OUR REF.

22-OCT-2010

EP2/K19/A/21

來山枯號 YOUR REF:

2835 1845 2591 0558

紅柳文剛 FAX NO .: 很了明件 E-MAIL: Ji

TEL. NO.:

HOMEPAGE: http://www.epd.gov.hk

Environmental Protection Department Branch Office

> 28th Floor, Southorn Centre, 130 Hennessy Road, Wan Chai, Hong Kong.

22 Oct 2010

Hyder-Meinhardt Joint Venture 47th Floor, Hopewell Centre 183 Queen's Road East Wan Chai Hong Kong

Fax: 2805 5028

(Attn: Mr James Penny)

Dear Mr Penny,

Agreement No. CE 38/2008 (HY) Kai Tak Development – Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction

3 1681- 2BOONTO-EPD-4KT-00

Working Paper on Waste Management - Marine Sediment Sampling Proposal for EIA Study (MSSP-EIA)

I refer to your letter dated 27 Sept 2010 and we have no further comment on the submitted working paper.

> (Vincent Tin) for Director of Environmental Protection

cc: E(MA)51, E(RA)41

Hyder-Meinhardt Joint Venture

47th Floor, Hopewell Centre 183 Queen's Road East Wanchai Hong Kong

Tel: +852 2911 2233 Fax: +852 2805 5028 hyder.hk@hyderconsulti

hyder.hk@hyderconsulting.com www.hyderconsulting.com

BY FAX (2591-0558) AND POST

Your Ref: EP2/K9/A/21

Our Ref: A0472-EB000560-MIEL-HKL-00

27 September 2010

Environmental Protection Department Environmental Assessment Division Metro Assessment Group Kowloon Section (2)

For the attention of Mr. David Cox / Vincent Tin

Dear Sir,

Agreement No. CE 38/2008 (HY)
Kai Tak Development – Trunk Road T2 and Infrastructure at South Apron
-Investigation, Design and Construction

Working Paper On Waste Management – Marine Sediment Sampling Proposal for EIA Study (MSSP-EIA)

Further to your confirmation of no comments on the captioned Marine Sediment Sampling Proposal (MSSP-EIA) dated 1st April 2010, we have proceeded with the procurement of sampling and testing services and project specific details on the testing methodology and accreditation status is now available. Section 4.1 on the implementation agents and Appendix B of the MSSP-EIA, thus, are revised accordingly.

Please be advised that we also propose to slightly revise the sampling stations with the addition of a few stations bringing it to a total of 21 marine stations and 6 land stations. The additional is the result of a better definition of the works area through the progress of the design works.

Regarding your suggestion to look for a silver standard in Table 3.7, we propose to adopt the USEPA criterion as has been put forward in the "Working paper on water quality mathematical model study and water quality impact assessment" submitted in July 2010.

The contractor is to start taking samples this week (late September 2010) and perform samples testing next week (early October 2010). Should you have any comments on the proposed amendment, we would appreciate you would write to us by 4 October 2010. We confirm this submission is made under Clause 3.4.7.6 (g) and 3.4.8.2 (iii)(a) of the EIA Study Brief No. ESB-203/2009.

By copy of this letter, could all the recipients in the distribution also confirm if you have any comment on the MSSP-EIA Rev2. A nil reply is required.

Yours faithfully, for Hyder-Meinhardt Joint Venture

James Penny

Deputy Project Manager

Encl.

JP/tl

c.c. KDO, CEDD

Meinhardt

Territorial Control Office / EPD

(Attn: Mr. C. B. Mak – w/e)

(Attn: Mr. Jason Wong - w/e)

(Attn: Mr. Patrick Cheung – w/e)

Civil Engineering and Development Department Agreement No. CE 38/2008 (HY)

Kai Tak Development - Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction

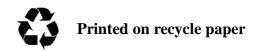
Working Paper On Waste Management – Marine Sediment Sampling Proposal for EIA Study – Revision 2 (MSSP-EIA Rev2)

Hyder-Meinhardt Joint Venture

Company Number 126012 47th Floor, Hopewell Centre 183 Queen's Road East Wanchai Hong Kong

Tel: +852 2911 2233 Fax: +852 2805 5028

hyder.hk@hyderconsulting.com www.hyderconsulting.com


Civil Engineering and Development Department Agreement No. CE 38/2008 (HY)

Kai Tak Development - Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction

Working Paper On Waste Management – Marine Sediment Sampling Proposal for EIA Study – Revision 2 (MSSP-EIA Rev2)

Author	Y H Hui	
Checker	Helen Cochrane	
Approver	James Penny	
Report No	F0029-EB000560-MIEL-	HKR-02
Date	27 September 2010	

This report has been prepared for Civil Engineering and Development Department in accordance with the terms and conditions of appointment for Kai Tak Development - Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction dated July 2009. Hyder-Meinhardt Joint Venture cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

CONTENTS

1	SEC'	TION 1 – INTRODUCTION
	1.1	General1
	1.2	Descriptions of Marine Works2
	1.3	Rationale for Dredging3
	1.4	Abbreviations3
2	SEC	TION 2 – REVIEW OF HISTORICAL DATA7
	2.1	1997 SEKD EIA7
	2.2	2001 SEKDCFS EIA7
	2.3	2007 Cruise Terminal Dredging EIA / 2008 Kai Tak Development EIA
	2.4	Bioremediation Pilot Scale Field Test at KTAC12
	2.5	Submarine Outfall of Kwun Tong Preliminary Treatment Works
	2.6	EPD Sediment Quality Monitoring17
	2.7	Summary of Previous Finding
	2.8	Geotechnical Information of the Site
3		TION 3 – PROPOSED SEDIMENT QUALITY
		IPLING AND TESTING23
	3.1	The Necessity of Site Specific Sediment Quality
		Sampling and Testing23
	3.2	Sediment Sampling and Testing Scheme23
4		TION 4 – WORKS IMPLEMENTATION AND SITE
	CON	ISTRAINTS37
	4.1	Implementation Agents37
	4.2	Known Site Constraints37
APP	ENDI	X A – Sampling Locations, Estimated Depth and Vertical Sub-sample Profile
APP	ENDI	X B – Indicative Analytical Methodology and QA/QC Information
APP	ENDI	X C – A Sample of COC Form
APP	ENDI	X D – Agreement of Marine Field Committee on Dredging Rationale for Kai Tal Development

List of Tables

Table 2.1	KTTS Sediment Quality (DASO parameters) and Classification	9
Table 2.2	KTTS Sediment Quality (None-DASO parameters)	9
Table 2.3	KTTS Surface Sediment Elutriate (DASO parameters) Results	10
Table 2.4	KTTS Surface Sediment Elutriate (None-DASO parameters) Results	10
Table 2.5	KTTS Surface Sediment Porewater Test (DASO parameters) Results	11
Table 2.6	KTTS Surface Sediment Porewater Test (None-DASO parameters) Results	11
Table 2.7	EPD Sediment Quality Monitoring 2003 – 2007 Results	17
Table 2.8	Preliminary Geotechnical Design Parameters	20
Table 2.9	Preliminary Geotechnical Design Parameters	20
Table 2.10	Preliminary Geotechnical Design Parameters	21
Table 3.1	Sediment Testing Parameters	25
Table 3.2	Sediment Quality Criteria for Classification of Sediment	27
Table 3.3a	Biological Testing Species and Protocol	28
Table 3.3b	Preparation of Samples for Biological Testing Species	29
Table 3.4	Sediment Parameters Proposed for TBT, Chlorinated Pesticides and Nutrient	29
Table 3.5	Sediment Parameters Proposed for Biogas Release, Bioavailability and Physicochemical Properties	30
Table 3.6	Parameters Proposed for Interstitial Water, Marine Water and Elutriate Tests	31
Table 3.7	The UK Environmental Quality Standard (EQS) Values to Protect Marine Life	33
List of Fig		
Figure 1.1	Indicative Layout (H2) and Locations of Marine Works.	
Figure 1.1a	Indicative Layout Plan of Dredging / Backfilling Areas (H2)	
Figure 1.2	Layout Plan – Horizontal Alignment Option H2 and H4.	
Figure 1.3	Temporary Reclamation at South Apron Area – Interface IMT Options H2 & H4.	
Figure 1.4	Temporary Reclamation at Cha Kwo Ling – Interface IMT Option H2.	
Figure 1.5	Temporary Reclamation at Cha Kwo Ling – Interface IMT Option H4	
Figure 1.6	Typical Dredging / Construction Cross Section	
Figure 1.7	Typical Temporary Reclamation for Cut and Cover Section	
Figure 1.8	Vertical Alignment and Geological Profile for H2	
Figure 2.1	Thickness (m) of Sediment-Layer Classified as "C-material" (Phase 1 SI) reported in SEKD l	EIA
Figure 2.2	Thickness (m) of Sediment-Layer Classified as "C-material" (Phases 1a, 2 and 3 SI) reported EIA	in SEKD
Figure 2.3	Sediment Sampling Point for SI in SEKDCFS EIA	
Figure 2.4	Sediment Sampling Plan for CTD EIA	
Figure 2.5	Sediment Testing Results for CTD EIA	
Figure 2.6	Layout Plan of Bioremediation Trial Site and Treatment Areas	
Figure 2.7	Area Proposed for in-situ Bioremediation in KTD EIA	
Figure 2.8	EPD Open Water and Typhoon Shelter Sediment Quality Monitoring Stations Near Project S	ite

Figure 2.9	Estimation of Average Side Slope Angle
Figure 2.10	Compilation of Sounding Records at Kowloon Bay (Year 2003-08)
Figure 3.1	Proposed Sediment Sampling Stations for IMT Option H2
Figure 3.2	Proposed Sediment Sampling Stations for IMT Option H4
Figure 3.3	Additional EIA Sampling Stations in Option Envelope
Figure 3.4	Proposed Land Based Sediment Sampling Station at South Apron Landing for H2 and H4
Figure 3.5	Proposed Land Based Sediment Sampling Station at Cha Kwo Ling Landings for H2 and H4

1 SECTION 1 – INTRODUCTION

1.1 General

- 1.1.1 On 31st July 2009, Civil Engineering and Development Department (CEDD) of the Government of the Hong Kong Special Administrative Region appointed Hyder-Meinhardt JV (HMJV) under Agreement No CE38/2008 (HY) to provide professional services in respect of Kai Tak Development Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction. The date for commencement of the Assignment was 31st July 2009.
- 1.1.2 Trunk Road T2 involves the construction and operation of highways and the associated link roads and, thus, consists of designated project elements including Items A.1, A.7 and F.6 Part I under Schedule 2 of the EIAO. The Project may also include changes to associated roads and other facilities that constitute material change(s) to exempted project(s) including relocation of existing breakwaters, and other designated project(s), e.g. dredging, temporary reclamation, to be identified during the course of this study. According to Section 5(1) of the EIAO, a project profile was submitted to the Environmental Protection Department (EPD) on 24 March 2009 for application of an EIA Study Brief, which was subsequently issued to CEDD pursuant to Section 5(7)(a) of the EIAO (EIA Study Brief No: ESB-203/2009 dated 30 April 2009).
- 1.1.3 Section 1.2 provides a preliminary description of the marine works likely to be required for Trunk Road T2 assuming the submarine tunnel between the south apron and Cha Kwo Ling will be constructed using immersed tube tunnel (IMT). This working paper is to propose a marine site investigation (SI) and sediment quality testing parameters and methodology for the purpose of EIA study for the Trunk Road T2 based on an IMT tunnel. A working paper proposing the sediment sampling and testing scheme for the Dumping at Sea Ordinance (DASO) permit application following the ETWB TCW No. 34/2002 is submitted separately.
- 1.1.4 Clause 3.4.7.6 (g) of the EIA Study Brief ESB-203/2009 requires that "Field investigation, sampling and chemical laboratory tests to characterize the sediment/mud concerned shall be conducted as appropriate. Appropriate laboratory tests including elutriate tests and sediment pore water (interstitial water) analyses shall be performed on the sediment samples to simulate and quantify the degree of mobilization of various contaminants such as metals, ammonia, trace organic contaminants (including PCBs, PAHs, TBT and chlorinated pesticides) into the water column during dredging. The ranges of parameters to be analysed; the number, location, depth of sediment, type and methods of sampling; sample preservation; and chemical laboratory test methods to be used shall be subject to the approval of EPD".
- 1.1.5 Clause 3.4.8.2 (iii)(a) of the EIA Study Brief also requires that "Field investigation, sampling and chemical and biological laboratory tests to characterize the sediment/mud concerned shall be conducted as appropriate. The ranges of parameters to be analyzed; the number, type and methods of sampling; sample preservation; chemical and biological laboratory test methods to be used shall be agreed with the Director (with

reference to Section 4.4.2(c) of the TM) prior to the commencement of the tests and document in the EIA report for consideration. The categories of sediment/mud which are to be disposed of in accordance with a permit granted under the Dumping at Sea Ordinance (DASO) shall be identified by both chemical and biological tests and their quantities shall be estimated".

1.1.6 This marine SI, sediment quality sampling and testing proposal partially fulfil the abovementioned clauses of the EIA Study Brief. It should note that the engineer is still reviewing the alignments. It may, therefore, be necessary to adjust the exact sampling locations if the preferred alignment is substantially different from the schemes described in Section 1.2. If the scale of proposed sampling and testing works are substantially reduced due to the change of construction methods, a revised proposal would be submitted to EPD for approval prior to the commencement of sampling work.

1.2 Descriptions of Marine Works

- 1.2.1 As a part of the strategic road network within the South East Kowloon Development, Route 6 forms an east west express link between West Kowloon and Tseung Kwan O. Route 6 comprises the Central Kowloon Route (CKR), Trunk Road T2 and Tseung Kwan O Lam Tin Tunnel (TKO-LTT). This Assignment covers the provision of Trunk Road T2. The main elements of the works comprise the construction of Trunk Road T2 (T2), connecting with the Central Kowloon Route (CKR) at the north apron area and the Tseung Kwan O Lam Tin Tunnel (TKO-LTT) to the south.
- 1.2.2 Trunk Road T2 is planned to be a dual 2-lane highway of about 3.6 km connecting CKR and TKO-LTT. According to the KTDES, about 2.6km of T2 will be in the form of tunnel and about 2 km of the tunnel will be submarine and is likely in the form of immersed tube (IMT) tunnel. The CKR and TKO-LTT are planned to complete in 2016. Trunk Road T2, being the middle section of Route 6 connecting the CKR and TKO-LT Tunnel, is therefore targeted to complete in 2016.
- 1.2.3 The main elements of marine works for the Project for the conforming option described in the project study brief include:
 - dredging a trench for the IMT tunnel;
 - the demolishment of two breakwaters to make way for the IMT tunnel;
 - building up temporary breakwaters to substitute the temporarily removed breakwaters;
 - diversion of initial section of KTPTW submarine outfall to make way for the IMT tunnel;
 - dredging of access channel for IMT units; and
 - demolition of quay walls and temporary reclamation at both ends of the landing for the construction of IMT tunnel.

1.2.4 The indicative alignment and the location of marine facilities involved are illustrated in **Figure 1.1**. **Figure 1.2** shows the layout of the two alignment schemes H2 and H4 under consideration while further details about the temporary reclamations are shown in **Figures 1.3** to **1.5**. The typical cross-section of IMT Tunnel and the dredging trench are presented in **Figure 1.6** whereas **Figure 1.7** shows the typical cross-section at landfall. The indicative long profile of the alignment scheme H2 is shown in **Figure 1.8**.

1.3 Rationale for Dredging

1.3.1 Being part of the Kai Tak Development, the dredging rationale together with the preliminary estimated dredged sediment quantity for the immersed tunnel sections of Trunk Road T2 was approved by the Marine Fill Committee in August 2008 together with other elements of Kai Tak Development where marine dredging and disposal are predicted. The approval letter as presented in Appendix 9.2 of the KTD EIA is reproduced in **Appendix D** of this working paper.

1.4 Abbreviations

1.4.1 The following key abbreviations are used in this report:

CEDD Civil Engineering and Development Department

COC Chain of Custody
CT Cruise Terminal

DASO Dumping at Sea Ordinance

EIA Environmental Impact Assessment

EIAO Environmental Impact Assessment Ordinance

EPD Environmental Protection Department

ETWB Environment, Transport and Works Bureau (the former Environment

Bureau, Development Bureau, Transport and Housing Bureau)

GEO Geotechnical Engineering Office

GI Ground Investigation

HATS Harbour Area Treatment Scheme

HOKLAS The Hong Kong Laboratory Accreditation Scheme

IMT Immersed Tube

KTAC Kai Tak Approach Channel

KTD Kai Tak Development

KTDES Kai Tak Development Engineering Study

KTPR South East Kowloon Development Comprehensive Planning and

Engineering Review Stage 1 Planning Review.

KTPTW Kwun Tong Preliminary Treatment Works

KTTS Kwon Tong Typhoon Shelter

LCEL Lower Chemical Exceedances Level

PTW Preliminary Treatment Works

RL Reporting Limit

SEKD South East Kowloon Development

SEKDCFS Comprehensive Feasibility Study for the Revised Scheme of South East

Kowloon Development

SI Site Investigation

SPR Stores and Procurement Regulations

TBM Tunnel Boring Machine

TKO-LTT Tseung Kwan O – Lam Tin Tunnel

TKWTS To Kwa Wan Typhoon Shelter

UCEL Upper Chemical Exceedances Level

Chemicals

Ag Silver

As Arsenic

AVS Acid Volatile Sulphide

Cd Cadmium

Cr Chromium

Cu Copper

Hg Mercury

HMW High Molecular Weight

LMW Low Molecular Weight

NH₄-N Ammonia Nitrogen

Ni Nickel

NO₂-N Nitrite Nitrogen

NO₃-N Nitrate Nitrogen

PAHs Polycyclic Aromatic Hydrocarbons

Pb Lead

PCBs Polychlorinated Biphenyls

PO₄-P Orthophosphate

SOD Sediment Oxygen Demand

TBT Tributyltin

TKN Total Kjeldahl Nitrogen

TOC Total Organic Carbon

Total-P Total Phosphorus

TS Total Sulphide

Zn Zinc

[blank page]

2 SECTION 2 – REVIEW OF HISTORICAL DATA

2.1 1997 SEKD EIA

- 2.1.1 The EIA report for Agreement No. CE 69/94 Feasibility Study for South East Kowloon Development (SEKD EIA Report) studied the sediment contaminants level in waters around the Kwun Tong Kowloon Bay To Kwa Wan area. The assessment was based on the old sediment classification frame work (TC No. 1-1-92) which divided sediment quality into three classes: Class A is uncontaminated material, Class B is moderately contaminated material and Class C (Cd \geq 1.5, Cr \geq 80, Cu \geq 65, Hg \geq 1.0, Ni \geq 40, Pb \geq 75, Zn \geq 200; all values in mg/kg dry wt.) is seriously contaminated material. The study involved sediment sampling and testing between 1996 and 1997 in several phases.
- In phase 1 SI, 18 vibrocore locations generating 93 sediment samples were analysed for heavy metal content cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). In addition, grab samples were also taken for analysis of organic micro-pollutant polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and tributyltin (TBT). The study indicated that sediment of the area was generally contaminated with heavy metals exceeding the criteria for Class C, especially for Cu and Pb and to a lesser extent by Cr, Zn and Hg, and finally Ni and Cd. It estimated that at Kwun Tong area, Class C sediment was about 2-3m thick (Figure 2.1). None of the samples have the organic micro-pollutants detected. Subsequent phases of the SI were to refine the mapping of the extent of heavy metal distribution and the findings was consistent with phase 1 (Figure 2.2).

2.2 2001 SEKDCFS EIA

- 2.2.1 The approved EIA Report for *Agreement No. CE 32/99 Comprehensive Feasibility Study for the Revised Scheme of South East Kowloon Development* (SEKDCFS EIA Report; EIA Register AEIAR-044/2001) also assessed the sediment quality of Kwun Tong Kowloon Bay To Kwa Wan area. The site investigation (SI) was based on a simple grid system (220 m) to allocate the sediment sampling points. Seven sampling points were selected for the Kai Tak Approach Channel (KTAC; AC1 to AC7), four in Kwun Tong Typhoon Shelter (KTTS; KT1 to KT4) and seven in To Kwa Wan Typhoon Shelter (TKWTS) / Kowloon Bay (KB1 to KB7) (**Figure 2.3**).
- Vibrocore samples were collected at the sampling points. The vibrocore penetrated into the unconsolidated mud layer until the more compact consolidated sand layer was encountered. Vertical profile of the sediment core was taken at each sampling point. Three sediment samples were collected at the top 1 m layer, middle 1 m layer and bottom 1 m layer of each vibrocore sample when the sediment length was greater than 3 m. For sediment length between 900 mm and 3 m, three equal sections were divided from the top of the vibrocore samples. For sediment length less than 900 mm, three equal sections of 300 mm were divided from the top of vibrocore samples.

- 2.2.3 The sediment samples were analysed for a suit of chemical parameters including heavy metals Cd, Cr, Cu, Hg, Ni, Pb, Zn and Ag, metalloid arsenic (As) and organic micropollutants including PCBs, PAHs and TBT in interstitial water. Other parameters analysed included total organic carbon (TOC), sediment oxygen demand (20 days; SOD₂₀), total sulphide and acid volatile sulphide (AVS) for determination of potential biogas generation. The metals, metalloid and organic micro-pollutants results were evaluated using criteria stipulated in both the TC NO. 1-1-92 and WBTC No 3/2000 (which was similar to the current ETWB TCW No 34/2002 with respect to testing parameters and classification criteria). Overall, all the sediment were Category H material based on WBTC No. 3/2000 and for AC1 to AC6, at least one layer showed contaminant concentrations exceeding 10x LCELs. Further details on the results of KTAC and KTTS in the vicinity of Trunk Road T2 are discussed below. As the sampling points of TKWTS/Kowloon Bay were farther away from the marine works of Trunk Road T2, these are not further discussed.
- 2.2.4 The results of the KTAC sediments showed that concentrations of most of the tested parameters were very high, except arsenic. The sediments in the KTAC were considered seriously contaminated. The contamination in the KTAC sediments was dominated by Cu, Ag, Cr, Ni, Zn and to a lesser extent by Pb, Hg and Cd. The sediments at sampling points AC1 to AC5 located near the entrance of Kai Tak Nullah showed higher contamination levels. The contamination levels at sampling points AC6 and AC7 located farther away from the entrance of Kai Tak Nullah were comparatively lower. The organic micro-pollutants (PCBs, PAHs and TBT) were generally high in concentrations especially the PCB levels at AC2 and AC5. The TBT levels at AC6 and AC7 were found to be higher than that of the other sampling points in the KTAC.
- 2.2.5 For the Trunk Road T2 project, the results of KTTS are particularly relevant as the sampling points are adjacent to the proposed alignment. KT1 and KT2 are near the south apron landing while KT3 and KT4 are close to the Cha Kwo Ling landing (Figure **2.3**). The results indicate KT1 to KT4 are Category H material and the contamination level are summarised in Tables 2.1 and 2.2 below. As indicated in Table 2.1, the sediments samples are Category H and the contamination in the KTTS sediments (KT1 and KT2) showed similar characteristics as that in the KTAC. The Cu concentrations in the sediments were the highest and exceeded 10xLCEL. The contamination was dominated to a lesser extent by Pb, Cr, Zn, Cd and Ni. Some of the Ag and Hg contents were several times higher than their LCELs. The As levels at all the sampling points were below the LCEL except the lower sediment layer (1.49-2.05m) at KT2. The measured organic micro-pollutant concentrations (PCBs, PAHs and TBT) were high at KT1 and KT2 and with the total PCBs also exceeding the 10x LCEL. contamination levels were found to be higher mostly in the upper and middle layers of the sediments. The sediments collected at sampling points KT3 and KT4 located near the exit of Tsui Ping Nullah were found to be less contaminated.

Table 2.1 KTTS Sediment Quality (DASO parameters) and Classification

						`									
Stat	Depth (m)	Ag	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg	PAHs (LMW)	PAHs (HMW)	Total PCBs	TBT	Cat
	UCEL	2	42	4	160	110	40	110	270	1	3163	9 600	180	0.15	
	UCEL	1	12	1.5	80	65	40	75	200	0.5	550	1 700	23	0.15	
KT1	0.30- 0.60	4.24	6.0	2.68	369	1 600	81.3	224	449	1.33	166	1 397	<u>340</u>	< 0.015	<u>H</u>
KT1	0.60- 0.90	3.62	6.3	2.85	361	1 570	84.3	159	493	1.29	197	1 381	<u>430</u>	-	<u>H</u>
KT1	0.90- 1.20	2.02	6.1	1.35	98	382	29.8	94.2	213	1.02	90	668	100	-	Н
KT2	0.35- 0.92	4.79	5.9	3.59	567	2 959	136	180	589	1.37	315	1 883	270	< 0.015	<u>H</u>
KT2	0.92- 1.49	5.18	4.8	6.37	645	1 104	87.7	398	502	1.77	305	1 858	<u>1 600</u>	-	<u>H</u>
KT2	1.49- 2.05	0.35	11.9	0.13	27	39	17.8	129	177	2.62	200	1 191	11	-	Н
KT3	0.10- 1.10	3.49	5.9	1.08	108	436	26.9	76.8	267	0.69	209	1 499	22	-	Н
KT3	1.40- 2.40	2.20	4.5	1.62	113	587	26.9	80.3	193	0.68	84	142	94	-	Н
KT3	2.70- 3.70	2.67	4.8	3.01	134	628	30.5	102	226	0.93	47	55	110	-	Н
KT4	0.00- 1.00	1.59	3.4	0.34	34	117	9.9	64.7	82.2	0.22	50	247	14	0.017	Н
KT4	1.40- 2.40	1.31	4.0	0.73	101	234	28.0	59.5	157	0.70	132	1 270	130	-	Н
KT4	2.80- 3.80	2.10	6.0	0.54	142	187	30.8	76.6	208	1.02	132	1 056	<u>360</u>	-	<u>H</u>

All metals and metalloid are in mg/kg dry wt., except organic metal TBT which is in ugTBT/L; All PAHs and PCBs are in ug/kg dry wt. Grey cell = values exceeded LCEL; Bold value = values exceed UCEL; Underline value = values exceed 10x LCEL. Cat: Category of material based on ETWB TCW No. 34/2002.

Table 2.2 KTTS Sediment Quality (None-DASO parameters)

Stat	Depth (m)	Total Sulphide	AVS	Moisture	TOC	SOD ₂₅
unit	m	mg/kg dry wt.	mg/kg dry wt.	%	% (dry wt.)	mg/kg dry wt.
KT1	0.30-0.60	2.0	2272	50.7	2.03	8010
KT1	0.60-0.90	0.5	1902	48.2	3.51	6470
KT1	0.90-1.20	0.5	880	41.6	1.03	2960
KT2	0.35-0.92	0.5	3968	50.6	5.57	8760
KT2	0.92-1.49	3.0	5433	61.9	3.67	8840
KT2	1.49-2.05	0.5	9	43.5	1.59	1060
KT3	0.10-1.10	0.5	1265	52.1	1.67	3960
KT3	1.40-2.40	0.5	614	38.3	1.13	3390
KT3	2.70-3.70	0.5	144	41.7	1.37	3400
KT4	0.00-1.00	0.5	282	30.8	1.16	1290
KT4	1.40-2.40	0.5	339	37.7	3.21	3540
KT4	2.80-3.80	0.5	821	45.9	1.66	2430

2.2.6

Table 2.3 KTTS Surface Sediment Elutriate (DASO parameters) Results

Stat	Cd	Cr	Cu	Hg	Ni	Pb	Zn	Ag	As	Total PCBs	PAHs (LWM)	PAHs (HWM)	ТВТ
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
KT1	0.2	<10	<2	0.052	3	<1	20	<1	6	<1	<<12	<<20	5.6
KT2	< 0.2	<10	<2	0.042	7	<1	<10	<1	6	<1	<<12	<<20	1.96
KT4	< 0.2	<10	<2	0.021	3	<1	<10	<1	8	<1	<<12	<<20	0.083
mean	< 0.2	<10	<2	0.038	4.3	<1	<13.3	<1	6.7	<1	<<12	<<20	2.55

Elutriate tests were done for surface grab sediment samples only. TBT in ugTBT/L.

Table 2.4 KTTS Surface Sediment Elutriate (None-DASO parameters) Results

Stat	TKN	NO ₃ -N	NO ₂ -N	NH ₄ -N	Total-P
Unit	mg/L	mg/L	mg/L	mg/L	mg/L
KT1	12.5	< 0.01	0.01	13.9	1.2
KT2	15.9	< 0.01	0.01	18.1	4.1
KT4	4.1	< 0.01	< 0.01	4.25	0.8
Mean	10.8	< 0.01	< 0.01	12.1	2.0

Elutriate tests were done for surface grab sediment samples only.

2.2.7 As reclamation was one of the options considered during the SEKDCFS EIA study, contaminants in pore water samples were also tested to evaluate the potential of release when non-dredged reclamation methods were considered. Surface grab samples were collected at the 9 sampling stations in the KTAC, KTTS and To Kwa Wan / Kowloon Bay to test the contaminant levels in pore water. For the Trunk Road T2 project where the main marine works are dredging for the IMT tunnel, pore water release shall not be the main concern. Nonetheless, the results of KTTS which is within the project area summarised in **Tables 2.5** and **2.6**.

Table 2.5 KTTS Surface Sediment Porewater Test (DASO parameters) Results

Stat	Cd	Cr	Cu	Hg	Ni	Pb	Zn	Ag	As	Total PCBs	PAHs (LWM)	PAHs (HWM)	ТВТ
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
KT1	0.4	22	<1	0.099	14	<1	30	<1	<10	<1	<<12	<<20	< 0.015
KT2	< 0.2	14	<1	0.058	36	<1	30	<1	<10	<1	<<12	<<20	< 0.015
KT4	< 0.2	2	<1	0.060	4	<1	10	<1	30	<1	<<12	<<20	< 0.015
Mean	0.27	13	<1	0.072	18	<1	23	<1	<17	<1	<<12	<<20	< 0.015

Porewater tests were done for surface grab sediment samples only. TBT in ugTBT/L.

Table 2.6 KTTS Surface Sediment Porewater Test (None-DASO parameters) Results

Stat	TKN	NO ₃ -N	NO ₂ -N	NH ₄ -N	Total-P
Unit	mg/L	mg/L	mg/L	mg/L	mg/L
KT1	30.1	0.16	0.04	29.4	7.1
KT2	36.1	0.02	< 0.01	37.6	6.6
KT4	16.1	2.86	< 0.01	14.1	3.1
Mean	27.4	1.01	0.02	27.0	5.6

Porewater tests were done for surface grab sediment samples only.

2.3 2007 Cruise Terminal Dredging EIA / 2008 Kai Tak Development EIA

- Additional SI, sediment sampling and testing was carried out around the proposed cruise terminal south of the ex-runway in 2007 under Agreement No. KDO 01/2006 Site Investigation and Contamination Assessment at Remaining Area of Former Kai Tak Airport and Proposed Cruise Terminal. The results were adopted in the schedule 3 EIA for Kai Tak Development (KTD EIA) and schedule 2 EIA for Dredging Works for Proposed Cruise Terminal at Kai Tak (CT Dredging EIA) prepared under Agreement No. CE 35/2006. The 2007 SI, sampling and testing of sediment quality is at the dredging footprint of the proposed cruise terminal (CT). As the contamination levels at the CT dredging area was expected to be high, the sampling plan was based on 100 x 100m grid scheme following the current ETWB TCW No 34/2002. Since, the anticipated CT dredging depth was only down to -12mCD requiring removal of the top few meters of sediment, both grab sampler for surface sediments and vibrocores for vertical profiling were used. The sediment sampling plans and sampling methods are summarised in Figure 2.4.
- 2.3.2 At total of 73 stations were sampled and 167 sediment sub-samples tested. The sediment samples were tested for the full list of chemical parameters stipulated in ETWB TCW No 34/2002 including TBT in interstitial water and chlorinated pesticides (12 components including DDT and DDE). The sediment were also tested for other parameters like ammonia nitrogen (NH₄N), total Kjeldahl nitrogen (TKN), nitrate nitrogen (NO₃-N), nitrite nitrogen (NO₂-N), total phosphorus (Total-P), TOC, SOD₂₀, total sulphide and AVS.

- 2.3.3 The chemical analysis results indicated that heavy metals were generally detected but organic contaminants (TBT, PAHs and PCBs) were generally non-detected (0 10% above reporting limits) indicating contamination by organic compounds should not be the key concerns. Among the 167 sediment sub-samples, 12 (7%) samples were Category H with contaminant concentrations exceeding the UCELs (Cu, Ni, Hg or Ag) but all were below the x10 LCEL criteria, 13 (8%) samples were Category M with contaminant concentrations exceeding the LCELs (As, Cu, Pb, Hg, Ag or Total PCBs). The remaining 142 (85%) samples were non-contaminated materials and have contaminants concentrations below the LCELs.
- The 13 Category M material were subject to further biological tests following ETWB TCW No 34/2002. 7 sediment samples passed the biological screening while the remaining 6 sediment samples failed the biological screening. The testing results for the CT Dredging works are summarised in **Figure 2.5**. Since none of the samples fall within the present study area, the numerical results are not tabulated here.

2.4 Bioremediation Pilot Scale Field Test at KTAC

Under Agreement No. CE 4/2004 (TP) South East Kowloon Development Comprehensive Planning and Engineering Review Stage 1 Planning Review (KTPR), a pilot scale field test was commenced in January 2006 to ascertain the effectiveness of bioremediation at KTAC with post-remediation performance monitoring. About 1ha at the KTAC near Kai Tak Nullah (KTN) was injected with calcium nitrate solution and the site layout is presented in **Figure 2.6**. Based on the previous site investigation in the SEKDCFS EIA, the filed test site was considered as one of the locations with relatively high contamination levels. Core sediment samples (down to 0.3m; c.f., nitrate injection down to 0.5m) were analysed for a suit of parameters including those of ETWB TCW 34/2002 before and after the nitrate injection to verify bioremediation performance. The details of the monitoring results were reviewed and reported in the "Final Report on Bioremediation Pilot Scale Field Test at Kai Tak Approach Channel (Issue 2)" dated October 2007 and a summary of key finding are presented below.

Post-1-Month Monitoring

- 2.4.2 The results of post-1-month monitoring shown that bioremediation to remove odour and reduce sediment toxicity at KTAC were acceptable and key findings are:
 - The sediment AVS were reduced by 86-98%;
 - Residual nitrate level in sediment samples were between 35-76% of total application;
 - There was no obvious removal of TOC as up to the post-1-month monitoring;
 - The total heavy metal contents show no obvious trend of increase or decrease.
 There were some apparent decreases in the metal contents of the elutriated water
 samples. Results of heavy metals in pore-water of sediments show no trend of
 change.

- TBT were not detected (RL=0.015 ug/L) before and after injection;
- Within the 18 groups of PCBs analyzed, an average reduction in PCB concentrations of 62% was observed in 11 groups. All results (pre- and post-treatment) were below analytical limits for the remaining 7 groups;
- A big decrease (-65%) in LMW PAH concentrations was recorded for low molecular weight PAHs as compared to the baseline results. Similarly, a decrease of ~33% was calculated for HMW PAHs;
- Reduction in sediment toxicity was also reported by Microtox testing by direct sediment contact technique. After treatment, the averaged EC50 value had increased to over 5 times with respect to that of pre-treatment. Similarly, the Microtox testing showed an increase (over 54%) in luminescence ratio (L.R.) with the saline extract technique; and
- Sediment bioassays results (i.e. amphipod, bivalve larvae and polychaete) showed slight improvements in survival rate starting from all zero at the beginning.

Post-3-Month Monitoring

- Post-3-month monitoring was conducted in June 2006 and an apparent continues improvement was noted. The key results were:
- The AVS levels in sediment samples continued to decline in the post-3-month monitoring event The AVS removal rates with reference to the baseline data were between 95% to almost 100%;
- The residual nitrate levels in sediment samples shown both increases and reduction but the increase were considered dubious and further monitoring recommended. Additional monitoring in August 2006 confirmed that there was a decrease in nitrate concentrations in all treatment areas;
- The mean TOC value recorded in post-3-month monitoring was 5% while 7.7% of mean TOC value was recorded in the pre-treatment measurement. However, the trends observed were considered likely be due to natural fluctuation in the field environment. Additional monitoring in August 2006 recorded mean TOC level of 7% comparable to the pre-treatment level. Longer period of monitoring was considered required to observe the process of TOC breakdown in the sediments;
- Heavy metal concentrations in sediment did not show an obvious trend in the post-3-month monitoring when compared with the pre-treatment and post-1-month values. On the other hand, a generally increasing trend for copper and zinc concentrations were observed in the pore water. No obvious trends were observed for the heavy metals in elutriate;
- TBT were not detected (RL=0.015 ug/L) before and after injection;

- For PCBs, its concentrations continued to decrease in all treatment areas and an average reduction of 70% was recorded in the post-3-month monitoring with reference to the pre-treatment values. The results revealed that degradation of PCBs has been carried out continuously;
- The LMW PAHs concentrations had a great reduction of 69% in the post-3-month monitoring when compared with the pre-treatment value. However, for HMW PAHs, its concentrations fluctuated and maintained at about 30% reduction after post injection;
- Microtox results showed further reduction in sediment toxicity when compared with the post-1-month results. The mean EC50 value in the post-3-month monitoring results was 2.83% which was over one hundred times less toxic than the pre-treatment value (0.02); and
- The survival rate of organisms (i.e. amphipod, bivalve larvae and polychaete) in the sediment bioassays were in general increasing, which demonstrated that the sediment is becoming less toxic, though a longer period of time was considered required for more obvious improvements.

Post-6-Month Monitoring

- Post-6-month monitoring was conducted in September 2006 and apparent continues improvement was noted. The key results were:
- The AVS level in sediment was significantly declined to below the detection limit (1 mg/kg dry wt.) for all four areas in the post-6-month monitoring event after the 2nd injection, which reach a notable AVS removal rates of above 99.9% with reference to the baseline data;
- The residual nitrate levels in sediment samples for all four areas showed a general decrease by 50% compared to the levels recorded in the post-3-month monitoring;
- The mean TOC value recorded in post-6-month monitoring was 7.2% while that recorded in the pre-treatment monitoring was 7.7%. Similar to previous observations, trends was likely to be due to the natural fluctuation in the field environment;
- TBT were not detected (RL=0.015 ug/L) before and after injection;
- Heavy metal concentrations in sediment did not show an obvious trend in the post-6-month monitoring. Furthermore, no obvious trends were observed for the heavy metals in elutriate;
- For PCBs, after a trend of continuous decreasing, the monitoring results showed a slight increase in three treatment areas (A1, A2 and A3; increase with a range of 1% to 8%). However, a 3% decrease in PCB concentration was noted at the 4th area. The results revealed that degradation of PCBs might have slowed down;

- When compared to the post-3-month monitoring results, both LMW and HMW PAHs concentrations were found to have increased for treatment areas A1, A2 and A3 for the post-6-month monitoring. However, both LMW and HMW PAHs concentrations were measured to have decreased for treatment area A4;
- Microtox results showed further reduction in sediment toxicity when compared with the post-3-month results. The mean EC50 value in the post-6-month results was 6.15% which was over one hundred times less toxic than the pre-treatment value (0.02); and
- The survival rate of organisms (i.e. amphipod, bivalve larvae and polychaete) in the sediment bioassays were in general increasing, which demonstrated that the sediment is becoming less toxic, though a longer period of time is required for more obvious improvements.

Post-12-Month Monitoring

- 2.4.3 Post-12-month monitoring was conducted in March 2007 and the key findings were:
 - The AVS levels in sediment remained low for treatment areas A1 and A2 (area A1: 9.9 mg/kg dry wt. and area A2: < 1 mg/kg dry wt.). However, AVS revival was observed for areas A3 and A4, with concentration of 1,700 mg/kg dry wt. and 1,300 mg/kg dry wt. respectively. The revival of AVS might be caused by the newly deposited contaminated sediments from the upstream pollution sources and the observed nitrate depletion as discussed below;
 - The residual nitrate levels had greatly dropped to less than 20 mg/NO3-N/L for areas A3 and A4 while for areas A1 and A2, levels of less than 2000 mg/NO3-N/L were recorded. The residual nitrate levels in sediment samples for treatment areas A3 and A4 can reasonably explain the revival of AVS as discussed above;
 - The mean TOC value recorded in post-12-month monitoring was 4.8% while that recorded in the pre-treatment monitoring was 7.7%. The decrease in TOC level properly indicates that the organics has started to degrade;
 - TBT were not detected (RL 0.015 ug/L) before and after injection;
 - Heavy metal concentrations in sediment have shown a general decrease on all
 parameters for all four treatment areas over the treatment period. However, no
 obvious trends were observed for the heavy metals in elutriate;
 - The PCBs levels start to decrease again in the post-12-month monitoring. The degradation of PCBs might have been picked up again during the post-treatment period. An overall decrease of more than 80% was achieved from the bioremediation treatment;
 - When compared to the post-6-month monitoring results, both LMW and HMW PAHs concentrations were found to have decreased for all treatment areas for the

post-12-month monitoring. However, an increase in HMW PAHs concentrations was measured in treatment area A4;

- As the AVS level had risen significantly, the Microtox results showed increase in sediment toxicity when compared with the post-6-month results. The mean EC50 value in the post-12-month results was 1.17% which was still over one hundred times less toxic than the pre-treatment value (0.02); and
- The survival rate of organisms (especially amphipod) in the sediment bioassays has boosted from a mean value of 3.5%-4.0% (post-6-month monitoring) to 59.5%-72% (post-12-month monitoring) in treatment areas A1 and A2 while increases in area A3 and A4 were also noted (from a mean value of 2.5%-30.5% to 12%-79%).

Summary of Results and Further Works

- 2.4.4 The pilot scale bioremediation works and subsequent monitoring indicated that bioremediation works can effectively reduced the organic pollutants including PCBs and PAHSs which were two of the major class of persistent contaminants in the sediment deposited at KTAC and KTTS. The KTD EIA has been recommended local improvement including both localised dredging and in-situ bioremediation to be applied to a wilder scale covering the entire KTAC and KTTS as shown in **Figure 2.7**. The bioremediation works could have an overall beneficial effect on the sediment quality, especially on the reduction of organic pollutants, of the KTAC and KTTS area including the study area for Trunk Road T2.
- 2.4.5 Depending on the actual scale of application (e.g., depth) and also the implementation schedule, this could have some bearing on the sediment quality of the study area. As the improvement works can be concurrent with the Trunk Road T2 project rendering the potential beneficial not materialised during the early stage of Trunk Road T2 construction, and also possibility covering the shallow sediment, for the purpose of this working paper, SI is considered still necessary.

2.5 Submarine Outfall of Kwun Tong Preliminary Treatment Works

- 2.5.1 There is a submarine outfall (twin 2100 mm diameter pipes; KTPTW Outfall) emerged from the Kwun Tong Preliminary Treatment Works (KTPTW) crossing the project alignment. DSD previously advised that the KTPTW Outfall was operated between 1985 and late 2001 and it was subsequently put aside as KTPTW emergency bypass as the effluents is diverted to HATS. DSD was not able to provide details on the discharge quality. The discharge licence (Licence No. KTE-997A) for the plant prior to the switch did not impose restriction on the quality of the effluents although the flow was restricted to 944,000 m³/day. It should be noted that the discharge point of this outfall is at the high flow area of Victoria Harbour and effluent released should be rapidly dispersed rather than accumulated in the study area.
- 2.5.2 While this outfall is presently at standby mode for emergency use only, its crossing with the Trunk Road T2 tunnel represent a constraint to the proposed SI works. In order to

prevent any accidental damages to it, a safety buffer of 40m from the central line of the outfall will have to be allowed and no drilling and/or vibrocore shall be conducted within this safety buffer zone without DSD's approval. The other constrains to the SI works are further discussed in Section 4 below.

2.6 EPD Sediment Quality Monitoring

- 2.6.1 EPD maintains a sediment quality monitoring programme covering the open waters and typhoon shelters of Hong Kong. The nearest EPD open water sediment monitoring station is VS3 in Victoria Harbour while the KTTS monitoring station is VS14. The locations of these two monitoring stations are shown in **Figure 2.8**.
- The surface sediment testing results conducted between 2003 to 2007 are summarised in Table 2.7. As indicated in the Table 2.7, the KTTS sediment is generally Category H material contaminated with high level of metals and to a lesser extent organic pollutants PCBs and PAHs and levels as high as >10x LCELs were recorded. The open water o Victoria Harbour (VS3) was comparatively clean although contamination with copper, mercury, silver and zinc were also evident. VS3, however, is closer to North Point on Hong Kong Island and the results were likely to reflect the sediment condition on the Hong Kong side rather than the Project Area.

Table 2.7 EPD Sediment Quality Monitoring 2003 – 2007 Results

Contaminants	Unit	LCEL	UCEL	VS3	VS14
				(Open Water)	(KTTS)
Cd	mg/kg dry wt	1.5	4	0.2 - 0.6	2.0 - 4.4
Cr	mg/kg dry wt	80	160	18 - 59	210 - 490
Cu	mg/kg dry wt	65	110	57 - 190	<u>1 400</u> - <u>2 500</u>
Hg	mg/kg dry wt	0.5	1	0.21 - 0.72	0.58 - 1.20
Ni	mg/kg dry wt	40	40	10 - 27	63 - 110
Pb	mg/kg dry wt	75	110	39 - 65	75 - 140
Zn	mg/kg dry wt	200	270	93 - 250	370 - 550
Ag	mg/kg dry wt	1	2	1.7 - 6.0	6.3 - <u>12.0</u>
As	mg/kg dry wt	12	42	5.2 - 9.0	5.5 - 8.6
Total PCBs	μg/kg dry wt	23	180	18 - 22	150 - <u>470</u>
PAHs (LWM)	μg/kg dry wt	550	3 160	90 - 140	110 - 170
PAHs (HMW)	μg/kg dry wt	1 700	9 600	90 - 670	750 - 2 000
TKN	mg/kg dry wt			350 - 1 200	410 - 890
NH ₄ N	mg/kg dry wt			0.4 - 20.0	11.0 - 51.0
Total-P	mg/kg dry wt			130 - 430	160 - 310
Total Sulphide	mg/kg dry wt			24 - 590	25 - 2,500

Vales are presented as min-max.

Grey cell = values exceeded LCEL; Bold value = values exceed UCEL; Underline value = values exceed 10x LCEL.

2.7 Summary of Previous Finding

- 2.7.1 The sediment of KTAC/KTTS is well known to be heavily contaminated with heavy metals and micro-organic contaminants like PAHs and PCBs. Previous sediment quality studies and EPD monitoring data confirmed that the contamination levels were very high and exceeding UCEL and 10xLCEL stipulated in the latest technical circular ETWB TCW No. 34/2002 for sediment classification and management.
- 2.7.2 The 2001 SEKDCFS EIA report provides the most relevant information for this Project with four stations (KT1, KT2, KT3 and KT4) along Trunk Road T2 alignment and associated facilities (**Figure 2.3**). The SEKDCFS EIA have the sampling depth down to 3.8m below seabed level and the results indicated the KTTS sediment were all Category H material (due to Cd, Cr, Cu, Hg, Ni, Pb, Zn, Ag, PAHs and PCBs, but not As or TBT). Copper and Total PCBs were also found to be above 10xLCEL in 5 sub-samples out of a total of 12 total sub-samples. Sediment pore-water and elutriate test, however, indicated the contaminants were mostly firmly sediment bound and have a low potential to dissociate into the water columns.
- 2.7.3 EPD's KTTS monitoring station (VS14) is also along Trunk Road T2 alignment (**Figure 2.8**) although only the surface samples were studied. The monitoring results were generally consistent with other sediment quality studies and the surface sediment were also found to be Category H material (due to Cd, Cr, Cu, Hg, Ni, Pb, Zn, Ag, PAHs and PCBs, but not As).
- 2.7.4 KTD EIA recommended improvement of sediment quality of KTAC/KTTS including localised dredging (down to –4 mPD) and in-situ bioremediation. These efforts should improve the sediment quality of the KTAC/KTTS area within the Kwun Tong breakwater. However, this is primary to address the odour problem and localised dredging would be on the shallow waters and on site trial of bioremediation suggested the method would have limited effect on the metallic contaminations.

2.8 Geotechnical Information of the Site

- 2.8.1 There is only limited project specific ground investigation along the T2 alignment and geotechnical GI is being planned together with the environmental GI. An extract of the general geotechnical information from the Preliminary Design Report and Design Memorandum of Trunk Road T2 (Final) prepared under the KTDES is presented below.
- 2.8.2 Fill: A layer of fill, which generally varied from approximately 0m to 15m thick, was encountered in drillholes along T2. The material was generally described as:
 - a) Grey, pinkish grey and yellowish brown angular fine to course GRAVEL, COBBELS and BOULDERS of moderately strong to strong Granite and Tuff.
 - b) Greyish brown, angular COBBLES (MDG) with some angular course gravel sized moderately decomposed rock fragments.

- c) Greyish brown sandy fine to coarse GRAVEL with occasional angular cobbles / boulders.
- d) Medium dense grayish brown, silty fine to coarse SAND with some angular to subangular fine quartz gravel and occasional shell fragments.
- e) Medium dense grey dappled dark grey silty fine to medium SAND with occasional subangular fine quartz gravel and shell fragments (FILL / DISTURBED MARINE DEPOSITS).
- f) Firm, grey dappled brown CLAY with some subangular fine gravel sized quartz and moderately decomposed rock fragments.
- 2.8.3 Marine Deposit: A layer of marine deposits, which varied from approximately 2m to 14m thick, was encountered in drillholes along T2. The material was generally described as: Soft to firm, dark grey, sandy, silty CLAY/SILT with occasional shell fragments.
 - a) Soft, dark grey, silty CLAY.
 - b) Grey andd dark grey, angular
 - c) Very soft, dark grey, silty CLAY.
 - d) Very soft to soft, light grey, silty CLAY
 - e) Very soft, grey becoming light grey, slightly sandy CLAY with occasional fine shell fragments.
- 2.8.4 Alluvium: A layer of alluvium, which varied from approximately 5m to 25m thick, was encountered in drillholes along T2. The material was generally described as:
 - a) Light brown grey sandy angular fine GRAVEL (QUARTZ).
 - b) Dense to medium dense, silty clayey fine to coarse SAND and brown silty fine to coarse SAND with much angular fine quartz gravel and occasionally with some surrounded cobbles of moderately decomposed Tuff.
 - c) Soft to stiff, light grey and brown silty CLAY/SILT with occasional angular fine quartz gravel.
- 2.8.5 The saprolitic soil stratum, comprising grade V to IV material, was encountered in drillholes. The thickness varied from less than 10m to over 40m. The saprolitic soils primarily consisted of completely to highly decomposed, medium to coarse grained granite.
- 2.8.6 The bedrock, which was encountered in most of the current drillholes as well as some of the previous drillholes along T2, lied at the shallowest level of about -15mPD at Cha

Kwo Ling side to the deepest level of about -60mPD in the marine area. Fine to coarse grained granite was encountered which was the predominant bedrock in the study area.

2.8.7 Granite was generally described as strong, pinkish grey, spotted dark green, dappled brown, slightly decomposed fine to coarse grained granite. Joints were closely to medium spaced, locally very closely and widely spaced, rough stepped and rough planar, occasional rough undulating, extremely narrow to very narrow, iron and manganese stained, occasional kaolin chlorite coated.

Soil and Rock Properties and Design Parameters

2.8.8 The soils and rock design parameters proposed under KTDES for soils and rocks are indicated on **Tables 2.8 - 2.10**.

Table 2.8 Preliminary Geotechnical Design Parameters

Geological Unit	Effective Stress Shear Strength Parameter		Bulk Unit Weight	
	c' (kPa)	Φ' (Degrees)	γ (kN/m ³)	
Compact Fill	0	37	19	
Fill – Sand	0	33	19	
Fill – Rock	0	45	19	
Marine Clay	0	28	16	
Marine Sand (loose)	0	34	19	
Alluvium Clay	2	27.5	19	
Alluvium Sand (dense)	0	37	20	
CDG	5	37	19	

Table 2.9 Preliminary Geotechnical Design Parameters

Geological Unit	Permeability		Preliminary Bearing Capacity
	Min (m/s)	Max (m/s	(kN/m ²)
Fill – Sand (loose)	5 × 10 ⁻⁵		750
Fill – Sand (dense)	5 × 10 ⁻⁵		150
Fill – Course	1×10^{-3}		150
Marine Clay	1×10^{-6}		10
Marine Sand (loose)	2.7×10^{-5}		75
Alluvium Clay	2.439×10^{-7}	4.53×10^{-5}	75
Alluvium Sand (dense)	2.4×10^{-5}	5.4 × 10 ⁻⁵	150
CDG	4.1×10^{-7}	3.28×10^{-5}	300

Table 2.10 Preliminary Geotechnical Design Parameters

Geological Unit	Consolidation Characteristics				
	Initial Void Ratio e ₀	Comp. Index c _c	$\begin{tabular}{c} \textbf{Coeff. of} \\ \textbf{Vertical} \\ \textbf{Consolidation} \\ \textbf{c}_{v}\left(m^2/yr\right) \\ \end{tabular}$	$\begin{tabular}{c} \textbf{Coeff. of} \\ \textbf{Horizontal} \\ \textbf{Consolidation} \\ \textbf{c_h} (m^2/yr) \\ \end{tabular}$	Coeff. of Secondary Compression c
Compacted Fill (dense)	-	-	-	-	0.001
Fill – Sand	-	-	-	-	0.002
Fill – Course	-	-	-	-	0.002
Marine Clay	2.0	0.8	1	1.5	0.008
Marine Sand	-	-	-	-	-
Alluvium Clay	0.4	0.2	5	7.5	0.003
Alluvium Sand	-	-	-	-	-
CDG/HDG (Granite)	0.71	0.18	8	12	-

Seabed Level and Bathymetry

2.8.9 The marine charts HK0801 and HK0802 provide the general bathymetry of the study area. To provide a better resolution of the seabed level of the study area, sounding data of Kowloon Bay area was collected directly from the Hydrographic Office of Marine Department which is a compilation of sounding data collected between 2003-08 (**Figure 2.10**).

[blank page]

3 SECTION 3 – PROPOSED SEDIMENT QUALITY SAMPLING AND TESTING

3.1 The Necessity of Site Specific Sediment Quality Sampling and Testing

3.1.1 The previous sediment quality studies have five stations that are along the Project works and provides site specific information about the sediment quality along the project alignment. However, these studies focused on the surface and top layers of the sediment which could be more heavily contaminated than the underneath layers and could thus over-estimated the potential environmental risk as the dredging works for the submarine tunnel can go as deep as ~ -20mPD. There were generally no site specific sediment quality data for level below -4mPD. Furthermore, the stations were mostly along the two end of the tunnel landing and information was not generally available for the middle section of the alignment. It is therefore considered desirable to collect further site specific information about sediment quality along the project alignment to enable a better characterisation of the contamination status for the purpose of EIA study. To allow re-using the EIA data for subsequent DASO permit application, SI and sediment quality sampling and testing shall also take note of the requirement of technical circular ETW TCW No. 34/2002.

3.2 Sediment Sampling and Testing Scheme

3.2.1 The marine disposal of dredged/excavated spoil is regulated by the Dumping at Sea Ordinance (DASO). The technical circular for the *Management of Dredging/Excavated Sediment* (ETWB TCW 34/2002) provides, among the others, guidelines for waste characterisation and dump site selection to permit application under DASO. This circular is referred in designing the sampling and testing scheme to characterise the marine mud of the study area possibly affected by the project and thus requiring dredging/disposal. Reference are also made to the marine sediment sampling and testing scheme for the CTD EIA and other EIA studies involving sediment contaminations in the region.

Sampling Grid

3.2.2 A general sampling grid of approximately 200m x 200m is adopted following the CTD EIA. For an IMT tunnel with the twin tunnel width of about 30m, a dredging trench of approximately 50m from each side would be required for an average side slope of 3.4 and a trench depth of about 20m. Hence the total width of the dredged trench would be about 136m which is within 200m grid spacing. Hence, sediment samples collected at about 200m interval along the alignment will be sufficient. The tentative sampling locations are shown in **Figures 3.1- 3.5** and the coordinates of the sampling locations shown in **Appendix A**.

Sampling Gears and Vertical Sub-sampling

3.2.3 In general, the sediment samples will be collected with 100mm diameter vibrocore continued down to the bottom of the dredged trench which would be about -20mPD. The sediment core samples shall than vertically split into 1m sub-samples sections on

site. According to ETWB TCW No. 34/2002, chemical testing will be conducted for the following sections of the vibrocore sub-sample: 0-0.9m (seabed), 0.9-1.9m, 1.9-2.9m, 2.9m down, 5.9m down, 8.9m down, 11.9m down, 14.9m down, 17.9m down, and 20.9m down. Based on the marine charts, the seabed level is about -4 mPD to -10mPD along the marine works area and the previous SI suggested that the base of marine deposit is at -10mPD to -15mPD in general and down to -20mPD locally near quay wall at Cha Kwo Ling side. Hence, sampling depth over 20m is not anticipated. Anthropogenic pollution below the marine deposit is also generally not expected.

- 3.2.4 As recovery of surface sediment by vibrocore can often be low resulting in insufficient amount of sediment samples for subsequent biological testing if need, surface sediment will also be collected using grab sampler as spare for the surface stratum of vibrocore (0-0.9m). If the surface stratum of vibrocore sample is deemed insufficient for the full suit of chemical and biological testing, testing of the stratum will be based on the surface grab sample instead of vibrocore sample.
- 3.2.5 While vibrocoring will be the main sampling technique, drill holes (e.g., U100) may also be used if there hard substrate at shallow is encounter. There are some known facilities along the alignment and for the safety of these facilities which would constraints the sampling as a safety buffer distance is generally required. To avoid potential safety issue, the sampling point shall be outside the safety buffers of the known. Details about these constraining facilities are discussed in Section 4 below.
- 3.2.6 As indicated in **Figure 1.8**, the "cut-and-cover tunnel section" and/or "depressed road section" of the roadway on the reclaimed land portion at South Apron and Cha Kwo Ling would also require excavation down to about -20mPD at South Apron, but could be to a deeper level of about -27mPD at Cha Kwo Ling. Temporary works like pipe pile walls, however, may require a further 18m excavation. Hence, marine sediment may be encountered during the land side construction. Thus, in addition to marine based sediment sampling stations, land based sediment sampling stations will also be arranged to collect marine sediment samples below reclamation fill.
- 3.2.7 For land based sediment sampling, sediment samples will be collected from the top of marine deposit to the bottom of excavation level (or to the hard substrate level such as alluvium). The fill material (about 10m to 14m thick at South Apron, but much more variable at Cha Kwo Ling side) above the marine deposit will not be collected or analysis. Vertical sub-sampling of the sediment will start from the top of marine deposit as the following 0-0.9m, 0.9-1.9m, 1.9-2.9m, 2.9m down, 5.9m down, 8.9m down, 11.9m down, 14.9m down, 17.9m down, 20.9m down, 23.9m down and 26.9m down. The land based stations will be conducted using drill holes (e.g., U100). The land side collected sediment samples will be handled in the same manner as the samples collected from the marine side.

Chemical Testing Schedule

3.2.8 The sediment samples collected will be tested for the suit of parameters as recommended in ETWB TCW No. 34/2002 within 2 weeks of sampling. The proposed chemical testing parameters primarily following the ETWB TCW No. 34/2002

requirement are listed in **Table 3.1** below while the reference analytical methodology is in **Appendix B**. It shall be noted, however, that **Appendix B** shall be updated with testing laboratory which is yet to be procured.

Table 3.1 Sediment Testing Parameters

Contaminants	Reporting Limit ²	
Metals and Metalloid		
Cadmium (Cd)	0.2 mg/kg dry wt.	
Chromium (Cr)	8 mg/kg dry wt.	
Copper (Cu)	7 mg/kg dry wt.	
Mercury (Hg)	0.05 mg/kg dry wt.	
Nickel (Ni)	4 mg/kg dry wt.	
Lead (Pb)	8 mg/kg dry wt.	
Silver (Ag)	0.1 mg/kg dry wt.	
Zinc (Zn)	20 mg/kg dry wt.	
Arsenic (As)	1 mg/kg dry wt.	
Organic Pollutants		
Low Molecular Weight PAHs ¹		
Naphthalene	55 μg/kg dry wt.	
Acenaphtylene	55 μg/kg dry wt.	
Acenaphtene	55 μg/kg dry wt.	
Fluorene	55 μg/kg dry wt.	
Phenanthrene	55 μg/kg dry wt.	
Anthracene	55 μg/kg dry wt. 55 μg/kg dry wt.	
High Molecular Weight PAHs ¹	33 kg kg til y we	
Benzo(a)anthracene	170 μg/kg dry wt.	
Benzo(a)pyrene	170 μg/kg dry wt.	
Chrysene	170 μg/kg dry wt.	
Dibenzo(ah)anthracene	170 μg/kg dry wt.	
Fluoranthene	$170 \mu\text{g/kg}$ dry wt.	
Pyrene	170 μg/kg dry wt.	
Benzo(b)fluoranthene	170 µg/kg dry wt.	
Benzo(k)fluoranthene	170 µg/kg dry wt.	
Indeno(1,2,3-cd)pyrene	170 μg/kg dry wt.	
Benzo(ghi)perylene	170 µg/kg dry wt.	
Total PCBs ^T	- · · · · · · · · · · · · · · · · · · ·	
2,4' diCB (PCB 8)	3 μg/kg dry wt.	
2,2',5 triCB (PCB 18)	3 µg/kg dry wt.	
2,4,4' triCB (PCB 28)	3 μg/kg dry wt.	
2,2',3,5' tetraCB (PCB 44)	3 μg/kg dry wt. 3 μg/kg dry wt.	
2,2',5,5' tetraCB (PCB 52)		
2,3',4,4' tetraCB (PCB 66)	3 μg/kg dry wt.	
3,3',4,4' tetraCB PCB 77)	100	
2,2',4,5,5' pentaCB (PCB 101)		
2,3,3',4,4' pentaCB (PCB 105)	3 µg/kg dry wt.	
2,3,3,7,7 penaco (1 CD 103)	J μg/kg tily wt.	

Contaminants	Reporting Limit ²	
2,3',4,4',5 pentaCB (PCB 118)	3 μg/kg dry wt.	
3,3',4,4,5 pentaCB (PCB 126)	3 μg/kg dry wt.	
2,2',3,3',4,4' hexaCB (PCB 128)	3 μg/kg dry wt.	
2,2',3,4,4',5' hexaCB (PCB 138)	3 μg/kg dry wt.	
2,2',4,4',5,5' hexaCB (PCB 153)	3 μg/kg dry wt.	
3,3',4,4',5,5' hexaCB (PCB 169)	3 μg/kg dry wt.	
2,2',3,3',4,4',5 heptaCB (PCB 170)	3 μg/kg dry wt.	
2,2',3,4,4',5,5' heptaCB (PCB 180)	3 μg/kg dry wt.	
2,2',3,4',5,5',6 heptaCB (PCB 187)	3 μg/kg dry wt.	
Organometallics		
Tributyltin (interstitial water)	0.015 μg TBT/L	
Tributyltin (whole sediment) ³	10 μg/kg dry wt.	

Notes:

- 1 Details of the congeners and components are included in Appendix B.
- 2. Suggested upper limit. The accredited reporting limit is to be confirmed by the laboratory contractor.
- 3. Not a parameter required under ETWB TCW No. 34/2002.
- 3.2.9 The chemical testing results of each sediment sub-sample will be compared to the sediment quality criteria as stipulated under ETWB TCW No. 34/2002 which is reproduced in **Table 3.2** below. Each sediment sub-sample and the content of the corresponding grid cell will be classified according to the **Table 3.2** below and be classified into Category L (low contamination level; all testing parameter below LCELs), Category M (medium contamination level; any parameter exceed LCEL but none exceed UCEL) or Category H (high contamination level; any parameter exceed UCEL).

Table 3.2 Sediment Quality Criteria for Classification of Sediment

Contaminants	Lower Chemical Exceedance Level (LCEL)	Upper Chemical Exceedance Level (UCEL)			
Metals (mg/kg dry wt.)	Metals (mg/kg dry wt.)				
Cadmium (Cd)	1.5	4			
Chromium (Cr)	80	160			
Copper (Cu)	65	110			
Mercury (Hg)	0.5	1			
Nickel (Ni)*	40	40			
Lead (Pb)	75	110			
Silver (Ag)	1	2			
Zinc (Zn)	200	270			
Metalloid (mg/kg dry wt.)					
Arsenic (As)	12	42			
Organic-PAHs (μg/kg dry wt.)					
Low Molecular Weight PAHs	550	3160			
High Molecular Weight PAHs	1700	9600			
Organic-non-PAHs (μg/kg dry wt.)					
Total PCBs	23	180			
Organometallics (µg TBT/l in Interstitial water)					
Tributyltin*	0.15	0.15			

^{*} Contaminant level is considered to exceed UCEL if it is greater than the value shown.

Biological Testing Schedule

- 3.2.10 The site is known to be highly contaminated and Category H (>10x LCEL) samples have been previously recorded in the study area. Some Category M material may also be expected as the contamination level transit back to the ambient at depth. Both Category M and H (>10x LCEL) sample would require further biological testing to determine the treatment/disposal option, but not Category H (≤10x LCEL) nor Category L materials. To maximise the cost effectiveness of biological testing, composite samples will be prepared by mixing up to five samples of the same category which are continuous in vertical profile. For Category H (>10x LCEL), a portion of the composite sample will be diluted with 9 portion of reference sediment (i.e. dilution) before testing.
- 3.2.11 For each composite sample requiring biological test, a suite of 3 toxicity testing species as listed in **Table 3.3a** will be conducted. Fresh reference sediment samples will be collected from Port Shelter (820057N 850234E) using surface grab sampler. The reference sediment will also be tested for the suit of chemical parameters as listed in **Table 3.1** to ensure it is free from contamination. Any biological testing will be commenced within 8 weeks of sampling as recommended in ETWB TCW No. 34/2002.

Table 3.3a Biological Testing Species and Protocol

Test Type	Species ¹	Endpoint Measured	Reference Test Condition
10-day burrowing amphipod	Ampelisca abdita Leptocheirus plumulosus Eohaustorius estuarius	Survival	USEPA (1994) ⁴ / PSPE (1995) ⁵
20-day burrowing polychaete	Neanthes arenaceodentata	Dry Weight ²	PSPE (1995) ⁵
48-96 hour larvae (bivalve or echinoderm)	Bivalve: Mytilus spp. Crassostrea gigas Echinoderm: Dendraster excentricus Strongylocentrotus spp.	Normality Survival ³	PSPE (1995) ⁵

Notes:

- 1. Only one species from each testing type is required.
- 2. Dry weight means total dry weight after deducting dead and missing worms.
- Normality survival integrates the normality and survival end points, and measures survival of only the normal larvae relative to the starting number.
- U.S.EPA (U.S. Environmental Protection Agency) 1994. Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/R94/025.
- PSEP (Puget Sound Estuary Program) 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments.
- 3.2.12 In general, all biological tests should be conducted on composite samples. Composite sample is prepared by mixing up to 5 samples of the same category (M or H) which are continuous in vertical profile.
- 3.2.13 Sediment classified as Category M shall be subjected to the following three toxicity tests (to be considered as one set) on each composite sample:
 - a 10-day burrowing amphipod toxicity test;
 - a 20-day burrowing polychaete toxicity test; and
 - a 48-96 hour larvae (bivalve or echinoderm) toxicity test.
- 3.2.14 Sediment classified as Category H and with one or more contaminant levels exceeding 10 times LCEL shall also be subjected to the above three toxicity tests but in a diluted manner (dilution test). The samples shall be prepared prior to toxicity testing as **Table 3.3b**.

Table 3.3b Preparation of Samples for Biological Testing Species

Sediment characteristics	Preparation method
Category H sediment (> 10 x LCEL)	Sample to be mixed with 9 portions of reference sediment
Category M sediment or Category H sediment (> 10 x LCEL) suspected of ammonia contamination	Additional set of sample (after dilution for Cat. H sediment) to be purged# for ammonia removal (for amphipod test only).

[#] If the ammonia concentration in the overlying water of the test system is ≥ 20 mg/L, purging of sediment is required. This is performed by replacing the overlying water at a rate of 6 volume replacements/24 h for 24 hours, and repeated once only if the ammonia level still exceeds 20 mg/L.

Further Sediment Chemical Testing Schedule

3.2.15 Apart from the testing of sediment parameters as listed in **Table 3.1**, additional testing of TBT, chlorinated pesticides and sediment nutrient contents are also recommended and the suggested parameters are listed in **Tables 3.4-3.5** below.

Table 3.4 Sediment Parameters Proposed for TBT, Chlorinated Pesticides and Nutrient

Contaminants	Reporting Limit ²
Organometallics	
Tributyltin (whole sediment)	10 μg/kg dry wt.
Chlorinated Pesticides ¹	
Aldrin	0.5 μg/kg dry wt.
Alpha-BHC	0.5 μg/kg dry wt.
Beta-/Delta- BHC ³	1 μg/kg dry wt.
Gamma-BHC	0.5 μg/kg dry wt.
Heptachlor	0.5 μg/kg dry wt.
Heptachlor epoxide	0.5 μg/kg dry wt.
Endosulfan 1	0.5 μg/kg dry wt.
Endosulfan sulphate	0.5 μg/kg dry wt.
p, p'-DDT	0.5 μg/kg dry wt.
p, p'-DDD	0.5 μg/kg dry wt.
p, p'-DDD	0.5 μg/kg dry wt.
Nutrient	
Ammonia Nitrogen (NH ₄ N)	0.1 mg/kg dry wt
Nitrate Nitrogen (NO ₃ -N)	1 mg/kg dry wt

Nitrite Nitrogen (NO ₂ -N)	1 mg/kg dry wt
Total Kjeldahl Nitrogen (TKN)	50 mg/kg dry wt
Total Phosphorus (Total-P)	10 mg/kg dry wt

Notes:

- 1. The proposed component followed the works of CTD EIA.
- 2. Suggested upper limit. The actual reporting limit achieved is to be confirmed with the laboratory contractor.
- 3. Beta-/Delta-BHC reported as co-elutriate.

Table 3.5 Sediment Parameters Proposed for Biogas Release, Bioavailability and Physicochemical Properties

Parameter	Reporting Limit ¹
Biogas Release Potential	
Total Organic Carbon (TOC)	0.05%
Sediment Oxygen Demand (SOD, 20 days)	100 mg O ₂ /kg dry wt
Bio availability / Physicochemical Properties	
Total Sulphide (TS)	4 mg/kg dry wt.
Acid Volatile Sulphide (AVS)	1 mg/kg dry wt.
Moisture Content	N/A
Particle Size Distribution	N/A

Note:

Ambient Water and Elutriate Test

3.2.16 The sediment samples (including vertical sub-samples) collected from marine based stations will also be used for elutriate test. The standard elutriate test (USEPA & USACE 1991, 1998) is a procedure developed to simulate the release of dissolved contaminants from a dredged disposal operation in open waters, and may be considered a laboratory simulation of release of dissolved contaminants from a mechanical dredged disposal operation. The ambient water and sediment samples will be mixed in a ratio of 1:4 sediment:water. The mixture is mechanically shaken vigorously for 30 minutes and allowed to settle undisturbed for 1 hour. The liquid phase is then centrifuged or filtered through a 45 µm filter to remove all suspended particulate matter. The extracted liquid filtrate is the elutriate to be used for testing of parameters as listed in **Table 3.6** below.

USEPA & USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal – Testing Manual. USEPA and US Army Corps of Engineers, EPA 503/8-91/001

USEPA & USACE. 1998. Evaluation of Dredged Material Proposed for Discharge on Waters of the US – Testing Manual (Inland Testing Manual). USEPA and US Army Corps of Engineers, EPA 823-B-98/004

3.2.17 For each marine based sediment sampling station, ambient marine water shall also be collected using Niskin sampler from 1m below the surface, mid-depth and 1m above the sea-bed. Where the water depth is between 3m and 6m (≥3 and ≤6m) then the middepth layer will be omitted. When the water depth is less than 3m (<3m), then only the

Suggested upper limit. The actual reporting limit achieved is to be confirmed with the laboratory contractor.

mid-depth sample will be collected. For the water samples collected from each station, a composite sample will be formed by pooling equal volume of water from each sampled depth in the laboratory for subsequent analysis and use. The water sample collection shall commence prior to the sediment collection to avoid disturbance to the seabed potentially affecting the water samples. The composited ambient water shall also be tested for the same suit of parameters as the elutriate.

3.2.18 It is anticipated that the land side earth works will be mainly by excavation rather than by dredging and this would unlikely lead to contaminant release into marine environment as could be the case of marine dredging. Hence, elutriate test and interstitial water test of the samples collected from the land side stations shall not be necessary. However, the details of the construction method is not yet confirmed and there is a possibility that the interfacing area adjacent to the seawall be constructed by mean of dredging. To allow for this possible scenario, elutriate test and interstitial water test will also be conducted for selected land based station close to the seawall. Under such a circumstance, the ambient marine water from the nearest marine station will be used for the elutriate test.

Table 3.6 Parameters Proposed for Interstitial Water, Marine Water and Elutriate Tests

Contaminants	Reporting Limit ³
Metals and Metalloid	
Cadmium (Cd)	0.5 μg/L
Chromium (Cr)	1 μg/L
Copper (Cu)	1 μg/L
Mercury (Hg)	0.2 μg/L
Nickel (Ni)	1 μg/L
Lead (Pb)	1 μg/L
Silver (Ag)	1 μg/L
Zinc (Zn)	10 μg/L
Arsenic (As)	1 μg/L
Organic Pollutants	
Low Molecular Weight PAHs ¹	
Naphthalene	0.2 μg/L
Acenaphtylene	0.2 μg/L
Acenaphtene	0.2 μg/L
Fluorene	0.2 μg/L
Phenanthrene	0.2 μg/L
Anthracene	0.2 μg/L
High Molecular Weight PAHs ¹	
Benzo(a)anthracene	0.2 μg/L
Benzo(a)pyrene	0.2 μg/L
Chrysene	0.2 μg/L
Dibenzo(ah)anthracene	0.2 μg/L
Fluoranthene	0.2 μg/L
Pyrene	0.2 μg/L
Benzo(b)fluoranthene	0.2 μg/L

Contaminants	Reporting Limit ³
Benzo(k)fluoranthene	0.2 μg/L
Indeno(1,2,3-cd)pyrene	$0.2~\mu g/L$
Benzo(ghi)perylene	0.2 μg/L
Total PCBs ¹	
2,4' diCB (PCB 8)	0.01 μg/L
2,2',5 triCB (PCB 18)	0.01 µg/L
2,4,4' triCB (PCB 28)	0.01 µg/L
2,2',3,5' tetraCB (PCB 44)	0.01 µg/L
2,2',5,5' tetraCB (PCB 52)	0.01 µg/L
2,3',4,4' tetraCB (PCB 66)	0.01 µg/L
3,3',4,4' tetraCB PCB 77)	0.01 µg/L
2,2',4,5,5' pentaCB (PCB 101)	0.01 μg/L
2,3,3',4,4' pentaCB (PCB 105)	0.01 μg/L
2,3',4,4',5 pentaCB (PCB 118)	0.01 µg/L
3,3',4,4,5 pentaCB (PCB 126)	0.01 μg/L
2,2',3,3',4,4' hexaCB (PCB 128)	0.01 μg/L
2,2',3,4,4',5' hexaCB (PCB 138)	0.01 μg/L
2,2',4,4',5,5' hexaCB (PCB 153)	0.01 μg/L
3,3',4,4',5,5' hexaCB (PCB 169)	0.01 μg/L
2,2',3,3',4,4',5 heptaCB (PCB 170)	0.01 μg/L
2,2',3,4,4',5,5' heptaCB (PCB 180)	0.01 µg/L
2,2',3,4',5,5',6 heptaCB (PCB 187)	0.01 μg/L
Organometallics	
Tributyltin	0.015 μg TBT/L
Chlorinated Pesticides ²	
Aldrin	0.02 μg/L
Alpha-BHC	0.02 μg/L
Beta-/Delta- BHC ⁴	0.04 μg/L
Gamma-BHC	0.02 μg/L
Heptachlor	0.02 μg/L
Heptachlor epoxide	0.02 µg/L
Endosulfan 1	0.02 µg/L
Endosulfan sulphate	0.02 μg/L
p, p'-DDT	0.02 μg/L
p, p'-DDD	0.02 μg/L
p, p'-DDD	0.02 µg/L
Nutrient	
Ammonia Nitrogen (NH ₄ N)	0.1 mg/L
Nitrate Nitrogen (NO ₃ -N)	0.05 mg/L
Nitrite Nitrogen (NO ₂ -N)	0.05 mg/L
Total Kjeldahl Nitrogen (TKN)	0.1 mg/L
Orthophosphate (PO ₄ -P)	0.05 mg/L
Total Phosphorus (Total-P)	0.1 mg/L

Notes:

- Details of the congeners and components are included in Appendix B. 1
- The proposed component followed the works of CTD EIA.
- Suggested upper limit. The actual reporting limit achieved is to be confirmed with the laboratory contractor.
 Beta-/Delta- BHC reported as co-elutriate.

- 3.2.19 There could be a possibility that the *in situ* ambient water was already contaminated rendering the elutriate test using the *in situ* ambient water not reflective of the worse case scenario during the dredging operation. To allows for evaluation of such a scenario should the ambient water be proven contaminated, it is proposed that a second elutriate test of the sediments using clean Reference Water collected from Lei Yue Mun (842400E, 816500N; within the Victoria Harbour Water Control Zone) shall be conducted. Depending on the actual number of sediment samples requiring elutriate test with Reference water, it could be that a substantial quantity (e.g., > 100L) of ambient water from the Reference Station be required. Under such circumstance, a peristaltic pump with non-contaminating tubing will be used for efficient water collection at different depth rather than a Niskin sampler.
- 3.2.20 Prior to the commencement of the second elutriate test, the ambient water quality of the selected six stations shall be ascertained to be contaminated. There are, however, currently no defined marine water quality objectives (WQO) for metals and metalloid in Hong Kong and the UK Environmental Quality Standards (EQS), prescribed for the protection of marine life for metals and the metalloid arsenic for which analysis has been carried out, is proposed to be as the reference criteria for assessing the status of the ambient water although it should be noted that the EQS refers to the annual average concentrations (Cole *et al.*, 1999). The EQS criteria are presented in **Table 3.7** below.

Cole, S., Codling, I.D., Parr, W. and Zabel, T. (1999). Guidelines for Managing Water Quality Impacts Within UK European Marine Sites. WRc, Swindon. Prepared for the UK Marine SAC Project.

Table 3.7 The UK Environmental Quality Standard (EQS) Values to Protect Marine Life

Metals and Metalloid	Water Quality Standard (as dissolved metal) (µg/L)
Arsenic	25
Cadmium	2.5
Chromium	15
Copper	5
Lead	25
Mercury	0.3
Nickel	30
Silver	1.9*
Zinc	40

^{*} Salt water acute criterion of USEPA National Recommended Water Quality Criteria.

Interstitial Water Test

3.2.21 As described before, short section of temporary reclamation for the landing may be required. It is therefore desirable to conduct some interstitial water (pore water) testing of sediment collected for the marine based stations. As the interstitial water content at

deep layers can be low, interstitial water may be limited to the surface layers where the water content is high and sufficient amount of interstitial water can be extracted. Surface grab samples will be collected, however, to ensure sufficient sample for testing at the top layer. The recommended testing parameters is the same as the elutriate parameters listed in **Table 3.6** above.

Priority of Testing

- 3.2.22 A large quantity of the sediment sample from each depth will be required for chemical analysis and also the sub-sequent biological testing if required. Preliminary enquiry with a laboratory indicates that about 1L of sediment will be required for whole sediment chemical analysis, 5L for biological testing, 1L for each run of elutriate. Depending on the water content, about 1L of sediment will be required for interstitial water analysis of TBT. About 2L of liquid will be required for the chemical analysis, if assuming moisture content of the sediment is 50%, than about 4L of sediment will be required to provide sufficient interstitial water for chemical analysis. Thus, at least about 8L of sediment samples will be required for the chemical analysis of whole sediment, biological analysis and two elutriate runs. Further but unknown amount of sediment, however, is need for interstitial water analysis of TBT and other chemicals.
- 3.2.23 One meter section of a standard vibrocore with 100mm internal diameter yield 7.8L of sample on full recovery. This will not be sufficient for all the testing required. For sampling depth below 2.9m, the sampling interval is 3m which should be able to provide sufficient amount of sediment (~23.4L). For the surface level (0-0.9m), grab sample can be collected to provide the required quantity. For the (0.9-1.9)m and (1.9-2.9)m sections, however, two vibrocore sections will be required (to give about 15.6L of sediment) and will be collected. Despite of these calculations to provide large amount of sediment for the tests, field recovery and sample condition will determine the actual amount of sediment available and, for the interstitial water the amount of sediment needed. It is therefore necessary to prioritise the testing parameters in case of poor recovery or low moisture content. The following order of priority is proposed:
 - (1) ETWB TCW No. 34/2002 whole sediment chemical parameters (**Table 3.1**);
 - (2) ETWB TCW No. 34/2002 biological test (**Table 3.3a**);
 - (3) Other whole sediment chemical parameters (**Tables 3.4 3.5**);
 - (4) Elutriate Test with in-situ water (**Table 3.6**);
 - (5) Interstitial water test (**Table 3.6**); and
 - (6) Elutriate Test with Reference water (**Table 3.6**).

Sample Storages and QA/QC

3.2.24 Typically, a 6m long vibrocore with PVC inner liner tube will be used for the sampling. Provided that the PVC tube is thoroughly cleaned prior to deployment, the sediment

samples once contained inside the PVC tube, would be free from external contamination. However, to facilitate subsequent sample handling, storage and transportation, the tube will have to be cut into 1m sections on site. To ensure samples for organic analyses will be stored in compatible containers right after the sampling, for each target stratum, adequate amount (about 0.5L) of the sediment sub-sample from the top-end shall immediately be collected on-site and stored in laboratory pre-cleaned borosilicate glass bottle with Telfon lined lid. To prevent environmental contaminations, non-contaminating saw-blade shall be used, and once cut and subsamples collected, each open end shall be immediately sealed with a tin foil and plastic cap. For grab sampling, non-contaminating stainless steel grab sampler shall be used and food grade polyethylene bag shall be used for sample holding. Sub-sample of grab samples for organic analyses shall also be split on-site and stored in laboratory precleaned borosilicate glass bottle with Telfon lined lid.

- 3.2.25 All the equipment and utensils that will have a direct contact with the samples shall be thoroughly cleaned with ambient marine water and/or distilled water before and between each use. In addition, for every 10 sampling stations, a rinsate water sample shall be collected for analysis of the same suit of chemicals listed in **Table 3.1** to ensure the cleansing procedures is adequate.
- 3.2.26 Once retrieved, the samples shall be maintained in a chilled (~ 0 4 °C) but not frozen condition and stored in the dark during on-site temporary storage and shipment to the testing laboratory. The retrieved samples shall be delivered to the testing laboratory as soon as possible and any temporary on-site storage shall not be longer than 24 hour. Chemical testing shall commence as soon as possible. If not analysed immediately in the testing laboratory, the samples shall also be maintained in a chilled (~ 0 4 °C) but not frozen condition and stored in the dark. For testing of ETWB TCW No. 34/21002 sediment parameters, the maximum 2 weeks of allowable holding time shall be observed. For other matrix and parameters, the allowable holding period as per the standard methods adopted shall be observed. The transfer and shipment of the collected samples shall be accompanied with a Chain of Custody (COC) form which shall be duly singed the relevant parties and faxed to the consulting engineer daily for checking. A sample of COC form to be used is presented in **Appendix C**.
- 3.2.27 The testing laboratory to be employed shall be HOKLAS accredited (or in case of overseas laboratories, by equivalent national accreditation) with the appropriate accreditation for the ETWB TCW No. 34/21002 sediment parameters. For other testing matrix/parameters, testing shall be performed by laboratory contractor accredited under the "environmental testing" category although the specific analytical methodology may not be accredited. Once the laboratory contractor is confirmed, the specific test methodology and accreditations status of each test will be updated and resubmitted to EPD for agreement. The testing laboratory shall has adequate QA/QC programme for the testing works which shall include at least the blank analysis, matrix spike, standard reference sample, etc. Further information about the contractors for the SI and laboratory testing are discussed in Section 4.

3.2.28 All the sediment sampling works will be supervised by on-site full time engineers/environmental scientists from the consulting engineer. The site staff will be supported by senior engineer/environmental professional from the consulting engineer who will also conducted part-time supervision. The supervisors will also inspect the testing laboratory and review the results of QA/QC.

4 SECTION 4 – WORKS IMPLEMENTATION AND SITE CONSTRAINTS

4.1 Implementation Agents

- 4.1.1 For this project, the SI and environmental sampling and testing is to be carried out under CEDD Contract No. KL/2009/02 Site Investigation For Trunk Road T2 and Infrastructure at South Apron (Sage 1). The Contract is awarded to Fugro Geotechnical Services Limited (Fugro). Fugro will be responsible for undertaking the sampling works and the geotechnical testing by the MaterialLab Division of Fugro which is HOKLAS accredited (HOKLAS Registration Number 015). Fugro has subcontract the environmental testing works to ALS Technichem (HK) Pty Ltd (ALS) which is HOKLAS accredited laboratory (HOKLAS Registration Number 066) although some of the specialist tests are to be done by Hong Kong Productivity Council (HOKLAS Registration Number 039) (TBT in intestinal water) and ALS Brisbane laboratory (TBT in sediment, marine water and elutriate). ALS Brisbane laboratory is accredited under the National Association of Testing Authorities (NATA), Australia. HOKLAS has concluded mutual recognition arrangements (MRA) with accreditation bodies including NATA.
- 4.1.2 The accreditation scope, reference sample preparation and testing methods, and reporting limits for the proposed tests offered by the contractor is given in **Appendix B**.

4.2 Known Site Constraints

4.2.1 As briefly discussed before, there are some known facilities along the alignment and the SI works need to avoid them for the safety of both the facilities and sampling team. Any needed sediment sampling within this area will be conducted by mean of surface grab and no vibrocore is proposed. These have been shown in **Figures 3.1-3.2** and their nature are discussed below.

HATS Protection Zone

- 4.2.2 The HATS tunnel is a deep tunnel system to convey the sewage from PTWs to the central STW at Stonecutters Island. The tunnel is generally located at more than 70m below the ground surface. In order to protect the sewage tunnels and associated structures against damage which might be caused by other construction works and ground investigation works in the vicinity of the sewage tunnel, there are specific restriction/requirement on such works. The restriction/requirement for works and GI around the HATS tunnel is stipulated in ETWB TCW No. 28/2003.
- 4.2.3 According to ETWB TCW No. 38/2003, a "ground investigation protection boundary" for the sewage tunnel is generally 50m from the centreline of the tunnel and the area within this boundary is otherwise known as "HATS Protection Zone". Within the project study area, there are sections of HATS tunnel connecting the Shau Kei Wan PTW to KTPTW and also from KTPTW to To Kwan Wan PTW. The location of the HATS Protection Zone is presented in **Figures 3.1-3.2**.

Kwun Tong Preliminary Treatment Works (KTPTW) Outfall Safety Buffer

4.2.4 As described in Section 2.5, the KTPTW outfall emerged from the KTPTW to the Victoria Harbour. Based on the as-built record, the terminal plate of the outfall is at about -14 mPD and hence other section of the tunnel will be above this level. To prevent any accidental damage to the outfall, a 40m safety buffer from the centreline of the KTPTW outfall is required by DSD. The location of the KTPTW outfall buffer zone is also presented in **Figures 3.1 - 3.2**.

Kwun Tong Typhoon Shelter (KTTS)

4.2.5 Part of the project alignment is within the Kwun Tong Typhoon Shelter which by its function is a mooring area. Another part of the project alignment is at Cha Kwo Ling Public Cargo Handling Area. It could be that some of the planned stations be occupied by moored vessels rendering it not accessible. Special allowance for this has not been made as this shall be able to overcome by work scheduling. However, it could be possible that the designated stations be not accessible throughout the whole sampling period. The site staff shall discuss with the occupier in order the access the station as far as practicable. However, should this cannot be arranged within the sampling period, alternative location close the proposed stations will be sampled instead. The site supervisor shall seek senior engineer/environmental professional agreement prior to instructing the contractor to sample at alternate location.

Land Access

4.2.6 The land based sampling stations will be subject to land access issue as well as site condition constraints such as obtaining excavation permit from other government authorities, occupancy or close proximity to existing utilities. The land use status has been preliminary checked although Land Department's approval is being seeked. Excavation permit will be applied by the Contractor undertaking the services. While effort is taken to ensure the proposed land based stations will be accessible with adequate working space for drilling, it may still be that the planned stations not accessible rending relocation necessary although this shall be avoided as much as possible.

Figures

[blank page]

APPENDIX A

SAMPLING LOCATIONS, ESTIMATED DEPTH AND VERTICAL SUB-SAMPLE PROFILE

[blank page]

APPENDIX B

INDICATIVE ANALYTICAL METHODOLOGY AND QA/QC INFORMATION

[blank page]

APPENDIX C A SAMPLE OF COC FORM

[blank page]

APPENDIX D

AGREEMENT OF MARINE FIELD COMMITTEE ON DREDGING RATIONALE FOR KAI TAK DEVELOPMENT

[blank page]

A1. Samp	ling Coor	dinates an	d Sample	Quantit	ies Es	tima	tion 1	for Ir	ndica	tive A	Alignr	nents	H2 a	nd H4	
						strati	ım (m)							
					Sedim	Siraii	(111								
			App.	App.	ent										
			Seabed	Target	Thickn										
			Level	Level	ess	0.0 -	0.9 -	1.9 -	2.9 -	5.9 -	8.9 -	11.9 -	14.9 -	17.9 -	20.9
Station	Х	Υ	(mPD)	(mPD)	(m)	0.9	1.9	2.9	5.9	8.9	11.9	14.9	17.9	20.9	23.9
Otation.		-	(2)	(2)	start	0	0.9	1.9	2.9	5.9	8.9	11.9	14.9	17.9	20.9
					end	0.9	1.9	2.9	3.9	6.9	9.9	12.9	15.9	18.9	21.9
B02VG	839923	819399	-6.4	-20.6	14.2	1	1	1	1	1	1	1	0	0	0
B05VG	840021	819285	-5.6	-19.9	14.3	1	1	1	1	1	1	1	0	0	0
B09VG	840152	819136	-5.3	-20.2	14.9	1	1	1	1	1	1	1	0	0	0
B13VG	840281	818981	-5.9	-21.5	15.6	1	1	1	1	1	1	1	1	0	0
C17VG	840383	818805	-6.0	-22.8	16.8	1	1	1	1	1	1	1	1	0	0
B20VG	840510	818717	-5.6	-23.3	17.7	1	1	1	1	1	1	1	1	0	0
C23VG	840561	818563	-5.0	-22.6	17.6	1	1	1	1	1	1	1	1	0	0
C27VG	840683	818404	-1.5	-22.2	20.7	1	1	1	1	1	1	1	1	1	0
D32VG	840977	818384	-5.5	-10.0	4.5	1	1	1	1	0	0	0	0	0	0
B33VG	840834	818270	-7.1	-23.5	16.4	1	1	1	1	1	1	1	1	0	0
E36VG	840813	818052	-8	-24.9	16.9	1	1	1	1	1	1	1	1	0	0
B37VG	840955	818110	-8	-24.9	16.9	1	1	1	1	1	1	1	1	0	0
E39VG	840891	817921	-7.4	-25.5	18.1	1	1	1	1	1	1	1	1	1	0
B41VG	841075	817949	-8.1	-25.9	17.8	1	1	1	1	1	1	1	1	0	0
C44VG	841173	817836	-9.4	- 24.0	14.6	1	1	1	1	1	1	1	0	0	0
C47VG	841377	817815	-12.6	-24.6	12	1	1	1	1	1	1	1	0	0	0
C49VG	841481	817772	-12.0	-25.3	12.4	1	1	1	1	1	1	1	0	0	0
D66VG	840517	818305	-7.0	-10.0	3	1	1	1	1	0	-	0	0	0	0
C71VG	840732	818169	-7.0	-10.0	3	1	1	1	1	0	0	0	0	0	
B58VG					17.0	1	1	1	1	1	1				0
B61VG	841125	818192	-8.5 -4.7	-25.5 -26.9	22.2	1	1	1	1	1	1	1	1	1	1
Ботус	841258	818109	-4.7		ub-total		21	21	21	18	18	18	12	3	1
				3	ub-lolai	۷1	۷1	۷1	۷1	10	10	10	12	3	
Summary of	GI Quantitie	s Estimation		Shallo	w (0-2.9)	63									
A. Sediment S			•	Orialio	Deep (2										
Study	Jampies	Turno	Stat	Samples	' '	1	(122)								
EIA Vibrocore	. Grab	Type EV	21	154	Average 15	T	(111)								
EIA VIDIOCOTE	+ Grab	⊏ V	21	134	13										
Total			21	154											
TOtal			21	104											
B. Water Sam	nloo														
Study	ipies		Stat	Samples	1										
EIA Vibrocore	. Grab		21	462											
EIA VIDIOCOTE	+ Grab		21	402											
Ambient Wate			21	21											
Total			21	483											
TOtal			21	403											
NOTES:															
	Deference Co	diment Station	Dort Chaltar	0500045	2200571	\									
1				·).									
2		ater Station = Le									1		1	-	
3		itmation did not		rice sample	es.										
4		oles = 2 x Sedin				L .						-			
5		_evel" is the def		•											
		Level" and "Se		ess" are tor	reterenc	e only.									
6	Stations in Ap	pendix 2 is inco	rporated here.												
Last Update: 6	May 2010														

A3. Land Based Sampling Station Coordinates and Sample Quantities Estimation for Indicative Alignments H2 and H4

								strat	um (n	1)										
			App. Ground	App. MD	App. Fill	App. Works	Sediment							11.9	14.9	17.9	20.9	23.9	26.9	29.9
			Level	Level	Thicknes	Level	Thicknes	0.0 -	0.9 -	1.9 -	2.9 -	5.9 -	8.9 -	-	-	-	-	-	-	-
Station	Χ	Υ	(mPD)	(mPD)	s (m)	(mPD)	s (m)	0.9	1.9	2.9	5.9	8.9	11.9	14.9	17.9	20.9	23.9	26.9	29.9	33.0
L102BH	839813	819498	3.9	-10.0	13.9	-38.5	28.5	1	1	1	1	1	1	1	1	1	1	1	1	0
L106BH	839666	819628	4.3	-7.5	11.8	-33.3	25.8	1	1	1	1	1	1	1	1	1	1	1	0	0
L110BH	839522	819767	4.1	-8.0	12.1	-27.3	19.3	1	1	1	1	1	1	1	1	1	0	0	0	0
L113BH	841606	817838	4.3	-5.2	9.5	-24.0	18.8	1	1	1	1	1	1	1	1	1	0	0	0	0
L115BH	841357	818135	4.7	-8.0	12.7	-30.0	22.0	1	1	1	1	1	1	1	1	1	1	0	0	0
							sub-total	5	5	5	5	5	5	5	5	5	3	2	1	0

Summary of GI Quantities Estimation.

A. Sediment Samples

7 ii Godinioni Gampioo		
Study	Stations	Samples
EIA Drillholes	5	51
Total	5	51

B. Elutriate Samples

Study	Stations	Samples
EIA Drillholes	3	31
Total	3	31

NOTES:

- 1 Reference Sediment Station = Port Shelter (850234E, 820057N).
- 2 Reference Water Station = Lei Yue Mun (842400E, 816500N).
- 3 "App. Excavation Level" is the defining criteria based on engineering need.
 - Other levels, depth and thickness are estimate for reference only.
- 4 Area near L102BH, L113BH and L115BH could be constructed by excavation of dredging and elutriate test allowed.

Last Update: 7 April 2010

Item		Method Referenced	Method Referenced	Reporting	Reporting	Quality Control Procedures	
iteiii		Preparation	Determination	unit	Limit (RL)	addity control i roccudics	Accreditation
Sedi	nent	- P			1 7		
S1	Metals					Blank, Duplicate, Spike, RM	
	Cadmium (Cd)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	0.2		HOKLAS
	Chromium (Cr)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	8		HOKLAS
	Copper (Cu)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	7		HOKLAS
	Mercury (Hg)	APHA 3112B	APHA 3112B	mg/kg dry wt.	0.05		HOKLAS
	Nickel (Ni)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	4		HOKLAS
	Lead (Pb)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	8		HOKLAS
	Silver (Ag)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	0.1		HOKLAS
	Zinc (Zn)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	20		HOKLAS
S2	Metalloid						
	Arsenic (As)	USEPA 3051A	USEPA 6020A	mg/kg dry wt.	1	Blank, Duplicate, Spike, RM	HOKLAS
S3	Organic-PAHs					Blank, Duplicate, Spike, RM	HOKLAS
	Low Molecular Weight PAHs	In house tumbler method	USEPA 8270D				
	Naphthalene	USEPA 3630C		μg/kg dry wt.	55		
	Acenaphtylene			μg/kg dry wt.	55		
	Acenaphtene			μg/kg dry wt.	55		
	Fluorene			μg/kg dry wt.	55		
	Phenanthrene			μg/kg dry wt.	55		
	Anthracene			μg/kg dry wt.	55		
	High Molecular Weight PAHs	In house tumbler method	USEPA 8270D				
	Benzo(a)anthracene	USEPA 3630C		μg/kg dry wt.	170		
	Benzo(a)pyrene			μg/kg dry wt.	170		
	Chrysene			μg/kg dry wt.	170		
	Dibenzo(ah)anthracene			μg/kg dry wt.	170		
	Fluoranthene			μg/kg dry wt.	170		
	Pyrene			μg/kg dry wt.	170		
	Benzo(b)fluoranthene			μg/kg dry wt.	170		
	Benzo(k)fluoranthene			μg/kg dry wt.	170		
	Indeno(1,2,3-cd)pyrene			μg/kg dry wt.	170		
	Benzo(ghi)perylene			μg/kg dry wt.	170		
S4	Organic-non-PAHs						
	Total PCBs	In house tumbler method	USEPA 8270D			Blank, Duplicate, Spike, RM	HOKLAS
	2,4' dichlorobiphenyl (PCB 8)	USEPA 3665A		μg/kg dry wt.	3		
	2,2',5 trichlorobiphenyl (PCB 18)			μg/kg dry wt.	3		
	2,4,4' trichlorobiphenyl (PCB 28)			μg/kg dry wt.	3		
	2,2',3,5' tetrachlorobiphenyl (PCB 44)			μg/kg dry wt.	3		
	2,2',5,5' tetrachlorobiphenyl (PCB 52)			μg/kg dry wt.	3		
	2,3',4,4' tetrachlorobiphenyl (PCB 66)			μg/kg dry wt.	3		
	3,3',4,4' tetrachlorobiphenyl PCB 77)			μg/kg dry wt.	3		
	2,2',4,5,5' pentachlorobiphenyl (PCB 101)			μg/kg dry wt.	3		
	2,3,3',4,4' pentachlorobiphenyl (PCB 105)			μg/kg dry wt.	3		
	2,3',4,4',5 pentachlorobiphenyl (PCB 118)			μg/kg dry wt.	3		
	3,3',4,4,5 pentachlorobiphenyl (PCB 126)			μg/kg dry wt.	3		
	2,2',3,3',4,4' hexachlorobiphenyl (PCB 128)			μg/kg dry wt.	3		
	2,2',3,4,4',5' hexachlorobiphenyl (PCB 138)			μg/kg dry wt.	3		
	2,2',4,4',5,5' hexachlorobiphenyl (PCB 153)			μg/kg dry wt.	3		
	3,3',4,4',5,5' hexachlorobiphenyl (PCB 169)			μg/kg dry wt.	3		
	2,2',3,3',4,4',5 heptachlorobiphenyl (PCB 170)			μg/kg dry wt.	3		
	2,2',3,4,4',5,5' heptachlorobiphenyl (PCB 180)			μg/kg dry wt.	3		
	2,2',3,4',5,5',6 heptachlorobiphenyl (PCB 187)			μg/kg dry wt.	3		

Item		Method Referenced	Method Referenced	Reporting	Reporting	Quality Control Procedures	
		Preparation	Determination	unit	Limit (RL)	-	Accreditation
S5	Organometallics					•	<u> </u>
	Tributyltin (TBT) in whole sedimetn	UNEP/IOC/IAEA	UNEP/IOC/IAEA	μg TBT/kg dry wt.	10	Blank, Duplicate, Spike, RM	NATA
	Tributyltin (TBT) in interstitial water	see the water matrix	•	•	-	•	•
S6	Chlorinated Pesticides	In house tumbler method	USEPA 8270D	μg/kg dry wt.		Blank, Duplicate, Spike, RM	HOKLAS
	Aldrin			μg/kg dry wt.	0.5		
	Alpha-BHC			μg/kg dry wt.	0.5		
	Beta-/Gamma- BHC			μg/kg dry wt.	1		
	Delta-BHC			μg/kg dry wt.	0.5		
	Heptachlor			μg/kg dry wt.	0.5		
	Heptachlor epoxide			μg/kg dry wt.	0.5		
	Endosulfan 1			μg/kg dry wt.	0.5		
	Endosulfan sulfate			μg/kg dry wt.	0.5		
	p, p'-DDT			μg/kg dry wt.	0.5		
	p, p'-DDD			μg/kg dry wt.	0.5		
	p, p'-DDE			μg/kg dry wt.	0.5		
S7	TOC	APHA 5310B	APHA 5310B	% dry wt.	0.05%	Blank, Duplicate, Spike, RM	HOKLAS
S8	Ammonia Nitrogen	APHA 4500 NH3:G	APHA 4500 NH3:G	mg N/kg dry wt.	0.1	Blank, Duplicate, Spike, RM	n/a
S9	Nitrate Nitrogen	APHA 4500 NO3:I	APHA 4500 NO3:I	mg N/kg dry wt.	1	Blank, Duplicate, Spike, RM	n/a
S10	Nitrite Nitrogen	APHA 4500 NO2: B&H	APHA 4500 NO2: B&H	mg N/kg dry wt.	1	Blank, Duplicate, Spike, RM	n/a
S11	Total Kjeldahl Nitrogen	APHA 4500 Norg:D	APHA 4500 Norg:D	mg N/kg dry wt.	50	Blank, Duplicate, Spike, RM	n/a
S12	Total Phosphorus	APHA 4500 P: B & H	APHA 4500 P: B & H	mg P/kg dry wt.	10	Blank, Duplicate, Spike, RM	n/a
S13	Total Sulphide	APHA 4500 S:D modified	APHA 4500 S:D modified	mg S/kg dry wt.	4	Blank, Duplicate, Spike, RM	n/a
S14	Acid Volatile Sulphide	USEPA 821-R-91-100	USEPA 821-R-91-100	mg S/kg dry wt.	1	Blank, Duplicate, Spike, RM	n/a
S15	Sediment Oxygen Demand (20 days)	APHA 5210 B modified	APHA 5210 B modified	mg O2/kg dry wt.	100	duplicate	n/a

Item		Method Referenced	Method Referenced	Reporting		Quality Control Procedures	Acoroditation
Marin	│ ne Water, Elutriate, Interstitial water (=porewater	Preparation	Determination	unit	Limit (RL)		Accreditation
W1	Metals					Blank, Duplicate, Spike, RM	
	Cadmium (Cd)	USEPA 3050A	USEPA 6020A	μg/L	0.5	Biank, Baphoato, Opiko, Kili	HOKLAS *
	Chromium (Cr)	USEPA 3050A	USEPA 6020A	μg/L	1		HOKLAS *
	Copper (Cu)	USEPA 3050A	USEPA 6020A	μg/L	1		HOKLAS *
	Mercury (Hg)	APHA 3112B	APHA 3112B	μg/L	0.2		HOKLAS *
	Nickel (Ni)	USEPA 3050A	USEPA 6020A	μg/L	1		HOKLAS *
	Lead (Pb)	USEPA 3050A	USEPA 6020A	μg/L	1		HOKLAS *
	Silver (Ag)	USEPA 3050A	USEPA 6020A	μg/L	1		HOKLAS *
	Zinc (Zn)	USEPA 3050A	USEPA 6020A	μg/L	10		HOKLAS *
W2	Metalloid	002171000071	002171002071	pg/_	10		HOREK
* * -	Arsenic (As)	USEPA 3050A	USEPA 6020A	μg/L	1	Blank, Duplicate, Spike, RM	HOKLAS *
W3	Organic-PAHs	302171300071	332.7.33237.	F9'-	·	Blank, Duplicate, Spike, RM	
	Low Molecular Weight PAHs	USEPA 3510C	USEPA 8270D				
	Naphthalene		0000000	μg/L	0.2		n/a
	Acenaphtylene			μg/L	0.2		n/a
	Acenaphtene			μg/L	0.2		n/a
	Fluorene			μg/L	0.2		n/a
	Phenanthrene			μg/L	0.2		n/a
	Anthracene			μg/L μg/L	0.2		n/a
	High Molecular Weight PAHs	USEPA 3510C	USEPA 8270D	μ9/∟	0.2		11/a
	Benzo(a)anthracene	USEPA 3510C	USEPA 6270D	//	0.2		n/a
	` '			μg/L			
	Benzo(a)pyrene			μg/L	0.2		n/a
	Chrysene			μg/L	0.2		n/a
	Dibenzo(ah)anthracene			μg/L	0.2		n/a
	Fluoranthene			μg/L	0.2		n/a
	Pyrene			μg/L	0.2		n/a
	Benzo(b)fluoranthene			μg/L	0.2		n/a
	Benzo(k)fluoranthene			μg/L	0.2		n/a
	Indeno(1,2,3-cd)pyrene			μg/L	0.2		n/a
	Benzo(ghi)perylene			μg/L	0.2		n/a
W4	Organic-non-PAHs						
	Total PCBs	USEPA 3510C	USEPA 8270D			Blank, Duplicate, Spike, RM	
	2,4' dichlorobiphenyl (PCB 8)			μg/L	0.01		n/a
	2,2',5 trichlorobiphenyl (PCB 18)			μg/L	0.01		n/a
	2,4,4' trichlorobiphenyl (PCB 28)			μg/L	0.01		n/a
	2,2',3,5' tetrachlorobiphenyl (PCB 44)			μg/L	0.01		n/a
	2,2',5,5' tetrachlorobiphenyl (PCB 52)			μg/L	0.01		n/a
	2,3',4,4' tetrachlorobiphenyl (PCB 66)			μg/L	0.01		n/a
	3,3',4,4' tetrachlorobiphenyl PCB 77)			μg/L	0.01		n/a
	2,2',4,5,5' pentachlorobiphenyl (PCB 101)			μg/L	0.01		n/a
	2,3,3',4,4' pentachlorobiphenyl (PCB 105)			μg/L	0.01		n/a
	2,3',4,4',5 pentachlorobiphenyl (PCB 118)			μg/L	0.01		n/a
	3,3',4,4,5 pentachlorobiphenyl (PCB 126)			μg/L	0.01		n/a
	2,2',3,3',4,4' hexachlorobiphenyl (PCB 128)			μg/L	0.01		n/a
	2,2',3,4,4',5' hexachlorobiphenyl (PCB 138)			μg/L	0.01		n/a
	2,2',4,4',5,5' hexachlorobiphenyl (PCB 153)			μg/L	0.01		n/a
	3,3',4,4',5,5' hexachlorobiphenyl (PCB 169)			μg/L	0.01		n/a
	2,2',3,3',4,4',5 heptachlorobiphenyl (PCB 170)			μg/L	0.01		n/a
	2,2',3,4,4',5,5' heptachlorobiphenyl (PCB 180)			μg/L	0.01		n/a
	2,2',3,4',5,5',6 heptachlorobiphenyl (PCB 187)			μg/L μg/L	0.01		n/a
	2,2,0,4,0,0 (reptachiorophrieny) (rob 101)		ļ	μg/∟	0.01	1	II/a

Item		Method Referenced	Method Referenced	Reporting	Reporting	Quality Control Procedures	
		Preparation	Determination	unit	Limit (RL)		Accreditation
W5	Organometallics						
	Tributyltin (TBT)	UNEP/IOC/IAEA	UNEP/IOC/IAEA	μg TBT/L	0.015	Blank, Duplicate, Spike, RM	HOKLAS/NATA
W6	Chlorinated Pesticides	USEPA 3510B	USEPA 8270B			Blank, Duplicate, Spike, RM	
	Aldrin			μg/L	0.02		n/a
	Alpha-BHC			μg/L	0.02		n/a
	Beta-/Gamma- BHC			μg/L	0.04		n/a
	Delta-BHC			μg/L	0.02		n/a
	Heptachlor			μg/L	0.02		n/a
	Heptachlor epoxide			μg/L	0.02		n/a
	Endosulfan 1			μg/L	0.02		n/a
	Endosulfan sulfate			μg/L	0.02		n/a
	p, p'-DDT			μg/L	0.02		n/a
	p, p'-DDD			μg/L	0.02		n/a
	p, p'-DDE			μg/L	0.02		n/a
W8	Ammonia Nitrogen	APHA 4500 NH3:G	APHA 4500 NH3:G	mg/L	0.1	Blank, Duplicate, Spike, RM	HOKLAS *
W9	Nitrate Nitrogen	APHA 4500 NO3:I	APHA 4500 NO3:I	mg/L	0.05	Blank, Duplicate, Spike, RM	HOKLAS *
W10	Nitrite Nitrogen	APHA 4500 NO2: B&H	APHA 4500 NO2: B&H	mg/L	0.05	Blank, Duplicate, Spike, RM	HOKLAS *
W11	Total Kjeldahl Nitrogen	APHA 4500 Norg:D	APHA 4500 Norg:D	mg/L	0.1	Blank, Duplicate, Spike, RM	HOKLAS *
W12	Orthophosphoate	APHA 4500P: B&F	APHA 4500P: B&F	mg/L	0.05	Blank, Duplicate, Spike, RM	HOKLAS *
W13	Total Phosphorus	APHA 4500P: B&H	APHA 4500P: B&H	mg/L	0.1	Blank, Duplicate, Spike, RM	HOKLAS *
Sedir	nent Bioassay	•	•	-	•	•	•
B1	10-Day Amphipod Survival Test	USEPA (1994) / PSPE (1995)	USEPA (1994) / PSPE (1995)	-	-	positive control, negative control	HOKLAS
B2	20-Day Polychaete Growth Test	PSPE (1995)	PSPE (1995)	-	-	positive control, negative control	HOKLAS
В3	48-96hour larave survival test	PSPE (1995)	PSPE (1995)	-	-	positive control, negative control	HOKLAS

Notes:

- 1 HOKLAS = Hong Kong Laboratory Accreditation Scheme; NATA = National Association of Testing Authorities, Australia.
- 2 For liquid matrix, accreditation is only applicable to marine water and this limitation is denoted with (*).
- 3 Last Update: 27 Sept. 2010.

Record of Water and Sediment Sampling, Collection and Delivery (COC Form)												Sheet of									
Project Name	: Agreement Kai Tak Dev			ad T2 and In	frastruc	ture at	South Aր	oron I, D & C					Conti	ract N	o.:						
Project Proponent: KDO / CEDD Address: Contact Person:				Fax N	Telephone: Fax No.: E-mail:												I				
Sampling Date	e:					pth					Analy	/sis re	ques	ted							
Sample ID.	ColleIction Time	Station No.	Northing	Easting	Water Depth (m)	Sampling Depth (m)	Matrix *	Vertical Split	No. of Containers	Sampling Method *	Metals	Metalloid	PAHs	Total PCBs	TBT	Chlorinated Pesticides	Nutrient	Biogas Relase Physico- chemical	Elutriate	Remarks	
1							S/W	m		V/G/N											
2							S/W	m		V/G/N											
3							S/W	m		V/G/N											
4							S/W	m		V/G/N											
5							S/W	m		V/G/N											
6							S/W	m		V/G/N											
7							S/W	m		V/G/N											
8							S/W	m		V/G/N											
9							S/W	m		V/G/N											
10							S/W	Э		V/G/N											
11							S/W	m		V/G/N											
12							S/W	m		V/G/N											
13							S/W	m		V/G/N											
14							S/W	m		V/G/N											
15							S/W	m		V/G/N											
Sampling Conducted by (Fieldwork Contractor): Company Name:			Sampling Supervised by (<u>Consultants</u>): Company Name: Hyder-Meinhardt JV									ples Received by (<u>Laboratory Contractor</u>): pany Name:									
Person respons	ible:				Fieldwork supervisor					Person responsible:											
Name:		Signature			Name: Signature:								Name				Signa				
Phone No · Date & Time·				Phone	No ·				Date & Tim	Je.			Phone	· No ·			Date	& Tim	ь.		

Matrix and Sampling Method Code:

S = Sediment; W = Water;

V = Vibrocore; G = Grab; N = Niskin Sampler

Appendix D

Agreement of Marine Fill Committee on Dredging Rationale for Kai Tak Development

三土木工程拓展署 EDD Civil Engineering and Development Department

上木工程號

Civil Engineering Office

Web site E-mail

: http://www.ccdd.gov.hk

Telephone Fecsimile

傳真

電話

電子郵件: <u>smlai@cedd.gov.hk</u>

: 2762 5544 : 2714 0113

N.T., Hong Kong.

Maunsell Consultants Asia Ltd.

8/F., Grand Central Plaza, Tower 2,

in FM 5/6/20-253

Your reference 來函档號: 1WLH:ALSC:qo:60022408/08.2-1751

138 Shatin Rural Committee Road, Shatin,

Mr. (gor HO

Our reference 本密檔號: (03BSP-01)

)

Pt.

101 Princess Margaret Road Kowloon, Hong Kongaunsell Consultants

香港九龍公主道 101 號

土木工程拓展署大樓

Civil Engineering and

Development Building.

BY FAX (Fax No. 2691 2649 Sia Ltd.

// August 2008 Reg. No.

4450 File No. Lod

Raceived 1 /

TS DLO (EMSE SAR AKWL MCP

Sign

Off

/TKST YY HTS TKH SHRS PMC CWN WCKH

Project Eng.

Others

Copied To

Raply Date

Dear Sirs.

(Attention:

Agreement No. CE 35/2006(CE)

Kai Tak Development Engineering Study cum Design and

Construction of Advance Works - Investigation, Design and Construction

Rationale for Dredging Works for Kai Tak Development

I refer to your above submission of 25 July 2008 and would like to advise you that we have no further comment on the rationale for the subject works.

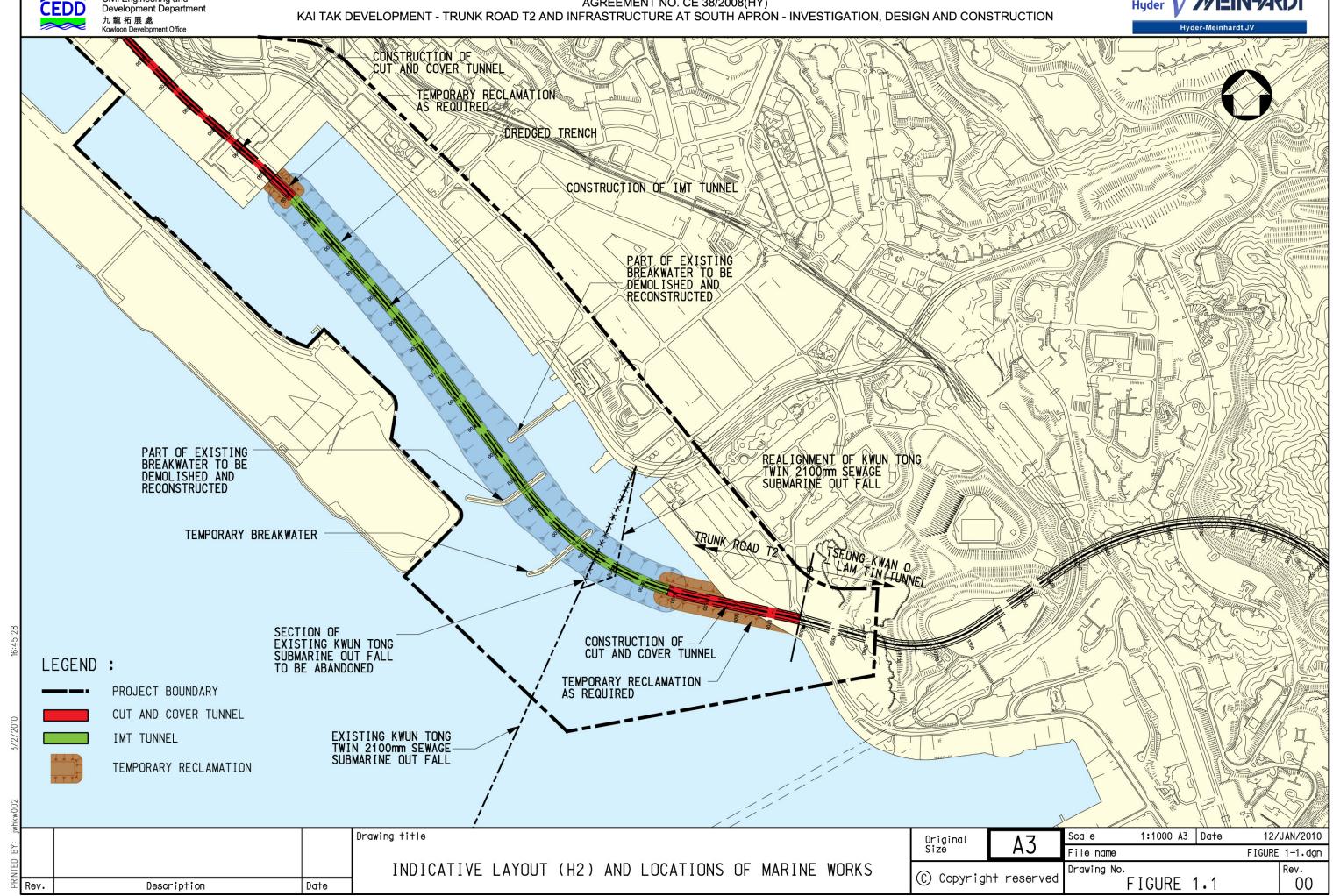
Yours faithfully,

(S.M. LAI)

for Secretary, Marine Fill Committee

Civil Engineering and Development Department

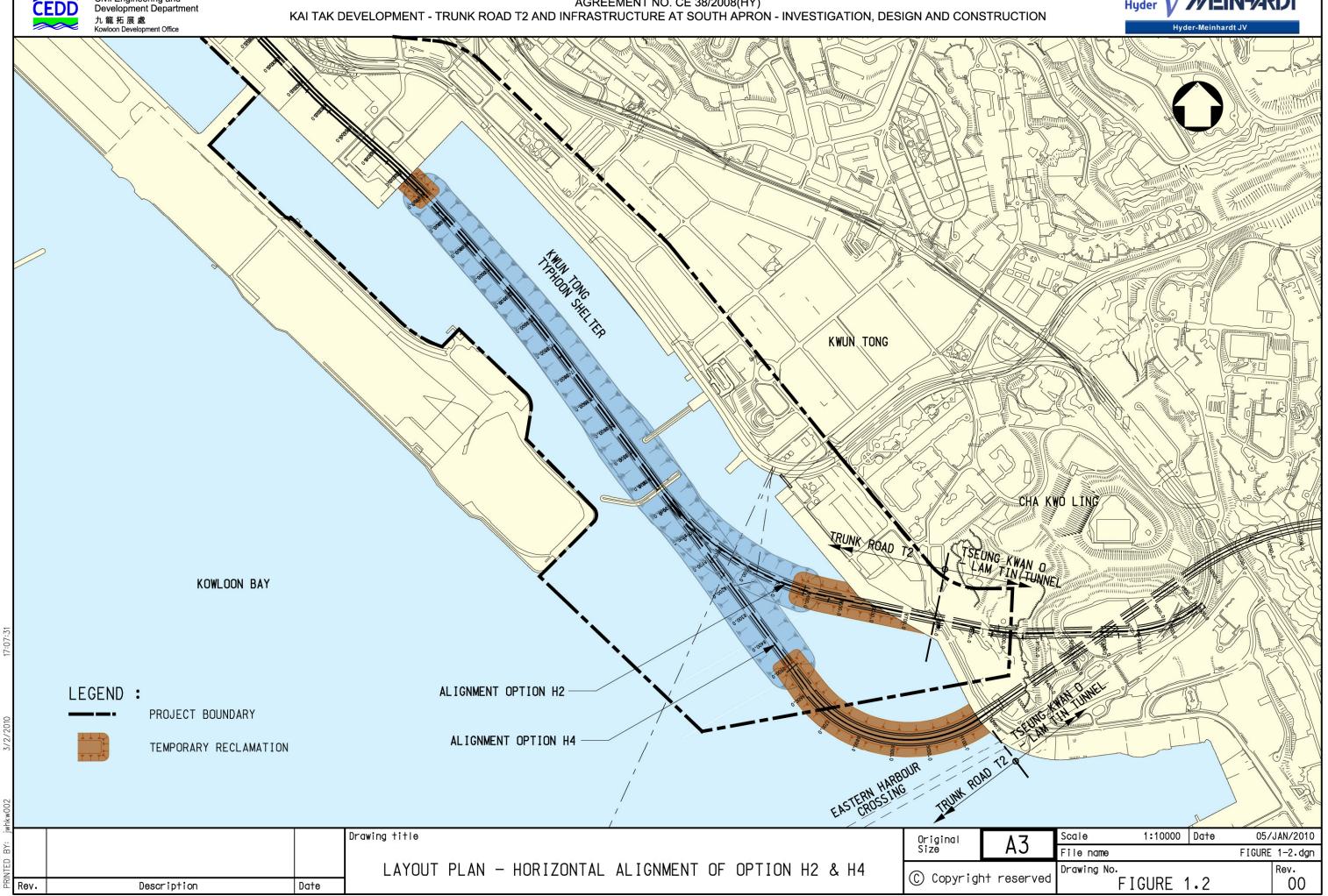
c.c.


PM/K, CEDD - Aitn.: Mr. Walter LEUNG

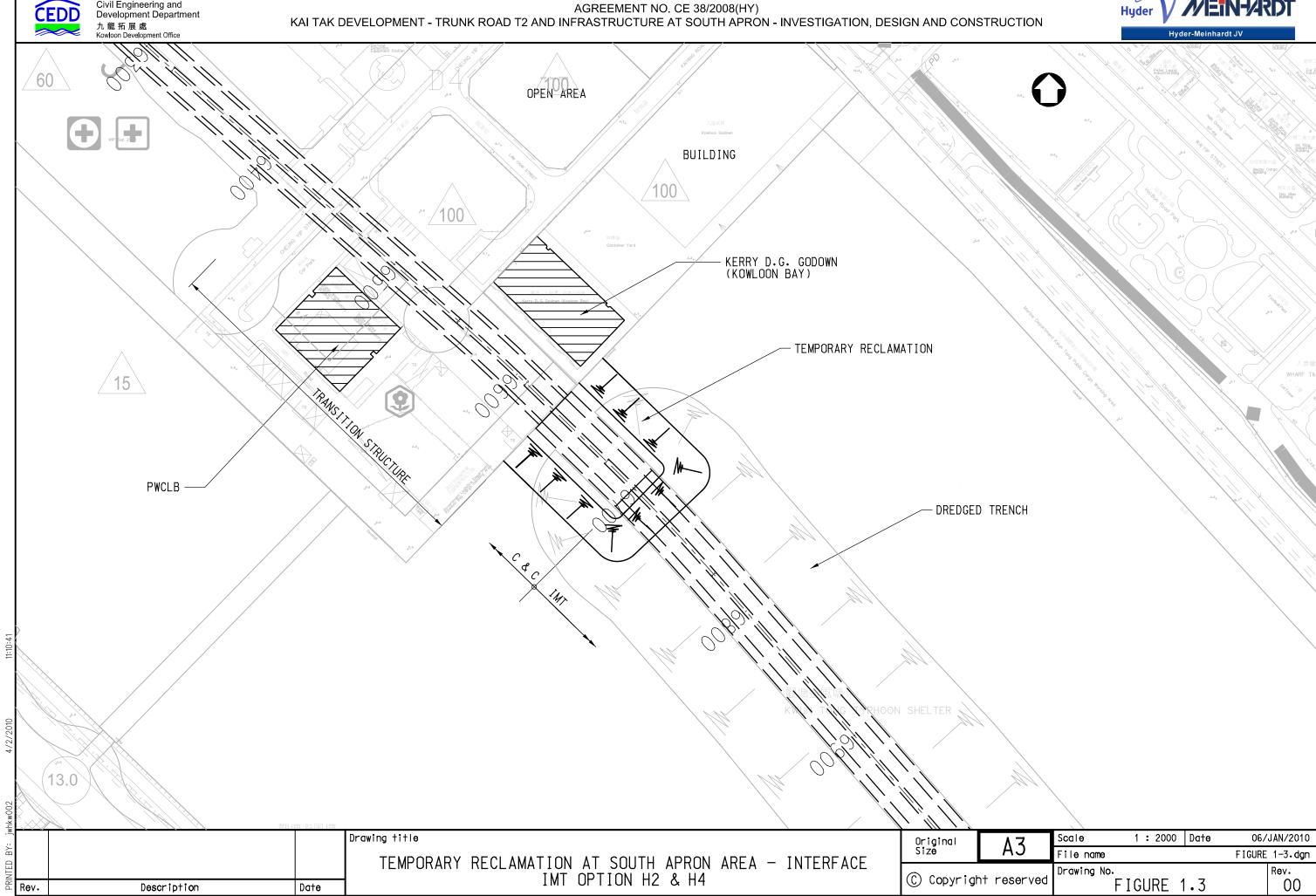
HC/whc

土木工程拓展署 Civil Engineering and Development Department

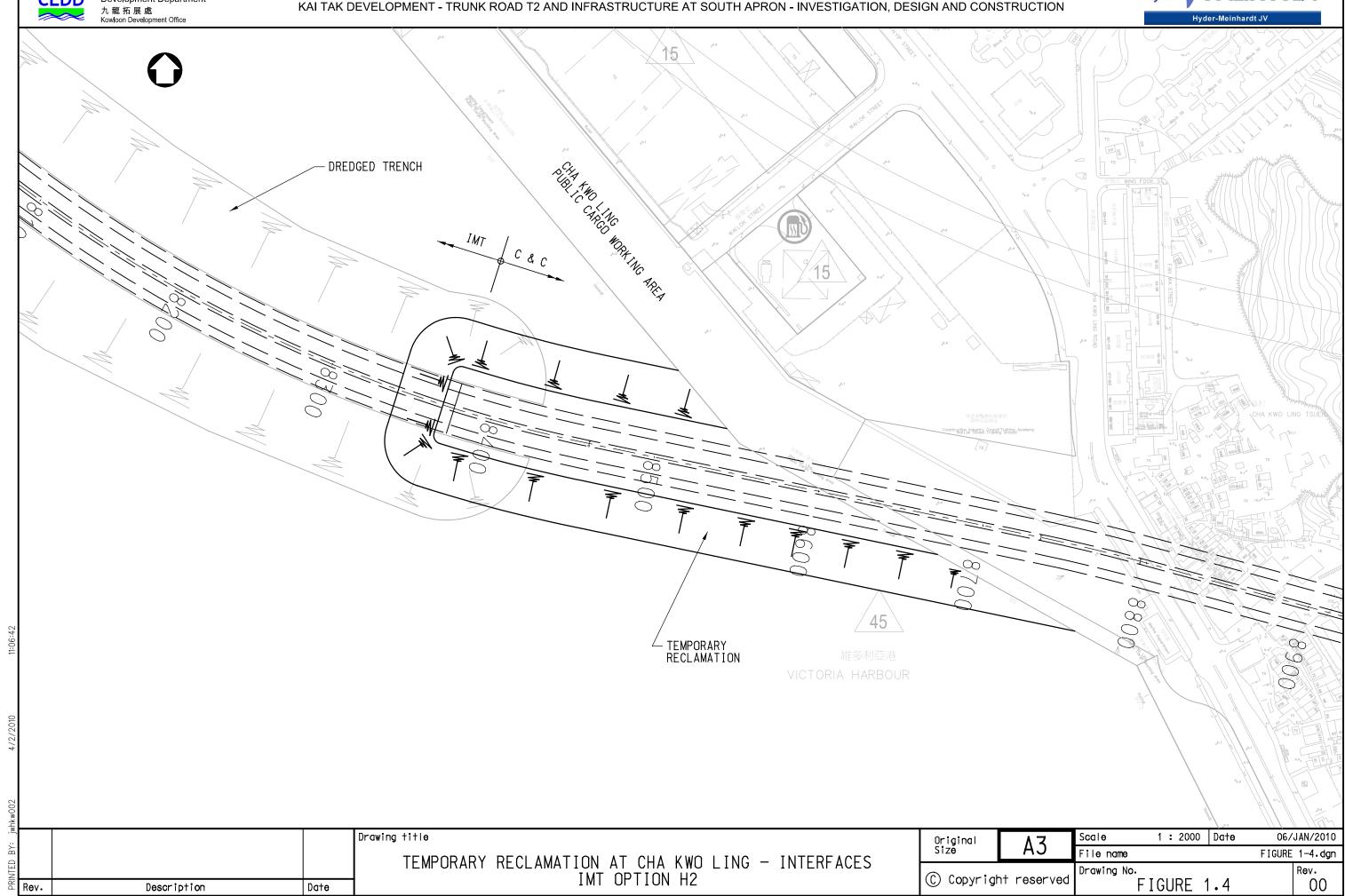
AGREEMENT NO. CE 38/2008(HY)



土木工程拓展署 Civil Engineering and Development Department

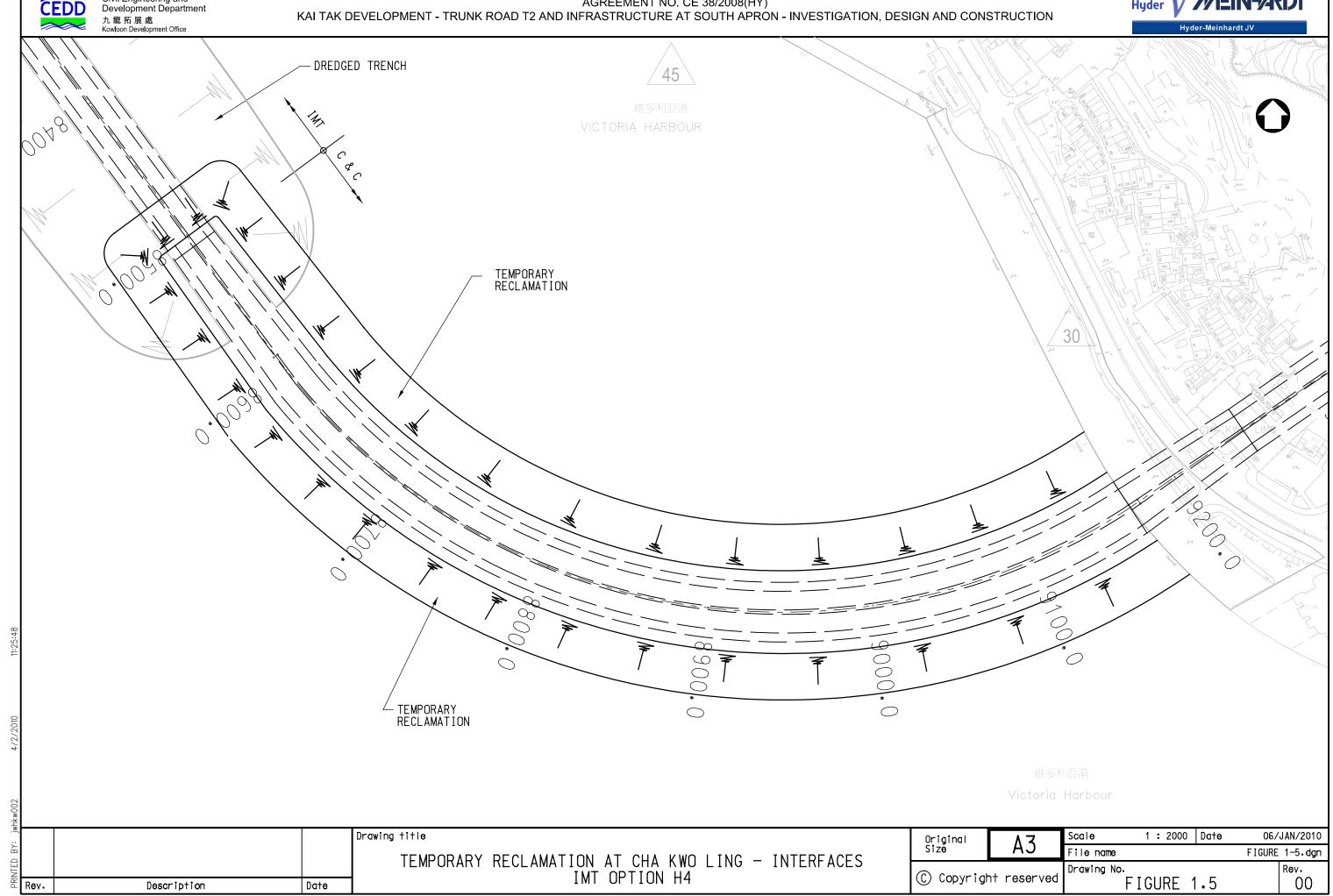

AGREEMENT NO. CE 38/2008(HY)

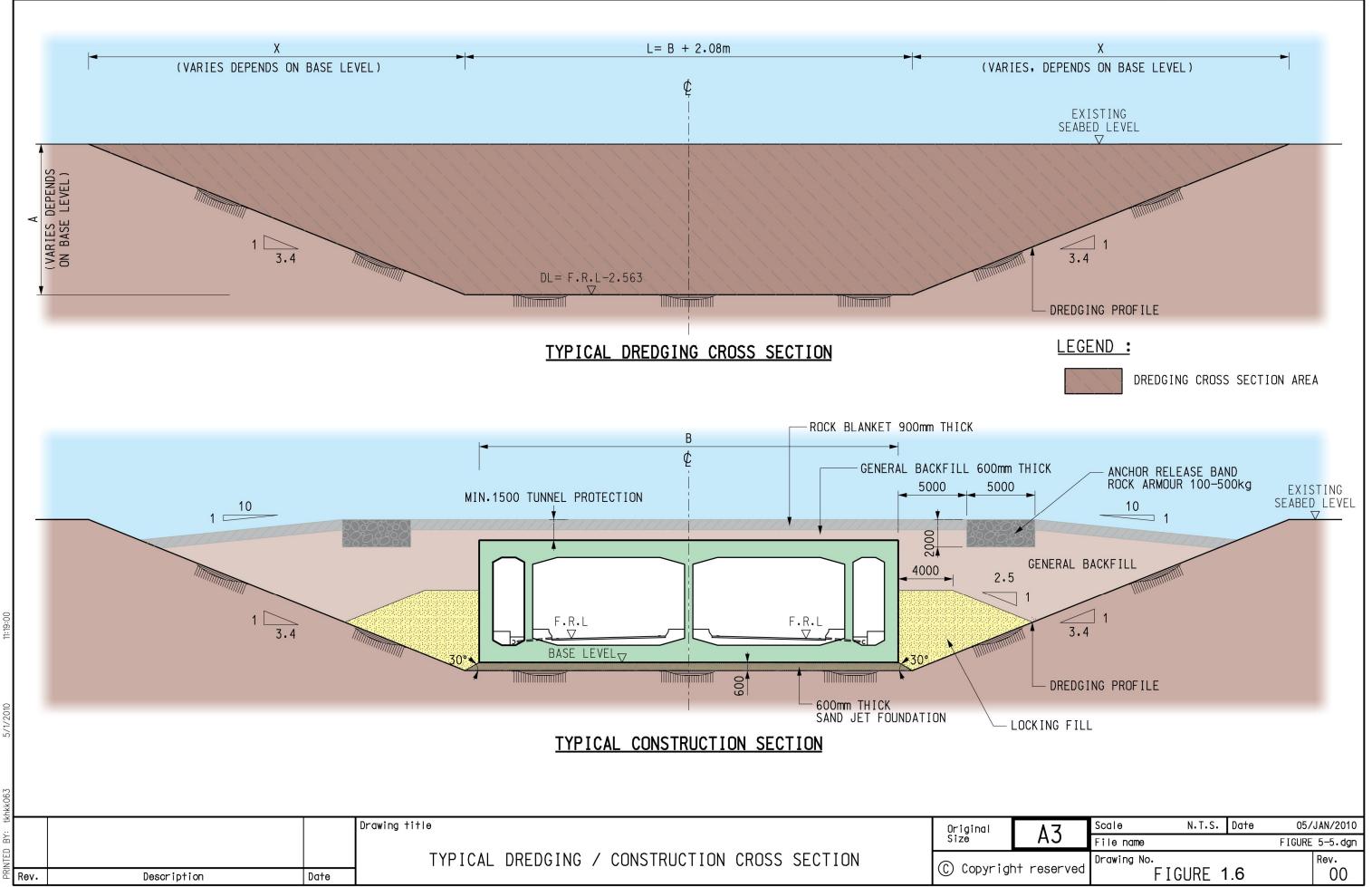
土木工程拓展署 Civil Engineering and Development Department 九龍拓展處



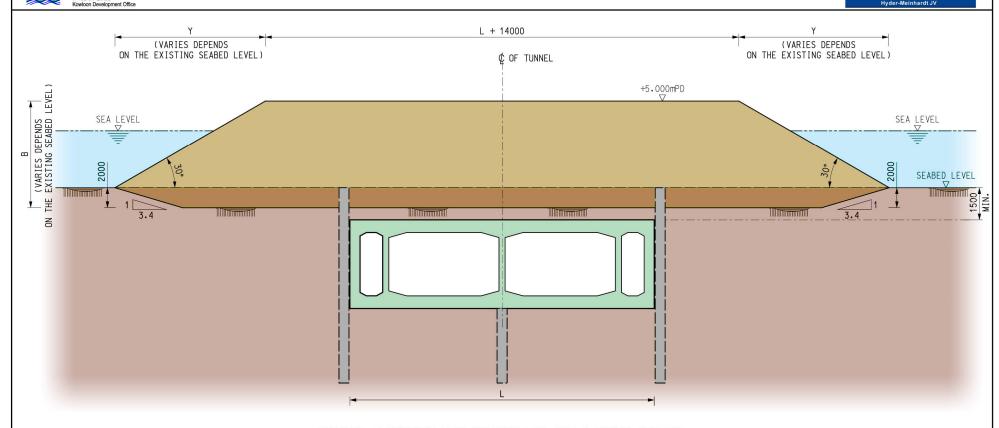
上木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION




土木工程拓展署 Civil Engineering and Development Department

AGREEMENT NO. CE 38/2008(HY)



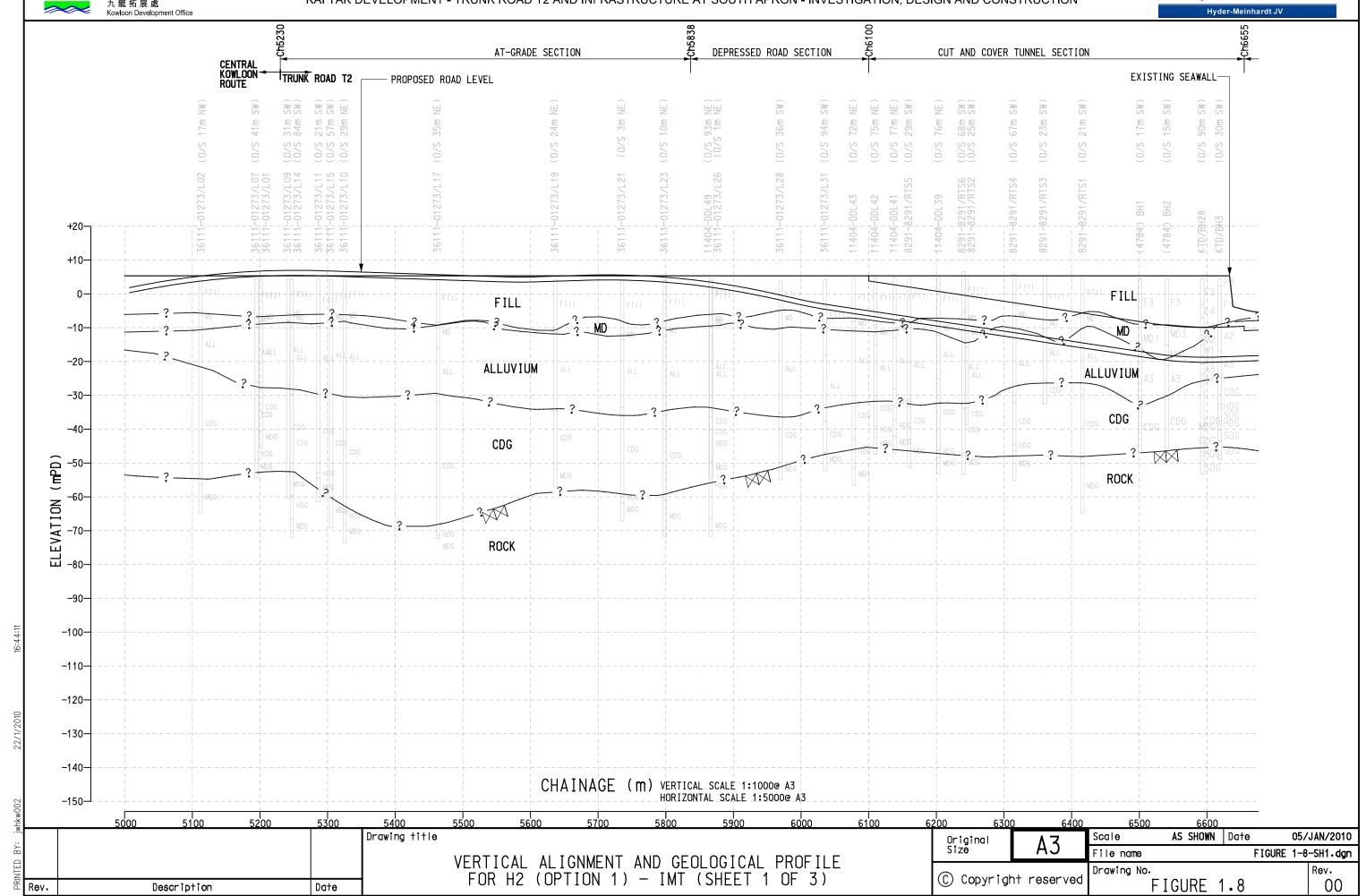
上木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION

TYPICAL TEMPORARY RECLAMATION FOR CUT & COVER SECTION

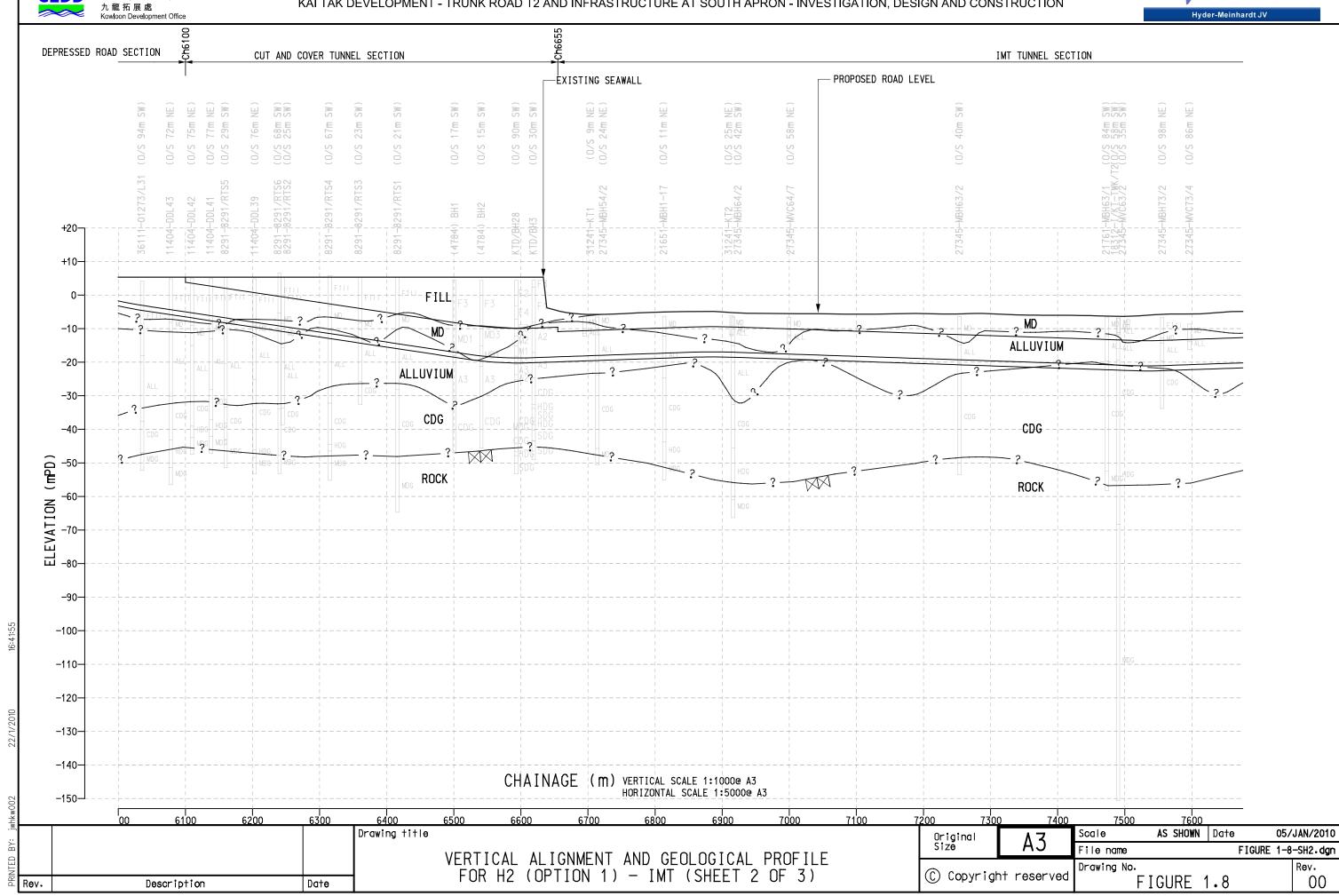
LEGEND :

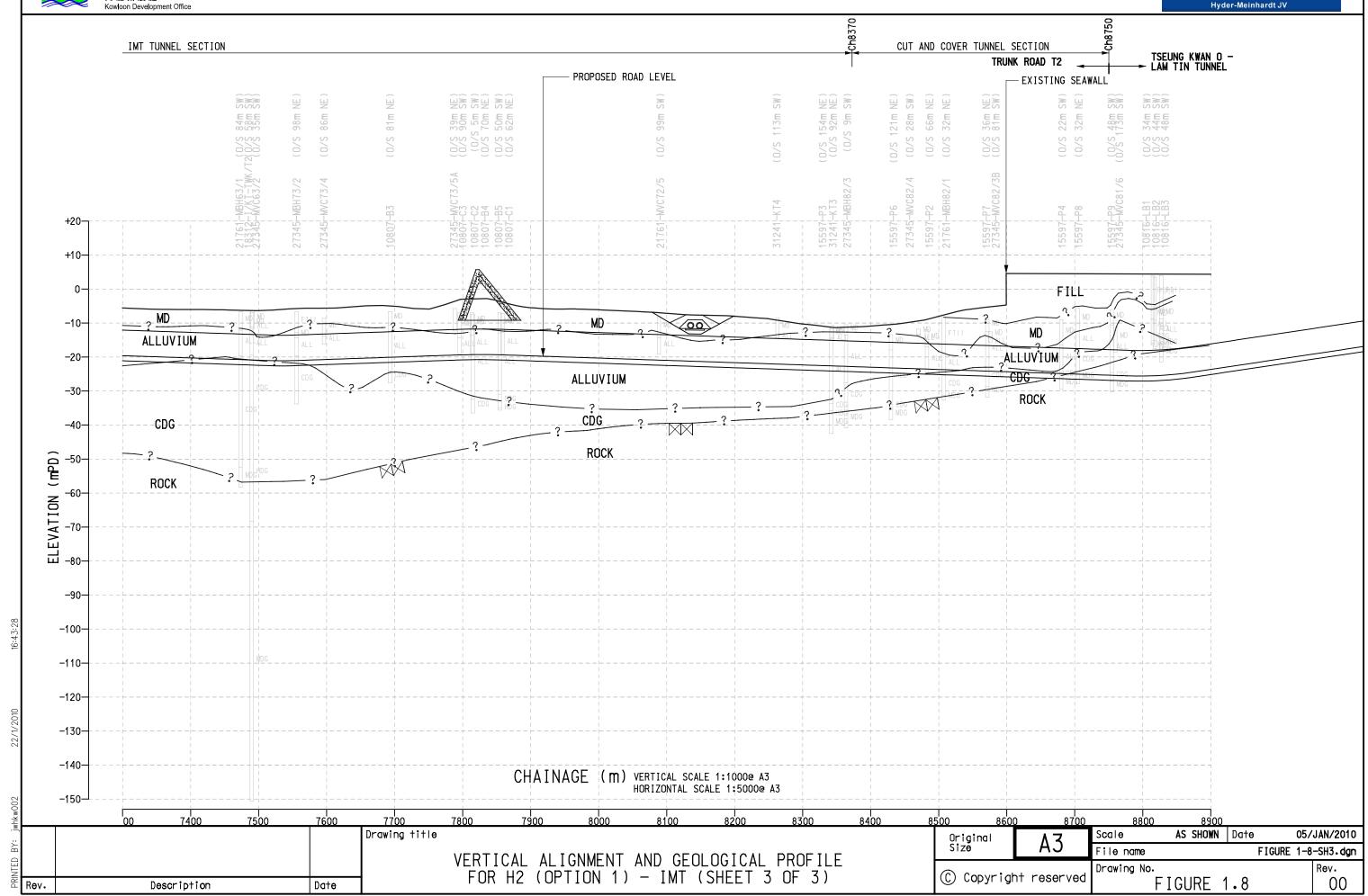
AREA TO BE REMOVED AFTER CONSTRUCTION DOWN TO SEABED LEVEL


AREA TO BE SAND FILL

TEMPORARY WORKS - DIAPHRAGM WALL TO BE CUT DOWN BELOW SEABED LEVEL

			Drawing title	Original Size	٨٦	Scale 1:250 [)ate 06/JAN/2010
				Size	AJ	File name	FIGURE 6-1.dgn
			TYPICAL TEMPORARY RECLAMATION FOR CUT & COVER SECTION	© Copyrigh	nt reserved	Drawing No.	Rev.
Rev.	Description	Date		C copyrigi	II I 6961 A60	FIGURE 1.	.7 00




土木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION

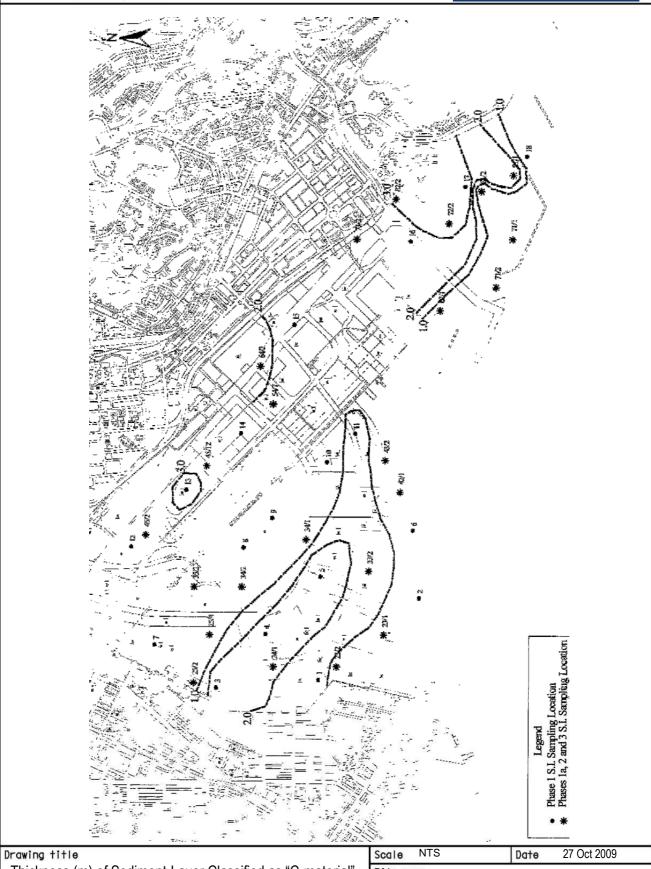
土木工程拓展署 Civil Engineering and Development Department **MEINHARDT** AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 AREA C AREA G AREA F (EXCLUDING EXISTING BREAKWATER) AREA E (EXCLUDING EXISTING BREAKWATER) TRUNK ROAD TO AREA H AREA J LEGEND: PROJECT BOUNDARY AREA D TEMPORARY RECLAMATION TTT AREA A AREA B AREA J Drawing title 1:1000 A3 Date Scale Original Size File name E0074-EB000560-HCL-HKK-00.dgn INDICATIVE LAYOUT PLAN OF DREDGING / BACKFILLING AREAS (H2) Drawing No. © Copyright reserved

00

FIGURE 1.1A

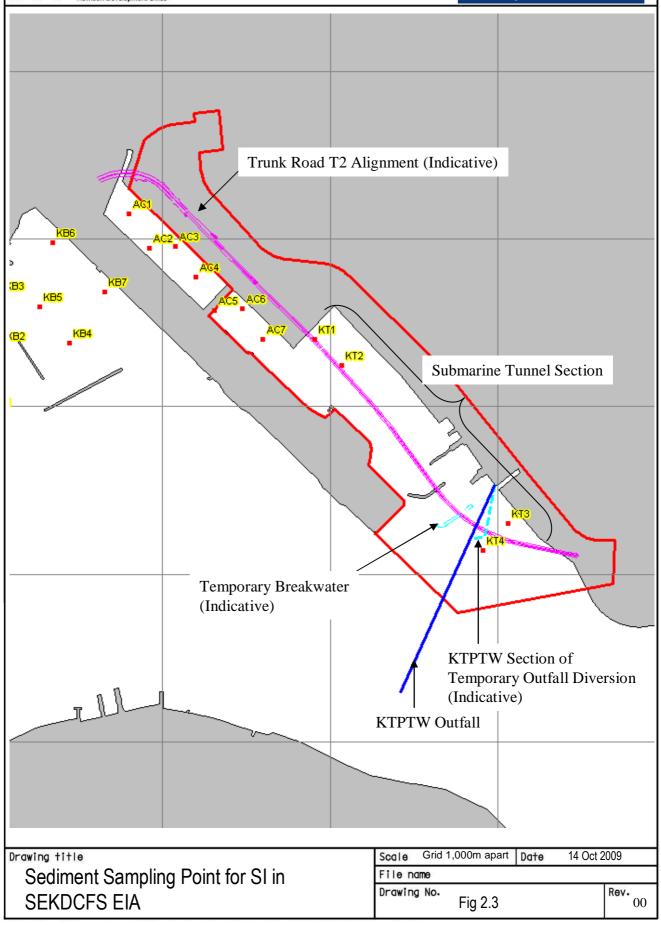
Date

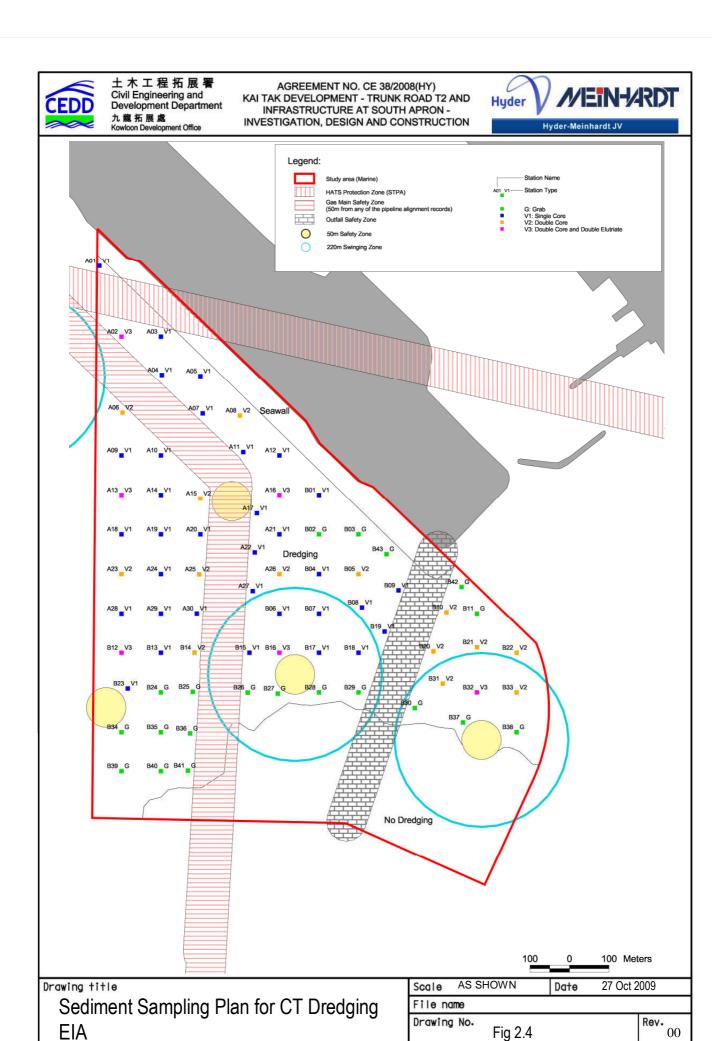
Description


Kowtoon bay

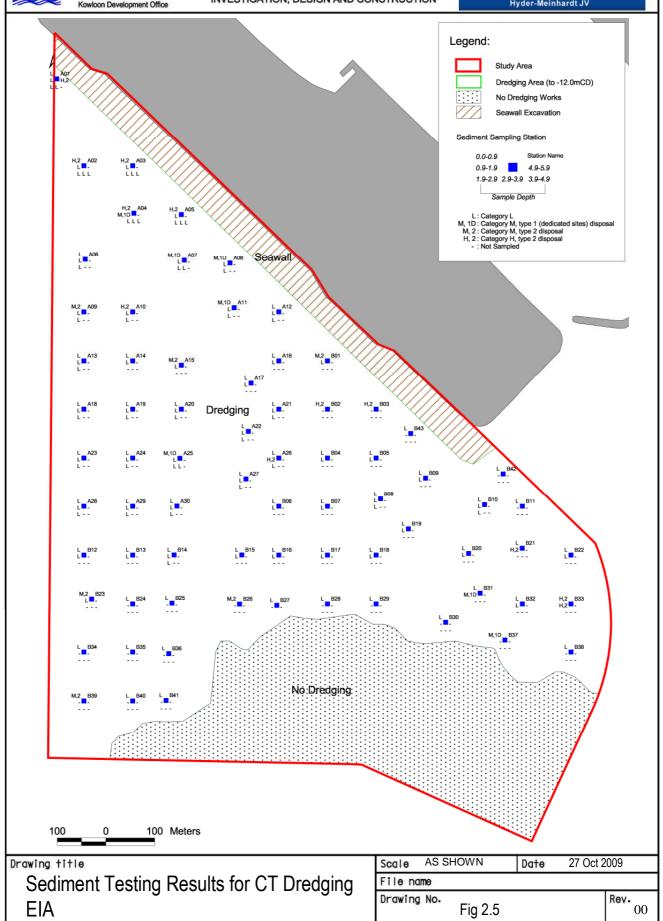
Drawing title
Thickness (m) of Sediment-Layer Classified as "C-material" (Phase 1 SI) reported in SEKD EIA

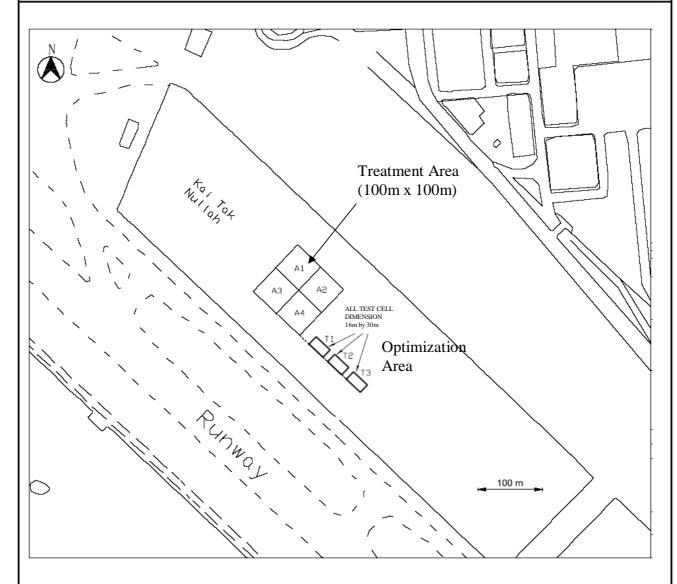
Scale NTS	Date	27 Oct 2009
File name		
Drawing No. Fig 2.1		Rev. 00

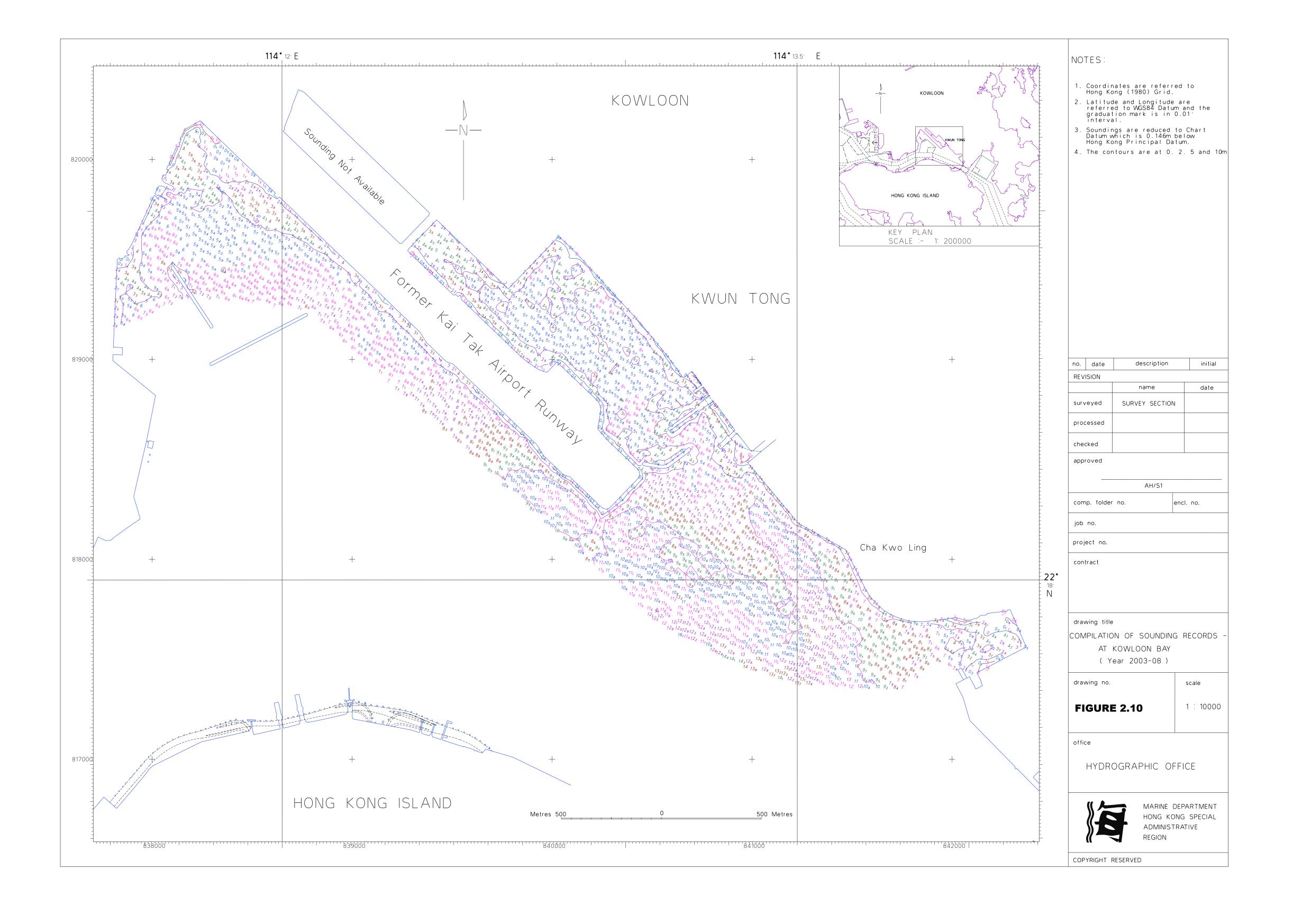




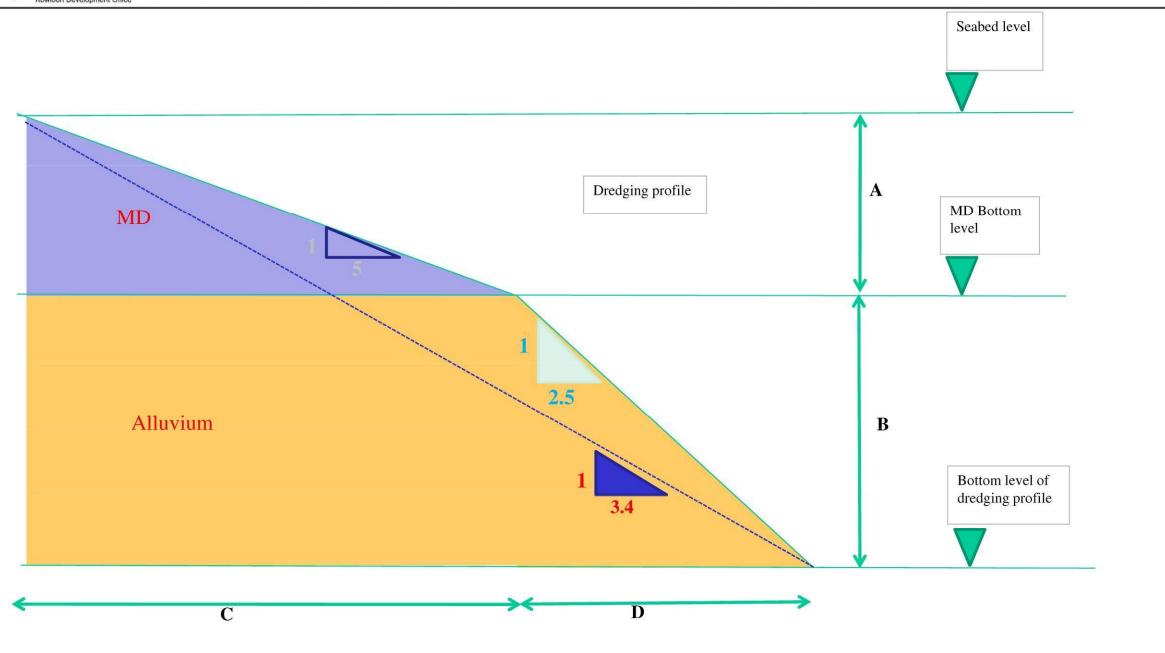
Thickness (m) of Sediment-Layer Classified as "C-material" (Phases 1a, 2 and 3 SI) reported in SEKD EIA







BOX CULVERT 4 X 4M(W) X 3.35M (H) Drawing title NTS 27 Oct 2009 Scale Date Area Proposed for in-situ Bioremediation in File name Rev. 00 Drawing No. KTD EIA Fig 2.7



Trunk Road T2 Alignment (Indicative) **Submarine Tunnel Section** Temporary Breakwater (Indicative) KTPTW Section of Temporary Outfall Diversion (Indicative) KTPTW Outfall Drawing title Grid 1,000m apart 14 Oct 2009 Scale Date EPD Open Water and Typhoon Shelter Sediment Quality File name Rev. 00 Monitoring Stations Near Project Site Drawing No. Fig 2.8

Assume slope ratio for MD 1:5
Assume slope ratio for Alluvium 1:2.5

				A	В	A+B	C	D	C+D	X		
			Bottom level of		Thinkness between	Total thickness of		Projector of height between	Total side slope width of			
Chainage	Seabed level	MD bottom level	dredging profile	Thickness of MD	MD bottom level and	dredging profile	Projector of MD Layer	MD bottom level and bottom dredging level	dredging profile	(A+B)/(C+D)	Slope angle	1/X
					bottom dredging level			7000				
6800	-4.937	-11.18	-19.947	6.243	8.767	15.01	31.215	21.9175	53.1325	0.28250129	15.775055	3.5
7200	-5.37	-9.97	-21.493	4.6	11.523	16.123	23	28.8075	51.8075	0.31120977	17.286652	3.2
7600	-5.73	-10.18	-23.271	4.45	13.091	17.541	22.25	32.7275	54.9775	0.3190578	17.695688	3.1
8000	-6.08	-13.36	-27.867	7.28	14.507	21.787	36.4	36.2675	72.6675	0.29981766	16.689659	3.3
8500	-8.36	-18.46	-25.873	10.1	7.413	17.513	50.5	18.5325	69.0325	0.2536921	14.235168	3.9

Drawing title

**	ONLY	FOR REFERENCE	

1			
1			
١			
4			
ŝ	D	D	D - I -
. 1	Rev.	Description	Date

ESTIMATION OF AVERAGED SIDE - SLOPE ANGLE

Original A3 Fi

C Copyright reserved

 Scale
 N.T.S
 Date
 12/JAN/2010

 File name
 FIGURE 2-9.dgn

 Drawing No.
 Rev.

FIGURE 2.9

土木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office **MEINHARDT** AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION POTENTIAL DREDGING CORRIDOR 觀塘避風塘 碼頭 Pier E=840383 N=818805 LEGEND PROJECT BOUNDARY 25m BUFFER FROM HATS CENTRELINE PROPOSED EIA STATION PROPOSED TRUNK ROAD T2 型塘渡輪碼頭 EXISTING HATS — PROTECTION ZONE 污水泵房 13 APR 2010 Date Drawing title 1:5000 Scale Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H2 (SHEET 1 OF 2) File name Drawing No. Rev. © Copyright reserved FIGURE 3.1

Date

Description

土木工程拓展署 Civil Engineering and Development Department **MEINHARDT** AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 Kowloon Development Office OHT40 / POTENTIAL DREDGING CORRIDOR EXISTING KWUN TONG SUBMARINE OUTFALLS E=840683 N=818404 REALIGNED KWUN TONG SUBMARINE OUTFALLS (TO BE CONSTRUCTED) 1041600 00LH0\ E=840561__ N=818563 25m BUFFER FROM HATS CENTRELINE 型塘渡輪碼頭 Kwun Tong Ferry EXISTING HATS — PROTECTION ZONE 活水泵房 008THD) DREDGEING CORRIDOR TEMPORARY: 001842 BREAKWATER (TO BE CONSTRUCTED) 25m BUFFER FROM SUBMARINE OUTFALL CENTRELINE CORRIDOR 25m BUFFER FROM HATS CENTRELINE E=841075 N=817949 LEGEND -40m BUFFER OF EXISTING -KWUN TONG SUBMARINE OUTFALLS PROJECT BOUNDARY PROPOSED EIA STATION PROPOSED TRUNK RAOD T2 27 SEP 2010 Drawing title 1:5000 Scale Date Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H2 (SHEET 2 OF 2) File name Drawing No. Rev. © Copyright reserved FIGURE 3.1 Description Date

土木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office MEIN-ARDT AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION POTENTIAL DREDGING CORRIDOR 觀塘避風塘 碼頭 Pier 25m BUFFER FROM HATS CENTRELINE LEGEND PROJECT BOUNDARY PROPOSED EIA STATION EXISTING HATS — PROTECTION ZONE PROPOSED TRUNK ROAD T2 型塘渡輪碼頭 污水泵房 13 APR 2010 Drawing title Date 1:5000 Scale Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H4 (SHEET 1 OF 2) File name Drawing No. Rev. © Copyright reserved

FIGURE 3.2

Date

Description

土木工程拓展署 Civil Engineering and
Development Department **MEINHARDT** AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 Kowloon Development Office 001/40/ POTENTIAL DREDGING CORRIDOR EXISTING KWUN TONG SUBMARINE OUTFALLS REALIGNED KWUN TONG SUBMARINE OUTFALLS P (TO BE CONSTRUCTED) E=840683 N=818404 009THO 麗港城 25m BUFFER FROM HATS CENTRELINE E=840561 N=818563 鄭塘渡鏞碼丽 Kwun Tong Ferry EXISTING HATS — PROTECTION ZONE 活水泵房 008THD DREDGEING CORRIDOR TEMPORARY: 0018110 BREAKWATER (TO BE CONSTRUCTED) DREDGETING CORRIDOR 25m BUFFER FROM SUBMARINE OUTFALL CENTRELINE E=841075 N=817949 25m BUFFER FROM HATS CENTRELINE **LEGEND** -40m BUFFER OF EXISTING -KWUN TONG SUBMARINE OUTFALLS PROJECT BOUNDARY PROPOSED EIA STATION PROPOSED TRUNK ROAD T2 1:5000 27 SEP 2010 Drawing title Date Scale Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H4 (SHEET 2 OF 2) File name Drawing No. Rev. © Copyright reserved FIGURE 3.2

Date

Description

土木工程拓展署 Civil Engineering and Development Department **MEINHARDT** AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 Kowloon Development Office EXISTING - POTENTIAL DREDGING COORIDOR KWUN TONG SUBMARINE OUTFALLS REALIGNED KWUN TONG SUBMARINE OUTFALLS (TO BE CONSTRUCTED) 麗港城 25m BUFFER FROM HATS CENTRELINE 即債溶論碼頭 Kwun Tong Ferry EXISTING HATS — PROTECTION ZONE 活水泵房 TEMPORARY BREAKWATER (TO BE CONSTRUCTED) 25m BUFFER FROM SUBMARINE 25m BUFFER FROM HATS CENTRELINE **LEGEND** ADMIN\A1 PROJECT BOUNDARY Line Ext\CAD A 9/27/2010 PROPOSED EIA STATION 40m BUFER OF EXISTING KWUN TONG SUBMARINE OUTFALLS

ADDITIONAL EIA SAMPLING STATIONS IN OPTION ENVELOPE

27 SEP 2010

Rev.

1:5000

FIGURE 3.3

Scale

File name

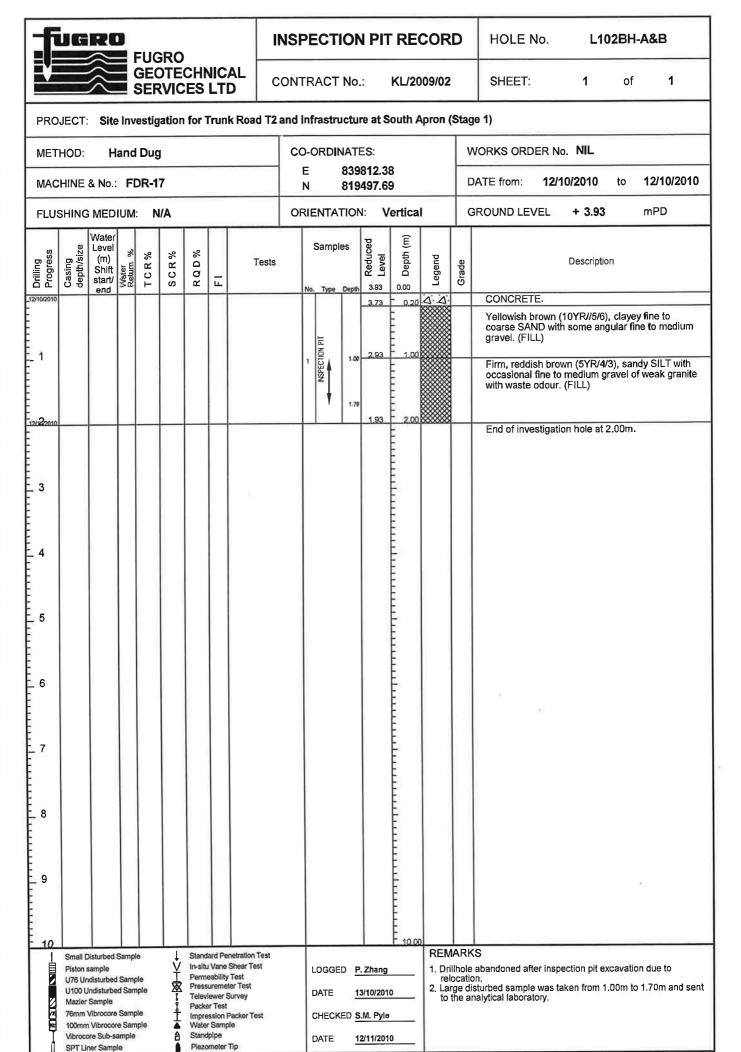
Drawing No.

Original Size

© Copyright reserved

Date

Date


Description

Drawing title

土木工程拓展署 Civil Engineering and Development Department 九龍拓展處 Kowloon Development Office **MEINHARDT** AGREEMENT NO. CE 38/2008(HY)
KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION Works in prog 太平洋貿易中心 EXTENT OF
EXCAVATION/TEMPORARY

WORKS LEGEND PROJECT BOUNDARY 觀塘避風塘 PROPOSED EIA STATION PROPOSED TRUNK ROAD T2 1:5000 Date Scale Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H2 &H4 (SHEET 1 OF 2) File name Drawing No. Rev. © Copyright reserved FIGURE 3.4 Description Date

土木工程拓展署 Civil Engineering and Development Department **MEINHARDT** AGREEMENT NO. CE 38/2008(HY)
KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 Kowloon Developm _aguna City AITSO WAN EXTENT OF EXCAVATION/TEMPORARY WORKS TSEUNG KWAN O LAM TIN TUNNEL EXTENT OF EXCAVATION/TEMPORARY WORKS **LEGEND** PROJECT BOUNDARY PROPOSED EIA STATION 觀塘仔灣 KWUN TON KWUN TONG TSAI WAN PROPOSED TRUNK ROAD T2 OPTION 1 OPTION 3 1:5000 Date Scale Original Size PROPOSED SEDIMENT SAMPLING STATIONS FOR IMT OPTION H2 &H4 (SHEET 2 OF 2) File name Drawing No. Rev. © Copyright reserved FIGURE 3.5 Description Date

INSPECTION P	PIT RECORD	HOLE No.	L10	02BH-C	&D	
CONTRACT No.:	KL/2009/02	SHEET:	1	of	1	

PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **CO-ORDINATES:** Works Order No.: **NIL Hand Dug** 839814.23 Ε DATE from: MACHINE & No.: FDR-17 29/10/2010 29/10/2010 to 819499.80 Ν FLUSHING MEDIUM: N/A ORIENTATION: Vertical **GROUND LEVEL:** mPD + 3.93 Water Ξ Reduced Level Casing depth/size Level Samples TCR% SCR% Drilling Progress Depth (m) Shift Legend RODS Water Return Tests Description Grade start/ Ξ 3,93 0,00 end Type 29/10/2010 CONCRETE. 40 INSPECTION PIT Yellowish brown (10YR//5/6), clayey fine to coarse SAND with some angular fine to medium gravel. (FILL) End of investigation hole at 1.00m. 2 3 5 6 7 8 9 Standard Penetration Test REMARKS Small Disturbed Sample In-situ Vane Shear Test Piston sample LOGGED P. Zhang 1. Drillhole abandoned on encountering concrete pipe at 1.00m in Permeability Test Pressuremeter Test U76 Undisturbed Sample inspection pit. U100 Undisturbed Sample DATE 30/10/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standpipe DATE 12/11/2010 SPT Liner Sample Piezometer Tip

DRILLHOLE RECORD

HOLE No.

L102BH-E

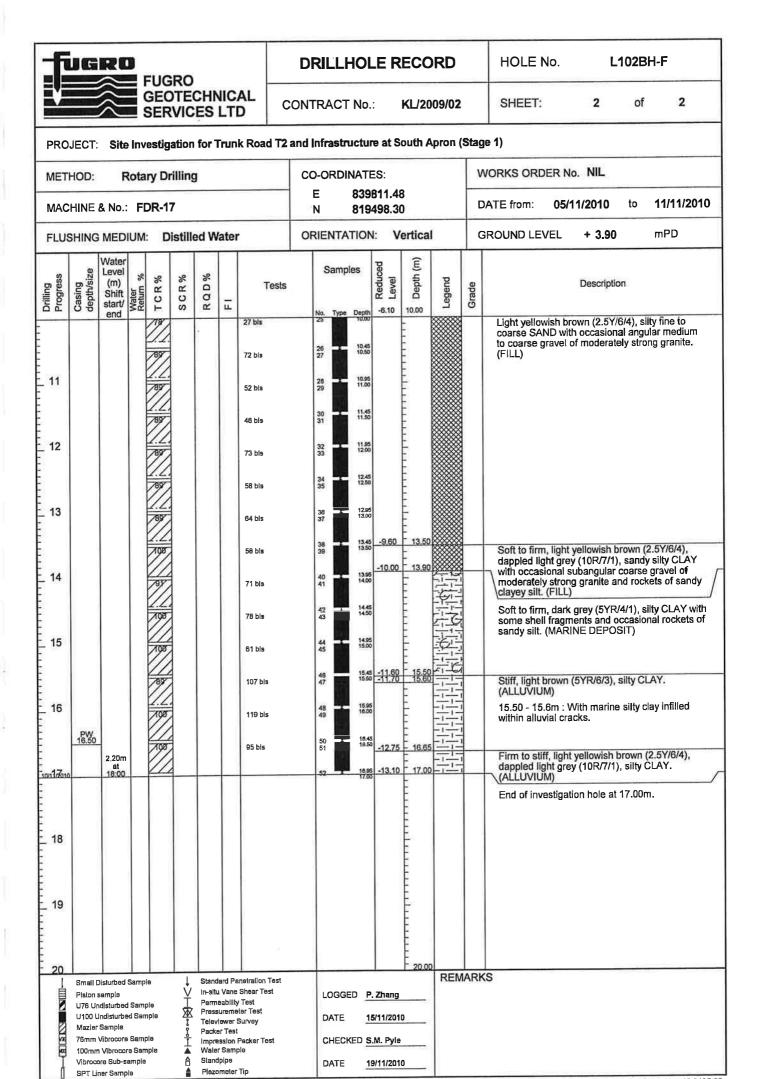
M		$\hat{\approx}$		SER	VIC	CHI	NIC. LTI	AL D	CONTRACT No.: KL/2009/02								SHEET: 1 of 2						
PRO	JECT	Site	e Inve	estig	ation	for	Trun	k Road T2	and	Infr	astrı	ıctu	re at S	outh /	Apron (Sta	ge 1)						
MET	HOD:	F	Rota	ry Dr	illing	g			C	D-0	RDIN					,	WORKS ORDER No. NIL						
MAC	HINE	& No.	: FD	R-17	1					E N			811 7 498 4			ı	DATE from: 29/10/2010 to 05/11/2010						
FLU	SHING	MED	IUM:	Di	ry Di	rillin	g		OI	RIE	NTA	TION	N: V	ertica	I	L	GROUND LEVEL + 3.89 mPD						
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	%	TCR%	SCR%	RQD%	I.	Tests			ampli Type		Reduc		Legend	Grade	Description						
1 2 2	SW							33 bls		1 2 3	INSPECTION PIL	9.85 1.85 1.90	1.99	1,90	44		CONCRETE. Yellowish brown (10YR//5/6), clayey fine to coarse SAND with some angular fine to medium gravel. (FILL) Firm, grey (7.5YR/6/1) to dark grey (5YR/4/1), sandy SILT with some angular fine to coarse						
02/11/2010		1.60m et 18:00 2.30m at 08:00		1. L. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				23 bis 8 bis 32 bis		8 9 10 11 12 13	·	2.35 2.40 2.85 2.90 3.35 3.40	-0.01	3,90			gravel of moderately strong granite and an organic waste odour. (FILL)						
5				83 bls 52 bls 21 bls 35 bls 31 bls 44 bls 106 bls 108 bls 107 bls		14 15 16 17 18 19 20 21 22 23 24 25 26 27		4.35 4.40 4.85 4.90 5.35 5.40 5.85 6.40 6.86 6.90 7.35 7.40	-4.51	8.40			Light yellowish brown (2.5Y/6/4), silty fine to coarse SAND with occasional angular fine to coarse gravel of moderately strong granite. (FILL)										
9 - - - -	SW B.90 PW	1.10m at 18:00		198) 	·			132 bls 60 bls	30 31 32 8.85 8.90 33 9.50					10.00			Light grey (10R/7/1) to pinkish grey (7.5YR/7/2), angular coarse GRAVEL and COBBLES of moderately strong to strong granite. (FILL)						
	Small Di Piston sa U76 Und U100 Un Mazier S 76mm V 100mm V VIbrocor SPT Line	mple isturbed disturbed ample brocore \$ /ibrocore e Sub-sar	Sample I Sample Sample Sample mple	9		In-situ ' Permei Pressu Televie Packer	Vane Sl ability Tremeter wer Su Test sion Pa Sample ipe	r Test rvey cker Test	Test LOGGED P. Zhang 1. An in 2. U100 2.90. DATE 06/11/2010 13.51 15.51						REMARKS 1. An inspection pit was excavated to a depth of 1.90m. 2. U100 samples were sent to the analytical laboratory from 2.90-3.35m, 5.40-5.85m, 5.90-6.35m, 6.40-6.85m, 13.00-13.45m, 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m, 15.50-15.95m, 16.00-16.45m, 16.50-16.95m and 17.00-17.45m.								

DRIL	LHOL	E RE	CORD
------	-------------	------	------

HOLE No.

L102BH-E

Y		$\stackrel{\sim}{\sim}$		GE(SEF	OTE	CHI	NIC LT	AL D	CONTRACT No.: KL/2009/02 SHEET: 2 of						of	2							
PRO)JECT:	Site	e Inv	estig	ation	ı for	Trun	k Road T2	and	Infrast	tructu	re at S	outh A	Apron (ron (Stage 1)								
MET	HOD:	F	Rota	ry D	rillin	g			C	O-ORE	INAT	ES:			W	ORKS ORDER N	o. NIL						
МАС	HINE	& No.	: FI	DR-1	7					E N		811.7 498.4			DATE from: 29/10/2010 to 05/11/2010								
FLU	SHING	MED	IUM	: D	ry D	rilling	g		OI	RIENT	ATIO	N: V	ertica	I	G	GROUND LEVEL + 3.89 mPD							
Drilling Progress		Water Level (m) Shift start/ end		TCR%	SCR%	RQD%	F	Tests		Sam	•	Reduced 11.9-	9.01 Depth (m)	Legend	Grade		Description	1					
11 12 13 14		2.20m et 08:00						36 bls 51 bls 58 bls 47 bls 41 bls 58 bls 39 bls 37 bls 44 bls 69 bls		34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 47 48 49 50 51	10.48 10.50 10.50 11.00 11.48 11.50 12.00 12.45 12.50 13.45 13.50 13.45 14.50 14.50 14.50	-9.11 -9.51	13.00	和引起讨好的		Yeilowish brown (coarse SAND. (F) Soft to firm, dark silty CLAY with so organic waste odd	10YR/5/6), (LL) grey (5YR/4) me shell fra bur. (MARIN	clayey /1), slig gment IE DEF	silty fine to ghtly sandy, is and an POSIT)				
16	.PW.	10 10 10 10 10 10 10 10 10 10 10 10 10 1				38 bis 50 bis 54 bis 33 bis		56 57 58 59 60 61 62 63	15.45 15.50 15.05 16.00 18.45 16.50 16.50 17.00	-13.61	15.40 15.50			sandy silty CLAY shell fragments. (a Firm, light greyish sandy, silty CLAY 15.40 - 15.50m : \$ (2.5Y/6/2), dapple (ALLUVIUM)	with pocket ALLUVIUM) I yellow (2.5 I (ALLUVIUI) Stiff, light grey, I light grey,	of silty Y/8/3), M) eyish b silty C	slightly prown CLAY.						
The standard Penetration Test In-situ Vane Shear Test Permability Test Persuremeter Test Televiewer Survey Packer Test Inpression Packer Test Inpression Packer Test Televiewer Survey Packer Test Inpression Packer Test Televiewer Survey Packer Test Inpression Packer Test Televiewer Survey Packer Test Inpression Packer Test Inpression Packer Test Inpression Packer Test Water Sample Standpipe Standpipe Standpipe Piezometer Tip										LOGG DATE CHEC DATE	06 KED <u>S.</u>	Zhang //11/2010 M. Pyle		REM	ARKS	6							



DRILLHOLE RECORD

HOLE No.

L102BH-F

GEOTECHNICAL SERVICES LTD										CONTRACT No.: KL/2009/02						2 SHEET: 1 of 2								
PRO	JECT:	Site	Inv	estig	ation	for '	Trun	k Road T2	and	Infr	astru	ıctu	re at S	outh A	pron (pron (Stage 1)								
MET	HOD:	R	lota	ry Dr	illing	3			CC	D-0	RDIN	NATI	ES:			V	ORKS ORDER N	lo. NIL						
MAC	HINE	& No.:	F	DR-17	7					E N			811.4 498.3			DATE from: 05/11/2010 to 11/11/2010								
FLUS	SHING	MEDI	IUM	: D	istille	ed W	<i>l</i> ater		ORIENTATION: Vertical							G	ROUND LEVEL	+ 3.90		mPD				
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	Water Return %	TCR%	SCR%	RQD%	Ē	Tests			Sample		Reduced S Level	S Depth (m)	Legend	Grade		Descriptio						
_ 1	1 SW											8.65 9.85	3,70		4.4		Grey (7.5YR/6/1) Firm, reddish bro occasional fine to granite. (FILL)	wn (5YR/4/	3), san	dy SILT with weak				
_ 2		1.50m at 18:00 2.80m at 08:00		[]]. []]. []]. []]. []].				18 bis 22 bis 24 bis 42 bis 52 bis		6 7 8 9		2.35 2.40 2.85 2.90 3.35 3.40 3.85 3.90 4.00	1.00	2.90			Grey (7.5YR/6/1) silty coarse SAN gravel of strong gragments. (FILL Firm, yellowish b with occasional a (FILL)	D with some granite, cond)	e angul crete a	ar coarse nd wood				
_ 5		2.40m at 18:00 2.80m at 08:00		28				39 bis 46 bis 41 bis		19	x + x + x + x + x + x + x + x + x + x +	5.00 5.45 5.50 6.50 6.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7	-1.60 -2.10 -2.60	5.50 - 5.50 - 6.00 - 6.50			Pinkish grey (7.5 strong granite. (F Light yellowish bicoarse SAND. (F Grey (7.5YR/6/1) SAND with occar concrete and org Pinkish grey (7.5 strong granite. (F Light yellowish bicoarse SAND. (F Pinkish grey, ang COBBLES of strong COBBLES of strong considerations)	rown (2.5Y/6 FILL)), slightly silf sional angul janic odour. SYR7/2), an FILL) rown (2.5Y/6 FILL)	6/4), sil by, fine ar coal (FILL) gular C 6/4), sil	ty fine to to coarse se gravel of COBBLES of ty fine to				
_ 8	PW	2.90m at 18:00 2.40m at 08:00		708				33 bis 41 bis		21 22 23 24	× × × ×	8.55 9.00		8.50 - 8.50 - 9.50		ARK	Light yellowish b coarse SAND. (F Pinkish grey (7.5 strong granite. (F	FILL) SYR/7/2), an						
Small Disturbed Sample Piston sample U76 Undisturbed Sample U100 Undisturbed Sample U100 Undisturbed Sample Mazier Sample 76mm Vibrocore Sample Vibrocore Sub-sample Vibrocore Sub-sample Sept Uner Sample Figure Sample Vibrocore Sub-sample Spr Uner Sample Piezomeler Tip										LOGGED P. Zhang 1. An i 2. U10 DATE 15/11/2010 1.90					REMARKS 1. An inspection pit was excavated to a depth of 1.90m. 2. U100 samples were sent to the analytical laboratory from 1.90-2.35m, 2.40-2.85m, 2.90-3.35m, 5.50-5.95m, 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m, 15.50-15.95m, 16.00-16.45m and 16.50-16.95m.									

DRILLHOLE RECORD

HOLE No.

L106BH-A

V		$\stackrel{\widehat{\approx}}{\approx}$		UG EC ER	TE				CONTRACT No.: KL/2009/02							SHEET:		1	of	3		
PRC	JECT:	Site	-	_	-		_	k Road T2	and I	nfrastr	uctu	re at S	outh A	Apron ((Stage 1)							
	HOD:		Rotar			-	-			-ORDI	-				T	VORKS ORDE	ER No.	NIL				
MAC	HINE		-	_	-					E N		672.5 621.6				ATE from:	22/10	/2010	to	01/11/2010		
FLU	SHING	MED	IUM:	D	ry Di	illing	9			RIENTA			ertica	l	6	ROUND LEV	EL	+ 4.65		mPD		
Drilling Progress	Casing depth/size	Water Level (m) Shift start/	Water Return %	TCR%	SCR%	RQD%	Fi	Tests	No. Type Depth 4.65 0.00							Description						
28/10/2010 28/10/2010 28/10/2010 28/10/2010 28/10/2010	sw	0.40m at 18:00 2.10m at 08:00 2.20m at 08:00	1 3 3 4/1 11 3 3 3/1 3 3 3/1 3/3 3/1 3/3 3/1 3/3 3/3		S		L.	23 bis 89 bis 103 bis 103 bis 44 bis 16 bis 45 bis 44 bis 33 bis 29 bis 30 bis 49 bis 82 bis 83 bis		No. Types 1	2.44 2.53 2.64 2.54 2.55 2.66 2.66 2.66 2.66 2.66 2.66 2.66	4.15	0.50	44		some angula gravel of we	06/1), s ar to su	ilty fine to bangular loderately	coars	e SAND with coarse granite, tuff ments. (FILL)		
	Piston s U76 Un U100 U Mazier 76mm \ 100mm Vibroco	disturbed ndisturbe	Sample Sample Sample Sample	e ole	→ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	In-situ Perme Press Televi Packe Impre Water Stand	Vane eability ureme iewer S er Test ession i	ler Test Survey Packer Test le	LOGGED P. Zhang 1. An 2. U10 DATE 04/11/2010 13. 15. 17. CHECKED S.M. Pyle 19						REMARKS 1. An inspection pit was excavated to a depth of 2.00m. 2. U100 samples were sent to the analytical laboratory from 13.00-13.45m, 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m, 15.50-15.95m, 16.00-16.45m, 16.50-16.95m, 17.00-17.45m, 17.50-17.95m, 18.00-18.45m, 18.50-18.95m, 19.00-19.45m, 19.50-19.95m, 20.00-20.45m, 20.50-20.95m, 21.00-21.45m, 21.50-21.95m, 22.00-22.45m and 22.50-22.95m.					ory from 50-14.95m, 50-16.95m, 50-18.95m, 50-20.95m.		

DRILLHOLE RECORD	HOLE No.	L106BH-A	
CONTRACT No : KI /2009/02	QUEET:	2 of 2	

KL/2009/02 SHEET: PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: Rotary Drilling CO-ORDINATES: WORKS ORDER No. NIL Е 839672.55 MACHINE & No.: FDR-32 01/11/2010 DATE from: 22/10/2010 to Ν 819621.69 FLUSHING MEDIUM: **Dry Drilling** ORIENTATION: Vertical **GROUND LEVEL** + 4.65 mPD Wate Reduced Ξ Casing depth/size Level Samples Drilling Progress (m) Level Legend SCR Tests Water Return 0 Description Shift 10 start/ α ш -5.35 10.00 end 165 bls As sheet 1 of 3. 10,45 120 bls 11 10.95 39 40 110 bis 0.90m at 18:00 2.00m 28/10/201 11.45 11.50 89 bls at 08:00 12 11.95 12.00 72 bls 12.45 45 46 98 bis 13 47 48 59 bls Light brown (7.5YR/6/3), silty coarse SAND with occasional angular coarse gravel and cobbles of concrete. (FILL) 18 bis Soft, dark grey (5YR/4/1), slightly sandy, silty CLAY with occasional angular coarse gravel of concrete and asphalt. (FILL / MARINE 14 51 52 19 bls INTERFACE?) Soft to firm, dark grey (5YR/4/1), slightly sandy, silty CLAY with some shell and coral fragments. (MARINE DEPOSIT) 14.45 14.50 53 54 27 bis 15 72 bls 0.40m Firm to stiff, greyish yellow (2.5Y/7/3), silty CLAY. (ALLUVIUM) 15.50 10.85 30/10/2010 30 bls 15.20 - 15.50m : With marine clay infiltration to at 00:80 alluvial cracks. 16 15.95 55 bls 61 62 85 bls 17 83 bis 17.45 17.50 93 bls 18 17.95 18.00 15 bls 20 bls 19 71 72 20 bls 19.45 19.50 26 bis 0.80m REMARKS Standard Penetration Test Small Disturbed Sample In-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeability Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample DATE 04/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standplpe DATE 12/11/2010 SPT Liner Sample Piezometer Tip

DRIL	LHOLE	RECORD
------	-------	--------

HOLE No.

L106BH-A

FUGRO GEOTECHNICAL SERVICES LTD										TRACT No.: KL/2009/02 SHEET: 3 of 3						3				
PRO)JECT:	Site						k Road T2	and	Infrasti	ruetii	re at S	South A	Apron	(Star	ne 1)				
	HOD:			ry D	_					D-ORD					Т	WORKS ORDER	No. NII.			
	HINE		_							E N	839	 672.5 621.6			-	DATE from: 22/10/2010 to 01/11/2010				
											TIOITA		ertica	ı	+	GROUND LEVEL			mPD	
Casing Progress Casing											Depth	Reduced 12.22 Level	89.02 Оерth (ш)	Legend	Grade		Description	n		
_ 21	PW 22.50	1.70m at 08:00		100 100 100 100 100 100				29 bis 33 bis 27 bis 55 bis 120 bis		75 76 77 78 80 81 82 83 84	20.45 20.50 20.95 21.00 21.45 21.50	-16.85 -17.35	21.50			Firm to stiff, lig slightly sandy, Light yellowish medium SAND	iht yellowish br silty CLAY. (Al			
24		0.80m at 18:00		100				33 bis		87	22.96	-18.35	23.00 - 23.00 - - - - - - -			End of investig	ation hole at 2	3.00m		
25																				
_ 27				8																
_ 28	28																			
29	30												- 30.00							
	Small Disturbed Sample Piston sample U76 Undisturbed Sample U100 Undisturbed Sample Mazier Sample Mazier Sample Standard Penetration Test In-situ Vane Shear Test Permeability Test Pressuremeter Test Televiewer Survey									LOGGE DATE CHECK DATE	04 ED S .I	/11/2010	_	REMA	ARK	S				

DRILLHOLE RECORD HOLE No. L106BH-B

CONTRACT No.: KL/2009/02 SHEET: 1 of 2

PRO	OJECT: Site Investigation for Trunk Road T2 and Infrastructure at South A														Apron ((Sta	ge 1)					
MET	, ,														,	WORKS ORD	ER N	o. NIL				
MAG	CHINE	& No.:	FI	DR-3	2					E N			673.0 621.3			ī	DATE from:	02/	11/2010)	to	05/11/2010
FLU	SHING	MED	IUM	: D	istill	ed V	/ate		Ol	RIEN	TAT	101	1: V	ertica	I	(GROUND LEV	√EL	+ 4.6	32		mPD
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	Water Return %	TCR%	SCR%	RQD%	FI	Tests		Sampl			Reduc		Legend	Grade	Description					
2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70 bis										T WATERION T	8.55 9.65 1.55 1.55 2.50 2.45 2.50 2.45 2.50 3.45 3.50 4.46 4.50 4.45 6.60 6.45 6.60 6.45 6.50 7.45 7.50	1.52	3.00			gravel. (FIL	vellowis	sh brown ND with o	i (2.5	5Y/6/4 siona	e to medium e), silty clayey I angular fine ng granite
D												7,95 8.00 8.45 8.50	-3,38	8.00			Soft, grey (7 occasional o ceramic woo	coarse	gravel o	f as	phalt,	SILT with concrete,
_ 9				100				54 bis		32 33		8.95 9.00	-4.38	9.00			Light yellow to coarse S/	ish bro AND w	own (2.5) vith some	//6/4 and), cla Jular	yey silty fine ine to
		100				35 bls		34 35	,	9.45 9.50					medium gra (FILL)	vel of	moderate	ely s	trong	granite.		
10	Smell Di-	furbed C	amels	//	ī	Cinada	nd Par	elrotion Test		_	-	9,95	-5.38	10.00	REMA	RK	S			_		
	U100 Undisturbed Sample Mazier Sample 76 76mm Vibrocore Sample Maxier Sample Maxier Sample Maxier Sample Maxier Sample Maxier Sample Maxier Test Maxier Test											06/	Zhang 11/2010 1. Pyle	_	1. An ii 2. U10 13.5	nspe 0 sar 50-13	S ction pit was exc nples were sent .95m, 14.00-14. .95m, 16.00-16.	to the .45m, 1	analytica 4.50-14.9	l labo 95m,	orator 15.00	v from
層	100mm V	ibrocore	Sampl		<u></u>	Water 5	Sample			DAT												
Ī	100mm Vibrocore Sample Water Sample Water Sample Standplpe SPT Liner Sample Piezometer Tip											12/	11/2010									

Vibrocore Sub-sample

SPT Uner Sample

Standpips

Plezometer Tip

DATE

12/11/2010

DRILLHOLE	RECORD	HOLE No.	L	106BH-	В	
CONTRACT No :	KI 12000/02	SHEET:		o.f		

PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1)

METHOD: Rotary Drilling

CO-ORDINATES:

E 839673.02

SHEET: 2 of 2

WORKS ORDER No. NIL

MACHINE & No.: FDR-32										E 839673.02 N 819621.36							DATE from: 02/11/2010 to 05/11/2010				
FLU	FLUSHING MEDIUM: Distilled Water											ΓΙΟΙ	ν: ν	ertica	ı		GROUND LEVEL + 4.62 mPD				
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	Water Return %	TCR%	SCR%	RQD%	F	Tests		No.	Sample	Depth	Reduced E°°°	9 Depth (m)	Legend	Grade	Description				
						40 bls 44 bls 67 bls		38 39 40 41 42 43		10.45 10.50 10.95 11.00					As sheet 1 of 2.						
12				ROS				41 bis 53 bis		44 45 46 47		11.95 12.00 12.45 12.50		13,00			Light grow (ASD (AS) page the COUDINGS of				
14			0	(E)				30 bis		49	HX HX	13.50 13.95 14.00	-8.88 -9.38	13,50			Light grey (10R/7/1), angular COBBLES of moderately strong granite and concrete. (FILL) Soft, grey (7.5YR/6/1), sandy, very clayey SILT with occasional coarse gravel of concrete. (FILL)				
		1,60m at		KIN THE STATE OF T				19 bls 22 bls		50 51 52 53		14,45 14.50	-10.23	- 14,85	\$\frac{1}{2} \cdot \frac{1}{2}		Soft, dark grey (5YR/4/1), sandy silty CLAY with many fine to coarse gravel and cobbles of shell and coral fragments. (MARINE DEPOSIT)				
04116010 05/11/2010		18:00 2,50m at 08:00		ADB				18 bls 33 bls		54 55 56 57		14.95 15.00 15.45 15.50					Firm, light greyish yellow (2.5Y/8/3), slightly sandy, silty CLAY. (ALLUVIUM)				
_ 16		2,00m		KD89				35 bls 34 bls		58 59 60 61		15,95 16,00 16,45 16,50									
- 05/11/2010 -	SW 17,00	at 18:00								-62	¥.	18.95 17.00	-12.38	17.00			End of investigation hole at 17.00m.				
18																					
19	. 19																				
1		sturbed S	ample		1,			etralion Test						20.00	REM	ARK	KS				
	Piston sample Un-situ Vane Shear Test U76 Undisturbed Sample Permeability Test U100 Undisturbed Sample Pressuremeter Test							Test			GGED	-									
	U100 Undisturbed Sample									DATE <u>06/11/2010</u> CHECKED <u>S.M. Pyle</u>											

DRILLHOLE RECORD	HOLE N	o. L	110BH-/	A
CONTRACT No : KI /2009/02	SHEET.	1	Of	2

		ECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron																						
PRO	JECT:	IECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (S															ge 1)							
																_	WORKS ORE	DER N	o. NIL					
MAC	HINE	& No.:	FI	DR-32	2					E N		3952: 1977					DATE from: 05/11/2010 to 10/11/2010							
FLU	SHING	MED	IUM	: D	istill	ed W	/ater	-	OF	RIEN	TATI	ON:	٧	ertica	I	1	GROUND LEVEL + 4.31 mPD							
Drilling Progress	Casing depth/size	Water Level (m) Shift start/	Water Return %	TCR%	SCR%	RQD%	FI	Tests			mples	Reduc	E Level	S Depth (m)	Legend	Grade			Description	on				
8/11/2010	SW	end								NO. 1	ype De	pin -	.51	-	44		Grey (7.5Y	'R/6/1),	CONCRE	TE.				
_ 1										1 LIA NOILO BILL	. 1	?:86 I:65	81	0.50			boulders o (FILL)	ular fine f mode	e to coarse rately stror	grave ng to s	l, cobbles and trong granite.			
9411/2010 _ 2 _ 3					_	7x 3.	50					Grey (7.5Y moderately (FILL)	(R/6/1), y strong	angular C j to strong	OBBL tuff an	ES of d granite.								
				108				64 bis		5	1	0.50	81	3,50			Grey (7.5Y some angu				se SAND with			
4				100				42 bis		6 7		9.85 O.	31	4,00			moderately Very soft to	o soft, c	iark grey (5YR/4/	1), sandy			
				100				32 bis		8 9		1.45 <u>-0</u>	.19	4,50			clayey SIL gravel of s and with or	trong g	ranite, con	crete a	to coarse and iron wires			
. 5				100				27 bis		10			1.95	10	5.50			SAND with	n many nite, bri	angular fin ck and cor	e to co	ne to coarse parse gravel of fragments and		
				100				27 bis		12 13		5.60	.19	- 5.50			Soft, light of	olive gro	ey (5Y/6/2)	, sand arse g	y clayey SILT ravel of strong			
. 6				700				28 bls		14 15		5.95 3.00	01Y 04				granite, co	ncrete :	and iron fra	agmen	ts. (FILL)			
				***				32 bis		18 17		3.45 3.50												
. 7				***				35 bis		18 19		7.00												
				***				17 bis		20 21		7.45 7.50												
. 8		1,50m		***				24 bis		22 23		7.95 3.00												
9/11/2010. 0/11/2010		at 18:00 2.10m at		100				31 bis		24 25		3.45 3.50												
_ 9		08:00		199				38 bis		26 27		3.85 <u>-4</u>	.69	9.00			Firm, light SILT with o							
دعان				100				36 bis		28 29		9.45 9.50					gravel. (Fil		nai angula	i mie t	o modum			
10	Small Di	sturbed S	ample		Į.			etration Test		_		1.951 -5	69	10.00	REM	ARK	S							
	U100 Un	Isturbed : disturbed			X I	In-situ Perme Pressu Televie	ability remete	er Test	LOGGED P. Zhang 1. An inspection pit was 2. U100 samples were st 4.00-4.45m, 4.50-4.95							mples were ser 5m, 4.50-4.95n	nt to the n, 5.00-	analytical I 5.45m, 5.50	aborati)-5.95n	ory from				
	76mm V	brocore s			Å	Packer	Test sion Pa	acker Test		CHE	CKED	S.M. P	yle				2.95m, 13.00-1. 4.95m.	J.70III,	10,00-10,80	an, 14.	00-17. 1 0111 d∏u			
Ţ	100mm Vibrocore Sample										E	18/11/2	2010											
							_						_								Joh No : 10 0195 05			

HOLE No.

L110BH-A

FUGRO GEOTECHNICAL SERVICES LTD											ONTRACT No.: KL/2009/02 SHEET: 2 of 2											
PRO	JECT:	Site	Inve	estiga	ation	for ⁻	Frun	k Road T2	and I	Infras	structu	re at S	outh A	\pron (Stage	ge 1)						
MET	HOD:	F	Rotar	y Dr	illing	3			CC	D-OR	DINAT	ES:			WORKS ORDER No. NIL							
MAC	HINE	& No.:	FD	R-32	2					E N	-	529.19 774.6			D,	OATE from: 05/11/2010 to 10/11/2010						
FLUS	SHING	MED	IUM:	Di	istille	ed W	/ater		OF	RIEN	TATIO	ν: V	ertica		G	GROUND LEVEL + 4.31 mPD						
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	Water Return %	TCR%	SCR%	RQD%	Е	Tests			mples	r Reduced	Э Depth (m)	Legend	Grade	Description						
11 12 13 14 16 17 18	SW	1.70m at 18:00	_		S			38 bis 32 bis 30 bis 38 bis 24 bis 28 bis 22 bis 15 bis 20 bis 18 bis		No. T) 33 33 33 33 34 35 36 37 38 39 39 40 41 44 45 46 47 48 49 50	10.45 11.50 11.44 11.50 11.44 11.50 11.44 11.50 11.44 11.50	-7.69 -9.19 -9.99 -10.19	13.50			Soft to firm, dark grey (5YR/4/1), slity CLAY with some shell fragments and pockets of sandy silt. (MARINE DEPOSIT) Soft to firm, olive grey (5Y/5/2), motitled yellowish brown, slity CLAY with marine sandy clayey silt infilled within alluvial cracks. (ALLUVIUM) 14.30 - 14.50m: Sandy clayey SILT. Light yellowish brown (2.5Y/6/4), locally light grey (10R/7/1), silty fine to coarse SAND with some rounded fine to coarse gravel of moderately strong granite. (ALLUVIUM) End of investigation hole at 15.00m.						
19	20 Small Disturbed Sample ↓ Standard Penetration Te												- - - - - - - - - - - - - - - - - - -	REM	ARK	8						
Piston sample U76 Undisturbed Sample U100 Undisturbed Sample U100 Undisturbed Sample Mazler Sample 75mm Vibrocore Sample 100mm Vibrocore Sample Water Sample Water Sample Water Sample Water Sample Water Sample Water Sample										DAT	-	. Zhang 2/11/2010 .M. Pyle)			_						
	Vibroco	Vibrocon re Sub-se er Sampl	ample	le	▲	Water Stand	Sampl	в		DAT	-	B/11/2010) ————————————————————————————————————			FGS Job No.: 10 0195 05						

DRILLHOLE	RECORD	HOLE No.	L	.110BH-B	}	
CONTRACT No ·	KI /2009/02	SHEET:	1	of	2	

SERVICES LTD PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **CO-ORDINATES:** Rotary Drilling WORKS ORDER No. NIL Ε 839528.77 MACHINE & No.: FDR-32 DATE from: 11/11/2010 13/11/2010 to Ν 819774.94 FLUSHING MEDIUM: **Distilled Water ORIENTATION:** Vertical **GROUND LEVEL** mPD + 4.32 Water Ξ Casing depth/size Leve Reduced Samples Drilling Progress Depth (m) Level Tests Water Legend ď Grade Description Shift RO J sc start/ 표 0.00 end Туре Dept 11/11/2010 Grey (7.5YR/6/1), CONCRETE. DA DD 8:55 Grey (7.5YR/6/1), silty fine to medium SAND with some angular fine to medium gravel, 1 INSPECT cobbles and occasional boulders. (FILL) 2 P:88 1:55 Grey (7.5YR/6/1), light yellowish brown (2.5Y/6/4), angular coarse GRAVEL and COBBLES of moderately strong to strong tuff, 2 granite and brick. (FILL) 2,50 3 3,00 3.50 4 22 bls Grey (7.5YR/6/1), silty fine to coarse SAND with occasional angular fine to medium gravel of at 18:00 2.40m at 08:00 moderately strong tuff and granite. (FILL) 29 bls 5 4.85 5.00 10 bls 20 bis 6 21 bls 31 bls Grey (7.5YR/6/1), silty fine to coarse SAND with some angular fine to coarse gravel of 35 bis moderately strong tuff and granite. (FILL) 8 7,95 8.00 36 bls 22 23 47 bls 9 24 25 44 bis 15 bls Small Disturbed Sample REMARKS Standard Penetration Test In-situ Vane Shear Test An inspection pit was excavated to a depth of 1.70m. U100 samples were sent to the analytical laboratory from 12.00-12.45m, 12.50-12.95m, 13.00-13.45m, 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m and 15.50-15.95m. Piston sample LOGGED P. Zhang U76 Undisturbed Sample Permeability Test Pressuremeter Test U100 Undisturbed Sample DATE 16/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample CHECKED S.M. Pyle

19/11/2010

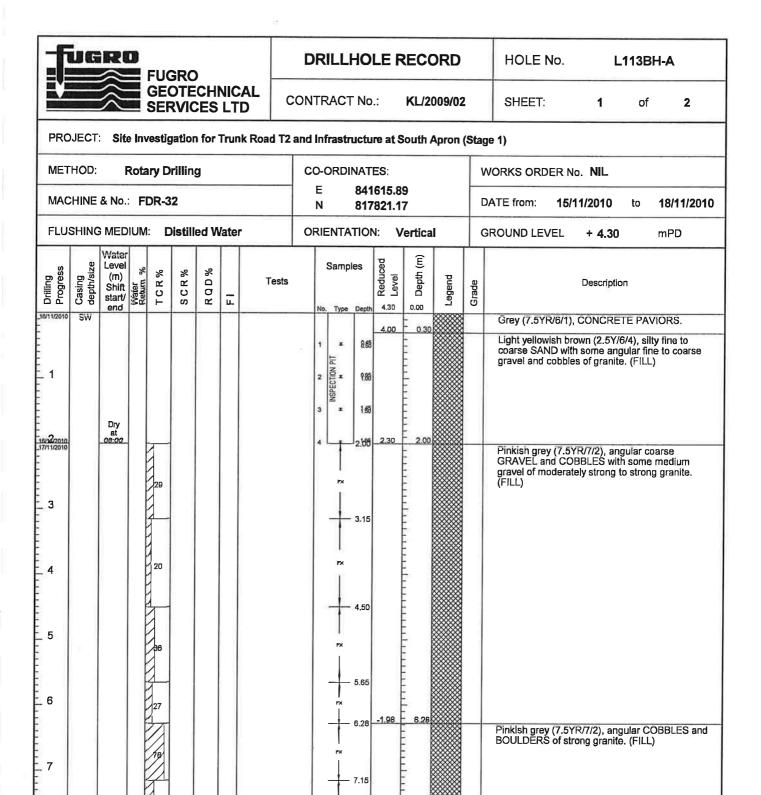
100mm Vibrocore Sample Vibrocore Sub-sample

SPT Liner Sample

Impression Packer Test Water Sample

Plezometer Tip

a



DRIL	LHO	LE R	ECC	ORD
------	-----	------	-----	-----

HOLE No.

L110BH-B

		\approx		GEO SER	TE	CHI	NIC LT	AL O	CONTRACT No.: KL/2009/02				SHEET:	2	of	2			
PRO	DJECT	Site	e Inv	estig	atior	for	Trun	k Road T2	and	Infra	structu	re at S	outh A	Apron (Stag	je 1)			
ME	ΓHOD:	F	Rota	ry D	rilling	9			C	0-OR	DINAT	ES:			ľv	VORKS ORDER No	. NIL		
MA	CHINE	& No.:	F	DR-3	2					E N)528.7)774.9			D	ATE from: 11/1	1/2010	to	13/11/2010
FLU	SHING	MED	IUM	l: D	istill	ed W	/ate	•	ORIENTATION: Vertical				G	ROUND LEVEL	+ 4.32		mPD		
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	Water Return %	TCR%	SCR%	RQD%	FI	Tests			mples	Reduced By Level	Э Depth (m)	Legend	Grade		Descriptio	n	
11 12 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	15.50	2.00m at 18:00 3.00m at 08:00						41 bis 43 bis 38 bis 37 bis 15 bis 20 bis 19 bis 26 bis 22 bis 47 bis 34 bis		No. T 229 30 31 32 33 33 34 35 38 39 40 41 42 43 44 45 46 47 48 49	10.44 10.56 11.05 11.45 11.65 12.06 12.26 12.26 13.36 13.45 14.40 14.45 15.56	-9.18 -9.58	13.50			As sheet 1 of 2. Soft to firm, dark g some shell fragme 13.50 - 13.90m : W SAND. Soft to firm, olive g clayey SILT with poinfilled within alluvi Yellowish brown (1 medium to coarse	/ith pocket rey (5Y/5// ockets of n al cracks. 0YR/5/6), SAND. (Al	s of fin 2), sand narine s (ALLU) slightly LUVIL	e to medium dy, very silty clayey //UM) clayey, silty M)
17 18 19	Piston sa U76 Und U100 Un Mazier S 76mm V 100mm	listurbed : disturbed	Sampl Sampl Sampl	e ple		In-situ Perme Pressu Televid Packer	Vane S ability remeter ower Si Test ision P Sample	er Test urvey acker Test		LOGG DATE CHEC		Zhang //11/2010 M. Pyle	20.00	REM/	ARKS		29		

Small Disturbed Sample
Piston sample
U76 Undisturbed Sample
U100 Undisturbed Sample
U100 Undisturbed Sample
Mazier Sample
76mm Vibrocore Sample
100mm Vibrocore Sample
Vibrocore Sub-sample

SPT Liner Sample

В

9

Standard Penetration Test In-situ Vane Shear Test Permeability Test Pressuremeter Test Televiewer Survey Packer Test Impression Packer Test Water Sample

Standplpe

Plezometer Tip

LOGGED P. Zhang

7.90

9.03

DATE <u>19/11/2010</u>
CHECKED <u>S.M. Pyle</u>

09/12/2010

DATE

DEMADES

 An inspection pit was excavated to a depth of 2.00m.
 U100 samples were sent to the analytical laboratory from 12.00-12.45m, 12.50-12.95m, 13.00-13.45m, 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m, 15.50-15.95m, 16.00-16.45m and 16.50-16.95m.

DRILLHOLE	RECORD	HOLE No.	L	.113BH-	A	
CONTRACT No.:	KL/2009/02	SHEET:	2	of	2	

Jan OL	INVIOLO LID					
PROJECT: Site Invest	gation for Trunk Road T2 an	nd Infrastructure at South Apron (Stage 1)			
METHOD: Rotary I	Orilling	CO-ORDINATES:	WORKS ORDER No. NIL			
MACHINE & No.: FDR-	32	E 841615.89 N 817821.17	DATE from: 15/11/2010 to 18/11/2010			
FLUSHING MEDIUM:	Distilled Water	ORIENTATION: Vertical	GROUND LEVEL + 4.30 mPD			
Drilling Progress Casing depth/size Autrity (Autrity) Water Return % T C R %	% % Tests	Samples Samples (E) Hodge Gend (E) No. Type Depth -5.70 10.00	ਹ Description			
11 24 24 24 24 25 25 25 25	51 bis 26 bis 28 bis 39 bis 36 bis 38 bis	10,10 11,50 -7,20 11,50 -7,70 11,50 7 11,50 -7,70 12,46 9 12,46 12,50 13,46 13,50 14 13,46 15 14,46 15 14,66 16 14,66 14,50 14,50 16 16 11,50 16 11,50 16 11,50 16 11,50 16 16 16 16 17	Dark grey (5YR/4/1), silty fine to coarse SAND with some shell fragments. (FILL) Soft to firm, grey (7.5YR/6/1), sandy clayey SILT with occasional angular coarse gravel of fresh granite and some shell fragments. (FILL) Dark grey (5YR/4/1), slightly clayey, silty fine to coarse SAND with some coral and shell fragments. (MARINE DEPOSIT) Grey (7.5YR/6/1), slightly silty fine to coarse			
15 789 7	48 bis 45 bis 25 bis 32 bis	18 14.85 15.00 20 15.46 21 15.66 21 15.66 22 15.66 22 15.66 22 15.66 22 15.66 25 15.00 24 15.66 25 15.00 24 15.65 25 15.00 25 15.	SAND with some shell fragments. (MARINE DEPOSIT) Soft to firm, light yellowish brown (2.5Y/6/4), dappled light grey and reddish brown, slightly silty, sandy CLAY with marine sand infilled alluvial cracks. (ALLUVIUM) End of investigation hole at 17.00m.			
_ 18 19 20	p.	20.00				
Small Disturbed Sample Piston sample U76 Undisturbed Sample U100 Undisturbed Sample U100 Undisturbed Sample Mazier Sample 76mm Vibrocore Sample 100mm Vibrocore Sample Vibrocore Sub-sample SPT Liner Sample	Standard Penetration Test In-situ Vane Shear Test Permeability Test Pressuremeter Test Indeviewer Survey Packer Test Impression Packer Test Water Sample Standpipe Piezometer Tip	DATE 19/11/2010 CHECKED S.M. Pyle DATE 09/12/2010	ARKS			

DRILLHOLE RECORD

HOLE No.

L113BH-B

CONTRACT No.: KL/2009/02

SHEET

		\sim		SEF	RVIC	CES	LT	D C	CONTRACT No.: KL/2009/0				009/02	2	SHEET:		1	of	2
PR	DJECT	: Sit	e Inv	estiç	jatio	n for	Trur	nk Road T2	and I	nfrastruct	ure at S	outh .	Apron	(Sta	ge 1)				
ME.	THOD:	ı	Rota	ıгу D	rillin	g				ORDINA		_		\	WORKS ORD	ER No.	NIL		
МА	CHINE	& No.	: FI	DR-3	2				ı		1616.2 7820.5	-		DATE from: 18/11/2010 to 20/11/2010					
FLU	JSHING			: D	istil	led V	Vate	r	OR	RIENTATIC	N: V	ertica	d .		GROUND LEV	/EL	+ 4.32		mPD
Drilling Progress	of the property of	Water Level (m) Shift start/ end	%	TCR%	SCR%	RQD%	ī	Tests		Samples		P Depth (m)	Legend	Grade			Descriptio		
1 2 2 3 4 4 5 5 5 5 6 6 5 7 7 8 8 5 9		1.60m at 16:00 2.20m at 08:00		55 BB B5 28 333						TB-165 TB-165	4.22				Pinkish grey (2.5Y/6/4), a cobbles of a strong grani	y (7.5YR angular tstrong, o ite. (FILI	vn (2.5Y/6 some ang y strong (V7/2), ligh BOULDE ccasiona L)	6/4), sil jular fir granite. nt yellov RS wit lly mod	ty fine to le to medium (FILL) wish brown h some lerately
	Small Dis Piston sa U76 Undi U100 Und Mazler S 76mm Vi 100mm V Vibrocore SPT Line	imple isturbed 8 disturbed ample brocore 8 //brocore a Sub-san	Sample Samp Sample Sample nple	ie		In-situ \ Permes Pressu Televle Packer	Vane S ability in memete wer Su Test sion Pa Sample	er Test urvøy acker Test a	LOGGED P. Zhang				2. U10 11.5 13.5	nspec 0 san 50-11 50-13	S ction pit was exc nples were sent .95m, 12.00-12. .95m, 14.00-14. .95m, 16.00-16.	to the ar 45m, 12. 45m, 14.	nalytical la .50-12.95r	borator n, 13.0	y from 0-13.45m,

DRILLHOLE RECORD

HOLE No.

L113BH-B

		$\hat{\sim}$		GE(SEF		CES			CONTRACT No.: KL/2009/02				SHEET:	2	of	2			
PR	OJECT	Sit	e Inv	vestig	jatio	n for	Trun	k Road T2	and	Infrastr	uctu	re at S	outh A	Apron ((Stag	ge 1)			
ME	THOD:	ı	Rota	ary D	rillin	g			CC	D-ORDI	INAT	ES:			V	VORKS ORDER I	No. NIL		
MA	CHINE	& No.	: F	DR-3	2					E N		616.2 820.5			0	DATE from: 18	/11/2010	to	20/11/2010
FLU	JSHING	MED	IUN	1: D	istil	led W	/ate	•	ORIENTATION: Vertical					G	GROUND LEVEL + 4.32 mPD				
Drilling Progress	Casing depth/size	Water Level (m) Shift start/ end	%	0	SCR%	RQD%	FI	Tests		Samp		ن- Reduced @ Level	9.01 Depth (m)	Legend	Grade		Descriptio	n	
111 - 12 - 12 - 13 - 14	0	1.70m at 18:00 2.40m at 08:00		\$5 PS				33 bis 35 bis 13 bis 16 bis 29 bis 37 bis 30 bis 51 bis		TO-182 10 11 12 13 14 15 18 19 20 21	11.50 11.50 12.45 12.50 13.45 13.60 14.45 14.50	-7.68 -8.38 -9.18	12.70			Grey (7.5YR/6/1 clayey silty fine to shell fragments. Dark grey (5YR/SAND with some DEPOSIT). Grey, slightly silt some shell fragm	o coarse SAI (FILL) 4/1), clayey s e shell fragm y fine to coar nents. (MARI	ND with	to coarse MARINE ND with POSIT)
16	EW 17.00			[]				23 bis 27 bis		22 23 24 25	15,95 16,00 16,45 16,50					Soft to firm, light sandy silty CLAY coarse sand. (AL	yellowish bro with pockets LUVIUM)	own (2. s of silt	5Y/6/4), y fine to
18 19	17.00									76	18.95	-12.68	17.00			End of investigat	ion hole at 1	7.00m.	
20	Small Dis Piston sa U76 Undi U100 Und Mazier Si 76mm Vil 100mm V Vibrocore SPT Lines	mple sturbed S fisturbed ample procore S fibrocore S Sub-sam	sample Samp sample Samp	e le	Permeability less Pressuremeter Test Televiewer Survey Packer Test Impression Packer Test Water Sample Standfale			Zhang 11/2010 1. Pyle 12/2010	20.00	REMA	IRKS	3		EGS In	b No.: 10 0195 05				

DRILLHOLE RE	CORD	HOLE No.	L	115BH-/	A	
CONTRACT No.: K	∟/2009/02	SHEET:	1	of	3	

SERVICES ETD							
PROJECT: Site Investigation for Trunk Road T2	2 and Infrastructure at South Apron (Stage 1)						
METHOD: Rotary Drilling	CO-ORDINATES: WORKS ORDER No. NIL						
MACHINE & No.: FDR-03	E 841351.14 N 818126.53 DATE from: 08/11/2010 to 13/11/2010						
FLUSHING MEDIUM: Distilled Water	ORIENTATION: Vertical GROUND LEVEL + 3.74 mPD						
Progress Casing Gepth/size Casing Gepth/size Casing Gepth/size Avater Pactum % Varier R Q D % R Q D % F I F I	Gad Gad						
98/11/2010 SW 1 1 1 1 3 3 5 5 5 5 6	Grey (7.5YR/6/1), CONCRETE PAVIORS. Light yellowish brown (2.5Y/6/4), fine to coarse SAND with many angular to subangular medium gravel of moderately strong rock. (FILL) Light yellowish brown (2.5Y/6/4), grey (7.5YR/6/1), angular coarse GRAVEL and COBBLES of moderately strong to strong granite, concrete, brick and occasional wood and metal fragments. (FILL) 3.88 TO-18 4.70 TO-18 5.16 TO-18 6.08						
7 0 85 bls 81 bls 91 bls 93 bls 104 bls 108:00 330 104 bls	Light grey (10R/7/1), angular fine to medium GRAVEL of moderately strong granite and concrete with some matrix of silty sand. (FILL) Grey (7.5YR/6/1), angular to subangular medium GRAVEL with occasional angular cobbles of moderately strong granite, concrete and occasional wood. (FILL)						
Small Disturbed Sample Standard Penetration Test	LOGGED P. Zhang 17/11/2010 ERMARKS LOGGED P. Zhang 17/11/2010 17/11/2010 DATE 20/11/2010 DATE 20/11/						

DRILLHOLE RECORD	HOLE No.	L115BH-A

CONTRACT No.: KL/2009/02 SHEET: of 2 3 PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **Rotary Drilling CO-ORDINATES:** WORKS ORDER No. NIL Ε 841351.14 MACHINE & No.: FDR-03 DATE from: 08/11/2010 to 13/11/2010 818126.53 N FLUSHING MEDIUM: Distilled Water ORIENTATION: Vertical **GROUND LEVEL** mPD + 3.74 Water Ξ Reduced Level Casing depth/size Samples Leve Depth TCR% (m) Shift ROD Tests Legend Description start/ 표 -6.26 10.00 end As sheet 1 of 3. -10.50 11 85 bis Grey (7.5YR/6/1), angular coarse GRAVEL and COBBLES of strong granite with occasional brick, concrete and metal. (FILL) -11.80 12 T8-118 12.85 13 TB-116 -13.7514 Plnkish grey (7.5YR/7/2), angular COBBLES and coarse GRAVEL of strong granite. (FILL) T6-116 _ 15 2.70m at 16:00 2.90m 11/11/2010 at 08:00 78-16 16 16.08 T6-116 17 17.00 T6-116 18 18.22 TB-I18 _ 19 -19.03 **REMARKS** Small Disturbed Sample Standard Penetration Test In-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeability Test Pressuremeter Test U76 Undisturbed Sample U100 Undisturbed Sample DATE 17/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standplpe DATE 20/11/2010 SPT Liner Sample Plezometer Tip

DRILLHOLE	RECORD	HOLE No.	L	.115BH- <i>A</i>	4	
CONTRACT No :	KI /2009/02	SHEET.	3	of	3	

SERVICES LTD PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: Rotary Drilling **CO-ORDINATES:** WORKS ORDER No. NIL Ε 841351.14 MACHINE & No.: FDR-03 DATE from: 08/11/2010 13/11/2010 to Ν 818126.53 FLUSHING MEDIUM: **Distilled Water** ORIENTATION: Vertical **GROUND LEVEL** mPD + 3.74 Water Ξ Reduced Level Casing depth/size Level Samples Drilling Progress Я % Depth (m) RODS Legend Tests Grade Description Shift C start/ ш -16.26 20,00 end Туре As sheet 2 of 3. 77 bls -2033 -20.70 21 -21.18 TB-116 2.80m et 18:00 3,00m 13/11/201 at 08:00 -19.06 22.80 Soft, grey (7.5YR/6/1), mottled yellowish brown, slightly sandy, silty CLAY with occasional angular and rounded coarse gravel of moderately strong granite. (FILL) 23 42 bis 19.56 25 bls 23.3 - 23.8m: With 150mm rock core of granite. -20.06 18 17 Soft, grey (7.5YR/6/1), mottled light grey, sandy silty CLAY. (ALLUVIUM) 42 bis 24 24.05 24,35 Soft to firm, light yellowish brown, sandy silty CLAY. (ALLUVIUM) Soft to firm, light yellowish brown (2.5Y/6/4), -21.16 24.90 39 b)s mottled light grey, sandy clayey SILT. (ALLUVIUM) 25 PW 25,30 24.35m: 30mm thick, brown (7.5YR/3/4), 22 23 30 bls 2.60m dessication crust. et 18:00 -22,06 Light grey (10R/7/1), mottled yellowish brown, clayey silty coarse SAND. (ALLUVIUM) 13/11/201 26 End of investigation hole at 25.80m. 27 28 29 Small Disturbed Sample Standard Penetration Test REMARKS In-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeability Test Pressuremeter Test U76 Undisturbed Sample U100 Undisturbed Sample DATE 17/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample À Standpipe DATE 20/11/2010 SPT Liner Sample Piezometer Tip

SPT Liner Sample

Piezometer Tip

DRILLHOLE RECORD	HOLE No.		L115BH	-B	
CONTRACT No : KI /2009/02	SHEET.	1	of	3	

SERVICES LTD PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **CO-ORDINATES:** Rotary Drilling WORKS ORDER No. NIL Ε 841351.74 MACHINE & No.: FDR-03 DATE from: 13/11/2010 16/11/2010 818126.90 Ν FLUSHING MEDIUM: Distilled Water ORIENTATION: Vertical **GROUND LEVEL** + 3.73 mPD Water Ξ Reduced Level Casing depth/size Level Samples Drilling Progress Depth (m) Legend Tests ۵ Grade 'n Description Shift R O SC Wat start <u>u</u> 3.73 0.00 end Type 13/11/2010 SW Grey (7.5YR/6/1), CONCRETE PAVIORS Light yellowish brown (2.5Y/6/4), fine to coarse 8.68 SAND with many angular to subangular fine to medium gravel of moderately strong granite. 9.89 2 1:65 Grey (7.5YR/6/1), red (10R/5/8), light yellowish brown (2.5Y/6/4), angular medium to coarse GRAVEL and COBBLES of strong granite, concrete, brick and occasional wood and metal 0 2 ŔΤ 2.10 fragments (FILL) 2.10 - 3.65m: No recovery. 3 TB-IIA 15 28 5 TB-116 5,82 6 0 at 18:00 at 08:00 7.50 7.50 - 8.23m : No recovery. 8 TO-110 9 T6-II6 Small Disturbed Sample Standard Penetration Test In-situ Vane Shear Test An inspection pit was excavated to a depth of 1.80m.
 U100 samples were sent to the analytical laboratory from 22.85-23.30m, 23.35-23.80m, 23.85-24.30m, 24.35-24.80m, 24.85-25.30m and 25.35-25.80m. Piston sample LOGGED P. Zhang Permeability Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample Televiewer Survey DATE 17/11/2010 Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standplpe DATE 20/11/2010

100mm Vibrocore Sample Vibrocore Sub-sample

SPT Liner Sample

Standpipe

Piezometer Tip

DATE

20/11/2010

DRILLHOLE RECORD	HOLE No.	L115BH-B
CONTRACT No. 1/1 (0000/00	0.1557	

CONTRACT No.: KL/2009/02 2 of SHEET: 3 **SERVICES LTD** PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **Rotary Drilling CO-ORDINATES:** WORKS ORDER No. NIL Ε 841351.74 MACHINE & No.: FDR-03 DATE from: 13/11/2010 16/11/2010 to Ν 818126.90 FLUSHING MEDIUM: **Distilled Water** ORIENTATION: Vertical **GROUND LEVEL** mPD + 3.73 Water Reduced Level Ξ Casing depth/size Level Samples Drilling Progress SCR% Depth (m) Legend Water RaD9 Tests TCR Description Shift Ξ start/ 10.00 end Type Depth 10.00 Pinkish grey (7.5YR/7/2), angular COBBLES and BOULDERS with some angular coarse gravel of strong granite. (FILL) T8-110 11 1.35 -7.62 11.35 - 12.38m: No recovery. 12 13 TB-116 14 0 15 D TO-116 2.50m at 18:00 2,50m 15/11/2010 -16.00 at 08:00 TB-116 17 T8-16 18 18.16 TO-110 19 19 05 TB-199 REMARKS Small Disturbed Sample Standard Penetration Test In-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeability Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample Televiewer Survey DATE 17/11/2010 Mazier Sample 76mm Vibrocore Sample Impression Packer Test Water Sample CHECKED S.M. Pyle

DRILLHOLE RECORD	HOLE No.	L115BH-B
CONTRACT No : VI /2000/02	CUEET	2 - 5 2

CONTRACT No.: KL/2009/02 SHEET: PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **CO-ORDINATES:** WORKS ORDER No. NIL **Rotary Drilling** Ε 841351.74 MACHINE & No.: FDR-03 13/11/2010 16/11/2010 DATE from: to Ν 818126.90 FLUSHING MEDIUM: **Distilled Water ORIENTATION:** Vertical **GROUND LEVEL** + 3.73 mPD Water Ξ Reduced Casing depth/size Samples Level Drilling Progress Depth TCR% Level (m) Legend 2 Tests Description Shift R Q SC start/ ī -16-27 20.00 Туре Depth As sheet 2 of 3. -20.65 21 -21.38 22 TB-116 22 35 bis Soft to firm, light grey (10R/7/1), mottled yellowish brown, slightly sandy, silty CLAY. 23 (ALLUVIUM) 47 bls Firm, light yellowish brown (2.5Y/6/4), slightly sandy, silty CLAY. (ALLUVIUM) 23.75 -20.02 -20.17 25 bls Soft to firm, light yellowish brown (2.5Y/6/4), sandy clayey SILT. (ALLUVIUM). 31 bls 23.75 - 23.90m : With some subrounded to rounded medium to coarse gravel of quartz. Light grey (10R/7/1), streaked yellowish brown, clayey sity coarse SAND with occasional subrounded fine to coarse gravel of quartz. (ALLUVIUM) 21 bls 25 PW 25.35 25 his 2.60m Soft to firm, light grey (10R/7/1), mottled yellowish brown, sandy clayey SILT. (ALLUVIUM) End of investigation hole at 25.85m. 27 28 29 REMARKS Small Disturbed Sample Standard Penetration Test in-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeablilty Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample 17/11/2010 DATE Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample Impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standplpe DATE 20/11/2010 SPT Uner Sample Piezometer Tip

DRILLHOLE RECORD	
------------------	--

HOLE No.

L119BH-A

		\sim	i,	=UG	:PO	1			DRILLHOLE RECORD						HOLE	10.	_	. 1 130	11-7		
¥		$\stackrel{\widehat{\sim}}{\sim}$		GEC	TE	CHI			ONT	RACT	No.	.:	K∐2(09/02		SHEET:		1	of		2
PRO	PROJECT: Site Investigation for Trunk Road 1 METHOD: Rotary Drilling										uctu	re at S	outh A	Apron (Stag	je 1)					
MET	HOD:	F	Rota	ry Di	rilling	9				-ORDII			_		W	WORKS ORDER No. NIL					
MAC	HINE	& No.:	F	DR-1	7				E 839375.77 N 819991.35					D	ATE from:	12/1	1/2010	to	18/1	1/2010	
FLU	SHING	MED	IUM:	D	istill	ed W	/ate	•	OR	IENTA	TION	N: V	ertica		G	ROUND LEV	/EL	+ 5.04		mPD	
Drilling Progress	end									Samples Samples (a) Description (b) Description (c) Descriptio							Description	on			
_12/11/2010	SW	- Cina											E	0 0 0 0		Grey (7.5Yi	R/6/1),	CONCRE	TE.		
1	150.									1 INSPECTION PIT	9:55 9:65					Grey (7.5Yi many angul moderately	ar fine	to mediur	n grave	of	
12/11/2010 13/11/2010 - - 2 2	010 010 008 008 008									4	1.55 1.60 2.00		1.60			Light yellow angular me moderately	dium to	coarse C	SRAVE	_ of	•
_ 3	708 53 bis									7 8	2.45 2,50 2.95 3.00					Firm, yellow with some a	vish bro angular	own (10YF fine to m	R/5/6), s edium g	andy S gravel.	iLT (FILL)
13/11/2010 _15/11/2010 - - -		at 18:00 2.20m at 08:00		TOB				40 bls		9 10	3.45 3.50	1.04	4.00								
4				100				83 bis		11 12 13	4.00					Pinkish gre (2.5Y/6/4), gravel of m (FILL)	angulai	r COBBLE	ES with	some o	oarse
15/ 9 /2010 18/11/2010		0.70m at 18:00 2.40m at 08:00		86						PX	- 6.00	W.A.									
_ 7 -				100	100			105 bis		14	7.00 7. 5 5		7,00			Yellowish b SAND with to moderate	some t	fine to coa ng granite	rse gra . (FILL)	vel of v	reak
B				55						Takol	- 8,30					Pinkish gre with some o	y (7.5Y cobbles	(R/7/2), ar s of strong	ngular E granite	OULDI . (FILL	ERS)
9				63						T2101	9.50		- - - - - - -								
- 10 	Small Di	sturbed S	Sample	//	<u> </u>	Standa	ard Per	etration Test				-4.96	F 10.00	REM/	ARK	S					
	Piston si U76 Und U100 Ur Mazier S 76mm V 100mm	ample listurbed xdisturbec	Sampl I Samp Sampli Sampl	e ole	> X •• 1 ••	Perme Pressi Televi Packe	Vane s nability premet newer S r Test ssion P Sampl	Shear Test Test er Test urvey acker Test		DATE 19/11/2010 REMARKS 1. An inspection pit 2. U100 samples w 14.00-14.45m, 14 16.00-16.45m an					nples were sen .45m, 14.50-14	t to the .95m, 1	analytical 5.00-15.4	laborato	ry from	ōm,	
j		er Sample			Å		neter 1	Tip		DATE	25	/11/2010								lob No.:	

DRILLHOLE RECORD	HOLE No.	L119BH-A	
CONTRACT No : KL/2000/0	OUTET:	0	

KL/2009/02 SHEET: of 2 PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **Rotary Drilling CO-ORDINATES:** WORKS ORDER No. NIL Ε 839375.77 MACHINE & No.: FDR-17 DATE from: 12/11/2010 18/11/2010 N 819991.35 FLUSHING MEDIUM: Distilled Water **ORIENTATION:** Vertical **GROUND LEVEL** + 5.04 mPD Water Ē Reduced Level Casing depth/size Level Samples (m) Depth TCR9 ROD ĸ Tests Grade Description Shift SC ᇤ end 10.00 As sheet 1 of 2. 0.60m at 18:00 2.30m at 08:00 18/11/2010 11.00 T2101 \$W 12.00 PW 12 T2101 13 13.10 T2101 0.80m 40 bls Soft to firm, dark grey (5YR/4/1), silty CLAY with some shell fragments. (MARINE DEPOSIT) at 08:00 51 bls 15 Firm, olive (5Y/5/4), dappled grey, slightly sandy, silty CLAY with marine sand infilled within 61 bis alluvial cracks. (ALLUVIUM) 21 22 15.45 15.50 69 bls Light yellowish brown (2.5Y6/4), silty fine SAND with marine sand infilled within alluvial cracks. (ALLUVIUM) 16 23 24 PW 16.50 62 bls Olive grey (5Y/5/2), slightly slity, medium to coarse SAND with some rounded gravel of moderately strong granite. (ALLUVIUM) 16.70 9 -11.66 0.90m at 18:00 -11.96 17:00 Olive grey (5Y/5/2), silty fine SAND. ((ALLUVIUM) End of investigation hole at 17.00m. 18 19 Small Disturbed Sample REMARKS Standard Penetration Test Piston sample In-situ Vane Shear Test LOGGED P. Zhang U76 Undisturbed Sample Permeability Test Pressuremeter Test U100 Undisturbed Sample DATE 19/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample impression Packer Test CHECKED S.M. Pyle 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample Standpipa DATE 25/11/2010 SPT Uner Sample Plezometer Tip

Mazier Sample

76mm Vibrocore Sample

Vibrocore Sub-sample

SPT Liner Sample

100mm Vibrocore Sample

Packer Test

Water Sample

Piezometer Tip

Standpipe

Impression Packer Test

DRILLHOLE RECORD

HOLE No.

L119BH-B

CONTRACT No.: KL/2009/02 SHEET: 1 of 2 **SERVICES LTD** PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: **CO-ORDINATES:** WORKS ORDER No. NIL Rotary Drilling Ε 839376.20 MACHINE & No.: FDR-17 DATE from: 18/11/2010 to 23/11/2010 Ν 819991.00 **Distilled Water** FLUSHING MEDIUM: **ORIENTATION:** Vertical **GROUND LEVEL** + 5.02 mPD Wate Reduced Level Ξ Casing depth/size Level Samples Depth (m) Legend ۵ Tests Description Water Grade œ α Shiff SC RO JC start Ш 5.02 0.00 end Туре 18/11/2010 SW Grey (7.5YR/6/1), CONCRETE. 4.0 0.0 B:50 늗 Light yellowish brown (2.5Y/6/4), silty fine to coarse SAND with many angular fine to coarse gravel of moderately strong to strong granite. (FILL) 1 2 P-95 1:55 .60 18/11/2010 Light yellowish brown (2.5Y/6/4), red (10R/5/8), angular medium to coarse GRAVEL and 70 2 3.02 COBBLES of moderately strong granite and 91 bls brick. (FILL) Firm, yellowish brown (10R/5/6), sandy SILT with 2.45 2.50 101 bls some angular fine to coarse gravel of moderately strong granite (FILL). 3 3.06 Pinkish grey (7.5YR/7/2), angular BOULDERS of strong granite. (FILL) T6-146 3.80 70 5 5.00 70 T0-146 6 87 bis Yellowish brown (10YR/5/6), silty fine to coarse SAND with some angular fine to coarse gravel of moderately strong granite. (FILL) 80 bls 1.00m at 18:00 2.00m 7.96 Pinkish grey (7.5YR/7/2), angular BOULDERS with some COBBLES of moderately strong to at 08:00 strong granite. (FILL) 70 T6-148 8 8.00 70 TB-146 9 9.00 T8-146 Standard Penetration Test Small Disturbed Sample In-situ Vana Shear Test An inspection pit was excavated to a depth of 1.60m.
 U100 samples were sent to the analytical laboratory from 13.50-13.95m, 14.00-14.45m, 14.50-14.95m, 15.00-15.45m, 15.50-15.95m, 16.00-16.45m and 16.50-16.95m. Piston sample LOGGED P. Zhang Permeability Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample Televiewer Survey DATE 22/11/2010

CHECKED S.M. Pyle

07/12/2010

DATE

SPT Liner Sample

Piezometer Tip

DRILLHOLE RECORD	HOLE No.	L119BH-B
CONTRACT No. 1/1/2000/00		

CONTRACT No.: KL/2009/02 SHEET: 2 2 of **SERVICES LTD** PROJECT: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1) METHOD: Rotary Drilling **CO-ORDINATES:** WORKS ORDER No. NIL Ε 839376.20 MACHINE & No.: FDR-17 DATE from: 18/11/2010 23/11/2010 to Ν 819991.00 FLUSHING MEDIUM: **Distilled Water** ORIENTATION: Vertical **GROUND LEVEL** mPD +5.02Water Casing depth/size Level Samples Drilling Progress Leve Depth (m) Tests Legend TCR Δ Description CR Shift R O Retu start ш 10.00 end As sheet 1 of 2. 1.00m 18:00 2.20m at 08:00 20/11/2010 10.50 11 70 23 1.80 12 TR-145 15 13 Soft to firm, dark grey (5YR/4/1), slightly sandy, silty CLAY with some shell fragments. (MARINE DEPOSIT) 12 14.00 14 60 bis Soft to firm, light greenish grey (5G/7/1), dappled grey, sandy silty CLAY with pockets of marine silty clay infilled within alluvial cracks. 52 bls (ALLUVIUM). 68 bis Olive (5Y/5/4), dappled grey, slightly clayey, silty fine SAND with occasional rounded medium 54 bis gravel of moderately strong quartz and marine clayey silt infilled within alluvial cracks. (ALLUVIUM) 16 63 bis Light yellowish brown (2.5Y/6/4), slightly clayey silty fine to coarse SAND with some rounded coarse gravel of moderately strong granite and tuff. (ALLUVIUM) 64 bis 11.78 16,80 Olive (5Y/5/4), striped yellowish brown, silty fine SAND. (ALLUVIUM) -11.98 17.00 201701 Light yellowish brown (2.5Y/6/4), medium to coarse SAND. (ALLUVIUM) End of investigation hole at 17.00m. 18 19 REMARKS Small Disturbed Sample Standard Penetration Test In-situ Vane Shear Test Piston sample LOGGED P. Zhang Permeability Test U76 Undisturbed Sample Pressuremeter Test U100 Undisturbed Sample DATE 22/11/2010 Televiewer Survey Mazier Sample Packer Test 76mm Vibrocore Sample CHECKED S.M. Pyle Impression Packer Test 100mm Vibrocore Sample Water Sample Vibrocore Sub-sample 07/12/2010

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : CIVIL ENGINEERING AND DEVELOPMENT

DEPARTMENT

: MR JAMES PENNY Contact

Address : 47/F., HOPEWELL CENTRE,

183 QUEEN'S ROAD EAST,

WAN CHAI, HONG KONG

E-mail : james.penny@hyderconsulting.com

Telephone : +852 2911 2048

Facsimile

Project : SITE INVESTIGATION FOR TRUNK ROAD T2

AND INFRASTRUCTURE AT SOUTH APRON

(STAGE 1)

Order number : KL/2009/02

C-O-C number

Site : L106BH Laboratory

: ALS Technichem HK Pty Ltd

Contact : Chan Kwok Fai, Godfrey

Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

Telephone : +852 2610 1044 Facsimile : +852 2610 2021

Quote number

Page

Work Order

: HK1026133

: 1 of 9

Date Samples Received : 29-OCT-2010

Issue Date : 18-NOV-2010

No. of samples received : 2 No. of samples analysed : 2

This report may not be reproduced except with prior written approval from the testing laboratory. Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for Anh Ngoc Huynh Senior Chemist - Organics **Organics** Chan Siu Ming, Vico Senior Chemist Inorganics Wong Wing, Kenneth **Assistant Supervisor** Inorganics

Page Number : 2 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 14-NOV-2010

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1026133**

Project Name: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1).

Sample(s) were received in a chilled condition.

Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment sample(s) as received, digested by In-house method EG-3051A based on USEPA method 3051a, prior to the determination of metals.

Analysis of Tributyltin in interstitial water was cancelled due to insufficient volume of interstitial water.

"Total PCBs" results (Method: EP065) are not HOKLAS accredited. The values are calculated from summation of the 18 PCB congeners, based on Limit of Detection (LOD) of 1 ug/kg.

Sediment Grain Size and Moisture content were subcontracted and tested by MaterialLab Limited.

Page Number : 3 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

Analytical Results

Allalytical Nesults							
Sub-Matrix: SEDIMENT		Cli	ent sample ID	L106BH	L106BH		
				14.0-14.9M (A&B)	14.9-15.2M (A)		
	Cli	ent sampli	ng date / time	29-OCT-2010 15:00	29-OCT-2010 15:50		
Compound	CAS Number	LOR	Unit	HK1026133-001	HK1026133-002		
EA/ED: Physical and Aggregate Properties							
EA055: Moisture Content (dried @		0.1	%	21.2	28.6		
103°C)							
EG: Metals and Major Cations							
EG020: Arsenic	7440-38-2	1	mg/kg	6	6		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2		
EG020: Chromium	7440-47-3	1	mg/kg	24	26		
EG020: Copper	7440-50-8	1	mg/kg	6	10		
EG020: Lead	7439-92-1	1	mg/kg	18	18		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05		
EG020: Nickel	7440-02-0	1	mg/kg	13	15		
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1		
EG020: Zinc	7440-66-6	1	mg/kg	49	155		
EP: Aggregate Organics							
EP005: Total Organic Carbon		0.05	%	0.90	0.37		
EP-065: PCB Single Congeners							
PCB 8	34883-43-7	3	μg/kg	<3	<3		
PCB 18	37680-65-2	3	μg/kg	<3	<3		
PCB 28	7012-37-5	3	μg/kg	<3	<3		
PCB 44	41464-39-5	3	μg/kg	<3	<3		
PCB 52	35693-99-3	3	μg/kg	<3	<3		
PCB 66	32598-10-0	3	μg/kg	<3	<3		
PCB 77	32598-13-3	3	μg/kg	<3	<3		
PCB 101	37680-73-2	3	μg/kg	<3	<3		
PCB 105	32598-14-4	3	μg/kg	<3	<3		
PCB 118	31508-00-6	3	μg/kg	<3	<3		
PCB 126	57465-28-8	3	μg/kg	<3	<3		
PCB 128	38380-07-3	3	μg/kg	<3	<3		
PCB 138	35065-28-2	3	μg/kg	<3	<3		
PCB 153	35065-27-1	3	μg/kg	<3	<3		
PCB 169	32774-16-6	3	μg/kg	<3	<3		
PCB 170	35065-30-6	3	μg/kg	<3	<3		
PCB 180	35065-29-3	3	μg/kg	<3	<3		
PCB 187	52663-68-0	3	μg/kg	<3	<3		
Total Polychlorinated biphenyls		18	μg/kg	<18	<18		
EP-076A: Polycyclic Aromatic Hydrocarbons	(PAHs)						
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50		

Page Number : 4 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

Sub-Matrix: SEDIMENT		Clie	ent sample ID	L106BH	L106BH	
				14.0-14.9M (A&B)	14.9-15.2M (A)	
	Clie	ent sampli	ng date / time	29-OCT-2010 15:00	29-OCT-2010 15:50	
Compound	CAS Number	LOR	Unit	HK1026133-001	HK1026133-002	
EP-076A: Polycyclic Aromatic Hydrocarbo	ons (PAHs) - Continued	i				· · · · · · · · · · · · · · · · · · ·
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	
EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	
EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	
EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	
EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	
EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	
EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	
EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	
EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	
EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	
EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	
EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	
EP-076S: Polycyclic Aromatics Hydrocarbo	ons (PAHs) Surrogates					Surrogate control limits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	75.6	73.7	
4-Terphenyl-d14	1718-51-0	0.1	%	74.6	75.0	
EP-065S: PCB Congeners and Organochlor	rine Pesticides Surrog	ate	-			Surrogate control limits listed at end of this report.
Decachlorobiphenyl	2051-24-3	0.1	%	122	129	

Page Number : 5 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

Laboratory Duplicate (DUP) Report

atrix: SOIL					Laboratory Duplicate (DUP) Report					
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
A/ED: Physical and	d Aggregate Properties (QC	Lot: 1553313)								
łK1026133-001	L106BH 14.0-14.9M (A&B)	EA055: Moisture Content (dried @ 103°C)		0.1	%	21.2	25.1	17.1		
G: Metals and Majo	or Cations (QC Lot: 1553179	9)								
IK1026133-002	L106BH 14.9-15.2M (A)	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0		
		EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.0		
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0		
		EG020: Arsenic	7440-38-2	1	mg/kg	6	6	0.0		
		EG020: Chromium	7440-47-3	1	mg/kg	26	26	0.0		
		EG020: Copper	7440-50-8	1	mg/kg	10	11	0.0		
		EG020: Lead	7439-92-1	1	mg/kg	18	19	0.0		
		EG020: Nickel	7440-02-0	1	mg/kg	15	16	0.0		
		EG020: Zinc	7440-66-6	1	mg/kg	155	134	14.5		
P: Aggregate Orga	nics (QC Lot: 1557509)									
łK1026133-001	L106BH 14.0-14.9M (A&B)	EP005: Total Organic Carbon		0.05	%	0.90	1.00	10.4		
P-065: PCB Single	Congeners (QC Lot: 155502	-								
IK1026133-001	L106BH 14.0-14.9M (A&B)	Total Polychlorinated biphenyls		18	μg/kg	<18	<18	0.0		
		PCB 8	34883-43-7	3	μg/kg	<3	<3	0.0		
		PCB 18	37680-65-2	3	μg/kg	<3	<3	0.0		
		PCB 28	7012-37-5	3	μg/kg	<3	<3	0.0		
		PCB 44	41464-39-5	3	μg/kg	<3	<3	0.0		
		PCB 52	35693-99-3	3	μg/kg	<3	<3	0.0		
		PCB 66	32598-10-0	3	μg/kg	<3	<3	0.0		
		PCB 77	32598-13-3	3	μg/kg	<3	<3	0.0		
		PCB 101	37680-73-2	3	μg/kg	<3	<3	0.0		
		PCB 105	32598-14-4	3	μg/kg	<3	<3	0.0		
		PCB 118	31508-00-6	3	μg/kg	<3	<3	0.0		
		PCB 126	57465-28-8	3	μg/kg	<3	<3	0.0		
		PCB 128	38380-07-3	3	μg/kg	<3	<3	0.0		
		PCB 138	35065-28-2	3	μg/kg	<3	<3	0.0		
		PCB 153	35065-27-1	3	μg/kg	<3	<3	0.0		
		PCB 169	32774-16-6	3	μg/kg	<3	<3	0.0		
		PCB 170	35065-30-6	3	μg/kg	<3	<3	0.0		
		PCB 180	35065-29-3	3	μg/kg	<3	<3	0.0		
		PCB 187	52663-68-0	3	μg/kg	<3	<3	0.0		
P-076A: Polycyclic	Aromatic Hydrocarbons (PA	AHs) (QC Lot: 1555027)								
K1026133-001	L106BH 14.0-14.9M (A&B)	EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	0.0		
		EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	0.0		
		EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	0.0		
		EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	0.0		
		EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	0.0		

Page Number : 6 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

Matrix: SOIL					La	boratory Duplicate (DUP) i	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-076A: Polycyclic	Aromatic Hydrocarbons (P.	AHs) (QC Lot: 1555027) - Continued						
HK1026133-001	L106BH 14.0-14.9M (A&B)	EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	0.0
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	0.0
		EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	0.0
		EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	0.0
		EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	0.0
		EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	0.0
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	0.0
		EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	0.0
		EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)) Report		Laboratory Control	Spike (LCS) and Lab	ooratory Control	Spike Duplicate	e (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RI	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 15	53179)										
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	91.6		85	115		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	91.8		85	115		
EG020: Chromium	7440-47-3	1	mg/kg	<1	5 mg/kg	101		85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	101		85	115		
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	96.9		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	95.1		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	96.8		85	115		
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	96.8		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	104		85	115		
EP: Aggregate Organics (QC Lot: 1557509)										
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	114		85	115		
EP-065: PCB Single Congeners (QC Lot: 1	555026)										
PCB 8	34883-43-7	3	μg/kg	<3	5 μg/kg	83.3		47	131		
PCB 18	37680-65-2	3	μg/kg	<3	5 μg/kg	87.8		38	147		
PCB 28	7012-37-5	3	μg/kg	<3	5 μg/kg	81.6		36	134		
PCB 44	41464-39-5	3	μg/kg	<3	5 μg/kg	81.1		24	149		
PCB 52	35693-99-3	3	μg/kg	<3	5 μg/kg	81.0		28	149		
PCB 66	32598-10-0	3	μg/kg	<3	5 μg/kg	82.6		31	135		
PCB 77	32598-13-3	3	μg/kg	<3	5 μg/kg	79.8		38	123		
PCB 101	37680-73-2	3	μg/kg	<3	5 μg/kg	83.7		44	121		
PCB 105	32598-14-4	3	μg/kg	<3	5 μg/kg	81.2		41	123		

Page Number

: 7 of 9

: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT Client

Work Order HK1026133

Matrix: SOIL			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Labo	ratory Control	Spike Duplicat	te (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-065: PCB Single Congeners (QC Lot: 15	55026) - Continue	ed									
PCB 118	31508-00-6	3	μg/kg	<3	5 μg/kg	98.7		45	119		
PCB 126	57465-28-8	3	μg/kg	<3	5 μg/kg	110		40	119		
PCB 128	38380-07-3	3	μg/kg	<3	5 μg/kg	106		46	120		
PCB 138	35065-28-2	3	μg/kg	<3	5 μg/kg	113		45	117		
PCB 153	35065-27-1	3	μg/kg	<3	5 μg/kg	109		43	121		
PCB 169	32774-16-6	3	μg/kg	<3	5 μg/kg	124		43	127		
PCB 170	35065-30-6	3	μg/kg	<3	5 μg/kg	89.0		43	124		
PCB 180	35065-29-3	3	μg/kg	<3	5 μg/kg	92.3		42	124		
PCB 187	52663-68-0	3	μg/kg	<3	5 μg/kg	113		43	124		
Total Polychlorinated biphenyls		18	μg/kg	<18							
EP-076A: Polycyclic Aromatic Hydrocarbons	(PAHs) (QC Lot	: 1555027)									
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	250 μg/kg	87.7		57	119		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	250 µg/kg	77.4		60	113		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	250 µg/kg	81.0		64	113		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	250 µg/kg	79.1		61	118		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	250 µg/kg	81.7		57	123		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	250 μg/kg	82.5		65	109		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	250 μg/kg	82.8		58	124		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	250 µg/kg	84.0		59	127		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	250 µg/kg	86.9		56	116		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	250 µg/kg	88.5		72	118		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	250 µg/kg	90.9		50	116		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	250 µg/kg	88.4		67	121		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	250 µg/kg	98.4		55	133		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	250 μg/kg	91.2		56	108		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	250 μg/kg	88.4		45	117		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	250 μg/kg	93.4		53	118		
EP076HK: Low M.W. PAHs		550	μg/kg	<550							
EP076HK: High M.W. PAHs		1700	μg/kg	<1700							

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report										
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)					
Laboratory sample	Client sample ID	CAS	Concentration	MS	MSD	Low	High	Value	Control					
ID			Number							Limit				
EG: Metals and Majo	or Cations (QC Lot: 1553179)													
HK1026133-001	L106BH 14.0-14.9M (A&B)	EG020: Arsenic	7440-38-2	5 mg/kg	96.2	95.4	75	125	0.8	25				
		EG020: Cadmium	7440-43-9	5 mg/kg	93.8	96.8	75	125	3.1	25				
		EG020: Chromium	7440-47-3	5 mg/kg	85.6	85.8	75	125	0.4	25				

Page Number : 8 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

Matrix: SOIL					Matrix Sp	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike R	ecovery (%)	Recovery Limits (%)		RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and Majo	r Cations (QC Lot: 1553179)	- Continued								
HK1026133-001	L106BH 14.0-14.9M (A&B)	EG020: Copper	7440-50-8	5 mg/kg	86.7	92.6	75	125	6.6	25
		EG020: Lead	7439-92-1	5 mg/kg	85.6	85.6	75	125	0.0	25
		EG020: Mercury	7439-97-6	0.1 mg/kg	100	105	75	125	4.4	25
		EG020: Nickel	7440-02-0	5 mg/kg	86.9	86.9	75	125	0.0	25
		EG020: Silver	7440-22-4	5 mg/kg	93.8	94.8	75	125	1.1	25
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
EP: Aggregate Organ	nics (QC Lot: 1557509)									
HK1026133-002	L106BH 14.9-15.2M (A)	EP005: Total Organic Carbon		40 %	106		75	125		
FP-065: PCR Single	Congeners (QC Lot: 1555026					'			1	
HK1026133-002	L106BH 14.9-15.2M (A)	PCB 8	34883-43-7	5 µg/kg	103		50	130		
		PCB 18	37680-65-2	5 µg/kg	81.4		50	130		
		PCB 28	7012-37-5	5 μg/kg	73.8		50	130		
		PCB 44	41464-39-5	5 µg/kg	71.8		50	130		
		PCB 52	35693-99-3	5 μg/kg	75.4		50	130		
		PCB 66	32598-10-0	5 μg/kg	75.6		50	130		
		PCB 77	32598-13-3	5 µg/kg	82.0		50	130		
		PCB 101	37680-73-2	5 μg/kg	81.8		50	130		
		PCB 105	32598-14-4	5 μg/kg	75.7		50	130		
		PCB 118	31508-00-6	5 μg/kg	114		50	130		
		PCB 126	57465-28-8	5 μg/kg	101		50	130		
		PCB 128	38380-07-3	5 μg/kg	97.8		50	130		
		PCB 138	35065-28-2	5 μg/kg	99.6		50	130		
		PCB 153	35065-27-1	5 μg/kg	119		50	130		
		PCB 169	32774-16-6	5 μg/kg	114		50	130		
		PCB 170	35065-30-6	5 μg/kg	80.8		50	130		
		PCB 180	35065-29-3	5 μg/kg	110		50	130		
		PCB 187	52663-68-0	5 μg/kg	101		50	130		
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAI									
HK1026133-002	L106BH 14.9-15.2M (A)	EP076HK: Naphthalene	91-20-3	250 μg/kg	80.0		50	130		
		EP076HK: Acenaphthylene	208-96-8	250 μg/kg	70.3		50	130		
		EP076HK: Acenaphthene	83-32-9	250 μg/kg	73.0		50	130		
		EP076HK: Fluorene	86-73-7	250 μg/kg	69.2		50	130		
		EP076HK: Phenanthrene	85-01-8	250 μg/kg	72.0		50	130		
		EP076HK: Anthracene	120-12-7	250 μg/kg	69.1		50	130		
		EP076HK: Fluoranthene	206-44-0	250 μg/kg	72.9		50	130		
		EP076HK: Pyrene	129-00-0	250 μg/kg	73.4		50	130		
		EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	72.3		50	130		
		EP076HK: Chrysene	218-01-9	250 μg/kg	75.2		50	130		

Page Number : 9 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026133

latrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)			
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control		
ID			Number							Limit		
EP-076A: Polycyclic	Aromatic Hydrocarbons (P.	AHs) (QC Lot: 1555027) - Continued										
HK1026133-002	L106BH 14.9-15.2M (A)	EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	74.1		50	130				
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	74.8		50	130				
		EP076HK: Benzo(a)pyrene	50-32-8	250 μg/kg	81.8		50	130				
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	69.2		50	130				
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	69.4		50	130				
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 μg/kg	75.0		50	130				

Surrogate Control Limits

Sub-Matrix: SEDIMENT	Recovery Limits (%)									
Compound	Low	High								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates										
2-Fluorobiphenyl	321-60-8	50	130							
4-Terphenyl-d14	1718-51-0	50	130							
EP-065S: PCB Congeners and Organochlorine Pesticides Surrogate										
Decachlorobiphenyl	2051-24-3	50	130							

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : CIVIL ENGINEERING AND DEVELOPMENT

DEPARTMENT

: MR JAMES PENNY Contact

Address : 47/F., HOPEWELL CENTRE,

183 QUEEN'S ROAD EAST,

WAN CHAI, HONG KONG

E-mail : james.penny@hyderconsulting.com

Telephone : +852 2911 2048

Facsimile

Project : SITE INVESTIGATION FOR TRUNK ROAD T2

AND INFRASTRUCTURE AT SOUTH APRON

(STAGE 1)

Order number : KL/2009/02

C-O-C number

accreditation.

Site : L102BH Laboratory

Contact

Address

: ALS Technichem HK Pty Ltd

: Chan Kwok Fai, Godfrey

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

Telephone : +852 2610 1044 Facsimile : +852 2610 2021

Hong Kong, Chapter 553, Section 6.

Quote number

Page

Work Order

: 1 of 9

: HK1026849

Issue Date

Date Samples Received

: 19-NOV-2010

: 04-NOV-2010

No. of samples received : 3 No. of samples analysed : 3

This report may not be reproduced except with prior written This document has been electronically signed by those names that appear on this report and are the authorised signatories. approval from the testing laboratory. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of

Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of

Anh Ngoc Huynh Chan Siu Ming, Vico Wong Wing, Kenneth

Signatories

Position

Senior Chemist - Organics

Senior Chemist **Assistant Supervisor** Authorised results for

Organics Inorganics Inorganics Page Number : 2 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

ALS

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 18-NOV-2010

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1026849**

Project Name: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1).

Sample(s) were received in a chilled condition.

Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment sample(s) as received, digested by In-house method EG-3051A based on USEPA method 3051a, prior to the determination of metals.

Analysis of Tributyltin in interstitial water was cancelled due to insufficient volume of interstitial water.

"Total PCBs" results (Method: EP065) are not HOKLAS accredited. The values are calculated from summation of the 18 PCB congeners, based on Limit of Detection (LOD) of 1 ug/kg.

Sediment Grain Size and Moisture content were subcontracted and tested by MaterialLab Limited.

Page Number : 3 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Analytical Results

Client comple ID							
Sub-Matrix: SEDIMENT		Clie	ent sample ID	L102BH	L102BH	L102BH	
	- ··			13.4-14.3M (E&F)	14.3-15.3M (E&F)	15.3-15.5M (F)	
	Cli	ent sampli	ng date / time	04-NOV-2010 14:35	04-NOV-2010 16:00	11-NOV-2010 09:50	
Compound	CAS Number	LOR	Unit	HK1026849-001	HK1026849-002	HK1026849-003	
EG: Metals and Major Cations							
EG020: Arsenic	7440-38-2	1	mg/kg	5	6	5	
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	mg/kg	21	24	20	
EG020: Copper	7440-50-8	1	mg/kg	6	6	6	
EG020: Lead	7439-92-1	1	mg/kg	19	16	15	
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	<0.05	
EG020: Nickel	7440-02-0	1	mg/kg	14	15	13	
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1	
EG020: Zinc	7440-66-6	1	mg/kg	100	69	102	
EP: Aggregate Organics							
EP005: Total Organic Carbon		0.05	%	1.46	1.38	0.32	
EP-065: PCB Single Congeners	'						'
PCB 8	34883-43-7	3	μg/kg	<3	<3	<3	
PCB 18	37680-65-2	3	μg/kg	<3	<3	<3	
PCB 28	7012-37-5	3	μg/kg	<3	<3	<3	
PCB 44	41464-39-5	3	μg/kg	<3	<3	<3	
PCB 52	35693-99-3	3	μg/kg	<3	<3	<3	
PCB 66	32598-10-0	3	μg/kg	<3	<3	<3	
PCB 77	32598-13-3	3	μg/kg	<3	<3	<3	
PCB 101	37680-73-2	3	μg/kg	<3	<3	<3	
PCB 105	32598-14-4	3	μg/kg	<3	<3	<3	
PCB 118	31508-00-6	3	μg/kg	<3	<3	<3	
PCB 126	57465-28-8	3	μg/kg	<3	<3	<3	
PCB 128	38380-07-3	3	μg/kg	<3	<3	<3	
PCB 138	35065-28-2	3	μg/kg	<3	<3	<3	
PCB 153	35065-27-1	3	μg/kg	<3	<3	<3	
PCB 169	32774-16-6	3	μg/kg	<3	<3	<3	
PCB 170	35065-30-6	3	μg/kg	<3	<3	<3	
PCB 180	35065-29-3	3	μg/kg	<3	<3	<3	
PCB 187	52663-68-0	3	μg/kg	<3	<3	<3	
Total Polychlorinated biphenyls		18	μg/kg	<18	<18	<18	
EP-076A: Polycyclic Aromatic Hydrocarbons	(PAHs)						•
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	<50	
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	<50	
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	<50	
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	<50	
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	<50	

Page Number : 4 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Sub-Matrix: SEDIMENT		Clie	ent sample ID	L102BH 13.4-14.3M (E&F)	L102BH 14.3-15.3M (E&F)	L102BH 15.3-15.5M (F)		
	Clie	ent sampli	ng date / time	04-NOV-2010 14:35	04-NOV-2010 16:00	11-NOV-2010 09:50		
Compound	CAS Number	LOR	Unit	HK1026849-001	HK1026849-002	HK1026849-003		
EP-076A: Polycyclic Aromatic Hydrocarbons (I	PAHs) - Continued	ł						
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	<50		
EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	<150		
EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	<150		
EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	<150		
EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	<150		
EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	<150		
EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	<150		
EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	<150		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	<150		
EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	<150		
EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	<150		
EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	<550		
EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	<1700		
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates	;					Surrogate control lin	mits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	75.1	65.8	76.2		
4-Terphenyl-d14	1718-51-0	0.1	%	80.6	69.6	86.0		
EP-065S: PCB Congeners and Organochlorine	Pesticides Surrog	ate					Surrogate control lin	mits listed at end of this report.
Decachlorobiphenyl	2051-24-3	0.1	%	75.2	61.3	77.4		

Page Number : 5 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Laboratory Duplicate (DUP) Report

latrix: SOIL				Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
G: Metals and Mai	or Cations (QC Lot: 156154	.8)								
IK1026728-003	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0		
		EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.0		
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0		
		EG020: Arsenic	7440-38-2	1	mg/kg	6	6	0.0		
		EG020: Chromium	7440-47-3	1	mg/kg	24	24	0.0		
		EG020: Copper	7440-50-8	1	mg/kg	7	7	0.0		
		EG020: Lead	7439-92-1	1	mg/kg	17	17	0.0		
		EG020: Nickel	7440-02-0	1	mg/kg	15	15	0.0		
		EG020: Zinc	7440-66-6	1	mg/kg	50	49	0.0		
K1026899-003	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0		
		EG020: Silver	7440-22-4	0.1	mg/kg	0.1	0.2	0.0		
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0		
		EG020: Arsenic	7440-38-2	1	mg/kg	6	7	0.0		
		EG020: Chromium	7440-47-3	1	mg/kg	24	26	6.5		
		EG020: Copper	7440-50-8	1	mg/kg	21	21	0.0		
		EG020: Lead	7439-92-1	1	mg/kg	22	24	9.2		
		EG020: Nickel	7440-02-0	1	mg/kg	15	15	0.0		
		EG020: Zinc	7440-66-6	1	mg/kg	51	52	3.2		
P: Aggregate Orga	anics (QC Lot: 1562495)		·							
IK1026728-001	Anonymous	EP005: Total Organic Carbon		0.05	%	1.09	1.11	1.9		
K1026899-005	Anonymous	EP005: Total Organic Carbon		0.05	%	0.68	0.66	2.5		
P-065: PCB Single	Congeners (QC Lot: 15598	335)	·							
K1026849-001	L102BH 13.4-14.3M (E&F)	Total Polychlorinated biphenyls		18	μg/kg	<18	<18	0.0		
		PCB 8	34883-43-7	3	μg/kg	<3	<3	0.0		
		PCB 18	37680-65-2	3	μg/kg	<3	<3	0.0		
		PCB 28	7012-37-5	3	μg/kg	<3	<3	0.0		
		PCB 44	41464-39-5	3	μg/kg	<3	<3	0.0		
		PCB 52	35693-99-3	3	μg/kg	<3	<3	0.0		
		PCB 66	32598-10-0	3	μg/kg	<3	<3	0.0		
		PCB 77	32598-13-3	3	μg/kg	<3	<3	0.0		
		PCB 101	37680-73-2	3	μg/kg	<3	<3	0.0		
		PCB 105	32598-14-4	3	μg/kg	<3	<3	0.0		
		PCB 118	31508-00-6	3	μg/kg	<3	<3	0.0		
		PCB 126	57465-28-8	3	μg/kg	<3	<3	0.0		
		PCB 128	38380-07-3	3	μg/kg	<3	<3	0.0		
		PCB 138	35065-28-2	3	μg/kg	<3	<3	0.0		
		PCB 153	35065-27-1	3	μg/kg	<3	<3	0.0		
		PCB 153 PCB 169	35065-27-1 32774-16-6	3	µg/kg µg/kg	<3	<3	0.0		

Page Number : 6 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
P-065: PCB Single	Congeners (QC Lot: 15598	35) - Continued								
HK1026849-001	L102BH 13.4-14.3M (E&F)	PCB 180	35065-29-3	3	μg/kg	<3	<3	0.0		
		PCB 187	52663-68-0	3	μg/kg	<3	<3	0.0		
EP-076A: Polycyclic	Aromatic Hydrocarbons (P	AHs) (QC Lot: 1559836)	·							
HK1026849-001	L102BH 13.4-14.3M (E&F)	EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	0.0		
		EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	0.0		
		EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	0.0		
	EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	0.0			
		EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	0.0		
		EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	0.0		
		EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	0.0		
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	0.0		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	0.0		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	0.0		
		EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	0.0		
		EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	0.0		
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	0.0		
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	0.0		
		EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	0.0		
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	0.0		
		EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	0.0		
		EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (Mi	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Spi	Spike Re	Spike Recovery (%)		Recovery Limits (%)		PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations (QC Lot	: 1561548)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	100		85	115			
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	92.9		85	115			
EG020: Chromium	7440-47-3	1	mg/kg	<1	5 mg/kg	93.9		85	115			
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	97.3		85	115			
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	87.4		85	115			
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	92.5		85	115			
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	93.4		85	115			
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	97.1		85	115			
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	101		85	115			
EP: Aggregate Organics (QC Lot: 1562	2495)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	108		85	115			
EP-065: PCB Single Congeners (QC Lo	ot: 1559835)											
PCB 8	34883-43-7	3	μg/kg	<3	5 μg/kg	78.5		47	131			

Page Number : 7 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Matrix: SOIL			Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Lai	boratory Control	Spike Duplicate	te (DCS) Report		
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	R	PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EP-065: PCB Single Congeners (QC Lo	ot: 1559835) - Continue	ed										
PCB 18	37680-65-2	3	μg/kg	<3	5 μg/kg	51.4		38	147			
PCB 28	7012-37-5	3	μg/kg	<3	5 μg/kg	40.3		36	134			
PCB 44	41464-39-5	3	μg/kg	<3	5 μg/kg	43.5		24	149			
PCB 52	35693-99-3	3	μg/kg	<3	5 μg/kg	43.0		28	149			
PCB 66	32598-10-0	3	μg/kg	<3	5 μg/kg	45.8		31	135			
PCB 77	32598-13-3	3	μg/kg	<3	5 μg/kg	55.8		38	123			
PCB 101	37680-73-2	3	μg/kg	<3	5 μg/kg	48.1		44	121			
PCB 105	32598-14-4	3	μg/kg	<3	5 μg/kg	54.9		41	123			
PCB 118	31508-00-6	3	μg/kg	<3	5 μg/kg	74.0		45	119			
PCB 126	57465-28-8	3	μg/kg	<3	5 μg/kg	57.8		40	119			
PCB 128	38380-07-3	3	μg/kg	<3	5 μg/kg	51.4		46	120			
PCB 138	35065-28-2	3	μg/kg	<3	5 μg/kg	55.5		45	117			
PCB 153	35065-27-1	3	μg/kg	<3	5 μg/kg	80.9		43	121			
PCB 169	32774-16-6	3	μg/kg	<3	5 μg/kg	57.5		43	127			
PCB 170	35065-30-6	3	μg/kg	<3	5 μg/kg	54.4		43	124			
PCB 180	35065-29-3	3	μg/kg	<3	5 μg/kg	53.5		42	124			
PCB 187	52663-68-0	3	μg/kg	<3	5 μg/kg	53.4		43	124			
Total Polychlorinated biphenyls		18	μg/kg	<18								
EP-076A: Polycyclic Aromatic Hydrocal	rbons (PAHs) (QC Lot	1559836)										
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	250 μg/kg	65.1		57	119			
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	250 μg/kg	72.1		60	113			
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	250 μg/kg	82.7		64	113			
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	250 μg/kg	63.9		61	118			
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	250 μg/kg	64.8		57	123			
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	250 μg/kg	66.5		65	109			
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	250 μg/kg	66.2		58	124			
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	250 μg/kg	66.0		59	127			
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	250 μg/kg	66.3		56	116			
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	250 μg/kg	73.5		72	118			
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	250 μg/kg	68.8		50	116			
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	250 μg/kg	79.7		67	121			
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	250 μg/kg	61.9		55	133			
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	250 μg/kg	67.6		56	108			
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	250 μg/kg	69.1		45	117			
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	250 μg/kg	72.5		53	118			
EP076HK: Low M.W. PAHs		550	μg/kg	<550								
EP076HK: High M.W. PAHs		1700	µg/kg	<1700								

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Page Number : 8 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Matrix: SOIL				Matrix Sp	oike (MS) and Matrix	Spike Duplic	ate (MSD) Re	eport		
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and Maio	r Cations (QC Lot: 1561548)	·						'		
HK1026728-001	Anonymous	EG020: Arsenic	7440-38-2	5 mg/kg	88.4	88.8	75	125	0.4	25
		EG020: Cadmium	7440-43-9	5 mg/kg	92.4	92.4	75	125	0.04	25
		EG020: Chromium	7440-47-3	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
		EG020: Copper	7440-50-8	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
		EG020: Mercury	7439-97-6	0.1 mg/kg	79.9	84.4	75	125	5.5	25
		EG020: Nickel	7440-02-0	5 mg/kg	85.5	85.5	75	125	0.0	25
		EG020: Silver	7440-22-4	5 mg/kg	86.1	89.9	75	125	4.3	25
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
EP: Aggregate Orgai	nics (QC Lot: 1562495)									
HK1026849-003	L102BH 15.3-15.5M (F)	EP005: Total Organic Carbon		40 %	91.8		75	125		
EP-065: PCB Single	Congeners (QC Lot: 155983	5)								
· _ · _ ·	L102BH 14.3-15.3M (E&F)	PCB 8	34883-43-7	5 μg/kg	122		50	130		
		PCB 18	37680-65-2	5 μg/kg	60.0		50	130		
		PCB 28	7012-37-5	5 μg/kg	56.1		50	130		
		PCB 44	41464-39-5	5 μg/kg	55.6		50	130		
		PCB 52	35693-99-3	5 μg/kg	59.2		50	130		
		PCB 66	32598-10-0	5 μg/kg	55.9		50	130		
		PCB 77	32598-13-3	5 μg/kg	60.4		50	130		
		PCB 101	37680-73-2	5 μg/kg	55.9		50	130		
		PCB 105	32598-14-4	5 μg/kg	61.2		50	130		
		PCB 118	31508-00-6	5 μg/kg	93.2		50	130		
		PCB 126	57465-28-8	5 μg/kg	62.8		50	130		
		PCB 128	38380-07-3	5 μg/kg	58.2		50	130		
		PCB 138	35065-28-2	5 μg/kg	77.9		50	130		
		PCB 153	35065-27-1	5 μg/kg	91.5		50	130		
		PCB 169	32774-16-6	5 μg/kg	68.4		50	130		
		PCB 170	35065-30-6	5 μg/kg	62.8		50	130		
		PCB 180	35065-29-3	5 μg/kg	61.2		50	130		
		PCB 187	52663-68-0	5 μg/kg	74.6		50	130		
EP-076A: Polycyclic	Aromatic Hydrocarbons (PA	Hs) (QC Lot: 1559836)								
HK1026849-002	L102BH 14.3-15.3M (E&F)	EP076HK: Naphthalene	91-20-3	250 μg/kg	76.3		50	130		
		EP076HK: Acenaphthylene	208-96-8	250 μg/kg	68.7		50	130		
		EP076HK: Acenaphthene	83-32-9	250 μg/kg	74.1		50	130		
		EP076HK: Fluorene	86-73-7	250 µg/kg	71.5		50	130		

Page Number : 9 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026849

Matrix: SOIL					Matrix Sp	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
ID			Number							Limit
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAI	ls) (QC Lot: 1559836) - Continued								
HK1026849-002	L102BH 14.3-15.3M (E&F)	EP076HK: Phenanthrene	85-01-8	250 μg/kg	71.4		50	130		
		EP076HK: Anthracene	120-12-7	250 μg/kg	69.0		50	130		
		EP076HK: Fluoranthene	206-44-0	250 µg/kg	72.0		50	130		
		EP076HK: Pyrene	129-00-0	250 μg/kg	70.8		50	130		
		EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	71.3		50	130		
		EP076HK: Chrysene	218-01-9	250 μg/kg	75.7		50	130		
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	72.6		50	130		
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	74.6		50	130		
		EP076HK: Benzo(a)pyrene	50-32-8	250 μg/kg	69.8		50	130		
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 µg/kg	70.9		50	130		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	72.1		50	130		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 µg/kg	74.2		50	130		

Surrogate Control Limits

Sub-Matrix: SEDIMENT	Recovery Limits (%)									
Compound	CAS Number	Low	High							
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates										
2-Fluorobiphenyl	321-60-8	50	130							
4-Terphenyl-d14	1718-51-0	50	130							
EP-065S: PCB Congeners and Organochlorine Pesticides Surrogate										
Decachlorobiphenyl	2051-24-3	50	130							

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : CIVIL ENGINEERING AND DEVELOPMENT

DEPARTMENT

: MR JAMES PENNY Contact

Address : 47/F., HOPEWELL CENTRE,

183 QUEEN'S ROAD EAST,

WAN CHAI, HONG KONG

E-mail : james.penny@hyderconsulting.com

Telephone : +852 2911 2048

Facsimile

Project : SITE INVESTIGATION FOR TRUNK ROAD T2

AND INFRASTRUCTURE AT SOUTH APRON

(STAGE 1)

Order number : KL/2009/02

C-O-C number Site

Laboratory

Contact

Address

: ALS Technichem HK Pty Ltd

: Chan Kwok Fai, Godfrey

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

Telephone : +852 2610 1044 Facsimile : +852 2610 2021

Quote number

Page : 1 of 9

Work Order

: HK1026567

Date Samples Received : 09-NOV-2010

Issue Date

No. of samples received : 1 No. of samples analysed

: 1

: 19-NOV-2010

This report may not be reproduced except with prior written approval from the testing laboratory. Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory

activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for Anh Ngoc Huynh Senior Chemist - Organics **Organics** Chan Siu Ming, Vico Senior Chemist Inorganics Wong Wing, Kenneth **Assistant Supervisor** Inorganics

Page Number : 2 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

ALS

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 17-NOV-2010

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1026567**

Project Name: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1).

Sample(s) were received in a chilled condition.

Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment sample(s) as received, digested by In-house method EG-3051A based on USEPA method 3051a, prior to the determination of metals.

"Total PCBs" results (Method: EP065) are not HOKLAS accredited. The values are calculated from summation of the 18 PCB congeners, based on Limit of Detection (LOD) of 1 ug/kg.

Sediment Grain Size and Moisture content were subcontracted and tested by MaterialLab Limited.

Tributyl tin in interstitial water was subcontracted and tested by Hong Kong Productivity Council.

Page Number : 3 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

Analytical Results

Analytical Acounts						
Sub-Matrix: SEDIMENT	Client sample ID			R1-A		
	Client sampling date / time			09-NOV-2010 11:29		
Compound	CAS Number	LOR	Unit	HK1026567-001		
EG: Metals and Major Cations						
EG020: Arsenic	7440-38-2	1	mg/kg	8		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2		
EG020: Chromium	7440-47-3	1	mg/kg	37		
EG020: Copper	7440-50-8	1	mg/kg	16		
EG020: Lead	7439-92-1	1	mg/kg	35		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05		
EG020: Nickel	7440-02-0	1	mg/kg	25		
EG020: Silver	7440-22-4	0.1	mg/kg	0.1		
EG020: Zinc	7440-66-6	1	mg/kg	92		
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	1.03		
EP-065: PCB Single Congeners						
PCB 8	34883-43-7	3	μg/kg	<3		
PCB 18	37680-65-2	3	μg/kg	<3		
PCB 28	7012-37-5	3	μg/kg	<3		
PCB 44	41464-39-5	3	μg/kg	<3		
PCB 52	35693-99-3	3	μg/kg	<3		
PCB 66	32598-10-0	3	μg/kg	<3		
PCB 77	32598-13-3	3	μg/kg	<3		
PCB 101	37680-73-2	3	μg/kg	<3		
PCB 105	32598-14-4	3	μg/kg	<3		
PCB 118	31508-00-6	3	μg/kg	<3		
PCB 126	57465-28-8	3	μg/kg	<3		
PCB 128	38380-07-3	3	μg/kg	<3		
PCB 138	35065-28-2	3	μg/kg	<3		
PCB 153	35065-27-1	3	μg/kg	<3		
PCB 169	32774-16-6	3	μg/kg	<3		
PCB 170	35065-30-6	3	μg/kg	<3		
PCB 180	35065-29-3	3	μg/kg	<3		
PCB 187	52663-68-0	3	μg/kg	<3		
Total Polychlorinated biphenyls		18	μg/kg	<18		
EP-076A: Polycyclic Aromatic Hydrocarbons	(PAHs)					
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50		

Page Number : 4 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Sub-Matrix: SEDIMENT		Clie	ent sample ID	R1-A			
	Cli	ent sampli	ng date / time	09-NOV-2010 11:29			
Compound	CAS Number	LOR	Unit	HK1026567-001			
EP-076A: Polycyclic Aromatic Hydrocarbons	(PAHs) - Continue	d					
EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150			
EP076HK: Pyrene	129-00-0	150	μg/kg	<150			
EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150			
EP076HK: Chrysene	218-01-9	150	μg/kg	<150			
EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150			
EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150			
EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150			
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150			
EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150			
EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150			
EP076HK: Low M.W. PAHs		550	μg/kg	<550			
EP076HK: High M.W. PAHs		1700	μg/kg	<1700			
EP-076S: Polycyclic Aromatics Hydrocarbons	(PAHs) Surrogates	3				Surrogate control lim	its listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	98.3			
4-Terphenyl-d14	1718-51-0	0.1	%	89.9			
EP-065S: PCB Congeners and Organochlorine	Pesticides Surrog	jate				Surrogate control lim	its listed at end of this report.
Decachlorobiphenyl	2051-24-3	0.1	%	90.4			

Page Number : 5 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

Laboratory Duplicate (DUP) Report

atrix: SOIL					La	boratory Duplicate (DUP)	Report	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
G: Metals and Maj	or Cations (QC Lot: 15	558533)						
HK1026631-001	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	0.28	0.32	15.2
		EG020: Silver	7440-22-4	0.1	mg/kg	2.4	2.5	5.2
		EG020: Cadmium	7440-43-9	0.2	mg/kg	0.4	0.4	0.0
		EG020: Arsenic	7440-38-2	1	mg/kg	8	10	18.2
		EG020: Chromium	7440-47-3	1	mg/kg	55	60	9.0
		EG020: Copper	7440-50-8	1	mg/kg	140	156	10.8
		EG020: Lead	7439-92-1	1	mg/kg	46	50	8.0
		EG020: Nickel	7440-02-0	1	mg/kg	22	23	0.0
		EG020: Zinc	7440-66-6	1	mg/kg	156	169	8.2
P: Aggregate Orga	nics (QC Lot: 155750	9)						
IK1026133-001	Anonymous	EP005: Total Organic Carbon		0.05	%	0.90	1.00	10.4
P-065: PCB Single	Congeners (QC Lot:	1559846)						
HK1026631-001	Anonymous	Total Polychlorinated biphenyls		18	μg/kg	<18	<18	0.0
		PCB 8	34883-43-7	3	μg/kg	<3	<3	0.0
		PCB 18	37680-65-2	3	μg/kg	<3	<3	0.0
		PCB 28	7012-37-5	3	μg/kg	<3	<3	0.0
		PCB 44	41464-39-5	3	μg/kg	<3	<3	0.0
		PCB 52	35693-99-3	3	μg/kg	<3	<3	0.0
		PCB 66	32598-10-0	3	μg/kg	<3	<3	0.0
		PCB 77	32598-13-3	3	μg/kg	<3	<3	0.0
		PCB 101	37680-73-2	3	μg/kg	<3	<3	0.0
		PCB 105	32598-14-4	3	μg/kg	<3	<3	0.0
		PCB 118	31508-00-6	3	μg/kg	<3	<3	0.0
		PCB 126	57465-28-8	3	μg/kg	<3	<3	0.0
		PCB 128	38380-07-3	3	μg/kg	<3	<3	0.0
		PCB 138	35065-28-2	3	μg/kg	<3	<3	0.0
		PCB 153	35065-27-1	3	μg/kg	<3	<3	0.0
		PCB 169	32774-16-6	3	μg/kg	<3	<3	0.0
		PCB 170	35065-30-6	3	μg/kg	<3	<3	0.0
		PCB 180	35065-29-3	3	μg/kg	<3	<3	0.0
		PCB 187	52663-68-0	3	μg/kg	<3	<3	0.0
P-076A: Polycyclic	Aromatic Hydrocarbo	ons (PAHs) (QC Lot: 1559848)						
HK1026631-001	Anonymous	EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	0.0
		EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	0.0
		EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	0.0
		EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	0.0

Page Number : 6 of 9

Client CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

Matrix: SOIL					Labo	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-076A: Polycyclic	Aromatic Hydrocarbo	ns (PAHs) (QC Lot: 1559848) - Continued						
HK1026631-001	Anonymous	EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	0.0
		EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	0.0
		EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	0.0
		EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	0.0
		EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	0.0
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	0.0
		EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	0.0
		EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB) Report		Laboratory Contro	l Spike (LCS) and Lab	oratory Control	Spike Duplicat	e (DCS) Report	
					Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lo	ot: 1558533)										
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	89.1		85	115		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	89.9		85	115		
EG020: Chromium	7440-47-3	1	mg/kg	<1	5 mg/kg	98.8		85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	96.3		85	115		
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	87.7		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	96.0		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	95.0		85	115		
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	91.5		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	95.8		85	115		
EP: Aggregate Organics (QC Lot: 155	57509)										
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	114		85	115		
EP-065: PCB Single Congeners (QC L	Lot: 1559846)										
PCB 8	34883-43-7	3	μg/kg	<3	5 μg/kg	59.1		47	131		
PCB 18	37680-65-2	3	μg/kg	<3	5 μg/kg	60.3		38	147		
PCB 28	7012-37-5	3	μg/kg	<3	5 μg/kg	69.3		36	134		
PCB 44	41464-39-5	3	μg/kg	<3	5 μg/kg	62.0		24	149		
PCB 52	35693-99-3	3	μg/kg	<3	5 μg/kg	63.3		28	149		
PCB 66	32598-10-0	3	μg/kg	<3	5 μg/kg	61.3		31	135		
PCB 77	32598-13-3	3	μg/kg	<3	5 μg/kg	64.1		38	123		
PCB 101	37680-73-2	3	μg/kg	<3	5 μg/kg	60.7		44	121		
PCB 105	32598-14-4	3	μg/kg	<3	5 μg/kg	63.7		41	123		
PCB 118	31508-00-6	3	μg/kg	<3	5 μg/kg	63.1		45	119		
PCB 126	57465-28-8	3	μg/kg	<3	5 μg/kg	75.9		40	119		
PCB 128	38380-07-3	3	μg/kg	<3	5 μg/kg	65.6		46	120		

A Campbell Brothers Limited Company

Page Number : 7 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

Matrix: SOIL			Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Lab	oratory Control	Spike Duplicat	e (DCS) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RP	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-065: PCB Single Congeners (QC Lot: 15	59846) - Continue	ed									
PCB 138	35065-28-2	3	μg/kg	<3	5 μg/kg	65.0		45	117		
PCB 153	35065-27-1	3	μg/kg	<3	5 μg/kg	63.8		43	121		
PCB 169	32774-16-6	3	μg/kg	<3	5 μg/kg	73.2		43	127		
PCB 170	35065-30-6	3	μg/kg	<3	5 μg/kg	69.1		43	124		
PCB 180	35065-29-3	3	μg/kg	<3	5 μg/kg	67.6		42	124		
PCB 187	52663-68-0	3	μg/kg	<3	5 μg/kg	63.8		43	124		
Total Polychlorinated biphenyls		18	μg/kg	<18							
EP-076A: Polycyclic Aromatic Hydrocarbon	s (PAHs) (QC Lot	1559848)									
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	250 µg/kg	57.4		57	119		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	250 µg/kg	79.8		60	113		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	250 μg/kg	66.7		64	113		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	250 µg/kg	63.7		61	118		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	250 μg/kg	70.3		57	123		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	250 μg/kg	70.3		65	109		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	250 μg/kg	70.2		58	124		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	250 μg/kg	69.8		59	127		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	250 μg/kg	62.4		56	116		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	250 μg/kg	79.6		72	118		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	250 μg/kg	64.1		50	116		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	250 μg/kg	69.9		67	121		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	250 μg/kg	58.0		55	133		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	250 μg/kg	66.2		56	108		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	250 μg/kg	72.6		45	117		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	250 μg/kg	69.6		53	118		
EP076HK: Low M.W. PAHs		550	μg/kg	<550							
EP076HK: High M.W. PAHs		1700	μg/kg	<1700							

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Sp	ike (MS) and Matrix	x Spike Duplic	ate (MSD) Rep	oort	
				Spike	Spike Ro	ecovery (%)	Recovery	Limits (%)	RPI	D (%)
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
ID			Number							Limit
EG: Metals and Majo	or Cations (QC Lot: 15585	533)								
HK1026567-001	R1-A	EG020: Arsenic	7440-38-2	5 mg/kg	92.9	97.2	75	125	4.5	25
		EG020: Cadmium	7440-43-9	5 mg/kg	90.4	92.8	75	125	2.6	25
		EG020: Chromium	7440-47-3	5 mg/kg	96.3	97.8	75	125	1.6	25
		EG020: Copper	7440-50-8	5 mg/kg	97.6	94.0	75	125	3.8	25
		EG020: Lead	7439-92-1	5 mg/kg	98.6	100	75	125	1.4	25
		EG020: Mercury	7439-97-6	0.1 mg/kg	100	95.0	75	125	5.6	25

Page Number : 8 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

//atrix: SOIL					Matrix Sp	oike (MS) and Matrix	Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and Majo	or Cations (QC Lot: 15585	533) - Continued							<u>'</u>	
HK1026567-001	R1-A	EG020: Nickel	7440-02-0	5 mg/kg	112	110	75	125	1.6	25
		EG020: Silver	7440-22-4	5 mg/kg	93.4	96.8	75	125	3.6	25
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
EP: Aggregate Orgai	nics (QC Lot: 1557509)					'			'	
HK1026133-002	Anonymous	EP005: Total Organic Carbon		40 %	106		75	125		
ED-065: DCR Single	Congeners (QC Lot: 1559									
HK1026631-003	Anonymous	PCB 8	34883-43-7	5 µg/kg	81.4		50	130		
11/10/20001 000	Attonymous	PCB 0	37680-65-2	5 μg/kg	95.3		50	130		
		PCB 18	7012-37-5	5 μg/kg	97.8		50	130		
		PCB 26	41464-39-5	5 μg/kg	93.4		50	130		
		PCB 52	35693-99-3	5 μg/kg	122		50	130		
		PCB 66	32598-10-0	5 μg/kg	108		50	130		
		PCB 77	32598-13-3	5 µg/kg	112		50	130		
		PCB 101	37680-73-2	5 μg/kg	89.8		50	130		
		PCB 105	32598-14-4	5 μg/kg	104		50	130		
		PCB 118	31508-00-6	5 μg/kg	111		50	130		
		PCB 126	57465-28-8	5 μg/kg	113		50	130		
		PCB 128	38380-07-3	5 μg/kg	126		50	130		
		PCB 138	35065-28-2	5 μg/kg	109		50	130		
		PCB 153	35065-27-1	5 μg/kg	98.6		50	130		
		PCB 169	32774-16-6	5 μg/kg	102		50	130		
		PCB 170	35065-30-6	5 μg/kg	130		50	130		
		PCB 180	35065-29-3	5 μg/kg	117		50	130		
		PCB 187	52663-68-0	5 μg/kg	128		50	130		
P-076A: Polycyclic	Aromatic Hydrocarbons	(PAHs) (QC Lot: 1559848)								
HK1026631-003	Anonymous	EP076HK: Naphthalene	91-20-3	250 µg/kg	67.2		50	130		
	, monymous	EP076HK: Acenaphthylene	208-96-8	250 µg/kg	67.6		50	130		
		EP076HK: Acenaphthene	83-32-9	250 µg/kg	60.7		50	130		
		EP076HK: Fluorene	86-73-7	250 µg/kg	68.6		50	130		
		EP076HK: Phenanthrene	85-01-8	250 µg/kg	69.2		50	130		
		EP076HK: Anthracene	120-12-7	250 μg/kg	69.0		50	130		
		EP076HK: Fluoranthene	206-44-0	250 μg/kg	85.5		50	130		
		EP076HK: Pyrene	129-00-0	250 μg/kg	84.4		50	130		
		EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	72.9		50	130		
		EP076HK: Chrysene	218-01-9	250 μg/kg	74.1		50	130		
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	63.9		50	130		
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	70.5		50	130		
		EP076HK: Benzo(a)pyrene	50-32-8	250 µg/kg	68.3		50	130		

Page Number : 9 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1026567

Matrix: SOIL					ate (MSD) Re	Report				
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control
ID			Number							Limit
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAHs)) (QC Lot: 1559848) - Continued								
HK1026631-003	Anonymous	EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	67.6		50	130		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	69.7		50	130		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 μg/kg	70.9		50	130		

Surrogate Control Limits

Sub-Matrix: SEDIMENT		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP-076S: Polycyclic Aromatics Hy	drocarbons (PAHs) Surrogates				
2-Fluorobiphenyl	321-60-8	50	130		
4-Terphenyl-d14	1718-51-0	50	130		
EP-065S: PCB Congeners and Org	ganochlorine Pesticides Surrogate				
Decachlorobiphenyl	2051-24-3	50	130		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : CIVIL ENGINEERING AND DEVELOPMENT

DEPARTMENT

Contact : MR JAMES PENNY

Address : 47/F., HOPEWELL CENTRE,

183 QUEEN'S ROAD EAST,

WAN CHAI, HONG KONG

E-mail : james.penny@hyderconsulting.com

Telephone : +852 2911 2048

Facsimile : ---

Project : SITE INVESTIGATION FOR TRUNK ROAD T2

AND INFRASTRUCTURE AT SOUTH APRON

(STAGE 1)

This report may not be reproduced except with prior written

Order number : KL/2009/02

C-O-C number : ----

Site : L110BH

Laboratory : ALS Technichem HK Pty Ltd

•

Contact : Chan Kwok Fai, Godfrey

Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com
Telephone : +852 2610 1044

Facsimile : +852 2610 2021

Quote number · ---

Page

Work Order

: 1 of 9

HK1027307

Authorised results for

Date Samples Received : 10-NOV-2010

Issue Date : 26-NOV-2010

No. of samples received : 2

No. of samples analysed : 2

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories

Anh Ngoc Huynh
Chan Siu Ming, Vico
Wong Wing, Kenneth

Position
Senior Chemist - Organics

Senior Chemist - Organics
Senior Chemist Inorganics
Assistant Supervisor Inorganics

approval from the testing laboratory.
Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation.

Page Number : 2 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

ALS

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 26-NOV-2010

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1027307**

Project Name: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1).

Sample(s) were received in a chilled condition.

Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment sample(s) as received, digested by In-house method EG-3051A based on USEPA method 3051a, prior to the determination of metals.

Analysis of Tributyltin in interstitial water was cancelled due to insufficient volume of interstitial water.

"Total PCBs" results (Method: EP065) are not HOKLAS accredited. The values are calculated from summation of the 18 PCB congeners, based on Limit of Detection (LOD) of 1 ug/kg.

Sediment Grain Size and Moisture content were subcontracted and tested by MaterialLab Limited.

Page Number : 3 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

Analytical Results

Sub-Matrix: SEDIMENT		Clie	nt sample ID	L110BH	L110BH	
	Cli	iant aannalin	an data (tima	12.0-12.9M (A&B) 10-NOV-2010 13:45	12.9-13.9M (A&B) 10-NOV-2010 14:30	
			ng date / time			
Compound	CAS Number	LOR	Unit	HK1027307-001	HK1027307-002	
G: Metals and Major Cations						
EG020: Arsenic	7440-38-2	1	mg/kg	5	5	
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	mg/kg	21	20	
EG020: Copper	7440-50-8	1	mg/kg	7	12	
EG020: Lead	7439-92-1	1	mg/kg	15	19	
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	
EG020: Nickel	7440-02-0	1	mg/kg	14	14	
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	
EG020: Zinc	7440-66-6	1	mg/kg	70	83	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.32	0.34	
EP-065: PCB Single Congeners						
PCB 8	34883-43-7	3	μg/kg	<3	<3	
PCB 18	37680-65-2	3	μg/kg	<3	<3	
PCB 28	7012-37-5	3	μg/kg	<3	<3	
PCB 44	41464-39-5	3	μg/kg	<3	<3	
PCB 52	35693-99-3	3	μg/kg	<3	<3	
PCB 66	32598-10-0	3	μg/kg	<3	<3	
PCB 77	32598-13-3	3	μg/kg	<3	<3	
PCB 101	37680-73-2	3	μg/kg	<3	<3	
PCB 105	32598-14-4	3	μg/kg	<3	<3	
PCB 118	31508-00-6	3	μg/kg	<3	<3	
PCB 126	57465-28-8	3	μg/kg	<3	<3	
PCB 128	38380-07-3	3	μg/kg	<3	<3	
PCB 138	35065-28-2	3	μg/kg	<3	<3	
PCB 153	35065-27-1	3	μg/kg	<3	<3	
PCB 169	32774-16-6	3	μg/kg	<3	<3	
PCB 170	35065-30-6	3	μg/kg	<3	<3	
PCB 180	35065-29-3	3	μg/kg	<3	<3	
PCB 187	52663-68-0	3	μg/kg	<3	<3	
Total Polychlorinated biphenyls		18	μg/kg	<18	<18	
P-076A: Polycyclic Aromatic Hydrocarbor	ns (PAHs)	,				•
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	

Page Number : 4 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Sub-Matrix: SEDIMENT		Clie	ent sample ID	L110BH	L110BH		
	Cli	ont compli	ng date / time	12.0-12.9M (A&B) 10-NOV-2010 13:45	12.9-13.9M (A&B) 10-NOV-2010 14:30		
	On-	ent sampin	ig date / time				
Compound	CAS Number	LOR	Unit	HK1027307-001	HK1027307-002		
EP-076A: Polycyclic Aromatic Hydrocarbo	ns (PAHs) - Continued	t					
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50		
EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150		
EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150		
EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150		
EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150		
EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150		
EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150		
EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150		
EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150		
EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150		
EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550		
EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700		
EP-076S: Polycyclic Aromatics Hydrocarbo	ons (PAHs) Surrogates	3				Surrogate control	limits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	65.4	77.2		
4-Terphenyl-d14	1718-51-0	0.1	%	66.3	79.1		
EP-065S: PCB Congeners and Organochlor	ine Pesticides Surrog	ate				Surrogate control	limits listed at end of this report.
Decachlorobiphenyl	2051-24-3	0.1	%	71.8	78.9		

Page Number : 5 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

Laboratory Duplicate (DUP) Report

latrix: SOIL						aboratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
G: Metals and Majo	or Cations (QC Lot: 156980	7)						
HK1027287-003	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	1.19	1.28	7.3
		EG020: Silver	7440-22-4	0.1	mg/kg	3.9	4.0	4.0
		EG020: Cadmium	7440-43-9	0.2	mg/kg	1.1	1.2	0.0
		EG020: Arsenic	7440-38-2	1	mg/kg	8	8	0.0
		EG020: Chromium	7440-47-3	1	mg/kg	175	182	4.0
		EG020: Copper	7440-50-8	1	mg/kg	270	281	3.8
		EG020: Lead	7439-92-1	1	mg/kg	79	77	3.4
		EG020: Nickel	7440-02-0	1	mg/kg	40	41	2.7
		EG020: Zinc	7440-66-6	1	mg/kg	320	329	2.8
EP: Aggregate Orga	nics (QC Lot: 1570066)							
HK1027307-001	L110BH 12.0-12.9M (A&B)	EP005: Total Organic Carbon		0.05	%	0.32	0.34	4.6
HK1027307-002	L110BH 12.9-13.9M (A&B)	EP005: Total Organic Carbon		0.05	%	0.34	0.36	4.7
EP-065: PCB Single	Congeners (QC Lot: 15678							
HK1026899-001	Anonymous	Total Polychlorinated biphenyls		18	μg/kg	<18	<18	0.0
		PCB 8	34883-43-7	3	μg/kg	<3	<3	0.0
		PCB 18	37680-65-2	3	μg/kg	<3	<3	0.0
		PCB 28	7012-37-5	3	μg/kg	<3	<3	0.0
		PCB 44	41464-39-5	3	μg/kg	<3	<3	0.0
		PCB 52	35693-99-3	3	μg/kg	<3	<3	0.0
		PCB 66	32598-10-0	3	μg/kg	<3	<3	0.0
		PCB 77	32598-13-3	3	μg/kg	<3	<3	0.0
		PCB 101	37680-73-2	3	μg/kg	<3	<3	0.0
		PCB 105	32598-14-4	3	μg/kg	<3	<3	0.0
		PCB 118	31508-00-6	3	μg/kg	<3	<3	0.0
		PCB 126	57465-28-8	3	μg/kg	<3	<3	0.0
		PCB 128	38380-07-3	3	μg/kg	<3	<3	0.0
		PCB 138	35065-28-2	3	μg/kg	4	4	0.0
		PCB 153	35065-27-1	3	μg/kg	<3	<3	0.0
		PCB 169	32774-16-6	3	μg/kg	<3	<3	0.0
		PCB 170	35065-30-6	3	μg/kg	<3	<3	0.0
		PCB 180	35065-29-3	3	μg/kg	<3	<3	0.0
		PCB 187	52663-68-0	3	μg/kg	<3	<3	0.0
EP-076A: Polycyclic	Aromatic Hydrocarbons (P	AHs) (QC Lot: 1567807)						
HK1026899-001	Anonymous	EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	0.0
		EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	0.0
		EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	0.0
		EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	0.0

Page Number : 6 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EP-076A: Polycyclic	: Aromatic Hydrocarbo	ns (PAHs) (QC Lot: 1567807) - Continued								
HK1026899-001	Anonymous	EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	0.0		
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	0.0		
		EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	0.0		
		EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	0.0		
		EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	0.0		
		EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	0.0		
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	0.0		
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	0.0		
		EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	0.0		
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	0.0		
		EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	0.0		
		EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RI	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1569	9807)										
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	87.8		85	115		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	93.0		85	115		
EG020: Chromium	7440-47-3	1	mg/kg	<1	5 mg/kg	99.8		85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	95.1		85	115		
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	85.6		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	86.6		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	96.6		85	115		
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	97.4		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	106		85	115		
EP: Aggregate Organics (QC Lot: 1570066)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	114		85	115		
EP-065: PCB Single Congeners (QC Lot: 15	67806)										
PCB 8	34883-43-7	3	μg/kg	<3	5 μg/kg	100		47	131		
PCB 18	37680-65-2	3	μg/kg	<3	5 μg/kg	109		38	147		
PCB 28	7012-37-5	3	μg/kg	<3	5 μg/kg	103		36	134		
PCB 44	41464-39-5	3	μg/kg	<3	5 μg/kg	106		24	149		
PCB 52	35693-99-3	3	μg/kg	<3	5 μg/kg	107		28	149		
PCB 66	32598-10-0	3	μg/kg	<3	5 μg/kg	104		31	135		
PCB 77	32598-13-3	3	μg/kg	<3	5 μg/kg	106		38	123		
PCB 101	37680-73-2	3	μg/kg	<3	5 μg/kg	107		44	121		
PCB 105	32598-14-4	3	μg/kg	<3	5 μg/kg	107		41	123		
PCB 118	31508-00-6	3	μg/kg	<3	5 μg/kg	113		45	119		

Page Number : 7 of 9

Client : CIVIL

: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

Matrix: SOIL			Method Blank (ME	B) Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-065: PCB Single Congeners (QC Lot: 1	567806) - Continue	ed									
PCB 126	57465-28-8	3	μg/kg	<3	5 μg/kg	113		40	119		
PCB 128	38380-07-3	3	μg/kg	<3	5 μg/kg	99.9		46	120		
PCB 138	35065-28-2	3	μg/kg	<3	5 μg/kg	88.1		45	117		
PCB 153	35065-27-1	3	μg/kg	<3	5 μg/kg	95.1		43	121		
PCB 169	32774-16-6	3	μg/kg	<3	5 μg/kg	112		43	127		
PCB 170	35065-30-6	3	μg/kg	<3	5 μg/kg	106		43	124		
PCB 180	35065-29-3	3	μg/kg	<3	5 μg/kg	102		42	124		
PCB 187	52663-68-0	3	μg/kg	<3	5 µg/kg	112		43	124		
Total Polychlorinated biphenyls		18	μg/kg	<18							
EP-076A: Polycyclic Aromatic Hydrocarbon	ns (PAHs) (QC Lot	: 1567807)									
EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	250 µg/kg	74.6		57	119		
EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	250 μg/kg	65.2		60	113		
EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	250 μg/kg	70.6		64	113		
EP076HK: Fluorene	86-73-7	50	μg/kg	<50	250 µg/kg	74.7		61	118		
EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	250 µg/kg	71.8		57	123		
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	250 µg/kg	76.4		65	109		
EP076HK: Fluoranthene	206-44-0	50	μg/kg	<50	250 µg/kg	82.3		58	124		
EP076HK: Pyrene	129-00-0	50	μg/kg	<50	250 µg/kg	81.5		59	127		
EP076HK: Benz(a)anthracene	56-55-3	50	μg/kg	<50	250 µg/kg	80.5		56	116		
EP076HK: Chrysene	218-01-9	50	μg/kg	<50	250 µg/kg	92.8		72	118		
EP076HK: Benzo(b)fluoranthene	205-99-2	50	μg/kg	<50	250 µg/kg	92.9		50	116		
EP076HK: Benzo(k)fluoranthene	207-08-9	50	μg/kg	<50	250 µg/kg	105		67	121		
EP076HK: Benzo(a)pyrene	50-32-8	50	μg/kg	<50	250 µg/kg	87.8		55	133		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	50	μg/kg	<50	250 µg/kg	91.2		56	108		
EP076HK: Dibenz(a.h)anthracene	53-70-3	50	μg/kg	<50	250 µg/kg	105		45	117		
EP076HK: Benzo(g.h.i)perylene	191-24-2	50	μg/kg	<50	250 µg/kg	99.1		53	118		
EP076HK: Low M.W. PAHs		550	μg/kg	<550							
EP076HK: High M.W. PAHs		1700	μg/kg	<1700							

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD	(%)	
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control	
ID			Number							Limit	
EG: Metals and Major	r Cations (QC Lot: 1569807)										
HK1027287-001	Anonymous	EG020: Arsenic	7440-38-2	5 mg/kg	89.6	97.4	75	125	8.3	25	
		EG020: Cadmium	7440-43-9	5 mg/kg	89.9	95.9	75	125	6.5	25	
		EG020: Chromium	7440-47-3	5 mg/kg	# Not	# Not Determined	75	125	# Not	25	
					Determined				Determined		

Page Number : 8 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

//atrix: SOIL					Matrix S _I	oike (MS) and Matrix	Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and Majo	or Cations (QC Lot: 1569807	7) - Continued								
HK1027287-001	Anonymous	EG020: Copper	7440-50-8	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
		EG020: Mercury	7439-97-6	0.1 mg/kg	91.0	91.0	75	125	0.0	25
		EG020: Nickel	7440-02-0	5 mg/kg	89.0	88.8	75	125	0.2	25
		EG020: Silver	7440-22-4	5 mg/kg	85.2	104	75	125	20.4	25
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	25
P: Aggregate Orgai	nics (QC Lot: 1570066)									
HK1027307-001	L110BH 12.0-12.9M (A&B)	EP005: Total Organic Carbon		40 %	87.5		75	125		
EP-065: PCB Single	Congeners (QC Lot: 156780	06)								
HK1026899-003	Anonymous	PCB 8	34883-43-7	5 μg/kg	79.1		50	130		
		PCB 18	37680-65-2	5 μg/kg	97.4		50	130		
		PCB 28	7012-37-5	5 μg/kg	85.8		50	130		
		PCB 44	41464-39-5	5 μg/kg	89.3		50	130		
		PCB 52	35693-99-3	5 μg/kg	85.0		50	130		
		PCB 66	32598-10-0	5 μg/kg	88.7		50	130		
		PCB 77	32598-13-3	5 μg/kg	84.4		50	130		
		PCB 101	37680-73-2	5 μg/kg	91.7		50	130		
		PCB 105	32598-14-4	5 μg/kg	85.8		50	130		
		PCB 118	31508-00-6	5 μg/kg	109		50	130		
		PCB 126	57465-28-8	5 μg/kg	89.1		50	130		
		PCB 128	38380-07-3	5 μg/kg	109		50	130		
		PCB 138	35065-28-2	5 μg/kg	117		50	130		
		PCB 153	35065-27-1	5 μg/kg	92.9		50	130		
		PCB 169	32774-16-6	5 μg/kg	87.9		50	130		
		PCB 170	35065-30-6	5 μg/kg	82.5		50	130		
		PCB 180	35065-29-3	5 μg/kg	79.1		50	130		
		PCB 187	52663-68-0	5 μg/kg	91.2		50	130		
P-076A: Polycyclic	Aromatic Hydrocarbons (PA	AHs) (QC Lot: 1567807)								
HK1026899-003	Anonymous	EP076HK: Naphthalene	91-20-3	250 μg/kg	76.1		50	130		
		EP076HK: Acenaphthylene	208-96-8	250 μg/kg	81.1		50	130		
		EP076HK: Acenaphthene	83-32-9	250 μg/kg	73.4		50	130		
		EP076HK: Fluorene	86-73-7	250 μg/kg	77.3		50	130		
		EP076HK: Phenanthrene	85-01-8	250 μg/kg	73.8		50	130		
		EP076HK: Anthracene	120-12-7	250 μg/kg	76.7		50	130		
		EP076HK: Fluoranthene	206-44-0	250 μg/kg	83.2		50	130		
		EP076HK: Pyrene	129-00-0	250 µg/kg	82.8		50	130		

Page Number : 9 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027307

Matrix: SOIL	atrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Recovery (%)		Recovery	Limits (%)	RPD (%)				
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control			
ID			Number							Limit			
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAHs	s) (QC Lot: 1567807) - Continued											
HK1026899-003	Anonymous	EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	74.2		50	130					
		EP076HK: Chrysene	218-01-9	250 μg/kg	78.9		50	130					
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	78.4		50	130					
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	86.3		50	130					
		EP076HK: Benzo(a)pyrene	50-32-8	250 µg/kg	82.7		50	130					
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	76.0		50	130					
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 µg/kg	85.5		50	130					
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 µg/kg	79.4		50	130					

Surrogate Control Limits

Sub-Matrix: SEDIMENT		Recovery Limits (%)									
Compound	CAS Number	Low	High								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates											
2-Fluorobiphenyl	321-60-8	50	130								
4-Terphenyl-d14	1718-51-0	50	130								
EP-065S: PCB Congeners and Organo	ochlorine Pesticides Surrogate										
Decachlorobiphenyl	2051-24-3	50	130								

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : CIVIL ENGINEERING AND DEVELOPMENT

DEPARTMENT

: MR JAMES PENNY Contact

Address : 47/F., HOPEWELL CENTRE,

183 QUEEN'S ROAD EAST,

WAN CHAI, HONG KONG

E-mail : james.penny@hyderconsulting.com

Telephone : +852 2911 2048

Facsimile

Project : SITE INVESTIGATION FOR TRUNK ROAD T2

AND INFRASTRUCTURE AT SOUTH APRON

(STAGE 1)

Order number : KL/2009/02

C-O-C number

accreditation.

Site : L119BH Laboratory

Contact

Address

: ALS Technichem HK Pty Ltd

: Chan Kwok Fai, Godfrey

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com Telephone : +852 2610 1044

Facsimile : +852 2610 2021

Quote number

Page

Work Order

: 1 of 9

: HK1027989

Issue Date

Date Samples Received

: 02-DEC-2010

: 18-NOV-2010

No. of samples received No. of samples analysed : 2

: 2

This report may not be reproduced except with prior written approval from the testing laboratory. Hong Kong Accreditation Service (HKAS) has accedited this laboratory (ALS Technichem (HK) Pty Ltd) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were

determined by this laboratory in accordance with its terms of

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Authorised results for Signatories Position Anh Ngoc Huynh Senior Chemist - Organics **Organics** Chan Siu Ming, Vico Senior Chemist Inorganics Wong Wing, Kenneth **Assistant Supervisor** Inorganics

Page Number : 2 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

ALS

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 26-NOV-2010

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1027989**

Project Name: Site Investigation for Trunk Road T2 and Infrastructure at South Apron (Stage 1).

Sample(s) were received in a chilled condition.

Sediment sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sediment sample(s) as received, digested by In-house method EG-3051A based on USEPA method 3051a, prior to the determination of metals.

Analysis of Tributyltin in interstitial water was cancelled due to insufficient volume of interstitial water.

"Total PCBs" results (Method: EP065) are not HOKLAS accredited. The values are calculated from summation of the 18 PCB congeners, based on Limit of Detection (LOD) of 1 ug/kg.

Sediment Grain Size and Moisture content were subcontracted and tested by MaterialLab Limited.

Page Number : 3 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

Analytical Results

Analytical Results		C!!	ant comple ID			
Sub-Matrix: SEDIMENT		CIIE	ent sample ID	L119BH	L119BH	
	O!			14.5-15.0M (A)	13.5-14.4M (B)	
	CII		ng date / time	18-NOV-2010 10:00	22-NOV-2010 14:00	
Compound	CAS Number	LOR	Unit	HK1027989-001	HK1027989-002	
EG: Metals and Major Cations						
EG020: Arsenic	7440-38-2	1	mg/kg	5	4	
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	mg/kg	21	19	
EG020: Copper	7440-50-8	1	mg/kg	6	5	
EG020: Lead	7439-92-1	1	mg/kg	15	14	
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	
EG020: Nickel	7440-02-0	1	mg/kg	12	12	
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	
EG020: Zinc	7440-66-6	1	mg/kg	60	49	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.61	0.36	
EP-065: PCB Single Congeners						'
PCB 8	34883-43-7	3	μg/kg	<3	<3	
PCB 18	37680-65-2	3	μg/kg	<3	<3	
PCB 28	7012-37-5	3	μg/kg	<3	<3	
PCB 44	41464-39-5	3	μg/kg	<3	<3	
PCB 52	35693-99-3	3	μg/kg	<3	<3	
PCB 66	32598-10-0	3	μg/kg	<3	<3	
PCB 77	32598-13-3	3	μg/kg	<3	<3	
PCB 101	37680-73-2	3	μg/kg	<3	<3	
PCB 105	32598-14-4	3	μg/kg	<3	<3	
PCB 118	31508-00-6	3	μg/kg	<3	<3	
PCB 126	57465-28-8	3	μg/kg	<3	<3	
PCB 128	38380-07-3	3	μg/kg	<3	<3	
PCB 138	35065-28-2	3	μg/kg	<3	<3	
PCB 153	35065-27-1	3	μg/kg	<3	<3	
PCB 169	32774-16-6	3	μg/kg	<3	<3	
PCB 170	35065-30-6	3	μg/kg	<3	<3	
PCB 180	35065-29-3	3	μg/kg	<3	<3	
PCB 187	52663-68-0	3	μg/kg	<3	<3	
Total Polychlorinated biphenyls		18	μg/kg	<18	<18	
EP-076A: Polycyclic Aromatic Hydrocarbon			1.29			
EP-076A. Polycyclic Aromatic nydrocarbon EP076HK: Naphthalene		50	μg/kg	<50	<50	
EP076HK: Acenaphthylene	91-20-3 208-96-8	50	μg/kg μg/kg	<50 <50	<50	
EP076HK: Acenaphthene	83-32-9	50	μg/kg μg/kg	<50	<50	
EP076HK: Acenaphthene	83-32-9 86-73-7	50	μg/kg μg/kg	<50 <50	<50	
EP076HK: Phenanthrene		50	μg/kg μg/kg	<50 <50	<50	
LI VIVIIN. FIICHAHUITEITE	85-01-8	50	µg/kg	~30	\ 00	

Page Number : 4 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Sub-Matrix: SEDIMENT		Clie	ent sample ID	L119BH	L119BH		
				14.5-15.0M (A)	13.5-14.4M (B)		
	Cli	ent sampli	ng date / time	18-NOV-2010 10:00	22-NOV-2010 14:00		
Compound	CAS Number	LOR	Unit	HK1027989-001	HK1027989-002		
EP-076A: Polycyclic Aromatic Hydrocarbon	ns (PAHs) - Continued	i					
EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50		
EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150		
EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150		
EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150		
EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150		
EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150		
EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150		
EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150		
EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150		
EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150		
EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550		
EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700		
EP-076S: Polycyclic Aromatics Hydrocarbo	ns (PAHs) Surrogates	;				Surrogate cor	ntrol limits listed at end of this report.
2-Fluorobiphenyl	321-60-8	0.1	%	90.4	91.5		
4-Terphenyl-d14	1718-51-0	0.1	%	85.5	90.2		
EP-065S: PCB Congeners and Organochlor	ine Pesticides Surrog	ate				Surrogate cor	ntrol limits listed at end of this report.
Decachlorobiphenyl	2051-24-3	0.1	%	88.5	89.6		

Page Number : 5 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

Laboratory Duplicate (DUP) Report

atrix: SOIL					La	boratory Duplicate (DUP)	Report	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
G: Metals and Ma	or Cations (QC Lot: 15783	36)						
HK1027792-003	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	1.44	1.29	10.6
		EG020: Silver	7440-22-4	0.1	mg/kg	2.0	2.1	0.0
		EG020: Cadmium	7440-43-9	0.2	mg/kg	0.8	0.8	0.0
		EG020: Arsenic	7440-38-2	1	mg/kg	6	5	19.8
		EG020: Chromium	7440-47-3	1	mg/kg	102	95	6.8
		EG020: Copper	7440-50-8	1	mg/kg	104	113	7.7
		EG020: Lead	7439-92-1	1	mg/kg	93	104	11.5
		EG020: Nickel	7440-02-0	1	mg/kg	26	24	6.7
		EG020: Zinc	7440-66-6	1	mg/kg	292	281	4.0
K1027989-001	L119BH 14.5-15.0M (A)	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0
		EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.0
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0
		EG020: Arsenic	7440-38-2	1	mg/kg	5	5	0.0
		EG020: Chromium	7440-47-3	1	mg/kg	21	20	7.7
		EG020: Copper	7440-50-8	1	mg/kg	6	5	0.0
		EG020: Lead	7439-92-1	1	mg/kg	15	13	12.9
		EG020: Nickel	7440-02-0	1	mg/kg	12	11	10.5
		EG020: Zinc	7440-66-6	1	mg/kg	60	74	19.8
P: Aggregate Org	anics (QC Lot: 1581170)							
K1027638-005	Anonymous	EP005: Total Organic Carbon		0.05	%	1.24	1.24	0.0
IK1027710-005	Anonymous	EP005: Total Organic Carbon		0.05	%	1.36	1.46	6.5
P-065: PCB Single	Congeners (QC Lot: 1581	367)						
K1027989-001	L119BH 14.5-15.0M (A)	Total Polychlorinated biphenyls		18	μg/kg	<18	<18	0.0
		PCB 8	34883-43-7	3	μg/kg	<3	<3	0.0
		PCB 18	37680-65-2	3	μg/kg	<3	<3	0.0
		PCB 28	7012-37-5	3	μg/kg	<3	<3	0.0
		PCB 44	41464-39-5	3	μg/kg	<3	<3	0.0
		PCB 52	35693-99-3	3	μg/kg	<3	<3	0.0
		PCB 66	32598-10-0	3	μg/kg	<3	<3	0.0
		PCB 77	32598-13-3	3	μg/kg	<3	<3	0.0
		PCB 101	37680-73-2	3	μg/kg	<3	<3	0.0
		PCB 105	32598-14-4	3	μg/kg	<3	<3	0.0
		PCB 118	31508-00-6	3	μg/kg	<3	<3	0.0
		PCB 126	57465-28-8	3	μg/kg	<3	<3	0.0
			38380-07-3	3	μg/kg	<3	<3	0.0
		PCB 128						
		PCB 128 PCB 138	35065-28-2	3	μg/kg	<3	<3	0.0
		PCB 138		3	μg/kg μg/kg	<3 <3	<3 <3	0.0
			35065-28-2					

Page Number : 6 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

Matrix: SOIL					La	boratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
P-065: PCB Single	Congeners (QC Lot: 158	1367) - Continued						
HK1027989-001	L119BH 14.5-15.0M (A)	PCB 180	35065-29-3	3	μg/kg	<3	<3	0.0
		PCB 187	52663-68-0	3	μg/kg	<3	<3	0.0
P-076A: Polycyclic	Aromatic Hydrocarbons	(PAHs) (QC Lot: 1581368)						
K1027989-001	L119BH 14.5-15.0M (A)	EP076HK: Fluoranthene	206-44-0	150	μg/kg	<150	<150	0.0
		EP076HK: Pyrene	129-00-0	150	μg/kg	<150	<150	0.0
		EP076HK: Benz(a)anthracene	56-55-3	150	μg/kg	<150	<150	0.0
		EP076HK: Chrysene	218-01-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(b)fluoranthene	205-99-2	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(k)fluoranthene	207-08-9	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(a)pyrene	50-32-8	150	μg/kg	<150	<150	0.0
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	150	μg/kg	<150	<150	0.0
		EP076HK: Dibenz(a.h)anthracene	53-70-3	150	μg/kg	<150	<150	0.0
		EP076HK: Benzo(g.h.i)perylene	191-24-2	150	μg/kg	<150	<150	0.0
		EP076HK: High M.W. PAHs		1700	μg/kg	<1700	<1700	0.0
		EP076HK: Naphthalene	91-20-3	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthylene	208-96-8	50	μg/kg	<50	<50	0.0
		EP076HK: Acenaphthene	83-32-9	50	μg/kg	<50	<50	0.0
		EP076HK: Fluorene	86-73-7	50	μg/kg	<50	<50	0.0
		EP076HK: Phenanthrene	85-01-8	50	μg/kg	<50	<50	0.0
		EP076HK: Anthracene	120-12-7	50	μg/kg	<50	<50	0.0
		EP076HK: Low M.W. PAHs		550	μg/kg	<550	<550	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (ME	B) Report		Laboratory Contro	I Spike (LCS) and Lab	oratory Control	Spike Duplicate	e (DCS) Report	
					Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot:	1578336)										
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	95.0		85	115		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	94.6		85	115		
EG020: Chromium	7440-47-3	1	mg/kg	<1	5 mg/kg	102		85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	96.3		85	115		
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	90.5		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	104		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	88.4		85	115		
EG020: Silver	7440-22-4	0.1	mg/kg	<0.1	5 mg/kg	91.2		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	103		85	115		
EP: Aggregate Organics (QC Lot: 1581	170)										
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	107		85	115		
EP-065: PCB Single Congeners (QC Lo	t: 1581367)										
PCB 8	34883-43-7	3	μg/kg	<3	5 μg/kg	102		47	131		

Page Number : 7 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

Matrix: SOIL		Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Labor	atory Control	Spike Duplicat	te (DCS) Report	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RP	D (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-065: PCB Single Congeners (QC Lot: 1581367) - Continu	ed									
PCB 18 37680-65-2	3	μg/kg	<3	5 μg/kg	75.9		38	147		
PCB 28 7012-37-5	3	μg/kg	<3	5 μg/kg	54.5		36	134		
PCB 44 41464-39-5	3	μg/kg	<3	5 μg/kg	37.9		24	149		
PCB 52 35693-99-3	3	μg/kg	<3	5 μg/kg	43.7		28	149		
PCB 66 32598-10-0	3	μg/kg	<3	5 µg/kg	33.4		31	135		
PCB 77 32598-13-3	3	μg/kg	<3	5 µg/kg	79.3		38	123		
PCB 101 37680-73-2	3	μg/kg	<3	5 µg/kg	84.3		44	121		
PCB 105 32598-14-4	3	μg/kg	<3	5 µg/kg	81.1		41	123		
PCB 118 31508-00-6	3	μg/kg	<3	5 µg/kg	81.0		45	119		
PCB 126 57465-28-8	3	μg/kg	<3	5 μg/kg	56.6		40	119		
PCB 128 38380-07-3	3	μg/kg	<3	5 μg/kg	77.0		46	120		
PCB 138 35065-28-2	3	μg/kg	<3	5 μg/kg	81.7		45	117		
PCB 153 35065-27-1	3	μg/kg	<3	5 μg/kg	82.9		43	121		
PCB 169 32774-16-6	3	μg/kg	<3	5 μg/kg	84.0		43	127		
PCB 170 35065-30-6	3	μg/kg	<3	5 μg/kg	83.4		43	124		
PCB 180 35065-29-3	3	μg/kg	<3	5 μg/kg	84.2		42	124		
PCB 187 52663-68-0	3	μg/kg	<3	5 μg/kg	89.2		43	124		
Total Polychlorinated biphenyls	18	μg/kg	<18							
EP-076A: Polycyclic Aromatic Hydrocarbons (PAHs) (QC Lo	t: 1581368)									
EP076HK: Naphthalene 91-20-3	50	μg/kg	<50	250 µg/kg	82.4		38	125		
EP076HK: Acenaphthylene 208-96-8	50	μg/kg	<50	250 µg/kg	75.4		42	125		
EP076HK: Acenaphthene 83-32-9	50	μg/kg	<50	250 µg/kg	82.4		45	120		
EP076HK: Fluorene 86-73-7	50	μg/kg	<50	250 µg/kg	84.5		38	133		
EP076HK: Phenanthrene 85-01-8	50	μg/kg	<50	250 μg/kg	84.8		41	126		
EP076HK: Anthracene 120-12-7	50	μg/kg	<50	250 µg/kg	79.7		45	115		
EP076HK: Fluoranthene 206-44-0	50	μg/kg	<50	250 μg/kg	86.2		41	133		
EP076HK: Pyrene 129-00-0	50	μg/kg	<50	250 μg/kg	86.7		40	137		
EP076HK: Benz(a)anthracene 56-55-3	50	μg/kg	<50	250 μg/kg	88.5		42	123		
EP076HK: Chrysene 218-01-9	50	μg/kg	<50	250 μg/kg	91.8		47	130		
EP076HK: Benzo(b)fluoranthene 205-99-2	50	μg/kg	<50	250 μg/kg	81.8		40	134		
EP076HK: Benzo(k)fluoranthene 207-08-9	50	μg/kg	<50	250 μg/kg	96.8		51	124		
EP076HK: Benzo(a)pyrene 50-32-8	50	μg/kg	<50	250 μg/kg	82.0		38	146		
EP076HK: Indeno(1.2.3.cd)pyrene 193-39-5	50	μg/kg	<50	250 μg/kg	85.2		44	129		
EP076HK: Dibenz(a.h)anthracene 53-70-3	50	μg/kg	<50	250 μg/kg	87.3		46	130		
EP076HK: Benzo(g.h.i)perylene 191-24-2	50	μg/kg	<50	250 μg/kg	92.4		45	136		
EP076HK: Low M.W. PAHs	550	μg/kg	<550							
EP076HK: High M.W. PAHs	1700	µg/kg	<1700							

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Page Number : 8 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Matrix: SOIL					Matrix S _l	oike (MS) and Matrix	Spike Duplic	ate (MSD) Re	SD) Report				
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	(%)			
Laboratory sample ID	Client sample ID	Method: Compound		Concentration	MS	MSD	Low	High	Value	Control Limit			
EG: Metals and Majo	r Cations (QC Lot: 1578336)		Number										
HK1027792-001	Anonymous	EG020: Arsenic	7440-38-2	5 mg/kg	86.9	88.2	75	125	1.5	25			
		EG020: Cadmium	7440-43-9	5 mg/kg	84.7	77.8	75	125	8.4	25			
		EG020: Chromium	7440-47-3	5 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
		EG020: Copper	7440-50-8	5 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
		EG020: Lead	7439-92-1	5 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
		EG020: Mercury	7439-97-6	0.1 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
		EG020: Nickel	7440-02-0	5 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
		EG020: Silver	7440-22-4	5 mg/kg	81.0	84.7	75	125	4.5	25			
		EG020: Zinc	7440-66-6	5 mg/kg	# Not	# Not Determined	75	125	# Not	25			
					Determined				Determined				
	nics (QC Lot: 1581170)												
HK1027638-004	Anonymous	EP005: Total Organic Carbon		40 %	105		75	125					
EP-065: PCB Single	Congeners (QC Lot: 1581367)												
HK1027989-001	L119BH 14.5-15.0M (A)	PCB 8	34883-43-7	5 μg/kg	67.7		50	130					
		PCB 18	37680-65-2	5 μg/kg	77.6		50	130					
		PCB 28	7012-37-5	5 μg/kg	66.4		50	130					
		PCB 44	41464-39-5	5 μg/kg	65.5		50	130					
		PCB 52	35693-99-3	5 μg/kg	67.9		50	130					
		PCB 66	32598-10-0	5 μg/kg	62.3		50	130					
		PCB 77	32598-13-3	5 μg/kg	62.5		50	130					
		PCB 101	37680-73-2	5 μg/kg	64.1		50	130					
		PCB 105	32598-14-4	5 μg/kg	62.8		50	130					
		PCB 118	31508-00-6	5 μg/kg	92.5		50	130					
		PCB 126	57465-28-8	5 μg/kg	70.5		50	130					
		PCB 128	38380-07-3	5 μg/kg	66.6		50	130					
		PCB 138	35065-28-2	5 μg/kg	80.5		50	130					
		PCB 153	35065-27-1	5 μg/kg	92.4		50	130					
		PCB 169	32774-16-6	5 μg/kg	81.3		50	130					
		PCB 170	35065-30-6	5 μg/kg	74.5		50	130					
		PCB 180	35065-29-3	5 μg/kg	71.6		50	130					
		PCB 187	52663-68-0	5 μg/kg	69.7		50	130					
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAHs) (QC Lot: 1581368)											
HK1027989-001	L119BH 14.5-15.0M (A)	EP076HK: Naphthalene	91-20-3	250 μg/kg	80.2		50	130					
	İ	EP076HK: Acenaphthylene	208-96-8	250 µg/kg	80.1		50	130					

Page Number : 9 of 9

Client : CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Work Order HK1027989

Matrix: SOIL					Matrix Sp	ike (MS) and Matri	x Spike Duplic	ate (MSD) Rep	Report			
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD (%)			
Laboratory sample	Client sample ID	Method: Compound	CAS	Concentration	MS	MSD	Low	High	Value	Control		
ID			Number							Limit		
EP-076A: Polycyclic	Aromatic Hydrocarbons (PAHs	s) (QC Lot: 1581368) - Continued										
HK1027989-001	L119BH 14.5-15.0M (A)	EP076HK: Acenaphthene	83-32-9	250 µg/kg	81.9		50	130				
		EP076HK: Fluorene	86-73-7	250 μg/kg	84.5		50	130				
		EP076HK: Phenanthrene	85-01-8	250 μg/kg	83.2		50	130				
		EP076HK: Anthracene	120-12-7	250 μg/kg	84.9		50	130				
		EP076HK: Fluoranthene	206-44-0	250 μg/kg	84.7		50	130				
		EP076HK: Pyrene	129-00-0	250 μg/kg	85.2		50	130				
		EP076HK: Benz(a)anthracene	56-55-3	250 μg/kg	83.4		50	130				
		EP076HK: Chrysene	218-01-9	250 μg/kg	85.2		50	130				
		EP076HK: Benzo(b)fluoranthene	205-99-2	250 μg/kg	79.5		50	130				
		EP076HK: Benzo(k)fluoranthene	207-08-9	250 μg/kg	86.2		50	130				
		EP076HK: Benzo(a)pyrene	50-32-8	250 μg/kg	79.5		50	130				
		EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	250 μg/kg	69.4		50	130				
		EP076HK: Dibenz(a.h)anthracene	53-70-3	250 μg/kg	79.5		50	130				
		EP076HK: Benzo(g.h.i)perylene	191-24-2	250 μg/kg	84.6		50	130				

Surrogate Control Limits

Sub-Matrix: SEDIMENT	Recovery Limits (%)							
Compound	CAS Number	Low	High					
EP-076S: Polycyclic Aromatics Hyd	rocarbons (PAHs) Surrogates							
2-Fluorobiphenyl	321-60-8	50	130					
4-Terphenyl-d14	1718-51-0	50	130					
EP-065S: PCB Congeners and Orga	nochlorine Pesticides Surrogate							
Decachlorobiphenyl	2051-24-3	50	130					

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT CONTRACT NO. KL/2009/02

PROJECT: SITE INVESTIGATION FOR TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON (STAGE 1)

Sediment Quality Report

Table 6.1 Summary of Sediment Quality Reports

Analyte Description								Arsenic	Cadmium	Chromium	Copper	Nickel	Lead	Zinc	Mercury	Total Polychlorinated biphenyls	Low M.W. PAHs	High M.W. PAHs	Tributyl Tin	ation
						Unit (In dry Wt basis)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	ug TBT/L	ca
						Reporting Limits	0.1	1	0.2	1	1	1	1	1	0.05	18	550	1700	0.015	ži.
			Lowe	r Chemi	ical Exce	eedance Level (LCEL)	1	12	1.5	80	65	40	75	200	0.5	23	550	1700	0.15	Clas
			Uppe	r Chemi	cal Exce	edance Level (UCEL)	2	<u>42</u>	4	<u>160</u>	<u>110</u>	<u>40</u>	<u>110</u>	270	1	<u>180</u>	<u>3160</u>	<u>9600</u>	<u>0.15</u>	O
						10 x (LCEL)	<u>10</u>	120	<u>15</u>	800	<u>650</u>	400	<u>750</u>	2000	<u>5</u>	<u>230</u>	<u>5500</u>	17000	<u>1.5</u>	
	Sample I	Description																		
ALS Lab ID	Sample ID	Sample	Sample From (depth,m)	Sample To (depth,m)	Sampling Method	Sampling Date														
HK1026133001	L106BH 14.0-14.9M (A&B)	L106BH (A&B)	14.0	14.9	V	29/10/2010	<0.1	6	<0.2	24	6	13	18	49	< 0.05	<18	<550	<1700	IS	L
HK1026133002	L106BH 14.9-15.2M (A)	L106BH (A)	14.9	15.2	V	29/10/2010	<0.1	6	<0.2	26	10	15	18	155	< 0.05	<18	<550	<1700	IS	L
HK1026849001	L102BH 13.4-14.3M (E&F)	L102BH (E&F)	13.4	14.3	V	4 & 10/11/2010	<0.1	5	<0.2	21	6	14	19	100	<0.05	<18	<550	<1700	IS	L
HK1026849002	L102BH 14.3-15.3M (E&F)	L102BH (E&F)	14.3	15.3	V	4,10,11/11/2010	<0.1	6	<0.2	24	6	15	16	69	< 0.05	<18	<550	<1700	IS	L
HK1026849003	L102BH 15.3-15.5M (F)	L102BH (F)	15.3	15.5	V	11/11/2010	<0.1	5	<0.2	20	6	13	15	102	< 0.05	<18	<550	<1700	IS	L
HK1027307001	L110BH 12.0-12.9M (A&B)	L110BH	12.0	12.9	V	10 & 13/11/2010	<0.1	5	<0.2	21	7	14	15	70	<0.05	<18	<550	<1700	IS	Ĺ
HK1027307002	L110BH 12.9-13.9M (A&B)	L110BH	12.9	13.9	V	10 & 13/11/2010	<0.1	5	<0.2	20	12	14	19	83	<0.05	<18	<550	<1700	IS	L

Note:

Bold: Analytical results greater than Lower Chemical Exceedance Level (LCEL), but less than or equal to Upper Chemical Exceedance Level (UCEL)

Bold Italic and Underlined: Analytical results greater than Upper Chemical Exceedance Level (UCEL) but less than or equal to 10x Lower Chemical Exceedance Level (10xLCEL)

Bold and Underlined: Analytical results greater than 10x Lower Chemical Exceedance Level (10xLCEL)

Total PCB: Total PCBs calculated through summation of the 18 PCB congeners, based on raw data above the limit of detection of 1ug/kg.

For detailed information on the individual congeners please refer to the certificate of analysis for the work order.

IS Denoted: Insufficient interstitial water generated for TBT analysis.

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT CONTRACT NO. KL/2009/02

PROJECT: SITE INVESTIGATION FOR TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON (STAGE 1)

Sediment Quality Report

Table 6.1 Summary of Sediment Quality Reports

Table 0.1 Cultilitary of Ocument Quality neports																			
Analyte Description							Arsenic	Cadmium	Chromium	Copper	Nickel	Lead	Zinc	Mercury	Total Polychlorinated biphenyls	Low M.W. PAHs	High M.W. PAHs	Tributyl Tin	tion
					Unit (In dry Wt basis)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	ug TBT/L	ie i
					Reporting Limits	0.1	1	0.2	1	1	1	1	1	0.05	18	550	1700	0.015	isi
			Lowe	Chemical	Exceedance Level (LCEL)	1	12	1.5	80	65	40	75	200	0.5	23	550	1700	0.15	Sas
			Upper	Chemical	exceedance Level (UCEL)	<u>2</u>	<u>42</u>	4	<u>160</u>	<u>110</u>	<u>40</u>	<u>110</u>	270	<u>1</u>	<u>180</u>	<u>3160</u>	9600	<u>0.15</u>	O
					10 x (LCEL)	10	120	<u>15</u>	800	<u>650</u>	400	<u>750</u>	2000	<u>5</u>	230	5500	17000	1.5	
	Sample I	Description																	
ALS Lab ID	Sample ID	Sample	~ =	Sample To (depth,m) Sampling	Method Sampling Date														
HK1027989001	L119BH 14.5-15.0M (A)	L119BH (A)	14.5	15.0	/ 18/11/2010	<0.1	5	<0.2	21	6	12	15	60	< 0.05	<18	<550	<1700	IS	L
HK1027989002	L119BH 13.5-14.4M (B)	L119BH (B)	13.5	14.4	/ 22/11/2010	<0.1	4	<0.2	19	5	12	14	49	< 0.05	<18	<550	<1700	IS	L

Note:

Bold: Analytical results greater than Lower Chemical Exceedance Level (LCEL), but less than or equal to Upper Chemical Exceedance Level (UCEL)

Bold Italic and Underlined: Analytical results greater than Upper Chemical Exceedance Level (UCEL) but less than or equal to 10x Lower Chemical Exceedance Level (10xLCEL)

Bold and Underlined: Analytical results greater than 10x Lower Chemical Exceedance Level (10xLCEL)

Total PCB: Total PCBs calculated through summation of the 18 PCB congeners, based on raw data above the limit of detection of 1ug/kg.

For detailed information on the individual congeners please refer to the certificate of analysis for the work order.

IS Denoted: Insufficient interstitial water generated for TBT analysis.

土木工程拓展署 MEINHARDT Civil Engineering and
Development Department AGREEMENT NO. CE 38/2008(HY) Hyder CEDD KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION 九龍拓展處 Kowloon Development Office A C11 C18 D32VG AC15 A C26 59700 **1**8000 80 434V C27 8100 C49 0 8500 8200 8400 NOTE: A C25 8300 IMT OPTION ASSUMED IN FIGURE, TBM OPTION ALSO BEING CONSIDERED ESL : EXTREME SEA LEVEL AT QUARRY BAY / NORTH POINT (1954 - 1999) MSL : MINIMUM SEA LEVEL AT QUARRY BAY / NORTH POINT (1954 - 1999) MinL : MEASURED GWL (MIN.)
MaxL : MEASURED GWL (MAX.) -EXISTING SEAWALL 34m SW) 44m SW) 48m SW) 36m NE) 81m SW) 154m NE) 92m NE) 8/0 0/S 0/8 -EXISTING SUBMARINE OUTFALI +20-+10--10-ALLUVIUM (-30 ION _EVAT I 급₋₆₀₋ -70-CHAINAGE (m) 82'00 8400 8500 8600 8000 8100 8300 8700 8800 8900 STRUCTURE IMMERSED TUBE TUNNEL TSEUNG KWAN O - LAM TIN TUNNEL

VERTICAL ALIGNMENT AND GEOLOGICAL PROFILE (SHEET 4 OF 4)

VΙ

Original Size

© Copyright reserved

ROCK

F0092/FIGURE 3.5

16AUG2012

F0092_FIGURE 3_5.DGN

Date

Scale VERTICAL 1:1000

File name

Drawing No.

CDG

Drawing title

ALLUVIUM

٧

Date

ZONE

Rev.

GEOLOGICAL UNIT

Description