3-1 and DIH-P3-2 due to its shorter slant distance together with higher predicted level and hence is selected as another NSR at mixed rock. KAT-P1-5 is selected as it is the only NSR at soil type. HOM-2-2 is selected as NSR at rock type since it is located directly above tunnel and is closer to it compared with HOM-2-3.

Appendix B

Photo records of Proposed Measurement Points at selected NSRs


Appendix B - Photo records of Proposed Measurement Points at selected NSRs

Key Plan of proposed measurement points in KAT-P1-5



V2b: Outdoor measurement points

Appendix B - Photo records of Proposed Measurement Points at selected NSRs

Note:

The proposed indoor measurement points are subject to minor change depending on the condition on testing day. In the case where indoor measurement points are under disturbance or considered unsuitable for obtaining vibration signal, outdoor measurement points would be adopted as an alternative.

Annex B1

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 1 – Kai Ching Estate, Mun Ching House) (June 2016)

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 1 (Version D)

	(June 2016)
Verified by:	Fredrick Leong
Position: <u>Inder</u>	pendent Environmental Checker
Date:	23 Jun. 2016

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation

Measures Plan – Batch 1 (Version D)

(June 2016)

Certified by:	Richard Kwan	
Position: <u>E</u>	nvironmental Team Leader	
Data	72 Tun 2011	

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 1 – Kai Ching Estate, Mun Ching House)

June 2016

Nam	ne Signature
ked: Angela	Tong Mile
oved: Josh L	am Avec
W W	

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

		Page
1	INTRO	DUCTION1
	1.1 1.2 1.3	Background
2	IMPAC	T TESTING AND PREDICTION OF LSR3
	2.1 2.2 2.3 2.4	Testing Location3Testing Instrumentations3Testing and Measurement Procedures3Prediction of Line Source Response4
3	REVIE	W OF OPERATIONAL GROUND-BORNE NOISE PREDICTION6
	3.1 3.2 3.3 3.4	LSR Adopted in the Approved EIA Report
4	CONCL	_USION8
List of Table 2 Table 2 Table 3 Table 3	2.1 2.2 3.1	Measurement and Testing Location Instrumentation of the Hammer Impact Test Comparison between Measurement Data and WIL Data Ground-borne Noise Prediction Results
List of	Figures	
C11033	3/C/SCL	ACM/M53/004 Locations of Measurement Points at NSR KAT-P1-5
Append	dices	
Append	lix A	Operational Ground-Borne Noise Mitigation Measures Plan – Testing and Review Methodology Plan (Revision D)
Appendix B Appendix C Appendix D Appendix E Appendix E Appendix F Appendix D Appendix D Appendix C Appendix D Appendix D Appendix D Appendix D Appendix F		Calibration Records of Measurement Equipment Photo records of Measurement at KAT-P1-5 Measured Point Source Responses at KAT-P1-5 Determined Line Source Responses at KAT-P1-5 Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report
Appendix G Comparison of Measured and EIA Line Source Responses Appendix H Updated Calculations of Ground-borne Noise Prediction		

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/J) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Appendix A**). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). With respect to the construction programme, the first impact test was conducted at Mun Ching House on 1 and 2 February 2016.

_

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 1) presents the LSR analysis based on the results of the impact test conducted at Mun Ching House (KAT-P1-5) and the operational ground-borne noise prediction at KAT-P1-5 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - · Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The first impact test was conducted at Kai Ching Estate – Mun Ching House (KAT-P1-5) on 1 and 2 Feb 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/004**.

Table 2.1 Measurement and Testing Location

		Predicted Night-time	Measurem	ent Location ⁽²⁾			
1	NSR	Ground- borne Approx. Noise Hori. Levels in Distance		Approx. Slant Distance (From	Ground Type	Location of Hammer Impact Test (Approx.	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
KAT-P1-5 ⁽¹⁾	Kai Ching Estate – Mun Ching House	40	13 (down track)	19 (down track)	Soil	Down Track Tunnel (-8.1mPD)	1 & 2 Feb 2016

Note:

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels were measured using a Bruel & Kjaer PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**.

Table 2.2 Instrumentation of the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to 3-hp air compressor to induce force (impact) at about 300kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Bruel & Kjaer PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	PCB 207C	Fitted to pneumatic hammer to measure impact force

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are low. All
 construction works inside tunnel and the adjacent tunnel were suspended during the
 testing.

⁽¹⁾ KAT-P1-5 is a planned NSR during EIA stage. Assumptions were made on the horizontal building setback distance from tunnels (i.e. 10m from up track and 20m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/004.

- The impact hammer hit on the centreline of tunnel invert and it applied measured impact forces within the tunnel at six impact points. The measured impact forces were logged by the FFT spectrum analyzer. Each impact points were applied minimum 10 hits at around 300kN⁽²⁾ on the concrete invert along the tunnel.
- Meanwhile, accelerometers adhered on the ground and on the building structure of Mun Ching House. Site photos showing the positions of accelerometers are shown in **Appendix** C.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The test was repeated at each hitting points in turn. The furthest hitting point done was up to 60m from the first hitting point in the tunnel. Testing on the proposed hitting point at 100m was not executed due to limitation of on-site condition. Results indicate that the response signals beyond 40m hitting point are weak and cannot be identified. Thus the response signals at 100m hitting point would be much weaker and would not affect the overall result.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at Mun Ching House (soil type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact sources and the receiver. The LSR [TM_{line}, dB re 1e⁻⁹ (m/s)/(N/m^{0.5})] is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_{pi}) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where h

= Impact interval (m) (interval varying from 5m to 40m)

TMpi = Point source transfer mobility for ith impact location (dB re 1e-9 (m/s)/N)

n = Last impact location

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.
- 2.4.4 A total of three measurement points including Point A (outdoor ground), Point B (outdoor building structure) and Point C (indoor building structure) were set up. However, only Point A is adopted to determine the LSR as the vibration response of Point B and Point C were weak and cannot be identified. The spectra of the PSR at Point B and Point C as shown in **Appendix D** indicate no significant difference between distances at all frequencies. Thus it is

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

considered that the estimated LSRs at Point B and Point C as shown in **Appendix E** are not appropriate to be used in the ground-borne noise calculation.

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at Mun Ching House (KAT-P1-5) was specifically aimed at determining the LSR values for vibration propagating through soft ground.
- 3.2.2 The LSR values determined at Mun Ching House (KAT-P1-5) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m). The EIA LSR values are now shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

Table 3.1 Comparison between Measurement Data and WIL Data

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-5	Kai Ching Estate – Mun Ching House	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=18m & 26m	Measured LSR values ⁽¹⁾ at 18m are about at least 10dB lower than the EIA LSR values in all frequency bands. Measured LSR values at 26m are also lower than the EIA LSR values in all frequency bands.

Note

(1) The LSR results obtained from the proposed method in the Plan and the actual testing method would have been the same, even given the different number of impact points and impact force. As presented in the Point A graph of **Appendix D**, the maximum difference of the measured PSR value at the nearest point (i.e. 15m slant distance) and the furthest point (i.e. 62m slant distance) is about 30dB. Since the LSR results are obtained based on integration of all the measured PSR values at different distances, the PSR values at nearest distance, which are at least 10dB higher, would dominates the LSR results while the lower PSR values at the further distance would be insignificant to the LSR results. Thus the PSR values further away than 60m horizontal distance do not affect the overall LSR results.

3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction in NSR KAT-P1-5 was 3dB. Therefore, apart from different testing method and geological profile at WIL D018 and KAT-P1-5, such 3dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

3.3 Operational Ground-borne Noise Prediction

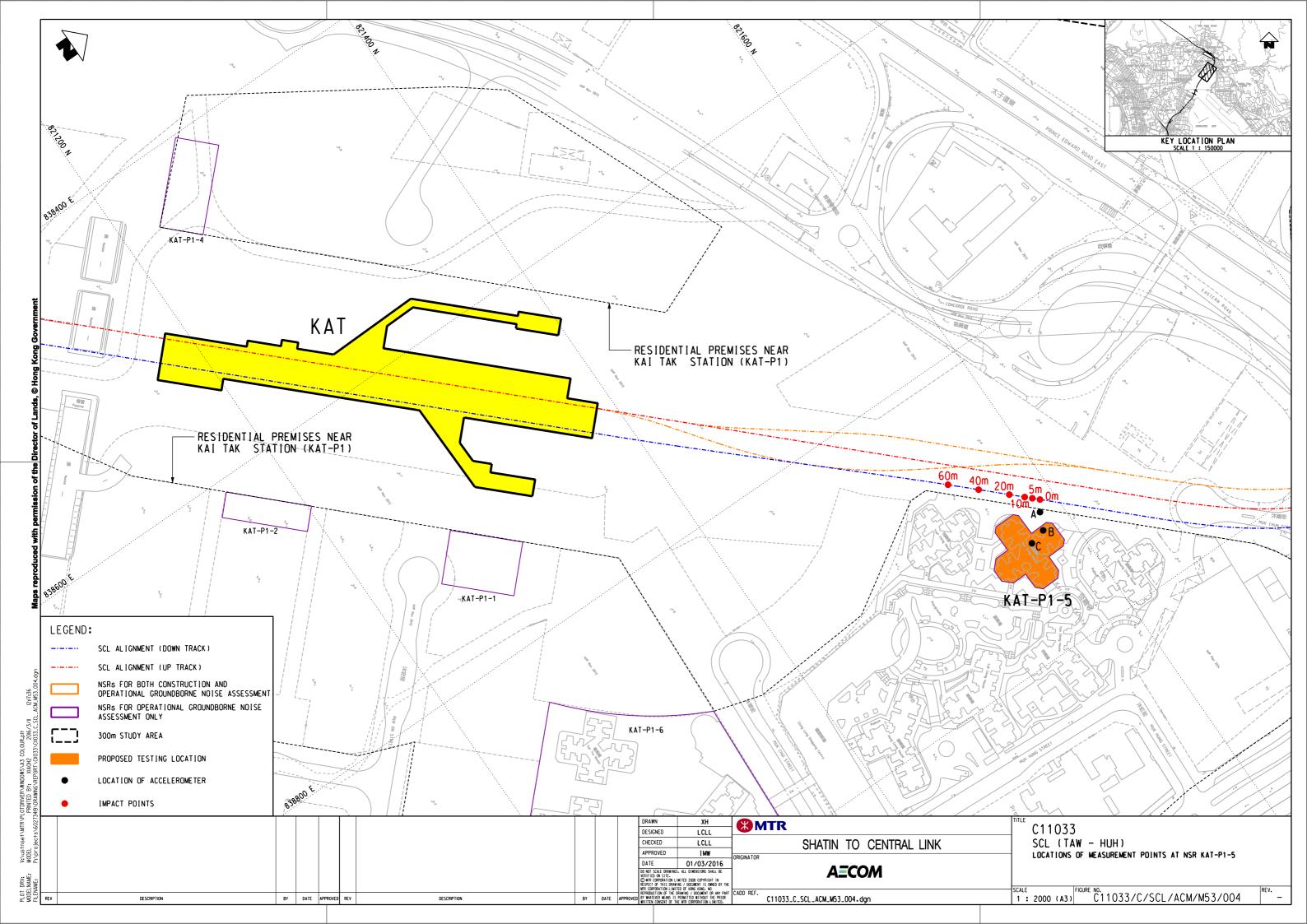
3.3.1 Ground-borne noise assessment at KAT-P1-5 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology

recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Table 3.2 Ground-borne Noise Prediction Results

Location	GBNSR	Description	EIA Prediction (unmitigated scenario), dB(A)		New Prediction (unmitigated scenario, based on measured LSR data), dB(A)		Criterion, dB(A)		Difference Between EIA and New Prediction
Mun	KAT-P1	Kai Ching	Lmax	51	Lmax	40	Lmax	-	-11
Ching House	-5	Estate – Mun Ching House	Daytime L _{eq,30min}	43	Daytime L _{eq,30min}	31	Daytime L _{eq,30min}	55	-12
			Night-time L _{eq,30min}	40	Night-time L _{eq,30min}	28	Night-time L _{eq,30min}	45	-12

- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 3dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual soil would give lower ground-borne noise levels than EIA prediction which also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR KAT-P1-5.


3.4 Review of Other Assumptions

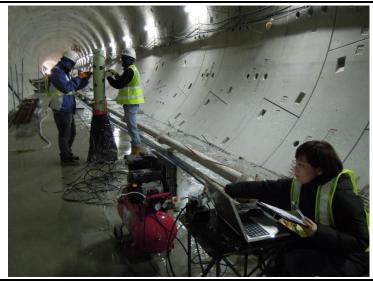
- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Kai Ching Estate, Mun Ching House (KAT-P1-5) to check the suitability of the LSR assumptions adopted in the EIA stage for soil ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA values in soil at KAT-P1-5.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

June 2016

Appendix C


Photo records of Measurement at KAT-P1-5

Kai Ching Estate – Mun Ching House (KAT-P1-5)

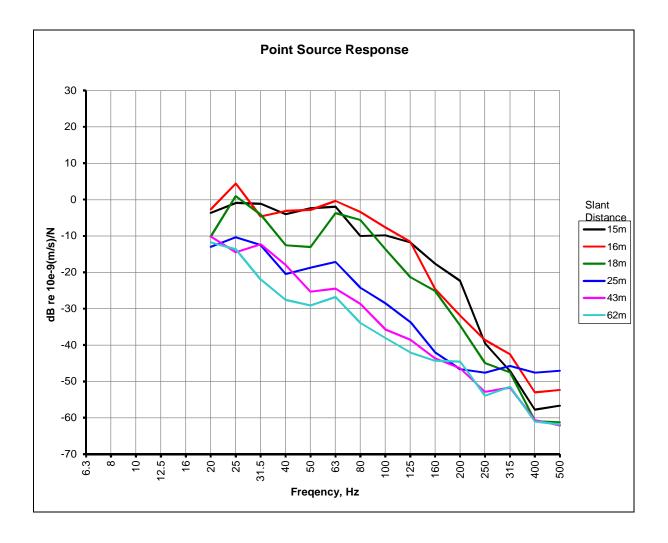
Measurement Date: 1-2 Feb 2016

Measurement Time: 23:00-06:00 (Overnight)

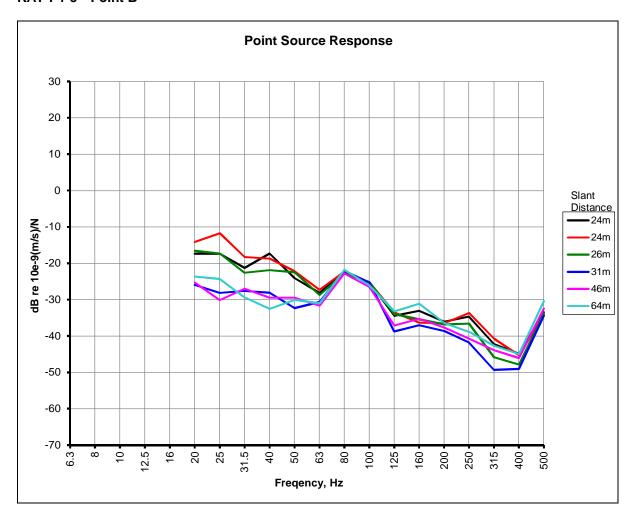
Hammer Impact Test in the Tunnel

Point A (Accelerometer on ground)

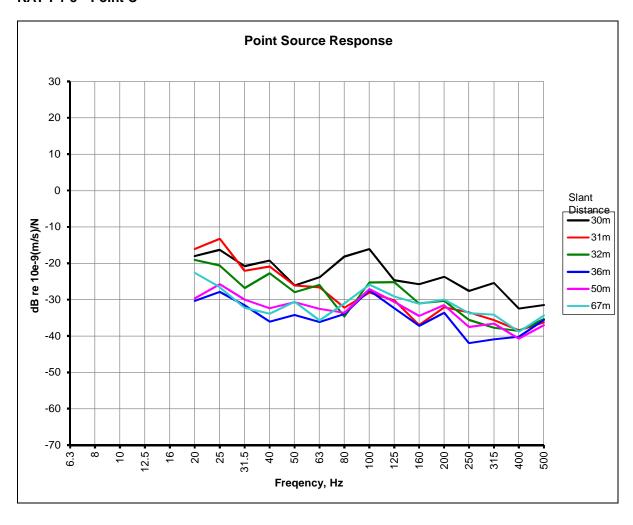
Point B
(Accelerometer on Outdoor Building Structure)



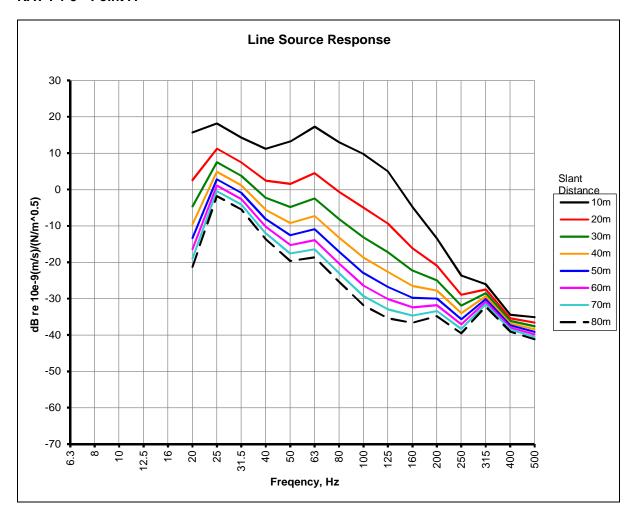
Point C
(Accelermeter on Indoor Building Ground Floor)

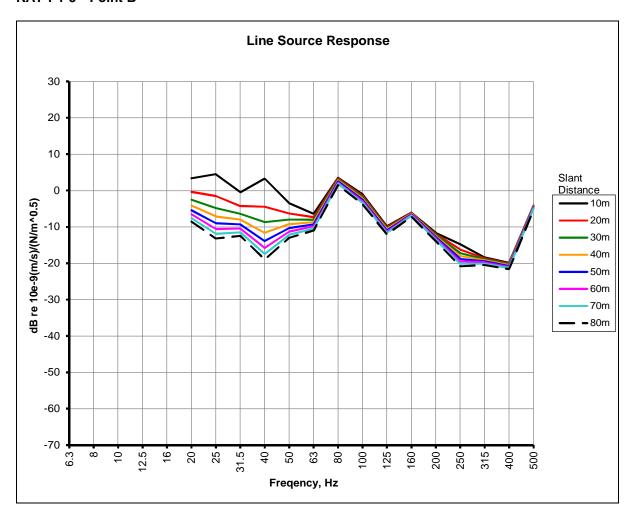

Appendix D

Measured Point Source Responses at KAT-P1-5

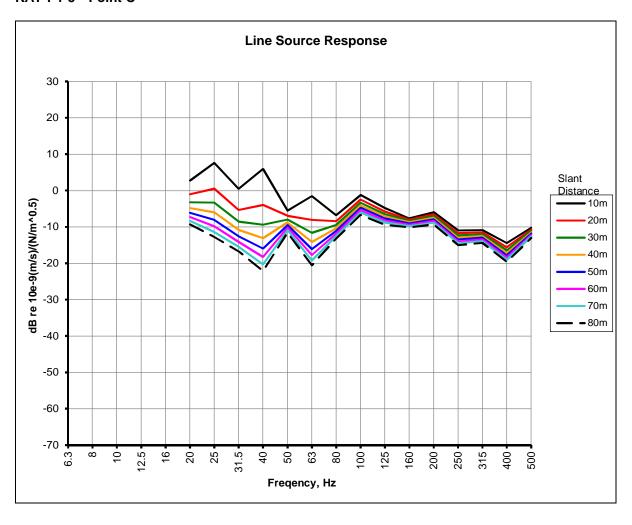

KAT-P1-5 Point A

KAT-P1-5 Point B


KAT-P1-5 Point C


Appendix E

Determined Line Source Responses at KAT-P1-5


KAT-P1-5 Point A

KAT-P1-5 Point B

KAT-P1-5 Point C

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

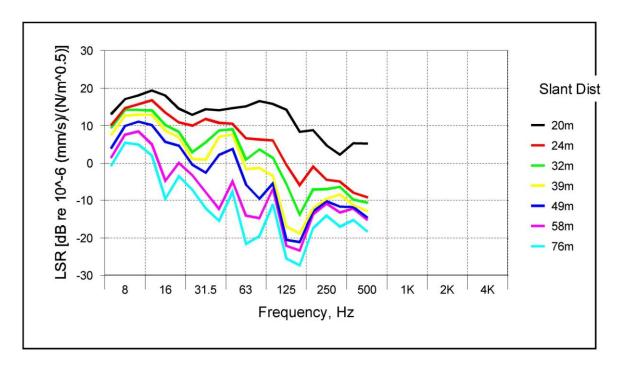


Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

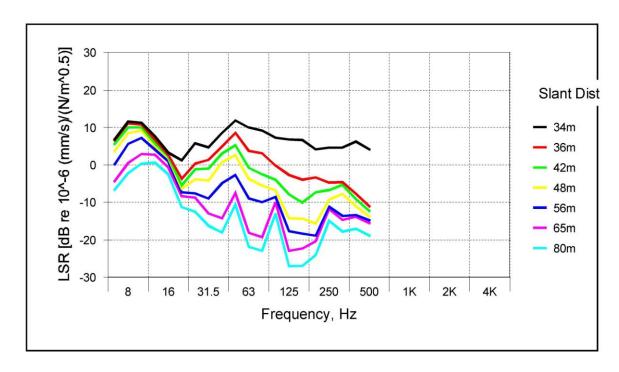


Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)



Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

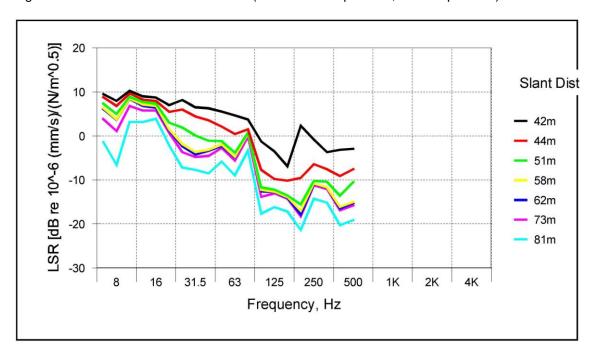


Figure E LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 15m)

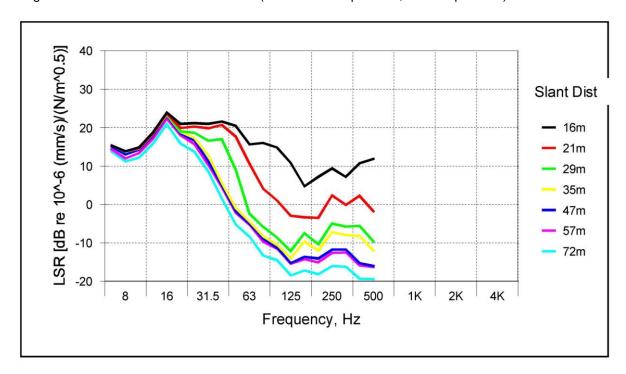
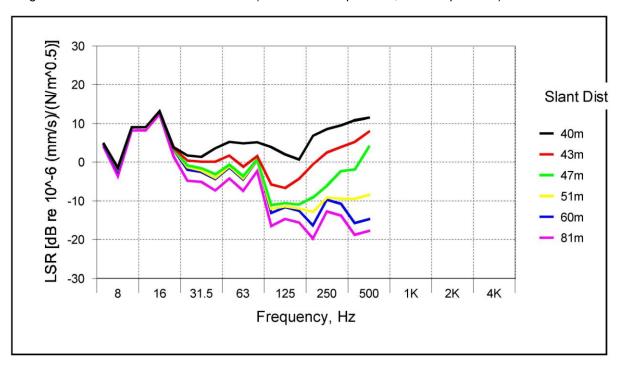
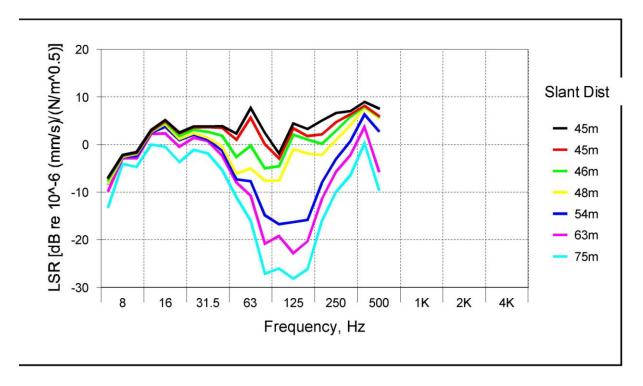
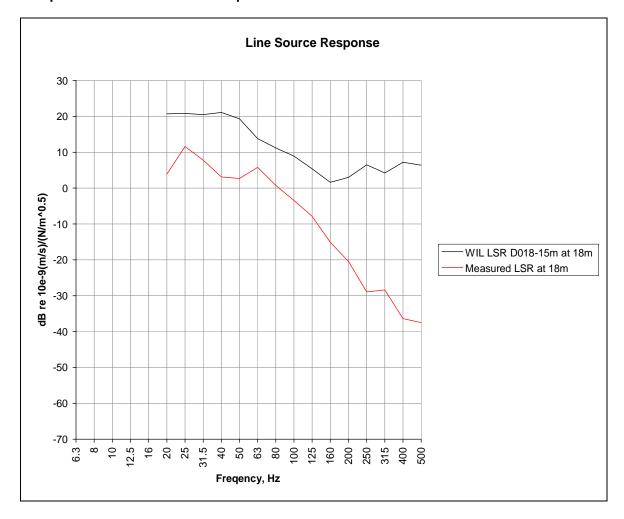
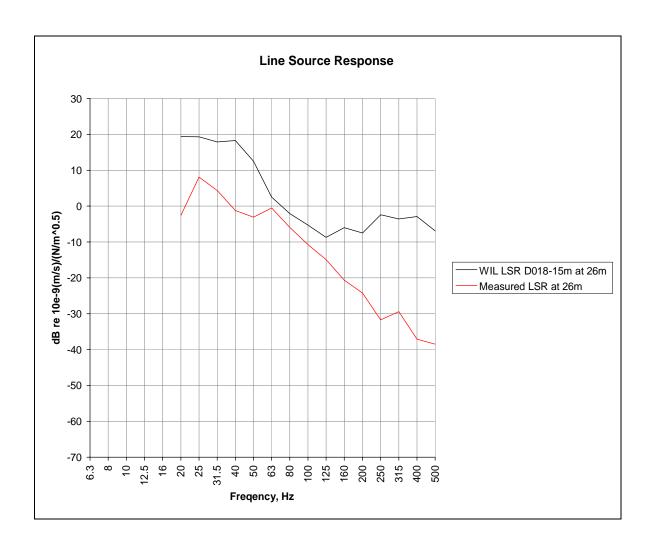


Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)


Figure G LSR from WIL Borehole D028 (Rock Head Depth 22m, Hole Depth 44m)



Appendix G

Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at KAT-P1-5

Appendix H

Updated Calculations of Ground-borne Noise Prediction

KAT-P1-5 Updated EIA Calculation by Measured LSR

Project: Shatin Central Link Rail Operational GBN Assessment Train Speed: 60 kph Horizontal Dist. m Slant Dist, m NSR Ref .: KAT-P1-5 Vertical Dist. m Location: Residential premises near Kai Tak Station Site Up Track 15 10 18 Assessed Floor 2 Down Track 49 Item:

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	7 0	×.	X.C	21:	- 13	X 8			10. 12			8	V60" 108	- 20		8
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	3.9	11.6	7.8	3.1	2.7	5.8	0.8	-3.5	-7.8	-15.1	-20.5	-28.9	-28.4	-36.4	-37.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.9	49.6	44.8	38.1	36.7	43.8	41.8	38.5	34.2	22.9	16.5	7.1	4.6	-2.4	-6.5
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.6	8.1	4.3	-1.2	-3.1	-0.5	-5.9	-10.7	-14.9	-20.6	-24.2	-31.7	-29.4	-37.1	-38.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.4	46.1	41.3	33.8	30.9	37.5	35.1	31.3	27.1	17.4	12.8	4.3	3.6	-3.1	-7.5
Total of Up and Down		77														
Total Vibration Level Ou	rtside Building	38.8	51.2	46.4	39.5	37.7	44.7	42.6	39.3	34.9	24.0	18.1	8.9	7.2	0.3	-4.0
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2.0-4-4/	1 500	25.0	00.4	F0 F		50.4	55.0	50.0	47.7	00.0	00.4	40.0	100	0.0	4.7
	V/3/2/3/2/ACVALUES	The state of the s	65.2	60.4	53.5	51.5	58.1	55.8	52.3	47.7	36.0	29.1	18.9	16.2	9.0	4.7
Predicted Noise Level	Oct, di	8		66.7			60.7			53.7			29.7			10.7
L _{max}	dB(A	10000000														
L _{eq,30mins}	dB(A	25-00-00-00														
Noise Criteria	dB(A) 45														

Compliance Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] Leq,30mins = Leq (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB $(3 dB(A)\ correction\ is\ added\ to\ L_{eq,30 mins}\ for\ leading\ and\ trailing\ effect\ for\ conservative\ approaches.)$
- [6] Leg 30mins is based on train frequency of 6 trains per 30mins in each direction.

Yes

[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

Ground borne noise level within the structure

FDL: Force density level for the KCR SP1900 EMU

LSR: Unit force incoherent line source response for the ground TIL: Trackform attenuation or insertion loss, relative level

TCF: Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

BCF: Vibration coupling loss factor between the soil and the foundation, relative level

BVR: Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

Conversion from floor and wall vibration to noise CTN:

TOC: **Turnout and Crossover Factor**

SAF: Safety margin to account for wheel/rail condition and projection uncertainties

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Annex B2

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 2 – Kai Tak Planned Development) (June 2016)

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 2 (Version C)

(June 2016)

Verified by: Fredrick Leong

Position: Independent Environmental Checker

Date: 23 Jun. 2016

MTR Corporation Limited

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 2 (Version C)

(June 2016)

Certified by: Richard Kwan

Position: Environmental Team Leader

Date: 23 Jan 2016

MTR Corporation Limited

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 2 – Kai Tak Planned Development)

June 2016

	Name	Signature
Prepared & Checked:	Angela Tong	Angela
Reviewed & Approved:	უეosh Lam	Answ

Version: C	Date: 22	Jun 2016
------------	----------	----------

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

			Page
1	INTR	ODUCTION	1
	1.1		
	1.1	Background Purpose of This OGNMMP	
	1.3	Report Structure	2
2	IMPA	CT TESTING AND PREDICTION OF LSR	3
	2.1	Testing Location	3
	2.2	Testing Instrumentations	
	2.3	Testing and Measurement Procedures	
	2.4	Prediction of Line Source Response	4
3	REVI	EW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
	3.1	LSR Adopted in the Approved EIA Report	
	3.2	Review of LSR Values	
	3.3	Operational Ground-borne Noise Prediction	
	3.4	Review of Other Assumptions	6
4	CON	CLUSION	7
List o	f Tables	s	
Table	2.1	Measurement and Testing Location	
Table	2.2	Instrumentation of the Hammer Impact Test	
Table		Comparison between Measurement Data and WIL Data	
Table	3.2	Ground-borne Noise Prediction Results	
List o	f Figure	es	
	_		
C1103	3/C/SC	CL/ACM/M53/005 Locations of Measurement Points at NSR KAT-P1-7	
Apper	ndices		
Appen	dix A	Operational Ground-Borne Noise Mitigation Measures Plan - Testing	and Review
Λω	طائد ات	Methodology Plan (Revision D)	
Appen		Calibration Records of Measurement Equipment Photo records of Measurement at KAT-P1-7	
Appen Appen		Measured Point Source Responses at KAT-P1-7	
Appen		Determined Line Source Responses at KAT-P1-7	
Appen		Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TA)	N-HUH) FIA
		Report Report Responds Adopted in SEE Elin (Appointment Side of SEE(17))	, , ,
Appen		Comparison of Measured and EIA Line Source Responses	
Appen	dix H	Updated Calculations of Ground-borne Noise Prediction	

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/J) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Appendix A**). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The first impact test was conducted at Mun Ching House on 1 and 2 February 2016, and the second impact test was conducted at the planned residential development near KAT on 15 April 2016.

_

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 2) presents the LSR analysis based on the results of the impact test conducted at Residential Premises near KAT (KAT-P1-7) and the operational ground-borne noise prediction at KAT-P1-7 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - · Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The second impact test was conducted at Residential Premises near KAT (KAT-P1-7) on 15 April 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/005**.

Table 2.1 Measurement and Testing Location

NSR		Predicted Night-time	Measurem	ent Location ⁽²⁾		Location of		
		Ground- borne Noise Levels in	Approx. Hori. Distance	Hori. (From		Hammer Impact Test (Approx.	Testing Date	
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)		
KAT-P1-7 ⁽¹⁾	Residential premises near Kai Tak Station	45	0 (up track) 0 (down track)	18	Mixed rock	Down Track Tunnel (-13mPD)	15 April 2016	

Note:

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix**

Table 2.2 Instrumentation of the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model 3.5	Connection to 2-hp air compressor to induce force (impact) at about 100kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	PCB 200M200	Fitted to pneumatic hammer to measure impact force

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are low. All
 construction works inside tunnel and the adjacent tunnel were suspended during the
 testing.

⁽¹⁾ KAT-P1-7 is a planned NSR during EIA stage. Assumptions were made on the vertical distance from tunnels (i.e. 15m from up track and 17m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/005.

- The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each location of accelerometer, impact point was applied minimum 10 hits at around 100kN⁽²⁾ on the concrete invert.
- Meanwhile, accelerometers fixed on the spikes inserted onto the soil of the ground at different horizontal distances (0m, 5m, 10m, 15m, 20m, 25m, 30m and 35m) from the impact point. Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest measurement point on the ground was made up to 35m horizontal distance from the impact point. Reading also indicated that the responses of impact signals at 30m horizontal distance were weak and cannot be identified. Hence the impact signals at further distances over 30m would be much lower which are insignificant to the overall result, and testing on the measurement point over 35m from the impact point were not executed.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR KAT-P1-7 Residential Premises near KAT (mixed rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR [TM_{line}, dB re 1e⁻⁹ (m/s)/(N/m^{0.5})] is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_{pi}) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log 10 \left[h \times \left(\frac{10^{\frac{TMpi}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

H = Reciver interval (m) (interval varying from 5m to 40m)

TMpi = Point source transfer mobility for ith receiver location (dB re 1e-9 (m/s)/N)

n = Last receiver location

2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the planned Residential Premises near KAT (KAT-P1-7) was specifically aimed at determining the LSR values for vibration propagating through the ground of mixed rock type.
- 3.2.2 The LSR values determined at planned Residential Premises near KAT (KAT-P1-7) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m). The EIA LSR values are now shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

Table 3.1 Comparison between Measurement Data and WIL Data

ID	Location	LSR data adopted in EIA Study	Observation
KAT-P1-7	Planned Residential Premises near KAT	WIL D018 Rockhead Depth=28m Hole Depth=15m Slant Distance=15m & 17m	Measured LSR values ⁽¹⁾ at both 15m and 17m are at least 8dB lower than the EIA LSR values in all frequency bands.

Note:

(1) The maximum difference of the measured PSR value at the nearest point (i.e. 18m slant distance) and the furthest point (i.e. 39m slant distance) is about 15dB as presented in **Appendix D**. Since the LSR results are obtained based on integration of all the measured PSR values at different distances, the PSR values at nearest distance, which are at least 10dB higher, would dominates the LSR results while the lower PSR at the further distance would be insignificant to the LSR results. Thus the PSR values further away than 35m horizontal distance do not affect the overall LSR results.

3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction for station structure in NSR KAT-P1-7 was 5dB. Therefore, apart from different testing method and geological profile at WIL D018 and KAT-P1-7, such 5dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

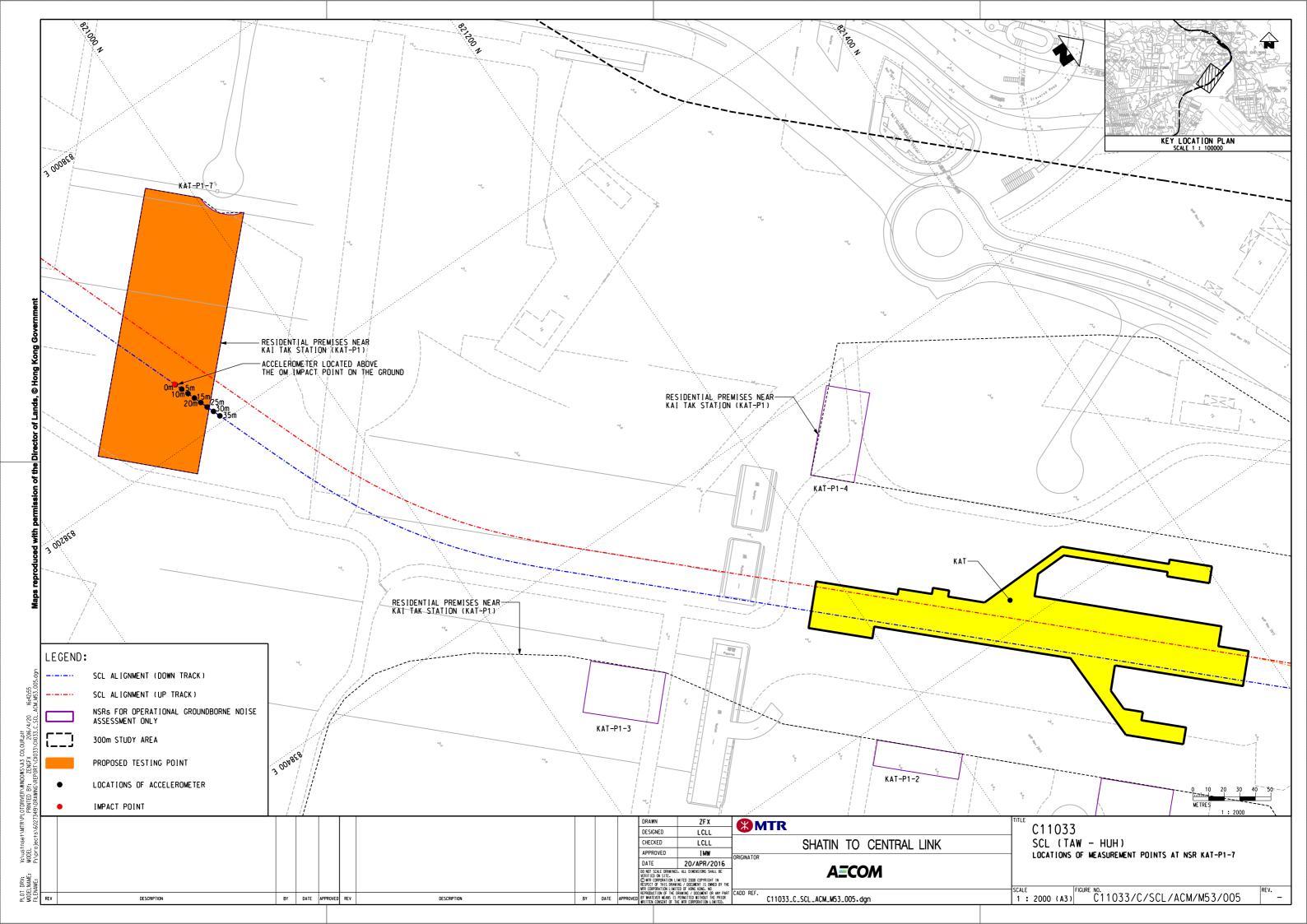
3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at KAT-P1-7 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology

recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Table 3.2 Ground-borne Noise Prediction Results

Location	GBNSR	Description	EIA Prediction (unmitigated scenario), dB(A)		New Prediction (unmitigated scenario, based on measured LSR data), dB(A)		Criterion, dB(A)		Difference Between EIA and New Prediction, dB(A)
Kai Tak	KAT-P1	Residential	Lmax	57	Lmax	52	Lmax	-	-
	-7	Premises near KAT	Daytime L _{eq,30min}	48	Daytime L _{eq,30min}	42	Daytime L _{eq,30min}	55	-6
			Night-time L _{eq,30min}	45	Night-tim e L _{eq,30min}	39	Night-time L _{eq,30min}	45	-6


- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 5dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual soil would give lower ground-borne noise levels than EIA prediction which also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR KAT-P1-7.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the
 adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Residential Premises near KAT (KAT-P1-7) to check the suitability of the LSR assumptions adopted in the EIA stage for mixed rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA values in soil at KAT-P1-7.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

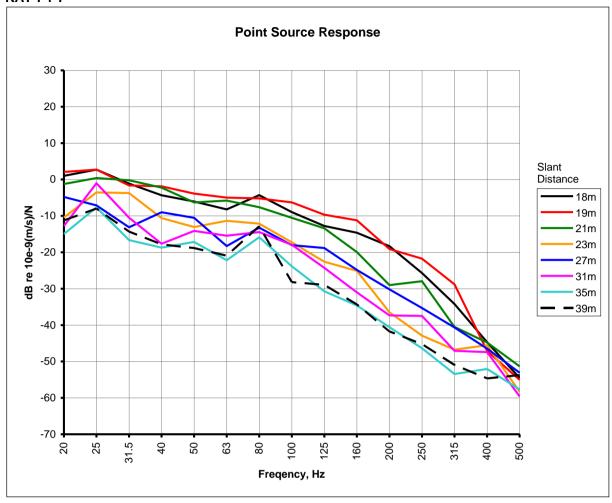
Appendix C

Photo records of Measurement at KAT-P1-7

Residential Premises near KAT (KAT-P1-7)

Measurement Date: 15 April 2016 Measurement Time: 19:00-24:00

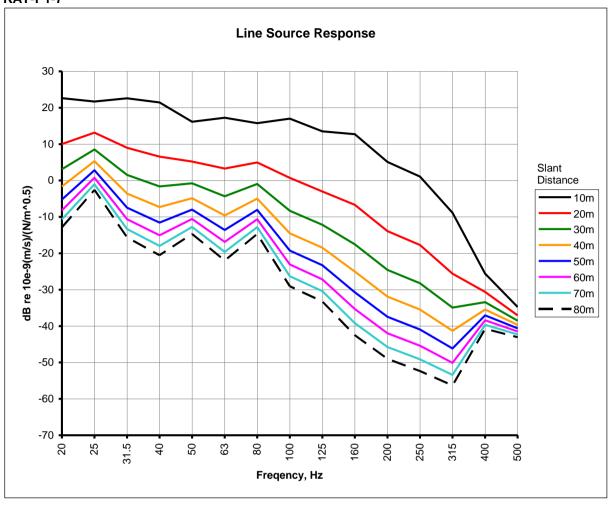
Hammer Impact Test in the Tunnel



Accelerometer on ground

Appendix D

Measured Point Source Responses at KAT-P1-7


KAT-P1-7

Appendix E

Determined Line Source Responses at KAT-P1-7

KAT-P1-7

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

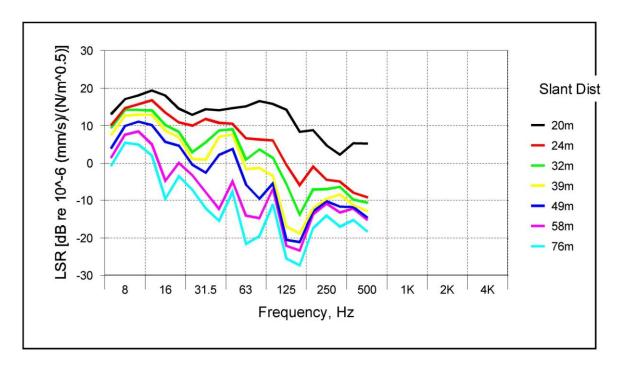


Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

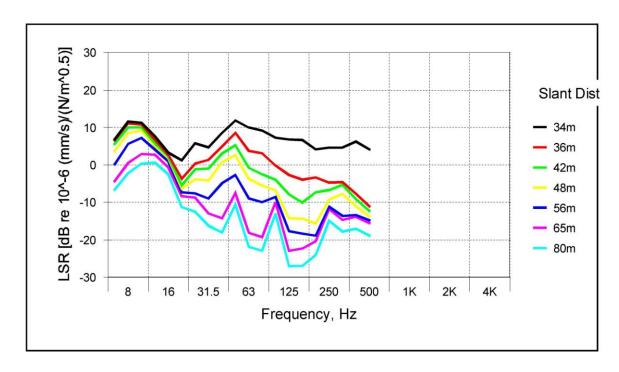


Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

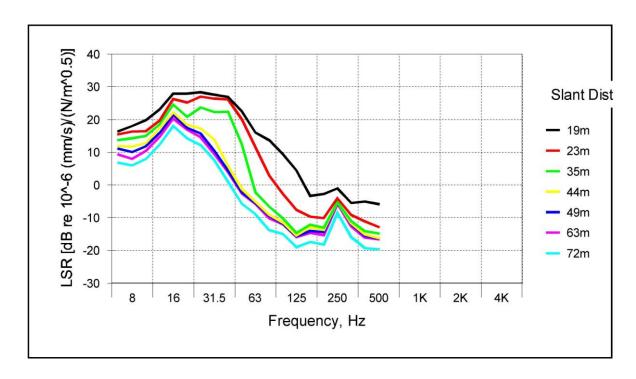


Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

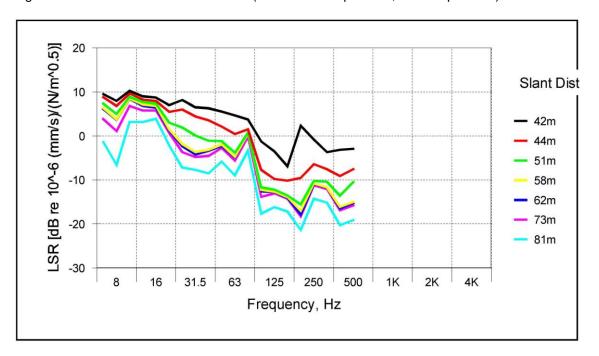


Figure E LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 15m)

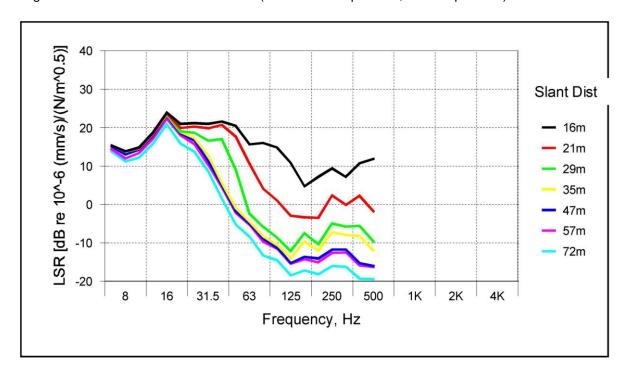


Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

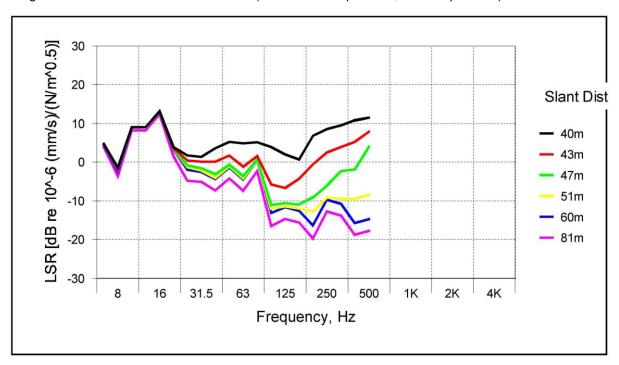
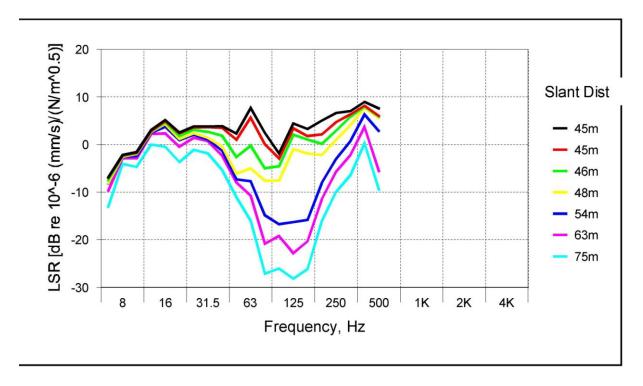
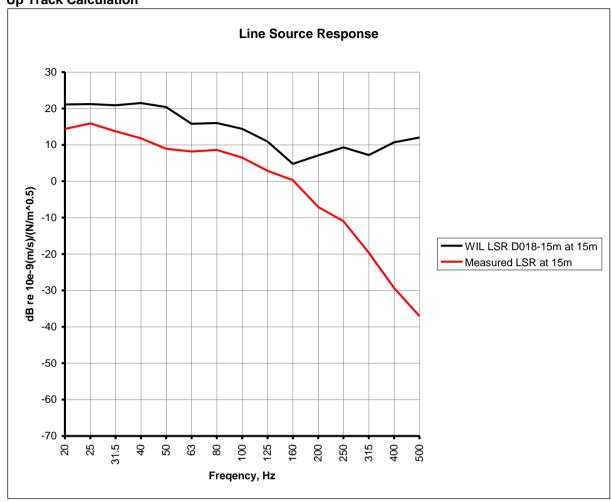
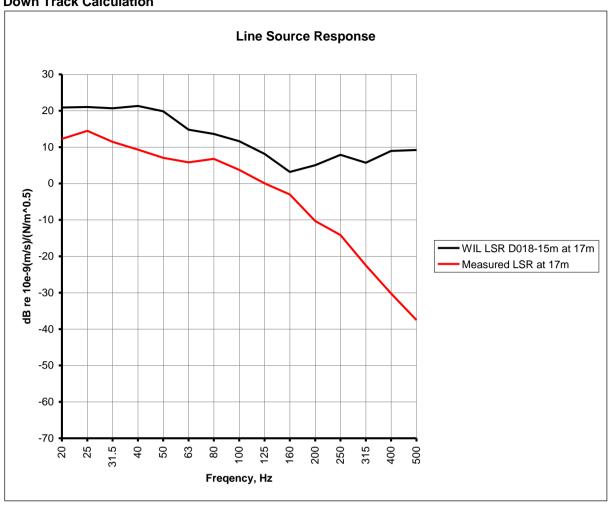



Figure G LSR from WIL Borehole D028 (Rock Head Depth 22m, Hole Depth 44m)



Appendix G


Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at KAT-P1-7

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

KAT-P1-7 Updated EIA Calculation by Measured LSR

Project: Shatin Central Link Rail Operational GBN Assessment Train Speed: 75 kph Slant Dist, m NSR Ref.: Horizontal Dist, m Vertical Dist, m Up Track Location: Residential premises near Kai Tak Station 0 15 15 Assessed Floor Down Track 17 51

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	14.4	15.9	13.7	11.8	8.9	8.2	8.6	6.5	2.9	0.3	-7.1	-11.0	-19.7	-29.3	-37.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	50.3	55.8	52.7	48.7	44.8	48.1	51.5	50.4	46.8	40.2	31.9	27.0	15.3	6.6	-4.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	12.2	14.5	11.4	9.3	7.1	5.8	6.8	3.7	0.1	-3.0	-10.3	-14.2	-22.5	-30.2	-37.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.2	54.4	50.4	46.2	43.0	45.8	49.7	47.7	44.0	36.9	28.6	23.8	12.5	5.7	-4.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	52.4	58.2	54.7	50.7	47.0	50.1	53.7	52.3	48.6	41.9	33.5	28.7	17.1	9.2	-1.3
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
5								22.5								
Predicted Noise Level	1/3 Oct, dB		72.2	68.7	64.7	60.8	63.5	66.9	65.3	61.4	53.9	44.5	38.7	26.1	17.9	7.4
Predicted Noise Level	Oct, dB			74.3			69.2			67.0			45.6			18.3
L _{max}	dB(A)	51.5														
L _{eq,30mins}	dB(A)	39.4														
Noise Criteria	dB(A)	45														

| Compliance | Yes | Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dE (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

L: Ground borne noise level within the structure FDL: Force density level for the KCR SP1900 EMU

LSR: Unit force incoherent line source response for the ground TIL: Trackform attenuation or insertion loss, relative level

TCF: Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

BCF: Vibration coupling loss factor between the soil and the foundation, relative level

BVR: Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

CTN: Conversion from floor and wall vibration to noise

TOC: Turnout and Crossover Factor

SAF: Safety margin to account for wheel/rail condition and projection uncertainties

Remark

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Annex B3

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 3 – Upper Wong Tai Sin Estate) (September 2016)

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 3

(September 2016)

Verified by: ____Fredrick Leong

Position: Independent Environmental Checker

Date: _____U September 1016

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 3

(September 2016)

Certified by:	Richard Kwan
Position:	Environmental Team Leader
Date:	14/9/2016

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 3 – Upper Wong Tai Sin Estate)

September 2016

	Name	Signature
Prepared & Checked:	Angela Tong	Angel
Reviewed & Approved:	Josh Lam	And

Version: A Date: 14 September 2016

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

			Page
1	INTRO	DUCTION	1
	1.1 1.2 1.3	Background Purpose of This OGNMMP Report Structure	2
2	IMPAC	T TESTING AND PREDICTION OF LSR	3
	2.1 2.2 2.3 2.4	Testing Location Testing Instrumentations. Testing and Measurement Procedures Prediction of Line Source Response	3 3
3	REVIE	W OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
	3.1 3.2 3.3 3.4	LSR Adopted in the Approved EIA Report Review of LSR Values Operational Ground-borne Noise Prediction Review of Other Assumptions	5 5
4	CONC	LUSION	7
List of	Tables	Measurement and Testing Location	
Table 2 Table 3 Table 3	2.2 3.1	Instrumentation of the Hammer Impact Test Comparison between Measurement Data and WIL Data Ground-borne Noise Prediction Results	
List of	Figures	S .	
C1103	3/C/SCL	/ACM/M53/006 Locations of Measurement Points at NSR DIH-P1-1	
Appen	dices		
Append	A xib	Operational Ground-Borne Noise Mitigation Measures Plan – Testing and Methodology Plan (Revision D)	Review
Append Append Append Append Append	dix C dix D dix E dix F dix G	Calibration Records of Measurement Equipment Photo records of Measurement at DIH-P1-1 Measured Point Source Responses at DIH-P1-1 Determined Line Source Responses at DIH-P1-1 Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-H Report Comparison of Measured and EIA Line Source Responses	UH) EIA
Append	H xib	Updated Calculations of Ground-borne Noise Prediction	

1 INTRODUCTION

1.1 Background

- The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) 1.1.1 and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. 1.1.2 AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/J) was issued by Director of Environmental Protection (DEP) on 29 February 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- Since the tunnel excavation of the Project will be completed in different phases, testing on the 1.1.4 LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA 1.1.5 studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according 1.1.6 to the Testing and Review Methodology Plan (T&RMP) (Appendix A). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate - Wing Sin House (DIH-P1-1), Kai Ching Estate - Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The first impact test was conducted at Mun Ching House on 1 and 2 February 2016, and the second impact test was conducted at the planned residential development near KAT on 15 April 2016. The third impact test was conducted at Upper Wong Tai Sin Estate - Wing Sin House (DIH-P1-1) on 11 and 12 August 2016.

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 3) presents the LSR analysis based on the results of the third impact test conducted at Upper Wong Tai Sin Estate – Wing Sin House (DIH-P1-1) and the operational ground-borne noise prediction at DIH-P1-1 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - · Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - · Section 4 presents the conclusion.

2

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The third impact test was conducted at Upper Wong Tai Sin Estate – Wing Sin House (DIH-P1-1) on 11 and 12 August 2016. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/006**.

Table 2.1 Measurement and Testing Location

		Predicted Night-time	Measurem	ent Location ⁽²⁾		Location of	
1	NSR	Ground- borne Noise Levels in	Approx. Hori. Distance	Approx. Slant Distance (From	Ground Type	Hammer Impact Test (Approx.	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
DIH-P1-1 ⁽¹⁾	Upper Wong Tai Sin Estate – Wing Sin House	32	7 (down track)	31 (down track)	Mixed rock	Down Track Tunnel (-2.2mPD)	11 & 12 Aug 2016

Notes:

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix**

Table 2.2 Instrumentation of the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose					
Pneumatic Hammer and Air Compressor	WM model 3.5	Connection to 2-hp air compressor to induce force (impact) at about 130kN					
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off					
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition					
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration					
Force transducer	PCB 200M200	Fitted to pneumatic hammer to measure impact force					

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are medium due to the nearby traffic. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.

⁽¹⁾ DIH-P1-1 is a planned NSR during EIA stage. Assumptions were made on the horizontal distance from tunnels (i.e. 0m from up track and 5m from down track) and noise levels were predicted based on this assumption.

⁽²⁾ Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/006.

- The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each location of accelerometer, impact point was applied minimum 10 hits at around 130kN⁽²⁾ on the concrete invert.
- Meanwhile, accelerometers were mounted on the ground and inside the building of Wing Sin House. The impact hammer in the tunnel hit on the tunnel invert at different horizontal distances (5m, 10m, 20m, 30m, 40m and 60m) from the first impact point (i.e. 0m). Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest impact point in the tunnel was made up to 60m horizontal distance from the zero meter impact point. Reading also indicated that the responses of impact signals at 10m horizontal distance were weak and cannot be identified. Hence the impact signals at further distances over 10m would be much lower which are insignificant to the overall result, and testing on the measurement point over 60m from the impact point were not executed.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR DIH-P1-1 Upper Wong Tai Sin Estate Wing Sin House (mixed rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR [TM $_{iine}$, dB re 1e $^{-9}$ (m/s)/(N/m $^{0.5}$)] is then determined by numerical integration with the formula $^{(3)}$ as shown below, of the Point Source Response (PSR, TM $_{pi}$) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where

H = Receiver interval (m) (interval varying from 5m to 40m)

TMpi = Point source transfer mobility for ith receiver location (dB re 1e-9 (m/s)/N)

n = Last receiver location

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.
- 2.4.4 A total of two measurement points including Point A (outdoor) and Point B (indoor building structure) were set up. However, only Point A is adopted to determine the LSR as the vibration response of Point B was weak and cannot be identified. It is considered that the measurement results at Point B are not appropriate to be used in the ground-borne noise calculation.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) was specifically aimed at determining the LSR values for vibration propagating through the ground of mixed rock type.
- 3.2.2 The LSR values determined at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) are compared with those used in the SCL EIA study for the same area and the same ground conditions (i.e. WIL D002 Rockhead Depth = 24m, Hole Depth = 34m & 20m, Slant Distance = 37m & 28m). The EIA LSR values are shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

Table 3.1 Comparison between Measurement Data and WIL Data

ID	Location	LSR data adopted in EIA Study	Observation
DIH-P1-1	Upper Wong Tai Sin Estate – Wing Sin House	WIL D002 Rockhead Depth=24m Hole Depth=34m & 20m Slant Distance=37m & 28m	Measured LSR values at both 37m & 28m are in general lower than the EIA LSR values at most frequency bands and are of similar magnitude at 63Hz and 160Hz.

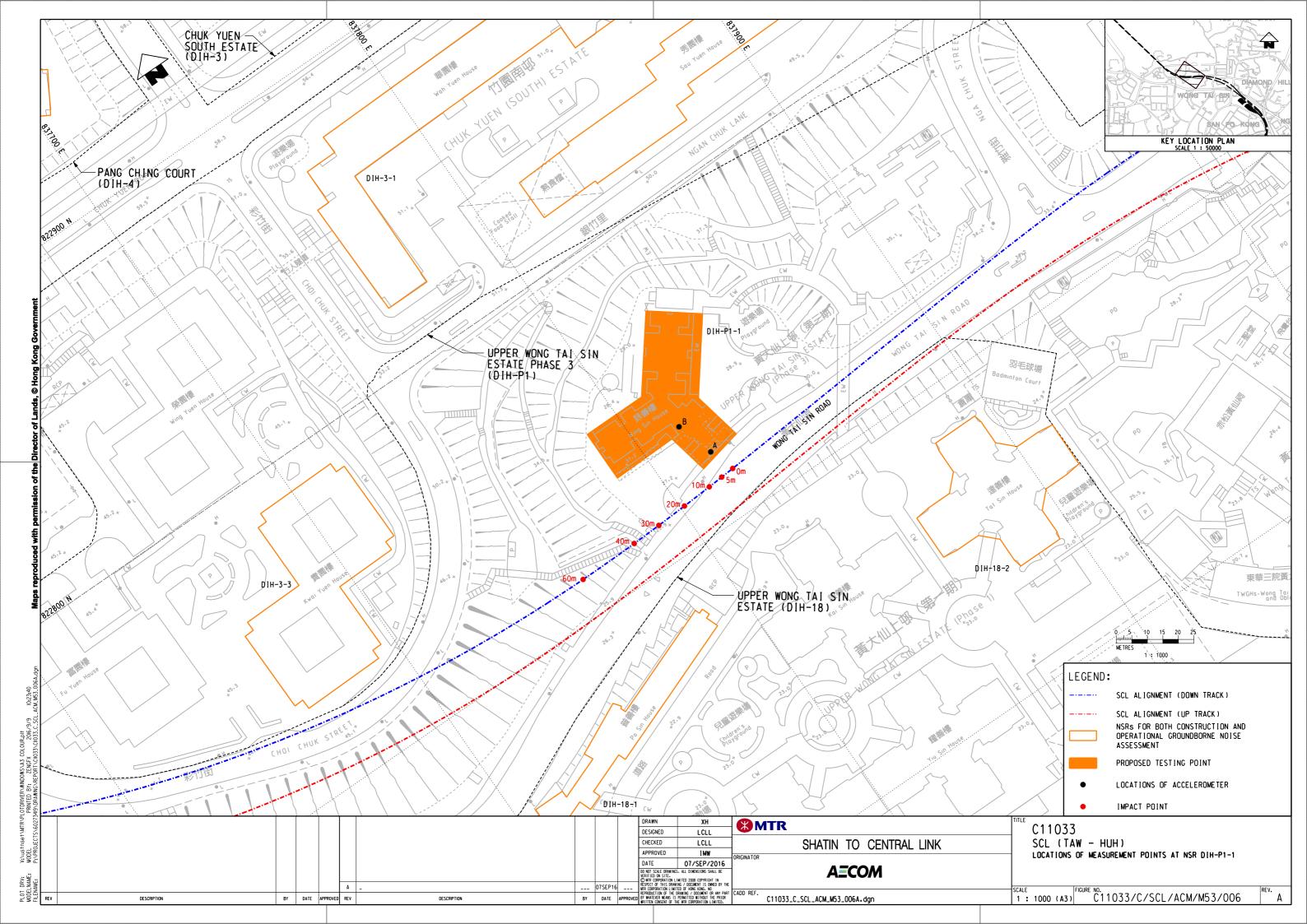
3.2.3 It should be noted that the WIL EIA LSR was measured in the borehole while the current test was measured inside the tunnel. The decoupling effect of vibration propagation between the media of tunnel structure and the ground soil, i.e. the tunnel coupling loss (TCL), would be different to that between the media of borehole casing and the ground soil. Thus the LSR result measured in the impact test should comprise the loss due to decoupling of the actual tunnel structure. The factor of tunnel coupling loss applied in the EIA prediction for the structure at NSR DIH-P1-1 was 5dB. Therefore, apart from different testing method and geological profile at WIL D002 and DIH-P1-1, such 5dB tunnel coupling loss also accounts for difference between the EIA LSR and measured LSR.

3.3 Operational Ground-borne Noise Prediction

3.3.1 Ground-borne noise assessment at DIH-P1-1 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Table 3.2 Ground-borne N	loise Prediction	Results
--------------------------	------------------	---------

Location	GBNSR	Description	EIA Prediction (unmitigated scenario), dB(A)		New Prediction (unmitigated scenario, based on measured LSR data), dB(A)		EIA Prediction (unmitigated scenario, base on measured		(unmitigated scenario, based on measured Criterion, dB(A)		
Wong Tai	DIH-P1-	Upper Wong	Lmax	45	Lmax	42	Lmax	-	-		
Sin	1	Tai Sin Estate –	Daytime L _{eq,30min}	35	Daytime L _{eq,30min}	32	Daytime L _{eq,30min}	55	-3		
		Wing Sin House	Night-time L _{eq,30min}	32	Night-time L _{eq,30min}	29	Night-time L _{eq,30min}	45	-3		


- 3.3.2 As mentioned in **Section 3.2.3**, the measured LSR comprises of tunnel couple loss which is about 5dB as adopted in the EIA prediction. The updated calculation therefore excluded the tunnel coupling loss in the calculation to avoid double count of the effect.
- 3.3.3 Results indicate that the measured LSR values at actual ground condition would give lower ground-borne noise levels than EIA predictions which are also below the noise criteria.
- 3.3.4 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR DIH-P1-1.

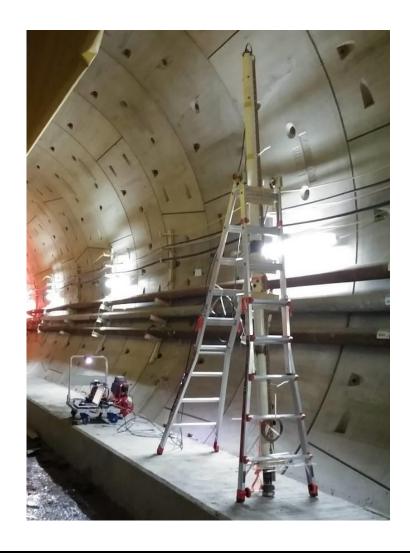
3.4 Review of Other Assumptions

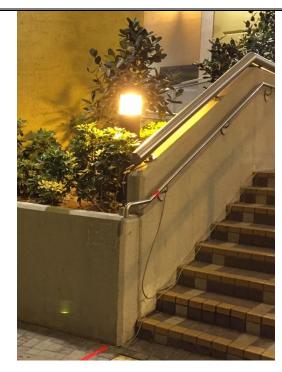
- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

- 4.1.1 The measurement of ground LSR values has been conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) to check the suitability of the LSR assumptions adopted in the EIA stage for mixed rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA predictions at DIH-P1-1.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C


Photo records of Measurement at DIH-P1-1

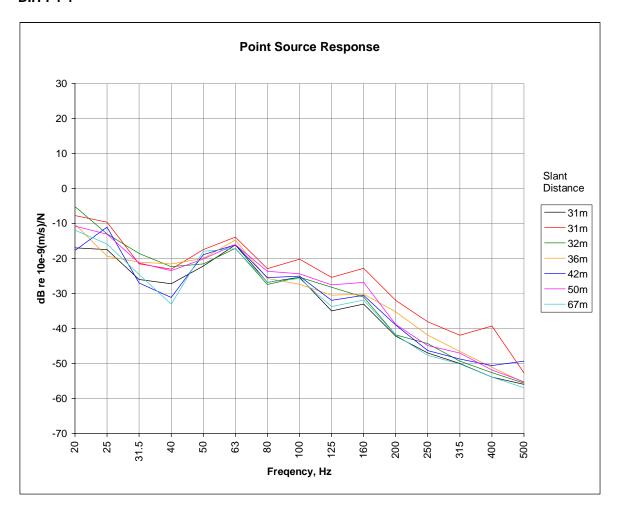

Appendix C - Photo records of Tunnel Impact test at DIH-P1-1

Upper Wong Tai Sin Estate - Wing Sin House (DIH-P1-1)

Measurement Date: 11 Aug 2016 & 12 Aug 2016

Measurement Time: 11:00pm 11 Aug to 5:00am 12 Aug 2016

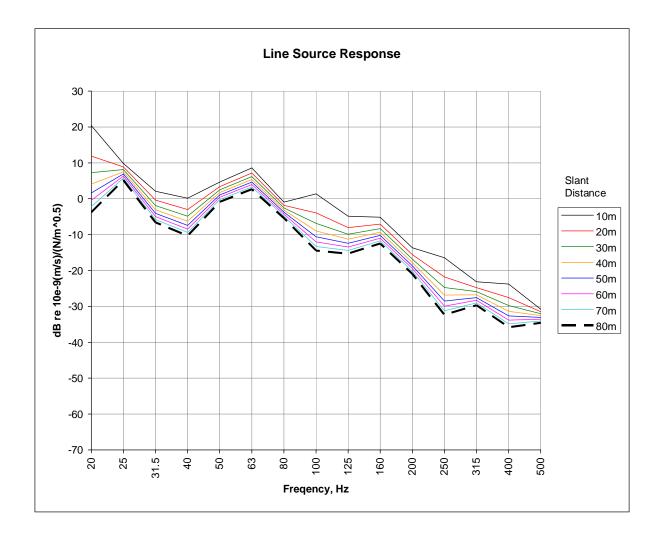
Point A (Outdoor)


Hammer Impact Test in the Tunnel

Accelerometer on ground level

Appendix D

Measured Point Source Responses at DIH-P1-1


DIH-P1-1

Appendix E

Determined Line Source Responses at DIH-P1-1

DIH-P1-1

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

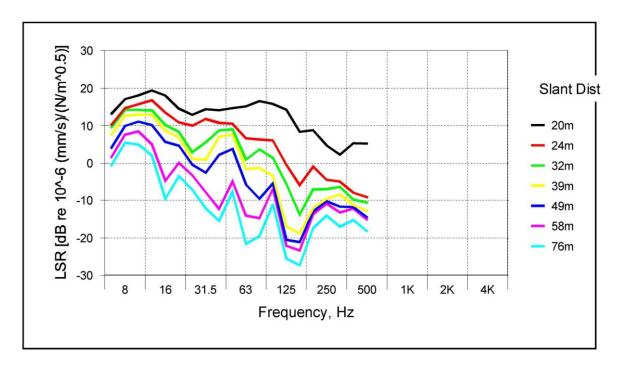


Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

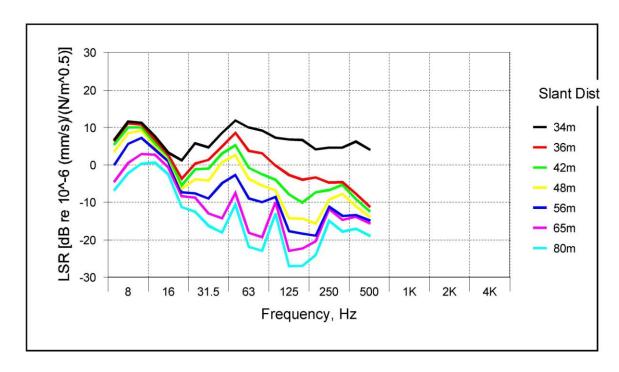


Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

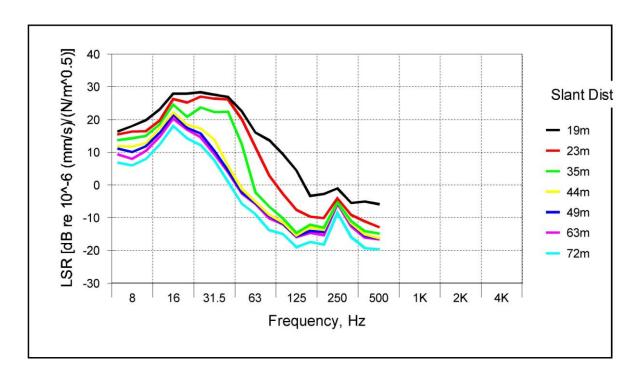


Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

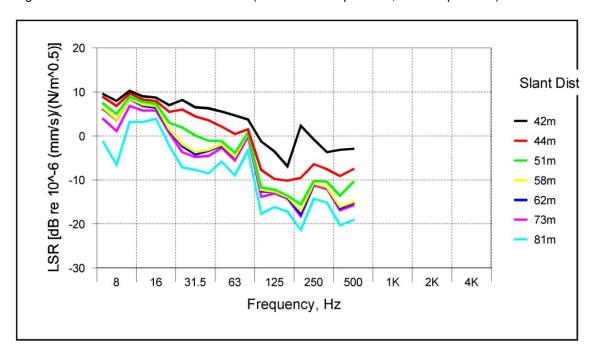


Figure E LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 15m)

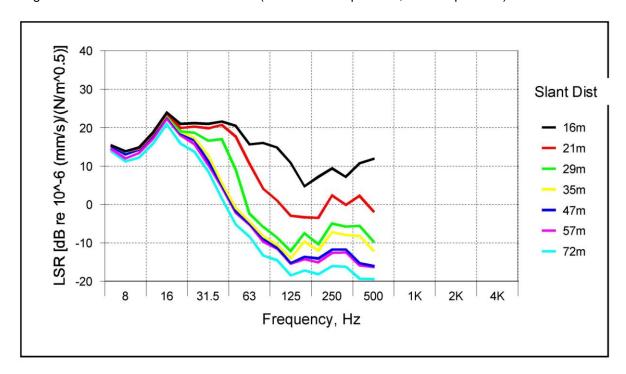


Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

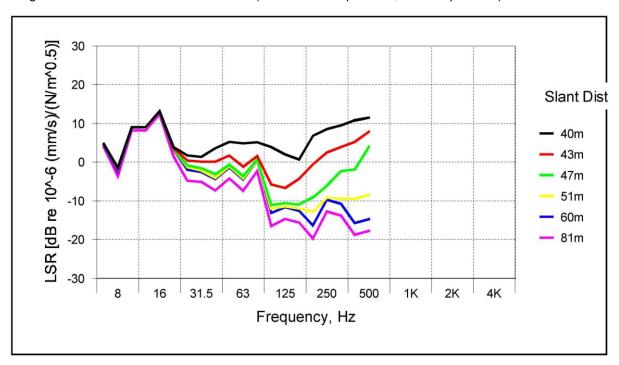
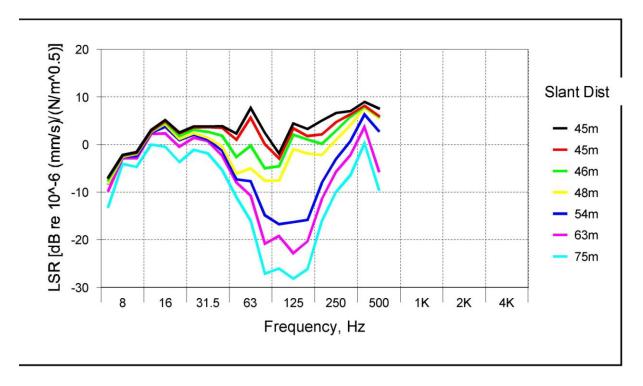
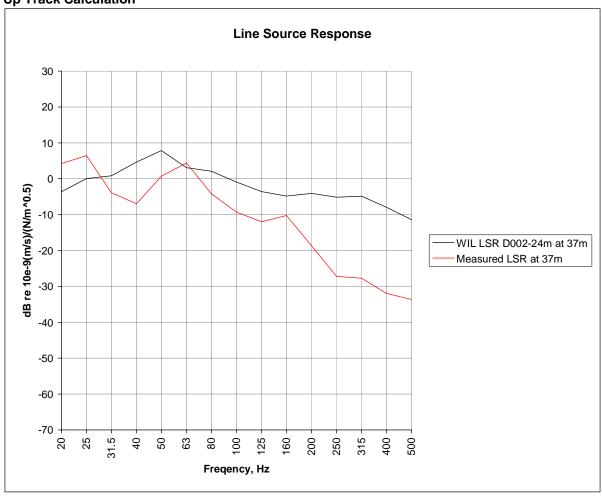
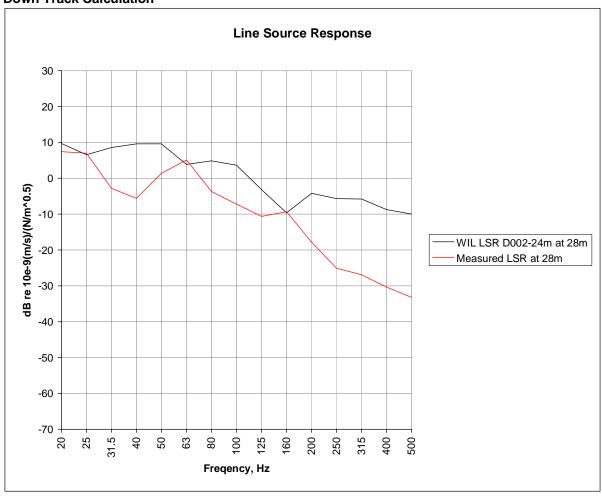



Figure G LSR from WIL Borehole D028 (Rock Head Depth 22m, Hole Depth 44m)



Appendix G


Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at DIH-P1-1

Up Track Calculation

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

DIH-P1-1 Updated EIA Calculation by Measured LSR

Appendix 9.3: Detailed Operational Groundborne Noise Calculations

 Project:
 Shatin Central Link Rail Operational GBN Assessment
 Train Speed:
 90 kph

 NSR Ref.:
 DIH-P1-1
 Horizontal Dist, m Vertical Dist,

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100		160	200	250	315	400	500
Up Track Calculation				-			-	-				200	200	0.0		
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.2	6.5	-3.9	-7.0	0.7	4.4	-4.2	-9.3	-12.0	-10.2	-18.7	-27.2	-27.7	-31.9	-33.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.7	48.0	36.6	31.5	38.2	45.9	40.3	36.2	33.5	31.3	21.8	12.3	8.8	5.6	0.9
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	7.0	-2.8	-5.6	1.4	5.1	-3.7	-7.2	-10.6	-9.3	-17.8	-25.1	-26.9	-30.4	-33.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.0	48.5	37.7	32.9	38.9	46.6	40.8	38.3	34.9	32.2	22.7	14.4	9.6	7.2	1.3
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		46.6	51.3	40.2	35.3	41.6	49.3	43.6	40.4	37.3	34.8	25.3	16.5	12.2	9.4	4.1
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	410.0 4 10															
Predicted Noise Level	1/3 Oct, dB	60.6	65.3	54.2	49.3	55.4	62.7	56.8	53.4	50.1	46.8	36.3	26.5	21.2	18.1	12.8
Predicted Noise Level	Oct, dB			65.7			64.3			55.7			36.8			19.3
L _{max}	dB(A)	42.4														
L _{eq,30mins}	dB(A)	29.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] Leq,30mins = Leq(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB (3dB(A) correction is added to Leq,30mins for leading and trailing effect for conservative approaches.)
- [6] Leg 30mins is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

L: Ground borne noise level within the structure FDL: Force density level for the KCR SP1900 EMU

LSR: Unit force incoherent line source response for the ground TIL: Trackform attenuation or insertion loss, relative level

TCF: Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

BCF: Vibration coupling loss factor between the soil and the foundation, relative level

BVR: Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

CTN: Conversion from floor and wall vibration to noise

TOC: Turnout and Crossover Factor

SAF: Safety margin to account for wheel/rail condition and projection uncertainties

Remark:

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table 2.1.

Appendix B4

Excerpt of Operational Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lee Wing Building) (March 2017)

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 4

(March 2017)

Verified by: Fredrick Leong

Position: Independent Environmental Checker

Date: 7 Mar. 2017

Shatin to Central Link – Tai Wai to Hung Hom Section

Operational Ground-borne Noise Mitigation Measures Plan – Batch 4

(March 2017)

Certified by: Felice Wong

Position: Environmental Team Leader

Date: 7 March 2017

Consultancy Agreement No. C11033

Shatin to Central Link - Tai Wai to Hung Hom Section [SCL(TAW – HUH)] and Stabling Sidings at Hung Hom Freight Yard [SCL(HHS)]

Operational Ground-borne Noise Mitigation Measures Plan (Batch 4 – Lee Wing Building)

March 2017

	Name	Signature
Prepared & Checked:	Angela Tong	Anda
Reviewed & Approved:	Josh Lam	Ayel

Version:	Α	Date:	6 March 2017

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

		Page
1 II	NTRODUCTION	1
	.1 Background	
-	.2 Purpose of This OGNMMP	2
1	.3 Report Structure	
2 II	MPACT TESTING AND PREDICTION OF LSR	3
2	2.1 Testing Location	3
2	2.2 Testing Instrumentations	
2	2.3 Testing and Measurement Procedures	3
2	Prediction of Line Source Response	4
3 R	REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION	5
_	3.1 LSR Adopted in the Approved EIA Report	
-	3.2 Review of LSR Values	
	3.3 Operational Ground-borne Noise Prediction	
3	3.4 Review of Other Assumptions	6
4 C	CONCLUSION	7
List of Ta	ables	
Table 2.1	Measurement and Testing Location	
Table 2.2		
Table 3.1	Comparison between Measurement Data and WIL Data	
Table 3.2	2 Ground-borne Noise Prediction Results	
List of Fi	iaures	
C11033/0	C/SCL/ACM/M53/007 Locations of Measurement Points at NSR HOM-2-2	
Appendi	ces	
Appendix		ng and Review
Annondiv	Methodology Plan (Revision D) B Calibration Records of Measurement Equipment	
Appendix Appendix	· ·	
Appendix		
Appendix		
Appendix	F Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(T	AW-HUH) EIA
Appendix	Report G Comparison of Measured and EIA Line Source Responses	
Appendix		

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the EAL at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 EIA Reports for SCL Tai Wai to Hung Hom Section [SCL (TAW-HUH)] (Register No. AEIAR-167/2012) and SCL Stabling Sidings at Hung Hom Freight Yard [SCL (HHS)] (Register No. AEIAR-164/2012) were approved on 17 February 2012 under the *Environmental Impact Assessment Ordinance* (EIAO). Following the approval of the EIA Reports, the Environmental Permit (EP) (EP No: EP-438/2012), covering the construction of both SCL (TAW-HUH) and SCL (HHS), was granted on 22 March 2012. Variations of Environmental Permit (VEP) were subsequently applied for EP-438/2012 and the latest Environmental Permit (EP No: EP-438/2012/K) was issued by Director of Environmental Protection (DEP) on 4 October 2016.
- 1.1.3 Pursuant to EP Condition 2.27, the Permit Holder, MTR Corporation Ltd (MTR), shall deposit with the Director of Environmental Protection (DEP), no later than one month after completion of corresponding parts of the tunnel excavation of the SCL(TAW-HUH) Section (hereinafter referred to as "the Project"), an Operational Ground-borne Noise Mitigation Measures Plan (OGNMMP) to justify the adequacy of the operational ground-borne noise mitigation measures for the Project. The OGNMMP shall include the review and verification of the assumptions adopted in the approved SCL(TAW-HUH) EIA Report (Register No. AEIAR-167/2012) and SCL(HHS) EIA Report (Register No. AEIAR-164/2012), such as line source response (LSR) and ground vibration conditions, and shall also include justifications and recommendations for any contingency noise mitigation measures found necessary, including but not limited to resilient baseplates (type 1) and isolated slab track (type 4).
- 1.1.4 Since the tunnel excavation of the Project will be completed in different phases, testing on the LSR and ground vibration conditions will be conducted in phases according to the excavation programme.
- 1.1.5 The prediction methodology recommended by the FTA Manual¹ was adopted in the EIA studies and most of correction factors are based on the international guideline except LSR of which values are site specific and are subject to the ground materials, depth of the tunnel and the rock head. During the EIA stage, in situ line source response measurement was not conducted. As part of the review and verification of the assumptions adopted in the ground-borne railway noise impact assessment, it is proposed that line source response and ground vibration conditions will be reviewed and verified by the on-site measurement.
- 1.1.6 AECOM Asia Co. Ltd has been commissioned by the MTR to conduct the LSR test according to the Testing and Review Methodology Plan (T&RMP) (**Appendix A**). According to the T&RMP, the LSR test will be conducted at Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1), Kai Ching Estate Mun Ching House (KAT-P1-5), Residential Premises near KAT (KAT-P1-7) and Lee Wing Bldg (HOM-2-2). The impact test at Mun Ching House (KAT-P1-5), planned residential development near KAT (KAT-P1-7), Upper Wong Tai Sin Estate Wing Sin House (DIH-P1-1) in February, April and August 2016 respectively. The last impact test was conducted at Lee Wing Building (HOM-2-2) on 10 February 2017.

_

⁽¹⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

1.2 Purpose of This OGNMMP

1.2.1 This OGNMMP (Batch 4) presents the LSR analysis based on the results of the impact test conducted at Lee Wing Building (HOM-2-2) and the operational ground-borne noise prediction at HOM-2-2 based on measurement results.

1.3 Report Structure

- 1.3.1 This Test Proposal comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 describes the details of impact test and the prediction of LSR based on the measurement results.
 - Section 3 presents the LSR analysis and operational ground-borne noise prediction results.
 - · Section 4 presents the conclusion.

2 IMPACT TESTING AND PREDICTION OF LSR

2.1 Testing Location

2.1.1 The forth impact test was conducted at Lee Wing Building (HOM-2-2) on 10 February 2017. The information of the measurement location at the selected NSR are summarised in **Table 2.1** and the testing locations are shown in **Figure C11033/C/SCL/ACM/M53/007**.

Table 2.1 Measurement and Testing Location

		Predicted Night-time	Measurem	ent Location ⁽¹⁾		Location of	
ı	NSR	Ground- borne Noise Levels in	Approx. Hori. Distance	Approx. Slant Distance (From	Ground Type	Hammer Impact Test (Approx.	Testing Date
ID	Description	the EIA Report, dB(A)	from the Tunnel, m	Ground Level to Track Level), m		Tunnel Depth)	
HOM-2-2	Lee Wing Building	41	8 (up track)	24 (up track)	Rock	Up Track Tunnel (-11mPD)	10 Feb 2017

Notes:

(1) Measurement location at the selected NSR is shown in Figure C11033/C/SCL/ACM/M53/007.

2.2 Testing Instrumentations

2.2.1 The impact force levels applied within the tunnel were measured using a SINUS Harmonie connected to a laptop computer and vibration velocity levels on the ground were measured using a Brüel & Kjær PULSE connected to a laptop computer. Wilcoxon seismic accelerometers were used on the ground surface. Details of the instruments used are provided in **Table 2.2** and the calibration records of the instruments are provided in **Appendix B**

Table 2.2 Instrumentation of the Hammer Impact Test

Instrument	Manufacturer / Model No.	Purpose
Pneumatic Hammer and Air Compressor	WM model S	Connection to compressed air to induce force (impact) at about 250kN
Impact Controller	WM type 1	Connection to pneumatic hammer to control impact on/ off
Analyzer Platform	Brüel & Kjær PULSE; Sinus Harmonie	Spectrum analyzers for data acquisition
Accelerometer	Wilcoxon Research 731-207 and 731A-P31	Vibration transducers to measure vibration
Force transducer	Lorenz K-18	Fitted to pneumatic hammer to measure impact force

2.3 Testing and Measurement Procedures

- 2.3.1 The testing and measurement procedures are summarised below:
 - The test was carried out during night time when background vibration levels are medium due to the nearby traffic. All construction works inside tunnel and the adjacent tunnel were suspended during the testing.
 - The impact hammer hit on the tunnel invert and it applied measured impact forces within the tunnel. The measured impact forces were logged by the FFT spectrum analyzer. For each

location of accelerometer, impact point was applied minimum 10 hits at around $250kN^{(2)}$ on the concrete invert.

- Meanwhile, accelerometers were mounted on the ground and inside the building of Lee Wing Building. The impact hammer in the tunnel hit on the tunnel invert at different horizontal distances (5m, 10m, 20m, 30m, 40m and 60m) from the first impact point (i.e. 0m). Site photos taken during the measurement are shown in **Appendix C**.
- The impact force in tunnel and the vibration levels on the ground were recorded by the two separated spectrum analyzers. Measurement signals were recorded in narrow band frequencies from 6.3Hz to 500Hz.
- The furthest impact point in the tunnel was made up to 60m horizontal distance from the
 zero meter impact point. Reading also indicated that the responses of impact signals at
 60m horizontal distance were weak and cannot be identified. Hence the impact signals at
 further distances over 60m would be much lower which are insignificant to the overall result,
 and testing on the measurement point over 60m from the impact point were not executed.

2.4 Prediction of Line Source Response

- 2.4.1 The vibration response induced by a unit point source impact was obtained from the hammer impact test and the best fit curves were calculated to determine the LSR at NSR HOM-2-2 Lee Wing Building (rock type ground property referring to the geological profile) along the SCL alignment.
- 2.4.2 The post-processing of measurement data was taken to determine the best fit curves of PSR with respect to the setback distances, and the depth between the impact source and the receivers. The LSR [TM_{line}, dB] is then determined by numerical integration with the formula⁽³⁾ as shown below, of the Point Source Response (PSR, TM_{pi}) along the length of the train centred on the receiver, while PSR is determined from impacting within the tunnel.

$$TM_{\text{line}} = 10 \times \log_{10} \left[h \times \left(\frac{10^{\frac{TMp1}{10}}}{2} + 10^{\frac{TMp2}{10}} + \dots + 10^{\frac{TMpn-1}{10}} + \frac{10^{\frac{TMpn}{10}}}{2} \right) \right]$$

Where H

= Impact interval (m) (interval varying from 5m to 20m)

TMpi = Point source transfer mobility for ith impact location (dB)

n = Last impact location

- 2.4.3 The calculation of LSR follows the calculation outlined in paragraph 11.3.2 Analysis of Transfer Mobility Data in FTA Manual⁽⁴⁾. The measured PSR and the determined LSR are presented in **Appendices D** and **E** respectively.
- 2.4.4 A total of three measurement points including Point A (indoor), Point B (indoor) and Point C (outdoor) were set up. However, only Point A is adopted to determine the LSR as Point B was influenced by electro-magnetic wave induced by elevator at the lobby while the vibration response of Point C was weak and cannot be identified. It is considered that the measurement results at Point B and C are not appropriate to be used in the ground-borne noise calculation.

⁽²⁾ As mentioned in T&RMP, 400kN is only the design force of the impact machine and the actual output force in fact depends on the machine status and on-site condition.

⁽³⁾ Federal Railroad Administration of U.S. Department of Transportation "High-Speed Ground Transportation Noise and Vibration Impact Assessment", 2012

⁽⁴⁾ Federal Transit Administration of U.S. Department of Transportation "Transit Noise and Vibration Impact Assessment", 2006

3 REVIEW OF OPERATIONAL GROUND-BORNE NOISE PREDICTION

3.1 LSR Adopted in the Approved EIA Report

- 3.1.1 The LSR determines the vibration levels or attenuation in the ground as a function of distance caused by an incoherent line source of unit force point impacts.
- 3.1.2 The LSR values adopted in ground-borne noise assessment of SCL (TAW-HUH) and SCL (HHS) EIA Report were referenced from the data of the West Island Line (WIL) EIA Study (EIA Register No. AEIAR-126/2008). The LSR for WIL EIA Study were determined based on the results of borehole impact tests performed in rock, soil and close to the rock head both on the soil side and the rock side, with receiver vibration data taken on surface at various setback distances.

3.2 Review of LSR Values

- 3.2.1 The test carried out at the Lee Wing Building (HOM-2-2) was specifically aimed at determining the LSR values for vibration propagating through the ground of rock type.
- 3.2.2 The LSR values determined at Lee Wing Building (HOM-2-2) are compared with those used in the SCL EIA study for the same area and the same ground conditions (**Table 3.1** refers). The EIA LSR values are shown in **Appendix F**. To allow a better comparison, **Appendix G** shows the LSR value determined at measurement locations at a distance similar to EIA study. A summary of observation is presented in **Table 3.1**.

Table 3.1 Comparison between Measurement Data and WIL Data

ID	Location	LSR data adopted in EIA Study	Observation
HOM-2-2	Lee Wing Building	Up track: WIL D012 Rockhead Depth=34m Hole Depth=18m Slant Distance=19m Down track: WIL D002 Rockhead Depth=24m Hole Depth=20m Slant Distance=30m	Measured LSR values at both 19m & 30m are lower than the EIA LSR values at low frequency bands below 63Hz and are of similar magnitude at 100Hz to 200Hz. At high frequency band 315Hz, the measured LSR are slightly higher than the EIA LSR.

3.3 Operational Ground-borne Noise Prediction

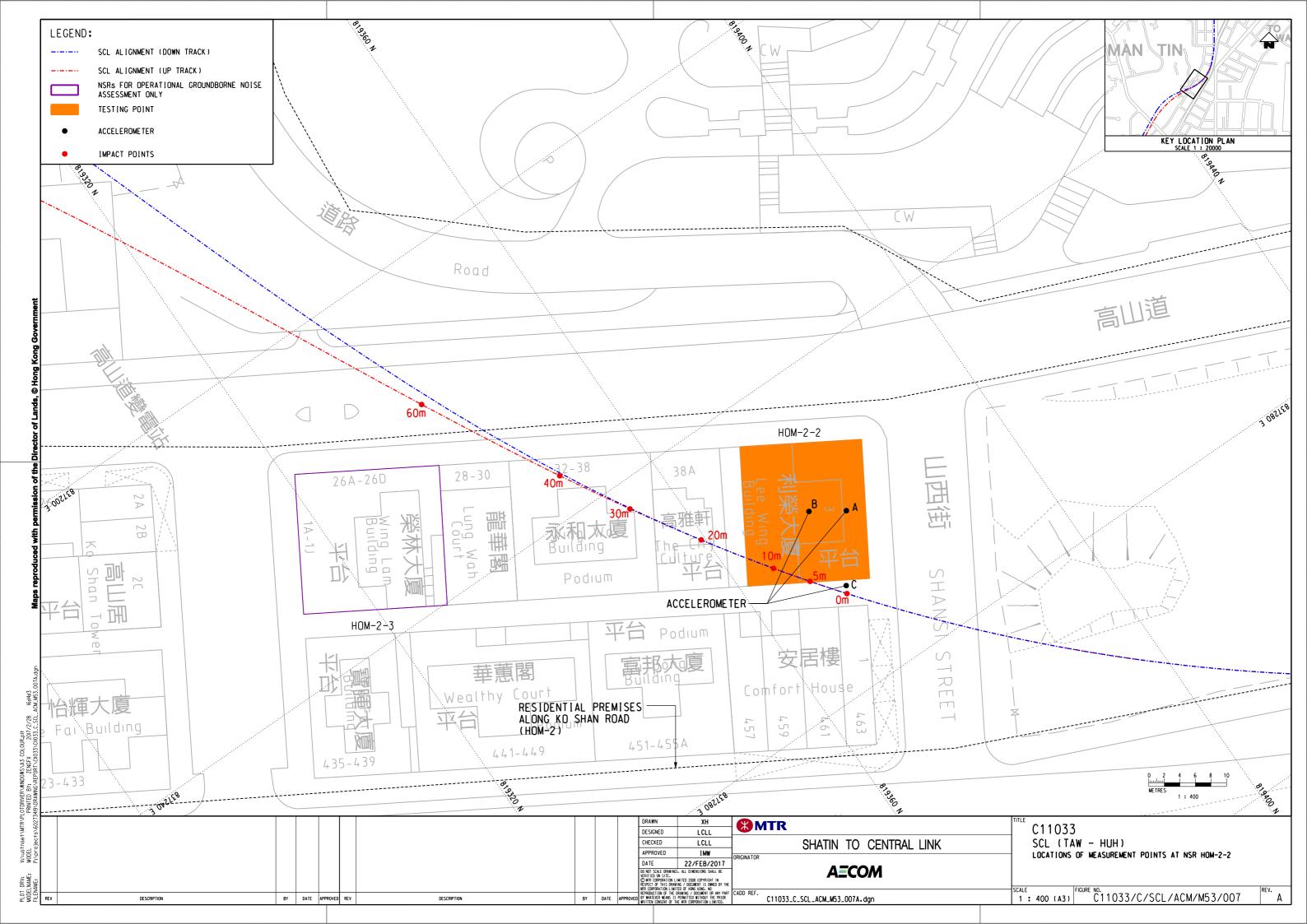
3.3.1 Ground-borne noise assessment at HOM-2-2 has been updated according to the LSR measurement results. Assessment methodology follows the prediction methodology recommended by the FTA Manual, which was adopted in the EIA Reports. The prediction results are summarised in **Table 3.2**. Sample calculation is given in **Appendix H**.

Table 3.2 Ground-borne Noise Prediction Results

Location	GBNSR	Description	EIA Predic (unmitiga scenario), c	ted	New Pred (unmitig scenario, on meas LSR data),	ated based ured	Criterion, d	B(A)	Difference Between EIA and New Prediction, dB(A)
Ho Man	HOM-2-	Lee Wing	Lmax	52	Lmax	45	Lmax	-	-
Tin	2	Building	Daytime L _{eq,30min}	44	Daytime L _{eq,30min}	37	Daytime L _{eq,30min}	55	-7
			Night-time L _{eq,30min}	41	Night-time L _{eq,30min}	34	Night-time L _{eq,30min}	45	-7

March 2017

5


- 3.3.2 Results indicate that the measured LSR values at actual ground condition would give lower ground-borne noise levels than EIA predictions which are also below the noise criteria.
- 3.3.3 The preliminary update of prediction calculation shows no further mitigation measures such as trackform upgrade is required around the NSR HOM-2-2.

3.4 Review of Other Assumptions

- 3.4.1 The following assumptions adopted in the EIA Reports will be reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information:
 - Tunnel Coupling Loss (TCL) and Building Coupling Loss (BCL) these factors depend on whether the tunnel and building (or building piles) are in rock or soft ground. Updated building information, if any, will be reviewed.
 - Geological Profile updated geological profile along the alignment, if any, will be reviewed.
 - Speed updated speed profile along the alignment, if any, will be reviewed.
 - Turnout Adjustment updated information, if any, on the type of turnouts to be used and the adjustment corresponding to corresponding type of turnouts will be reviewed.

4 CONCLUSION

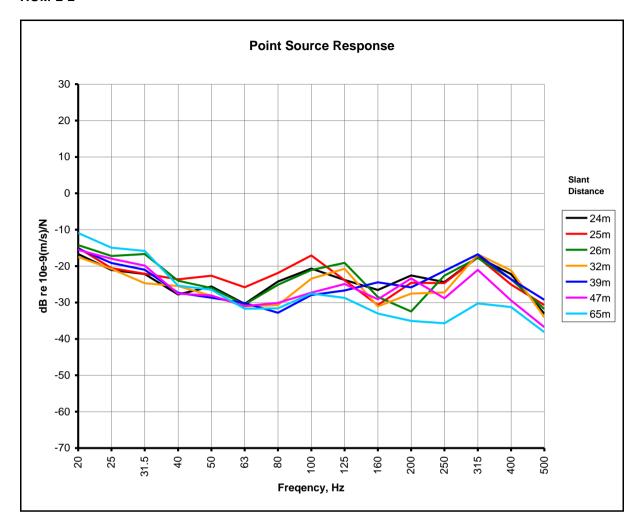
- 4.1.1 The measurement of ground LSR values has been conducted at Lee Wing Building (HOM-2-2) to check the suitability of the LSR assumptions adopted in the EIA stage for rock ground type.
- 4.1.2 The measured LSR values result in ground-borne noise levels which are lower than the EIA predictions at HOM-2-2.
- 4.1.3 The assumptions adopted in the EIA Reports will be further reviewed and the ground-borne noise prediction for SCL(TAW-HUH) will be updated based on all measured LSR results where applicable in the Final OGNMMP and the latest available information.

Appendix C

Photo records of Measurement at HOM-2-2

Appendix C - Photo records of Tunnel Impact test at HOM-2-2

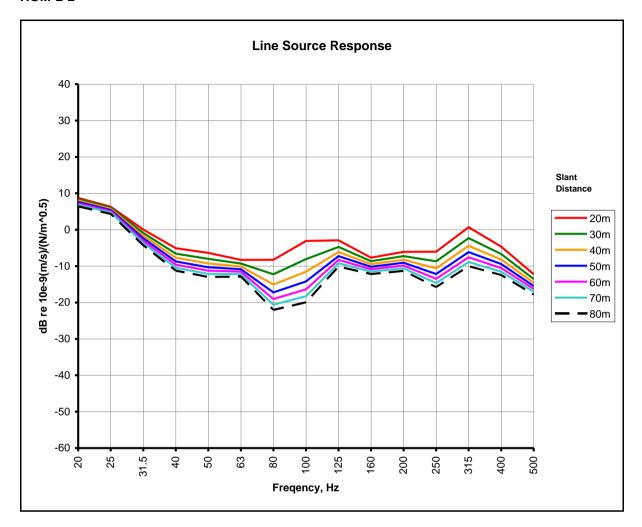
To Kwa Wan - Lee Wing Building (HOM-2-2) Measurement Date: 10 Feb 2017 Measurement Time: 01:00am to 6:00am 10 Feb 2017 Point A (Indoor) Point B (Indoor) Point C (Outdoor)


Hammer Impact Test in the Tunnel

Accelerometer on ground level

Appendix D

Measured Point Source Responses at HOM-2-2


HOM-2-2

Appendix E

Determined Line Source Responses at HOM-2-2

HOM-2-2

Appendix F

Line Source Responses Adopted in SCL EIA (Appendix 9.5 of SCL(TAW-HUH) EIA Report

Appendix 9.5: Line Source Response Values Obtained from West Island Line EIA Study Figure A LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 20m)

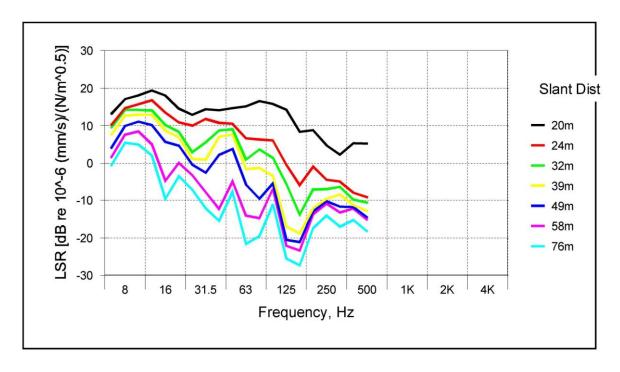


Figure B LSR from WIL Borehole D002 (Rock Head Depth 24m, Hole Depth 34m)

Figure C LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 18m)

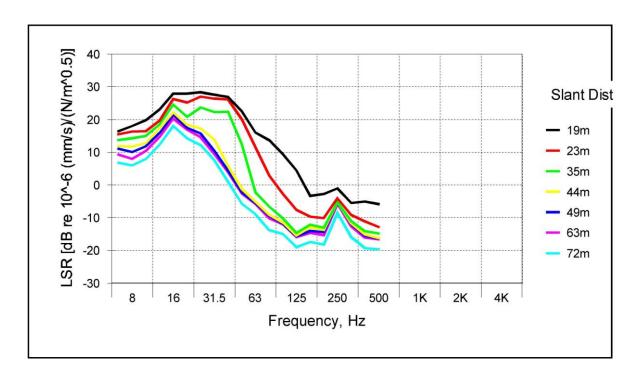


Figure D LSR from WIL Borehole D012 (Rock Head Depth 34m, Hole Depth 41m)

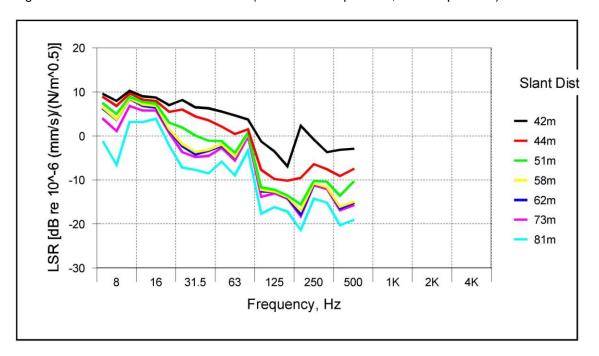


Figure E LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 15m)

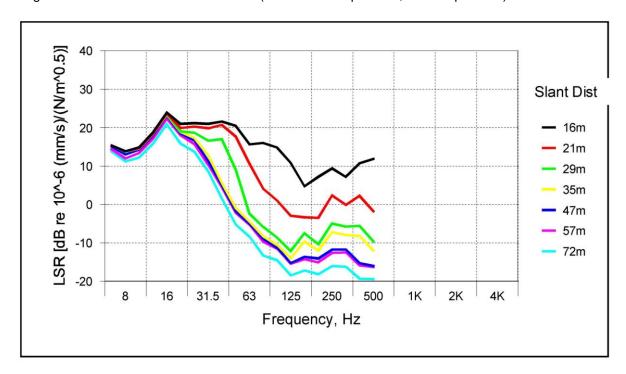


Figure F LSR from WIL Borehole D018 (Rock Head Depth 28m, Hole Depth 40m)

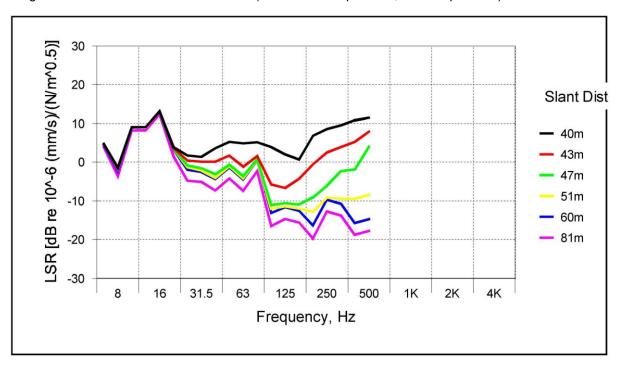
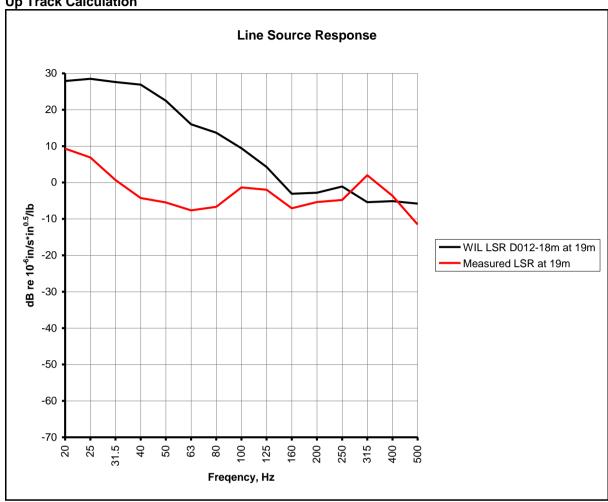
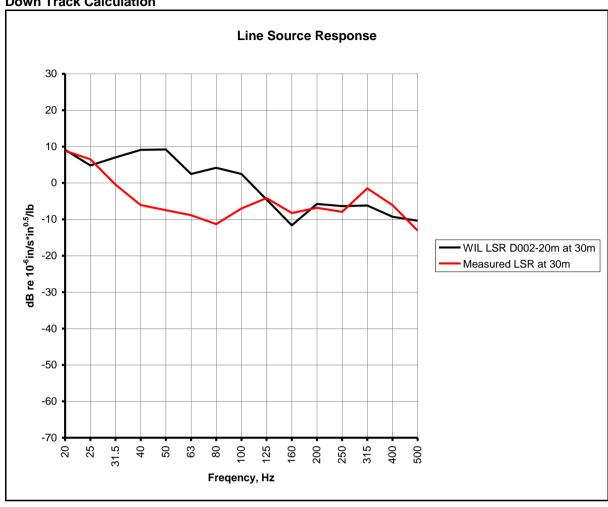


Figure G LSR from WIL Borehole D028 (Rock Head Depth 22m, Hole Depth 44m)



Appendix G


Comparison of Measured and EIA Line Source Responses

Comparison between the LSR adopted in the EIA and Measured LSR at HOM-2-2

Down Track Calculation

Appendix H

Updated Calculations of Ground-borne Noise Prediction

HOM-2-2 Updated EIA Calculation by Measured LSR

55 kph Project: Shatin Central Link Rail Operational GBN Assessment Train Speed: NSR Ref.: HOM-2-2

Lee Wing Building Location: Assessed Floor 2 91

	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	19	19
Down Track	0	30	30

Selected Borehole Details:

COLCULO DO	TOTTOTO DOCUMO			
	Borehole Ref.	Rockhead Depth, m	Hole Depth, m	Slant Dist, m
Up Track	D012	34	18	19[1]
Down Track	D002	24	20	30[1]

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.3	6.9	0.7	-4.3	-5.5	-7.7	-6.7	-1.3	-2.0	-7.1	-5.4	-4.8	2.0	-3.7	-11.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.5	44.1	36.9	30.0	27.8	29.6	33.6	39.9	39.3	30.2	30.9	30.4	34.3	29.6	18.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.1	43.8	35.8	28.2	25.8	28.4	29.0	34.2	37.1	29.0	29.4	27.3	30.8	27.2	17.2
Total of Up and Down																
Total Vibration Level Ou		45.3	47.0	39.4	32.2	29.9	32.0	34.8	40.9	41.3	32.6	33.2	32.2	35.9	31.6	21.0
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level			61.0	53.4	46.2	43.7	45.4	48.0	53.9	54.1	44.6	44.2		44.9	40.3	29.7
Predicted Noise Level	Oct, dB			61.8			50.9			57.3			48.7			40.6
L _{max}	dB(A)	44.8														
Leg 30mins	dB(A)	34.0														

Predicted Noise Level	1/3 Oct, dB	59.3	61.0	53.4	46.2	43.7	45.4	48.0	53.9	54.1	44.6	44.2	42.2	44.9	40.3	29.7
Predicted Noise Level	Oct, dB			61.8			50.9			57.3			48.7			40.6
L _{max}	dB(A)	44.8														
L _{eq,30mlns}	dB(A)	34.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the same or the next available smaller borehole depth. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] Leq.30mins = Leq(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB (3dB(A) correction is added to $L_{eq,30mlns}$ for leading and trailing effect for conservative approaches.)
- [6] Leg 30mins is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

The following abbreviations are used in the above calculation:

Ground borne noise level within the structure FDL: Force density level for the KCR SP1900 EMU

LSR: Unit force incoherent line source response for the ground TIL: Trackform attenuation or insertion loss, relative level

TCF: Vibration coupling between the tunnel and the ground for soil based tunnels, relative level

BCF: Vibration coupling loss factor between the soil and the foundation, relative level

BVR: Building vibration reduction or amplification within a structure from the foundation to the occupied areas, relative level

CTN: Conversion from floor and wall vibration to noise

TOC: **Turnout and Crossover Factor**

Safety margin to account for wheel/rail condition and projection uncertainties SAF:

Remark:

(1) The slant distance in Table 2.1 of this Plan is the measured distance in the testing, while the horizontal and slant distances in this calculation are adopted from the previous EIA calculation for a like-to-like comparison in order to facilitate the comparison of the results between adoption of WIL LSR and the measured LSR. The distance values presented here are independent in Table

Annex C

Summary of Updated Operational Ground-borne Noise Assessment Results

Project: SCL (TAW-HUH) SCL (HHS)

		1		Horizonta	al Distance	Vertical	Distance	1			ı —		1			ı —		1	Passby	SEL ^[9]	Train	1	Predicted I	q 30min (dB(A))		I		
Item	NSR	Location	Floor	Up Track	Down Track	Up Track	Down Track	Referen	ce LSR ^[2]	TCF ^[4]	TO	C ^[5]	Track	Type ^[6]	CCF	BCF	L[7]	Speed ^[8]	Duration	1UP&DN	Freqency	SCL (TAW-	1	SCL (MKK-		Cumulative Noise Level	NCO Criteria	Criteria
				(m)	(m)	(m)	(m)	Up	Down		Up	Down	Up	Down				kph	(sec)	(dB(A))	no./30m/dir	HUH)	SCL (HHS)	HUH)	KTE	(dB(A))	(Nighttime)	Achieved?
1	DIH-1-1	Tsui Chuk Garden Block 5	1	0	0	80	80	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	45	95	7	56	6	31				31	45	Yes
2	DIH-2-1	Pak Yuen House	1	295	290	65	65	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	39	90	8	51	6	26				26	45	Yes
3	DIH-3-1	Wah Yuen House	1	102	100	50	50	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	42	90	8	53	6	29				29	45	Yes
4	DIH-3-2	Nga Yuen House	1	135	120	45	45	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	40	80	9	52	6	28				28	45	Yes
5	DIH-3-3	Kwai Yuen House	1	24	5	44	44	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	44	90	8	56	6	32				32	45	Yes
6	DIH-3-4	Chui Yuen House	1	55	50	45	45	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	42	80	9	54	6	30				30	45	Yes
7	DIH-4-1	Pang Ching Court	1	210	195	70	70	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	40	90	8	52	6	27				27	45	Yes
8	DIH-4-2	Carbo Anglo-Chinese Kindergarden	0	130	115	75	75	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	43	90	8	55	6	36[1]				36	55[3]	Yes
9	DIH-5-1	Rainbow Home	0	68	25	42	41	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	47	80	9	59	6	34				34	45	Yes
10	DIH-5-2	Residential premises	1	50	8	41	40	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	45	80	9	58	6	33				33	45	Yes
11	DIH-5-5	Our Lady's Kindergarden	0	121	85	40	40	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	43	80	9	55	6	36[1]				36	55[3]	Yes
12	DIH 6-1	WTS Fire Station and Quarters Block A	1	4	5	35	35	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	48	85	8	60	6	35				35	45	Yes
13	DIH-7-1	Tropicana Gardens Block 2	4	29	63	40	40	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	39	85	8	51	6	26				26	45	Yes
14	DIH-7-2	Tropicana Gardens Block 3	4	21	54	40	40	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	40	85	8	52	6	27				27	45	Yes
15	DIH-8-1	Redemption Lutheran Church	0	116	163	20	20	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	85	8	55	6	30				30	45	Yes
16	DIH-9-1	Shek On Building	0	118	156	25	25	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	80	9	55	6	36[1]				36	55[3]	Yes
17	DIH-10-1	Hong Kong Sheung Keung Hui Nursing Home	1	168	188	25	25	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	39	80	9	52	6	27				27	45	Yes
18	DIH-11-1	Lung Wan House	1	75	60	25	25	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	35	35	20	51	6	26				26	45	Yes
19	DIH-12-1	Galaxia Tower B	5	195	180	30	30	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	23	55	12	37	6	<20				<20	45	Yes
20	DIH-12-2	Galaxia Tower E	5	180	160	30	30	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	21	45	15	36	6	<20				<20	45	Yes
21	DIH-13-1	Canossa Primary School	0	160	200	25	25	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	42	85	8	54	6	35[1]				35	55[3]	Yes
22	DIH-14-1	Rhythm Garden Block 2	1	38	50	20	20	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	41	60	11	55	6	30				30	45	Yes
23	DIH-14-2	Rhythm Garden Block 5	1	30	43	18	18	KAT-P1-5	KAT-P1-5	В	0	0	0	0	N	N	32	60	11	45	6	21				21	45	Yes
24	DIH-14-3	Rhythm Garden Block 8	1	175	185	17	17	KAT-P1-5	KAT-P1-5	В	0	0	0	0	N	N	13	60	11	27	6	<20				<20	45	Yes
25	DIH-14-4	Canossa Primary School (San Po Kong)	1	145	160	20	20	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	37	60	11	51	6	32[1]				32	55[3]	Yes
26	DIH-14-5	Rhythm Garden Block 1	1	30	43	20	20	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	41	55	12	55	6	30				30	45	Yes
27	DIH-14-6	Rhythm Garden Block 3	1	45	56	19	19	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	41	60	11	54	6	29				29	45	Yes
28	DIH-15-1	Kam Wan House	0	100	85	25	25	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	41	60	11	54	6	29				29	45	Yes
29	DIH-15-2	Pik Hoi House	0	75	65	25	25	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	41	55	12	55	6	30				30	45	Yes
30	DIH-16-1	Wong Tai Sin Temple	0	22	35	36	36	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	46	85	8	58	6	33				33	45	Yes
31	DIH-17-1	Chuk Yuen United Village Upper Wong Tai Sin Estate	0	21	63	30	30	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	46	85	8	58	6	33				33	45	Yes
32	DIH-18-1	Po Sin House	1	15	30	30	30	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	45	85	8	57	6	33				33	45	Yes
33	DIH-18-2	Upper Wong Tai Sin Estate Tat Sin House	1	26	37	31	31	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	45	90	8	57	6	32				32	45	Yes
34	DIH-19-1	Lung Cheung Gov. Secondary School	0	38	55	24	24	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	46	90	8	58	6	39[1]				39	55[3]	Yes
35	DIH-20-1	Baptist Rainbow Primary School	0	95	80	45	45	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	45	90	8	57	6	38[1]				38	55[3]	Yes
36	DIH-21-1	Tin Wang Court Wang King House	1	25	45	45	45	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	46	90	8	58	6	33				33	45	Yes
37	DIH-22-1	Price Memorial Catholic Primary School	0	80	95	40	40	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	45	90	8	57	6	38[1]				38	55[3]	Yes
38	DIH-23-1	Tin Ma Court Chun On House	1	100	115	40	40	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	42	90	8	53	6	29				29	45	Yes
39	DIH-24-1	Shing Wong Temple	1	0	5	28	28	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	46	90	8	58	6	34				34	45	Yes
40	DIH-P1-1	Upper Wong Tai Sin Estate Phase 3	2	19	10	34	30	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	44	90	8	55	6	31				31	45	Yes
41	DIH-P3-1A	Planned receivers in the CDA site	2	30	10	26	26	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	35	60	11	49	6	24				24	45	Yes
42	DIH-P3-2A	Planned receivers in the CDA site	2	30	10	28	28	HOM-2-2	HOM-2-2	S	0	0	0	0	N	N	38	60	11	52	6	27				27	45	Yes
-	DIH-P3-4	Planned receivers in the CDA site	1	0	0	18	18	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	45	60	11	58	6	34				34	-	-
43	KAT-P1-1	Residential premises near Kai Tak Station	2	75	90	15	15	KAT-P1-5	KAT-P1-5	S	0	1	0	0	N	N	15	35	20	31	6	<20				<20	45	Yes

Project: SCL (TAW-HUH) SCL (HHS)

				Horizontal	Distance	Vertical	Distance	D. (n (5)	T	- [6]				0	Passby	SEL ^[9]	Train		Predicted L _e	q 30min (dB(A))		Cumulative		
Item	NSR	Location	Floor	Up Track	Down Track	Up Track	Down Track	Referen	ce LSR ^[2]	TCF ^[4]	10	OC ^[5]	Track	Type	CCF	BCF	L _{max} ^[7]	Speed ^[o]	Duration	1UP&DN	Freqency	SCL (TAW-	SCL (HHS)	SCL (MKK-	KTE	Noise Level	NCO Criteria (Nighttime)	Criteria Achieved?
				(m)	(m)	(m)	(m)	Up	Down		Up	Down	Up	Down				kph	(sec)	(dB(A))	no./30m/dir	HUH)	SCL (HHS)	HUH)	KIE	(dB(A))	(ruginamo)	Admicrou .
44	KAT-P1-2	One Kai Tak	4	75	90	15	15	KAT-P1-5	KAT-P1-5	S	0	0	0	0	N	N	8	50	14	22	6	<20				<20	45	Yes
45	KAT-P1-3	Residential premises near Kai Tak Station	2	55	70	15	15	KAT-P1-5	KAT-P1-5	С	0	0	0	0	N	N	21	70	10	34	6	<20				<20	45	Yes
46	KAT-P1-4	Residential premises near Kai Tak Station	2	80	65	15	15	KAT-P1-5	KAT-P1-5	S	0	0	0	0	N	N	16	65	11	29	6	<20				<20	45	Yes
47	KAT-P1-5	Mun Ching House, Kai Ching Estate	1	13	25	14	14	KAT-P1-5	KAT-P1-5	В	0	0	0	0	N	N	42	60	11	56	6	31				31	45	Yes
48	KAT-P1-6	Tower H3, De Novo	1	93	80	15	15	KAT-P1-5	KAT-P1-5	С	1	1	0	0	N	N	26	55	12	40	6	<20				<20	45	Yes
49	KAT-P1-7	Residential premises near Kai Tak Station	2	0	0	20	20	KAT-P1-7	KAT-P1-7	С	0	0	0	0	N	N	48	75	9	61	6	36				36	45	Yes
50	TKW-1-1	Parc 22	1	85	90	13	20	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	37	70	10	50	6	25				25	45	Yes
51	TKW-1-2	Sanford Mansion	1	95	95	12	23	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	37	70	10	50	6	25				25	45	Yes
52	TKW-2-1	Skytower Tower 1	5	140	140	13	20	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	28	70	10	41	6	<20				<20	45	Yes
53	TKW-2-2	Skytower Tower 2	5	140	140	12	23	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	28	70	10	41	6	<20				<20	45	Yes
54	TKW-2-3	Skytower Tower 7	5	235	260	15	27	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	24	70	10	37	6	<20				<20	45	Yes
55	TKW-3-1	Prince Ritz	5	235	255	23	23	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	13	20	34	32	6	<20				<20	45	Yes
56	TKW-3-2	Prosperity House	2	250	270	23	23	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	26	45	15	41	6	<20				<20	45	Yes
57	TKW-P1-1	Residential premises near To Kwa Wan Station	1	35	15	22	22	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	35	45	15	50	6	25				25	45	Yes
58	MTW-6-1	Fok On Building	2	17.5	12	15	24	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	42	65	11	55	6	31				31	45	Yes
59	MTW-6-2	HK Society for the Protection of Children	0	10	17	15	24	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	47	65	11	60	6	41[1]				41	55[3]	Yes
60	MTW-6-3	Chung Nam Mansion	2	20	20	15	27	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	42	65	11	55	6	30				30	45	Yes
61	MTW-6-4	Pok Oi Lau	0	12	12	15	27	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	46	65	11	60	6	35				35	45	Yes
62	MTW-7-1	Geranium House	1	12.5	12.5	17	28	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	N	46	65	11	59	6	34				34	45	Yes
63	MTW-8-1	Horae Palace	3	15	15	17	28	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	65	11	57	6	32				32	45	Yes
64	MTW-9-1	Majestic Park	3	35	35	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	40	65	11	53	6	29				29	45	Yes
65	MTW-10-1	18 Farm Road	3	15	15	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	65	11	56	6	32				32	45	Yes
66	MTW-11-1	Farm Road Government Primary School	0	65	65	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	44	65	11	57	6	38[1]				38	55[3]	Yes
67	MTW-12-1	Yuet Fai Mansion	1	11	11	22	33	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	47	65	11	60	6	35				35	45	Yes
68	MTW-12-2	Delight Court	3	17.5	17.5	20	30	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	N	41	65	11	54	6	29				29	45	Yes
69	MTW-12-3	Lucky Mansion	3	15	15	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	N	N	35	55	12	49	6	24				24	45	Yes
70 71	MTW-12-4 MTW-12-5	352-354 Ma Tau Wai Road	2	15 17.5	15 17.5	20	30 29	DIH-P1-1 KAT-P1-5	HOM-2-2 DIH-P1-1	S B	0	0	0	0	N N	N N	34 39	40 50	17	49 54	6	24				24	45 45	Yes
72	MTW-12-5	Seng Cheong Building Great Wall Building	3	30	30	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	41	65	11	54	6	30				30	45	Yes Yes
73	MTW-12-7	197-199 Ma Tau Wai Road	2	15	15	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	45	65	11	58	6	34				34	45	Yes
74	MTW-12-8	Pak Tai Mansion	1	12	12	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	47	65	11	61	6	36				36	45	Yes
75	MTW-12-9	Residential premises along Hung Kwong Street	2	12	12	19	32	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	N	43	65	11	57	6	32				32	45	Yes
76	MTW-12-10	Lucky Building	2	15	15	18	28	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	35	55	12	49	6	25				25	45	Yes
77	MTW-12-11	Jing Ming Building	2	19	19	20	30	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	34	50	14	48	6	23				23	45	Yes
78	MTW-12-12	One Elegance	3	12	12	18	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	65	11	57	6	32				32	45	Yes
79	MTW-13-1	Cheung Chuk Shan Memorial School	0	10	10	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	N	N	43	65	11	56	6	37[1]				37	55[3]	Yes
80	MTW-14-1	PLK Lam Man Chan English Primary School	1	35	35	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	N	N	37	55	12	51	6	32[1]				32	55[3]	Yes
81	MTW-15-1	Hung Hom Lutheran Primary School	0	10	10	20	30	DIH-P1-1	HOM-2-2	S	0	0	0	0	N	N	40	50	14	55	6	36[1]				36	55[3]	Yes
82	MTW-16-1	SKH Good Shepherd Primary School	0	10	10	20	30	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	38	45	15	53	6	34[1]				34	55[3]	Yes
83	MTW-17-1	Loyal Mansion	3	20	20	17	28	DIH-P1-1	DIH-P1-1	В	0	0	0	0	N	N	38	55	12	52	6	27				27	45	Yes
84	MTW-18-1	Residential premises along Chi Kiang St	2	45	45	17	27	DIH-P1-1	DIH-P1-1	s	0	0	0	0	N	N	32	50	14	47	6	22				22	45	Yes
85	MTW-18-2	No. 2 Kowloon City Road	2	28	28	17	27	DIH-P1-1	DIH-P1-1	S	0	0	0	0	N	N	33	50	14	48	6	23				23	45	Yes
86	MTW-19-1	Holy Trinity Church	0	55	65	18	25	KAT-P1-5	DIH-P1-1	В	0	0	0	0	N	N	38	55	12	52	6	27				27	45	Yes
87	HOM-1-1	Ko Shan Theartre	0	50	50	35	40	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	55	12	57	6	32				32	45	Yes
88	HOM-2-1	Faerie Court	2	20	20	18	29	DIH-P1-1	HOM-2-2	В	0	0	0	0	N	N	41	55	12	55	6	31				31	45	Yes
89	HOM-2-2	Lee Wing Building	2	0	0	24	34	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	55	12	57	6	32				32	45	Yes
90	HOM-2-3	Wing Lam Mansion	2	15	15	20	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	43	55	12	57	6	33				33	45	Yes
91	HOM-2-4	Tak Lee Court	1	50	55	35	45	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	42	60	11	56	6	31				31	45	Yes

Project: SCL (TAW-HUH) SCL (HHS)

				Horizon	al Distance	Vertical	Distance	Poforon	ce LSR ^[2]		т,	OC ^[5]	Track	Tvpo[6]				Speed ^[8]	Passby	SEL ^[9]	Train		Predicted L	_{q 30min} (dB(A))		Cumulative	NCO Criteria	Criteria
Item	NSR	Location	Floor	Up Track (m)	Down Track (m)	Up Track (m)	Down Track (m)		Down	TCF ^[4]		Down		Down	CCF	BCF	L _{max} ^[7]	kph	Duration (sec)	1UP&DN (dB(A))	Freqency no./30m/dir	SCL (TAW- HUH)	SCL (HHS)	SCL (MKK- HUH)	KTE	Noise Level (dB(A))	(Nighttime)	Achieved?
92	HOM-2-5	Chat Ma Mansion	1	45	45	20	30	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	42	55	12	56	6	31				31	45	Yes
93	HOM-2-6	Chatham Mansion	1	3	3	19	30	DIH-P1-1	HOM-2-2	В	0	0	0	0	Z	N	45	55	12	58	6	34				34	45	Yes
94	HOM-3-1	Fook Sing Mansion	1	85	100	35	40	HOM-2-2	HOM-2-2	В	0	0	0	0	Z	N	39	55	12	53	6	28				28	45	Yes
95	HOM-3-2	Marigold Mansion, Block A	1	85	110	45	45	HOM-2-2	HOM-2-2	В	0	0	0	0	N	N	39	55	12	53	6	28				28	45	Yes
96	HOM-4-1	Yee Fu Building	1	40	70	45	45	HOM-2-2	HOM-2-2	S	0	0	0	0	Z	N	36	55	12	50	6	25		20 ^[10]	<20	27	45	Yes
97	HOM-5-1	271 Chatham Road North	2	75	75	45	45	HOM-2-2	HOM-2-2	S	0	0	0	0	Z	N	28	35	20	44	6	<20		20[10]	23	26	45	Yes
98	HOM-P2	HKPU Student Halls of Residence	1	35	65	45	45	HOM-2-2	HOM-2-2	s	0	0	0	0	N	N	35	50	14	50	6	25		<20	<20	27	45	Yes
99	HOM-P3-1	Residential Building, HOM Station Development	1	0	0	45	45	HOM-2-2	HOM-2-2	s	0	0	0	0	Z	N	37	50	14	51	6	27		20 ^[10]	36	37	45	Yes
100	HUH-1-1	Cartas Branchi College of Careers	0	95	125	30	30	HOM-2-2	HOM-2-2	S	0	0	0	0	N	N	34	45	15	49	6	30[1]		20 ^[10]	26	32	55[3]	Yes
101	HUH-1-2	Lok Ka House	1	55	80	18	18	HOM-2-2	HOM-2-2	С	0	0	0	0	N	N	37	50	14	52	6	27		20 ^[10]	<20	28	45	Yes
102	HUH-1-3	Wing Fung Building	1	10	25	18	18	KAT-P1-5	KAT-P1-5	С	0	0	0	0	N	N	37	60	11	51	6	26	<20	<20 ^[11]	<20	29	45	Yes

Notes:

- [1] A 3dB(A) upward adjustment is made to account for the daytime headway of 12 EMU trains within a 30 minutes period per direction.
- [2] Reference LSR are measurement result taken at representative NSR.
- [3] Daytime criteria are used for educational buildings, church and temple.
- [4] TCF types : B Bored tunnel, C Cut and cover tunnel, S Station
- [5] TOC types: 0 No turnouts, 1 turnout, 2 inclined turnout
- [5] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate, Type 2 = Egg Type Baseplate, Type 3 = 12.5Hz FST.
- [6] L_{max} has incorporated a +0.5dB(A) correction to passby L_{eq} based on previous study.
- [7] FDL based on 60kph data and adjusted by the correction factor of $20xlog(V/V_{ref})$, in line with FTA manual.
- [8] Calculation based on 8-car train with 23.75m legth for each car.
- [9] SEL calculations have incorporated a 3 dB correction factor for the leading and trailling effect.
- [10] Noise levels are estimated from predicted noise level of adjacent NSR.
- [11] Noise levels predicted in OGNMMP for SCL(MKK-HUH) under EP Condition 2.16 of EP-437/2012.

Project: SCL (TAW-HUH) SCL (HHS)

Item	NSR	Location	Floor		Il Distance	Vertical	Distance	Reference	ce LSR ^[1]	TCF ^[2]	TC	OC[3]		rack /pe ^[4]	CCF	BCF	L _{max} ^[5]	Speed ^[6]	Passby Duration	SEL ^[7] 1UP&DN	Train Freqency	Predicted L _{eq 30min} (dB(A))	NCO Criteria	Criteria Achieved?
				Up Track	Down	Up Track	Down															SCL	(Nighttime)	Acilieveur
				(m)	Track (m)	(m)	Track (m)	Up	Down		Up	Down	Up	Down				kph	(sec)	(dB(A))	no./30m/dir	(HHS)		
102	HUH-1-3	Wing Fung Building	1	45	-	0	-	KAT-P1-5	-	С	0	0	0	0	N	N	16	25	27	33	6	<20	45	Yes

Notes

- [1] Reference LSR are measurement result taken at representative NSR.
- [2] TCF types: B Bored tunnel, C Cut and cover tunnel, S Station
- [3] TOC types: 0 No turnouts, 1 turnout, 2 inclined turnout
- [4] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate, Type 2 = Egg Type Baseplate, Type 3 = 12.5Hz FST.
- [5] L_{max} has incorporated a +0.5dB(A) correction to passby L_{eq} based on previous study.
- [5] FDL based on 60kph data and adjusted by the correction factor of $20xlog(V/V_{ref})$, in line with FTA manual.
- [6] Calculation based on 8-car train with 23.75m legth for each car.
- [7] Nighttime train frequency is presented. For HHS, 6 trains per 30 minutes is assumed at the tunnel section under Chatham Road North for tuning around.

Annex D

Detailed Operational Ground-borne Noise Calculations

Project: SCL(TAW - HUH)

NSR Ref.:

Location: Tsui Chuk Garden Block 5

Assessed Floor 1 Item: 1

		Train Spee	d: 95 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	80	80
Down Track	0	80	80

Selected LSR Details:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

	1							Erogi	uency	(H2)						
Dagariatian	l lait	200	25	20	40	F0	60	80		` '	400	200	250	245	400	T 500
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0.5															
FDL	dB re 1 lb/in ^{0.5}	38.0	42.0	41.0	39.0	38.0	42.0	45.0	46.0	46.0	42.0	41.0	40.0	37.0	38.0	35.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.8	47.7	38.1	29.1	26.3	30.5	23.8	26.8	37.2	31.3	31.1	25.3	28.0	26.7	18.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	38.0	42.0	41.0	39.0	38.0	42.0	45.0	46.0	46.0	42.0	41.0	40.0	37.0	38.0	35.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.8	47.7	38.1	29.1	26.3	30.5	23.8	26.8	37.2	31.3	31.1	25.3	28.0	26.7	18.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	48.8	50.7	41.1	32.1	29.3	33.5	26.8	29.8	40.2	34.3	34.1	28.3	31.0	29.8	21.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		66.7	57.1	48.1	45.1	48.9	42.0	44.8	55.0	48.3	47.1		42.0	40.5	32.3
Predicted Noise Level	Oct, dB			67.2			51.0			56.1			48.9			41.1
L _{max}	dB(A)	44.6														
L _{eq,30mins}	dB(A)	31.4														
Noise Criteria	dB(A)	45														
Compliance	\	Yes														
	lation has been applied to															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-2-1

Location: Pak Yuen House
Assessed Floor 1
Item: 2

		Train Speed:								
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m							
Up Track	295	65	302							
Down Track	290	65	297							

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-18.3	4.0	-10.6	-15.5	-2.6	1.8	-7.7	-23.4	-23.3	-17.2	-27.3	-41.4	-32.2	-46.2	-35.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	19.2	45.5	29.9	23.0	34.9	43.4	36.8	22.1	22.2	24.3	13.2	-1.9	4.4	-8.7	-0.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-18.1	4.1	-10.5	-15.4	-2.6	1.9	-7.7	-23.3	-23.2	-17.1	-27.2	-41.3	-32.1	-46.1	-35.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	19.4	45.6	30.0	23.1	35.0	43.4	36.8	22.3	22.3	24.4	13.3	-1.8	4.4	-8.6	-0.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		22.3	48.6	33.0	26.1	38.0	46.4	39.8	25.2	25.3	27.4	16.3	1.2	7.4	-5.6	2.4
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	38.3	64.6	49.0	42.1	53.8	61.8	55.0	40.2	40.1	41.4	29.3	13.2	18.4	5.1	13.1
Predicted Noise Level	Oct, dB		04.6	49.0 64.7	42.1	33. 8	63.1	55.0	40.2	40.1 45.4	41.4	29.3	13.2 29.7	18.4	5.1	13.1
	,			04./			03.1			45.4			29.7			13.9
Lmax	dB(A)															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-3-1

Location: Wah Yuen House **Assessed Floor** 1 3 Item:

		Train Spee	ed: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	102	50	114
Down Track	100	50	112

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•					<u>'</u>		•			•		•			
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-7.1	5.9	-6.7	-10.8	-0.3	4.0	-5.6	-16.1	-17.6	-13.4	-23.0	-34.0	-29.3	-39.2	-33.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.4	47.5	33.8	27.8	37.2	45.5	38.9	29.4	27.9	28.1	17.5	5.5	7.2	-1.7	0.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-6.9	6.0	-6.6	-10.7	-0.2	4.1	-5.6	-15.9	-17.5	-13.4	-23.0	-33.9	-29.3	-39.1	-33.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.6	47.5	33.9	27.8	37.3	45.6	39.0	29.6	28.0	28.1	17.6	5.6	7.2	-1.6	0.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		33.6	50.5	36.9	30.8	40.3	48.6	42.0	32.5	31.0	31.1	20.5	8.6	10.2	1.4	3.9
BCF	dB Y/N 0															l
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		66.5	52.9	46.8	56.1	64.0	57.2	47.5	45.8	45.1	33.5	20.6	21.2	12.1	14.6
Predicted Noise Level	Oct, dB			66.7			65.3			51.0			34.0			16.6
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	28.6														l
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-3-2

Location: Nga Yuen House **Assessed Floor** 1 Item: 4

		Train Spee	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	135	45	142
Down Track	120	45	128

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-9.6	5.5	-7.6	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.7	-30.0	-40.8	-34.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	26.9	46.0	31.9	25.7	35.7	44.0	37.4	26.8	25.6	26.2	15.5	2.8	5.5	-4.3	-0.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-8.4	5.7	-7.2	-11.3	-0.6	3.8	-5.8	-16.9	-18.3	-13.9	-23.5	-34.9	-29.7	-40.0	-33.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.1	46.2	32.3	26.2	35.9	44.3	37.7	27.6	26.2	26.6	16.0	3.6	5.8	-3.5	-0.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	30.5	49.1	35.2	28.9	38.8	47.2	40.6	30.2	28.9	29.4	18.7	6.2	8.7	-0.9	2.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Laws	4/2 Oct 15	40.5	05.1	F4 C	44.6	F4.6	00.0		45.6	40 =	40.1	04 =	40.0	40.7	• • •	40.0
Predicted Noise Level Predicted Noise Level	1/3 Oct, dB	46.5	65.1	51.2 65.3	44.9	54.6	62.6	55.8	45.2	43.7	43.4	31.7	18.2	19.7	9.8	13.3 15.0
	Oct, dB	40.0		vo.3			63.9			49.0			32.2			15.0
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)	27.6														
Noise Criteria	dB(A)	45														
Compliance	In Control by a second Park (Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-3-3

Location: Kwai Yuen House **Assessed Floor** 1 5 Item:

		Train Spec	ed: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	24	44	50
Down Track	5	44	44

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIIC			OL.	10	00	00	00	100	120	100	200	200	0.0	100	000
	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.4	7.5	-3.4	-6.8	1.7	5.9	-3.8	-9.9	-12.8	-10.3	-19.4	-27.8	-26.9	-33.3	-32.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	39.9	49.1	37.1	31.8	39.2	47.4	40.7	35.6	32.7	31.2	21.1	11.7	9.6	4.2	2.1
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	3.9	7.8	-2.9	-6.1	2.0	6.2	-3.5	-8.9	-12.0	-9.8	-18.8	-26.8	-26.5	-32.4	-32.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.4	49.3	37.6	32.4	39.5	47.7	41.0	36.6	33.5	31.7	21.7	12.7	10.0	5.1	2.3
Total of Up and Down 1	Tracks Calculation															
Total Vibration Level Out	side Building	43.8	52.2	40.4	35.1	42.4	50.6	43.9	39.1	36.1	34.5	24.4	15.3	12.8	7.7	5.2
	dB Y/N 0															l
	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		68.2	56.4	51.1	58.2	66.0	59.1	54.1	50.9	48.5	37.4		23.8	18.4	15.9
Predicted Noise Level	Oct, dB			68.6			67.3			56.6			38.0			20.4
L _{max}	dB(A)	44.5														
L _{eq,30mins}	dB(A)	31.5														
Noise Criteria	dB(A)	45														
Compliance	`	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-3-4

Location: Chui Yuen House **Assessed Floor** 1 6 Item:

		Train Spee	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	55	45	71
Down Track	50	45	67

Selected LSR Details:

Up Track	
	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

Description Unit 20 25 32 40 50 63 80 100 125 160 200 250 315 400 50									Freq	uency	(Hz)						
Description Figure Track Calculation Figure Fig	Description	Unit	20	25	32	40	50	63			` '	160	200	250	315	400	500
FDL dB re 1 b/in ^{0.5} 36.5 40.5 39.5 37.5 36.5 40.5 43.5 44.5 44.5 44.5 40.5 39.5 38.5 35.5 36.5 33.5 36.5 33.5		OTIIC	20	20	0Z	40	00	00	- 00	100	120	100	200	200	010	700	000
CCF		dR re 1 lh/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44 5	44 5	40.5	39.5	38.5	35.5	36.5	33.5
TIL			00.0	10.0	00.0	01.0	00.0	10.0	10.0	11.0		10.0	00.0	00.0	00.0	00.0	00.0
TCF		,,,,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR			0	0	0	0									0	0	0
Up Track Vib. Level dB re 10 6in/sec 34.9 47.4 34.7 29.0 37.3 45.6 38.9 32.0 29.7 28.9 18.6 8.1 7.6 0.7 0.7	TOC	dB Type 0															
Down Track Calculation	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.6	6.9	-4.8	-8.5	8.0	5.1	-4.6	-12.5	-14.8	-11.6	-20.9	-30.4	-27.9	-35.8	-33.0
Down Track Calculation	Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.9	47.4	34.7	29.0	37.3	45.6	38.9	32.0	29.7	28.9	18.6	8.1	7.6	0.7	0.5
CCF dB Y/N N TIL dB Type 0 0 0 0 0 0 0 0 0		n															
CCF dB Y/N N TIL dB Type 0 0 0 0 0 0 0 0 0	FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
TCF	CCF	dB Y/N N															
TOC dB Type 0 CSR dB re 10-6 in/s*in 0.5 / lb -1.0 7.0 -4.6 -8.2 1.0 5.2 -4.4 -12.1 -14.5 -11.4 -20.7 -30.0 -27.8 -35.4 -32	TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR	TCF		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Down Track Vib. Level dB re 10 6 in/sec 35.5 47.5 34.9 29.3 37.5 45.7 39.1 32.4 30.0 29.1 18.8 8.5 7.7 1.1 0.5	TOC	dB Type 0															
Total of Up and Down Tracks Calculation Total Vibration Level Outside Building BCF dB Y/N 0 BVR-up dB Floor 1 -2 -2 -2 -2 -2 -2 -2	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.0	7.0	-4.6	-8.2	1.0	5.2	-4.4	-12.1	-14.5	-11.4	-20.7	-30.0	-27.8	-35.4	-32.9
SAF	Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.5	47.5	34.9	29.3	37.5	45.7	39.1	32.4	30.0	29.1	18.8	8.5	7.7	1.1	0.6
BCF dB Y/N 0 BVR-up dB Floor 1 BVR - Resonance dB -2 2 2 2 2 2 2 2 2 2	Total of Up and Down	Tracks Calculation															
BVR-up dB Floor 1 -2 <	Total Vibration Level Out	side Building	38.2	50.4	37.8	32.2	40.4	48.7	42.0	35.2	32.8	32.0	21.7	11.3	10.7	3.9	3.6
BVR - Resonance dB	BCF																
CTN dB 2	BVR-up		-2												-2	-2	-2
Predicted Noise Level Predicted Noise Level Predicted Noise Level L _{max} L _{eq,30mins} Cot, dB Cot, dB	BVR - Resonance		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
Predicted Noise Level Predicted Noise Level Oct, dB G6.7 G5.4 53.8 48.2 56.2 64.1 57.2 50.2 47.6 46.0 34.7 23.3 21.7 14.6 14 G6.7 G5.4 53.1 35.2 17 14.6 14 G6.7 G5.4 G5.4 G5.4 G5.4 G5.4 G5.4 G5.4 G5.4	CTN		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Predicted Noise Level Oct, dB 66.7 65.4 53.1 35.2 17 L _{max} dB(A) 42.1 L _{eq,30mins} dB(A) 29.7 Noise Criteria dB(A) 45	SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level Oct, dB 66.7 65.4 53.1 35.2 17 L _{max} dB(A) 42.1 L _{eq,30mins} dB(A) 29.7 Noise Criteria dB(A) 45																	
L _{max} dB(A) 42.1 L _{eq,30mins} dB(A) 29.7 Noise Criteria dB(A) 45		· ·		66.4		48.2	56.2		57.2	50.2		46.0	34.7		21.7	14.6	14.3
L _{eq,30mins} dB(A) 29.7 Noise Criteria dB(A) 45	Predicted Noise Level	, , , , , , , , , , , , , , , , , , ,			66.7			65.4			53.1			35.2			17.5
Noise Criteria dB(A) 45	L _{max}	dB(A)	42.1														
	L _{eq,30mins}	dB(A)	29.7														
1	Noise Criteria	dB(A)	45														
Compliance Yes	Compliance	, 1	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.:

Location: Pang Ching Court **Assessed Floor** 1 Item:

		rain Spee	≆a: 90 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	210	70	221
Down Track	195	70	207

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	Frequency (Hz)															
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•		•			<u> </u>		•					•			
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-14.7	4.6	-9.3	-14.0	-1.9	2.5	-7.0	-21.0	-21.5	-16.0	-25.9	-39.0	-31.3	-44.0	-34.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	22.8	46.2	31.2	24.5	35.7	44.1	37.5	24.5	24.0	25.5	14.6	0.5	5.3	-6.4	-0.2
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-14.0	4.8	-9.1	-13.7	-1.7	2.7	-6.9	-20.6	-21.1	-15.7	-25.7	-38.5	-31.1	-43.5	-34.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	23.6	46.3	31.5	24.9	35.8	44.2	37.6	25.0	24.4	25.8	14.9	1.0	5.5	-6.0	-0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	26.2	49.2	34.3	27.7	38.8	47.1	40.6	27.7	27.2	28.7	17.7	3.7	8.4	-3.2	2.9
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Para di Mada a di assal	4/0.0-4.10		25.0	50.0	40 =				40 =	40.0	40 =		4==	40.4		40.0
Predicted Noise Level	1/3 Oct, dB		65.2	50.3	43.7	54.6	62.5	55.8	42.7	42.0	42.7	30.7	15.7	19.4	7.5	13.6
Predicted Noise Level	Oct, dB			65.4			63.9			47.3			31.2			14.7
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)	26.8														
Noise Criteria	dB(A)															
Compliance	Inforda harakaran Pada	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-4-2

Location: Carbo Anglo-Chinese Kindergarden

Assessed Floor 0 Item: 8

		main opec	ou. So kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	130	75	150
Down Track	115	75	137

Selected LSR Details:

Train Speed:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

an knh

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			OL.	10	00	00	00	100	120	100	200	200	010	100	000
	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-10.2	5.4	-7.8	-12.1	-0.9	3.4	-6.2	-18.1	-19.2	-14.5	-24.2	-36.1	-30.1	-41.2	-34.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	27.3	46.9	32.7	26.4	36.6	44.9	38.3	27.4	26.3	27.0	16.3	3.4	6.4	-3.7	0.4
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-9.2	5.6	-7.4	-11.7	-0.7	3.6	-6.0	-17.5	-18.7	-14.1	-23.8	-35.4	-29.9	-40.5	-34.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.3	47.1	33.1	26.9	36.8	45.1	38.5	28.1	26.8	27.4	16.7	4.1	6.7	-3.0	0.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	side Building	30.8	50.0	35.9	29.7	39.7	48.0	41.4	30.8	29.6	30.2	19.5	6.8	9.5	-0.3	3.5
	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		68.0		47.7	57.5	65.4	58.6	47.8	46.4	46.2	34.5		22.5	12.4	16.2
Predicted Noise Level	Oct, dB			68.2			66.8			51.6			34.9			17.8
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	33[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-5-1 Location: Rainbow Home **Assessed Floor** 0 Item: 9

		Train Spee	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	68	42	80
Down Track	25	41	48

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•				•			•								
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-2.9	-9.9	-11.7	-11.5	-21.2	-19.2	-8.8	-10.7	-9.9	-14.7	-9.0	-11.2	-16.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.3	46.2	36.6	27.6	24.8	29.0	22.3	25.3	35.7	29.8	29.6	23.8	26.5	25.3	17.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															ı
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.6	-7.9	-9.5	-10.1	-16.0	-12.9	-6.4	-9.4	-8.3	-11.2	-5.1	-8.5	-14.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.8	46.6	37.9	29.6	27.0	30.4	27.5	31.6	38.1	31.1	31.2	27.3	30.4	28.0	18.8
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		47.6	49.4	40.3	31.7	29.1	32.8	28.6	32.5	40.1	33.5	33.5	28.9	31.9	29.8	21.0
BCF	dB Y/N 0															ı
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barrier de Marta de La Carrier	4/0.0 : 15	25.5	a= :	50 6	40.5	40.5	=0.6	45.6	40.5	50 C	40.5	10.5	40.5		10.5	
Predicted Noise Level	1/3 Oct, dB		67.4	58.3	49.7	46.9	50.2	45.8	49.5	56.9	49.5	48.5	42.9	44.9	42.5	33.7
Predicted Noise Level	Oct, dB			68.0			52.8			58.2			50.8			43.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	34.2														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: DIH-5-2

Location: Residential premises

Assessed Floor 10 Item:

		Train Spec	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	50	41	65
Down Track	8	40	41

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			OL.	10	00	00	00	100	120	100	200	200	010	100	000
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.9	-2.4	-9.1	-10.8	-10.9	-19.1	-16.6	-7.9	-10.2	-9.3	-13.2	-7.4	-10.1	-15.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.5	46.4	37.1	28.4	25.7	29.6	24.4	27.9	36.6	30.3	30.2	25.2	28.1	26.4	17.8
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.0	46.7	38.2	30.1	27.6	30.7	28.8	33.3	38.7	31.4	31.6	28.2	31.4	28.7	19.3
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	47.8	49.6	40.7	32.3	29.8	33.2	30.2	34.4	40.8	33.9	34.0	30.0	33.1	30.7	21.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		65.6	56.7	48.3	45.6	48.6	45.4	49.4	55.6	47.9	47.0		44.1	41.4	32.3
Predicted Noise Level	Oct, dB			66.2			51.6			57.1			49.6			41.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	33.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-5-5

Location: Our Lady's Kindergarden

Assessed Floor 0 Item: 11

		main opec	ou kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	121	40	127
Down Track	85	40	94

Selected LSR Details:

Train Speed:

LSR Ref.
DIH-P1-1
DIH-P1-1

80 knh

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	UZ	70	00	00	00	100	120	100	200	200	010	700	000
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44 5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N	00.0	10.0	00.0	07.0	00.0	10.0	10.0	11.0		10.0	00.0	00.0	00.0	00.0	00.0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-8.3	5.7	-7.1	-11.3	-0.5	3.8	-5.8	-16.9	-18.2	-13.9	-23.5	-34.8	-29.6	-40.0	-33.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.2	46.2	32.4	26.2	36.0	44.3	37.7	27.6	26.3	26.6	16.0	3.7	5.9	-3.5	-0.3
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-4.9	6.3	-5.9	-9.8	0.2	4.5	-5.2	-14.6	-16.5	-12.7	-22.2	-32.6	-28.8	-37.8	-33.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.6	46.8	33.6	27.7	36.7	45.0	38.3	29.9	28.0	27.8	17.3	5.9	6.7	-1.3	0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	33.3	49.5	36.0	30.0	39.3	47.6	41.0	31.9	30.2	30.3	19.7	8.0	9.3	0.7	2.9
BCF	dB Y/N 0															l
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
			-					-								
Predicted Noise Level	1/3 Oct, dB		67.5	54.0	48.0	57.1	65.0	58.2	48.9	47.0	46.3	34.7		22.3	13.4	15.6
Predicted Noise Level	Oct, dB			67.8			66.4			52.3			35.2			17.7
L _{max}	dB(A)	42.7														
L _{eq,30mins}	dB(A)	33[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														
	lation has been applied t															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH 6-1

Location: WTS Fire Station and Quarters Block A

Assessed Floor 1 Item: 12

		Train Spee	ed: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	4	35	35
Down Track	5	35	35

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.7	47.4	39.2	31.4	28.9	31.8	31.2	36.1	40.1	32.4	32.7	30.0	33.4	30.1	20.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.7	47.4	39.2	31.4	28.9	31.8	31.2	36.1	40.1	32.4	32.7	30.0	33.4	30.1	20.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.7	50.4	42.2	34.4	31.9	34.8	34.2	39.1	43.1	35.4	35.7	33.0	36.4	33.2	23.4
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	-	66.4	58.2	50.4	47.7	50.2	49.4	54.1	57.9	49.4	48.7		47.4	43.9	34.1
Predicted Noise Level	Oct, dB			67.1			54.0			59.9			52.1			44.3
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	35.3														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)
- [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-7-1

Location: Tropicana Gardens Block 2

Assessed Floor 4 13 Item:

		Train Spee	d: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	29	40	49
Down Track	63	40	75

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	Frequency (Hz)															
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•							•								
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.3	47.1	38.4	30.0	27.5	30.9	27.8	31.9	38.5	31.5	31.7	27.7	30.8	28.4	19.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.9	5.8	-2.7	-9.7	-11.4	-11.3	-20.5	-18.4	-8.5	-10.6	-9.7	-14.2	-8.5	-10.9	-16.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.9	46.8	37.3	28.4	25.6	29.7	23.5	26.6	36.5	30.5	30.3	24.8	27.5	26.1	17.8
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		48.1	50.0	40.9	32.3	29.6	33.3	29.2	33.0	40.6	34.0	34.0	29.5	32.4	30.4	21.6
BCF	dB Y/N 0															
BVR-up	dB Floor 4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Laws	4/0.0 = 4.10	50.4	00.0	F0.0	40.0	00.1	40 =	00.1	40.0	40.1	40.0	44.0	05.5	07.4	05.4	00.0
Predicted Noise Level	1/3 Oct, dB		60.0	50.9	42.3	39.4	42.7	38.4	42.0	49.4	42.0	41.0	35.5	37.4	35.1	26.3
Predicted Noise Level	Oct, dB			60.5			45.4			50.8			43.4			35.6
∟ _{max}	dB(A)															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)															
Compliance	Inforda harakaran Pada	Yes	Para.													

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.:

Location: Tropicana Gardens Block 3

Assessed Floor 4 14 Item:

		Train Spec	ed: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	21	40	45
Down Track	54	40	67

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	UZ	40	00	00	00	100	120	100	200	200	010	700	000
	dB re 1 lb/in ^{0.5}	37.0	41.0	40 O	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	07.0	11.0	10.0	00.0	01.0	11.0		10.0	10.0	11.0	10.0	00.0	00.0	07.0	01.0
	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.4	6.2	-1.4	-7.7	-9.2	-9.9	-15.4	-12.1	-6.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.4	47.2	38.6	30.4	27.8	31.1	28.6	33.0	38.9	31.8	31.9	28.3	31.4	28.8	19.6
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.4	-9.2	-10.9	-11.0	-19.4	-17.0	-8.0	-10.3	-9.4	-13.5	-7.7	-10.3	-15.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.0	46.9	37.6	28.8	26.1	30.0	24.6	28.0	37.0	30.7	30.7	25.6	28.4	26.7	18.2
Total of Up and Down 1	Tracks Calculation															
Total Vibration Level Out	side Building	48.2	50.1	41.1	32.7	30.1	33.6	30.1	34.2	41.1	34.3	34.3	30.2	33.2	30.9	21.9
_	dB Y/N 0															
	dB Floor 4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
_	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		60.1	51.1	42.7	39.9	43.0	39.3	43.2	49.9	42.3	41.3		38.2	35.6	26.6
Predicted Noise Level	Oct, dB			60.6			45.8			51.3			43.9			36.1
L _{max}	dB(A)	39.7														
L _{eq,30mins}	dB(A)	27.0														
Noise Criteria	dB(A)	45														
Compliance	` [Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-8-1

Location: Redemption Lutheran Church

Assessed Floor 0 15 Item:

		Train Spee	d: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	116	20	118
Down Track	163	20	164

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0			0_	.0		- 00	- 00	.00	0	.00		200	0.0		
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	5.4	-3.8	-11.4	-13.4	-12.5	-25.1	-24.0	-10.7	-11.7	-11.2	-17.3	-12.0	-13.3	-17.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.4	46.4	36.2	26.6	23.7	28.5	18.9	21.0	34.3	29.3	28.9	21.7	24.0	23.7	16.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.1	5.1	-4.6	-12.7	-14.8	-13.4	-28.4	-28.1	-12.3	-12.6	-12.2	-19.6	-14.5	-15.0	-18.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.1	46.1	35.4	25.3	22.2	27.7	15.6	16.9	32.8	28.4	27.8	19.4	21.5	22.0	15.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	47.3	49.3	38.8	29.0	26.0	31.1	20.6	22.4	36.6	31.9	31.4	23.7	25.9	26.0	18.7
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/0.0 = 4.10	05.6	07.0	F0.0	47.6	40.6	40.5	07.0	00 1	F0 1	47.6	40.1	07.5	20.0	00 =	04 1
Predicted Noise Level	1/3 Oct, dB		67.3	56.8 67.7	47.0	43.8	48.5	37.8	39.4	53.4 54.6	47.9	46.4	37.7 47.6	38.9	38.7	31.4 39.4
	Oct, dB			07.7			50.1			34.0			47.6			39.4
Lmax	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-9-1

Location: Shek On Building **Assessed Floor** 0 Item: 16

		Train Spee	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	118	25	121
Down Track	156	25	158

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	5.4	-3.9	-11.5	-13.5	-12.5	-25.3	-24.3	-10.8	-11.8	-11.2	-17.5	-12.2	-13.4	-17.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.9	45.9	35.6	26.0	23.0	27.9	18.2	20.2	33.7	28.7	28.3	21.0	23.3	23.1	15.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.1	5.1	-4.5	-12.6	-14.6	-13.3	-28.0	-27.7	-12.1	-12.5	-12.1	-19.3	-14.3	-14.8	-18.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.6	45.6	35.0	24.9	21.9	27.2	15.5	16.8	32.4	28.0	27.4	19.2	21.2	21.7	14.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.7	48.8	38.3	28.5	25.5	30.6	20.0	21.8	36.1	31.4	30.9	23.2	25.4	25.4	18.2
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B	4/0.0 / 15															
Predicted Noise Level	1/3 Oct, dB		66.8	56.3	46.5	43.3	48.0	37.2	38.8	52.9	47.4	45.9	37.2	38.4	38.1	30.9
Predicted Noise Level	Oct, dB			67.2			49.5			54.1			47.0			38.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	33[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-10-1

Location: Hong Kong Sheung Keung Hui Nursing Home

Assessed Floor 1 Item: 17

		Train Spee	ed: 80 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	168	25	170
Down Track	188	25	190

Selected LSR Details:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	JZ	40	50	00	00	100	120	100	200	200	313	+00	300
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	30.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	30.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N	30.5	40.0	55.5	01.0	50.5	40.0	40.0	44.5	44.5	40.0	00.0	50.5	55.5	50.5	55.5
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.0	5.1	-4.7	-12.9	-14.9	-13.4	-28.8	-28.6	-12.4	-12.7	-12.3	-19.9	-14.8	-15.2	-19.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.6	34.8	24.6	21.6	27.1	14.7	15.9	32.1	27.8	27.2	18.6	20.7	21.3	14.5
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	36.5	40.5	39.5	37.5	36.5	40.5	43.5	44.5	44.5	40.5	39.5	38.5	35.5	36.5	33.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.9	5.0	-5.0	-13.3	-15.4	-13.7	-29.9	-30.0	-13.0	-13.0	-12.7	-20.6	-15.7	-15.8	-19.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.5	34.5	24.2	21.1	26.8	13.6	14.5	31.5	27.5	26.8	17.9	19.8	20.7	14.1
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	46.5	48.5	37.7	27.4	24.3	29.9	17.2	18.3	34.8	30.7	30.0	21.3	23.3	24.0	17.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		64.5	53.7	43.4	40.1	45.3	32.4	33.3	49.6	44.7	43.0		34.3	34.7	28.0
Predicted Noise Level	Oct, dB			64.9			46.6			50.9			43.9			35.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	27.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-11-1 Location: Lung Wan House Assessed Floor 1

Item: 18

		Train Spee	ed: 35 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	75	25	79
Down Track	60	25	65

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation								•					•			
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.9	6.7	-5.2	-9.0	0.6	4.8	-4.8	-13.3	-15.5	-12.0	-21.4	-31.2	-28.3	-36.6	-33.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	26.5	40.0	27.1	21.3	29.9	38.2	31.5	24.0	21.9	21.3	10.9	0.1	0.1	-7.3	-6.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-0.6	7.0	-4.5	-8.0	1.1	5.3	-4.4	-11.9	-14.3	-11.3	-20.6	-29.8	-27.7	-35.2	-32.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.7	40.4	27.9	22.3	30.4	38.6	32.0	25.5	23.0	22.0	11.8	1.5	0.6	-5.9	-6.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	30.7	43.2	30.5	24.8	33.2	41.4	34.8	27.8	25.5	24.7	14.4	3.9	3.4	-3.5	-3.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Parka I Mada a Laurah	4/0.0 - (.10	40 =	50.0	40.5	10.0	10.0			40.0	40.0			45.0			
Predicted Noise Level	1/3 Oct, dB		59.2	46.5	40.8	49.0	56.8	50.0	42.8	40.3	38.7	27.4	15.9	14.4	7.2	7.1
Predicted Noise Level	Oct, dB			59.5			58.2			45.7			27.9			10.5
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: DIH-12-1 Location: Galaxia Tower B

Assessed Floor 5 19 Item:

		rain Spee	ea: 55 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	195	30	197
Down Track	180	30	182

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	DIH-P1-1	

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	JD 4 IL /:- 0.5	33.2	27.2	26.2	34.2	22.2	37.2	40.2	41.2	44.0	27.2	26.2	25.2	22.2	33.2	30.2
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	33.2	31.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	31.2	36.2	35.2	32.2	33.2	30.2
TIL	dB Y/N N dB Type 0	_	0	^	0	^	_	0	^	^	^	^	0	0	_	_
TCF	dB Type 0	0 -5														
TOC	dB Type 0	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-13.4	4.9	-8 Q	-13.4	-16	2.8	-6.8	-20.2	-20 B	-15.5	-25 /	-38.2	-30 Q	-43.1	-34.5
Up Track Vib. Level		14.9	37.1		15.8		35.0		16.1						-14.9	-9.3
	dB re 10 ⁻⁶ in/sec	14.9	37.1	22.4	15.0	20.7	35.0	20.3	10.1	15.4	10.7	5.0	-7.9	-3.1	-14.9	-9.3
Down Track Calculation		20.0	07.0	00.0	040	00.0	07.0	40.0	44.0	44.0	07.0	00.0	05.0	00.0	00.0	
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-12.5	5.0	-8.6	-13.0	-1.4	3.0	-6.6	-19.6	-20.4	-15.2	-25.1	-37.6	-30.7	-42.6	-34.4
	dB re 10 ⁻⁶ in/sec	15.8	37.3	22.7	16.2	26.9	35.2	28.6	16.7	15.9	17.0	6.2	-7.3	-3.4	-14.3	-9.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		18.3	40.2	25.5	19.0	29.8	38.1	31.6	19.4	18.7	19.9	9.0	-4.6	-0.5	-11.6	-6.2
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		48.2	33.5	27.0	37.6	45.5	38.8	26.4	25.5	25.9	14.0		2.5	-8.9	-3.5
Predicted Noise Level	Oct, dB			48.4			46.9			30.7			14.4			2.0
L _{max}	dB(A)	22.8														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														
Notes: [1] Linear interne	 															

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: DIH-12-2 Location: Galaxia Tower E **Assessed Floor** 5 20 Item:

		i rain Spee	ea: 45 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	180	30	182
Down Track	160	30	163

LSR Ref.
DIH-P1-1
DIH-P1-1

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	31.5	25.5	24.5	32.5	21.5	35.5	38.5	20.5	39.5	25.5	24.5	22.5	20 F	31.5	28.5
CCF	dB Y/N N	31.5	35.5	34.5	32.5	31.5	35.5	30.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	20.5
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type 0	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0		3		3	J	0	3	3	0	0		3	3	3	3
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-12.5	5.0	-8.6	-13.0	-1.4	3.0	-6.6	-19.6	-20.4	-15.2	-25.1	-37.6	-30.7	-42.6	-34.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	14.0	35.5	20.9	14.5	25.1	33.5	26.9	14.9	14.1	15.3	4.4	-9.1	-5.2	-16.1	-10.9
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-11.2	5.2	-8.1	-12.5	-1.1	3.2	-6.4	-18.8	-19.7	-14.8	-24.6	-36.7	-30.4	-41.8	-34.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	15.3	35.7	21.4	15.0	25.4	33.7	27.1	15.7	14.8	15.7	4.9	-8.2	-4.9	-15.3	-10.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		17.7	38.6	24.2	17.7	28.3	36.6	30.0	18.4	17.5	18.5	7.7	-5.6	-2.0	-12.7	-7.8
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	25.7	46.6	22.2	25.7	36.1	44.0	27.0	25.4	24.2	24.5	10.7	-1.6	1.0	-10.0	-5.1
Predicted Noise Level	Oct, dB		40.0	46.8	25.7	30.1	44.0 45.4	37.2	23.4	29.5	24.3	12.7	13.1	1.0	-10.0	-5.1 1.5
	dB(A)			40.0			43.4			23.3			13.1			1.5
∟ _{max}	` '															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: DIH-13-1

Location: Canossa Primary School

Assessed Floor 0 21 Item:

		i rain Spee	ea: 85 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	160	25	162
Down Track	200	25	202

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

									Frequ	uency	(Hz)						
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	1000
FDL	dB re 1 lb/i	n ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/N N	1														
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	71.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															
LSR	dB re 10 ⁻⁶ ir	n/s*in ^{0.5} /lb	7.1	5.1	-4.6	-12.7	-14.7	-13.3	-28.3	-28.0	-12.2	-12.5	-12.2	-19.5	-14.4	-15.0	-18.8
Up Track Vib. Level	dB re 10 ⁻⁶ ir		44.1	46.1	35.4	25.3	22.3	27.7	15.7	17.1	32.8	28.5	27.8	19.5	21.6	22.1	15.2
Down Track Calculatio	n																
FDL	dB re 1 lb/i	n ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB	Y/N N															
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															
LSR	dB re 10 ⁻⁶ ir	n/s*in ^{0.5} /lb	6.8	4.9	-5.1	-13.6	-15.7	-13.9	-30.5	-30.7	-13.3	-13.1	-12.9	-21.0	-16.1	-16.1	-19.6
Down Track Vib. Level	dB re 10 ⁻⁶ ir	n/sec	43.9	46.0	34.9	24.5	21.3	27.1	13.5	14.3	31.8	27.9	27.1	18.0	19.9	20.9	14.4
Total of Up and Down	Tracks Cald	culation															
Total Vibration Level Out	tside Buildin	ıg	47.0	49.1	38.2	27.9	24.9	30.4	17.8	18.9	35.3	31.2	30.5	21.8	23.8	24.5	17.8
BCF	dB	Y/N 0															
BVR-up		Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1																
Predicted Noise Level		1/3 Oct, dB		67.1	56.2	45.9	42.7	47.8	35.0	35.9	52.1	47.2	45.5	35.8	36.8	37.2	30.5
Predicted Noise Level		Oct, dB			67.4			49.2			53.4			46.5			38.1
L _{max}		dB(A)															
L _{eq,30mins}		dB(A)	32[8]														
Noise Criteria		dB(A)	55[9]														
Compliance			Yes														
Notes: [1] Linear interpo	lation has h	een annlied t	n clant	distan	co wh	oro a	nnronr	iata									

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-1

Location: Rhythm Garden Block 2

Assessed Floor 22 Item:

		Train Spee	d: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	38	20	43
Down Track	50	20	54

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

Description Unit 20 25 32 40 50 63 80 100 125 160 200 250 315 400 50									Frequ	uency	(Hz)						
Up Track Calculation	Description	Unit	20	25	32	40	50	63			<u> </u>	160	200	250	315	400	500
FDL dB re 1 lb/in ^{0.5} 34.0 38.0 37.0 35.0 34.0 38.0 37.0 38.0 37.0 38.0 37.0 38.0 38.0 37.0 38.0 37.0 38.0 3		Offic	20	20	JZ	40	50	00	00	100	120	100	200	200	313	+00	300
CCF dB		dB ro 1 lb/in ^{0.5}	34.0	38 N	37 N	35 N	34 N	38 N	<i>4</i> 1 0	42 N	42 N	38 N	37 N	36 N	33 N	34.0	31.0
TIL	CCF		34.0	50.0	57.0	55.0	J-1.0	50.0	71.0	72.0	72.0	50.0	51.0	50.0	55.0	54.0	31.0
TCF		,,,,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR			-	-	-	-									-	-	0
Up Track Vib. Level dB re 10 ⁻⁶ in/sec 38.4 45.9 34.3 29.1 36.1 44.3 37.6 33.4 30.2 28.4 18.4 9.5 6.6 2.0	TOC	dB Type 0															
Down Track Calculation	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.4	7.9	-2.7	-5.9	2.1	6.3	-3.4	-8.6	-11.8	-9.6	-18.6	-26.5	-26.4	-32.0	-32.1
Down Track Calculation	Up Track Vib. Level		38.4	45.9	34.3	29.1	36.1	44.3	37.6	33.4	30.2	28.4	18.4	9.5	6.6	2.0	-1.1
CCF dB Type 0 0 0 0 0 0 0 0 0																	
CCF dB Type 0 0 0 0 0 0 0 0 0	FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
TCF	CCF																
TOC dB	TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR dB re 10 ⁻⁶ in/s ⁺ in ^{0.5} /lb 1.8	TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Down Track Vib. Level dB re 10 fin/sec 35.8 45.4 33.4 28.0 35.5 43.7 37.1 31.7 28.9 27.5 17.3 7.8 5.9 0.3 - Total of Up and Down Tracks Calculation	TOC	dB Type 0															
Total of Up and Down Tracks Calculation Total Vibration Level Outside Building BCF dB Y/N 0 BVR-up dB Floor 1 CTN dB CTN dB AB AB AB AB AB AB AB AB AB	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	1.8	7.4	-3.6	-7.0	1.5	5.7	-3.9	-10.3	-13.1	-10.5	-19.7	-28.2	-27.1	-33.7	-32.5
A color	Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.8	45.4	33.4	28.0	35.5	43.7	37.1	31.7	28.9	27.5	17.3	7.8	5.9	0.3	-1.5
BCF dB Y/N 0 BVR-up dB Floor 1 -2 2 <td< td=""><td>Total of Up and Down 1</td><td>Tracks Calculation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Total of Up and Down 1	Tracks Calculation															
BVR-up dB Floor 1 -2 <	Total Vibration Level Out	side Building	40.3	48.7	36.9	31.6	38.8	47.0	40.4	35.6	32.6	31.0	20.9	11.8	9.3	4.2	1.7
BVR - Resonance dB 6.0 6.0 6.0 6.0 6.0 5.8 5.4 5.2 5.0 4.8 4.0 3.0 2.0 1.0 0.7 0.7 CTN dB 2 3 <	BCF																
CTN dB 2	BVR-up		-2												-2	-2	-2
SAF dB 10 10 10 10 10 10 10 1	BVR - Resonance		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
Predicted Noise Level	CTN		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Predicted Noise Level Oct, dB 65.0 63.8 53.1 34.5 1 L _{max} dB(A) 41.0	SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level Oct, dB 65.0 63.8 53.1 34.5 1 L _{max} dB(A) 41.0																	
L _{max} dB(A) 41.0 L _{eq,30mins} dB(A) 29.8		· ·		64.7		47.6	54.6		55.6	50.6		45.0	33.9		20.3	14.9	12.4
L _{eq,30mins} dB(A) 29.8	Predicted Noise Level	, , , , , , , , , , , , , , , , , , ,			65.0			63.8			53.1			34.5			16.9
* *	L _{max}	dB(A)	41.0														
Noise Criteria dB(A) 45	L _{eq,30mins}	dB(A)	29.8														
	Noise Criteria	dB(A)	45														
Compliance	Compliance	, 1	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-2

Location: Rhythm Garden Block 5

Assessed Floor 23 Item:

		Train Spee	d: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	30	18	35
Down Track	43	18	47

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															ı
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-6.1	6.9	3.2	-3.1	-6.1	-3.9	-9.7	-15.0	-19.0	-23.5	-25.6	-32.3	-28.5	-36.0	-37.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	27.9	44.9	40.2	31.9	27.9	34.1	31.3	27.0	23.0	14.5	11.4	3.7	4.5	-2.0	-6.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-11.3	4.1	0.5	-6.6	-10.7	-9.0	-15.1	-20.8	-24.6	-28.0	-28.6	-34.5	-29.3	-36.6	-38.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	22.7	42.1	37.5	28.4	23.3	29.0	25.9	21.2	17.4	10.0	8.4	1.5	3.7	-2.6	-7.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		29.0	46.8	42.1	33.5	29.2	35.3	32.4	28.1	24.1	15.8	13.2	5.8	7.1	0.7	-4.0
BCF	dB Y/N 0															ı
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Level	4/2.0-4-15	45.6	00.0	F0.4	40.5	45.6	F0 =	47.0	40.4	20.0	00.0	00.0	47.0	40.4	44.4	
Predicted Noise Level	1/3 Oct, dB		62.8	58.1	49.5	45.0	50.7	47.6	43.1	38.9	29.8	26.2	17.8	18.1	11.4	6.7
Predicted Noise Level	Oct, dB			64.2			53.1			44.6			27.3			12.9
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied t	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-3

Location: Rhythm Garden Block 8

Assessed Floor 24 Item:

		Train Spee	ed: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	175	17	176
Down Track	185	17	186

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•	•	•	•		<u> </u>		•	•				•			
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-34.6	-8.4	-12.0	-22.2	-31.4	-31.6	-39.2	-47.0	-50.1	-48.0	-42.0	-44.4	-32.9	-39.1	-41.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	-0.6	29.6	25.0	12.8	2.6	6.4	1.8	-5.0	-8.1	-10.0	-5.0	-8.4	0.1	-5.1	-10.9
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-35.6	-8.9	-12.5	-22.8	-32.2	-32.5	-40.2	-48.1	-51.1	-48.8	-42.6	-44.9	-33.1	-39.2	-42.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	-1.6	29.1	24.5	12.2	1.8	5.5	8.0	-6.1	-9.1	-10.8	-5.6	-8.9	-0.1	-5.2	-11.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		2.0	32.4	27.8	15.5	5.2	9.0	4.3	-2.5	-5.6	-7.4	-2.3	-5.6	3.0	-2.2	-8.0
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Lavel	4/0.0 = 4.15	40.6	40.1	40.0	04.5	04.6	04.6	40.5	40.5	0.0	0.0	40 =	0.4	44.0	0.5	0.7
Predicted Noise Level Predicted Noise Level	1/3 Oct, dB		48.4	43.8	31.5	21.0	24.4	19.5	12.5	9.2	6.6	10.7	6.4 16.2	14.0	8.5	2.7
	Oct, dB			49.7			26.9			14.9			10.2			10.0
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the con	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-4

Location: Canossa Primary School (San Po Kong)

Assessed Floor 25 Item:

		main oper	cu. oo kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	145	20	146
Down Track	160	20	161

Selected LSR Details:

Train Speed:

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	DIH-P1-1	

60 knh

Up Track Calculation									Freq	uency	(Hz)						
FDL dB re 1 lb/in ^{0.5} 34.0 38.0 37.0 35.0 34.0 38.0 41.0 42.0 42.0 38.0 37.0 36.0 33.0 34.0 34.0 37.0 37.0 38.0 3	Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
CCF dB	Up Track Calculation																
CCF dB	FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
TCF	CCF																
TOC dB Type 0 -9.9 5.4 -7.7 -12.0 -0.9 3.5 -6.1 -17.9 -19.1 -14.4 -24.1 -35.9 -30.0 -41.0 -3.0 -4.0 -4.0		dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Up Track Vib. Level dB re 10 ⁻⁶ in/sec 24.1 43.4 29.3 23.0 33.1 41.5 34.9 24.1 22.9 23.6 12.9 0.1 3.0 -7.0 -3																	
Down Track Calculation	LSR		-9.9	5.4	-7.7	-12.0	-0.9	3.5	-6.1	-17.9	-19.1	-14.4	-24.1	-35.9	-30.0	-41.0	-34.1
FDL dB re 1 lb/in ^{0.5} 34.0 38.0 37.0 35.0 34.0 38.0 41.0 42.0 42.0 38.0 37.0 36.0 33.0 34.0 36.0 36.0 37.0 36.0 37.0 36.0 33.0 34.0 36.0 37.0 <td>Up Track Vib. Level</td> <td>dB re 10⁻⁶in/sec</td> <td>24.1</td> <td>43.4</td> <td>29.3</td> <td>23.0</td> <td>33.1</td> <td>41.5</td> <td>34.9</td> <td>24.1</td> <td>22.9</td> <td>23.6</td> <td>12.9</td> <td>0.1</td> <td>3.0</td> <td>-7.0</td> <td>-3.1</td>	Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	24.1	43.4	29.3	23.0	33.1	41.5	34.9	24.1	22.9	23.6	12.9	0.1	3.0	-7.0	-3.1
CCF dB Y/N N TIL dB Type 0 0 0 0 0 0 0 0 0	Down Track Calculatio																
CCF dB Y/N N TIL dB Type 0 0 0 0 0 0 0 0 0	FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
TCF	CCF	dB Y/N N															
TOC dB	TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Down Track Vib. Level dB re 10 fin/sec 22.9 43.3 28.9 22.6 32.9 41.2 34.7 23.3 22.4 23.2 12.5 -0.6 2.7 -7.7 -3	TOC	dB Type 0															
Total of Up and Down Tracks Calculation Total Vibration Level Outside Building BCF BUR-up BUR-Resonance BCF BUR-up BUR-Resonance BCF BUR-Resonance BCF BUR-Resonance BCF BUR-up BUR-up BCF	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-11.1	5.3	-8.1	-12.4	-1.1	3.2	-6.3	-18.7	-19.6	-14.8	-24.5	-36.6	-30.3	-41.7	-34.2
Total Vibration Level Outside Building BCF dB Y/N 0 BVR-up dB Floor 1 -2 -2 -2 -2 -2 -2 -2	Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	22.9	43.3	28.9	22.6	32.9	41.2	34.7	23.3	22.4	23.2	12.5	-0.6	2.7	-7.7	-3.2
BCF dB Y/N 0 BVR-up dB Floor 1 -2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Total of Up and Down	Tracks Calculation															
BVR-up dB Floor 1	Total Vibration Level Out	tside Building	26.5	46.4	32.1	25.8	36.0	44.4	37.8	26.7	25.7	26.4	15.7	2.8	5.8	-4.3	-0.1
BVR - Resonance dB	BCF	dB Y/N 0															
CTN dB 2	BVR-up		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
Predicted Noise Level 1/3 Oct, dB 42.5 62.4 48.1 41.8 51.8 59.8 53.0 41.7 40.5 40.4 28.7 14.8 16.8 6.4 10 10 10 10 10 10 10 1	BVR - Resonance		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
Predicted Noise Level			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Predicted Noise Level Oct, dB 62.6 61.1 45.7 29.1 12 L _{max} dB(A) 37.2 L _{eq,30mins} dB(A) 29[8]	SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level Oct, dB 62.6 61.1 45.7 29.1 12 L _{max} dB(A) 37.2 L _{eq,30mins} dB(A) 29[8]		I															
L _{max} dB(A) 37.2 L _{eq,30mins} dB(A) 29[8]		,		62.4		41.8	51.8		53.0	41.7		40.4	28.7		16.8	6.4	10.6
L _{eq,30mins} dB(A) 29[8]	Predicted Noise Level				62.6			61.1			45.7			29.1			12.2
odjednimo (/ E a	L _{max}	` '															
l.,	L _{eq,30mins}	dB(A)	29[8]														
Noise Criteria dB(A) 55[9]	Noise Criteria	dB(A)	55[9]														
Compliance Yes	Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-5

Location: Rhythm Garden Block 1

Assessed Floor 26 Item:

		Train Spee	d: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	30	20	36
Down Track	43	20	47

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•							•				•	•			
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.8	45.3	33.9	28.8	35.6	43.7	37.1	33.4	30.1	28.0	18.0	9.5	6.1	1.9	-1.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	3.1	7.7	-3.2	-6.5	1.8	6.0	-3.7	-9.4	-12.4	-10.0	-19.1	-27.3	-26.7	-32.8	-32.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.4	44.9	33.1	27.8	35.1	43.3	36.6	31.8	28.8	27.2	17.1	7.9	5.5	0.4	-2.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	40.8	48.1	36.5	31.3	38.3	46.5	39.8	35.7	32.5	30.6	20.6	11.8	8.8	4.2	1.1
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		64.1	52.5	47.3	54.1	61.9	55.0	50.7	47.3	44.6	33.6	23.8	19.8	14.9	11.8
Predicted Noise Level	Oct, dB			64.5			63.3			53.0			34.2			16.7
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-14-6

Location: Rhythm Garden Block 3

Assessed Floor 1 Item: 27

		d: 60 kph	
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	45	19	49
Down Track	56	19	59

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	3.1	7.7	-3.2	-6.5	1.8	6.0	-3.7	-9.4	-12.4	-10.0	-19.1	-27.3	-26.7	-32.8	-32.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.1	45.7	33.8	28.5	35.8	44.0	37.3	32.6	29.6	28.0	17.9	8.7	6.3	1.2	-1.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	0.5	7.2	-4.1	-7.6	1.3	5.5	-4.1	-11.1	-13.8	-10.9	-20.1	-29.0	-27.4	-34.5	-32.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.5	45.2	32.9	27.4	35.3	43.5	36.9	30.9	28.2	27.1	16.9	7.0	5.6	-0.5	-1.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	39.0	48.5	36.4	31.0	38.6	46.8	40.1	34.8	32.0	30.6	20.4	10.9	8.9	3.4	1.5
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Parka I Mada a 2	4/0.0 : 15		24.5	=a ·	4= 6				10.5	10.5	11.5	- ·		40.0		10.5
Predicted Noise Level	1/3 Oct, dB		64.5	52.4	47.0	54.4	62.2	55.3	49.8	46.8	44.6	33.4	22.9	19.9	14.1	12.2
Predicted Noise Level	Oct, dB			64.8			63.6			52.4			34.0			16.4
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-15-1 Location: Kam Wan House **Assessed Floor** 0 28

Item:

		Train Spee	ed: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	100	25	103
Down Track	85	25	89

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	JZ	40	50	00	00	100	120	100	200	200	313	400	300
	dB re 1 lb/in ^{0.5}	34.0	38.0	37 N	35.0	34 N	38.0	41.0	42.0	42.0	38.0	37 N	36.0	33.0	34.0	31.0
CCF	dB Y/N N	34.0	50.0	57.0	55.0	J-1.0	50.0	41.0	72.0	72.0	50.0	57.0	50.0	55.0	J 1 .0	31.0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-5.8	6.2	-6.3	-10.2	0.0	4.3	-5.3	-15.2	-17.0	-13.0	-22.5	-33.2	-29.0	-38.4	-33.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	28.2	44.2	30.7	24.8	34.0	42.3	35.7	26.8	25.0	25.0	14.5	2.8	4.0	-4.4	-2.5
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-4.0	6.5	-5.6	-9.5	0.4	4.6	-5.0	-14.0	-16.0	-12.4	-21.8	-32.0	-28.5	-37.3	-33.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.0	44.5	31.4	25.5	34.4	42.6	36.0	28.0	26.0	25.6	15.2	4.0	4.5	-3.3	-2.3
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	32.2	47.3	34.1	28.2	37.2	45.5	38.8	30.4	28.5	28.3	17.8	6.5	7.2	-0.8	0.6
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		65.3	52.1	46.2	55.0	62.9	56.0	47.4	45.3	44.3	32.8		20.2	11.9	13.3
Predicted Noise Level	Oct, dB			65.6			64.2			50.7			33.3			15.8
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	29.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

29

Project: SCL(TAW - HUH) NSR Ref.: DIH-15-2 Location: Pik Hoi House **Assessed Floor** 0

Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	75	25	79
Down Track	65	25	70

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

1									/L L - \						
									` '						_
Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
dB Y/N N															
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.6	6.7	-5.1	-8.9	0.7	4.9	-4.7	-13.1	-15.3	-11.9	-21.3	-31.1	-28.2	-36.4	-33.1
dB re 10 ⁻⁶ in/sec	30.7	43.9	31.1	25.4	33.9	42.2	35.5	28.1	25.9	25.3	14.9	4.2	4.1	-3.2	-2.8
n															
dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
dB Y/N N															
dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB Type 0															
dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.0	7.0	-4.6	-8.2	1.0	5.2	-4.4	-12.1	-14.5	-11.4	-20.7	-30.0	-27.8	-35.4	-32.9
dB re 10 ⁻⁶ in/sec	32.3	44.2	31.7	26.1	34.2	42.5	35.8	29.2	26.7	25.8	15.6	5.2	4.5	-2.2	-2.6
Tracks Calculation															
tside Building	34.6	47.1	34.4	28.7	37.1	45.3	38.7	31.7	29.4	28.6	18.3	7.8	7.3	0.4	0.3
dB Y/N 0															
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6.0												1.0	0.7	0.7
	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2
dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
460 4 15															
,	-	65.1		46.7	54.9		55.9	48.7		44.6	33.3		20.3	13.1	13.0
,			65.4			64.1			51.6			33.8			16.2
` '															
` '															
dB(A)	45														
	Yes														
	Description Color Color	State	State	State	Section Sect	Section Sect	Section Sect	Unit 20 25 32 40 50 63 80	Unit 20 25 32 40 50 63 80 100	Second	Unit 20 25 32 40 50 63 80 100 125 160	Unit 20 25 32 40 50 63 80 100 125 160 200	Unit 20 25 32 40 50 63 80 100 125 160 200 250	Unit 20 25 32 40 50 63 80 100 125 160 200 250 315	Unit 20 25 32 40 50 63 80 100 125 160 200 250 315 400

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: DIH-16-1

Location: Wong Tai Sin Temple

Assessed Floor 0 30 Item:

		d: 85 kph	
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	22	36	42
Down Track	35	36	50

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	JZ	40	50	00	00	100	120	100	200	230	313	400	300
	dB re 1 lb/in ^{0.5}	37.0	41.0	40 O	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N	37.0	41.0	40.0	50.0	57.0	41.0	44.0	40.0	40.0	41.0	40.0	55.0	50.0	57.0	34.0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.4	7.9	-2.7	-5.9	2.1	6.3	-3.4	-8.6	-11.8	-9.6	-18.6	-26.5	-26.4	-32.0	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.5	48.9	37.3	32.1	39.1	47.3	40.6	36.4	33.3	31.4	21.4	12.6	9.6	5.0	1.9
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.4	7.5	-3.4	-6.8	1.7	5.9	-3.8	-9.9	-12.8	-10.3	-19.4	-27.8	-26.9	-33.3	-32.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	39.4	48.6	36.6	31.3	38.7	46.9	40.2	35.1	32.2	30.7	20.6	11.2	9.1	3.7	1.6
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	43.6	51.8	40.0	34.7	41.9	50.1	43.4	38.8	35.8	34.1	24.0	15.0	12.4	7.4	4.8
	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		69.8	58.0	52.7	59.7	67.5	60.6	55.8	52.6	50.1	39.0		25.4	20.1	17.5
Predicted Noise Level	Oct, dB			70.1			68.9			58.3			39.6			22.0
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	33.4														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-17-1

Location: Chuk Yuen United Village

Assessed Floor 0 31 Item:

		Train Spee	ed: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	21	30	37
Down Track	63	30	70

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

Description Unit 20 25 32 40 50 63 80 100 125 160 200 250 315 400 10									Frequ	uency	(Hz)						
Description Track Calculation FDL dB re 1 lb/in ^{0.5} St. St.	Description	Unit	20	25	32	40	50	63			` '	160	200	250	315	400	500
FDL dB re 1 lb/in ^{0.5} 37.0 41.0 40.0 38.0 37.0 41.0 44.0 45.0 45.0 41.0 40.0 39.0 36.0 37.0 3		OTIIC	20	20	0Z	40	00	00	00	100	120	100	200	200	010	700	000
CCF dB		dR re 1 lh/in ^{0.5}	37.0	41.0	40 O	38.0	37.0	41.0	44 0	45.0	45.0	41 0	40 O	39.0	36.0	37.0	34.0
TIL	CCF		07.0	11.0	10.0	00.0	01.0	11.0	11.0	10.0	10.0		10.0	00.0	00.0	01.0	01.0
TCF		.,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SR			0	0	0	0									0	0	Ō
Up Track Vib. Level dB re 10 ⁻⁶ in/sec 42.9 49.2 37.8 32.7 39.4 47.6 40.9 37.4 34.0 31.9 21.9 13.5 10.0 5.9	TOC	dB Type 0															
Down Track Calculation	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.9	8.1	-2.2	-5.3	2.4	6.6	-3.1	-7.6	-11.0	-9.1	-18.1	-25.5	-26.0	-31.1	-32.0
Down Track Calculation	Up Track Vib. Level		42.9	49.2	37.8	32.7	39.4	47.6	40.9	37.4	34.0	31.9	21.9	13.5	10.0	5.9	2.1
CCF dB Y/N N	Down Track Calculation	n															
CCF dB Y/N N	FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
TCF	CCF	dB Y/N N															
TOC dB Type 0 CSR dB re 10-6in/s*in ^{0.5} /lb -1.5 6.9 -4.8 -8.4 0.9 5.1 -4.5 -12.4 -14.8 -11.6 -20.9 -30.3 -27.9 -35.7	TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR	TCF		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Down Track Vib. Level dB re 10 6 in/sec 35.6 47.9 35.3 29.6 37.9 46.1 39.5 32.6 30.3 29.5 19.1 8.7 8.1 1.3	TOC	dB Type 0															
Total of Up and Down Tracks Calculation Total Vibration Level Outside Building 43.7 51.6 39.7 34.5 41.7 49.9 43.3 38.6 35.5 33.9 23.8 14.8 12.2 7.2 BCF dB Y/N 0	LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.5	6.9	-4.8	-8.4	0.9	5.1	-4.5	-12.4	-14.8	-11.6	-20.9	-30.3	-27.9	-35.7	-32.9
SAF Control	Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.6	47.9	35.3	29.6	37.9	46.1	39.5	32.6	30.3	29.5	19.1	8.7	8.1	1.3	1.1
BCF dB Y/N 0 BVR-up dB Floor 0	Total of Up and Down	Tracks Calculation															
BVR-up dB Floor 0 <th< td=""><td>Total Vibration Level Out</td><td>side Building</td><td>43.7</td><td>51.6</td><td>39.7</td><td>34.5</td><td>41.7</td><td>49.9</td><td>43.3</td><td>38.6</td><td>35.5</td><td>33.9</td><td>23.8</td><td>14.8</td><td>12.2</td><td>7.2</td><td>4.6</td></th<>	Total Vibration Level Out	side Building	43.7	51.6	39.7	34.5	41.7	49.9	43.3	38.6	35.5	33.9	23.8	14.8	12.2	7.2	4.6
BVR - Resonance dB 6.0 6.0 6.0 6.0 6.0 5.8 5.4 5.2 5.0 4.8 4.0 3.0 2.0 1.0 0.7 CTN dB 2 <td< td=""><td>BCF</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	BCF																
CTN dB 2	BVR-up		0	0	0	0		-			0	0	0		0	0	0
SAF dB 10 10 10 10 10 10 10 1	BVR - Resonance		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
Predicted Noise Level Predicted Noise Level Oct, dB G1.7 69.6 57.7 52.5 59.5 67.3 60.5 55.6 52.3 49.9 38.8 28.8 25.2 19.9 G8.7 58.0 39.4 GB(A) 45.9 GB(A) 33.2			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Predicted Noise Level Oct, dB 69.9 68.7 58.0 39.4 L _{max} dB(A) 45.9 L _{eq,30mins} dB(A) 33.2	SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level Oct, dB 69.9 68.7 58.0 39.4 L _{max} dB(A) 45.9 L _{eq,30mins} dB(A) 33.2		1															
L _{max} dB(A) 45.9 L _{eq,30mins} dB(A) 33.2		,		69.6		52.5	59.5		60.5	55.6		49.9	38.8		25.2	19.9	17.3
L _{eq,30mins} dB(A) 33.2	Predicted Noise Level	,			69.9			68.7			58.0			39.4			21.8
	L _{max}	dB(A)	45.9														
1 I	L _{eq,30mins}	dB(A)	33.2														
Noise Criteria dB(A) 45	Noise Criteria	dB(A)	45														
Compliance	Compliance	, ,	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-18-1

Location: Upper Wong Tai Sin Estate Po Sin House

Assessed Floor 32 Item:

		Train Spee	ed: 85 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	30	34
Down Track	30	30	42

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•				•	<u> </u>						•	•			
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	8.6	-1.2	-4.1	3.0	7.1	-2.6	-5.8	-9.6	-8.2	-17.0	-23.7	-25.3	-29.4	-31.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.7	49.6	38.8	33.9	40.0	48.1	41.4	39.2	35.4	32.8	23.0	15.4	10.7	7.6	2.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.0	41.0	40.0	38.0	37.0	41.0	44.0	45.0	45.0	41.0	40.0	39.0	36.0	37.0	34.0
CCF	dB Y/N N															ı
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.6	49.1	37.7	32.6	39.4	47.5	40.8	37.2	33.9	31.8	21.8	13.3	9.9	5.7	2.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		47.5	52.4	41.3	36.3	42.7	50.8	44.2	41.3	37.7	35.4	25.5	17.5	13.3	9.8	5.3
BCF	dB Y/N 0															ı
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	63.5	68.4	57.3	52.3	58.5	66.2	59.4	56.3	52.5	49.4	38.5	29.5	24.3	20.5	40.0
Predicted Noise Level	1/3 Oct, dB Oct, dB		68.4	57.3 68.8	52.3	5.80	66.2 67.6	59.4	56.3	52.5 58.4	49.4	38.5	29.5 39.1	24.3	20.5	16.0 21.8
	,			90.8			07.0			Jö.4			39.1			21.8
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	Inforda harabaran Pada	Yes	Para.													

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-18-2

Location: Upper Wong Tai Sin Estate Tat Sin House

Assessed Floor 33 Item:

		Train Spee	ed: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	26	31	40
Down Track	37	31	48

Selected LSR Details:

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	DIH-P1-1	

			Frequency (Hz)														
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation		<u> </u>															,
FDL	dB re 1 lb/	in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N N															
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															
LSR	dB re 10 ⁻⁶ i	n/s*in ^{0.5} /lb	5.6	8.1	-2.3	-5.4	2.3	6.5	-3.2	-7.8	-11.2	-9.2	-18.2	-25.7	-26.1	-31.3	-32.0
Up Track Vib. Level	dB re 10 ⁻⁶ i	n/sec	43.1	49.6	38.2	33.1	39.9	48.0	41.3	37.7	34.3	32.3	22.3	13.8	10.4	6.2	2.5
Down Track Calculation																	
FDL	dB re 1 lb/	in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N N															
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															
LSR	dB re 10 ⁻⁶ i	n/s*in ^{0.5} /lb	3.4	7.7	-3.1	-6.4	1.9	6.1	-3.6	-9.3	-12.3	-10.0	-19.0	-27.2	-26.7	-32.7	-32.3
Down Track Vib. Level	dB re 10 ⁻⁶ i	n/sec	40.9	49.2	37.4	32.2	39.4	47.6	40.9	36.3	33.2	31.6	21.5	12.4	9.8	4.8	2.2
Total of Up and Down	Tracks Cal	culation															
Total Vibration Level Out		ng	45.2	52.4	40.8	35.7	42.6	50.8	44.1	40.0	36.8	35.0	24.9	16.2	13.1	8.6	5.4
BCF	dB	Y/N 0															
BVR-up	dB	Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level		1/3 Oct, dB	61.2	68.4	56.8	51.7	58.4	66.2	59.3	55.0	51.6	49.0	37.9	20.2	24.1	19.3	16.1
Predicted Noise Level		Oct, dB	01.2	00.4	68.8	31.7	30.4	67.6	39.3	55.0	57.4	49.0	31.3	38.5	24.1	19.3	21.0
i redicted Noise Level		Oct, ab	10.66	23.7		17 1	28.2	40.02	36.8	35.9	35.5	35.6	27		175	15.078	
			11.63		55.6		668							90.4		32.195	
l _i		dB(A)		_50	55.0	00.0	550	.0077		5550	5576	5551	555	55.4	55.0	02.100	. 5.5
L _{max}		dB(A)	-														
L _{eq,30mins}		` '	32.0 45														
Noise Criteria		dB(A)															
Compliance			Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) $(3dB(A)\ correction\ is\ added\ to\ L_{eq,30mins}\ for\ leading\ and\ trailing\ effect\ for\ conservative\ approaches.)$
- [6] $L_{eq,30 mins}$ is based on train frequency of 6 trains per 30 mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-19-1

Location: Lung Cheung Gov. Secondary School

Assessed Floor 0 34 Item:

		main opc	ou. So kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	38	24	45
Down Track	55	24	60

Selected LSR Details:

Train Speed:

LSR Ref.
DIH-P1-1
DIH-P1-1

an knh

			Frequency (Hz) 20 25 32 40 50 63 80 100 125 160 200 250 315 400 5														
Description	Unit		20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																	
FDL	dB re 1 lb/in	0.5	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N N															
	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Type 0															
LSR	dB re 10 ⁻⁶ in/	/s*in ^{0.5} /lb	4.2	7.8	-2.8	-6.0	2.0	6.2	-3.5	-8.8	-11.9	-9.7	-18.7	-26.6	-26.5	-32.2	-32.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/	/sec	41.7	49.4	37.7	32.5	39.6	47.7	41.1	36.8	33.6	31.8	21.8	12.9	10.0	5.3	2.3
Down Track Calculation																	
FDL	dB re 1 lb/in	0.5	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB	Y/N N															ı
TIL	dB	Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB	Type 0															ı
LSR	dB re 10 ⁻⁶ in/	/s*in ^{0.5} /lb	0.3	7.2	-4.1	-7.6	1.3	5.5	-4.2	-11.3	-13.8	-11.0	-20.2	-29.2	-27.5	-34.6	-32.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/	/sec	37.8	48.7	36.4	30.9	38.8	47.0	40.3	34.3	31.7	30.5	20.3	10.4	9.1	2.9	1.8
Total of Up and Down 1	racks Calci	ulation															
Total Vibration Level Out	side Building	1	43.2	52.1	40.1	34.8	42.2	50.4	43.7	38.7	35.8	34.2	24.1	14.8	12.6	7.3	5.1
BCF	dB	Y/N 0															ı
· · · · · · · · · · · · · · · · · · ·		Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
	dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level		1/3 Oct, dB		70.1	58.1	52.8	60.0	67.8	60.9	55.7		50.2	39.1	28.8	25.6	20.0	17.8
Predicted Noise Level		Oct, dB			70.4			69.2			58.2			39.7			22.1
L _{max}		dB(A)															
L _{eq,30mins}		dB(A)	36[8]														
Noise Criteria		dB(A)	55[9]														
Compliance			Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-20-1

Location: Baptist Rainbow Primary School

Assessed Floor 0 35 Item:

		main opec	a. 30 kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	95	45	105
Down Track	80	45	92

Selected LSR Details:

Train Speed:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

an knh

	T							Erogi	uency	(Uz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	JUnit	20	25	32	40	50	03	00	100	125	100	200	250	313	400	500
	I 0.5	07.5	44.5	40.5	00.5		44.5		45.5	45.5	44.5	10.5	00.5	00.5		0.1.5
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.5	5.5	-3.5	-11.0	-12.9	-12.2	-23.9	-22.6	-10.1	-11.4	-10.8	-16.5	-11.1	-12.7	-17.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.0	47.0	37.0	27.5	24.7	29.3	20.6	22.9	35.4	30.1	29.7	23.0	25.4	24.8	17.2
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.7	5.6	-3.2	-10.5	-12.3	-11.8	-22.6	-20.9	-9.5	-11.1	-10.4	-15.6	-10.1	-12.0	-16.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.2	47.1	37.3	28.1	25.2	29.7	21.9	24.6	36.0	30.4	30.1	23.9	26.4	25.5	17.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	48.1	50.1	40.2	30.8	28.0	32.5	24.3	26.8	38.7	33.3	33.0	26.5	29.0	28.2	20.4
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		68.1	58.2	48.8	45.8	49.9	41.5	43.8	55.5	49.3	48.0		42.0	40.9	33.1
Predicted Noise Level	Oct, dB			68.5			51.8			56.7			49.5			41.6
L _{max}	dB(A)	45.2														
L _{eq,30mins}	dB(A)	35[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														
	lation has been applied t			-												

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-21-1

Location: Tin Wang Court Wang King House

Assessed Floor 36 Item:

			Train Spee	ed: 90 kph
		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
U	p Track	25	45	51
Do	wn Track	45	45	64

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0			-0-		- 00	00	- 00	.00	0	.00			0.0		1000
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-1.8	-8.3	-9.9	-10.4	-17.0	-14.1	-6.9	-9.7	-8.6	-11.8	-5.9	-9.1	-15.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.8	47.6	38.7	30.2	27.6	31.2	27.5	31.4	38.6	31.8	31.9	27.7	30.7	28.5	19.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.9	-2.3	-9.0	-10.7	-10.9	-18.9	-16.4	-7.8	-10.2	-9.2	-13.1	-7.3	-10.1	-15.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.6	47.4	38.2	29.5	26.8	30.7	25.6	29.1	37.7	31.4	31.3	26.4	29.2	27.5	18.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.7	50.5	41.5	32.9	30.2	33.9	29.7	33.4	41.2	34.6	34.6	30.1	33.0	31.0	22.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
.	100:															
Predicted Noise Level	1/3 Oct, dB		66.5	57.5	48.9	46.0	49.3	44.9	48.4	56.0	48.6	47.6		44.0	41.7	32.9
Predicted Noise Level	Oct, dB			67.1			51.9			57.3			50.0			42.2
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-22-1

Location: Price Memorial Catholic Primary School

Assessed Floor 0 37 Item:

		man opc	cu. oo kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	80	40	89
Down Track	95	40	103

Selected LSR Details:

Train Speed:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

an knh

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIIC	20	20	02	70	00	00	00	100	120	100	200	200	010	700	000
	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N	00			00.0	01.0			.0.0	.0.0			00.0	00.0	00	0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.7	5.6	-3.1	-10.3	-12.1	-11.7	-22.3	-20.5	-9.3	-11.0	-10.3	-15.4	-9.8	-11.8	-16.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.2	47.1	37.4	28.2	25.4	29.8	22.3	25.0	36.2	30.5	30.3	24.1	26.7	25.7	17.7
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.5	5.5	-3.5	-10.9	-12.8	-12.1	-23.7	-22.3	-10.0	-11.4	-10.7	-16.4	-11.0	-12.6	-17.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.1	47.0	37.0	27.6	24.7	29.4	20.8	23.2	35.5	30.1	29.8	23.1	25.6	24.9	17.2
Total of Up and Down 1	Tracks Calculation															
Total Vibration Level Out	side Building	48.1	50.1	40.2	30.9	28.1	32.6	24.6	27.2	38.8	33.3	33.0	26.7	29.2	28.4	20.5
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		68.1	58.2	48.9	45.9	50.0	41.8	44.2	55.6	49.3	48.0		42.2	41.1	33.2
Predicted Noise Level	Oct, dB			68.6			51.9			56.8			49.6			41.7
L _{max}	dB(A)	45.3														
L _{eq,30mins}	dB(A)	35[8]														
Noise Criteria	dB(A)	55[9]														
Compliance	, 1	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-23-1

Location: Tin Ma Court Chun On House

Assessed Floor 38 Item:

		Train Spee	ed: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	100	40	108
Down Track	115	40	122

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			OL.	10	00	00	00	100	120	100	200	200	010	100	000
	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-6.5	6.0	-6.5	-10.5	-0.1	4.1	-5.5	-15.7	-17.3	-13.2	-22.8	-33.6	-29.2	-38.8	-33.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.1	47.6	34.0	28.0	37.4	45.7	39.0	29.9	28.2	28.3	17.7	5.9	7.4	-1.3	0.9
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-7.9	5.8	-7.0	-11.1	-0.4	3.9	-5.7	-16.6	-18.0	-13.7	-23.3	-34.5	-29.5	-39.7	-33.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	29.7	47.3	33.6	27.4	37.1	45.4	38.8	28.9	27.5	27.8	17.2	5.0	7.0	-2.2	0.7
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	33.4	50.5	36.8	30.7	40.2	48.5	41.9	32.4	30.9	31.1	20.5	8.5	10.2	1.3	3.8
	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		66.5	52.8	46.7	56.0	63.9	57.1	47.4	45.7	45.1	33.5		21.2	12.0	14.5
Predicted Noise Level	Oct, dB			66.7			65.3			51.0			33.9			16.6
L _{max}	dB(A)	41.5														
L _{eq,30mins}	dB(A)	28.6														
Noise Criteria	dB(A)	45														
Compliance	, 1	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-24-1

Location: Shing Wong Temple

Assessed Floor 39 Item:

		Train Spec	ed: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	28	28
Down Track	5	28	28

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																1
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.6	50.2	39.4	34.6	40.6	48.7	42.0	40.0	36.1	33.5	23.7	16.1	11.3	8.4	3.0
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.6	50.2	39.4	34.6	40.6	48.7	42.0	40.0	36.1	33.5	23.7	16.1	11.3	8.4	3.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		49.6	53.2	42.4	37.6	43.6	51.7	45.0	43.0	39.2	36.5	26.7	19.1	14.3	11.4	6.0
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	05.0	20.0	58.4	50.0	59.4	07.4	60.2	58.0	54.0	50.5	00.7	04.4	25.3	00.4	40.7
Predicted Noise Level	1/3 Oct, dB Oct, dB		69.2	69.7	53.6	59.4	67.1 68.5	60.2	58.0	60.0	50.5	39.7	31.1 40.4	25.3	22.1	16.7 23.2
	,			09.7			00.3			00.0			40.4			23.2
Lmax	dB(A)															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-P1-1

Location: Upper Wong Tai Sin Estate Phase 3

Assessed Floor 2 40 Item:

		Train Spee	d: 90 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	19	34	39
Down Track	10	30	32

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

	_							Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0			0_						0	.00			0.0		- 000
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.3	8.0	-2.4	-5.6	2.3	6.4	-3.2	-8.0	-11.3	-9.3	-18.3	-25.9	-26.2	-31.5	-32.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.8	49.6	38.1	33.0	39.8	48.0	41.3	37.5	34.2	32.2	22.2	13.6	10.3	6.0	2.5
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	37.5	41.5	40.5	38.5	37.5	41.5	44.5	45.5	45.5	41.5	40.5	39.5	36.5	37.5	34.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.1	49.9	38.9	33.9	40.3	48.4	41.7	39.0	35.4	33.0	23.1	15.1	10.9	7.4	2.8
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	47.1	52.8	41.5	36.5	43.0	51.2	44.5	41.3	37.8	35.6	25.7	17.4	13.6	9.8	5.7
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
.	166:															
Predicted Noise Level	1/3 Oct, dB		66.8	55.5	50.5	56.8	64.6	57.7	54.3	50.6	47.6	36.7		22.6	18.5	14.4
Predicted Noise Level	Oct, dB			67.2			66.0			56.5			37.3			20.0
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: DIH-P3-1A

Location: Planned receivers in the CDA site

Assessed Floor 2 41 Item:

		Train Spee	d: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	30	26	40
Down Track	10	26	28

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.0	8.0	-2.5	-5.7	2.2	6.4	-3.3	-8.2	-11.5	-9.4	-18.4	-26.1	-26.3	-31.7	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.0	41.0	29.5	24.3	31.2	39.4	32.7	28.8	25.5	23.6	13.6	4.9	1.7	-2.7	-6.1
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.1	41.7	30.9	26.1	32.1	40.2	33.5	31.5	27.6	25.0	15.1	7.6	2.8	-0.1	-5.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	39.5	44.4	33.3	28.3	34.7	42.8	36.1	33.3	29.7	27.3	17.4	9.5	5.3	1.8	-2.8
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		58.4	47.3	42.3	48.5	56.2	49.3	46.3	42.5	39.3	28.4		14.3	10.5	5.9
Predicted Noise Level	Oct, dB			58.8			57.6			48.4			29.1			12.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	24.1														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: DIH-P3-2A

Location: Planned receivers in the CDA site

Assessed Floor 2 42 Item:

		Train Spee	d: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	30	28	41
Down Track	10	28	30

Selected LSR Details:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

			Frequency (Hz)													
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.3	-1.2	-7.3	-8.8	-9.7	-14.4	-10.9	-5.7	-9.0	-7.8	-10.1	-3.9	-7.7	-14.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.5	39.3	30.8	22.7	20.2	23.3	21.6	26.1	31.3	24.0	24.2	20.9	24.1	21.3	11.9
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.8	39.5	31.6	23.9	21.5	24.1	24.7	30.0	32.8	24.8	25.2	23.1	26.5	22.9	12.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	40.7	42.4	34.2	26.4	23.9	26.8	26.4	31.5	35.2	27.4	27.7	25.1	28.5	25.2	15.4
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B	1/0.0 :															
Predicted Noise Level	1/3 Oct, dB		56.4	48.2	40.4	37.7	40.2	39.6	44.5	48.0	39.4	38.7		37.5	33.9	24.1
Predicted Noise Level	Oct, dB			57.1			44.1			50.0			42.1			34.3
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	26.9														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: DIH-P3-4

Location: Planned receivers in the CDA site

Assessed Floor 1 Item: 1

		Train Spee	ed: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	18	18
Down Track	0	18	18

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

								Erog	uency	/U-\						
					40					` ′	100		0=0	0.45	100	1 = 0.0
	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	14.2	9.5	0.7	-1.8	4.1	8.2	-1.5	-2.2	-6.8	-6.3	-14.9	-20.1	-23.9	-26.0	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.2	47.5	37.7	33.2	38.1	46.2	39.5	39.8	35.2	31.7	22.1	15.9	9.1	8.0	0.1
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	14.2	9.5	0.7	-1.8	4.1	8.2	-1.5	-2.2	-6.8	-6.3	-14.9	-20.1	-23.9	-26.0	-30.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.2	47.5	37.7	33.2	38.1	46.2	39.5	39.8	35.2	31.7	22.1	15.9	9.1	8.0	0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	side Building	51.2	50.6	40.7	36.2	41.1	49.2	42.5	42.8	38.2	34.7	25.1	19.0	12.1	11.1	3.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	67.2	66.6	56.7	52.2	56.9	64.6	57.7	57.8	53.0	48.7	38.1	31.0	23.1	21.8	13.9
Predicted Noise Level	Oct, dB			67.1			66.0			59.4			39.0			22.4
L _{max}	dB(A)	44.9														
L _{eq.30mins}	dB(A)	33.7														
Noise Criteria	dB(A)	45														
Compliance	(.7	Yes														
	lation has been applied to															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)
- [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-1

Location: Residential premises near Kai Tak Station

Assessed Floor 2 43 Item:

		Train Spee	ed: 35 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	75	15	76
Down Track	90	15	91

Selected LSR Details:

LSR Ref.
KAT-P1-5
KAT-P1-5

								Erogi	uency	/U-1						
Description	1.1-:4	20	05	20	40	50		80		125	160	200	250	315	400	F00
Description Up Track Calculation	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
	05															
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-19.8	-0.4	-4.1	-12.3	-18.2	-17.2	-23.9	-30.3	-33.9	-35.2	-33.5	-38.1	-30.6	-37.5	-39.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.5	27.9	23.2	13.1	6.1	11.1	7.5	2.0	-1.6	-6.9	-6.2	-11.8	-7.3	-13.2	-18.3
Down Track Calculatio		-														
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-23.0	-2.1	-5.8	-14.4	-21.0	-20.3	-27.2	-33.9	-37.4	-38.0	-35.3	-39.5	-31.1	-37.8	-40.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	11.4	36.2	31.5	20.9	13.3	18.0	14.2	8.4	5.0	0.3	2.0	-3.1	2.2	-3.5	-8.8
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	12.2	36.8	32.1	21.6	14.0	18.8	15.0	9.3	5.8	1.1	2.6	-2.6	2.7	-3.1	-8.4
BCF	dB Y/N 0															l
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
						-		-							-	
Predicted Noise Level	1/3 Oct, dB		50.8	46.1	35.6	27.8	32.2	28.2	22.3	18.6	13.1	13.6	7.4	11.7	5.6	0.3
Predicted Noise Level	Oct, dB			52.2			34.7			24.2			16.4			7.6
L _{max}	dB(A)	15.4														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														
	lation has been applied to															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: KAT-P1-2 Location: One Kai Tak **Assessed Floor** 4 Item: 44

		rain Spec	ea: 50 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	75	15	76
Down Track	90	15	91

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

	ı							Erog	uency	/U-\						
					1 40					` '	100	000	0=0	0.45	100	1 = 0.0
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0.5															
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-19.8	-0.4	-4.1	-12.3	-18.2	-17.2	-23.9	-30.3	-33.9	-35.2	-33.5	-38.1	-30.6	-37.5	-39.7
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	7.6	31.0	26.3	16.2	9.2	14.2	10.6	5.1	1.5	-3.8	-3.1	-8.7	-4.2	-10.1	-15.2
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-23.0	-2.1	-5.8	-14.4	-21.0	-20.3	-27.2	-33.9	-37.4	-38.0	-35.3	-39.5	-31.1	-37.8	-40.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.4	29.3	24.6	14.0	6.4	11.1	7.3	1.5	-2.0	-6.6	-4.9	-10.1	-4.7	-10.4	-15.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	9.3	33.2	28.6	18.2	11.0	16.0	12.2	6.7	3.1	-2.0	-0.9	-6.3	-1.4	-7.2	-12.5
BCF	dB Y/N 0															
BVR-up	dB Floor 4	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		43.2		28.2	20.8	25.4	21.4	15.7		6.0	6.1	-0.3	3.6	-2.5	-7.8
Predicted Noise Level	Oct, dB			44.6			27.8			17.5			8.6			2.4
L _{max}	dB(A)	8.1														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														
	lation has been applied t					_		_	_				_		_	

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-3

Location: Residential premises near Kai Tak Station

Assessed Floor 2 45 Item:

		ed: 70 kph	
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	55	15	57
Down Track	70	15	72

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	50	03	00	100	123	100	200	230	313	400	300
FDL	JD 4 Jb /:= 0.5	35.3	20.2	20.2	36.3	25.2	39.3	42.3	12.2	43.3	20.2	20.2	27.2	24.2	35.3	32.3
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	35.3	39.3	38.3	30.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
TIL	dB Y/N N dB Type 0	0	0	^	0	0	0	0	^	^	^	^	0	0	0	_
TCF	dB Type 0	0 -3														
TOC		-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
LSR	dB Type 0 dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-14.7	2.3	-1.4	0.0	12.7	-12.3	10.6	24.6	20.4	20.0	20 E	25.0	-29.8	-36.9	-38.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	17.6	38.7	34.0	24.5	18.6	24.1	20.7	15.7	12.0	5.5	4.8	-1.6	1.5	-4.6	-9.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-18.8	0.1	-3.6	-11.6	-17.4	-16.3	-22.9	-29.2	-32.9	-34.4	-32.9	-37.7	-30.5	-37.4	-39.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	13.5	36.4	31.8	21.7	15.0	20.1	16.5	11.1	7.5	1.9	2.4	-3.4	0.9	-5.1	-10.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	19.0	40.7	36.0	26.3	20.2	25.5	22.1	17.0	13.3	7.1	6.8	0.6	4.2	-1.8	-6.8
BCF	dB Y/N 0															l
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	33.0	54.7	50.0	40.3	34.0	38.9	35.3	30.0	26.1	19.1	17.8	10.6	13.2	6.9	1.9
Predicted Noise Level	Oct, dB			56.1			41.4			31.7			19.7			8.7
L _{max}	dB(A)	20.7														
L _{ea.30mins}	dB(A)	<20														
Noise Criteria	dB(A)															
Compliance	u=(,,)	Yes														
	lation has been applied to															

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-4

Location: Residential premises near Kai Tak Station

Assessed Floor 2 46 Item:

		Train Spee	d: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	80	15	81
Down Track	65	15	67

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-20.9	-1.0	-4.7	-13.0	-19.2	-18.3	-25.0	-31.6	-35.1	-36.2	-34.1	-38.6	-30.8	-37.6	-39.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	8.8	32.7	28.0	17.7	10.5	15.4	11.7	6.1	2.6	-2.5	-1.4	-6.9	-2.1	-7.9	-13.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-17.6	8.0	-2.9	-10.8	-16.2	-15.0	-21.6	-27.8	-31.5	-33.3	-32.2	-37.2	-30.3	-37.3	-39.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	12.1	34.5	29.8	19.9	13.4	18.7	15.1	9.9	6.2	0.4	0.5	-5.5	-1.6	-7.6	-12.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		13.8	36.7	32.0	22.0	15.2	20.3	16.8	11.4	7.8	2.2	2.7	-3.1	1.2	-4.7	-9.9
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	aB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	27.8	50.7	46.0	36.0	29.0	33.7	30.0	24.4	20.6	14.2	13.7	6.9	10.2	4.0	-1.2
Predicted Noise Level	Oct, dB		30.7	52.1	30.0	23.0	36.2	30.0	44.4	26.2	14.2	13.7	15.9	10.2	4.0	6.3
	dB(A)			J2.1			50.2			20.2			10.5			0.0
L _{max}	dB(A)	<20														
L _{eq,30mins}	` '															
Noise Criteria	dB(A)															
Compliance	la Carabasa basa sa ang Pasik	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-5

Location: Mun Ching House, Kai Ching Estate

Assessed Floor 1 47 Item:

		Train Spee	ed: 60 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	13	14	19
Down Track	25	14	29

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.6	12.8	9.0	4.1	3.5	6.5	1.5	-2.8	-7.2	-14.2	-19.3	-27.7	-26.9	-34.8	-36.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.6	50.8	46.0	39.1	37.5	44.5	42.5	39.2	34.8	23.8	17.7	8.3	6.1	-0.8	-5.0
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-2.8	8.7	5.0	-0.9	-3.1	-0.7	-6.3	-11.2	-15.3	-20.6	-23.7	-30.9	-28.0	-35.6	-37.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.2	46.7	42.0	34.1	30.9	37.3	34.7	30.8	26.7	17.4	13.3	5.1	5.0	-1.6	-6.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	39.3	52.2	47.4	40.3	38.4	45.3	43.1	39.7	35.4	24.7	19.0	10.0	8.6	1.8	-2.5
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Baratara de Martara de Cara	4/0.0 : 15		20.5	•• •	=0.6			50 6		50 6	20 5	20.5		40.0	40.5	2.5
Predicted Noise Level	1/3 Oct, dB		68.2	63.4	56.3	54.2	60.7	58.3	54.7	50.2	38.7	32.0		19.6	12.5	8.2
Predicted Noise Level	Oct, dB			69.7			63.3			56.1			32.7			14.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-6

Location: Tower H3, De Novo

Assessed Floor 1 Item: 48

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	93	15	94
Down Track	80	15	81

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

								Frequ	uency	(H ₇)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	25	32	40	30	03	60	100	123	100	200	250	313	400	300
	ID 4 II 7: 0.5	00.0	07.0	00.0	040	00.0	07.0	40.0	44.0	44.0	07.0	00.0	05.0	00.0	00.0	00.0
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-23.5	-2.4	-6.1	-14.8	-21.6	-20.8	-27.7	-34.5	-38.0	-38.5	-35.6	-39.7	-31.2	-37.9	-40.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	16.7	41.8	37.2	26.5	18.7	23.4	19.5	13.7	10.3	5.8	7.6	2.5	8.0	2.3	-3.0
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-20.9	-1.0	-4.7	-13.0	-19.2	-18.3	-25.0	-31.6	-35.1	-36.2	-34.1	-38.6	-30.8	-37.6	-39.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	19.3	43.2	38.6	28.2	21.0	26.0	22.2	16.7	13.1	8.0	9.1	3.7	8.4	2.6	-2.6
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	21.2	45.6	40.9	30.5	23.0	27.9	24.1	18.4	14.9	10.1	11.4	6.1	11.3	5.5	0.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
						-			-					-		
Predicted Noise Level	1/3 Oct, dB		61.6	56.9	46.5	38.8	43.3	39.3	33.4	29.7	24.1	24.4		22.3	16.2	10.9
Predicted Noise Level	Oct, dB			63.0			45.7			35.3			27.1			17.4
L _{max}	dB(A)	26.3														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance	(. 7	Yes														
	lation has been applied t															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: KAT-P1-7

Location: Residential premises near Kai Tak Station

Assessed Floor 2 49 Item:

		Train Spee	ed: 75 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	20	20
Down Track	0	20	20

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-7
Down Track	KAT-P1-7

Up Track Calculation FDL dE CCF dE TIL dE TCF dE TOC dE	B Type 0	20 35.9 0		38.9	36.9	50 35.9	63	80	100	125	160	200	250	315	400	500
FDL dE CCF dE TIL dE TCF dE TOC dE	B Y/N N B Type 0 B	0		38.9	36.9	25.0										
CCF dE TIL dE TCF dE TOC dE	B Y/N N B Type 0 B	0		38.9	36.9	25.0										
CCF dE TIL dE TCF dE TOC dE	B Y/N N B Type 0 B	-				33.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
TCF dE	В	-														
TOC dE			0	0	0	0	0	0	0	0	0	0	0	0	0	0
	D Tuno 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LSR dE	. /															
	B re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.2	14.3	10.2	7.7	6.4	4.5	6.1	1.9	-1.9	-5.6	-12.8	-16.6	-24.5	-29.7	-36.5
Up Track Vib. Level dE	B re 10 ⁻⁶ in/sec	47.1	54.2	49.1	44.7	42.3	44.4	49.0	45.8	42.1	34.3	26.1	21.3	10.5	6.2	-3.5
Down Track Calculation																
FDL dE	B re 1 lb/in ^{0.5}	35.9	39.9	38.9	36.9	35.9	39.9	42.9	43.9	43.9	39.9	38.9	37.9	34.9	35.9	32.9
CCF dE	B Y/N N															
TIL dE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF dE		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC dE	- 75															
LSR dE	B re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.2	14.3	10.2	7.7	6.4	4.5	6.1	1.9	-1.9	-5.6	-12.8	-16.6	-24.5	-29.7	-36.5
Down Track Vib. Level dE	B re 10 ⁻⁶ in/sec	47.1	54.2	49.1	44.7	42.3	44.4	49.0	45.8	42.1	34.3	26.1	21.3	10.5	6.2	-3.5
Total of Up and Down Tra	acks Calculation															
Total Vibration Level Outsid		50.1	57.2	52.1	47.7	45.3	47.4	52.1	48.8	45.1	37.4	29.1	24.3	13.5	9.2	-0.5
BCF dE	.,,,,															
BVR-up dE		-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance dE		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN dE		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF dE	В	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dec Para I Nata I and	4/0.0-1.10	211	=4.0	20.4	24 =	50. 4					40.4	10.1	242			
Predicted Noise Level	1/3 Oct, dB	64.1	71.2		61.7	59.1	60.8	65.3	61.8	57.9	49.4	40.1	34.3	22.5	17.9	8.2
Predicted Noise Level	Oct, dB	40.5		72.7			67.3			63.4			41.2			18.4
L _{max}	dB(A)	48.5														
L _{eq,30mins}	dB(A)	36.3														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: TKW-1-1 Location: Parc 22 **Assessed Floor** 50 Item:

		Train Spee	ed: 70 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	85	13	86
Down Track	90	20	92

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-22.0	-1.6	-5.2	-13.7	-20.2	-19.3	-26.1	-32.8	-36.3	-37.1	-34.7	-39.0	-31.0	-37.7	-40.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	13.4	37.7	33.1	22.6	15.2	20.0	16.2	10.6	7.1	2.2	3.6	-1.7	3.4	-2.4	-7.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-4.6	6.4	-5.8	-9.7	0.2	4.5	-5.1	-14.5	-16.4	-12.6	-22.1	-32.4	-28.7	-37.7	-33.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.7	45.7	32.5	26.6	35.6	43.8	37.2	28.9	27.0	26.7	16.3	4.9	5.6	-2.3	-1.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	30.8	46.3	35.8	28.1	35.6	43.9	37.3	28.9	27.0	26.7	16.5	5.8	7.7	0.6	-0.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barrier de Martan de Contra	4/0.0 : 15	40.5	20.5	=4.6		-4 :	50. 6	===	10.5		10 =			40.5	44.6	40 =
Predicted Noise Level	1/3 Oct, dB		62.3	51.8	44.1	51.4	59.3	52.5	43.9	41.8	40.7	29.5	17.8	18.7	11.3	10.5
Predicted Noise Level	Oct, dB			62.8			60.6			47.1			30.1			14.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance	In Control by a second Post of	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: TKW-1-2 Location: Sanford Mansion **Assessed Floor** 51 Item:

		i rain Spec	∍a: /∪ kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	95	12	96
Down Track	95	23	98

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	35.3	30.3	38 3	36.3	35.3	39.3	42.3	43.3	13.3	30.3	38 3	37.3	3/1/3	35.3	32.3
CCF	dB Y/N N	33.3	39.3	30.3	30.3	33.3	39.3	42.3	43.3	43.3	39.3	30.3	31.3	34.3	33.3	32.3
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0		·	ŭ	·	ŭ	ŭ	ŭ	Ŭ	Ū	ŭ	ŭ	·	Ŭ	ŭ	Ū
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-23.9	-2.6	-6.3	-15.0	-21.9	-21.2	-28.1	-34.9	-38.4	-38.8	-35.9	-39.9	-31.3	-38.0	-40.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	11.4	36.7	32.1	21.3	13.5	18.1	14.2	8.4	4.9	0.6	2.5	-2.5	3.1	-2.6	-7.9
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-5.3	6.2	-6.1	-10.0	0.1	4.4	-5.3	-14.9	-16.7	-12.9	-22.4	-32.9	-28.9	-38.1	-33.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.0	45.6	32.2	26.3	35.4	43.7	37.1	28.4	26.6	26.5	16.0	4.5	5.5	-2.8	-1.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	side Building	30.1	46.1	35.2	27.5	35.4	43.7	37.1	28.4	26.6	26.5	16.2	5.2	7.4	0.3	-0.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		62.1	51.2	43.5	51.2	59.1	52.3	43.4	41.4	40.5	29.2		18.4	11.0	10.4
Predicted Noise Level	Oct, dB			62.5			60.5			46.7			29.8			13.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	25.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: TKW-2-1

Skytower Tower 1 Location: **Assessed Floor** 5 52 Item:

		Train Spee	ed: 70 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	140	13	141
Down Track	140	20	141

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-30.7	-6.3	-9.9	-19.6	-27.9	-27.8	-35.2	-42.6	-45.8	-44.6	-39.8	-42.8	-32.3	-38.7	-41.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.7	33.0	28.4	16.8	7.4	11.6	7.2	0.8	-2.5	-5.3	-1.4	-5.4	2.0	-3.4	-9.0
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-9.5	5.5	-7.5	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.6	-29.9	-40.7	-34.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	25.8	44.9	30.8	24.5	34.6	42.9	36.3	25.7	24.5	25.1	14.4	1.7	4.4	-5.4	-1.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	25.8	45.1	32.8	25.2	34.6	42.9	36.3	25.7	24.5	25.1	14.5	2.5	6.4	-1.3	-0.9
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		53.1	40.8	33.2	42.4	50.3	43.5	32.7		31.1	19.5	6.5	9.4	1.4	1.8
Predicted Noise Level	Oct, dB			53.4			51.7			36.5			20.1			5.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: TKW-2-2 Location: Skytower Tower 2

Assessed Floor 5 53 Item:

		i rain Spe	∍a: /∪ kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	140	12	141
Down Track	140	23	142

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	35.3	30.3	38 3	36.3	35.3	39.3	42.3	13.3	43.3	30.3	38.3	37 3	3/1/3	35.3	32.3
CCF	dB Y/N N	33.3	39.3	30.3	30.3	33.3	39.3	42.3	43.3	43.3	39.3	30.3	31.3	34.3	33.3	32.3
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0		·	ŭ	·	ŭ	ŭ	·	ŭ	Ū	Ů	ŭ	·	ŭ	Ŭ	ŭ
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-30.7	-6.3	-9.9	-19.6	-27.9	-27.8	-35.2	-42.6	-45.8	-44.6	-39.8	-42.8	-32.3	-38.7	-41.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.7	33.0	28.4	16.8	7.4	11.6	7.2	8.0	-2.5	-5.3	-1.4	-5.4	2.0	-3.4	-9.0
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-9.6	5.5	-7.6	-11.8	-0.8	3.5	-6.1	-17.7	-18.9	-14.3	-24.0	-35.7	-30.0	-40.8	-34.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	25.7	44.8	30.8	24.5	34.5	42.9	36.3	25.6	24.4	25.1	14.3	1.6	4.4	-5.5	-1.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	25.8	45.1	32.8	25.2	34.5	42.9	36.3	25.6	24.4	25.1	14.5	2.4	6.4	-1.3	-0.9
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		53.1	40.8	33.2	42.3	50.3	43.5	32.6		31.1	19.5	6.4	9.4	1.4	1.8
Predicted Noise Level	Oct, dB			53.4			51.6			36.5			20.1			5.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: TKW-2-3 Location: Skytower Tower 7

Assessed Floor 5 54 Item:

		i rain Spe	∍a: /∪ kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	235	15	235
Down Track	260	27	261

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	I							Erogi	uency	(H ₂)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	215	400	500
Up Track Calculation	Unit	20	25	32	40	50	03	60	100	125	160	200	250	313	400	500
FDL	JD 4 II. C . 0.5	35.3	20.2	20.2	36.3	35.3	39.3	42.3	40.0	43.3	20.2	20.2	27.2	24.2	35.3	32.3
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	35.3	39.3	38.3	30.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
TIL	*	0	0	^	0	^	_	0	^	0	^	^	^	0	0	0
TCF	dB Type 0 dB	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5	0 -5
TOC	dB Type 0	-5	-5	-5	-5	-5	-0	-5	-5	-5	-5	-5	-5	-0	-5	-5
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.4	4.5	-9.6	-14.3	-2.0	2.4	-7.2	-21.5	-21.9	-16.2	-26.2	-39.5	-31.4	-44.4	-34.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	14.9			17.1		36.7		16.8						-14.1	-7.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	35.3	39.3	38.3	36.3	35.3	39.3	42.3	43.3	43.3	39.3	38.3	37.3	34.3	35.3	32.3
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.6	4.3	-10.0	-14.8	-2.2	2.2	-7.4	-22.3	-22.5	-16.6	-26.7	-40.3	-31.7	-45.2	-34.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	13.7	38.6	23.3	16.5	28.1	36.5	29.9	16.0	15.9	17.7	6.7	-8.0	-2.4	-14.8	-7.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	17.4	41.8	26.6	19.8	31.2	39.6	33.1	19.5	19.2	20.9	9.9	-4.5	0.8	-11.4	-4.5
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Lavel	4/2 Oct -ID	05.4	40.0	04.0	07.0	20.0	47.0	40.0	00.5	00.0	20.0	44.0	0.5			
Predicted Noise Level Predicted Noise Level	1/3 Oct, dB	-	49.8	34.6 49.9	27.8	39.0	47.0	40.3	26.5	26.0 31.3	26.9	14.9	-0.5 15.3	3.8	-8.7	-1.8 2.5
	Oct, dB			49.9			48.4			31.3			15.3			2.5
∟ _{max}	dB(A)															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: TKW-3-1 Location: Prince Ritz **Assessed Floor** 5 55 Item:

		rain Spec	ea: 20 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	235	23	236
Down Track	255	23	256

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•	•	•			<u> </u>					•		•			
FDL	dB re 1 lb/in ^{0.5}	24.5	28.5	27.5	25.5	24.5	28.5	31.5	32.5	32.5	28.5	27.5	26.5	23.5	24.5	21.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.5	4.5	-9.6	-14.3	-2.0	2.4	-7.2	-21.5	-21.9	-16.2	-26.2	-39.5	-31.4	-44.4	-34.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	4.0	28.0	12.9	6.2	17.5	25.8	19.3	5.9	5.6	7.2	-3.8	-18.1	-13.0	-25.0	-18.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	24.5	28.5	27.5	25.5	24.5	28.5	31.5	32.5	32.5	28.5	27.5	26.5	23.5	24.5	21.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.4	4.3	-9.9	-14.7	-2.2	2.2	-7.4	-22.1	-22.4	-16.6	-26.6	-40.2	-31.7	-45.0	-34.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	3.0	27.8	12.5	5.8	17.3	25.7	19.1	5.3	5.1	6.9	-4.1	-18.7	-13.2	-25.6	-18.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		6.5	30.9	15.7	9.0	20.4	28.8	22.2	8.6	8.4	10.1	-0.9	-15.4	-10.1	-22.3	-15.4
BCF	dB Y/N 0															
BVR-up	dB Floor 5	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/2 Oat dD	14.5	38.9	23.7	17.0	28.2	36.2	29.4	15.6	15.2	16.1	4.1	-11.4	-7.1	-19.6	-12.7
Predicted Noise Level	1/3 Oct, dB Oct, dB		38.9	39.1	17.0	28.2	36.2 37.5	29.4	15.6	15.2 20.4	10.1	4.1	-11.4 4.5	-7.1	-19.0	-12.7 0.3
	dB(A)			3 9 . I			31.3			20.4			4.5			0.3
L _{max}																
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)															
Compliance	In Constitution of the Con	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: TKW-3-2 Location: Prosperity House

Assessed Floor 2 56 Item:

		rrain Spee	ea: 45 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	250	23	251
Down Track	270	23	271

LSR Ref.
DIH-P1-1
DIH-P1-1

								Freq	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	JD 4 Jb /:= 0.5	31.5	2F F	215	32.5	21 5	35.5	38.5	20 E	39.5	25.5	24 5	22 E	20 E	31.5	28.5
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	31.5	33.5	34.5	32.5	31.5	35.5	30.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	20.5
TIL	dB Y/N N dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type 0	-5	-5	-5	-5	0 -5	0 -5	0 -5	-5	-5	0 -5	-5	0 -5	-5	0 -5	-5
TOC	dB Type 0	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-16.2	4.4	-9.8	-14.6	-2.2	2.2	-7.3	-22.0	-22.2	-16.5	-26.5	-40.0	-31.6	-44.9	-34.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	10.3	34.9	19.7	12.9	24.3	32.7	26.2	12.5	12.3	14.0	3.0	-11.5	-6.1	-18.4	-11.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-17.1	4.2	-10.1	-15.0	-2.3	2.1	-7.5	-22.6	-22.7	-16.8	-26.8	-40.6	-31.8	-45.4	-35.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	9.4	34.7	19.4	12.5	24.2	32.6	26.0	11.9	11.8	13.7	2.7	-12.1	-6.3	-18.9	-11.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	12.9	37.8	22.5	15.7	27.3	35.7	29.1	15.2	15.1	16.9	5.8	-8.8	-3.2	-15.6	-8.4
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dec Para I Nata I accel	4/0.0 - (.15)		=	20.5			10.1	40.0				40.0	4.0			
Predicted Noise Level	1/3 Oct, dB		51.8	36.5	29.7	41.1	49.1	42.3	28.2	27.9	28.9	16.8	1.2	5.8	-6.9	0.3
Predicted Noise Level	Oct, dB			52.0			50.4			33.1			17.3			3.6
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: TKW-P1-1

Location: Residential premises near To Kwa Wan Station

Assessed Floor 57 Item:

		Train Spee	ed: 45 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	35	22	41
Down Track	15	22	27

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•							•			•	•				•
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	4.7	7.9	-2.6	-5.8	2.2	6.3	-3.4	-8.4	-11.6	-9.5	-18.5	-26.3	-26.3	-31.9	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.2	38.4	26.9	21.7	28.7	36.8	30.1	26.1	22.9	21.0	11.0	2.2	-0.8	-5.4	-8.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.0	39.3	28.5	23.7	29.7	37.8	31.1	29.2	25.3	22.6	12.8	5.4	0.4	-2.4	-8.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	37.3	41.9	30.8	25.8	32.2	40.3	33.6	31.0	27.3	24.9	15.0	7.1	2.8	-0.6	-5.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Para di Mada a di assal	4/0.0-4.10			40.0	44.0	10.0		40.0	10.0	40.4			40.4	40.0	40.4	
Predicted Noise Level	1/3 Oct, dB		57.9	46.8	41.8	48.0	55.7	48.8	46.0	42.1	38.9	28.0	19.1	13.8	10.1	5.4
Predicted Noise Level	Oct, dB			58.3			57.1			48.0			28.7			11.7
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)	24.9														
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the con	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-6-1 Location: Fok On Building **Assessed Floor** 2 58 Item:

		Train Spec	ed: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	18	15	23
Down Track	12	24	27

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

	Frequency (Hz)															
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.4	9.1	-0.3	-3.0	3.5	7.6	-2.1	-4.1	-8.2	-7.3	-16.0	-21.9	-24.7	-27.7	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.1	47.8	37.4	32.7	38.2	46.3	39.6	38.6	34.5	31.4	21.7	14.8	9.0	7.0	0.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.2	47.5	36.7	31.9	37.8	46.0	39.3	37.4	33.5	30.8	21.0	13.6	8.6	5.8	0.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		48.3	50.6	40.1	35.3	41.0	49.2	42.4	41.1	37.0	34.1	24.4	17.2	11.8	9.5	3.4
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2.0-410	20.0	04.0	54.4	40.0	540	00.0	55.0		40.0	40.4	05.4	07.0	00.0	40.0	40.4
Predicted Noise Level	1/3 Oct, dB		64.6	54.1 65.1	49.3	54.8	62.6	55.6	54.1	49.8 55.9	46.1	35.4	27.2 36.1	20.8	18.2	12.1
	Oct, dB			05.1			63.9			33.9			30.1			19.2
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	30.6														
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the	Yes														

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: MTW-6-2

Location: HK Society for the Protection of Children

Assessed Floor 0 Item: 59

		main ope	oo kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	10	15	18
Down Track	17	24	29

Selected LSR Details:

Train Speed:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

65 knh

	Frequency (Hz)															
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•	•	•		•			•				•				
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.6	13.3	9.5	4.8	4.3	7.5	2.5	-1.8	-6.2	-13.4	-18.8	-27.3	-26.7	-34.7	-35.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.3	52.0	47.2	40.5	39.0	46.2	44.2	40.9	36.5	25.3	18.9	9.4	7.0	0.0	-4.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	8.6	-1.2	-4.1	3.0	7.1	-2.6	-5.8	-9.6	-8.2	-17.0	-23.7	-25.3	-29.4	-31.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	47.3	36.5	31.6	37.7	45.8	39.1	36.9	33.1	30.5	20.7	13.0	8.4	5.3	0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		45.1	53.2	47.5	41.0	41.4	49.0	45.3	42.4	38.2	31.7	22.9	14.6	10.7	6.4	1.5
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	00.4	74.0	05.5	50.0	50.0	00.4	00.5	FO 4		47.7	07.0	00.0	00.7	40.4	440
Predicted Noise Level	1/3 Oct, dB		71.2	65.5	59.0	59.2	66.4	62.5	59.4	55.0	47.7	37.9	28.6 38.5	23.7	19.1	14.2 20.4
	Oct, dB			72.5			68.4			60.9			38.5			20.4
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the	Yes	.P. c.													

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: MTW-6-3

Location: Chung Nam Mansion

Assessed Floor 2 Item: 60

		Train Spee	d: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	20	15	25
Down Track	20	27	34

Selected LSR Details:

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	DIH-P1-1	

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	45.1	47.6	37.0	32.3	38.0	46.1	39.4	38.0	34.0	31.1	21.3	14.2	8.8	6.4	0.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	47.0	35.8	30.8	37.3	45.4	38.8	35.7	32.2	29.9	20.0	11.8	7.9	4.2	-0.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.7	50.3	39.5	34.6	40.7	48.8	42.1	40.0	36.2	33.5	23.7	16.2	11.4	8.4	3.1
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Parka I Mada at 1	4/0.0 : 15		215	50. 5	10.5		20.5		50 6	10.0		245				44.5
Predicted Noise Level	1/3 Oct, dB		64.3	53.5	48.6	54.5	62.2	55.3	53.0	49.0	45.5	34.7	26.2	20.4	17.1	11.8
Predicted Noise Level	Oct, dB			64.8			63.6			55.0			35.4			18.3
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-6-4 Location: Pok Oi Lau **Assessed Floor** 0 61 Item:

		i rain Spe	∍a: 65 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	12	15	19
Down Track	12	27	30

LSR Ref.
DIH-P1-1
DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			UL.	10	00	00	00	100	120	100	200	200	0.0	100	000
	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34 7	38.7	41 7	42.7	42 7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	0	00	0	00	·	00				00	0	00	00	0	0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	13.6	9.4	0.4	-2.1	4.0	8.1	-1.7	-2.6	-7.1	-6.6	-15.1	-20.5	-24.1	-26.3	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	48.3	48.1	38.1	33.6	38.7	46.8	40.0	40.1	35.6	32.1	22.5	16.2	9.6	8.4	0.8
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	8.5	-1.4	-4.3	2.9	7.0	-2.7	-6.1	-9.8	-8.3	-17.2	-23.9	-25.4	-29.6	-31.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.0	47.2	36.3	31.4	37.6	45.7	39.0	36.6	32.9	30.4	20.5	12.8	8.3	5.1	0.1
Total of Up and Down 1	Fracks Calculation															
Total Vibration Level Out	side Building	49.4	50.7	40.3	35.7	41.2	49.3	42.6	41.7	37.5	34.4	24.7	17.9	12.0	10.0	3.4
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1															
Predicted Noise Level	1/3 Oct, dB		68.7		53.7	59.0	66.7	59.8	58.7	54.3	50.4	39.7		25.0	22.7	16.1
Predicted Noise Level	Oct, dB			69.2			68.1			60.5			40.5			23.6
L _{max}	dB(A)	46.5														
L _{eq,30mins}	dB(A)	34.9														
Noise Criteria	dB(A)	45														
Compliance	, 1	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: MTW-7-1 Location: Geranium House **Assessed Floor** 62 Item:

		Train Spee	ed: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	13	17	21
Down Track	13	28	31

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•				•			•				•	•			
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	12.4	9.2	0.0	-2.5	3.7	7.8	-1.9	-3.4	-7.7	-6.9	-15.6	-21.2	-24.4	-27.1	-31.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	47.1	47.9	37.7	33.2	38.4	46.5	39.8	39.3	35.0	31.8	22.1	15.5	9.3	7.6	0.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.5	-6.2	-7.6	-9.0	-11.6	-7.4	-4.3	-8.3	-6.9	-8.2	-1.7	-6.2	-13.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.2	29.5	27.1	29.7	30.1	35.3	38.4	30.4	30.8	28.5	32.0	28.5	18.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		48.7	49.8	40.5	34.7	38.8	46.6	40.2	40.8	40.0	34.1	31.3	28.7	32.0	28.5	18.6
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barrier I Maria I anni	4/0.0-1.10												40 =	10.0		
Predicted Noise Level	1/3 Oct, dB	-	65.8	56.5	50.7	54.6	62.0	55.4	55.8	54.8	48.1	44.3	40.7	43.0	39.2	29.3
Predicted Noise Level	Oct, dB			66.4			63.5			58.7			47.7			39.6
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-8-1 Location: Horae Palace **Assessed Floor** 3 Item: 63

		i rain Spec	ea: 65 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	17	23
Down Track	15	28	32

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.6	48.3	40.5	33.1	30.7	33.1	34.7	40.4	42.1	33.8	34.2	32.6	36.2	32.3	22.0
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	1/0.0 / 17															
Predicted Noise Level	1/3 Oct, dB		60.3	52.5	45.1	42.5	44.5	45.9	51.4	52.9	43.8	43.2		43.2	39.0	28.7
Predicted Noise Level	Oct, dB			61.1			49.3			55.5			47.3			39.4
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	31.8														
Noise Criteria	dB(A)	45														
Compliance		Yes														

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-9-1 Location: Majestic Park **Assessed Floor** 3 Item: 64

		rain Spee	ea: 65 kpn						
	Horizontal Dist, m	Dist, m Vertical Dist, m Slant							
Up Track	35	18	39						
Down Track	35	30	46						

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz) 20 25 32 40 50 63 80 100 125 160 200 250 315 400 50														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.2	44.9	36.4	28.3	25.8	28.9	27.0	31.5	36.9	29.6	29.8	26.4	29.6	26.9	17.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.0	44.8	36.0	27.7	25.1	28.5	25.5	29.6	36.2	29.2	29.3	25.4	28.4	26.0	16.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.1	47.9	39.2	31.0	28.5	31.8	29.3	33.7	39.6	32.4	32.6	29.0	32.1	29.5	20.2
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		59.9	51.2	43.0	40.3	43.2	40.5	44.7	50.4	42.4	41.6		39.1	36.2	26.9
Predicted Noise Level	Oct, dB			60.5			46.3			51.9			44.4			36.7
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	28.7														
Noise Criteria	dB(A)	45														
Compliance		Yes														
Notes: [1] Linear interpo	lation has been applied t	a alant	dicton	00 14/2	0.00	22222	ioto									

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

^[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-10-1 Location: 18 Farm Road **Assessed Floor** 3 65 Item:

		rain Spee	ea: oo kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	18	23
Down Track	15	30	34

Selected LSR Details:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

Up Track Calculation FDL CCF	Unit dB re 1 lb/ dB dB	in ^{0.5}		20	25	32	40	Frequency (Hz)												
FDL c	dB							50	63	80	100	125	160	200	250	315	400	500		
CCF	dB																			
CCF	dB			34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7		
TII	dВ	1/11	Ν																	
	uD_	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	dB	Type	0																	
LSR	dB re 10 ⁻⁶ i	in/s*in ^{0.5} /	lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2		
Up Track Vib. Level	dB re 10 ⁻⁶ i	in/sec		43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5		
Down Track Calculation																				
FDL	dB re 1 lb/	in ^{0.5}		34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7		
CCF	dB	Y/N	Ν																	
	dB	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
TOC	dB	Type	0																	
LSR	dB re 10 ⁻⁶ i	in/s*in ^{0.5} /	lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5		
Down Track Vib. Level	dB re 10 ⁻⁶ i	in/sec		43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2		
Total of Up and Down Ti	racks Cal	culation																		
Total Vibration Level Outs	side Buildii	ng		46.6	48.3	40.5	33.0	30.6	33.1	34.6	40.2	42.0	33.7	34.2	32.5	36.0	32.1	21.9		
BCF	dB	Y/N	0																	
	dB	Floor	3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6		
	dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7		
	dB			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
SAF	dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		
Predicted Noise Level		1/3 Oc			60.3		45.0	42.4	44.5	45.8	51.2	52.8	43.7	43.2		43.0	38.8	28.6		
Predicted Noise Level			t, dB			61.1			49.2			55.4			47.1			39.2		
L _{max}			B(A)																	
L _{eq,30mins}		d	B(A)	31.6																
Noise Criteria		d	B(A)	45																
Compliance				Yes																

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-11-1

Location: Farm Road Government Primary School

Assessed Floor 0 66 Item:

		main ope	oo kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	65	18	67
Down Track	65	30	72

Selected LSR Details:

Train Speed:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

65 knh

	Frequency (Hz)															
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.1	-19.7	-17.4	-8.1	-10.4	-9.5	-13.7	-7.9	-10.5	-15.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.7	44.5	35.2	26.4	23.6	27.6	22.0	25.3	34.6	28.3	28.2	23.0	25.8	24.2	15.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.9	5.8	-2.7	-9.6	-11.3	-11.3	-20.4	-18.2	-8.5	-10.5	-9.7	-14.1	-8.4	-10.8	-16.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.6	44.5	35.0	26.1	23.3	27.4	21.3	24.5	34.2	28.2	28.0	22.6	25.3	23.9	15.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		45.6	47.5	38.1	29.2	26.5	30.5	24.7	27.9	37.4	31.3	31.1	25.8	28.6	27.1	18.7
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB	63.6	65.5	56.1	47.2	44.3	47.9	41.9	44.9	54.2	47.3	46.1	39.8	41.6	39.8	31.4
Predicted Noise Level	Oct, dB		05.5	66.0	41.2	44.3	47.9 50.2	41.9	44.9	54.2 55.4	47.3	40.1	39.8 48.1	41.0	39.8	31.4 40.4
	,			00.0			30.2			33.4			40.1			40.4
∟ _{max}	dB(A)															
Leq,30mins	dB(A)															
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-1 Location: Yuet Fai Mansion **Assessed Floor** 67 Item:

		Train Spee	ed: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	11	22	25
Down Track	11	33	35

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	=							Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	0			-0-		- 00	- 00	- 00		0	.00			0.0		- 000
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N														•	•
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.0	6.7	0.0	-5.3	-6.7	-8.4	-9.5	-4.8	-3.3	-7.8	-6.2	-6.7	-0.1	-5.1	-12.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.7	45.4	37.7	30.4	28.0	30.3	32.2	37.9	39.4	30.9	31.5	30.0	33.6	29.6	19.2
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	side Building	46.5	48.2	40.3	32.7	30.4	32.9	33.9	39.3	41.7	33.5	34.0	32.0	35.5	31.8	21.7
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		64.2	56.3	48.7	46.2	48.3	49.1	54.3	56.5	47.5	47.0		46.5	42.5	32.4
Predicted Noise Level	Oct, dB			65.0			52.8			58.9			50.8			42.9
L _{max}	dB(A)	46.8														
L _{eq,30mins}	dB(A)	35.2														
Noise Criteria	dB(A)	45														
Compliance	` 1	Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-2 Location: Delight Court **Assessed Floor** 3 Item: 68

		rain Spee	ea: 65 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	18	20	27
Down Track	18	30	35

Selected LSR Details:

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	HOM-2-2	_

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7.9	-16.7	-23.1	-25.1	-28.9	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	44.2	47.5	36.7	31.9	37.8	46.0	39.3	37.4	33.5	30.8	21.0	13.6	8.6	5.8	0.2
Down Track Calculatio	n															
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.8	49.4	39.8	33.7	38.2	46.1	39.6	39.0	39.2	33.5	30.9	27.9	31.1	27.8	18.2
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		61.4	51.8	45.7	50.0	57.5	50.8	50.0	50.0	43.5	39.9		38.1	34.5	24.9
Predicted Noise Level	Oct, dB			62.0			58.9			53.4			43.0			35.0
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	29.3														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-3 Location: Lucky Mansion **Assessed Floor** 3 Item: 69

		rain Spee	ea: 55 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	20	25
Down Track	15	30	34

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.7	41.2	30.6	25.9	31.6	39.7	33.0	31.6	27.5	24.6	14.9	7.7	2.3	-0.1	-6.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.9	38.7	30.5	22.7	20.3	23.0	22.7	27.7	31.5	23.7	24.0	21.4	24.8	21.5	11.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	40.9	43.1	33.6	27.6	31.9	39.8	33.4	33.0	33.0	27.2	24.5	21.6	24.8	21.5	11.8
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barata de Marta de Carata	4/0.0-1.10	===	4	45.0		40 =				10.0				21.0		40.5
Predicted Noise Level	1/3 Oct, dB		55.1	45.6	39.6	43.7	51.2	44.6	44.0	43.8	37.2	33.5		31.8	28.2	18.5
Predicted Noise Level	Oct, dB			55.7			52.6			47.4			36.7			28.7
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-4

Location: 352-354 Ma Tau Wai Road

Assessed Floor 2 70 Item:

		ed: 40 kph	
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	20	25
Down Track	15	30	34

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	-ID 4 II- /: 0.5	30.5	24 5	22 E	31.5	20 E	34.5	37.5	20 E	38.5	24 5	22 E	22 E	20 E	30.5	27.5
CCF	dB re 1 lb/in ^{0.5}	30.5	34.5	33.5	31.5	30.5	34.5	37.5	30.3	30.5	34.5	33.5	32.5	29.5	30.5	27.5
TIL	dB Y/N N dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type 0	-5	-5	-5	-5	0 -5	0 -5	0 -5	-5	0 -5	0 -5	0 -5	-5	0 -5	0 -5	-5
TOC	dB Type 0	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-0	-5
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.4	8.9	-0.7	-3.4	3.3	7.4	-2.3	-4.7	-8.7	-7.6	-16.4	-22.5	-24.9	-28.3	-31.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.9		27.8		28.8	36.9		28.8					-0.4	-2.8	-8.9
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	30.5	34.5	33.5	31.5	30.5	34.5	37.5	38.5	38.5	34.5	33.5	32.5	29.5	30.5	27.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.2	35.9	27.7	19.9	17.5	20.3	19.9	24.9	28.7	20.9	21.3	18.7	22.0	18.8	9.0
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	38.1	40.3	30.8	24.8	29.1	37.0	30.6	30.3	30.2	24.4	21.8	18.9	22.1	18.8	9.0
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2.0 - 4.10	50.4	540	44.0	20.0	40.0	50.4	40.0	40.0	40.0	00.4	20.0	00.0	04.4	07.5	47.7
	1/3 Oct, dB		54.3	44.8	38.8	42.9	50.4	43.8	43.3	43.0	36.4	32.8		31.1	27.5	17.7
Predicted Noise Level	Oct, dB			54.9			51.9			46.6			36.0			27.9
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied t	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-5

Location: Seng Cheong Building

Assessed Floor 1 71 Item:

		rain Spee	ea: 50 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	18	18	25
Down Track	18	29	34

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

			Frequency (Hz)														
Unit			20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
dB re 1 lb	o/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
dB	Y/N	N															
dB	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Type	0															
dB re 10 ⁻¹	⁶ in/s*in ^{0.5} /l	b	-0.2	10.1	6.4	0.9	-0.8	1.8	-3.5	-8.3	-12.5	-18.4	-22.1	-29.7	-27.6	-35.4	-36.7
dB re 10	⁶ in/sec		32.2	46.6	41.8	34.3	31.6	38.3	35.9	32.1	27.9	18.0	13.3	4.7	3.8	-2.9	-7.3
n																	
dB re 1 lb	o/in ^{0.5}		32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
dB	Y/N	Ν															
dB	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB	Type	0															
dB re 10	6in/s*in0.5/l	b	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8
dB re 10 ⁻¹	⁶ in/sec		39.3	44.7	33.5	28.5	35.0	43.2	36.5	33.4	29.9	27.6	17.7	9.5	5.6	1.9	-2.4
Tracks Ca	alculation																
side Build	ling		40.1	48.7	42.4	35.3	36.7	44.4	39.2	35.8	32.0	28.1	19.0	10.8	7.8	3.1	-1.2
dB	Y/N	0															
	Floor	1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
-			6.0	6.0	6.0	6.0	5.8	5.4		5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
			2	_	_	_	_	_	2	_	_	_	_	2	2	2	2
dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
1																	
				64.7		51.3	52.5		54.4	50.8		42.1	32.0		18.8	13.8	9.5
		, .			65.8			61.5			52.7			32.7			15.3
		٠,															
	d	B(A)	29.0														
	d	B(A)	45														
			Yes														
	dB re 1 lt dB dB dB dB dB re 10 dB re 10 dB re 10 fracks Caside Build dB	dB re 1 lb/in ^{0.5} dB Y/N dB Type dB dB Type dB re 10 ⁻⁶ in/s*in ^{0.5} /l dB re 10 ⁻⁶ in/sec n dB re 10 ⁻⁶ in/sec n dB re 1 lb/in ^{0.5} dB Y/N dB Type dB dB Type dB dB Type dB Type dB Type dB Type dB re 10 ⁻⁶ in/s*in ^{0.5} /l dB re 10 ⁻⁶ in/sec Fracks Calculation side Building dB Y/N dB Floor dB dB dB dB 1/3 Oct Oct d d d	dB re 1 lb/in ^{0.5} dB	dB re 1 lb/in ^{0.5} 32.4 dB	B re 1 lb/in ^{0.5}	Section Sect	State	State	Section Sect	Section Color of the color	Section Sect	B F 1	Section Sect	Section Sect	Section Sect	Second Bare 1 b/in 0.5	Section Sect

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)
NSR Ref.: MTW-12-6
Location: Great Wall Building
Assessed Floor
Item: 72

		rrain Speed:								
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m							
Up Track	30	18	35							
Down Track	30	30	42							

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8	-8.9	-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.0	26.6	29.4	28.8	33.8	37.8	30.1	30.4	27.7	31.0	27.8	18.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.5	6.2	-1.3	-7.4	-8.9	-9.8	-14.7	-11.2	-5.8	-9.1	-7.9	-10.3	-4.1	-7.8	-14.2
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.2	44.9	36.4	28.3	25.8	28.9	27.0	31.5	36.9	29.6	29.8	26.4	29.6	26.9	17.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	46.3	48.0	39.7	31.7	29.2	32.2	31.0	35.8	40.4	32.9	33.1	30.1	33.4	30.4	20.8
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B B C C C C C C C C C C	4/0.0 / 15															
Predicted Noise Level	1/3 Oct, dB		60.0	51.7	43.7	41.0	43.6	42.2	46.8	51.2	42.9	42.1	38.1	40.4	37.1	27.5
Predicted Noise Level	Oct, dB			60.7			47.2			53.0			45.3			37.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

^[3] LSR based on the ground type. LSR data are interpolated against slant distance.

^[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

^[5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-7

Location: 197-199 Ma Tau Wai Road

Assessed Floor 2 73 Item:

		Train Spec	ed: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	18	23
Down Track	15	30	34

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.7	0.2	-5.0	-6.3	-8.2	-8.6	-3.7	-2.9	-7.6	-6.0	-6.1	0.6	-4.7	-12.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.4	37.9	30.7	28.4	30.5	33.1	39.0	39.8	31.1	31.7	30.6	34.3	30.0	19.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		46.6	48.3	40.5	33.0	30.6	33.1	34.6	40.2	42.0	33.7	34.2	32.5	36.0	32.1	21.9
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	60.6	00.0	54.5	47.0	44.4	40.5	47.8	50.0	54.8	45.7	45.0	40.5	45.0	40.0	
Predicted Noise Level	1/3 Oct, dB Oct, dB		62.3	54.5 63.1	47.0	44.4	46.5 51.2	47.8	53.2	54.8 57.4	45.7	45.2	42.5 49.1	45.0	40.8	30.6 41.2
	,			63.1			51.2			57.4			49.1			41.2
Lmax	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-8 Location: Pak Tai Mansion **Assessed Floor** 74 Item:

		Train Spee	ed: 65 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	12	18	22
Down Track	12	30	32

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.8	0.3	-4.8	-6.1	-8.0	-8.2	-3.2	-2.7	-7.4	-5.8	-5.8	0.9	-4.4	-12.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.5	38.0	30.9	28.6	30.6	33.5	39.5	40.0	31.3	31.9	30.9	34.6	30.3	19.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	46.7	48.3	40.6	33.2	30.9	33.2	35.0	40.8	42.2	33.8	34.3	32.8	36.4	32.4	22.1
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
.	1/0.0 :															
Predicted Noise Level	1/3 Oct, dB		64.3	56.6	49.2	46.7	48.6	50.2	55.8	57.0	47.8	47.3		47.4	43.1	32.8
Predicted Noise Level	Oct, dB			65.1			53.5			59.8			51.4			43.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														
Notes: [1] Linear interpo	lation has been applied t	o alant	dicton	00 14/6		001001	ioto									

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

^[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTV

Location: Resi

Assessed Floor 75 Item:

W-12-9		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
sidential premises along Hung Kwong Street	Up Track	12	19	22
2	Down Track	12	32	34

Selected LSR Details:

Train Speed:

		LSR Ref.
ſ	Up Track	DIH-P1-1
Ē	Down Track	HOM-2-2

65 kph

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																1 2 2 2
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.6	47.9	37.6	32.9	38.3	46.4	39.7	39.0	34.7	31.6	21.9	15.1	9.2	7.3	0.5
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.4	45.1	36.9	29.1	26.7	29.5	29.1	34.1	37.9	30.1	30.5	27.9	31.2	28.0	18.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		48.3	49.7	40.3	34.4	38.6	46.5	40.1	40.2	39.6	33.9	31.1	28.1	31.3	28.0	18.3
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	00.0	63.7	54.3	48.4	52.4	50.0	53.3	50.0	50.4	45.9	40.4	38.1	40.0	00.7	07.0
Predicted Noise Level	1/3 Oct, dB		63.7	54.3 64.3	48.4	52.4	59.9 61.4	53.3	53.2	52.4 56.3	45.9	42.1	38.1 45.2	40.3	36.7	27.0 37.1
	Oct, dB			04.3			01.4			30.3			43.2			37.1
Lmax	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-10 Location: Lucky Building **Assessed Floor** 2 76 Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	18	23
Down Track	15	28	32

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•		•		•						•					•
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.4	9.1	-0.3	-3.0	3.5	7.6	-2.1	-4.1	-8.2	-7.3	-16.0	-21.9	-24.7	-27.7	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	39.6	41.3	30.9	26.3	31.8	39.9	33.2	32.2	28.0	25.0	15.3	8.3	2.6	0.5	-6.0
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.8	40.7	29.6	24.7	31.0	39.1	32.4	29.7	26.1	23.7	13.8	5.8	1.6	-1.8	-6.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		41.1	44.0	33.3	28.5	34.4	42.5	35.8	34.1	30.2	27.4	17.6	10.3	5.1	2.5	-3.2
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 O-4 -ID	55.1	58.0	47.3	42.5	40.0	55.9	40.0	47.1	43.0	39.4	28.6	20.3	444	44.0	
Predicted Noise Level	1/3 Oct, dB		58.0		42.5	48.2		49.0	47.1		39.4	28.6		14.1	11.2	5.5 12.5
	Oct, dB			58.5			57.3			49.0			29.3			12.5
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)	24.6														
Noise Criteria	dB(A)															
Compliance	In Control by a second Post of	Yes														

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-11 Location: Jing Ming Building 2 77 **Assessed Floor** Item:

		rrain Speed:								
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m							
Up Track	19	20	28							
Down Track	19	30	36							

LSR Ref.						
	LSR Ref.					
Up Track	DIH-P1-1					
Down Track	DIH-P1-1					

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•				•			•				•	•			
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	8.7	-1.1	-3.9	3.1	7.2	-2.5	-5.5	-9.4	-8.0	-16.9	-23.4	-25.2	-29.1	-31.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.5	40.1	29.3	24.5	30.5	38.6	31.9	29.9	26.0	23.4	13.6	6.0	1.2	-1.7	-7.1
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															ı
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.2	8.2	-2.1	-5.2	2.5	6.6	-3.1	-7.4	-10.9	-9.0	-18.0	-25.3	-26.0	-30.9	-31.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.6	39.6	28.3	23.3	29.9	38.0	31.3	28.0	24.6	22.4	12.5	4.1	0.5	-3.5	-7.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		38.3	42.9	31.9	26.9	33.2	41.3	34.6	32.0	28.4	25.9	16.1	8.2	3.8	0.5	-4.3
BCF	dB Y/N 0															ı
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct -ID	52.3	56.9	45.9	40.0	47.0	54.7	47.8	45.0	41.2	27.0	27.4	40.0	40.0	0.0	4.6
Predicted Noise Level	1/3 Oct, dB Oct, dB		56.9	45.9 57.3	40.9	47.0	54. <i>7</i> 56.1	47.8	45.0	41.2 47.1	37.9	27.1	18.2 27.7	12.8	9.2	4.4 10.8
	,			37.3			30.1			47.1			21.1			10.8
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the con	Yes	Para.													

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-12-12 Location: One Elegance **Assessed Floor** 3 78 Item:

		rrain Speed:								
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m							
Up Track	12	18	22							
Down Track	12	30	32							

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•	•			•			•			•	•	•			
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.1	6.8	0.3	-4.8	-6.1	-8.0	-8.2	-3.2	-2.7	-7.4	-5.8	-5.8	0.9	-4.4	-12.0
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.8	45.5	38.0	30.9	28.6	30.6	33.5	39.5	40.0	31.3	31.9	30.9	34.6	30.3	19.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.5	45.2	37.1	29.4	27.0	29.7	29.8	34.9	38.2	30.3	30.7	28.3	31.7	28.3	18.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		46.7	48.3	40.6	33.2	30.9	33.2	35.0	40.8	42.2	33.8	34.3	32.8	36.4	32.4	22.1
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barrier I Maria I anni	4/0.0-1.10				45.0		44.0	40.0			10.0	40.0	10.0	10.1		
Predicted Noise Level	1/3 Oct, dB		60.3	52.6	45.2	42.7	44.6	46.2	51.8	53.0	43.8	43.3	40.8	43.4	39.1	28.8
Predicted Noise Level	Oct, dB			61.1			49.5			55.8			47.4			39.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance	In Control by a second Post of	Yes														

Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

[3] LSR based on the ground type. LSR data are interpolated against slant distance.

[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-13-1

Location: Cheung Chuk Shan Memorial School

Assessed Floor 0 79 Item:

			main opec	oo kpii
		Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Ţ	Up Track	10	20	22
D	own Track	10	30	32

Selected LSR Details:

Train Speed:

		LSR Ref.
U	p Track	DIH-P1-1
Do.	wn Track	HOM-2-2

65 knh

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	42.9	32.6	27.9	33.3	41.4	34.7	34.0	29.7	26.6	16.9	10.1	4.2	2.3	-4.5
Down Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.7	38.7	37.7	35.7	34.7	38.7	41.7	42.7	42.7	38.7	37.7	36.7	33.7	34.7	31.7
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.5	40.2	32.1	24.4	22.0	24.7	24.8	29.9	33.2	25.3	25.7	23.3	26.7	23.3	13.4
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	43.3	44.7	35.3	29.5	33.6	41.5	35.1	35.4	34.8	29.0	26.2	23.5	26.7	23.3	13.5
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		62.7		47.5	51.4	58.9	52.3	52.4		45.0	41.2		39.7	36.0	26.2
Predicted Noise Level	Oct, dB			63.3			60.4			55.5			44.5			36.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	34[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH) NSR Ref.: MTW-14-1

Location: PLK Lam Man Chan English Primary School

Assessed Floor 80 Item:

		Train Spee	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	35	20	40
Down Track	35	30	46

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

	1	ı						Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80		125	160	200	250	215	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41 2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	00.2	0	00.2	·	00.2	0				٠ــ	00.2	00.2	02.2	00.2	00.2
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.0	8.0	-2.5	-5.7	2.2	6.4	-3.3	-8.2	-11.5	-9.4	-18.4	-26.1	-26.3	-31.7	-32.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.2	40.2	28.7	23.6	30.5	38.6	31.9	28.0	24.8	22.8	12.8	4.1	1.0	-3.4	-6.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.4	6.2	-1.5	-7.7	-9.3	-10.0	-15.6	-12.3	-6.2	-9.3	-8.2	-10.9	-4.8	-8.3	-14.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.6	38.4	29.7	21.5	18.9	22.3	19.6	23.9	30.0	22.9	23.1	19.4	22.5	19.9	10.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	38.3	42.4	32.3	25.7	30.8	38.7	32.2	29.5	31.2	25.9	23.5	19.5	22.5	19.9	10.8
BCF	dB Y/N 0															ı
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct. dB	54.3	58.4	48.3	41.7	40.0	54.1	47.4	44.5	46.0	39.9	36.5	24 F	33.5	30.6	21.5
Predicted Noise Level	Oct. dB	-	30.4	58.9	41.7	40.0	55.5	47.4	44.5	48.9	39.9	30.3	39.1	33.5	30.6	31.1
	,			30.9			55.5			40.9			39.1			31.1
∟ _{max}	dB(A)															
Leq,30mins		29[8]														
Noise Criteria	dB(A)	55[9]														
Compliance	plation has been applied t	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH) NSR Ref.: MTW-15-1

Location: Hung Hom Lutheran Primary School

Assessed Floor 0 81 Item:

		d: 50 kph	
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	10	20	22
Down Track	10	30	32

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			OL.	10	00	00	00	100	120	100	200	200	010	100	1000
	dB re 1 lb/in ^{0.5}	32.4	36 4	35.4	33.4	32 4	36.4	39.4	40 4	40.4	36.4	35 4	34 4	31 4	32.4	29.4
CCF	dB Y/N N	02				02	00						·	0	02	
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	39.3	40.6	30.3	25.6	31.1	39.1	32.4	31.7	27.4	24.3	14.6	7.8	1.9	0.0	-6.7
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.6	-6.3	-7.7	-9.0	-11.9	-7.8	-4.5	-8.4	-7.0	-8.4	-2.0	-6.4	-13.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.2	37.9	29.8	22.1	19.7	22.4	22.5	27.6	30.9	23.0	23.4	21.0	24.4	21.0	11.1
Total of Up and Down 1	Tracks Calculation															
Total Vibration Level Out	side Building	41.0	42.4	33.1	27.2	31.4	39.2	32.8	33.1	32.6	26.7	23.9	21.2	24.5	21.0	11.2
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		60.4		45.2	49.2	56.6	50.0	50.1	49.4	42.7	38.9		37.5	33.7	23.9
Predicted Noise Level	Oct, dB			61.0			58.1			53.2			42.2			34.2
L _{max}	dB(A)	40.2														
L _{eq,30mins}	dB(A)	33[8]														
Noise Criteria	dB(A)	55[9]														
Compliance	, 1	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH) NSR Ref.: MTW-16-1

Location: SKH Good Shepherd Primary School

Assessed Floor 0 82 Item:

		main ope	ou. To kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	10	20	22
Down Track	10	30	32

Selected LSR Details:

Train Speed:

	LSR Ref.	
Up Track	DIH-P1-1	
Down Track	DIH-P1-1	

15 knh

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	11.9	9.2	-0.1	-2.8	3.6	7.7	-2.0	-3.7	-8.0	-7.1	-15.8	-21.6	-24.5	-27.4	-31.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	38.4	39.7	29.4	24.7	30.1	38.2	31.5	30.8	26.5	23.4	13.7	6.9	1.0	-0.9	-7.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.6	8.4	-1.6	-4.6	2.7	6.9	-2.8	-6.5	-10.2	-8.6	-17.4	-24.4	-25.6	-30.1	-31.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.1	38.9	27.9	22.9	29.2	37.4	30.7	28.0	24.3	21.9	12.1	4.1	-0.1	-3.6	-8.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	39.8	42.3	31.7	26.9	32.7	40.8	34.1	32.6	28.6	25.7	16.0	8.7	3.5	1.0	-4.9
BCF	dB Y/N 0															
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		60.3	49.7	44.9	50.5	58.2	51.3	49.6	45.4	41.7	31.0	22.7	16.5	13.7	7.8
Predicted Noise Level	Oct, dB			60.8			59.6			51.5			31.7			14.8
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	31[8]														
Noise Criteria	dB(A)	55[9]														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)
NSR Ref.: MTW-17-1
Location: Loyal Mansion
Assessed Floor 3
Item: 83

		rain Speed:							
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m						
Up Track	20	17	26						
Down Track	20	28	34						

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	10.0	8.8	-0.8	-3.6	3.2	7.4	-2.4	-5.0	-8.9	-7.8	-16.5	-22.8	-25.0	-28.6	-31.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	43.2	46.1	35.4	30.7	36.5	44.6	37.9	36.3	32.3	29.5	19.7	12.4	7.2	4.6	-1.2
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	6.9	8.3	-1.9	-4.9	2.6	6.7	-2.9	-7.0	-10.5	-8.8	-17.7	-24.9	-25.8	-30.5	-31.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.1	45.5	34.4	29.4	35.8	44.0	37.3	34.2	30.7	28.5	18.5	10.4	6.4	2.7	-1.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	44.9	48.8	37.9	33.1	39.2	47.3	40.6	38.4	34.6	32.0	22.2	14.5	9.9	6.8	1.6
BCF	dB Y/N 0															
BVR-up	dB Floor 3	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Bara Parka I Mada at 1	4/0.0 : 15	E0.5		10.5	45.4	=4.6	E0 E	=4.0	10 :	4= -	10.5	24.5		10.5	10.5	
Predicted Noise Level	1/3 Oct, dB		60.8	49.9	45.1	51.0	58.7	51.8	49.4	45.4	42.0	31.2		16.9	13.5	8.3
Predicted Noise Level	Oct, dB			61.3			60.1			51.4			31.9			14.8
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance		Yes														

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

^[3] LSR based on the ground type. LSR data are interpolated against slant distance.

^[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

^[5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) - 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-18-1

Location: Residential premises along Chi Kiang St

Assessed Floor 2 84 Item:

		Train Spee	d: 50 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	45	17	48
Down Track	45	27	52

Selected LSR Details:

LSR Ref.
DIH-P1-1
DIH-P1-1

	=							Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	OTIL			OL.	10	00	00	00	100	120	100	200	200	0.0	100	000
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.9	7.6	-3.2	-6.6	1.8	6.0	-3.7	-9.6	-12.5	-10.1	-19.2	-27.5	-26.8	-33.0	-32.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	30.3	39.0	27.2	21.9	29.2	37.4	30.7	25.8	22.9	21.3	11.2	1.9	-0.4	-5.6	-7.9
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.0	7.5	-3.6	-7.0	1.6	5.8	-3.9	-10.2	-13.0	-10.4	-19.6	-28.1	-27.0	-33.6	-32.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	29.4	38.9	26.8	21.5	29.0	37.2	30.5	25.2	22.4	21.0	10.8	1.3	-0.6	-6.2	-8.1
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	32.9	42.0	30.0	24.7	32.1	40.3	33.6	28.6	25.7	24.2	14.0	4.7	2.5	-2.9	-5.0
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
.	166:															
Predicted Noise Level	1/3 Oct, dB		56.0	44.0	38.7	45.9	53.7	46.8	41.6	38.5	36.2	25.0		11.5	5.8	3.7
Predicted Noise Level	Oct, dB			56.3			55.1			44.1			25.6			8.6
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-18-2

Location: No. 2 Kowloon City Road

Assessed Floor 2 85 Item:

		Train Spee	ed: 50 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	28	17	33
Down Track	28	27	39

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	DIH-P1-1

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.2	8.4	-1.8	-4.7	2.7	6.8	-2.9	-6.8	-10.3	-8.7	-17.6	-24.6	-25.7	-30.3	-31.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	34.6	39.8	28.7	23.7	30.1	38.2	31.5	28.6	25.1	22.7	12.8	4.8	0.7	-2.9	-7.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	5.3	8.0	-2.4	-5.6	2.3	6.4	-3.2	-8.0	-11.3	-9.3	-18.3	-25.9	-26.2	-31.5	-32.0
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	32.7	39.5	28.0	22.9	29.7	37.9	31.2	27.4	24.1	22.1	12.1	3.5	0.2	-4.1	-7.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	36.8	42.6	31.4	26.3	32.9	41.1	34.4	31.1	27.6	25.4	15.5	7.2	3.5	-0.4	-4.5
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barata de Marta de Carata	4/0.0-4 .10			45.4	40.0	40 =		4= 4		40.4	a= 4		4= 0	10.5		
Predicted Noise Level	1/3 Oct, dB		56.6	45.4	40.3	46.7	54.5	47.6	44.1	40.4	37.4	26.5		12.5	8.3	4.2
Predicted Noise Level	Oct, dB			57.0			55.8			46.2			27.1			10.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: MTW-19-1 Location: Holy Trinity Church **Assessed Floor** 0 86 Item:

		rain Spee	ea: 55 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	55	18	58
Down Track	65	25	70

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	DIH-P1-1

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	JD == 4 H= /:= 0.5	33.2	27.2	26.2	34.2	22.2	37.2	40.2	41.2	44.0	27.2	26.2	25.2	22.2	33.2	30.2
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	33.2	31.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	31.2	30.2	35.2	32.2	33.2	30.2
TIL	dB Y/N N dB Type 0	_	^	^	^	0	0	0	^	0	^	^	0	0	_	0
TCF	dB Type U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-15.0	2.1	-1.5	-Q 1	-140	-12.6	-18 Q	-25 O	-28.7	-31 1	-30.7	-36 1	-29.9	-37.0	-38.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	18.2			25.2		24.7		16.3			5.5	-0.8	2.3	-3.7	-8.7
Down Track Calculatio		10.2	39.4	34.7	25.2	19.3	24.1	21.3	10.3	12.5	0.1	5.5	-0.0	2.3	-3.1	-0.7
		00.0	07.0	00.0	040	00.0	37.2	40.0	44.0	44.0	07.0	00.0	05.0	00.0	00.0	00.0
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	_	•	•	_	0	0	•	•	^	•	•	•	•	•	0
TIL TCF	dB Type 0 dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		U	U	U	U	U	U	U	U	U	U	U	U	0	U	0
TOC LSR		4.5	0.0	4.0	0.4	0.0	- 4	4.5	40.4	440	44.0	00.0	00.0	07.0	05.7	00.0
	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-1.5	6.9	-4.8	-8.4	0.9	5.1		-12.4						-35.7	-32.9
	dB re 10 ⁻⁶ in/sec	31.8	44.1	31.5	25.8	34.1	42.4	35.7	28.8	26.5	25.7	15.4	4.9	4.3	-2.5	-2.7
Total of Up and Down																
Total Vibration Level Ou		32.0	45.4	36.4	28.5	34.3	42.4	35.9	29.1	26.7	25.7	15.8	5.9	6.5	0.0	-1.7
BCF	dB Y/N 0	_		_	_		_							_	_	_
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/2 Oct. dD	50.0	C2 4	54.4	46.5	52.1	59.8	53.1	46.1	43.5	41.7	30.8	19.9	19.5	12.7	44.0
Predicted Noise Level	1/3 Oct, dB		63.4	64.0	46.5	52.1	61.2	53.1	46.1	43.5	41.7	30.8	31.4	19.5	12.7	11.0 15.0
	Oct, dB			04.0			01.2			48.9			31.4			15.0
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															Į
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: HOM-1-1 Location: Ko Shan Theartre **Assessed Floor** 0 87

Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	50	35	61
Down Track	50	40	64

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	5.9	-2.3	-9.0	-10.7	-10.8	-18.8	-16.2	-7.7	-10.1	-9.2	-13.0	-7.2	-10.0	-15.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.3	43.1	34.0	25.3	22.6	26.4	21.5	25.0	33.5	27.1	27.1	22.2	25.1	23.3	14.6
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															ı
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.9	-2.4	-9.2	-10.9	-10.9	-19.2	-16.8	-7.9	-10.2	-9.3	-13.4	-7.5	-10.2	-15.8
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.2	43.1	33.9	25.1	22.4	26.3	21.0	24.4	33.3	27.0	26.9	21.9	24.7	23.0	14.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		44.3	46.1	36.9	28.2	25.5	29.4	24.3	27.7	36.4	30.1	30.0	25.1	27.9	26.2	17.6
BCF	dB Y/N 0															ı
BVR-up	dB Floor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Duadiated Naise Lavel	4/0.0 = 4.10	00.0	04.6	F4.6	40.0	40.6	40.0	44.5	44-	F0.0	40.4	45.0	00.1	40.0	00.0	00.0
Predicted Noise Level	1/3 Oct, dB		64.1	54.9	46.2	43.3	46.8	41.5	44.7	53.2	46.1	45.0		40.9	38.9	30.3
Predicted Noise Level	Oct, dB			64.7			49.2			54.5			47.2			39.4
∟ _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	In Constitution to the constitution of the con	Yes														

 ^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

88

Project: SCL(TAW - HUH) NSR Ref.: HOM-2-1 Location: Faerie Court **Assessed Floor** 2

Item:

		Train Spee	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	20	18	27
Down Track	20	29	35

Selected LSR Details:

	LSR Ref.
Up Track	DIH-P1-1
Down Track	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
	JD 4 IL /: 0.5	33.2	27.2	26.2	34.2	22.2	37.2	40.2	41.2	44.0	27.2	26.2	25.2	22.2	33.2	30.2
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	33.2	31.2	36.2	34.2	33.2	31.2	40.2	41.2	41.2	31.2	30.2	35.2	32.2	33.2	30.2
TIL	dB Y/N N dB Type 0	0	0	^	0	0	0	0	^	^	^	^	0	0	0	0
TCF	dB Type U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.5	8.8	-1.0	-3.8	3.1	7.3	-2.4	-5.3	-9.2	-7 Q	-167	-23 1	-25.1	-28.9	-31.5
	dB re 10 in/s in /ib	42.8			30.5		44.5		36.0					7.1	4.4	-1.2
Down Track Calculation		42.0	40.0	33.3	30.5	30.4	44.5	31.0	30.0	32.1	29.3	19.0	12.1	7.1	4.4	-1.2
		00.0	07.0	00.0	040	00.0	37.2	40.0	44.0	44.0	07.0	00.0	05.0	00.0	00.0	00.0
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N		•	•	•					•		•	_			
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0							40.0								40.0
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.7	-8.1	-9.3	-12.8		-4.9	-8.6	-7.3	-9.0	-2.7	-6.9	-13.6
	dB re 10 ⁻⁶ in/sec	41.9	43.6	35.4	27.6	25.1	28.0	27.4	32.3	36.3	28.6	28.9	26.2	29.6	26.4	16.6
Total of Up and Down 1																
Total Vibration Level Out		45.4	48.0	38.4	32.3	36.7	44.6	38.2	37.5	37.7	32.0	29.4	26.4	29.6	26.4	16.7
	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Baratista de Malata de La Cal	4/0.0	50 /	20.5	=a ·	10.5		50.		====		11.5	40 :			25.4	
Predicted Noise Level	1/3 Oct, dB		62.0		46.3	50.5	58.0	51.4	50.5	50.5	44.0	40.4		38.6	35.1	25.4
Predicted Noise Level	Oct, dB			62.5			59.5			54.0			43.5			35.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	30.6														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: HOM-2-2 Location: Lee Wing Building

Assessed Floor 2 89 Item:

		rain Spee	ea: so kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	0	24	24
Down Track	0	34	34

Selected LSR Details:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

Unit dB re 1 lb/ dB	. 05		20	Frequency (Hz) 20 25 32 40 50 63 80 100 125 160 200 250 315 400													
	. 0.5	•		20	32	40	50	63	80	100	125	160	200	250	315	400	500
	p Track Calculation DL dB re 1 lb/in ^{0.5}																
	'in ^{o.s}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
ub	Y/N	Ν															
dB	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB																	
dB re 10 ⁻⁶ i	in/s*in ^{0.5} /	lb	8.2	5.9	-0.7	-6.0	-7.3	-9.1	-9.9	-5.1	-3.9	-8.5	-6.9	-7.2	-0.6	-5.7	-13.2
dB re 10 ⁻⁶ i	in/sec		41.5	43.1	35.5	28.2	25.9	28.1	30.4	36.2	37.3	28.7	29.3	28.0	31.6	27.5	17.1
dB re 1 lb/	/in ^{0.5}		33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
dB	Y/N	Ν															
dB	Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dB	Type	0															
dB re 10 ⁻⁶ i	in/s*in ^{0.5} /	lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
dB re 10 ⁻⁶ i	in/sec		41.9	43.7	35.5	27.7	25.3	28.0	27.7	32.7	36.5	28.7	29.0	26.4	29.8	26.5	16.7
racks Cal	culation)															
side Buildii	ng		44.7	46.4	38.5	31.0	28.6	31.1	32.2	37.8	39.9	31.7	32.2	30.3	33.8	30.1	19.9
dB	Y/N	0															
dB	Floor	2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
dB			6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
dB			2	_	_	_	_	_	2	_	_	_	_	2	2	2	2
dB			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
		,		60.4		45.0	42.4		45.4	50.8		43.7	43.2		42.8	38.8	28.6
		.,			61.2			49.1			55.2			47.0			39.2
		٠,															
	d	IB(A)	32.2														
	d	IB(A)	45														
			Yes														
	dB dB re 10 ⁻⁶ dB re 10 ⁻⁶ dB re 1 lb/ dB re 1 lb/ dB	dB dB Type dB re 10 ⁻⁶ in/s*in ^{0.5} /dB re 10 ⁻⁶ in/sec dB re 1 lb/in ^{0.5} dB re 1 lb/in ^{0.5} dB re 1 lb/in ^{0.5} dB Type dB Type dB Type dB Type dB Type dB Type dB Re 10 ⁻⁶ in/s*in ^{0.5} /dB Re 10 ⁻⁶ in/sec racks Calculation ide Building dB Type dB	### B	B	B	State	Section Color Co	Section Sect	Second State 10 10 10 10 10 10 10 1	Section Sect	Section Sect	Section Sect	Second	Second State 18	B	B	B

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $\rm L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-2-3 Location: Wing Lam Mansion

Assessed Floor 2 90 Item:

		Train Spee	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	15	20	25
Down Track	15	30	34

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	•				•			•				•	•			
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	9.0	6.7	0.0	-5.3	-6.7	-8.4	-9.5	-4.8	-3.3	-7.8	-6.2	-6.7	-0.1	-5.1	-12.5
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.3	43.9	36.2	28.9	26.6	28.9	30.8	36.5	38.0	29.5	30.0	28.6	32.2	28.1	17.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.7	6.4	-0.8	-6.6	-8.0	-9.2	-12.6	-8.6	-4.8	-8.6	-7.2	-8.8	-2.4	-6.7	-13.5
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.9	43.7	35.5	27.7	25.3	28.0	27.7	32.7	36.5	28.7	29.0	26.4	29.8	26.5	16.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou		45.1	46.8	38.9	31.3	29.0	31.5	32.5	38.0	40.3	32.1	32.6	30.6	34.1	30.4	20.3
BCF	dB Y/N 0															
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barrier I Maria I anni	4/0.0-1.10	50 4			45.0	40.0	44.0	45.5				40.0	10.0	10.1		
Predicted Noise Level	1/3 Oct, dB		60.8	52.9	45.3	42.8	44.9	45.7	51.0	53.1	44.1	43.6	40.6	43.1	39.1	29.0
Predicted Noise Level	Oct, dB			61.6			49.4			55.5			47.4			39.5
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	32.6														
Noise Criteria	dB(A)	45														
Compliance	In Control by a second Post of	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: HOM-2-4 Location: Tak Lee Court **Assessed Floor** 1 91 Item:

		i rain Speed:							
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m						
Up Track	50	35	61						
Down Track	55	45	71						

Selected LSR Details:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	20	JZ	+0	30	00	00	100	120	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37 N	35.0	34.0	38.0	41.0	42.0	42 N	38.0	37 N	36 N	33.0	34.0	31.0
CCF	dB Y/N N	34.0	50.0	57.0	55.0	04.0	50.0	71.0	72.0	72.0	50.0	51.0	50.0	55.0	J 1 .0	31.0
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-2.0	-8.5	-10.1	-10.5	-17.6	-14.8	-7.1	-9.8	-8.8	-12.2	-6.3	-9.4	-15.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.2	44.0	35.0	26.5	23.9	27.5	23.4	27.2	34.9	28.2	28.2	23.8	26.7	24.6	15.8
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.0	-19.5	-17.2	-8.1	-10.3	-9.4	-13.6	-7.8	-10.4	-15.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.0	43.8	34.5	25.7	23.0	27.0	21.5	24.8	33.9	27.7	27.6	22.4	25.2	23.6	15.1
Total of Up and Down	Fracks Calculation															
Total Vibration Level Out	side Building	45.1	46.9	37.8	29.1	26.5	30.2	25.6	29.2	37.4	30.9	30.9	26.2	29.0	27.2	18.5
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		62.9	53.8	45.1	42.3	45.6	40.8	44.2	52.2	44.9	43.9		40.0	37.9	29.2
Predicted Noise Level	Oct, dB			63.5			48.2			53.5			46.2			38.4
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	30.8														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH) NSR Ref.: HOM-2-5 Location: Chat Ma Mansion **Assessed Floor** 92 Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	45	20	49
Down Track	45	30	54

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.3	6.1	-1.7	-8.0	-9.6	-10.2	-16.2	-13.1	-6.5	-9.5	-8.4	-11.3	-5.3	-8.7	-14.8
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.6	43.4	34.6	26.3	23.7	27.1	24.0	28.1	34.7	27.8	27.9	23.9	27.0	24.6	15.5
Down Track Calculation	n															
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N	1														
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-1.9	-8.4	-10.0	-10.4	-17.2	-14.3	-7.0	-9.7	-8.7	-12.0	-6.0	-9.2	-15.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	41.5	43.3	34.3	25.9	23.3	26.8	23.0	26.9	34.3	27.5	27.6	23.3	26.2	24.1	15.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	44.5	46.3	37.5	29.1	26.5	30.0	26.6	30.6	37.5	30.6	30.7	26.6	29.6	27.4	18.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	4/0.0-4-10				45.4	40.0	45.4		45.0		44.0	40 =		40.0	20.4	
	1/3 Oct, dB		62.3	53.5	45.1	42.3	45.4	41.8	45.6	52.3	44.6	43.7		40.6	38.1	29.0
Predicted Noise Level	Oct, dB			62.9			48.2			53.7			46.3			38.6
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance		Yes														

^[2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

^[3] LSR based on the ground type. LSR data are interpolated against slant distance.
[4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

^[6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.

^[7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: HOM-2-6 Location: Chatham Mansion **Assessed Floor** 93 Item:

		i rain Speed:							
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m						
Up Track	3	19	19						
Down Track	3	30	30						

Selected LSR Details:

		LSR Ref.
ſ	Up Track	DIH-P1-1
Ē	Down Track	HOM-2-2

								Frequ	uency	(H ₇)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Uniii	20	25	32	40	50	03	00	100	125	160	200	250	313	400	500
		00.0	07.0	00.0	010	00.0	07.0	40.0	44.0	44.0	07.0	20.0	05.0	00.0	00.0	
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	13.6	9.4	0.4	-2.1	4.0	8.1	-1.7	-2.6	-7.1	-6.6	-15.1	-20.5	-24.1	-26.3	-30.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	46.8	46.7	36.7	32.2	37.2	45.3	38.6	38.6	34.1	30.7	21.1	14.8	8.1	6.9	-0.7
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.8	6.5	-0.4	-6.1	-7.5	-8.9	-11.3	-7.0	-4.2	-8.2	-6.8	-7.9	-1.5	-6.1	-13.1
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	42.1	43.8	35.8	28.2	25.8	28.4	29.0	34.2	37.1	29.0	29.4	27.3	30.8	27.2	17.2
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	48.1	48.5	39.3	33.6	37.5	45.4	39.0	40.0	38.9	32.9	30.0	27.5	30.8	27.2	17.2
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		64.5	55.3	49.6	53.3	60.8	54.2	55.0	53.7	46.9	43.0		41.8	37.9	27.9
Predicted Noise Level	Oct, dB			65.1			62.2			57.7			46.4			38.3
L _{max}	dB(A)	44.5														
L _{eq,30mins}	dB(A)	33.7														
Noise Criteria	dB(A)	45														
Compliance	\	Yes														
	lation has been applied to															

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-3-1

Location: Fook Sing Mansion

Assessed Floor 94 Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	85	35	92
Down Track	100	40	108

Selected LSR Details:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	50	03	00	100	123	100	200	230	313	400	300
FDL	JD 4 IL /:- 0.5	33.2	27.2	26.2	24.2	33.2	37.2	40.2	41.2	44.0	27.2	26.2	25.2	22.2	33.2	30.2
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	33.2	31.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	31.2	36.2	35.2	32.2	33.2	30.2
TIL	dB Y/N N dB Type 0	0	0	^	^	0	0	0	^	^	^	^	0		_	0
TCF	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.7	5.6	-3.1	-10.3	-12 1	-11.7	-22.3	-20.5	-0.3	-11 O	-10.3	-15 /	-0.8	-11.8	-16.8
Up Track Vib. Level		40.9			23.9		25.5		20.7						21.4	13.4
	dB re 10 ⁻⁶ in/sec	40.9	42.9	JJ. I	23.9	21.1	25.5	10.0	20.7	31.9	20.2	26.0	19.0	22.4	21.4	13.4
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.5	5.5	-3.6	-11.0	-12.9	-12.2	-24.0	-22.7	-10.2	-11.5	-10.8	-16.6	-11.2	-12.7	-17.4
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.8	42.7	32.7	23.2	20.3	25.0	16.2	18.5	31.1	25.8	25.4	18.6	21.1	20.5	12.9
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out		43.9	45.8	35.9	26.6	23.7	28.3	20.2	22.8	34.5	29.0	28.7	22.3	24.8	24.0	16.2
BCF	dB Y/N 0															l
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		61.8	51.9	42.6	39.5	43.7	35.4	37.8	49.3	43.0	41.7		35.8	34.7	26.9
Predicted Noise Level	Oct, dB			62.3			45.5			50.5			43.3			35.4
L _{max}	dB(A)	39.0														
L _{eq,30mins}	dB(A)	28.1														
Noise Criteria	dB(A)	45														
Compliance		Yes														
	lation has been applied t															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-3-2

Location: Marigold Mansion, Block A

Assessed Floor 95 Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	85	45	96
Down Track	110	45	119

Selected LSR Details:

	ĺ	LSR Ref.	
Up	Track	HOM-2-2	
Dow	n Track	HOM-2-2	

								Frequ	uency	(H ₇)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation	Offic	20	23	32	40	30	03	00	100	123	100	200	230	313	400	300
FDL	-ID 4 II- /: 0.5	33.2	27.2	26.2	34.2	22.2	37.2	40.2	41.2	44.0	27.2	26.2	25.2	22.2	33.2	30.2
CCF	dB re 1 lb/in ^{0.5} dB Y/N N	33.2	31.2	30.2	34.2	33.2	31.2	40.2	41.2	41.2	31.2	30.2	35.2	32.2	33.2	30.2
TIL	dB Y/N N dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.7	5.6	-3.2	-10.5	-12.3	-11.8	-22.6	-20.9	-9.5	-11.1	-10.4	-15.6	-10.1	-12.0	-16.9
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.9	42.8	33.0	23.8	21.0	25.4	17.7	20.3	31.7	26.1	25.9	19.6	22.1	21.3	13.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N									–						
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.4	5.4	-3.8	-11.3	-13.3	-12.4	-24.8	-23.7	-10.6	-11.7	-11.1	-17.2	-11.8	-13.2	-17.7
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	40.7	42.6	32.5	22.9	20.0	24.8	15.4	17.5	30.7	25.6	25.2	18.1	20.4	20.1	12.6
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	43.8	45.7	35.8	26.4	23.5	28.1	19.7	22.1	34.2	28.9	28.5	21.9	24.4	23.7	16.0
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Dec Para I Nata I	4/0.0 : 15	E0.5		E4.6	40 :		40.5	215	·	10.5	10.5		20.5	25.4	211	
Predicted Noise Level	1/3 Oct, dB		61.7	51.8	42.4	39.3	43.5	34.9	37.1	49.0	42.9	41.5		35.4	34.4	26.7
Predicted Noise Level	Oct, dB			62.2			45.3			50.2			43.0			35.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH) NSR Ref.: HOM-4-1 Location: Yee Fu Building **Assessed Floor** 96

Item:

		Train Spec	ed: 55 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	40	45	60
Down Track	70	45	83

Selected LSR Details:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

	1							Erogi	uency	(Uz)						
Description	Unit	20	25	32	40	50	63	80		<u> </u>	160	200	250	315	400	500
Up Track Calculation	Uniii	20	25	32	40	50	03	00	100	125	100	200	250	313	400	500
		00.0	07.0	00.0	040		07.0	10.0	44.0	44.0	07.0	00.0	05.0	00.0	00.0	
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	5.9	-2.2	-8.8	-10.4	-10.7	-18.3	-15.6	-7.5	-10.0	-9.0	-12.7	-6.8	-9.7	-15.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.3	38.2	29.1	20.5	17.8	21.5	17.0	20.6	28.8	22.2	22.2	17.5	20.4	18.5	9.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	33.2	37.2	36.2	34.2	33.2	37.2	40.2	41.2	41.2	37.2	36.2	35.2	32.2	33.2	30.2
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-3.0	-10.1	-11.8	-11.6	-21.5	-19.7	-9.0	-10.8	-10.0	-14.9	-9.3	-11.4	-16.6
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	36.0	37.9	28.3	19.2	16.4	20.7	13.7	16.6	27.2	21.4	21.2	15.3	17.9	16.8	8.7
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	39.2	41.1	31.7	22.9	20.2	24.2	18.6	22.1	31.1	24.9	24.8	19.6	22.4	20.8	12.3
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		57.1	47.7	38.9	36.0	39.6	33.8	37.1	45.9	38.9	37.8	31.6	33.4	31.5	23.0
Predicted Noise Level	Oct, dB			57.6			41.9			47.1			39.8			32.0
L _{max}	dB(A)	35.6														
L _{eq,30mins}	dB(A)	24.8														
Noise Criteria	dB(A)	45														
Compliance	(Yes														
	lation has been applied t															

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-5-1

Location: 271 Chatham Road North

Assessed Floor 2 97 Item:

		Train Spee	ed: 35 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	75	45	87
Down Track	75	45	87

Selected LSR Details:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

	I							Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	215	400	500
Up Track Calculation	Offic	20	23	32	40	50	03	00	100	123	100	200	230	313	400	300
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	20.3	33.3	36.3	37.3	37 3	33 3	32.3	31 3	28.3	29.3	26.3
CCF	dB Y/N N	29.5	55.5	32.3	30.3	23.3	55.5	30.3	37.3	37.3	33.3	32.3	31.3	20.5	29.5	20.5
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB Type o	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.8	5.7	-3.0	-10.1	-11.8	-11.6	-21.5	-19.7	-9.0	-10.8	-10.0	-14.9	-9.3	-11.4	-16.6
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	32.1	34.0	24.4	15.3	12.5	16.8	9.8	12.7	23.3	17.5	17.3	11.4	14.0	12.9	4.8
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	29.3	33.3	32.3	30.3	29.3	33.3	36.3	37.3	37.3	33.3	32.3	31.3	28.3	29.3	26.3
CCF	dB Y/N N															l
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															l
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	7.5	5.5	-3.5	-10.9	-12.7	-12.1	-23.6	-22.2	-10.0	-11.4	-10.7	-16.3	-10.9	-12.5	-17.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	31.9	33.8	23.9	14.4	11.6	16.2	7.7	10.1	22.3	17.0	16.6	10.0	12.4	11.8	4.1
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	35.0	36.9	27.1	17.9	15.1	19.5	11.9	14.6	25.8	20.2	20.0	13.8	16.3	15.4	7.4
BCF	dB Y/N 0															l
BVR-up	dB Floor 2	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
B 11 4 131 1 1 1	100115															
Predicted Noise Level	1/3 Oct, dB		50.9	41.1	31.9	28.9	32.9	25.1	27.6	38.6	32.2	31.0		25.3	24.1	16.1
Predicted Noise Level	Oct, dB			51.4			34.8			39.8			32.6			24.7
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)															
Compliance	lation has been applied to	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual. [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-P2

Location: HKPU Student Halls of Residence

Assessed Floor 98 Item:

		Train Spee	ed: 50 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	35	45	57
Down Track	65	45	79

Selected LSR Details:

	ĺ	LSR Ref.	
Up	Track	HOM-2-2	
Dow	n Track	HOM-2-2	

								F		/I I_\						
			T						uency	` '						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.2	6.0	-1.9	-8.4	-10.1	-10.5	-17.4	-14.5	-7.1	-9.8	-8.7	-12.1	-6.1	-9.3	-15.1
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.6	37.4	28.5	20.0	17.3	21.0	17.0	20.9	28.4	21.6	21.7	17.3	20.3	18.2	9.3
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.1	-19.7	-17.4	-8.1	-10.4	-9.5	-13.7	-7.9	-10.5	-15.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	35.4	37.2	27.9	19.1	16.4	20.4	14.7	18.0	27.3	21.1	21.0	15.8	18.5	17.0	8.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	38.5	40.3	31.2	22.6	19.9	23.7	19.0	22.7	30.9	24.4	24.3	19.6	22.5	20.6	11.9
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		56.3	47.2	38.6	35.7	39.1	34.2	37.7	45.7	38.4	37.3		33.5	31.3	22.6
Predicted Noise Level	Oct, dB			56.9			41.6			47.0			39.6			31.9
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	25.0														
Noise Criteria	dB(A)	45														
Compliance		Yes														
NI 4 PATES SA	lation has been applied to		11. 1													

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
 [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HOM-P3-1 Horizontal Dist, m Vertical Dist, m Slant Dist, m Location: Residential Building, HOM Station Development Up Track 0 45 45

Assessed Floor 1 Down Track 0 45 45

Item: 99

Selected LSR Details:

Train Speed:

	LSR Ref.
Up Track	HOM-2-2
Down Track	HOM-2-2

50 kph

CCF dB TIL dB TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL GCF dB TIL dB	B re 1 lb/in ^{0.5} B	32.4 0 -5 8.4 35.8	0 -5 6.2 37.6	0 -5	33.4 0 -5 -7.7 20.8	0 -5 -9.2	63 36.4 0 -5 -9.9 21.5	39.4 0 -5	40.4 0 -5	125	0 -5	35.4 0 -5		31.4 0 -5	32.4 0 -5	29.4 0 -5
Up Track Calculation FDL dB CCF dB TIL dB TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL GCF dB TIL dB	B re 1 lb/in ^{0.5} B	32.4 0 -5 8.4 35.8	36.4 0 -5 6.2 37.6	35.4 0 -5	33.4 0 -5	32.4 0 -5	36.4 0 -5	39.4 0 -5	40.4 0 -5	40.4 0 -5	36.4 0 -5	35.4	34.4	31.4	32.4	29.4
FDL dB CCF dB TIL dB TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL GCF dB TIL dB	B Y/N N B Type 0 B B Type 0 B re 10 ⁻⁶ in/s*in ^{0.5} /lb B re 10 ⁻⁶ in/sec B re 1 lb/in ^{0.5} B Y/N N	0 -5 8.4 35.8	0 -5 6.2 37.6	0 -5	0 -5	0 -5 -9.2	0 -5 -9.9	0 -5	0 -5	0 -5	0 -5	0	0	0	0	0
CCF dB TIL dB TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL GCF dB TIL dB	B Y/N N B Type 0 B B Type 0 B re 10 ⁻⁶ in/s*in ^{0.5} /lb B re 10 ⁻⁶ in/sec B re 1 lb/in ^{0.5} B Y/N N	0 -5 8.4 35.8	0 -5 6.2 37.6	0 -5	0 -5	0 -5 -9.2	0 -5 -9.9	0 -5	0 -5	0 -5	0 -5	0	0	0	0	0
TIL dB TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL dB CCF dB TIL dB	B Type 0 B B Type 0 B re 10 ⁻⁶ in/s*in ^{0.5} /lb B re 10 ⁻⁶ in/sec B re 1 lb/in ^{0.5} B Y/N N	-5 8.4 35.8	-5 6.2 37.6	-5 -1.4	-5 -7.7	-5 -9.2	-5 -9.9	-5	-5	-5	-5	-		-	-	
TCF dB TOC dB LSR dB Up Track Vib. Level dB Down Track Calculation FDL dB CCF dB TIL dB	B	8.4 35.8	6.2 37.6	-1.4	-7.7	-5 -9.2	-5 -9.9	-5	-5	-5	-5	-5		-5	-5	-
LSR dB Up Track Vib. Level dB Down Track Calculation FDL GCF dB TIL dB	B re 10 ⁻⁶ in/s*in ^{0.5} /lb B re 10 ⁻⁶ in/sec B re 1 lb/in ^{0.5} B	35.8	37.6					-15.4	-12.1	-6.1						
Up Track Vib. Level dB Down Track Calculation FDL dB CCF dB TIL dB	B re 10 ⁻⁶ in/sec B re 1 lb/in ^{0.5} B Y/N N	35.8	37.6					-15.4	-12.1	-6.1						
Down Track Calculation FDL dB CCF dB TIL dB	B re 1 lb/in ^{0.5} B Y/N N			29.0	20.8	18.2	21.5			0.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Down Track Calculation FDL dB CCF dB TIL dB	B re 1 lb/in ^{0.5} B Y/N N	32.4	36.4				21.0	19.0	23.4	29.3	22.1	22.3	18.7	21.8	19.2	10.0
CCF dB	B Y/N N	32.4	36.4													
CCF dB	B Y/N N		UU. T	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
	B Type 0															
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF dB	В	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC dB	B Type 0															
LSR dB	B re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.4	6.2	-1.4	-7.7	-9.2	-9.9	-15.4	-12.1	-6.1	-9.3	-8.1	-10.7	-4.6	-8.2	-14.5
Down Track Vib. Level dB	B re 10 ⁻⁶ in/sec	35.8	37.6	29.0	20.8	18.2	21.5	19.0	23.4	29.3	22.1	22.3	18.7	21.8	19.2	10.0
Total of Up and Down Trac	acks Calculation															
Total Vibration Level Outside	de Building	38.8	40.6	32.0	23.8	21.2	24.5	22.0	26.4	32.3	25.2	25.3	21.7	24.8	22.2	13.0
BCF dB																
BVR-up dB		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN dB		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF dB	В	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		56.6	48.0	39.8	37.0	39.9	37.2	41.4	47.1	39.2	38.3		35.8	32.9	23.7
Predicted Noise Level	Oct, dB			57.2			43.0			48.7			41.1			33.4
L _{max}	dB(A)	37.0														
L _{eq,30mins}	dB(A)	26.6														
Noise Criteria	dB(A)	45														
Compliance	` ,	Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] $L_{eq,30mins} = L_{eq}$ (double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\text{eq,30mins}}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(TAW - HUH)

NSR Ref.: HUH-1-1

Location: Cartas Branchi College of Careers

Assessed Floor 0 100 Item:

		main ope	o. To kpii
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	95	30	100
Down Track	125	30	129

Selected LSR Details:

Train Speed:

	LSR Ref.	
Up Track	HOM-2-2	
Down Track	HOM-2-2	

15 knh

Up Track Calculation FDL d CCF d TIL d	Jnit JB re 1 lb/in ^{0.5} JB Y/N JB Type JB	N 0	20 31.5	25 35.5	32	40	50	63	80	100	125	160	200	250	315	400	500
FDL d CCF d TIL d	dB Y/N dB Type	N	31.5	35.5	24.5												
CCF d	dB Y/N dB Type	N	31.5	35.5	245												
CCF d	dB Y/N dB Type				34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
	/1 -	0															
TCF	B		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
	dB Type	0															
LSR d	dB re 10 ⁻⁶ in/s*in ^{0.5} /lk	b	7.6	5.5	-3.4	-10.8	-12.6	-12.0	-23.3	-21.9	-9.9	-11.3	-10.6	-16.1	-10.7	-12.4	-17.2
Up Track Vib. Level d	dB re 10 ⁻⁶ in/sec		34.1	36.0	26.1	16.7	13.9	18.5	10.2	12.6	24.6	19.2	18.9	12.4	14.8	14.1	6.3
Down Track Calculation																	
FDL d	dB re 1 lb/in ^{0.5}		31.5	35.5	34.5	32.5	31.5	35.5	38.5	39.5	39.5	35.5	34.5	33.5	30.5	31.5	28.5
CCF d	B Y/N	N															
TIL d	dB Type	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF d	dB		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
TOC	dB Type	0															
LSR d	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	b	7.4	5.4	-3.8	-11.4	-13.4	-12.5	-25.1	-24.0	-10.7	-11.7	-11.2	-17.3	-12.0	-13.3	-17.8
Down Track Vib. Level d	dB re 10 ⁻⁶ in/sec		33.9	35.9	25.7	16.1	13.1	18.0	8.4	10.5	23.8	18.8	18.3	11.2	13.5	13.2	5.7
Total of Up and Down Tr	racks Calculation																
Total Vibration Level Outsi	ide Building		37.0	39.0	28.9	19.4	16.5	21.3	12.4	14.7	27.3	22.0	21.6	14.8	17.2	16.7	9.1
BCF d	B Y/N	0															
	dB Floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	dB		6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
	dB .		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF d	lB		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct	,	55.0	57.0		37.4	34.3	38.7	29.6	31.7	44.1	38.0	36.6		30.2	29.4	21.8
Predicted Noise Level		, dB			57.4			40.4			45.2			38.1			30.1
L _{max}	dE	B(A) :	33.7														
L _{eq,30mins}	dE	B(A) 2	27[8]														
Noise Criteria	dE	B(A) 5	55[9]														
Compliance			Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
- [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.
 [8] A 3dB(A) upward adjustment is made to account for the daytime headway of 22 EMU trains within a 30 minutes period.
- [9] Daytime criteria are used for educational buildings, church and temple.

Project: SCL(TAW - HUH) NSR R Locati Asses

Item:

Ret.:	HUH-1-2		Horizontai Dist, m	vertical Dist, m	Siant Dist, m
ation:	Lok Ka House	Up Track	55	18	58
essed Floor	1	Down Track	80	18	82
	101				

Selected LSR Details:

Train Speed:

	I	LSR Ref.
Up Track	ŀ	HOM-2-2
Down Track	ŀ	HOM-2-2

								Frequ	uency	(Hz)						
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.1	6.0	-2.1	-8.7	-10.4	-10.7	-18.1	-15.4	-7.4	-10.0	-9.0	-12.6	-6.7	-9.6	-15.4
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.5	39.4	30.3	21.7	19.0	22.8	18.3	22.0	30.0	23.5	23.5	18.8	21.7	19.8	11.0
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	32.4	36.4	35.4	33.4	32.4	36.4	39.4	40.4	40.4	36.4	35.4	34.4	31.4	32.4	29.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	8.0	5.8	-2.5	-9.3	-11.0	-11.0	-19.5	-17.2	-8.1	-10.3	-9.4	-13.6	-7.8	-10.4	-15.9
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	37.4	39.3	30.0	21.1	18.4	22.4	16.9	20.2	29.4	23.1	23.0	17.9	20.6	19.0	10.5
Total of Up and Down	Tracks Calculation															
Total Vibration Level Out	tside Building	40.5	42.3	33.1	24.4	21.8	25.6	20.7	24.2	32.7	26.3	26.2	21.4	24.2	22.4	13.8
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		58.3	49.1	40.4	37.6	41.0	35.9	39.2		40.3	39.2		35.2	33.1	24.5
Predicted Noise Level	Oct, dB			58.9			43.4			48.8			41.4			33.7
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)	26.8														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

- [6] $L_{\text{eq},30\text{mins}}$ is based on train frequency of 6 trains per 30mins in each direction.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

 $^{[5] \} L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) - 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)

Project: SCL(TAW - HUH)

NSR Ref.: HUH-1-3

Location: Wing Fung Building

Assessed Floor 102 Item:

		rain Spee	ea: 60 kpn
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	10	18	21
Down Track	25	18	31

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5
Down Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	2.9	11.8	8.0	3.0	1.9	4.8	-0.4	-4.8	-9.1	-15.7	-20.4	-28.4	-27.1	-35.0	-36.2
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	33.9	46.8	42.0	35.0	32.9	39.8	37.6	34.2	29.9	19.3	13.6	4.6	2.9	-4.0	-8.2
Down Track Calculatio																
FDL	dB re 1 lb/in ^{0.5}	34.0	38.0	37.0	35.0	34.0	38.0	41.0	42.0	42.0	38.0	37.0	36.0	33.0	34.0	31.0
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-4.0	8.1	4.4	-1.6	-4.2	-1.8	-7.5	-12.5	-16.6	-21.6	-24.3	-31.4	-28.2	-35.8	-37.3
Down Track Vib. Level	dB re 10 ⁻⁶ in/sec	27.0	43.1	38.4	30.4	26.8	33.2	30.5	26.5	22.4	13.4	9.7	1.6	1.8	-4.8	-9.3
Total of Up and Down	Tracks Calculation															
Total Vibration Level Ou	tside Building	34.7	48.3	43.6	36.2	33.9	40.7	38.4	34.9	30.6	20.3	15.1	6.4	5.4	-1.4	-5.7
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Barata de Maior de Constantino	4/0.0 : 15	E0 E	215	50 6	50.	10 =	·	E0 -	10.5	4= -	215		40 :	10.1		
Predicted Noise Level	1/3 Oct, dB		64.3	59.6	52.2	49.7	56.1	53.6	49.9	45.4	34.3	28.1	18.4	16.4	9.3	5.0
Predicted Noise Level	Oct, dB			65.8			58.6			51.3			28.8			11.1
L _{max}	dB(A)															
L _{eq,30mins}	dB(A)															
Noise Criteria	dB(A)	45														
Compliance		Yes														

- Notes: [1] Linear interpolation has been applied to slant distance where appropriate.

 [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.

 [3] LSR based on the ground type. LSR data are interpolated against slant distance.

 [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.

 - $[5] \ L_{eq,30mins} = L_{eq}(double\ passbys) + 10*log(Passby\ duration\ in\ sec) + 3dB(A) + 10*log(no.\ of\ events\ in\ 30mins\ per\ direction) 32.6dB(A)$ (3dB(A) correction is added to $L_{eq,30mins}$ for leading and trailing effect for conservative approaches.)
 - [6] $L_{\rm eq,30mins}$ is based on train frequency of 6 trains per 30mins in each direction.
 - [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Project: SCL(HHS)
NSR Ref.: HUH-1-3

Location: Wing Fung Building

Assessed Floor 1 Item: 102

		Train Spec	ed: 25 kph
	Horizontal Dist, m	Vertical Dist, m	Slant Dist, m
Up Track	45	0	45

Selected LSR Details:

	LSR Ref.
Up Track	KAT-P1-5

		Frequency (Hz)														
Description	Unit	20	25	32	40	50	63	80	100	125	160	200	250	315	400	500
Up Track Calculation																
FDL	dB re 1 lb/in ^{0.5}	26.4	30.4	29.4	27.4	26.4	30.4	33.4	34.4	34.4	30.4	29.4	28.4	25.4	26.4	23.4
CCF	dB Y/N N															
TIL	dB Type 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TCF	dB	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
TOC	dB Type 0															
LSR	dB re 10 ⁻⁶ in/s*in ^{0.5} /lb	-10.6	4.6	0.9	-6.1	-10.0	-8.2	-14.3	-19.9	-23.8	-27.3	-28.1	-34.2	-29.2	-36.5	-38.3
Up Track Vib. Level	dB re 10 ⁻⁶ in/sec	12.8	32.0	27.3	18.3	13.4	19.2	16.1	11.5	7.6	0.1	-1.7	-8.8	-6.8	-13.1	-17.9
Total of Up and Down																
Total Vibration Level Out	tside Building	12.8	32.0	27.3	18.3	13.4	19.2	16.1	11.5	7.6	0.1	-1.7	-8.8	-6.8	-13.1	-17.9
BCF	dB Y/N 0															
BVR-up	dB Floor 1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
BVR - Resonance	dB	6.0	6.0	6.0	6.0	5.8	5.4	5.2	5.0	4.8	4.0	3.0	2.0	1.0	0.7	0.7
CTN	dB	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SAF	dB	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Predicted Noise Level	1/3 Oct, dB		48.0	43.3	34.3	29.2	34.6	31.3	26.5	22.4	14.1	11.3	3.2	4.2	-2.4	-7.2
Predicted Noise Level	Oct, dB			49.4			37.0			28.1			12.6			2.5
L _{max}	dB(A)	15.8														
L _{eq,30mins}	dB(A)	<20														
Noise Criteria	dB(A)	45														
Compliance		Yes														

- [2] FDL based on 60kph data and adjusted by the correction factor of 20xlog(V/Vref), in line with FTA manual.
- [3] LSR based on the ground type. LSR data are interpolated against slant distance.
- [4] Lmax has incorporated a +0.5dB(A) correction to passby Leq as per measurement at Pat Heung Depot.
- [5] L_{eq,30mins} = L_{eq}(double passbys) + 10*log(Passby duration in sec) + 3dB(A) + 10*log(no. of events in 30mins per direction) 32.6dB(A) (3dB(A) correction is added to L_{eq,30mins} for leading and trailing effect for conservative approaches.)
- [6] L_{eq,30mins} is based on train frequency of 6 trains per 30mins at tunnel section under Chatham Road North for turning around.
- [7] Track Type 0 = Direct Fixation, 1 = Atl 1 Baseplate; Type 2 = Egg type baseplate; Type 3 = 12.5Hz FST.

Annex E

Cumulative Operational Ground-borne Noise Results

Annex E - Updated Cumulative Operational Ground-borne Noise Levels

			Pr	Cumulative				
Item	NSR	Location	SCL (TAW- HUH)	SCL (HHS)	SCL (MKK- HUH)	KTE ^[4]	Noise Level (dB(A))	
96	HOM-4-1	Yee Fu Building	25		20 ^[2]	<20	27	
97	HOM-5-1	271 Chatham Road North	<20		20 ^[2]	23	26	
98	HOM-P2	HKPU Student Halls of Residence	25		<20	<20	27	
99	HOM-P3-1	Residential Building, HOM Station Development	27	-	20 ^[2]	36	37	
100	HUH-1-1	Cartas Branchi College of Careers	30 ^[1]	-	20 ^[2]	26	32	
101	HUH-1-2	Lok Ka House	27		20 ^[2]	<20	28	
102	HUH-1-3	Wing Fung Building	26	<20	<20 ^[3]	<20	29	

Notes:

- [1] A 3dB(A) upward adjustment is made to account for the daytime headway of 12 EMU trains within a 30 minutes period per direction.
- [2] Noise levels are estimated from predicted noise level of adjacent NSR.
- [3] Noise levels presented in OGNMMP for SCL(MKK-HUH).
- [4] According to Groundborne Noise Review Report for Kwun Tong Line Extension, there are no updated results for the NSRs presented above. Noise levels are thus reference from KTE EIA Report (Register No.: AEIAR-154/2010).