

ATAL-Degremont-China Harbor Joint Venture

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works

Monthly Operational Phase EM&A Report for September 2021

[10/2021]

	Name	Signature
Prepared & Checked:	Alex Chan	An
Reviewed & Certified:	Y W Fung	y

Date:	21 October 2021	
	Date:	Date: 21 October 2021

Disclaimer

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of our brief. This report has been prepared for the sole and specific use of our client and AECOM Environment accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission.

AECOM Asia Co. Ltd.

12/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Drainage Services Department Sewage Services Branch Harbour Area Treatment Scheme 5/F, Western Magistracy 2A Po Fu Lam Road Hong Kong

Attention: Mr Albert Wong

Your reference:

Our reference:

HKDSD203/50/107598

Date:

19 October 2021

BY EMAIL & POST

(email: awong@dsd.gov.hk)

Dear Sirs

Agreement No. HATS 02/2016
Services for Independent Environmental Checker (IEC) for
Contract No. DC/2013/10 – Design, Build and Operate San Wai Sewage Treatment Works – Phase 1
Monthly Operational Phase Environmental Monitoring and Audit Report No.4 (September 2021)

We refer to emails on 12 and 15 October 2021 from AECOM Asia Co. Ltd. attaching the Monthly Operational Phase Environmental Monitoring and Audit Report No. 4 (September 2021).

We have no comments and hereby verify the Monthly Operational Phase Environmental Monitoring and Audit Report No. 4 (September 2021) in accordance with Clause 5.4 of the Environmental Permit no. EP-464/2013.

Should you have any queries, please do not hesitate to contact the undersigned or our Ms Karen Po on 2618 2831.

Yours faithfully

ANEWR CONSULTING LIMITED

James Choi

Independent Environmental Checker

CPSJ/LCCR/PKWK/lsmt

cc AECOM – Mr CY Hung (email: cy.hung@swstw-aecom.com) AECOM – Mr YW Fung (email: yw.fung@aecom.com)

ANewR Consulting Limited

Unit 517, 5/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648

Email: info@anewr.com Web: www.anewr.com

CONTENT

			Pag
EXE	CUTI	VE SUMMARY	3
1	INTR	RODUCTION	5
	1.1	Background	5
2	AIR (QUALITY MONITORING	6
		Monitoring Requirement Monitoring Parameters Monitoring Frequency Monitoring Method Monitoring Locations for Impact Monitoring Action and Limit Levels Event and Action Plan Results and Observation	6 6 6 7 7 8
3	WAT	ER QUALITY MONITORING	9
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Monitoring Requirements Monitoring Equipment Monitoring Parameter, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Result for Marine Water Quality Monitoring Monitoring Requirement Monitoring Parameter Monitoring Location Monitoring Result for Effluent Quality Monitoring	9 9 10 10 11 12 12 12
4	TOX	ICITY TEST	13
	4.1 4.2 4.3	Monitoring Requirement Monitoring methodology Testing result	13 13 13
5	LANI	DSCAPE AND VISUAL AUDITING	14
	5.1 5.2	Monitoring Requirement Result and Recommendations	14 14
6	ENVI	RONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION	14
	6.1	Environmental Complaint, Notification of Summons and Successful Prosecution	14
7	CON	CLUSIONS	14
	7.1	Conclusions	14

List of Tables

Table 2.1	Parameter and Frequency of Odour monitoring
Table 2.2	Proposed Monitoring Locations for Odour Sampling and H2S Measurement
Table 2.3	Action and Limit Level for Oduor Monitoring
Table 2.4	Summary of H ₂ S Measurement Results for Site boundary / ASRs
Table 2.5	Summary of Odour Monitoring Results for Exhaust of Deodourisation Unit
Table 3.1	Marine Water Quality Monitoring Equipment
Table 3.2	Marine Water Quality Monitoring Parameters, Frequency and Duration
Table 3.3	Proposed Marine Water Quality Monitoring Stations
Table 3.4	Summary of Monitoring Results and criteria of WQOs
Table 3.5	Monitoring Result of Effluent Quality Monitoring
Table 4.1	Methodology for Toxicity Testing

Figures

Figure 1.1	Site Layout Plan
Figure 2.1	Locations of Air Sensitive Receivers
Figure 2.2	Site Boundary Downwind Location of Exhaust Point of the Deodourisation Unit
Figure 2.3	Locations of Odour Patrol
Figure 3.1	Locations of Marine Water Quality Monitoring
Figure 3.2	Locations of Effluent Sampling

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Calibration Certificates of Monitoring Equipment
Appendix C	Monitoring Results for H ₂ S Measurement
Appendix D	Weather Information
Appendix E	Logsheet of Odour Patrol
Appendix F	Marine Water Quality Monitoring Results
Appendix G	Laboratory Analysis Result for Marine Water Quality Monitoring
Appendix H	Laboratory Analysis Result for Effluent Monitoring
Appendix I	Toxicity Testing Result
Appendix J	Action and Limit Levels
Appendix K	Event and Action Plan

EXECUTIVE SUMMARY

In accordance with the Environmental Monitoring and Audit Manual (EM&A Manual) and the Environmental Permit (EP-464/2013) for the Contract No. DC/2013/10 - Design, Build and Operate San Wai Sewage Treatment Works – Stage 1 (the Project), air quality and water quality monitoring are required during operational phase of the Project. The purpose of operational phase monitoring is to confirm the predictions of mitigation measures advised in the EIA report.

As confirmed by the Contractor, all major construction activities of the Project has been completed in May 2021. The Operational Phase of the Project commenced in March 2021. This Monthly Operational Phase Monitoring Report summarizes monitoring events carried out during period from 1 to 30 September 2021. There were a total of two monitoring events carried out during the reporting month. The exact dates of monitoring carried out in this month are tabulated below:

Monitoring Event	Date		
H₂S measurement	10 and 11 September 2021		
Odour Patrol	10 September 2021		
Marine Water Quality Monitoring	10 September 2021		
Effluent Quality Monitoring	10 September 2021		
Toxicity Testing	10 September 2021		
Landscape and Visual Auditing	N/A		

Air Quality Monitoring

No Action and Limit Levels exceedance of H₂S measurement was recorded in the reporting month.

Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.

Water Quality Monitoring

No non-compliance of marine water monitoring was recorded in the reporting month.

No non-compliance of effluent quality monitoring was recorded in the reporting month.

Toxicity Test

Toxicity test was conducted in the reporting month.

Landscape and Visual Auditing

No landscape and visual auditing was conducted in the reporting month.

Environmental complaint, notification of summons and successful prosecution

No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

Reporting Change

There were no reporting changes in the reporting month.

Future Key Issue

The Project has entered the Operation Phase since March 2021 and its normal operation in the reporting month. Mitigation measures as proposed in the approved Environmental Impact Assessment report will be provided and maintained at the Project.

1 INTRODUCTION

1.1 Background

- 1.1.1. This Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works Stage 1 (the Project). The Project was awarded to ATAL-Degremont-China Harbor Joint Venture (ADCJV) by the Drainage Services Department (DSD). AECOM Asia Co. Ltd. was appointed as the Environmental Team (ET) by ADCJV to implement the operational phase EM&A program in compliance with the EP and the EM&A Manuals.
- 1.1.2. The project involves expansion of the preliminary treatment works at San Wai STW from 164,000 m³/d to 200,000 m³/d Average Dry Weather Flow, upgrading the preliminary treatment level to CEPT and adding centralized disinfection. The site layout plan is shown in **Figure1.1**.
- 1.1.3. According to the Section 25 of the Particular Specification (PS) and the Environmental Permit No. EP-464/2013, an EM&A programme should be implemented in accordance with the procedures and requirements in the Environmental Monitoring & Audit Manual (EM&A Manual) of the approved EIA report (Registration No. AEIAR-072/2003). The EM&A Manual and EP provide guidelines for the Operational Phase Monitoring Reports and for preparation of the Operational Phase Monitoring Reports.
- 1.1.4. The operational phase of the Project was commenced in March 2021.
- 1.1.5. As part of the project EM&A program, baseline monitoring was conducted during July 2019 to April 2020 to determine the ambient environmental conditions before the Project commence operation works.
- 1.1.6. This is the 4th Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report for the Project which summaries the audit findings of the EM&A programme during the reporting month from 01 to 30 September 2021.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirement

2.1.1 In accordance with Section 2.5 of the EM&A Manual, odour panel tests and H₂S measurement are required to be conducted for one year after commission of the expanded and upgraded Sai Wai STW.

2.2 Monitoring Parameters

- 2.2.1 15-min Hydrogen Sulphide (H₂S) concentration (in parts per million) was measured at the site boundary, nearby air sensitive receivers and the exhaust of deodourisation units. Meteorological conditions including temperature, wind speed, wind direction and relative humidity was measured at the time of the monitoring.
- 2.2.2 Since no correlation between H₂S concentration and odour units was established in the first set of odour monitoring, no subsequent odour units monitoring would be conducted in the air quality monitoring as requested in Section 2.5.1.34 of the EM&A manual.
- 2.2.3 Apart from odour monitoring, regular oduor patrolling in the vicinity of the STW was also conducted in a monthly interval during the operational phase to ensure that prompt action would be taken whenever any excessive odour emissions area detected.

2.3 Monitoring Frequency

2.3.1 The monitoring frequency of each odour parameters are listed in the **Table 2.1**.

Table 2.1 Parameter and Frequency of Odour monitoring

Monitoring Parameter	Frequency
H ₂ S Measurement	Quarterly
Odour Patrol	Monthly

2.4 Monitoring Method

H₂S Measurement

- 2.4.1 H₂S concentration were measured by using of two H₂S analyzers, which utilizes a gold film sensor for the detection of H₂S. The H₂S analyzers were controlled by microprocessor and ensuring raid accurate analyses. The H₂S analyzers were fitted with Data logger, Interface cable and interface software, and Data download and graphics service. The calibration certificates of H₂S analysers are presented in **Appendix B**.
- 2.4.2 Weather condition including wind direction, wind speed, temperature and humidity was recorded during H₂S measurement. The calibration certificate of air velocity meter is presented in **Appendix B**.

Odour Patrol

- 2.4.3 The odour patrol was a simple judgement by an observer patrolling and sniffing around the facilities to detect any odour. This observer should be free from any respiratory disease and not normally working at the facilities.
- 2.4.4 The observer followed a predeterminded route which should normally be going from non-odours to odours area. The observer would patrol slowly along the route and use his olfactory sense to detect any odours. The locations listed in the predeterminded route are shown **Figure 2.3**.

- 2.4.5 The observer brought along a logbook to record the findings. The logbook book was kept in the plant office where it could be inspected when necessary. The findings were included the followings:
 - Prevailing weather condition
 - · Wind directions
 - Location where odour spotted
 - Possible source of odour
 - · Perceived intensity of the odour
 - · Duration of odour

2.5 Monitoring Locations for Impact Monitoring

2.5.1 H₂S measurements was undertaken at the proposed monitoring locations, the proposed monitoring locations were determined by the ET Leader and agreed with ER and EPD as the request of the Section 2.5.1.25 and 2.5.1.26 of the EM&A Manual. The monitoring locations are presented in **Table 2.2** and shown in **Figure 2.1** and **Figure 2.2**.

Table 2.2 Proposed Monitoring Locations for Odour Sampling and H2S Measurement

Identification of Monitoring Location	Description	
ASR1a	晉榮貨櫃服務有限公司	
ASR2b	永康貨櫃服務有限公司	
Site Boundary, SB1*1	Site boundary	
OD1*2	Downwind of the exhaust point	
OD2*2	of deodourisation units	

^{*1} According to Sections 2.5.1.25 of the EM&A Manual, the H₂S measurement shall be undertaken at the site boundary downwind of the exhaust point of the deodourisation unit and the covered odour source. **Figure 2.2** shown the locations of the site boundary downwind of the exhaust point of the deodourisation unit. *2 According to Sections 2.5.1.26 of the EM&A Manual, H₂S measurement shall be conducted at the exhaust point of the deodorization unit (OD1&2). Considered the

2.6 Action and Limit Levels

2.6.1 The Action and Limit Levels established from the baseline monitoring are shown in the **Table 2.3** and **Appendix J**.

situation of the COVID-19, the ET Leader proposed to conduct only the H₂S measurement at OD1&2. The proposal for this change was approved by the EPD.

Table 2.3 Action and Limit Level for Oduor Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H₂S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of exhaust	AL = LL/2 = 139 μg/s of H ₂ S	LL = 277 μg/s of H ₂ S
OD2	in m ³ /s and temperature of exhaust (°C)		

2.7 Event and Action Plan

2.7.1 The Event and Action Plan for the operational phase odour monitoring was annexed in **Appendix K**.

2.8 Results and Observation

H₂S Measurement

- 2.8.1 The H₂S measurement at the proposed locations was carried out on 10 September 2021 at 10:00 to 11 September 2021 at 09:00. Measurements of H₂S were conducted in parallel (within a 3-hour period) at the sources and receivers. A total of eight sets of data were obtained from samples collected over different periods of a 24-hour cycle day.
- 2.8.2 The H₂S measurement results for site boundary/ ASR and dedourisation unit are summarized in **Table 2.4** and **Table 2.5**. Detailed H₂S measurement results are presented in **Appendix C**. The

Table 2.4 Summary of H₂S Measurement Results for Site boundary / ASRs

Round	Date	Location	Averaged H ₂ S Concentration, ppm	Action Level,	Limit Level, ppm
Round 1 to 8	10 and 11 September 2021	SB1	0.0063	0.0109	0.0109
		ASR1a	0.0048	0.0100	0.0100
	2021	ASR1b	0.0055	0.0157	0.0157

Table 2.5 Summary of Odour Monitoring Results for Exhaust of Deodourisation Unit

Round	Date	Location	Averaged H₂S Concentration, ppm	Expressed as µg/s	Action Level, µg/s	Limit Level, µg/s
Round	10 and 11 September	OD1	0.0085	116.5	139	277
1 to 8	2021	OD2	0.0081	84.0	139	211

- 2.8.3 No exceedance of Action and Limit Levels was recorded in the reporting month.
- 2.8.4 During the sampling period, meteorological data including humidity, wind speed and temperature was recorded, and wind direction was obtained from the Hong Kong Observatory's Lau Fu Shan Weather Station and presented in **Appendix D.**

Odour Patrol

- 2.8.5 The odour patrol was carried out on 10 September 2021 during at 10:00 and 15:30. The observer was patrolling and sniffing around the facilities to detect the any odour, as required by the EM&A Manual.
- 2.8.6 The weather condition, wind direction and results for odour patrol at each monitoring location are provided in **Appendix E.**
- 2.8.7 During the odour patrol, the odour intensity were recorded from 0(not detectable) to 1(slight). The source and duration of odour recorded during odour patrol can be referred to **Appendix E**.

3 WATER QUALITY MONITORING

Marine Water Quality Monitoring

3.1 Monitoring Requirements

- 3.1.1 In accordance with Section 4.5.1.12 of the EM&A Manual, operational phase marine water quality monitoring is suggested three months after the commissioning of the expanded and upgraded San Wai STW.
- 3.1.2 Marine water samples and in situ measurement should be collected from all the sampling stations on 8 occasions at intervals of approximates 3 months during the operational phase of the Project. On each occasion, marine water samples should be collected every 2 hours for a 12-hour duration. When significant change in the marine water quality are detected, the monitoring frequency should be increase as necessary until the cause for the change is identified.

3.2 Monitoring Equipment

3.2.1 Equipment used in the marine water quality monitoring programme is summarized in **Table 3.1**. A copy of the calibration certificates for the multifunctional meter are attached in **Appendix B**.

Table 3.1 Marine Water Quality Monitoring Equipment

Monitoring Equipment	Equipment Model
Multifunctional Meter (measurement of Dissolved Oxygen, pH, temperature, salinity and turbidity)	YSI 6820 V2
Water Depth	Lowrance x-4
Positioning Equipment	Garmin GPS72H

3.3 Monitoring Parameter, Frequency and Duration

3.3.1 **Table 3.2** summarises the monitoring parameters, frequency and duration of marine water quality monitoring, as request in Section 4.5.1.13 of the EM&A manual.

Table 3.2 Marine Water Quality Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameters, unit	Frequency	Duration
W1 to W8	In-situ Measurement: • Temperature, °C • Salinity, ppt • DO, mg/L • DO Saturation, % • Turbidity, NTU Laboratory Analysis: • SS, mg/L • TIN, mg/L • Unionised ammonia, mg/L • BOD₅,mg/L • E. coli, cfu/100mL • Cadmium, Copper, Nickel, Lead, Chromium, Mercury and Zinc, μg/L • PCBs, μg/L • PAHs, μg/L	8 occasions at intervals of approximately 3 months during the operation phase of the upgraded and expanded San Wai STW.	On each occasion, marine water samples will be collected every 2 hours for a 12- hour duration.

3.4 Monitoring Locations

3.4.1 Marine water quality monitoring was undertaken at the proposed monitoring stations set out in the Section 4.5.1.6 of EM&A Manual. The proposed marine water quality stations were presented in **Table 3.3** and shown in **Figure 3.1**.

Table 3.3 Proposed Marine Water Quality Monitoring Stations

Station	Easting	Northing
W1	808231	827494
W2	807469	828888
W3	807221	823737
W4	806309	829988
W5	809062	824638
W6	807066	825034
W7	805592	828162
W8	805412	829400

3.5 Monitoring Methodology

3.5.1 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning System (DGPS) was used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above seabed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) During the marine water quality measurement, a portable multifunctional meter will be used for measurement of pH, dissolved oxygen, water temperature, turbidity and salinity.
- (e) Spare parts of equipment will be maintained for necessary replacement.
- (f) Water samples were collected using the water sampler at the monitoring stations and the samples were stored in high-density polythene bottles and then packed in cool-boxes (cooled at 4oC without being frozen) for carrying out the laboratory analysis. The analysis will be commenced in a HOKLAS accredited laboratory, WELLAB LIMITED. (HOKLAS Registration No. 083) within 24 hours after collection of the samples.
- (g) The laboratory analysis reports for marine water quality monitoring are attached in **Appendix G**.

3.5.2 Maintenance and Calibration

- (a) Before each round of monitoring, the dissolved oxygen probe of YSI 6820 V2 was calibrated by the wet bulb method. A zero check in distilled water was performed with the turbidity probe of YSI 6820 V2 once per monitoring day.
- (b) The monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS before use and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. The calibration record for each monitoring instrument used in the water quality monitoring process is annexed in **Appendix B**.

3.6 Monitoring Result for Marine Water Quality Monitoring

3.6.1 The marine water quality monitoring was conducted on 10 September 2021 in the reporting month. The summary of monitoring results and criteria of Water Quality Objectives (WQOs) are summarized in **Table 3.4**. Detail of marine water quality monitoring result is annexed in **Appendix F**.

Table 3.4 Summary of Monitoring Results and criteria of WQOs

Parameter	Ave	rage			Maximum		Water Quality Objectives
Parameter	Result	Baseline	Result	Baseline	Result Baseline		(in marine waters)
Temp. (°C)	25.3	24.1	24.8	18.8	26.0	29.9	Change due to waste discharge < 2 °C
Salinity (ppt)	31.6	25.5	30.5	4.3	32.4	33.1	Change due to waste discharge < 10% of natural ambient level
рН	8.07	7.95	7.86	7.64	8.23	8.38	6.5 – 8.5 and change due to waste discharge < 0.2
DO Depth Average (mg/L)	5.53	6.46	5.34	2.96	6.00	10.14	Depth averaged: > 4 mg/L for 90% samples
Turbidity (NTU)	9.7	7.9	6.9	2.3	13.4	31.9	Not available
SS (mg/L)	10.3	7.6	4.0	<2.5	37.0	29.0	< 30% increase in the natural ambient level
Cadmium (µg/L)	<0.5	0.5	<0.5	<0.5	<0.5	4.2	Not available
Copper (µg/L)	5.3	6.0	2.0	1.0	14.0	119.0	Not available
Nickel (µg/L)	2.1	1.9	1.0	<1.0	8.0	36.0	Not available
Lead (µg/L)	1.2	1.8	<1.0	<1.0	6.0	166.0	Not available
Mercury (μg/L)	0.6	0.6	<0.5	<0.5	1.0	44.0	Not available
Chromium (µg/L)	1.1	1.3	<1.0	<1.0	5.0	50.0	Not available
Zinc (µg/L)	18.9	25.8	5.0	3.0	98.0	871.0	Not available
TIN (mg/L)	0.55	1.20	0.36	0.27	0.84	2.51	< 0.5 mg/L (annual mean depth average)
NH3-N (mg/L)	0.12	0.004	0.06	0.001	0.25	0.031	Not available
BOD₅ (mg/L)	<2.0	2.6	<2.0	<2.0	<2.0	7.0	Not available
E. coli (cfu/100mL)	35.4	60.3	7.0	<1.0	74.0	980.0	< 610 per 100mL (annual geometric mean)
PAHs (µg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not available
PCBs (µg/L)	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	Not available

- 3.6.2 The weather condition during the monitoring was fine. Sea conditions for the majority of monitoring days was moderate. No major water pollution source and no marine construction activities in the vicinity of the stations, which might affect the results was observed during the marine water quality monitoring.
- 3.6.3 No non-compliance of the marine water monitoring was recorded in reporting period.

Effluent Quality Monitoring

3.7 Monitoring Requirement

3.7.1 In accordance with Section 4.6.1.1 of the EM&A Manual, in order to ensure the effectiveness of the proposed treatment process, effluent quality monitoring is recommended.

3.8 Monitoring Parameter

- 3.8.1 As recommended by the EM&A Manual, the effluent quality monitoring was included the follows parameters:
 - Ha -
 - BOD (mg/L)
 - SS (mg/L)
 - TIN (µg/L)
 - NH₃-N (mg/L)
 - E. coli (cfu/100mL)
 - Cadmium (µg/L)
 - Copper (µg/L)
 - Nickel (µg/L)
 - Lead (µg/L)
 - Mercury (µg/L)
 - Chromium (µg/L)
 - PCBs (µg/L)
 - PAHs (µg/L)

3.9 Monitoring Location

3.9.1 Effluent quality monitoring was carried out at the effluent outlet of the San Wai STW as shown in Figure 3.2.

3.10 Monitoring Result for Effluent Quality Monitoring

3.10.1 The effluent monitoring results during the reporting month is summarized in **Table 3.5**. The laboratory analysis reports for the effluent quality monitoring is presented in **Appendix H**.

Table 3.5 Monitoring Result of Effluent Quality Monitoring

		Limitation on Discharge	
Parameter	Result	Percentile	Upper
		Standard	Limit
рН	7.1	Not av	ailable
BOD₅ (mg/L)	290	180	360
SS (mg/L)	11	120	240
TIN (μg/L)	37	Not av	ailable
NH ₃ -N (mg/L)	37	Not available	
E. coli (cfu/100mL) (Grab sample)	70,000	300,000	20,000#
Cadmium (µg/L)	<0.5	Not available	
Copper (µg/L)	5	Not available	
Nickel (µg/L)	33	Not available	
Lead (µg/L)	1	Not available	
Mercury (μg/L)	<0.5	Not available	
Chromium (µg/L)	4	Not available	
PCBs (µg/L)	<0.02	Not available	
PAHs (μg/L)	<0.1	Not available	

^{#:} The upper limit is in monthly geometric mean.

- 3.10.2 According to the Note (i) of Discharge License (WT0003502-21), there was a given number for determinand permitted to exceed percentile standards. Considered the monitoring frequency of BOD₅ was three times a week, and this monitoring result did not exceed the Upper Limit, so this percentile standard exceedance of BOD₅ was considered as within determinand permitted.
- 3.10.3 No exceedance of the upper limit was recorded in effluent quality monitoring, hence no non-compliance of effluent quality was recorded in the reporting month.

4 TOXICITY TEST

4.1 Monitoring Requirement

4.1.1 In accordance with Section 4.6.1.2 of the EM&A Manual, toxicity testing shall be carried out on 8 occasions at intervals of approximately 3 months during the operational phase of the Project for two marine species. One of the two marine species shall be selected from local environment. The representative species that will be chosen for testing and technical details of the testing method should be agreed and approved by the EPD prior to the operation of the sewage treatment works. The testing method for the EPD approval was submitted on 22 April 2021.

4.2 Monitoring methodology

4.2.1 The methodology of the toxicity testing is summarized in the **Table 4.1**.

Table 4.1 Methodology for Toxicity Testing

Types of Respective Species	Diatom	Barnacle larvae
	(Skeletonema costatum)	(Balanus Amphitrite)
Toxicity Testing	Chronic Toxicity	Acute Toxicity
Time requirement	7 days	48 hours
Toxicity testing method	NOEC in 7-day diatom growth	LC50 in 48-hr barnacle larvae
	inhibition test	survival test

4.3 Testing result

- 4.3.1 The NOEC in 7-day diatom growth inhibition test for Diatom was 2.5%
- 4.3.2 The LC50 in 48-hr barnacle larvae survival test for Barnacle larvae was 28.0%
- 4.3.3 The result of toxicity testing is annexed in **Appendix I**.

5 LANDSCAPE AND VISUAL AUDITING

5.1 Monitoring Requirement

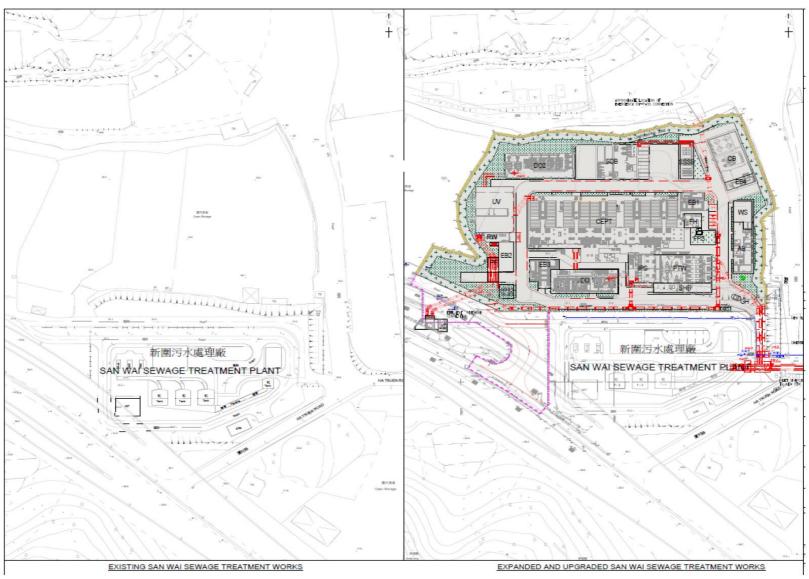
- 5.1.1 In accordance with Section 6.4 of the EM&A Manual, a competent landscape architect should be employed by the Contractor for the implementation of landscape construction works and subsequent maintenance operations during the 12 months establishment period. The establishment works should be undertaken throughout the Contractor's first year maintenance period which will be within the first operational year of the Project.
- 5.1.2 All measures undertaken by both Contractor and the Landscape Contractor during the first year of the operational phase should be audited by a Landscape Architect, as a member of the ET, on a regular basis to ensure compliance with the intended aims of the measures. Site inspections should be undertaken at least once every two months during the operational phase.

5.2 Result and Recommendations

5.2.1 No landscape and visual auditing was conducted in the reporting month. The next landscape and visual auditing is scheduled in October 2021 tentatively.

6 ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION

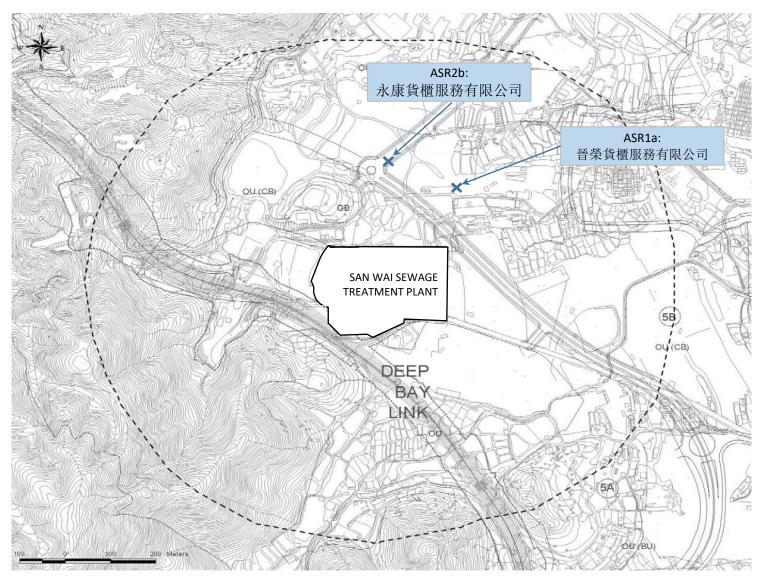
6.1 Environmental Complaint, Notification of Summons and Successful Prosecution


6.1.1 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

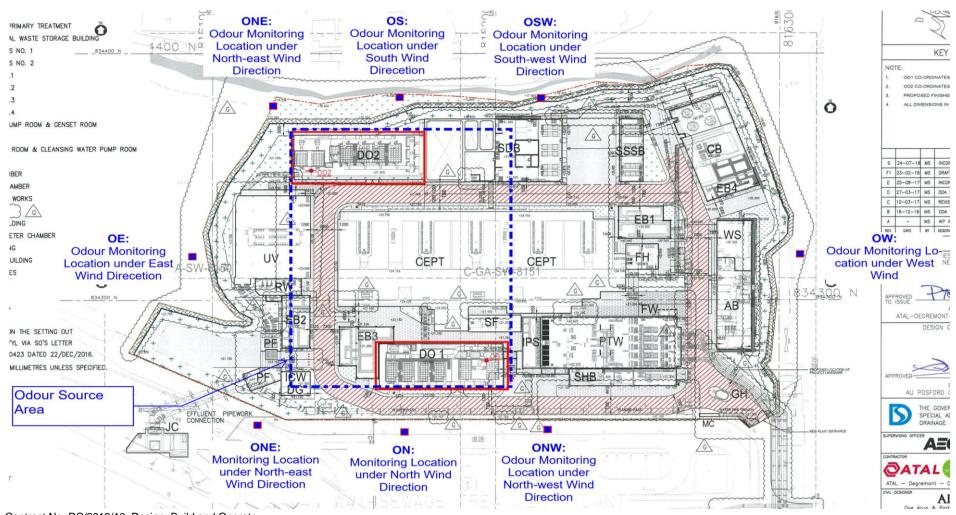
7 CONCLUSIONS

7.1 Conclusions

- 7.1.1 No Action and Limit Levels exceedance of H₂S measurement was recorded in the reporting month.
- 7.1.2 Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.
- 7.1.3 No non-compliance of marine water monitoring was recorded in the reporting month.
- 7.1.4 No non-compliance of effluent monitoring was recorded in the reporting month.
- 7.1.5 Toxicity test was conducted in the reporting month.
- 7.1.6 No landscape and visual auditing was conducted in the reporting month.
- 7.1.7 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.


FIGURES

Site Layout Plan


Date: July 2021 Figure 1.1

Locations of Air Sensitive Receivers

Date: July 2021 Figure 2.1

Contract No. DC/2013/10: Design, Build and Operate

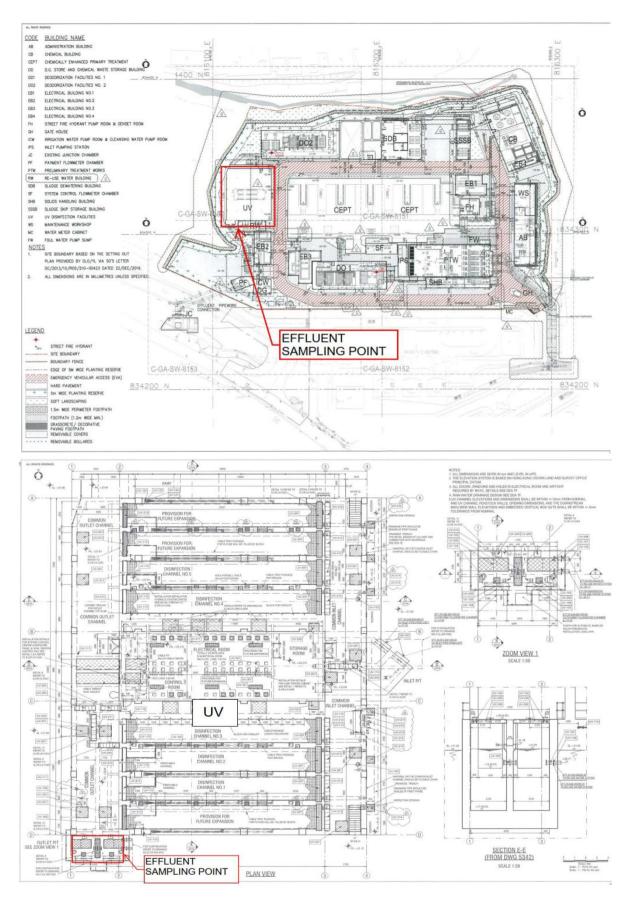
San Wai Sewage Treatment Works -

Operational Phase Monitoring

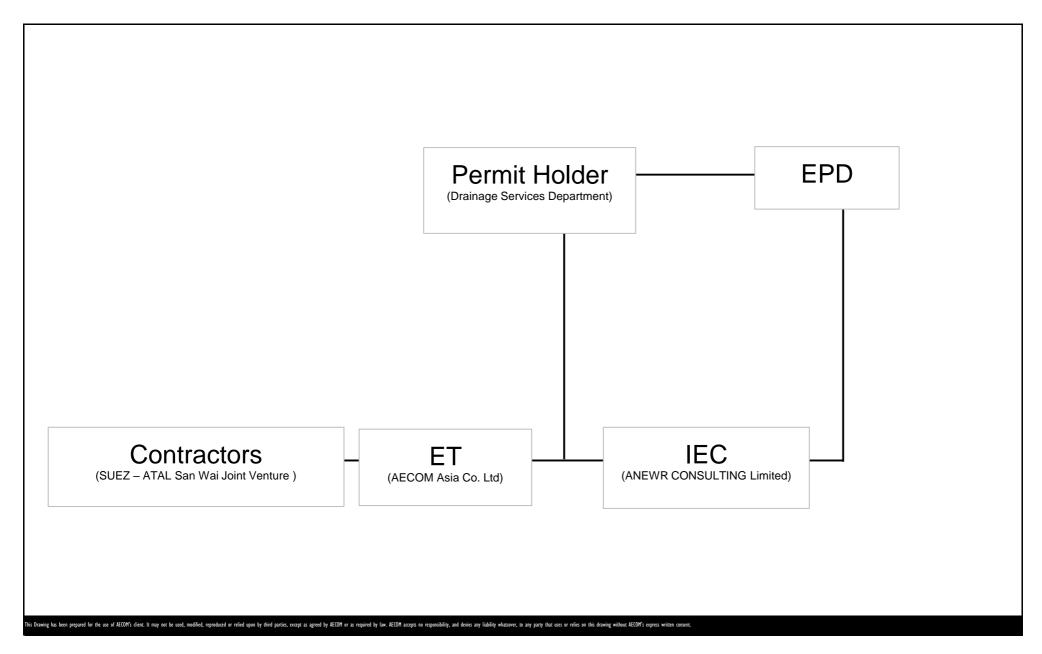
Site Boundary Downwind Location of Exhaust Point of the Deodourisation Unit

Date: August 2021 Figure 2.2

Locations of Odour Patrol Point


Date: July 2021 Figure 2.3

Locations of Marine Warer Qaulity Monitoring Stations


Date: July 2021 Figure 3.1

Locations of Effluent Monitoring Stations

Date: July 2021 Figure 3.2

APPENDIX A PROJECT ORGANIZATION STRUCTURE

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works **Project Organization Structure**

APPENDIX B
CALIBRATION CERTIFICATES OF
MONITORING EQUIPMENT

Calibration Certificate

Certificate No.: CC0082010

1. Description

Calibration item :	a) Hydrogen Sulfide (H ₂ S)	
Equipment description :	Gold Film Hydrogen Sulfide Analyzer	
Manufacturer :	ARIZONA INSTRUMENT LLC	
Type / Model No. :	Jerome® 631X	
Serial No. :	1914	
Assigned equipment no. :	N/A	
Adjustment :	N/A	
Remark :	Received with good condition	

2. Customer information

Customer :	AECOM Asia Company Limited	
Address : 8/F, Tower 2, Grand Central Plaza, 138 Shar		
	Committee Road, Shatin, N.T. HK	
Date of receipt :	7 October 2020	

3. Date of performance of the calibration

Date of calibration :	14 October 2020
Date of canonation .	11 000000 2020

Approved Signatory
WM Ling

Company Chop:

Certificate issue date: 16 October 2020

CT-BEG-02

1. The certificate shall not be reproduced except in full, without written approval of CAL LAB LTD

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Page 1 of 3 cc0082010

4. Result of Calibration

a) Hydrogen Sulfide (H₂S)

Reference Setting; ppm	Measured reading; ppm	Error of indication; % FS
0.0	0.000	0.0
0.5	0.57	0.7
1.0	1.20	2.0
5.0	6.0	3.0
10.0	14	8.0

Estimated expanded uncertainty: 12 %

Technical Requirement: + 5 ppm

Hydrogen Sulfide (H₂S) - Repeatability

Reference reading ; ppm	RSD;%	
10.0	1.0	

Technical Requirement: ± 2 %

Hydrogen Sulfide (H₂S) – Response Time

Reference reading ; ppm	Response time; second
10.0	13

Technical Requirement:

≤ 30 seconds (Pump)

Note: The technical requirement is refer to JJG 695-2003

CT-006-04

1. The certificate shall not be reproduced except in full, without written approval of CAL LAB LTD

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Page 2 of 3 cc0082010

5. Reference method for calibration

Hydrogen Sulfide	JJG 695-2003	

6. Environment condition of calibration

Temperature ; °C	24.5 °C
Relative humidity; %RH	57 %RH

7. Reference equipment used in the calibration

Item	Model	Serial No.	Expiry date	Traceable to
Hydrogen sulfide	PGM-6208	M01C022401	12 Oct 2021	BJIM

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in

measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is

assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized

standard and are calibrated on a schedule to maintain the accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and

carry no implication regarding the long term stability of the instrument.

Note4: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to

the calibration item as received.

Calibrated by: Lumin Ju

Date: 14 October 2020

Checked by: 0

Date: 14 October 2020

*** End of Certificate ***

CT-END-02

1. The certificate shall not be reproduced except in full, without written approval of CAL LAB LTD

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Page 3 of 3 cc0082010

Cal Lab Limited

Address: Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong Tel: (852)25680106 Fax(852)30116194 Email: info@callab.com.hk Website:callab.com.hk

CERTIFICATE OF CALIBRATION AND TESTING

TSI Instruments Ltd, Stirling Road, Cressex Business Park
High Wycombe Bucks HP12 3ST England
Tel: (Int +44) (UK 0) 1494 459200 Fax: (Int +44) (UK 0) 1494 459700 http://www.airflowinstruments.co.uk

ENVIRONMENT CONDITIONS					
TEMPERATURE	20.5	°C	MODEL	TA410	
RELATIVE HUMIDITY	51.91	%RH	CN	W. A.	
BAROMETRIC PRESSURE	997.6	hPa	SERIAL NUMBER	TA4102035007	
⊠ AS LEFT		⊠1	n Tolerance		
☐ AS FOUND	OUT OF TOLERANCE				

-CALIBRATION VERIFICATION RESULTS-

TE	MPERATURE V	ERIFICATION		SYS	гем Т-200	CONTRACT OF THE LOCAL PROPERTY OF THE LOCAL	Unit: °C
#	STANDARD	MEASURED	ALLOWABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE
I	0.0	0.1	-0.3~0.3	2	60.0	60.0	59.7~60.3
		the transfer of the same of th	The second secon				
VE	LOCITY VERI	FICATION		SYST	TEM V-352		Unit: m/s
#	LOCITY VERII STANDARD	FICATION MEASURED	ALLOWABLE RANGE	SYS1	STANDARD	MEASURED	
# 1			ALLOWABLE RANGE -0.03~0.03	11		MEASURED 3.58	Unit: m/s ALLOWABLE RANGE 3.39~3.74

6.12 6.13 5.81~6.42 0.31 0.31 0.28~0.33 9 9.64 9.56 9.15~10.12 4 0.51 0.51 0.48~0.53 10 13.57 13.66 12.89~14.25 1.02 1.00 0.97~1.07 11 19.20 19.32 18.24~20.16 2.05 2.05 1.95~2.16

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to members of the European co-operation for Accreditation (EA) (for example: UKAS, SWEDAC, DAkkS) or has been verified with respect to instrumentation whose accuracy is traceable to some member of EA, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Pressure DC Voltage Pressure	E006020 E006001 E006010 E006059	Last Cal. 26-02-20 28-02-20 28-02-20 28-02-20	Cal. Due 26-02-21 28-02-21 28-02-21 28-02-21	Measurement Variable Temperature Pressure Temp Velocity	System ID E006019 E006038 E006183 E006017	Last Cal. 26-02-20 28-02-20 26-02-20 06-03-20	Cal. Due 26-02-21 28-02-21 26-02-21 06-03-23
---	--	---	--	---	---	---	--

1 8 SEP 2020

DATE

Doc. ID: CERT_GEN_WCC

ALS Technichem (HK) Ptv Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR MIKE SHEK

AECOM ASIA COMPANY LIMITED

CLIENT: ADDRESS:

13/F, TOWER 2, GRAND CENTRAL PLAZA,

138 SHATIN RURAL COMMITTEE ROAD. SHATIN, HONG KONG

WORK ORDER:

HK2127207

SUB- BATCH:

0

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

07- Jul- 2021 13-Jul-2021

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type:

Multifunctional Meter

Service Nature:

Performance Check

Scope:

Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./ Equipment No.:

[12A101545]/[W.026.35]

Date of Calibration:

08- July- 2021

GENERAL COMMENTS

This is the Final Report and supersedes any preliminary report with this batch number.

Mr Chan Siu Ming, Vico Manager - Inorganic

Na An

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2127207

SUB- BATCH:

0

DATE OF ISSUE:

13- Jul- 2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- July- 2021

Date of Next Calibration:

08- October- 2021

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	157.0	+6.9
6667	6603	- 1.0
12890	12804	- 0.7
58670	58215	- 0.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.80	2.88	+0.08
5.25	5.14	- 0.11
7.65	7.49	- 0.16
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.00	+0.00
7.0	7.02	+0.02
10.0	10.02	+0.02
- 310	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2127207

SUB- BATCH:

0

DATE OF ISSUE:

13-Jul-2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- July- 2021

Date of Next Calibration:

08- October- 2021

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.0		
4	4.2	+5.0	
10	9.7	- 3.0	
20	19.7	- 1.5	
50	49.6	- 0.8	
100	99.2	- 0.8	
	Tolerance Limit (%)	±10.0	

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)	
0	0.00		
10	10.28	+2.8	
20	19.68	- 1.6	
30	30.13	+0.4	
	Tolerance Limit (%)	±10.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Man Sign

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2127207

SUB- BATCH:

0

DATE OF ISSUE:

13-Jul-2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- July- 2021

Date of Next Calibration:

08- October- 2021

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.91	- 0.1
20.5	20.45	- 0.1
39.5	39.42	- 0.1
	Tolerance Limit (°C)	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sign

Page 4 of 4

APPENDIX C
MONITORING RESULT FOR
H₂S MEASUREMENT AND OROUR SAMPLING

Appendix C - Odour Monitoring Results for Site boundary and ASRs

Round	Location	Date	Time Period	MeasurementTi me	Temperature, °C	Wind Speed, m/s	Wind Direction	Relative Humidity, %	H ₂ S Concentration Measruement, ppm						
									1	- SB1	10-Sep-21	09:00 to 12:00	10:10	35.5	0.49
2	10-Sep-21	12:00 to 15:00	12:55	36.5	0.78	NE	48.0	0.006	0.006		0.008	0.008	0.008	0.007	
3	10-Sep-21	15:00 to 18:00	15:45	37.1	0.18	W	43.8	0.009	0.010		0.010	0.008	0.006	0.009	
4	10-Sep-21	18:00 to 21:00	18:55	30.9	0.49	SW	49.4	0.007	0.008		0.008	0.007	0.007	0.007	
5	10-Sep-21	21:00 to 00:00	22:00	28.0	0.35	SE	64.8	0.005	0.005		0.004	0.005	0.005	0.005	
6	11-Sep-21	00:00 to 03:00	00:45	27.8	0.54	SE	58.2	0.006	0.005		0.005	0.005	0.005	0.005	
7	11-Sep-21	03:00 to 06:00	03:45	28.0	0.23	SE	57.4	0.005	0.005		0.005	0.006	0.006	0.005	
8	11-Sep-21	06:00 to 09:00	06:45	27.5	0.46	SE	82.0	0.006	0.005		0.005	0.005	0.005	0.005	
1	- ASR1a	10-Sep-21	09:00 to 12:00	09:40	34.2	0.69	E	48.0	0.005	0.005	0.006	0.006	0.006	0.006	0.0048
2		10-Sep-21	12:00 to 15:00	12:25	36.6	1.06	NE	47.4	0.005	0.005	0.005	0.005	0.006	0.005	
3		10-Sep-21	15:00 to 18:00	15:25	36.5	0.48	SW	47.2	0.007	0.008	0.008	0.008	0.008	0.008	
4		10-Sep-21	18:00 to 21:00	18:30	30.5	0.35	SW	50.4	0.004	0.004	0.004	0.004	0.005	0.004	
5		10-Sep-21	21:00 to 00:00	21:25	28.5	0.41	SE	56.7	0.004	0.004	0.003	0.005	0.004	0.004	
6		11-Sep-21	00:00 to 03:00	00:20	27.7	0.39	SE	59.4	0.003	0.004	0.004	0.004	0.003	0.004	
7		11-Sep-21	03:00 to 06:00	03:20	27.9	0.22	SE	58.0	0.004	0.004	0.004	0.005	0.005	0.004	
8		11-Sep-21	06:00 to 09:00	06:20	28.8	0.33	SE	76.1	0.004	0.004	0.003	0.003	0.003	0.003	
1	- ASR1b	10-Sep-21	09:00 to 12:00	09:20	34.1	1.06	E	48.8	0.006	0.005	0.006	0.005	0.005	0.005	0.0055
2		10-Sep-21	12:00 to 15:00	12:05	35.5	1.50	NE	47.6	0.005	0.005	0.006	0.006	0.006	0.006	
3		10-Sep-21	15:00 to 18:00	15:02	34.8	1.70	SW	43.9	0.007	0.007	0.007	0.006	0.006	0.007	
4		10-Sep-21	18:00 to 21:00	18:10	29.5	0.29	SW	51.6	0.007	0.007	0.006	0.006	0.006	0.006	
5		10-Sep-21	21:00 to 00:00	21:05	27.9	0.55	SE	50.9	0.007	0.006	0.006	0.006	0.006	0.006	
6		11-Sep-21	00:00 to 03:00	00:00	27.5	0.42	SE	58.8	0.005	0.005	0.006	0.005	0.005	0.005	
7		11-Sep-21	03:00 to 06:00	03:00	27.7	0.31	SE	56.9	0.005	0.005	0.004	0.004	0.004	0.004	
8	1	11-Sep-21	06:00 to 09:00	06:00	29.0	0.48	SE	74.6	0.005	0.004	0.004	0.004	0.004	0.004	

Appendix C - Odour Monitoring Results for Exhaust of Deodourisation Unit

						Average		Average of							H₂S Conce	entration		
Round	Location	Date	Time Period	Measurement	Temperature,	Temperature,	Wind Speed,	Wind Speed,	Wind	Relative			N	/leasruem	ent, ppm			
Rouliu	Location	Date	Time Period	Time	°C	°C	m/s	m/s	Direction	Humidity, %	1st	2nd	3rd	4th	5th	Average	Overall Average	Expressed as µg/s
1		10-Sep-21	09:00 to 12:00	10:35	35.8		13.33		E	49.8	0.015	0.013	0.012	0.011	0.012	0.013		
2		10-Sep-21	12:00 to 15:00	13:05	35.9		12.67		Е	53.8	0.010	0.011	0.011	0.012	0.012	0.011]	
3		10-Sep-21	15:00 to 18:00	16:09	35.5		13.92		W	51.8	0.018	0.016	0.017	0.016	0.015	0.016		
4	OD1	10-Sep-21	18:00 to 21:00	19:20	30.9	31.6	14.11	14.30	SW	89.9	0.006	0.005	0.006	0.006	0.006	0.006	0.0085	116.5
5	05.	10-Sep-21	21:00 to 00:00	22:25	29.5		14.67		SE	60.3	0.004	0.003	0.004	0.004	0.004	0.004		
66		11-Sep-21	00:00 to 03:00	01:10	27.9		15.01		SE	62.9	0.004	0.004	0.005	0.004	0.004	0.004	1	
7		11-Sep-21	03:00 to 06:00	04:05	27.7		15.23		SE	61.8	0.005	0.005	0.006	0.006	0.006	0.006		
8		11-Sep-21	06:00 to 09:00	07:05	29.2		15.43		SE	89.2	0.008	0.009	0.009	0.009	0.008	0.009		
1		10-Sep-21	09:00 to 12:00	10:53	34.5		10.79		E	52.7	0.007	0.007	0.008	0.007	0.007	0.007]	
2		10-Sep-21	12:00 to 15:00	13:25	35.6		10.46		E	53.6	0.010	0.008	0.008	0.009	0.009	0.009	1	
3		10-Sep-21	15:00 to 18:00	16:26	34.6		10.34		W	55.7	0.010	0.010	0.009	0.010	0.010	0.010	1	
4	OD2	10-Sep-21	18:00 to 21:00	19:40	30.0	31.1	10.63	10.86	SW	92.1	0.011	0.011	0.012	0.010	0.010	0.011	0.0081	84.0
5	J 002	10-Sep-21	21:00 to 00:00	22:45	29.6		10.27	10.00	SE	89.5	0.007	0.007	0.007	0.008	0.008	0.007	0.0001	0
6		11-Sep-21	00:00 to 03:00	01:30	27.8		11.56		SE	61.6	0.008	0.008	0.009	0.009	0.008	0.008	1	
7		11-Sep-21	03:00 to 06:00	04:25	28.1		11.33		SE	64.0	0.006	0.006	0.007	0.007	0.007	0.007	1	
8		11-Sep-21	06:00 to 09:00	07:25	28.2		11.52		SE	90.2	0.006	0.006	0.006	0.005	0.005	0.006		


APPENDIX D WEATHER INFORMATION

Appendix D

Extracted meteorological data from the Hong Kong Observatory's Lau Fu Shan Weather Station

10 September 2021

Humidity & Temperature

Wind Direction

Wind Speed

11 September 2021

Humidity & Temperature

Wind Direction

Wind Speed

APPENDIX E LOGSHEET OF ODOUR PATROL

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 10 September 2021 Temperature: 34.1°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour
1	09:58	Sunny	E	0	N/A	N/A	N/A	N/A
2	10:01	Sunny	E	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous
3	10:05	Sunny	E	1	Grassy	Vegetation	Side-wind	Intermittent / Continuous
4	10:09	Sunny	Е	1	Biogas	Ultra-violet irradiation disinfection system	Side-wind	Intermittent / Continuous
5	10:27	Sunny	Е	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous
6	10:31	Sunny	E	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 10 September 2021 Temperature: 36.5°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour
1	15:45	Sunny	W	0	N/A	N/A	N/A	N/A
2	15:49	Sunny	W	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous
3	15:53	Sunny	W	0	N/A	N/A	N/A	N/A
4	15:57	Sunny	W	1	Biogas	Ultra-violet irradiation disinfection system	Downwind	Intermittent / Continuous
5	16:01	Sunny	W	0	N/A	N/A	N/A	N/A
6	16:05	Sunny	W	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

APPENDIX F
MARINE WATER QUALITY
MONITORING RESULTS

Appendix F - Marine Water Quality Monitoring Results

Operational Phase Marine Water Quality Monitoring Results on 10 September 2021

Operal	ionai Fi	nase war	ine water	Quality i	vionitorii	ng Results o	n 10 :	Septe	mber .	2021		_																				
Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	(m)		(C)	pi		Salinity (ppt)	(*	ituration %)	Oxy (m	olved ygen g/L)	(N	bidity TU)	o (n	pended iolids ng/L)	Cadmium (μg/L)	Copper (µg/L)	Nickel (µg/L)	Lead (µg/L)	Mercury (μg/L)	Chromium (µg/L)	Zinc (µg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100 mL)	PAHs (μg/L)	PCBs (μg/L)
		Condition	Condition	Time	Depth (m)	Depth (m)		Average		Average	Value Average		Average		Average		Average		Average		Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
R1	W1	Fine	Moderate	5:18	14.1	Surface 1.0 Middle 7.1		25.1	7.87 7.88	7.9	30.9 32.2 31.8	80.9 79.0	79.2	5.6 5.5	5.5	8.4 8.4	8.5	10 9	9.7	<0.5 <0.5	8 5	2 2	<1 <1	<0.5 <0.5	1 <1	10 82	0.68	0.12 0.12	<2 <2	21 20	<0.1 <0.1	<0.02 <0.02
						Bottom 13.1			7.88		32.3	77.8		5.4		8.8	5.5	10		<0.5	4	2	<1	<0.5	1	13	0.60	0.07	<2	18	<0.1	<0.02
R2	W1	Fine	Moderate	7:17		Surface 1.0			7.90		30.9	80.8		5.5		8.6		9		<0.5	6	2	<1	<0.5	1	12	0.59	0.08	<2	12	<0.1	<0.02
					13.9	Middle 7.0 Bottom 12.9	25.2 25.0	25.3	7.91 7.91	7.9	31.4 31.5 32.1	80.3 79.2	80.1	5.5 5.5	5.5	10.5 10.4	9.8	9	10.0	<0.5 <0.5	5	2	<1 <1	<0.5 <0.5	<1 <1	32 69	0.66 0.62	0.08	<2	13 21	<0.1 <0.1	<0.02 <0.02
R3	W1	Fine	Moderate	9:16		Surface 1.0	25.8		8.07		30.6	81.0		5.6		8.8		37	+	<0.5	12	5	6	<0.5	2	98	0.69	0.10	<2	31	<0.1	<0.02
110	***	1 1110	moderate	5.10	14.4	Middle 7.2	25.1	25.3	8.07	8.1	31.9 31.6	79.9	79.8	5.5	5.5	8.9	8.9	11	20.3	< 0.5	5	1	<1	<0.5	1	24	0.53	0.11	<2	9	<0.1	< 0.02
						Bottom 13.4	24.9		8.05		32.4	78.4		5.4		8.9		13		< 0.5	5	2	<1	1	11	11	0.63	0.12	<2	24	<0.1	< 0.02
R4	W1	Fine	Moderate	11:17	14.1	Surface 1.0 Middle 7.1	25.3 25.1	25.2	8.11 8.12		31.4 32.2 32.0	80.3 79.9	80.0	5.5 5.5	5.5	9.8 9.7	9.7	8 7	7.0	<0.5 <0.5	4	2 2	2 <1	1 <0.5	1 <1	8 11	0.53 0.68	0.14	<2 <2	51 55	<0.1 <0.1	<0.02 <0.02
						Bottom 13.1			8.13		32.3	79.7		5.5		9.7		6		<0.5	9	8	<1	<0.5	1	45	0.47	0.10	<2	35	<0.1	<0.02
R5	W1	Fine	Moderate	13:18		Surface 1.0	25.6		8.18		31.0	80.3		5.5 5.5		8.5		13		<0.5	5	2	<1	<0.5	<1	7	0.49	0.10	<2	29	<0.1	<0.02
					14.3	Middle 7.2	25.1 25.1	25.3	8.18 8.18		32.2 32.2	80.1 79.7	80.0	5.5 5.5	5.5	8.9 8.9	8.8	10 24	15.7	< 0.5	5	1	<1 <1	<0.5 <0.5	1	7 11	0.51 0.52	0.11	<2 <2	49 37	<0.1 <0.1	<0.02 <0.02
R6	W1	Fine	Moderate	15:19	1	Bottom 13.3 Surface 1.0			8.16		31.0	81.6		5.6	1	8.1		6	1	<0.5	4	3	<1	<0.5	<1	7	0.52	0.19	<2	32	<0.1	<0.02
110	***	1	moderate	10.10	14.5	Middle 7.3		25.3	8.16		32.1 31.7	80.6	80.5	5.5	5.5	8.8	8.6	6	5.7	<0.5	4	2	<1	<0.5	<1	13	0.64	0.25	<2	36	<0.1	< 0.02
						Bottom 13.5			8.16		32.1	79.3		5.5		8.9		5		<0.5	5	7	<1	<0.5	<1	50	0.64	0.17	<2	37	<0.1	< 0.02
R1	W2	Fine	Moderate	5:29	15.9	Surface 1.0 Middle 8.0		25.2	7.88 7.88		30.8 31.9 31.6	80.8 79.5	79.7	5.6 5.5	5.5	9.3 10.4	10.0	8	9.0	<0.5 <0.5	5 5	2	<1 <1	<0.5 <0.5	1	15 8	0.51 0.61	0.07	<2 <2	22 14	<0.1 <0.1	<0.02 <0.02
					10.0	Bottom 14.9	25.0	20.2	7.88	7.0	32.2	78.8	70.7	5.4	0.0	10.4	10.0	11	0.0	<0.5	5	2	<1	<0.5	1	7	0.59	0.08	<2	12	<0.1	<0.02
R2	W2	Fine	Moderate	7:30		Surface 1.0	25.7		7.96		30.9	81.0		5.6		8.0		11		<0.5	7	2	<1	<0.5	<1	12	0.62	0.11	<2	8	<0.1	<0.02
					15.8	Middle 7.9	25.1	25.3	8.03 8.15	8.0	31.6 31.8	80.7 79.6	80.4	5.6	5.5	10.3	9.6	12	11.7	<0.5	5	2	<1	<0.5 <0.5	<1	8	0.55 0.58	0.14	<2	12 16	<0.1	<0.02
R3	W2	Fine	Moderate	9:31	1	Bottom 14.8 Surface 1.0	25.2 26.0		8.15		30.6	85.5		5.8	1	8.7		12	1	<0.5	5	2	<1	<0.5	<1	8	0.52	0.08	<2	43	<0.1	<0.02
110		1	moderate	0.01	16.1	Middle 8.1	25.0	25.3	8.09	8.1	32.0 31.7	79.8	81.1	5.5	5.6	10.5	10.0	14	15.0	< 0.5	14	7	<1	< 0.5	<1	71	0.53	0.13	<2	31	< 0.1	< 0.02
			1			Bottom 15.1			8.09		32.3	77.9		5.4		10.8		12		<0.5	5	1	<1	<0.5	<1	21	0.54	0.12	<2	35	<0.1	< 0.02
R4	W2	Fine	Moderate	11:29	16.3	Surface 1.0 Middle 8.2	25.8 25.1	25.4	8.17 8.15	8.2	30.7 32.3 31.7	82.2 79.9	80.5	5.6 5.5	5.5	10.6 10.4	10.6	7 6	7.0	<0.5 <0.5	5 5	3 2	<1 <1	<0.5 <0.5	<1 <1	13 9	0.51 0.53	0.12 0.09	<2 <2	60 34	<0.1 <0.1	<0.02 <0.02
					10.5	Bottom 15.3	25.1	25.4	8.13		32.3	79.5	00.5	5.5	5.5	10.4	10.0	8	7.0	<0.5	5	1	<1	<0.5	<1	7	0.55	0.09	<2	47	<0.1	<0.02
R5	W2	Fine	Moderate	13:30		Surface 1.0			8.18		31.0	81.4		5.6		10.7		6		<0.5	6	2	<1	<0.5	<1	11	0.64	0.19	<2	44	<0.1	< 0.02
					16.1	Middle 8.1		25.3	8.17 8.19	8.2	32.2 31.8	80.4 79.3	80.4	5.5	5.5	10.5	10.5	9	7.0	< 0.5	5	2	<1	<0.5	<1	7	0.50	0.13	<2	46	<0.1	<0.02
R6	W2	Fine	Moderate	15:29		Bottom 15.1 Surface 1.0			8.19		31.5	79.8		5.5		8.4		10	+	<0.5	5	2	<1 <1	<0.5	<1 <1	22	0.53	0.10	<2 <2	38 56	<0.1	<0.02
110	2	1 1110	moderate	10.20	15.6	Middle 7.8	25.1	25.2	8.14	8.1	32.1 31.9	79.2	79.4	5.5	5.5	10.7	9.9	7	8.3	< 0.5	5	2	1	< 0.5	3	45	0.59	0.11	<2	51	< 0.1	< 0.02
						Bottom 14.6	25.1		8.15		32.1	79.1		5.4		10.5		8		<0.5	4	2	<1	<0.5	<1	12	0.55	0.11	<2	45	<0.1	< 0.02
R1	W3	Fine	Moderate	6:37	8.0	Surface 1.0 Middle 4.0	25.8 25.5	25.6	7.87 7.87	7.9	30.7 31.1 30.9	82.9 82.8	82.6	5.7 5.7	5.7	7.5 9.5	8.9	12 7	9.7	<0.5 <0.5	5 6	2 2	<1 <1	<0.5 <0.5	1	46 9	0.55 0.56	0.14	<2 <2	17 31	<0.1 <0.1	<0.02 <0.02
					0.0	Bottom 7.0		20.0	7.87	7.0	31.1	82.0	02.0	5.6	0.7	9.8	0.0	10	0.7	<0.5	5	2	<1	<0.5	1	17	0.51	0.06	<2	33	<0.1	<0.02
R2	W3	Fine	Moderate	8:37		Surface 1.0			8.07		30.5	81.9		5.6		8.1		27		<0.5	6	2	<1	1	1	18	0.51	0.10	<2	23	<0.1	<0.02
					8.3	Middle 4.2 Bottom 7.3		25.4	8.06 8.05	8.1	31.4 31.3 32.0	79.2 79.1	80.1	5.5 5.5	5.5	11.9 13.4	11.1	9	15.3	< 0.5	5	2	<1 <1	<0.5 <0.5	<1	10 30	0.53 0.57	0.08	<2 <2	14	<0.1 <0.1	<0.02 <0.02
R3	W3	Fine	Moderate	10:41		Surface 1.0			8.01		30.8	80.6		5.5		8.7		16		<0.5	12	4	6	<0.5	<1	59	0.56	0.12	<2	16	<0.1	<0.02
110	****	1 1110	moderate	10.41	8.3	Middle 4.2	25.1	25.3	8.01		32.0 31.7	80.0	79.9	5.5	5.5	8.9	8.8	11	13.7	< 0.5	5	2	<1	<0.5	1	43	0.57	0.11	<2	16	<0.1	< 0.02
	1110	_				Bottom 7.3	25.1		8.01		32.3	79.0		5.4		8.9		14		< 0.5	5	1	<1	1	1	10	0.47	0.10	<2	21	<0.1	< 0.02
R4	W3	Fine	Moderate	12:40	8.2	Surface 1.0 Middle 4.1	25.5 25.1	25.2	8.20 8.19		31.1 32.0 31.8	80.6 80.2	80.2	5.5 5.5	5.5	10.1	10.1	7	7.3	<0.5 <0.5	5	1	<1 <1	<0.5 <0.5	<1 <1	43 11	0.51 0.51	0.12	<2 <2	24 46	<0.1 <0.1	<0.02 <0.02
						Bottom 7.2			8.19		32.2	79.8		5.5		10.1		8		<0.5	2	1	<1	<0.5	<1	6	0.55	0.13	<2	41	<0.1	< 0.02
R5	W3	Fine	Moderate	14:41		Surface 1.0		05.5	8.16		31.1	82.5	04 -	5.7		7.7	0.7	7		<0.5	5	2	<1	<0.5	<1	11	0.48	0.10	<2	33	<0.1	<0.02
					8.3	Middle 4.2 Bottom 7.3	25.1 25.2	25.3	8.16 8.15	8.2	31.9 31.7 32.0	81.4 81.1	81.7	5.6 5.6	5.6	7.8 10.6	8.7	7	7.7	< 0.5	6	2	<1 <1	<0.5 <0.5	1	14 12	0.43 0.54	0.13 0.15	<2 <2	54 44	<0.1 <0.1	<0.02 <0.02
R6	W3	Fine	Moderate	16:37	1	Surface 1.0			8.16		31.4	79.9	<u> </u>	5.5	<u> </u>	9.6		6	1	<0.5	10	3	6	<0.5	<1	57	0.56	0.13	<2	32	<0.1	<0.02
-					8.2	Middle 4.1	25.2	25.3	8.15		31.5 31.6	79.8	79.7	5.5	5.5	10.2	10.0	6	7.0	< 0.5	9	3	4	< 0.5	<1	49	0.50	0.11	<2	49	< 0.1	< 0.02
D4	WA	Fine	Madazat	F:40	1	Bottom 7.2 Surface 1.0			8.15 7.88	1	32.0	79.4 79.9	 	5.5	1	10.1		9	1	<0.5	5	1 2	<1	<0.5	<1	11	0.56	0.14	<2 <2	57	<0.1	<0.02
R1	W4	Fine	Moderate	5:40	20.1	Middle 10.1		25.1	7.88		32.3 31.8	79.9	79.3	5.5 5.5	5.5	8.8 8.6	8.8	14	10.7	<0.5 <0.5	6	2 2	1	1	2	12 54	0.59	0.09	<2	29 31	<0.1 <0.1	<0.02
			<u> </u>	<u> </u>	<u> </u>	Bottom 19.1	25.0		7.88		32.3	78.4	<u></u>	5.4	<u></u>	8.9		10	<u> </u>	< 0.5	6	2	2	<0.5	2	32	0.56	0.11	<2	36	<0.1	< 0.02
R2	W4	Fine	Moderate	7:41	19.5	Surface 1.0 Middle 9.8	25.7	25.2	7.93 7.93	7.9	30.9 32.0 31.7	80.8 80.5	80.1	5.5 5.5	5.5	8.7 8.8	8.8	8 8	8.3	<0.5 <0.5	5 4	2	<1	<0.5 <0.5	<1	15	0.59 0.56	0.09	<2	10 7	<0.1 <0.1	<0.02 <0.02
					19.5	Bottom 18.5	25.0 25.0	25.2	7.93	7.9	32.0 31.7	78.9	00.1	5.5	5.5	8.8	0.0	9	0.3	<0.5 <0.5	5	1	<1 <1	<0.5	1 <1	6 8	0.56	0.10	<2 <2	9	<0.1	<0.02
R3	W4	Fine	Moderate	9:39	i e	Surface 1.0	25.8		8.12		30.8	81.8	İ	5.6	İ	10.9		13	1	<0.5	4	2	<1	<0.5	1	12	0.49	0.10	<2	22	<0.1	<0.02
					20.4	Middle 10.2	24.9	25.2	8.15	8.1	32.4 31.8	81.6	80.6	5.6	5.5	11.5	11.2	14	12.7	<0.5	6	1	<1	<0.5	5	6	0.55	0.11	<2	28	<0.1	< 0.02
R4	W4	Fine	Madazat	11:40	ļ	Bottom 19.4 Surface 1.0	24.9 25.6	-	8.15 8.18	-	32.2	78.5 80.7	-	5.4 5.5	1	11.3	-	11 8	+	<0.5 <0.5	5 5	2	<1 <1	<0.5	<1 <1	14 14	0.56 0.55	0.10 0.22	<2 <2	34 31	<0.1	<0.02 <0.02
K4	VV 4	Fine	Moderate	11:40	20.1	Middle 10.1	25.6	25.3	8.18		30.9	80.7	80.4	5.5	5.5	10.7	11.0	7	7.0	<0.5	6	2	1	<0.5	<1	10	0.55	0.22	<2 <2	56	<0.1	<0.02
			1	1		Bottom 19.1	25.1		8.18		32.3	79.7		5.5	<u> </u>	11.5		6	1	< 0.5	5	2	1	<0.5	<1	16	0.55	0.17	<2	51	<0.1	< 0.02
R5	W4	Fine	Moderate	13:41	20.2	Surface 1.0 Middle 10.1	25.8	25.3	8.19	8.2	30.8 32.1 31.7	82.5 80.2	80.5	5.7 5.5	5.5	10.2 10.1	10.2	8	8.0	<0.5	5 5	2	<1	<0.5	<1	12	0.52	0.12	<2	41	<0.1	<0.02
			1		20.2	Bottom 19.2	25.1 25.1	25.5	8.18 8.18		32.1 31.7	78.9	00.3	5.5	3.3	10.1	10.2	7	0.0	<0.5 <0.5	5	2	<1 <1	<0.5 <0.5	<1 <1	9	0.42 0.53	0.10 0.12	<2 <2	33 54	<0.1 <0.1	<0.02 <0.02
R6	W4	Fine	Moderate	15:39	i e	Surface 1.0	25.4		8.16		31.4	80.2	İ	5.5	İ	10.7		10	1	<0.5	5	2	<1	<0.5	1	11	0.52	0.10	<2	49	<0.1	<0.02
			1		20.1	Middle 10.1	25.1	25.2	8.16		32.1 31.9 32.1	79.3	79.5	5.5	5.5	10.6	10.6	6	7.3	< 0.5	5	1	<1	<0.5 <0.5	<1	6	0.68	0.25	<2 <2	38	< 0.1	<0.02
		<u> </u>		<u> </u>	<u> </u>	Bottom 19.1	25.1	1	8.15		32.1	78.9	<u> </u>	5.4	<u> </u>	10.5	1	б	1	<0.5	4	2	<1	<0.5	<1	8	0.55	0.16	<2	48	<0.1	<0.02

Appendix F - Marine Water Quality Monitoring

Operational Phase Marine Water Quality Monitoring Results on 10 September 2021

Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	(m)	Tempe (°0	erature C)	pН		Salinity (ppt)	(turation %)	Oxy (m	olved gen g/L)	(N	oidity TU)	(m	pended blids ng/L)	Cadmium (μg/L)	Copper (μg/L)	Nickel (μg/L)	Lead (μg/L)	Mercury (μg/L)	Chromium (µg/L)	Zinc (μg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100 mL)	PAHs (μg/L)	PCBs (μg/L)
		Condition	Condition	Time	Depth (m)	Depth (m)		Average			/alue Average		Average		Average		Average	Value	Average		Value	Value	Value	Value	Value	Value		Value	Value		Value	
R1	W5	Fine	Moderate	5:01	18.5	Surface 1.0 Middle 9.3 Bottom 17.5	25.4 25.0 24.9	25.1	7.87 7.87 7.88	7.9	31.0 32.3 31.9 32.3	78.6 77.5	79.0	5.6 5.4 5.3	5.4	8.3 8.6 8.5	8.5	8 10	9.0	<0.5 <0.5 <0.5	5 5	1 2	3 1 <1	<0.5 <0.5 1	3 <1 3	24 10 67	0.54 0.55 0.53	0.09 0.09 0.09	<2 <2 <2	48 59 27	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W5	Fine	Moderate	7:03	18.3	Surface 1.0 Middle 9.2 Bottom 17.3	25.6 25.2 25.0	25.3	7.90 7.91 7.91	7.9	30.9 31.5 31.5 32.0	81.1 79.4 79.0	79.8	5.6 5.5	5.5	7.6 8.9	8.4	11 11 10	10.7	<0.5 <0.5 <0.5	12 5	5 2	5 <1	<0.5 <0.5 <0.5	<1 1 <1	55 58 10	0.54 0.63 0.49	0.10 0.16 0.10	<2 <2 <2	9 14 10	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W5	Fine	Moderate	9:01	18.1	Surface 1.0 Middle 9.1	25.8 25.0	25.2	8.04 8.04	8.0	30.5 32.1 31.7	81.9 79.8	80.0	5.6 5.5	5.5	10.1	10.3	11 15	12.7	<0.5 <0.5	7	4 2	<1 1	<0.5 <0.5	1 <1	44 22	0.60 0.44	0.17 0.11	<2 <2	64 56	<0.1 <0.1	<0.02 <0.02
R4	W5	Fine	Moderate	11:01	18.3	Bottom 17.1 Surface 1.0 Middle 9.2	24.9 25.8 25.1	25.4	8.06 8.09 8.06		32.4 30.7 32.3 31.7	78.2 82.5 82.0	81.6	5.4 5.7 5.6	5.6	9.5 9.5	9.5	12 8 10	8.7	<0.5 <0.5 <0.5	5 6 6	3 2	3 <1	<0.5 <0.5 <0.5	2 <1	13 19 19	0.52 0.58 0.56	0.11 0.16 0.16	<2 <2 <2	66 52 45	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
						Bottom 17.3	25.2		8.04		32.2	80.2		5.5		9.5		8		< 0.5	4	1	<1	<0.5	<1	12	0.56	0.18	<2	29	<0.1	< 0.02
R5	W5	Fine	Moderate	13:01	18.3	Surface 1.0 Middle 9.2 Bottom 17.3	25.6 25.1 25.1	25.3	8.19 8.18 8.18	8.2	31.0 32.2 31.8 32.2	80.2 80.0 79.0	79.7	5.5 5.5 5.4	5.5	8.7 8.6	8.6	7 13 10	10.0	<0.5 <0.5 <0.5	6 4 6	1 2	<1 <1	<0.5 <0.5 <0.5	<1 <1	18 13 12	0.39 0.46 0.47	0.10 0.10 0.10	<2 <2 <2	43 46 53	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W5	Fine	Moderate	15:01	18.5	Surface 1.0 Middle 9.3	25.9 25.1	25.4	8.15 8.15	8.2	30.9 32.1 31.7	82.1 81.2	80.9	5.6 5.6	5.5	10.1	10.5	5	6.3	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1 <1	19 13	0.64 0.52	0.21 0.09	<2 <2	34 49	<0.1 <0.1	<0.02 <0.02
R1	W6	Fine	Moderate	6:21	8.9	Bottom 17.5 Surface 1.0 Middle 4.5	25.5	25.5	7.88 7.88	7.9	32.2 30.7 31.0 31.0	79.3 81.8 81.4	81.5	5.5 5.6 5.6	5.6	7.4 8.3	8.0	10 9	9.7	<0.5 <0.5 <0.5	5 5 5	2 2	<1 <1 1	<0.5 <0.5 <0.5	1 1	15 13	0.55 0.59 0.50	0.12 0.09 0.07	<2 <2 <2	28 26	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W6	Fine	Moderate	8:20	8.9	Bottom 7.9 Surface 1.0 Middle 4.5	25.4 25.5 25.1	25.3	7.88 8.01 8.02		31.3 31.0 31.6 31.5	81.3 81.6 80.7	80.8	5.6 5.6 5.5	5.6	9.9 10.1	10.1	10 10 23	15.7	<0.5 <0.5 <0.5	5 5 5	1 2	<1 1 <1	<0.5 <0.5 <0.5	1 1 <1	12 8 12	0.52 0.57 0.46	0.08 0.13 0.10	<2 <2 <2	37 12 16	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W6	Fine	Moderate	10:23		Bottom 7.9 Surface 1.0	25.1 25.6		8.03 8.01		31.8	80.2 79.8		5.5 5.5		10.2		14		<0.5 <0.5	4	1 2	<1 <1	<0.5 <0.5	<1 <1	10	0.50 0.52	0.09 0.11	<2 <2	10 59	<0.1	<0.02 <0.02
R4	W6	Fine	Moderate	12:20	8.8	Middle 4.4 Bottom 7.8 Surface 1.0	25.1 25.1 25.6	25.3	8.01 8.01 8.23		31.9 31.7 32.3 30.9	79.4 79.0 81.1	79.4	5.5 5.4 5.6	5.5	10.7 10.6 8.8	10.6	8 11 8	10.0	<0.5 <0.5 <0.5	4 5	2 3 2	1 2 <1	<0.5 <0.5	1 1 <1	9 15 32	0.52 0.50 0.54	0.12 0.09 0.15	<2 <2 <2	49 63 49	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
					8.7	Middle 4.4 Bottom 7.7	25.1 25.1	25.3	8.23 8.23	8.2	32.1 31.8 32.2	80.2 79.7	80.3	5.5 5.5	5.5	8.9 8.8	8.8	7	8.0	<0.5 <0.5	6 5	3 2	3 <1	<0.5 <0.5	1 <1	39 16	0.54 0.54	0.18 0.14	<2 <2	49 44	<0.1 <0.1	<0.02 <0.02
R5	W6	Fine	Moderate	14:19	8.6	Surface 1.0 Middle 4.3 Bottom 7.6	25.8 25.1 25.2	25.4	8.16 8.16 8.16	8.2	30.9 31.9 31.6 32.0	83.5 82.4 81.7	82.5	5.7 5.6 5.6	5.7	7.2 7.5 7.3	7.3	7 6 4	5.7	<0.5 <0.5 <0.5	5 5 4	2 2 1	<1 <1 <1	1 <0.5 <0.5	<1 <1 <1	5 9 5	0.59 0.55 0.40	0.17 0.17 0.13	<2 <2 <2	44 46 31	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W6	Fine	Moderate	16:20	8.6	Surface 1.0 Middle 4.3 Bottom 7.6	25.6 25.2 25.2	25.3	8.16 8.15 8.15	8.2	31.1 31.7 31.5 31.9	81.0 79.7 79.6	80.1	5.6 5.5 5.5	5.5	8.8 8.9 8.9	8.9	6 6 7	6.3	<0.5 <0.5 <0.5	5	2	1 <1 <1	<0.5 <0.5 <0.5	5 <1 <1	8 11 15	0.57 0.54 0.58	0.15 0.12 0.15	<2 <2 <2	49 61 31	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W7	Fine	Moderate	6:00	6.8	Surface 1.0 Middle 3.4	25.6 25.2	25.3	7.86 7.86	7.9	30.7 31.4 31.2	80.8 80.1	80.2	5.6 5.5	5.5	8.4 10.5	9.7	13	9.7	<0.5 <0.5	5	2 2	<1 1	<0.5 <0.5	1 1	10 22	0.50 0.51	0.08 0.09	<2 <2	12 26	<0.1 <0.1	<0.02 <0.02
R2	W7	Fine	Moderate	8:00		Bottom 5.8 Surface 1.0			7.87 8.02		31.6	79.8 82.6		5.5 5.7		10.3 6.9		9 25		<0.5 <0.5	6	2	1	<0.5 1	1	8 10	0.54 0.56	0.06	<2 <2	22 25	<0.1 <0.1	<0.02
IV.E	***	Tille	Woodrate	0.00	6.7	Middle 3.4 Bottom 5.7	25.4 25.2	25.4	8.02 8.02	8.0	31.3 31.7	82.2 81.6	82.1	5.6 5.6	5.6	10.8 10.8	9.5	17 17	19.7	<0.5 <0.5	4	2	<1 <1	1 <0.5	1	8 14	0.53 0.52	0.13 0.11	<2 <2	20 14	<0.1 <0.1	<0.02 <0.02
R3	W7	Fine	Moderate	10:01	6.6	Surface 1.0 Middle 3.3 Bottom 5.6	25.3 25.1 25.1	25.2	7.99 7.99 7.98	8.0	31.3 31.5 32.3	80.3 80.0 79.5	79.9	5.5 5.5 5.5	5.5	6.9 11.1 11.5	9.8	10 11 23	14.7	<0.5 <0.5 <0.5	5 5	2 1 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 2	11 12 29	0.84 0.58 0.55	0.08 0.14 0.10	<2 <2 <2	42 45 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W7	Fine	Moderate	12:01	6.5	Surface 1.0 Middle 3.3	25.6 25.1	25.2	8.22 8.22	8.2	30.9 32.0 31.7 32.1	80.4 79.2	79.6	5.5 5.5 5.4	5.5	9.0 10.4 10.5	10.0	9	6.3	<0.5 <0.5 <0.5	6	2 2	<1 1	<0.5 1 <0.5	<1 <1	12 11 11	0.51 0.52	0.11 0.12	<2 <2	74 53 52	<0.1 <0.1	<0.02 <0.02
R5	W7	Fine	Moderate	14:02	6.5	Surface 1.0 Middle 3.3	25.1 25.9 25.4	25.5	8.21 8.15 8.15		32.1 30.8 31.2 31.3	79.1 82.9 82.1	82.1	5.7 5.7	5.6	8.4 10.8	9.9	6	6.7	<0.5 <0.5	8 5	2 2	<1 2 <1	<0.5 <0.5	1 <1	26 6	0.56 0.50 0.37	0.19 0.16 0.17	<2 <2 <2	45 49	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W7	Fine	Moderate	16:00	6.6	Bottom 5.5 Surface 1.0 Middle 3.3	25.2 25.4	25.3	8.14 8.16 8.16		31.9 31.4 31.6 31.5	81.3 80.2 80.1	80.0	5.6 5.5 5.5	5.5	10.4 10.5 10.5	10.5	7 12	8.3	<0.5 <0.5 <0.5	5 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	9 12 7	0.36 0.51 0.54	0.17 0.09 0.09	<2 <2 <2	32 31 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W8	Fine	Moderate	5:51		Bottom 5.6 Surface 1.0	25.2 25.6		8.15 7.89		31.7	79.8 80.4		5.5 5.5		10.5 7.7		6 11		<0.5 <0.5	7	2	<1 1	<0.5 <0.5	<1	11 14	0.59	0.12 0.11	<2 <2	41 21	<0.1	<0.02 <0.02
R2	W8	Fine	Moderate	7:51	6.0	Middle 3.0 Bottom 5.0 Surface 1.0		25.3	7.89 7.89 7.99		31.4 31.3 31.7 30.7	78.8 78.5 82.3	79.2	5.4 5.4 5.6	5.5	9.9 9.9 7.5	9.2	11 13	11.7	<0.5 <0.5 <0.5	5 4 6	2 2 2	<1 <1 <1	<0.5 1 <0.5	1 1	13 9 28	0.66 0.53 0.49	0.08 0.09 0.09	<2 <2 <2	13 14 21	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
					6.2	Middle 3.1 Bottom 5.2	25.3 25.2	25.5	7.99 8.00	8.0	31.3 31.2 31.5	80.1 80.0	80.8	5.5 5.5	5.5	10.3 10.5	9.4	17 15	16.0	<0.5 <0.5	6	4 2	<1 <1	<0.5 <0.5	1 <1	44 29	0.50 0.49	0.11 0.09	<2 <2	19 15	<0.1 <0.1	<0.02 <0.02
R3	W8	Fine	Moderate	9:51	6.2	Surface 1.0 Middle 3.1 Bottom 5.2	25.3 25.1 25.0	25.2	7.96 7.92 7.91	7.9	31.2 31.6 32.3	87.2 84.2 82.5	84.6	6.0 5.8 5.7	5.8	10.6 12.6 12.5	11.9	10 6 10	8.7	<0.5 <0.5 <0.5	5 7 5	2 3 2	1 2 <1	<0.5 1 <0.5	1 1 1	18 23 11	0.66 0.50 0.54	0.17 0.12 0.11	<2 <2 <2	59 37 59	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W8	Fine	Moderate	11:50	6.1	Surface 1.0 Middle 3.1 Bottom 5.1	25.1	25.2	8.20 8.21 8.20	8.2	31.2 31.9 31.7 32.0	80.5 80.1 79.3	80.0	5.5 5.5 5.5	5.5	9.8 9.5 9.2	9.5	20 21 23	21.3	<0.5 <0.5 <0.5	5 4 5	2 2 2	1 <1 <1	<0.5 <0.5 <0.5	1 <1	13 13 10	0.66 0.50 0.69	0.20 0.14 0.15	<2 <2 <2	64 28 43	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W8	Fine	Moderate	13:51	6.0	Surface 1.0 Middle 3.0	25.9 25.4	25.5	8.16 8.16	8.2	30.8 31.3 31.3	83.0 82.1	82.1	5.7 5.6	5.6	9.9 10.8	10.5	7 5	7.7	<0.5 <0.5	5 5	2 2	<1 <1	<0.5 <0.5	<1 <1	10 22	0.41 0.64	0.16 0.19	<2 <2	30 46	<0.1 <0.1	<0.02 <0.02
R6	W8	Fine	Moderate	15:49	6.0	Bottom 5.0 Surface 1.0 Middle 3.0	25.2 25.5 25.2	25.3	8.15 8.18 8.17		32.0 31.3 31.6 31.5	81.2 80.2 79.5	79.7	5.6 5.5 5.5	5.5	9.7 11.7	10.9	11 7 11	9.0	<0.5 <0.5 <0.5	5 5 3	2 2 2	<1 <1 <1	<0.5 1 <0.5	<1 <1 1	23 6 9	0.56 0.56 0.58	0.13 0.11 0.16	<2 <2 <2	52 46 55	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
						Bottom 5.0			8.15		31.6	79.4		5.5		11.2		9		<0.5	5	1	<1	<0.5	<1	9	0.52	0.11	<2	41	<0.1	<0.02

APPENDIX G LABORATORY ANALYIS RESULTS FOR MARINE WATER QUALITY MONITORING

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

 Report No.:
 35656

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

1 of 3

ATTN:

Mr. Cyrus Fung

Page:

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 35656 Sampling Date : 2021-09-10

Test Requested & Methodology:

Y COL TEC	questeu et methodology.		
Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	2.5 mg/L

PREPARED AND CHECKED BY:
For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 2 of 3

`		14		
	п			

		Suspended Solids	6 1 70	G 1. M.	Suspended Solids
Sample ID	Sample No.	(mg/L)	Sample ID	Sample No.	(mg/L)
W1-S R1	35656-1	10	W5-M R2	35656-38	11
W1-M R1	35656-2	9	W5-B R2	35656-39	10
W1-B R1	35656-3	10	W6-S R2	35656-40	10
W2-S R1	35656-4	8	W6-M R2	35656-41	23
W2-M R1	35656-5	8	W6-B R2	35656-42	14
W2-B R1	35656-6	11	W7-S R2	35656-43	25
W3-S R1	35656-7	12	W7-M R2	35656-44	17
W3-M R1	35656-8	7	W7-B R2	35656-45	17
W3-B R1	35656-9	10	W8-S R2	35656-46	16
W4-S R1	35656-10	8	W8-M R2	35656-47	17
W4-M R1	35656-11	14	W8-B R2	35656-48	15
W4-B R1	35656-12	10	W1-S R3	35656-49	37
W5-S R1	35656-13	9	W1-M R3	35656-50	11
W5-M R1	35656-14	8	W1-B R3	35656-51	13
W5-B R1	35656-15	10	W2-S R3	35656-52	19
W6-S R1	35656-16	10	W2-M R3	35656-53	14
W6-M R1	35656-17	9	W2-B R3	35656-54	12
W6-B R1	35656-18	10	W3-S R3	35656-55	16
W7-S R1	35656-19	13	W3-M R3	35656-56	11
W7-M R1	35656-20	7	W3-B R3	35656-57	14
W7-B R1	35656-21	9	W4-S R3	35656-58	13
W8-S R1	35656-22	11	W4-M R3	35656-59	14
W8-M R1	35656-23	11	W4-B R3	35656-60	11
W8-B R1	35656-24	13	W5-S R3	35656-61	11
W1-S R2	35656-25	9	W5-M R3	35656-62	15
W1-M R2	35656-26	9	W5-B R3	35656-63	12
W1-B R2	35656-27	12	W6-S R3	35656-64	11
W2-S R2	35656-28	11	W6-M R3	35656-65	8
W2-M R2	35656-29	12	W6-B R3	35656-66	11
W2-B R2	35656-30	12	W7-S R3	35656-67	10
W3-S R2	35656-31	27	W7-M R3	35656-68	11
W3-M R2	35656-32	9	W7-B R3	35656-69	23
W3-B R2	35656-33	10	W8-S R3	35656-70	10
W4-S R2	35656-34	8	W8-M R3	35656-71	6
W4-M R2	35656-35	8	W8-B R3	35656-72	10
W4-B R2	35656-36	9	W1-S R4	35656-73	8
W5-S R2	35656-37	11	W1-M R4	35656-74	7

Remarks: 1) <= less than

TEST REPORT

35656 Report No.: Date of Issue: 2021-09-30 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-09-30

3 of 3

a 1 m	G 1.N	Suspended Solids	G1- TD	CI- N-	Suspended Solids
Sample ID	Sample No.	(mg/L)	Sample ID	Sample No.	(mg/L)
W1-B R4	35656-75	6	W5-M R5	35656-110	13
W2-S R4	35656-76	7	W5-B R5	35656-111	10
W2-M R4	35656-77	6	W6-S R5	35656-112	7
W2-B R4	35656-78	8	W6-M R5	35656-113	6
W3-S R4	35656-79	7	W6-B R5	35656-114	4
W3-M R4	35656-80	7	W7-S R5	35656-115	6
W3-B R4	35656-81	8	W7-M R5	35656-116	6
W4-S R4	35656-82	8	W7-B R5	35656-117	8
W4-M R4	35656-83	7	W8-S R5	35656-118	7
W4-B R4	35656-84	6	W8-M R5	35656-119	5
W5-S R4	35656-85	8	W8-B R5	35656-120	11
W5-M R4	35656-86	10	W1-S R6	35656-121	6
W5-B R4	35656-87	8	W1-M R6	35656-122	6
W6-S R4	35656-88	8	W1-B R6	35656-123	5
W6-M R4	35656-89	7	W2-S R6	35656-124	10
W6-B R4	35656-90	9	W2-M R6	35656-125	7
W7-S R4	35656-91	9	W2-B R6	35656-126	8
W7-M R4	35656-92	5	W3-S R6	35656-127	6
W7-B R4	35656-93	5	W3-M R6	35656-128	6
W8-S R4	35656-94	20	W3-B R6	35656-129	9
W8-M R4	35656-95	21	W4-S R6	35656-130	10
W8-B R4	35656-96	23	W4-M R6	35656-131	6
W1-S R5	35656-97	13	W4-B R6	35656-132	6
W1-M R5	35656-98	10	W5-S R6	35656-133	5
W1-B R5	35656-99	24	W5-M R6	35656-134	. 8
W2-S R5	35656-100	6	W5-B R6	35656-135	6
W2-M R5	35656-101	9	W6-S R6	35656-136	6
W2-B R5	35656-102	6	W6-M R6	35656-137	6
W3-S R5	35656-103	7	W6-B R6	35656-138	7
W3-M R5	35656-104	7	W7-S R6	35656-139	7
W3-B R5	35656-105	9	W7-M R6	35656-140	12
W4-S R5	35656-106	8	W7-B R6	35656-141	6
W4-M R5	35656-107	9	W8-S R6	35656-142	7
W4-B R5	35656-108	7	W8-M R6	35656-143	11
W5-S R5	35656-109	7	W8-B R6	35656-144	9

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076; Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

35656A Report No.: Date of Issue: 2021-07-06 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-07-06

Page: 1 of 13 ATTN: Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 35656A Sampling Date : 2021-09-10

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Cadmium	In-house method SOP039 (ICP/MS)	0.5 μg/L
2	Copper		1.0 μg/L
3	Nickel		1.0 μg/L
4	Lead		1.0 μg/L
5	Mercury		0.5 μg/L
6	Chromium		1.0 μg/L
8	Zinc		1.0 μg/L
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonia	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
11	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg-O ₂ /L

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.: 35656A Date of Issue: 2021-07-06 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-07-06

2 of 13

Results:						
Sample ID	W1-S R1	W1-M R1	W1-B R1	W2-S R1	W2-M R1	W2-B R1
Sample No.	35656-1	35656-2	35656-3	35656-4	35656-5	35656-6
Cadmium (μg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Copper (µg/L)	8	5	4	5	5	5
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	1	1	1	1
Zinc (µg/L)	10	82	13	15	8	7
Total Inorganic Nitrogen (mg/L)	0.68	0.63	0.60	0.51	0.61	0.59
Ammonia (mg/L)	0.12	0.12	0.07	0.07	0.10	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R1	W3-M R1	W3-B R1	W4-S R1	W4-M R1	W4-B R1
Sample No.	35656-7	35656-8	35656-9	35656-10	35656-11	35656-12
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	6	5	5	6	6
Nickel (µg/L)	2	2	2	2	2	2
Lead (μg/L)	<1	<1	<1	1	1	2
Mercury (µg/L)	<0.5	< 0.5	< 0.5	1.0	1.0	<0.5
Chromium (µg/L)	1	1	1	1	2	2
Zinc (µg/L)	46	9	17	12	54	32
Total Inorganic Nitrogen (mg/L)	0.55	0.56	0.51	0.56	0.59	0.56
Ammonia (mg/L)	0.14	0.12	0.06	0.09	0.14	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

35656A Report No.: Date of Issue: 2021-07-06 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-07-06

Page:

3 of 13

esn	lte.

Results:						
Sample ID	W5-S R1	W5-M R1	W5-B R1	W6-S R1	W6-M R1	W6-B R1
Sample No.	35656-13	35656-14	35656-15	35656-16	35656-17	35656-18
Cadmium (µg/L)	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	6	5	5	5	5	5
Nickel (µg/L)	4	1	2	2	2	2
Lead (µg/L)	3	1	<1	<1	1	<1
Mercury (µg/L)	<0.5	<0.5	1.0	< 0.5	< 0.5	< 0.5
Chromium (µg/L)	3	<1	3	1	1	1
Zinc (µg/L)	24	10	67	15	13	12
Total Inorganic Nitrogen (mg/L)	0.54	0.55	0.53	0.59	0.50	0.52
Ammonia (mg/L)	0.09	0.09	0.09	0.09	0.07	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R1	W7-M R1	W7-B R1	W8-S R1	W8-M R1	W8-B R1
Sample No.	35656-19	35656-20	35656-21	35656-22	35656-23	35656-24
Cadmium (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	5	6	7	5	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	1	1	1	<1	<1
Mercury (μg/L)	< 0.5	<0.5	< 0.5	< 0.5	<0.5	1.0
Chromium (µg/L)	1	1	1	1	1	1
Zinc (μg/L)	10	22	8	14	13	9
Total Inorganic Nitrogen (mg/L)	0.50	0.51	0.54	0.56	0.66	0.53
Ammonia (mg/L)	0.08	0.09	0.06	0.11	0.08	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

TEST REPORT

Report No.: 35656A 2021-07-06 Date of Issue: 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-07-06

Page: 4 of 13

Resu	lts:
------	------

Sample ID	W1-S R2	W1-M R2	W1-B R2	W2-S R2	W2-M R2	W2-B R2
Sample No.	35656-25	35656-26	35656-27	35656-28	35656-29	35656-30
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Copper (µg/L)	6	5	6	7	5	5
Nickel (µg/L)	2	2	2	2	2	2
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	<1	<1	<1	11
Zinc (µg/L)	12	32	69	12	8	9
Total Inorganic Nitrogen (mg/L)	0.59	0.66	0.62	0.62	0.55	0.58
Ammonia (mg/L)	0.08	0.08	0.09	0.11	0.14	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R2	W3-M R2	W3-B R2	W4-S R2	W4-M R2	W4-B R2
Sample No.	35656-31	35656-32	35656-33	35656-34	35656-35	35656-36
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	5	5	5	4	5
Nickel (μg/L)	2	2	2	2	1	1
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	1.0	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	1	<1	1	<1
Zinc (μg/L)	18	10	30	15	6	8
Total Inorganic Nitrogen (mg/L)	0.51	0.53	0.57	0.59	0.56	0.50
Ammonia (mg/L)	0.10	0.08	0.12	0.09	0.10	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website : www.wellab.com.hk

TEST REPORT

Report No .: 35656A Date of Issue: 2021-07-06 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-07-06

5 of 13 Page:

Results:						
Sample ID	W5-S R2	W5-M R2	W5-B R2	W6-S R2	W6-M R2	W6-B R2
Sample No.	35656-37	35656-38	35656-39	35656-40	35656-41	35656-42
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	12	5	4	5	5	4
Nickel (µg/L)	5	2	2	1	2	1
Lead (μg/L)	5	<1	<1	1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Chromium (µg/L)	<1	1	<1	1	<1	<1
Zinc (µg/L)	. 55	58	10	8	12	10
Total Inorganic Nitrogen	0.54	0.63	0.49	0.57	0.46	0.50
(mg/L) Ammonia (mg/L)	0.10	0.16	0.10	0.13	0.10	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R2	W7-M R2	W7-B R2	W8-S R2	W8-M R2	W8-B R2
Sample No.	35656-43	35656-44	35656-45	35656-46	35656-47	35656-48
Cadmium (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	4	4	6	6	5
Nickel (µg/L)	2	2	1	2	4	2
Lead (µg/L)	1	<1	<1	<1	<1	<1
Mercury (μg/L)	1.0	1.0	<0.5	< 0.5	< 0.5	<0.5
Chromium (µg/L)	1	1	1	1	1	<1
Zinc (µg/L)	10	8	14	28	44	29
Total Inorganic Nitrogen (mg/L)	0.56	0.53	0.52	0.49	0.50	0.49
Ammonia (mg/L)	0.08	0.13	0.11	0.09	0.11	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

TEST REPORT

35656A Report No.: Date of Issue: 2021-07-06 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-07-06

6 of 13 Page:

Results:

Sample ID	W1-S R3	W1-M R3	W1-B R3	W2-S R3	W2-M R3	W2-B R3
Sample No.	35656-49	35656-50	35656-51	35656-52	35656-53	35656-54
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	12	5	5	5	14	5
Nickel (µg/L)	5	1	2	2	7	1
Lead (µg/L)	6	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	1.0	<0.5	<0.5	<0.5
Chromium (µg/L)	2	1	1	<1	<1	<1
Zinc (µg/L)	98	24	11	8	71	21
Total Inorganic Nitrogen (mg/L)	0.69	0.53	0.63	0.52	0.53	0.54
Ammonia (mg/L)	0.10	0.11	0.12	0.10	0.13	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R3	W3-M R3	W3-B R3	W4-S R3	W4-M R3	W4-B R3
Sample No.	35656-55	35656-56	35656-57	35656-58	35656-59	35656-60
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	12	5	5	4	6	5
Nickel (µg/L)	4	2	1	2	1	2
Lead (μg/L)	6	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	1.0	<0.5	< 0.5	<0.5
Chromium (µg/L)	<1	1	1	1	5	<1
Zinc (µg/L)	59	43	10	12	6	14
Total Inorganic Nitrogen (mg/L)	0.56	0.57	0.47	0.49	0.55	0.56
Ammonia (mg/L)	0.17	0.11	0.10	0.10	0.11	0.10
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than *******************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656A
Date of Issue:	2021-07-06
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-07-06

Page: 7 of 13

sult	s:	
amp	le	ID

Results:						
Sample ID	W5-S R3	W5-M R3	W5-B R3	W6-S R3	W6-M R3	W6-B R3
Sample No.	35656-61	35656-62	35656-63	35656-64	35656-65	35656-66
Cadmium (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	. 7	6	5	4	4	5
Nickel (µg/L)	4	2	2	2	2	3
Lead (µg/L)	<1	1	1	<1	1	2
Mercury (μg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	1	<1	1	1
Zinc (µg/L)	44	22	13	9	9	15
Total Inorganic Nitrogen (mg/L)	0.60	0.44	0.52	0.52	0.52	0.50
Ammonia (mg/L)	0.17	0.11	0.11	0.11	0.12	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R3	W7-M R3	W7-B R3	W8-S R3	W8-M R3	W8-B R3
Sample No.	35656-67	35656-68	35656-69	35656-70	35656-71	35656-72
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	5	5	5	7	5
Nickel (µg/L)	2	1	2	2	3	2
Lead (µg/L)	<1	<1	<1	1	2	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	1.0	<0.5
Chromium (µg/L)	<1	<1	2	1	1	1
Zinc (µg/L)	11	12	29	18	23	11
Total Inorganic Nitrogen (mg/L)	0.84	0.58	0.55	0.66	0.50	0.54
Ammonia (mg/L)	0.08	0.14	0.10	0.17	0.12	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

TEST REPORT

 Report No.:
 35656A

 Date of Issue:
 2021-07-06

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-07-06

Page: 8 of 13

Results:

Sample ID	W1-S R4	W1-M R4	W1-B R4	W2-S R4	W2-M R4	W2-B R4
Sample No.	35656-73	35656-74	35656-75	35656-76	35656-77	35656-78
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	9	5	5	5
Nickel (µg/L)	2	2	8	3	2	1
Lead (µg/L)	2	<1	<1	<1	<1	<1
Mercury (µg/L)	1.0	< 0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	1	<1	<1	<1
Zinc (µg/L)	8	11	45	13	9	7
Total Inorganic Nitrogen (mg/L)	0.53	0.68	0.47	0.51	0.53	0.49
Ammonia (mg/L)	0.14	0.18	0.10	0.12	0.09	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R4	W3-M R4	W3-B R4	W4-S R4	W4-M R4	W4-B R4
Sample No.	35656-79	35656-80	35656-81	35656-82	35656-83	35656-84
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	5	5	2	5	6	5
Nickel (µg/L)	2	1	1	2	2	2
Lead (µg/L)	<1	<1	<1	<1	1	1
Mercury (µg/L)	<0.5	< 0.5	<0.5	1.0	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (μg/L)	43	11	6	14	10	16
Total Inorganic Nitrogen (mg/L)	0.51	0.51	0.55	0.55	0.55	0.55
Ammonia (mg/L)	0.12	0.11	0.13	0.22	0.18	0.17
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656A
Date of Issue:	2021-07-06
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-07-06
	Date of Issue: Date Received: Date Tested:

Page: 9 of 13

		٠.		
2.9	41	п	ľN	:

Kesuns:				,		
Sample ID	W5-S R4	W5-M R4	W5-B R4	W6-S R4	W6-M R4	W6-B R4
Sample No.	35656-85	35656-86	35656-87	35656-88	35656-89	35656-90
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	6	4	6	6	5
Nickel (µg/L)	3	2	1	2	3	2
Lead (µg/L)	3	<1	<1	<1	3	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Chromium (µg/L)	2	<1	<1	<1	1	<1
Zinc (µg/L)	19	19	12	32	39	16
Total Inorganic Nitrogen (mg/L)	0.58	0.56	0.56	0.54	0.54	0.54
Ammonia (mg/L)	0.16	0.16	0.18	0.15	0.18	0.14
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R4	W7-M R4	W7-B R4	W8-S R4	W8-M R4	W8-B R4
Sample No.	35656-91	35656-92	35656-93	35656-94	35656-95	35656-96
Cadmium (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	4	5	5	4	5
Nickel (μg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	1	<1	1	<1	<1
Mercury (µg/L)	< 0.5	1.0	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	3	1	<1	<1
Zinc (µg/L)	12	11	11	13	13	10
Total Inorganic Nitrogen (mg/L)	0.51	0.52	0.56	0.66	0.50	0.69
Ammonia (mg/L)	0.11	0.12	0.19	0.20	0.14	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

TEST REPORT

 Report No.:
 35656A

 Date of Issue:
 2021-07-06

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-07-06

Page: 10 of 13

Results:

Sample ID	W1-S R5	W1-M R5	W1-B R5	W2-S R5	W2-M R5	W2-B R5
Sample No.	35656-97	35656-98	35656-99	35656-100	35656-101	35656-102
Cadmium (µg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	5	5	5	6	5	4
Nickel (µg/L)	2	1	2	2	2	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	1.0
Chromium (µg/L)	<1	1	<1	<1	<1	<1
Zinc (µg/L)	7	7	11	11	7	6
Total Inorganic Nitrogen (mg/L)	0.49	0.51	0.52	0.64	0.50	0.53
Ammonia (mg/L)	0.10	0.11	0.19	0.19	0.13	0.10
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R5	W3-M R5	W3-B R5	W4-S R5	W4-M R5	W4-B R5
Sample No.	35656-103	35656-104	35656-105	35656-106	35656-107	35656-108
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	6	5	5	5	5
Nickel (µg/L)	2	2	1	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	1	<1	<1	<1	<1
Zinc (µg/L)	11	14	12	12	9	9
Total Inorganic Nitrogen (mg/L)	0.48	0.43	0.54	0.52	0.42	0.53
Ammonia (mg/L)	0.10	0.13	0.15	0.12	0.10	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656A
Date of Issue:	2021-07-06
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-07-06

Page: 11 of 13

esults:

Results:					,	
Sample ID	W5-S R5	W5-M R5	W5-B R5	W6-S R5	W6-M R5	W6-B R5
Sample No.	35656-109	35656-110	35656-111	35656-112	35656-113	35656-114
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	4	6	5	5	4
Nickel (µg/L)	2	1	2	2	2	11
Lead (μg/L)	<1	<1	<1	`<1	<1	<1
Mercury (μg/L)	<0.5	< 0.5	< 0.5	1.0	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	18	13	12	5	9	5
Total Inorganic Nitrogen	0.39	0.46	0.47	0.59	0.55	0.40
(mg/L)	0.57	0,40				
Ammonia (mg/L)	0.10	0.10	0.10	0.17	0.17	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R5	W7-M R5	W7-B R5	W8-S R5	W8-M R5	W8-B R5
Sample No.	35656-115	35656-116	35656-117	35656-118	35656-119	35656-120
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	8	5	3	. 5	5	5
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	2	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	<1	<1	<1	<1
Zinc (µg/L)	26	6	9	10	22	23
Total Inorganic Nitrogen (mg/L)	0.50	0.37	0.36	0.41	0.64	0.56
Ammonia (mg/L)	0.16	0.17	0.17	0.16	0.19	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

TEST REPORT

35656A Report No.: Date of Issue: 2021-07-06 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-07-06

Page: 12 of 13

Results:

Sample ID	W1-S R6	W1-M R6	W1-B R6	W2-S R6	W2-M R6	W2-B R6
Sample No.	35656-121	35656-122	35656-123	35656-124	35656-125	35656-126
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	5	5	5	4
Nickel (µg/L)	3	2	7	2	2	2
Lead (μg/L)	<1	<1	<1	<1	1	<1
Mercury (μg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	3	<1
Zinc (µg/L)	7	13	50	22	45	12
Total Inorganic Nitrogen (mg/L)	0.59	0.64	0.64	0.60	0.59	0.55
Ammonia (mg/L)	0.14	0.25	0.17	0.16	0.11	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R6	W3-M R6	W3-B R6	W4-S R6	W4-M R6	W4-B R6
Sample No.	35656-127	35656-128	35656-129	35656-130	35656-131	35656-132
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	10	9	5	5	5	4
Nickel (µg/L)	3	3	1	2	1	2
Lead (µg/L)	6	4	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	1	<1	<1
Zinc (µg/L)	57	49	11	11	6	8
Total Inorganic Nitrogen (mg/L)	0.56	0.50	0.56	0.52	0.68	0.55
Ammonia (mg/L)	0.12	0.11	0.14	0.10	0.25	0.16
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than ************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656A
Date of Issue:	2021-07-06
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-07-06

13 of 13 Page:

esu	14
esu	us:

Results:						
Sample ID	W5-S R6	W5-M R6	W5-B R6	W6-S R6	W6-M R6	W6-B R6
Sample No.	35656-133	35656-134	35656-135	35656-136	35656-137	35656-138
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	5	5	5	4
Nickel (µg/L)	2	2	1	2	2	1
Lead (µg/L)	<1	<1	<1	1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	5	<1	<1
Zinc (µg/L)	19	13	6	8	11	15
Total Inorganic Nitrogen (mg/L)	0.64	0.52	0.55	0.57	0.54	0.58
Ammonia (mg/L)	0.21	0.09	0.12	0.15	0.12	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

a	WG C D C	W/Z M D C	W7-B R6	W8-S R6	W8-M R6	W8-B R6
Sample ID	W7-S R6	W7-M R6				
Sample No.	35656-139	35656-140	35656-141	35656-142	35656-143	35656-144
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	5	4	4	5	3	5
Nickel (µg/L)	2	2	2	2	2	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	1.0	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	1	<1
Zinc (µg/L)	12	7	11	6	9	9
Total Inorganic Nitrogen (mg/L)	0.51	0.54	0.59	0.56	0.58	0.52
Ammonia (mg/L)	0.09	0.09	0.12	0.11	0.16	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

 Report No.:
 35656B

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

1 of 3

ATTN: Mr. Cyrus Fung

Page:

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 35656B Sampling Date : 2021-09-10

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

PREPARED AND CHECKED BY:
For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656B
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 2 of 3

Ð	es	11	1	te

Sample ID	Sample No.	E.coli	Sample ID	Sample No.	E.coli
Sample 15	Sample 110.	(cfu/100mL)	•	•	(cfu/100mL)
W1-S R1	35656-1	21	W5-M R2	35656-38	14
W1-M R1	35656-2	20	W5-B R2	35656-39	10
W1-B R1	35656-3	18	W6-S R2	35656-40	12
W2-S R1	35656-4	22	W6-M R2	35656-41	16
W2-M R1	35656-5	14	W6-B R2	35656-42	10
W2-B R1	35656-6	12	W7-S R2	35656-43	25
W3-S R1	35656-7	17	W7-M R2	35656-44	20
W3-M R1	35656-8	31	W7-B R2	35656-45	14
W3-B R1	35656-9	33	W8-S R2	35656-46	21
W4-S R1	35656-10	29	W8-M R2	35656-47	19
W4-M R1	35656-11	31	W8-B R2	35656-48	15
W4-B R1	35656-12	36	W1-S R3	35656-49	31
W5-S R1	35656-13	48	W1-M R3	35656-50	9
W5-M R1	35656-14	59	W1-B R3	35656-51	24
W5-B R1	35656-15	27	W2-S R3	35656-52	43
W6-S R1	35656-16	28	W2-M R3	35656-53	31
W6-M R1	35656-17	26	W2-B R3	35656-54	35
W6-B R1	35656-18	37	W3-S R3	35656-55	16
W7-S R1	35656-19	12	W3-M R3	35656-56	16
W7-M R1	35656-20	26	W3-B R3	35656-57	21
W7-B R1	35656-21	22	W4-S R3	35656-58	22
W8-S R1	35656-22	21	W4-M R3	35656-59	28
W8-M R1	35656-23	13	W4-B R3	35656-60	34
W8-B R1	35656-24	14	W5-S R3	35656-61	64
W1-S R2	35656-25	12	W5-M R3	35656-62	56
W1-M R2	35656-26	13	W5-B R3	35656-63	66
W1-B R2	35656-27	21	W6-S R3	35656-64	59
W2-S R2	35656-28	8	W6-M R3	35656-65	49
W2-M R2	35656-29	12	W6-B R3	35656-66	63
W2-B R2	35656-30	16	W7-S R3	35656-67	42
W3-S R2	35656-31	23	W7-M R3	35656-68	45
W3-M R2	35656-32	14	W7-B R3	35656-69	42
W3-B R2	35656-33	11	W8-S R3	35656-70	59
W4-S R2	35656-34	10	W8-M R3	35656-71	37
W4-M R2	35656-35	7	W8-B R3	35656-72	59
W4-B R2	35656-36	9	W1-S R4	35656-73	51
W5-S R2	35656-37	9	W1-M R4	35656-74	55

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 35656B Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

Page: 3 of 3

Results:		E.coli		G 1 37	E.coli
Sample ID	Sample No.	(cfu/100mL)	Sample ID	Sample No.	(cfu/100mL)
W1-B R4	35656-75	35	W5-M R5	35656-110	46
W2-S R4	35656-76	60	W5-B R5	35656-111	53
W2-M R4	35656-77	34	W6-S R5	35656-112	44
W2-B R4	35656-78	47	W6-M R5	35656-113	46
W3-S R4	35656-79	24	W6-B R5	35656-114	31
W3-M R4	35656-80	46	W7-S R5	35656-115	45
W3-B R4	35656-81	41	W7-M R5	35656-116	49
W4-S R4	35656-82	31	W7-B R5	35656-117	32
W4-M R4	35656-83	56	W8-S R5	35656-118	30
W4-B R4	35656-84	51	W8-M R5	35656-119	46
W5-S R4	35656-85	52	W8-B R5	35656-120	52
W5-M R4	35656-86	45	W1-S R6	35656-121	32
W5-B R4	35656-87	29	W1-M R6	35656-122	36
W6-S R4	35656-88	49	W1-B R6	35656-123	37
W6-M R4	35656-89	49	W2-S R6	35656-124	56
W6-B R4	35656-90	44	W2-M R6	35656-125	51
W7-S R4	35656-91	74	W2-B R6	35656-126	45
W7-M R4	35656-92	53	W3-S R6	35656-127	32
W7-B R4	35656-93	52	W3-M R6	35656-128	49
W8-S R4	35656-94	64	W3-B R6	35656-129	57
W8-M R4	35656-95	. 28	W4-S R6	35656-130	49
W8-B R4	35656-96	43	W4-M R6	35656-131	38
W1-S R5	35656-97	29	W4-B R6	35656-132	48
W1-M R5	35656-98	49	W5-S R6	35656-133	34
W1-B R5	35656-99	37	W5-M R6	35656-134	49
W2-S R5	35656-100	44	W5-B R6	35656-135	44
W2-M R5	35656-101	46	W6-S R6	35656-136	49
W2-B R5	35656-102	38	W6-M R6	35656-137	61
W3-S R5	35656-103	33	W6-B R6	35656-138	31
W3-M R5	35656-104	54	W7-S R6	35656-139	31
W3-B R5	35656-105	44	W7-M R6	35656-140	42
W4-S R5	35656-106	41	W7-B R6	35656-141	41
W4-M R5	35656-107	33	W8-S R6	35656-142	46
W4-B R5	35656-108	54	W8-M R6	35656-143	55
W5-S R5	35656-109	43	W8-B R6	35656-144	41

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35656C 2021-09-30 Date of Issue: 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30

Page: 1 of 25 Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 35656C Sampling Date : 2021-09-10

Test Requested & Methodology

ATTN:

Item	Parameters	Ref. Method	Limit of Reporting
1	Naphthalene (NAP)	In-house method SOP 087 (GC/MSD)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
4	Fluorene (FLU)		0.1 μg/L
5	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)		0.1 μg/L
7	Fluoranthene (FLT)		0.1 μg/L
8	Benzo(a)Anthracene (BaA)]	0.1 μg/L
9	Chrysene (CHR)		0.1 μg/L
10	Pyrene (PYR)		0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)		0.1 μg/L
12	Benzo(a)Pyrene (BaP)		0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)	1	0.1 μg/L
14	Indeno(1,2,3-cd)pyrene (IPY)		0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		0.1 μg/L

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

age: 2 of 25

Results:

Results:						
Sample ID	W1-S R1	W1-M R1	W1-B R1	W2-S R1	W2-M R1	W2-B R1
Sample No.	35656-1	35656-2	35656-3	35656-4	35656-5	35656-6
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(NAP), μg/L	₹0.1	\0. 1	-0.1	10.1	-0.1	
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L						
Acenaphthene	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(FLU), μg/L						
Phenanthrene	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(PHE) , μg/L Anthracene						
(ANT), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene						
(FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene				.0.1	.0.1	-0.1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), µg/L	<0.1	0.1	\0.1	<0.1	V0.1	₹0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	\\0.1	V.1	VO.1	30.1	-0.1	-0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF) , μg/L	0.1	VII.				
Benzo(a)Pyrene	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(BaP), μg/L						
Benzo(k) Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BkF) , μg/L						
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(IPY), μg/L Dibenz(a,h)anthracene	-	-		 		
(DBA), µg/L	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	<u> </u>					
(BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(5, 5), 485	L	J				

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 3 of 25

oeulte.

W3-S R1 35656-7 <0.1	W3-M R1 35656-8 <0.1	W3-B R1 35656-9	W4-S R1 35656-10	W4-M R1 35656-11	W4-B R1
		35656-9	35656-10	25656 11	00000 10
<0.1	<0.1			33030-11	35656-12
	~0.1	<0.1	<0.1	<0.1	< 0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
\U.1	VO.1	10.1	-0.1		
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 	<0.1	<0.1	<0.1

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 4 of 25

W5-S R1	W5-M R1	W5-B R1			W6-B R1
35656-13	35656-14	35656-15	35656-16	35656-17	35656-18
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-0.1		0.1			
< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-0.1	-0.1	<0.1	<0.1	<0.1:	<0.1
<0.1	<0.1	<0.1	<0.1	\0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VO.1	30.1				
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		-0.1	-0.1	-0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
\0.1	\(\) 0.1	V 0.1	\$0.1	VO.1	-0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		1			
<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
		-		1	
< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
	<u> </u>		-		40.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
-0.1	<0.1	-0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	_0.1	\\\ 0.1	~0.1
	35656-13 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	35656-13 35656-14 <0.1	35656-13 35656-14 35656-15 <0.1	35656-13 35656-14 35656-15 35656-16 <0.1	35656-13 35656-14 35656-15 35656-16 35656-17 <0.1

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

e: 5 of 25

oordies

Results:						
Sample ID	W7-S R1	W7-M R1	W7-B R1	W8-S R1	W8-M R1	W8-B R1
Sample No.	35656-19	35656-20	35656-21	35656-22	35656-23	35656-24
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	₹0.1	₹0.1	V0.1	-0.1	-0.1	
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(ANY), μg/L	-0.1					
Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANA), μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
(ANT), μg/L						
Fluoranthene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLT), µg/L						
Benzo(a)Anthracene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BaA) , μg/L						
Chrysene	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
(CHR) , μg/L						
Pyrene	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene		-				
	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
(BbF), μg/L Benzo(a)Pyrene						
(BaP), µg/L	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene		-				
(BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene						
(IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene		-				1
(DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	†				-0.1	-0.1
(BPE), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(DI D), MS D						1

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page:

6 of 25

Kesuns:	Results:
---------	----------

Results:						
Sample ID	W1-S R2	W1-M R2	W1-B R2	W2-S R2	W2-M R2	W2-B R2
Sample No.	35656-25	35656-26	35656-27	35656-28	35656-29	35656-30
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(NAP), μg/L	٧٠.١	10.1		V.2		
Acenaphthylene	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
(ANY) , μg/L						
Acenaphthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANA), μg/L Fluorene						
(FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Phenanthrene			.0.1	-0.1	<0.1	<0.1
(PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT) , μg/L	<0.1	\\\ 0.1	~0.1	₹0.1	\0.1	١٥.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L	-0.1	30.1	-0.1	-0.12	011	
Benzo(a)Anthracene	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(BaA) , μg/L						
Chrysene	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(CHR), µg/L						
Pyrene (PYR), µg/L	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Benzo(b)Fluoranthene						
(BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	<0.1	<0.1	<0.1	VO.1	\0.1	VO.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L	\0.1	٧٥.1	10.1	10.1		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(IPY) , μg/L						
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L					-	
Benzo(g,h,i)Perylene	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , μg/L		1		1		L

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 7 of 25

Results:

Resuits:			**** T T T	7774 G D =	7774 3 6 73 5	TILL D. D.C.
Sample ID	W3-S R2	W3-M R2	W3-B R2	W4-S R2	W4-M R2	W4-B R2
Sample No.	35656-31	35656-32	35656-33	35656-34	35656-35	35656-36
Naphthalene	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(NAP), μg/L	٠٠.١	10.1	.0.1		-0.1	
Acenaphthylene	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(ANY) , μg/L						
Acenaphthene	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L Fluorene						
(FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Phenanthrene						
(PHE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene					.0.1	-0.1
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	\(\tau_{0.1}\)	\(\) 0.1	<0.1	~0.1	₹0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L	VO.1	30.1	30.1	-0.1		
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L	***					
Pyrene	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(PYR), μg/L						
Benzo(b)Fluoranthene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BbF), μg/L Benzo(a)Pyrene						
(BaP), µg/L	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzo(k) Fluoranthene						-0.1
(BkF), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	+0.1	-0.1	ر <u>۱</u>	<0.1	<0.1	<0.1
(IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), μg/L	~0.1	\\\ 0.1	\0.1	V.1	-0,1	-0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BPE) , μg/L	-0.1	-0.1	-0.1	-5.1		

TEST REPORT

Report No.: 35656C 2021-09-30 Date of Issue: 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30

Page: 8 of 25

Sample ID W5-S R2 W5-M R2 W5-B R2 W6-S R2 W6-M R2 W6-B R2	Results:						
Naphthalene (NAP), μg/L Acenaphthylene (ANY), μg/L Acenaphthylene (ANY), μg/L Acenaphthylene (ANY), μg/L Acenaphthene (ANA), μg/L Acenaphthene (ANA), μg/L Acenaphthene (ANA), μg/L Acenaphthene (ANA), μg/L Acenaphthene (ANA), μg/L Acenaphthene (ANA), μg/L Acenaphthene (FLU), μg/L Acenaphthene (FLU), μg/L Acenaphthene (FLU), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ANT), μg/L Acenaphthene (ACE), μg/L Acenaphthene (ACE), μg/L Acenaphthene (ACE), μg/L Acenaphthene (ACE), μg/L Acenaphthene (ACE), μg/L Acenaphthale	Sample ID	W5-S R2	W5-M R2	W5-B R2	W6-S R2	W6-M R2	
(NAP), µg/L Acenaphthylene (ANY), µg/L Acenaphthene (ANA), µg/L Fluorene (FLU), µg/L Phenanthrene (ANT), µg/L Anthracene (ANT), µg/L Fluoranthene (FLT), µg/L Benzo(a)Anthracene (BaA), µg/L Chrysene (CHR), µg/L Anthracene (CHR), µg/L Benzo(a)Fuoranthene (BAP), µg/L Anthracene	Sample No.	35656-37	35656-38	35656-39	35656-40	35656-41	35656-42
NAP), µg/L	Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), µg/L Acenaphthene (ANA), µg/L Fluorene (FLU), µg/L Phenanthrene (PHE), µg/L Anthracene (ANT), µg/L Fluoranthene (FLT), µg/L Chrysene (CHR), µg/L Pryrene (CHR), µg/L Pyrene (BaA), µg/L Pyrene (PHE), µg/L Anthracene (ANT), µg/L Benzo(a)Pyrene (BBF), µg/L Benzo(a)Pyrene (BBF), µg/L Benzo(a)Pyrene (BBF), µg/L Benzo(b) Fluoranthene (BBF), µg/L	(NAP), μg/L	\0.1	V.1	~0.1	×0.1	-0.1	-0.1
(ANY), μg/L Co.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), µg/L		٠٠.١	-011				
Fluorene (FLU), µg/L		<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(FLU), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1							
Phenanthrene (PHE), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(PHE), µg/L Anthracene (ANT), µg/L Fluoranthene (FLT), µg/L Chrysene (BAA), µg/L Pyrene (PYR), µg/L Benzo(a)Pyrene (BbF), µg/L Benzo(a)Pyrene (BaP), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (BhF), µg/L Constantine (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (Chryene (Constantine) (C							
Anthracene (ANT), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0		< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1
(ANT), µg/L							
Fluoranthene (FLT), μg/L Co.1		< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(FLT), µg/L Benzo(a)Anthracene (BaA), µg/L Chrysene (CHR), µg/L Pyrene (PYR), µg/L Benzo(b)Fluoranthene (BbF), µg/L Benzo(a)Pyrene (BaP), µg/L Cond C							
Benzo(a)Anthracene (BaA), µg/L		< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), µg/L							
Chrysene (CHR), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
C(First)							
Pyrene (PYR), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(PYR), μg/L 20.1							
Benzo(b)Fluoranthene <0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L Co.1						.0.1	40.1
Benzo(a)Pyrene		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP) , µg/L			-0.1	-0.1	-0.1	<0.1	<0.1
Benzo(k) Fluoranthene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	1 ''	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , µg/L		-0.1	-0.1	-0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.		<0.1	<0.1	<0.1	\0.1	\0.1	\0.1
(IPY), µg/L Dibenz(a,h)anthracene (DBA), µg/L Provide (DBA) ng/L Out to the control of the co		-0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	(IPY), μg/L	<0.1	_0.1	~0.1	-U.1	-0.1	-0.1
(DBA), µg/L		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene \bigcirc 1 \bigcirc 1 \bigcirc 0.1 \bigcirc 0.1 \bigcirc 0.1 \bigcirc 0.1	(DBA), µg/L	\0.1	~0.1	~V.1	-0.1	-0.1	-5.1
	Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE), µg/L	(BPE) , μg/L	\\\	-0.1	.0.1			L

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 9 of 25

Results:						
Sample ID	W7-S R2	W7-M R2	W7-B R2	W8-S R2	W8-M R2	W8-B R2
Sample No.	35656-43	35656-44	35656-45	35656-46	35656-47	35656-48
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

Report No .: 35656C Date of Issue: 2021-09-30 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-09-30 Page: 10 of 25

Results:

Acaulta.				-		
Sample ID	W1-S R3	W1-M R3	W1-B R3	W2-S R3	Water	
Sample No.	35656-49	35656-50	35656-51	35656-52	W2-M R3	11213
Naphthalene	-0.1			33036-32	35656-53	35656-54
(NAP), μg/L	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
Acenaphthylene	<0.1	40.1		 		
(ANY), μg/L	\0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Acenaphthene	<0.1	<0.1		†		-
(ANA), μg/L	-0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Fluorene	<0.1	<0.1	<0.1			+
(FLU) , μg/L Phenanthrene	-0.1	, \0.1	<0.1	<0.1	<0.1	<0.1
	<0.1	<0.1	<0.1			
(PHE), μg/L Anthracene		.0.1	~0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1		
Fluoranthene			VO.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	<0.1	< 0.1	<0.1	<0.1	
Benzo(a)Anthracene				~0.1	<0.1	<0.1
(BaA), μg/L	<0.1	<0.1	<0.1	< 0.1	<0.1	10.1
Chrysene				-0.1	~0.1	<0.1
(CHR), μg/L	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
Pyrene					-0.1	₹0.1
(PYR) , μg/L	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
Benzo(b)Fluoranthene						-0.1
(BbF) , μg/L	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Benzo(a)Pyrene	<0.1					
(BaP) , μg/L	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
Benzo(k) Fluoranthene	< 0.1	-0.1				
(BkF), μg/L	~0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1				
(IPY), μg/L	V0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1			
(DBA), µg/L	.0.1	~0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1	<0.1	<0.1	c0.1		
(DIE), µg/L		-0.1	~0.1	<0.1	<0.1	< 0.1

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed	1: 2021-09-30

Results:				Page:		11 of 25
Sample ID	W3-S R3	W3-M R3	W3-B R3	W4-S R3	W4-M R3	W4-B R3
Sample No.	35656-55	35656-56	35656-57	35656-58	35656-59	35656-60
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 12 of 25

Result	S	:
--------	---	---

Results:						
Sample ID	W5-S R3	W5-M R3	W5-B R3	W6-S R3	W6-M R3	W6-B R3
Sample No.	35656-61	35656-62	35656-63	35656-64	35656-65	35656-66
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	-0.1	₹0.1	₹0.1	\0.1	~0.1	<0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L	- 17		-0.1	-0.1	١٥.1	·0.1
Acenaphthene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(ANA), µg/L Fluorene						
(FLU), μg/L	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1
Phenanthrene						
(PHE), µg/L	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Anthracene						
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	-0.1					
(FLT), μg/L	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	~0.1	c0 1	40 I
(BaA) , μg/L	70.1	\0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L	٧٥.1	VO.1	\0.1	V 0.1	\0.1	<0.1
Pyrene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(PYR), μg/L		7.1			10.1	NO.1
Benzo(b)Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BbF), μg/L Benzo(a)Pyrene						
(BaP), μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k) Fluoranthene						
(BkF), μg/L	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene						
(IPY) , μg/L	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1
Dibenz(a,h)anthracene	-0.1	-0.1	-0.1	.0.4		
(DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	-0.1
(BPE) , μg/L	~0.1	~ 0.1	~U.1	~0.1	~0.1	<0.1

Remarks: 1) < = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 13 of 25

Results:

Results:						
Sample ID	W7-S R3	W7-M R3	W7-B R3	W8-S R3	W8-M R3	W8-B R3
Sample No.	35656-67	35656-68	35656-69	35656-70	35656-71	35656-72
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656C Date of Issue: 2021-09-30 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30

14 of 25 Page:

Results:						
Sample ID	W1-S R4	W1-M R4	W1-B R4	W2-S R4	W2-M R4	W2-B R4
Sample No.	35656-73	35656-74	35656-75	35656-76	35656-77	35656-78
Naphthalene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(NAP), μg/L	٧٥.1		-0	· · · · · · · · · · · · · · · · · · ·		
Acenaphthylene	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
(ANY), μg/L						
Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANA), µg/L Fluorene						
(FLU), µg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene						.0.1
(PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene		-0.1	-0.1	-0.1	<0.1	<0.1
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	VO.1	<0.1	₹0.1	~0.1	٧٥.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L	30.1	10.1				
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L						
Pyrene	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
(PYR), μg/L						
Benzo(b)Fluoranthene	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(BbF), μg/L Benzo(a)Pyrene						
(BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene			-0.1	40.1	<0.1	<0.1
(BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	<0.1	\\0.1	~0.1	\0.1	٧٥.1	10.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA) , μg/L	-0.1	-0.1	-0.1	-0.1		
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BPE), μg/L	l	1			1	

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax :2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Complete	d: 2021-09-30
Dogg	15 of 25

Page:

15 of 25

Res	ults:	
-----	-------	--

Results:						·
Sample ID	W3-S R4	W3-M R4	W3-B R4	W4-S R4	W4-M R4	W4-B R4
Sample No.	35656-79	35656-80	35656-81	35656-82	35656-83	35656-84
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 16 of 25

Results:

Results:				,		
Sample ID	W5-S R4	W5-M R4	W5-B R4	W6-S R4	W6-M R4	W6-B R4
Sample No.	35656-85	35656-86	35656-87	35656-88	35656-89	35656-90
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	-0.1	-0.1	-0.1	-0.1		V.1
Acenaphthylene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(ANY), µg/L						
Acenaphthene	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(FLU), μg/L Phenanthrene						
(PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene						
(ANT) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	.0.1	-0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	<0.1	<0.1	<0.1	\0.1	~0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L	VO.1	30.1	30.1	-0.1	-0.1	-0.1
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L						
Pyrene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
(PYR) , μg/L						
Benzo(b)Fluoranthene (BbF), µg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene						
(BaP), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene				-0.1	-0.1	40.1
(BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	<0.1	<0.1	<0.1	<0.1	V.1	~0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA) , μg/L	-0.1	-0.1	-0.1	-0.1	-0.1	-5.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , μg/L				1		L

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

35656C
2021-09-30
2021-09-10
2021-09-10
2021-09-30

Page: 17 of 25

Res	ul	ts
-----	----	----

W7-S R4	W7-M R4	W7-B R4			W8-B R4
35656-91	35656-92	35656-93	35656-94	35656-95	35656-96
<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
30.1	١٠.١	-0.1			
< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
					.0.4
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		-0.1	-0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	-O 1	<0.1	<0.1	<0.1
<0.1	<0.1	V0.1	₹0.1	\0.1	₹0,1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
\0.1	VO.1	30.1	-0.1	V.1	***
<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
					.0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
.0.1	-0.1	-0.1	-0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	\	\\\ \O.1		-0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	35656-91 35656-92 <0.1	35656-91 35656-92 35656-93 <0.1	35656-91 35656-92 35656-93 35656-94 <0.1	35656-91 35656-92 35656-93 35656-94 35656-95 <0.1

Remarks: 1) <= less than

TEST REPORT

 Report No.:
 35656C

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 18 of 25

Results:

Results:						
Sample ID	W1-S R5	W1-M R5	W1-B R5	W2-S R5	W2-M R5	W2-B R5
Sample No.	35656-97	35656-98	35656-99	35656-100	35656-101	35656-102
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	\0.1	₹0.1	\0,1	\0.1	₹0.1	\0.1
Acenaphthylene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(ANY), μg/L	0.1					
Acenaphthene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(ANA), μg/L Fluorene						
(FLU), µg/L	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
Phenanthrene						
(PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene				.0.4		-0.4
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	<0.1	~0.1	\0.1	<0.1	₹0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L	-0.1	-0.1	-0.1			
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L						
Pyrene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene						
(BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene						
(BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	\U.1	\0.1	VO.1	VO.1	30.1	١٠.١
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), μg/L						
Benzo(g,h,i)Perylene	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(BPE) , μg/L	1					

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Г	Report No.:	35656C
	Date of Issue:	2021-09-30
ı	Date Received:	2021-09-10
	Date Tested:	2021-09-10
L	Date Completed:	2021-09-30

Page: 19 of 25

D	es	11	H	c	

Results:	,					
Sample ID	W3-S R5	W3-M R5	W3-B R5	W4-S R5	W4-M R5	W4-B R5
Sample No.	35656-103	35656-104	35656-105	35656-106	35656-107	35656-108
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

TEST REPORT

| Report No.: 35656C |
| Date of Issue: 2021-09-30 |
| Date Received: 2021-09-10 |
| Date Tested: 2021-09-10 |
| Date Completed: 2021-09-30 |

Page: 20 of 25

Results:

Results:						
Sample ID	W5-S R5	W5-M R5	W5-B R5	W6-S R5	W6-M R5	W6-B R5
Sample No.	35656-109	35656-110	35656-111	35656-112	35656-113	35656-114
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	<0.1	<0.1	~0.1	\0. 1	~0.1	\0,1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANY), μg/L	-0.1		-0.1			
Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(FLU), μg/L						
Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(PHE) , μg/L Anthracene						
i	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(ANT), µg/L Fluoranthene						
(FLT), µg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene						
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	.0.1	-0.1	40.1	-0.1	<0.1	<0.1
(CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	<0.1	<0.1	V0.1	<0.1	₹0.1	~0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF) , μg/L	VO.1	\0.1	VO.1	NO.1	10.1	-0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
(BaP) , μg/L	10.1	-0.1		0.1	V.2	
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , μg/L						
Indeno(1,2,3-cd)pyrene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(IPY) , μg/L				-		
Dibenz(a,h)anthracene	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(DBA), µg/L		-			-	
Benzo(g,h,i)Perylene (BPE), µg/L	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
L(DLC) 'NA\r	I	1	1	1	1	1

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

35656C
2021-09-30
2021-09-10
2021-09-10
2021-09-30

Page: 21 of 25

Results:

Results:						
Sample ID	W7-S R5	W7-M R5	W7-B R5	W8-S R5	W8-M R5	W8-B R5
Sample No.	35656-115	35656-116	35656-117	35656-118	35656-119	35656-120
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	٦٥.1	٠٥.1	10.1	-0.1	-0.1	
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY) , μg/L						
Acenaphthene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(ANA), μg/L Fluorene						
(FLU), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene						
(PHE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L	<0.1	<0.1	~0.1	<0.1	<0.1	\0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L	30.1	10.1	-0.1	-0.1	-011	0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L						
Chrysene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L Pyrene						
(PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene				-0.1	-0.1	.0.1
(BbF) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	\0.1	V.1	\0.1	\0.1	VO.1	-0.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , μg/L			***			
Indeno(1,2,3-cd)pyrene	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1
(IPY), µg/L						
Dibenz(a,h)anthracene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L Benzo(g,h,i)Perylene						
(BPE) , μg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(D1 D), με/D		L	1		L	<u></u>

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656C 2021-09-30 Date of Issue: 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30 22 of 25

Page:

Roculte.

Results:	,		,			
Sample ID	W1-S R6	W1-M R6	W1-B R6	W2-S R6	W2-M R6	W2-B R6
Sample No.	35656-121	35656-122	35656-123	35656-124	35656-125	35656-126
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	₹0.1	-0.1	-0.1	-0,1	-0.2	0.1.
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY) , μg/L						
Acenaphthene	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
(ANA), μg/L						
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene						
(PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	-0.1	-0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	\0.1	VO.1	10.1			
Benzo(a)Anthracene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(BaA), μg/L						
Chrysene	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(CHR), μg/L Pyrene						
(PYR), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Benzo(b)Fluoranthene		1				-0.1
(BbF), µg/L	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	<0.1	~0.1		\0.1	\0.1	V0.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , μg/L	VO.1	-0.1	10.1	-0.1	-0.1	· · · ·
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(IPY) , μg/L						
Dibenz(a,h)anthracene	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1
(DBA), µg/L			-			-
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(BPE) , μg/L			L	1		

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 23 of 25

Reculte.

Results:						
Sample ID	W3-S R6	W3-M R6	W3-B R6	W4-S R6	W4-M R6	W4-B R6
Sample No.	35656-127	35656-128	35656-129	35656-130	35656-131	35656-132
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	~0.1	\0.1	\(\frac{\partial}{0.1}\)	~0.1	\0.1	NO.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L	-0.1	-0.1		-011	71.	
Acenaphthene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(ANA), μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), μg/L						
Phenanthrene	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(PHE) , μg/L						
Anthracene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene						
(FLT), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene						
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene			.0.1	-0.1	-0.1	-0.1
(CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	<0.1	\0.1	0.1	\0.1	₹0.1	\0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF) , μg/L	\0.1	\0.1	V.1	V.1	30.1	-0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP) , μg/L	·0.1	10.1	40.1	-0.1		
Benzo(k) Fluoranthene	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BkF) , μg/L		0.2				
Indeno(1,2,3-cd)pyrene	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1
(IPY), μg/L						
Dibenz(a,h)anthracene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(DBA), µg/L						
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , μg/L			l			

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656C Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

24 of 25 Page:

Results:

Results:						
Sample ID	W5-S R6	W5-M R6	W5-B R6	W6-S R6	W6-M R6	W6-B R6
Sample No.	35656-133	35656-134	35656-135	35656-136	35656-137	35656-138
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	10.1	-0.1	-0.1	0.1		
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L						
Acenaphthene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(ANA) , μg/L						
Fluorene	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1
(FLU), µg/L						
Phenanthrene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(PHE) , μg/L						
Anthracene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene						
(FLT), µg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene						
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene				.0.1	c0 1	<0.1
(CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	-0.1	-0.1	<0.1	<0.1	<0.1	<0.1
(PYR), µg/L	<0.1	<0.1	<0.1	<0.1	0.1	\0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L	<0.1	\0.1	V.1	VO.1	\0.1	-0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(BaP) , μg/L	V.1	10.1	10.1	-0.1	-0.1	
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
(BkF), μg/L	-0.1	-0.1		0.1		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(IPY), μg/L	011					
Dibenz(a,h)anthracene	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(DBA), μg/L		-				
Benzo(g,h,i)Perylene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(BPE), µg/L	1		1			

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656C
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30
Page:	25 of 25

Results:						
Sample ID	W7-S R6	W7-M R6	W7-B R6	W8-S R6	W8-M R6	W8-B R6
Sample No.	35656-139	35656-140	35656-141	35656-142	35656-143	35656-144
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

35656D Report No.: 2021-09-30 Date of Issue: Date Received: 2021-09-10 2021-09-10 Date Tested: Date Completed: 2021-09-30 1 of 49 Page:

ATTN: Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 35656D Sampling Date : 2021-09-10

Item	quested & Methodology: Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L 0.02 μg/L
3	2.4.4'-Trichlorobiphenyl (PCB28)	(30,1122)	0.02 µg/L 0.02 µg/L
			0.02 μg/L 0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)		0.02 μg/L
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		0.02 μg/L
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		0.02 μg/L
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)		0.02 μg/L
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		0.02 μg/L
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		0.02 μg/L
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)		0.02 μg/L
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)		0.02 μg/L
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		0.02 μg/L
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		0.02 μg/L
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		0.02 μg/L
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)		0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)		0.02 μg/L
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)		0.02 μg/L
21	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)		0.02 μg/L
22	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)		0.02 μg/L
23	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)		0.02 μg/L
24	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)		0.02 μg/L
25	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)		0.02 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

į	Report No.:	35656D
	Date of Issue:	2021-09-30
	Date Received:	2021-09-10
	Date Tested:	2021-09-10
	Date Completed:	2021-09-30
	Page:	2 of 49

Results:		,	
Sample ID	W1-S R1	W1-M R1	W1-B R1
Sample No.	35656-1	35656-2	35656-3
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

 Page:
 3 of 49

Results:			
Sample ID	W2-S R1	W2-M R1	W2-B R1
Sample No.	35656-4	35656-5	35656-6
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2°,5,5°-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 4 of 49

≷es	ul	ts:	

Resuits:			
Sample ID	W3-S R1	W3-M R1	W3-B R1
Sample No.	35656-7	35656-8	35656-9
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	<0.02	< 0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 5 of 49

Results:

Sample ID	W4-S R1	W4-M R1	W4-B R1
Sample No.	35656-10	35656-11	35656-12
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 6 of 49

D			1	
ĸ	е.	п	H	L.

Results: Sample ID	W5-S R1	W5-M R1	W5-B R1
Sample No.	35656-13	35656-14	35656-15
•	<0.02	<0.02	<0.02
2,4'-Dichlorobiphenyl (PCB8), µg/L		<0.02	
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	<0.02		<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	<0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , µg/L	<0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 7 of 49

Kesu	its:
------	------

Sample ID	W6-S R1	W6-M R1	W6-B R1
Sample No.	35656-16	35656-17	35656-18
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	<0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 8 of 49

D	es	**	H	0

Sample ID	W7-S R1	W7-M R1	W7-B R1
Sample No.	35656-19	35656-20	35656-21
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 Date Received: 2021-09-10 2021-09-10 Date Tested: Date Completed: 2021-09-30

Page: 9 of 49

Kesu	its:
------	------

Results:		·	
Sample ID	W8-S R1	W8-M R1	W8-B R1
Sample No.	35656-22	35656-23	35656-24
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Donaldos	P	age:	10 of 49
Results: Sample ID	W1-S R2	W1-M R2	W1-B R2
Sample No.	35656-25	35656-26	35656-27
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) < = less than *******************************

TEST REPORT

Report No.: 35656D 2021-09-30 Date of Issue: Date Received: 2021-09-10 2021-09-10 Date Tested: Date Completed: 2021-09-30

Page: 11 of 49

ĸes	ul	ts:	

Results:			
Sample ID	W2-S R2	W2-M R2	W2-B R2
Sample No.	35656-28	35656-29	35656-30
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No	o.: 35656D
Date of Is	
Date Rece	eived: 2021-09-10
Date Test	ed: 2021-09-10
Date Com	pleted: 2021-09-30

12 of 49 Page:

2	es	 Ħ	te	٠	

Sample ID	W3-S R2	W3-M R2	W3-B R2
Sample No.	35656-31	35656-32	35656-33
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

35656D Report No.: Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

13 of 49 Page:

кe	su	its:

Sample ID	W4-S R2	W4-M R2	W4-B R2
Sample No.	35656-34	35656-35	35656-36
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

14 of 49 Page:

200	m	

Sample ID	W5-S R2	W5-M R2	W5-B R2
Sample No.	35656-37	35656-38	35656-39
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 15 of 49

Res	ults:

Sample ID	W6-S R2	W6-M R2	W6-B R2
Sample No.	35656-40	35656-41	35656-42
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 16 of 49

Res	ul	ts:
-----	----	-----

Sample ID	W7-S R2	W7-M R2	W7-B R2
Sample No.	35656-43	35656-44	35656-45
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

17 of 49 Page:

Sample ID	W8-S R2	W8-M R2	W8-B R2
Sample No.	35656-46	35656-47	35656-48
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2.3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 18 of 49

Resu	lts:
------	------

Results:			
Sample ID	W1-S R3	W1-M R3	W1-B R3
Sample No.	35656-49	35656-50	35656-51
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

19 of 49 Page:

Į	۲	е	S	u	ιτ	S	:	

Results:	TVIO G DO	WO MEDO	Wa D Da
Sample ID	W2-S R3	W2-M R3	W2-B R3
Sample No.	35656-52	35656-53	35656-54
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	<0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	<0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D	
Date of Issue:	2021-09-30	
Date Received:	2021-09-10	
Date Tested:	2021-09-10	
Date Completed:	2021-09-30	

Results:	P	Page:	
Sample ID	W3-S R3	W3-M R3	W3-B R3
Sample No.	35656-55	35656-56	35656-57
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02

Sample ID	W3-S R3	W3-M R3	W3-B R3
Sample No.	35656-55	35656-56	35656-57
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

| Report No.: 35656D |
| Date of Issue: 2021-09-30 |
| Date Received: 2021-09-10 |
| Date Tested: 2021-09-10 |
| Date Completed: 2021-09-30 |
| Page: 21 of 49

Results:			
Sample ID	W4-S R3	W4-M R3	W4-B R3
Sample No.	35656-58	35656-59	35656-60
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 22 of 49

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

<0.02

< 0.02

Results:			
Sample ID	W5-S R3	W5-M R3	W5-B R3
Sample No.	35656-61	35656-62	35656-63
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
		1	

2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L

2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L

2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30

23 of 49

к	es	u.	its:
-			

Sample ID	W6-S R3	W6-M R3	W6-B R3
Sample No.	35656-64	35656-65	35656-66
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	<0.02

Remarks: 1) <= less than ******************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

I	Report No.:	35656D
١	Date of Issue:	2021-09-30
	Date Received:	2021-09-10
ı	Date Tested:	2021-09-10
	Date Completed:	2021-09-30

24 of 49 Page:

Res	ult	s:	
-----	-----	----	--

Results:			
Sample ID	W7-S R3	W7-M R3	W7-B R3
Sample No.	35656-67	35656-68	35656-69
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30

25 of 49 Page:

Results:	
----------	--

Results:	.,		
Sample ID	W8-S R3	W8-M R3	W8-B R3
Sample No.	35656-70	35656-71	35656-72
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 26 of 49

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02 < 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

Results:			
Sample ID	W1-S R4	W1-M R4	W1-B R4
Sample No.	35656-73	35656-74	35656-75
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L

2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μ g/L 3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L

2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μ g/L

2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μ g/L

2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L

2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 27 of 49

	R	esu	lts:
--	---	-----	------

Sample ID	W2-S R4	W2-M R4	W2-B R4
Sample No.	35656-76	35656-77	35656-78
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	<0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 28 of 49

R	esn	Ite

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Results:			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample ID	W3-S R4	W3-M R4	W3-B R4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Sample No.	35656-79	35656-80	35656-81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
	2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105) , μg/L	3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB18), µg/L	2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	<0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB153), µg/L	3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153) , μg/L	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L <0.02 <0.02 <0.02 <0.02 <2,3,3',4,4',5-Hexachlorobiphenyl (PCB157) , μg/L <0.02 <0.02 <0.02 <0.02 <3,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L <0.02 <0.02 <0.02 3,3',4,4',5,5'-Hexachlorobiphenyl (PCB169), µg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L <0.02 <0.02 <0.02 2,2',3,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L <0.02 <0.02 <0.02 2,2',3,4',5,5'-Heptachlorobiphenyl (PCB187), µg/L <0.02 <0.02 <0.02	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L <0.02 <0.02 <0.02	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L <0.02 <0.02 <0.02	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L <0.02 <0.02 <0.02	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2 ,5,1 ,5,5 ,6 Heptaemoreospheriyi (1 GB107), pg 2	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L <0.02 <0.02 <0.02	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	<0.02
	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	<0.02

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 29 of 49

Sample ID	W4-S R4	W4-M R4	W4-B R4
Sample No.	35656-82	35656-83	35656-84
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

30 of 49

Page:

Results: W5-S R4 W5-M R4 Sample ID W5-B R4 Sample No. 35656-85 35656-86 35656-87 < 0.02 2,4'-Dichlorobiphenyl (PCB8), µg/L < 0.02 < 0.02 2,2',5-Trichlorobiphenyl (PCB18), µg/L < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2,4,4'-Trichlorobiphenyl (PCB28), µg/L < 0.02 < 0.02 < 0.02 2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L < 0.02 2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L < 0.02 < 0.02 2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L < 0.02 < 0.02 < 0.02 3,3',4,4'-Tetrachlorobiphenyl (PCB77), μ g/L < 0.02 < 0.02 < 0.02 3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L < 0.02 < 0.02 < 0.02 2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L < 0.02 2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L < 0.02 < 0.02 2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2',3,4,4',5-Pentachlorobiphenyl (PCB123), μ g/L 3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L < 0.02 < 0.02 < 0.02 2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L < 0.02 2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L < 0.02 < 0.02 2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L < 0.02 < 0.02 < 0.02 2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L < 0.02 < 0.02 3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L < 0.02 < 0.02 < 0.02 < 0.02 2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L < 0.02 < 0.02 < 0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L < 0.02 < 0.02 < 0.02 2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L < 0.02 < 0.02 < 0.02

Remarks: 1) <= less than

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 31 of 49

Results:		ugo.	
Sample ID	W6-S R4	W6-M R4	W6-B R4
Sample No.	35656-88	35656-89	35656-90
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30
Page:	32 of 49

Results:

Results:			
Sample ID	W7-S R4	W7-M R4	W7-B R4
Sample No.	35656-91	35656-92	35656-93
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	<0.02

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30 33 of 49 Page:

Results:

Results:	T		****
Sample ID	W8-S R4	W8-M R4	W8-B R4
Sample No.	35656-94	35656-95	35656-96
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 5 Website: www.wellab.com.hk

TEST REPORT

Report No).:	35656D
Date of Is		2021-09-30
Date Rece	eived:	2021-09-10
Date Test		2021-09-10
Date Com	pleted:	2021-09-30

Page: 34 of 49

esults:		34 of 49	
Sample ID	W1-S R5	W1-M R5	W1-B R5
Sample No.	35656-97	35656-98	35656-99
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81) , μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
$2,2',3,3',4,4',5$ -Heptachlorobiphenyl (PCB170) , μ g/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than **********************

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

 Page:
 35 of 49

Results:			
Sample ID	W2-S R5	W2-M R5	W2-B R5
Sample No.	35656-100	35656-101	35656-102
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30
Page:	36 of 49

Results:			
Sample ID	W3-S R5	W3-M R5	W3-B R5
Sample No.	35656-103	35656-104	35656-105
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

 Page:
 37 of 49

Results:

Results:			
Sample ID	W4-S R5	W4-M R5	W4-B R5
Sample No.	35656-106	35656-107	35656-108
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	<0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

ı	Report No.:	35656D
1	Date of Issue:	2021-09-30
	Date Received:	2021-09-10
	Date Tested:	2021-09-10
	Date Completed:	2021-09-30

n v	P	age:	38 of 49
Results: Sample ID	W5-S R5	W5-M R5	W5-B R5
Sample No.	35656-109	35656-110	35656-111
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2°,5,5°-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	<0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	<0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35656D

 Date of Issue:
 2021-09-30

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-30

Page: 39 of 49

Results:	•	-Be-	5, 01 1,
Sample ID	W6-S R5	W6-M R5	W6-B R5
Sample No.	35656-112	35656-113	35656-114
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

1	25 . 37	256560
	Report No.:	35656D
	Date of Issue:	2021-09-30
	Date Received:	2021-09-10
	Date Tested:	2021-09-10
	Date Completed:	2021-09-30

Page: 40 of 49

ĸе	su	Its	:

Sample ID	W7-S R5	W7-M R5	W7-B R5
Sample No.	35656-115	35656-116	35656-117
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 Date Received: 2021-09-10 2021-09-10 Date Tested: 2021-09-30 Date Completed: 41 of 49 Page:

Results:			
Sample ID	W8-S R5	W8-M R5	W8-B R5
Sample No.	35656-118	35656-119	35656-120
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44) , μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

Page: 42 of 49

Results:	
----------	--

Sample ID	W1-S R6	W1-M R6	W1-B R6
Sample No.	35656-121	35656-122	35656-123
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126) , µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	<0.02	<0.02	<0.02

Remarks: 1) \leq = less than

TEST REPORT

35656D Report No.: 2021-09-30 Date of Issue: Date Received: 2021-09-10 Date Tested: 2021-09-10 2021-09-30 Date Completed:

Page: 43 of 49

Sample ID	W2-S R6	W2-M R6	W2-B R6
Sample No.	35656-124	35656-125	35656-126
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	. <0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	<0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30
Page:	44 of 49

Results:			г
Sample ID	W3-S R6	W3-M R6	W3-B R6
Sample No.	35656-127	35656-128	35656-129
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 Date Received: 2021-09-10 2021-09-10 Date Tested: Date Completed: 2021-09-30 45 of 49 Page:

Results:			
Sample ID	W4-S R6	W4-M R6	W4-B R6
Sample No.	35656-130	35656-131	35656-132
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	<0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35656D
Date of Issue:	2021-09-30
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-30

46 of 49 Page:

Δσ	 lts	

Sample ID	W5-S R6	W5-M R6	W5-B R6
Sample No.	35656-133	35656-134	35656-135
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	<0.02

Remarks: 1) <= less than

TEST REPORT

35656D Report No.: Date of Issue: 2021-09-30 2021-09-10 Date Received: Date Tested: 2021-09-10 Date Completed: 2021-09-30

47 of 49 Page:

ĸes	uı	ts:	

Results:			
Sample ID	W6-S R6	W6-M R6	W6-B R6
Sample No.	35656-136	35656-137	35656-138
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

35656D
2021-09-30
2021-09-10
2021-09-10
2021-09-30

48 of 49 Page:

>	Δe	 lts:	

Results:			r
Sample ID	W7-S R6	W7-M R6	W7-B R6
Sample No.	35656-139	35656-140	35656-14
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 35656D Date of Issue: 2021-09-30 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-30 49 of 49 Page:

Results:			
Sample ID	W8-S R6	W8-M R6	W8-B R6
Sample No.	35656-142	35656-143	35656-144
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	<0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

APPENDIX H
LABORATORY ANALYIS RESULTS FOR
EFFLUENT MONITORING

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35702 2021-09-16 Date of Issue: Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-09-16 Page: 1 of 1

ATTN:

Mr. Cyrus Fung

Sample Description : 1 liquid sample as received from customer said to be wastewater

Laboratory No. : 35702

Sampling Date : 2021-09-10

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

Results:

Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)
Effluent	35702-1	70,000

Remarks: 1) \leq = less than

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35703 Date of Issue: 2021-09-21 Date Received: 2021-09-10 Date Tested: 2021-09-10 Date Completed: 2021-09-21 1 of 2

ATTN:

Mr. Cyrus Fung

Page:

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : 35703 Sampling Date: 2021-09-10

Item	Parameters	Ref. Method	Limit of Reporting
1	Cadmium	In-house method SOP039 (ICP/MS)	0.5 μg/L
2	Copper		1 μg/L
3	Nickel		1 μg/L
4	Lead		1 μg/L
5	Mercury		0.5 μg/L
6	Chromium		1 μg/L
8	Zinc		1 μg/L
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonia	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
11	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg-O ₂ /L
12	Suspended Solids (SS)	APHA 17ed 2540 D	2.5 mg/L
13	pH value at 25°C	APHA 19ed 4500-H ⁺ B	2.0-12.0 pH unit
14	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin

New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35703

 Date of Issue:
 2021-09-21

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-21

 Page:
 2 of 2

Results:

icsuits.	
Sample ID	Effluent
Sample No.	35703-1
Cadmium (µg/L)	<0.5
Copper (µg/L)	5
Nickel (µg/L)	33
Lead (µg/L)	1
Mercury (μg/L)	<0.5
Chromium (µg/L)	4
Zinc (µg/L)	85
Total Inorganic Nitrogen (mg/L)	37
Ammonia (mg/L)	37
Biochemical Oxygen Demand (mg-O ₂ /L)	290
Suspended Solids (mg/L)	11
pH value at 25°C (pH unit)	7.1
E.coli (cfu/100mL)	1,600,000

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.:	35703A
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21
Page:	1 of 2

ATTN: Mr. Cyrus Fung

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : 35703A Sampling Date : 2021-09-10

Test Requested & Methodology

Item	Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L
3	2,4,4'-Trichlorobiphenyl (PCB28)		0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		0.02 μg/L
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)		0.02 μg/L
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		0.02 μg/L
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		0.02 μg/L
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)]	0.02 μg/L
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		0.02 μg/L
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		0.02 μg/L
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)]	0.02 μg/L
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)		0.02 μg/L
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		0.02 μg/L
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		0.02 μg/L
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		0.02 μg/L
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)		0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)	1	0.02 μg/L
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)	1	0.02 μg/L
21	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)	1	0.02 μg/L
22	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)	1	0.02 μg/L
23	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)]	0.02 μg/L
24	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)		0.02 μg/L
25	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)	7	0.02 μg/L

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.: 35703A Date of Issue: 2021-09-21 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-21 Page:

2 of 2

Results:

Sample ID	Effluent
Sample No.	35703-1
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52) , μg/L	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35703B Date of Issue: 2021-09-21 Date Received: 2021-09-10 2021-09-10 Date Tested: Date Completed: 2021-09-21

1 of 2

Page:

ATTN: Mr. Cyrus Fung

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : Sampling Date : 2021-09-10

Test Dequested & Methodology

Item	Parameters	Ref. Method	Limit of Reporting
1	Naphthalene (NAP)	In-house method SOP 087 (GC/MSD)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
4	Fluorene (FLU)		0.1 μg/L
5	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)] ,	0.1 μg/L
7	Fluoranthene (FLT)		0.1 μg/L
8	Benzo(a)Anthracene (BaA)		0.1 μg/L
9	Chrysene (CHR)		0.1 μg/L
10	Pyrene (PYR)		0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)		0.1 μg/L
12	Benzo(a)Pyrene (BaP)		0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)		0.1 μg/L
14	Indeno(1,2,3-cd)pyrene (IPY)]	0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		0.1 μg/L

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.:	35703B
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21

Page: 2 of 2

Results:

Sample ID	Effluent
Sample No.	35703-1
	<0.1
Naphthalene (NAP), μg/L	
Acenaphthylene (ANY), μg/L	<0.1
Acenaphthene (ANA), μg/L	<0.1
Fluorene (FLU), μg/L	<0.1
Phenanthrene (PHE), µg/L	<0.1
Anthracene (ANT), µg/L	<0.1
Fluoranthene (FLT), µg/L	<0.1
Benzo(a)Anthracene(BaA), μg/L	<0.1
Chrysene (CHR), µg/L	<0.1
Pyrene(PYR), µg/L	< 0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1

APPENDIX I TOXICITY TESTING RESULT

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

 Report No.:
 35703C

 Date of Issue:
 2021-09-21

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-21

ATTN:

Mr. Cyrus Fung

age: 1 of 13

Sample Description: Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent samples

from Pillar Point Wastewater Treatment Plant)

Laboratory No.: 35703C

Sampling Date: Effluent water samples were collected between 2021-09-09 and 2021-09-10

Sample Received Date: 2021-09-10

Sample No.: 35703-1

Test Requested & Methodology:

Item	Parameter	Ref. Method	Limit of Reporting
I	7-Days Diatom (Skeletonema costatum) Growth Inhibition Test	EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test, February 2009	N/A
П	48-hr Barnacle Larvae (Balanus		N/A

Remarks: 1) Uncertainty is calculated as 2S.D.

PREPARED AND CHECKED BY:
For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

35703C
2021-09-21
2021-09-10
2021-09-10
2021-09-21

Page: 2 of 13

1. SAMPLE INFORMATION

1.1 Sample Information, Receiving and Storage Conditions

Sample Description:	24 water s	amples as received from	customer sa	id to be effluent
Sampling Date	2021-09-0	9 and 2021-09-10		
Sample Receive Date	2021-09-1			
Sample Pretreatment		amples were composited	l in Wellab	
Sample Composite Date:	2021-09-1	0		
Sample No. & Sample ID:	1)	2021-09-09 10:00	13)	2021-09-09 22:00
	2)	2021-09-09 11:00	14)	2021-09-09 23:00
	3)	2021-09-09 12:00	15)	2021-09-10 00:00
	4)	2021-09-09 13:00	16)	2021-09-10 01:00
	5)	2021-09-09 14:00	17)	2021-09-10 02:00
	6)	2021-09-09 15:00	18)	2021-09-10 03:00
	7)	2021-09-09 16:00	19)	2021-09-10 04:00
	8)	2021-09-09 17:00	20)	2021-09-10 05:00
	9)	2021-09-09 18:00	21)	2021-09-10 06:00
	10)	2021-09-09 19:00	22)	2021-09-10 07:00
	11)	2021-09-09 20:00	23)	2021-09-10 08:00
	12)	2021-09-09 21:00	24)	2021-09-10 09:00
Temperature of Sample(s) at Receipt:	2-6°C			
Sampling Container:	1L plastic	bottle		
Composite Sample Volume:	14L			
Composite Sample No	35703-1			
& Sample ID:	Effluent			
Sample Storage Condition	Store in da	ark at 4 ± 2°C until testi	ing	
after Receipt:	1			

TEST REPORT

	Report No.:	35703C
	Date of Issue:	2021-09-21
İ	Date Received:	2021-09-10
	Date Tested:	2021-09-10
	Date Completed:	2021-09-21
	Page:	3 of 13

2. 7-Days Diatom (Skeletonema costatum) Growth Inhibition Test

2.1 Test Method

This 7-day toxicity test on water sample with *Skeletonema costatum* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Skeletonema costatum* exposed to the five concentrations of test sample for a 7-day test period. The endpoints were cell density and specific growth rate.

2.2 Summary of Test Sample - Diatom7-Days Growth Inhibition Test Particulars

Type of Test	Static Non-Renewal
Test Start and End Date (Time)	Start: 2021-09-10 (13:00) End: 2021-09-17 (13:00)
Test Organism:	Skeletonema costatum
Source:	Purchase, Use log phase growing culture
Stock Culture Cultivation:	Stock Culture were Cultured in Same Conditions as Testing Conditions
Test Duration:	7 Days
Temperature:	22 ± 1°C
Salinity:	30± 1ppt
Dissolved Oxygen:	>5mg/L
pH:	8.0 <u>+</u> 2
Lightand Light Intensity:	3000±500 lux light density
Light Cycle:	12h Light, 12h Dark
Test Chambers:	100mL glass beaker
Test Solution Volume:	25mL
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market. Adjusted to 30 ± 12 ppt, filter through a $0.22 \mu m$ filter and UV sterilized
Age of Test Organisms:	Log Phase Growing Cell at Density of 106 cell/ mL
Initial Density of Test Organisms per Chamber:	5.1 x 10 ⁴ cell /mL
Number of Replicate Chambers per Treatment:	4
Renewal of Test Solution:	None
Aeration:	Orbital shaker (120 revolution per minute)

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35703C
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21

Page: 4 of 13

2.3 Summary of Test Sample Diatom 7-Days Growth Inhibition Test Particulars (Cont.)

Observations:	Colour and Appearance of Culture
Physical / Chemical Data:	Temperature, Dissolved Oxygen, pH, Salinity
Nutrient Regime:	f/2 Medium
Effect:	Cell density and Specific Growth Rate
Endpoints:	NOEC, LOEC and EC50
Test Acceptability Criteria:	Negative control cell density shall have increased by 16 times in 7 days Coefficient of variation of average growth in control replicate <20%
Deviation from Test Method:	No Deviation from Test Method
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. Calculate EC50 using CETIS, data were analyzed according to USEPA requirement (version 1.8.7.16)

2.4 Summary of Reference Toxicant Diatom 7-Days Growth Inhibition Test Particulars

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)	
Stock Solution Concentration	20000mg/L Cd ²⁺	
Statistical Analysis	7-Day EC50 for Cadmium ion determined by CETIS (version1.8.7.16)	
Number of Replicate	4	
Chambers per Treatment:		
Other Test Conditions	Same as Test Sample Toxicity Test	

TEST REPORT

Report No.: 35703C Date of Issue: 2021-09-21 2021-09-10 Date Received: 2021-09-10 Date Tested: Date Completed: 2021-09-21

5 of 13 Page:

<u>Test Results (Diatom 7-Days Growth Inhibition Test</u> - Cell Density on Day 0, Day 1, Day 3 and Day 7

35703-1	35703-1 Bardinate		nsity (cell/mL)
Test Concentration (%)	Replicate	Day 0	Day 7
	1	51,000	1,100,000
0	2	51,000	1,100,000
(Negative Control)	3	50,000	1,100,000
(4	50,000	1,000,000
	1	51,000	1,400,000
	2	51,000	1,300,000
2.5	3	50,000	1,300,000
	4	50,000	1,100,000
	1	51,000	1,200,000
	2	51,000	1,300,000
5	3	50,000	1,300,000
	4	50,000	1,200,000
	1	51,000	1,000,000
	2	51,000	1,100,000
10	3	50,000	1,000,000
	4	50,000	1,000,000
	i	50,000	900,000
	2	50,000	880,000
25	3	51,000	840,000
	4	51,000	910,000
	1	51,000	<50,000
	2	51,000	<50,000
50	3	50,000	<50,000
	4	50,000	<50,000

Remark: <=less than *********************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35703C
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21

6 of 13 Page:

2.6 Test Result Summary (Diatom 7-Days Growth Inhibition Test)

35703-1	Replicate	Day 7	Mean
Γest Concentration (%)	Replicate	Specific Growth Rate	IVICALI
	1	0.44	
0	2	0.44	0.44
(Negative Control)	3	0.44	0.44
	4	0.43	
	1	0.47	
2.5	2	0.46	0.46
2.5	3	0.46	0.40
	4	0.44	
	1	0.45	
6	2	0.46	0.45
5	3	0.46	0.43
	4	0.44	
	1	0.42	0.43
10	2	0.44	
10	3	0.43	
	4	0.43	
	1	0.26	
25	2	0.23	0.25
25	3	0.23	0.23
	4	0.27	
	1	0.00	
50	2	0.00	0.00
50	3	0.00	0.00
	4	0.00	

TEST REPORT

| Report No.: 35703C |
| Date of Issue: 2021-09-21 |
| Date Received: 2021-09-10 |
| Date Tested: 2021-09-10 |
| Date Completed: 2021-09-21 |
| Page: 7 of 13

7 Test Result Summary and Interpretation of Diatom 7-Days Growth Inhibition Test

Parameter	35703-1
No Observable Effect Concentration (NOEC)	2.5%
Lowest Observed Effect Concentration (LOEC)	25%
EC50	37.1%
(Upper, Lower Confidence Level)	(37.5, 36.7)
**************	*********

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35703C
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21

Page: 8 of 13

2.8 QC Records - Diatom 7-Days Growth Inhibition Test, Test Sample and Reference Toxicant Test Validity Criteria

- Test Organism Performance

	Results	Control Limit	
	Negative Control 7-Days Growth Rate	0.50	>0.4
Diatom 7-Days Growth Inhibition Test	Coefficient of variation of Average Growth of Negative Control	2.7%	<20%
	96-h EC50	0.14 mg/L	0.11-0.16 mg/L
	95% Confidence Interval	0.10-0.18 mg/L	N/A

2.9 Diatom 7-Days Growth Inhibition Test Validity Criteria (Water Quality)

35703-1 Test	Sali (p		Dissolved Oxygen (mg/L)		pH (pH unit)		Temperature (°C)	
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min
0 (Negative Control)	30.4	29.7	7.0	6.9	7.2	6.9		
6.25	30.5	29.8	7.1	7.0	7.2	7.0		
12.5	30.5	29.6	7.1	6.8	7.1	6.9	22	21
25	30.4	29.6	7.1	6.9	7.1	6.9		
50	30.5	29.7	7.2	6.8	7.1	6.9		
100	30.8	29.6	7.1	7.0	7.1	6.9		
Acceptance Criteria	29-	-31	>51	ng/L	6.0-	10.0	21-2	23°C

35703-1 Test	Ammonia (mg NH₃-N/L)		Sulphide (mg S ² -/L)		Total Suspended Solids (mg/L)	
Concentration (%)	Max	Min	Max	Min	Max	Min
0 (Negative Control)	<0.05	<0.05	<0.1	<0.1	<2.5	<2.5
6.25	1.6	< 0.05	< 0.1	<0.1	<2.5	<2.5
12.5	3.9	0.21	0.1	<0.1	6	4
25	7.2	0.32	0.2	< 0.1	6	6
50	16	0.44	0.2	< 0.1	9	4
100	36	0.81	0.3	< 0.1	13	9
Acceptance Criteria	N/	/A	N	/A	N	I/A

Remarks: 1) \leq less than, \geq more than

TEST REPORT

 Report No.:
 35703C

 Date of Issue:
 2021-09-21

 Date Received:
 2021-09-10

 Date Tested:
 2021-09-10

 Date Completed:
 2021-09-21

Page: 9 of 13

3. 48-hr Barnacle Larvae (Balanus amphitrite) survival test

3.1 Test Method

This 48-hr toxicity test on water sample with *Balanus amphitrite* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Balanus amphitrite* was exposed to the five concentrations of test sample for a 48-hr test period. The endpoints were survival.

3.2 Summary of Test Sample 48-hr Settlement Barnacle Larvae Test

Type of Test	Static Renewal
Test Start and End Date (Time)	
	End: 2021-09-12 (13:00)
Test Organism:	Balanus amphirite
Source:	Collect adult barnacle from Ma Liu Shui and Shatin, dissect their brood sac to get
	larvae
Test Duration:	48-hr
Temperature:	22 ± 1°C
Salinity:	30± 1ppt
Dissolved Oxygen:	>5mg/L
pH:	8.0± 2
Light and light intensity:	3000±500 lux light density
Light Cycle:	Continuous
Test Chambers:	50mL glass beaker
Test Solution Volume:	20mL
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market
	Adjusted to 30 ± 1 ppt, filter through a 0.22μm filter and UV sterilized
Age of Test Organisms:	Gather stage II nauplii larvae that are positive phototactic, actively swimming
Number of Test Organisms per	20
Chamber:	
Number of Replicate	4
Chambers per Treatment:	
Renewal of Test Solution:	None
Aeration:	Orbital shaker (120 revolution per minute)
********	, *********************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35703C
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21
D	10 - £12

Page: 10 of 13

3.3 Summary of Test Sample 48-hr Barnacle Larvae Test (Cont.)

Physical / Chemical Data:	Temperature, Dissolved Oxygen, pH, Salinity
Feeding	None
Effect:	Survival
Endpoints:	NOEC, LOEC and EC50
Test Acceptability Criteria:	Mortality of negative control not exceed 10%
Deviation from Test Method:	No Deviation from Test Method
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. Calculate EC50 using CETIS (version1.8.7.16), data were analyzed according to USEPA requirement

3.4 Summary of Reference Toxicant 48-hr Barnacle Larvae Test

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)
Stock Solution Concentration	20000mg/L Cd ²⁺
Statistical Analysis	48-hr EC50 for Cadmium ion Determined by CETIS (version1.8.7.16)
Number of Replicate	4
Chambers per Treatment:	
Other Test Conditions	Same as Test Sample Toxicity Test

TEST REPORT

| Report No.: 35703C |
| Date of Issue: 2021-09-21 |
| Date Received: 2021-09-10 |
| Date Tested: 2021-09-10 |
| Date Completed: 2021-09-21 |

age: 11 of 13

3.5 Test Results

- Test Result Summary (48-hr Settlement Barnacle Larvae Test)

35703-1 Test Concentration (%)	Replicate	Number Exposed	No. of Living Barnacle Larvae	Percentage survival (%)	Mean Percentage (%)
	1	20	20	100	
0	2	20	20	100	98.7
(Negative Control)	3	20	20	100	96.7
Control	4	20	19	95	
	1	20	20	100	
	2	20	18	90	93.8
6.5	3	20	18	90	93.8
	4	20	19	95	
	1	20	15	75	
	2	20	15	75	71.3
12.5	3	20	14	70	
	4	20	13	65	
	1	20	10	50	
	2	20	11	55	56.3
25	3	20	12	60	36.3
	4	20	12	60	
	1	20	1	5	
	2	20	3	15	10.0
50	3	20	3	15	10.0
	4	20	1	5	
	1	20	0	0	
100	2	20	0	0	0.0
100	3	20	0	0	0.0
	4	20	0	0	7

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	35703C
Date of Issue:	2021-09-21
Date Received:	2021-09-10
Date Tested:	2021-09-10
Date Completed:	2021-09-21

age: 12 of 13

Test Result Summary and Interpretation of 48-hr Barnacle Larvae Test

Parameter	35703-1
LC50	28.0%
(Upper, Lower Confidence Level)	(29.4%, 26.9%)

TEST REPORT

Report No.: 35703C Date of Issue: 2021-09-21 Date Received: 2021-09-10 Date Tested: 2021-09-10 2021-09-21 Date Completed:

Page: 13 of 13

QC Records (48-hr Barnacle Larvae Test)

- 48-hr Barnacle Larvae Test, Test Sample and Reference Toxicant Test Validity Criteria (Test Organism Performance)

	Parameters	Results	Control Limit
48-hr Barnacle	Negative Control 48-hr Mean Survival Percentage	98.7	>50%
Larvae Test	96-h EC50	1.09 mg/L	1.00-1.14 mg/L
244.142	95% Confidence Interval	0.96-1.13mg/L	N/A

48-hr Barnacle Larvae Test (Water Quality)

35703-1 Test		Salinity (ppt)		Dissolved Oxygen (mg/L)		pH (pH unit)		Temperature (°C)	
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min	
0 (Negative Control)	30.8	29.6	7.3	6.8	7.2	6.9			
6.5	30.7	29.5	7.4	7.0	7.1	6.9			
12.5	30.9	29.7	7.4	6.8	7.1	6.9	22	21	
25	30.6	29.3	7.3	6.9	7.2	7.0	j		
50	30.9	29.8	7.4	6.8	7.2	6.9			
100	30.8	29.8	7.2	7.0	7.1	6.9			
Acceptance Criteria	29	-31	>5r	ng/L	6.0-	10.0	21-2	23°C	

35703-1 Test	Ammonia (mg NH3-N/L)		Sulphide (mg S ²⁻ /L)		Total Suspended Solids (mg/L)	
Concentration (%)	Max	Min	Max	Min	Max	Min
0 (Negative Control)	<0.05	<0.05	<0.1	<0.1	<2.5	<2.5
6.5	1.1	0.59	< 0.1	<0.1	<2.5	<2.5
12.5	3.4	0.62	0.1	< 0.1	3	<2.5
25	7.2	1.4	0.4	< 0.1	7	6
50	14	1.9	0.5	<0.1	7	5
100	37	3.6	0.6	<0.1	11	8
Acceptance Criteria	N.	A	N	/A	N	/A

Remarks: 1) > = more than

APPENDIX J ACTION AND LIMIT LEVELS

Appendix J - Action and Limit Levels

Action and Limit Levels for Operational Phase Odour Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H ₂ S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of	$AL = LL/2 = 139$ $\mu g/s \text{ of } H_2S$	LL = 277 μ g/s of H ₂ S
OD2	exhaust in m ³ /s and temperature of exhaust (°C)	μ ₀ , σ στ 112σ	1120

APPENDIX K EVENT AND ACTION PLAN

Appendix K - Event and Action Plan

Event / Action Plant for the Operational Phase Odour Monitoring

Event	Action						
320000000000000000000000000000000000000	ET	IEC	ER L	Contractor			
Exceedance of Action Level for one sample at site houndary, ASRs or exhaust of deodourisation unit	Identify source/ reason of exceedance; Inform IEC and ER; Repeat measurement to confirm finding.	Check with Contractor on the operating activities and implementation of odour mitigation measures; Discuss with ET and Contractor on the possible remedial actions; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial actions properly implemented.	Carry out investigation to identify the source/reason of exceedance or complaints. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD if the cause of exceedance is considered to be caused by the project; Implement amended working methods			
Exceedance of Limit Level for one or more samples at site boundary, ASRs or exhaust of deodourisation unit	 Notify IEC, ER, Contractor and EPD; Identify source of odour; Increase monitoring frequency; Carry out analysis of the operating activities and implementation of odour mitigation measures to determine possible mitigation to be implemented Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of the remedial actions and keep IEC, EPD and ER informed of the results; Carry out odour measurement using dynamic olfactometry after implementation of remedial measures to confirm their 	Discuss amongst ET, ER and the Contractor on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the ET, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD; Formulate remedial actions; Ensure amended working methods and remedial actions properly implemented. If exceedance continues, consider what portion of the work is responsible and stop that portion of work until the exceedance is abated.			