MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

(July 2016)

Verified by:	Fredrick Leong
Position: Indepe	endent Environmental Checker
Date:	14 July 2016

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

(July 2016)

Certified by:	Richard Kwan Wan
Position:	Environmental Team Leader
Date:	14 July 2016

MTR Corporation Limited

Consultancy Agreements No. C11033B

Shatin to Central Link - Hung Hom to Admiralty Section

Monthly EM&A Report No. 26

[Period from 1 to 30 June 2016]

	Name	Signature
Prepared & Checked:	Joanne Tsoi	1.4~
Reviewed & Approved:	Josh Lam	Man

Version:	Α	Date:	14 July	2016

This Monthly EM&A Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C11033B and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this report comes may rely on this plan without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Contents

		Page
1	INTRO	DUCTION1
	1.1 1.2 1.3	Background
2	ENVIR	ONMENTAL MONITORING AND AUDIT3
3	IMPLEI	MENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS
List of	Tables	
Table 1 Table 2 Table 2 Table 2 Table 2 Table 2 Table 2	.1 .2 .3 .4	Summary of Awarded Works Contracts Summary of Major Construction Activities in the Reporting Period Summary of 24-Hour TSP Monitoring Results in the Reporting Period Summary of Construction Noise Monitoring Results in the Reporting Period Summary of Marine Water Quality Monitoring Results in the Reporting Period (1) Log for Environmental Complaints, Notification of Summons and Successful Prosecutions
Table 3	.1	Summary of EP Submissions Status
List of	Append	ices
Append	lix A	Monthly EM&A Report for June 2016 – SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels
Append	lix B	Monthly EM&A Report for June 2016 – SCL Works Contract 1121 NSL Cross Harbour Tunnels
Append	lix C	Monthly EM&A Report for June 2016 – SCL Works Contract 1123 Exhibition Station and Western Approach Tunnel

AECOM Asia Co. Ltd. i July 2016

1 INTRODUCTION

1.1 Background

- 1.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai to Hung Hom via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH) and Stabling Sidings at Hung Hom Freight Yard (HHS); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 1.1.2 Shatin to Central Link Hung Hom to Admiralty Section [SCL (HUH ADM)] (hereafter referred to as "the Project") is part of the SCL.
- 1.1.3 The Environmental Impact Assessment (EIA) Report for SCL (HUH-ADM) (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) (EP No.: EP-436/2012) was granted on 22 March 2012 for construction and operation. Variations of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/D) was issued by Director of Environmental Protection (DEP) on 5 February 2016.

1.2 Project Programme

1.2.1 Six civil construction works contracts of the Project have been awarded since January 2014. The construction of the Project commenced in May 2014 and is expected to complete in 2021¹. The Project will have to interface with other infrastructure projects, including Wan Chai Development Phase II and Central-Wan Chai Bypass. **Table 1.1** summarises the information of the awarded Works Contracts.

Table 1.1 Summary of Awarded Works Contracts

Table 1.1	Summary of Awarded Works Contracts							
Works Contract	Description Construction Start Date Contractor		Environmental Team					
1121	NSL Cross Harbour Tunnels	March 2015	Penta-Ocean – China State JV	Cinotech Consultants Ltd. (Cinotech)				
1123	Exhibition Station and Western Approach Tunnels	June 2015	Leighton - China State JV	AECOM Asia Co. Ltd.				
1126 ⁽¹⁾	Reprovisioning of Harbour Road Sports Centre and Wan Chai Swimming Pool	July 2014	Kaden Leader JV	Cinotech Consultants Ltd. (Cinotech)				
1128	South Ventilation Building to Admiralty Tunnels	November 2014	Dragages Bouygues J.V.	AECOM Asia Co. Ltd.				
1129 ⁽²⁾	SCL – Advance Works for NSL	May 2014	Hsin Chong Construction Co. Ltd.	AECOM Asia Co. Ltd.				
11227 ⁽³⁾	Advance Works for NSL Cross Harbour Tunnels	August 2014	Concentric-Hong Kong River Joint Venture	Cinotech Consultants Ltd. (Cinotech)				

Note:

- (1) Construction works under Works Contract 1126 was completed on 17 May 2015.
- (2) Construction works under Works Contract 1129 was completed on 20 July 2015.
- (3) Construction works in Victoria Harbour and Shek O Casting Basin under Works Contract 11227 were completed on 15 and 20 December 2014 respectively.

AECOM Asia Co. Ltd. 1 July 2016

¹ The commissioning date of SCL(HUH-ADM) will very likely be deferred to 2021 to allow flexibility for the topside development of the Exhibition Station, and to cater for the construction works under other infrastructure projects on Hong Kong Island.

1.3 Purpose of the Report

1.3.1 The Environmental Monitoring and Audit (EM&A) programme for the Project commenced in May 2014. This is the twenty-sixth EM&A Report for the Project which summarises the EM&A works undertaken by the respective Contractor's ETs during the period from 1 to 30 June 2016.

2 ENVIRONMENTAL MONITORING AND AUDIT

2.1 EM&A Results

- 2.1.1 The EM&A Report for Works Contracts 1128, 1121 and 1123 prepared by the respective Contractor's ETs are provided in **Appendices A** to **C** respectively. The EM&A Reports provide details of the project information, EM&A requirements, impact monitoring and audit results for the corresponding Contracts.
- 2.1.2 A summary of the major construction activities undertaken by the respective Contractors of various Works Contracts during the reporting period are presented in **Table 2.1**.

Table 2.1 Summary of Major Construction Activities in the Reporting Period

Table 2.1	Summary of Major Construction Activities in the Reporting Period				
Works Contract	Site	Construction Activities			
	Shek O	 Construction of IMT Bottom Plate; Steel Formwork Erection; Base Slab Rebar Fixing Concreting; Wall and Roof Rebar Fixing; IMT Wall & Roof Concreting; Collar Plate Installation; Tunnel Lighting Installation; Ballast Tank Installation; and Waterproofing Work. 			
1121	Victoria Harbour	 Installation of Sheet Pile Wall for Cofferdam in Hung Hom; Grouting Curtain in Hung Hom; Excavation and Steel Truss Support Construction at Hung Hom; Marine Platform Construction at Hung Hom; Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom; Pump Well Construction at Hung Hom; Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom; Rock Breaking & Removal at seabed of Element E1 Location; Trench Dredging Works for IMT alignments at Victoria Harbour; Removal of Breakwater at CBTS; and Reprovisioning for Seawall of Finger Pier at Hung Hom. 			
	Exhibition Station (PTI Area)	 Utilities Diversion/ Protection; Provision of Temporary Footbridge; Prebored socket H-Piles (PBSH) & King Post; Diaphragm Wall Works. 			
1123	Exhibition Station (Swimming Pool Area)	Diaphragm Wall Works			
1120	Exhibition Station (Tunnel at Tonnochy Road)	Diaphragm Wall Works;Utilities Diversion/ Protection.			
	Western Approach Tunnel WAT Western Vent Shaft	Temporary Fire Escape Access for HKCEC; Diaphragm Wall Works.			
	(WVS) Area W1	Diaphragm Wall Works TRM In track execution & ring installation			
	Area W2	TBM Up-track excavation & ring installation Pre-bored H-pile, pile removal and D-wall construction			
1128	Area W3	Demobilisation at Percival Street Footbridge			
	Area W3.5.2	Remaining lean mix column construction			
	AreaW4a	Island stage ELS & reinstatement works			
	Area W4b	Complete third tie beam construction			

Works Contract	Site	Construction Activities			
	Area W6	Left-in sheetpile removal Further G.I. at Marsh Road West-Footpath			
	Area W8	ExcavationD-wall construction			
	Area W10 - SVB	Cavern excavation in concrete treated ground			
	Area W15 & W16	Pile investigation works			

2.1.3 During the reporting month, impact monitoring for air quality, construction noise and water quality were conducted in accordance with the EM&A Manual. Continuous noise monitoring was not required in the reporting period according to the Continuous Noise Monitoring Plan (CNMP). No exceedances of the Action/Limit Levels of 24-hr TSP, construction noise and water quality parameters due to the Project construction were recorded. In the last Monthly EM&A Report, the suspended solid was found exceeding Action and Limit Levels at the impact monitoring stations. An thorough investigation was undertaken and no pollution discharge from construction activity was observed during water sampling. Moreover, the monitoring results at the impact monitoring stations were similar to the results at the Control Station or within the ranges of baseline monitoring results. Thus, there is no direct evidence that the exceedances were due to the Project. The exceedances are considered due to the other external factors rather than the construction works. Results of air quality, construction noise and water quality monitoring are summarised in Tables 2.2, 2.3 and 2.4 respectively. Details of the monitoring requirements, locations, equipment and methodology are presented in the EM&A Reports (Appendices A to C).

Table 2.2 Summary of 24-Hour TSP Monitoring Results in the Reporting Period

Monitoring Station ID	Location	TSP Concentration (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)	Exceedance due to the Project Construction (Yes/No)
Works Contrac	et 1121 ⁽¹⁾				
Works Contract	t 1123				
АМЗ	Existing Harbour Road Sports Centre ⁽²⁾	26.9 – 163.6	169	260	No
Works Contrac	t 1123 and 1128				
AM2	Wan Chai Sports Ground ⁽³⁾⁽⁴⁾	13.9 – 27.0	160	260	No
Works Contract 1128					
AM4	Pedestrian Plaza	32.3- 85.8	198	260	No

Note:

- (1) The setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out under Works Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by Works Contract 1121.
- (2) Dust monitoring at AM3 (Existing Harbour Road Sports Centre) was handed over from Works Contract 1126 to Works Contract 1123 in June 2015.
- (3) The spectator stand at Wan Chai Sports Ground was not available for impact dust monitoring, therefore impact monitoring was conducted at the existing water pump room area at Wan Chai Sports Ground.
- (4) Dust monitoring at AM2 (Wan Chai Sports Ground) was handed over to Works Contract 1123 from Works Contract 1128 on 28 October 2015.

Table 2.3 Summary of Construction Noise Monitoring Results in the Reporting Period

Monitoring	Location	Noise Level (LAeq,30mins, dB(A))	Limit	Exceedance

Station ID		Measured	Baseline	Corrected ⁽¹⁾	Level (dB(A))	due to the Project Construction (Yes/No)	
Works Cont	ract 1121 ⁽²⁾						
Works Cont	ract 1123						
NM2 ⁽³⁾⁽⁴⁾⁽⁵⁾	Harbour Centre	66.4 – 69.3	69.6	<baseline< td=""><td>75</td><td>No</td></baseline<>	75	No	
Work Contra	Work Contract 1128 ⁽⁶⁾						
NM1	Hoi Kung Court	67.4 – 71.6	71	< Baseline – 62.7	75	No	

Note:

- (1) The measured noise levels are corrected against the corresponding baseline noise levels.
- (2) No construction noise monitoring is required under Works Contract 1121.
- (3) The impact monitoring at NM2 was handed over from Works Contract 1126 to Works Contract 1123 in June 2015.
- (4) Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. Alternative noise monitoring location proposed at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014. Impact noise monitoring was carried out at Harbour Centre from 20 August 2014 onwards.
- (5) Impact noise monitoring has been carrying out on 7/F of Habour Centre between 20 August and 15 December 2014, and on 8/F from 19 December 2014 onwards.
- (6) Noise monitoring at NM1 (Hoi Kung Court) was handed over from Works Contract 1129 to Works Contract 1128 in August 2015.

Table 2.4 Summary of Marine Water Quality Monitoring Results in the Reporting Period (1)

			Parameters	_					
Locations		Depth-averaged Dissolved Oxygen (mg/L)	lved Oxygen Turbidity (NTII)						
Shek O C	Shek O Casting Basin ⁽²⁾								
Victoria I	larbour (W	et Season) (3)							
0.4	Mean	6.2	4.7	4.6					
21	Range	5.2 – 7.1	3.2 - 6.7	2.7 – 6.8					
24	Mean	6.3	4.5	4.4					
34	Range	5.4 – 7.3	1.8 – 6.4	<2.5 – 6.5					
0	Mean	6.7	4.6	4.5					
9	Range	5.7 – 8.5	2.5 – 7.8	<2.5 – 6.5					
Action	Level	2.8	11.3	6.9					
Limit	Level	2.7	17.2	9.1					
	dance (No)	No	No	No					
Α	Mean	6.5	3.9	4.6					
A	Range	5.8 – 7.7	2.7 – 4.5	3.0 – 5.8					
WSD17	Mean	6.3	3.9	4.3					
WSD17	Range	4.9 – 7.7	2.4 – 4.5	<2.5 – 5.8					
WCDO	Mean	6.5	3.5	4.5					
WSD9	Range	5.3 – 7.7	2.1 – 4.4	2.7 – 5.8					
Action	Level	<2.1	4.7	6.0					
Limit	Level	<2	6.5	6.0					
	dance s/No)	No	No	No					

Locations		Parameters		
		Depth-averaged Dissolved Oxygen (mg/L)	Depth-averaged Turbidity (NTU)	Depth-averaged Suspended Solids (mg/L)
04	Mean	6.4	3.9	4.5
C1	Range	5.6 – 7.5	2.0 – 4.6	3.0 – 5.8
C2	Mean	6.3	3.8	4.5
C2	Range	5.1 – 7.7	2.1 – 4.6	3.0 – 5.8

Notes:

- (1) Marine water quality monitoring was conducted in the reporting period under Works Contract 1121.
- (2) Removal of earth bunds at Shek O Casting Basin under Works Contract 1121 has not yet commenced in the reporting month, and thus no water quality monitoring was conducted during the reporting period.
- (3) Dredging / filling works within the Victoria Harbour commenced on 22 April 2015. Water Quality Monitoring at Station 8 and 14 is suspended as these water intakes are not in use.
- 2.1.4 One complaint was received under Works Contract 1121 on 3rd June, concerning the air and water quality impacts during unloading of spoil materials to the barge and no notification of summons and successful prosecutions were received in the reporting period. Log for environmental complaints, notification of summons and successful prosecutions is provided in **Table 2.5**.

Table 2.5 Log for Environmental Complaints, Notification of Summons and Successful Prosecutions

Works Contract	Environmental Complaints Reporting Month	Notification of Summons Reporting Month	Successful Prosecutions Reporting Month
1121	1	0	0
1123	0	0	0
1128	0	0	0

2.1.5 Regular site inspections were conducted by the Contractor's ET on a weekly basis to check the implementation of environmental pollution control and mitigation measures for the Project. No non-conformance was identified in the reporting period.

3 IMPLEMENTATION STATUS ON THE ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The respective Contractors have implemented all mitigation measures and requirements as stated in the EIA Report, EM&A Manual and EP (EP-436/2012/D). The status of required submissions under the EP as of the reporting period are summarised in **Table 3.1**.

Table 3.1 Summary of EP Submissions Status

Table 3.1 Summary of EP Submissions Status			
EP Condition (EP-436/2012/D)	Submission	Submission date	
Condition 1.11	Notification of Commencement Date of Construction of the Project	19 Dec 2012	
Condition 2.3	Notification of Setup of Community Liaison Group	3 Feb 2015	
Condition 2.5	Management Organisation of Main Construction Companies	15 Apr 2015	
Condition 2.6	Construction Programme and EP Submission Schedule	15 Apr 2015	
Condition 2.7	Construction Noise Mitigation Measures Plan (CNMMP) Works Contract 1126: Construction Noise Mitigation Measures Plan (CNMMP)	9 Jun 2014 (1st Submission)	
	Works Contract 1123: Construction Noise Mitigation Measures Plan (CNMMP)	24 Apr 2015 (1st Submission) 7 Jul 2015 (2nd Submission) 2 Oct 2015 (3rd Submission) 2 June 2016 (4th Submission)	
Condition 2.8	Continuous Noise Monitoring Plan (CNMP) Works Contract 1126: Continuous Noise Monitoring Plan (CNMP) Works Contract 1123:	9 Jun 2014 (1 st Submission) 24 Apr 2015 (1 st Submission) 7 Jul 2015 (2 nd Submission)	
	Continuous Noise Monitoring Plan (CNMP) Construction and Demolition Materials	2 June 2016 (3 rd Submission) 6 Jul 2012 (1 st Submission)	
Condition 2.9	Management Plan (C&DMMP)	12 Sep 2012 (2 nd Submission) 15 Oct 2012 (approved)	
Condition 2.10	Works Contract 11227: Silt Curtain Deployment Plan for Trial Trenching in Victoria Harbour	11 Jul 2014	
Condition 2.10	Works Contract 1121: Silt Curtain Deployment Plan for Hung Hom Landfall and Trial Trench in Victoria Harbour	17 Feb 2015 (1st Submission) 2 Apr 2015 (2nd Submission) 27 Oct 2015 (3rd Submission) 29 March 2016 (4th Submission)	
Condition 2.11	Works Contract 11227: Silt Screen Deployment Plan	11 Jul 2014	
	Works Contract 1121: Silt Screen Deployment Plan	13 Feb 2015	
Condition 2.12	Sediment Management Plan	6 Jul 2012 (1st Submission) 12 Sep 2012 (2nd Submission) 5 Oct 2012 (3rd Submission) 15 Oct 2012 (approved) 3 Jul 2014 (4th Submission)	
Condition 2.14	Visual, Landscape, Tree Planting & Tree Protection Plan	14 Nov 2012 (1st Submission) 3 Dec 2013 (2nd Submission) 21 Aug 2014 (3rd Submission)	

EP Condition (EP-436/2012/D)	Submission	Submission date
		9 Feb 2015 (4 th Submission) 27 May 2016 (5 th Submission)
	Works Contract 11227: Silt Curtain Deployment Plan for Shek O	23 Jul 2014 (1st Submission) 31 Jul 2014 (approved)
Condition 2.23.1	Works Contract 1121: Silt Curtain Deployment Plan for Shek O	4 Feb 2015 (1 st Submission) 4 Mar 2015 (2 nd Submission) 9 Mar 2015 (approved)
Condition 2.24	Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR)Remedial Action Plan (RAP) for the above-ground diesel tanks for Wan Chai Swimming Pool	CAP: 25 Sep 2012 (1st Submission) 12 Nov 2012 (2nd Submission) 22 Nov 2012 (approved) CAR: 19 Mar 2013 (1st Submission) 16 Apr 2013 (2nd Submission) 21 May 2013 (3rd Submission) 7 Jun 2013 (approved)
	Baseline Monitoring Report (for noise and air quality)	4 Dec 2013 (1 st Submission) 5 Feb 2014 (2 nd Submission)
Condition 3.3	Baseline Water Quality Monitoring Report	23 Sep 2014 (1 st Submission) 18 Dec 2014 (2 nd Submission)
	Baseline Water Quality Monitoring Report for Temporary Marine Works at Shek O Casting Basin	8 Jul 2014 (1 st Submission) 11 Aug 2014 (2 nd Submission)
	Monthly EM&A Reports No.1 - 24	Reported in previous Monthly EM&A Reports
Condition 3.4	Final EM&A Review Report for Works Contract 11227	12 Feb 2015
	Final EM&A Review Report for Works Contract 1126	25 Jun 2015 (1 st Submission) 4 Sep 2015 (2 nd Submission)
	Monthly EM&A Report No.25	14 June 2016

Appendix A

Monthly EM&A Report for June 2016 – SCL Works Contract 1128 South Ventilation Building to Admiralty Tunnels

Dragages Bouygues J.V.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1128 - South Ventilation Building (SOV) to Admiralty Tunnels

Monthly EM&A Report for June 2016

[July 2016]

	Name	Signature
Prepared & Checked:	Lemon Lam	· Joune
Reviewed, Approved & Certified:	Y T Tang (Contractor's Environmental Team Leader)	Togethain

Version: 0	Date:	13 July 2016
------------	-------	--------------

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Dragages Bouygues J.V. and is given for its sole benefit in relation to and pursuant to SCL1128 and may not be disclosed to, quoted to or relied upon by any person other than Dragages Bouygues J.V. without our prior written consent. No person (other than Dragages Bouygues J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Dragages Bouygues J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1 1.2	Purpose of the Report	
2	PRO	JECT INFORMATION	4
	2.1 2.2 2.3 2.4 2.5	Background	
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	9
	3.1 3.2	Construction Noise MonitoringLandscape and Visual	
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	13
5	MON	ITORING RESULTS	14
	5.1 5.2 5.3	Construction Noise Monitoring	15
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	16
7	ENVI	RONMENTAL NON-CONFORMANCE	18
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances Summary of Environmental Non-Compliance Summary of Environmental Complaints Summary of Environmental Summon and Successful Prosecutions	18 18
8	FUTU	JRE KEY ISSUES	19
	8.1 8.2 8.3	Construction Programme for the Next Two Month Key Issues for the Coming Month	19
9	CON	CLUSIONS AND RECOMMENDATIONS	20
	9.1 9.2	Conclusions	20

List of Tables

Contact Information of Key Personnel
Status of Environmental Licenses, Notifications and Permits
Air Quality Monitoring Equipment
Locations of Construction Dust Monitoring Station
Noise Monitoring Parameters, Frequency and Duration
Noise Monitoring Station during Construction Phase
Status of Required Submission under Environmental Permit
Summary of 24-hour TSP Monitoring Result in the Reporting Period
Summary of Construction Noise Monitoring Results in the Reporting Period
Observations and Recommendations of Site Audit

List of Figures

Figure 3.1 Air Quality and Noise Monitoring Locations

List of Appendices

Appendix A Appendix B	Construction Programme Project Organisation Structure
Appendix C	Environmental Mitigation Implementation Schedule
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Event and Action Plan
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful Prosecutions
Appendix K	Monthly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii July 2016

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1128 – South Ventilation Building (SOV) to Admiralty Tunnels (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities.

The EM&A programme commenced on 17 November 2014. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2016. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities
Area W1	TBM Up-track excavation & ring installation
Area W2	Pre-bored H-pile, pile removal and D-wall construction
Area W3	Demobilisation at Percival Street Footbridge
Area W3.5.2	Remaining lean mix column construction
Area W4a	Island stage ELS & reinstatement works
Area W4b	Complete third tie beam construction
Area W6	Left-in sheetpile removal
	Further G.I. at Marsh Road West-Footpath
Area W8	Excavation
	D-wall construction
Area W10 – SVB	Cavern excavation in concrete treated ground
Area W15 & W16	Pile investigation works

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Noise monitoring was handed-over from SCL Contract 1129 in August 2015.

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

Location	Site Activities
Area W1	Segment Delivery, TBM Muck Out
Area W2	Construction for SOV
Area W3	Post drilling
Area W3.5.2	Lean Mix Column
Area W4a	Reinstatement of Canal Road Culvert
Area W4b	Construction of Tie beams under Canal Road Flyover
Area W6	Removal of sheetpile along HEC cable
	 Ground Treatment of West Tunnel Sewer and HEC Building
Area W8	Excavation, Cavern Excavation, D-wall Construction
Area W14	Lung King Street Reinstatement
Area W15 & W16	Pile Detection at Fenwick Pier Street, Road Construction for Traffic Diversion

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

1 INTRODUCTION

Dragages Bouygues J.V. (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1128. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the twentieth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 30 June 2016.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is orgainised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/D) was issued by the Director of Environmental Protection (DEP) on 5 February 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and the Project comprises the Permanent Works and the associated temporary works necessary for TBM tunnels between SOV and Admiralty Tunnels, short sections of cut and cover tunnels near SOV and Fenwick Pier Emergency Egress Point (FPP), Re-provisioning, Remedial and Improvement Works (RRIW) for government and public bodies facilities under the EP.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1128 include:
 - (a) Taking over the 160m section of the SCL tunnels (ME4 Tunnel) constructed under the Central Wan Chai Bypass (CWB) project and construction of walkways, sealing, connection and various finishing works inside the tunnels;
 - (b) Construction of cut and cover tunnels connecting from South Ventilation Building (SOV) to the ME4 Tunnel;
 - (c) Removal of temporary reclamation and reinstatement of seawall;
 - (d) Construction of SOV;
 - (e) Bored tunnels between SOV and Exhibition Station (EXH):
 - (f) Construction of cut and cover tunnels connecting from the SCL tunnels under Convention Avenue by Contract 1123 to the bored tunnels as stated in sub-clause
 - (g) Construction of Fenwick Pier Emergency Egress Point (FPP);
 - (h) Bored tunnels between Fenwick Pier Emergency Egress Point (FPP) and Admiralty Station (ADM);
 - (i) Pile/obstruction detections and removals for construction of SCL running tunnels and for future North Island Line (NIL) running tunnels;
 - (j) Demolition of existing Police Officer's Club (POC);
 - (k) Reprovisioning of new POC;
 - (I) Other RRIW;
 - (m) Essential piling works at future Government, Institution and Community (GIC) site
 - (n) Diversion and modification of utilities and services;
 - (o) Modification, re-provisioning or reinstatement of footpath, carriageway or road features;
 - (p) Provisions for Designated and Interfacing Contracts;
 - (g) Tree felling, tree compensation, transplanting works and landscaping works;
 - (r) Permanent reprovisioning works at the Fleet Arcade;
 - (s) Miscellaneous signage; and
 - (t) External works comprising new and reinstated roads, footpaths, drains, landscaping, staircase, street furniture and the like.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Area W1	TBM Up-track excavation & ring installation
Area W2	Pre-bored H-pile, pile removal and D-wall construction
Area W3	Demobilisation at Percival Street Footbridge
Area W3.5.2	Remaining lean mix column construction
Area W4a	Island stage ELS & reinstatement works
Area W4b	Complete third tie beam construction
Area W6	Left-in sheetpile removal
	Further G.I. at Marsh Road West-Footpath
Area W8	Excavation
	D-wall construction
Area W10 – SVB	Cavern excavation in concrete treated ground
Area W15 & W16	Pile investigation works

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Thomas Neil De Rye, BARRETT	2171 3610	2171 3609
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
JV	Contractor	Project Director	Mr. Alain Hervio	6112 9197	2171 3715
30	Contractor	Environmental Manager	Mr. Marcus Cheung	6628 2685	21/13/15
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y T Tang	3922 9393	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No. / Notification/	Valid	Period	Status	Remarks			
Reference No.	From	То	Status	Remarks			
Environmental Perm	Environmental Permit						
EP-436/2012/D	5-Feb-16	-	Valid	-			
Construction Noise	Permit						
GW-RS1440-15	1-Jan-16	29-Jun-16	Valid	An area of Tunnel Approach Rest Garden near Hung Hing Road Flyover (W3)			
GW-RS0029-16	14-Jan-16	12-Jul-16	Valid	An area at Gloucester Road near Marsh Road Station Building (W5)			
GW-RS0065-16	29-Jan-16	27-Jul-16	Valid	An area at Gloucester Road near Marsh Road Station Building (W5) - Individual PME group for grouting			
GW-RS0250-16	14-Mar-16	13-Sep-16	Valid	Lung King Street near DSD Screening Plant (W14)			
GW-RS0336-16	7-Apr-16	4-Oct-16	Valid	Construction site at Gloucester Road near Hung Hing Road (W4) – Jet Grouting			
GW-RS0392-16	22-Apr-16	21-Oct-16	Valid	Victoria Park Road near Police Officer Club (W1) – Rock Excavation + Noise Cover + TBM assembly			
GW-RS0414-16	28-Apr-16	31-Jul-16	Valid	Wan Chai Sport Ground			
GW-RS0443-16	6-May-16	4-Nov-16	Valid	Construction site near Gloucester Road, Wan Chai (W3.5.2)			
GW-RS0449-16	8-May-16	30-Jun-16	Valid until superseded by GW-RS0615-16 on 13-Jun-16	Construction site at Fenwick Pier Street near DSD Screening Plant			
GW-RS0469-16	13-May-16	10-Nov-16	Valid until superseded by GW-RS0562-16 on 5-Jun-16	An area near Lung King Street and Convention Avenue (W8) – D-Wall Modified			
GW-RS0489-16	18-May-16	16-Nov-16	Valid	Construction site on Wan Shing Street (W6)			
GW-RS0501-16	21-May-16	15-Jun-16	Valid	Construction site for Wan Shing Footbridge Pier Protection at Gloucester Road (W4/W5)			
GW-RS0562-16	5-Jun-16	2-Dec-16	Valid until superseded by GW-RS0653-16 on 25-Jun-16	Construction site near Lung King Street and Convention Avenue (W8)			

Permit / License	Valid	Period	Status	Domosko	
No. / Notification/ Reference No.	From	То	Status	Remarks	
GW-RS0653-16	25-Jun-16	23-Dec-16	Valid	Construction site near Lung King Street and Convention Avenue (W8)	
GW-RS0615-16	13-Jun-16	16-Jun-16	Valid	Construction Site at Fenwick Pier near Lung King Street	
GW-RS0596-16	7-June-16	6-Dec-16	Valid	Construction site at Marsh Road near Wan Ying Street and an area in Wan Chai Sports Ground	
Wastewater Discharg	ge License				
WT00020473-2014	09-Dec-14	31-Dec-19	Valid	Gloucester Road near Hung Hing Road (W4)	
WT00021519-2015	04-May-15	31-May-20	Valid	Between Percival Street Footbridge and Hung Hing Road Flyover (W3)	
WT00022596-2015	22-Sep-15	30-Sep-20	Valid	Gloucester Road near Marsh Road Station Building (W5)	
WT00022781-2015	3-Nov-15	30-Nov-20	Valid	Works Area at Green Zone	
WT00022907-2015	16-Nov-15	31-Dec-19	Valid until superseded by WT00024759-2 016 on 21-Jun-16	Works Area at POC(W1 + W2)	
WT00023987-2016	10-Mar-16	31-Mar-20	Valid	Junction of Lung King Street and Convention Avenue (W8)	
WT00023988-2016	10-Mar-16	31-Dec-19	Valid	Wang Shing Street (W6)	
WT00023989-2016	10-Mar-16	31-Dec-19	Valid	Lung King Street near DSD Screening Plant (W14)	
WT00024759-2016	21-Jun-16	31-Dec-19	Valid	Works Area at POC(W1 + W2)	
Chemical Waste Pro	ducer Registra	ation			
5213-135-D2551-01	16-Dec-14	End of the Project	Valid	Gloucester Road near Hung Hing Road (W4)	
5213-134-D2552-01	16-Dec-14	End of the Project	Valid	Lung King Street near DSD Screening Plant (W14)	
5111-151-D2552-02	05-Jan-15	End of the Project	Valid	Victoria Park Road near POC (W1)	
Billing Account for Construction Waste Disposal					
7020686	15-Sep-14	End of Contract	Valid	For disposal of C&D waste to public fills and landfills	
Notification Under Air Pollution Control (Construction Dust) Regulation					
378806	02-Sep-14	End of Contract	Valid	For Wan Chai, Causeway Bay, Hong Kong Island	
380227	07-Oct-14	End of Contract	Valid	For Gloucester Road near Cross Harbour Tunnel	

Permit / License No. / Notification/	Valid Period		Status	Remarks
Reference No.	From	То	Status	Remarks
380228	07-Oct-14	End of Contract	Valid	Near Convention Avenue and Fenwick Pier Street, HK Island

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10273))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 Two monitoring station were set up at the proposed location in accordance with the approved EM&A Manuals for SCL(HUH-ADM) as well as the works areas of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station
AM2*	EXA6	Wanchai Sports Ground
AM4	EXA4	Pedestrian Plaza

The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.2**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. B&K2238 (S/N: 2800927), (S/N: 2800930))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223))

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.4** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station
NM1*	CH2	Hoi Kung Court

The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

Monitoring Methodology

- 3.2.4 Monitoring Procedure
 - (a) Façade measurement was made at NM1.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.
 - (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.

- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in June 2016 is provided in Appendix F.

3.3 Landscape and Visual

3.3.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 3.4 (EP-436/2012/D)	Monthly EM&A Report for May 2016	14 June 2016

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM2#	22.9	13.9 – 27.0	160	260
AM4	57.4	32.3 – 85.8	198	260

[#] The monitoring station at AM2 was handed-over from Contract SCL1126 in April 2015 and handed-over to Contract SCL1123 on 28 October 2015.

- 5.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring location in the reporting month.
- 5.1.3 The event and action plan is annexed in **Appendix H**.
- 5.1.4 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Construction Noise Monitoring

- 5.2.1 Noise monitoring at NM1 was handed over from SCL Contract 1129 in August 2015.
- 5.2.2 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM1 ^(*)	<baseline 62.7<="" th="" –=""><th>75</th></baseline>	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.3 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.4 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.5 The event and action plan is annexed in **Appendix I**.
- 5.2.6 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor 30,290.5m³ of inert C&D material was generated (4,768.4m³ was disposed of as fill bank at TKO137, 7.2m³ was disposed of fill bank at TM38, 11,516.9m³ was disposed of as public fill at CWPFBP, 232.0m³ was reused by WDII project and 13,766.1m³ was reused in mainland) in the reporting month. 43.7m³ of general refuse was generated in the reporting month. No metals, no paper/cardboard packaging material and no plastic was collected by recycling contractor in the reporting month. No inert C&D materials were reused on site. No chemical waste was collected by licensed contractor. 147.7m³ of Type 1 and 31.0m³ of Type 2 marine dumping were delivered to Hung Hom Barging Point in the reporting period.
- 5.3.3 SCL1128 has started to deliver the spoil to WDII and CWB for beneficial use since April 2016. If spoil could not be fully utilized by WDII in their site in the future, spoil will be transported to Mainland China for reuse. The waste flow table is annexed in **Appendix K**.
- 5.3.4 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.5 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. A summary of the site inspection is provided in Appendix C. The observations and recommendations made during the site inspections are presented in Table 6.1.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 4 site inspections were carried out on 6, 13, 20 and 27 June 2016. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 13 June 2016. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	13 Jun 16	Reminder: The Contractor was reminded to improve the wheel wash performance at W1 and ensure vehicle wheel was properly washed before leaving site. Reminder: The Contractor was reminded to spray water during the breaking works at W8 for dust suppression.	The item was rectified by the Contractor on 13 Jun 16.
	20 Jun 16	Reminder: Although water spraying was provided on site during the site inspection. The Contractor was reminded to water the exposed site area timely for dust suppression.	The item was rectified by the Contractor on 20 Jun 16.
	27 Jun 16	 Reminder: Site areas were observed dry at W8 and W14 and water spraying was provided by Contractor immediately. However, the Contractor was reminded to water the exposed site areas timely for dust suppression. 	The item was rectified by the Contractor on 27 Jun 16.
Noise	6 Jun 16	 No noise mitigation measure was provided to the breaker at W8. The Contractor should cover the breaker tip with acoustic material to minimize noise impact. 	The item was rectified by the Contractor on 8 Jun 16.
	13 Jun 16	 No noise mitigation measure was provided for the breaking works at W8. The Contractor should wrap the breaker tip with acoustic material. 	The item was rectified by the Contractor on 15 Jun 16.
	27 Jun 16	 No noise mitigation measure was provided for the breaking works at W8. The Contractor should wrap the breaker tip with acoustic materials. 	The item was rectified by the Contractor on 30 Jun 16.
Water Quality	30 May 16	 No provision of preventive measures along the works and gullies was observed at W6 and Marsh Road. The Contractor should provide preventive measures/ protection on site to avoid potential runoff from site. 	The item was rectified by the Contractor on 1 Jun 16.
	6 Jun 16	 No provision of preventive measures for the gully was observed at W14. The Contractor should provide preventive measures on site to avoid potential runoff from site. Reminder: 	The item was rectified by the Contractor on 7 Jun 16.
		The Contractor was reminded to keep monitor and provide sufficient preventive measures on site to prevent potential runoff from site during rainy.	The item was rectified by the Contractor on 7 Jun 16.
	13 Jun 16	 Gully at W6 and Marsh Road works area were observed improperly covered. The Contractor should provide sandbag and remove the nearby accumulated sand to avoid potential runoff. 	The item was rectified by the Contractor on 16 Jun 16.
Waste/ Chemical Management	13 Jun 16	 Oil stain was observed at W4. The Contractor should remove the oil stain and dispose of as chemical waste. 	The item was rectified by the Contractor on 13 Jun 16.
	20 Jun 16	 Chemical container placed on ground was observed at W21. The Contractor should store the chemical container with drip tray to retain leakage, if any. 	The item was rectified by the Contractor on 21 Jun 16.
	27 Jun 16	 Chemical container placed on ground was observed at W8. The Contractor should store the chemical container with drip tray to retain leakage, if any. 	The item was rectified by the Contractor on 27 Jun 16.
Landscape & Visual	30 May 16	 Site materials placed next to the trees was observed at Marsh Road. The Contractor should remove the site materials and store it in the properly area. 	The item was rectified by the Contractor on 1 Jun 16.
	13 Jun 16	 Construction material was observed placed nearby the tree at Marsh Road. The Contractor should remove the construction material and provide proper protection to the tree. 	The item was rectified by the Contractor on 13 Jun 16.
Permits/ Licenses	Nil	Nil	Nil

- 6.1.3 All the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period.
- 6.1.4 The items of which their inspection for follow-up actions were outstanding as recorded in the last reporting month have already been rectified by the Contractor as confirmed by the ET during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works in between July 2016 and September 2016 will be:

Location	Site Activities	
Area W1	Segment Delivery, TBM Muck Out	
Area W2	Construction for SOV	
Area W3	Post drilling	
Area W3.5.2	Lean Mix Column	
Area W4a	Reinstatement of Canal Road Culvert	
Area W4b	Construction of Tie beams under Canal Road Flyover	
Area W6	Removal of sheetpile along HEC cable	
	Ground Treatment of West Tunnel Sewer and HEC Building	
Area W8	Excavation, Cavern Excavation, D-wall Construction	
Area W14	Lung King Street Reinstatement	
Area W15 & W16	Pile Detection at Fenwick Pier Street, Road Construction for Traffic Diversion	

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in between July 2016 and September 2016 are provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring result complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 4 nos. of environmental site inspections were carried out in June 2016. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

Implement effective measures to avoid dust impact.

Construction Noise Impact

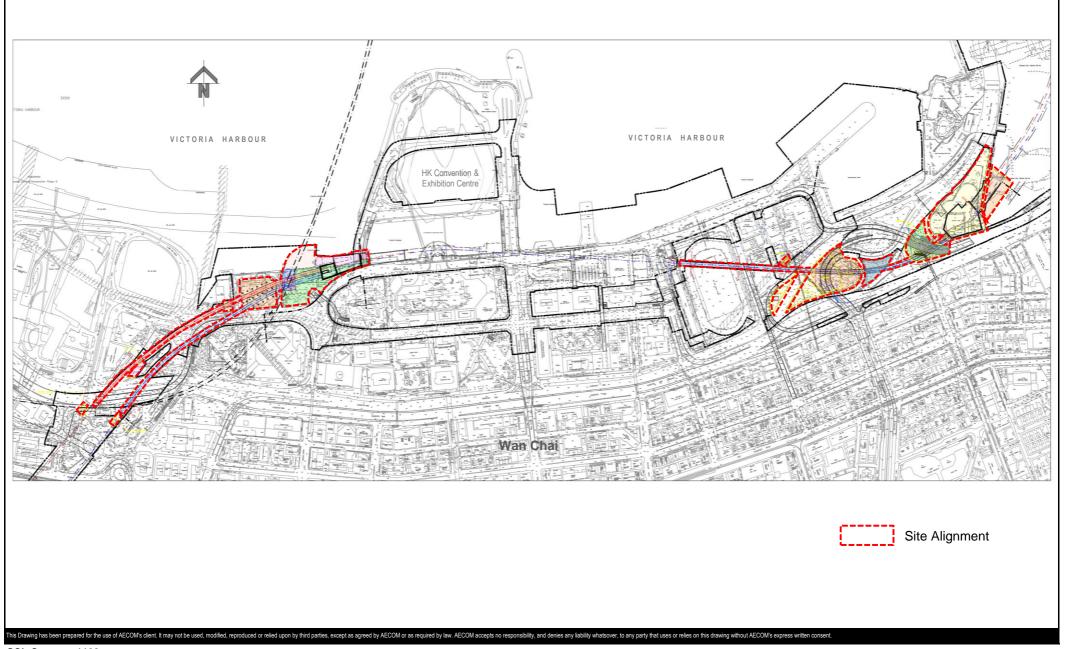
• Implement effective/ preventive measures to minimize noise impact.

Water Quality Impact

• Implement effective/preventive measures to avoid surface runoff from site.

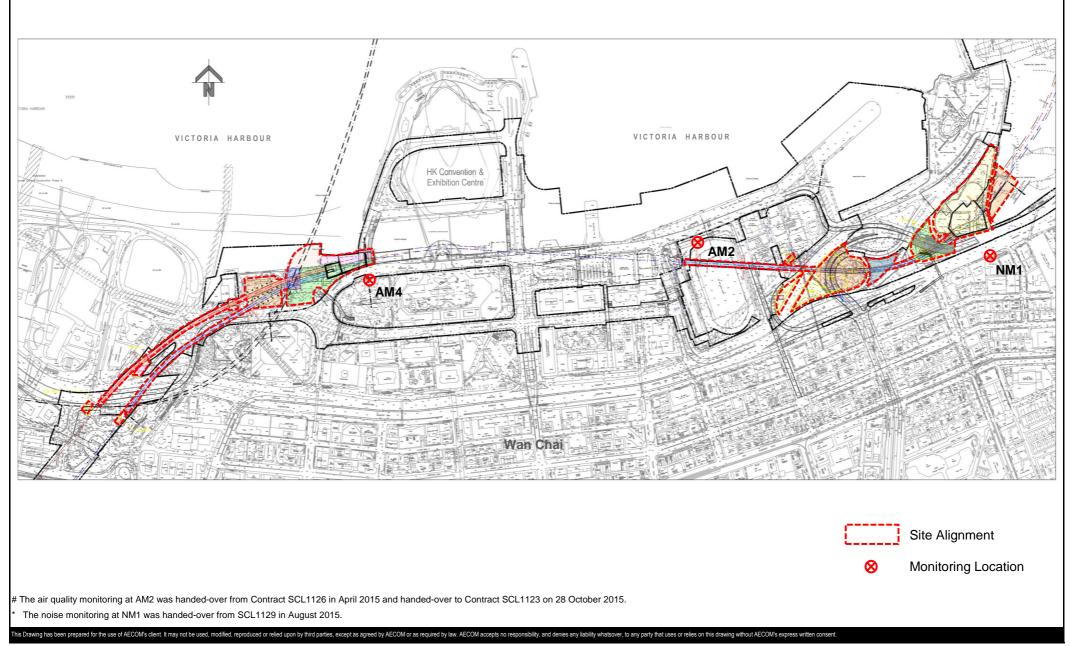
Chemical and Waste Management

Provide proper chemical and waste handling management.


Landscape & Visual Impact

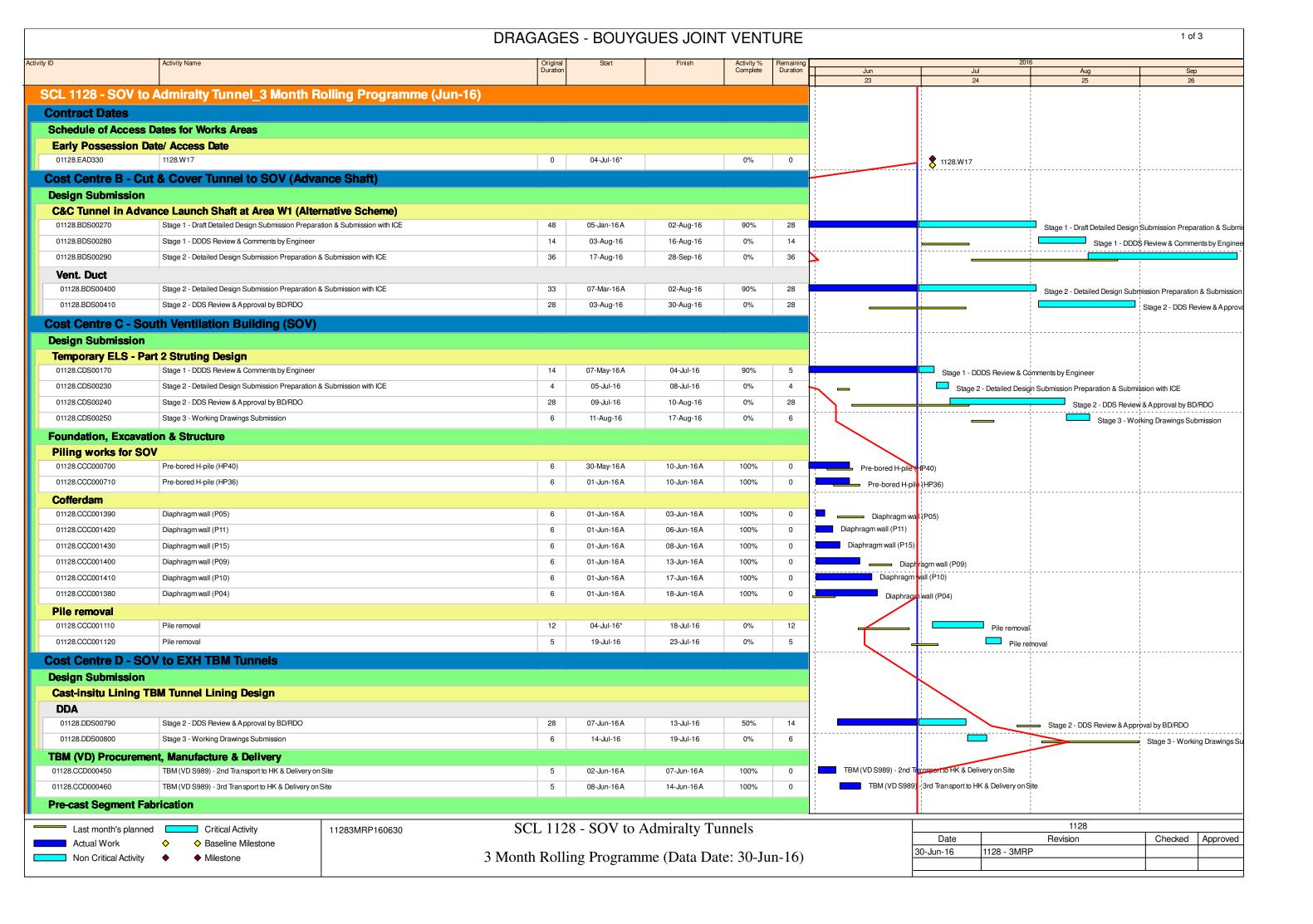
· Provide proper protective measures to the trees.

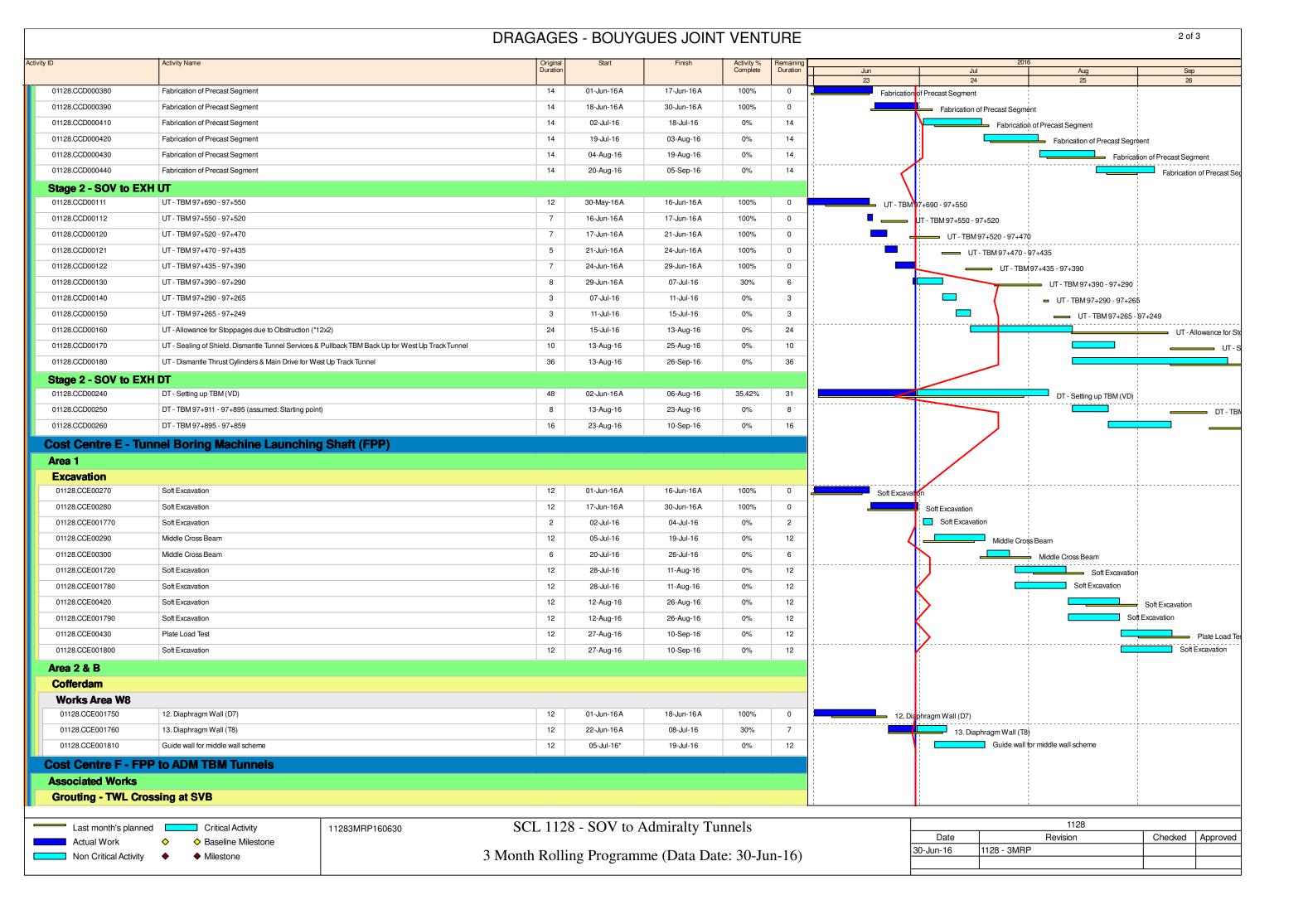
Permits/licenses

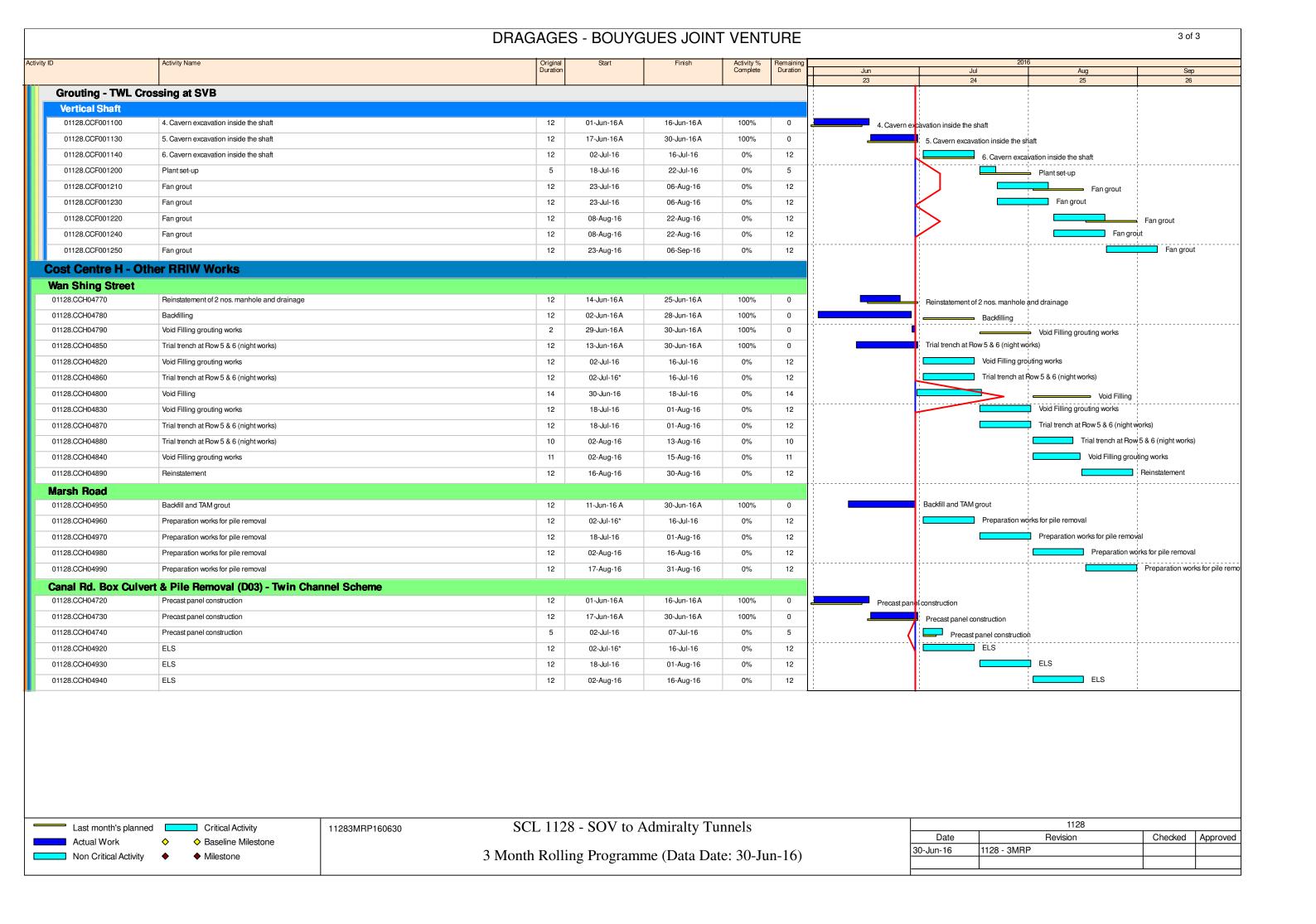

• No specific observation was identified in the reporting month.

SCL Contract 1128
South Ventilation Building to Admiralty Tunnels

SCL Contract 1128

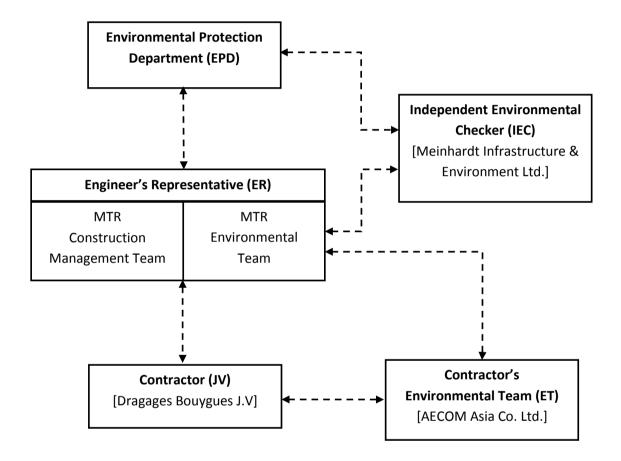

South Ventilation Building to Admiralty Tunnels


AECOM


Project No.: 60331173 Date: February 2016 Figure 3.1

APPENDIX A

Construction Programme



APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	V
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
/	All retained/exist trees shall be properly protected during construction period.	Tree protection	Contractor	Works areas	Construction phase	@
Air Quality			•		,	
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construction	on Dust Impact					
Table 8.5	 Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits. 	To minimize dust impacts	Contractor	All barging points	Construction phase	N/A
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93)</i> shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A
S8.90	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: • Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather.	To minimize dust impacts	Contractor	Works areas	Construction phase	V
	 Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. 					V
	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 					V N/A
	 Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. 					V
	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. 					N/A
	 Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. 					V
	 Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant shall be at the 					V
	 maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 					V
	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise 					V
/	 Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
Airborne No	·					
Constructio		I Ta mainimaina	Ocatacataa	Mada	O materialian	
S9.55	 The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
	 Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program 					V
	 Mobile plant, if any, shall be sited as far from NSRs as possible Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum. 					V
	 between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 					V
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 					N/A
/	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation Air compressors shall be fitted with valid noise emission labels during operation 	To minimize construction noise impact	Contractor	Works areas	Construction phase	@

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel	Construction phase	N/A V N/A V N/A N/A N/A N/A V V V V V V N/A N/A N/A
\$9.58 – \$9.59 & Table 9.17	Movable noise barrier shall be used for the following PME:	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at:	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	lity Impact		•		•	
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	 Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage. 					V
	 Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters. 					N/A
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	V
	distances of 100 m shall be maintained between the discharge points of construction site runoff and the existing saltwater intakes. • Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can					V
	 be safely carried out well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where 					N/A
	 Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. 					V
	 Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					V
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. 					@
	 Good site practices shall be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. 					V
	 Wheel Washing Water All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	 Bentonite Slurries Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling area. 					V
	 If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes 					N/A
	• Water used in water testing to check leakage of structures and pipes shall be used for other purposes					N/A
	 as far as practicable. Surplus unpolluted water will be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. 					N/A
	 Wastewater from Site Facilities Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage 					N/A
	tank on a regular basis. • Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors					N/A
	 with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells shall be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	 Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be 	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V V
	allocated to the storage area.					
	agement Implications					
Construction		T —	_			
S12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures. 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V V
	 handling procedures; Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 					V N/A
	Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and					N/A V
S12.76	 Separation of chemical wastes for special handling and appropriate treatment. Good Site Practices and Waste Reduction Measures (con't) 	To achieve waste	Contractor	All Work Sites	Construction	•
312.70	 Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); 	reduction	Contractor	All Work Sites	Phase	N/A V
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminum cans by providing separate labeled bins to enable this 					N/A
	waste to be segregated from other general refuse generated by the workforce; • Proper storage and site practices to minimize the potential for damage or contamination of					V
	construction materials; Plan and stock construction materials carefully to minimize amount of waste generated and					V
	 avoid unnecessary generation of waste; and Training shall be provided to workers about the concepts of site cleanliness and appropriate 					V
S12.77	waste management procedures, including waste reduction, reuse and recycle. Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	N/A N/A N/A
	 from wind-blown or being washed away; and Different locations shall be designated to stockpile each material to enhance reuse. 					N/A
S12.80	Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts:	To minimize potential adverse environmental impacts arising from waste	Contractor	Work Sites	Construction Phase	
	 Remove waste in timely manner Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers 	collection and disposal				N/A N/A N/A
	 Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) 					N/A N/A
	Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated regulated and disposal					N/A N/A
S12.81	 Maintain records of quantities of waste generated, recycled and disposed Storage, Collection and Transportation of Waste (con't) 	To minimize potential	Contractor	Work Sites	Construction	
012.01	 Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	adverse environmental impacts arising from waste collection and disposal	Contractor	Work Oiles	Phase	V
S12.83 – 12.86	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. 	To minimize potential adverse environmental impacts	Contractor	Work Sites	Construction Phase	V
	 Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. 	during the handling, transportation and				V
	 The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. 	disposal of C&D materials				V
	 Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. 					V
S12.88	 Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ @ V N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.97	Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall:	To register with EPD as a Chemical waste producer and store chemical waste in	Contractor	Work Sites	Construction Phase	
	 Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; 	appropriate containers				V
	 Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and 					N/A
	 Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 					N/A
S12.98	Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only;	To prepare appropriate storage areas for chemical	Contractor	Work Sites	Construction Phase	V
	 Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; 	waste at works areas				V
	 Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
S12.99	Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Land Conta	mination Impact					
S13.23- 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP). 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	 Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines. 	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers; • Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and • Provide first aid training and materials to site workers.	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

Legend: V

= implemented;= not implemented;

@ = partially implemented;N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
AM4	Pedestrian Plaza	198 μg/m³	260 μg/m³

Table 2 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM1*	Hoi Kung Court	When one documented complaint is received	75 dB(A)

^{*} The noise monitoring at NM1 was handed-over from SCL Contract 1129 in August 2015.

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Pedestrian Plaza	l		Operator:				
Cal. Date:	I. Date: 17-May-16			Next Due Date:	17-Jul-16		-8	
Equipment No.:	A-001-70T	_		Serial No.	102	273		
			Ambient	Condition				
Temperatu	ire, Ta (K)	297	Pressure, F	Pa (mmHg)	AND THE PARTY OF T	758.0		
, , , , ,				, 0,				
		(Orifice Transfer S	tandard Informatio	n			
Seria	l No:	988	Slope, mc	1.97	7831	Intercept, bc	0.01264	
Last Calibr	ation Date:	29-May-15		mc x Qstd + bc =	- III v (Do/760) v	(209/Ta)1 ^{1/2}		
Next Calibr	ation Date:	29-May-16		me x Qsta + be =	= [H X (Pa//00) X	(296/1a)]		
			Calibration of	of TSP Sampler				
		0	rfice		HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flor Reading IC (CF		
18	7.6	'n	2.76	1.39	44.0	44.02	2	
13	6.1		2.47	1.24	40.0	40.01		
10	4.6		2.15	1.08	32.0	32.0	1	
7	3.4		1.84	0.93	26.0	26.0	1	
5	2.1		1.45	0.73	20.0	20.01		
Slope , mw =	37.7682			Intercept, bw =	-8.0	0809	_	
Correlation Coe			9921	_				
*If Correlation C	oefficient < 0.990	, check and recalil	orate.					
			Set Point	Calculation				
From the TSP F	ield Calibration C	urve, take Qstd =		- Outoutation				
		e "Y" value accor						
r rom the region	ooioii Equation, a	io i valuo doco.	ag 10					
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}			
				419				
Therefore, Set F	Point; IC = (mw x	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	98)] ^{1/2} =		41.00	_	
Remarks:		,						
							10	

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I	•	438320 0988	Ta (K) - Pa (mm) -	297 - 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3980 0.9910 0.8790 0.8380 0.6890	3.2 6.3 7.8 8.6 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703 1.7732
Qstd slor intercept coefficie	(b) =	1.97831 0.01264 0.99985		Qa slope intercept coefficie	= (b) $=$	1.23878 0.00793 0.99985
y axis =	SQRT[H20(F	°a/760) (298/	[a)]	y axis =	SQRT [H2O (1	Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

•

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O(Pa/760) (298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-02

Page

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone

of

B & K

Type/Model No.: Serial/Equipment No.: 2238

B & K 4188

2800927

2791214

Adaptors used:

Item submitted by

N.009

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description: Multi function sound calibrator Signal generator Signal generator

Model: B&K 4226 DS 360 DS 360

Serial No. 2288444 33873 61227

Expiry Date: 19-Jun-2016 16-Apr-2016

16-Apr-2016

Traceable to: CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature: Relative humidity: Air pressure:

21 ± 1 °C 60 ± 10 % 1000 ± 5 hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA0703 02-02

Page

of

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Total	Codestant	04-4	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest:	Status:	Officertainty (ub)	Factor
Self-generated noise	A	Pass	0.3	
•	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

- =

Checked by:

Lam Tze Wai

Date:

Fung Chi Yip 04-Jul-2015

Date:

06-Jul-2015

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹、坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-01

Page

2

Item tested

Description: Manufacturer:

Type/Model No.:

Adaptors used:

Sound Level Meter (Type 1)

B&K 2238

2800930

Microphone

B&K 4188

2250455

Item submitted by

Serial/Equipment No.:

Customer Name:

Address of Customer:

Request No .:

Date of receipt:

AECOM ASIA CO., LTD

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description: Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226 DS 360 DS 360

Serial No. 2288444 33873

61227

Expiry Date: 19-Jun-2016 16-Apr-2016

16-Apr-2016

Traceable to: CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity: Air pressure:

21 ± 1 °C 60 ± 10 %

1000 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Heng Jun Qi

Date: 06-Jul-2015 Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA0703 02-01

Page

of

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

Acoustic tests 2,

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fnd

Checked by:

Lam Tze Wai

Date:

Fung Chi Yip 04-Jul-2015

Date:

06-Jul-2015

The standard(s) and equipmentused in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No :

15CA1203 03

Page:

O

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73

Serial/Equipment No.:

10307223

Adaptors used:

2

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

-

Date of receipt:

03-Dec-2015

Date of test:

03-Dec-2015

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	SCL
Preamplifier	B&K 2673	2239857	22-Apr-2016	CEPREI
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	CEPREI
Signal generator	DS 360	61227	16-Apr-2016	CEPREI
Digital multi-meter	34401A	US36087050	17-Apr-2016	CEPREI
Audio analyzer	8903B	GB41300350	17-Apr-2016	CEPREI
Universal counter	53132A	MY40003662	16-Apr-2016	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Feng Jun Qi

Approved Signatory:

Date:

04-Dec-2015

Company Chop:

Comments: The results reported in his certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1203 03

Page:

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 uPa)

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.04	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

Actual Output Frequency 3.

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 987.5 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip

Checked by:

Lam Tze Wai

03-Dec-2015

Date:

04-Dec-2015

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No CARP156-2/Issue 1/Rev C/01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Impact Monitoring Schedule for June 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jun	2-Jun	3-Jun	4-Jun
			Noise			
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	11-Jun
	Air Quality	Noise				Air Quality
12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun
	Noise		Air Quality			
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun
		Air Quality	Noise			
26-Jun	27-Jun	28-Jun	29-Jun	30-Jun		
	Air Quality	Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza AM4

Noise Monitoring Station

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels **Tentative Impact Monitoring Schedule for July 2016**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
						Air Quality
3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	9-Jul
	Noise			Air Quality		
10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	16-Jul
			Air Quality	Noise		
17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul	23-Jul
		Air Quality	Noise			
24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul	30-Jul
	Air Quality	Noise				Air Quality
31-Jul						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station
AM4 Pedestrian Plaza

Noise Monitoring Station NM1

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency
Once per week

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels **Tentative Impact Monitoring Schedule for August 2016**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Aug	2-Aug	3-Aug	4-Aug	5-Aug	6-Aug
	Noise				Air Quality	
7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	13-Aug
				Air Quality	Noise	
14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	20-Aug
			Air Quality	Noise		
21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug	27-Aug
		Air Quality	Noise			
28-Aug	29-Aug	30-Aug	31-Aug			
	Air Quality	Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Pedestrian Plaza AM4

Noise Monitoring Station

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1128 - South Ventilation Building to Admiralty Tunnels Tentative Impact Monitoring Schedule for September 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Sep	2-Sep	3-Sep
						Air Quality
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
	Noise				Air Quality	
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
				Air Quality		Noise
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
			Air Quality	Noise		
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
		Air Quality	Noise			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

AM4 Pedestrian Plaza

Noise Monitoring Station

1 cacothan 1 laza

Monitoring Frequency

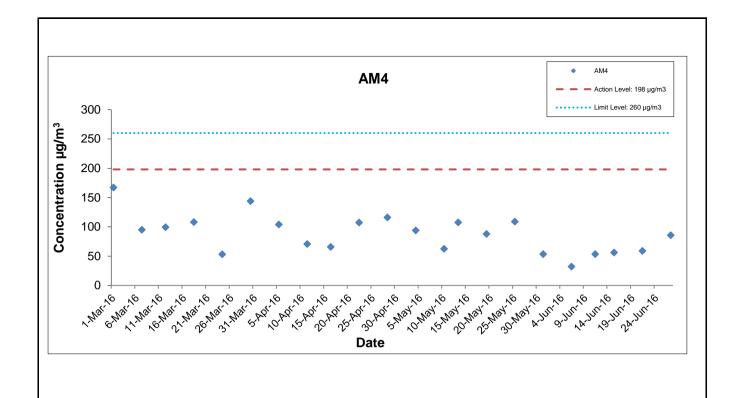
Monitoring Frequency
24-hr TSP Once every 6 days

Once per week

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G Air Quality Monitoring Results

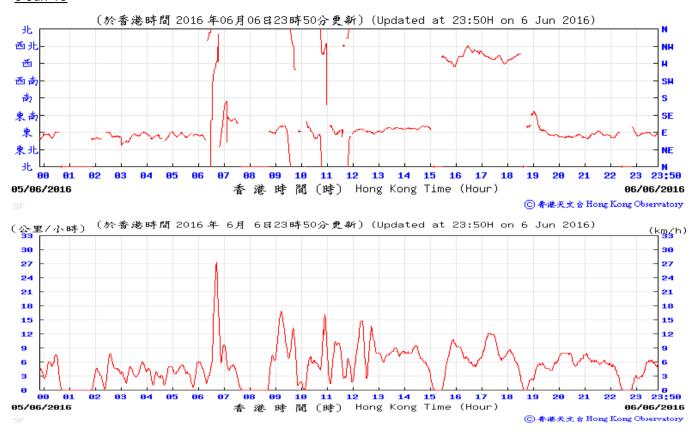

24-hour TSP Monitoring Results at Station AM4 (Pedestrian Plaza)

Start	t	End		Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.27	1.27	1.27	1833.1	2.7940	2.8532	0.0592	19305.00	19329.00	24.00	32.3
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.27	1.27	1.27	1833.1	2.7799	2.8778	0.0979	19329.00	19353.00	24.00	53.4
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.27	1.27	1.27	1833.1	2.8136	2.9167	0.1031	19353.00	19377.00	24.00	56.2
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.27	1.27	1.27	1833.1	2.8017	2.9099	0.1082	19377.00	19401.00	24.00	59.0
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.27	1.27	1.27	1833.1	2.8633	3.0206	0.1573	19401.00	19425.00	24.00	85.8

 Average
 57.4

 Minimum
 32.3

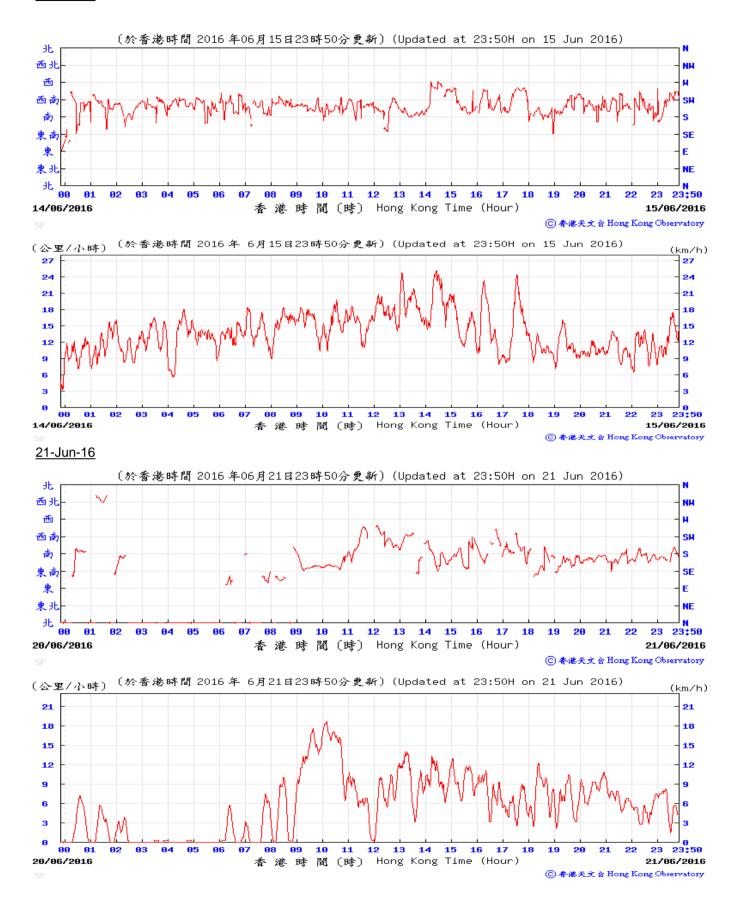
 Maximum
 85.8


Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels

Date: July 2016

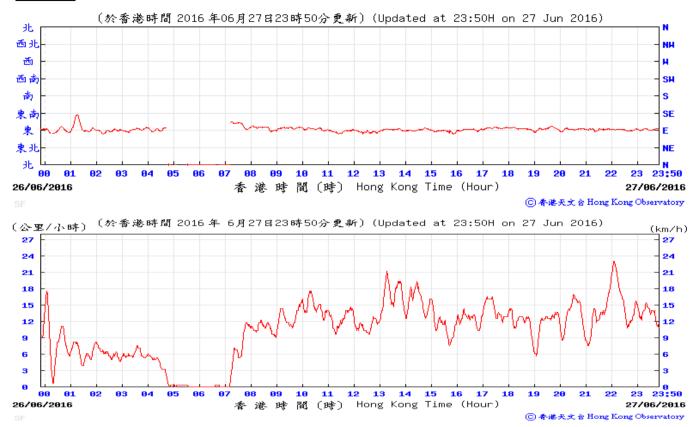
Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

6-Jun-16



11-Jun-16

No Meteorological information available from the HKO.

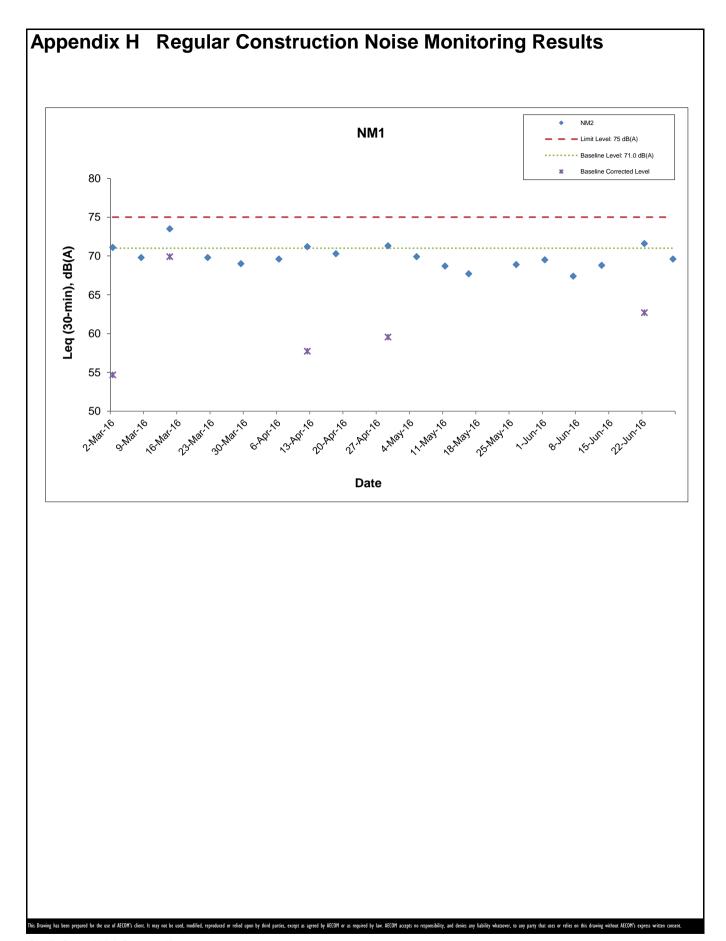

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

15-Jun-16

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

27-Jun-16

APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NM1 (Hoi Kung Court)

Date	Weather	Nois	e Level fo	r 30-min, c	IB(A) ⁺	Baseline Corrected	Baseline Noise	Limit Level,	Exceedance
Bato	Condition	Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
1-Jun-16	Fine	15:30	67.2	72.1	69.5	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
7-Jun-16	Fine	14:27	65.0	69.5	67.4	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
13-Jun-16	Cloudy	10:56	67.0	70.5	68.8	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N
22-Jun-16	Sunny	13:56	69.8	73.2	71.6	62.7	71.0	75	N
28-Jun-16	Fine	13:14	66.2	73.0	69.6	<baseline< td=""><td>71.0</td><td>75</td><td>N</td></baseline<>	71.0	75	N

⁺ - Façade measurement

Shatin Central Link Contract No. 1128 South Ventilation Building to Admiralty Tunnels

Date: July 2016

APPENDIX I

Event Action Plan

Appendix I Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT		AC ⁻	ΓΙΟΝ	
EVENT	ET	IEC	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing.	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate.

Appendix I Event Action Plan

Appendix I	Event Action Plan			
EVENT		ACT	TION	
EVENT	ET	IEC	ER	Contractor
LIMIT LEVEL				
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT	ACTION											
EVENT	ET	IEC	ER	Contractor								
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 								
Exceedance of Limit Level	1. Notify the Contractor, IEC, EPD and ER; 2. Repeat measurement to confirm findings; 3. Increase monitoring frequency; 4. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 5. Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances; 7. Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 								

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	1
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix J AECOM

APPENDIX K

Waste Flow Table

SCL Contract 1128

Appendix K - Monthly Summary C&D Material Flow Table

		C	Quantity for off-si	te disposal of / re	esused Inert C&I	D materials (m ³)			Quanti	ty for off-site o	lisposal of Nor	n-inert C&D m	aterials	Quantities of Marine Dumping (Sediment)	
Latest Programme for Generation & Import of Materials in each Reporting Period				Metals (kg)	Paper / Cardboard (kg)	Plastics (kg)	Chemical Waste (kg)	General Waste (m³)	Disposed as Hom Barg						
i enou					Reused in O	ther Projects	Reused in							Type 1	Type 2
	TKO137FB(1)	TKO137SF(2)	TM38FB(3)	CWPFBP(4)	WDII(5)	CWB(6)	Mainland	Total (m ³)	Total	Total	Total	Total	Total	(m ³)	(m ³)
2016/01 (Actual)	2,621.5	0.0	18.0	1,105.5	0.0	0.0	0.0	3,745.0	0	0	0	0	40.6	0	0
2016/02 (Actual)	3,489.9	0.0	168.8	184.6	0.0	0.0	0.0	3,843.3	0	0	0	0	24.4	0	0
2016/03 (Actual)	4,937.3	0.0	16.3	257.8	0.0	0.0	0.0	5,211.4	0	0	0	0	29.6	0	0
2016/04 (Actual)	5,385.1	0.0	26.0	747.0	4,814.0	207.3	0.0	11,179.4	0	0	0	0	27.3	0	0
2016/05 (Actual)	7,126.9	0.0	7.4	3,863.9	1,525.8	764.5	0.0	13,288.5	0	0	0	0	31.3	0	0
2016/06 (Actual)	4,768.4	0.0	7.2	11,516.9	232.0	0.0	13,766.1	30,290.5	0	0	0	0	43.7	147.7	31.0
2016 Sub-total	28,329.1	0.0	243.6	17,675.7	6,571.8	971.8	13,766.1	67,558.0	0	0	0	0	196.9	147.7	31.0
2016/07	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/08	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/09	-	-		-	-	-	•	-	-	-	-	-	-		•
2016/10	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/11	-	-	-	-	-	-		-	-	-	-	-	-		-
2016/12	-	-	-	-	-	-		-		-	-	-	-		-
2016 Total	28,329.1	0.0	243.6	17,675.7	6,571.8	971.8	13,766.1	67,558.0	0	0	0	0	196.9	147.7	31.0

Remark: *Assume the density is 2 tonnes per cubic metre for inert C&D materials, general waste and marine sediment.

1 TKO137FB Fill Bank at Tseung Kwan O Area 137

2 TKO137SF Sorting Facilities at Tseung Kwan O Area 137

3 TM38FB Fill Bank at Tuen Mun

4 CWPFBP Chai Wan Public Fill Barging Point

5 WDII HK/2009/01 Wan Chai Development Phase II - Central - Wan Chai Bypass at Hong Kong Convention and Exhibition Centre

6 CWB HK/2009/15 Central – Wan Chai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)

Appendix B

Monthly EM&A Report for June 2016 – SCL Works Contract 1121 NSL Cross Harbour Tunnels

MTR Corporation Limited

Shatin to Central Link – Hung Hom to Admiralty Section

Monthly EM&A Report No. 16

[Period from 1 to 30 June 2016]

Works Contract 1121 - NSL Cross Harbour Tunnels

(July 2016)

Certified by: Dr. Priscilla/Choy

Position: Environmental Team Leader

Date: 14th July 2016

Penta Ocean – China State Joint Venture

Shatin to Central Link – Contract 1121 NSL Cross Harbour Tunnels

Monthly Environmental Monitoring and Audit Report For June 2016

(version 2.0)

Certified By

Dr. Priscilla Choy (Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

+TABLE OF CONTENTS

FV I	ECUTIVE SUMMARY	Page
	oductionnmary of Construction Works undertaken during Reporting Month	
	rironmental Monitoring and Audit Progress	
	rular Water Quality Monitoring	
	ste Management	
	dscape and Visual	
	rironmental Site Inspection	2
	rironmental Exceedance/Non-conformance/Complaint/Summons and Successful	2
	secutionorting Changes	
-	ure Key Issues	
1 uu 1	INTRODUCTION	
_	pose of the Report	
-	acture of the Report	
2	PROJECT INFORMATION	5
Bac	kground	5
Gen	neral Site Description	5
	struction Programme and Activities	
Proj	ject Organisation	5
	tus of Environmental Licences, Notification and Permits	
Sun	nmary of EM&A Requirements	
3	ENVIRONMENTAL MONITORING REQUIREMENTS	
	ular Construction Dust Monitoring	
_	rular Water Quality Monitoring	
	nitoring Parameter, Frequency and Programme	
	nitoring Equipment and Methodology	
	oratory Measurement / Analysis for Marine Waterion and Limit Levels	
	ent and Action Plan	
	dscape and Visual	
4	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	10
RE	QUIREMENTS	
5	MONITORING RESULTS	15
	ter Quality Monitoring	
Was	ste Management	15
Lan	dscape and Visual	16
6	ENVIRONMENTAL SITE INSPECTION	
	Audit	
Imp	elementation Status of Environmental Mitigation Measures	17
7	ENVIRONMENTAL NON-CONFORMANCE	19
	nmary of Exceedances	
	nmary of Environmental Non-Compliance	
Sun	nmary of Environmental Complaint	19

Summary of E	Environmental Summon and Successful Prosecution	19
8 FUTUR	E KEY ISSUES	20
Key Issues in	Programme for the Next Monththe Next Monthbhedule in the Next Month	20
9 CONCL	USIONS AND RECOMMENDATIONS	21
	ions	
LIST OF TA	BLES	
Table 2.1 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 4.1 Table 6.1	Status of Environmental Licences, Notification and Permits Water Quality Monitoring Location Water Quality Impact Monitoring Programme Water Quality Monitoring Equipment Analytical Methods to be applied to Marine Water Quality Samples Status of Required Submissions under EP Observations and Recommendations of Site Audit	
LIST OF FIG	GURES	
Figure 1a-1b Figure 2 Figure 3	The Site Layout Plans for Works Contract 1121 Project Organisation for Environmental Works Locations of Water Quality Monitoring Station in Victoria Harbour	
LIST OF AP	PENDICES	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L	Tentative Construction Programme Action and Limit Levels Water Quality Monitoring Schedule Water Quality Monitoring Results and Graphical Presentations Copies of Calibration Certificates Quality Control Reports for SS Laboratory Analysis Summary of Exceedance Site Audit Summary Event and Action Plans Updated Environmental Mitigation Implementation Schedule Waste Generation in the Reporting Month Cumulative Log for Complaints, Notifications of Summons and Succeedings	essful

EXECUTIVE SUMMARY

Introduction

1. This is the 16th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for MTR Shatin to Central Link (SCL) Works Contract 1121 – NSL Cross Harbour Tunnels. This report documents the findings of EM&A Works conducted from 1 to 30 June 2016.

Summary of Construction Works undertaken during Reporting Month

2. The major site activities undertaken in the reporting month include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Installation of Sheet Pile Wall for Cofferdam in Hung Hom;
- Grouting Curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Marine Platform Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Pump Well Construction at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignments at Victoria Harbour;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Environmental Monitoring and Audit Progress

3. A summary of the monitoring activities in this reporting period is listed below:

Regular Water Quality Monitoring

- Water Quality Monitoring at each monitoring station (Shek O Casting Basin)⁽¹⁾
- 0 times
- Water Quality Monitoring at each monitoring station (Victoria Harbour) Remarks:

13 times

(1) Removal of earth bunds at Shek O Casting Basin under this Project has not yet commenced in the reporting month.

Waste Management

4. Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Details of waste management data is presented in Section 5 and **Appendix K**.

Landscape and Visual

5. Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. Most of the necessary mitigation measures have been implemented and recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

6. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET on 6, 13, 20 and 27 June 2016. The representative of the IEC joined the site inspection on 20 June 2016. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance/Non-conformance/Complaint/Summons and Successful Prosecution

- 7. No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded during the reporting period.
- 8. No non-compliance event was recorded during the reporting period.
- 9. One environmental complaint and no notification of summons/successful prosecutions were received in this reporting period.

Reporting Changes

10. No reporting changes in this reporting period.

Future Key Issues

11. Major site activities for the coming reporting month will include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting:
- Collar Plate Installation:
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Construction and Modification of Marine Platform in Hung Hom;
- Grouting curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignment;
- Removal of Breakwater at CBTS; and

- Reprovisioning for Seawall of Finger Pier at Hung Hom.
- 12. Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management.

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Penta Ocean – China State Joint Venture (PCJV) as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the MTR Shatin to Central Link (SCL)Works Contract 1121 – NSL Cross Harbour Tunnels (hereafter referred to as the Project).

Purpose of the Report

1.2 This is the 16th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 1 to 30 June 2016. The major construction works for Contract 1121 commenced on 2 March 2015.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** details the scope and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: **Environmental Monitoring Requirement -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, Event / Action Plans, environmental mitigation measures as recommended in the EIA report and relevant environmental requirements.
 - Section 4: **Implementation Status on Environmental Mitigation Measures -** summarises the implementation of environmental protection measures during the reporting period.
 - Section 5: **Monitoring Results** summarises the monitoring results obtained in the reporting period.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting period.
 - Section 7: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints and environmental summons within the reporting period.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The Shatin to Central Link Hung Hom to Admiralty Section (hereafter referred to as SCL (HUH-ADM)) is an approximately 6km extension of the East Rail Line including a rail harbor crossing from Hung Hom across the harbor to Admiralty on Hong Kong Island. It is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO).
- 2.2 The Environmental Impact Assessment (EIA) Report for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, Environmental Permits (EP) (EP No: EP-436/2012) was granted on 22 March 2012 for their construction and operation.
- 2.3 The "Environmental Review Report Design Changes of North Ventilation Building and Shek O Casting Basin" (ERR) was submitted to the EPD in February 2014 to identify and assess the likely environmental issues pertinent to the proposed design changes at North Ventilation (NOV) Building and Shek O Casting Basin, and to identify any additional environmental mitigation measures that may be required for compliance with environmental standards.
- 2.4 The "Environmental Review Report Variation for IMT Extension" (ERR) was submitted to the EPD in February 2015 to identify and assess the likely environmental issues pertinent to the proposed alternative scheme of IMT extension. The "Supplementary Information Paper for Optimized Scheme for IMT Construction in CBTS" was submitted to the EPD in January 2016 to demonstrate that no unacceptable impacts would be resulted from the Optimized Scheme in CBTS. Variation of environmental permit (VEP) was subsequently applied for EP-436/2012 and the latest Environmental Permit (EP No: EP-436/2012/D) was issued by Director of Environmental Protection (DEP) on 5 February 2016.
- 2.5 The construction of the SCL (HUH-ADM) has been divided into a series of civil construction Works Contracts and this Works Contract 1121 comprises of the Permanent Works and the associated Temporary works required for the construction of the North Ventilation Building (NOV) at the Hung Hom Landfall, and construction of cut & cover tunnel and Immersed Tunnel (IMT) sections extending across the harbour from the NOV to the Causeway Bay Typhoon Shelter (CBTS). This construction contract was awarded to Penta Ocean China State Joint Venture (PCJV) in December 2014.

General Site Description

2.6 The site layout plans for the Works Contract 1121 are shown in Figure 1a-1b.

Construction Programme and Activities

2.7 A summary of the major construction activities undertaken in this reporting period is shown as follows. The tentative construction programme is presented in **Appendix A**.

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;

- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Installation of Sheet Pile Wall for Cofferdam in Hung Hom;
- Grouting Curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Marine Platform Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Pump Well Construction at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignments at Victoria Harbour;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Project Organisation

2.8 The project organizational chart and contact details are shown in Figure 2.

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.1**.

Table 2.1 Summary of the Status of Environmental Licences, Notification and Permits

Permit / License No.	Valid Period		G		
	From	To	Status		
Environmental Permit (EP)					
EP-436/2012/D	05/02/2016	N/A	Valid		
SP License					
L-3-248(1)	10/09/2015	09/09/2017	Valid		
Notification pursuant to Air Pollution Control (Construction Dust) Regulation					
EPD Ref no.: 384777	28/01/2015	N/A	Valid		
EPD Ref no.: 384550	21/01/2015	N/A	Valid		
EPD Ref no.: 384281	14/01/2015	N/A	Valid		
Billing Account for Construction Waste Disposal					
Account No. 7021499	20/01/2015	N/A	Valid		
Registration of Chemical Waste Producer					
Waste Producer No. 5213-147- P3174-03	02/03/2015	N/A	Valid		

Dannit / Lianga Na	Valid Period		Status			
Permit / License No.	From To					
Waste Producer No. 5213-213- P3172-01	09/02/2015	N/A	Valid			
Waste Producer No. 5111-197- P3174-01	27/02/2015	N/A	Valid			
Marine Dumping Permit						
EP/MD/16-144	25/04/2015	24/10/2016	Valid			
EP/MD/16-145	03/05/2016	02/06/2016	Expired on 02/06/2016			
EP/MD/16-199	13/04/2016	12/10/2016	Valid			
EP/MD/17-002	03/05/2016	02/06/2016	Expired on 02/06/2016			
EP/MD/17-018	29/05/2016	28/06/2016	Expired on 28/06/2016			
EP/MD/17-019	03/06/2016	02/07/2016	Valid			
EP/MD/17-020	03/06/2016	02/07/2016	Valid			
EP/MD/17-044	29/06/2016	28/07/2016	Valid			
Effluent Discharge License under Water Pollution Control Ordinance						
WT00021844-2015	25/06/2015	30/06/2020	Valid			
WT00021891-2015	18/08/2015	31/08/2020	Valid			
WT00022449-2015	29/09/2015	30/06/2020	Valid			
Construction Noise Permit (CNP)						
PP-RE0069-15	11/01/2016	10/10/2016	Valid			
PP-RS0010-16	01/04/2016	30/09/2016	Valid			
GW-RS0332-16	08/04/2016	07/10/2016	Superseded by GW-RS-0612-16 On 15/06/2016			
GW-RE0341-16	15/04/2016	14/10/2016	Valid			
GW-RS0395-16	29/04/2016	28/10/2016	Valid			
GW-RE0518-16	26/05/2016	25/11/2016	Valid			
GW-RS0612-16	15/06/2016	13/12/2016	Valid			

Summary of EM&A Requirements

- 2.10 The EM&A programme under Works Contract 1121 requires regular dust and water quality monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA study final report; and
 - Environmental requirements in contract documents.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely marine water quality monitoring as well as audit works for the Project in the reporting month.

3 ENVIRONMENTAL MONITORING REQUIREMENTS

Regular Construction Dust Monitoring

3.1 In accordance with the EM&A Manual, the setup of the impact dust monitoring station at Harbourfront Horizon and the impact monitoring is currently carried out by the MTR Contract 1112. Upon termination of their EM&A programmes, the impact monitoring works would be taken up by this Project.

Regular Water Quality Monitoring

- 3.2 In accordance with the EM&A Manual and the ERR, marine water quality monitoring should be carried out during the dredging and filling operation, and IMT construction within CBTS (for Station 9 only); and throughout the construction period of removal of earth bunds at Northern and Southern gates.
- 3.3 Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use. The statuses of the intakes will be kept in view such that once the water intakes are occupied, water quality monitoring will resume. In the presence of temporary reclamation in the Causeway Bay Typhoon Shelter (CBTS) under this Project, only Dissolved Oxygen (DO) level monitoring would be maintained at Station 8 for checking of potential odour concern.
- 3.4 The water quality monitoring stations and control stations of Project are shown in **Figure 3**. The co-ordinates of the monitoring stations are listed in **Table 3.1**. As shown in **Table 3.1**, the locations are classified as Impact Station and Control Station according to their functions.

Table 3.1 Water Quality Monitoring Stations

Station	Description	Coordinates			
		Easting	North		
Shek O Ca.	Shek O Casting Basin				
GB3	Turtle Cove Beach	841120	810280		
С3	Control Station for ebb tide	841200	806210		
C4	Control Station for flood tide	843330	807320		
Victoria Harbour					
8	Cooling Water Intake for Excelsior Hotel and World Trade Centre / No. 27 – 63 Paterson Street	837036	816008		
9	Cooling Water Intake for Windsor House	837223	816150		
14	Flushing Water Intake for Kowloon Station	834477	817891		
21	Cooling Water Intake for East Rail Extension	836484	817642		
34	Cooling Water Intake for Metropolis	836828	817844		
A	Wan Chai WSD Flushing Water Intake (Reprovisioned) ⁽¹⁾	836268	816045		
WSD9	Tai Wan WSD Flushing Water Intake ⁽²⁾	837930	818357		
WSD17	Quarry Bay WSD Flushing Water Intake	839863	817077		
C1	Control Station 1	833977	817442		
C2	Control Station 2	841088	817223		

Note:

- (1) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location A (Easting: 836286, Northing: 816024) is the exact location taken from the design of reprovisioned Wan Chai Salt Water Pumping Station and Salt Water Intake Culvert. Based on actual site condition for taking water sampling, minor adjustment was made on monitoring location.
- (2) According to the Baseline Water Quality Monitoring Report for SCL (MKK-HUH & HUH-ADM), the original coordinates of monitoring location WSD9 (Easting: 838133, Northing: 817790) as proposed in WQMP were moved closer to sensitive receiver according to the actual site condition.

Monitoring Parameter, Frequency and Programme

3.5 Water quality monitoring was conducted in accordance with the requirements stipulated in the approved SCL(HUH-ADM) EM&A Manual and the ERR. **Table 3.2** summarized the monitoring frequency and water quality parameters for the impact monitoring. The monitoring schedule for this reporting period is shown in **Appendix C**.

Table 3.2 Water Quality Impact Monitoring Programme

	Impact Monitoring	
	Victoria Harbour During the dredging and filling operation	
Monitoring Period	CBTS (Station 9 only) During IMT construction within CBTS	
	During IW1 construction within CB13	
	Shek O Casting Basin Throughout the construction period of removal of earth bunds at Northern and Southern gates.	
Monitoring Frequency ⁽¹⁾	3 Days in a Week, at mid-flood and mid-ebb tides	
Monitoring Locations ⁽³⁾	GB3, C3, C4, 8, 9, 14, 21, 34, A, WSD9, WSD17, C1 and C2	
Monitoring Parameters ⁽²⁾	DO, temperature, turbidity, pH, salinity and SS	
Intervals between 2 Sets of Monitoring	Not less than 36 hours	
Tidal Range	Individual flood and ebb tides not less than 0.5m	

Notes:

Monitoring Equipment and Methodology pH Measurement Instrument

3.6 The instrument should consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It should be readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 should be used for calibration of the instrument before and after use.

^{1.} For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than $0.5\ \mathrm{m}$.

^{2.} Turbidity, DO, pH, temperature and salinity should be measured in situ whereas SS should be determined by laboratory.

^{3.} Water Quality Monitoring at Station 8 and 14 is suspended as the water intakes are not in use.

Dissolved Oxygen and Temperature Measuring Equipment

- 3.7 The Dissolved Oxygen (DO) measuring equipment should be portable and weatherproof. It should complete with cable and senor, and a DC power source. The equipment should be capable of measuring:
 - a DO level in the range of 0 20 mg·L⁻¹ and 0 200% saturation; and
 - a temperature of 0 45 degree Celsius (°C).
- 3.8 It should have a membrane electrode with automatic temperature compensation complete with a cable.
- 3.9 Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO measuring equipment prior to each DO measurement.

Turbidity Measurement Instrument

3.10 The turbidity measuring instrument should be a portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU (for example, Hach model 2100P or an approved similar instrument).

Sampler

3.11 A water sampler is required for SS monitoring. It should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

3.12 A portable, battery-operated echo sounder should be used for the determination of water depth at each monitoring station. This unit can either be hand-held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

Salinity

3.13 A portable salinometer capable of measuring salinity in the range of 0 - 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring station.

Sample Containers and Storage

3.14 Water samples for SS monitoring should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen) and delivered to the laboratory and analyzed as soon as possible after collection.

Monitoring Position Equipment

3.15 A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message "screen pop-up" facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic

Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel at the correct location before taking measurements.

Calibration of In-Situ Instruments

- 3.16 The pH meter, DO meter and turbidimeter shall be checked and calibrated before use. DO meter and turbidimeter shall be certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 3.17 **Table 3.3** summarizes the equipment used in the water quality monitoring program. The calibration certificates for the in-situ instruments are presented in **Appendix E**.

Table 3.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality System	Aquaread AP-2000-D	6
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	1
Water Depth Detector	Fishfinder 140	1

3.18 Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment are under maintenance, calibration, etc.

Laboratory Measurement / Analysis for Marine Water

3.19 Duplicate samples from each independent sampling event are required by EPD for all parameters. Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory SS determinations, with detection limit shown in **Table 3.4**. The SS determination work shall start within 24 hours after collection of the water samples. The analyses shall follow the standard methods according to **Table 3.4** and as described in "American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater", 19th edition, unless otherwise specified.

Table 3.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method	Detection Limit
Suspended Solids (mg/L)	APHA 2540 D	0.1 mg/L

3.20 Quality Control Reports as attached in **Appendix F** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Action and Limit Levels

3.21 The action and limit levels for water quality monitoring are presented in **Appendix B**.

Event and Action Plan

3.22 Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix I** shall be carried out.

Landscape and Visual

3.23 In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented and a site inspection shall be conducted once every two weeks throughout the construction period. The implementation status is summarised in **Table 6.1** of Section 6.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit, EM&A Manual and the ERR. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J**. Status of required submissions under the Environmental Permit (EP) of the reporting period is presented in **Table 4.1**.

Table 4.1 Status of Required Submissions under EP

EP Condition	Submission	Submission Date
Condition 3.4	Monthly EM&A Report (May 2016)	14 June 2016

MONITORING RESULTS 5

Water Quality Monitoring

- 13 sets of water quality monitoring were carried out at the designated monitoring 5.1 stations in Victoria Harbour in this reporting period. All water quality monitoring was conducted as scheduled in the reporting month. The water quality impact monitoring schedule for this reporting period is shown in **Appendix C**.
- Removal of earth bunds at Northern and Southern Gates has not yet commenced in Shek 5.2 O Casting Basin. Therefore, no water quality monitoring in Shek O was carried out during this reporting period under this Project.
- 5.3 The monitoring results together with graphical presentations are shown in **Appendix D**.
- Under consultancy agreement no. C11033B, Action and Limit Levels for water quality 5.4 monitoring at the monitoring stations in Table 3.2 were established in the baseline water quality monitoring conducted by AECOM during June and July 2014. Action and Limit Levels for water quality is summarised in **Appendix B**.
- No exceedance of Action and Limit Levels of water quality was recorded during the reporting period. The investigation summary and findings for the exceedances Suspended Solids (SS) in May 2016 is presented in **Appendix G**.

Waste Management

- 5.6 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised in Table 5.1. Details of waste management data is presented in Appendix
- 1,150 m³ inert C&D materials were generated during the reporting month by this 5.7 Project. 2,627 m³ and 2,381 m³ inert C&D materials were received from SCL Contract 1111 and 1112 respectively. 4,377 m³ of these inert C&D materials were reused in the other Projects. No chemical waste was collected by licensed collector during the reporting month. No metal, no plastics and paper/cardboard packaging were generated during the reporting month.
- 5.8 6,775 m³ Type 1 sediments (Category L) were generated from construction activities of this Project during this reporting period. 0 m³, 0 m³ and 148 m³ of Type 1 sediments (Category L) were received from SCL Contract 1111, 1112 and 1128 respectively. Such materials were collected and 6,775 m³ of it were disposed at Capping of the exhausted Confined Marine Disposal Facility at South Cheung Chau.
- No contaminated materials Type 1 (dedicated sites) and 33,845 m³ Type 2 Confined Marine Disposal (Category M) sediments were generated from construction activities of this Project during this reporting period. No contaminated materials - Type 1 (dedicated sites) were received from SCL Contract 1111, 1112 and 1128. 0 m³, 6,447 m³ and 31 m³ of contaminated materials - Type 2 - Confined Marine Disposal (Category M) sediments were received from SCL Contract 1111, 1112 and 1128 respectively. Such materials

- were collected and 40,363 m³ of it were disposed at Capping of the exhausted Confined Marine Disposal Facility at South of The Brothers (or East of Sha Chau).
- 5.10 No contaminated materials Type 3 (Special Treatment Disposal) sediments were generated or disposed from construction activities of this Project during this reporting period. No contaminated materials Type 3 (Special Treatment Disposal) sediments were received from SCL Contract 1111 and 1112.

Table 5.1 Quantities of Waste Generated from the Project

		Quantity														
D				C&D Materials (non-inert) ^(b)												
Reporting Month	C&D	Sediments			Recyc	rials										
Wionth	Materials (in bulk volume)		General Refuse	Chemical Waste	Paper/ cardboard	Plastics	Metals									
June 2016	1,150 m ³	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 kg	0 kg	0 kg	0 kg									

Notes:

- (a) Inert C&D materials include soft materials, rocks and artificial hard materials to be delivered to TKO 137 and TM 38 public fill reception sites or, alternatively, receptor sites to be identified for beneficial reuse as proposed by the Contractor.
- (b) Non-inert C&D materials include C&D waste which cannot be reused or recycled and has to be disposed of at North East New Territories (NENT) Landfill. It also includes steel, paper/cardboard packaging waste, plastics. Steel materials generated from the project are grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.

Landscape and Visual

5.11 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 13 and 27 June 2016. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION

Site Audit

- 6.1 Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audit are attached in **Appendix H**.
- 6.2 Site audits were conducted on 6, 13, 20 and 27 June 2016 by ET. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 20 June 2016. No site inspection was conducted by the EPD during the reporting period. The details of observations during site audit can refer to **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 6.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

 Table 6.1
 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	23, 30 May 2016	Observation: Silt curtain at Hung Hom works area observed "opened" during the marine works. The Contractor is reminded to properly close the silt curtain during marine works.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23 May 2016	Reminder: Clear the silty water from the conveyor belt at the Shek O jetty.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23, 30 May 2016	Reminder: To clear the general refuse and construction waste from the U-channel and AquaSep in Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Water Quality	6 Jun 2016	Reminder: To remove the silty water in the sand trap at Shek O jetty.	The observation was observed to be improved/rectified by the Contractor during the audit session on 13 June 2016.
	13 Jun 2016	Reminder: To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea.	The observation was observed to be improved/rectified by the Contractor during the audit session on 20 June 2016.
	20 Jun 2016	Observation: "Opening" of silt curtain in Hung Hom works area should be closed during marine works in Hung Hom.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	20, 27 Jun 2016	Reminder: To remove the construction waste from the drainage channel in Shek O Casting Basin.	Follow up action will be reported in next reporting month.
Noise			

Parameters	Date	Observations and Recommendations	Follow-up
Landscape and Visual			
	23, 30 May 2016	Reminder: Cover the stockpile of dusty material properly in Hung Hom.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Air Quality	6 Jun 2016	Observation: Smoke generation observed from a marine barge at the Shek O jetty. The Contractor is reminded to check and repair the machinery to avoid black smoke generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 13 June 2016.
	20 Jun 2016	Reminder: To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	27 Jun 2016	Reminder: To properly cover the stockpile of sand by impervious material at Hung Hom finger pier.	Follow up action will be reported in next reporting month.
	16 May 2016	Reminder: To remove the oily water in the drip tray and clear the minor chemical leakage at the edge of drip tray at Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
	23, 30 May 2016	Observation: Oily water observed inside the drip tray of Shek O Casting Basin. The Contractor is reminded to clear as "chemical waste" properly.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Waste /	23, 30 May 2016	Observation: Chemical labels are not provided for chemical container in the chemical waste storage area. The Contractor is reminded to provide labels in compliance with the COP.	The observation was observed to be improved/rectified by the Contractor during the audit session on 6 June 2016.
Chemical Management	13 Jun 2016	Reminder: To provide drip tray to chemical container at the Hung Hom finger pier.	The observation was observed to be improved/rectified by the Contractor during the audit session on 20 June 2016.
	20 Jun 2016	Reminder: Stagnant rain water should be removed from drip tray in Shek O Casting Basin.	The observation was observed to be improved/rectified by the Contractor during the audit session on 27 June 2016.
	20, 27 Jun 2016	Reminder: To remove the construction waste from the drainage channel in Shek O Casting Basin.	Follow up action will be reported in next reporting month.
Permits/ Licenses			

7 ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

7.1 No exceedance of Action and Limit Levels of water quality was recorded during the reporting period. The summary of exceedance is provided in **Appendix G**. The investigation summary and findings for the exceedances Suspended Solids (SS) in May 2016 is presented in **Appendix G**.

Summary of Environmental Non-Compliance

7.2 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

7.3 One environmental complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix L**. The investigation status and result is also reported in **Appendix L**.

Summary of Environmental Summon and Successful Prosecution

7.4 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix** L.

8 FUTURE KEY ISSUES

Construction Programme for the Next Month

8.1 A tentative construction programme is provided in **Appendix A**. The major construction activities in the coming month will include:

Shek O

- Construction of IMT Bottom Plate;
- Steel Formwork Erection;
- Base Slab Rebar Fixing Concreting;
- Wall and Roof Rebar Fixing;
- IMT Wall & Roof Concreting;
- Collar Plate Installation;
- Tunnel Lighting Installation;
- Ballast Tank Installation; and
- Waterproofing Work.

Victoria Harbour

- Construction and Modification of Marine Platform in Hung Hom;
- Grouting curtain in Hung Hom;
- Excavation and Steel Truss Support Construction at Hung Hom;
- Sand backfill and Geotextile installation for the Cofferdam Wall at Hung Hom;
- Installation Observation Well, Deep Well Pump & Water Stand Pipe at Hung Hom;
- Rock Breaking & Removal at seabed of Element E1 Location;
- Trench Dredging Works for IMT alignment;
- Removal of Breakwater at CBTS; and
- Reprovisioning for Seawall of Finger Pier at Hung Hom.

Key Issues in the Next Month

8.2 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality and waste management in both Shek O and Hung Hom.

Monitoring Schedule in the Next Month

8.3 The tentative schedule of regular water quality monitoring at all the monitoring locations in the next reporting period is presented in **Appendix C**. The regular construction water quality monitoring will be conducted at the same monitoring locations in the next reporting period.

9 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 30 June 2016 in accordance with EM&A Manual and the requirement under EP.
- 9.2 No exceedance of the Action and Limit Levels of regular water quality monitoring was recorded at the designated monitoring stations during the reporting month.
- 9.3 4 times of joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Contractor's ET and 2 times of bi-weekly inspection of the implementation of landscape and visual mitigation measures were conducted during the reporting period.
- 9.4 One environmental complaint, no successful prosecution or notification of summons were received during the reporting month.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Water Quality

- To remove the construction material in the U-channel in Shek O Casting Basin.
- Silt curtain for Hung Hom works area should be "closed" during the marine works.
- To remove the silty water in the sand trap at Shek O jetty.
- To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea.

Landscape and Visual

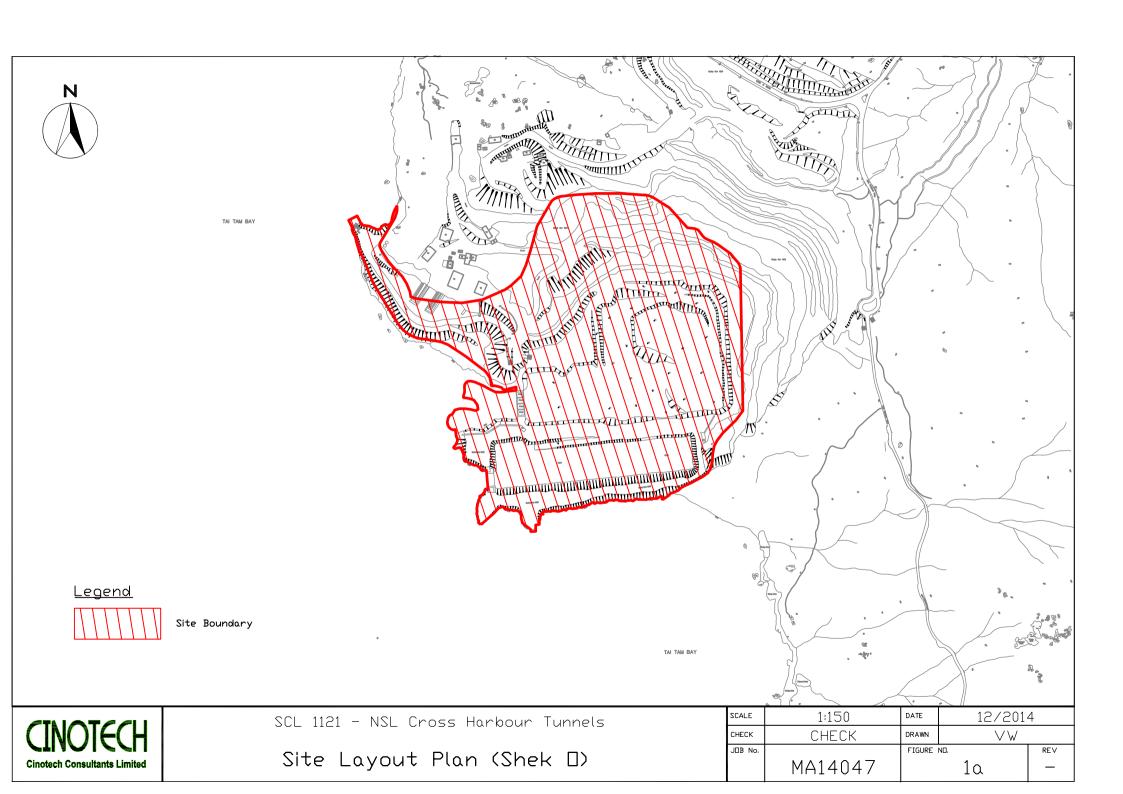
N/A

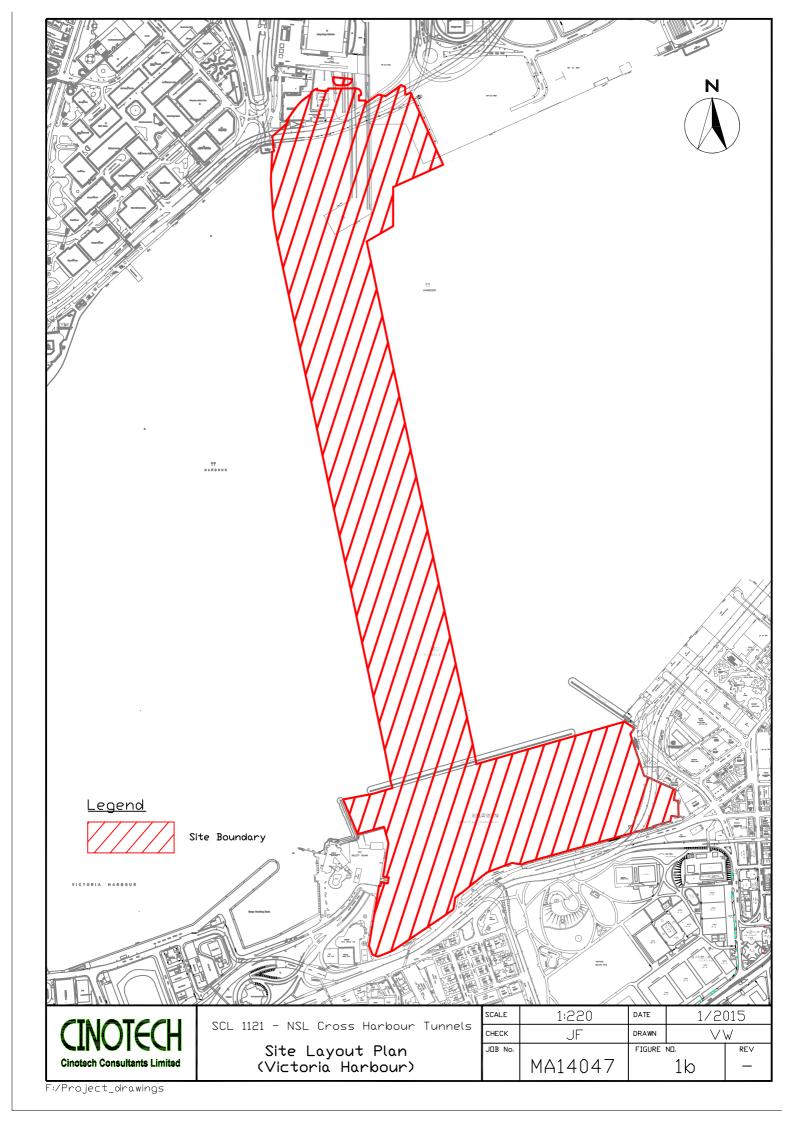
Noise

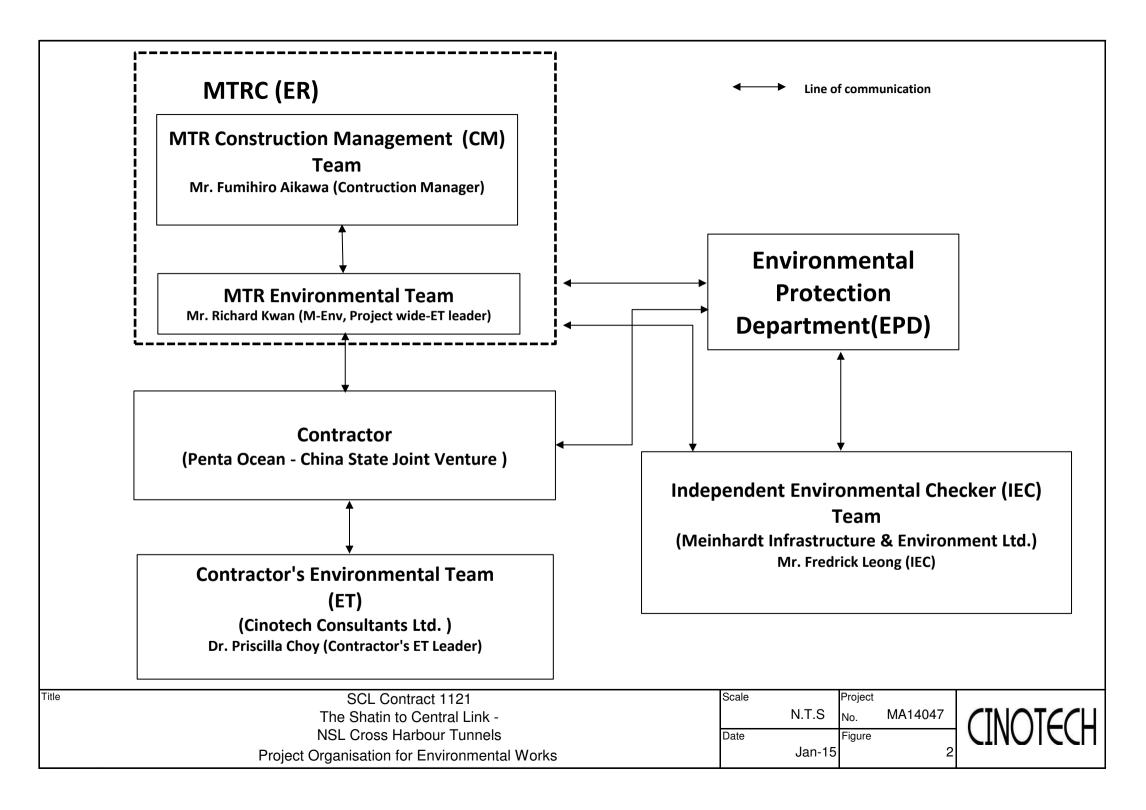
N/A

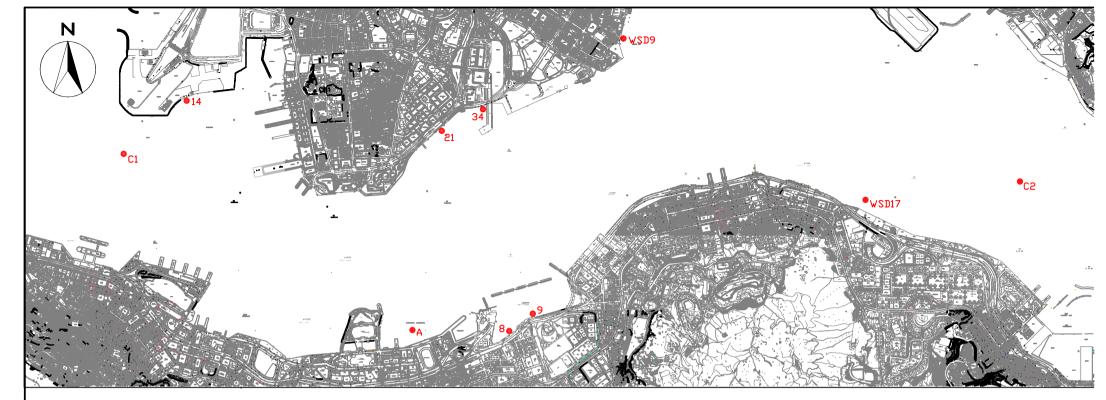
Air Quality

- To cover the stockpile of dusty material and cement bags by impervious material.
- To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation.
- To check and repair the marine barge at Shek O jetty to avoid black smoke generation.


Waste/Chemical Management


- To remove the stagnant water / oily water in the drip tray in Shek O casting basin.
- To provide drip tray to chemical containers at Hung Hom finger pier.
- To remove the construction material in the U-channel in Shek O Casting Basin.


Permits/Licenses


N/A

FIGURES

COORDINATE	EASTING	NORTHING
А	836268	816045
14	834477	817891
WSD9	837930	818357
WSD17	839863	817077
C1	833977	817442
C2	841088	817223
8	837036	816008
9	837223	816150
21	836484	817642
34	836828	817844

LEGEND

Water Quality Monitoring Station

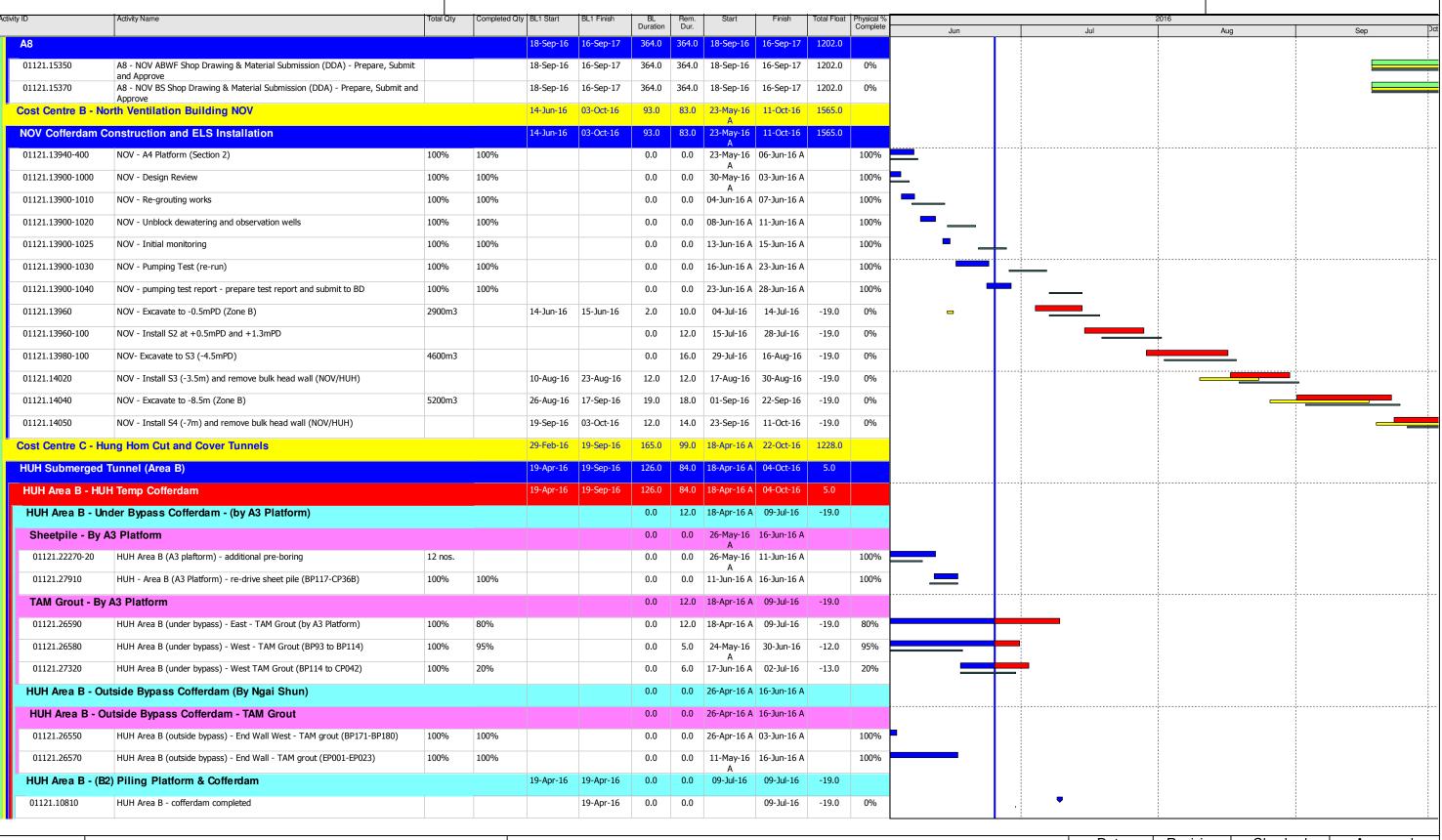
SCL 1121 - NSL Cross Harbour Tunnels

Locations of Water Quality Monitoring station in the Victoria Harbour

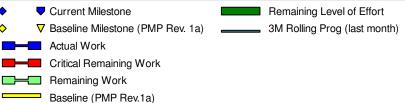
SCALE	1:30	DATE	1/2015	1
CHECK	IE .	DRAWN	\ / / /	<u> </u>
JOB No.	Jr	FIGURE	V W	REV
וטט ועט.	MA14047	TIGORE	3	_

APPENDIX A TENTATIVE CONSTRCUTION PROGRAMME

五洋建設-中國建築聯營 Penta-Ocean - China State Joint Venture

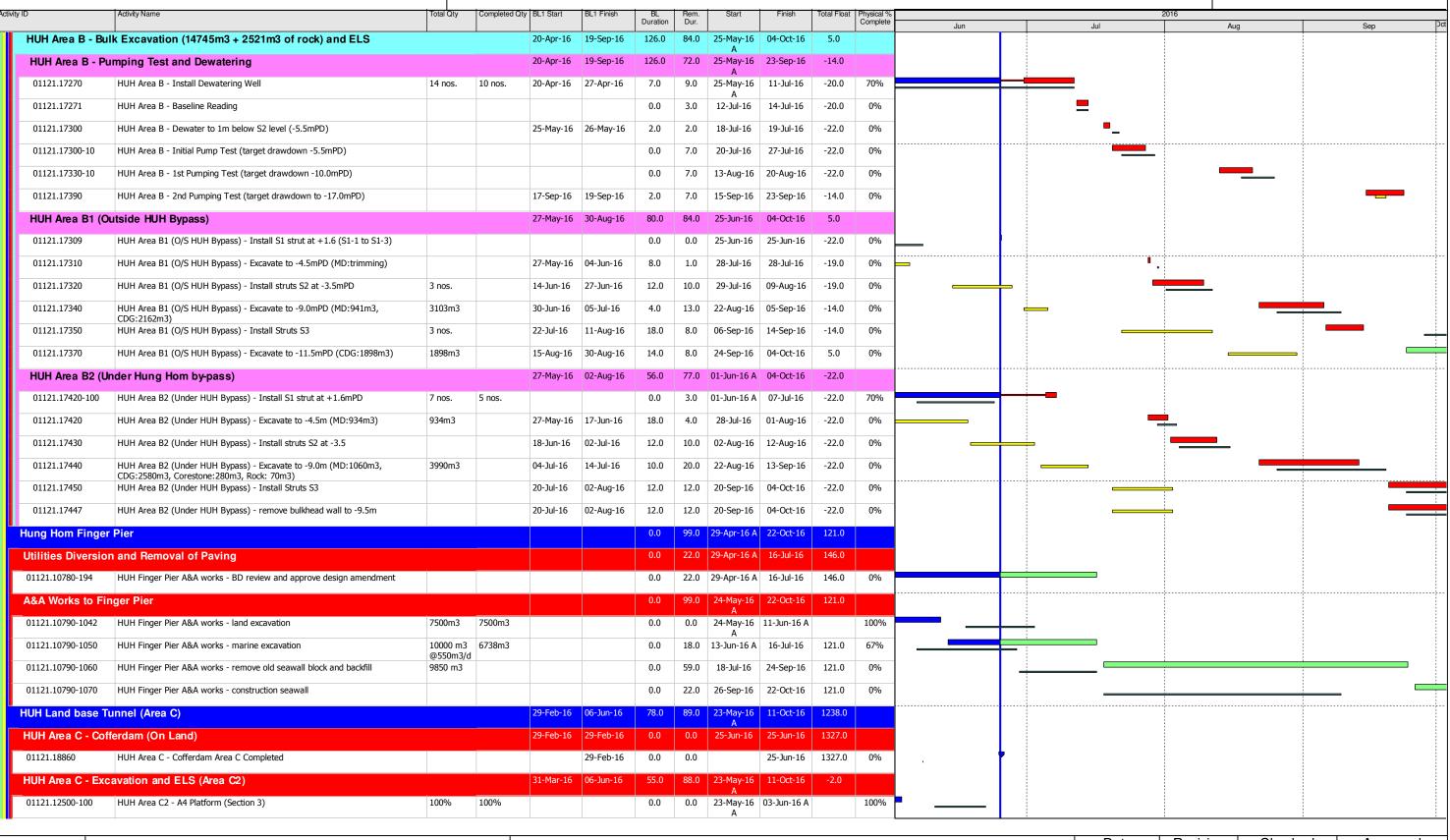

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

y ID	Activity Name	otal Qty Completed Qty BL	L1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete	Jun			Jul	2016	ug	Sep	
121 - 20 - 3M Ro	olling Programme (7 - 9/2016) (Ref. to PMP Rev 1a) (Updates as of	25 Jun 2016) 23	3-Nov-15	16-Sep-17		367.0	08-Mar-15 A	16-Sep-17	1287.0		Jun	П		oui	A	ug .	Sep	
CHEDULE OF	COMPLETION OBLIGATIONS AND MILESTONES SCHEDULE	15	5-Dec-15	15-Dec-16	366.0	90.0	25-Jun-16 A	22-Sep-16	1561.0									
Milestone Sche	edule	15	5-Dec-15	15-Dec-16	366.0	90.0	25-Jun-16 A	22-Sep-16	1561.0									
Cost Center A -	- General Preliminaries	17	7-Sep-16	17-Sep-16	0.0	0.0	17-Sep-16	17-Sep-16	1566.0									
01121.MS10100	Milestone A6 - (Implementation of Plans/Systems + Dwgs and Manuals/Plans			17-Sep-16	0.0	0.0		17-Sep-16	1566.0	0%					1 1 1 1		\	
Cost Center AA	Approvals) (Finish On 25-Sep-16) A - Design and ICE (Independant Checking Engineer) Cost	15	5-Dec-15	15-Dec-15	0.0	0.0	01-Jul-16	01-Jul-16	1644.0						 			
01121.MS10170	Milestone AA4 (Finish On or Before 6 Sep 15)			15-Dec-15	0.0	0.0		01-Jul-16	1644.0	0%			•		1			
Cost Center B -	- North Ventilation Building (NOV)	13	3-May-16	17-Sep-16	127.0	0.0	30-Jun-16 A	22-Sep-16	1561.0									
01121.MS10200	Milestone B2 - Complete Pump Test for NOV, Ready for Bulk Excavation (Finish			13-May-16	0.0	0.0		30-Jun-16 A		100%		,	•					
01121.MS10210	On or Before 29 May 16) Milestone B3 - Complete 60% of Total Excavation for NOV (Finish On or Before			17-Sep-16	0.0	0.0		22-Sep-16	1561.0	0%					1		⊽	•
Cost Center C	25 Sept 16) - Hung Hom Landfall Tunnels	19	9-Apr-16		114.0	42.0	03-Aug-16	<u> </u>							 			
01121.MS10310	Milestone C3 - Complete Pump Test for Land Cofferdam - Complete Marine			19-Apr-16	0.0	0.0	33.11.5	03-Aug-16							•			
01121.MS10310	Cofferdam (Finish On or Before 24 Apr 16) Milestone C4 - 60% Excavation for Land Cofferdam - 40% Excavation for Marine			11-Aug-16		0.0		14-Sep-16		0%			1		-		•	
	Cofferdam (Finish On or Before 28 Aug 16) - Immersed Tunnels		3-1up-16				25-Jun-16								~			
01121.MS10420	- Immersed Tunnels MIlestone D4.1 - Complete 30% of fabrication of IMT Units by Number (Finish	23				0.0	23-Juli-10											
	on 3-Jul-16)			23-Jun-16	0.0			25-Jun-16			▼							
01121.MS10440	Milestone D5 - Complete All Fabrication of IMT Units (Excl out-fitting & Inspection) (Finish on 29-Jan-17)		O. Ann. 16	15-Dec-16	0.0	0.0	12.3446	25-Jun-16		0%								
	- CBTS Tunnels	18	6-Apr-16	18-Apr-16			12-Jul-16						_					
01121.MS10530	Milestone E3 - Complete removal of breakwater at Works Area 1121.VH3C (Finish on 31 Jul 16)			18-Apr-16				12-Jul-16					•					
	- Associated Works	18	8-Sep-16	18-Sep-16			18-Sep-16										_	
01121.MS10610	Milestone F3 - Management, M&O of Barging Point Facilities at Engineer's Satisfaction (Finish On 25-Sep-16)			18-Sep-16		0.0		18-Sep-16		0%		ļ			; ;			
ONSTRUCTION				16-Sep-17			08-Mar-15 A											
Cost Centre A -	General Preliminary	23	3-Nov-15	16-Sep-17			23-Nov-15 A											
A5		23	3-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	1651.0									
01121.15210	A5 - Specified Plans - Implementation with Satisfactory from Engineer	23	3-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	100.0	30%		1			1 1 1 1 1			
01121.15220	A5 - Preliminary ABWF and BS Programme - Prepare, Submit and Approve	23	3-Nov-15	17-Mar-16	116.0	0.0	23-Nov-15 A	25-Jun-16	1651.0	30%		1			1 1 1 1 1 1			
A6		23	3-Nov-15	17-Sep-16	300.0	85.0	24-Nov-15 A	17-Sep-16	1202.0			T			; - -			
01121.15260	A6 - Programming Management System - Implementation with Satisfactory from Engineer	25	5-Nov-15	14-Sep-16	295.0	82.0	24-Nov-15 A	14-Sep-16	284.0	10%			<u> </u>					
01121.15270	A6 - NOV ABWF Shop Drawing & Material Submission (AIP) - Prepare, Submit and Approve	23	3-Nov-15	17-Sep-16	300.0	85.0	30-Nov-15 A	17-Sep-16	1202.0	10%			-					
01121.15280	A6 - NOV BS Shop Drawing & Material Submission (AIP) - Prepare, Submit and Approve	23	3-Nov-15	17-Sep-16	300.0	85.0	05-Dec-15 A	17-Sep-16	1202.0	10%			<u> </u>		1			
01121.15240	A6 - Specified Plans - Implementation with Satisfactory from Engineer	18	8-Mar-16	13-Sep-16	180.0	81.0	18-Mar-16 A	13-Sep-16	100.0	0%			1		1			
A7		14	4-Sep-16	17-Feb-17	157.0	157.0	14-Sep-16	17-Feb-17	1413.0			1						
01121.15290	A7 - Specified Plans - Implementation with Satisfactory from Engineer	14	4-Sep-16	15-Feb-17	155.0	155.0	14-Sep-16	15-Feb-17	100.0	0%								
01121.15300	A7 - Programming Management System - Implementation with Satisfactory from	15	5-Sep-16	16-Feb-17	155.0	155.0	15-Sep-16	16-Feb-17	284.0	0%								
01121.15310	Engineer A7 - CSD, SEM Drawings, Interface Spec., interface Test Plans (AIP) - Prepare,	18	8-Sep-16	17-Feb-17	153.0	153.0	18-Sep-16	17-Feb-17	1413.0	0%					1 1 1 1 1			
01121.15320	Submit and Approve A7 - NOV Material Samples, Mock-Ips and Prototypes of ABWF - Prepare, Construct and Approve	18	8-Sep-16	17-Feb-17	153.0	153.0	18-Sep-16	17-Feb-17	1413.0	0%								
	◆ Current Milestone Remaining Level	of Effort												Date	Revision	Checked		roved
ata Date:	♦ ▼ Baseline Milestone (PMP Rev. 1a) 3M Rolling Prog ((last month)		Upda	ated 3	3M F	Rollina	Progr	amm	e Jul	- Sep 2016		3-	Jul-16		Vincent Yeur	ng K. Hatak	ceyam
-Juli-10	Actual Work Critical Remaining Work			- P 40			dated a	_			_		_					
	Remaining Work					, - P		VI Z	Jui	5 1	-,							
	Baseline (PMP Rev.1a)																	


五 Pon

五洋建設-中國建築聯營 Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel


Data Date: 25-Jun-16

Date	Revision	Checked	Approved
-Jul-16		Vincent Yeung	K. Hatakeyama

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Data Date: 25-Jun-16

Current Milestone

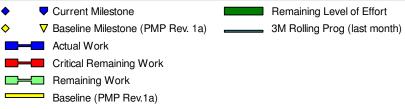
Baseline Milestone (PMP Rev. 1a)

Actual Work

Critical Remaining Work

Remaining Work

Baseline (PMP Rev.1a)

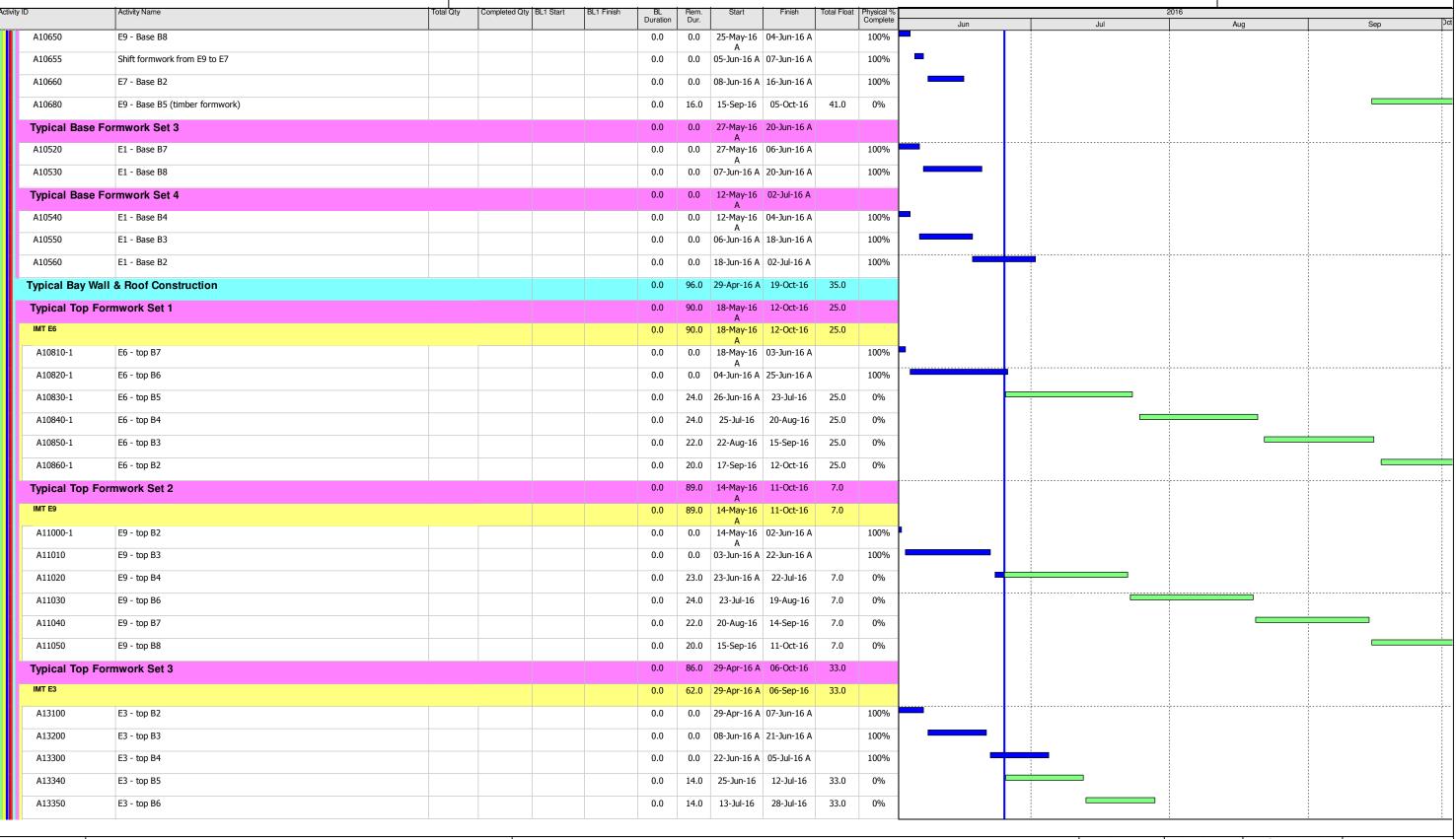

Date	Revision	Checked	Approved
-Jul-16		Vincent Yeung	K. Hatakeyama

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

STATE STAT	Activ	ty ID	Activity Name	Total Qty	Completed C	Qty BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete			2016		
1912 1915 1916		01121.12500	HUH Area C2 - Install S1 at +3.5mPD (Zone A)	100%	50%	31-Mar-16	07-Apr-16			23-May-16	08-Jul-16	-14.0		Jun	Jul		Aug	Sep Do
1911 1911	П	01121.12490-100	HUH Area C2 - Excavate to +2.5mPD (Remaining Zone A and haul road)	800m3	610m3			0.0	5.0	A 29-Jun-16 A	02-Jul-16	-19.0	100%	┤ <u> </u>	•			
Colin Coli	П	01121.12520	HUH Area C2 - Excavate to -0.5mPD (Zone A)			08-Apr-16	13-Apr-16	5.0	8.0	15-Jul-16	23-Jul-16	-15.0	0%	-				
Colin Coli	Ш	01121.12530	HUH Area C2 - Install S2 at +0.5mPD and connection with S2 in Area C1			14-Apr-16	20-Apr-16	6.0	16.0	29-Jul-16	16-Aug-16	-19.0	0%	_				
Spin District Di	П						-				_		0%	_				
1017-1-1766 Mile Anna C - Secretation and ELS (Peec CI)	Ш		,				,			_	_							
Main Area C - Excitavidadin and ELS (Mee C1) 100	Ш		·															
Column C	П		,			13 Huy 10	00 3411 10			,			070					
Colig 14/20-140 Roll Free Class and Section Class	П	_		1000/	F00/								E00/					
RIDELLY 1978 1881 Annu C. C Indian St. or - T. Semble on at Sciential a - Lingtific Semble	Ш		· ·		50%													
101711790 160 HUN Parts C - Removed of Season (in Invites 53) 100% 10	Ш			100%				0.0	1.0	27-Jun-16 A	05-Jul-16							
0112117-20-150 HUM Area C1 - Joseph C2 - Species C3 - Spe	Ш	01121.17420-130	HUH Area C1 - Install S1 at +3.5mPD and S2 Strut at +1.6mPD	5 nos.				0.0	10.0	06-Jul-16	16-Jul-16	-22.0	0%					
0.12117/20-150	Ш	01121.17420-140	HUH Area C1 - Removal of Seawall (1m below S3)	100%				0.0	6.0	28-Jul-16	03-Aug-16	-22.0	0%		•			
Did	Ш	01121.17420-150	HUH Area C1 - Install S3 Strut at -3.5mPD	3 nos.				0.0	8.0	04-Aug-16	12-Aug-16	-22.0	0%				•	
10121_17420_1889	Ш	01121.17420-160	HUH Area C1 - Excavate to -9.0 mPD (1395m3)	1395m3				0.0	6.0	22-Aug-16	27-Aug-16	-5.0	0%					
Cost centrum D - Immersed Tunnels	Ш	01121.17420-170	HUH Area C1 - Install S4 Strut at -8.0mPD	2 nos.				0.0	6.0	29-Aug-16	03-Sep-16	-5.0	0%				_	_
NAT End Frame & Collar Plate 0.0 48.0 0.1 00c-15 20 Aug 36 10060	Ш	01121.17420-180	HUH Area C1 - Excavate to -11.5mPD (CDG: 644 m3) (Corestone 131 m3)	775 m3				0.0	5.0	24-Sep-16	29-Sep-16	64.0	0%					
01121.27849-1100 IMT cest in terms and collar plate - off site fabrication (remaining balch?) 100% 56% 0.0 48.0 01-Dec-15 20-Aug-16 166.0 56%	 "	Cost centre D - Imr	mersed Tunnels			10-Mar-16	11-Apr-17	323.0	160.0	08-Mar-15 A	05-Jan-17	1494.0						
Cast-In Items OI 6.0 30 Nov-15A 02-Jul-16 1648.0 OI 121.27890-1110 IMT Cast-in items - off site fabrication (remaining units) 100% 59% 0.0 6.0 30 Nov-15A 02-Jul-16 1648.0 OI 121.27890-1300 IMT steel buildhead - off site fabrication for cast-in items 100% 59% 0.0 0.0 30 Nov-15A 25-Jul-16 1618.0 59% OI 121.27890-1310 IMT steel buildhead - off site fabrication for main build head 100% 20% 0.0 0.0 36.0 30 Nov-15A 25-Jul-16 1618.0 59% OI 121.27890 IMT Gine Gasket - 2nd butch off site fabrication / delivery 100% 80% 0.0 0.0 0.0 0.0 Nov-15A 02-Jul-16 1618.0 59% OI 121.27890 IMT Gine Gasket - 2nd butch off site fabrication / delivery 100% 80% 0.0 0.0 0.0 0.0 Nov-15A 02-Jul-16 1618.0 59% OI 121.27890 IMT Gine Gasket - 3nd butch off site fabrication / delivery 100% 80% 0.0 0.0 0.0 0.0 Nov-15A 02-Jul-16 06-Jul-16 1618.0 59% OI 121.27890 IMT Gine Gasket - 3nd butch off site fabrication / delivery 100% 80% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	П	IMT End Frame &	Collar Plate					0.0	48.0	01-Dec-15 A	20-Aug-16	1606.0						
01121.27840-1110 MT Cast-in items - off site fabrication (remaining units) 10% 95% 0.0 6.0 30-Nov-15A 02-Jul-16 1648.0 95%		01121.27840-1010	IMT end frame and collar plate - off site fabrication (remainig batch)	100%	58%			0.0	48.0	01-Dec-15 A	20-Aug-16	1606.0	58%					
Bulk Head		Cast-in Items						0.0	6.0	30-Nov-15 A	02-Jul-16	1648.0						
01121.27840-1300 IMT steel bulkhead - off site fabrication for cast-in items 100% 95% 0.0 0.0 30-Nov-15 25-Jun-16 1618.0 95%	II	01121.27840-1110	IMT Cast-in items - off site fabrication (remaining units)	100%	95%			0.0	6.0	30-Nov-15 A	02-Jul-16	1648.0	95%					
01121.27840-1310 IMT steel bulkhead - off site fabrication for main bulk head 100% 20% 0.0 36.0 30-May-16 1618.0 20%	Ш	Bulk Head						0.0	36.0	30-Nov-15 A	06-Aug-16	1618.0						
01121.27840-1310 IMT steel bulkhead - off site fabrication for main bulk head 100% 20% 0.0 36.0 30-May-16 1618.0 20%		01121.27840-1300	IMT steel bulkhead - off site fabrication for cast-in items	100%	95%			0.0	0.0	30-Nov-15 A	25-Jun-16	1618.0	95%					
Clina Gasket	1																	
01121.27840 IMT Gina Gasket - 2nd batch off site fabrication / delivery 100% 80% 0.0 6.0 09-May-16 02-Jul-16 1618.0 80% 01121.27850 IMT Gina Gasket - 3rd batch off site fabrication / delivery 0.0 30.0 04-Jul-16 06-Aug-16 1618.0 00% 10mmersed Tunnel Units Fabrication (DRP Rev.0a) 0.0 98.0 29-Apr-16 A 21-Oct-16 46.0 0.0			and the second of the second o	10070	2070					Α								
O1121.27850 IMT Gina Gasket - 3rd batch off site fabrication / delivery O.0 30.0 O4-Jul-16 06-Aug-16 1618.0 0%		_	IMT Gina Gacket - 2nd hatch off cite fabrication / delivery	1000/-	8004					A								
Immersed Tunnel Units Fabrication (DRP Rev.0a) 0.0 98.0 29-Apr-16 A 21-Oct-16 46.0				100%	0070					A								
A11115 Additional System Formwork Available 1 Jul 2016 0.0 0.0 02-Jul-16* 0.0 0.0 0.0 02-Jul-16* 0.0 0.0 0.0 0.0 02-Jul-16* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													U%					
IMT Fabrication Recovery Programme		<u>_</u>								· ·	21-Oct-16				_			
Typical Bay Base Slab Construction 0.0 85.0 12-May-16 05-Oct-16 41.0													0%		▼			
Typical Base Formwork Set 1 A10430 E5 - Base B3 A10440 E5 - Base B2 A 30-Jun-16 A 30-Jun-16 A 11-Jun-16 A 100% A 30-Jun-16																		
A10430 E5 - Base B3 0.0 0.0 01-Jun-16 A 11-Jun-16 A 100% A10440 E5 - Base B2 0.0 5.0 13-Jun-16 A 30-Jun-16 98.0 0%		Typical Bay Base	e Slab Construction					0.0	85.0	12-May-16 A	05-Oct-16	41.0						
A10440 E5 - Base B2 0.0 5.0 13-Jun-16 A 30-Jun-16 98.0 0%		Typical Base Fo	rmwork Set 1					0.0	5.0	01-Jun-16 A	30-Jun-16	98.0						
		A10430	E5 - Base B3					0.0	0.0	01-Jun-16 A	11-Jun-16 A		100%					
Typical Base Formwork Set 2 0.0 16.0 25-May-16 05-Oct-16 41.0 A		A10440	E5 - Base B2					0.0	5.0	13-Jun-16 A	30-Jun-16	98.0	0%					
		Typical Base Fo	rmwork Set 2					0.0	16.0	25-May-16	05-Oct-16	41.0						
										A						i		<u>. </u>

Data Date: 25-Jun-16


Date	Revision	Checked	Approved
-Jul-16		Vincent Yeung	K. Hatakeyama

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Data Date:

25-Jun-16

Current Milestone

→ Current Milestone

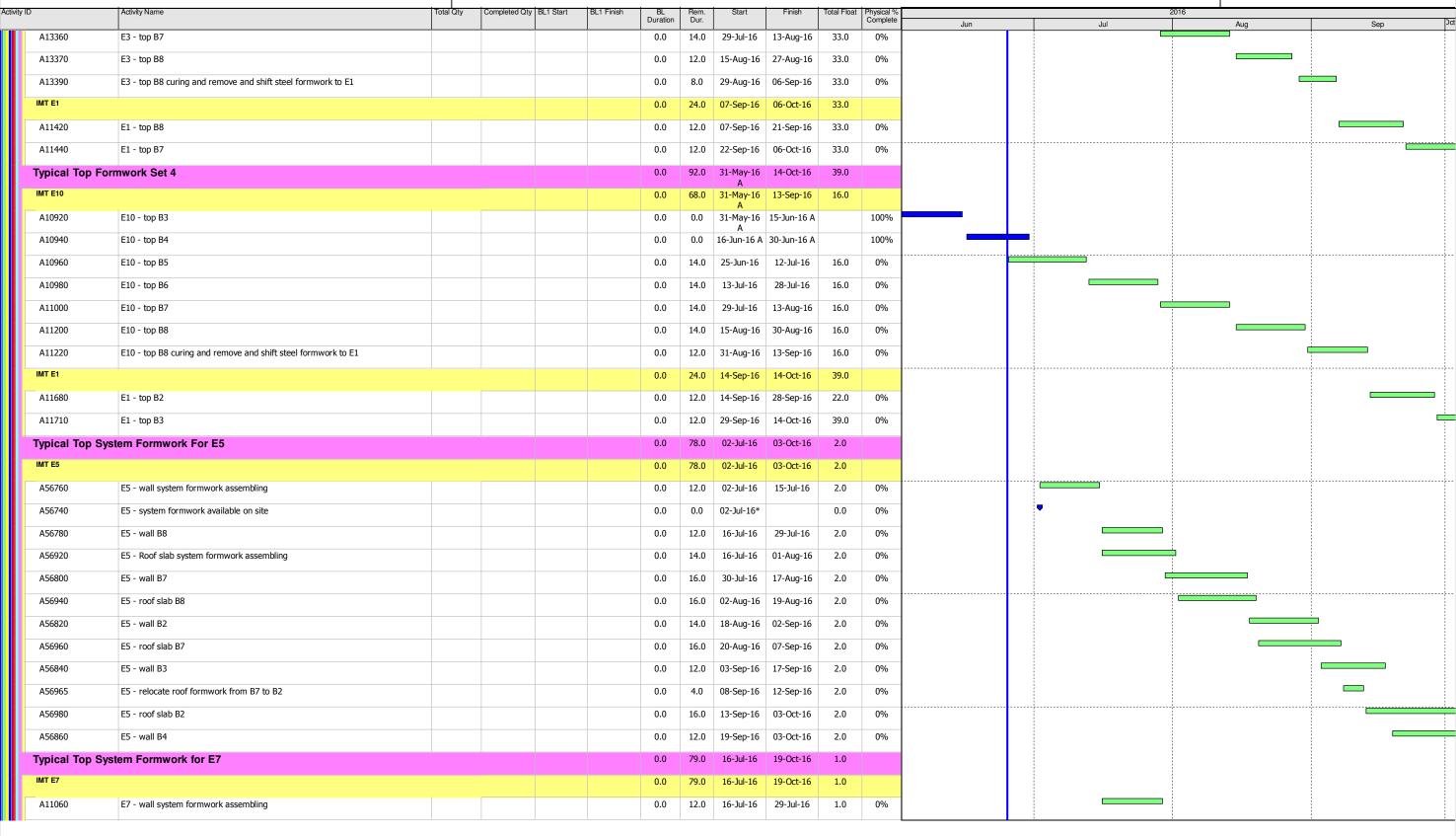
← V Baseline Milestone (PMP Rev. 1a)

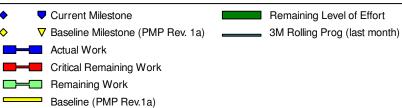
→ Actual Work

← Critical Remaining Work

← Remaining Work

Baseline (PMP Rev.1a)


Date	Revision	Checked	Approved
-Jul-16		Vincent Yeung	K. Hatakeyama

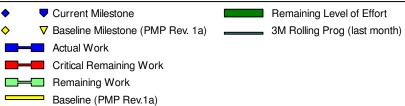


Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

Data Date: 25-Jun-16

Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

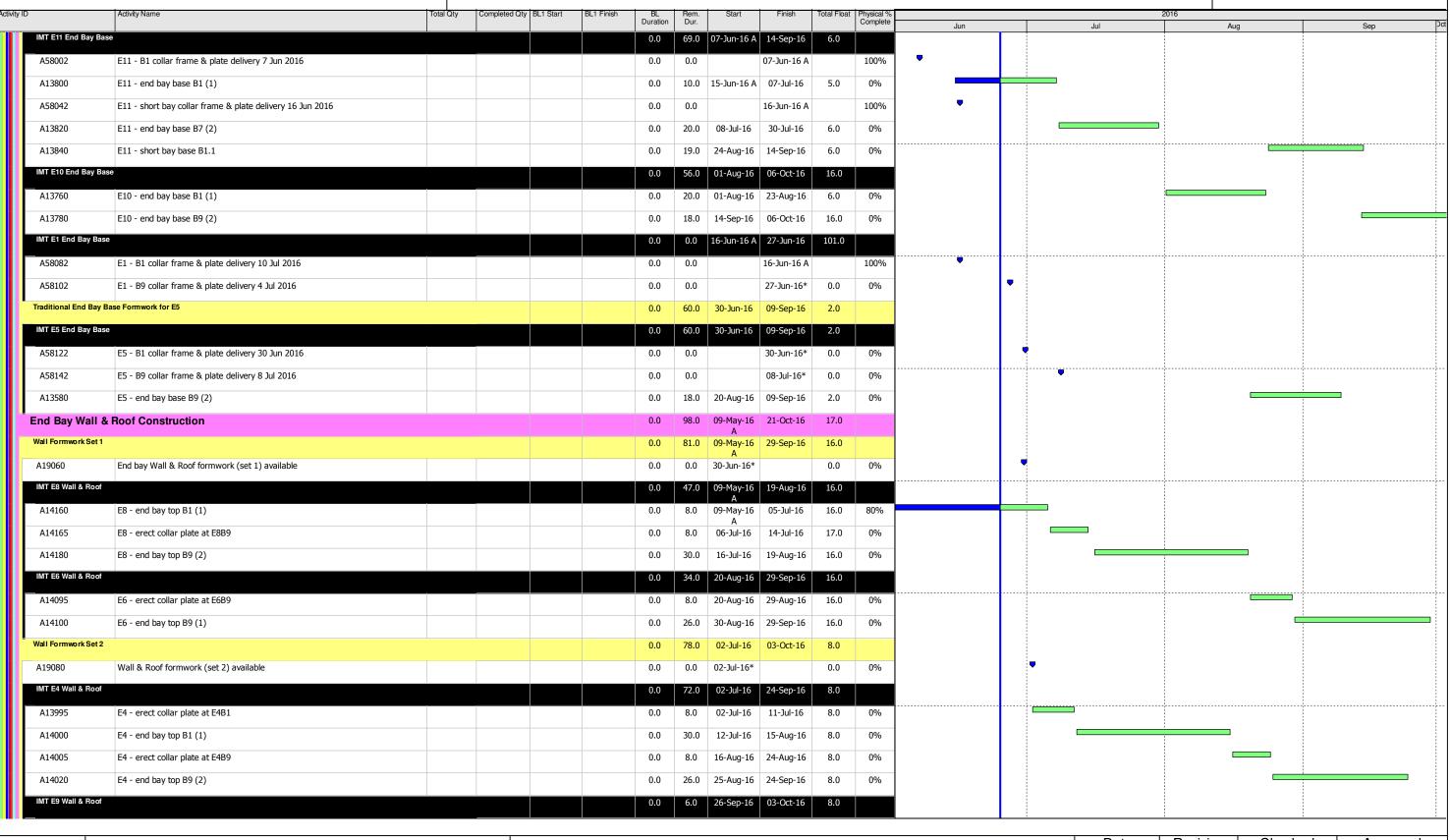


Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

)	Activity Name	Total Qty	Completed at	ty BL1 Start B	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Complete	Jun		Jul	2016	Aug	Sep
A11059	E7 - system formwork available on site					0.0	0.0	16-Jul-16*		0.0	0%	oun		V		, tug	ОСР
A11062	E7 - wall B8					0.0	12.0	30-Jul-16	12-Aug-16	4.0	0%				:		
A11077	E7 - Roof slab system formwork assembling					0.0	15.0	30-Jul-16	16-Aug-16	1.0	0%				:		
A11063	E7 - wall B7					0.0	12.0	13-Aug-16	26-Aug-16	4.0	0%						
A11078	E7 - roof slab B8					0.0	16.0	17-Aug-16	03-Sep-16	1.0	0%						
A11064	E7 - wall B6					0.0	12.0	27-Aug-16	09-Sep-16	4.0	0%						
A11080	E7 - roof slab B7					0.0	16.0	05-Sep-16	23-Sep-16	1.0	0%						
A11065	E7 - wall B2					0.0	12.0	10-Sep-16	24-Sep-16	4.0	0%						
A11085	E7 - relocate formwork from B7 to B2					0.0	4.0	24-Sep-16	28-Sep-16	1.0	0%						
A11066	E7 - wall B3					0.0	12.0	26-Sep-16	11-Oct-16	8.0	0%						
A11090	E7 - roof slab B2					0.0	16.0	29-Sep-16	19-Oct-16	1.0	0%						
nd Bay Cons	struction					0.0	98.0	09-May-16	21-Oct-16	17.0							
End Bay Base	e Constructon					0.0	86.0	A 13-May-16	06-Oct-16	29.0							
Base Formwork Se	et 1					0.0	64.0	A 16-Jun-16 A	09-Sep-16	26.0							
IMT E9 End Bay B	Base					0.0	64.0	16-Jun-16 A	09-Sep-16	26.0							
A57782	E9 - B1 collar frame & plate delivery 16 Jun 2016					0.0	0.0		16-Jun-16 A		100%	•					
A13720	E9 - end bay base B1 (1)					0.0	20.0	27-Jun-16	20-Jul-16	22.0	0%		<u> </u>				
A57802	E9 - B9 collar frame & plate delivery 26 Jun 2016					0.0	0.0		27-Jun-16*	0.0	0%		•				
A57822	E9 - short bay collar frame & plate delivery 26 Jun 2016					0.0	0.0		27-Jun-16*	0.0	0%		•				
A13730	E9 - short bay base B1.1					0.0	20.0	18-Aug-16	09-Sep-16	26.0	0%						
IMT E6 End Bay B	Base					0.0	20.0	21-Jul-16	12-Aug-16	22.0							
A13620	E6 - end bay base B9 (1)					0.0	20.0	21-Jul-16	12-Aug-16	22.0	0%						
Base Formwork Se	et 2					0.0	6.0	15-Jun-16 A	02-Jul-16	45.0							
IMT E4 End Bay B	ase					0.0	6.0	15-Jun-16 A	02-Jul-16	45.0							
A13540	E4 - end bay base B9 (2)					0.0	6.0	15-Jun-16 A	02-Jul-16	45.0	0%						
Base Formwork Se	et 3					0.0	78.0	13-May-16	26-Sep-16	37.0							
IMT E2 End Bay B	ase					0.0	12.0	13-May-16	09-Jul-16	18.0							
A13460	E2 - end bay base B9 (1)					0.0	0.0	A 13-May-16	06-Jun-16 A		100%						
A13440	E2 - end bay base B1 (2)					0.0	12.0	A 15-Jun-16 A	09-Jul-16	18.0	0%						
IMT E3 End Bay B	dase					0.0	71.0	06-Jun-16 A	26-Sep-16	37.0							
A57962	E3 - B1 collar frame & plate delivery 6 Jun 2016					0.0	0.0		06-Jun-16 A		100%	•					
A57982	E3 - B9 collar frame & plate delivery 4 Jul 2016					0.0	0.0		04-Jul-16*	0.0	0%		•				
A13480	E3 - end bay base B1 (1)					0.0	20.0	11-Jul-16	02-Aug-16	28.0	0%						
A13500	E3 - end bay base B9 (2)					0.0	16.0	07-Sep-16	26-Sep-16	37.0	0%						
Base Formwork Se	et 4					0.0	86.0	07-Jun-16 A	06-Oct-16	16.0							

Data Date:
25-Jun-16



Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

POLE

五洋建設-中國建築聯營 Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

Data Date: 25-Jun-16

Current Milestone Remaining Level of Effort

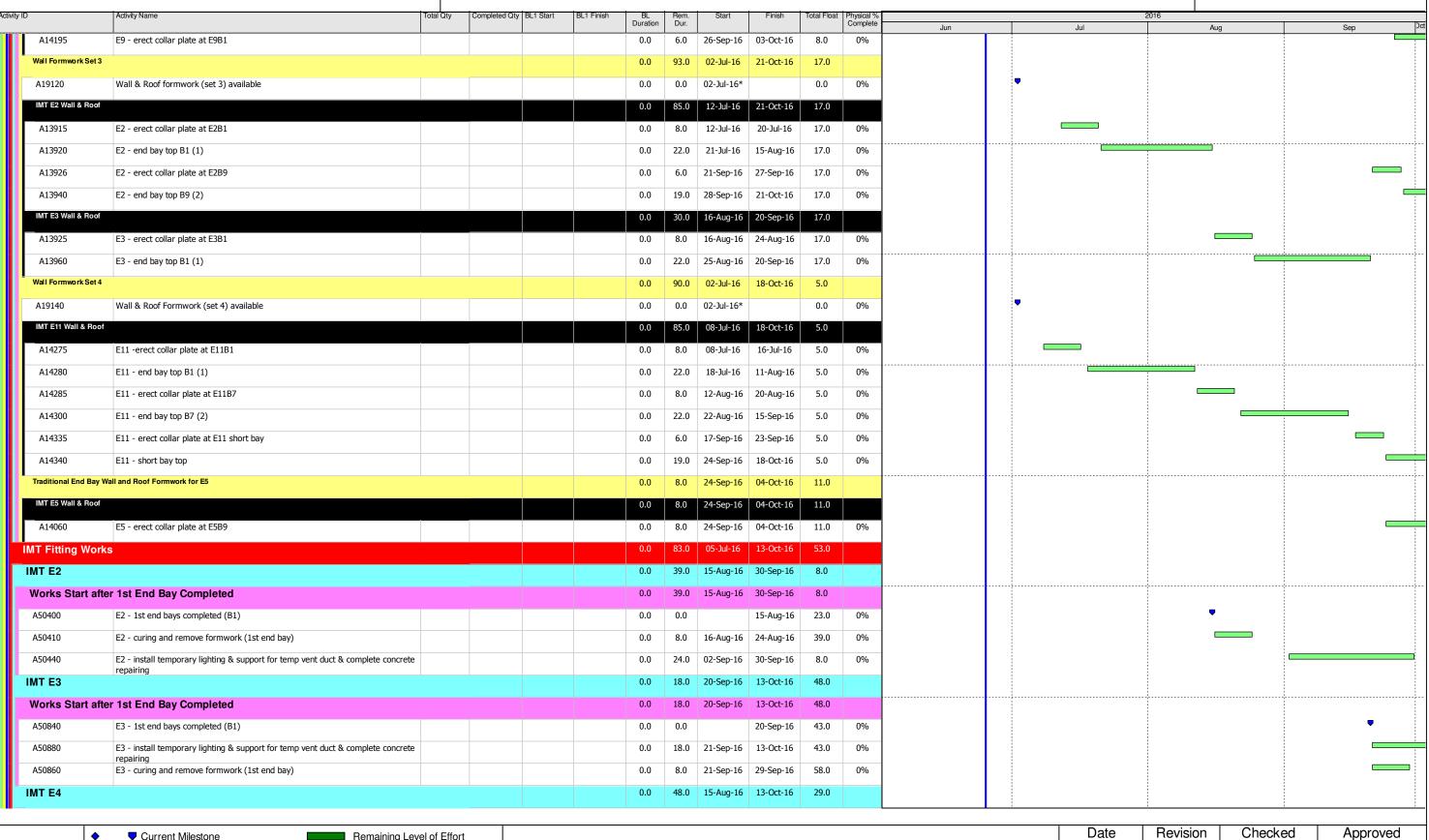
Baseline Milestone (PMP Rev. 1a) 3M Rolling Prog (last month)

Actual Work

Critical Remaining Work

Remaining Work

Baseline (PMP Rev.1a)


Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Data Date:

25-Jun-16

Current Milestone

Remaining Level of Effort

Make and the state of the s

Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

五洋建設-中國建築聯營 Penta-Ocean – China State Joint Venture

Remaining Level of Effort

MTRC Shatin to Central Link Contract 1121 **NSL Cross Harbour Tunnel**

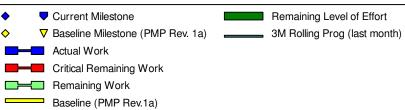
Page: 10 / 12

tivity ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL	Rem. Dur.	Start	Finish	Total Float	Physical % Complete				201	16				
	after 1st End Bay Completed					Duration		15-Aug-16	12-Oct 16	29.0	Complete	Jun		Jul			Aug		Sep	
						0.0		15-Aug-16									_			
A52020	E4 - 1st end bays completed (B1)					0.0	0.0		15-Aug-16	8.0	0%									
A52060	E4 - install temporary lighting & support for temp vent duct & complete concrete repairing					0.0	24.0	16-Aug-16	12-Sep-16	8.0	0%									
A52030	E4 - curing and remove formwork (1st end bay)					0.0	8.0	16-Aug-16	24-Aug-16	45.0	0%									
A52080	E4 - install ballast tank at VD					0.0	12.0	13-Sep-16	27-Sep-16	29.0	0%									
A52100	E4 - construct ballast concrete at DT					0.0	12.0	13-Sep-16	27-Sep-16	29.0	0%									
A52180	E4 - apply waterproofing (1st bay to 8th bay)					0.0	20.0	13-Sep-16	07-Oct-16	8.0	0%									
A52120	E4 - install ballast tank at DT					0.0	12.0	28-Sep-16	13-Oct-16	29.0	0%									
A52140	E4 - construct ballast concrete at UT					0.0	12.0	28-Sep-16	13-Oct-16	29.0	0%									
Works Start at	after 2nd End Bay Completed					0.0	8.0	24-Sep-16	05-Oct-16	28.0										
A52500	E4 - 2nd end bays completed (B9)					0.0	0.0		24-Sep-16	28.0	0%		-							·····
A52520	E4 - curing and remove formwork (2nd end bay)					0.0	8.0	26-Sep-16	05-Oct-16	28.0	0%									
IMT E6						0.0		29-Sep-16		42.0										
_	after 1st End Bay Completed					0.0	0.0	29-Sep-16		42.0										
A53180	E6 - 1st end bays completed (B9)					0.0	0.0	25 CCP 10	29-Sep-16	42.0	0%									ı
IMT E8	Lo 13t chu baya completed (b3)							0E 1d 16	-		0 /0									
	for the First Procedure is					0.0	79.0	05-Jul-16	07-Oct-16	57.0										
	after 1st End Bay Completed					0.0	60.0	05-Jul-16	13-Sep-16	64.0			_							
A54260	E8 - 1st end bays completed (B1)					0.0	0.0		05-Jul-16	52.0	0%		_							
A54300	E8 - install temporary lighting & support for temp vent duct & complete concrete repairing					0.0	24.0	06-Jul-16	02-Aug-16	52.0	0%					J				
A54270	E8 - curing and remove formwork (1st end bay)					0.0	8.0	06-Jul-16	14-Jul-16	68.0	0%									
A54320	E8 - install ballast tank at VD					0.0	12.0	03-Aug-16	16-Aug-16	52.0	0%									
A54340	E8 - construct ballast concrete at DT					0.0	12.0	03-Aug-16	16-Aug-16	52.0	0%									
A54510	E8 - apply waterproofing (1st bay to 8th bay)					0.0	24.0	03-Aug-16	30-Aug-16	66.0	0%									
A54360	E8 - install ballast tank at DT					0.0	12.0	17-Aug-16	30-Aug-16	52.0	0%									
A54380	E8 - construct ballast concrete at UT					0.0	12.0	17-Aug-16	30-Aug-16	52.0	0%									
A54530	E8 - install corner fender (1st bay to 8th bay)					0.0	10.0	31-Aug-16	10-Sep-16	66.0	0%		1							
A54390	E8 - install Gina plate and grouting (1st end bay)					0.0	6.0	31-Aug-16	06-Sep-16	52.0	0%									
A54480	E8 - install bulkhead (1st end bay)					0.0	6.0	07-Sep-16	13-Sep-16	52.0	0%							_		
Works Start at	after 2nd End Bay Completed					0.0		19-Aug-16		57.0										
A54700	E8 - 2nd end bays completed (B9)					0.0	0.0		19-Aug-16	55.0	0%						•			
A54720	E8 - curing and remove formwork (2nd end bay)					0.0		20-Aug-16	_	55.0	0%									
A54740	E8 - erect temp working platform, stressing and grout					0.0		30-Aug-16	_	55.0	0%									
A54800	E8 - pour protective screeding (1st bay to 8th bay)					0.0		23-Sep-16		57.0	0%									
A54760	E8 - install Gina plate and grout (2nd end bay)					0.0		23-Sep-16		55.0	0%									
IMT E11						0.0	48.0	11-Aug-16	08-Oct-16	45.0			1		1			1		

Current Milestone Data Date: ▼ Baseline Milestone (PMP Rev. 1a) 3M Rolling Prog (last month) 25-Jun-16 Critical Remaining Work Remaining Work Baseline (PMP Rev.1a)

Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

POLE


五洋建設-中國建築聯營

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121
NSL Cross Harbour Tunnel

)	Activity Name	Total Qty Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem. Dur.	Start	Finish	Total Float	Physical % Complete	Jun	Jul		2016	Aug	Sep
Works Start after	er 1st End Bay Completed				0.0	48.0	11-Aug-16	08-Oct-16	26.0	·	Jun	Jui			Aug	Sep
A56080	E11 - 1st end bays completed (B1)				0.0	0.0		11-Aug-16	26.0	0%				•		
A56120	E11 - install temporary lighting & support for temp vent duct & complete				0.0	24.0	12-Aug-16	_	26.0	0%	-			_		
A56090	concrete repairing E11 - curing and remove formwork (1st end bay)				0.0	8.0		20-Aug-16	42.0	0%						
	· · · · ·							_								
A56140	E11 - install ballast tank at VD				0.0		09-Sep-16	·	26.0	0%				,		
A56160	E11 - construct ballast concrete at DT				0.0	12.0	09-Sep-16	23-Sep-16	26.0	0%						
A56180	E11 - install ballast tank at DT				0.0	12.0	24-Sep-16	08-Oct-16	26.0	0%						
A56200	E11 - construct ballast concrete at UT				0.0	12.0	24-Sep-16	08-Oct-16	26.0	0%						[
Works Start afte	er 2nd End Bay Completed	,			0.0	8.0	15-Sep-16	26-Sep-16	55.0							
A56500	E11 - 2nd end bays completed (B9)				0.0	0.0		15-Sep-16	55.0	0%						•
A56520	E11 - curing and remove formwork (2nd end bay)				0.0	8.0	17-Sep-16	26-Sep-16	55.0	0%						
T Marine Work	s in Victoria Harbour		10-Mar-16	06-Dec-16	222.0	160.0	08-Mar-15 A	05-Jan-17	78.0							
MT Bulk Dredgii	ng		10-Mar-16	06-Dec-16	222.0	160.0	08-Mar-15 A	05-Jan-17	78.0							
01121.22840	IMT1 - bulk dredging (remaining)	38,539 m3 71%	02-Nov-16	06-Dec-16	30.0	11.0	08-Mar-15 A	05-Jan-17	78.0	71%						
01121.23430	IMT7 - bulk dredging	71,479 m3 93%	09-Jul-16	15-Aug-16	32.0		21-Mar-16 A		78.0	93%						
01121.22900	IMT3 - bulk dredging	55,036 m3 15%		09-Apr-16	23.0		29-Mar-16 A		90.0	15%					_	
			10-Mai-10	09-Api-16												
01121.23410-110	IMT6 - bulk dredging (North)	3,254 m3 86%			0.0		22-Apr-16 A		78.0	86%						
01121.23400	IMT5 - bulk dredging	49,834 m3 13%	11-May-16	10-Jun-16	25.0	21.0	28-Jun-16 A	20-Jul-16	78.0	13%						
01121.22900-100	IMT3 - replacement fill after dredging	5,007 m3			0.0	12.0	21-Jul-16	03-Aug-16	78.0	0%						
01121.23360	IMT4 - bulk dredging	46,990 m3	11-Apr-16	10-May-16	25.0	17.0	04-Aug-16	23-Aug-16	78.0	0%		_				
01121.23360-100	IMT4 - replacement fill after dredging	4,858 m3			0.0	11.0	24-Aug-16	05-Sep-16	78.0	0%						
AT - Immersed T	unnel Installation		11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0							
MT Units Sailwa	ay		11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0							
01121.22880	IMT10 - Evacuate IMT10 to Temp. Mooring Outside the Basin (for Towers and		11-Apr-17	11-Apr-17	1.0	1.0	25-Jun-16	25-Jun-16	237.0	0%	0					
st Centre E - CE	Pontoon Set Up) 3TS Tunnels		26-Nov-15	11-Feb-16	60.0	90.0	24-May-16	12-Oct-16	19.0							
H3C & VH3D			26-Nov-15	11-Feb-16	60.0	90.0	A 24-May-16	12-Oct-16	19.0							
	Anchorage Arrangement			06-Feb-16			A	02-Jun-16 A								
		1000/					Α			1000/						
01121.12720	CBTS (VH3C & VH3D) - Temp Mooring (Phase 4) to relocate RHKYC vessels	100% 30%		06-Feb-16	60.0		A	02-Jun-16 A		100%	-					
	am and Seawall Blocks across Breakwater			11-Feb-16	0.0			03-Sep-16								
01121.12160	CBTS (VH3C & VH3D) - Possession of VH3C and VH3D		11-Feb-16		0.0	0.0	25-Jun-16		23.0	0%			· <u>-</u>			
01121.12360-1010	CBTS stage 3A (breakwater east) - install pipe piles across breakwater [P262-P215, 48 nos.]	48 nos.			0.0	8.0	27-Jul-16	04-Aug-16	49.0	0%						
01121.12360-1012	CBTS stage 3A (breakwater east) - waling & lagging plate for [P262-P215]				0.0	12.0	05-Aug-16	18-Aug-16	49.0	0%						
01121.12360-1015	CBTS stage 3A (breakwater west) - install pipe piles across breakwater	32 nos.			0.0	6.0	19-Aug-16	25-Aug-16	49.0	0%			_			
01121.12360-1017	[P18-P49, 32 nos.] CBTS stage 3A (breakwater west) - waling & lagging plate for [P18-P49]				0.0	8.0	26-Aug-16	03-Sep-16	49.0	0%					_	
Remove Breakwa	ater & E10 Bulk Dredging inside CBTS				0.0	85.0	24-May-16	12-Oct-16	18.0							
							A									

Data Date: 25-Jun-16

Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

Penta-Ocean - China State Joint Venture

MTRC Shatin to Central Link Contract 1121 NSL Cross Harbour Tunnel

Page: 12 / 12

ctivity ID	Activity Name	Total Qty	Completed Qty	BL1 Start	BL1 Finish	BL Duration	Rem.	m. Start	Finish	Total Float									
						Duration	Dur.				Complete	Jun		Jul	Aug	Sep			
01121.12160-1030	CBTS (breakwater) - remove breakwater from 0.0 to -6.0mPD	20000m3	6000m3			0.0	9.0	24-May-16 A	12-Jul-16	18.0	50%								
01121.12160-1035	CBTS (VH3C & VH3D) - plant mobilisation for IMT 10 bulk dredging					0.0	2.0	13-Jul-16	14-Jul-16	18.0	0%	_							
01121.12160-1040	CBTS (VH3C & VH3D) - IMT10 advance dredging inside CBTS to remove marine deposit	20000m3				0.0	10.0	15-Jul-16	26-Jul-16	18.0	0%								
01121.12160-1060	CBTS (VH3C & VH3D) - IMT10 advance dredging inside CBTS to remove remaining material	70000m3				0.0	64.0	27-Jul-16	12-Oct-16	18.0	0%								
Cost Centre F - As	sociated Works			20-Mar-16	17-Mar-17	363.0	266.0	20-Mar-16 A	17-Mar-17	461.0									
01121.15520	F3 - Management, Maintenance and Operation of Barging Point Facility			20-Mar-16	18-Sep-16	183.0	86.0	20-Mar-16 A	18-Sep-16	461.0	0%		1	:					
01121.15530	F4 - Management, Maintenance and Operation of Barging Point Facility			19-Sep-16	17-Mar-17	180.0	180.0	19-Sep-16	17-Mar-17	461.0	0%								

Data Date: 25-Jun-16

◆ Current Milestone Remaining Level of Effort

◆ V Baseline Milestone (PMP Rev. 1a) 3M Rolling Prog (last month)

Actual Work

Critical Remaining Work

Remaining Work

Baseline (PMP Rev.1a)

Date	Revision	Checked	Approved
3-Jul-16		Vincent Yeung	K. Hatakeyama

APPENDIX B ACTION AND LIMIT LEVELS

APPENDIX B – Action and Limit Levels

Derived Action and Limit Levels for Water Quality (Wet Season)

Parameters	Action Level	Limit Level						
WSD Salt Water Intak	e (Station 14, A, WSD9, WSD1	7)						
DO in mg/L	<2.1	<2						
SS in mg/L	6.0	6.0						
Turbidity in NTU	4.7	6.5						
Cooling Water Intake (Station 8, 9, 21 & 34)								
DO in mg/L	2.8	2.7						
SS in mg/L	6.9	9.1						
Turbidity in NTU	11.3	17.2						
GB3								
DO in mg/L	5.5	5.3						
SS in mg/L	4.5	4.5						
Turbidity in NTU	2.1	2.4						

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Derived Action and Limit Levels for Water Quality (Dry Season)

Parameters	Action Level	Limit Level								
WSD Salt Water Intake (Station 14, A, WSD9, WSD17)										
DO in mg/L	<2.1	<2								
SS in mg/L	6.9	6.9								
Turbidity in NTU	5.0	7.0								
Cooling Water Intake (Station 8, 9, 21 & 34)										
DO in mg/L	3.3	3.2								
SS in mg/L	8.0	10.4								
Turbidity in NTU	12.2	18.5								
GB3										
DO in mg/L	6.8	6.5								
SS in mg/L	9.3	9.3								
Turbidity in NTU	5.0	5.6								

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

APPENDIX C WATER QUALITY MONITORING SCHEDULE

Shatin to Central Link - Contract No. 1121 NSL Cross Harbour Tunnels Water Quality Monitoring Schedule (June 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jun	2-Jun	3-Jun	4-Jun
			Mid-Ebb 9:21 Mid-Flood 15:16		Mid-Ebb 10:56 Mid-Flood 17:21	
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	11-Jun
	Mid-Ebb 13:13 Mid-Flood 20:07		Mid-Flood 7:51 Mid-Ebb 14:47		Mid-Flood 9:18 Mid-Ebb 16:21	
12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun	18-Jun
	Mid-Flood 12:25 Mid-Ebb 19:02		Mid-Ebb 9:40 Mid-Flood 15:47		Mid-Ebb 10:47 Mid-Flood 17:26	
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun
	Mid-Ebb 12:17 Mid-Flood 19:21			Mid-Flood 7:22 Mid-Ebb 14:12		Mid-Flood 8:53 Mid-Ebb 15:37
26-Jun	27-Jun	28-Jun	29-Jun	30-Jun		
	Mid-Flood 10:46 Mid-Ebb 17:17			Mid-Ebb 8:58 Mid-Flood 15:09		

Water Quality Monitoring Stations C1, C2, 9, 21, 34, A, WSD9, WSD17

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

Shatin to Central Link - Contract No. 1121 NSL Cross Harbour Tunnels Tentative Water Quality Monitoring Schedule (July 2016)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
						Mid-Ebb 10:42 Mid-Flood 17:23
3-Jul	4	Jul 5-Ju	l 6-Jul	7-Jul	8-Jul	9-Jul
		16 13	Mid-Flood 6:52 Mid-Ebb 13:45		Mid-Flood 8:18 Mid-Ebb 15:07	
10-Jul	11	Jul 12-Ju	l 13-Jul	14-Jul	15-Jul	16-Jul
		05	Mid-Ebb 7:38 Mid-Flood * 13:24		Mid-Ebb 9:40 Mid-Flood * 16:32	
17-Jul	18	Jul 19-Ju	l 20-Jul	21-Jul	22-Jul	23-Jul
	Mid-Ebb 11 Mid-Flood 18		Mid-Ebb 12:36 Mid-Flood 19:42		Mid-Flood 7:17 Mid-Ebb 13:58	
24-Jul	25	Jul 26-Ju	l 27-Jul	28-Jul	29-Jul	30-Jul
	Mid-Ebb 16	44 06	Mid-Flood 12:12 Mid-Ebb 18:07		Mid-Ebb 8:40 Mid-Flood 15:11	
31-Jul						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Water Quality Monitoring Stations

C1, C2, 9, 21, 34, A, WSD9, WSD17

Remark: 1) Reference was made to the tidal information of Hong Kong Observatory (Quarry Bay Station)

- 2) The reasons for choosing the monitoring day (i.e 11, 13 and 15 July 2016) in which the tidal ranges are less than 0.5m include:
 - a) The tidal range of less than 0.5m occurs for 2 or more consecutive days
 - b) In compliance with the requirement of (i) three days per week at mid-ebb and mid-flood tide and (ii) the interval between two sets of monitoring not less than 36 hours

^{*} indicates that the tidal range of individual flood or ebb tide is less than 0.5m

APPENDIX D
WATER QUALITY MONITORING RESULTS
AND GRAPHICAL PRESENTATIONS

Water Quality Monitoring Results at 21 - Mid-Ebb Tide

Data	Date Weather Sea Sampling Depth (m)		h (m)	Temperature (°C) pH			Salinity ppt DO Saturation (%)			Dissolved Oxygen (mg/L)				Turbidity(NTL	J)	Suspended Solids (mg/L)										
Dale	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*				
				Surface	1	25.4 25.5	25.5	7.4 7.5	7.5	32.3 33.0	32.7	85.9 87.3	86.6	5.9 5.9	5.9		3.8 3.8	3.8		5 5	5.0					
1-Jun-16	Sunny	Calm	09:58	Middle	3.5	24.8	25.1	7.5 7.5	7.5	31.8 33.5	32.7	85.7	86.2	5.9 5.9	5.9	5.9	3.7	3.8	3.7	8	8.5	6.7				
				Bottom	6	25.3 24.9	25.2	7.5	7.5	32.4	32.0	86.6 84.6	84.5	5.8	5.8		3.8	3.6		7	6.5					
				Surface	1	25.4 29.4	29.4	7.4 8.2	8.2	31.5 31.9	31.9	84.4 106.9	107.1	5.8 6.9	6.9		3.6	3.6		6	6.0					
3-Jun-16	Fine	Moderate	11:31	Middle	3.5	29.3 28.7	28.7	8.2 8.3	8.3	31.9 31.9	31.9	107.2 100.0	99.5	6.9 6.5	6.5	6.4	3.6 5.0	5.2	5.2	6 7	7.5	6.5				
o dan 10	1 1110	Wioderate	11.01	Bottom	6	28.7 27.8	27.8	8.3 8.2	8.2	31.9 32.3	32.4	98.9 88.7	88.6	6.4 5.8	5.8	0.4	5.3 6.9	6.9	. 0.2	8 6	6.0	0.0				
				Bollom	0	27.7	27.0	8.2	0.2	32.4	32.4	88.5	00.0	5.8	5.6		6.8	0.9		6	0.0					
				Surface	1	25.8 26.5	26.2	8.1 8.2	8.2	28.6 29.9	29.3	92.8 94.7	93.8	6.4 6.4	6.4		3.8 3.7	3.8		4	4.0					
6-Jun-16	Cloudy	Moderate	14:03	Middle	3.5	26.9 27.0	27.0	8.2 8.2	8.2	29.0 32.3	30.7	94.0 95.5	94.8	6.4 6.4	6.4	6.4	4.1 3.9	4.0	4.0	3 4	3.5	4.0				
				Bottom	6	27.2 26.6	26.9	8.2 8.2	8.2	29.4 32.8	31.1	94.7 94.7	94.7	6.4 6.3	6.4		3.9 4.6	4.3		4 5	4.5					
				Surface	1	25.4 25.4	25.4	8.2 8.2	8.2	30.9 30.9	30.9	104.4 104.7	104.6	7.2 7.2	7.2		3.9 4.0	4.0		3 3	3.0					
8-Jun-16	Cloudy	Moderate	15:04	15:04	15:04	15:04	15:04	Middle	3.5	25.2 24.8	25.0	8.2 8.2	8.2	31.8 31.5	31.7	105.2 103.1	104.2	7.2 7.2	7.2	7.1	4.8 4.8	4.8	4.9	<2.5 <2.5	<2.5	3.3
				Bottom	6	25.0 25.0	25.0	8.1 8.2	8.2	32.1 32.2	32.2	98.5 98.2	98.4	6.8 6.8	6.8		5.8 5.7	5.8		5 4	4.5					
			15:33	15:33	15:33	15:33	Surface	1	26.3 27.2	26.8	8.1 7.9	8.0	33.8 32.2	33.0	83.3 84.7	84.0	5.6 5.6	5.6		5.3 5.9	5.6		3	3.0		
10-Jun-16	Fine	Calm					Middle	3.5	26.7	26.9	8.0	8.0	31.9	32.7	85.9	88.5	5.8	5.9	5.9 5.8	5.3	5.1	5.3	<2.5	<2.5	3.0	
				Bottom	6	27.0 27.2	27.1	7.9 8.0	8.1	33.5 31.9	32.8	91.0 91.7	90.8	6.0 6.1	6.0	6.0	4.9 5.1	5.1	1	<2.5 4	3.5					
				Surface	1	27.0 27.7	27.7	8.1 7.9	8.0	33.6 30.3	30.3	89.9 95.7	95.5	5.9 6.4	6.4		5.1 3.1	3.3		3 <2.5	<2.5					
13-Jun-16	Cloudy	Moderate	13:11	Middle	3.5	27.6 27.3	27.3	8.0	8.0	30.3 30.4	30.4	95.3 93.3	93.3	6.3 6.2	6.2	6.3	3.4 4.7	4.7	4.2	<2.5 3		3.5				
13-Juli-16	Cloudy	Woderate	13.11			27.3 27.2		8.0 8.1		30.4 30.4		93.3 92.8		6.2		0.3	4.6 4.5		4.2	4		3.5				
				Bottom	6	27.2 27.1	27.2	8.1 8.2	8.1	30.4 30.4	30.4	92.8 88.1	92.8	6.2 5.9	6.2		4.4 2.9	4.5		5 4	4.5					
				Surface	1	27.1 26.7	27.1	8.2 8.2	8.2	30.4	30.4	87.9 87.0	88.0	5.9 5.9	5.9		2.8	2.9		5	4.5					
15-Jun-16	Cloudy	Moderate	10:02	Middle	3.5	26.7 26.7 25.0	26.7	8.2 8.2	8.2	30.9 31.9	30.9	87.1 60.9	87.1	5.9 5.9 4.2	5.9	5.3	2.9	2.9	3.2	4 4	4.0	4.2				
				Bottom	6	24.9	25.0	8.2	8.2	32.1	32.0	60.4	60.7	4.2	4.2		3.9	3.9		4	4.0					
				Surface	1	28.5 28.4	28.5	7.9 7.9	7.9	31.6 31.7	31.7	85.5 85.6	85.6	5.6 5.6	5.6		2.4 2.2	2.3		3	3.0					
17-Jun-16	Sunny	Moderate	11:27	Middle	3.5	27.8 27.8	27.8	8.0 8.0	8.0	32.4 32.5	32.5	82.5 82.2	82.4	5.4 5.4	5.4	5.2	3.8 3.6	3.7	4.1	<2.5 <2.5	<2.5	3.2				
				Bottom	6	26.8 26.6	26.7	7.9 7.9	7.9	33.7 33.8	33.8	71.5 70.7	71.1	4.7 4.7	4.7		6.1 6.3	6.2		4 4	4.0					

Water Quality Monitoring Results at 21 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.1 8.1	8.1	33.2 33.2	33.2	92.6 92.3	92.5	6.5 6.5	6.5		3.6 3.6	3.6		5 5	5.0	
20-Jun-16	Sunny	Rough	12:37	Middle	3.5	23.9 23.8	23.9	8.4 8.3	8.4	33.3 33.3	33.3	92.1 92.3	92.2	6.4 6.4	6.4	6.4	3.7 3.7	3.7	3.9	4	4.0	4.3
				Bottom	6	23.8 23.8	23.8	8.2 8.2	8.2	33.3 33.3	33.3	91.2 91.4	91.3	6.4 6.4	6.4		4.5 4.5	4.5		4 4	4.0	
				Surface	1	25.9 25.9	25.9	8.1 8.1	8.1	28.7 28.7	28.7	95.0 95.9	95.5	6.4 6.5	6.5		4.7 5.1	4.9		6 6	6.0	
23-Jun-16	Sunny	Moderate	13:30	Middle	3.5	25.3 25.3	25.3	8.2 8.2	8.2	29.2 29.2	29.2	92.1 91.8	92.0	6.3 6.3	6.3	6.2	6.8 6.8	6.8	6.4	6 6	6.0	6.0
				Bottom	6	24.9 24.9	24.9	8.3 8.3	8.3	30.5 30.5	30.5	84.1 84.4	84.3	5.7 5.7	5.7		7.3 7.4	7.4		6 6	6.0	
				Surface	1	29.0 29.1	29.1	8.2 8.2	8.2	31.1 31.1	31.1	110.6 111.2	110.9	7.2 7.2	7.2		3.2 3.2	3.2		4 4	4.0	
25-Jun-16	Sunny	Rough	16:03	Middle	3.5	28.5 28.4	28.5	8.2 8.2	8.2	31.8 31.9	31.9	110.4 110.4	110.4	7.2 7.2	7.2	7.1	5.2 5.4	5.3	4.7	6 6	6.0	4.7
				Bottom	6	28.3 28.4	28.4	8.2 8.1	8.2	32.6 32.7	32.7	104.5 104.4	104.5	6.8 6.8	6.8		5.5 5.8	5.7		4 4	4.0	
				Surface	1	29.1 29.1	29.1	8.2 8.2	8.2	30.9 30.8	30.9	111.3 111.2	111.3	7.2 7.2	7.2		2.3 2.3	2.3		5 5	5.0	
27-Jun-16	Sunny	Moderate	17:43	Middle	3.5	28.7 28.6	28.7	8.2 8.2	8.2	31.7 31.6	31.7	111.0 110.6	110.8	7.2 7.2	7.2	7.1	4.5 4.7	4.6	4.7	5 4	4.5	5.8
				Bottom	6	28.4 28.5	28.5	8.1 8.2	8.2	32.2 32.3	32.3	104.6 104.5	104.6	6.8 6.8	6.8		7.1 7.0	7.1		8 8	8.0	Ì
	-	_	_	Surface	1	28.7 28.7	28.7	7.9 8.0	8.0	30.0 29.8	29.9	88.9 90.4	89.7	5.8 5.9	5.9	_	3.9 4.0	4.0	_	5 5	5.0	
30-Jun-16	Cloudy	Moderate	09:42	Middle	3.5	28.4 28.4	28.4	8.1 8.2	8.2	30.2 30.1	30.2	84.0 82.2	83.1	5.5 5.4	5.5	5.6	3.8 4.0	3.9	4.4	5 5	5.0	6.5
				Bottom	6	28.4 28.4	28.4	8.1 8.1	8.1	31.0 31.0	31.0	83.1 81.8	82.5	5.4 5.4	5.4		5.1 5.2	5.2		9 10	9.5	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at 21 - Mid-Flood Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1	25.0	7.5	7.5	32.3	32.4	87.2	86.1	6.0	5.9		3.5	3.8		5	5.0	
				Curraco	·	24.9	20.0	7.4	7.0	32.5	02	84.9	00.1	5.8	0.0		4.0	0.0		5	0.0	
1-Jun-16	Sunny	Calm	14:34	Middle	3.5	25.2 25.0	25.1	7.5 7.6	7.6	32.0 31.8	31.9	86.5 85.4	86.0	5.9 5.9	5.9	5.9	3.5 3.0	3.3	3.5	4	4.0	4.3
						24.9		7.5		32.6		84.2		5.8			3.2			4		
				Bottom	6	25.4	25.2	7.4	7.5	33.6	33.1	86.5	85.4	5.9	5.9		3.3	3.3		4	4.0	
				Surface	1	28.6	28.6	8.3	8.3	31.6	31.7	110.2	110.2	7.2	7.2		5.7	5.9		6	6.5	
				Surface	'	28.5	20.0	8.3	0.3	31.7	31.7	110.2	110.2	7.2	1.2		6.0	5.9		7	0.5	
3-Jun-16	Cloudy	Moderate	17:27	Middle	3.5	28.3	28.3	8.3	8.3	31.8	31.8	107.7	107.4	7.0	7.0	6.6	6.4	6.5	5.9	7	7.0	6.0
	•					28.3 27.6		8.3 8.3		31.8 31.9		107.1 85.8		7.0 5.7			6.5 5.2			7		
				Bottom	6	27.6	27.6	8.3	8.3	32.0	32.0	86.3	86.1	5.7	5.7		5.2	5.3		5	4.5	
						24.0		8.2		32.2		97.7		6.8			3.8			4		
				Surface	1	25.5	24.8	8.1	8.2	32.2	32.2	100.0	98.9	6.8	6.8		4.5	4.2		5	4.5	
6-Jun-16	Cloudy	Moderate	20:33	Middle	3.5	24.0	24.6	8.2	8.2	31.5	31.2	93.2	93.7	6.6	6.6	6.6	5.0	5.0	4.2	3	3.5	3.7
o dun 10	Cloudy	Woderate	20.00	Wildale	0.0	25.1	24.0	8.1	0.2	30.8	01.2	94.2	30.7	6.5	0.0	0.0	4.9	5.0	7.2	4	0.0	0.7
				Bottom	6	26.1	25.5	8.1	8.1	32.9	32.0	94.9	93.4	6.4	6.4		3.2	3.5		3	3.0	
						24.9 25.4		8.1 8.2		31.0 31.0		91.8 105.1		6.4 7.2			3.8			3		
				Surface	1	25.4	25.4	8.2	8.2	31.0	31.0	104.6	104.9	7.2	7.2		3.8	3.9		3	3.0	
0 1 10	01	Madana	00.00	NAC-L-III-	0.5	24.9	04.0	8.2	0.0	31.5	04.0	104.7	1010	7.3	7.0	7.4	7.4	7.0		<2.5	0.5	0.7
8-Jun-16	Cloudy	Moderate	08:30	Middle	3.5	24.8	24.9	8.2	8.2	31.6	31.6	104.5	104.6	7.2	7.3	7.1	6.5	7.0	6.3	<2.5	<2.5	2.7
				Bottom	6	24.7	24.8	8.1	8.1	32.5	32.5	99.0	98.8	6.8	6.8		8.3	8.1		<2.5	<2.5	
						24.8		8.1		32.4		98.6		6.8			7.8			<2.5		
				Surface	1	26.6 26.5	26.6	8.0 8.2	8.1	32.5 33.3	32.9	85.0 87.5	86.3	5.7 5.8	5.8		4.9 4.8	4.9		<2.5 <2.5	<2.5	
						26.8		7.9		33.7		88.4		5.9			4.9			3		
10-Jun-16	Fine	Calm	09:48	Middle	3.5	26.6	26.7	8.2	8.1	32.0	32.9	89.5	89.0	6.0	6.0	5.8	4.9	4.9	4.8	4	3.5	3.0
				Bottom	6	26.9	26.9	8.2	8.1	32.9	33.3	83.9	85.3	5.6	5.7		4.6	4.7		3	3.0	
				Dottom	ŭ	26.8	20.5	7.9	0.1	33.7	00.0	86.7	00.0	5.7	5.7		4.7	7.7		3	0.0	
				Surface	1	27.7	27.7	8.1	8.1	30.1	30.1	94.4	94.3	6.3	6.3		4.4	4.2		<2.5	<2.5	
						27.7 27.3		8.1 8.1		30.1 30.2		94.1 93.5		6.3 6.3			4.0			<2.5 3		
13-Jun-16	Cloudy	Moderate	18:07	Middle	3.5	27.3	27.3	8.1	8.1	30.2	30.2	93.4	93.5	6.3	6.3	6.3	4.1	4.2	4.3	4	3.5	3.7
				Dettem	6	27.2	27.2	8.1	8.1	30.4	30.4	92.8	92.8	6.2	6.2		4.5	4.5		5	5.0	
				Bottom	О	27.2	21.2	8.1	0.1	30.4	30.4	92.8	92.0	6.2	0.2		4.4	4.5		5	5.0	
				Surface	1	26.3	26.3	8.3	8.3	30.9	30.9	88.2	88.3	6.0	6.0		3.1	3.1		4	4.0	
						26.3		8.3		30.8		88.3		6.0			3.0			4		
15-Jun-16	Cloudy	Moderate	16:10	Middle	3.5	25.9 25.8	25.9	8.3 8.3	8.3	31.3 31.4	31.4	85.6 85.2	85.4	5.8 5.8	5.8	5.3	3.0 3.1	3.1	3.3	5 6	5.5	4.8
				.		24.8	212	8.2		32.2		59.8		4.1			3.8			5		
				Bottom	6	24.9	24.9	8.2	8.2	32.1	32.2	60.2	60.0	4.2	4.2		3.7	3.8		5	5.0	
				Surface	1	28.2	28.2	8.1	8.1	31.1	31.1	86.1	86.4	5.7	5.7		3.4	3.4		4	4.5	
				Juliace	'	28.2	20.2	8.1	0.1	31.0	51.1	86.7	55.4	5.7	5.7		3.4	5.7		5	7.5	
17-Jun-16	Cloudy	Moderate	16:31	Middle	3.5	27.7	27.7	8.2	8.2	32.1	32.1	82.7	82.6	5.4	5.4	5.2	3.8	3.9	4.9	4	4.0	3.8
	,					27.7 26.4		8.2 8.0		32.1 33.4		82.5 68.9	<u> </u>	5.4 4.6			3.9 7.2		ł	3		
				Bottom	6	26.4	26.4	8.1	8.1	33.6	33.5	66.8	67.9	4.5	4.6		7.6	7.4		3	3.0	
					<u> </u>											-			•	<u>. </u>		1

Water Quality Monitoring Results at 21 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Don	oth (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Deb	uii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.0 8.1	8.1	33.1 33.1	33.1	93.3 94.0	93.7	6.5 6.6	6.6		3.5 3.6	3.6		6 6	6.0	
20-Jun-16	Fine	Calm	19:52	Middle	3.5	23.8 23.8	23.8	8.0 7.9	8.0	33.2 33.2	33.2	92.5 92.6	92.6	6.5 6.5	6.5	6.5	3.8 3.8	3.8	3.7	6 6	6.0	5.5
				Bottom	6	23.7 23.6	23.7	8.1 8.1	8.1	33.2 33.2	33.2	91.9 91.7	91.8	6.4 6.4	6.4		3.6 3.6	3.6		4 5	4.5	
				Surface	1	25.8 25.7	25.8	8.3 8.3	8.3	30.9 31.0	31.0	98.1 98.0	98.1	6.6 6.6	6.6		2.4 2.7	2.6		3	3.0	
23-Jun-16	Sunny	Moderate	08:08	Middle	3.5	25.1 25.1	25.1	8.3 8.3	8.3	31.8 31.7	31.8	96.3 96.4	96.4	6.5 6.5	6.5	6.4	4.4 4.2	4.3	4.2	6 6	6.0	4.7
				Bottom	6	24.6 24.6	24.6	8.2 8.2	8.2	32.6 32.8	32.7	88.9 88.7	88.8	6.0 6.0	6.0		5.7 5.5	5.6		5 5	5.0	
				Surface	1	29.3 29.3	29.3	8.2 8.2	8.2	31.3 31.3	31.3	112.2 112.3	112.3	7.2 7.2	7.2		4.4 3.7	4.1		3	3.0	
25-Jun-16	Sunny	Rough	09:20	Middle	3.5	28.9 29.0	29.0	8.2 8.2	8.2	31.7 31.8	31.8	112.0 111.9	112.0	7.2 7.2	7.2	7.1	8.2 7.5	7.9	6.7	5 5	5.0	3.7
				Bottom	6	28.6 28.6	28.6	8.2 8.1	8.2	32.8 32.6	32.7	105.9 104.9	105.4	6.8 6.8	6.8		8.1 7.8	8.0		3	3.0	
				Surface	1	29.2 29.2	29.2	8.2 8.2	8.2	31.1 31.2	31.2	111.7 111.7	111.7	7.2 7.2	7.2		4.4 4.1	4.3		4	3.5	
27-Jun-16	Sunny	Moderate	11:09	Middle	3.5	28.7 28.8	28.8	8.2 8.2	8.2	31.5 31.7	31.6	111.4 112.1	111.8	7.2 7.3	7.3	7.1	7.6 6.4	7.0	6.4	6 7	6.5	4.7
				Bottom	6	28.5 28.4	28.5	8.1 8.1	8.1	32.4 32.3	32.4	106.1 104.5	105.3	6.9 6.8	6.9		8.0 7.9	8.0		4 4	4.0	
_	_	-	_	Surface	1	28.8 28.8	28.8	7.9 7.9	7.9	29.8 29.8	29.8	89.1 88.3	88.7	5.8 5.8	5.8	-	4.8 4.7	4.8	_	6 7	6.5	_
30-Jun-16	Cloudy	Moderate	15:52	Middle	3.5	28.5 28.5	28.5	8.0 8.0	8.0	30.3 30.5	30.4	84.0 83.3	83.7	5.5 5.5	5.5	5.6	5.3 5.4	5.4	5.2	6 5	5.5	6.8
				Bottom	6	28.4 28.4	28.4	8.0 8.0	8.0	31.1 31.0	31.1	83.0 83.9	83.5	5.4 5.5	5.5		5.5 5.4	5.5		9 8	8.5	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at 34 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(۱11)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 25.4	25.1	7.5 7.4	7.5	32.7 32.7	32.7	85.0 87.3	86.2	5.9 6.0	6.0		3.0 3.0	3.0		5 5	5.0	
1-Jun-16	Sunny	Calm	10:20	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	3.3	-	-	6.0
				Bottom	3	25.2 25.3	25.3	7.4 7.5	7.5	31.3 31.0	31.2	84.3 84.1	84.2	5.8 5.8	5.8		3.8 3.3	3.6		7 7	7.0	
				Surface	1	28.6 28.6	28.6	8.1 8.2	8.2	30.3 30.4	30.4	95.6 95.2	95.4	6.3 6.2	6.3		5.2 4.9	5.1		5 5	5.0	
3-Jun-16	Fine	Moderate	11:51	Middle	-	-	-	-	-		-	-	-		-	6.3	-	-	5.3		-	6.5
				Bottom	3	28.4 28.4	28.4	8.2 8.2	8.2	30.8 30.9	30.9	95.0 94.8	94.9	6.2 6.2	6.2		5.5 5.3	5.4		8 8	8.0	
				Surface	1	26.9 27.4	27.2	8.1 8.2	8.2	31.0 33.1	32.1	99.1 101.6	100.4	6.7 6.7	6.7		4.3 4.3	4.3		3	3.0	
6-Jun-16	Cloudy	Moderate	14:18	Middle	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-	4.8		-	3.3
				Bottom	2.8	27.2 26.9	27.1	8.0 8.2	8.1	31.2 34.3	32.8	82.2 84.4	83.3	5.5 5.6	5.6		5.2 5.2	5.2		3 4	3.5	
				Surface	1	25.5 25.4	25.5	8.1 8.1	8.1	31.1 30.8	31.0	104.7 103.8	104.3	7.2 7.2	7.2		2.9 2.7	2.8		4 4	4.0	
8-Jun-16	Cloudy	Moderate	15:20	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	7.2	-	-	4.1		-	4.0
				Bottom	2.7	25.2 25.3	25.3	8.2 8.2	8.2	31.6 31.5	31.6	104.8 104.8	104.8	7.2 7.2	7.2		5.0 5.8	5.4		4 4	4.0	
				Surface	1	26.9 26.8	26.9	8.2 7.9	8.1	32.0 33.0	32.5	85.0 86.2	85.6	5.7 5.7	5.7		3.4 3.1	3.3		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	15:18	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	5.8	-	-	4.5	-	-	2.8
				Bottom	2.7	26.3 26.9	26.6	8.0 8.2	8.1	33.1 32.7	32.9	92.1 84.3	88.2	6.2 5.6	5.9		5.6 5.7	5.7		3	3.0	
				Surface	1	28.6 28.6	28.6	7.7 7.7	7.7	30.2 30.3	30.3	94.5 94.4	94.5	6.2 6.2	6.2		3.7 3.6	3.7		<2.5 <2.5	<2.5	
13-Jun-16	Cloudy	Moderate	13:29	Middle	-	-	-	-	-	1 1	-	-	-	1 1	-	6.2	-	-	3.9	-	-	3.3
				Bottom	3	28.5 28.5	28.5	7.7 7.7	7.7	30.2 30.3	30.3	93.1 91.8	92.5	6.1 6.0	6.1		3.9 4.0	4.0		4 4	4.0	
				Surface	1	27.6 27.5	27.6	8.4 8.4	8.4	29.7 29.7	29.7	83.7 83.7	83.7	5.6 5.6	5.6		2.9 3.0	3.0		3 3	3.0	
15-Jun-16	Cloudy	Moderate	10:19	Middle	-	-	-	-	-	-	-	- -	-	-	-	5.6	-	-	3.0	-	-	3.5
				Bottom	2.8	27.6 27.5	27.6	8.4 8.4	8.4	29.8 29.8	29.8	83.6 83.4	83.5	5.6 5.6	5.6		2.9 3.0	3.0		4 4	4.0	
				Surface	1	28.1 28.1	28.1	7.9 7.9	7.9	31.9 31.9	31.9	85.6 85.6	85.6	5.6 5.6	5.6		5.6 5.6	5.6		<2.5 <2.5	<2.5	
17-Jun-16	Sunny	Moderate	11:45	Middle	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-	5.7	-	-	<2.5
				Bottom	3	27.7 27.7	27.7	8.0 8.0	8.0	32.8 32.9	32.9	81.3 80.7	81.0	5.3 5.3	5.3		5.7 5.7	5.7		<2.5 <2.5	<2.5	

Water Quality Monitoring Results at 34 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.1 8.1	8.1	32.7 32.7	32.7	90.5 90.4	90.5	6.3 6.3	6.3		5.4 5.5	5.5		4 3	3.5	
20-Jun-16	Sunny	Rough	12:56	Middle	-		-	-	-	-	-	-	-	-	-	6.3	-	-	6.4	-	-	3.8
				Bottom	2.7	23.8 23.8	23.8	8.1 8.1	8.1	32.8 32.8	32.8	89.7 89.8	89.8	6.3 6.3	6.3		7.1 7.2	7.2		4 4	4.0	
				Surface	1	24.8 24.8	24.8	8.3 8.3	8.3	29.1 29.1	29.1	92.7 92.7	92.7	6.4 6.4	6.4		6.4 5.8	6.1		5 5	5.0	
23-Jun-16	Sunny	Moderate	13:12	Middle	-	1 1	-	-	-	-	1	-	i	-	ı	6.4	-	-	6.2	-	-	5.0
				Bottom	3	24.5 24.5	24.5	8.3 8.3	8.3	29.2 29.2	29.2	92.0 92.0	92.0	6.4 6.4	6.4		6.3 6.3	6.3		5 5	5.0	
				Surface	1	28.8 28.9	28.9	8.1 8.1	8.1	31.3 31.1	31.2	110.9 110.5	110.7	7.2 7.2	7.2		3.0 2.9	3.0		4	4.0	
25-Jun-16	Sunny	Rough	16:19	Middle	-	1 1	-	-	-	-	-	-	-	-	-	7.2	-	-	4.4	-	-	3.5
				Bottom	2.8	28.6 28.5	28.6	8.2 8.3	8.3	31.9 32.0	32.0	111.1 110.8	111.0	7.2 7.2	7.2		5.7 5.6	5.7		3 3	3.0	
				Surface	1	29.0 29.1	29.1	8.1 8.1	8.1	31.0 30.8	30.9	111.2 110.7	111.0	7.2 7.2	7.2		2.6 2.5	2.6		5 5	5.0	
27-Jun-16	Sunny	Moderate	17:59	Middle	-	1 1	-	-	-	-	-	-	-	-	-	7.2	-	-	4.0	-	-	4.8
				Bottom	2.7	28.6 28.8	28.7	8.2 8.3	8.3	31.6 31.5	31.6	111.1 110.4	110.8	7.2 7.2	7.2		5.4 5.4	5.4		4 5	4.5	
				Surface	1	28.7 28.7	28.7	8.0 8.0	8.0	29.7 29.9	29.8	93.0 91.4	92.2	6.1 6.0	6.1		5.7 5.6	5.7		3 3	3.0	
30-Jun-16	Cloudy	Moderate	10:01	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-	6.1	-	-	4.3
				Bottom	2.8	28.5 28.5	28.5	8.1 8.1	8.1	30.8 31.0	30.9	87.4 86.2	86.8	5.7 5.6	5.7		6.4 6.3	6.4		5 6	5.5	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at 34 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1	25.3	7.4	7.5	32.2	31.7	87.0	85.6	6.0	5.9		1.4	1.4		7	6.5	
						25.5		7.5		31.2	_	84.2		5.8			1.4			6		
1-Jun-16	Sunny	Calm	14:19	Middle	-	-	-	-	-	-	-	-	-	-	-	5.9	_	-	2.6	_	-	5.8
				- · ·	_	24.9	212	7.5		32.6		86.2		5.9			3.7			5		
				Bottom	3	24.9	24.9	7.4	7.5	32.4	32.5	85.3	85.8	5.9	5.9		3.8	3.8		5	5.0	
				Surface	1	28.9	28.9	8.1	8.1	30.9	30.9	105.8	105.6	6.9	6.9		3.8	3.5		3	3.5	
						28.9		8.1		30.9		105.3		6.8			3.1			4		
3-Jun-16	Cloudy	Moderate	17:48	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	_	-	3.9	-	-	6.0
				Б	_	28.8	00.0	8.1	0.0	30.9	04.0	103.9	1010	6.8	0.0		4.0	4.0		8	0.5	
				Bottom	3	28.7	28.8	8.2	8.2	31.0	31.0	104.1	104.0	6.8	6.8		4.4	4.2		9	8.5	
				Surface	1	24.5	24.4	8.1	8.2	32.1	32.1	95.5	95.2	6.6	6.6		4.0	3.8		3	3.0	
						24.3		8.2		32.0		94.9		6.6			3.5			3		
6-Jun-16	Cloudy	Moderate	20:52	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	4.3	_	-	3.5
				D-#	0.0	24.3	04.0	8.1	0.0	32.2	00.0	94.5	04.5	6.6	0.0		4.5	4.7		4	4.0	
				Bottom	2.9	24.3	24.3	8.2	8.2	31.7	32.0	94.5	94.5	6.6	6.6		4.8	4.7		4	4.0	
				Surface	1	25.4	25.4	8.1	8.1	30.9	30.9	104.9	104.8	7.2	7.2		3.1	3.2		<2.5	<2.5	
						25.3		8.1		30.8		104.6		7.2			3.2			<2.5		
8-Jun-16	Cloudy	Moderate	08:48	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	_	-	4.0	_	-	2.8
				D-#	2.8	24.8	24.9	8.2	8.3	31.7	31.7	104.5	104.5	7.2	7.2		4.6	4.7		3	3.0	
				Bottom	2.0	24.9	24.9	8.3	0.3	31.7	31.7	104.4	104.5	7.2	1.2		4.7	4.7		3	3.0	
				Surface	1	26.8	26.6	8.0	8.1	33.8	33.9	89.2	87.8	5.9	5.9		4.1	4.1		3	3.0	
						26.3		8.1	-	33.9	-	86.3	-	5.8 -			4.0			3 -	-	
10-Jun-16	Fine	Calm	10:10	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	_	-	4.4	_	-	3.8
				Dettem	3	27.0	26.7	7.9	8.0	33.3	32.6	90.5	90.4	6.0	6.1		4.9	4.6		4	4.5	
				Bottom	3	26.4	20.7	8.0	6.0	31.9	32.0	90.3	90.4	6.1	0.1		4.3	4.0		5	4.5	
				Surface	1	29.0	29.0	7.8	7.8	32.1	32.1	95.1	95.3	6.1	6.2		3.8	3.9		<2.5	<2.5	
						29.0		7.8	-	32.0	-	95.4	-	6.2			3.9			<2.5	-	
13-Jun-16	Cloudy	Moderate	17:53	Middle	-	_	-	-	-	-	-	-	-	_	-	6.1	_	-	4.1	_	-	<2.5
				Bottom	3	28.9	28.9	7.8	7.8	32.0	32.0	93.6	92.7	6.0	6.0		4.3	4.3		<2.5	<2.5	
				DOLLOTTI	3	28.9	20.9	7.8	7.0	32.0	32.0	91.7	92.7	5.9	0.0		4.2	4.3		<2.5	<2.5	
				Surface	1	27.4	27.4	8.4	8.4	29.8	29.9	87.2	87.2	5.8	5.8		2.9	2.9		6	6.0	
						27.4		8.4		29.9		87.2		5.8			2.9			- 6		
15-Jun-16	Cloudy	Moderate	16:28	Middle	-	-	-	-	-	-	-	-	-	-	-	5.8	_	-	2.9	_	-	6.0
				Bottom	2.9	27.4	27.4	8.4	8.4	30.0	30.1	86.8	86.9	5.8	5.8		2.9	2.9		6	6.0	
				DOLLOTT	2.5	27.4	27.4	8.4	0.4	30.1	30.1	86.9	00.9	5.8	3.0		2.8	2.5		6	0.0	
				Surface	1	28.4	28.4	7.9	7.9	31.0	31.0	84.0	84.5	5.5	5.6		4.2	4.2		5 5	5.0	
						28.4		7.9		30.9		84.9		5.6			4.2			5		
17-Jun-16	Cloudy	Moderate	16:17	Middle	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	4.6	-	-	5.5
				Bottom	3	27.9	27.9	8.0	8.0	32.0	32.1	78.3	78.2	5.1	5.1	1	5.1	5.0	1	6	6.0	
				Dollom	J	27.9	21.3	8.0	0.0	32.1	Uć. I	78.1	10.2	5.1	J. I		4.9	5.0		6	0.0	

Water Quality Monitoring Results at 34 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.0	24.1	8.1 8.1	8.1	32.7 32.7	32.7	90.3 90.0	90.2	6.3 6.3	6.3		4.4 4.6	4.5		3 4	3.5	
20-Jun-16	Fine	Calm	20:11	Middle	-		-	-	-	-	-	-	-		-	6.3	-	-	4.8	-	-	4.0
				Bottom	2.8	23.9 23.8	23.9	8.1 8.1	8.1	32.8 32.8	32.8	89.6 89.6	89.6	6.3 6.3	6.3		5.1 4.9	5.0		5 4	4.5	
				Surface	1	24.6 24.6	24.6	8.2 8.2	8.2	29.6 29.6	29.6	88.9 89.2	89.1	6.1 6.1	6.1		1.7 1.7	1.7		4 4	4.0	
23-Jun-16	Sunny	Moderate	08:27	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	6.2	-	-	1.8	-	-	4.5
				Bottom	3	24.5 24.5	24.5	8.2 8.2	8.2	29.8 29.8	29.8	89.4 89.6	89.5	6.2 6.2	6.2		1.9 1.9	1.9		5 5	5.0	
				Surface	1	29.4 29.2	29.3	8.1 8.2	8.2	31.1 31.3	31.2	112.1 111.6	111.9	7.2 7.2	7.2		5.0 5.6	5.3		4	4.0	
25-Jun-16	Sunny	Rough	09:38	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	7.2	-	-	6.1	-	-	4.5
				Bottom	2.9	28.9 28.8	28.9	8.2 8.2	8.2	32.2 31.9	32.1	112.1 111.6	111.9	7.2 7.2	7.2		6.8 6.9	6.9		5 5	5.0	
				Surface	1	29.3 29.1	29.2	8.1 8.2	8.2	30.9 30.9	30.9	112.1 111.6	111.9	7.2 7.2	7.2		4.6 5.6	5.1		5 5	5.0	
27-Jun-16	Sunny	Moderate	11:27	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	7.3	-	-	6.1	-	-	5.5
				Bottom	2.8	28.8 28.8	28.8	8.2 8.2	8.2	31.7 31.5	31.6	111.9 111.2	111.6	7.3 7.2	7.3		6.6 7.5	7.1		6 6	6.0	
				Surface	1	28.6 28.6	28.6	8.0 7.9	8.0	29.6 29.5	29.6	94.0 93.9	94.0	6.2 6.2	6.2		5.7 6.0	5.9		4 4	4.0	
30-Jun-16	Cloudy	Moderate	16:11	Middle	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-	6.4	-	-	5.5
				Bottom	2.8	28.3 28.3	28.3	8.1 8.1	8.1	30.4 30.4	30.4	85.6 86.1	85.9	5.6 5.7	5.7		6.7 6.9	6.8		7 7	7.0	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at 9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ture (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
			00.50	Surface	-	25.5	-	- - 7.4	-	33.0	-	- - 86.9	-	- - 5.9	-	5.0	5.3	-		- - 6	-	
1-Jun-16	Sunny	Calm	08:52	Middle	1.5	25.5	25.5	7.4	7.4	31.0	32.0	84.9	85.9	5.8	5.9	5.9	5.2	5.3	5.3	<u>5</u>	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
3-Jun-16	Fine	Moderate	10:26	Surface Middle	1.5	29.5	29.4	8.2	8.3	29.4	29.4	104.4	104.1	6.8	6.8	6.8	6.6	6.8	6.8	- 6	6.5	6.5
3-Jun-10	rine	Moderate	10.26	Bottom	1.5	29.3	29.4	8.3	0.3	29.4	29.4	103.8	104.1	6.8	0.0	0.0	6.9	0.0	0.0	7	0.5	6.5
		<u> </u>				-		-	<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>		-				<u> </u>	
6-Jun-16	Cloudy	Moderate	12:49	Surface Middle	1.5	25.6	25.6	8.2	8.2	29.5	29.4	93.7	93.7	6.5	6.5	6.5	3.5	3.3	3.3	- 5	5.0	5.0
o dun 10	Oloddy	Wiodorato	12.40	Bottom	-	25.6	-	8.1	-	29.3	-	93.6	-	6.5	-	0.0	3.1	-	0.0	- 5	-	0.0
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
8-Jun-16	Cloudy	Moderate	14:08	Middle	1.5	25.4 25.2	25.3	8.3 8.3	8.3	30.3 30.2	30.3	122.7 122.4	122.6	8.5 8.5	8.5	8.5	2.7	2.8	2.8	3	3.0	3.0
				Bottom	-	1	-	-	-	1	-	1 1	-	1	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
10-Jun-16	Fine	Calm	16:42	Middle	1.5	26.6 26.9	26.8	8.0 8.1	8.1	32.3 33.0	32.7	90.7 84.9	87.8	6.1 5.6	5.9	5.9	4.8 4.4	4.6	4.6	<2.5 <2.5	<2.5	<2.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-		-	7.0	-	29.2	-	- - 86.9	-	-	-		7.6	-		-	-	
13-Jun-16	Cloudy	Moderate	12:08	Middle	1	27.7 27.6	27.7	7.3 7.4	7.4	29.3	29.3	86.2	86.6	5.8 5.8	5.8	5.8	7.6	7.8	7.8	5 5	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
15-Jun-16	Cloudy	Moderate	09:02	Surface Middle	1.5	27.3	27.3	7.6	7.7	29.9	29.9	89.9	89.7	6.0	6.0	6.0	2.4	2.5	2.5	4	4.5	4.5
19-9411-10	Gloudy	wouerate	09.02	Bottom	-	27.3	-	7.7	-	29.9	- 23.3	89.5	- 09.7	6.0	-	0.0	2.5	- 2.5	2.5	5	4.5	4.5
				Surface	-	-	-	-	-	-	_	-	-	-	_		-	-		-	-	
17-Jun-16	Sunny	Moderate	10:28	Middle	1.5	28.5 28.5	28.5	8.2 8.2	8.2	28.5 28.5	28.5	91.5 90.9	91.2	6.1 6.0	6.1	6.1	6.1	6.1	6.1	5 5	5.0	5.0
				Bottom	-		-		-		-	90.9 - -	-		-		6.1	-			-	

Water Quality Monitoring Results at 9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ture (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL		Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	1 1	-	1 1	-	1 1	-		-	-		-	-	
20-Jun-16	Sunny	Rough	11:29	Middle	1.5	24.1 24.1	24.1	8.0 8.0	8.0	32.1 32.2	32.2	85.2 85.4	85.3	6.0 6.0	6.0	6.0	7.7 7.5	7.6	7.6	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
23-Jun-16	Sunny	Moderate	14:37	Middle	1.5	25.6 25.6	25.6	8.3 8.3	8.3	27.9 27.5	27.7	95.4 95.5	95.5	6.5 6.5	6.5	6.5	6.5 6.6	6.6	6.6	7 6	6.5	6.5
				Bottom	-	-	=	-	-	-	-	1 1	-	1 1	-		-	-		-	-	
				Surface	=	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
25-Jun-16	Sunny	Rough	15:06	Middle	1.5	28.7 28.6	28.7	8.3 8.3	8.3	30.8 30.6	30.7	130.0 129.7	129.9	8.5 8.5	8.5	8.5	3.0 2.9	3.0	3.0	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	1 1	-	1 1	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
27-Jun-16	Sunny	Moderate	16:47	Middle	1.5	28.9 28.7	28.8	8.3 8.3	8.3	30.2 30.5	30.4	129.9 129.7	129.8	8.5 8.5	8.5	8.5	2.8 2.8	2.8	2.8	3	3.0	3.0
				Bottom	-	-	-	-	-	1	-	1 1	-	1 1	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
30-Jun-16	Cloudy	Moderate	08:37	Middle	1.5	28.9 28.9	28.9	7.9 7.9	7.9	31.8 31.9	31.9	105.9 106.4	106.2	6.8 6.9	6.9	6.9	4.0 3.8	3.9	3.9	5 6	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at 9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Γurbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 25.1	-	- - 7.5	-	33.2	-	- - 85.2	-	- - 5.8	-		3.0	-		- - 5	-	
1-Jun-16	Sunny	Calm	15:43	Middle	1.5	25.1	25.1	7.6	7.6	33.0	33.1	86.1	85.7	5.9	5.9	5.9	2.5	2.8	2.8	5	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
3-Jun-16	Cloudy	Moderate	16:37	Surface Middle	1.5	29.3	29.3	8.3	8.3	29.4	29.5	- 107.9	108.1	7.0	7.1	7.1	6.4	6.5	6.5	6	5.5	5.5
3-3un-10	Oloudy	Moderate	10.57	Bottom	-	29.2	-	8.3	-	29.5	-	108.2	-	7.1	-	7.1	6.5	-	0.5	<u>5</u>	-	5.5
						-		-		-		-		-			-			-		
0 1 40	01 1		10.07	Surface	-	24.0	-	8.2	-	30.5	-	95.0		6.7	-	0.0	3.8	-	0.0	3	-	
6-Jun-16	Cloudy	Moderate	19:37	Middle Bottom	1.5	23.9	24.0	8.2	8.2	30.6	30.6	92.4	93.7	6.5	6.6	6.6	3.8	3.8	3.8	3	3.0	3.0
				Surface	-	-	_	-		-		-		-			-	_		-	_	
8-Jun-16	Cloudy	Moderate	07:31	Middle	1.5	25.3	25.3	8.3	8.3	30.3	30.5	113.0	113.0	7.8	7.8	7.8	2.8	2.9	2.9	3	3.5	3.5
	,			Bottom	-	25.2	-	8.3 - -	-	30.7	-	112.9	-	7.8	-		2.9	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
10-Jun-16	Fine	Calm	08:42	Middle	1.5	27.2 27.2	27.2	8.0 8.0	8.0	32.0 33.3	32.7	90.4 89.7	90.1	6.0 5.9	6.0	6.0	6.3 6.3	6.3	6.3	3	3.0	3.0
				Bottom	-	-	-		-	-	-		-		-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-			-		-	-	1
13-Jun-16	Cloudy	Moderate	19:15	Middle	1	27.5 27.5	27.5	7.6 7.6	7.6	29.3 29.3	29.3	84.4 84.2	84.3	5.7 5.7	5.7	5.7	6.9 6.9	6.9	6.9	4 4	4.0	4.0
				Bottom	-		-	-	-		-		-	-	-		-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
15-Jun-16	Cloudy	Moderate	15:08	Middle	1.5	27.2 27.1	27.2	7.7 7.8	7.8	29.0 29.0	29.0	88.7 88.6	88.7	6.0 6.0	6.0	6.0	2.7 2.8	2.8	2.8	5 5	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				Surface	-	28.1	-	8.0	-	29.0	-	- - 89.9	-		-		5.9	-			-	
17-Jun-16	Cloudy	Moderate	17:36	Middle	1.5	28.1	28.1	8.0 8.0	8.0	29.0 29.0	29.0	89.9 89.8	89.9	6.0 6.0	6.0	6.0	5.9	5.9	5.9	4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	

Water Quality Monitoring Results at 9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ture (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-		-	1 1	-		1	-		-	-	
20-Jun-16	Fine	Calm	18:39	Middle	1.5	23.9 23.9	23.9	8.1 8.1	8.1	32.0 32.0	32.0	86.6 86.6	86.6	6.1 6.1	6.1	6.1	5.2 5.2	5.2	5.2	4	4.0	4.0
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-		1 1	ı		-	-	
				Surface	-	=	-	=	-	=	-	-	-	-	-		-	-		=	-	
23-Jun-16	Sunny	Moderate	07:06	Middle	1.5	25.2 25.2	25.2	8.1 8.1	8.1	27.8 27.7	27.8	93.8 93.9	93.9	6.5 6.5	6.5	6.5	3.1 3.2	3.2	3.2	4 4	4.0	4.0
				Bottom	=	-	=	-	-	-	-	-	-	1 1	-		1 1	-			-	
				Surface	=	-	=	-	-	-	-	-	-	-	-		-	-			-	
25-Jun-16	Sunny	Rough	08:21	Middle	1.5	29.3 29.1	29.2	8.3 8.3	8.3	30.7 30.8	30.8	121.1 119.8	120.5	7.8 7.8	7.8	7.8	3.3 3.0	3.2	3.2	4 4	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-		-		1 1	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
27-Jun-16	Sunny	Moderate	10:09	Middle	1.5	29.1 29.0	29.1	8.3 8.3	8.3	30.4 30.6	30.5	119.9 119.8	119.9	7.8 7.8	7.8	7.8	3.5 2.9	3.2	3.2	6 7	6.5	6.5
				Bottom	-	-	-	-	-	-	-	1	-	1 1	-		1 1	-		-	-	
	_	_	_	Surface	=	-	=	-	-	-	-	-	-		-	_	-	-	_		-	_
30-Jun-16	Cloudy	Moderate	14:47	Middle	1.5	29.0 29.0	29.0	7.8 7.8	7.8	31.7 31.7	31.7	104.7 105.9	105.3	6.8 6.8	6.8	6.8	3.5 3.6	3.6	3.6	6 6	6.0	6.0
				Bottom	-	-	-	-	-	-	-	-	-		-		-	-		-	-	

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dehr	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.9 25.2	25.1	7.5 7.4	7.5	31.6 31.9	31.8	84.1 86.8	85.5	5.8 6.0	5.9		3.0 3.0	3.0		4	4.0	
1-Jun-16	Sunny	Calm	09:03	Middle	3	24.9 25.4	25.2	7.5 7.4	7.5	31.0 32.8	31.9	86.3 85.3	85.8	6.0 5.8	5.9	5.9	4.4 4.8	4.6	4.2	6 7	6.5	5.8
				Bottom	5	24.9 25.3	25.1	7.5 7.4	7.5	33.2 31.9	32.6	85.8 86.9	86.4	5.9 6.0	6.0		5.2 4.8	5.0		7	7.0	
				Surface	1	29.2 29.1	29.2	8.3 8.3	8.3	29.2 29.2	29.2	120.0 120.1	120.1	7.8 7.9	7.9		4.1 3.9	4.0		7	7.0	
3-Jun-16	Fine	Moderate	10:40	Middle	3	28.8 28.7	28.8	8.4 8.4	8.4	29.3 29.4	29.4	116.3 116.0	116.2	7.6 7.6	7.6	7.7	4.3	4.3	4.3	4	4.0	5.3
				Bottom	5	28.7 28.7 28.7	28.7	8.4 8.4	8.4	29.5 29.5	29.5	115.9 115.7	115.8	7.6 7.6	7.6		4.5 4.4 4.5	4.5		5	5.0	
				Surface	1	26.1 26.1	26.1	8.0 8.3	8.2	30.9 31.1	31.0	93.8 93.9	93.9	6.4 6.4	6.4		3.1 3.6	3.4		3 3	3.0	
6-Jun-16	Cloudy	Moderate	13:02	Middle	3.5	26.1 25.8	26.0	8.2 8.1	8.2	31.0 30.8	30.9	93.5 92.4	93.0	6.4 6.3	6.4	6.4	3.6 4.1	3.9	4.3	4	4.0	3.3
				Bottom	6	26.1 25.7	25.9	8.1 8.1	8.1	31.1 30.9	31.0	93.6 92.6	93.1	6.4 6.3	6.4		5.2 6.1	5.7		3	3.0	
				Surface	1	25.5 25.5	25.5	8.2 8.2	8.2	30.7 30.9	30.8	104.8 104.3	104.6	7.2 7.2	7.2		2.2	2.2		3	3.0	
8-Jun-16	Cloudy	Moderate	14:19	Middle	3	24.9 25.1	25.0	8.2 8.2	8.2	31.4 31.7	31.6	104.1 104.3	104.2	7.2 7.2	7.2	7.1	3.9 4.7	4.3	4.5	5 5	5.0	4.5
				Bottom	5	24.8 24.9	24.9	8.2 8.2	8.2	31.8 31.8	31.8	98.2 98.1	98.2	6.8 6.8	6.8		7.4 6.6	7.0		5 6	5.5	
				Surface	1	26.4 27.0	26.7	8.0 8.1	8.1	32.0 33.8	32.9	89.8 83.6	86.7	6.0 5.5	5.8		3.7 3.5	3.6		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	16:29	Middle	3.5	26.4 26.7	26.6	7.9 8.1	8.0	33.0 31.7	32.4	87.9 88.4	88.2	5.9 5.9	5.9	5.9	3.7 3.8	3.8	3.7	4	4.0	3.0
				Bottom	6	26.4 26.4	26.4	8.2 8.1	8.2	33.7 32.1	32.9	89.3 91.8	90.6	6.0 6.2	6.1		3.8	3.8		<2.5 <2.5	<2.5	
				Surface	1	27.6 27.6	27.6	7.9 7.9	7.9	29.3 29.2	29.3	97.1 96.9	97.0	6.5 6.5	6.5		4.6 4.6	4.6		3	3.0	
13-Jun-16	Cloudy	Moderate	12:25	Middle	3.5	27.4 27.3	27.4	8.0 8.0	8.0	29.3 29.4	29.4	94.9 94.4	94.7	6.4 6.4	6.4	6.1	3.2 3.0	3.1	3.8	4 5	4.5	4.2
				Bottom	6	26.7 26.7	26.7	8.0 8.0	8.0	32.8 32.8	32.8	82.5 82.1	82.3	5.5 5.5	5.5		3.9 3.6	3.8		5 5	5.0	
				Surface	1	27.2 27.2	27.2	7.9 7.9	7.9	30.1 30.1	30.1	92.4 92.3	92.4	6.2 6.2	6.2		2.7 2.7	2.7		5 5	5.0	
15-Jun-16	Cloudy	Moderate	09:18	Middle	3	26.9 26.9	26.9	8.1 8.1	8.1	30.2 30.2	30.2	88.9 88.7	88.8	6.0 6.0	6.0	6.1	2.9 2.9	2.9	2.9	5 5	5.0	4.8
				Bottom	5	26.8 26.8	26.8	8.1 8.1	8.1	30.3 30.3	30.3	90.4 90.7	90.6	6.1 6.1	6.1		2.9 3.0	3.0		4 5	4.5	
				Surface	1	29.2 29.1	29.2	7.9 8.0	8.0	28.3 28.3	28.3	94.8 94.9	94.9	6.2 6.2	6.2		2.0 2.2	2.1		<2.5 <2.5	<2.5	
17-Jun-16	Sunny	Moderate	10:43	Middle	3.5	28.4 28.3	28.4	8.0 8.0	8.0	29.6 29.8	29.7	90.3 90.0	90.2	6.0 5.9	6.0	6.0	4.5 4.4	4.5	3.9	3 4	3.5	3.0
				Bottom	6	28.0 28.0	28.0	8.0 8.0	8.0	31.0 31.1	31.1	87.0 85.0	86.0	5.7 5.6	5.7		4.9 5.0	5.0		3 3	3.0	

Water Quality Monitoring Results at A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ture (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Build	Condition	Condition**	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 24.0	24.0	8.1 8.1	8.1	32.3 32.3	32.3	91.8 92.0	91.9	6.4 6.4	6.4		3.3 3.5	3.4		4 3	3.5	
20-Jun-16	Sunny	Rough	11:42	Middle	3	23.9 23.9	23.9	8.0 8.0	8.0	32.9 32.9	32.9	90.5 90.3	90.4	6.3 6.3	6.3	6.3	4.8 4.8	4.8	4.5	5 6	5.5	5.0
				Bottom	5	23.9 23.9	23.9	8.0 8.0	8.0	33.0 33.0	33.0	90.4 90.2	90.3	6.3 6.3	6.3		5.3 5.2	5.3		6 6	6.0	
				Surface	1	26.6 26.5	26.6	8.2 8.2	8.2	26.4 26.4	26.4	92.4 92.5	92.5	6.3 6.3	6.3		2.8 3.2	3.0		6 6	6.0	
23-Jun-16	Sunny	Moderate	14:10	Middle	3	25.7 25.6	25.7	8.3 8.3	8.3	29.7 30.1	29.9	91.5 91.6	91.6	6.2 6.2	6.2	6.2	3.2 2.8	3.0	3.1	6 6	6.0	5.7
				Bottom	5	25.1 25.1	25.1	8.3 8.3	8.3	30.7 30.6	30.7	90.0 89.9	90.0	6.1 6.1	6.1		3.3 3.3	3.3		5 5	5.0	
				Surface	1	29.1 28.9	29.0	8.2 8.2	8.2	31.2 31.2	31.2	111.4 110.4	110.9	7.2 7.2	7.2		2.1 2.3	2.2		4	4.0	
25-Jun-16	Sunny	Rough	15:17	Middle	3.5	28.4 28.6	28.5	8.2 8.2	8.2	31.7 31.9	31.8	110.9 111.2	111.1	7.2 7.2	7.2	7.1	4.3 4.2	4.3	4.3	4	4.0	3.7
				Bottom	6	28.2 28.4	28.3	8.2 8.2	8.2	32.1 31.9	32.0	104.2 104.7	104.5	6.8 6.8	6.8		6.4 6.3	6.4		3	3.0	
				Surface	1	29.1 28.9	29.0	8.2 8.2	8.2	30.9 30.9	30.9	111.4 110.3	110.9	7.2 7.2	7.2		2.5 2.5	2.5		6 7	6.5	
27-Jun-16	Sunny	Moderate	16:58	Middle	3	28.6 28.8	28.7	8.2 8.2	8.2	31.5 31.6	31.6	110.8 111.1	111.0	7.2 7.2	7.2	7.1	3.3 3.5	3.4	4.1	3	3.0	5.2
				Bottom	5	28.3 28.5	28.4	8.2 8.2	8.2	31.7 31.6	31.7	104.0 104.1	104.1	6.8 6.8	6.8		6.2 6.4	6.3		6 6	6.0	
	-	_		Surface	1	28.9 28.9	28.9	7.8 7.8	7.8	29.0 29.0	29.0	90.2 91.3	90.8	5.9 6.0	6.0	_	2.6 2.4	2.5	_	4 4	4.0	_
30-Jun-16	Cloudy	Moderate	08:53	Middle	3	28.6 28.6	28.6	7.8 7.9	7.9	29.8 29.4	29.6	85.9 86.2	86.1	5.6 5.7	5.7	5.8	3.6 3.9	3.8	3.4	6 7	6.5	5.5
				Bottom	5	28.5 28.5	28.5	8.0 8.0	8.0	31.7 31.7	31.7	86.5 86.1	86.3	5.6 5.6	5.6		3.8 4.1	4.0		6 6	6.0	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 25.6	25.2	7.4 7.5	7.5	32.8 32.0	32.4	86.5 86.5	86.5	6.0 5.9	6.0		3.5 3.3	3.4		6 7	6.5	
1-Jun-16	Sunny	Calm	15:30	Middle	3.5	25.2	25.1	7.4	7.5	31.1	31.0	84.0	85.0	5.8	5.9	5.9	3.5	3.6	3.5	3	3.5	5.0
	,					25.0 25.3		7.5 7.4		30.8		85.9 87.9		6.0 6.0			3.6		1	<u>4</u> 5		
				Bottom	6	25.2	25.3	7.5	7.5	32.5	32.8	85.2	86.6	5.8	5.9		3.4	3.4		5	5.0	
				Surface	1	29.0 29.1	29.1	8.3 8.3	8.3	28.1 29.4	28.8	118.3 119.5	118.9	7.8 7.8	7.8		4.0 3.8	3.9		5 5	5.0	
3-Jun-16	Cloudy	Moderate	16:39	Middle	3.5	28.7 28.7	28.7	8.3 8.3	8.3	29.4 29.5	29.5	116.0 116.6	116.3	7.6 7.7	7.7	7.7	3.5 3.7	3.6	3.5	5 6	5.5	5.5
				Bottom	6	28.7	28.7	8.2	8.3	29.5	29.5	115.3	115.5	7.6	7.6		2.8	2.9		6	6.0	
						28.7 23.9		8.3 8.2		29.5 30.7		115.7 95.0		7.6 6.7			2.9 3.2			5		
				Surface	1	24.3	24.1	8.2	8.2	30.4	30.6	94.9	95.0	6.7	6.7		3.3	3.3		5	5.0	
6-Jun-16	Cloudy	Moderate	19:54	Middle	3.5	23.9 25.0	24.5	8.2 8.2	8.2	30.5 29.9	30.2	91.9 93.5	92.7	6.5 6.5	6.5	6.6	4.2 4.1	4.2	3.8	3	3.0	4.0
				Bottom	6	24.6 25.8	25.2	8.2 8.1	8.2	33.2 28.5	30.9	94.7 93.5	94.1	6.5 6.5	6.5		3.7 3.8	3.8		4	4.0	
				Surface	1	25.6	25.5	8.2	8.3	31.1	31.1	110.0	110.0	7.5	7.6		2.6	2.7		4	4.0	
						25.4 24.8		8.3 8.2		31.0 30.8		109.9 108.8		7.6 7.6			2.8 3.9			<u>4</u> 5		
8-Jun-16	Cloudy	Moderate	07:41	Middle	3	24.7	24.8	8.2	8.2	30.8	30.8	108.4	108.6	7.6	7.6	7.5	4.8	4.4	4.3	5	5.0	5.2
				Bottom	5	24.7 24.8	24.8	8.1 8.1	8.1	31.8 31.5	31.7	103.1 103.6	103.4	7.2 7.2	7.2		6.3 5.5	5.9		6 7	6.5	
				Surface	1	27.2 27.1	27.2	8.0 8.2	8.1	33.8 33.4	33.6	87.5 87.3	87.4	5.8 5.8	5.8		2.4 2.4	2.4		5 5	5.0	
10-Jun-16	Fine	Calm	08:53	Middle	3.5	26.4	26.8	8.1	8.1	31.7	32.3	83.8	86.2	5.7	5.8	5.8	3.9	4.1	3.6	<2.5	<2.5	3.7
						27.2 26.8		8.0		32.9 33.9	00.4	88.6 91.8	87.8	5.9 6.1			4.3 4.6			<2.5 3		
				Bottom	6	26.6	26.7	8.1	8.1	32.8	33.4	83.7 92.8	87.8	5.6	5.9		4.2 3.3	4.4		4	3.5	
				Surface	1	27.6 27.6	27.6	8.1 8.1	8.1	29.1 29.0	29.1	92.8 93.2	93.0	6.2 6.3	6.3		3.5	3.4		3 3	3.0	
13-Jun-16	Cloudy	Moderate	18:52	Middle	3.5	27.1 27.1	27.1	8.1 8.1	8.1	30.1 30.1	30.1	89.1 88.4	88.8	6.0 5.9	6.0	5.9	3.8 3.7	3.8	4.0	4	4.0	4.3
				Bottom	6	26.6	26.6	8.1	8.1	32.9	32.9	80.6	80.3	5.4	5.4		4.8	4.9		6	6.0	
				Curtosa	1	26.6 26.8	26.8	8.1 8.1	8.1	32.9 30.3	30.3	79.9 88.9	88.9	5.3 6.0	6.0		4.9 2.8	2.8		5	5.5	
				Surface		26.8 26.7	20.0	8.1 8.2	0.1	30.3	30.3	88.8 90.5	00.9	6.0 6.1	6.0		2.8	2.0		6 5	5.5	
15-Jun-16	Cloudy	Moderate	15:22	Middle	3	26.7	26.7	8.2	8.2	30.3	30.3	90.8	90.7	6.1	6.1	6.1	2.8	2.9	2.9	4	4.5	5.0
				Bottom	5	26.6 26.6	26.6	8.2 8.2	8.2	30.4 30.5	30.5	91.0 90.6	90.8	6.2 6.1	6.2		2.9 3.0	3.0		5 5	5.0	
				Surface	1	29.0	29.0	8.1	8.1	28.4	28.5	96.0	96.1	6.3	6.3		3.1	3.1		4	4.0	
17 lun 10	Claudy	Madarata	17:10		2.5	28.9 28.2	20.0	8.1 8.1	0.1	28.5 29.9	20.0	96.2 91.6	01.4	6.3 6.1		6.0	3.0 4.7	4.0	1 44	3	2.0	2.5
17-Jun-16	Cloudy	Moderate	17:13	Middle	3.5	28.2	28.2	8.1 8.3	8.1	30.0 31.4	30.0	91.2 84.2	91.4	6.0 5.5	6.1	6.0	4.9 5.3	4.8	4.4	3 4	3.0	3.5
				Bottom	6	27.9 27.9	27.9	8.3 8.3	8.3	31.4 31.6	31.5	84.2 83.0	83.6	5.5 5.5	5.5		5.3 5.5	5.4		3	3.5	

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ture (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Buto	Condition	Condition**	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.0 7.9	8.0	33.1 33.1	33.1	94.5 94.3	94.4	6.6 6.6	6.6		2.8 2.6	2.7		3	3.0	
20-Jun-16	Fine	Calm	18:54	Middle	3	23.7 23.7	23.7	8.1 8.1	8.1	33.3 33.3	33.3	93.4 93.2	93.3	6.5 6.5	6.5	6.5	2.1 1.9	2.0	2.7	5 5	5.0	5.5
				Bottom	5	23.6 23.6	23.6	8.1 8.1	8.1	33.4 33.4	33.4	92.9 93.0	93.0	6.5 6.5	6.5		3.5 3.3	3.4		8 9	8.5	
				Surface	1	26.8 26.8	26.8	8.1 8.1	8.1	24.5 24.6	24.6	92.5 92.9	92.7	6.3 6.3	6.3		2.4 2.6	2.5		5 5	5.0	
23-Jun-16	Sunny	Moderate	07:22	Middle	3.5	25.7 25.7	25.7	8.2 8.2	8.2	29.8 29.8	29.8	92.7 92.4	92.6	6.3 6.2	6.3	6.2	2.9 3.1	3.0	3.6	4 5	4.5	4.8
				Bottom	6	25.3 25.1	25.2	8.2 8.2	8.2	30.9 31.1	31.0	90.5 90.3	90.4	6.1 6.1	6.1		5.1 5.2	5.2		5 5	5.0	
				Surface	1	29.4 29.3	29.4	8.2 8.2	8.2	31.2 31.4	31.3	117.7 117.5	117.6	7.6 7.6	7.6		2.8 2.7	2.8		3 3	3.0	
25-Jun-16	Sunny	Rough	08:31	Middle	3.5	28.7 28.7	28.7	8.2 8.2	8.2	31.3 31.1	31.2	116.6 115.7	116.2	7.6 7.5	7.6	7.5	3.7 3.8	3.8	4.4	3	3.0	3.0
				Bottom	6	28.4 28.6	28.5	8.1 8.1	8.1	32.1 31.9	32.0	110.1 110.8	110.5	7.2 7.2	7.2		6.3 6.9	6.6		3 3	3.0	
				Surface	1	29.4 29.1	29.3	8.3 8.2	8.3	30.9 31.0	31.0	117.3 116.7	117.0	7.6 7.6	7.6		3.2 3.2	3.2		4 4	4.0	
27-Jun-16	Sunny	Moderate	10:19	Middle	3	28.5 28.6	28.6	8.2 8.2	8.2	30.9 30.8	30.9	115.8 115.8	115.8	7.6 7.6	7.6	7.5	3.7 4.3	4.0	4.5	5 6	5.5	5.5
				Bottom	5	28.4 28.4	28.4	8.1 8.1	8.1	31.6 31.6	31.6	109.5 110.4	110.0	7.1 7.2	7.2		6.1 6.4	6.3		7 7	7.0	
				Surface	1	29.0 28.9	29.0	7.9 7.9	7.9	29.5 29.5	29.5	89.5 89.4	89.5	5.9 5.9	5.9		2.6 2.5	2.6		6 6	6.0	
30-Jun-16	Cloudy	Moderate	15:03	Middle	3.5	28.6 28.6	28.6	8.0 8.0	8.0	29.7 29.8	29.8	87.2 87.9	87.6	5.7 5.8	5.8	5.8	3.4 3.5	3.5	3.9	4 4	4.0	5.2
				Bottom	6	28.4 28.4	28.4	8.0 8.0	8.0	31.4 31.6	31.5	87.5 86.9	87.2	5.7 5.7	5.7		5.4 5.5	5.5		6 5	5.5	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	:h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 24.9	25.2	7.5 7.5	7.5	32.5 33.6	33.1	85.2 86.0	85.6	5.8 5.9	5.9		2.9 3.5	3.2		3 4	3.5	
1-Jun-16	Sunny	Calm	09:31	Middle	7.5	25.2 25.1	25.2	7.4 7.5	7.5	32.9 31.7	32.3	86.4 83.9	85.2	5.9 5.8	5.9	5.9	4.5 4.5	4.5	4.4	4 5	4.5	5.8
				Bottom	14	25.3 25.5	25.4	7.5 7.5 7.5	7.5	33.3 33.0	33.2	86.0 85.2	85.6	5.9 5.8	5.9		5.9 5.1	5.5		10	9.5	
				Surface	1	28.9	28.9	8.3	8.3	28.1	28.1	119.6	119.6	7.9	7.9		1.9	1.9		5	5.0	
3-Jun-16	Fine	Moderate	11:02	Middle	7	28.9 28.4	28.4	8.3 8.3	8.3	28.1	29.9	119.6	108.4	7.9 7.2	7.2	7.2	1.9	1.5	2.0	6	5.5	5.7
				Bottom	13	28.4	28.1	8.3 8.3	8.3	29.9 31.4	31.6	108.1	99.3	7.1 6.6	6.6		2.7	2.6		5 6	6.5	
				Surface	1	28.0 25.7	25.7	8.3 8.1	8.1	31.8 31.0	31.1	98.6 95.1	95.2	6.5 6.5	6.5		2.4 4.0	4.2		3	3.0	
6-Jun-16	Cloudy	Moderate	13:34	Middle	7	25.6 25.6	25.6	8.1 8.1	8.1	31.2 31.2	31.2	95.3 94.6	94.4	6.5 6.5	6.5	6.5	4.3 3.6	3.6	4.1	<u>3</u> 5	5.0	4.2
o dan 10	Cloudy	Woderate	10.01	Bottom	13	25.6 25.6	25.6	8.1 8.2	8.2	31.1 31.2	31.2	94.1 93.0	93.1	6.5 6.4	6.4	0.0	3.6 4.4	4.5	4.1	5 4	4.5	
				Surface	1	25.6 25.1	25.3	8.2	8.2	31.1 31.8	31.9	93.1 112.4	112.3	6.4 7.7	7.7		4.6 3.7	3.7		3	3.0	
8-Jun-16	Cloudy	Moderate	14:42	Middle	7	25.4 25.0	24.9	8.2 8.3	8.3	31.9 32.5	32.5	112.2 107.7	107.5	7.7 7.4	7.4	7.5	3.6 5.3	5.2	4.5	3	3.0	4.0
0 0011 10	Oloudy	Woderate	17.72	Bottom	13	24.7 24.7	24.8	8.2 8.3	8.3	32.5 32.6	32.5	107.2 106.1	106.6	7.4 7.3	7.4	7.5	5.1 4.6	4.6	4.5	6	6.0	4.0
						24.8 26.8		8.3		32.3 33.4		107.1 87.6		7.4 5.8			4.6 4.0			6 <2.5		
		0.1		Surface	1 _	26.7 27.0	26.8	7.9 7.9	8.0	32.7 31.7	33.1	86.2 85.0	86.9	5.8 5.7	5.8		4.2 4.7	4.1		<2.5 <2.5	<2.5	
10-Jun-16	Fine	Calm	16:04	Middle	7	26.3 26.5	26.7	8.1 8.0	8.0	32.7 32.2	32.2	92.7 91.1	88.9	6.2 6.1	6.0	5.9	4.6 4.7	4.7	4.5	<2.5 <2.5	<2.5	<2.5
				Bottom	13	26.7 27.5	26.6	8.0	8.0	32.5 29.4	32.4	87.2 98.5	89.2	5.8 6.6	6.0		4.9 3.2	4.8		<2.5 4	<2.5	
				Surface	1	27.4 27.0	27.5	8.0 8.1	8.0	29.5	29.5	98.2	98.4	6.6 6.1	6.6		3.3	3.3		3	3.5	
13-Jun-16	Cloudy	Moderate	12:53	Middle	7	27.0 26.6	27.0	8.1 8.1	8.1	30.7 33.9	30.7	90.0	90.1	6.0	6.1	5.9	4.8	4.8	4.5	3 4	3.0	3.3
				Bottom	13	26.5 27.1	26.6	8.1 8.2	8.1	34.4 29.8	34.2	75.4 99.4	76.2	5.0	5.1		5.3	5.3		3	3.5	
				Surface	1	27.0	27.1	8.2 8.2	8.2	29.5 32.4	29.7	99.5 82.9	99.5	6.7 5.6	6.7		3.3	3.3		4 5	4.0	
15-Jun-16	Cloudy	Moderate	09:45	Middle	7	26.2 26.2 24.9	26.2	8.2 8.2	8.2	32.4 32.4 33.3	32.4	82.1 67.4	82.5	5.5 4.6	5.6	5.6	3.1 4.3	3.1	3.6	5	5.0	4.7
				Bottom	13	24.8 24.8 28.7	24.9	8.2 7.9	8.2	33.5 29.3	33.4	66.8 96.4	67.1	4.6 4.6 6.3	4.6		4.3	4.4	<u> </u>	5	5.0	
				Surface	1	28.6	28.7	7.9	7.9	29.3	29.3	96.5	96.5	6.4	6.4		3.1	3.0		3	3.0	
17-Jun-16	Sunny	Moderate	11:10	Middle	7.5	27.2 27.2	27.2	8.0 8.0	8.0	31.3 31.4	31.4	87.7 87.2	87.5	5.8 5.8	5.8	5.6	4.0 3.9	4.0	4.3	3	3.0	3.0
				Bottom	14	25.0 25.0	25.0	8.0 8.0	8.0	33.9 33.9	33.9	65.7 65.5	65.6	4.5 4.5	4.5		5.9 6.0	6.0		3 3	3.0	

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at C1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Build	Condition	Condition**	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	8.4 8.4	8.4	32.0 32.0	32.0	94.3 93.7	94.0	6.6 6.6	6.6		4.0 3.7	3.9		6 6	6.0	
20-Jun-16	Sunny	Rough	12:08	Middle	7	23.9 23.8	23.9	8.2 8.2	8.2	32.6 32.7	32.7	93.6 93.2	93.4	6.6 6.5	6.6	6.5	4.6 4.5	4.6	4.6	4 4	4.0	5.3
				Bottom	13	23.6 23.6	23.6	8.2 8.2	8.2	33.1 33.2	33.2	91.0 90.6	90.8	6.4 6.4	6.4		5.1 5.2	5.2		6 6	6.0	
				Surface	1	26.2 26.2	26.2	8.3 8.3	8.3	29.7 29.7	29.7	96.0 96.3	96.2	6.4 6.4	6.4		1.7 1.9	1.8		3 3	3.0	
23-Jun-16	Sunny	Moderate	13:47	Middle	7	25.4 25.4	25.4	8.3 8.3	8.3	31.1 31.1	31.1	89.5 89.5	89.5	6.0 6.0	6.0	5.9	3.5 3.7	3.6	3.9	4 4	4.0	3.7
				Bottom	13	24.0 24.0	24.0	8.4 8.4	8.4	33.8 33.8	33.8	76.4 74.6	75.5	5.2 5.1	5.2		6.0 6.4	6.2		4 4	4.0	
				Surface	1	28.6 28.6	28.6	8.1 8.2	8.2	32.0 32.0	32.0	119.5 118.1	118.8	7.8 7.7	7.8		3.2 3.1	3.2		5 5	5.0	
25-Jun-16	Sunny	Rough	15:40	Middle	7	28.4 28.1	28.3	8.3 8.3	8.3	32.6 32.9	32.8	114.1 114.0	114.1	7.4 7.4	7.4	7.5	3.8 4.1	4.0	4.1	4 4	4.0	4.7
				Bottom	13	28.2 28.1	28.2	8.3 8.3	8.3	32.8 32.7	32.8	113.2 113.3	113.3	7.4 7.4	7.4		4.7 5.5	5.1		5 5	5.0	
				Surface	1	28.9 28.8	28.9	8.2 8.2	8.2	31.7 31.9	31.8	119.9 119.0	119.5	7.8 7.7	7.8		3.1 3.3	3.2		4 5	4.5	
27-Jun-16	Sunny	Moderate	17:21	Middle	7	28.5 28.3	28.4	8.3 8.2	8.3	32.6 32.6	32.6	114.1 114.2	114.2	7.4 7.4	7.4	7.5	4.4 4.8	4.6	4.4	4 4	4.0	4.7
				Bottom	13	28.3 28.4	28.4	8.3 8.3	8.3	32.4 32.5	32.5	112.9 113.9	113.4	7.3 7.4	7.4		5.2 5.3	5.3		5 6	5.5	
				Surface	1	28.9 28.8	28.9	7.9 7.9	7.9	29.9 29.9	29.9	95.1 94.2	94.7	6.2 6.2	6.2		2.7 2.9	2.8		5 5	5.0	
30-Jun-16	Cloudy	Moderate	09:20	Middle	7	28.4 28.3	28.4	8.1 8.1	8.1	30.3 30.1	30.2	83.7 83.1	83.4	5.5 5.5	5.5	5.7	3.5 3.7	3.6	4.3	5 6	5.5	5.5
				Bottom	13	28.2 28.2	28.2	8.1 8.0	8.1	31.5 31.2	31.4	82.8 83.4	83.1	5.4 5.5	5.5		6.3 6.5	6.4		6 6	6.0	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	•	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.9 25.0	25.0	7.5 7.4	7.5	33.2 32.1	32.7	85.8 86.7	86.3	5.9 6.0	6.0		3.7 3.9	3.8		4 4	4.0	
1-Jun-16	Sunny	Calm	15:05	Middle	7.5	25.6 24.9	25.3	7.5 7.5	7.5	30.9 31.4	31.2	85.6 85.9	85.8	5.9 6.0	6.0	6.0	4.5 4.3	4.4	4.3	5 5	5.0	4.3
				Bottom	14	25.2 25.2	25.2	7.5 7.4	7.5	31.9 31.0	31.5	84.7 86.6	85.7	5.8 6.0	5.9		4.5 4.7	4.6		4 4	4.0	
				Surface	1	28.5 28.5	28.5	8.4 8.4	8.4	27.8 27.8	27.8	113.7 114.0	113.9	7.6 7.6	7.6		3.1 2.9	3.0		7 8	7.5	
3-Jun-16	Cloudy	Moderate	17:02	Middle	7	27.9 28.0	28.0	8.4 8.4	8.4	30.2 29.9	30.1	107.7 108.8	108.3	7.1 7.2	7.2	7.0	2.9 2.6	2.8	2.5	6 6	6.0	5.8
				Bottom	13	27.9 27.9	27.9	8.3 8.3	8.3	32.6 32.7	32.7	96.2 95.9	96.1	6.3 6.3	6.3		1.8 1.8	1.8		4 4	4.0	
				Surface	1	24.5 24.4	24.5	8.1 8.1	8.1	30.3 31.2	30.8	92.8 93.5	93.2	6.5 6.5	6.5		4.3 4.3	4.3		3 3	3.0	
6-Jun-16	Cloudy	Moderate	20:10	Middle	7	24.4 24.1	24.3	8.1 8.1	8.1	30.5 30.3	30.4	92.6 92.2	92.4	6.5 6.5	6.5	6.4	3.2 3.7	3.5	3.7	3	3.0	3.3
				Bottom	13	24.4 24.0	24.2	8.2 8.2	8.2	30.5 31.2	30.9	90.0 90.0	90.0	6.3 6.3	6.3		3.5 3.0	3.3		4 4	4.0	
				Surface	1	24.8 24.9	24.9	8.2 8.2	8.2	31.2 31.3	31.3	105.4 105.2	105.3	7.3 7.3	7.3		2.9 3.0	3.0		3 3	3.0	
8-Jun-16	Cloudy	Moderate	08:05	Middle	7	24.7 24.7	24.7	8.2 8.2	8.2	31.9 31.8	31.9	104.6 105.0	104.8	7.3 7.3	7.3	7.3	3.4 3.4	3.4	3.8	3 3	3.0	3.3
				Bottom	13	24.6 24.5	24.6	8.3 8.3	8.3	31.8 31.7	31.8	104.1 103.3	103.7	7.2 7.2	7.2		4.9 4.9	4.9		4 4	4.0	
				Surface	1	26.3 26.3	26.3	8.1 8.1	8.1	33.1 33.3	33.2	87.4 91.7	89.6	5.9 6.1	6.0		2.7 2.7	2.7		4	4.0	
10-Jun-16	Fine	Calm	09:21	Middle	7	27.0 26.7	26.9	8.1 8.1	8.1	32.3 33.4	32.9	86.2 92.0	89.1	5.7 6.1	5.9	5.9	3.9 4.0	4.0	3.9	5 5	5.0	4.2
				Bottom	13	27.2 27.3	27.3	8.0 8.0	8.0	32.2 33.2	32.7	90.5 83.6	87.1	6.0 5.5	5.8		5.4 4.6	5.0		3 4	3.5	
				Surface	1	27.0 27.0	27.0	8.1 8.1	8.1	28.8 28.8	28.8	97.6 98.4	98.0	6.6 6.7	6.7		3.8 3.5	3.7		5 4	4.5	
13-Jun-16	Cloudy	Moderate	18:26	Middle	7	26.7 26.6	26.7	8.1 8.1	8.1	30.6 30.6	30.6	86.5 86.3	86.4	5.8 5.8	5.8	5.7	3.7 3.6	3.7	4.1	4	4.0	5.3
				Bottom	13	26.2 26.3	26.3	8.1 8.1	8.1	35.2 35.1	35.2	69.1 70.5	69.8	4.6 4.7	4.7		4.8 4.7	4.8		7 8	7.5	
				Surface	1	26.5 26.5	26.5	8.3 8.3	8.3	28.2 28.2	28.2	96.2 97.2	96.7	6.6 6.7	6.7		2.9	2.9		5 4	4.5	
15-Jun-16	Cloudy	Moderate	15:49	Middle	7	25.8 25.7	25.8	8.3 8.3	8.3	29.4 29.4	29.4	80.7 80.5	80.6	5.6 5.6	5.6	5.6	3.2	3.2	3.4	5	4.5	4.7
				Bottom	13	24.8 24.8	24.8	8.2 8.2	8.2	30.5 30.7	30.6	64.8 65.7	65.3	4.5 4.6	4.6		4.1 3.9	4.0		5 5	5.0	
				Surface	1	28.5 28.5	28.5	7.9 7.9	7.9	29.0 29.1	29.1	97.7 98.1	97.9	6.5 6.5	6.5		2.3	2.6		4	4.0	
17-Jun-16	Cloudy	Moderate	16:48	Middle	7.5	27.4 27.4	27.4	7.9 7.9	7.9	31.4 31.4	31.4	86.5 86.5	86.5	5.7 5.7	5.7	5.6	3.4	3.3	3.5	3	3.0	3.3
				Bottom	14	24.9 24.9	24.9	8.0 8.0	8.0	33.0 33.1	33.1	66.2 64.7	65.5	4.5 4.4	4.5		4.7 4.7	4.7		3 3	3.0	

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at C1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	:h (m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.6	23.7	8.3 8.3	8.3	32.6 32.6	32.6	95.6 95.4	95.5	6.7 6.7	6.7		4.2 4.1	4.2		6 6	6.0	
20-Jun-16	Fine	Calm	19:19	Middle	7	23.7 23.5	23.6	8.3 8.4	8.4	33.2 33.3	33.3	93.5 93.0	93.3	6.5 6.5	6.5	6.5	2.7 2.5	2.6	3.9	4 4	4.0	5.0
				Bottom	13	23.5 23.5	23.5	8.3 8.3	8.3	33.6 33.5	33.6	91.9 91.7	91.8	6.4 6.4	6.4		4.9 5.0	5.0		5 5	5.0	
				Surface	1	26.0 26.0	26.0	8.1 8.2	8.2	27.6 28.0	27.8	101.4 101.3	101.4	6.9 6.9	6.9		1.2 1.2	1.2		4 4	4.0	
23-Jun-16	Sunny	Moderate	07:50	Middle	7.5	25.2 25.2	25.2	8.2 8.2	8.2	30.7 30.6	30.7	94.4 94.2	94.3	6.4 6.4	6.4	6.2	2.2 2.3	2.3	3.8	5 5	5.0	4.7
				Bottom	14	24.0 23.9	24.0	8.2 8.2	8.2	32.1 32.2	32.2	78.9 78.6	78.8	5.4 5.4	5.4		7.8 8.0	7.9		5 5	5.0	
				Surface	1	28.8 28.8	28.8	8.2 8.2	8.2	31.5 31.5	31.5	113.1 112.6	112.9	7.3 7.3	7.3		2.4 2.7	2.6		3 3	3.0	
25-Jun-16	Sunny	Rough	08:55	Middle	7	28.7 28.6	28.7	8.2 8.3	8.3	32.1 32.1	32.1	112.3 112.0	112.2	7.3 7.3	7.3	7.3	2.8 2.5	2.7	3.2	6 6	6.0	4.7
				Bottom	13	28.4 28.6	28.5	8.2 8.3	8.3	32.0 32.1	32.1	110.9 111.2	111.1	7.2 7.2	7.2		4.2 4.1	4.2		5 5	5.0	
				Surface	1	28.7 28.7	28.7	8.2 8.2	8.2	31.3 31.3	31.3	112.6 112.1	112.4	7.3 7.3	7.3		2.3 2.0	2.2		4 4	4.0	
27-Jun-16	Sunny	Moderate	10:44	Middle	7	28.6 28.5	28.6	8.2 8.2	8.2	31.9 31.9	31.9	111.9 111.5	111.7	7.3 7.3	7.3	7.3	2.9 2.8	2.9	3.0	3 3	3.0	4.8
				Bottom	13	28.3 28.4	28.4	8.3 8.3	8.3	31.7 31.8	31.8	110.6 110.5	110.6	7.2 7.2	7.2		3.7 4.1	3.9		8 7	7.5	
				Surface	1	28.9 28.9	28.9	7.9 7.9	7.9	29.8 29.9	29.9	93.7 94.8	94.3	6.1 6.2	6.2		3.3 3.3	3.3		3 3	3.0	
30-Jun-16	Cloudy	Moderate	15:30	Middle	7	28.3 28.3	28.3	7.9 7.8	7.9	30.2 30.2	30.2	84.9 84.3	84.6	5.6 5.6	5.6	5.7	4.7 4.8	4.8	4.4	4 5	4.5	5.2
				Bottom	13	28.2 28.2	28.2	7.9 7.9	7.9	31.2 31.1	31.2	82.9 82.9	82.9	5.4 5.4	5.4		5.1 5.1	5.1		8 8	8.0	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.1	25.1	7.4	7.4	32.2	32.2	86.8	86.3	6.0	6.0		2.0	2.0		3	3.0	
				Ouridoo		25.0	20.1	7.4	/	32.1	OL.L	85.7	00.0	5.9	0.0		1.9	2.0		3	0.0	
1-Jun-16	Sunny	Calm	08:16	Middle	9.5	25.0	25.3	7.5	7.5	32.6	32.3	85.6	85.1	5.9	5.9	5.9	4.1	3.7	3.3	4	4.5	5.8
	,					25.5		7.5		31.9		84.5		5.8			3.3			5		
				Bottom	18	25.6 25.0	25.3	7.5 7.4	7.5	32.3 31.3	31.8	85.8 84.6	85.2	5.8 5.9	5.9		4.0 4.1	4.1		10 10	10.0	
						28.5		8.3		29.7		110.0		7.2			1.2			5		
				Surface	1	28.5	28.5	8.3	8.3	29.7	29.7	110.0	110.1	7.2	7.3		1.2	1.2		5	5.0	
						27.6		8.3		31.4		95.1		6.3			2.5			6		
3-Jun-16	Fine	Moderate	09:40	Middle	9.5	27.6	27.6	8.3	8.3	31.5	31.5	95.1	95.1	6.3	6.3	6.5	2.5	2.5	2.4	7	6.5	5.7
				D-#	10	27.4	07.4	8.3	0.0	32.3	00.4	90.1	00.0	6.0	0.0	1	3.6	0.0	1	5		
				Bottom	18	27.4	27.4	8.3	8.3	32.4	32.4	89.8	90.0	5.9	6.0		3.6	3.6		6	5.5	
				Surface	1	26.1	26.0	8.1	8.2	31.6	31.4	94.9	94.2	6.4	6.4		4.1	4.2		3	3.0	
				Ourrace	'	25.8	20.0	8.2	0.2	31.1	01.4	93.5	54.2	6.4	0.4		4.2	7.2		3	0.0	
6-Jun-16	Cloudy	Moderate	12:04	Middle	10.5	26.0	25.9	8.1	8.2	31.2	31.1	91.3	91.0	6.2	6.2	6.3	4.4	4.1	4.6	5	5.0	3.7
	,					25.7		8.2		31.0		90.7		6.2	-		3.7			5		-
				Bottom	20	26.0 25.7	25.9	8.2 8.1	8.2	31.2 30.9	31.1	90.8 90.7	90.8	6.2 6.2	6.2		5.5 5.4	5.5		3	3.0	
						25.7		8.1		31.0		112.1		7.7			3.2			5		
				Surface	1	25.2	25.2	8.2	8.2	31.3	31.2	111.8	112.0	7.7	7.7		3.6	3.4		5	5.0	
						24.8		8.2		31.9		106.8		7.4			4.2			5		
8-Jun-16	Cloudy	Moderate	13:23	Middle	9	24.9	24.9	8.3	8.3	31.7	31.8	107.5	107.2	7.4	7.4	7.5	4.2	4.2	4.3	4	4.5	4.5
				D-#	17	24.7	04.0	8.3	0.0	31.9	00.0	105.9	100.5	7.3	7.4		4.8	50		4	4.0	
				Bottom	17	24.8	24.8	8.3	8.3	32.1	32.0	107.0	106.5	7.4	7.4		5.7	5.3		4	4.0	
				Surface	1	26.3	26.8	8.0	8.0	33.3	33.7	91.9	90.3	6.2	6.0		4.9	4.9		3	3.0	
				Ourrace	'	27.2	20.0	7.9	0.0	34.0	55.7	88.7	30.0	5.8	0.0		4.9	7.5		3	0.0	
10-Jun-16	Fine	Calm	17:14	Middle	10	26.2	26.7	7.9	8.0	33.9	33.7	92.6	90.4	6.2	6.0	6.0	4.8	4.9	4.5	3	3.0	3.0
						27.2	_	8.0		33.5		88.1		5.8			4.9			3		
				Bottom	19	27.3 26.8	27.1	8.1 8.2	8.2	32.9 31.8	32.4	89.0 90.6	89.8	5.9 6.1	6.0		4.0 3.3	3.7		3	3.0	
						27.0	 	8.1	1	31.1		96.1		6.4			3.6	1		4		
				Surface	1	27.0	27.0	8.1	8.1	31.1	31.1	96.1	96.1	6.4	6.4		3.5	3.6		4	4.0	
						26.6		8.1		33.8		85.3		5.7			4.2	1		5		
13-Jun-16	Cloudy	Moderate	11:08	Middle	11.5	26.6	26.6	8.1	8.1	33.8	33.8	85.2	85.3	5.7	5.7	5.7	4.0	4.1	4.0	6	5.5	4.2
				Bottom	22	26.2	26.2	8.1	8.1	35.6	35.5	76.8	76.8	5.1	5.1		4.2	4.2		3	3.0	
				DULLUITI	22	26.2	20.2	8.1	0.1	35.4	33.3	76.7	70.0	5.1	5.1		4.2	4.2		3	3.0	
				Surface	1	26.7	26.7	8.2	8.2	30.9	30.9	92.0	91.9	6.2	6.2		2.4	2.4		6	6.0	
				Curraco		26.6	20	8.2	0	30.9	00.0	91.8	01.0	6.2	0.2		2.3			6	0.0	
15-Jun-16	Cloudy	Moderate	08:14	Middle	9.5	24.4	24.4	8.3	8.3	33.2	33.2	74.6	74.7	5.2	5.2	5.3	2.4	2.5	2.7	5	5.5	5.5
						24.4 23.8		8.3 8.3		33.1 36.0		74.7 67.4		5.2 4.6			2.5 3.1			6 5		
				Bottom	18	23.7	23.8	8.3	8.3	36.3	36.2	66.8	67.1	4.6	4.6		3.4	3.3		5	5.0	
						27.7		7.9		29.5		93.8		6.3			1.7			3		l
				Surface	1	27.7	27.7	7.9	7.9	29.7	29.6	93.3	93.6	6.2	6.3		1.8	1.8		3	3.0	
17 Jun 10	Cummi	Madarata	00.00	Middle	10	25.9	25.9	8.0	8.0	31.6	21.0	79.6	79.8	5.4	E 4	5.4	3.8	3.9	1 40	4	2.5	2.0
17-Jun-16	Sunny	Moderate	09:30	Middle	10	25.9	25.9	8.0	8.0	31.9	31.8	80.0	79.8	5.4	5.4	5.4	3.9	3.9	4.3	3	3.5	3.2
				Bottom	19	24.6	24.6	8.0	8.0	32.9	33.0	65.1	64.9	4.5	4.5]	7.3	7.2]	3	3.0	
				וויסווסם	10	24.6	27.0	8.0	0.0	33.1	55.0	64.7	04.5	4.5	7.5		7.1	1.6		3	0.0	

Water Quality Monitoring Results at C2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 23.9	24.0	8.2 8.2	8.2	33.3 33.3	33.3	97.3 97.0	97.2	6.8 6.8	6.8		3.7 3.7	3.7		3 4	3.5	
20-Jun-16	Sunny	Rough	10:48	Middle	9.5	23.7 23.7	23.7	8.2 8.2	8.2	33.4 33.6	33.5	95.7 95.4	95.6	6.7 6.7	6.7	6.6	4.5 4.2	4.4	4.5	6 7	6.5	5.3
				Bottom	18	23.7 23.7	23.7	8.3 8.3	8.3	33.9 33.9	33.9	90.9 91.1	91.0	6.3 6.4	6.4		5.4 5.2	5.3		6 6	6.0	
				Surface	1	27.0 27.0	27.0	8.1 8.1	8.1	28.8 28.8	28.8	102.7 103.3	103.0	6.8 6.9	6.9		3.3 3.5	3.4		4 4	4.0	
23-Jun-16	Sunny	Moderate	15:18	Middle	9.5	24.7 24.6	24.7	8.1 8.1	8.1	30.8 31.2	31.0	84.1 84.4	84.3	5.7 5.8	5.8	5.9	4.0 4.2	4.1	4.0	5 5	5.0	4.3
				Bottom	18	23.2 23.2	23.2	8.4 8.4	8.4	33.0 33.0	33.0	70.4 71.1	70.8	4.9 4.9	4.9		4.5 4.5	4.5		4 4	4.0	
				Surface	1	28.5 28.7	28.6	8.2 8.2	8.2	31.4 31.4	31.4	118.9 118.0	118.5	7.8 7.7	7.8		2.2 2.3	2.3		3 3	3.0	
25-Jun-16	Sunny	Rough	14:21	Middle	10	28.1 28.3	28.2	8.3 8.3	8.3	32.2 32.0	32.1	112.9 113.5	113.2	7.4 7.4	7.4	7.5	3.2 3.8	3.5	3.2	5 4	4.5	3.8
				Bottom	19	28.0 28.3	28.2	8.3 8.3	8.3	32.3 32.3	32.3	112.5 113.5	113.0	7.4 7.4	7.4		3.6 3.9	3.8		4 4	4.0	
				Surface	1	28.8 29.0	28.9	8.2 8.2	8.2	30.9 31.3	31.1	119.3 119.2	119.3	7.8 7.7	7.8		3.2 3.2	3.2		3 3	3.0	
27-Jun-16	Sunny	Moderate	16:01	Middle	9	28.3 28.4	28.4	8.2 8.3	8.3	31.8 31.8	31.8	113.1 113.4	113.3	7.4 7.4	7.4	7.5	3.6 3.6	3.6	4.1	5 5	5.0	4.7
				Bottom	17	28.3 28.3	28.3	8.3 8.3	8.3	31.9 32.1	32.0	112.7 113.3	113.0	7.4 7.4	7.4		5.3 5.7	5.5		6 6	6.0	
				Surface	1	29.0 28.9	29.0	8.1 8.0	8.1	29.7 29.5	29.6	100.8 93.2	97.0	6.6 6.1	6.4		2.6 2.3	2.5		6 6	6.0	
30-Jun-16	Cloudy	Moderate	07:31	Middle	9.5	28.2 28.2	28.2	8.1 8.1	8.1	31.8 31.7	31.8	88.0 87.3	87.7	5.8 5.7	5.8	6.0	4.0 4.1	4.1	3.4	4 4	4.0	5.3
				Bottom	18	28.1 28.1	28.1	8.1 8.1	8.1	32.5 31.9	32.2	86.8 85.1	86.0	5.7 5.6	5.7		3.5 3.5	3.5		6 6	6.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5	25.5	7.5	7.5	33.2	32.6	88.0	87.4	6.0	6.0		4.7	4.7		6	5.5	
				Odridoo		25.5	20.0	7.4	7.0	32.0	02.0	86.7	07.1	5.9	0.0		4.6	7.7		5	0.0	
1-Jun-16	Sunny	Calm	16:15	Middle	9.5	25.4	25.3	7.5	7.5	30.9	31.9	85.1	86.3	5.9	6.0	5.9	3.5	3.5	3.9	4	3.5	4.0
	,					25.2		7.5		32.9		87.4		6.0			3.4			3		
				Bottom	18	25.6 25.3	25.5	7.4 7.4	7.4	31.4 33.6	32.5	85.2 85.1	85.2	5.8 5.8	5.8		3.8 3.1	3.5		3	3.0	
						27.9		8.4		28.8		103.3		6.9			1.6			6		
				Surface	1	27.9	27.9	8.4	8.4	28.9	28.9	103.3	103.3	6.9	6.9		1.5	1.6		6	6.0	
						27.6		8.3		30.3		93.4		6.2			2.0			4		
3-Jun-16	Cloudy	Moderate	15:55	Middle	9	27.6	27.6	8.3	8.3	30.3	30.3	93.1	93.3	6.2	6.2	6.3	2.2	2.1	2.1	4	4.0	5.2
				D-#	47	27.1	07.1	8.3	0.0	32.7	00.7	85.6	05.5	5.7	F 7		2.6	0.0	1	5		
				Bottom	17	27.1	27.1	8.3	8.3	32.6	32.7	85.4	85.5	5.7	5.7		2.5	2.6		6	5.5	
				Surface	1	24.3	24.3	8.1	8.2	29.4	29.8	92.0	92.3	6.5	6.5		3.1	3.1		6	6.0	
				Ourrace	'	24.3	24.0	8.2	0.2	30.2	25.0	92.5	32.0	6.5	0.0		3.1	0.1		6	0.0	
6-Jun-16	Cloudy	Moderate	18:42	Middle	10.5	24.3	25.1	8.1	8.2	29.8	30.2	88.1	89.9	6.2	6.3	6.3	3.6	3.6	3.5	3	3.0	4.3
	,					25.9	_	8.2		30.6		91.7		6.3			3.5			3		
				Bottom	20	24.3 25.4	24.9	8.2 8.2	8.2	29.4 30.1	29.8	85.1 88.1	86.6	6.0	6.1		3.7 3.8	3.8		4	4.0	
						25.4		8.2		31.2		112.6		6.1 7.8			3.3					
				Surface	1	25.1	25.2	8.2	8.2	31.3	31.3	113.3	113.0	7.8	7.8		3.9	3.6		4 5	4.5	
						24.8		8.3		31.9		109.7		7.6			4.3			3		
8-Jun-16	Cloudy	Moderate	06:45	Middle	9	24.7	24.8	8.2	8.3	31.9	31.9	110.3	110.0	7.6	7.6	7.7	4.5	4.4	4.3	3	3.0	4.5
				5	47	24.5	24.0	8.3	0.0	32.2	00.0	109.3	400.7	7.6	7.0		4.8	4.0		6	0.0	
				Bottom	17	24.7	24.6	8.2	8.3	32.1	32.2	110.1	109.7	7.6	7.6		5.0	4.9		6	6.0	
				Surface	1	26.7	26.6	8.0	8.0	33.3	32.7	88.2	88.1	5.9	5.9		3.0	3.0		4	4.0	
				Juliace	'	26.5	20.0	8.0	0.0	32.1	32.7	88.0	00.1	5.9	5.5		3.0	5.0		4	4.0	
10-Jun-16	Fine	Calm	08:06	Middle	10.5	26.5	26.5	8.1	8.2	33.7	33.3	89.3	89.0	5.9	5.9	5.9	5.1	4.7	4.3	3	3.0	3.5
						26.5		8.2		32.9		88.7		5.9			4.3	***		3		
				Bottom	20	27.2 27.2	27.2	8.0 8.0	8.0	33.5 33.5	33.5	85.7 89.8	87.8	5.6 5.9	5.8		5.6 4.6	5.1		3	3.5	
						27.2		8.2		30.7		94.1		6.3			3.9			4		
				Surface	1	27.2	27.2	8.2	8.2	30.7	30.7	94.1	94.2	6.3	6.3		3.6	3.8		4	4.0	
						26.7		8.1		32.8		86.7		5.8			4.5			4		
13-Jun-16	Cloudy	Moderate	20:01	Middle	11	26.7	26.7	8.1	8.1	32.8	32.8	86.7	86.7	5.8	5.8	5.7	4.3	4.4	4.2	4	4.0	5.2
				Bottom	21	26.1	26.1	8.1	8.1	36.0	36.0	73.5	73.3	4.9	4.9		4.2	4.4	1	7	7.5	
				DOLLOTT	21	26.0	20.1	8.1	0.1	36.0	36.0	73.1	73.3	4.8	4.9		4.5	4.4		8	7.5	
				Surface	1	25.6	25.6	8.3	8.3	31.4	31.4	88.8	88.9	6.1	6.1		3.1	3.1		4	4.0	
				Oundoo		25.6	20.0	8.3	0.0	31.4	01.1	89.0	00.0	6.1	0.1		3.0	0.1		4	1.0	
15-Jun-16	Cloudy	Moderate	14:20	Middle	9.5	24.4	24.4	8.3	8.3	34.8	34.9	69.0	68.9	4.7	4.7	5.1	4.7	4.7	4.6	5	4.5	4.8
						24.3 23.2		8.3 8.3		35.0 37.1		68.7 64.3		4.7 4.4			4.7 6.0			6		
				Bottom	18	23.2	23.2	8.3	8.3	37.1	37.2	64.1	64.2	4.4	4.4		6.2	6.1		6	6.0	
						27.6		8.2		29.3		95.5		6.4			2.7			3		
				Surface	1	27.6	27.6	8.2	8.2	29.3	29.3	94.6	95.1	6.3	6.4		2.8	2.8		4	3.5	
47 1 40	01	Madaus	40.40	N 41 - II -	10	24.5	04.0	8.1	0.4	32.9	00.0	71.9	74.0	5.0	F 0	5.0	4.2	4.0	4.4	4	4.0	0.0
17-Jun-16	Cloudy	Moderate	18:19	Middle	10	24.6	24.6	8.1	8.1	32.7	32.8	71.6	71.8	5.0	5.0	5.2	4.3	4.3	4.1	4	4.0	3.8
				Bottom	19	23.7	23.7	8.1	8.1	33.4	33.5	61.2	61.4	4.3	4.3		5.4	5.3	1	4	4.0	
				בייוטווטם	19	23.6	20.1	8.1	0.1	33.6	33.3	61.5	01.4	4.3	4.0		5.2	5.5		4	4.0	

Water Quality Monitoring Results at C2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	I)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.0	24.1	8.1 8.1	8.1	33.1 33.2	33.2	96.6 96.4	96.5	6.7 6.7	6.7		3.3 3.4	3.4		3 4	3.5	
20-Jun-16	Fine	Calm	17:59	Middle	9.5	23.9 23.8	23.9	8.2 8.2	8.2	33.7 33.7	33.7	94.2 94.3	94.3	6.6 6.6	6.6	6.5	3.1 3.2	3.2	3.5	4 4	4.0	5.3
				Bottom	18	23.7 23.7	23.7	8.0 8.1	8.1	34.0 34.3	34.2	90.2 90.2	90.2	6.3 6.3	6.3		3.7 3.8	3.8		8 9	8.5	
				Surface	1	27.4 27.1	27.3	8.3 8.3	8.3	27.3 26.9	27.1	100.1 99.8	100.0	6.7 6.7	6.7		2.3 2.8	2.6		3	3.0	
23-Jun-16	Sunny	Moderate	06:05	Middle	9.5	24.9 24.9	24.9	8.4 8.4	8.4	30.3 30.9	30.6	87.7 88.2	88.0	6.0 6.0	6.0	5.8	4.0 4.2	4.1	4.3	4 4	4.0	4.7
				Bottom	18	23.3 23.3	23.3	8.3 8.3	8.3	33.5 33.7	33.6	65.6 66.8	66.2	4.5 4.6	4.6		6.2 6.3	6.3		7 7	7.0	
				Surface	1	29.1 29.2	29.2	8.2 8.2	8.2	31.5 31.6	31.6	120.3 121.3	120.8	7.8 7.8	7.8		2.8 2.7	2.8		4 4	4.0	
25-Jun-16	Sunny	Rough	07:35	Middle	10	28.8 28.7	28.8	8.2 8.3	8.3	32.2 32.1	32.2	117.5 117.4	117.5	7.6 7.6	7.6	7.7	4.3 3.9	4.1	3.7	4 4	4.0	4.7
				Bottom	19	28.4 28.6	28.5	8.3 8.2	8.3	32.3 32.3	32.3	117.0 118.4	117.7	7.6 7.7	7.7		4.6 4.0	4.3		6 6	6.0	
				Surface	1	28.9 28.9	28.9	8.2 8.2	8.2	31.1 31.4	31.3	120.3 120.7	120.5	7.8 7.8	7.8		2.7 3.2	3.0		3	3.0	
27-Jun-16	Sunny	Moderate	09:22	Middle	9	28.5 28.7	28.6	8.2 8.3	8.3	31.9 31.9	31.9	116.6 117.7	117.2	7.6 7.6	7.6	7.7	4.0 3.8	3.9	3.7	7 7	7.0	4.7
				Bottom	17	28.4 28.4	28.4	8.3 8.3	8.3	32.0 32.1	32.1	117.0 117.5	117.3	7.6 7.6	7.6		4.3 4.1	4.2		4 4	4.0	
				Surface	1	29.0 29.0	29.0	7.9 8.0	8.0	29.4 29.6	29.5	95.3 97.8	96.6	6.2 6.4	6.3		3.3 3.6	3.5		3 4	3.5	
30-Jun-16	Cloudy	Moderate	13:41	Middle	9.5	28.1 28.0	28.1	8.0 8.0	8.0	31.3 31.4	31.4	86.9 86.9	86.9	5.7 5.7	5.7	5.9	3.0 3.1	3.1	3.6	6 6	6.0	4.5
				Bottom	18	28.0 27.9	28.0	8.1 8.1	8.1	32.1 32.1	32.1	86.3 85.1	85.7	5.7 5.6	5.7		4.2 4.3	4.3		4 4	4.0	

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Dale	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 24.8	25.2	7.5 7.5	7.5	30.9 31.1	31.0	85.5 84.5	85.0	5.9 5.9	5.9		1.2 1.2	1.2		7 7	7.0	
1-Jun-16	Sunny	Calm	08:27	Middle	7	25.3 24.9	25.1	7.5 7.5	7.5	31.5 33.3	32.4	86.9 85.0	86.0	6.0 5.8	5.9	5.9	2.7 2.8	2.8	2.4	4	4.0	5.0
				Bottom	13	25.2 25.2	25.2	7.4 7.5	7.5	32.8 31.6	32.2	84.7 84.6	84.7	5.8 5.8	5.8		3.1 3.2	3.2		4	4.0	
				Surface	1	28.3 28.2	28.3	8.3 8.3	8.3	31.3 31.3	31.3	102.8 102.7	102.8	6.7 6.7	6.7		3.2 3.3	3.3		5	5.0	
3-Jun-16	Fine	Moderate	09:59	Middle	7	26.7	26.7	8.2	8.2	32.5	32.6	82.1	81.8	5.5	5.5	5.8	2.7	2.7	2.9	8	8.0	5.8
				Bottom	13	26.6 26.5	26.5	8.2	8.2	32.6 32.6	32.7	79.3	79.2	5.5 5.3	5.3		2.6	2.6		4	4.5	
				Surface	1	26.4 25.6	25.6	8.2 8.1	8.2	32.7 29.4	29.5	79.1 93.2	93.1	5.3 6.5	6.5		3.2	3.3		5 4	4.0	
6-Jun-16	Cloudy	Moderate	12:17	Middle	7	25.6 25.6	25.6	8.2 8.2	8.2	29.5 29.3	29.4	93.0 93.2	93.4	6.4	6.5	6.4	3.3 2.7	2.9	3.8	3	3.0	3.7
o dun 10	Cloudy	Woderate	12.17	Bottom	13	25.6 25.6	25.6	8.2 8.2	8.2	29.5 29.4	29.5	93.6 91.6	91.7	6.5 6.3	6.3	0.4	3.0 5.1	5.2	0.0	3 4	4.0	0.7
				Surface	1	25.6 24.9	25.1	8.2 8.3	8.3	29.5 31.2	31.4	91.7 111.4	111.8	6.3 7.7	7.7		5.3 2.2	2.4		4	4.0	
8-Jun-16	Cloudy	Moderate	13:40	Middle	6.5	25.2 24.6	24.7	8.3 8.3	8.3	31.6 31.9	31.9	112.2 110.6	110.7	7.7 7.7	7.7	7.7	2.5 5.3	5.6	4.3	4 <2.5	<2.5	3.2
o dun 10	Oloudy	Woderate	10.40	Bottom	12	24.7 24.7	24.7	8.3 8.3	8.3	31.9 32.2	32.1	110.7 110.3	110.7	7.7 7.6	7.6	7.7	5.9 4.8	4.9	4.0	<2.5 3	3.0	0.2
						24.6 26.4		8.3 8.2		32.0 32.3	_	110.1 91.1	_	7.6 6.1			4.9 4.5			3		
			.=	Surface	1	26.9 26.4	26.7	8.0 8.2	8.1	33.7 32.8	33.0	88.7 86.4	89.9	5.9 5.8	6.0		4.6 4.2	4.6		3 4	3.0	
10-Jun-16	Fine	Calm	17:02	Middle	6.5	26.4 27.2	26.4	8.0	8.1	32.8 32.7	32.8	87.5 86.1	87.0	5.9 5.7	5.9	5.9	4.3 3.1	4.3	4.1	4	4.0	3.7
				Bottom	12	26.3 27.2	26.8	8.1	8.1	32.1 30.9	32.4	84.9 95.9	85.5	5.7	5.7		3.5	3.3		4	4.0	
				Surface	1	27.2 27.0	27.2	8.0 8.1	8.0	30.8 30.9	30.9	95.9 96.6	95.9	6.4	6.4		2.8	2.8		4	4.0	
13-Jun-16	Cloudy	Moderate	11:38	Middle	7	27.0 26.4	27.0	8.1 8.1	8.1	30.9 34.6	30.9	96.7 80.4	96.7	6.5 5.3	6.5	6.1	3.6	3.5	3.4	4 3	4.0	3.7
				Bottom	13	26.4 26.4 26.3	26.4	8.1 8.1	8.1	34.6 31.5	34.6	79.9 84.5	80.2	5.3 5.7	5.3		3.9	4.0	1	3	3.0	
				Surface	1	26.2	26.3	8.1	8.1	31.5	31.5	84.4	84.5	5.7	5.7		3.4	3.4		5	5.0	
15-Jun-16	Cloudy	Moderate	08:34	Middle	6.5	24.8 24.8	24.8	8.2 8.2	8.2	32.2 32.3	32.3	68.5 68.4	68.5	4.7	4.7	4.9	4.0 3.9	4.0	4.0	5	5.0	5.3
				Bottom	12	23.8 23.7	23.8	8.3 8.3	8.3	35.6 35.7	35.7	60.4 59.9	60.2	4.2 4.1	4.2		4.4 4.6	4.5		6	6.0	
				Surface	1	27.6 27.6	27.6	8.0 8.0	8.0	29.7 29.8	29.8	82.7 83.7	83.2	5.5 5.6	5.6		2.3	2.6		3 4	3.5	
17-Jun-16	Sunny	Moderate	09:59	Middle	7	26.1 26.0	26.1	8.0 8.0	8.0	31.0 31.1	31.1	70.4 70.1	70.3	4.8 4.8	4.8	5.0	4.5 4.6	4.6	4.1	4 5	4.5	3.8
				Bottom	13	25.5 25.5	25.5	8.0 8.0	8.0	32.2 32.4	32.3	67.4 66.8	67.1	4.6 4.6	4.6		5.1 5.2	5.2		3 4	3.5	

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.9	23.9	8.2 8.2	8.2	32.9 32.8	32.9	93.4 93.8	93.6	6.5 6.6	6.6		3.3 3.6	3.5		3 3	3.0	
20-Jun-16	Sunny	Rough	11:05	Middle	6.5	23.8 23.8	23.8	8.3 8.3	8.3	33.5 33.5	33.5	93.9 94.2	94.1	6.6 6.6	6.6	6.6	3.1 3.0	3.1	3.6	7 7	7.0	5.8
				Bottom	12	23.7 23.8	23.8	8.1 8.1	8.1	33.6 33.6	33.6	93.2 93.3	93.3	6.5 6.5	6.5		4.3 4.2	4.3		8 7	7.5	
				Surface	1	26.9 26.9	26.9	8.1 8.1	8.1	28.5 28.6	28.6	103.3 102.7	103.0	6.9 6.8	6.9		3.8 3.7	3.8		6 7	6.5	
23-Jun-16	Sunny	Moderate	14:59	Middle	7	25.8 25.8	25.8	8.2 8.2	8.2	31.0 33.2	32.1	94.1 83.8	89.0	6.3 5.5	5.9	6.2	3.3 3.4	3.4	4.5	5 4	4.5	5.0
				Bottom	13	24.1 24.1	24.1	8.2 8.2	8.2	32.0 32.0	32.0	81.3 85.7	83.5	5.6 5.9	5.8		6.2 6.1	6.2		4 4	4.0	
				Surface	1	28.3 28.6	28.5	8.3 8.3	8.3	31.4 31.7	31.6	117.7 118.8	118.3	7.7 7.7	7.7		2.2 2.1	2.2		4 4	4.0	
25-Jun-16	Sunny	Rough	14:37	Middle	6.5	28.0 28.0	28.0	8.3 8.3	8.3	32.0 32.2	32.1	117.6 117.2	117.4	7.7 7.7	7.7	7.7	4.9 5.9	5.4	4.5	4 4	4.0	4.0
				Bottom	12	28.2 27.9	28.1	8.3 8.3	8.3	32.6 32.3	32.5	118.0 116.8	117.4	7.7 7.7	7.7		5.4 6.6	6.0		4 4	4.0	
				Surface	1	28.5 28.8	28.7	8.3 8.3	8.3	31.1 31.3	31.2	118.1 118.6	118.4	7.7 7.7	7.7		3.4 3.7	3.6		3 4	3.5	
27-Jun-16	Sunny	Moderate	16:18	Middle	6.5	28.2 28.3	28.3	8.2 8.3	8.3	31.9 31.9	31.9	117.4 117.0	117.2	7.7 7.6	7.7	7.7	6.6 6.4	6.5	4.5	7 7	7.0	4.8
				Bottom	12	28.2 28.1	28.2	8.3 8.3	8.3	32.2 31.9	32.1	117.3 116.9	117.1	7.7 7.7	7.7		3.2 3.3	3.3		4 4	4.0	
				Surface	1	28.7 28.7	28.7	8.0 8.0	8.0	29.1 29.1	29.1	88.6 89.0	88.8	5.8 5.9	5.9		3.2 3.0	3.1		4 5	4.5	
30-Jun-16	Cloudy	Moderate	08:03	Middle	6.5	28.4 28.4	28.4	7.9 7.9	7.9	31.3 31.0	31.2	86.9 85.3	86.1	5.7 5.6	5.7	5.7	4.0 4.2	4.1	4.2	4	4.0	5.5
				Bottom	12	28.2 28.2	28.2	8.1 8.1	8.1	32.1 32.0	32.1	84.6 85.0	84.8	5.5 5.6	5.6		5.6 5.3	5.5		8 8	8.0	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4	25.2	7.5	7.5	31.4	31.9	86.8	86.6	6.0	6.0		5.1	5.1		3	3.5	
						24.9	20.2	7.5	7.10	32.4	00	86.4	00.0	6.0	0.0		5.1	0		4	0.0	
1-Jun-16	Sunny	Calm	16:03	Middle	7	24.9	25.1	7.4	7.5	31.6	32.1	85.2	86.3	5.9	6.0	6.0	4.6	4.6	4.5	5 5	5.0	3.8
						25.3 25.2		7.5 7.4		32.6 31.0		87.4 86.3		6.0 6.0			4.5 3.7			3		
				Bottom	13	25.3	25.3	7.4	7.4	32.1	31.6	87.3	86.8	6.0	6.0		4.1	3.9		3	3.0	
				06		27.1	27.1	8.3	0.0	31.9	32.0	95.6	95.8	6.4	0.4		2.1	0.4		6	0.0	
				Surface	1	27.1	27.1	8.3	8.3	32.0	32.0	95.9	95.6	6.4	6.4		2.1	2.1		6	6.0	
3-Jun-16	Cloudy	Moderate	16:12	Middle	7	26.7	26.7	8.3	8.3	32.1	32.2	80.7	80.4	5.4	5.4	5.7	3.0	3.2	2.9	5	5.0	5.3
	,		-			26.6	_	8.3		32.3		80.1		5.4			3.3			5		
				Bottom	13	26.4 26.4	26.4	8.3 8.3	8.3	32.4 32.4	32.4	78.4 78.2	78.3	5.3 5.3	5.3		3.2 3.3	3.3		5 5	5.0	
 						25.8		8.2		28.5		100.2		7.0			4.0			4		
				Surface	1	24.2	25.0	8.2	8.2	30.0	29.3	98.4	99.3	7.0	7.0		4.1	4.1		4	4.0	
6-Jun-16	Claudy	Madarata	10.50	Middle	7	25.3	24.8	8.2	8.2	28.9	29.5	94.9	95.7	6.6	6.7	6.6	4.5	4.4	4.1	3	2.0	3.7
6-Juli-16	Cloudy	Moderate	18:59	Middle	/	24.2	24.0	8.2	0.2	30.1	29.5	96.4	95.7	6.8	0.7	0.0	4.2	4.4	4.1	3	3.0	3.7
				Bottom	13	24.2	24.2	8.2	8.2	30.0	30.1	84.5	85.1	6.0	6.1		3.7	3.8		4	4.0	
						24.2		8.2		30.1		85.7 107.7		6.1			3.8			4		
				Surface	1	25.1 25.0	25.1	8.3 8.3	8.3	31.3 31.5	31.4	107.7	107.4	7.4 7.4	7.4		3.0	2.7		<2.5 <2.5	<2.5	
	.					25.1		8.3		31.7		107.3		7.4			4.8			<2.5		
8-Jun-16	Cloudy	Moderate	07:01	Middle	6.5	24.8	25.0	8.3	8.3	32.0	31.9	106.8	107.1	7.4	7.4	7.4	5.9	5.4	4.5	<2.5	<2.5	<2.5
				Bottom	12	24.9	24.9	8.3	8.3	32.1	32.2	107.0	106.6	7.4	7.4		6.0	5.4		<2.5	<2.5	
				Dottom	12	24.9	24.5	8.3	0.0	32.2	02.2	106.2	100.0	7.3	7		4.8	5.7		<2.5	\L.5	
				Surface	1	26.8	27.0	8.0	8.1	32.7	32.8	82.8	86.0	5.5	5.7		1.9	2.1		5	5.5	
						27.2 26.9		8.1 8.2		32.9 31.6		89.2 86.6		5.9 5.8			3.8			<u>6</u> 3		
10-Jun-16	Fine	Calm	08:17	Middle	7	27.0	27.0	8.0	8.1	33.3	32.5	88.5	87.6	5.9	5.9	5.8	3.9	3.9	3.4	3	3.0	3.8
				D-#	10	26.9	27.1	8.1	0.4	33.2	00.0	90.5	88.7	6.0	5.9		4.1	4.2		3	0.0	
				Bottom	13	27.3	27.1	8.0	8.1	33.2	33.2	86.9	88.7	5.7	5.9		4.3	4.2		3	3.0	
				Surface	1	27.3	27.3	8.1	8.1	30.5	30.5	94.1	94.2	6.3	6.3		2.6	2.5		3	3.0	
						27.3	_	8.1		30.5		94.2		6.3			2.4			3		
13-Jun-16	Cloudy	Moderate	19:40	Middle	7	26.8 26.8	26.8	8.1 8.1	8.1	31.1 31.1	31.1	91.9 91.7	91.8	6.2 6.2	6.2	5.9	4.7 4.6	4.7	3.7	<2.5 <2.5	<2.5	2.8
						26.4		8.1		34.6		80.3		5.3			4.1			3		
				Bottom	13	26.3	26.4	8.1	8.1	34.7	34.7	79.6	80.0	5.3	5.3		3.9	4.0		3	3.0	
				Surface	1	25.6	25.6	8.3	8.3	31.5	31.5	85.2	85.3	5.8	5.8		2.9	2.9		4	4.0	
				Ouriace	'	25.5	25.0	8.3	0.0	31.5	01.0	85.3	00.0	5.8	5.0		2.9	2.5		4	4.0	
15-Jun-16	Cloudy	Moderate	14:38	Middle	7	24.3	24.3	8.3	8.3	32.4	32.4	67.0	67.1	4.7	4.7	4.9	3.3	3.3	3.9	5	5.0	4.7
	•					24.2 23.3		8.3 8.3		32.3 36.6		67.1 58.7		4.7 4.1			3.3 5.6			<u>5</u>		
				Bottom	13	23.3	23.3	8.3	8.3	36.5	36.6	58.7	58.7	4.1	4.1		5.5	5.6		5	5.0	
İ				Curfoos	-1	27.4	07.4	8.2	0.0	30.3	20.2	87.9	07.0	5.9	F.O.		3.4	2.4		4	4.0	
				Surface	1	27.4	27.4	8.2	8.2	30.3	30.3	87.9	87.9	5.9	5.9		3.4	3.4		4	4.0	
17-Jun-16	Cloudy	Moderate	17:59	Middle	7.5	25.0	25.1	8.1	8.1	32.6	32.7	72.2	72.1	5.0	5.0	5.2	4.6	5.0	4.4	4	4.0	3.7
	5.000)	ouo.uto		77.100.0		25.1		8.1	<u> </u>	32.7		72.0		4.9	0.0	"-	5.4	0.0		4		J
				Bottom	14	24.6 24.5	24.6	8.1 8.1	8.1	33.8 33.7	33.8	66.7 65.8	66.3	4.6 4.5	4.6		5.2 4.4	4.8		3	3.0	
		l .				24.0	<u> </u>	0.1		JJ.1	<u> </u>	00.0	<u> </u>	4.5	<u> </u>	l	4.4	<u> </u>	<u> </u>	J		l

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at WSD17 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Ворі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.8	23.9	8.1 8.1	8.1	33.9 33.9	33.9	97.2 96.7	97.0	6.8 6.7	6.8		4.3 4.3	4.3		4 4	4.0	
20-Jun-16	Fine	Calm	18:16	Middle	7	23.8 23.8	23.8	8.2 8.2	8.2	33.4 33.3	33.4	95.5 95.6	95.6	6.7 6.7	6.7	6.7	4.4 4.5	4.5	4.3	6 5	5.5	4.5
				Bottom	13	23.8 23.8	23.8	8.2 8.2	8.2	33.9 33.9	33.9	94.7 95.4	95.1	6.6 6.6	6.6		4.2 4.2	4.2		4 4	4.0	
				Surface	1	26.6 26.5	26.6	8.3 8.3	8.3	27.9 27.9	27.9	100.7 100.7	100.7	6.8 6.8	6.8		2.8 3.2	3.0		4 4	4.0	
23-Jun-16	Sunny	Moderate	06:36	Middle	7	25.0 24.9	25.0	8.4 8.4	8.4	31.0 31.1	31.1	89.6 88.8	89.2	6.1 6.0	6.1	6.2	4.4 4.3	4.4	4.4	3 3	3.0	3.7
				Bottom	13	23.7 23.7	23.7	8.3 8.3	8.3	31.8 31.9	31.9	84.1 84.0	84.1	5.8 5.8	5.8		5.7 5.8	5.8		4 4	4.0	
				Surface	1	28.9 28.9	28.9	8.3 8.2	8.3	31.6 31.7	31.7	115.3 114.6	115.0	7.5 7.4	7.5		2.2 2.3	2.3		4 4	4.0	
25-Jun-16	Sunny	Rough	07:51	Middle	6.5	29.0 28.7	28.9	8.3 8.3	8.3	32.2 32.2	32.2	114.2 114.1	114.2	7.4 7.4	7.4	7.4	4.8 4.9	4.9	3.9	3	3.0	3.5
				Bottom	12	28.9 28.9	28.9	8.2 8.2	8.2	32.5 32.4	32.5	115.0 114.1	114.6	7.4 7.4	7.4		4.4 4.4	4.4		3 4	3.5	
				Surface	1	28.9 28.8	28.9	8.3 8.3	8.3	31.2 31.4	31.3	114.7 114.6	114.7	7.4 7.4	7.4		2.0 2.2	2.1		4 3	3.5	
27-Jun-16	Sunny	Moderate	09:38	Middle	6.5	28.8 28.6	28.7	8.3 8.3	8.3	31.8 31.9	31.9	114.0 113.2	113.6	7.4 7.4	7.4	7.4	4.2 4.6	4.4	3.8	5 5	5.0	5.3
				Bottom	12	28.8 28.8	28.8	8.3 8.3	8.3	32.0 32.1	32.1	114.2 113.6	113.9	7.4 7.3	7.4		4.7 4.9	4.8		8 7	7.5	
				Surface	1	28.6 28.6	28.6	8.0 8.0	8.0	29.1 29.1	29.1	91.2 90.4	90.8	6.0 6.0	6.0		3.5 3.1	3.3		5 5	5.0	
30-Jun-16	Cloudy	Moderate	14:13	Middle	7	28.4 28.4	28.4	7.9 7.8	7.9	31.0 31.1	31.1	87.4 89.3	88.4	5.7 5.8	5.8	5.8	4.9 5.0	5.0	4.3	6 7	6.5	5.2
				Bottom	13	28.3 28.3	28.3	8.0 8.0	8.0	32.1 32.1	32.1	85.6 84.9	85.3	5.6 5.5	5.6		4.6 4.8	4.7		4	4.0	

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Depti	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5	25.5	7.5	7.5	32.0	31.8	84.7	85.5	5.8	5.9		3.8	3.9		3	3.0	
				Curraco	·	25.5	20.0	7.5	7.0	31.6	01.0	86.3	00.0	5.9	0.0		3.9	0.0		3	0.0	
1-Jun-16	Sunny	Calm	10:43	Middle	3.5	25.5 25.0	25.3	7.5 7.4	7.5	31.5 33.0	32.3	86.4 85.0	85.7	5.9 5.8	5.9	5.9	3.5 3.7	3.6	4.0	8 8	8.0	5.8
						25.0		7.4		33.1		84.7		5.8			4.2			6		
				Bottom	6	25.1	25.1	7.5	7.5	31.0	32.1	86.0	85.4	6.0	5.9		4.8	4.5		7	6.5	
				Surface	1	29.3	29.3	8.3	8.3	30.8	30.8	117.1	117.3	7.6	7.6		3.1	3.2		8	7.5	
				Surface	'	29.2	29.3	8.3	0.3	30.8	30.6	117.4	117.3	7.6	7.0		3.3	3.2		7	7.5	
3-Jun-16	Fine	Moderate	12:15	Middle	3.5	28.8	28.8	8.4	8.4	31.2	31.3	114.9	114.6	7.5	7.5	7.4	3.4	3.6	2.9	6	6.0	5.7
						28.8 28.5		8.4 8.4		31.3 31.9		114.2 109.5		7.4 7.1			3.8 1.9			<u>6</u> 3		
				Bottom	6	28.5	28.5	8.4	8.4	31.9	31.9	109.5	109.4	7.1	7.1		2.0	2.0		4	3.5	
						27.3		8.2		33.9		93.5		6.1			2.7			3		
				Surface	1	26.3	26.8	8.2	8.2	32.3	33.1	91.9	92.7	6.2	6.2		3.0	2.9		3	3.0	
6-Jun-16	Cloudy	Moderate	14:32	Middle	3.5	27.0	26.6	8.2	8.2	33.8	33.2	89.3	88.4	5.9	5.9	6.0	3.7	3.8	3.8	5	5.0	4.3
o dun 10	Oloudy	Woderate	14.02	Wildale	0.0	26.2	20.0	8.2	0.2	32.6	00.2	87.4	00.4	5.9	0.0	0.0	3.9	0.0	0.0	5	5.0	4.0
				Bottom	6	26.3	26.3	8.2	8.2	33.2	32.9	86.4	86.4	5.8	5.8		4.7	4.8		5 5	5.0	
						26.2 25.1		8.2 8.3		32.6 31.0		86.4 111.6		5.8 7.7			4.8 2.8			7		
				Surface	1	24.9	25.0	8.3	8.3	31.0	31.0	110.5	111.1	7.7	7.7		2.6	2.7		7	7.0	
0 1 10	01	N4	45.40	Mistalla	0.5	24.8	04.0	8.3	0.0	31.6	01.0	110.1	1100	7.6	7.7	7.7	4.8	4.9	4.4	3	0.0	4.0
8-Jun-16	Cloudy	Moderate	15:42	Middle	3.5	24.7	24.8	8.3	8.3	31.5	31.6	110.3	110.2	7.7	7.7	7.7	4.9	4.9	4.4	3	3.0	4.3
				Bottom	6	24.8	24.8	8.3	8.3	31.6	31.7	110.1	110.4	7.6	7.7		5.9	5.6		3	3.0	
						24.8		8.3		31.8		110.7		7.7			5.3			3		
				Surface	1	27.2 26.6	26.9	8.0 8.0	8.0	33.7 33.5	33.6	84.4 84.5	84.5	5.6 5.6	5.6		2.7 2.8	2.8		3	3.0	
						27.2		8.0		32.8		87.2		5.8			2.2			<2.5		
10-Jun-16	Fine	Calm	14:55	Middle	3.5	27.3	27.3	8.2	8.1	32.7	32.8	84.7	86.0	5.6	5.7	5.8	2.0	2.1	2.7	<2.5	<2.5	2.7
				Bottom	6	26.6	26.5	8.2	8.2	32.2	32.1	90.5	91.4	6.1	6.2		3.2	3.2		<2.5	<2.5	
				DOMOIT	U	26.4	20.5	8.1	0.2	32.0	32.1	92.3	31.4	6.2	0.2		3.2	5.2		<2.5	\2. 3	
				Surface	1	27.4	27.4	7.8	7.8	32.0	32.0	83.1	82.8	5.5	5.5		3.5	3.5		6	6.0	
						27.3 26.8		7.8 8.0		32.0 32.6		82.5 81.4		5.5 5.4			3.5 4.3			6 4	-	
13-Jun-16	Cloudy	Moderate	13:47	Middle	4	26.8	26.8	8.0	8.0	32.6	32.6	81.4	81.4	5.4	5.4	5.4	4.5	4.4	4.1	5	4.5	4.8
				D-#	7	26.6	00.0	8.0	0.0	33.0	00.4	79.5	70.0	5.3	F.0		4.4	4.5		4	4.0	
				Bottom	/	26.6	26.6	8.0	8.0	33.1	33.1	79.1	79.3	5.3	5.3		4.6	4.5		4	4.0	
				Surface	1	26.9	26.9	8.1	8.1	30.1	30.1	94.2	94.1	6.4	6.4		3.6	3.6		5	5.0	
						26.9		8.1		30.1		94.0	•	6.3	***		3.6			5		
15-Jun-16	Cloudy	Moderate	10:36	Middle	3.5	26.7 26.7	26.7	8.2 8.2	8.2	30.3 30.3	30.3	93.1 92.9	93.0	6.3 6.3	6.3	6.2	3.5 3.5	3.5	3.6	5 5	5.0	4.8
					_	26.4		8.2		31.5		85.8		5.8			3.6			5	<u> </u>	
				Bottom	6	26.4	26.4	8.2	8.2	31.7	31.6	85.0	85.4	5.7	5.8		3.7	3.7		4	4.5	
				Surface	1	29.2	29.1	7.8	7.9	28.1	28.1	95.5	95.7	6.3	6.3		2.6	2.6		3	3.0	
				Juliace	'	29.0	20.1	7.9	7.5	28.1	20.1	95.8	55.7	6.3	0.0		2.5	2.0		3	0.0	
17-Jun-16	Sunny	Moderate	12:02	Middle	4	27.5	27.5	7.9	7.9	30.3	30.3	88.2	88.1	5.9	5.9	5.9	4.4	4.5	4.4	3	3.0	3.0
	-					27.5 27.1		7.9 7.9		30.3 31.4		88.0 80.3		5.9 5.4			4.5 6.0		ł	3		
				Bottom	7	27.1	27.1	7.9	7.9	31.4	31.5	79.8	80.1	5.4	5.4		6.1	6.1		3	3.0	
						£7.1	<u> </u>	7.5	1	01.0	1	, 5.0		0.0	1		J. 1	1	1		<u>ı </u>	

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

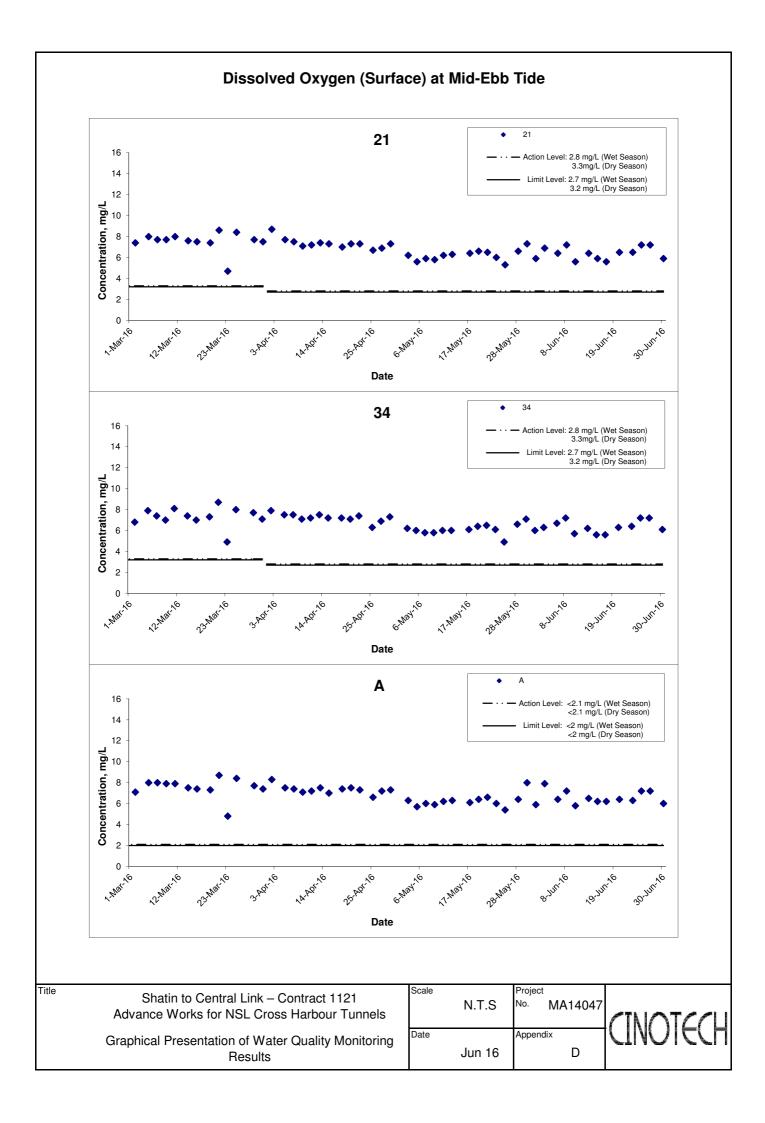
Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	•	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бер	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	8.0 8.0	8.0	32.7 32.8	32.8	93.6 93.4	93.5	6.6 6.6	6.6		1.6 1.6	1.6		8 8	8.0	
20-Jun-16	Sunny	Rough	13:18	Middle	3.5	23.6 23.6	23.6	8.1 8.1	8.1	32.8 32.8	32.8	94.5 94.5	94.5	6.6 6.6	6.6	6.6	2.5 2.4	2.5	2.5	3	3.0	5.0
				Bottom	6	23.6 23.6	23.6	8.0 8.0	8.0	32.7 32.7	32.7	93.8 94.2	94.0	6.6 6.6	6.6		3.5 3.2	3.4		4 4	4.0	
				Surface	1	26.1 26.1	26.1	8.1 8.1	8.1	27.3 27.4	27.4	94.0 87.4	90.7	6.4 5.9	6.2		2.2 2.2	2.2		7 7	7.0	
23-Jun-16	Sunny	Moderate	12:56	Middle	3.5	24.7 24.7	24.7	8.1 8.1	8.1	29.1 29.2	29.2	86.6 87.8	87.2	6.0 6.0	6.0	6.0	2.0 2.1	2.1	2.5	4 5	4.5	5.8
				Bottom	6	24.0 24.0	24.0	8.2 8.2	8.2	29.9 29.9	29.9	83.5 83.2	83.4	5.8 5.8	5.8		2.9 3.3	3.1		6 6	6.0	
				Surface	1	28.5 28.4	28.5	8.3 8.3	8.3	31.4 31.4	31.4	118.8 118.4	118.6	7.7 7.7	7.7		2.5 2.9	2.7		4 4	4.0	
25-Jun-16	Sunny	Rough	16:42	Middle	3.5	28.3 28.2	28.3	8.3 8.3	8.3	31.9 32.0	32.0	117.3 116.9	117.1	7.7 7.6	7.7	7.7	4.7 4.8	4.8	4.4	4 4	4.0	4.0
				Bottom	6	28.2 28.3	28.3	8.3 8.3	8.3	32.1 32.2	32.2	117.4 117.3	117.4	7.7 7.6	7.7		5.7 5.9	5.8		4 4	4.0	
				Surface	1	28.8 28.6	28.7	8.3 8.3	8.3	31.2 31.1	31.2	118.6 118.1	118.4	7.7 7.7	7.7		2.4 2.4	2.4		6 6	6.0	
27-Jun-16	Sunny	Moderate	18:22	Middle	3.5	28.3 28.4	28.4	8.3 8.3	8.3	31.5 31.7	31.6	116.9 117.1	117.0	7.6 7.6	7.6	7.7	2.7 2.7	2.7	4.0	7 7	7.0	5.5
				Bottom	6	28.4 28.4	28.4	8.3 8.3	8.3	31.8 31.9	31.9	117.4 117.5	117.5	7.7 7.7	7.7		6.8 6.7	6.8		4 3	3.5	
				Surface	1	28.8 28.8	28.8	8.0 8.0	8.0	29.3 29.4	29.4	88.7 88.9	88.8	5.8 5.8	5.8		3.4 3.2	3.3		6 5	5.5	
30-Jun-16	Cloudy	Moderate	10:19	Middle	3.5	28.5 28.5	28.5	8.0 8.0	8.0	30.7 30.4	30.6	87.8 87.6	87.7	5.8 5.7	5.8	5.8	4.0 4.1	4.1	4.2	7 7	7.0	5.8
				Bottom	6	28.4 28.4	28.4	7.9 7.9	7.9	31.1 31.1	31.1	89.6 89.4	89.5	5.9 5.9	5.9		5.3 5.1	5.2		5 5	5.0	

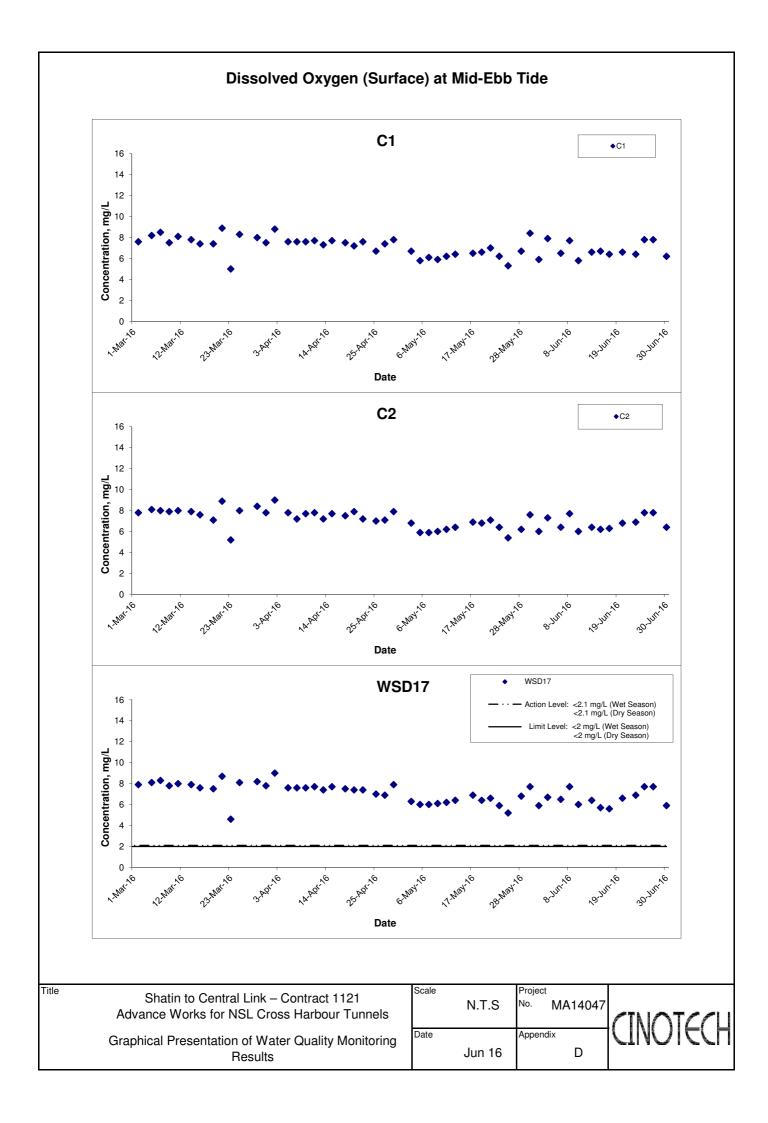
Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

Remarks: *DA: Depth-Averaged

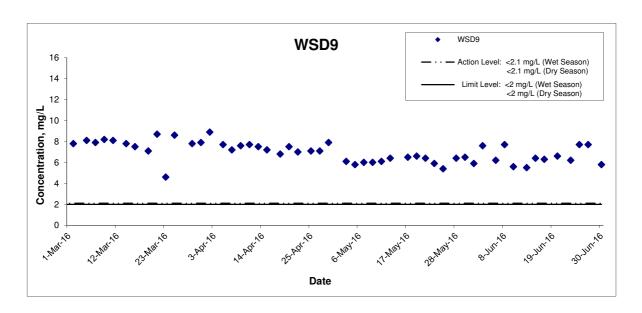
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Dale	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 25.0	25.3	7.5 7.5	7.5	31.9 32.5	32.2	86.0 85.3	85.7	5.9 5.9	5.9		1.2 1.2	1.2		4	4.0	
1-Jun-16	Sunny	Calm	13:56	Middle	3.5	25.5 25.6	25.6	7.5 7.4	7.5	32.0 32.6	32.3	85.6 86.9	86.3	5.9 5.9	5.9	5.9	1.4 1.4	1.4	2.1	4	4.0	3.8
				Bottom	6	25.1 24.9	25.0	7.4 7.5	7.5	33.6 31.3	32.5	86.7 84.1	85.4	5.9 5.8	5.9		3.8	3.8		3 4	3.5	
				Surface	1	29.2 29.1	29.2	8.4 8.4	8.4	29.9 29.9	29.9	117.9 117.1	117.5	7.7 7.6	7.7		3.0 2.8	2.9		5 5	5.0	
3-Jun-16	Cloudy	Moderate	18:10	Middle	3.5	28.7	28.7	8.3 8.3	8.3	31.7 31.7	31.7	111.0 111.8	111.4	7.2 7.3	7.3	7.3	2.7	2.7	3.0	7 7	7.0	5.8
				Bottom	6	28.5 28.5	28.5	8.3 8.3	8.3	32.0 31.9	32.0	105.9 104.4	105.2	6.9 6.8	6.9		3.3	3.4		5	5.5	
				Surface	1	25.4	25.0	8.2	8.2	31.1	31.6	102.1	102.0	7.0	7.1		3.2	3.3		3	3.0	
6-Jun-16	Cloudy	Moderate	21:06	Middle	3.5	24.5 25.0	24.7	8.2	8.2	32.1	32.2	95.7	95.6	6.6	6.6	6.8	4.0	4.1	3.8	4	4.0	3.5
				Bottom	6	24.3 24.7 24.3	24.5	8.2 8.2 8.2	8.2	32.9 31.4 32.9	32.2	95.5 94.6 94.2	94.4	6.6 6.6 6.5	6.6		4.1 3.9 4.1	4.0		4 4 3	3.5	
				Surface	1	24.9	24.9	8.3	8.3	31.3	31.3	107.2	107.2	7.4	7.4		2.2	2.2		4	4.0	
8-Jun-16	Cloudy	Moderate	09:10	Middle	3.5	24.9 24.9 24.8	24.9	8.3 8.3 8.2	8.3	31.3 31.8 31.9	31.9	107.2 107.8 107.5	107.7	7.4 7.5 7.4	7.5	7.4	3.4 3.3	3.4	4.3	4 4	4.0	3.5
				Bottom	6	24.8 24.7	24.8	8.2 8.2	8.2	32.3 32.2	32.3	107.5 107.2 106.7	107.0	7.4 7.4 7.4	7.4		7.1 7.2	7.2		<2.5 <2.5	<2.5	
				Surface	1	26.8	26.6	8.1	8.2	33.6	33.5	91.2	89.5	6.0	6.0		4.1	4.1		3	3.0	
10-Jun-16	Fine	Calm	10:33	Middle	3.5	26.4 26.6	26.6	8.2 8.0	8.1	33.4 32.2	32.4	87.8 82.7	86.6	5.9 5.5	5.8	5.9	3.8	3.9	4.2	3	3.5	3.3
				Bottom	6	26.6 26.4	26.4	8.1 7.9	7.9	32.5 31.9	32.5	90.5 82.6	87.3	6.1 5.6	5.9		3.9 4.4	4.7		4	3.5	
				Surface	1	26.3 26.9	26.9	7.9 8.1	8.1	33.0 32.1	32.1	91.9 81.3	81.4	6.2 5.4	5.4		5.0 3.8	3.7		3	3.5	
13-Jun-16	Cloudy	Moderate	17:35	Middle	3.5	26.9 26.7	26.7	8.1 8.1	8.1	32.0 32.7	32.8	81.5 80.2	80.2	5.4 5.4	5.4	5.3	3.6 4.3	4.6	4.1	3 4	4.0	3.8
10 dan 10	Cioday	Woderate	17.00	Bottom	6	26.7 26.5	26.5	8.1 8.0	8.0	32.9 33.7	33.7	80.2 78.2	78.2	5.3 5.2	5.2	0.0	4.9 3.9	4.0	7.1	4	4.0	0.0
				Surface	1	26.5 26.4	26.4	8.3	8.3	33.7 29.3	29.3	78.1 93.0	93.0	5.2 6.4	6.4		4.1 3.6	3.6		5	5.0	
15-Jun-16	Cloudy	Moderate	16:42	Middle	3.5	26.4 26.1	26.1	8.3 8.2	8.2	29.3 30.3	30.4	93.0 87.0	86.5	6.4 5.9	5.9	6.0	3.6 3.9	3.9	3.8	5 6	6.0	5.0
10-Juli-10	Cloudy	iviouerale	10.42	Bottom	6	26.0 26.2	26.2	8.2 8.2	8.2	30.5 31.4	31.4	86.0 82.2	82.5	5.9 5.6	5.9	0.0	3.8	3.9	3.0	6 4	4.0	5.0
					1	26.2 28.9	28.9	8.2 8.1	8.1	31.4 29.2	29.2	82.8 93.6	93.4	5.6 6.1			3.8 2.0	2.0		3		
47 k 40	Classide	Modt	10:00	Surface		28.8 27.7		8.1 8.1		29.2 30.1		93.2 86.9		6.1 5.8	6.1	E 7	1.9 2.5		0.0	3 4	3.0	0.5
17-Jun-16	Cloudy	Moderate	16:00	Middle	4	27.6 27.0	27.7	8.1 8.1	8.1	30.3 31.7	30.2	87.1 78.1	87.0	5.8 5.2	5.8	5.7	2.3 4.3	2.4	2.9	3	4.0	3.5
				Bottom	7	27.0	27.0	8.1	8.1	31.9	31.8	79.1	78.6	5.3	5.3		4.5	4.4		4	3.5	<u> </u>

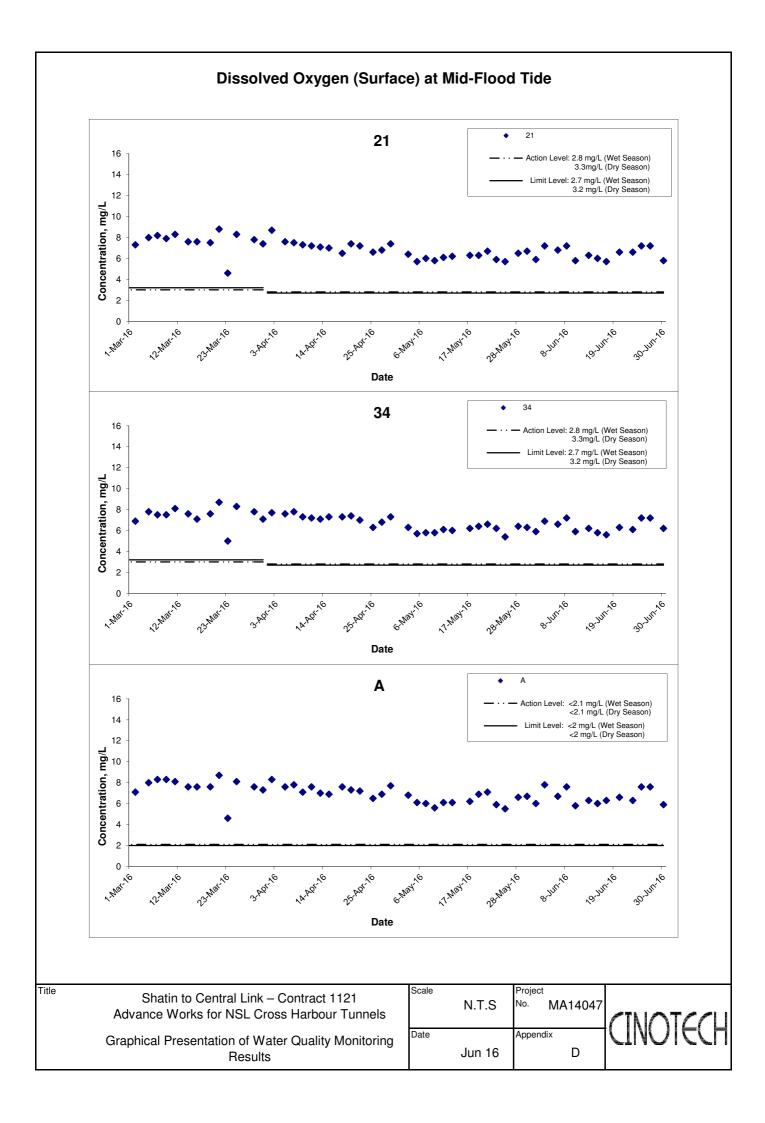

Remarks: *DA: Depth-Averaged

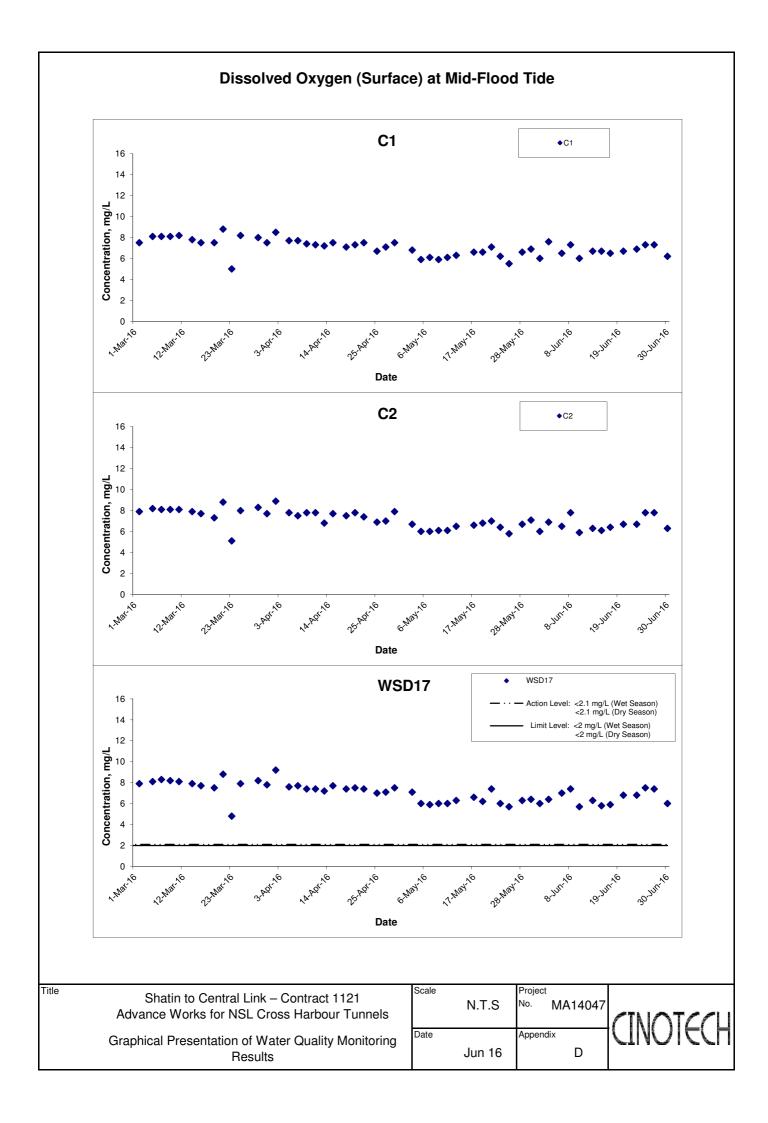

Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Bato	Condition	Condition**	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	8.1 8.1	8.1	33.1 33.1	33.1	95.7 95.7	95.7	6.7 6.7	6.7		3.2 3.1	3.2		3 3	3.0	
20-Jun-16	Fine	Calm	20:30	Middle	3.5	23.8 23.8	23.8	8.2 8.2	8.2	33.2 33.2	33.2	94.5 94.9	94.7	6.6 6.6	6.6	6.6	3.5 3.6	3.6	3.3	3 3	3.0	3.3
				Bottom	6	23.7 23.6	23.7	8.1 8.1	8.1	33.3 33.3	33.3	94.1 94.0	94.1	6.6 6.6	6.6		3.0 3.2	3.1		4	4.0	
				Surface	1	25.7 25.6	25.7	8.2 8.2	8.2	28.0 28.1	28.1	96.5 96.4	96.5	6.6 6.6	6.6		2.7 2.4	2.6		5 5	5.0	
23-Jun-16	Sunny	Moderate	08:44	Middle	3.5	24.5 24.4	24.5	8.2 8.2	8.2	28.9 28.9	28.9	87.3 86.9	87.1	6.0 6.0	6.0	6.1	2.0 1.9	2.0	2.9	4	4.0	4.3
				Bottom	6	23.9 23.8	23.9	8.2 8.2	8.2	30.3 30.4	30.4	84.1 83.7	83.9	5.8 5.8	5.8		4.1 4.2	4.2		4	4.0	
				Surface	1	28.9 29.0	29.0	8.2 8.3	8.3	31.5 31.6	31.6	115.1 114.7	114.9	7.5 7.4	7.5		2.0 2.2	2.1		5 5	5.0	
25-Jun-16	Sunny	Rough	09:59	Middle	3.5	28.6 28.8	28.7	8.3 8.3	8.3	32.1 32.1	32.1	114.4 115.0	114.7	7.4 7.4	7.4	7.4	3.6 3.6	3.6	3.3	4 4	4.0	4.0
				Bottom	6	28.7 28.6	28.7	8.3 8.2	8.3	32.4 32.3	32.4	115.0 114.1	114.6	7.4 7.4	7.4		4.3 4.1	4.2		3 3	3.0	
				Surface	1	28.8 28.8	28.8	8.2 8.3	8.3	31.3 31.2	31.3	114.6 114.9	114.8	7.4 7.5	7.5		2.2 1.9	2.1		4 5	4.5	
27-Jun-16	Sunny	Moderate	11:49	Middle	3.5	28.6 28.6	28.6	8.3 8.3	8.3	31.7 32.0	31.9	114.2 114.4	114.3	7.4 7.4	7.4	7.4	3.0 3.3	3.2	3.2	7 7	7.0	5.3
				Bottom	6	28.5 28.7	28.6	8.3 8.2	8.3	32.1 32.1	32.1	114.1 114.2	114.2	7.4 7.4	7.4		4.1 4.4	4.3		4 5	4.5	
				Surface	1	28.8 28.7	28.8	7.9 8.0	8.0	29.2 29.3	29.3	89.6 89.7	89.7	5.9 5.9	5.9		3.3 3.4	3.4		6 6	6.0	
30-Jun-16	Cloudy	Moderate	16:29	Middle	3.5	28.6 28.6	28.6	7.9 7.9	7.9	30.8 30.6	30.7	90.5 90.8	90.7	5.9 5.9	5.9	5.9	3.1 3.3	3.2	3.6	5 5	5.0	5.7
				Bottom	6	28.5 28.5	28.5	8.0 8.0	8.0	31.1 31.0	31.1	89.1 88.6	88.9	5.8 5.8	5.8		4.3 4.2	4.3		6 6	6.0	

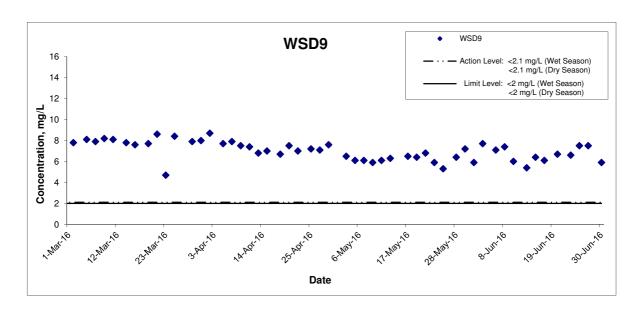

Remarks: The reporting limit for laboratory analysis of suspended solids is 2.5 mg/L. For the results below the reporting limit, the SS level will be taken as 2.5 mg/L.

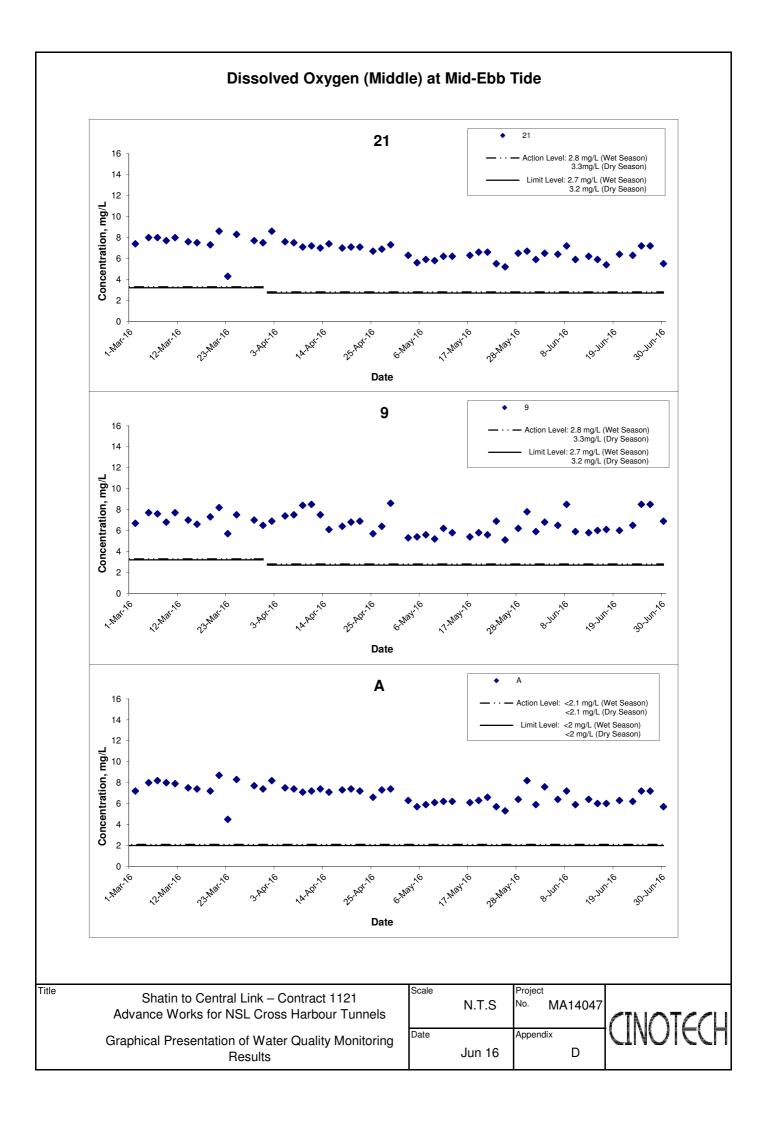
Remarks: *DA: Depth-Averaged

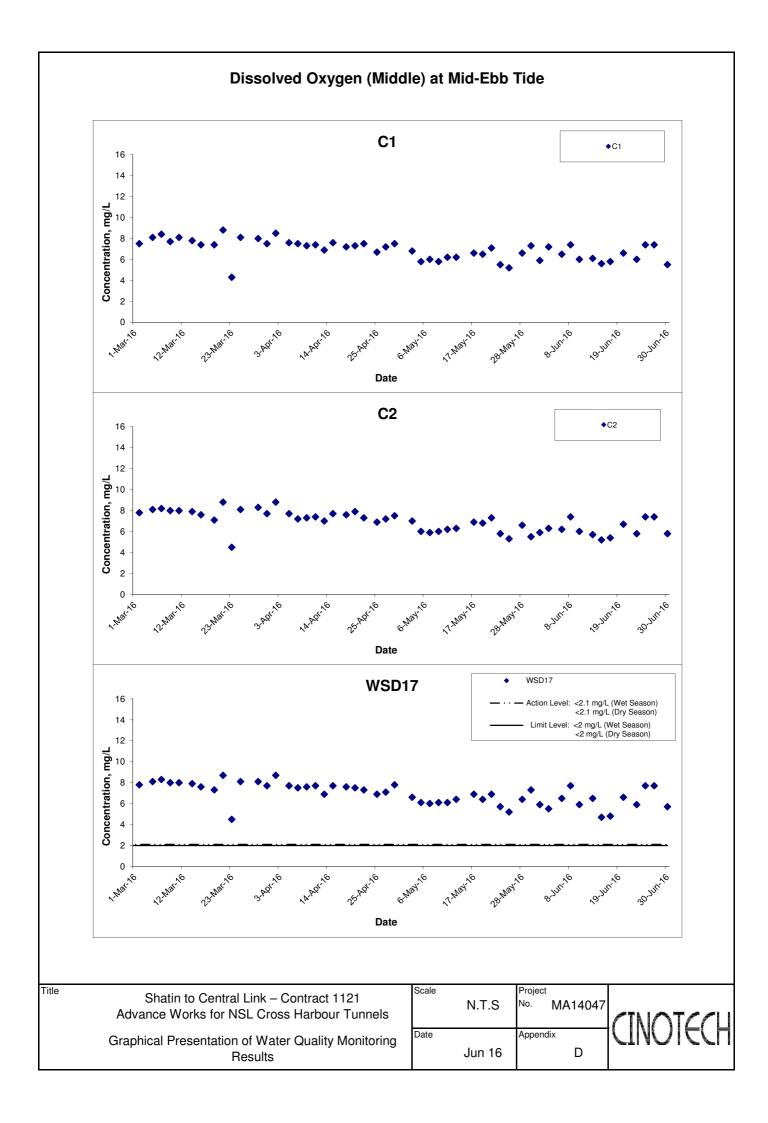

Dissolved Oxygen (Surface) at Mid-Ebb Tide



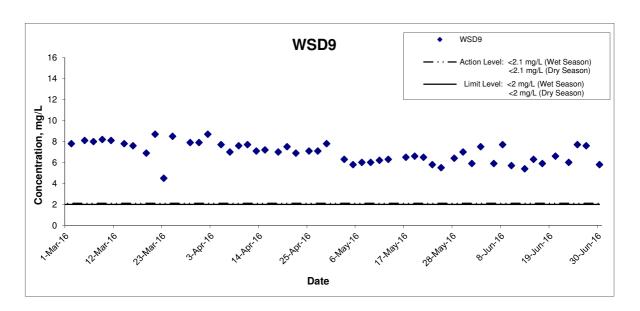
Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

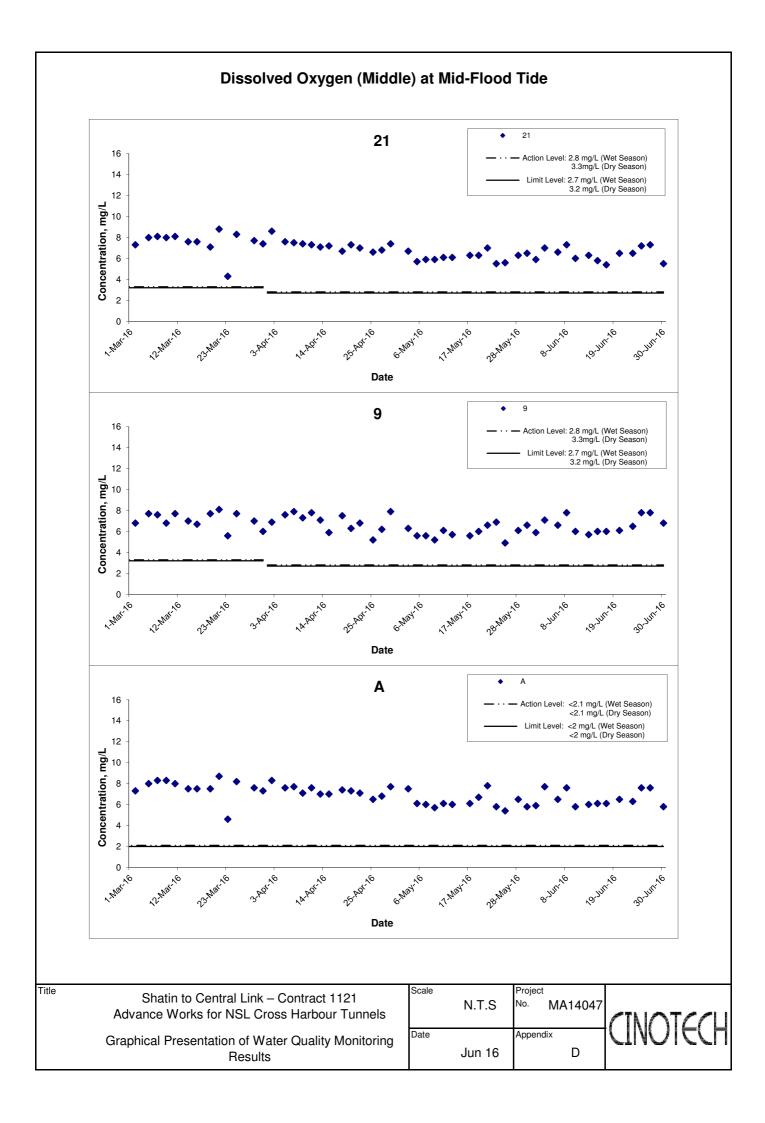

Scale		Project	
	N.T.S	No. MA140	47
Date		Appendix	
	Jun 16	D	

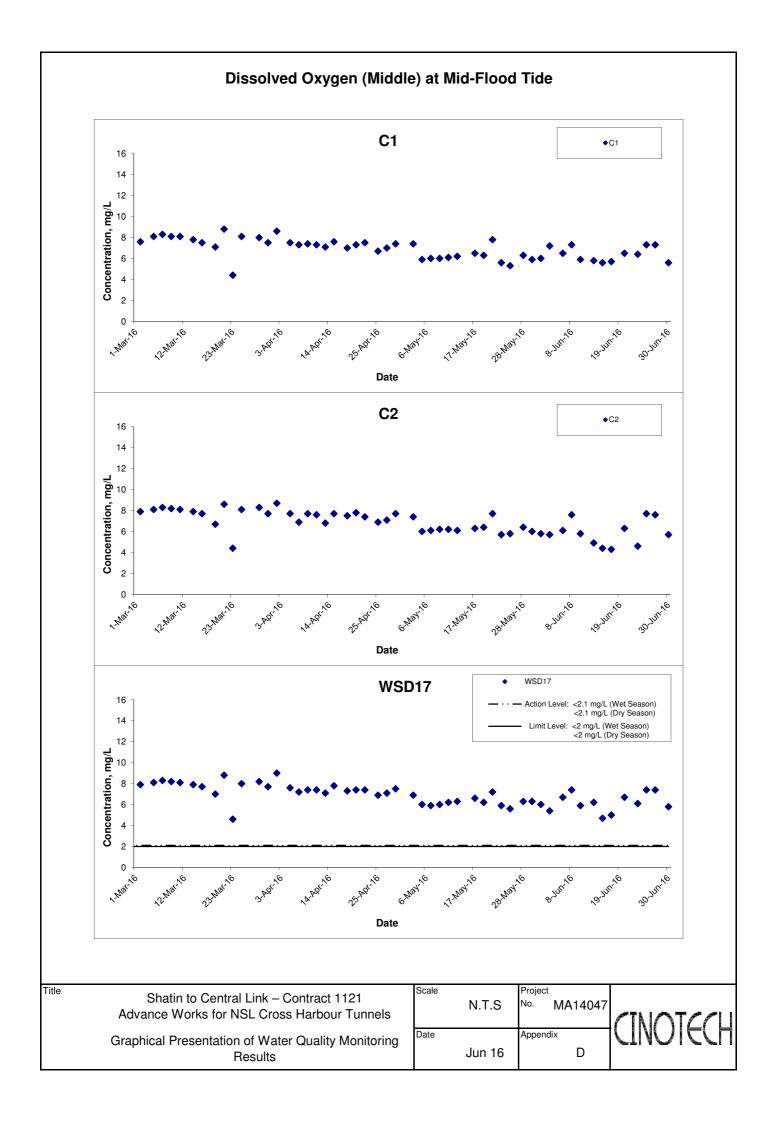

Dissolved Oxygen (Surface) at Mid-Flood Tide



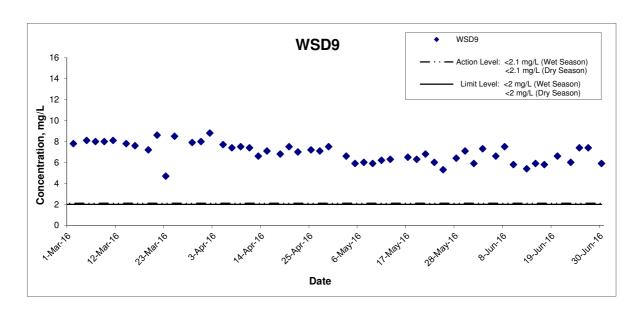
Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels Graphical Presentation of Water Quality Monitoring Results

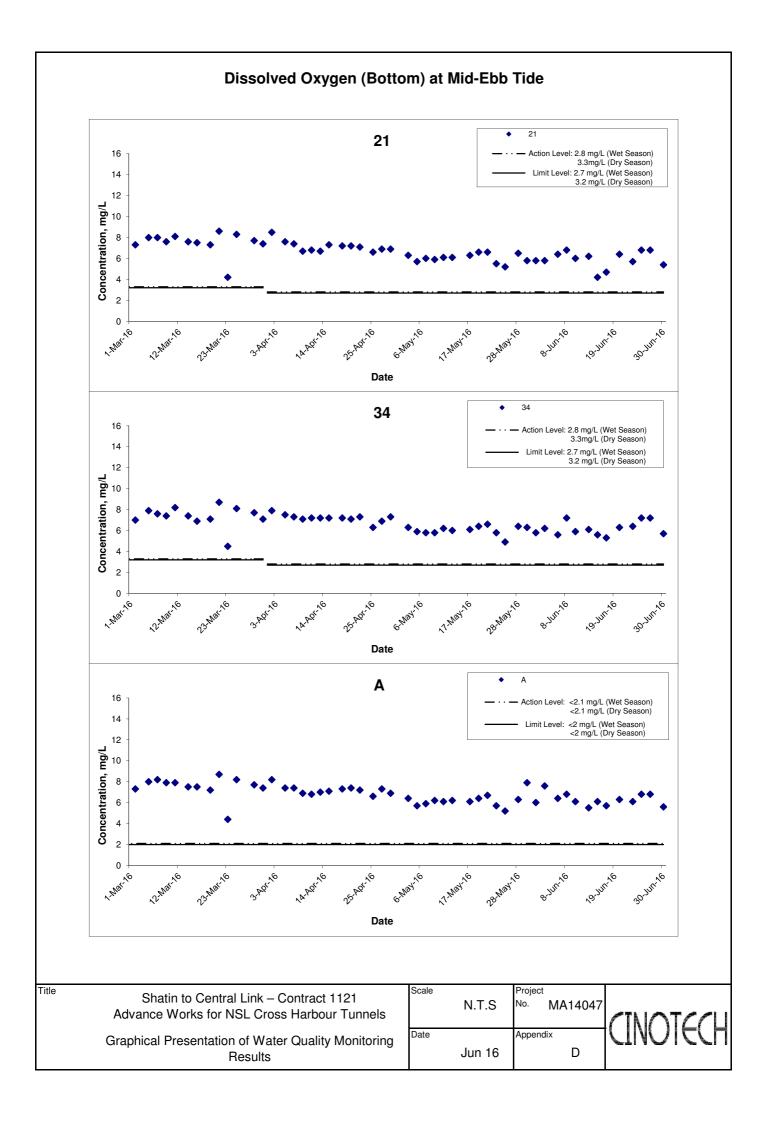

Scale		Project	
	N.T.S	No.	MA14047
Date		Appendix	(
	Jun 16		D

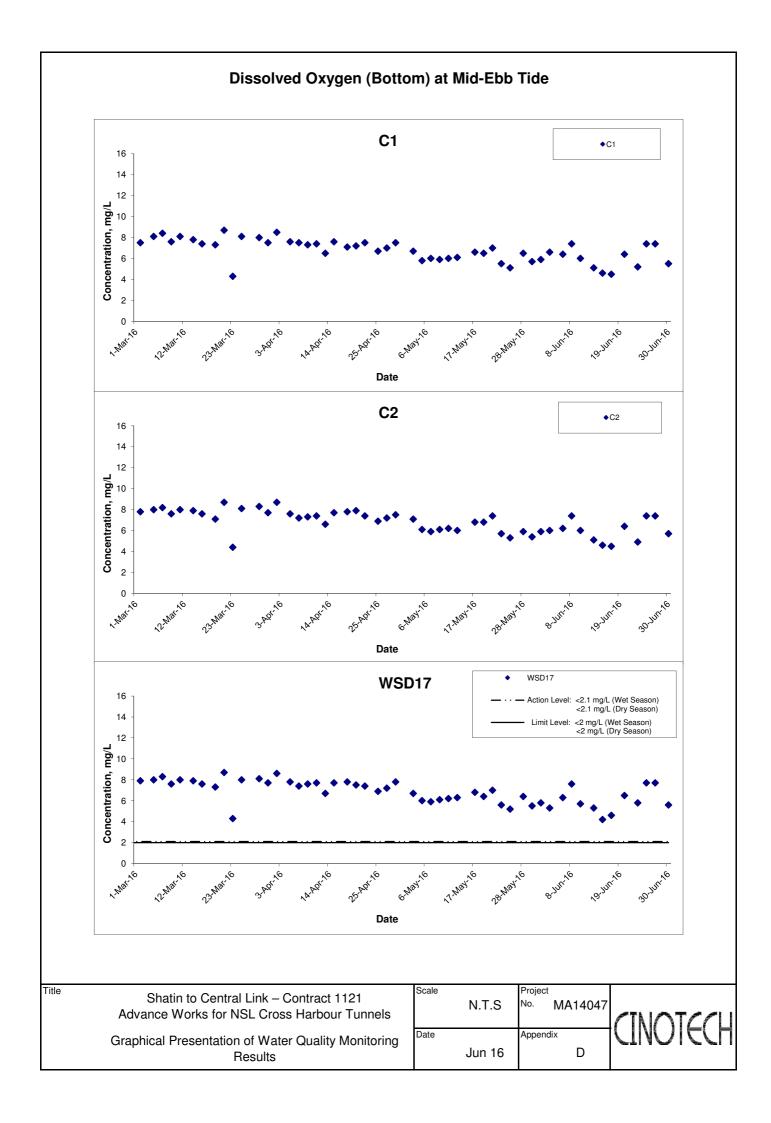

Dissolved Oxygen (Middle) at Mid-Ebb Tide



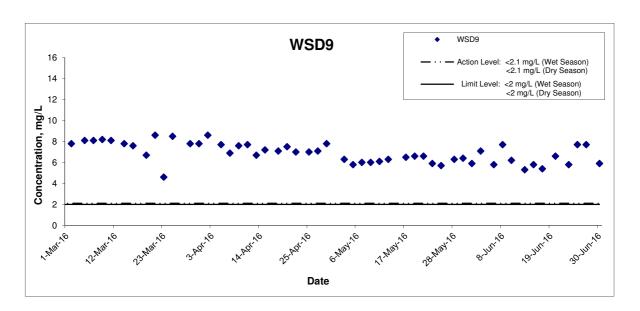
Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

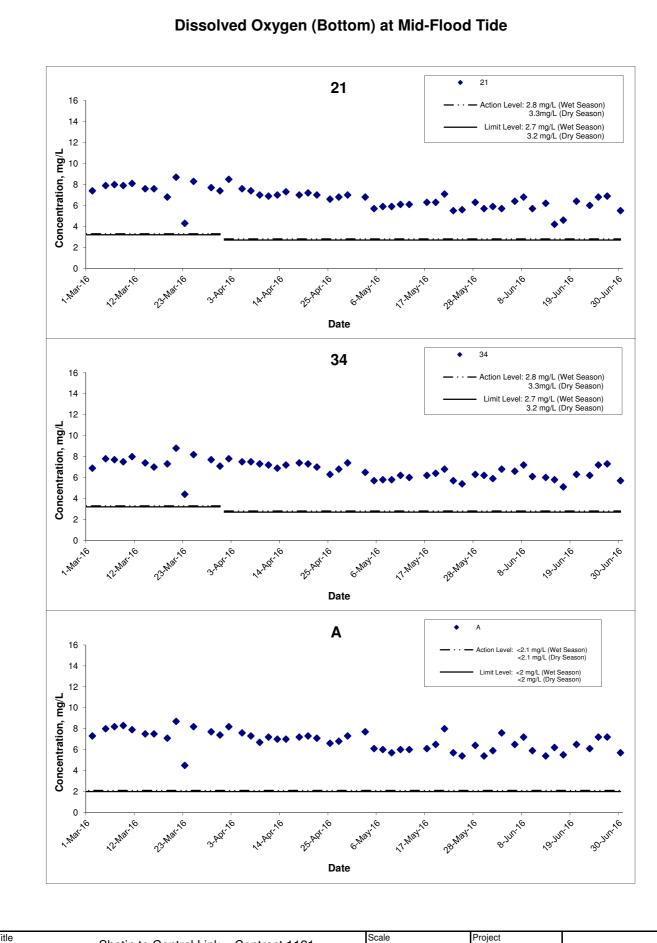

_		1	_
Scale		Project	
	N.T.S	No. MA14047	
Date		Appendix	-
	Jun 16	D	

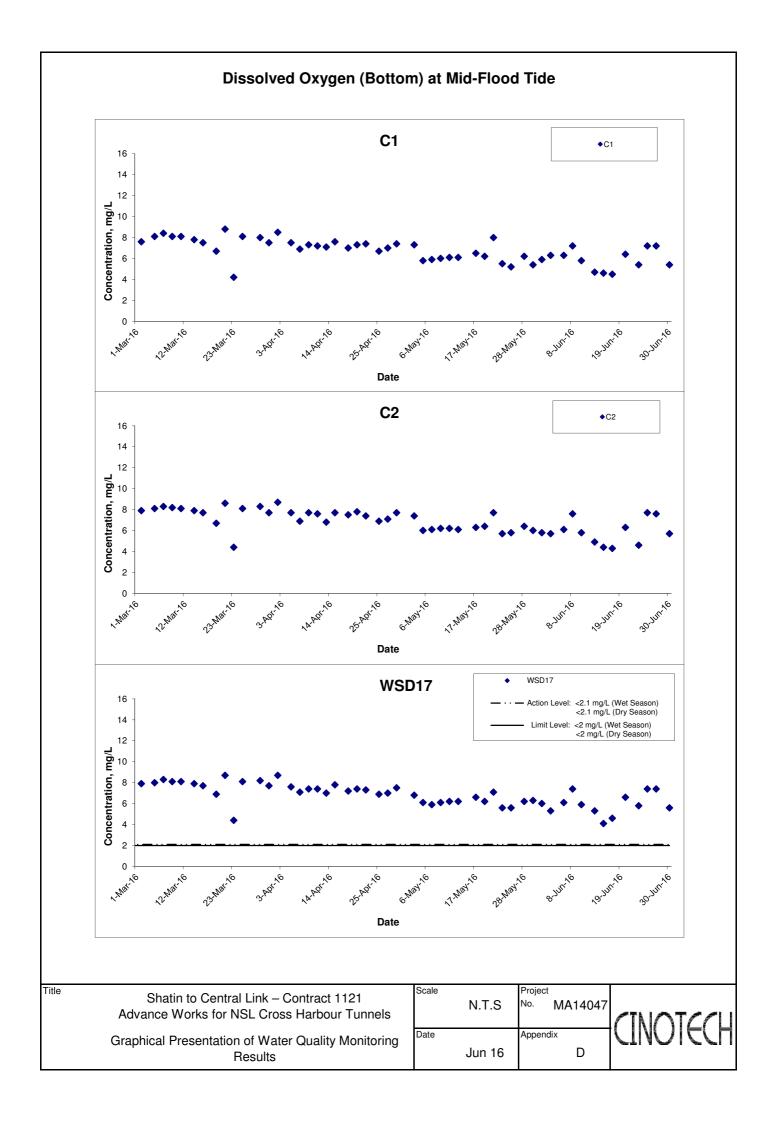

Dissolved Oxygen (Middle) at Mid-Flood Tide



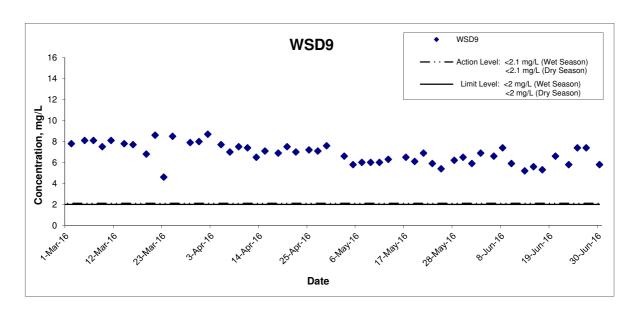
Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results


Scale		Project	
	N.T.S	No.	MA14047
Date		Append	ix
	Jun 16		D

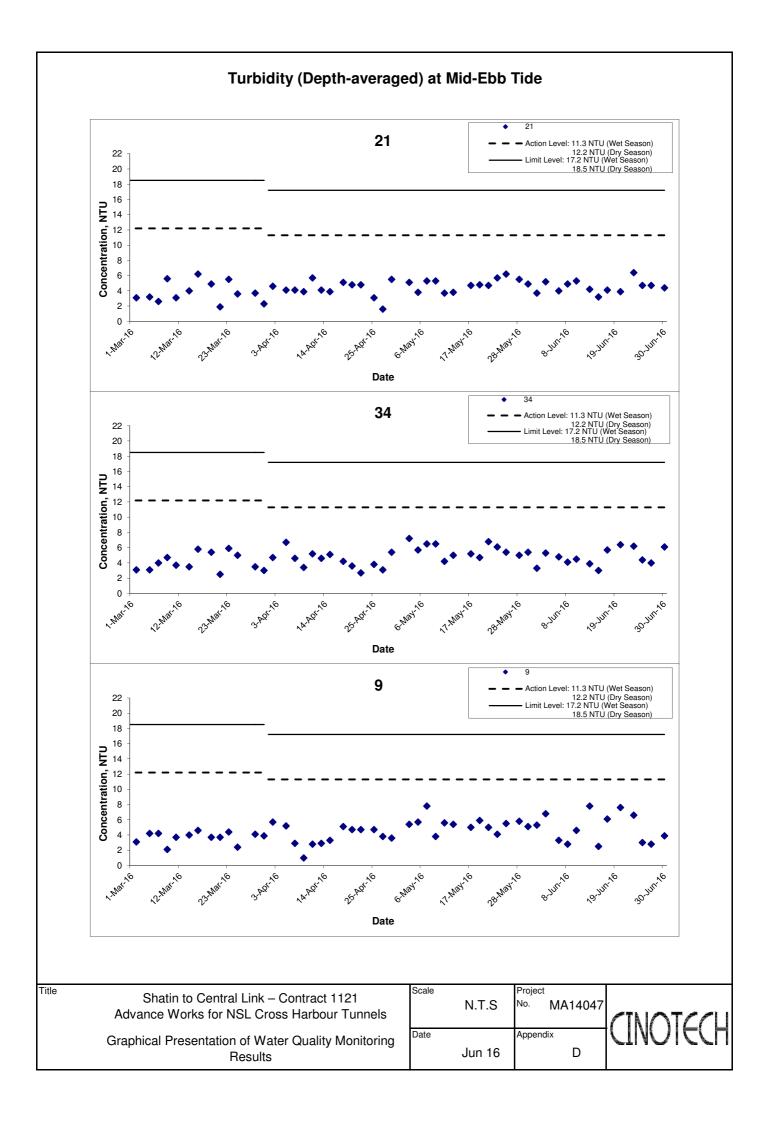

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

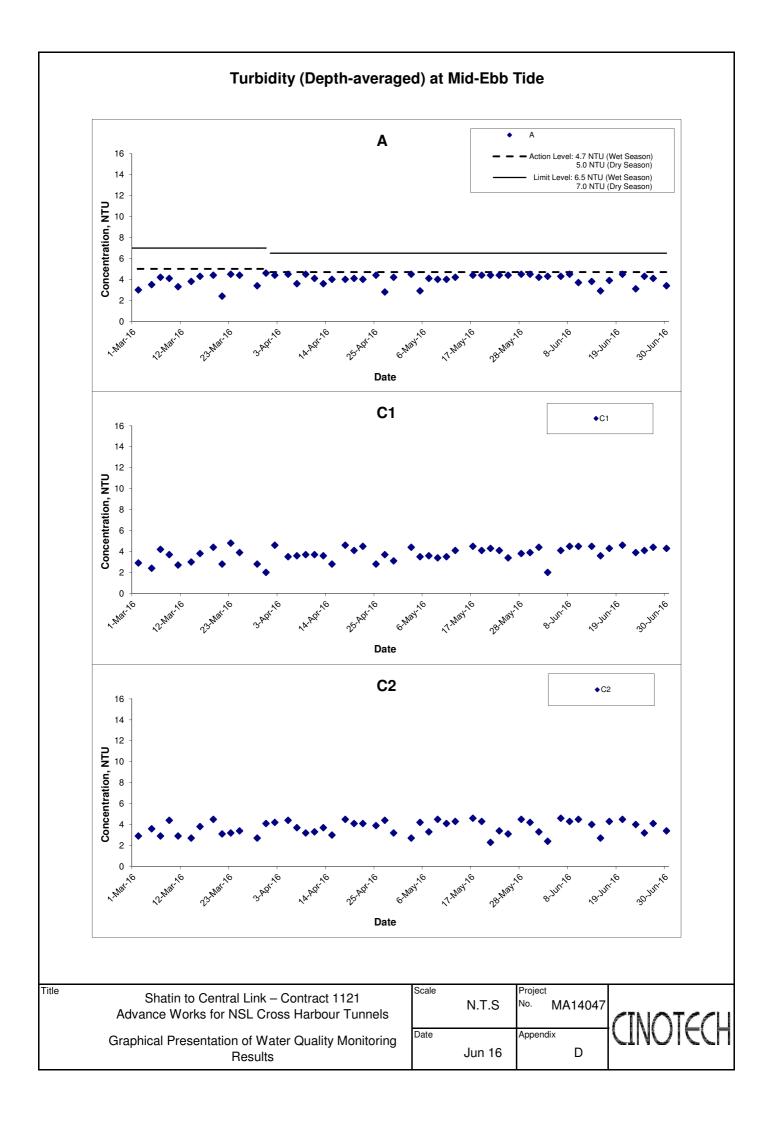

Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

Scale		Project	
	N.T.S	No.	MA14047
Date		Append	dix
	Jun 16		D

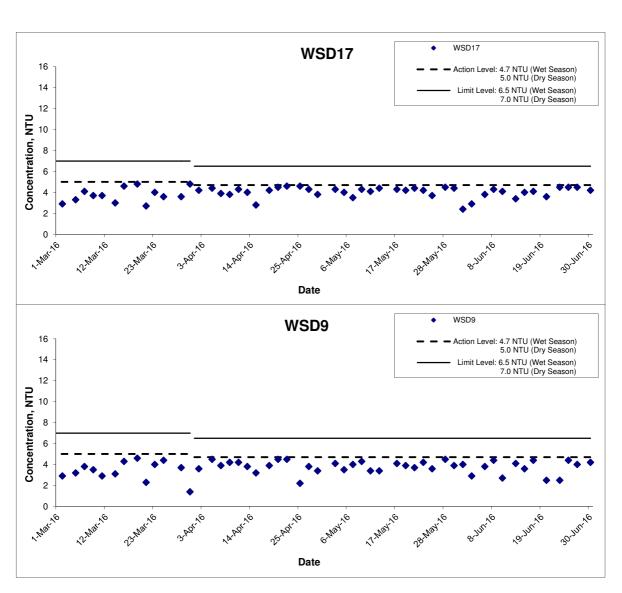


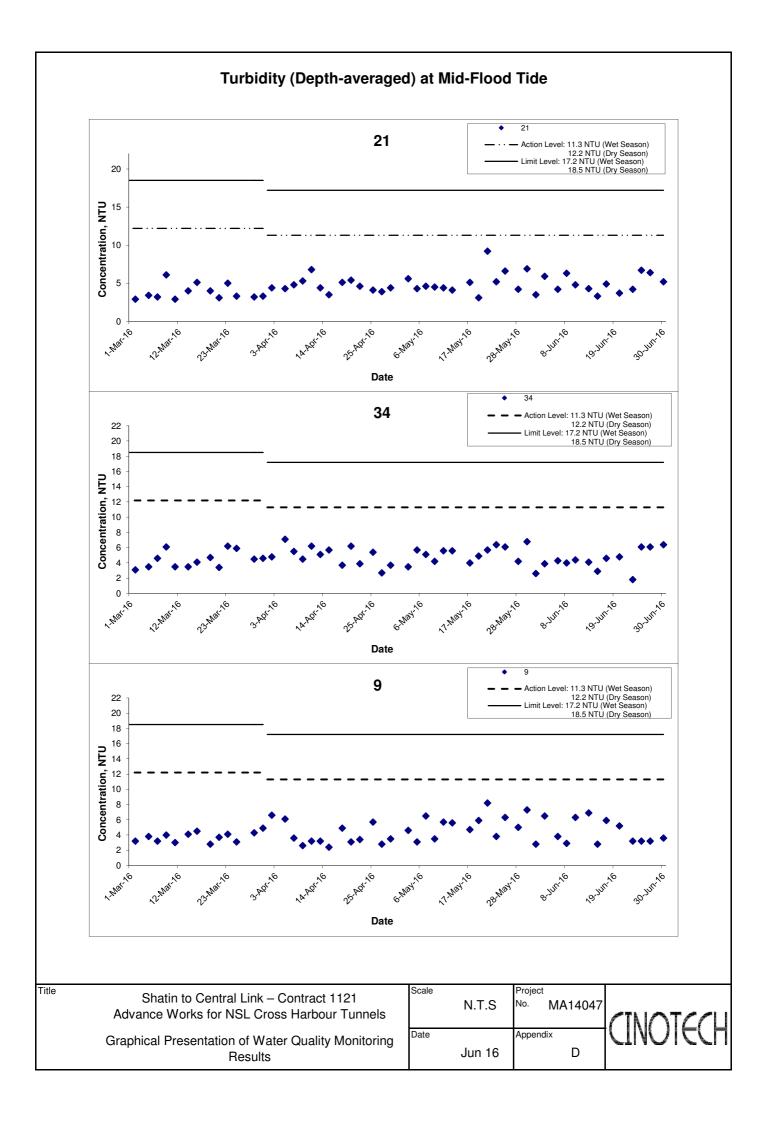
Title	Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		No.	MA14047	CINICITACU
(Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Appendix	D	CINOICCI

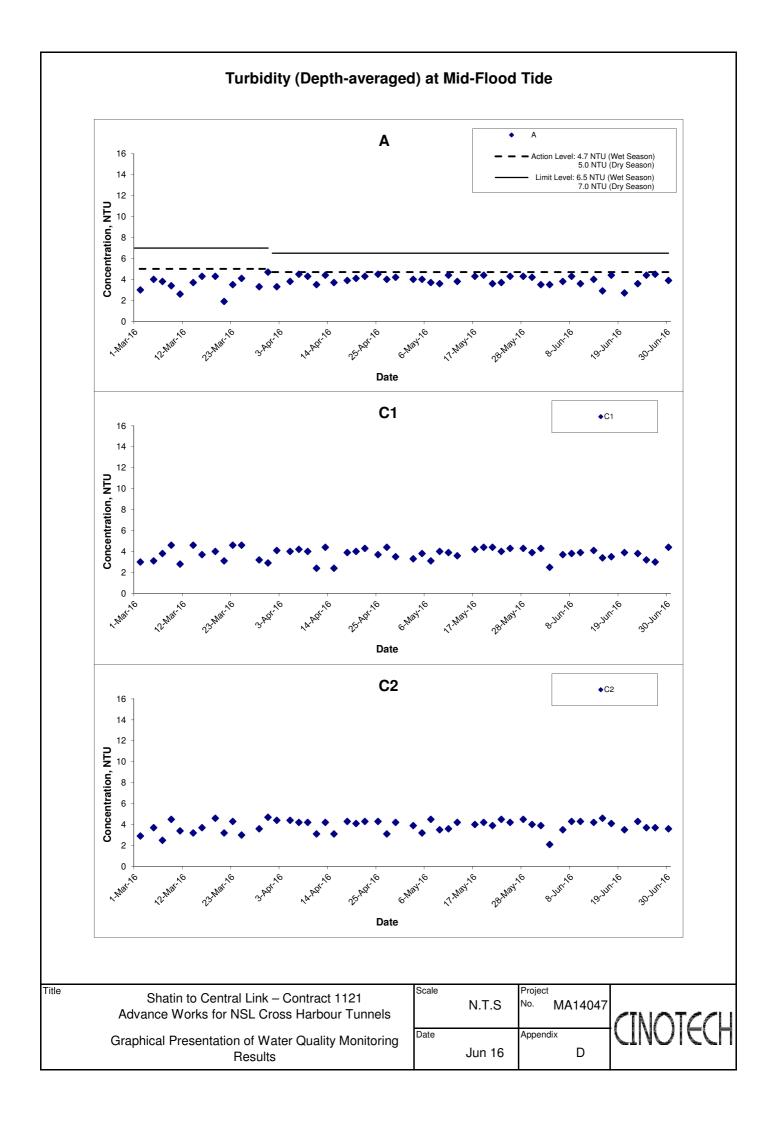

Dissolved Oxygen (Bottom) at Mid-Flood Tide



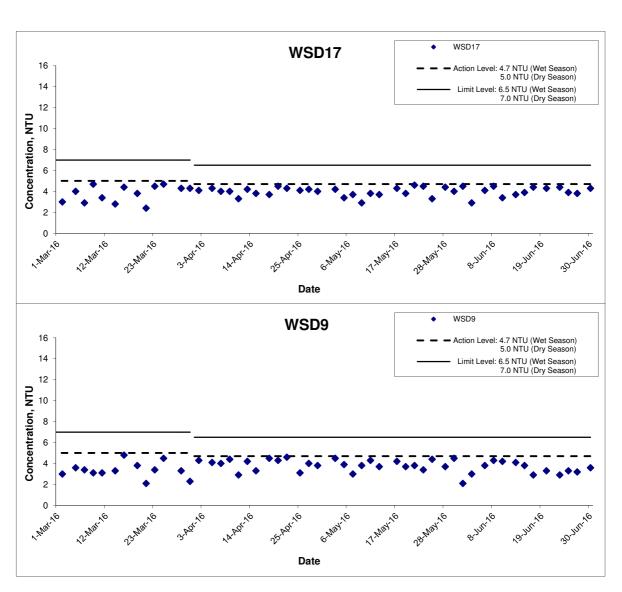
Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results


Scale		Project	
	N.T.S	No. MA1	4047
Date		Appendix	
	Jun 16	l	D

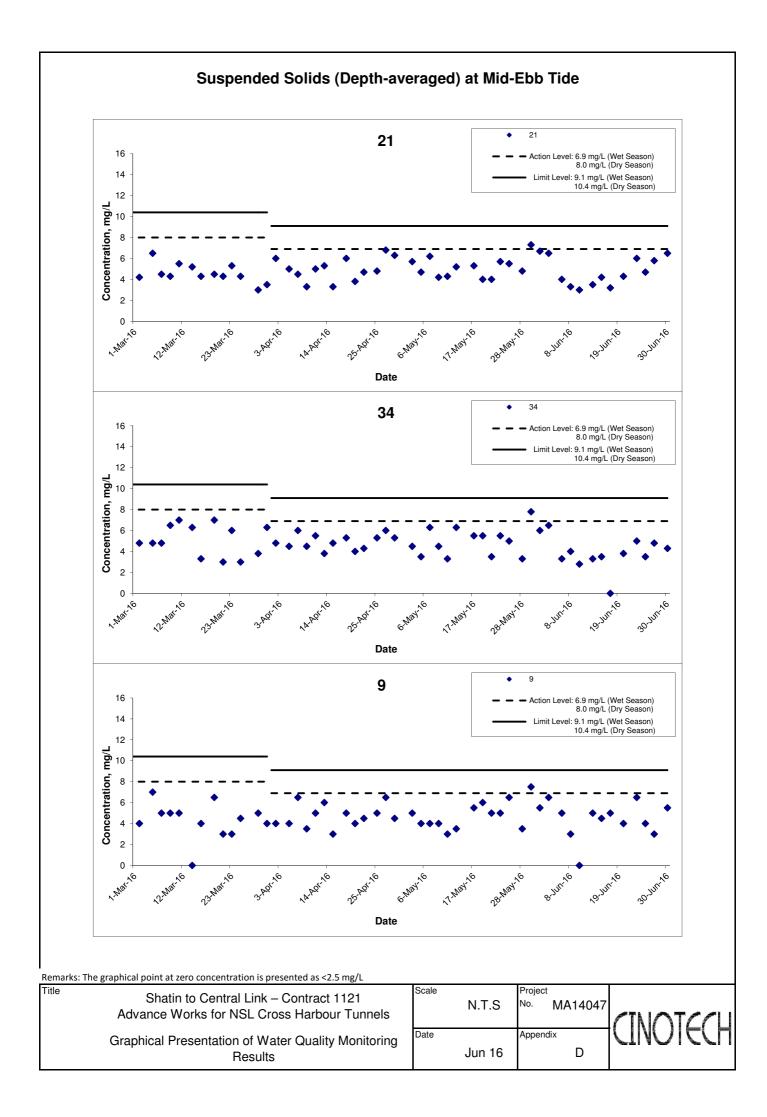


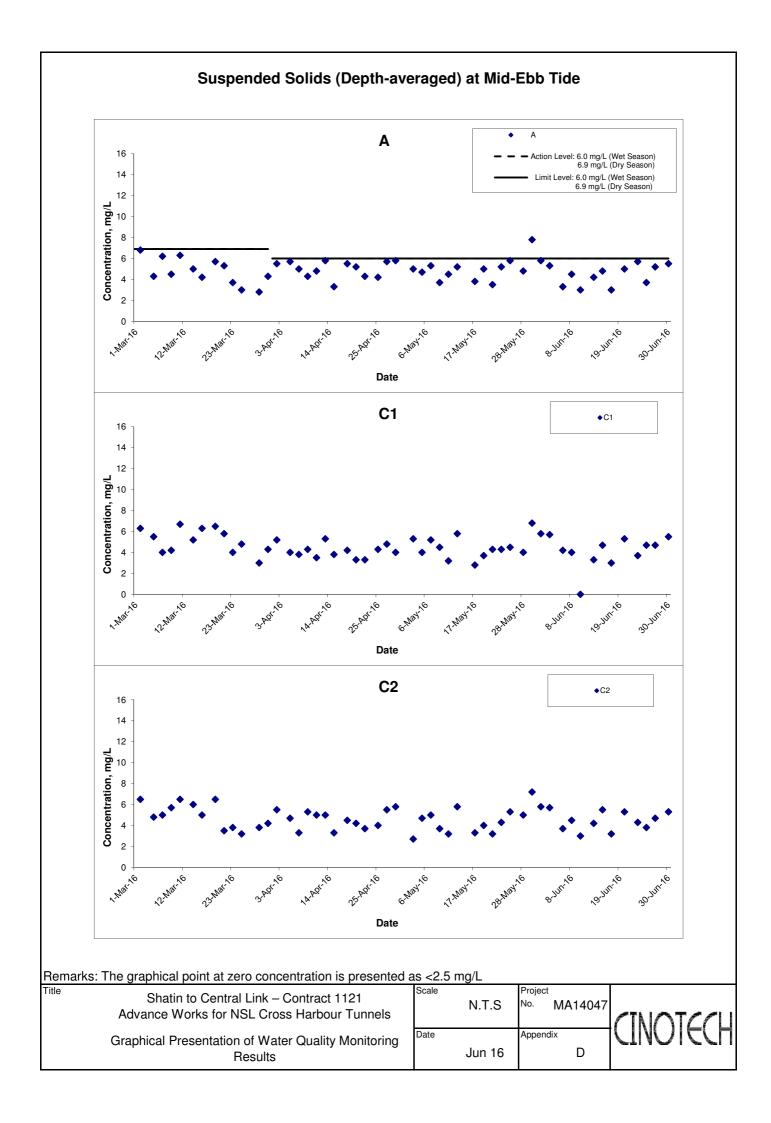


Turbidity (Depth-averaged) at Mid-Ebb Tide

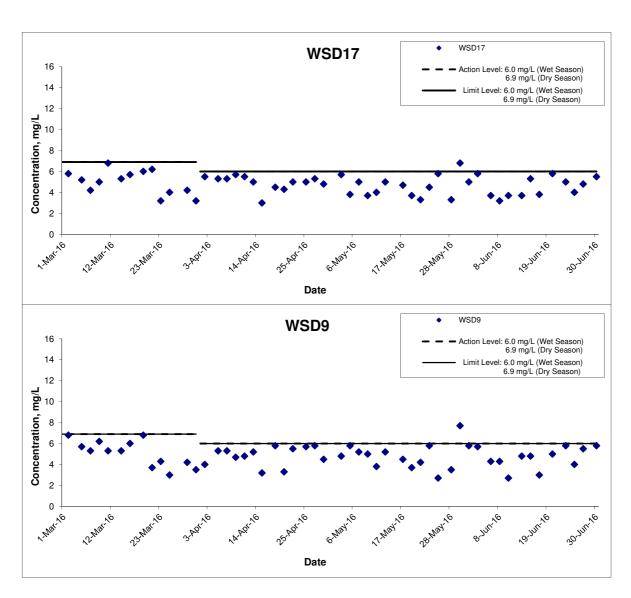


Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	N.T.S	No. MA14047	(TNI
Graphical Presentation of Water Quality Monitoring	Date	Appendix	VIV
Results	Jun 16	D	

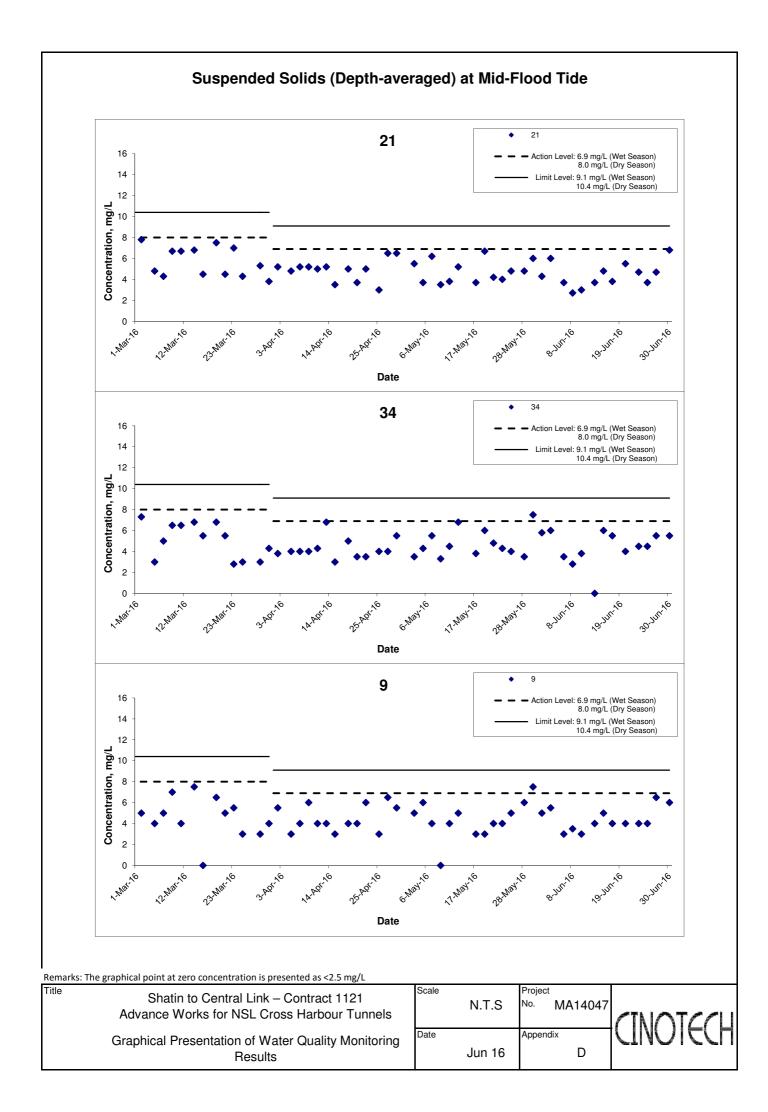


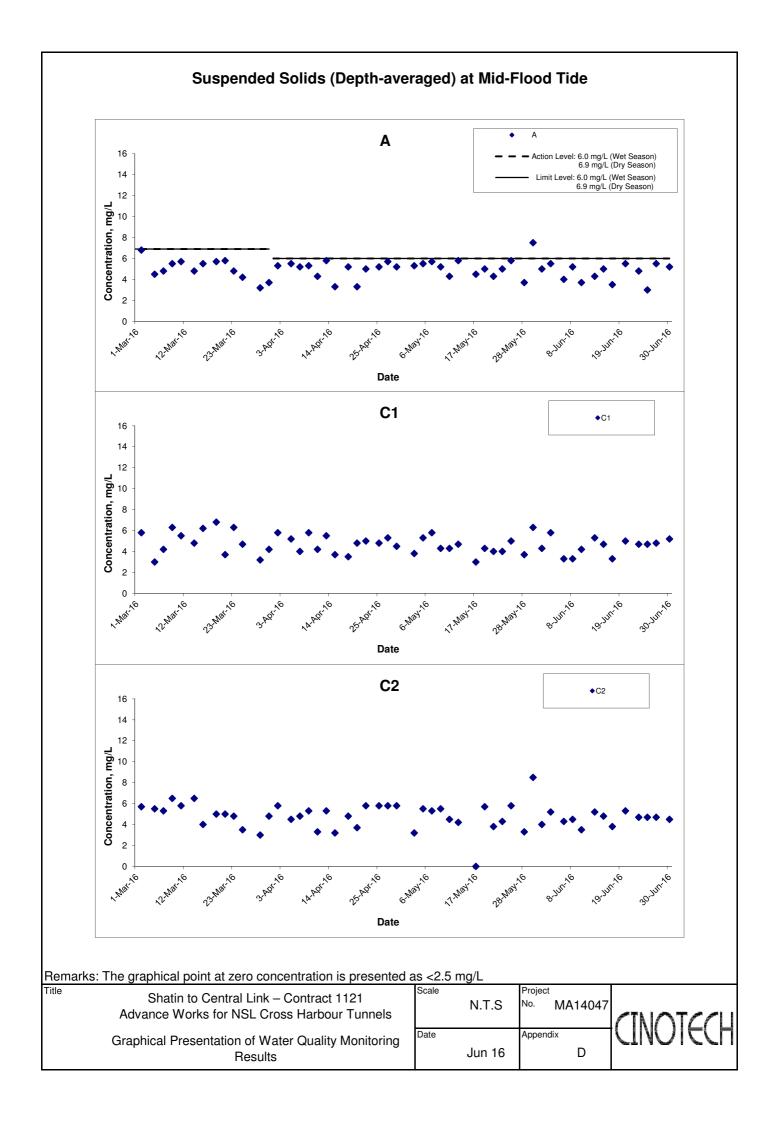


Turbidity (Depth-averaged) at Mid-Flood Tide

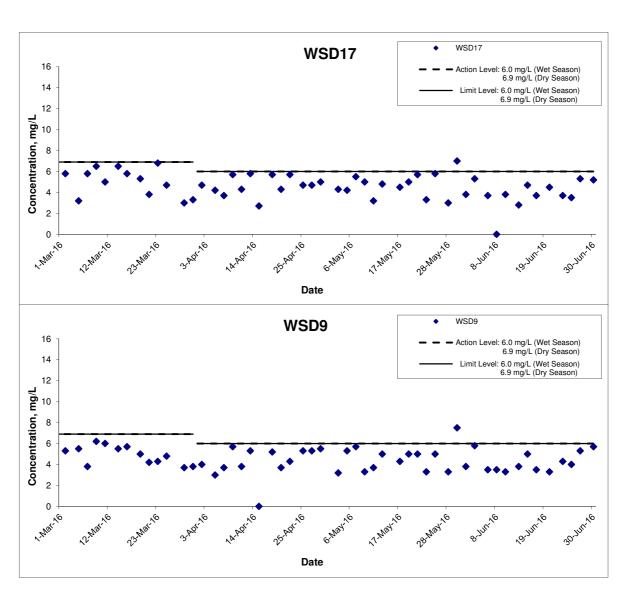


Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		Project No. MA14047	CINATEC
Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Appendix D	





Suspended Solids (Depth-averaged) at Mid-Ebb Tide



Shatin to Central Link – Contract 1121 Advance Works for NSL Cross Harbour Tunnels	Scale		Project No.	MA14047	CINOTCC
Graphical Presentation of Water Quality Monitoring Results	Date	Jun 16	Append	lix D	CINOICCE

Suspended Solids (Depth-averaged) at Mid-Flood Tide

Remarks: The graphical point at zero concentration is presented as <2.5 mg/L

Shatin to Central Link – Contract 1121
Advance Works for NSL Cross Harbour Tunnels
Graphical Presentation of Water Quality Monitoring
Results

Scale
N.T.S
Project
No. MA14047

Date
Jun 16
D

INDIECH

APPENDIX E COPIES OF CALIBRATION CERTIFICATES

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/160521

Date of Issue: 2016-05-21 Date Received: 2016-05-21

Date Tested: 2016-05-21

Date Completed: 2016-05-21

Next Due Date:

2016-08-20

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122252120

Equipment No.

: W.18.02

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/160521

 Date of Issue:
 2016-05-21

 Date Received:
 2016-05-21

 Date Tested:
 2016-05-21

 Date Completed:
 2016-05-21

 Next Due Date:
 2016-08-20

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.08	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.89	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.0	229 ± 10	Pass

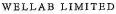
D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.41	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check


Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2587	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
24.1	23.9	+0.2	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.:

C/W/160415G

Date of Issue: Date Received: 2016-04-15

Date Tested:

2016-04-15

Date Completed:

2016-04-15

Next Due Date:

2016-04-15 2016-07-14

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd : AP-2000-D

Model No. Serial No.

:122251920

Equipment No.

: W.18.06

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/160415G
Date of Issue:	2016-04-15
Date Received:	2016-04-15
Date Tested:	2016-04-15
Date Completed:	2016-04-15
Next Due Date:	2016-07-14
	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
_	(pH unit)	49 29 29	
pH QC buffer 4.01	4.08	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.14	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.3	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.47	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2599	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.3	-0.2	N/A

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/160415H

Date of Issue:

Date Received:

2016-04-15

Date Tested:

2016-04-15 2016-04-15

Date Completed: Next Due Date:

2016-04-15 2016-07-14

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122251420

Equipment No.

: W.18.07

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÅTRICK TSE

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/160415H
Date of Issue: 2016-04-15
Date Received: 2016-04-15
Date Tested: 2016-04-15
Date Completed: 2016-04-15
Next Due Date: 2016-07-14

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.03	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.15	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	228.0	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.45	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sa	linity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2574	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
24.1	24.2	-0.1	N/A

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/160415F
Date of Issue: 2016-04-15
Date Received: 2016-04-15
Date Tested: 2016-04-15
Date Completed: 2016-04-15
Next Due Date: 2016-07-14

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer Model No.

: Aquaread Ltd : AP-2000-D

Serial No.
Equipment No.

: 122251620 : W.18.09

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/160415F

 Date of Issue:
 2016-04-15

 Date Received:
 2016-04-15

 Date Tested:
 2016-04-15

 Date Completed:
 2016-04-15

 Next Due Date:
 2016-07-14

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.3	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.44	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

	Salinity, ppt		Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2612	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			At a finish and a state of the control of the contr
24.1	24.3	-0.2	N/A

ATTN:

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinote

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/160415B

Date of Issue: 2016-04-15

Date Received: 2016-04-15

Date Tested: 2016-04-15

Date Completed: 2016-04-15 Next Due Date: 2016-07-14

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

:AP-2000-D

Serial No.

:122252020

Equipment No.

: W.18.11

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

According to manufacturer instruction manual, Ar 11A 206 4500-0 C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/160415B

 Date of Issue:
 2016-04-15

 Date Received:
 2016-04-15

 Date Tested:
 2016-04-15

 Date Completed:
 2016-04-15

 Next Due Date:
 2016-07-14

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.03	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.11	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.7	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.42	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2596	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
24.1	24.2	-0.1	N/A

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W

C/W/160415J

Date of Issue:

Date Received:

2016-04-15 2016-04-15

Date Tested:

2016-04-15

Date Completed:

2016-04-15

Next Due Date:

2016-07-14

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122251520

Equipment No.

: W.18.12

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 54%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

 Test Report No.:
 C/W/160415J

 Date of Issue:
 2016-04-15

 Date Received:
 2016-04-15

 Date Tested:
 2016-04-15

 Date Completed:
 2016-04-15

 Next Due Date:
 2016-07-14

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 + 0.10	Pass
pH QC buffer 6.86	6.83	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.15	9.18 + 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	229.6	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.42	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Saliı	nity, ppt	Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.0	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2577	2442-2698	Pass
(2570 µs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.4	-0.3	N/A

APPENDIX F QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 24993

Date of Issue:

2016/06/02

Date Received:

Page:

2016/06/01

Date Tested:

2016/06/01

Date Completed:

2016/06/02

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/01

Number of Sample:

84

Custody No.:

MA14047/160601

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C1be	10	10	2	95

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25011

Date of Issue:

2016/06/06

Date Received:

2016/06/03

Date Tested:

2016/06/03

Date Completed:

2016/06/06

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/03

Number of Sample:

84

Custody No.:

MA14047/160603

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	8	8	1	96

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25018

Date of Issue: 2016

Date Received:

2016/06/07

Date Tested:

2016/06/06

Date Testeu.

Page:

2016/06/06

Date Completed:

2016/06/07

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/06

Number of Sample:

84

Custody No.:

MA14047/160606

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	2	102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25030

Date of Issue:

2016/06/10

Date Received:

2016/06/08

Date Tested:

Page:

2016/06/08

Date Completed:

2016/06/10

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/08

Number of Sample:

84

Custody No.:

MA14047/160608

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	7	7	2	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25038

Date of Issue: 201

2016/06/13

Date Received:

2016/06/10

Date Tested:

2016/06/10

Date Completed:

2016/06/13

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/10

Number of Sample:

84

Custody No.:

MA14047/160610

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	1	90

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25051

Date of Issue: 2016

2016/06/14

Date Received:

2016/06/13

Date Tested:

Page:

2016/06/13

Date Completed:

2016/06/14

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/13

Number of Sample:

84

Custody No.:

MA14047/160613

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	6	6	5	95

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patale se

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25067

Date of Issue:

2016/06/16

Date Received:

2016/06/15

Date Tested:

Date Completed:

2016/06/15 2016/06/16

1 of 1

Page: ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/15

Number of Sample:

84

Custody No.:

MA14047/160615

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	5	5	1	103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25088

Date of Issue:

2016/06/20

Date Received:

2016/06/17

Date Tested:

2016/06/17

Date Completed:

Page:

2016/06/20

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/17

Number of Sample:

84

Custody No.:

MA14047/160617

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	3	3	4	97

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wcllab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25098

Date of Issue: 20

2016/06/21

Date Received:

Date Completed:

2016/06/20

Date Tested:

2016/06/20

Page:

2016/06/21 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/20

Number of Sample:

84

Custody No.:

MA14047/160620

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	8	8	4	97

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25119

Date of Issue:

2016/06/24

Date Received:

2016/06/23

Date Tested: Date Completed: 2016/06/23 2016/06/24

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/23

Number of Sample:

84

Custody No.:

MA14047/160623

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	7	7	1	96

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25134

Date of Issue:

2016/06/27

Date Received:

2016/06/25

Date Tested:

Page:

2016/06/25

Date Completed:

2016/06/27

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

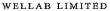
- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/25

Number of Sample:

84


Custody No.:

MA14047/160625

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
WSD9se	4	4	3	103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wcllab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 25139

Date of Issue:

2016/06/28

Date Received: Date Tested: 2016/06/27

Date Tested: Date Completed: 2016/06/27 2016/06/28

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/27

Number of Sample:

84

Custody No.:

MA14047/160627

	Total Suspended Solids	Duplicate Analysis			QC Recovery, %
	Sampling Point	Trial 1,	Trial 2,	Difference,	
		mg/L	mg/L	%	
Г	WSD9se	6	6	5	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.:

25165

Date of Issue: Date Received: 2016/07/04

2016/06/30

Date Tested:

2016/06/30

Date Completed: Page:

2016/07/04

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Shatin to Central Link - Contract No.1121

- NSL Cross Harbour Tunnels

Sampling Date:

2016/06/30

84

Number of Sample: Custody No.:

MA14047/160630

Total Suspended Solids QC Recovery, % **Duplicate Analysis** Sampling Point Trial 1, Trial 2, Difference, mg/L mg/L % WSD9se 6 3 106 6

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX G SUMMARY OF EXCEEDANCE

APPENIDX G – SUMMARY OF EXCEEDANCE

Reporting Month: June 2016

- a) Exceedance Report for Dust Monitoring (NIL)
- b) Exceedance Report for Water Quality Monitoring (NIL)

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 30 May 2016

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action	Baseline Limit	Depth-average Measured Value	Justification*	Validity
Station(s)	Level (mg/L)		Level (mg/L)	(mg/L)	Justineation	(Yes/No)
21				7.3	(2), (5) & (6)	No
34		6.9	9.1	7.8	(2), (4) & (6)	No
9	Mid-ebb			7.5	(2), (4) & (6)	No
A	Wild-Coo			<u>7.8</u>	(2), (5) & (6)	No
WSD17		6.0	6.0	<u>6.8</u>	(2), (3) & (6)	No
WSD9				<u>7.7</u>	(2) & (6)	No
34		6.9	9.1	7.5	(2), (3) & (6)	No
9		0.9	9.1	7.5	(2), (3), (4), (5) & (6)	No
A	Mid-flood			<u>7.5</u>	(2), (3) & (6)	No
WSD17		6.0	6.0	7.0	(2), (3), (5) & (6)	No
WSD9			<u>7.5</u>	(2), (3), (5) & (6)	No	

Note:

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed. (Please refer to Table V)
- (3) –The exceeded results were similar or within the ranges of monitoring results at the Control Station. (Please refer to Table II)
- (4) The exceeded results were similar or within the ranges of baseline monitoring results. (Please refer to Table III & Table IV)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify Major rainfall events in May 2016 led to increased surface runoff and hence adverse marine water quality.

- Notification of Environmental Quality Limit Exceedances

Table II: Results at Control Stations for Reference (30 May 2016) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Depth-average Measured Value (mg/L)	Remarks (based on tidal current information)
C1	Mid-ebb	6.8	Control Station for Mid-ebb tide
C2	Mid-flood	8.5	Control Station for Mid-flood tide

Table III – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Suspended Solids (mg/L)		
	Min	Max	
21	< 2.0	7.0	
34	< 2.0	8.0	
9	< 2.0	9.0	
A	< 2.0	6.0	
WSD17	< 2.0	6.0	
WSD9	< 2.0	7.0	

Table IV - Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide

Station(s)	Suspended Solids (mg/L)		
	Min	Max	
21	< 2.0	10.0	
34	< 2.0	6.0	
9	< 2.0	11.0	
A	< 2.0	6.0	
WSD17	< 2.0	6.0	
WSD9	< 2.0	6.0	

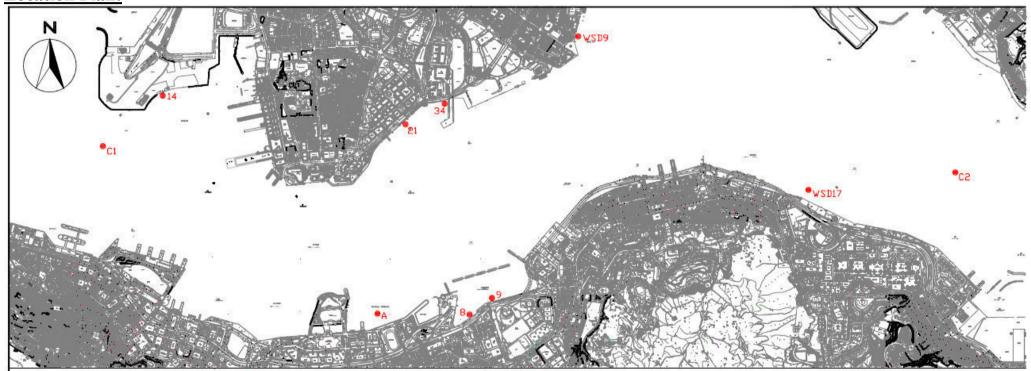
- Notification of Environmental Quality Limit Exceedances

Table V – Photo record on 30 May 2016

Area near Hung Hom works area

Area near bulk dredging in Victoria Harbour

Area near Causeway Bay Typhoon Shelter


Intake 34

- Notification of Environmental Quality Limit Exceedances

Part B – Conclusion: No direct evidence that the exceedances were due to this Project, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation / Proposal of Remedial Actions: As the exceedances were not related to this Project, no further action are required.

Location Plan:

Reviewed by: Dr. Priscilla Choy

Signature:

Title: Environmental Team Leader

Date: 3 June 2016

APPENDIX H SITE AUDIT SUMMARY

Inspection Information

Checklist Reference Number	160606
Date	6 June 2016 (Monday)
Time	14:00 – 17:00

Ref. No.	Non-Compliance	Related Item
		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	Part B – Water Quality	
160606-R02	To remove the silty water in the sand trap at Shek O jetty.	B 6iii
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
160606-O01	 Smoke generation observed from a marine barge at the Shek O jetty. The Contractor is reminded to check and repair the machinery to avoid black smoke generation. 	E 15
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	Part H – Permits/Licenses	
	No environmental deficiency was identified during the site inspection.	
	Part I - Others	
	Follow-up on previous audit section (Ref. No.:160530), all environmental deficiencies were observed improved/rectified by the Contractor	

	Name	Signature	Date
Recorded by	Johnny Fung	V	6 June 2016
Checked by	Dr. Priscilla Choy	W.T.	6 June 2016

Inspection Information

Checklist Reference Number	160613
Date	13 June 2016 (Monday)
Time	14:00 – 17:00

Ref. No.	Non-Compliance	Related Item
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
160613-R01	Part B – Water Quality To remove the discharge tube away from the seafront of Hung Hom area to avoid discharge into the sea.	В3
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	nd de mande anno mande de mand
	Part E – Air Quality	ran et al-francis innergative de la francis
	No environmental deficiency was identified during the site inspection.	
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	
	Part G – Waste/Chemical Management	
160613-R02	To provide drip tray to chemical container at the Hung Hom finger pier.	G 10
	Part H – Permits/Licenses No environmental deficiency was identified during the site inspection.	
	Part I - Others Follow-up on previous audit section (Ref. No.:160606), all environmental deficiencies were observed improved/rectified by the Contractor	

	Name	Şignature	Date
Recorded by	Johnny Fung		13 June 2016
Checked by	Dr. Priscilla Choy	NA	13 June 2016

CINOTECH MA14047 160613

Inspection Information

Checklist Reference Number	160620
Date	20 June 2016 (Monday)
Time	14:00 – 16:30

Ref. No.	Non-Compliance	Related Item
		No.
	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
160620-O01 160620-R03	 Part B – Water Quality "Opening" of silt curtain in Hung Hom works area should be closed during marine works in Hung Hom. To remove the construction waste from the drainage channel in Shek O Casting Basin. 	B 36
	 Part C – Ecology / Others No environmental deficiency was identified during the site inspection. 	
Property of the Control of the Contr	Part D - Landscape & Visual No environmental deficiency was identified during the site inspection.	-
160620-R04	Part E - Air Quality To provide frequent water spray to haul road in Shek O Casting Basin to prevent dust generation.	E 5
	Part F - Construction Noise Impact No environmental deficiency was identified during the site inspection.	
160620-R02 160620-R03	 Part G – Waste/Chemical Management Stagnant rain water should be removed from drip tray in Shek O Casting Basin. To remove the construction waste from the drainage channel in Shek O Casting Basin. 	G 10 G 4ii
	Part H – Permits/Licenses No environmental deficiency was identified during the site inspection. Part L Ott	
i 	Part I - Others Follow-up on previous audit section (Ref. No.:160613), all environmental deficiencies were observed improved/rectified by the Contractor	

	Name	Şignature	Date
Recorded by	Johnny Fung		20 June 2016
Checked by	Dr. Priscilla Choy	WIA	20 June 2016

CINOTECH MA14047 160620

Inspection Information

Checklist Reference Number	160627
Date	27 June 2016 (Monday)
Time	14:00 – 16:30

Ref. No.	Non-Compliance	Related Item
		No.
_	None identified	-

Ref. No.	Remarks/Observations	Related
		Item No.
160627-R01	 Part B – Water Quality To remove the construction waste from the drainage channel in Shek O Casting Basin. 	В7
	Part C – Ecology / Others	
	No environmental deficiency was identified during the site inspection.	
	Part D – Landscape & Visual	
	No environmental deficiency was identified during the site inspection.	
	Part E – Air Quality	
160627-R02	To properly cover the stockpile of sand by impervious material at Hung Hom finger pier.	Е6
	Part F - Construction Noise Impact	
	No environmental deficiency was identified during the site inspection.	•
160627-R01	Part G – Waste/Chemical Management To remove the construction waste from the drainage channel in Shek O Casting Basin.	G 4ii
	Part H – Permits/Licenses No environmental deficiency was identified during the site inspection.	- POONOGE WITH THE TABLE
	 Part I - Others Follow-up on previous audit section (Ref. No.:160620), the item 160620-R03 was remarked as 160627-R01. 	

	Name	Signature	Date
Recorded by	Johnny Fung		27 June 2016
Checked by	Dr. Priscilla Choy	"NJA	27 June 2016

CINOTECH MA14047 160627

APPENDIX I EVENT AND ACTION PLANS

Event and Action Plan for Marine Water Quality Monitoring

EV/ENT	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
ACTION LEVEL									
Action level being exceeded by one sampling day	 Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; and Discuss remedial measures with the IEC and Contractor. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented mitigation measures.	Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; and Supervise the implementation of agreed remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER; and Implement the agreed remedial measures. 					
Action level being exceeded by more than one consecutive sampling days	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC and Contractor; and Ensure remedial measures are implemented. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	1. Discuss with the ET, IEC and Contractor on the implemented mitigation measures; 2. Make agreement on the remedial measures to be implemented; and 3. Discuss with the ET and IEC on the effectiveness of the implemented remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures. 					

EVENT.	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
LIMIT LEVEL									
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform the Contractor, IEC, EPD and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss with the ET and IEC and propose remedial measures to the IEC, EPD and ER; and Ensure the agreed remedial measures are implemented. 	1. Discuss with the ET, ER and Contractor on the implemented mitigation measures; 2. Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	1. Discuss with the ET, IEC and Contractor on the implemented mitigation measures; 2. Request the Contractor to critically review the working methods; 3. Make agreement on the remedial measures to be implemented; and 4. Assess the effectiveness of the implemented remedial measures.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; and Implement the agreed remedial measures. 					
Limit level being exceeded by more than one consecutive sampling days	 Inform the Contractor, IEC, EPD and ER; Check monitoring data, all plant, equipment and the Contractor's working methods; Discuss remedial measures with the IEC, EPD, ER and Contractor; Ensure remedial measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level 	1. Discuss with the ET, ER and Contractor on the implemented measures; 2. Review proposals on remedial measures submitted by the Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER the effectiveness of the implemented remedial measures.	 Discuss with the ET, IEC and Contractor on the implemented mitigation measures; Request the Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with the the ET, IEC and Contractor on the effectiveness of the implemented remedial measures; and Consider and instruct, if necessary, 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET, IEC and ER and propose remedial measures to IEC and ER within 3 working days of notification; Implement the agreed remedial measures; and 					

EVENT	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
	for two consecutive days.		the Contractor to slow down or to stop	8. As directed by the ER, to slow down or to				
			all or part of the marine work until	stop all or part of the marine works or				
			no exceedance of Limit level.	construction activities.				

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	ge Impact (Construction Phase)	To mailtiment the terror warm.	Cambuaatau	Mada Araa in	O a marking saling sa	FIAC	NI/A
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along	To mitigate the temporary	Contractor	Works Areas in	Construction .	EIAO	N/A
	the boundary of the works area	visual impact due to		Causeway Bay	phase		
		surface works.		and Wan Chai			
Ecology (Cons	truction Phase)	Γ	T	1		1	T
S 5.133	The following mitigation measures in controlling water quality	To minimize changes in	Contractor	All reclamation	Construction	• EIAO-TM	
	change shall be implemented:	water quality impact on		and dredging	phase		
	- Installation of silt curtains around the dredgers, where	marine flora and fauna		works areas			N/A
	appropriate, during dredging activities;						
	- Use of closed grab dredger during dredging; and						N/A
	- Reduction of dredging rate						N/A
S5.134	Accidental chemical spillage and construction site run-off to	Minimise the contamination	Contractor	All land based	Construction	• EIAO-TM	٨
	the receiving water bodies, mitigation measures such as	of wastewater discharge		works areas	phase		
	removing the pollutants before discharge into storm drain and						
	paving the section of construction road between the wheel						
	washing bay and the public road as suggested in Sections						
	11.216 and 11.219 to 11.256 of the EIA Report shall be						
	adopted						
ERR S3.6.3	Installation of floating type silt curtains around the area of	Minimize indirect impact to	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
	construction and removal of earth bund	the nearby subtidal and		Basin	phase		
		intertidal flora and fauna					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Fisheries Impa	act	T	1	,		,	
S5.132	The size of the dredging and underwater blasting areas shall	To minimize loss of fishing	Contractor/	All dredging and	Construction	• EIAO-TM	N/A
	be minimized as much as possible	ground and fisheries	MTR	underwater	phase		
		resources		blasting works			
				areas			
S5.133	Mitigation measures recommended in Sections 11.200 to	To minimize change in	Contractor	Works Areas	Construction	• EIAO-TM	N/A
	11.207, 11.209 to 11.211 and 11.213 to 11.256 of the EIA	water quality impact on			phase		
	Report to control water quality, i.e. use of effective site	fisheries resources and					
	drainage in land-based construction site and installation of silt	operation					
	curtain surrounding the dredging point, use of closed grab						
	dredger and reduction of dredging rate shall be implemented.						
S6.59	After completion of armour rock filling, the final surfaces of	To minimize the IMT	Contractor	Along IMT laying	Construction	• EIAO-TM	N/A
	the protective armour tock layer shall be checked by	protrusion above the		works areas	phase		
	ultrasonic sounding survey. Measures such as removing the	seabed					
	rock or breaking the rock into pieces shall be implemented in						
	case of non-compliance						
Landscape &	Visual (Construction Phase)	1	ı	<u> </u>		l	
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time	MTR	All works sites	Construction	• EIAO-TM	٨
		glare due to the Project			phase		
		during construction phase					
	ı		l	1		1	L

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs.	Control of height and deposition/arrangement of temporary facilities in works areas	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	All works sites	Construction phase	• EIAO-TM	N/A
Construction	Dust Impact		T	1		1	T
EP 2.25	All diesel fuelled construction plant used by the contractors within the works areas of the Project shall be powered by ultra-low sulphur diesel fuel.	Mitigating Aerial Emissions from Construction Plant	Contractor	All works areas	Construction phase	• EIAO-TM	۸
Table 8.5	Barging facilities: (i) Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every	To minimize dust impacts	Contractor	Barging facility at Shek O Casting Basin	Construction phase	APCO	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	working hours to reduce dust emission by 91.7%. This						
	dust suppression efficiency is derived based on the						
	average haul road traffic, average evaporation rate and						
	an assumed application intensity of 1.0 L/m² once every						
	working hour. Any potential dust impact and watering						
	mitigation would be subject to the actual site condition.						
	For example, a construction activity that produces						
	inherently wet conditions or in cases under rainy						
	weather, the above water application intensity may not						
	be unreservedly applied. While the above watering						
	frequency is to be followed, the extent of watering may						
	vary depending on actual site conditions but should be						
	sufficient to maintain an equivalent intensity of no less						
	than 1.0L/m² to achieve the removal efficiency. The dust						
	levels would be monitored and managed under an						
	EM&A programme as specified in the EM&A Manual						
	(ii) Vehicles leaving the barging facilities – Pass vehicles						٨
	through the wheel washing facilities provided at site						
	exits.						
S8.63	For concrete batching plant, the requirements and mitigation	To minimize dust impact	Contractor	Concrete	Construction	APCO	٨
	measures stipulated in the Guidance Note on the Best			Batching Plant	phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Practicable Means for Cement Works (Concrete Batching						
	Plant) BPM 3/2(93) shall be followed and implemented.						
Table 8.6	During operation of concrete batching plant:	To minimize dust impact	Contractor	Concrete	Construction	APCO	
	(i) Unloading of aggregates from the tipper trucks to receiving			Batching Plant	phase		٨
	hopper – unload the aggregates from the tipper trucks to the						
	receiving hopper equipped with enclosures on 3 sides and						
	top cover, and water spraying system.						
	(ii) Unloading of cement and PFA from tankers into the silo –						٨
	Directly load the cement and PFA into the silo via a flexible						
	duct. Install dust collectors at cement/PFA silos.						
	(iii) Storage of aggregates in overhead storage bins – Store						٨
	the aggregates in fully enclosed overhead storage bins.						
	Cover the top of overhead storage bins with cladding. Install						
	water spraying system at the top of storage bins for watering						
	the aggregates, and fully enclose aggregates storage bins.						
	(iv) Weighing and batching of cementitious materials -						٨
	Perform the whole process of weighing and mixing in a fully						
	enclosed environment. Equip all the mixers with dust						
	collectors.						
	(v) Loading of concrete from mixer into transit mixer of a						٨
	truck – Directly load the concrete from the mixer into the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	transit mixer of a truck in "wet form".						
	(vi) Tipper trucks and cement tankers leaving the Concrete						٨
	Batching Plant – Haul road within the site is unpaved. Install						
	wheel washing pit at the gate of the concrete batching plant.						
	(vii) Transportation of materials within the plant – Provide						٨
	watering twice a day would be provided.						
S8.89	Watering once every working hour on active works areas,	To minimize dust impact	Contractor	Works areas at:	Construction	APCO	٨
	exposed areas and paved haul roads to reduce dust			Hung Hom	phase		
	emission by 91.7%. This dust suppression efficiency is			Cross Harbour			
	derived based on the average haul road traffic, average			section up to			
	evaporation rate and an assumed application intensity of 1.7			Breakwater of			
	L/m2 for Kowloon side and 1.0 L/m² for Hong Kong side once			CBTS			
	every working hour. Any potential dust impact and watering			Breakwater of			
	mitigation would be subject to the actual site condition. For			CBTS to SOV			
	example, a construction activity that produces inherently wet			• Shek O			
	conditions or in cases under rainy weather, the above water			Casting Basin			
	application intensity may not be unreservedly applied. While						
	the above watering frequency is to be followed, the extent of						
	watering may vary depending on actual site conditions but						
	should be sufficient to maintain an equivalent intensity of no						
	less than 1.7 L/m² for Kowloon side and 1.0 L/m² for Hong						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Kong side to achieve the removal efficiency. The dust levels						
	would be monitored and managed under an EM&A						
	programme as specified in the EM&A Manual.						
S8.90	Dust suppression measures stipulated in the Air Pollution	To minimize dust impact	Contractor	Works areas at:	Construction	APCO and Air	
	Control (Construction Dust) Regulation and good site			Hung Hom	phase	Pollution Control	
	practices:			Cross Harbour		(Construction	
	- Use of regular watering to reduce dust emissions from			section up to		Dust) Regulation	*
	exposed site surfaces and unpaved roads, particularly			Breakwater of			
	during dry weather.			CBTS			
	- Use of frequent watering for particularly dusty			Breakwater of			٨
	construction areas and areas close to ASRs.			CBTS to SOV			
	- Side enclosure and covering of any aggregate or dusty						۸
	material storage piles to reduce emissions. Where this						
	is not practicable owing to frequent usage, watering						
	shall be applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where						#
	possible, prevent placing dusty material storage piles						
	near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported						٨
	to, from and between site locations.						
	- Establishment and use of vehicle wheel and body						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	washing facilities at the exit points of the site. - Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading						۸
	process of loose material, particularly in dry seasons/ periods. - Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit.						N/A
	- Imposition of speed controls for vehicles on site haul roads Where possible, routing of vehicles and positioning of						^
	construction plant shall be at the maximum possible distance from ASRs. - Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by						Λ
	impervious sheeting or placed in an area sheltered on the top and the 3 sides. - Instigation of an environmental monitoring and auditing						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	program to monitor the construction process in order to						
	enforce controls and modify method of work if dusty						
	conditions arise.						
Air Quality (Co	nstruction Phase)	T	Т	Γ	T	T	T
1	Emission from Vehicles and Plants	Reduce air pollution	Contractor	All construction	Construction stage	• APCO	
	All vehicles shall be shut down in intermittent use.	emission from construction		sites			۸
	Only well-maintained plant should be operated on-site	vehicles and plants					*
	and plant should be serviced regularly to avoid						
	emission of black smoke.						
	All diesel fuelled construction plant within the works						۸
	areas shall be powered by ultra low sulphur diesel fuel						
	(ULSD)						
/	Valid No-road Mobile Machinery (NRMM) labels should be	Reduce air pollution	Contractor	All construction	Construction stage	• APCO	٨
	provided to regulated machines	emission from construction		sites			
		vehicles and plants					
Construction N	Noise (Airborne)			•			
S9.55	Implement the following good site practices:	Control construction	Contractor	Works areas	Construction	• EIAO-TM	
	only well-maintained plant should be operated on-site	airborne noise			phase		٨
	and plant should be serviced regularly during the						
	construction programme;						
	machines and plant (such as trucks, cranes) that may						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	be in intermittent use should be shut down between						
	work periods or should be throttled down to a						
	minimum;						٨
	plant known to emit noise strongly in one direction,						
	where possible, be orientated so that the noise is						
	directed away from nearby NSRs;						٨
	silencers or mufflers on construction equipment should						
	be properly fitted and maintained during the						
	construction works;						٨
	mobile plant should be sited as far away from NSRs as						
	possible and practicable;						٨
	material stockpiles, mobile container site office and						
	other structures should be effectively utilised, where						
	practicable, to screen noise from on-site construction						
	activities.						
S9.56 & Table	The following quiet PME shall be used:	To minimize construction	Contractor	Works areas at:	Construction stage	• EIAO-TM	N/A
9.16	Crane lorry, mobile	noise impact		Hung Hom			
	Crane, mobile			Cross Harbour			
	Asphalt paver			section up to			
	Backhoe with hydraulic breaker			Breakwater of			
	Breaker, excavator mounted (hydraulic)			CBTS			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Hydraulic breaker			Breakwater of			
	Concrete lorry mixer			CBTS to SOV			
	Poker, vibrator, hand-held						
	Concrete pump						
	Crawler crane, mobile						
	Mobile crane						
	Dump truck						
	Excavator						
	Truck						
	Rock drill						
	• Lorry						
	Wheel loader						
	Roller vibratory						
S9.58 –	Movable noise barrier shall be used for the following PME:	To minimize construction	Contractor	Works areas at:	Construction	• EIAO-TM	N/A
S9.59 &	Air compressor	noise impact		Cross Harbour	stage		
Table	Asphalt paver			section up to			
9.17	Backhoe with hydraulic breaker			Breakwater of			
	Bar bender			CBTS			
	Bar bender and cutter (electric)			Breakwater of			
	Breaker, excavator mounted			CBTS to SOV			
	Concrete pump						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	 Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete 						
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV	Construction stage	• EIAO-TM	N/A
Water Quality \$11.200 & 201	(Construction Phase) All excavation and tunnel construction works will be undertaken within the cofferdam and there will be no open dredging. Removal of fender piles of Hung Hom Bypass and minor	To minimize release of sediment and contaminants during temporary reclamation.	Contractor	Marine works at Hung Hom Landfall	Construction phase	• EIAO-TM • WPCO	N/A

Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		•	measures	•		
				measures?		
	address	measures?				
					achieve?	
arine piling works will be carried out prior to the						
onstruction of the elevated platform adjacent to the						
offerdam at Hung Hom Landfall. Reinstatement of the						
nder piles will be carried out upon completion of tunnel						
ection. Potential release of sediment due to						
povementioned works could be minimized by installation of						
It curtains surrounding the works area as appropriate. All						
cavation and tunnel construction works will be undertaken						
ithin the cofferdam.						
o open dredging shall be allowed.						٨
Il temporary reclamation works will adopt an approach	To minimize loss of fines	Contractor	All temporary	Construction	• EIAO-TM	N/A
here temporary seawalls will first be formed to enclose each	and contaminants during		reclamation	phase	• WPCO	
nase of the temporary reclamation. Installation of diaphragm	temporary reclamations		works areas			
all on temporary reclamation as well as any bulk filling will						
roceed behind the completed seawall. Any gaps that may						
eed to be provided for marine access will be shielded by silt						
urtains to control sediment plume dispersion away from the						
te.						
emolition of temporary reclamation including the demolition						N/A
orroffin neconomic seconomic seconom	ferdam at Hung Hom Landfall. Reinstatement of the der piles will be carried out upon completion of tunnel stion. Potential release of sediment due to overmentioned works could be minimized by installation of curtains surrounding the works area as appropriate. All savation and tunnel construction works will be undertaken nin the cofferdam. open dredging shall be allowed. temporary reclamation works will adopt an approach are temporary seawalls will first be formed to enclose each are of the temporary reclamation. Installation of diaphragm I on temporary reclamation as well as any bulk filling will ceed behind the completed seawall. Any gaps that may ad to be provided for marine access will be shielded by silt tains to control sediment plume dispersion away from the	Instruction of the elevated platform adjacent to the ferdam at Hung Hom Landfall. Reinstatement of the der piles will be carried out upon completion of tunnel ection. Potential release of sediment due to provide the works area as appropriate. All eavation and tunnel construction works will be undertaken in the cofferdam. To minimize loss of fines and contaminants during temporary reclamation works will adopt an approach ere temporary seawalls will first be formed to enclose each asse of the temporary reclamation. Installation of diaphragm temporary reclamations as well as any bulk filling will eced behind the completed seawall. Any gaps that may end to be provided for marine access will be shielded by silt tains to control sediment plume dispersion away from the example to the existing seabed.	the measures? A Main Concerns to address Trine pilling works will be carried out prior to the estruction of the elevated platform adjacent to the ferdam at Hung Hom Landfall. Reinstatement of the der piles will be carried out upon completion of tunnel estion. Potential release of sediment due to exementioned works could be minimized by installation of curtains surrounding the works area as appropriate. All estavation and tunnel construction works will be undertaken and tunnel construction works will be undertaken and tunnel construction works will be undertaken and contaminants during temporary reclamation works will adopt an approach ere temporary seawalls will first be formed to enclose each asse of the temporary reclamation. Installation of diaphragm all on temporary reclamation as well as any bulk filling will ceed behind the completed seawall. Any gaps that may and to be provided for marine access will be shielded by silt tains to control sediment plume dispersion away from the existing seabed. To minimize loss of fines and contaminants during temporary reclamations. Contractor and contaminants during temporary reclamations.	Rine piling works will be carried out prior to the instruction of the elevated platform adjacent to the ferdam at Hung Hom Landfall. Reinstatement of the der piles will be carried out upon completion of tunnel ation. Potential release of sediment due to prementioned works could be minimized by installation of curtains surrounding the works area as appropriate. All avation and tunnel construction works will be undertaken hin the cofferdam. Open dredging shall be allowed. Itemporary reclamation works will adopt an approach are temporary seawalls will first be formed to enclose each ase of the temporary reclamation. Installation of diaphragm and contaminants during temporary reclamation as well as any bulk filling will coed behind the completed seawall. Any gaps that may and to be provided for marine access will be shielded by silt tains to control sediment plume dispersion away from the definition of temporary reclamation including the demolition the diaphragm wall and dredging to the existing seabed	A Main Concerns to address the measures? The measures th	S. Main Concerns to address The measures? Standards for the measures? In measures? Standards for the measures? Standards for the measures? In measures? Standards for the measures? Standards for the measures? In measures? Standards for the measures? Standards for th

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	Temporary seawall will be removed after completion of all						N/A
	excavation and dredging works for demolition of the temporary reclamation.						
S11. 202	During construction of the temporary reclamation, temporary seawall will be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, the seawalls along the southeast and northeast boundaries of PW1.1 shall be constructed first (above high water mark) so that the seawater intake at the inner water would be protected from the impacts from the remaining dredging activities along the northwest boundary.	To minimize water quality impact upon the cooling water intakes in CBTS from temporary reclamation works	Contractor	Temporary reclamation works areas in CBTS	Construction phase	• EIAO-TM • WPCO	N/A
S11. 202	Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during dredging.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All temporary reclamation and dredging works areas within CBTS	Construction phase	• EIAO-TM • WPCO	N/A
S11. 202 & Table 11.25	Silt curtains will be deployed to fully enclose the closed grab dredger and shall be extended from water surface to the seabed, as far as practicable, during any dredging operation.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	All temporary reclamation and dredging works areas within CBTS	Construction phase	• EIAO-TM • WPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11. 202 & Table	Silt screens will be installed at the cooling water intakes	To minimize water quality	Contractor	Cooling water	Construction	• EIAO-TM	N/A
11.23	within the CBTS during the temporary reclamation period.	impact upon the cooling water intakes in CBTS from marine construction activities		intakes inside CBTS	phase	• WPCO	
S11. 203 & Table	No more than two dredgers (of about 8 m³ capacity each)	To minimize loss of fines	Contractor	All dredging	Construction	• EIAO-TM	N/A
11.24	shall be operated for dredging within the typhoon shelter at	and contaminants during		works areas	phase	• WPCO	
	any time for the tunnel construction works. Moreover, the	dredging in CBTS		within CBTS			
	combined dredging rate for all concurrent dredging works						
	(include dredging works for concurrent projects such as WDII						
	and CWB) to be undertaken within the CBTS shall not						
	exceed 4,500 m³ per day (and 281 m³ per hour with a						
	maximum working period of 16 hours per day) throughout the						
	entire construction period.						
ERR 6.7.1	Closed grab dredger shall be used for any dredging	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	operations, except at for removal of fill material at the gap at	impact in CBTS from		areas within	phase	• WPCO	
	the IMT/ME4 interface, which will be carried out by air lift or	marine construction		CBTS			
	sand pump method	activities					
ERR 6.7.1	Fill materials removed by air lift or sand pumping method	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	shall be stored inside impermeable compartment of the barge	impact in CBTS from		areas within	phase	• WPCO	
		marine construction		CBTS			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
		activities					
ERR 6.7.1	Bulk filling operation within CBTS shall be carried out by	To minimize water quality	Contractor	All marine works	Construction	• EIAO-TM	N/A
	closed grab dredger and/or by feeding the fill material into a	impact in CBTS from		areas within	phase	• WPCO	
	down pipe for placing of fill materials	marine construction		CBTS			
		activities					
EP 2.18.1a	Pipe piles shall be used to form temporary seawalls for IMT	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	N/A
	construction within CBTS.	impact in CBTS from IMT		works within	phase	• WPCO	
		construction		CBTS			
EP 2.18.1b	The temporary seawalls shall not be removed before	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	N/A
	completion of all dredging or filling works for IMT	impact in CBTS from IMT		works within	phase	• WPCO	
	construction, except for a small section of pipe piles adjoining	construction		CBTS			
	IMT11 to facilitate the necessary dredging works for						
	placing the IMT11.						
EP 2.18.1j	Water quality monitoring shall be conducted at cooling water	To minimize water quality	Contractor	IMT construction	Construction	• EIAO-TM	٨
	intake 9 for Windsor House during IMT construction within	impact in CBTS from IMT		works within	phase	• WPCO	
	CBTS. The monitoring frequency, parameters, equipment	construction		CBTS			
	and methodology shall follow those for dredging and filling as						
	stipulated in the EM&A Manual.						
S11. 204	Bulk filling along the IMT tunnel alignment for SCL shall be	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	N/A
	carried out after the bulk dredging works along the IMT	and contaminants during		areas in Victoria	phase	• WPCO	
	alignment are completed. Hence, bulk dredging and bulk	IMT construction		Harbour			

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	filling along the IMT alignment shall not be undertaken at the same time.						
S11. 204	Dredging for IMT and SCL2 construction shall be carried out by closed grab dredger to minimize release of sediment and other contaminants during dredging.	To minimize loss of fines and contaminants during dredging in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A
S11.204	No more than one closed grab dredger shall be operated outside the CBTS in the open harbor for SCL construction.	To minimize loss of fines and contaminants from dredging in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A
S11. 204	Dredging for temporary reclamation outside the CBTS (at SCL2) shall not be carried out concurrently with the dredging / filling works for IMT construction.	To minimize loss of fines and contaminants from dredging / filling in the Victoria Harbour	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A
S11. 205	Floating type or frame type silt curtains shall be deployed around the dredging operations within 200m from the Hung Hom landfall.	To minimize loss of fines and contaminants from dredging in the Victoria Harbour	Contractor	Construction of northern IMT segment in the near shore region within 200 m from the Hung Hom landfall	Construction phase	• EIAO-TM • WPCO	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
EP 2.19e	Frame type silt curtains shall be deployed around the dredging operations for the remaining IMT segments outside 200 m from the Hung Hom landfall.	To minimize water quality impacts in Victoria Harbour from IMT construction	Contractor	Construction of northern IMT segment in Victoria Harbour outside 200m from the Hung Hom landfall	Construction phase	• EIAO-TM • WPCO	۸
S11. 205 & Table 11.23	Silt screens shall be installed at the cooling water intakes for East Rail Extension, Metropolis and Hong Kong Coliseum (namely 21, 34 and 35 respectively) which are in close vicinity of the northern IMT segment.	To protect the beneficial use of water intakes along the Kowloon waterfront from dredging / filling activities	Contractor	Construction of northern IMT segment in the near shore region within 200 m from the Hung Hom landfall	Construction phase	• EIAO-TM • WPCO	^
S11.207	If underwater blasting is required for SCL construction, the following precautionary / mitigation measures shall be adopted: Charge shall be placed in cores within the rock in order that there will be no blast directly into the water. In terms of the construction sequence, sediment dredging (within the planned IMT works area) shall be	To protect the water quality in Victoria Harbour from any possible underwater blasting	Contractor	Marine works areas in Victoria Harbour	Construction phase	• EIAO-TM • WPCO	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	conducted prior to any underwater blasting.						
Table 11.23	Silt screens shall be installed at the WSD Flushing Water	To protect the beneficial	Contractor	Flushing water	Construction	• EIAO-TM	N/A
	Intakes at Kowloon Station, Tai Wan, Quarry Bay and Wan	use of flushing water		intake points in	phase	• WPCO	
	Chai (namely Intakes 14, WSD9, WSD17 and A respectively)	intakes in Victoria Harbour		Victoria Harbour			
	during any dredging / filling works outside the CBTS for	from dredging / filling					
	temporary reclamation at SCL2 or for IMT construction	activities					
S11.210 - S11.211	If the marine works for SCL are to be carried out concurrently	To minimize loss of fines	Contractor	Marine works	Construction	• EIAO-TM	N/A
& Table 11.24	with other dredging / filling activities in the Victoria Harbour,	and contaminants from		areas in Victoria	phase	• WPCO	
ERR S6.7.1	the production rates of any dredging / filling work to be	dredging / filling in the		Harbour			
	undertaken outside the CBTS for SCL construction in the	Victoria Harbour					
	open harbour (including temporary reclamation at SCL2 and						
	IMT construction, except for the area within 60m from the						
	southern boundary of the temporary reclamation at Hung						
	Hom Landfall) shall not exceed 2,500 m ³ per day at any time						
	throughout the entire construction period. The hourly						
	production rate for dredging or bulk filling within the open						
	Victoria Harbour (outside the breakwater of CBTS, except for						
	the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 156 m³ per hour (if there are other concurrent marine						
	works in Victoria Harbour) and the maximum working hour for						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the dredging / bulk filling works shall be 16 hours per day. Silt						
	screen shall be deployed at the Kowloon Station Intake to						
	minimize the water quality impact. If the marine works for						
	SCL are to be carried out with no other concurrent dredging /						
	filling activities in the Victoria Harbour, the production rates of						
	any dredging / filling work to be undertaken outside the CBTS						
	for SCL construction in the open harbour (including						
	temporary reclamation at SCL2 and IMT construction except						
	for the area within 60m from the southern boundary of the						
	temporary reclamation at Hung Hom Landfall) shall not						
	exceed 4,500 m³ per day at any time throughout the entire						
	construction period. The hourly production rate for dredging						
	or bulk filling within the open Victoria Harbour (outside the						
	breakwater of CBTS except for the area within 60m from the						
	southern boundary of the temporary reclamation at Hung						
	Hom Landfall) shall not exceed 281 m³ per hour (if there is no						
	other concurrent marine works in Victoria Harbour) and the						
	maximum working hour for the dredging / bulk filling works						
	shall be 16 hours per day. Silt screen shall be deployed at the						
	Kowloon Station Intake to minimize the water quality impact.						
	Only one chiseling machine or hydraulic breaker shall be			_			

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	What	Status
		recommended Measures	implement	measures	Implement the	requirements or	
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	adopted for rock breaking.						
	For any dredging / filling work for IMT construction within 60m						
	from the southern boundary of the temporary reclamation at						
	Hung Hom Landfall:						
	The daily production rate shall not exceed 1,500m³ per						N/A
	day						
	the hourly production rate shall not exceed 93m³						N/A
S11.215	The following good site practices shall be undertaken during	To minimize loss of	Contractor	Marine works	Construction	• EIAO-TM	
	filling and dredging:	fines and contaminants		areas	phase	• WPCO	
	mechanical grabs, if used, shall be designed and	from dredging / filling					٨
	maintained to avoid spillage and sealed tightly while						
	being lifted;						
	all vessels shall be sized so that adequate clearance is						٨
	maintained between vessels and the seabed in all tide						
	conditions, to ensure that undue turbidity is not						
	generated by turbulence from vessel movement or						
	propeller wash;						
	all hopper barges and dredgers shall be fitted with tight						٨
	fitting seals to their bottom openings to prevent						
	leakage of material;						
	construction activities shall not cause foam, oil,						*

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; Ioading of barges and hoppers shall be controlled to prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; before commencement of the temporary reclamation works, the holder of the Environmental Permit shall submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.						^
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works. • Stockpiling of construction and demolition materials and	minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction phase	• EIAO-TM • WPCO	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	dusty materials shall be covered and located away from the seawater front and storm drainage. Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.						^
S11.217	The following mitigation measures are proposed to minimize the potential water quality impacts from any marine piling works: The potential release of sediment or excavated materials could be controlled through the installation of silt curtains surrounding the working area as necessary. Spoil shall be collected by sealed hopper barges for proper disposal.	To minimize release of sediment and pollutants from marine piling activities	Contractor	Marine piling works areas	Construction phase	• EIAO-TM • WPCO	^
S11.218	Silt screens are recommended to be deployed at the seawater intakes during the construction works period. Regular maintenance of the silt screens and refuse collection shall be performed at the silt screens at regular intervals on a daily basis. The Contractor shall be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	To avoid the pollutant and refuse entrapment problems at the silt screens to be installed at the water intakes.	Contractor	Proposed silt screens at water intakes	Construction phase	• EIAO-TM • WPCO	^
S11.219	It is recommended that collection and removal of floating	To minimize water	Contractor	Marine works	Construction	• EIAO-TM	#

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	refuse shall be performed within the marine construction	quality impacts from		area	phase	• WPCO	
	areas at regular intervals on a daily basis. The Contractor	illegal dumping and				• WDO	
	shall be responsible for keeping the water within the site	littering from marine					
	boundary and the neighbouring water free from rubbish	vessels and runoff from					
	during the dredging works.	the coastal area					
S11.220 &	Any wastewater including washdown waters and any	To minimize water	Contractor	Shek O Casting	Construction	• EIAO-TM	٨
221	concrete curing waters generated from the casting basin shall	quality impacts from		Basin	phase	• WPCO	
	be drained to the wastewater treatment unit. Appropriate	the washdown, flooding					
	treatment process such as sedimentation and oil removal	and draining operation					
	shall be employed for the wastewater treatment units so that	at Shek O Casting					
	any discharge from the casting basin will comply with	Basin					
	standards stipulated in the TM-DSS. Recovered oil from any						
	oil interceptor shall be properly contained, labeled and stored						
	on site prior to collection by licensed collectors for disposal.						
	During the flooding of the basin with seawater (accomplished						
	by pumps) no escape of water could occur as the cofferdam						
	will still be in place. Prior to opening a channel through the						
	cofferdam, water inside the basin will be skimmed of floating						
	debris. A period of settling of 24 hours before opening the						
	basin to the sea would allow much of the suspended material						
	to settle out. The channel through the cofferdam will only be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	opened with the approval of the Site Engineer to the effect						
	that all reasonable steps had been taken to remove						
	contaminants.						
S11.222	The site practices outlined in ProPECC PN 1/94	To minimize water quality	Contractor	Works areas	Construction	• EIAO-TM	#
to 11.245	"Construction Site Drainage" shall be followed where	impacts from construction			phase	• WPCO	
	practicable.	site runoff and general				• TMDSS,	
		construction activities				• WDO,	
						• ProPECC PN	
						1/94	
S11.246 & 11.247	Construction work force sewage discharges on site are	minimize water quality	Contractor	All works areas	Construction	• EIAO-TM	٨
	expected to be discharged to the nearby existing trunk sewer	impacts due to sewage			phase	·WPCO	
	or sewage treatment facilities. If disposal of sewage to public	generated from				• TM-DSS	
	sewerage system is not feasible, appropriate numbers of	construction				• WDO	
	portable toilets shall be provided by a licensed contractor to	workforce					
	serve the construction workers over the construction site to						
	prevent direct disposal of sewage into the water environment.						
	The Contractor shall also be responsible for waste disposal						
	and maintenance practices.						
	Notices shall be posted at conspicuous locations to remind						٨
	the workers not to discharge any sewage or wastewater into						
	the nearby environment.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11.248	In case seepage of uncontaminated groundwater occurs,	To minimize impact from	Contractor	Works areas	Construction	• EIAO-TM	٨
	groundwater shall be pumped out from the works areas and	discharge of			phase	·WPCO	
	discharged into the storm system via silt removal facilities.	uncontaminated				• TM-DSS	
	Uncontaminated groundwater from dewatering process shall	groundwater				·WDO	
	also be discharged into the storm system via silt traps.						
S11.252	The following good site practices shall be adopted for the	To minimize water quality	Contractor	Barging Points	Construction	• EIAO-TM	
	proposed barging points:	impacts generated from the			phase	• WPCO	
	- all vessels shall be sized so that adequate clearance is	barging points.					N/A
	between vessels and the seabed in all tide conditions, to						
	ensure that undue turbidity is not generated by turbulence						
	from vessel movement or propeller wash						
	- all hopper barges shall be fitted with tight fitting seals to						N/A
	their bottom openings to prevent leakage of material						
	- construction activities shall not cause foam, oil, grease,						N/A
	scum, litter or other objectionable matter to be present on the						
	water within the site						
	- loading of barges and hoppers shall be controlled to						N/A
	prevent splashing of material into the surrounding water.						
	Barges or hoppers shall not be filled to a level that will cause						
	the overflow of materials or polluted water during loading or						
	transportation						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
S11.253	There is a need to apply to EPD for a discharge licence for	To minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
	discharge of effluent from the construction site under the	impact from effluent		works areas	phase	• WPCO	
	WPCO. The discharge quality must meet the requirements	discharges from				• TM-DSS	
	specified in the discharge licence. All the runoff and	construction sites					
	wastewater generated from the works areas shall be treated						
	so that it satisfies all the standards listed in the TM-DSS.						
	Minimum distances of 100 m shall be maintained between						
	the discharge points of construction site effluent and the						
	existing seawater intakes. The beneficial uses of the treated						
	effluent for other on-site activities such as dust suppression,						
	wheel washing and general cleaning etc., can minimize water						
	consumption and reduce the effluent discharge volume. If						
	monitoring of the treated effluent quality from the works areas						
	is required during the construction phase of the Project, the						
	monitoring shall be carried out in accordance with the WPCO						
	license which is under the ambit of Regional Office (RO) of						
	EPD.						
S11.254	Contractor must register as a chemical waste producer if	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	٨
	chemical wastes would be produced from the construction	impact from accidental		works areas	phase	• WPCO	
	activities. The Waste Disposal Ordinance (Cap 354) and its	spillage of chemical				• TM-DSS	
	subsidiary regulations in particular the Waste Disposal					·WDO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	(Chemical Waste) (General) Regulation shall be observed						
	and complied with for control of chemical wastes.						
S11.255	Any service shop and maintenance facilities shall be located	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	*
	on hard standings within a bunded area, and sumps and oil	impact from accidental		works areas	phase	·WPCO	
	interceptors shall be provided. Maintenance of vehicles and	spillage of chemical				• TM-DSS	
	equipment involving activities with potential for leakage and					• WDO	
	spillage shall only be undertaken within the areas						
	appropriately equipped to control these discharges.						
S11.256	Disposal of chemical wastes shall be carried out in	minimize water quality	Contractor	All construction	Construction	• EIAO-TM	
	compliance with the Waste Disposal Ordinance. The "Code of	impact from accidental		works areas	phase	• WPCO	
	Practice on the Packaging, Labelling and Storage of	spillage of chemical				• TM-DSS	
	Chemical Wastes" published under the Waste Disposal					• WDO	
	Ordinance details the requirements to deal with chemical						
	wastes. General requirements are given as follows:						
	Suitable containers shall be used to hold the chemical						٨
	wastes to avoid leakage or spillage during storage, handling						
	and transport.						
	Chemical waste containers shall be suitably labelled, to						٨
	notify and warn the personnel who are handling the wastes,						
	to avoid accidents.						
	Storage area shall be selected at a safe location on site and						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	adequate space shall be allocated to the storage area.						
ERR S 8.5.1	Floating type silt curtains would be installed around the area	minimize water quality	Contractor	Shek O Casting	Construction	·WPCO	٨
	of construction and removal of earth bund during the	impact at Shek O Casting		Basin	phase		
	respective works.	Basin					
Waste Manage	ment (Construction Waste)						
S12.75	Good Site Practices and Waste Reduction Measures	reduce waste management	Contractor	All works sites	Construction	Waste Disposal	
	- Prepare a Waste Management Plan	impacts			phase	Ordinance (Cap.	٨
	(WMP) approved by the Engineer/Supervising Officer of the					354)	
	Project based on current practices on construction sites;					• Land	
	- Training of site personnel in, site cleanliness, proper waste					(Miscellaneous	۸
	management and chemical handling procedures;					Provisions)	
	- Provision of sufficient waste disposal points and regular					Ordinance (Cap.	٨
	collection of waste;					28)	
	- Appropriate measures to minimize windblown litter and					• DEVB TCW	۸
	dust during transportation of waste by either covering trucks					No. 6/2010	
	or by transporting wastes in enclosed containers;						
	- Regular cleaning and maintenance programme for						#
	drainage systems, sumps and oil interceptors; and						
	- Separation of chemical wastes for special handling and						٨
	appropriate treatment.						
S12.76	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	Waste Disposal	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	(Con't)	reduction			phase	Ordinance (Cap.	
	- Sorting of demolition debris and excavated materials from					354)	٨
	demolition works to recover reusable/ recyclable portions (i.e.					• Land	
	soil, broken concrete, metal etc.);					(Miscellaneous	
	- Segregation and storage of different types of waste in					Provisions)	٨
	different containers, skips or stockpiles to enhance reuse or					Ordinance (Cap.	
	recycling of materials and their proper disposal;					28)	
	- Encourage collection of aluminum cans by providing						٨
	separate labeled bins to enable this waste to be segregated						
	from other general refuse generated by the workforce;						
	- Proper storage and site practices to minimize the potential						٨
	for damage or contamination of construction materials;						
	- Plan and stock construction materials carefully to						٨
	minimize amount of waste generated and avoid unnecessary						
	generation of waste; and						
	- Training shall be provided to workers about the concepts						٨
	of site cleanliness and appropriate waste management						
	procedures, including waste reduction, reuse and recycle.						
S12.77	Good Site Practices and Waste Reduction Measures	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	
	(Con't)	reduction			phase	No. 19/2005	
	- The Contractor shall prepare and implement a WMP as						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	part of the EMP in accordance with ETWBTCW No. 19/2005						
	which describes the arrangements for avoidance, reuse,						
	recovery, recycling, storage, collection, treatment and						
	disposal of different categories of waste to be generated from						
	the construction activities. Such a management plan shall						
	incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP shall be submitted to the						
	Engineer for approval. The Contractor shall implement the						
	waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP shall be reviewed						
	regularly and updated by the Contractor, preferably in a						
	monthly basis.						
S12.78	C&D materials would be reused in other local concurrent	achieve waste	Contractor	All works sites	Construction	• ETWB TCW	٨
	projects as far as possible. If all reuse outlets are exhausted	reduction			phase	No. 19/2005	
	during the construction phase, the C&D materials would be						
	disposed of at Taishan, China as a last resort.						
S12.79	Storage, Collection and Transportation of Waste	minimize potential	Contractor	All works sites	Construction	-	
	Should any temporary storage or stockpiling of waste is	adverse environmental			phase		
	required,	impacts arising from waste					
	recommendations to minimize the impacts include:	storage					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Waste, such as soil, shall be handled and stored well to						۸
	ensure secure containment, thus minimizing the potential of						
	pollution;						
	- Maintain and clean storage areas routinely;						۸
	- Stockpiling area shall be provided with covers and water						۸
	spraying system to prevent materials from wind-blown or						
	being washed away; and						
	- Different locations shall be designated to stockpile each						۸
	material to enhance reuse						
S12.80	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	-	
	Waste haulier with appropriate permits shall be employed by	environmental impacts			phase		N/A
	the Contractor for the collection and transportation of waste	arising from waste					
	from works areas to respective disposal outlets. The following	collection and disposal					
	suggestions shall be enforced to minimize the potential						
	adverse impacts:						
	- Remove waste in timely manner						۸
	- Waste collectors shall only collect wastes prescribed by						۸
	their permits						
	- Impacts during transportation, such as dust and odour,						N/A
	shall be mitigated by the use of covered trucks or in enclosed						
	containers						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Obtain relevant waste disposal permits from the						٨
	appropriate authorities, in accordance with the Waste						
	Disposal Ordinance (Cap. 354), Waste Disposal (Charges for						
	Disposal of Construction Waste) Regulation (Cap. 345) and						
	the Land (Miscellaneous Provisions) Ordinance (Cap. 28)						
	- Waste shall be disposed of at licensed waste disposal						٨
	facilities						
	- Maintain records of quantities of waste generated,						٨
	recycled and disposed						
S12.81	Storage, Collection and Transportation of Waste (Con't)	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Implementation of trip ticket system with reference to	environmental impacts			phase	No. 6/2010	٨
	DevB TC(W) No.6/2010 to monitor disposal of waste and to	arising from waste					
	control fly-tipping at PFRFs or landfills. A recording system	collection and disposal					
	for the amount of waste generated, recycled and disposed						
	(including disposal sites) shall be proposed						
S12.83 – 12.86	Sorting of C&D Materials	minimize potential adverse	Contractor	All works sites	Construction	• DEVB TCW	
	- Sorting to be performed to recover the inert materials,	environmental impacts			phase	No. 6/2010	٨
	reusable and recyclable materials before disposal off-site.	during the handling,				• ETWB TCW No.	
	- Specific areas shall be provided by the Contractors for	transportation and disposal				33/2002	٨
	sorting and to provide temporary storage areas for the sorted	of C&D materials				• ETWB TCW	
	materials.				_	No. 19/2005	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach						^
S12.88	Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authorityof issuing marine dumping permit under the Dumping at Sea Ordinance	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance	۸
S12.89	Sediments The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on	To determine the best handling and disposal option of the sediments	Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works.					Ordinance	
S12.91-12.94	Sediments - Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate,	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance	^

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	if any, shall be collected and discharged according to the						
	Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions						٨
	during excavation and transportation of the sediment, the						
	excavated sediments shall be wetted during excavation /						
	material handling and shall be properly covered when						
	placed on trucks or barges. Loading of the excavated						
	sediment to the barge shall be controlled to avoid						
	splashing and overflowing of the sediment slurry to the						
	surrounding water.						
	- The barge transporting the sediments to the designated						٨
	disposal sites shall be equipped with tight fitting seals to						
	prevent leakage and shall not be filled to a level that						
	would cause overflow of materials or laden water during						
	loading or transportation. In addition, monitoring of the						
	barge loading shall be conducted to ensure that loss of						
	material does not take place during transportation.						
	Transport barges or vessels shall be equipped with						
	automatic selfmonitoring devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated						٨
	materials, workers shall, when necessary, wear						

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and						
	cleaning facilities shall also be provided on site.						
S12.95	Sediments	To ensure handling of	Contractor	Work Sites,	Construction	ETWB TC(W) No.	
	A possible arrangement for Type 3 disposal is by	sediments are in		Sediment	Phase	34/2002 &	N/A
	geosynthetic containment. A geosynthetic containment	accordance to statutory		disposal sites		Dumping at Sea	
	method is a method whereby the sediments are sealed in	requirements				Ordinance	
	geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated						
	contaminated mud pit where they would be covered by						
	further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud						
	disposal. The technology is readily available for the						
	manufacture of the geosynthetic containers to the						
	project-specific requirements. Similar disposal methods have						
	been used for projects in Europe, the USA and Japan and the						
	issues of fill retention by the geosynthetic fabrics, possible						
	rupture of the containers and sediment loss due to impact of						
	thecontainer on the seabed have been addressed.						
S12.97	Containers for Storage of Chemical Waste	register with EPD	Contractor	All works sites	Construction	• Code of	
	The Contractor shall register with EPD as a chemical waste	as a Chemical waste			phase	Practice on the	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures	Who to implement	Location of the measures	When to Implement the	What requirements or	Status
		& Main Concerns to	the		measures?	standards for	
		address	measures?			the measures to	
						achieve?	
	producer and to follow the guidelines stated in the Code of	producer and store				Packaging,	
	Practice on the Packaging, Labelling and Storage of	chemical waste in				Labelling and	
	Chemical Wastes. Containers used for storage of chemical	appropriate containers				Storage of	
	waste shall:					Chemical Wastes	٨
	- Be compatible with the chemical wastes being stored,						
	maintained in good condition and securely sealed;						٨
	- Have a capacity of less than 450 litters unless the						
	specifications have been approved by EPD; and						٨
	- Display a label in English and Chinese in accordance with						
	instructions prescribed in Schedule 2 of the Waste Disposal						
	(Chemical Waste) (General) Regulation						
S12.98	Chemical Waste Storage Area	prepare appropriate	Contractor	All works sites	Construction	Code of	
	- Be clearly labeled to indicate corresponding chemical	storage areas for chemical			phase	Practice on the	٨
	characteristics of the chemical waste and used for storage of	waste at works areas				Packaging,	
	chemical waste only;					Labelling and	
	- Be enclosed on at least 3 sides;					Storage of	٨
	- Have an impermeable floor and bunding, of capacity to					Chemical Wastes	٨
	accommodate 110% of the volume of the largest container or						
	20% by volume of the chemical waste stored in that area,						
	whichever is the greatest;						
	- Have adequate ventilation;						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	- Be covered to prevent rainfall from entering; and						٨
	- Be properly arranged so that incompatible materials are						۸
	adequately separated.						
S12.99	Chemical Waste	clearly label the chemical	Contractor	All works sites	Construction	• Code of	
	- Lubricants, waste oils and other chemical wastes would	waste at works areas			phase	Practice on the	۸
	be generated during the maintenance of vehicles and					Packaging,	
	mechanical equipments. Used lubricants shall be collected					Labelling and	
	and stored in individual containers which are fully labelled in					Storage of	
	English and Chinese and stored in a designated secure					Chemical Wastes	
	place.						
S12.100	Collection and Disposal of Chemical Waste	To monitor the generation,	Contractor	All works sites	Construction	Waste Disposal	
	A trip-ticket system shall be operated in accordance with the	reuse and disposal of			phase	(Chemical Waste)	۸
	Waste Disposal (Chemical Waste) (General) Regulation to	chemical waste				(General)	
	monitor all movements of chemical waste. The Contractor					Regulation	
	shall employ a licensed collector to transport and dispose of						
	the chemical wastes, to either the approved CWTC at Tsing						
	Yi, or another licensed facility, in accordance with the Waste						
	Disposal (Chemical Waste) (General) Regulation						
S12.101	General Refuse	properly store and	Contractor	All works sites	Construction	-	
	General refuse shall be stored in enclosed bins or	separate from other C&D			phase		#
	compaction units separate from C&D materials and chemical	materials for					

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	waste. A reputable waste collector shall be employed by the	subsequent collection and					
	contractor to remove general refuse from the site, separately	disposal					
	from C&D materials and chemical wastes. Preferably, an						
	enclosed and covered area shall be provided to reduce the						
	occurrence of wind-blown light material.						
S12.102	General Refuse (Con't)	facilitate recycling of	Contractor	All works sites	Construction	-	
	The recyclable component of general refuse, such as	recyclable portions of			phase		٨
	aluminum cans, paper and cleansed plastic containers shall	refuse					
	be separated from other waste. Provision and collection of						
	recycling bins for different types of recyclable waste shall be						
	set up by the Contractor. The Contractor shall also be						
	responsible for arranging recycling companies to collect						
	these materials.						
S12.103	General Refuse (Con't)	raise workers' awareness	Contractor	All works sites	Construction	-	
	The Contractor shall carry out an education programme for	on recycling issue			phase		۸
	workers in avoiding, reducing, reusing and recycling of						
	materials generation. Posters and leaflets advising on the						
	use of the bins shall also be provided in the sites as						
	reminders						

Remarks: ^

Compliance of mitigation measure

Non-compliance of mitigation measure

• Non-compliance but rectified by the contractor

SCL Works Contract 1121 - Environmental Mitigation Implementation Schedule

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable

APPENDIX K
WASTE GENERATION IN THE REPORTING
MONTH

Monthly Summary Waste Flow Table for <u>2016</u> (year)

Contract No: SCL1121
Date Reported: June 2016

			Actual Quant	ities of Inert C&D	Materials Gen	erated Monthly		I	Actual Quantities of I	Non-inert C&D Waste	es Generated Mont	hly
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill from 1111	Imported Fill from 1112	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000tonne)
Jan	0.531	0.000	0.000	19.544	0.000	7.242	13.218	0.000	0.000	0.000	0.000	0.111
Feb	0.308	0.000	0.000	8.572	0.000	3.812	4.306	0.000	0.000	0.000	0.000	0.081
Mar	0.2	0.000	0.000	8.095	0.000	4.132	3.478	0.000	0.462	0.000	0.000	0.123
Apr	0.66	0.000	0.000	16.374	0.000	3.691	11.359	0.000	0.377	0.000	0.000	0.171
May	5.795	0.000	0.000	1.47	0.124	1.728	2.080	0.000	0.000	0.000	0.000	0.185
June	1.15	0.000	0.000	4.377	0.000	2.627	2.381	0.000	0.000	0.000	0.000	0.204
July												
Aug												
Sept												
Oct												
Nov												
Dec												
Total	8.644	0.000	0.000	58.432	0.124	23.232	36.822	0.000	0.839	0.000	0.000	0.875

Notes:

- (1) The performance targets are given below:
 - All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;
 - All metallic waste to be recovered for collection by recycling contractors;
 - All cardboard and paper packaging (for plant, equipment and materials) to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;
 - All chemical wastes to be collected and properly disposed of by specialist contractors; and
 - All demolition debris to be stored to recover broken concrete, reinforcement bars, mechanical and electrical fittings, hardware as well as other fitting / materials that have established recycling outlets.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Broken concrete for recycling into aggregates.
- 4) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (5) "*" The inert C&D was delivered to the Hong Hum Barging Point and disposed by 1112.

Monthly Summary of Marine Sediment Flow for <u>2016</u> (year)

Contract No: SCL1121
Date Reported: June 2016

		Volume of Sediments Generated Monthly Bulk Volume)															
Month	Type 1 – Open Sea Disposal				Type 1 – Open Sea Disposal (Dedicated Site)			7	Type 2 – Confined Marine Disposal				Type 3 – Special Treatment Disposal				
	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1111	Generated from 1112	Generated from 1121	Generated from 1128	Disposed	Generated from 1121	Disposed
Unit		(iı	n '000m ³)				(in '000m ³)				((in '000m ³)			(in '00	00m ³)
Jan	0.013	16.584	5.342		21.801	0	0	0		0	0	0.019	21.339		21.339	0	0
Feb	0.003	1.253	10.172		11.566	0	0	0		0	0	4.041	11.611		15.152	0	0
Mar	0	3.850	10.842	N/A	14.694	0	0	0	N/A	0	0	2.298	29.771	N/A	32.087	0	0
Apr	0	0	6.253		6.253	0	0	6.825		6.825	0	0.358	31.814		31.814	0.557	0.557
May	0	0	12.046		12.046	0	0	1.675		1.675	0	4.057	31.508		35.838	0.441	0.441
June	0	0	6.775	0.148	6.775	0	0	0	0	0	0	6.447	33.845	0.031	40.363	0	0
Sub- Total	0.016	21.687	51.43	0.148	73.135	0	0	8.5	0	8.5	0	17.220	159.888	0.031	176.593	0.998	0.998
July																	
Aug																	
Sept																	
Oct																	
Nov																	
Dec																	
Total	0.016	21.687	51.43	0.148	73.135	0	0	8.5	0	8.5	0	17.220	159.888	0.031	176.593	0.998	0.998

APPENDIX L CUMULATIVE LOG FOR COMPLAINT LOGS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log

Log Ref.	Date/Location	Complainant/ Date of Contact	Details of Complaint	Investigation/ Mitigation Action	File Closed
EPD Ref.: K01/RE/00013547- 16	Not Specified / Hung Hom Finger Pier	Public / 3 June 2016	XXX 投訴近香港體育館 對出高鐵地盤(承辦商好 似是五洋建築),地盤泥 頭車在碼頭岸邊,將別 泥運送至躉船時(沒有圍 封好),引致大量泥塵及 沙泥隨處飄,沙泥更掉 至海面上,要求環保署 跟進及回覆。	 Enclosing the unloading process at any barging point tipping hall by a 3-sided screen with top, and operating water spraying and flexible dust curtains at the discharge point Water spray is provided to stockpile of 	Closed

barging facility; and > Dump truck drivers were reminded to slow down the speed of vehicles and the unloading process.	
• The Contractor was recommended to continue to properly implement construction dust mitigation measures based on the recommendations in the Environmental Monitoring & Audit Manual to minimize environmental impact	

Cumulative Log for Notifications of Summons

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Cumulative Log for Successful Prosecutions

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Appendix L - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecution

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
March 2015	0	0	0
April 2015	0	0	0
May 2015	0	0	0
June 2015	0	0	0
July 2015	0	0	0
August 2015	1	0	0
September 2015	1	0	0
October 2015	1	0	0
November 2015	1	0	0
December 2015	0	0	0
January 2016	0	0	0
February 2016	0	0	0
March 2016	1	0	0
April 2016	0	0	0
May 2016		0	0
June 2016	1	0	0
Total	7	0	0

Appendix C

Monthly EM&A Report for June 2016 – SCL Works Contract 1123 Exhibition Station and Western Approach Tunnel

Leighton - China State J.V.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1123 - Exhibition Station and Western Approach Tunnel

Monthly EM&A Report for June 2016

[July 2016]

	Name	Signature
Prepared & Checked:	Lemon Lam	Jame
Reviewed, Approved & Certified:	Y W Fung (Contractor's Environmental Team Leader)	Y,

Version: 0 Date: 7 July 2016

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Leighton – China State J.V. and is given for its sole benefit in relation to and pursuant to SCL1123 and may not be disclosed to, quoted to or relied upon by any person other than Leighton – China State J.V. without our prior written consent. No person (other than Leighton – China State J.V. into whose possession a copy of this Manual comes may rely on this plan without our express written consent and Leighton – China State J.V. may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Table of Contents

			Page
EXE	CUTIVE	SUMMARY	1
1	INTR	ODUCTION	3
	1.1 1.2	Purpose of the Report	
2	PRO	JECT INFORMATION	4
	2.1 2.2 2.3 2.4 2.5	Background	4 4 5
3	ENVI	RONMENTAL MONITORING REQUIREMENTS	8
	3.1 3.2 3.3 3.4	Construction Dust Monitoring Construction Noise Monitoring Continuous noise monitoring Landscape and Visual	10 11
4	IMPL	EMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	12
5	MON	ITORING RESULTS	13
	5.1 5.2 5.3 5.4	Construction Dust MonitoringRegular Construction Noise Monitoring	13 14
6	ENVI	RONMENTAL SITE INSPECTION AND AUDIT	15
7	ENVI	RONMENTAL NON-CONFORMANCE	16
	7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances	16 16
8	FUTU	JRE KEY ISSUES	17
	8.1 8.2 8.3	Construction Programme for the Next Three Month	17
9	CON	CLUSIONS AND RECOMMENDATIONS	18
	9.1 9.2	ConclusionsRecommendations	

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Air Quality Monitoring Equipment
Table 3.2	Locations of Construction Dust Monitoring Station
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.5	Noise Monitoring Station during Construction Phase
Table 4.1	Status of Required Submission under Environmental Permit
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period
Table 5.2	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 6.1	Observations and Recommendations of Site Audit

List of Figures

Figure 3.1 Air Quality and Noise Monitoring Locations

List of Appendices

Appendix A	Construction Programme				
Appendix B	Project Organisation Structure				
Appendix C	Implementation Schedule of Environmental Mitigation Measures				
Appendix D	Summary of Action and Limit Levels				
Appendix E	Calibration Certificates of Equipment				
Appendix F	EM&A Monitoring Schedules				
Appendix G	Air Quality Monitoring Results and their Graphical Presentations				
Appendix H	Noise Monitoring Results and their Graphical Presentations				
Appendix I	Event and Action Plan				
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful				
	Prosecutions				
Appendix K	Monthly Summary Waste Flow Table				

AECOM Asia Co. Ltd. ii July 2016

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1123 – Exhibition Station and Western Approach Tunnel (hereafter called "the Project") covers part of the construction of the Shatin to Central Link (SCL).

The Project comprises the construction of an underground station (Exhibition Station) and 300 m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.

The EM&A programme commenced on 1 June 2015. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 and 30 June 2016. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities
Exhibition Station (PTI	Utilities Diversion/ Protection
Area)	Provision of Temporary Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
Exhibition Station	Diaphragm Wall Works
(Swimming Pool Area)	
Exhibition Station (Tunnel	Diaphragm Wall Works
at Tonnochy Road)	Utilities Diversion/ Protection
Western Approach	Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft (WVS)	Diaphragm Wall Works

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action / Limit Level of air quality was recorded in the reporting month.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting month.

No exceedance of Limit Level of noise was recorded in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

There was no reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:-

Location	Site Activities
Exhibition Station (PTI	Utilities Diversion/ Protection
Area)	Pile/obstruction Removal
	Provision of Temporary Footbridge
	Demolition Ferry Pier Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
	Remove Temporary PTI and Reinstatement
Exhibition Station	Diaphragm Wall Works
(Swimming Pool Area)	
Exhibition Station	Diaphragm Wall Works
(Tunnel at Tonnochy	Utilities Diversion/ Protection
Road)	
Western Approach	Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft	Diaphragm Wall Works
(WVS)	

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

1 INTRODUCTION

Leighton – China State Joint Venture (JV) was commissioned by MTR as the Civil Contractor for Works Contract 1123. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the thirteenth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period from 1 to 30 June 2016.

1.2 Report Structure

- 1.2.1 This monthly EM&A Report is organised as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 The Shatin to Central Link (SCL) is a 17km extension of the existing Ma On Shan Line (MOL) and East Rail Line (EAL) comprising (i) The East-West Corridor which extends the MOL from Tai Wai via East Kowloon to connect with the West Rail Line (WRL) at Hung Hom Station (HUH); and (ii) The North-South Corridor which is an extension of the East Rail Line (EAL) at Hung Hom across the harbour to Admiralty Station (ADM).
- 2.1.2 The Environmental Impact Assessment (EIA) Reports for SCL Hung Hom to Admiralty Section [SCL (HUH-ADM)] (Register No.: AEIAR-166/2012) was approved on 17 February 2012 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permit (EP) was granted on 22 March 2012, which covers SCL (HUH-ADM) EP No.: EP-436/2012), for the construction and operation. Variation of EP (VEP) was subsequently applied and the latest EP (EP No. EP-436/2012/D) was issued by the Director of Environmental Protection (DEP) on 5 February 2016.
- 2.1.3 The construction of the SCL is divided into different civil construction works contracts and Works Contract 1123 Exhibition Station and Western Approach involves the construction of an underground station (Exhibition Station) and 300m of cut and cover tunnel (Western Approach Tunnel) along Convention Avenue.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under Works Contract 1123 include:
 - (a) Site preparation;
 - (b) Demolition works:
 - (c) Utilities works;
 - (d) Box Culvert works;
 - (e) Diaphragm wall construction and piling works;
 - (f) Pile Removal works;
 - (g) Excavation & Lateral Support (ELS) works; and
 - (h) Reprovisioning/ Reinstatement works.

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting month are summarised below:

Location	Site Activities
Exhibition Station (PTI	Utilities Diversion/ Protection
Area)	Provision of Temporary Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
Exhibition Station	Diaphragm Wall Works
(Swimming Pool Area)	
Exhibition Station (Tunnel	 Diaphragm Wall Works
at Tonnochy Road)	Utilities Diversion/ Protection
Western Approach	 Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft (WVS)	Diaphragm Wall Works

2.3.2 The construction programme is presented in **Appendix A**.

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
	Residential	Construction Manager	Mr. Walter Lam	3959 2128	3959 2200
MTR	Engineer (ER)	SCL Project Environmental Team Leader	Mr. Richard Kwan	2688 1283	2993 7577
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Mr. Fredrick Leong	2859 1739	2540 1580
N/ Contractor		Project Director	Mr. Jan Torka	3973 0846	31051126
JV	Contractor	Environmental Manager	Mr. Chris Chan	6463 2318	31031126
AECOM	Contractor's Environmental Team (ET)	ET Leader	Mr. Y W Fung	3922 9366	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting month are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period		04-1	
/ Notification/ Reference No.	From	То	Status	Remarks
Environmental Permit				
EP-436/2012/D 5-Feb-16		1	Valid	-
Construction Noise Pe	ermit			
GW-RS1366-15	16-Dec-15	13-Jun-16	Valid	An Area at Wan Chai Sports Ground (W1a, W1b)
GW-RS0070-16	30-Jan-16	29-Jul-16	Valid until superseded by GW-RS0548-16 on 2-Jun-16	An area near Harbour Road Sports Centre (W9a9b)
GW-RS0270-16	18-Mar-16	30-Jun-16	Valid	An area near Hong Kong Convention and Exhibition Centre (Area A & C)
GW-RS0329-16	5-Apr-16	4-Oct-16	Valid until superseded by GW-RS0603-16 on 12-Jun-16	An area near the junction of Convention Avenue and Fleming Road (Zone 1)
GW-RS0339-16	9-Apr-16	6-Oct-16	Valid	An area near the junction of Convention Avenue and Fleming Road (W12T)
GW-RS0394-16	25-Apr-16	21-Oct-16	Valid	An area near Harbour Road Sports Centre (Zone 3)
GW-RS0396-16	25-Apr-16	21-Oct-16	Valid	An Area at Wan Chai Sports Ground (Zone 4)
GW-RS0472-16	15-May-16	12-Nov-16	Valid	An area near Hong Kong Convention and Exhibition Centre (Area A & C, including open areas)
GW-RS0528-16	28-May-16	16-Jul-16	Valid	An section of Convention Avenue near Tonnochy Road (W6T 1 lane TTM)
GW-RS0548-16	02-Jun-16	30-Nov-16	Valid	An area near Harbour Road Sports Centre (Zone 3)
GW-RS0603-16	12-Jun-16	07-Dec-16	Valid	An area near the junction of Convention Avenue and Fleming Road (PTI Zone 1)
GW-RS0625-16	17-Jun-16	20-Aug-16	Valid	A section of Convention Avenue near Expo Drive East
GW-RS0628-16	20-Jun-16	30-Sep-16	Valid	A junction of Convention Avenue and Tonnochy Road (TTM Stage 2B2 advance civil works)
GW-RS0617-16	20-Jun-16	30-Sep-16	Valid	A section of Expo Drive East and Convention Avenue (TTM Stage 2B2 advance civil works)
GW-RS0601-16	15-Jun-16	13-Sep-16	Valid	An area at Wan Chai Sports Ground (Zone 4)
GW-RS0632-16	23-Jun-16	12-Jul-16	Valid	A section of Fleming Road near Convention Avenue and a section of Convention Avenue near Fleming Road

Permit / License No.	Valid Period		<u>.</u>			
/ Notification/ Reference No.	From	То	Status	Remarks		
Wastewater Discharge	Wastewater Discharge License					
WT00021388-2015	14-Apr-15	30-Apr-20	Valid	For Site Portions W16, W17, W18a		
WT00021864-2015	15-Jun-15	30-Jun-20	Valid	For Site Portion W12T (PTI)		
WT00022480-2015	4-Sep-15	30-Sep-20	Valid	For site portion W1a, W1b		
WT00022482-2015	4-Sep-15	30-Sep-20	Valid	For site portion W9a, W9b		
WT00023006-2015	26-Nov-15	30-Nov-20	Valid	For site portion W6T		
Chemical Waste Prod	ucer Registra	tion				
5213-135-L2881-01	02-Apr-15	End of the Project	Valid	For Whole Site		
Billing Account for Co	nstruction W	aste Disposal	1			
7021736	16-Feb-15	End of Contract	Valid	For Disposal of C&D Waste		
Notification Under Air Pollution Control (Construction Dust) Regulation						
385128	04-Feb-15	End of Contract	Valid	For Whole Site		

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment Brand and Model	
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10380 and S/N:809))
Calibration Kit	TISCH Environmental Orifice (Model TE-5025A (Orifice I.D.: 0988))

Monitoring Locations

3.1.3 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

ID	Air Sensitive Receiver (ASR) ID in EIA Report	Dust Monitoring Station	
AM2 ^[1]	EXA6	Wanchai Sports Ground	
AM3 ^[2]	EXA5	Existing Harbour Road Sports Centre	

Note

Monitoring Methodology

3.1.4 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable:-
 - A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) The sampler was located more than 20 meters from any dripline.

^[1] The impact monitoring at AM2 was handed over from Contract SCL1128 on 28 October 2015.

^[2] The impact monitoring at AM3 was handed over from Contract SCL1126 in June 2015.

- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.1.5 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

AECOM Asia Co. Ltd. 9 July 2016

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
Integrated Sound Level Meter	B&K (Model No. 2238 (S/N: 2800927), (S/N: 2800930))
Acoustic Calibrator	Rion (Model No. NC-73 (S/N: 10307223))

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.5** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	Noise Sensitive Receiver (NSR) ID in EIA Report	Noise Monitoring Station	Alternative Noise Monitoring Location
NM2 ^[1]	EX1	Causeway Centre, Block A	Harbour Centre ^[2]

Note:

[1] The impact monitoring at NM2 was handed over from Works Contract SCL1126 in June 2015.

[2] The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

Monitoring Methodology

3.2.4 Monitoring Procedure

- (a) Façade measurements were made at NM2.
- (b) The battery condition was checked to ensure the correct functioning of the meter.
- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

- (i) frequency weighting: A
- (ii) time weighting: Fast
- (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Month

3.2.6 The schedule for environmental monitoring in June 2016 is provided in **Appendix F**.

3.3 Continuous noise monitoring

3.3.1 According to EP conditions under EP-436/2012/D (Condition 2.7 and 2.8), the latest Construction Noise Mitigation Measures Plan (CNMMP) and Continuous Noise Monitoring Plan (CNMP) were submitted to EPD in June 2016, it is predicted that no residual air-borne construction noise impact exceeding the relevant noise criteria is anticipated. No continuous noise monitoring is required under this Contract.

3.4 Landscape and Visual

3.4.1 As per the EM&A Manuals, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 6.**

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1.**

Table 4.1 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
Condition 2.7 (EP-436/2012/D)	Construction Noise Mitigation Measures Plan (CNMMP) - Revision D	2 June 2016
Condition 2.8 (EP-436/2012/D)	Continuous Noise Monitoring Plan (CNMP) - Revision B	2 June 2016
Condition 3.4 (EP-436/2012/D)	Monthly EM&A Report for May 2016	14 June 2016

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

- 5.1.1 The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.
- 5.1.2 The monitoring results for 24-hour TSP are summarised in **Table 5.1**. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AM2#	22.9	13.9 – 27.0	160	260
AM3	63.8	26.9 – 163.6	169	260

[#] The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

- 5.1.3 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring locations in the reporting month.
- 5.1.4 The event and action plan is annexed in **Appendix I**.
- 5.1.5 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.2** and the monitoring data is provided in **Appendix H**.

Table 5.2 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
NM2 (*)	<baseline< th=""><th>75</th></baseline<>	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting month.
- 5.2.4 The event and action plan is annexed in **Appendix I**.
- 5.2.5 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 8,416m³ of inert C&D material was generated (7,029m³ was disposed of as public fill) in the reporting month. 1,386m³ of imported fill from other project. No inert C&D materials were reused on site. 41m³ general refuse was generated in the reporting month. 4,425kg of metals, 400kg of paper/cardboard packaging material and 798kg of plastic was collected by recycling contractor in the reporting month. No chemical waste was collected by licensed contractor in the reporting period. The waste flow table is annexed in **Appendix K**.
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practise on the Packaging, Labelling and Storage of Chemical Wastes.

5.4 Landscape and Visual

5.4.1 Bi-weekly inspection of the implementation of landscape and visual mitigation measures was conducted on 10 and 24 June 2016. A summary of the site inspection is provided in **Appendix** C. The observations and recommendations made during the site inspections are presented in **Table 6.1**.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting month, 5 site inspections were carried out on 3, 10, 17, 24 and 30 June 2016. Joint inspection with the IEC, ER, the Contractor and the ET was conducted on 17 June 2016. No non-compliance was recorded during the site inspection. Details of observations recorded during the site inspections are presented in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
	3 Jun	Site area at Zone 1 and WAT was observed dry. The Contractor should water the exposed site areas timely for dust suppression.	The item was rectified by the Contractor on 6 Jun 16.
	10 Jun	Reminder: Site area in general site was observed a bit dry. The Contractor was reminded to water the exposed area to suppress dust generation.	The item was rectified by the Contractor on 13 Jun 16.
Air Quality		Reminder: Dusty stockpile was observed at Zone 1 and WAT. The Contractor was reminded to cover the stockpile with tarpaulin sheet or water the stockpile for dust suppression.	The item was rectified by the Contractor on 14 Jun 16.
	24 Jun	Reminder: Some site areas were observed a bit dry at Zone 1 and Zone 4. The Contractor was reminded to water the exposed site area timely.	The item was rectified by the Contractor on 24 Jun 16.
Noise	24 Jun	Reminder: Noise acoustic mat wrapped on the breaker tips were observed loosen at Zone 4. The Contractor was reminded to replace the acoustic mat properly.	The item was rectified by the Contractor on 27 Jun 16.
	30 Jun	Reminder: The Contractor was reminded to replace the acoustic mat wrapped on the breaker tips frequently at Zone 4.	The item to be followed up in Jul 16.
Water	24 Jun	No preventive measures for the gully was provided at WAT. The Contractor should provide preventive measure for the gully to prevent potential site runoff.	The item was rectified by the Contractor on 27 Jun 16.
Quality	30 Jun	 No preventive measures for the u-channel and gullies was provided at Zone 4. The Contractor should provide preventive measure for the gully to prevent potential site runoff. 	The item to be followed up in Jul 16.
	3 Jun	 Oil stains were observed at Zone 1 and WAT. The Contractor should remove the oil stains and dispose of as chemical waste properly. 	The item was rectified by the Contractor on 7 Jun 16.
Waste/ Chemical	10 Jun	 General waste was found accumulated at WAT. The Contractor should remove the waste regularly to prevent over accumulation. 	The item was rectified by the Contractor on 14 Jun 16.
Management	17 Jun	Chemical containers placed on ground was observed at Zone 1. The Contractor should store the chemical containers with drip tray to retain leakage, if any.	The item was rectified by the Contractor on 21 Jun 16.
	30 Jun	Chemical containers placed on ground was observed at WAT. The Contractor should store the chemical containers with drip tray to retain leakage, if any.	The item to be followed up in Jul 16
Landscape & Visual	Nil	Nil	Nil
Permits/ Licenses	Nil	Nil	Nil

6.1.3 Most of the follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed into the following weekly site inspection conducted during the reporting period. Some outstanding follow-up actions will be reported in the next reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting month.
- 7.1.2 No noise complaint was received in the reporting month; hence, no Action Level exceedance was recorded.
- 7.1.3 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting month. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting month. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

8 FUTURE KEY ISSUES

8.1 Construction Programme for the Next Three Month

8.1.1 The major construction works in between July 2016 and September 2016 will be:

Location	Site Activities
Exhibition Station	Utilities Diversion/ Protection
(PTI Area)	Pile/obstruction Removal
	Provision of Temporary Footbridge
	Demolition Ferry Pier Footbridge
	 Prebored socket H-Piles (PBSH) & King Post
	Diaphragm Wall Works
	 Remove Temporary PTI and Reinstatement
Exhibition Station	Diaphragm Wall Works
(Swimming Pool	
Area)	
Exhibition Station	 Diaphragm Wall Works
(Tunnel at Tonnochy	Utilities Diversion/ Protection
Road)	
Western Approach	 Temporary Fire Escape Access for HKCEC
Tunnel WAT	Diaphragm Wall Works
Western Vent Shaft	Diaphragm Wall Works
(WVS)	

8.2 Key Issues for the Coming Month

8.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality and waste management.

8.3 Monitoring Schedule for the Next Three Month

8.3.1 The tentative schedules for environmental monitoring in between July 2016 and September 2016 are provided in **Appendix F**.

9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

- 9.1.1 24-hour TSP and noise monitoring were carried out in the reporting month.
- 9.1.2 All 24-hour TSP monitoring results complied with the Action / Limit Level at in the reporting month.
- 9.1.3 No noise complaint was received in the reporting month. Hence, no Action Level exceedance was recorded.
- 9.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting month.
- 9.1.5 5 nos. of environmental site inspections were carried out in June 2016. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 9.1.6 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

9.2 Recommendations

9.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:-

Air Quality Impact

Implement effective/preventive measures to avoid dust impact.

Construction Noise Impact

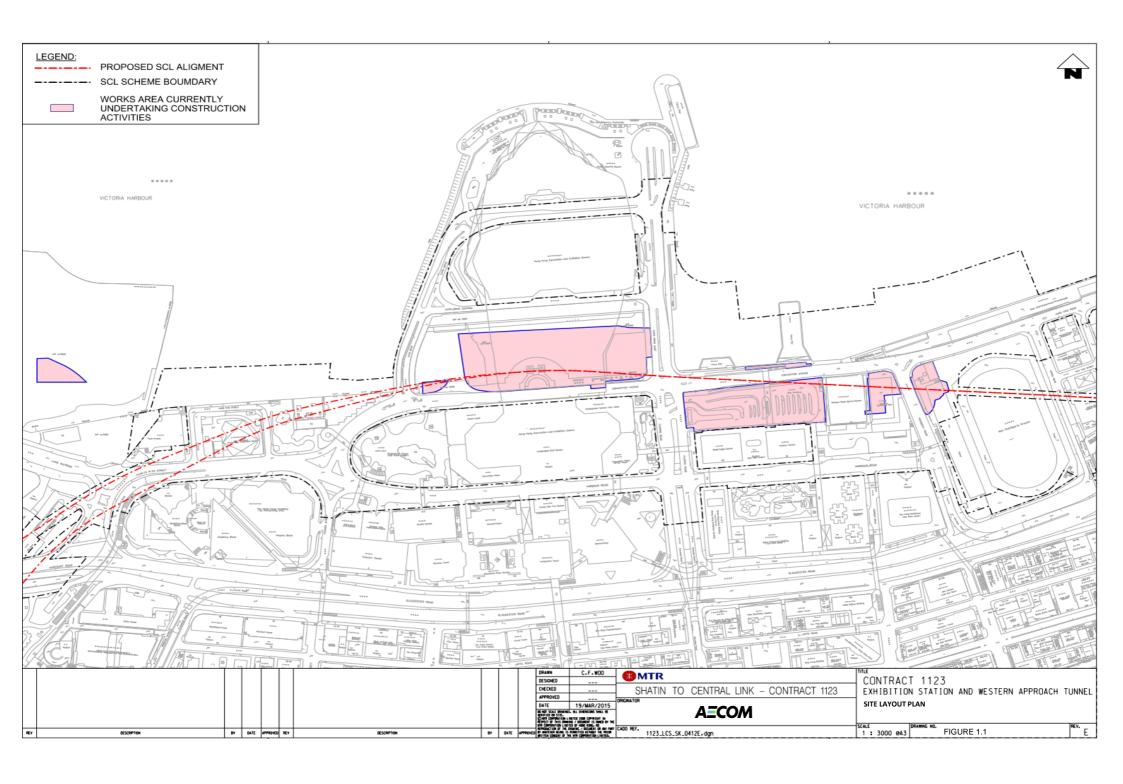
Implement effective/preventive measures to minimize noise impact.

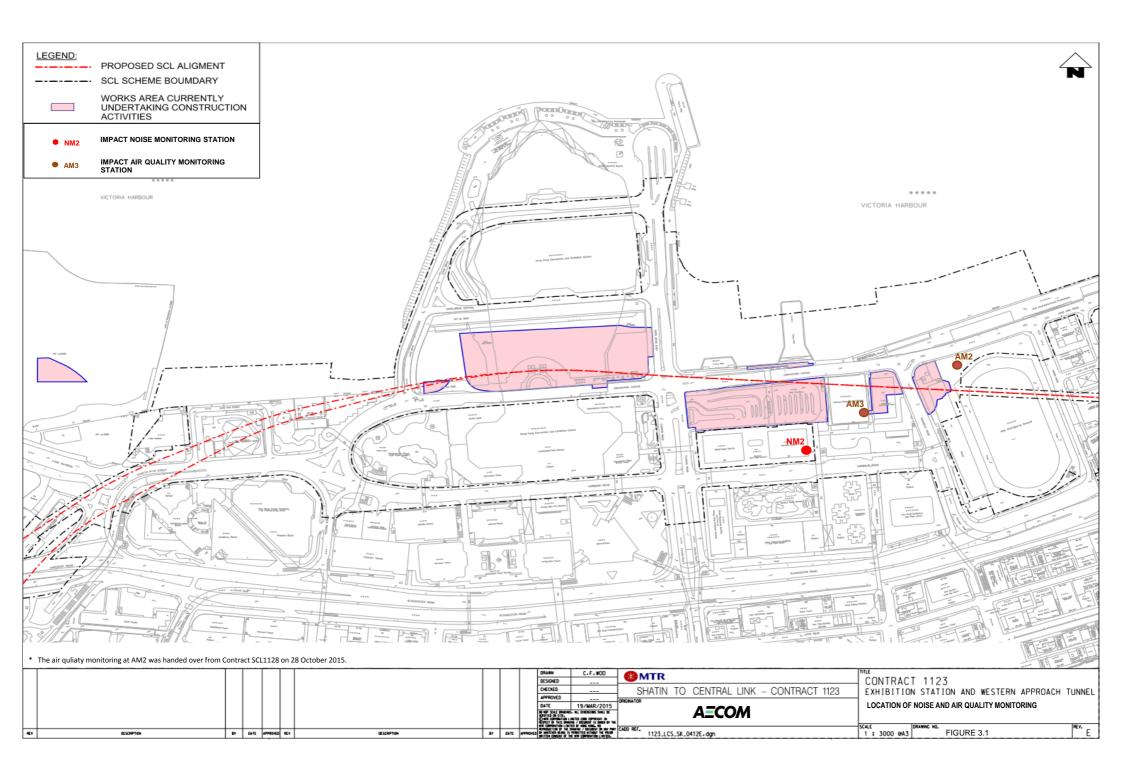
Water Quality Impact

• Implement effective/preventive measures to avoid water quality impact.

Chemical and Waste Management

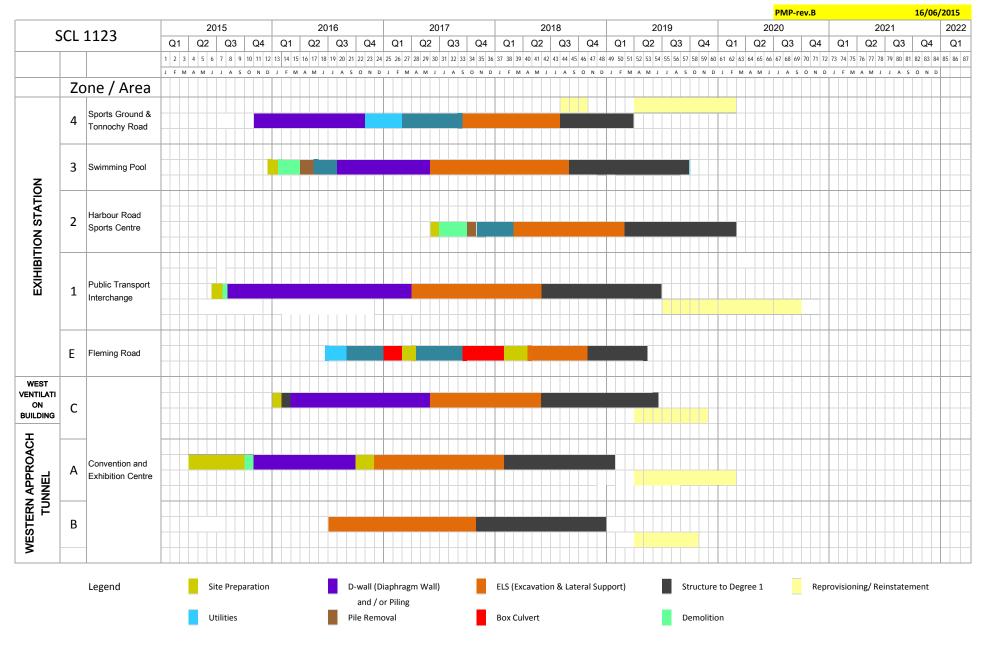
Provide proper chemical and waste handling management.


Landscape & Visual Impact


• No specific observation was identified in the reporting month.

Permits/licenses

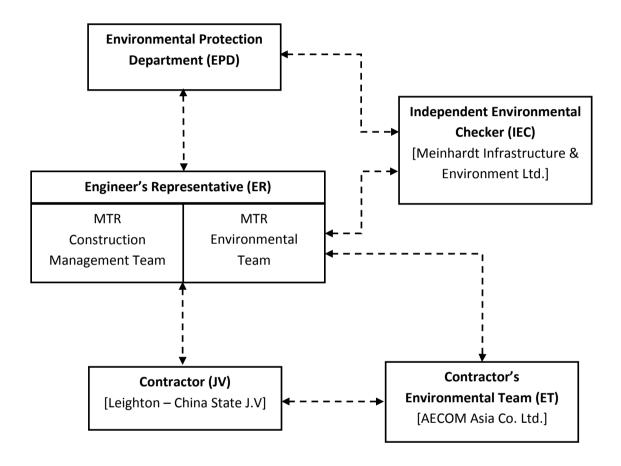
No specific observation was identified in the reporting month.



APPENDIX A

Construction Programme

High Level Programme



APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Cultural He	ritage Impact					
S4.93 & Table 4.2	Erection of decorative and sensibly designed hoarding along the boundary of the works area	To mitigate the temporary visual impact due to surface works.	Contractor	Works Areas in Causeway Bay and Wan Chai, and Works Shaft in Admiralty	Construction Phase	V
Ecological	Impact					
S5.134	Accidental chemical spillage and construction site run-off to the receiving water bodies, mitigation measures such as removing the pollutants before discharge into storm drain and paving the section of construction road between the wheel washing bay and the public road as suggested in Sections 11.216 and 11.219 to 11.256 of the EIA Report shall be adopted.	To minimize the contamination of wastewater discharge	Contractor	All land based works areas	Construction Phase	N/A
Landscape	and Visual Impact					
Construction	on Phase					
Table 7.9	CM1 - Trees unavoidably affected by the works shall be transplanted as far as possible in accordance with ETWB TC(W) 3/2006 – Tree Preservation.	Transplanting and reuse of affected trees.	MTR	Works Sites	Construction Phase	V
Table 7.9	CM2a - Compensatory tree planting shall be provided in accordance with ETWB TC(W) 3/2006 – Tree Preservation to compensate for felled trees and maintained until end of the establishment period.	Compensation for the removal of existing trees due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM2b - Compensatory shrub planting shall be provided to compensate for the loss of shrub planting in amenity areas.	Compensation for the removal of existing shrub planting due to the Project.	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM3 - Control of night-time lighting glare	Minimize the night time glare due to the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM4 - Erection of decorative screen hoarding compatible with the surrounding setting.	Minimize the visual impact of the Project during construction phase	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM5 - Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimize visual impact to adjacent VSRs	Control of height and deposition/ arrangement of temporary facilities in works areas	MTR	Works Sites	Construction Phase	N/A
Table 7.9	CM6 - All hard and soft landscape areas disturbed temporarily during construction shall be reinstated on like-to-like basis to the satisfaction of the relevant Government Departments.	Reinstatement of temporary works areas.	MTR	Works Sites	Construction Phase	N/A
Construction	on Dust Impact					
Table 8.5	 Barging facilities: (i) Transportation of spoils to the barging point – Pave all road surfaces within the barging facilities and provide watering once along with the haul road for every working hours to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.0 L/m² once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.0L/m² to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual. (ii) Unloading of spoil materials – Undertake the unloading process within a 3-sided screen with top 	To minimize dust impacts	Contractor	All barging points	Construction phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	tipping hall. Provide water spraying and flexible dust curtains at the discharge point for dust suppression. (iii) Vehicles leaving the barging facilities – Pass vehicles through the wheel washing facilities provided at site exits.					
S8.63	For concrete batching plant, the requirements and mitigation measures stipulated in the <i>Guidance</i> Note on the Best Practicable Means for Cement Works (Concrete Batching Plant) BPM 3/2(93) shall be followed and implemented.	To minimize dust impact	Contractor	Concrete Batching Plant	Construction phase	N/A
Table 8.6	 During operation of concrete batching plant: Unloading of aggregates from the tipper trucks to receiving hopper – unload the aggregates from the tipper trucks to the receiving hopper equipped with enclosures on 3 sides and top cover, and water spraying system. Unloading of cement and PFA from tankers into the silo – Directly load the cement and PFA into the silo via a flexible duct. Install dust collectors at cement/PFA silos. Storage of aggregates in overhead storage bins – Store the aggregates in fully enclosed overhead storage bins. Cover the top of overhead storage bins with cladding. Install water spraying system at the top of storage bins for watering the aggregates, and fully enclose aggregates storage bins. Weighing and batching of cementitious materials – Perform the whole process of weighing and mixing in a fully enclosed environment. Equip all the mixers with dust collectors. Loading of concrete from mixer into transit mixer of a truck – Directly load the concrete from the mixer into the transit mixer of a truck in "wet form". Tipper trucks and cement tankers leaving the Concrete Batching Plant – Haul road within the site is unpaved. Install wheel washing pit at the gate of the concrete batching plant. Transportation of materials within the plant – Provide watering twice a day would be provided. 	To minimize dust impacts	Contractor	Concrete Batching Plant	Construction phase	N/A
S8.89	Watering once every working hour on active works areas, exposed areas and paved haul roads to reduce dust emission by 91.7%. This dust suppression efficiency is derived based on the average haul road traffic, average evaporation rate and an assumed application intensity of 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side once every working hour. Any potential dust impact and watering mitigation would be subject to the actual site condition. For example, a construction activity that produces inherently wet conditions or in cases under rainy weather, the above water application intensity may not be unreservedly applied. While the above watering frequency is to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.7 L/m2 for Kowloon side and 1.0 L/m2 for Hong Kong side to achieve the removal efficiency. The dust levels would be monitored and managed under an EM&A programme as specified in the EM&A Manual.	To minimize dust impact	Contractor	Works areas	Construction Phase	@
S8.89	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall, provision of water spraying and flexible dust curtains to reduce dust emission	To minimize dust impact	Contractor	All barging points	Construction phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S8.90	 Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
	 Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. 					V
	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 					V
	 Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. 					N/A V
	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. 					N/A
	 Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Imposition of speed controls for vehicles on site haul roads. 					V
	 Where possible, routing of vehicles and positioning of construction plant shall be at the maximum possible distance from ASRs. 					N/A V
	 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. Instigation of an environmental monitoring and auditing program to monitor the construction 					V
	process in order to enforce controls and modify method of work if dusty conditions arise					V
/	 Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement 	To minimize dust impacts	Contractor	Works areas	Construction phase	V
	 The portion of any road where along the site boundary should be kept clear of dusty materials. Use of frequent watering for any dusty construction process (e.g. breaking works) to reduce dust emissions. 					V
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Reduce air pollution emission from construction vehicles and plants	Contractor	Works areas	Construction phase	V V
Airborne No	oise Impact					
Construction	on Phase					
S9.55	 The following good site practices shall be implemented: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V N/A
	 maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible 					V
	 Machines and plant (such as trucks) that may be in intermittent use shall be shut down between work periods or shall be throttled down to a minimum Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs 					N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on-site construction activities 					N/A
/	 Install movable noise barriers, acoustic mat or full enclosure, screen the noisy plants during operation Air compressors shall be fitted with valid noise emission labels during operation 	To minimize construction noise impact	Contractor	Works areas	Construction phase	V
S9.56 & Table 9.16	The following quiet PME shall be used: Crane lorry, mobile Crane, mobile Asphalt paver Backhoe with hydraulic breaker Breaker, excavator mounted (hydraulic) Hydraulic breaker Concrete lorry mixer Poker, vibrator, hand-held Concrete pump Crawler crane, mobile Mobile crane Dump truck Excavator Truck Rock drill Lorry Wheel loader Roller vibratory Movable noise barrier shall be used for the following PME:	To minimize construction noise impact	Contractor	Works areas at: Hung Hom Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel Works areas at:	Construction phase Construction	V V N/A V N/A N/A N/A V V V V V V V N/A N/A N/A
S9.59 & Table 9.17	 Air compressor Asphalt paver Backhoe with hydraulic breaker Bar bender Bar bender and cutter (electric) Breaker, excavator mounted Concrete pump Concrete pump, stationary/lorry mounted Excavator Generator Grout pump Hand held breaker Hydraulic breaker Saw, concrete 	construction noise impact		 Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	phase	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
S9.60 & Table 9.17	Noise insulating fabric shall be used for Drill rig, rotary type Piling, diaphragm wall, bentonite filtering plant Piling, diaphragm wall, grab and chisel Piling, diaphragm wall, hydraulic extractor Piling, large diameter bored, grab and chisel Piling, hydraulic extractor Piling, earth auger, auger Rock drill, crawler mounted (pneumatic)	To minimize construction noise impact	Contractor	 Works areas at: Cross Harbour section up to Breakwater of CBTS Breakwater of CBTS to SOV SOV to EXH EXH EXH to open space at the junction of Expo Drive and Convention Avenue Open space at the junction of Expo Drive and Convention Avenue to north of ADM South of ADM to Overrun Tunnel 	Construction phase	N/A N/A N/A N/A N/A N/A N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Water Qual	ity Impact					
Construction	on Phase					
S11.216	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: • Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials shall be located well away from the seawater front and storm drainage during carrying out of the works.	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	V
	 Stockpiling of construction and demolition materials and dusty materials shall be covered and located away from the seawater front and storm drainage. 					V
	Construction debris and spoil shall be covered up and/or disposed of as soon as possible to avoid being washed into the nearby receiving waters.					N/A
S11.222 to 11.245	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" shall be followed where practicable. Surface Run-off Surface run-off from construction sites shall be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers shall be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries shall be provided where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	Works areas	Construction Phase	@
	 shall be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes shall be maintained and the deposited silt and grit shall be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and re-alignment of drainage shall comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains. Minimum distances of 100 m shall be maintained between the discharge points of construction site runoff and the 					V
	 existing saltwater intakes. Construction works shall be programmed to minimize soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces shall be covered e.g. by tarpaulin, and temporary access roads shall be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels shall be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements shall always be in place in such a way that adequate surface protection measures can be safely carried out 					V
	 well before the arrival of a rainstorm. Earthworks final surfaces shall be well compacted and the subsequent permanent work or surface protection shall be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels shall be provided where necessary. 					N/A
	 Measures shall be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they shall be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations shall be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites shall be covered with tarpaulin or similar fabric during rainstorms. 					N/A
	 Manholes (including newly constructed ones) shall always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and 					V
	to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. • Good site practices shall be adopted to remove rubbish and litter from construction sites so as to					@
	prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring shall as far as					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater shall be discharged into storm drains via silt removal facilities. Wheel Washing Water					V
	 All vehicles and plant shall be cleaned before they leave a construction site to minimize the deposition of earth, mud, debris on roads. A wheel washing bay shall be provided at every site exit if practicable and wash-water shall have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road shall be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 					V
	 Bentonite Slurries Bentonite slurries used in diaphragm wall and bore-pile construction shall be reconditioned and used again wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the bentonite slurries shall either be dewatered or mixed with inert fill material for disposal to a public filling 					N/A
	 area. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the TM-DSS. Water for Testing & Sterilization of Water Retaining Structures and Water Pipes 					N/A
	 Water used in water testing to check leakage of structures and pipes shall be used for other purposes as far as practicable. Surplus unpolluted water will be discharged into storm drains. 					N/A
	 Sterilization is commonly accomplished by chlorination. Specific advice from EPD shall be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water shall be used again wherever practicable. 					N/A
	 Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities shall be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater shall be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters. Wastewater from Site Facilities 					N/A
	 Wastewater collected from any temporary canteen kitchens, including that from basins, sinks and floor drains, shall be discharged into foul sewer via grease traps. In case connection to the public foul sewer is not feasible, wastewater generated from kitchens or canteen, if any, shall be collected in a temporary storage tank. A licensed waste collector shall be deployed to clean the temporary storage tank on a regular basis. 					N/A
	 Drainage serving an open oil filling point shall be connected to storm drains via petrol interceptors with peak storm bypass. 					N/A
	 Vehicle and plant servicing areas, vehicle wash bays and lubrication bays shall as far as possible be located within roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor. Oil leakage or spillage shall be contained and cleaned up immediately. Waste oil shall be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. 					N/A
S11.246 & 11.247	Construction work force sewage discharges on site are expected to be discharged to the nearby existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices shall be posted at conspicuous locations to remind the workers not to discharge any sewage or	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	Works areas	Construction Phase	N/A
S11.248	wastewater into the nearby environment. In case seepage of uncontaminated groundwater occurs, groundwater shall be pumped out from the works areas and discharged into the storm system via silt removal facilities. Uncontaminated groundwater from dewatering process shall also be discharged into the storm system via silt traps.	To minimize impact from discharge of uncontaminated groundwater	Contractor	Works areas	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.249	If land contaminated site is identified from the Stage 2 SI work (refer to Sections 11.188 to 11.191 of the EIA Report), the following mitigation measures shall be implemented for the identified contaminated area. Any transient pile of contaminated soil / material shall be minimized and shall be bottom-lined, bunded and covered with impervious membrane during rain event to avoid generation of contaminated runoff. Appropriate intercepting channels and partial shelters shall be provided where necessary to prevent rainwater from collecting within trenches or footing excavations. Any contaminated water and wastewater generated from the decontamination process shall not be directly discharged to public sewers or site drainage. They shall be treated or tanked away as necessary for proper disposal in compliance with the TM-DSS.	To control site run-off generated from any potential contaminated works areas.	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.250 & S11.251	No direct discharge of groundwater from contaminated areas shall be adopted. If land contamination impact and generation of contaminated groundwater is identified from the Stage 2 SI works (refer to Sections 11.189 to 11.192 of the EIA Report), the following mitigation measures shall be adopted. Any contaminated groundwater shall be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground. If wastewater treatment is deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as TPH) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in TM-DSS and shall be discharged into the foul sewers. If groundwater recharging wells are deployed, the recharging wells shall be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharge operation as indicated in Section 2.3 of the TM-DSS. The baseline groundwater quality shall be determined prior to the selection of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement. Pollution levels of groundwater to the recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substance such as TPH products shall be removed as necessary by installing the petrol interceptor. The Contractor shall apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	To minimize potential water quality impact from discharge of contaminated groundwater	Contractor	Any potential contaminated areas to be identified from the Stage 2 SI	Construction Phase	N/A
S11.252	 The following good site practices shall be adopted for the proposed barging points: all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash all hopper barges shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site loading of barges and hoppers shall be controlled to prevent splashing of material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation 	To minimize water quality impacts generated from the barging points.	Contractor	Barging points	Construction Phase	N/A
S11.253	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas shall be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m shall be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring shall be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S11.254	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation shall be observed and complied with for control of chemical wastes.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	V
S11.255	Any service shop and maintenance facilities shall be located on hard standings within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage shall only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	N/A
S11.256	Disposal of chemical wastes shall be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	
	 Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. 					N/A N/A
	 Chemical waste containers shall be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area shall be selected at a safe location on site and adequate space shall be allocated to the storage area. 					N/A
Waste Mana	to the storage area. agement Implications					
Construction	on Phase					
S12.75	 Good Site Practices and Waste Reduction Measures Prepare a Waste Management Plan (WMP) approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites; 	To reduce waste management impacts	Contractor	All Work Sites	Construction Phase	V
	 Training of site personnel in, site cleanliness, proper waste management and chemical handling procedures; 					V
	 Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by 					@ N/A
	 either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and 					N/A
242 = 2	Separation of chemical wastes for special handling and appropriate treatment.			A 11.24/ 1. O.15		N/A
S12.76	 Good Site Practices and Waste Reduction Measures (con't) Sorting of demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); 	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					N/A
	 Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; 					N/A
	 Proper storage and site practices to minimize the potential for damage or contamination of construction materials; 					V
	 Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and 					V
	 Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 					V
S12.77	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan shall incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	The EMP shall be submitted to the Engineer for approval. The Contractor shall implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP shall be reviewed regularly and updated by the Contractor, preferably in a monthly basis.					
S12.78	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in other local concurrent projects as far as possible. If all reuse outlets are exhausted during the construction phase, the C&D materials would be disposed of at Taishan, China as a last resort.	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	N/A
S12.79	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, shall be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area shall be provided with covers and water spraying system to prevent materials 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	N/A N/A N/A
	 from wind-blown or being washed away; and Different locations shall be designated to stockpile each material to enhance reuse. 					N/A
S12.80	Storage, Collection and Transportation of Waste (con't) Waste haulier with appropriate permits shall be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following suggestions shall be enforced to minimize the potential adverse impacts: • Remove waste in timely manner	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
	 Waste collectors shall only collect wastes prescribed by their permits Impacts during transportation, such as dust and odour, shall be mitigated by the use of covered trucks or in enclosed containers Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction 					V N/A V
	 Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28) Waste shall be disposed of at licensed waste disposal facilities Maintain records of quantities of waste generated, recycled and disposed 					V
S12.81	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DevB TC(W) No.6/2010 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) shall be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.83 – 12.86	Sorting of C&D Materials • Sorting to be performed to recover the inert materials, reusable and recyclable materials before	To minimize potential adverse environmental impacts during the	Contractor	Work Sites	Construction Phase	V
	 disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. 	handling, transportation and disposal of C&D				N/A
	 The C&D materials shall at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion shall be investigated before disposal of at designated landfills. 	materials				V N/A
	 Possibility of reusing the spoil in the Project will be continuously investigated in the detailed design and construction stages, it includes backfilling to cut and cover construction works for the Hung Hom south and north approach tunnels. 					1971
S12.88	 Sediments The basic requirements and procedures for excavated / dredged sediment disposal specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is managing the disposal facilities in Hong Kong for the dredged and excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance. 	To ensure the sediment to be disposed of in an authorized and least impacted way	Contractor	All works areas with sediments concern	Construction Phase	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.89	 Sediments (con't) The contractor for the excavation / dredging works shall apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space have been submitted to MFC for onward discussions of disposal approach and feasible disposal sites and the letter is attached in Appendix 12.6. The Project proponent shall also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged and excavated sediment prior to the commencement of the excavation works. 	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Detailed Design Stage and Construction Phase	N/A
S12.91 – 12.94	 Sediments (con't) Stockpiling of contaminated sediments shall be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment shall be covered by tarpaulin and the area shall be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas shall be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas shall be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, shall be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. The barge transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. In order to minimise the exposure to contaminated materials, workers shall, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.95	 Sediments (con't) A possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. The technology is readily available for the manufacture of the geosynthetic containers to the project-specific requirements. Similar disposal methods have been used for projects in Europe, the USA and Japan and the issues of fill retention by the geosynthetic fabrics, possible rupture of the containers and sediment loss due to impact of the container on the seabed have been addressed. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	N/A
S12.97	 Containers for Storage of Chemical Waste The Contractor shall register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste shall: Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and 	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	Work Sites	Construction Phase	V
	 Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation. 					V

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S12.98	 Chemical Waste Storage Area Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; Be enclosed on at least 3 sides; Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; 	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Work Sites	Construction Phase	V V V
	 Have adequate ventilation; Be covered to prevent rainfall from entering; and Be properly arranged so that incompatible materials are adequately separated. 					V V V
S12.99	Chemical Waste Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used lubricants shall be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place.	To clearly label the chemical waste at works areas	Contractor	Work Sites	Construction Phase	N/A
S12.100	Collection and Disposal of Chemical Waste A trip-ticket system shall be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites	Construction Phase	N/A
S12.101	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and covered area shall be provided to reduce the occurrence of wind-blown light material.	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	Work Sites	Construction Phase	V
S12.102	General Refuse (con't) The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	Work Sites	Construction Phase	V
S12.103	General Refuse (con't) The Contractor shall carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins shall also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	Work Sites	Construction Phase	V
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. 	To minimize potential adverse environmental impacts arising from accidental spillage	Contractor	Work Sites	Construction Phase	@ @
	 The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. 					V
	 Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 					N/A
Land Conta	mination Impact					
S13.23– 13.24	 For construction works at sites under the current stage of site investigation (Stage 1 SI): Precautionary measures such as visual inspection are recommended to be undertaken during construction activities that disturb soil. The inspection process shall involve a visual observation of excavated soils for discolouration and the presence of oils, together with identifying the presence of odours, which may also indicate soil and/or groundwater contamination. If soil materials suspected to be contaminated are encountered during excavation, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during 	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Within Project Boundary where signs of contamination is identified	During excavation works for Cut-and- Cover	N/A

EIA Ref. / EM&A Log Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	demolition, excavation and cut & cover construction shall be temporary stockpiled. Shall concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the Contamination Assessment Report (CAR) and Remediation Action Plans (RAP).					
S13.30	For some sites with currently no SI proposed (i.e. sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28), to be conservative, visual inspection shall be conducted during demolition and excavation to detect any abnormal colour, smell or other characteristics of the soil, due to the nearby land use and/ or construction method. If abnormal colour, smell or other characteristics of contamination are identified for any of these sites, sampling and testing shall be undertaken to verify the presence of contamination. The soil extracted during demolition, excavation and cut & cover construction shall be temporary stockpiled. Should the concentrations of contaminants of concern (COCs) exceed relevant RBRGs as indicated by laboratory analyses, remediation works shall be undertaken with reference to the CAR and RAP.	To act as a general precautionary measure to screen soils for the presence contamination during excavation works for Cut-and-Cover.	Contractor	Areas with no SI proposed (Sites ID 2-02, 2-18, 2-22, 2-23, 2-27, 2-28)	During excavation works for Cut-and- Cover	N/A
S13.36 – 13.38	 For areas inaccessible for proper site appraisal and investigation (Stage 2 SI) (i) Site 2-15 Upon site access being granted, visual inspection shall be carried out where intrusive works and soil excavation is encountered, for attention on any potential contamination due to its current operation A supplementary CAP shall then be submitted to EPD for endorsement. A CAR/RAP shall be prepared and submitted to EPD for endorsement on completion of the SI and analytical testing. Shall remediation be undertaken a Remediation Report (RR) shall be prepared and submitted to EPD for endorsement to demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP. Information such as soil treatment/ disposal records (including trip tickets), confirmatory sampling results, and photographs shall be included in the aforesaid RR. No construction work shall be carried out prior to the endorsement of the RR by EPD. 	To identify areas with land contamination concern, report laboratory results and propose remediation measures if necessary. To ensure remediation works have been undertaken to before the commencement of any construction works of the Project.	Contractor	Areas unable to be accessed during Stage 1 SI (Site 2-15)	After land resumption and prior to the construction works commencement at the site	N/A
S13.39	Potential Remediation of Contaminated Soil Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; Excavation shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Supply of suitable clean backfill material is needed after excavation; If remediation is required with chemical oxidation proposed as a contaminant mass reduction technology, chemicals will be securely and separately stored away from sources of ignition or oxidisable items. Handling will be undertaken by personnel with appropriate training and personal protective equipment (PPE). Vehicles containing any excavated materials shall be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates shall be sealed to prevent any discharge during transport or during wet conditions; Speed control for the trucks carrying contaminated materials shall be enforced; Vehicle wheel and body washing facilities at the site's exit points shall be established and used; and Pollution control measures for air emissions e.g. from biopile blower, noise emissions e.g. from blower, and water discharges e.g. runoff control shall be implemented and complied with relevant regulations and guidelines.	To remediate contaminated soil	Contractor	Identified contaminated sites	Site remediation	N/A
S13. 40	In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures shall be implemented as far as possible: • Set up a list of safety measures for site workers; • Provide written information and training on safety for site workers; • Keep a log-book and plan showing the contaminated zones and clean zones; • Maintain a hygienic working environment; • Avoid dust generation; • Provide face and respiratory protection gear to site workers;	To minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation.	Contractor	Identified contaminated sites	Site remediation and prior to construction phase	N/A

EIA Ref. / EM&A Log Ref.		Who to implement the measures?	Location of the measure	Implementation Status
	 Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and Provide first aid training and materials to site workers. 			

Legend: V = implemented; x = not implemented; @ = partially implemented; N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Action Level	Limit Level
AM2*	Wan Chai Sports Ground	160 μg/m³	260 μg/m³
AM3	Existing Harbour Road Sports Centre	169 μg/m³	260 μg/m³

The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

Table 2 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
NM2*	Harbour Centre	When one documented complaint is received	75 dB(A)

The Access to the designated monitoring location NM2 (i.e. Block A, Causeway Centre) was denied before the commencement of impact monitoring under Works Contract 1126. An alternative monitoring location at Harbour Centre was approved by the ER, agreed by IEC and EPD's formal approval is awaited in August 2014.

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station Wanchai Sports Ground				Operator:	Leung \	Leung Yiu Ting		
al. Date:	17-May-16	Next Due Date: 17-Jul-16		ul-16	_			
Equipment No.:	A-001-72T	_	Serial No. 809				-	
			Ambient	Condition				
Temperatu	re, Ta (K)	297	Pressure, I	Pa (mmHg)		758.0		
					30100			
		C	rifice Transfer S	tandard Informatio	on			
Serial	No:	988	Slope, mc	1.97	7831	Intercept, bc	0.01264	
Last Calibra	ation Date:	29-May-15		may Ostd + ha	= [H x (Pa/760) x	(208/Ta)11/2		
Next Calibra	ation Date:	29-May-16		me x Qstu + be -	- [H X (1 a/ /00) X	(290/1a)j		
		•						
			Calibration of	of TSP Sampler				
		0	rfice		HV	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Flow Recorder Reading (CFM)	Continuous Flor Reading IC (CF		
18	6.8	in .	2.61	1.31	44.0	44.02	2	
13	5.9		2.43	1.22	40.0	40.0	1	
10	4.6		2.15	1.08	32.0	32.0	1	
7	3.1		1.76	0.88	26.0	26.0	1	
5	2.3		1.52	0.76	20.0	20.0	1	
By Linear Regre Slope , mw = Correlation Coe *If Correlation Co	42.7252 fficient* =	_	916 prate.	Intercept, bw =	-12.	5066	-	
- U TOD -	-1-1 O-12 - 11 - O	and the Oakl	MARKET SEEL NO SEEDLES CARRAS	Calculation				
		urve, take Qstd = '						
-rom the Regres	sion Equation, tr	ne "Y" value accord	ling to					
		2014	v Octd + bu = IC	x [(Pa/760) x (298/	Ta)1 ^{1/2}			
		IIIAA	x Qsta + bw - io	X [(F 8/100) X (230)	1 4/1			
Therefore, Set Po	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		43.02		
		•						
Remarks:			1					
		/						
	Luc	1		1/		17/4	-11/	
QC Reviewer:	KYSI	he	Signature:	K		Date:	110	

AECOM Asia Company Limited TSP High Volume Sampler Field Calibration Report

Station	Exiting Harbour	Road Sports Centr	e (AM3)	Operator:	Suen Ho	n Yeung	
Cal. Date: 17-May-16			Next Due Date:	17-J	ul-16	-	
Equipment No.:	A-001-15T	_	Serial No. 10380			380	-
				Condition			
Temperatu	ire, Ta (K)	297	Pressure,	Pa (mmHg)		758.0	
		C	rifice Transfer S	tandard Information	n		
Seria	l No:	988	Slope, mc	1.97	7831	Intercept, bc	0.0126
Last Calibra	ation Date:	29-May-15				1/2	
Next Calibr		29-May-16		$mc \times Qstd + bc =$	$= [H \times (Pa/760) \times$	$(298/Ta)]^{1/2}$	
TOX Odino.							
			Calibration of	of TSP Sampler			
		Oi	rfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flor Reading IC (CF	
18	7.4	in 2	2.72	1.37	44.0	44.02	2
13	5.9	2	2.43	1.22	36.0	36.0	1
10	4.7	1	2.17	1.09	30.0	30.0	1
7	3.7		1.92		26.0	26.0	1
5	2.8		1.67	0.84	20.0	20.0	1
By Linear Regre Slope , mw =	ession of Y on X 44.2551	<u> </u>		Intercept, bw =	-17.	3537	_
Correlation Coe	efficient* =	0.9	934				
*If Correlation Co	pefficient < 0.990	, check and recalib	rate.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd = 1	1.30m³/min				
From the Regres	ssion Equation, th	ne "Y" value accord	ling to				
		mw :	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}		
				00 11/2			
Therefore, Set P	oint; IC = (mw x	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)]''=		40.16	_
Remarks:			ř				
Nomains.		/					
	d - January - Ja		3000	1 /			111
	VXC		o: .			17/	5/16

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I	•	438320 0988	Ta (K) - Pa (mm) -	297 - 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3980 0.9910 0.8790 0.8380 0.6890	3.2 6.3 7.8 8.6 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703 1.7732
Qstd slor intercept coefficie	(b) =	1.97831 0.01264 0.99985		Qa slope intercept coefficie	= (b) $=$	1.23878 0.00793 0.99985
y axis =	SQRT[H20(F	°a/760) (298/	[a)]	y axis =	SQRT [H2O (1	Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

•

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O(Pa/760) (298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-02

Page

of

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

B & K

B & K

Type/Model No.: Serial/Equipment No.:

2238 2800927

4188 2791214

Adaptors used:

Item submitted by

N.009

Customer Name: Address of Customer:

AECOM ASIA CO., LTD.

Request No.: Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description:

Signal generator

Multi function sound calibrator Signal generator

B&K 4226 DS 360 DS 360

Model:

Serial No.

2288444 33873 61227

Expiry Date:

19-Jun-2016 16-Apr-2016 CEPREI 16-Apr-2016

Traceable to: CIGISMEC CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 60 ± 10 % 1000 ± 5 hPa

Relative humidity: Air pressure:

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA0703 02-02

Page

of

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Total	Codestant	04-4	Expanded Uncertanity (dB)	Coverage Factor
Test:	Subtest:	Status:	Officertainty (ub)	Factor
Self-generated noise	A	Pass	0.3	
•	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

- =

Checked by:

Lam Tze Wai

Date:

Fung Chi Yip 04-Jul-2015

Date:

06-Jul-2015

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹、坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-01

Page

2

Item tested

Description: Manufacturer:

Type/Model No.:

Adaptors used:

Sound Level Meter (Type 1)

B&K 2238

2800930

Microphone

B&K 4188

2250455

Item submitted by

Serial/Equipment No.:

Customer Name:

Address of Customer:

Request No .:

Date of receipt:

AECOM ASIA CO., LTD

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description: Multi function sound calibrator

Signal generator Signal generator Model: B&K 4226 DS 360 DS 360

Serial No. 2288444 33873

61227

Expiry Date: 19-Jun-2016 16-Apr-2016

16-Apr-2016

Traceable to: CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Relative humidity: Air pressure:

21 ± 1 °C 60 ± 10 %

1000 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Heng Jun Qi

Date: 06-Jul-2015 Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F, 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA0703 02-01

Page

of

2

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

Acoustic tests 2,

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fnd

Checked by:

Lam Tze Wai

Date:

Fung Chi Yip 04-Jul-2015

Date:

06-Jul-2015

The standard(s) and equipmentused in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No :

15CA1203 03

Page:

O

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73

Serial/Equipment No.:

10307223

Adaptors used:

2

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

-

Date of receipt:

03-Dec-2015

Date of test:

03-Dec-2015

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	SCL
Preamplifier	B&K 2673	2239857	22-Apr-2016	CEPREI
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	CEPREI
Signal generator	DS 360	61227	16-Apr-2016	CEPREI
Digital multi-meter	34401A	US36087050	17-Apr-2016	CEPREI
Audio analyzer	8903B	GB41300350	17-Apr-2016	CEPREI
Universal counter	53132A	MY40003662	16-Apr-2016	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Feng Jun Qi

Approved Signatory:

Date:

04-Dec-2015

Company Chop:

Comments: The results reported in his certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

15CA1203 03

Page:

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 uPa)

Frequency	Output Sound Pressure	Measured Output	Estimated Expande		
Shown	Level Setting	Sound Pressure Level	Uncertainty		
Hz	dB	dB	dB		
1000	94.00	94.04	0.10		

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

Actual Output Frequency 3.

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 987.5 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip

Checked by:

Lam Tze Wai

03-Dec-2015

Date:

04-Dec-2015

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No CARP156-2/Issue 1/Rev C/01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel Impact Monitoring Schedule for June 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
			1-Jun	2-Jun	3-Jun	4-Jun	
			Noise				
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun	11-Jun	
	Air Quality	Noise				Air Quality	
12-Jun	13-Jun	14-Jun	15-Jun	16-Jun 17-Ju		n 18-Jun	
	Noise		Air Quality				
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun	
		Air Quality	Noise				
26-Jun	27-Jun	28-Jun	29-Jun	30-Jun			
	Air Quality	Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2

Existing Harbour Road Sports Centre AM3

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency
24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel **Tentative Impact Monitoring Schedule for July 2016**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jul	2-Jul
						Air Quality
3-Jul	4-Jul	5-Jul	6-Jul	7-Jul	8-Jul	9-Jul
	Noise			Air Quality		
10-Jul	11-Jul	12-Jul	13-Jul	14-Jul	15-Jul	16-Jul
			Air Quality	Noise		
17-Jul	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul	23-Jul
		Air Quality	Noise			
24-Jul	25-Jul	26-Jul	27-Jul	28-Jul	29-Jul	30-Jul
	Air Quality	Noise				Air Quality
31-Jul						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2

Existing Harbour Road Sports Centre AM3

Monitoring Frequency

24-hr TSP Once every 6 days

Monitoring Frequency Once per week

NM2

Noise Monitoring Station

Harbour Centre

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel **Tentative Impact Monitoring Schedule for August 2016**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Aug	2-Aug	3-Aug	4-Aug	5-Aug	6-Aug
	Noise				Air Quality	
7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	13-Aug
				Air Quality	Noise	
14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	20-Aug
			Air Quality	Noise		
21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug	27-Aug
		Air Quality	Noise			
28-Aug	29-Aug	30-Aug	31-Aug			
	Air Quality	Noise				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2

Existing Harbour Road Sports Centre AM3

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency 24-hr TSP Once every 6 days

Monitoring Frequency

Once per week

Shatin to Central Link Contract 1123 - Exhibition Station and Western Approach Tunnel **Tentative Impact Monitoring Schedule for September 2016**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Sep	2-Sep	3-Sep
						Air Quality
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
	Noise				Air Quality	
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
				Air Quality		Noise
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
			Air Quality	Noise		
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
		Air Quality	Noise			

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

Wan Chai Sports Ground AM2

Existing Harbour Road Sports Centre AM3

Monitoring Frequency
24-hr TSP Once every 6 days

Noise Monitoring Station

NM2 Harbour Centre

Monitoring Frequency

Once per week

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G Air Quality Monitoring Results

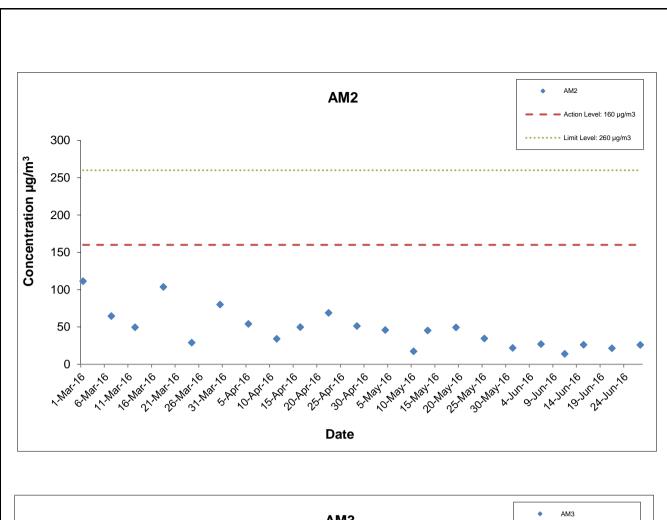
24-hour TSP Monitoring Results at Station AM2 (Wan Chai Sports Ground)

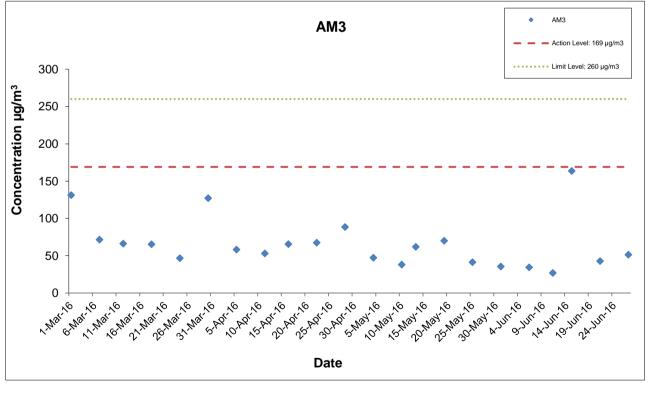
Star	t	End		End Wea		Weather	Air	Atmospheric	neric Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate Elapse Time		e Time	Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)		
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.31	1.31	1.31	1890.7	2.8206	2.8716	0.0510	18666.06	18690.06	24.00	27.0		
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.31	1.31	1.31	1890.7	2.7852	2.8115	0.0263	18690.06	18714.06	24.00	13.9		
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.31	1.31	1.31	1890.7	2.8050	2.8545	0.0495	18714.06	18738.06	24.00	26.2		
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.31	1.31	1.31	1890.7	2.7832	2.8239	0.0407	18738.06	18762.06	24.00	21.5		
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.31	1.31	1.31	1890.7	2.8786	2.9279	0.0493	18762.06	18786.06	24.00	26.1		

 Average
 22.9

 Minimum
 13.9

 Maximum
 27.0


24-hour TSP Monitoring Results at Station AM3 (Existing Harbour Road Sports Centre)


Star	t	End		End		End Weathe		Weather	Air	Atmospheric	Flow Rate (m³/min.)		Av. flow	Total vol. Filter Weight		eight (g)	ght (g) Particulate Elapse		se Time Sampling		Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)				
6-Jun-16	0:00	7-Jun-16	0:00	Fine	26.2	1008.8	1.30	1.30	1.30	1876.3	2.7994	2.8640	0.0646	5011.82	5035.82	24.00	34.4				
11-Jun-16	0:00	12-Jun-16	0:00	Rainy	26.6	1005.9	1.30	1.30	1.30	1876.3	2.7945	2.8449	0.0504	5035.82	5059.82	24.00	26.9				
15-Jun-16	0:00	16-Jun-16	0:00	Fine	30.3	1005.3	1.30	1.30	1.30	1876.3	2.7915	3.0984	0.3069	5059.82	5083.82	24.00	163.6				
21-Jun-16	0:00	22-Jun-16	0:00	Sunny	30.6	1009.3	1.30	1.30	1.30	1876.3	2.8033	2.8838	0.0805	5083.82	5107.82	24.00	42.9				
27-Jun-16	0:00	28-Jun-16	0:00	Fine	31.1	1007.5	1.30	1.30	1.30	1876.3	2.8879	2.9842	0.0963	5107.82	5131.82	24.00	51.3				

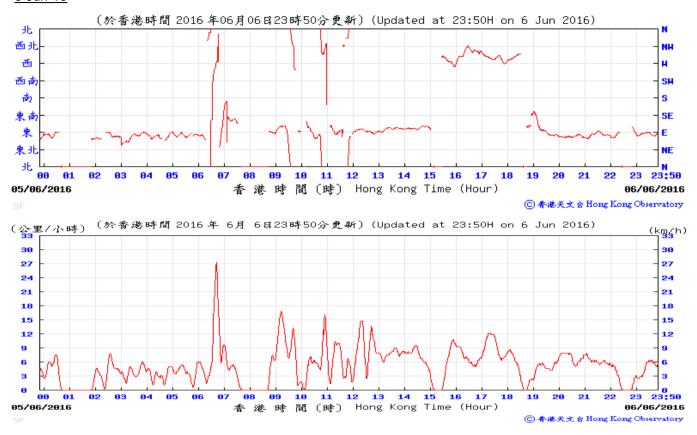
 Average
 63.8

 Minimum
 26.9

 Maximum
 163.6

* The monitoring station at AM2 was handed over from Contract SCL1128 on 28 October 2015.

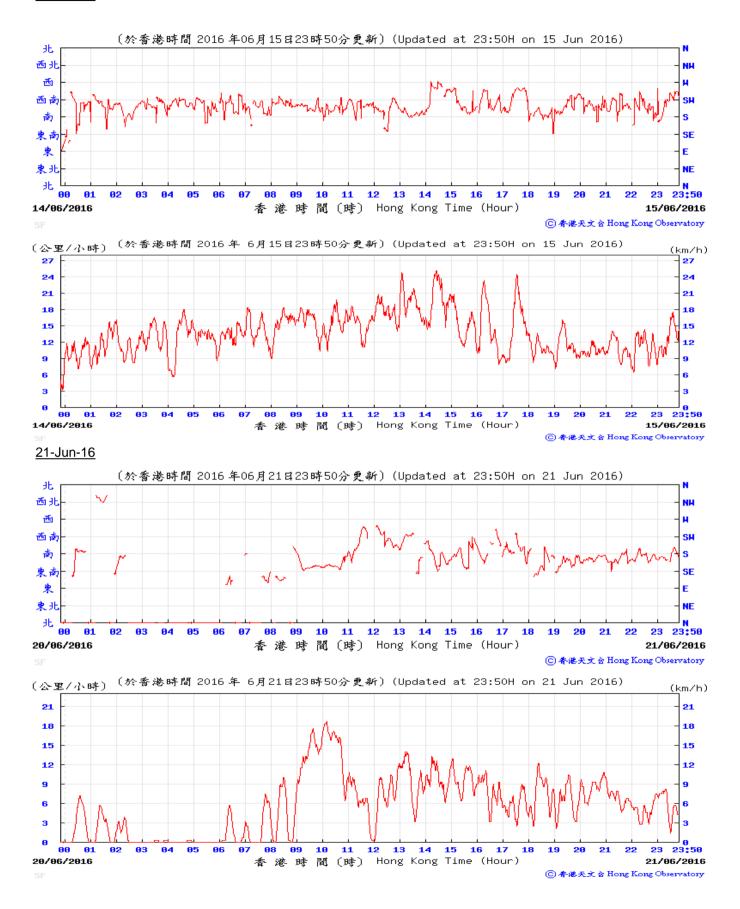
Shatin Central Link Contract No. 1123 Exhibition Station and Western Approach Tunnel


Date: July 2016

is Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or refied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this draw

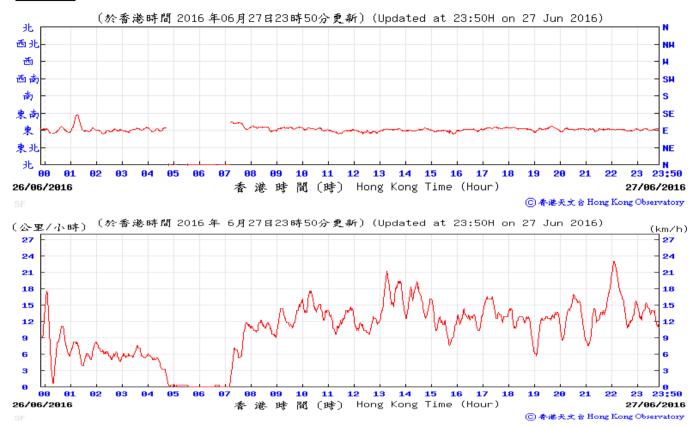
Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

6-Jun-16



11-Jun-16

No Meteorological information available from the HKO.

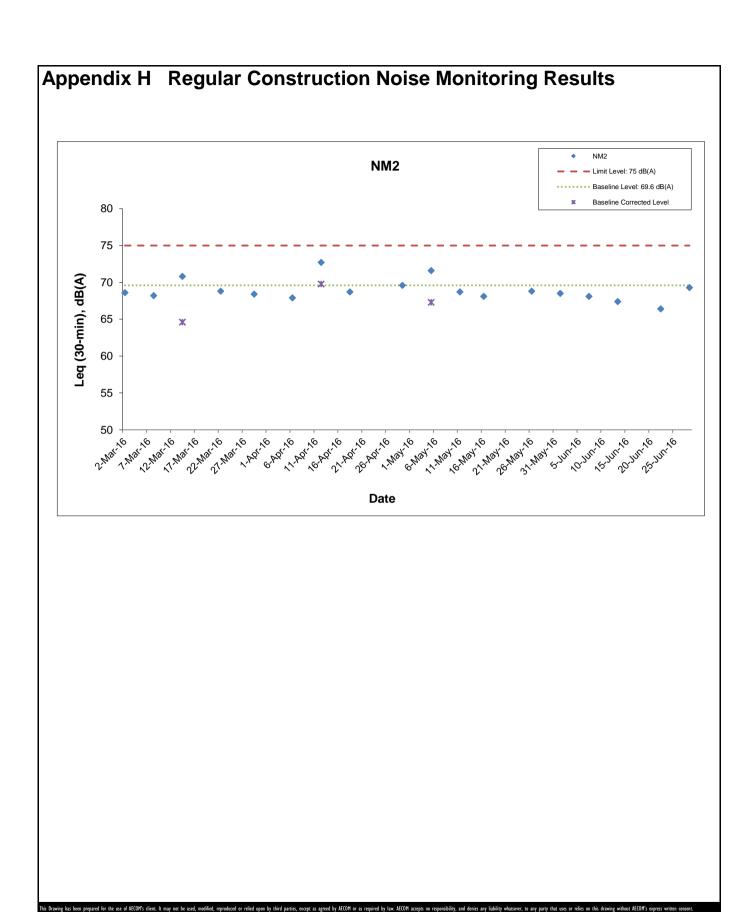

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

15-Jun-16

Appendix G – Extract of Meteorological Observations for Star Ferry Automatic Weather Station, June 2016

27-Jun-16

APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station NM2 (Harbour Centre)

Date	Weather Condition	Noise Level for 30-min, dB(A) ⁺			Baseline Corrected	Baseline Noise	Limit Level,	Exceedance	
Date		Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
1-Jun-16	Fine	14:15	66.2	70.9	68.5	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
7-Jun-16	Fine	13:35	66.5	70.0	68.1	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
13-Jun-16	Cloudy	10:05	66.0	68.5	67.4	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
22-Jun-16	Sunny	13:07	65.2	67.9	66.4	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N
28-Jun-16	Fine	10:10	67.0	70.5	69.3	<baseline< td=""><td>69.6</td><td>75</td><td>N</td></baseline<>	69.6	75	N

⁺ - Façade measurement

Shatin Central Link Contract No. 1123 Exhibition Station and Western Approach Tunnel

Date: July 2016 Appendix H

APPENDIX I

Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT	ACTION								
EVENI	ET	IEC	ER	Contractor					
ACTION LEVEL									
Exceedance for one sample	 Inform the Contractor, IEC and ER; Discuss with the Contractor and IEC on the remedial measures required; Repeat measurement to confirm findings; Increase monitoring frequency 	Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of exceedance in writing.	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate. 					
Exceedance for two or more consecutive samples	 Inform the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; Repeat measurements to confirm findings; Increase monitoring frequency to daily; If exceedance continues, arrange meeting with the IEC, ER and Contractor; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check Contractor's working method; Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise Implementation of remedial measures.	 Identify source and investigate the causes of exceedance; Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal as appropriate. 					

Appendix I	Event Action Plan								
EVENT	ACTION								
EVENT	ET	IEC	ER	Contractor					
LIMIT LEVEL									
Exceedance for one sample	 Inform the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Discuss with the ER, IEC and contractor on the remedial measures and assess the effectiveness. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ET, ER and Contractor on possible remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; Review and agree on the remedial measures proposed by the Contractor; Supervise implementation of remedial measures. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to ER with a copy to ET and IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 					
Exceedance for two or more consecutive samples	 Notify Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of the Contractor's working procedures with the ER to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Review the effectiveness of the Contractor's remedial measures and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with ET, ER, and Contractor on the potential remedial measures; Review and advise the ER and ET on the effectiveness of Contractor's remedial measures. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source(s) and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with a copy to the IEC and ET within three working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

Event and Action Plan for Construction Noise Monitoring

EVENIT	ACTION								
EVENT	ET	IEC	ER	Contractor					
Exceedance of Action Level	 Notify the Contractor, IEC and ER; Discuss with the ER, IEC and Contractor on the remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the contractor; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of complaint in writing; Review and agree on the remedial measures proposed by the Contractor; and Supervise implementation of remedial measures. 	 Investigate the complaint and propose remedial measures; Report the results of investigation to the IEC, ET and ER; Submit noise mitigation proposals to the ER with copy to the IEC and ET within 3 working days of notification; and Implement noise mitigation proposals. 					
Exceedance of Limit Level	 Notify the Contractor, IEC, EPD and ER; Repeat measurement to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with the IEC and ER to discuss the remedial measures to be taken; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Review the effectiveness of Contractor's remedial measures and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET; Check the Contractor's working method; Discuss with the ER, ET and Contractor on the potential remedial measures; and Review and advise the ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	 Confirm receipt of notification of exceedance in writing; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source and investigate the causes of exceedance; Take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET within 3 working days of notification; Implement the agreed proposals; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 					

Event and Action Plan for Continuous Noise Monitoring

EVENT	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
Action/Limit Level	1. Identify source; 2. Repeat measurement. If two consecutive measurements exceed Action/Limit Level, the exceedance is then confirmed; 3. If exceedance is confirmed, notify IEC, ER and Contractor; 4. Investigate the cause of exceedance and ckeck Contractor's working procedures to determine possible mitigation to be implemented; 5. Discuss jointly with the IEC, ER and Contractor and formulate remedial measures; and 6. Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results.	 Check monitoring data submitted by the Works Contract 1123 ET; Check the Contractor's working method; Discuss with the ER, Works Contract 1123 ET and Contractor on the potential remedial measures; and Review and advise the Works Contract 1123 ET and ER on the effectiveness of the remedial measures proposed by the Contractor. 	1. Confirm receipt of notification of exceedance in writing; 2. In consultation with the Works Contract 1123 ET and IEC, agree with the Contractor on the remedial measures to be implemented; 3. Ensure the proper implementation of remedial measures; and 4. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	 Identify source with the Works Contract 1123 ET; If exceedance is confirmed, investigation the cause of exceedance and take immediate action to avoid further exceedance; Submit proposals for remedial measures to the ER with copy to the IEC and ET of notification; Implement the agreed proposals; Liaise with ER to optimize the effectiveness of the agreed mitigation; Revise and resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				

APPENDIX J

Cumulative Statistics of Complaints, Notification of Summons and Successful Prosecutions

Appendix J Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	4
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

Appendix J AECOM

APPENDIX K

Waste Flow Table

Appendix K MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.:MTR SCL 1123 - Exhibition Station and Western Approach Tunnel

Monthly Summary Waste Flow Table for 2016

	Actu	Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging		Chemical Waste	Others, e.g. general refuse	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
Jan	4.845	0.000	0.000	0.000	4.659	0.186	16.083	0.755	0.010	0.000	0.031	
Feb	4.795	0.000	0.000	0.000	4.795	0.000	2.620	0.000	0.990	0.000	0.020	
Mar	5.456	0.000	0.000	0.055	5.401	0.000	19.242	0.480	0.018	0.000	0.033	
Apr	4.944	0.000	0.000	0.012	4.514	0.418	13.115	0.350	0.010	0.400	0.064	
May	4.232	0.000	0.000	0.000	3.845	0.388	16.340	0.500	0.020	0.000	0.099	
Jun	8.416	0.000	0.000	0.000	7.029	1.386	4.425	0.400	0.798	0.000	0.041	
Sub-total	32.688	0.000	0.000	0.067	30.243	2.378	71.825	2.485	1.846	0.400	0.288	
July												
August												
September												
October												
November												
December												
Total	32.688	0.000	0.000	0.067	30.243	2.378	71.825	2.485	1.846	0.400	0.288	

Comments:

- 1) Assumption: The densities of Rock, Soil, Mixed Rock and Soil, and Regular Spoil are 2.0 ton/m³; the density of general refuse is 1.0 ton/m³; the density of waste oil is 1.0 kg/L.
- 2) The cut-off date of waste amount in June is 30/6/2016 for Public Fill facilities and Landfill.
- 3) The amounts of waste in June are 41.27 tons for Landfill and 14058.8 tons for Public Fill.
- 4) The amount of C&D materials reused in other project in June is 0 tons, for cut-off date as 30/6/2016.
- 5) The amount of import fill in June is 2772.84 tons, for cut-off date as 30/6/2016.
- 6) The amount of metal waste generated in June is 4425 kg, for cut-off date as 30/6/2016.
- 7) The amount of paper waste generated in June is 400 kg, for cut-off date as 30/6/2016.
- 8) The amount of plastic waste generated in June is 798 kg, for cut-off date as 30/6/2016.