

ATAL-Degremont-China Harbour Joint Venture

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works

Monthly Operational Phase EM&A Report March 2022

[04/2022]

	Name	Signature
Prepared & Checked:	Alex Chan	fre
Reviewed & Certified:	Y W Fung	4/

Version:	Rev. 0	Date:	14 April 2022	

Disclaimer

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of our brief. This report has been prepared for the sole and specific use of our client and AECOM Environment accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission.

AECOM Asia Co. Ltd.

12/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Drainage Services Department Sewage Services Branch

Harbour Area Treatment Scheme

5/F, Western Magistracy 2A Po Fu Lam Road

Hong Kong

Attention: Mr Albert Wong

Your reference:

Our reference:

HKDSD203/50/107931

Date:

11 April 2022

BY EMAIL & POST

(email: awong@dsd.gov.hk)

Dear Sirs

Agreement No. HATS 02/2016

Services for Independent Environmental Checker (IEC) for

Contract No. DC/2013/10 – Design, Build and Operate San Wai Sewage Treatment Works – Phase 1 Monthly Operational Phase Environmental Monitoring and Audit Report No.10 (March 2022)

We refer to email on 6 April 2022 from AECOM Asia Co. Ltd. attaching the Monthly Operational Phase Environmental Monitoring and Audit Report No. 10 (March 2022).

We have no comments and hereby verify the Monthly Operational Phase Environmental Monitoring and Audit Report No. 10 (March 2022) in accordance with Clause 5.4 of the Environmental Permit no. EP-464/2013.

Should you have any queries, please do not hesitate to contact the undersigned or our Ms Karen Po on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

James Choi

Independent Environmental Checker

CPSJ/LCCR/PKWK/lsmt

cc AECOM – Mr CY Hung (email: cy.hung@swstw-aecom.com) AECOM – Mr YW Fung (email: yw.fung@aecom.com)

Email: info@anewr.com Web: www.anewr.com

CONTENT

			Page
	EXECL	UTIVE SUMMARY	3
1	INTRO	DUCTION	5
	1.1	Background	5
2	AIR QL	JALITY MONITORING	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Monitoring Requirement Monitoring Parameters Monitoring Frequency Monitoring Method Monitoring Locations for Impact Monitoring Action and Limit Levels Event and Action Plan Results and Observation	6 6 6 7 7 8
3	WATER	R QUALITY MONITORING	9
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Monitoring Requirements Monitoring Equipment Monitoring Parameter, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Result for Marine Water Quality Monitoring Monitoring Requirement Monitoring Parameter Monitoring Location Monitoring Result for Effluent Quality Monitoring	9 9 10 10 11 12 12 12
4	TOXIC	TY TEST	13
	4.1 4.2 4.3	Monitoring Requirement Monitoring methodology Testing result	13 13 13
5	LANDS	CAPE AND VISUAL AUDITING	14
	5.1 5.2	Monitoring Requirement Result and Recommendations	14 14
6	WASTE	MANAGEMENT FOR SLUDGE	14
7	ENVIR	DNMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION	14
8	CONCL	LUSIONS	14

List of Tables

Table 2.1	Parameter and Frequency of Odour monitoring
Table 2.2	Proposed Monitoring Locations for Odour Sampling and H ₂ S Measurement
Table 2.3	Action and Limit Level for Oduor Monitoring
Table 2.4	Summary of Odour Monitoring Results for Site boundary / ASRs
Table 2.5	Summary of Odour Monitoring Results for Exhaust of Deodourisation Unit
Table 3.1	Marine Water Quality Monitoring Equipment
Table 3.2	Marine Water Quality Monitoring Parameters, Frequency and Duration
Table 3.3	Proposed Marine Water Quality Monitoring Stations
Table 3.4	Summary of Monitoring Results and criteria of WQOs
Table 3.5	Monitoring Result of Effluent Quality Monitoring
Table 4.1	Methodology for Toxicity Testing

Figures

Figure 1.1	Site Layout Plan
Figure 2.1	Locations of Air Sensitive Receivers
Figure 2.2	Site Boundary Downwind Location of Exhaust Point of the Deodourisation Unit
Figure 2.3	Locations of Odour Patrol
Figure 3.1	Locations of Marine Water Quality Monitoring
Figure 3.2	Locations of Effluent Sampling

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Calibration Certificates of Monitoring Equipment
Appendix C	Monitoring Results for H₂S Measurement
Appendix D	Weather Information
Appendix E	Logsheet of Odour Patrol
Appendix F	Marine Water Quality Monitoring Results
Appendix G	Laboratory Analysis Result for Marine Water Quality Monitoring
Appendix H	Laboratory Analysis Result for Effluent Monitoring
Appendix I	Toxicity Testing Result
Appendix J	Action and Limit Levels
Appendix K	Event and Action Plan

EXECUTIVE SUMMARY

In accordance with the Environmental Monitoring and Audit Manual (EM&A Manual) and the Environmental Permit (EP-464/2013) for the Contract No. DC/2013/10 - Design, Build and Operate San Wai Sewage Treatment Works – Stage 1 (the Project), air quality and water quality monitoring are required during operational phase of the Project. The purpose of operational phase monitoring is to confirm the predictions of mitigation measures advised in the EIA report.

As confirmed by the Contractor, all major construction activities of the Project has been completed in May 2021. The Operational Phase of the Project commenced in March 2021. This Monthly Operational Phase Monitoring Report summarizes monitoring events carried out during period from 1 to 31 March 2022. There was a total of five monitoring events carried out during the reporting month. The exact dates of monitoring carried out in this month are tabulated below:

Monitoring Event	Date		
H ₂ S measurement	10 and 11 March 2022		
Odour Patrol	10 March 2022		
Marine Water Quality Monitoring	11 March 2022		
Effluent Quality Monitoring	11 March 2022		
Toxicity Testing	11 March 2022		
Landscape and Visual Auditing	N/A		

Air Quality Monitoring

No Action and Limit Levels exceedance of H₂S measurement was recorded in the reporting month.

Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.

Water Quality Monitoring

No non-compliance of marine water monitoring was recorded in the reporting month.

No non-compliance of effluent quality monitoring was recorded in the reporting month.

Toxicity Test

Toxicity test results were complied with the target levels in reporting month.

Landscape and Visual Auditing

No landscape and visual auditing was conducted in the reporting month.

Environmental complaint, notification of summons and successful prosecution

No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

Reporting Change

There were no reporting changes in the reporting month.

Future Key Issue

The Project has entered the Operation Phase since March 2021 and its normal operation in the reporting month. Mitigation measures as proposed in the approved Environmental Impact Assessment report will be provided and maintained at the Project.

1 INTRODUCTION

1.1 Background

- 1.1.1. This Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works Stage 1 (the Project). The Project was awarded to ATAL-Degremont-China Harbor Joint Venture (ADCJV) by the Drainage Services Department (DSD). AECOM Asia Co. Ltd. was appointed as the Environmental Team (ET) by ADCJV to implement the operational phase EM&A program in compliance with the EP and the EM&A Manuals.
- 1.1.2. The project involves expansion of the preliminary treatment works at San Wai STW from 164,000 m³/d to 200,000 m³/d Average Dry Weather Flow, upgrading the preliminary treatment level to CEPT and adding centralized disinfection. The site layout plan is shown in **Figure 1.1**.
- 1.1.3. According to the Section 25 of the Particular Specification (PS) and the Environmental Permit No. EP-464/2013, an EM&A programme should be implemented in accordance with the procedures and requirements in the Environmental Monitoring & Audit Manual (EM&A Manual) of the approved EIA report (Registration No. AEIAR-072/2003). The EM&A Manual and EP provide guidelines for the Operational Phase Monitoring Reports and for preparation of the Operational Phase Monitoring Reports.
- 1.1.4. The operational phase of the Project was commenced in March 2021.
- 1.1.5. As part of the project EM&A program, baseline monitoring was conducted during July 2019 to April 2020 to determine the ambient environmental conditions before the Project commence operation works.
- 1.1.6. This is the 10th Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report for the Project which summaries the audit findings of the EM&A programme during the reporting month from 1 to 31 March 2022.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirement

2.1.1 In accordance with Section 2.5 of the EM&A Manual, odour panel tests and H₂S measurement are required to be conducted for one year after commission of the expanded and upgraded Sai Wai STW.

2.2 Monitoring Parameters

- 2.2.1 15-min Hydrogen Sulphide (H₂S) concentration (in parts per million) was measured at the site boundary, nearby air sensitive receivers and the exhaust of deodourisation units. Meteorological conditions including temperature, wind speed, wind direction and relative humidity was measured at the time of the monitoring.
- 2.2.2 Since no correlation between H₂S concentration and odour units was established in the first set of odour monitoring, no subsequent odour units monitoring would be conducted in the air quality monitoring as requested in Section 2.5.1.34 of the EM&A manual.
- 2.2.3 Apart from odour monitoring, regular oduor patrolling in the vicinity of the STW was also conducted in a monthly interval during the operational phase to ensure that prompt action would be taken whenever any excessive odour emissions area detected.

2.3 Monitoring Frequency

2.3.1 The monitoring frequency of each odour parameters are listed in the **Table 2.1**.

Table 2.1 Parameter and Frequency of Odour monitoring

Monitoring Parameter	Frequency	
H ₂ S Measurement	Quarterly	
Odour Patrol	Monthly	

2.4 Monitoring Method

H₂S Measurement

- 2.4.1 H₂S concentration were measured by using of two H₂S analyzers, which utilizes a gold film sensor for the detection of H₂S. The H₂S analyzers were controlled by microprocessor and ensuring raid accurate analyses. The H₂S analyzers were fitted with Data logger, Interface cable and interface software, and Data download and graphics service. The calibration certificates of H₂S analysers are presented in **Appendix B**.
- 2.4.2 Weather condition including wind direction, wind speed, temperature and humidity was recorded during H₂S measurement.

Odour Patrol

- 2.4.3 The odour patrol was a simple judgement by an observer patrolling and sniffing around the facilities to detect any odour. This observer should be free from any respiratory disease and not normally working at the facilities.
- 2.4.4 The observer followed a predeterminded route which should normally be going from non-odours to odours area. The observer would patrol slowly along the route and use his olfactory sense to detect any odours. The locations listed in the predeterminded route are shown **Figure 2.3**.

- 2.4.5 The observer brought along a logbook to record the findings. The logbook book was kept in the plant office where it could be inspected when necessary. The findings were included the followings:
 - Prevailing weather condition
 - · Wind directions
 - Location where odour spotted
 - Possible source of odour
 - · Perceived intensity of the odour
 - · Duration of odour

2.5 Monitoring Locations for Impact Monitoring

2.5.1 H₂S measurements was undertaken at the proposed monitoring locations, the proposed monitoring locations were determined by the ET Leader and agreed with ER and EPD as the request of the Section 2.5.1.25 and 2.5.1.26 of the EM&A Manual. The monitoring locations are presented in **Table 2.2** and shown in **Figure 2.1** and **Figure 2.2**.

Table 2.2 Proposed Monitoring Locations for Odour Sampling and H₂S Measurement

Identification of Monitoring Location	Description	
ASR1a	晉榮貨櫃服務有限公司	
ASR2b	永康貨櫃服務有限公司	
Site Boundary, SB1*1	Site boundary	
OD1*2	Downwind of the exhaust point	
OD2*2	of deodourisation units	

^{*1} According to Sections 2.5.1.25 of the EM&A Manual, the H₂S measurement shall be undertaken at the site boundary downwind of the exhaust point of the deodourisation unit and the covered odour source. **Figure 2.2** shown the locations of the site boundary downwind of the exhaust point of the deodourisation unit.

2.6 Action and Limit Levels

2.6.1 The Action and Limit Levels established from the baseline monitoring are shown in the **Table 2.3** and **Appendix J**.

Table 2.3 Action and Limit Level for Oduor Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H ₂ S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of exhaust	AL = LL/2 = 139 μg/s of H ₂ S	LL = 277 μ g/s of H ₂ S
OD2	in m ³ /s and temperature of exhaust (°C)		

2.7 Event and Action Plan

2.7.1 The Event and Action Plan for the operational phase odour monitoring was annexed in Appendix K.

 $^{^*}$ 2 According to Sections 2.5.1.26 of the EM&A Manual, H₂S measurement shall be conducted at the exhaust point of the deodorization unit (OD1&2). Considered the situation of the COVID-19, the ET Leader proposed to conduct only the H₂S measurement at OD1&2. The proposal for this change was approved by the EPD.

2.8 Results and Observation

H₂S Measurement

- 2.8.1 The H₂S measurement at the proposed locations was carried out on 10 March 2022 at 09:00 to 11 March 2022 at 08:00. Measurements of H₂S were conducted in parallel (within a 3-hour period) at the sources and receivers. A total of eight sets of data were obtained from samples collected over different periods of a 24-hour cycle day.
- 2.8.2 The H₂S measurement results for site boundary/ ASR and dedourisation unit are summarized in **Table 2.4** and **Table 2.5**. Detailed H₂S measurement results are presented in **Appendix C**.

Table 2.4 Summary of Odour Monitoring Results for Site boundary / ASRs

Round	Date	Location	Averaged H₂S Concentration, ppm	Action Level, ppm	Limit Level, ppm
Round 1 to 8	10 and 11 March 2022	SB1	0.0060	0.0109	0.0109
		ASR1a	0.0061	0.0100	0.0100
		ASR1b	0.0059	0.0157	0.0157

Table 2.5 Summary of Odour Monitoring Results for Exhaust of Deodourisation Unit

Round	Date	Location	Averaged H ₂ S Concentration ppm	Expressed as µg/s	Action Level µg/s	Limit Level µg/s
Round	10 and 11 March	OD1	0.0026	44.7	139	277
1 to 8	2022	OD2	0.0051	54.7	. 33	

- 2.8.3 No exceedance of Action and Limit Levels was recorded in the reporting month.
- 2.8.4 During the sampling period, meteorological data including humidity, wind speed and temperature was recorded, and wind direction was obtained from the Hong Kong Observatory's Lau Fu Shan Weather Station and presented in **Appendix D**.

Odour Patrol

- 2.8.5 The odour patrol was carried out on 10 March 2022 during at 09:50 and 15:30. The observer was patrolling and sniffing around the facilities to detect the any odour, as required by the EM&A Manual.
- 2.8.6 The weather condition, wind direction and results for odour patrol at each monitoring location are provided in **Appendix E.**
- 2.8.7 During the odour patrol, the odour intensity were recorded from 0(not detectable) to 1(slight). The source and duration of odour recorded during odour patrol can be referred to **Appendix E**.

3 WATER QUALITY MONITORING

Marine Water Quality Monitoring

3.1 Monitoring Requirements

- 3.1.1 In accordance with Section 4.5.1.12 of the EM&A Manual, operational phase marine water quality monitoring is suggested three months after the commissioning of the expanded and upgraded San Wai STW.
- 3.1.2 Marine water samples and in situ measurement should be collected from all the sampling stations on 8 occasions at intervals of approximates 3 months during the operational phase of the Project. On each occasion, marine water samples should be collected every 2 hours for a 12-hour duration. When significant change in the marine water quality are detected, the monitoring frequency should be increase as necessary until the cause for the change is identified.

3.2 Monitoring Equipment

3.2.1 Equipment used in the marine water quality monitoring programme is summarized in **Table 3.1**.

Table 3.1 Marine Water Quality Monitoring Equipment

Monitoring Equipment	Equipment Model
Multifunctional Meter (measurement of Dissolved Oxygen, pH, temperature, salinity and turbidity)	YSI 6820 V2
Water Depth	Lowrance x-4
Positioning Equipment	Garmin GPS72H

3.3 Monitoring Parameter, Frequency and Duration

3.3.1 **Table 3.2** summarises the monitoring parameters, frequency and duration of marine water quality monitoring, as request in Section 4.5.1.13 of the EM&A manual.

Table 3.2 Marine Water Quality Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameters, unit	Frequency	Duration
W1 to W8	In-situ Measurement: • Temperature, °C • Salinity, ppt • DO, mg/L • DO Saturation, % • Turbidity, NTU Laboratory Analysis: • SS, mg/L • TIN, mg/L • Unionised ammonia, mg/L • BOD₅,mg/L • E. coli, cfu/100mL • Cadmium, Copper, Nickel, Lead, Chromium, Mercury and Zinc, μg/L • PCBs, μg/L • PCBs, μg/L	8 occasions at intervals of approximately 3 months during the operation phase of the upgraded and expanded San Wai STW.	On each occasion, marine water samples will be collected every 2 hours for a 12- hour duration.

3.4 Monitoring Locations

3.4.1 Marine water quality monitoring was undertaken at the proposed monitoring stations set out in the Section 4.5.1.6 of EM&A Manual. The proposed marine water quality stations were presented in **Table 3.3** and shown in **Figure 3.1**.

Table 3.3 Proposed Marine Water Quality Monitoring Stations

Station	Easting	Northing
W1	808231	827494
W2	807469	828888
W3	807221	823737
W4	806309	829988
W5	809062	824638
W6	807066	825034
W7	805592	828162
W8	805412	829400

3.5 Monitoring Methodology

3.5.1 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning System (DGPS) was used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above seabed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) During the marine water quality measurement, a portable multifunctional meter will be used for measurement of pH, dissolved oxygen, water temperature, turbidity and salinity.
- (e) Spare parts of equipment will be maintained for necessary replacement.
- (f) Water samples were collected using the water sampler at the monitoring stations and the samples were stored in high-density polythene bottles and then packed in cool-boxes (cooled at 4oC without being frozen) for carrying out the laboratory analysis. The analysis will be commenced in a HOKLAS accredited laboratory, WELLAB LIMITED. (HOKLAS Registration No. 083) within 24 hours after collection of the samples.
- (g) The laboratory analysis reports for marine water quality monitoring are attached in **Appendix G**.

3.5.2 Maintenance and Calibration

- (a) Before each round of monitoring, the dissolved oxygen probe of YSI 6820 V2 was calibrated by the wet bulb method. A zero check in distilled water was performed with the turbidity probe of YSI 6820 V2 once per monitoring day.
- (b) The monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS before use and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. The calibration record for each monitoring instrument used in the water quality monitoring process is annexed in **Appendix B**.

3.6 Monitoring Result for Marine Water Quality Monitoring

3.6.1 The marine water quality monitoring was conducted on 11 March 2022 in the reporting month. The summary of monitoring results and criteria of Water Quality Objectives (WQOs) are summarized in **Table 3.4**. Detail of marine water quality monitoring result is annexed in **Appendix F**.

Table 3.4 Summary of Monitoring Results and criteria of WQOs

Parameter	Ave	rage	Mini	mum	Maximum		Water Quality Objectives	
Parameter	Result	Baseline	Result	Baseline	Result	Baseline	(in marine waters)	
Temp. (°C)	19.0	24.1	18.1	18.8	20.8	29.9	Change due to waste discharge < 2 °C	
Salinity (ppt)	28.6	25.5	25.8	4.3	31.1	33.1	Change due to waste discharge < 10% of natural ambient level	
рН	8.30	7.95	8.16	7.64	8.35	8.38	6.5 – 8.5 and change due to waste discharge < 0.2	
DO Depth Average (mg/L)	8.63	6.46	7.93	2.96	8.99	10.14	Depth averaged: > 4 mg/L for 90% samples	
Turbidity (NTU)	1.7	7.9	1.4	2.3	2.2	31.9	Not available	
SS (mg/L)	6.4	7.6	3.0	<2.5	28.0	29.0	< 30% increase in the natural ambient level	
Cadmium (µg/L)	<0.5	0.5	<0.5	<0.5	<0.5	4.2	Not available	
Copper (µg/L)	4.3	6.0	2.0	1.0	12.0	119.0	Not available	
Nickel (µg/L)	2.0	1.9	1.0	<1.0	5.0	36.0	Not available	
Lead (µg/L)	1.0	1.8	<1.0	<1.0	1.0	166.0	Not available	
Mercury (µg/L)	<0.5	0.6	<0.5	<0.5	<0.5	44.0	Not available	
Chromium (µg/L)	1.0	1.3	<1.0	<1.0	1.0	50.0	Not available	
Zinc (µg/L)	21.7	25.8	5.0	3.0	323.0	871.0	Not available	
TIN (mg/L)	0.74	1.20	0.63	0.27	0.96	2.51	< 0.5 mg/L (annual mean depth average)	
NH3-N (mg/L)	0.09	0.04	0.04	0.01	0.23	0.31	Not available	
BOD ₅ (mg/L)	<2.0	2.6	<2.0	<2.0	<2.0	7.0	Not available	
<i>E. coli</i> (cfu/100mL)	36.4	60.3	7.0	<1.0	77.0	980.0	< 610 per 100mL (annual geometric mean)	
PAHs (µg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not available	
PCBs (µg/L)	< 0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	Not available	

- 3.6.2 The weather condition during the monitoring was fine. Sea conditions for the majority of monitoring days was moderate. No major water pollution source and no marine construction activities in the vicinity of the stations, which might affect the results was observed during the marine water quality monitoring.
- 3.6.3 The marine water quality monitoring result was complied with the water quality objectives, no non-compliance was recorded in the reporting month.

Effluent Quality Monitoring

3.7 Monitoring Requirement

3.7.1 In accordance with Section 4.6.1.1 of the EM&A Manual, in order to ensure the effectiveness of the proposed treatment process, effluent quality monitoring is recommended.

3.8 Monitoring Parameter

- 3.8.1 As recommended by the EM&A Manual, the effluent quality monitoring was included the follows parameters:
 - Ha -
 - BOD (mg/L)
 - SS (mg/L)
 - TIN (μg/L)
 - NH₃-N (mg/L)
 - E. coli (cfu/100mL)
 - Cadmium (µg/L)
 - Copper (µg/L)
 - Nickel (µg/L)
 - Lead (µg/L)
 - Mercury (µg/L)
 - Chromium (µg/L)
 - PCBs (µg/L)
 - PAHs (µg/L)

3.9 Monitoring Location

3.9.1 Effluent quality monitoring was carried out at the effluent outlet of the San Wai STW as shown in Figure 3.2.

3.10 Monitoring Result for Effluent Quality Monitoring

3.10.1 The effluent monitoring results during the reporting month is summarized in **Table 3.5**. The laboratory analysis reports for the effluent quality monitoring is presented in **Appendix H**.

Table 3.5 Monitoring Result of Effluent Quality Monitoring

		Limitation o	n Discharge	
Parameter	Result	Percentile	Upper	
		Standard	Limit	
рН	7.2	Not av	ailable	
BOD ₅ (mg/L)	44	180	360	
SS (mg/L)	29	120	240	
TIN (μg/L)	25	Not av	railable	
NH ₃ -N (mg/L)	25	Not available		
E. coli (cfu/100mL)	1,500	300,000	20,000#	
(Grab sample)	1,000	000,000	20,000	
Cadmium (µg/L)	<0.5	Not av	railable	
Copper (µg/L)	7	Not av	ailable	
Nickel (µg/L)	10	Not av	railable	
Lead (µg/L)	<1	Not available		
Mercury (μg/L)	0.5	Not available		
Chromium (µg/L)	2	Not available		
PCBs (µg/L)	<0.2	Not available		
PAHs (µg/L)	<0.1	Not av	ailable	

^{#:} The upper limit is in monthly geometric mean.

3.10.2 No non-compliance of effluent quality was recorded in the reporting month.

4 TOXICITY TEST

4.1 Monitoring Requirement

4.1.1 In accordance with Section 4.6.1.2 of the EM&A Manual, toxicity testing shall be carried out on 8 occasions at intervals of approximately 3 months during the operational phase of the Project for two marine species. One of the two marine species shall be selected from local environment. The representative species that will be chosen for testing and technical details of the testing method should be agreed and approved by the EPD prior to the operation of the sewage treatment works. The testing method for the EPD approval was submitted on 22 April 2021.

4.2 Monitoring methodology

4.2.1 The methodology of the toxicity testing is summarized in the **Table 4.1**.

Table 4.1 Methodology for Toxicity Testing

Types of Respective Species	Diatom	Barnacle larvae
	(Skeletonema costatum)	(Balanus Amphitrite)
Toxicity Testing	Chronic Toxicity	Acute Toxicity
Time requirement	7 days	48 hours
Toxicity testing methods	NOEC in 7-day diatom growth	LC50 in 48-hr barnacle larvae
	inhibition test	survival test
Target Levels Proposed in	≥0.51%	≥7.10%
Method Statement		

4.3 Testing result

- 4.3.1 The NOEC in 7-day diatom growth inhibition test for Diatom was 2.4%.
- 4.3.2 The LC50 in 48-hr barnacle larvae survival test for Barnacle larvae was 25.9%
- 4.3.3 The NOEC and LC50 monitoring results were complied with the target levels proposed in the method statement, no non-compliance was recorded in the reporting month.
- 4.3.4 The result of toxicity testing is annexed in **Appendix I**.

5 LANDSCAPE AND VISUAL AUDITING

5.1 Monitoring Requirement

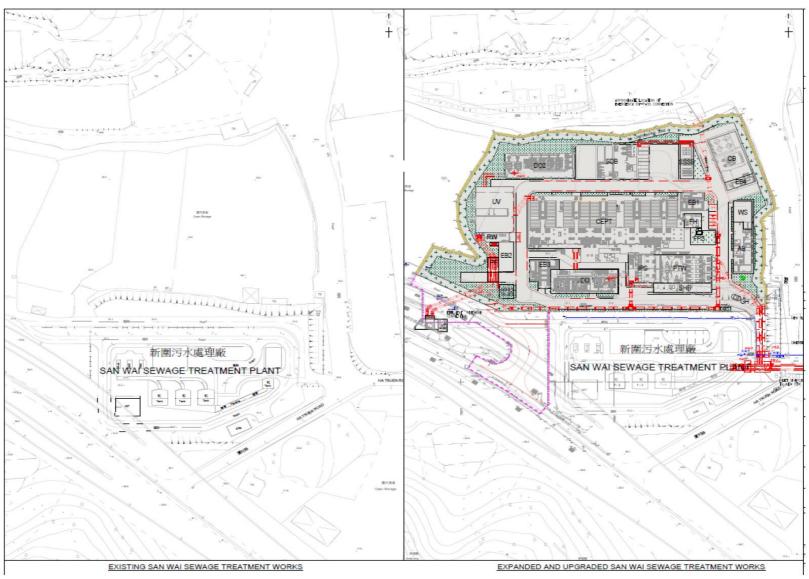
- 5.1.1 In accordance with Section 6.4 of the EM&A Manual, a competent landscape architect should be employed by the Contractor for the implementation of landscape construction works and subsequent maintenance operations during the 12 months establishment period. The establishment works should be undertaken throughout the Contractor's first year maintenance period which will be within the first operational year of the Project.
- 5.1.2 All measures undertaken by the both Contractor and the Landscape Contractor during the first year of the operational phase should be audited by a Landscape Architect, as a member of the ET, on a regular basis to ensure compliance with the intended aims of the measures. Site inspections should be undertaken at least once every two months during the operational phase.

5.2 Result and Recommendations

5.2.1 No landscape and visual auditing was conducted in the reporting month. The next landscape and visual auditing is scheduled in April 2022 tentatively.

6 WASTE MANAGEMENT FOR SLUDGE

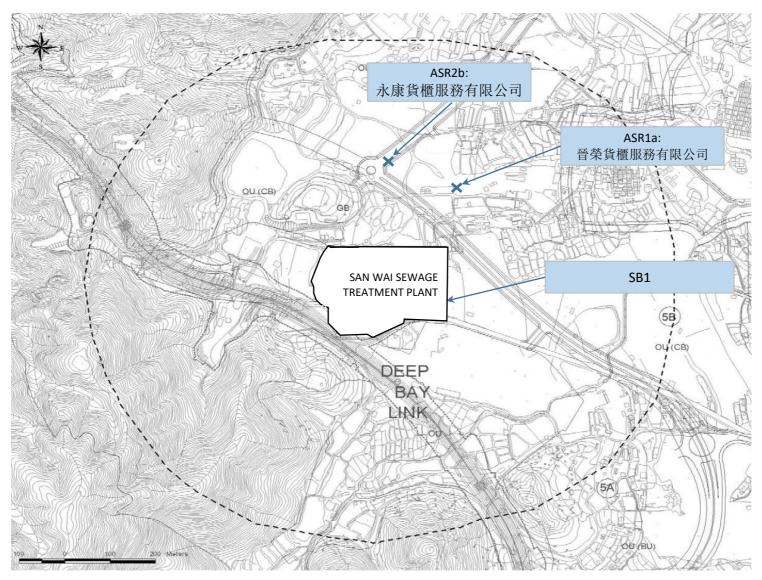
6.1.1 All dewatered sludge from the operation stage of the Project has been transported to the Sludge Treatment Facility (STF) for disposal, in accordance with the admission tickets obtained from VW-VES(HK) Ltd, the contractor of EPD operating the STF.


7 ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION

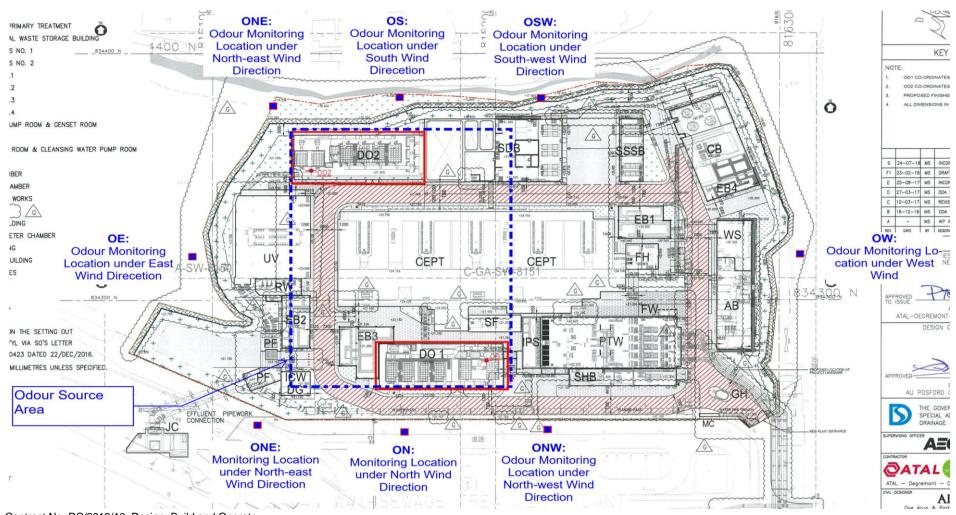
7.1.1 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

8 CONCLUSIONS

- 8.1.1 No Action and Limit Levels exceedance of H₂S measurement was recorded in the reporting month.
- 8.1.2 Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.
- 8.1.3 No non-compliance of marine water monitoring was recorded in the reporting month.
- 8.1.4 No non-compliance of effluent monitoring was recorded in the reporting month.
- 8.1.5 Toxicity testing results were complied with the target levels in reporting month.
- 8.1.6 No landscape and visual auditing was conducted in the reporting month.
- 8.1.7 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.


FIGURES

Site Layout Plan


Date: July 2021 Figure 1.1

Locations of Odour Monitoring Stations

Date: July 2021 Figure 2.1

Contract No. DC/2013/10: Design, Build and Operate

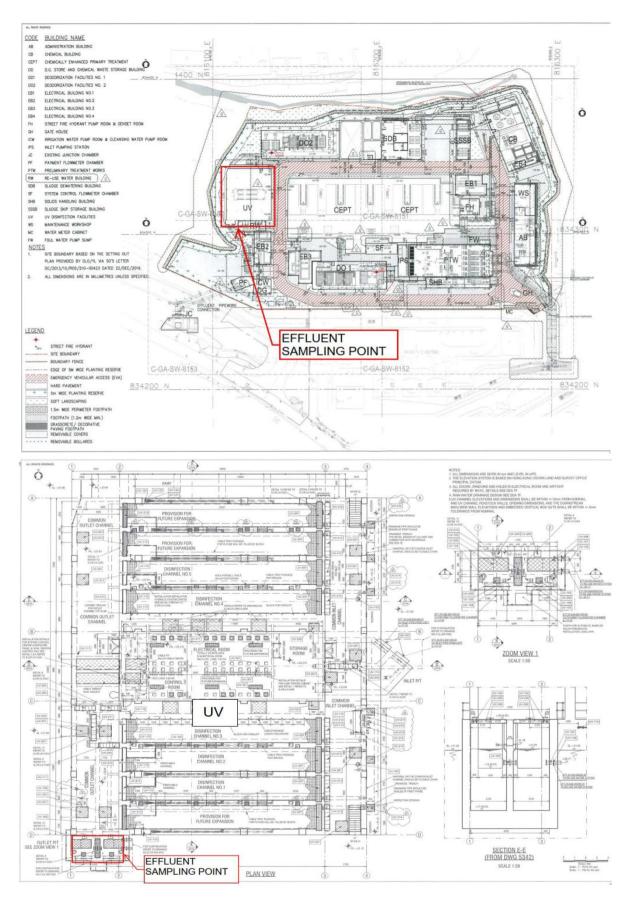
San Wai Sewage Treatment Works -

Operational Phase Monitoring

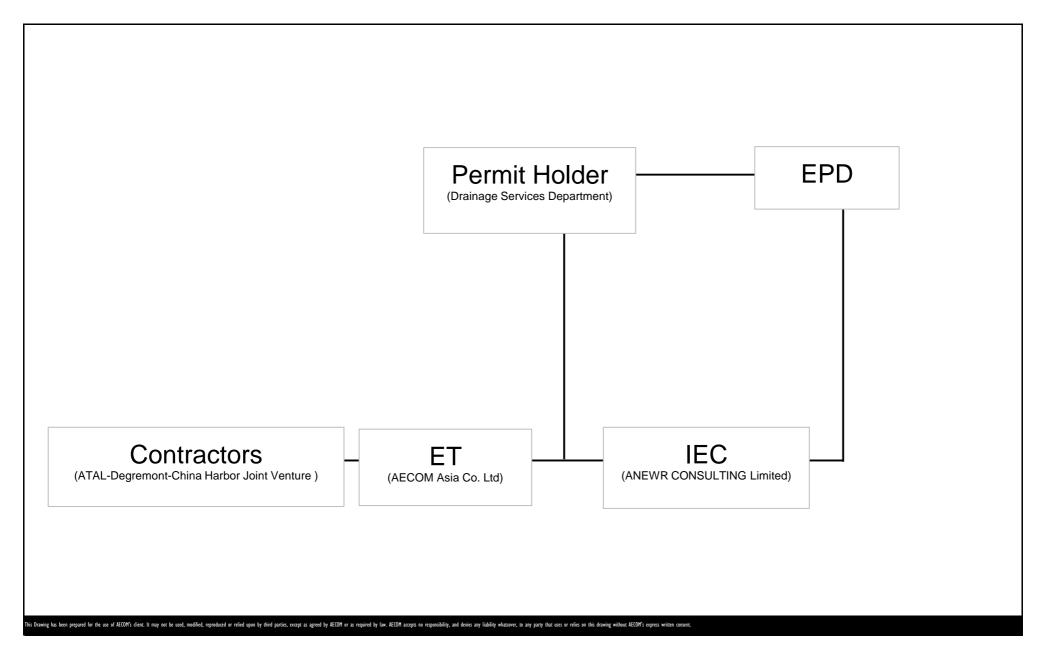
Site Boundary Downwind Location of Exhaust Point of the Deodourisation Unit

Date: August 2021 Figure 2.2

Locations of Odour Patrol Point


Date: July 2021 Figure 2.3

Locations of Marine Warer Qaulity Monitoring Stations


Date: July 2021 Figure 3.1

Locations of Effluent Monitoring Stations

Date: July 2021 Figure 3.2

APPENDIX A PROJECT ORGANIZATION STRUCTURE

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works **Project Organization Structure**

APPENDIX B
CALIBRATION CERTIFICATES OF
MONITORING EQUIPMENT

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road,

Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk

Fax: +852 30116194 V

Calibration Certificate No.: CC0042110

Customer Information

Customer:

AECOM Asia Company Limited

Address:

8/F, Tower 2, Grand Central Plaza, 138 Shatin Rural Committee Road, Shatin, N.T. HK

Equipment Identification

Equipment Description

Manufacturer

Model No.

Serial No.

Assigned equipment No.

Hydrogen Sulfide Analyzer

ARIZONA INSTRUMENT LLC

Jerome® 631X

1911

N/A

Certificate Information

Date of Receipt:

8 October 2021

Calibration Condition:

24.3°C, 51%RH, 1000hPa

Date of Calibration:

11 October 2021

Adjustment:

N/A Good

Due Date of Calibration: Calibration Procedure:

BS EN 60079-29-2:2015

Appearance: Remark:

N/A

Reference Equipment Identification

Equipment Description

Model

Serial No.

Expiration Date

Formaldehyde

PGM-6208

M01C022401

23 October 2021

Result of Calibration

Indication

Gas Refe	Reference	Measured	Error (%)	Uncertainty	Technical	Technical
Gas	Setting (ppm)	Reading (ppm)	E1101 (76)	(%FS)	Requirement	Reference Doc.
Hydrogen Sulfide	0.0	0.00	N/A	N/A	N/A	N/A
Hydrogen Sulfide	0.2	0.21	5.0	6.6	± 5 ppm	JJG695-2003
Hydrogen Sulfide	0.5	0.51	2.0	6.6	± 5 ppm	JJG695-2003
Hydrogen Sulfide	1.0	1.02	2.0	6.6	± 5 ppm	JJG695-2003

Repeatability

Repeatability	APTRO-			
Gas	Reference Setting	RSD (%)	Technical	Technical Reference
das	(ppm)	N3D (70)	Requirement	Doc.
Hydrogen Sulfide	1.0	1.0	≤ 2.0 %	JJG695-2003

Response Time

Kesponse Time				
Gas	Reference Setting	Response Time (s)	Technical	Technical Reference
003	(ppm)	response rime (s)	Requirement	Doc.
Hydrogen Sulfide	1.0	27	≤ 30 s	JJG695-2003

CT-GAS-01

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

Note4: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received.

Checked and Approved By:

Calibrated By:

 ω

Company Chop:

Warren Yeu炯g

WM Ling

Certificate Issue Date: 12 October 2021

CT-BEG-03

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Calibration

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0042110

Page 1 of 1

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0052110

Customer Information

Customer: AECOM Asia Company Limited

Address: 8/F, Tower 2, Grand Central Plaza, 138 Shatin Rural Committee Road, Shatin, N.T. HK

Equipment Identification

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No.

Hydrogen Sulfide Analyzer ARIZONA INSTRUMENT LLC Jerome® 631X 1914 N/A

Certificate Information

Date of Receipt: 8 October 2021 Calibration Condition: 24.3°C, 51%RH, 1000hPa

Date of Calibration: 11 October 2021 Adjustment: N/A

Due Date of Calibration: - Appearance: Good

Calibration Procedure: BS EN 60079-29-2:2015 Remark: N/A

Reference Equipment Identification

Equipment DescriptionModelSerial No.Expiration DateFormaldehydePGM-6208M01C02240123 October 2021

Result of Calibration

Indication

Cas	Reference	Measured	Error (9/)	Uncertainty	Technical	Technical
Gas	Setting (ppm)	Reading (ppm)	Error (%)	(%FS)	Requirement	Reference Doc.
Hydrogen Sulfide	0.0	0.00	N/A	N/A	N/A	N/A
Hydrogen Sulfide	0.2	0.24	20.0	6.6	± 5 ppm	JJG695-2003
Hydrogen Sulfide	0.5	0.55	10.0	6.6	± 5 ppm	JJG695-2003
Hydrogen Sulfide	1.0	1.08	8.0	6.6	+ 5 ppm	IIG695-2003

Repeatability

Repeatability	The second secon			
Gas	Reference Setting	RSD (%)	Technical	Technical Reference
GdS	(ppm)	N3D (70)	Requirement	Doc.
Hydrogen Sulfide	1.0	1.4	≤ 2.0 %	JJG695-2003

Response Time

Gas	Reference Setting (ppm)	Response Time (s)	Technical Requirement	Technical Reference Doc.
Hydrogen Sulfide	1.0	27	≤ 30 s	JJG695-2003

CT-GAS-01

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the

Note4: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received.

Calibrated By:

Checked and Approved By:

Company Chop:

を 有限公司 の **

Narren Yeung/

WM Ling

Certificate Issue Date: 12 October 2021

CT-BEG-03

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Calibration

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0052110

Page 1 of 1

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR WS CHAN

CLIENT:

AECOM ASIA COMPANY LIMITED

ADDRESS:

1501-10, 15/F, TOWER 1,

GRAND CENTRAL PLAZA,

138 SHATIN RURAL COMMITTEE ROAD,

SHATIN, NEW TERRITORIES, HONG KONG

WORK ORDER:

HK2200232

SUB- BATCH:

0

LABORATORY:

HONG KONG

DATE RECEIVED:

04-Jan-2022

DATE OF ISSUE:

07-Jan-2022

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type:

Multifunctional Meter

Service Nature:

Performance Check

Scope:

Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./ Equipment No.:

[12A101545]/[W.026.35]

Date of Calibration:

04-January-2022

GENERAL COMMENTS

This is the Final Report and supersedes any previous report(s) with this reference.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2200232

SUB- BATCH:

DATE OF ISSUE:

07-Jan-2022

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/

[YSI]/[6820 V2]

Model No.: Serial No./

[12A101545]/[W.026.35]

Equipment No.: Date of Calibration:

04-January-2022

Date of Next Calibration:

04-April-2022

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	161	+9.6
6667	6807	+2.1
12890	12978	+0.7
58670	58964	+0.5
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.28	3.34	+0.06
5.56	5.74	+0.18
7.80	7.88	+0.08
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.05	+0.05
7.0	7.01	+0.01
10.0	9.94	-0.06
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2200232

SUB- BATCH:

0

DATE OF ISSUE:

07-Jan-2022

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

Equipment No.:

[12A101545]/[W.026.35]

Date of Calibration:

04-January-2022

Date of Next Calibration:

04-April-2022

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	ed Reading (NTU) Displayed Reading (NTU)			
0	0.1			
4	3.8	-5.0		
10	9.8	-2.0		
20	19.7	-1.5		
50	50.8	+1.6		
100	98.0	-2.0		
	Tolerance Limit (%)	±10.0		

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	ected Reading (ppt) Displayed Reading (ppt)					
0	0.00					
10	9.95	-0.5				
20	19.95	-0.3				
30	31.02	+3.4				
	Tolerance Limit (%)	±10.0				

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2200232

SUB- BATCH:

0

DATE OF ISSUE:

07-Jan-2022

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/[6820 V2]

Serial No./

[12A101545]/[W.026.35]

Equipment No.: Date of Calibration:

04-January-2022

Date of Next Calibration:

04-April-2022

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)		
10.5	10.23	-0.3		
20.0	19.98	-0.0		
40.5	40.31	-0.2		
	Tolerance Limit (°C)	±2.0		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

16:5

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

APPENDIX C MONITORING RESULT FOR H₂S MEASUREMENT

Appendix C - Odour Monitoring Results for Site boundary and ASRs

												H₂S Conc	entration		
		5.4.		Measurement	Temperature,	Wind Speed,	Wind	Relative	Measruement, ppm						
Round	Location	Date	Time Period	Time	°C	m/s	Direction	Humidity, %	1st	2nd	3rd	4th	5th	Average	Overall Average
1		10-Mar-22	09:00 to 12:00	10:01	21.7	0.27	E	50.0	0.006	0.005	0.006	0.006	0.006	0.006	
2		10-Mar-22	12:00 to 15:00	12:45	25.0	0.30	SW	51.2	0.007	0.007	0.008	0.008	0.008	0.008	
3		10-Mar-22	15:00 to 18:00	15:45	25.5	0.76	W	48.0	0.009	0.009	0.008	0.009	0.007	0.008	
4	SB1	10-Mar-22	18:00 to 21:00	18:45	24.5	0.55	E	49.1	0.008	0.008	0.007	0.007	0.007	0.007	0.0060
5	361	10-Mar-22	21:00 to 00:00	21:45	23.6	0.74	E	51.1	0.006	0.006	0.006	0.005	0.005	0.006	0.0000
6		11-Mar-22	00:00 to 03:00	00:45	21.1	0.57	E	57.2	0.005	0.004	0.004	0.004	0.004	0.004	
7		11-Mar-22	03:00 to 06:00	03:45	17.9	0.41	SE	60.4	0.005	0.005	0.003	0.004	0.004	0.004	
8		11-Mar-22	06:00 to 09:00	06:45	18.2	0.36	SE	61.2	0.005	0.005	0.005	0.004	0.005	0.005	
1		10-Mar-22	09:00 to 12:00	09:25	27.1	0.49	SE	46.8	0.005	0.005	0.004	0.004	0.004	0.004	
2		10-Mar-22	12:00 to 15:00	12:20	24.2	0.39	SW	49.6	0.007	0.007	0.007	0.008	0.008	0.007	
3		10-Mar-22	15:00 to 18:00	15:20	27.4	0.65	W	47.3	0.008	0.008	0.007	0.007	0.007	0.007	
4	ASR1a	10-Mar-22	18:00 to 21:00	18:20	24.7	0.50	E	49.3	0.007	0.007	0.006	0.006	0.006	0.006	0.0061
5	ASINIA	10-Mar-22	21:00 to 00:00	21:20	22.7	0.29	E	51.9	0.006	0.005	0.006	0.005	0.006	0.006	0.0001
6		11-Mar-22	00:00 to 03:00	00:20	19.0	0.15	E	56.5	0.006	0.005	0.006	0.005	0.005	0.005	
7		11-Mar-22	03:00 to 06:00	03:20	17.6	0.22	SE	61.1	0.005	0.006	0.006	0.006	0.006	0.006	
8		11-Mar-22	06:00 to 09:00	06:20	17.9	0.36	SE	62.2	0.006	0.006	0.007	0.006	0.006	0.006	
1		10-Mar-22	09:00 to 12:00	09:05	25.6	0.67	SE	49.3	0.007	0.007	0.006	0.008	0.008	0.007	
2		10-Mar-22	12:00 to 15:00	12:00	23.0	0.34	SW	50.3	0.008	0.008	0.008	0.008	0.008	0.008	
3]	10-Mar-22	15:00 to 18:00	15:00	26.8	0.74	W	47.6	0.007	0.007	0.007	0.007	0.007	0.007	
4	ASR1b	10-Mar-22	18:00 to 21:00	18:00	25.0	2.49	E	47.4	0.007	0.006	0.006	0.006	0.006	0.006	0.0059
5	ASKID	10-Mar-22	21:00 to 00:00	21:00	23.1	0.66	E	52.6	0.006	0.005	0.005	0.005	0.005	0.005	0.0039
6]	11-Mar-22	00:00 to 03:00	00:00	19.3	0.22	E	56.3	0.005	0.005	0.005	0.005	0.005	0.005	
7]	11-Mar-22	03:00 to 06:00	03:00	17.5	0.20	SE	61.3	0.003	0.005	0.005	0.004	0.004	0.004	
8	<u> </u>	11-Mar-22	06:00 to 09:00	06:00	17.7	0.22	SE	62.0	0.004	0.004	0.004	0.005	0.005	0.004	

Appendix C - Odour Monitoring Results for Exhaust of Deodourisation Unit

						Average		Average of							H₂S Conc	entration				
Round	Location	Doto	Time Deried	Measurement	Temperature,	Temperature,	Wind Speed,	Wind Speed,	Wind	Relative										
Round	Location	Date	Date Time Period	Time	°C	°C	m/s	m/s	Direction	Humidity, %	1st	2nd	3rd	4th	5th	Average	Overall Average	Expressed as µg/s		
1		10-Mar-22	09:00 to 12:00	10:29	25.0		18.00		E	62.5	0.002	0.002	0.002	0.002	0.002	0.002				
2		10-Mar-22	12:00 to 15:00	13:00	23.2		18.09		SW	53.7	0.002	0.002	0.002	0.003	0.002	0.002]			
3		10-Mar-22	15:00 to 18:00	16:06	25.0		16.29	17.21	N	56.0	0.003	0.002	0.002	0.002	0.002	0.002	0.0026 3 3 3	44.7		
4	OD1	10-Mar-22	18:00 to 21:00	19:05	21.5	21.5	17.07		E	94.4	0.002	0.003	0.003	0.002	0.002	0.002				
5] 051	10-Mar-22	21:00 to 00:00	22:05	20.4		17.22		E	62.4	0.004	0.003	0.003	0.003	0.003	0.003				
6		11-Mar-22	00:00 to 03:00	01:05	19.6		17.01		E	69.6	0.003	0.004	0.004	0.002	0.002	0.003				
7		11-Mar-22	03:00 to 06:00	04:05	18.5		16.89		SE	59.5	0.003	0.002	0.003	0.003	0.002	0.003				
8		11-Mar-22	06:00 to 09:00	07:05	18.8		17.12	SE	68.8	0.004	0.003	0.004	0.003	0.003	0.003					
1		10-Mar-22	09:00 to 12:00	10:49	25.3]	11.43		E	58.3	0.004	0.005	0.004	0.004	0.005	0.004]			
2		10-Mar-22	12:00 to 15:00	13:19	22.9			10.98		SW	63.1	0.003	0.003	0.003	0.004	0.004	0.003			
3		10-Mar-22	15:00 to 18:00	16:26	26.0]	10.34		N	51.7	0.004	0.005	0.005	0.006	0.005	0.005]			
4	OD2	10-Mar-22	18:00 to 21:00	19:25	22.6	21.2 10.51	10.51 10.27 10.64 11.40	10.84	E	67.6	0.009	0.009	0.009	0.010	0.010	0.009	0.0051	54.7		
5	002	10-Mar-22	21:00 to 00:00	22:25	19.0			10.27	E	61.7	0.007	0.007	0.007	0.008	0.007	0.007	0.0001	""		
6	1	11-Mar-22	00:00 to 03:00	01:25	18.1	i			10.64	10.64		E	71.6	0.006	0.005	0.005	0.006	0.005	0.005	1
7	1	11-Mar-22	03:00 to 06:00	04:25	17.6	1		SE	66.6	0.003	0.003	0.002	0.002	0.003	0.003	1				
8		11-Mar-22	06:00 to 09:00	07:25	18.2		11.13		SE	68.1	0.003	0.004	0.003	0.003	0.004	0.003				

APPENDIX D WEATHER INFORMATION

Appendix D

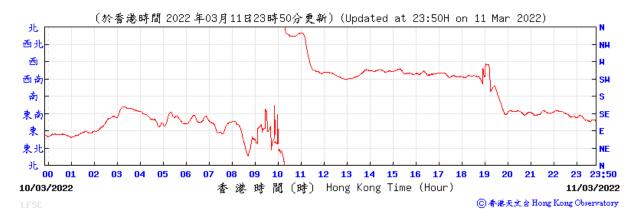
Extracted meteorological data from the Hong Kong Observatory's Lau Fu Shan Weather Station

10 March 2022

Humidity & Temperature

Wind Direction

Wind Speed



11 March 2022

Humidity & Temperature

Wind Direction

Wind Speed

APPENDIX E LOGSHEET OF ODOUR PATROL

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 10 March 2022 Temperature: 25.0°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour
1	09:50	Sunny	Ш	0	N/A	N/A	N/A	N/A
2	09:53	Sunny	E	1	Vehicle exhaust	Traffic Road	Down-wind	Intermittent
3	09:56	Sunny	Е	0	N/A	N/A	N/A	N/A
4	10:00	Sunny	Е	1	Biogas	Ultra-violet irradiation disinfection system	Down-wind	Intermittent
5	10:19	Sunny	Е	0	N/A	N/A	N/A	N/A
6	10:22	Sunny	E	0	N/A	N/A	N/A	N/A

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 10 March 2022 Temperature: 25.0°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour
1	15:30	Sunny	N	0	N/A	N/A	N/A	N/A
2	15:34	Sunny	N	0	N/A	N/A	N/A	N/A
3	15:38	Sunny	N	0	N/A	N/A	N/A	N/A
4	15:41	Sunny	N	1	Biogas	Ultra-violet irradiation disinfection system	Down-wind	Intermittent
5	15:45	Sunny	N	0	N/A	N/A	N/A	N/A
6	15:50	Sunny	N	0	N/A	N/A	N/A	N/A

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

APPENDIX F
MARINE WATER QUALITY
MONITORING RESULTS

Operational Phase Marine Water Quality Monitoring Results on 11 March 2022

Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	Sampling Depth (m)	Temperal (°C)		рН	Sali (pr		DO Saturation (%)	Ox	solved ygen ig/L)		bidity TU)	Suspended Solids (mg/L)	Cadmium (μg/L)	Copper (µg/L)	Nickel (µg/L)	Lead (μg/L)	Mercury (μg/L)	Chromium (μg/L)	Zinc (μg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100 mL)	PAHs (μg/L)	PCBs (µg/L)
		Condition	Condition	Time	Depth (m)	Depth (m)		verage Valu			Average	Value Average		Average		Average			Value	Value	Value	Value	Value	Value	Value	Value	Value	Value		Value
R1	W1	Fine	Moderate	4:47	14.1	Surface 1.0 Middle 7.1 Bottom 13.1	20.0 18.6 18.1	18.9 8.23 8.21	8.3	26.2 29.3 30.6	28.7	104.1 100.3 99.1	7.9 7.8	7.9	1.6 1.6 1.8	1.7	3 4 3.7	<0.5 <0.5 <0.5	6 4 4	2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	8 49 13	0.76 0.76 0.69	0.09 0.08 0.07	<2 <2 <2	21 17 24	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W1	Fine	Moderate	6:46	14.2	Surface 1.0 Middle 7.1	20.2	8.35 19.0 8.25		26.3 29.6	28.7	109.7 107.5 108.0	8.5 8.4	8.4	1.5	1.5	4 5 5.0	<0.5 <0.5	4 4	2 2	<1 1	<0.5 <0.5	<1 <1	22 28	0.72 0.68	0.06 0.06	<2 <2	10 15	<0.1 <0.1	<0.02 <0.02
R3	W1	Fine	Moderate	8:48		Bottom 13.2 Surface 1.0	20.1	8.26		30.2 26.5		106.7	8.4 8.4		1.5		7	<0.5 <0.5	10	4	<1 <1	<0.5 <0.5	<1	133	0.73 0.71	0.07	<2 <2	11 22	<0.1 <0.1	<0.02 <0.02
D.4	1874	Flori	Madana	10.10	13.9	Middle 7.0 Bottom 12.9 Surface 1.0	18.3	19.0 8.24 8.24 8.34		29.4 30.4 27.4	28.8	107.2 107.1 106.7	8.4 8.3 8.6	8.4	1.8 1.8	1.8	19 11.3 8	<0.5 <0.5	4	1	<1 <1	<0.5 <0.5 <0.5	<1 <1	22 9	0.71 0.77 0.68	0.07 0.12 0.05	<2 <2 <2	25 18 51	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W1	Fine	Moderate	10:46	14.1	Middle 7.1 Bottom 13.1	18.6	18.6 8.30	8.3	29.3	29.2	107.6 107.6 106.7	8.5 8.4	8.5	1.7	1.7	5 5.7	<0.5	4	2 2 5	<1 <1 <1	<0.5	<1 <1	8 51	0.66	0.03	<2	51 57	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W1	Fine	Moderate	12:47	14.0	Surface 1.0 Middle 7.0	19.9 18.6	18.9 8.29	8.3	26.6 29.4	28.9	110.5 109.1 109.2	8.6 8.6	8.5	1.8	1.9	6 6 5.7	<0.5 <0.5	4	2	<1 <1	<0.5 <0.5	<1 <1	6	0.76 0.79	0.10 0.11	<2 <2	43 31	<0.1 <0.1	<0.02 <0.02
R6	W1	Fine	Moderate	14:48	14.0	Bottom 13.0 Surface 1.0 Middle 7.0	20.5	8.25 8.35 19.1 8.27		30.6 26.2 29.7	28.7	107.9 112.9 110.8 111.0	8.5 8.7 8.7	8.7	1.9 1.7 1.7	1.7	5 6 5 6.0	<0.5 <0.5 <0.5	4 4	3 2	<1 <1 1	<0.5 <0.5 <0.5	<1 <1 1	12 7 12	0.76 0.83 0.82	0.06 0.13 0.14	<2 <2 <2	48 30 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W2	Fine	Moderate	5:00	14.0	Bottom 13.0 Surface 1.0	18.4	8.25		30.4	20.7	109.2	8.6 8.4	0.7	1.8	1.7	7	<0.5 <0.5	4	5	1 <1	<0.5 <0.5	<1 <1	323 15	0.62	0.14	<2	26	<0.1 <0.1	<0.02 <0.02 <0.02
		-			16.0	Middle 8.0 Bottom 15.0	18.4 18.3	18.6 8.24 8.24	8.3	29.9 30.2	29.1	106.1 105.9 105.2	8.3 8.3	8.3	1.8 1.8	1.7	3 4.0 5	<0.5 <0.5	4	2	<1 <1	<0.5 <0.5	<1 <1	7	0.69 0.71	0.07 0.09	<2 <2	15 20	<0.1 <0.1	<0.02 <0.02
R2	W2	Fine	Moderate	6:59	16.0	Surface 1.0 Middle 8.0 Bottom 15.0	18.6	19.0 8.24 8.23	8.3	26.3 29.7 31.0	29.0	106.8 106.0 104.5	8.3 8.3	8.3	1.8 1.8	1.8	5 7 6.0	<0.5 <0.5	5	2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	10 9	0.67 0.64 0.68	0.05 0.07 0.04	<2 <2 <2	10 15	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W2	Fine	Moderate	9:00	16.2	Surface 1.0 Middle 8.1	19.9	8.33 19.0 8.23		26.7 29.4	28.9	108.1 107.0 107.0	8.5 8.3	8.4	1.5 1.6	1.6	7 5 7.0	<0.5 <0.5 <0.5	4 12	2 5	<1 <1 <1	<0.5 <0.5 <0.5	1 1	8 65	0.58 0.74 0.76	0.04 0.11 0.11	<2 <2 <2	24 37	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W2	Fine	Moderate	10:59		Bottom 15.2 Surface 1.0	18.3 19.1	8.24 8.33		30.6 27.3		105.9 110.5	8.3 8.7		1.6		3	<0.5 <0.5	4	3	<1 <1	<0.5 <0.5	<1 <1	7	0.71 0.64	0.08	<2 <2	39 48	<0.1 <0.1	<0.02 <0.02
	1110	_			16.1	Middle 8.1 Bottom 15.1 Surface 1.0		18.8 8.24 8.27		29.5 29.7 27.0	28.8	109.1 109.0 107.4	8.6 8.4 8.7	8.6	1.5	1.5	3 3.0	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5 <0.5	<1 <1	9 7	0.70 0.66	0.11 0.06 0.06	<2 <2	44 31 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W2	Fine	Moderate	13:00	16.2	Middle 8.1 Bottom 15.2	18.6	18.9 8.27 8.26	8.3	29.5 30.2	28.9	111.1 110.2	8.7 8.7 8.6	8.6	1.9 2.1 2.1	2.0	10 8.3 8	<0.5 <0.5 <0.5	4	2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1	7	0.74	0.06	<2 <2 <2	42 40 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W2	Fine	Moderate	14:59	16.1	Surface 1.0 Middle 8.1	20.6 18.6	19.2 8.35 19.2 8.29	8.3	26.1 29.5 30.8	28.8	113.8 111.8 109.5	8.8 8.7 8.6	8.7	1.5 1.6 1.6	1.6	5 6 6.0	<0.5 <0.5	4	2	<1 1	<0.5 <0.5	<1 <1	15 116	0.76 0.75	0.12 0.07	<2 <2 <2	37 61	<0.1 <0.1	<0.02 <0.02
R1	W3	Fine	Moderate	6:12	8.1	Bottom 15.1 Surface 1.0 Middle 4.1	19.0	8.26 8.31 18.8 8.27		27.8 29.1	28.8	109.5 109.9 108.8 109.1	8.6 8.6	8.6	1.6 1.8 1.8	1.8	6 3 4.3	<0.5 <0.5 <0.5	4 4	2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 1	33 7	0.81 0.70 0.72	0.13 0.08 0.06	<2 <2 <2	63 30 29	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W3	Fine	Moderate	8:11		Bottom 7.1 Surface 1.0	18.7	8.26	i	29.4		108.6	8.5		1.8		4	<0.5	4	2	<1 <1	<0.5	1 <1	18	0.73	0.06	<2 <2	24	<0.1	<0.02
	****	1 1110	moderate	0.11	8.0	Middle 4.0 Bottom 7.0	19.0	19.3 8.32	8.3	28.3 29.1	27.9	112.2 113.2 112.1	8.8	8.8	1.8	1.8	7 9.3 10	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1 <1	11 37	0.68	0.07	<2 <2	16 15	<0.1	<0.02
R3	W3	Fine	Moderate	10:12	7.9	Surface 1.0 Middle 4.0	18.6	19.2 8.35 19.2 8.35		26.4 29.0	28.2	115.2 112.3 113.2	8.9 8.8	8.9	1.6 1.6	1.6	8 4 5.0	<0.5 <0.5	9	3	<1 <1	<0.5 <0.5	1 <1	41 73	0.78 0.75	0.14 0.12	<2 <2	16 15	<0.1 <0.1	<0.02 <0.02
R4	W3	Fine	Moderate	12:12	8.3	Bottom 6.9 Surface 1.0 Middle 4.2	19.1	8.33 8.33 18.8 8.33		29.2 28.0 29.0	28.8	112.2 112.4 111.5 111.7	8.8 8.8 8.8	8.8	1.6 1.5 1.8	1.7	3 4 8 5.0	<0.5 <0.5 <0.5	4 4	2	<1 1 <1	<0.5 <0.5 <0.5	<1 <1 <1	68 9	0.74 0.75 0.75	0.12 0.14 0.09	<2 <2 <2	50 39	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W3	Fine	Moderate	14:12		Bottom 7.3	18.6 20.5	8.30 8.35		29.3		111.3	8.7 9.1		1.8		3	<0.5	2	1 2	<1 <1	<0.5	1 <1	5	0.73	0.10	<2	32 45	<0.1 <0.1	<0.02
					8.1	Middle 4.1 Bottom 7.1	18.6	19.2 8.33 8.33		29.0 29.2	28.1	113.9 114.9 113.6	9.0 8.9	9.0	1.7	1.6	9 8.7 8	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1 <1	14 12	0.79 0.82	0.11 0.12	<2 <2	41 55	<0.1 <0.1	<0.02 <0.02
R6	W3	Fine	Moderate	16:14	8.3	Surface 1.0 Middle 4.2 Bottom 7.3	18.7	19.4 8.32 8.29	8.3	25.8 28.8 29.3	27.9	117.8 113.9 115.0	9.1 8.9 8.9	9.0	1.6 1.6 1.8	1.7	6 4 6.3	<0.5 <0.5 <0.5	8 7 4	3 2 1	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	36 37 10	0.84 0.80 0.85	0.14 0.10 0.15	<2 <2 <2	43 50 53	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W4	Fine	Moderate	5:12	19.9	Surface 1.0 Middle 10.0	19.9 18.2	18.7 8.25	8.3	26.5 30.5	29.4	107.0 104.4 104.8	8.3 8.2	8.2	1.8	2.0	3 3.7	<0.5 <0.5	5	2 2	<1 <1	<0.5 <0.5	<1 <1	10 44	0.71 0.70	0.07 0.05	<2 <2	24 31	<0.1 <0.1	<0.02 <0.02
R2	W4	Fine	Moderate	7:12	20.4	Bottom 18.9 Surface 1.0	18.9	8.23 8.33		31.1 27.6	20.1	103.0 107.3	8.1 8.4	9.4	1.5	1.6	8 7 70	<0.5 <0.5	4	2	<1 <1	<0.5 <0.5	<1	23 19	0.70 0.66	0.07	<2	46 10	<0.1	<0.02
R3	W4	Fine	Moderate	9:12	20.1	Middle 10.1 Bottom 19.1 Surface 1.0	18.4	18.6 8.24 8.26 8.34		29.7 30.1 26.6	29.1	106.5 106.3 105.1	8.4 8.2 8.5	8.4	1.7 1.7	1.6	7 7.3 7	<0.5 <0.5	4 4	1 1	<1 <1	<0.5 <0.5	<1 <1	5 7	0.72 0.69 0.67	0.07 0.06 0.06	<2 <2 <2	11 7 25	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
INS.	***	1 1110	www.	Ø.12	19.7	Middle 9.9 Bottom 18.7	18.6	19.0 8.23 8.25	8.3	29.8 30.2	28.9	108.0 108.1 106.7	8.5 8.4	8.4	1.6 1.8	1.7	5 5.0 6	<0.5 <0.5	6	1 2	1 <1	<0.5 <0.5	<1 <1	5 10	0.71 0.74	0.06 0.12	<2 <2	20 34	<0.1 <0.1 <0.1	<0.02 <0.02
R4	W4	Fine	Moderate	11:12	20.1	Surface 1.0 Middle 10.1	18.5	18.7 8.24	8.3	28.0 29.8	29.2	110.0 108.6 108.7	8.6 8.5	8.5	1.4	1.5	7 <2.5 4.0	<0.5 <0.5	4 5	2	<1 <1	<0.5 <0.5	1 <1	12 10	0.67 0.68	0.06	<2 <2	41 44	<0.1 <0.1	<0.02 <0.02
R5	W4	Fine	Moderate	13:12	20.2	Bottom 19.1 Surface 1.0 Middle 10.1	19.8	8.26 8.33 18.9 8.24	i	29.9 26.9 29.8	29.2	107.5 109.9 109.7 109.2	8.4 8.6 8.6	8.5	2.2 2.2	2.2	<2.5 11 5 8.3	<0.5 <0.5 <0.5	4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	12 13 9	0.74 0.78 0.81	0.07 0.07 0.13	<2 <2 <2	37 51 33	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W4	Fine	Moderate	15:12		Bottom 19.2 Surface 1.0	18.3	8.25 8.34		29.8 30.9 26.2		108.0	8.5 8.7		2.1		9	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1 <1	10	0.81	0.13	<2 <2	46 34	<0.1 <0.1	<0.02 <0.02
					20.1	Middle 10.1 Bottom 19.1	18.5	19.1 8.23 8.24	8.3	29.8 30.5	28.8	110.2 110.5 108.8	8.6 8.5	8.6	1.8	1.7	7 6.7 3	<0.5 <0.5	4	1 2	<1 <1	<0.5 <0.5	<1 <1	6	0.81 0.82	0.13 0.09	<2 <2	33 39	<0.1 <0.1	<0.02 <0.02

Operational Phase Marine Water Quality Monitoring Results on 11 March 2022

Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	(m	1)	Tempe (°	C)	p		Sali (p	ot) Î	DO Saturatio (%)	n G	issolved Oxygen (mg/L)	1)	rbidity NTU)	Suspended Solids (mg/L)	Cadmium (μg/L)	(μg/L)	Nickel (μg/L)	Lead (μg/L)	Mercury (μg/L)	Chromium (µg/L)	Zinc (μg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100 mL)	PAHs (μg/L)	PCBs (μg/L)
		Condition	Condition	Time	Depth (m)	Depth			Average		Average		Average					Average	Value Averag		Value	Value		Value		Value	Value	Value	Value		Value	
R1	W5	Fine	Moderate	4:33	18.1	Surface Middle Bottom	9.1	19.6 18.5	18.7	8.28 8.19 8.16	8.2	26.6 29.6	29.0	104.8 103.0 103	.3 8.1 8.0	8.1	1.8 1.8	1.8	3 <2.5 2.7	<0.5 <0.5	4	1	<1 <1	<0.5 <0.5	<1 <1	18 13 82	0.72 0.73 0.71	0.08 0.08	2 2	57 54 46	<0.1 <0.1	<0.02 <0.02 <0.02
R2	W5	Fine	Moderate	6:31	18.2	Surface Middle		19.6 18.5	18.8	8.16 8.34 8.25	8.3	26.8 29.8	29.2	107.4 106.8 106	8.4		1.6	1.6	12 8 9.0	<0.5 <0.5 <0.5	9	5 2	<1 <1	<0.5 <0.5 <0.5	<1 <1	40 49	0.67 0.70	0.07 0.05 0.06	<2 <2 <2	13 10	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W5	Fine	Moderate	8:31	10.2	Bottom	17.2	18.2	10.0	8.24 8.34	0.0	30.9 26.5	20.2	105.0	8.2		1.6	1.0	7 5	<0.5	3	2	<1 <1	<0.5	<1	9 29	0.71	0.11	<2	12	<0.1	<0.02
11.5	WS	1 1116	Woodiate	0.51	18.7	Middle Bottom	9.4	18.6	19.0	8.22 8.25	8.3	29.7 30.2	28.8	109.1 108 106.9	.7 8.6	8.5	1.6	1.6	4 4.0	<0.5	4	2	<1	<0.5 <0.5	<1	19	0.66 0.69	0.07	<2 <2	77 68	<0.1	<0.02 <0.02 <0.02
R4	W5	Fine	Moderate	10:31	18.1	Surface Middle		19.9 18.4	18.8	8.33 8.24	8.3	26.9 30.1	29.3	108.8 108.2 107	8.5 .9 8.4	8.4	1.6 1.8	1.7	3 6 4.3	<0.5 <0.5	5 4	3 2	<1 <1	<0.5 <0.5	1 <1	15 14	0.72 0.71	0.06 0.07	<2 <2	48 38	<0.1 <0.1	<0.02 <0.02
R5	W5	Fine	Moderate	12:31		Bottom Surface	1.0	20.0		8.23 8.35		30.8 26.5		106.6 109.6	8.4 8.6		1.8		18	<0.5 <0.5	4	1 2	<1 <1	<0.5 <0.5	<1 <1	15 50	0.76 0.80	0.10 0.11	<2	37 62	<0.1 <0.1	<0.02 <0.02
					18.1	Middle Bottom	17.1	18.2	18.9	8.23 8.24	8.3	29.8 30.8	29.0	109.5 108 107.0	.7 8.5 8.4	8.5	1.5 1.5	1.5	11 11.3 5	<0.5 <0.5	4 5	1 2	<1 <1	<0.5 <0.5	<1 <1	9 15	0.93 0.96	0.16 0.15	<2 <2	66 48	<0.1 <0.1	<0.02 <0.02
R6	W5	Fine	Moderate	14:31	18.0	Surface Middle	9.0		18.7	8.32 8.24	8.3	28.3 29.7	29.2	112.5 110.7 111		8.7	1.5 1.4	1.4	3 <2.5 2.8	<0.5 <0.5	4	2	<1 <1	<0.5 <0.5	<1 <1	23 21	0.84 0.90	0.15 0.21	<2 <2	46 40	<0.1 <0.1	<0.02 <0.02
R1	W6	Fine	Moderate	5:59	8.9	Bottom Surface		20.2	19.2	8.26 8.35	8.3	29.8	28.3	110.0 110.9 108.4 108	8.6		1.4 1.5 1.7	1.6	3 7 4.3	<0.5	4 4	2	<1	<0.5	<1	19	0.78	0.13	<2	30 30	<0.1	<0.02
R2	W6	Fine	Moderate	8:00	0.9	Middle Bottom Surface	7.9	18.7	10.2	8.27 8.26 8.34	0.5	29.1 29.4 26.5	20.5	108.4 108 107.3	.9 8.5 8.4		1.7	1.0	3	<0.5 <0.5	4	2 2	1 <1 <1	<0.5 <0.5	<1 <1	17 14	0.70 0.63 0.68	0.07 0.04 0.05	<2 <2 <2	36 35	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R.Z	WO	rille	wooerate	6.00	9.0	Middle Bottom	4.5	18.6	19.1	8.31 8.29	8.3	29.0 29.1	28.2	112.7 112.5 111.1		8.8	1.7	1.6	6 7.7	<0.5 <0.5	4 3	2	1 <1	<0.5 <0.5	<1	18 13	0.67 0.71	0.05	<2 <2 <2	11	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W6	Fine	Moderate	9:59	8.9	Surface Middle	1.0 4.5	19.1 18.6	18.8	8.33 8.31	8.3	27.4 29.1	28.6	113.1 112.6 112	.3 8.8		1.4 1.5	1.5	6 4 4.3	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1 <1	8	0.69 0.67	0.09	<2 <2	48 54	<0.1 <0.1	<0.02 <0.02
R4	W6	Fine	Moderate	11:59		Bottom Surface	1.0	19.4		8.28 8.33		29.3 27.4		111.3 112.3	8.7 8.8		1.5	1	5	<0.5 <0.5	5	2	<1 <1	<0.5 <0.5	<1 <1	12 118	0.75 0.68	0.09	<2	47 37	<0.1 <0.1	<0.02 <0.02
					9.0	Middle Bottom	4.5 8.0	18.5	18.8	8.30 8.25	8.3	29.3 29.8	28.8	110.8 110 109.4	8.6		1.8	1.7	6 9.3 17	<0.5 <0.5	5 4	2 2	<1 <1	<0.5 <0.5	<1 <1	88 15	0.73 0.78	0.09 0.11	<2 <2	53 52	<0.1 <0.1	<0.02 <0.02
R5	W6	Fine	Moderate	14:00	8.8	Surface Middle Bottom	4.4	18.6	19.1	8.34 8.32 8.28	8.3	26.5 29.0	28.3	113.4 113.3 112.1	.9 8.8 8.8	8.8	1.6 1.8	1.7	5 4.3	<0.5 <0.5	4 4 4	2 2	<1 <1	<0.5 <0.5	<1 <1	6 8	0.77 0.85 0.78	0.13 0.23	<2 <2	40 34 34	<0.1 <0.1	<0.02 <0.02 <0.02
R6	W6	Fine	Moderate	15:59	8.8	Surface Middle	1.0	20.7	19.3	8.34 8.30	8.3	25.8 29.2	28.1	116.7 114.7 115	9.1		1.5	1.6	3 <2.5 3.2	<0.5 <0.5	4 4	2 2	<1 <1	<0.5 <0.5	<1	8	0.85 0.87	0.09	<2 <2 <2	57 43	<0.1 <0.1	<0.02 <0.02
R1	W7	Fine	Moderate	5:35		Bottom	7.8	18.7		8.30 8.34		29.3		113.5	8.9		1.6		4 5	<0.5	3	1 2	<1 <1	<0.5	1 <1	17	0.90	0.18	<2	57 14	<0.1	<0.02
		1 110	moderate	0.00	6.4	Middle Bottom	3.2	18.7	19.1	8.30 8.29	8.3	29.0 29.1	28.2	110.2 110 109.7			1.8	1.7	5 4.3	<0.5	4	2 2	<1 <1	<0.5	<1 <1	17	0.69 0.67	0.07	<2 <2	14 19	<0.1	<0.02
R2	W7	Fine	Moderate	7:35	6.6	Surface Middle	3.3		19.2	8.35 8.32	8.3	26.4 28.8	28.1	115.2 112.3 113		8.8		1.8	5 4 5.7	<0.5 <0.5	4 3	2 2	<1 1	<0.5 <0.5	<1 <1	9	0.71 0.68	0.06 0.06	<2 <2	18 21	<0.1 <0.1	<0.02 <0.02
R3	W7	Fine	Moderate	9:36		Bottom Surface		20.3		8.32 8.34		29.1 26.5		111.4	8.8		1.9		4	<0.5 <0.5	4	2	<1 1	<0.5 <0.5	<1	38 9	0.75 0.72	0.11	<2 <2	25 57	<0.1	<0.02 <0.02
					6.4	Middle Bottom	5.4		19.2	8.33 8.33	8.3	28.9 29.1	28.1	113.3 113 112.7	8.9		1.7	1.7	4 5.3 8	<0.5 <0.5	4	1 2	<1 <1	<0.5 <0.5	<1 <1	11	0.68 0.71	0.06	<2 <2	44 40	<0.1 <0.1	<0.02 <0.02
R4	W7	Fine	Moderate	11:37	6.4	Surface Middle Bottom	3.2	18.7	19.0	8.33 8.34 8.34	8.3	27.1 28.8 29.0	28.3	114.4 113.4 113 113.1	.6 8.9 8.9	8.9	1.7	1.8	5 5.7	<0.5 <0.5 <0.5	4	2	<1 1 <1	<0.5 <0.5 <0.5	<1 1	10 9 10	0.70 0.70 0.73	0.06 0.08 0.12	<2 <2 <2	47 65 55	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W7	Fine	Moderate	13:36	6.2	Surface Middle	1.0	20.1	19.1	8.35 8.33	8.3	26.5 29.0	28.3	115.2 113.4 113	9.0		1.5	1.6	3 <2.5 3.8	<0.5 <0.5 <0.5	6 4	2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1	28	0.84 0.83	0.12 0.13 0.12	<2 <2 <2	50 45	<0.1 <0.1	<0.02 <0.02 <0.02
R6	W7	Fine	Moderate	15:36	0.2	Bottom Surface	5.2	18.6		8.31 8.34	0.0	29.3 25.8	20.0	112.9	8.9 9.0		1.6	1	6 3	<0.5 <0.5	3	2	<1 <1	<0.5 <0.5	<1	10	0.63 0.77	0.06	<2	37	<0.1	<0.02 <0.02
			modulate	10.00	6.3	Middle Bottom	3.2	18.7	19.3	8.33 8.32	8.3	28.8 29.2	27.9	114.4 115 114.0	.2 9.0	9.0		1.4	6 12.3 28	<0.5 <0.5	4	2 2	<1 <1	<0.5 <0.5	<1	9	0.83 0.86	0.12 0.18	<2 <2	37 32	<0.1	<0.02 <0.02 <0.02
R1	W8	Fine	Moderate	5:23	6.3	Surface Middle	3.2	18.7	19.1	8.34 8.30	8.3	26.8 29.0	28.3	110.8 109.9 110	8.7 .1 8.6	8.6		1.7	<2.5 <2.5 3.7	<0.5 <0.5	5 4	2 2	1 <1	<0.5 <0.5	<1 <1	19 17	0.70 0.70	0.05 0.08	<2 <2	11 20	<0.1 <0.1	<0.02 <0.02
R2	W8	Fine	Moderate	7:23		Bottom Surface	1.0	20.2		8.28 8.35		29.0 26.4		109.5 112.6	8.6		1.7	1	7	<0.5 <0.5	5	2	<1 1	<0.5 <0.5	<1 <1	9	0.72 0.73	0.09	<2 <2	17	<0.1 <0.1	<0.02 <0.02
					6.3	Middle Bottom	3.2 5.3	18.6	19.2	8.32 8.31	8.3	28.7 29.1	28.1	110.1 110 109.9	8.6		1.8 1.8	1.7	8 9.0 12	<0.5 <0.5	5 4	3 2	<1 <1	<0.5 <0.5	<1 <1	31 42	0.67 0.70	0.06 0.09	<2 <2	21 23	<0.1 <0.1	<0.02 <0.02
R3	W8	Fine	Moderate	9:24	6.2	Surface Middle	3.1		19.2	8.35 8.33	8.3	26.4 28.9	28.1	113.9 111.5 112	.1 8.8	8.8		1.9	10 9 7.7	<0.5 <0.5	5	2	<1 1	<0.5 <0.5	<1 <1	14 15	0.71	0.09	<2 <2	72 70	<0.1 <0.1	<0.02 <0.02
R4	W8	Fine	Moderate	11:23	6.4	Surface Middle	1.0		19.1	8.34 8.35 8.33	8.3	29.0 26.8 28.7	28.2	110.8 115.4 112.0 113	9.0		1.9 1.6 1.8	1.7	10 5 8.0	<0.5 <0.5 <0.5	4 4	2 2 2	<1 <1 1	<0.5 <0.5 <0.5	<1	13 14	0.71 0.74 0.74	0.06 0.12 0.13	<2	58 51	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
DE	W8	Fine	Madarat-	12:22	0.4	Middle Bottom Surface			19.1	8.33 8.34 8.34	0.3	28.7 29.1 26.9	20.2	112.0 113 111.5	.U 8.8 8.8		1.8 1.8	1.7	9 8.0	<0.5 <0.5	4	2	1 <1	<0.5 <0.5 <0.5	<1 <1	14	0.74 0.73 0.78	0.13 0.08 0.06	<2 <2 <2	51 51 38	<0.1 <0.1	<0.02 <0.02 <0.02
R5	W8	Fine	Moderate	13:23	6.1	Middle Bottom	3.1	18.7	19.1	8.34 8.34 8.32	8.3	28.7 29.2	28.3	113.2 113 112.9		8.9	1.8	1.9	4 4.0	<0.5 <0.5	4	2	<1 <1	<0.5 <0.5 <0.5	<1	25 23	0.78 0.89 0.85	0.14	<2 <2 <2	47 52	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W8	Fine	Moderate	15:24	6.3	Surface	1.0	20.6	19.3	8.35 8.33	8.3	26.0 28.7	27.9	117.2 113.1 114	9.0		1.5	1.7	28 <2.5 11.2	<0.5 <0.5	4 3	2 2	<1 <1	<0.5 <0.5	<1	6 11	0.80	0.10	<2 <2 <2	48 50	<0.1 <0.1	<0.02 <0.02 <0.02
						Bottom	5.3	18.7		8.33		29.1		112.7	8.9	1	1.8		3	<0.5	4	1	<1	<0.5	<1	7	0.79	0.09	<2	53	<0.1	<0.02

APPENDIX G LABORATORY ANALYIS RESULTS FOR MARINE WATER QUALITY MONITORING

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

36414 Report No.: Date of Issue: 2022-03-22 Date Received: 2022-03-11 2022-03-11 Date Tested: 2022-03-22 Date Completed:

1 of 3

Page:

ATTN:

Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 36414 Sampling Date : 2022-03-11

Test Requested & Mathadalague

1 est Ke	equested & Memodology.		
Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS) dried at 103-105°C	APHA 17ed 2540 D	2.5 mg/L

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

2 of 3 Page:

Results:

Results: Sample ID	Sample No.	Suspended Solids dried at 103-105°C	Sample ID	Sample No.	Suspended Solids dried at 103-105°C
Sample 13	~F	(mg/L)			(mg/L)
W1-S R1	36414-1	3	W5-M R2	36414-38	8
W1-3 R1	36414-2	4	W5-B R2	36414-39	7
W1-BR1	36414-3	4	W6-S R2	36414-40	10
W2-S R1	36414-4	4	W6-M R2	36414-41	6
W2-5 R1	36414-5	3	W6-B R2	36414-42	7
W2-W R1	36414-6	5	W7-S R2	36414-43	5
W2-B R1	36414-7	6	W7-M R2	36414-44	4
W3-M R1	36414-8	3	W7-B R2	36414-45	8
W3-M R1	36414-9	4	W8-S R2	36414-46	7
W4-S R1	36414-10	4	W8-M R2	36414-47	8
W4-3 R1	36414-11	3	W8-B R2	36414-48	12
W4-W R1	36414-12	4	W1-S R3	36414-49	7
W4-B R1	36414-13	3	W1-M R3	36414-50	19
W5-M R1	36414-14	<2.5	W1-B R3	36414-51	8
W5-W1 R1	36414-15	<2.5	W2-S R3	36414-52	7
W6-S R1	36414-16	3	W2-M R3	36414-53	5
W6-M R1	36414-17	7	W2-B R3	36414-54	9
W6-W R1	36414-18	3	W3-S R3	36414-55	8
W7-S R1	36414-19	5	W3-M·R3	36414-56	4
W7-3 R1	36414-20	5	W3-B R3	36414-57	3
W7-M R1	36414-21	3	W4-S R3	36414-58	4
W8-S R1	36414-22	<2.5	W4-M R3	36414-59	5
W8-M R1	36414-23	<2.5	W4-B R3	36414-60	6
W8-B R1	36414-24	6	W5-S R3	36414-61	5
W1-S R2	36414-25	4	W5-M R3	36414-62	4
W1-3 R2	36414-26	5	W5-B R3	36414-63	3
W1-W1R2 W1-B R2	36414-27	6	W6-S R3	36414-64	6
W2-S R2	36414-28	5	W6-M R3	36414-65	4
W2-3 R2 W2-M R2	36414-29	+ 7	W6-B R3	36414-66	3
W2-M R2 W2-B R2	36414-30	6	W7-S R3	36414-67	4
W2-B R2 W3-S R2	36414-31	11	W7-M R3	36414-68	4
W3-8 R2	36414-32	7	W7-B R3	36414-69	8
W3-M R2 W3-B R2	36414-33	10	W8-S R3	36414-70	10
W3-B R2 W4-S R2	36414-34	8	W8-M R3	36414-71	9
W4-5 R2	36414-35	7	W8-B R3	36414-72	4
W4-IVI R2	36414-36	+ 7	W1-S R4	36414-73	9
W4-B R2 W5-S R2	36414-37	12	W1-M R4	36414-74	5

Remarks: 1) \leq = less than

TEST REPORT

36414 Report No .: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

esults:				Page:	3 of 3
Sample ID	Sample No.	Suspended Solids dried at 103-105°C	Sample ID	Sample No.	Suspended Solids dried at 103-105°C
Sample ID	Sample	(mg/L)	_		(mg/L)
W1-B R4	36414-75	3	W5-M R5	36414-110	11
W1-B R4 W2-S R4	36414-76	3	W5-B R5	36414-111	5
W2-3 R4 W2-M R4	36414-77	3	W6-S R5	36414-112	5
W2-W1 R4 W2-B R4	36414-78	3	W6-M R5	36414-113	5
W2-B R4 W3-S R4	36414-79	4	W6-B R5	36414-114	3
W3-8 R4 W3-M R4	36414-80	8	W7-S R5	36414-115	3
W3-IVI R4 W3-B R4	36414-81	3	W7-M R5	36414-116	<2.5
W4-S R4	36414-82	7	W7-B R5	36414-117	6
W4-S R4 W4-M R4	36414-83	<2.5	W8-S R5	36414-118	4
W4-M R4 W4-B R4	36414-84	<2.5	W8-M R5	36414-119	4
W4-B R4 W5-S R4	36414-85	3	W8-B R5	36414-120	4
	36414-86	6	W1-S R6	36414-121	6
W5-M R4	36414-87	4	W1-M R6	36414-122	5
W5-B R4 W6-S R4	36414-88	5	W1-B R6	36414-123	7
W6-S R4 W6-M R4	36414-89	6	W2-S R6	36414-124	5
W6-M R4	36414-90	17	W2-M R6	36414-125	6
W6-B R4 W7-S R4	36414-91	5	W2-B R6	36414-126	7
W7-M R4	36414-92	5	W3-S R6	36414-127	6
W7-M R4	36414-93	7	W3-M R6	36414-128	4
W8-S R4	36414-94	10	W3-B R6	36414-129	9
W8-5 R4 W8-M R4	36414-95	5	W4-S R6	36414-130	10
	36414-96	9	W4-M R6	36414-131	7
W8-B R4	36414-90	6	W4-B R6	36414-132	3
W1-S R5	36414-98	6	W5-S R6	36414-133	3
W1-M R5	36414-98	5	W5-M R6	36414-134	<2.5
W1-B R5	36414-100	7	W5-B R6	36414-135	3
W2-S R5 W2-M R5	36414-101	10	W6-S R6	36414-136	3
	36414-102	8	W6-M R6	36414-137	<2.5
W2-B R5	36414-102	9	W6-B R6	36414-138	4
W3-S R5	36414-103	9	W7-S R6	36414-139	3
W3-M R5	36414-105	8	W7-M R6	36414-140	6
W3-B R5	36414-105	11	W7-B R6	36414-141	28
W4-S R5		5	W8-S R6	36414-142	28
W4-M R5	36414-107	9	W8-M R6	36414-143	<2.5
W4-B R5 W5-S R5	36414-108	18	W8-B R6	36414-144	3

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

36414A Report No.: 2022-03-22 Date of Issue: Date Received: 2022-03-11 2022-03-11 Date Tested: Date Completed: 2022-03-22 1 of 13

Page:

ATTN:

Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 36414A Sampling Date : 2022-03-11

.

	equested & Methodology:	Ref. Method	Limit of Reporting
Item	Parameters	In-house method SOP039 (ICP/MS)	0.5 μg/L
1	Cadmium	In-nouse method 501 057 (16171115)	1.0 μg/L
2	Copper		
3	Nickel		1.0 μg/L
4	Lead		1.0 μg/L
5	Mercury		0.5 μg/L
	Chromium		1.0 μg/L
6		_	1.0 μg/L
8	Zinc	7 1 4 1 COD162 (Py	
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonio	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
10	Ammonia	APHA 19ed 5210B	2 mg-O ₂ /L
11	Biochemical Oxygen Demand	APIA 1960 32100 ***********************************	

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.: 36414A Date of Issue: 2022-03-22 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

Page:

2 of 13

Reculte.

Results:						IVO D DI
Sample ID	W1-S-R1	W1-M-R1	W1-B-RI	W2-S-RI	W2-M-R1	W2-B-R1
Sample No.	36414-1	36414-2	36414-3	36414-4	36414-5	36414-6
Cadmium (µg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	6	4	4	4	4	4
Nickel (μg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	8	49	13	15	7	7
Total Inorganic Nitrogen (mg/L)	0.8	0.76	0.69	0.68	0.69	0.71
Ammonia (mg/L)	0.1	0.08	0.07	0.06	0.07	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S-R1	W3-M-R1	W3-B-Rl	W4-S-RI	W4-M-R1	W4-B-Rl
Sample No.	36414-7	36414-8	36414-9	36414-10	36414-11	36414-12
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	5	5	4
Nickel (µg/L)	2	2	2	2	2	3
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	1	1	<1	<1	<1
Zinc (µg/L)	33	7	18	10	44	23
Total Inorganic Nitrogen (mg/L)	0.7	0.72	0.73	0.71	0.70	0.70
Ammonia (mg/L)	0.1	0.06	0.06	0.07	0.05	0.07
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than consulting , testing , research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414A Report No.: Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

3 of 13 Page:

Results:

Results:					WYC DE DI	WC D DI
Sample ID	W5-S-R1	W5-M-Rl	W5-B-R1	W6-S-R1	W6-M-RI	W6-B-R1
Sample No.	36414-13	36414-14	36414-15	36414-16	36414-17	36414-18
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	4	4	4	4	4
Nickel (µg/L)	3	1	2	2	2	2
Lead (µg/L)	<1	<1	1	<1	1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	18	13	82	19	17	14
Total Inorganic Nitrogen	0.7	0.73	0.71	0.71	0.70	0.63
(mg/L) Ammonia (mg/L)	0.1	0.08	0.07	0.06	0.07	0.04
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S-RJ	W7-M-R1	W7-B-R1	W8-S-R1	W8-M-Rl	W8-B-Rl
Sample No.	36414-19	36414-20	36414-21	36414-22	36414-23	36414-24
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Cadmium (µg/L) Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	9	. 17	7	19	17	9
Total Inorganic Nitrogen	0.69	0.69	0.67	0.70	0.70	0.72
(mg/L) Ammonia (mg/L)	0.06	0.07	0.07	0.05	0.08	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) < = less than

TEST REPORT

Report No.: 36414A Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

4 of 13

Page:

Results:					1	
Sample ID	W1-S-R2	W1-M-R2	W1-B-R2	W2-S-R2	W2-M-R2	W2-B-R2
Sample No.	36414-25	36414-26	36414-27	36414-28	36414-29	36414-30
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	22	28	58	10	9	9
Total Inorganic Nitrogen (mg/L)	0.72	0.68	0.73	0.67	0.64	0.68
Ammonia (mg/L)	0.06	0.06	0.07	0.05	0.07	0.04
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S-R2	W3-M-R2	W3-B-R2	W4-S-R2	W4-M-R2	W4-B-R2
Sample No.	36414-31	36414-32	36414-33	36414-34	36414-35	36414-36
Cadmium (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	1	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (μg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	16	11	37	19	5	7
Total Inorganic Nitrogen (mg/L)	0.67	0.68	0.71	0.66	0.72	0.69
Ammonia (mg/L)	0.05	0.07	0.08	0.07	0.07	0.06
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414A 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page: 5 of 13

D 14.. .

Kesults:					1	
Sample ID	W5-S-R2	W5-M-R2	W5-B-R2	W6-S-R2	W6-M-R2	W6-B-R2
Sample No.	36414-37	36414-38	36414-39	36414-40	36414-41	36414-42
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	9	4	3	4	4	3
Nickel (µg/L)	5	2	2	1	2	1
Lead (μg/L)	<1	<1	<1	<1	1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	40	49	9	9	18	13
Total Inorganic Nitrogen (mg/L)	0.67	0.70	0.71	0.68	0.67	0.71
Ammonia (mg/L)	0.05	0.06	0.11	0.05	0.06	0.07
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S-R2	W7-M-R2	W7-B-R2	W8-S-R2	W8-M-R2	W8-B-R2
Sample No.	36414-43	36414-44	36414-45	36414-46	36414-47	36414-48
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	3	3	5	5	4
Nickel (µg/L)	2	2	1	2	3	2
Lead (µg/L)	<1	1	<1	1	<1	<1
Mercury (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	9	8	38	17	31	42
Total Inorganic Nitrogen (mg/L)	0.71	0.68	0.75	0.73	0.67	0.70
Ammonia (mg/L)	0.06	0.06	0.11	0.13	0.06	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

TEST REPORT

Report No.: 36414A Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

6 of 13

Deculter

Results:					7710 N 6 DO	WO D D2
Sample ID	W1-S-R3	W1-M-R3	W1-B-R3	W2-S-R3	W2-M-R3	W2-B-R3
Sample No.	36414-49	36414-50	36414-51	36414-52	36414-53	36414-54
Cadmium (µg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	10	4	4	4	12	4
Nickel (µg/L)	4	1	1	2	5	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	1	1	<1
Zinc (µg/L)	133	22	9	8	65	7
Total Inorganic Nitrogen	0.71	0.71	0.77	0.74	0.76	0.71
(mg/L) Ammonia (mg/L)	0.11	0.07	0.12	0.11	0.11	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S-R3	W3-M-R3	W3-B-R3	W4-S-R3	W4-M-R3	W4-B-R3
Sample No.	36414-55	36414-56	36414-57	36414-58	36414-59	36414-60
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	9	3	4	4	6	4
Nickel (µg/L)	3	2	1	2	1	2
Lead (µg/L)	<1	<1	<1	<1	1	<1
Mercury (µg/L)	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	<1	<1	<1	<1
Zinc (µg/L)	41	73	11	12	5	10
Total Inorganic Nitrogen	0.78	0.75	0.74	0.67	0.71	0.74
(mg/L)		0.12	0.12	0.06	0.06	0.12
Ammonia (mg/L)	0.14	0.12	0.12	0.00	0.00	V
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414A Report No.: 2022-03-22 Date of Issue: Date Received: 2022-03-11 2022-03-11 Date Tested: 2022-03-22 Date Completed:

7 of 13 Page:

Decultor

Results:			TITE D DO	THE O DO	W6M-R3	W6-B-R3
Sample ID	W5-S-R3	W5-M-R3	W5-B-R3	W6-S-R3		
Sample No.	36414-61	36414-62	36414-63	36414-64	36414-65	36414-66
	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
Cadmium (µg/L)			4	4	4	4
Copper (µg/L)	5	4			2	2
Nickel (µg/L)	3	2	2	2		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<1	<1	1	<1	<1	<1
Lead (µg/L)	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
Mercury (µg/L)			<1	<1	<1	<1
Chromium (µg/L)	<1	<1			9	12
Zinc (µg/L)	29	19	13	8	9	14
Total Inorganic Nitrogen	0.76	0.66	0.69	0.69	0.67	0.75
(mg/L)	0.10	0.07	0.09	0.09	0.12	0.09
Ammonia (mg/L)	0.13	0.07	0.09	0.07		
Biochemical Oxygen	<2	<2	<2	<2	<2	<2
Demand (mg-O ₂ /L)					L	

Gla ID	W7-S-R3	W7-M-R3	W7-B-R3	W8-S-R3	W8-M-R3	W8-B-R3
Sample ID	36414-67	36414-68	36414-69	36414-70	36414-71	36414-72
Sample No.		<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium (µg/L)	<0.5		4	4	5	4
Copper (µg/L)	4	4		2	2	2
Nickel (µg/L)	2	1	2		1	<1
Lead (µg/L)	1	<1	<1	<1	-0.5	<0.5
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	1
Chromium (µg/L)	<1	<1	<1	<1	<1	1
Zinc (µg/L)	9	11	17	14	15	8
Total Inorganic Nitrogen	0.72	0.68	0.71	0.71	0.7	0.7
(mg/L)	0.08	0.06	0.06	0.09	0.1	0.1
Ammonia (mg/L)	0.08	0.00				<2
Biochemical Oxygen	<2	<2	<2	<2	<2	<2
Demand (mg-O ₂ /L)						

Remarks: 1) <= less than

TEST REPORT

36414A Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

8 of 13

Page:

Results:						
Sample ID	W1-S-R4	W1-M-R4	W1-B-R4	W2-S-R4	W2-M-R4	W2-B-R4
Sample No.	36414-73	36414-74	36414-75	36414-76	36414-77	36414-78
Cadmium (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	6	4	4	4
Nickel (µg/L)	2	2	5	3	2	2
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	9	8	51	10	9	7
Total Inorganic Nitrogen (mg/L)	0.68	0.66	0.69	0.64	0.7	0.66
Ammonia (mg/L)	0.05	0.07	0.12	0.07	0.1	0.06
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S-R4	W3-M-R4	W3-B-R4	W4-S-R4	W4-M-R4	W4-B-R4
Sample No.	36414-79	36414-80	36414-81	36414-82	36414-83	36414-84
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	2	4	5	4
Nickel (µg/L)	2	1	1	2	2	2
Lead (µg/L)	1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	<1	<1	1	11	<1	<1
Zinc (µg/L)	68	9	5	12	10	12
Total Inorganic Nitrogen (mg/L)	0.8	0.75	0.73	0.67	0.68	0.74
Ammonia (mg/L)	0.1	0.09	0.10	0.06	0.06	0.07
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414A 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

9 of 13 Page:

Regulte.

Xesuns:					1	
Sample ID	W5-S-R4	W5-M-R4	W5-B-R4	W6-S-R4	W6-M-R4	W6-B-R4
Sample No.	36414-85	36414-86	36414-87	36414-88	36414-89	36414-90
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	4	4	- 5	5	4
Nickel (µg/L)	3	2	1	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	1	<1	<1	<1	<1	<1
Zinc (µg/L)	15	14	15	118	88	15
Total Inorganic Nitrogen (mg/L)	0.72	0.7	0.76	0.68	0.73	0.78
Ammonia (mg/L)	0.06	0.1	0.10	0.05	0.09	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S-R4	W7-M-R4	W7-B-R4	W8-S-R4	W8-M-R4	W8-B-R4
Sample No.	36414-91	36414-92	36414-93	36414-94	36414-95	36414-96
Cadmium (µg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Copper (µg/L)	5	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	1	<1	<1	1	<1
Mercury (µg/L)	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
Chromium (µg/L)	<1	1	1	<1	<1	<1
Zinc (µg/L)	10	9	10	13	14	12
Total Inorganic Nitrogen (mg/L)	0.70	0.70	0.73	0.7	0.74	0.73
Ammonia (mg/L)	0.06	0.08	0.12	0.1	0.13	0.08
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414A 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page:

10 of 13

T) - ---14--

Results:						
Sample ID	W1-S-R5	W1-M-R5	W1-B-R5	W2-S-R5	W2-M-R5	W2-B-R5
Sample No.	36414-97	36414-98	36414-99	36414-100	36414-101	36414-102
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	1	2	2	2	11
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	1	<1	<1
Zinc (µg/L)	6	6	12	9	7	6
Total Inorganic Nitrogen (mg/L)	0.76	0.79	0.76	0.77	0.74	0.68
Ammonia (mg/L)	0.10	0.11	0.06	0.06	0.11	0.06
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S-R5	W3-M-R5	W3-B-R5	W4-S-R5	W4-M-R5	W4-B-R5
Sample No.	36414-103	36414-104	36414-105	36414-106	36414-107	36414-108
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	10	14	12	13	9	10
Total Inorganic Nitrogen (mg/L)	0.75	0.79	0.82	0.8	0.81	0.8
Ammonia (mg/L)	0.07	0.11	0.12	0.1	0.13	0.1
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414A Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

11 of 13 Page:

Results:	W.C. C. D.C	W5-M-R5	W5-B-R5	W6-S-R5	W6-M-R5	W6-B-R5
Sample ID	W5-S-R5		36414-111	36414-112	36414-113	36414-114
Sample No.	36414-109	36414-110			<0.5	<0.5
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5		4
Copper (µg/L)	4	4	5	4	4	4
Nickel (µg/L)	2	1	2	2	2	1
	<1	<1	<1	<1	<1	<1
Lead (μg/L)	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
Mercury (µg/L)		<1	<1	<1	<1	<1
Chromium (µg/L)	<1			6	8	6
Zinc (µg/L)	50	9	15	0		
Total Inorganic Nitrogen	0.80	0.93	0.96	0.77	0.85	0.78
(mg/L)	0.11	0.16	0.15	0.13	0.23	0.09
Ammonia (mg/L)	0.11	0.10	0.15			
Biochemical Oxygen	<2	<2	<2	<2	<2	<2
Demand (mg-O ₂ /L)	<u></u>					

g1- ID	W7-S-R5	W7-M-R5	W7-B-R5	W8-S-R5	W8-M-R5	W8-B-R5
Sample ID		36414-116	36414-117	36414-118	36414-119	36414-120
Sample No.	36414-115			<0.5	<0.5	<0.5
Cadmium (µg/L)	<0.5	<0.5	<0.5		4	4
Copper (µg/L)	6	4	3	4		2
Nickel (µg/L)	2	2	2	2	2	
	<1	<1	<1	1	<1	<1
Lead (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Mercury (μg/L)		<1	<1	<1	<1	<1
Chromium (µg/L)	<1		10	7	25	23
Zinc (µg/L)	28	6	10			
Total Inorganic Nitrogen	0.84	0.83	0.8	0.78	0.89	0.85
(mg/L)	V.0-			0.00	0.14	0.16
Ammonia (mg/L)	0.13	0.12	0.1	0.06	0.14	0.10
Biochemical Oxygen	<2	<2	<2	<2	<2	<2
Demand (mg-O ₂ /L)	<2					

Remarks: 1) <= less than

TEST REPORT

36414A Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

12 of 13

Results:		WI M DC	W1-B R6	W2-S R6	W2-M R6	W2-B R6
Sample ID	W1-S R6	W1-M R6			36414-125	36414-126
Sample No.	36414-121	36414-122	36414-123	36414-124		<0.5
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	
Copper (µg/L)	4	4	4	4	4	4
Nickel (µg/L)	3	2	5	2	3	2
Lead (μg/L)	<1	1	1	<1	1	<1
	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Mercury (μg/L)	<1	1	<1	<1	<1	<1
Chromium (µg/L)	7	12	323	15	116	6
Zinc (µg/L)	<u> </u>	12			0.75	0.91
Total Inorganic Nitrogen	0.83	0.82	0.78	0.76	0.75	0.81
(mg/L)	0.12	0.14	0.12	0.12	0.07	0.13
Ammonia (mg/L)	0.13	0.14	0.12	+		
Biochemical Oxygen	<2	<2	<2	<2	<2	<2

- 1 II)	W3-S-R6	W3-M-R6	W3-B-R6	W4-S-R6	W4-M-R6	W4-B-R6
Sample ID	36414-127	36414-128	36414-129	36414-130	36414-131	36414-132
Sample No.			<0.5	<0.5	<0.5	< 0.5
Cadmium (µg/L)	<0.5	<0.5		4	4	4
Copper (µg/L)	8	7	4	2	1	2
Nickel (µg/L)	3	2	1	2	- 1	<1
Lead (µg/L)	<1	<1	<1	1	<1	
Mercury (μg/L)	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Chromium (µg/L)	<1	<1	<1	11	<1	<1
Zinc (µg/L)	36	37	10	13	6	9
Total Inorganic Nitrogen	0.84	0.80	0.85	0.80	0.81	0.82
(mg/L) Ammonia (mg/L)	0.14	0.10	0.15	0.09	0.13	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	. <2	<2	<2	<2	<2

Remarks: 1) \leq = less than

Demand (mg-O₂/L)

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414A Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

13 of 13 Page:

Results:	N/C C D C	W5-M-R6	W5-B-R6	W6-S-R6	W6-M-R6	W6-B-R6
Sample ID	W5-S-R6			36414-136	36414-137	36414-138
Sample No.	36414-133	36414-134	36414-135		<0.5	<0.5
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5		3
Copper (µg/L)	4	4	4	4	4	1
Nickel (µg/L)	2	2	1	2	2	1.
1 2	<1	<1	<1	<1	<1	<1
Lead (µg/L)	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5
Mercury (μg/L)	<1	<1	<1	<1	1	11
Chromium (μg/L)		21	7	8	11	17
Zinc (µg/L)	23	21	 '			0.00
Total Inorganic Nitrogen	0.84	0.90	0.78	0.85	0.87	0.90
(mg/L)	ļ	0.21	0.13	0.11	0.17	0.18
Ammonia (mg/L)	0.15	0.21	0.13	0.11		
Biochemical Oxygen	<2	<2	<2	<2	<2	<2
Demand (mg-O ₂ /L)		<u> </u>	<u></u>			

	W7-S-R6	W7-M-R6	W7-B-R6	W8-S-R6	W8-M-R6	W8-B-R6
Sample ID		36414-140	36414-141	36414-142	36414-143	36414-144
Sample No.	36414-139			<0.5	<0.5	<0.5
Cadmium (µg/L)	<0.5	<0.5	<0.5	4	3	4
Copper (µg/L)	4	4	4		2	1
Nickel (µg/L)	2	2	2	2		<1
Lead (µg/L)	<1	<1	<1	<1	<1	
Mercury (µg/L)	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5
	<1	<1	<1	<1	<1	<1
Chromium (µg/L)	10	9	12	6	11	7
Zinc (µg/L)	10	+		0.00	0.80	0.79
Total Inorganic Nitrogen	0.77	0.83	0.86	0.80	0.80	0.75
(mg/L)	0.00	0.12	0.18	0.10	0.13	0.09
Ammonia (mg/L)	0.09	0.12	0.10			<2
Biochemical Oxygen	<2	<2	<2	<2	<2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Demand (mg-O ₂ /L)						

Remarks: 1) <= less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 36414B Date of Issue: 2022-03-22 Date Received: 2022-03-11 Date Tested: 2022-03-11 Date Completed: 2022-03-22

ATTN:

Mr. Cyrus Fung

1 of 3 Page:

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 36414B Sampling Date: 2022-03-11

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli	1 cfu/100mL

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax :2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414B
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page:

2 of 3

Results.

Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)	Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)
W	26414.1		W5-M R2	36414-38	10
W1-S R1	36414-1	21			12
W1-MR1	36414-2	17	W5-B R2	36414-39	
W1-B R1	36414-3	24	W6-S R2	36414-40	14
W2-S R1	36414-4	14	W6-M R2	36414-41	11
W2-M R1	36414-5	15	W6-B R2	36414-42	12
W2-B R1	36414-6	20	W7-S R2	36414-43	18
W3-S R1	36414-7	30	W7-M R2	36414-44	21
W3-M R1	36414-8	29	W7-B R2	36414-45	25
W3-B R1	36414-9	24	W8-S R2	36414-46	13
W4-S R1	36414-10	24	W8-M R2	36414-47	21
W4-M R1	36414-11	31	W8-B R2	36414-48	23
W4-B R1	36414-12	46	W1-S R3	36414-49	22
W5-S R1	36414-13	57	W1-M R3	36414-50	25
W5-M R1	36414-14	54	W1-B R3	36414-51	18
W5-B R1	36414-15	46	W2-S R3	36414-52	24
W6-S R1	36414-16	30	W2-M R3	36414-53	37
W6-M R1	36414-17	36	W2-B R3	36414-54	39
W6-B R1	36414-18	35	W3-S R3	36414-55	16
W7-S R1	36414-19	14	W3-M R3	36414-56	15
W7-M R1	36414-20	14	W3-B R3	36414-57	22
W7-B R1	36414-21	19	W4-S R3	36414-58	25
W8-S R1	36414-22	11	W4-M R3	36414-59	20
W8-M R1	36414-23	20	W4-B R3	36414-60	34
W8-B R1	36414-24	17	W5-S R3	36414-61	70
W1-S R2	36414-25	10	W5-M R3	36414-62	77
W1-M R2	36414-26	15	W5-B R3	36414-63	68
W1-B R2	36414-27	11	W6-S R3	36414-64	48
W2-S R2	36414-28	10	W6-M R3	36414-65	54
W2-M R2	36414-29	15	W6-B R3	36414-66	47
W2-B R2	36414-30	14	W7-S R3	36414-67	57
W3-S R2	36414-31	15	W7-M R3	36414-68	44
W3-M R2	36414-32	16	W7-B R3	36414-69	40
W3-W1 R2	36414-33	15	W8-S R3	36414-70	72
W4-S R2	36414-34	10	W8-M R3	36414-71	70
W4-5 R2 W4-M R2	36414-35	11	W8-B R3	36414-72	62
W4-M R2	36414-36	7	W1-S R4	36414-73	51
W4-B R2 W5-S R2	36414-37	13	W1-M R4	36414-74	51

Remarks: 1) < = less than

TEST REPORT

36414B Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

3 of 3

Results:		E.coli	Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)
Sample ID	Sample No.	(cfu/100mL)		36414-110	66
W(1 D D 4	36414-75	57	W5-M R5	36414-111	48
W1-B R4	36414-76	48	W5-B R5	36414-112	40
W2-S R4	36414-77	44	W6-S R5	36414-113	34
W2-M R4	36414-78	31	W6-M R5	36414-114	34
W2-B R4 W3-S R4	36414-79	50	W6-B R5	36414-115	50
	36414-80	39	W7-S R5	36414-116	45
W3-M R4 W3-B R4	36414-81	32	W7-M R5	36414-117	37
W4-S R4	36414-82	41	W7-B R5	36414-118	38
W4-3 R4 W4-M R4	36414-83	44	W8-S R5	36414-119	47
W4-M R4 W4-B R4	36414-84	37	W8-M R5	36414-120	52
W4-B R4	36414-85	48	W8-B R5	36414-121	30
W5-M R4	36414-86	38	W1-S R6	36414-122	42
W5-B R4	36414-87	37	W1-M R6	36414-123	26
W6-S R4	36414-88	37	W1-B R6 W2-S R6	36414-124	37
W6-M R4		53	W2-5 R6	36414-125	61
W6-B R4	- C11 1 00	52	W2-M R6	36414-126	63
W7-S R4		47	W2-B R0 W3-S R6	36414-127	43
W7-M R4		65	W3-M R6	36414-128	50
W7-B R4		55	W3-W R6	36414-129	53
W8-S R4		58	W4-S R6	36414-130	34
W8-M R4	0.	51	W4-M R6	1111101	33
W8-B R4	36414-96	51	W4-W R6	1111110	39
W1-S R5		43	W4-B R0	- 1111122	46
W1-MR	111100	31	W5-M R6	- 101	40
W1-BR	5 36414-99	48	W5-B R6		49
W2-S R	5 36414-100	42	W6-S R6	11111106	57
W2-MR	36414-101	40	W6-M R		43
W2-BR	36414-102		W6-B R		57
W3-S R	36414-103		W7-S R		36
W3-M I	36414-104	41	W7-M R	6 36414-140	37
W3-B F	36414-105		W7-B R		32
W4-S F	36414-106		W8-S R	6 36414-142	
W4-M	R5 36414-107		W8-M F	36414-143	50
W4-B	R5 36414-108		W8-B R		
W5-S	R5 36414-109	9			

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

SUEZ NWS Limited APPLICANT:

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

1 of 25 Page:

ATTN:

Mr. Cyrus Fung

144 liquid samples as received from customer said to be seawater Sample Description :

36414C Laboratory No. : Sampling Date : 2022-03-11

-4 D a	quested & Methodology:		Limit of Reporting
tem	Parameters	Ref. Method In-house method SOP 087 (GC/MSD)	0.1 μg/L
tem	Naphthalene (NAP)	In-house method SOF 087 (German)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
<u>,</u> 4	Fluorene (FLU)		0.1 μg/L
 -	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)	_	0.1 μg/L
7	Fluoranthene (FLT)	_	0.1 μg/L
8	Benzo(a)Anthracene (BaA)	-	0.1 μg/L
9	Chrysene (CHR)	-	0.1 μg/L
10	Pyrene (PYR)	_	0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)	_	0.1 μg/L
12	Benzo(a)Pyrene (BaP)	_	0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)	_	0.1 μg/L
14	Indeno(1, 2,3-cd)pyrene (IPY)	-	0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		*******

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

2 of 25 Page:

esults:	W1-S R1	W1-M R1	W1-B R1	W2-S R1	W2-M R1	W2-B R1
Sample ID	36414-1	36414-2	36414-3	36414-4	36414-5	30414-0
Sample No. Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	V0.1		<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1		<0.1	<0.1
Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	
(ANA), µg/L Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), µg/L Phenanthrene		<0.1	<0.1	<0.1	<0.1	<0.1
(PHE) , μg/L	<0.1		<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1			<0.1	<0.1
Fluoranthene	< 0.1	<0.1	<0.1	<0.1		.0.1
(FLT), μg/L Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L			<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1		-0.1	<0.1	<0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1		
(BbF), μg/L Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L			<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1			<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L Remarks: 1) <= less than ************************************	<0.1	<0.1	<0.1	<0.1		

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414C
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
Date compress	3 of 25

3 of 25 Page:

esults:	W3-S R1	W3-M R1	W3-B R1	W4-S R1	W4-M R1	W4-B R1
Sample ID	36414-7	36414-8	36414-9	36414-10	36414-11	36414-12
Sample No. Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), μg/L Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU) , μg/L Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE) , μg/L Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , µg/L Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), µg/L Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

TEST REPORT

Report No.: 36414C 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

4 of 25 Page:

Results:				6		
Sample ID	W5-S R1	W5-M R1	W5-B R1	W6-S R1	W6-M R1	W6-B R1
Sample No.	36414-13	36414-14	36414-15	36414-16	36414-17	36414-18
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414C
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 5 of 25

Dogultor

Results:					*****	THE D D I
Sample ID	W7-S R1	W7-M R1	W7-B R1	W8-S R1	W8-M R1	W8-B R1
Sample No.	36414-19	36414-20	36414-21	36414-22	36414-23	36414-24
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: Date Received: 2022-03-11 Date Tested: 2022-03-11 Date Completed: 2022-03-22

6 of 25

Page:

Results:				rugo.	·	01.20
Sample ID	W1-S R2	W1-M R2	W1-B R2	W2-S R2	W2-M R2	W2-B R2
Sample No.	36414-25	36414-26	36414-27	36414-28	36414-29	36414-30
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed: 7 of 25

Page:

W3-S R2 36414-31 <0.1 <0.1	W3-M R2 36414-32 <0.1	W3-B R2 36414-33 <0.1	36414-34 <0.1	36414-35	36414-36 <0,1
<0.1	<0.1			<0.1	<0.1
				-0.1	<0.1
<0.1		<0.1	<0.1	<0.1	<0.1
1			<0.1	<0.1	<0.1
<0.1				<0.1	<0.1
<0.1	<0.1	<0.1			<0.1
< 0.1	<0.1	<0.1	<0.1		
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	<0.1	<0.1	<0.1	<0.1	<0.1
		<0.1	<0.1	<0.1	<0.1
	-		<0.1	<0.1	<0.1
<0.1	 			<0.1	<0.1
<0.1	<0.1	<0.1			<0.1
<0.1	<0.1	<0.1	<0.1		
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1	<0.1

TEST REPORT

Report No.: 36414C Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page:

8 of 25

_				
12	ΩØ	11	11	٠.

Results: Sample ID	W5-S R2	W5-M R2	W5-B R2	W6-S R2	W6-M R2	W6-B R2
Sample No.	36414-37	36414-38	36414-39	36414-40	36414-41	36414-42
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414C 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

Page:

9 of 25

5	es	41	h	te	

Results:						
Sample ID	W7-S R2	W7-M R2	W7-B R2	W8-S R2	W8-M R2	W8-B R2
Sample No.	36414-43	36414-44	36414-45	36414-46	36414-47	36414-48
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	\0.1	٠٥.1	-0.1		V.1.	
Acenaphthylene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
(ANY), µg/L						
Acenaphthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), μg/L Phenanthrene						
Phenanurene (PHE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene						0.4
(ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene				.0.1	-0.1	c0 1
(FLT), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	40.1	z0.1	<0.1	< 0.1	<0.1	<0.1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L	\0.1	VO.1	30.1	10.1		V.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR) , μg/L	10.1	-0.1				
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(BbF) , μg/L	***					
Benzo(a)Pyrene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BaP), μg/L						
Benzo(k) Fluoranthene	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(BkF), μg/L						
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(IPY), μg/L Dibenz(a,h)anthracene						†
(DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene			.0.1	-0.1	-0.1	<0.1
(BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(D. 2), PO E			1			

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page:

10 of 25

	W1 M D2	W1-B R3	W2-S R3	W2-M R3	W2-B R3
				36414-53	36414-54
36414-49	36414-50	36414-31			<0.1
< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			<0.1	<0.1	<0.1
< 0.1	<0.1	<0.1	<0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		-0.1	<0.1	<0.1	<0.1
<0.1	<0.1	<0.1	VO.1		
	c0 1	<0.1	<0.1	<0.1	< 0.1
<0.1	<0.1	V0.1	-0.1		-
-0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1	V.1	10.7		-	1
<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
V.1					1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VO.1		 	+	1	-0.1
<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
		1		.0.1	<0.1
<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
			-	-0.1	<0.1
< 0.1	< 0.1	<0.1	<0.1	V.1	
			c0.1	<0.1	<0.1
<0.1	<0.1	<0.1	<0.1	10.1	
		<0.1	<0.1	<0.1	< 0.1
<0.1	<0.1	<0.1	<0.1		
	10.1	<0.1	<0.1	<0.1	< 0.1
<0.1	<0.1	VO.1	-0.1		
.0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
<0.1	VO.1	.0.1			
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.1					
<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	36414-49 36414-50 <0.1	36414-49 36414-50 36414-51 <0.1	W1-3-163 W1-16-163 36414-50 36414-51 36414-52 <0.1	W1-S R3 W1-M R3 W1-B R5 W2-18-12 36414-52 36414-53 36414-49 36414-50 36414-51 36414-52 36414-53 <0.1

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB 腫力 consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 11 of 25

3 No.						
Results:	W3-S R3	W3-M R3	W3-B R3	W4-S R3	W4-M R3	W4-B R3
Sample ID Sample No.	36414-55	36414-56	36414-57	36414-58	36414-59	36414-60
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), µg/L Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), µg/L Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

12 of 25

				0		
Results:	W5-S R3	W5-M R3	W5-B R3	W6-S R3	W6-M R3	W6-B R3
Sample ID	36414-61	36414-62	36414-63	36414-64	36414-65	36414-66
Sample No. Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY) , μg/L Acenaphthene			<0.1	<0.1	<0.1	<0.1
(ANA) , μg/L	<0.1	<0.1				<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L Pyrene	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L Dibenz(a,h)anthracene		<0.1	<0.1	<0.1	<0.1	<0.1
(DBA) , μg/L	<0.1			<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	< 0.1	<0.1	<0.1	<0.1	V.1	

Remarks: 1) <= less than

(BPE), $\mu g/L$

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414C Report No.: Date of Issue: 2022-03-22 Date Received: 2022-03-11 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page:

13 of 25

Doculte.

Naphthalene NAP), μg/L Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene ANA), μg/L Anthracene ANA), μg/L Anthracene ANA, μg/L	Results:						
Naphthalene NAP), μg/L Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Acenaphth	Sample ID	W7-S R3	W7-M R3	W7-B R3	W8-S R3	W8-M R3	W8-B R3
(NAP), µg/L Acenaphthylene (ANY), µg/L Acenaphthylene (ANNA), µg/L Fluorene (FLU), µg/L Acenaphthene (ANNA), µg/L Fluorene (FLU), µg/L Anthracene (ANT), µg/L Fluoranthene (ANT), µg/L Fluoranthene (ANT), µg/L Fluoranthene (BaA), µg/L Chrysene (CHR), µg/L Chrysene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (CHR), µg/L Chrysene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (CHR), µg/L Fluoranthene (CHR), µg/L Chrysene (CHR), µg/L Fluoranthene (BoF), µg/L Fluoranthene (BoF), µg/L Fluoranthene (BoF), µg/L Fluoranthene (BoR), µg/L Fluoranthene (FVR), µg/L	Sample No.	36414-67	36414-68	36414-69	36414-70	36414-71	36414-72
(NAP), μg/L Acenaphthylene ACenaphthylene ACenaphthylene ACenaphthylene ACenaphthene ANA), μg/L Acenaphthylene Ace	Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L Acenaphthene (ANA), μg/L Fluorene (FLU), μg/L Phenanthrene (PHE), μg/L Anthracene (ANT), μg/L Fluoranthene (ANT), μg/L Phenanthrene (PHE), μg/L Anthracene (ANT), μg/L Fluoranthene (ANT), μg/L Senzo(a)Anthracene (BAA), μg/L Phenanthrene (O.1			371				
Acenaphthene (ANA), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(ANA), μg/L Fluorene (FLU), μg/L Phenanthrene (PHE), μg/L Anthracene (ANT), μg/L Fluoranthene (FLT), μg/L Fluoranthene (FLT), μg/L Chrysene (CHR), μg/L Pyrene (CHR), μg/L Pyrene (PYR), μg/L Pyrene (BaP), μg/L Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1							****
Fluorene (FLU), µg/L Phenanthrene (PHE), µg/L Anthracene (ANT), µg/L Fluoranthene (CANT), µg/L Fluoranthene (ANT), µg/L Benzo(a)Anthracene (BaA), µg/L Chrysene (CHR), µg/L Pyrene (CHR), µg/L Benzo(b)Fluoranthene (BoF), µg/L Benzo(a)Pyrene (BaP), µg/L Chrysene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Bornanthene (Bornanthene (Bornanthene (Anthracene (Bornanthene (Bornanthene (Bornanthene (Bornanthene (Anthracene (Bornanthene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Anthracene (Bornanthene (Bornanthene (Anthracene (Bornanthene (B	•	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), μg/L Phenanthrene (PHE), μg/L Anthracene (ANT), μg/L Chrysene (CHR), μg/L Pyrene (PYR), μg/L Chrysene (PYR						0.4	.0.1
Phenanthrene (PHE) , μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th< td=""><td></td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></th<>		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), μg/L Anthracene (ANT), μg/L Fluoranthene (FLT), μg/L Senzo(a)Anthracene (BaA), μg/L Chrysene (CHR), μg/L Pyrene (PYR), μg/L Senzo(b)Fluoranthene (BbF), μg/L Senzo(k)Fluoranthene (BaP), μg/L Constant con	Phenanthrene	ر 0 1	-0.1	-O 1	<0.1	<0.1	<0.1
(ANT), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	(PHE), μg/L	<0.1	<0.1	<0.1	<0.1	~0.1	\0.1
(ANT), µg/L Fluoranthene (FLT), µg/L Benzo(a)Anthracene (BaA), µg/L Chrysene (CHR), µg/L Pyrene (PYR), µg/L Benzo(b)Fluoranthene (BbF), µg/L Benzo(a)Pyrene (BaP), µg/L Co.1	Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		\0.1	70.1	30.1	-0.1	-0.1	
Benzo(a)Anthracene Co.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	` '	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
(CHR), μg/L CO.1	1 2 2						
Pyrene (PYR), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td></td> <td>< 0.1</td> <td>< 0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>		< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1							
Benzo(b)Fluoranthene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), µg/L Benzo(a)Pyrene (BaP), µg/L Benzo(k) Fluoranthene (BkF), µg/L Indeno(1,2,3-cd)pyrene (IPY), µg/L Dibenz(a,h)anthracene (DBA), µg/L Benzo(g,h,i)Perylene (0.1 		c0.1	-0.1	<0.1	-0.1	40.1	<0.1
(BaP), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	<0.1	\0.1	\0.1	\0.1
(BaP), µg/L Benzo(k) Fluoranthene (BkF), µg/L Indeno(1,2,3-cd)pyrene (IPY), µg/L Dibenz(a,h)anthracene (DBA), µg/L Benzo(g,h,i)Perylene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		\0.1	\0.1	·0.1	10.1	10.1	
(BkF), µg/L Indeno(1,2,3-cd)pyrene (IPY), µg/L Dibenz(a,h)anthracene (DBA), µg/L Benzo(g,h,i)Perylene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	` ′	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(IPY), μg/L		0.1				V11	
Dibenz(a,h)anthracene (DBA), μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(DBA), µg/L							
Benzo(g,h,i)Perylene <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
							^.
(BPE) . U9/L	(BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq less than

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page:

14 of 25

Results: W2-B R4 W2-M R4 W1-B R4 W2-S R4 W1-M R4 W1-S R4 Sample ID 36414-77 36414-78 36414-76 36414-75 36414-74 36414-73 Sample No. < 0.1 < 0.1Naphthalene < 0.1 < 0.1 < 0.1 < 0.1 (NAP), μg/L < 0.1 < 0.1 < 0.1 Acenaphthylene < 0.1 < 0.1 < 0.1 (ANY), µg/L < 0.1 < 0.1 < 0.1 Acenaphthene < 0.1 < 0.1 < 0.1 (ANA), $\mu g/L$ < 0.1 < 0.1 Fluorene < 0.1 < 0.1 < 0.1 < 0.1 (FLU), µg/L < 0.1 < 0.1 Phenanthrene < 0.1 < 0.1 < 0.1 < 0.1 (PHE), $\mu g/L$ < 0.1 < 0.1 Anthracene < 0.1 < 0.1 < 0.1 < 0.1 (ANT), $\mu g/L$ < 0.1 < 0.1 < 0.1 Fluoranthene < 0.1 < 0.1 < 0.1 (FLT), µg/L < 0.1 < 0.1 Benzo(a)Anthracene < 0.1 < 0.1 < 0.1 < 0.1 (BaA), μg/L < 0.1 < 0.1 Chrysene < 0.1 < 0.1 < 0.1 < 0.1 (CHR), µg/L < 0.1 < 0.1 Pyrene < 0.1 < 0.1 < 0.1 < 0.1 (PYR), $\mu g/L$ < 0.1 < 0.1 < 0.1 Benzo(b)Fluoranthene < 0.1 < 0.1 < 0.1 (BbF), µg/L < 0.1 < 0.1 Benzo(a)Pyrene < 0.1 < 0.1 < 0.1 < 0.1 (BaP), μg/L < 0.1 < 0.1 Benzo(k) Fluoranthene < 0.1 < 0.1 < 0.1 < 0.1 (BkF), μg/L < 0.1 < 0.1 Indeno(1,2,3-cd)pyrene < 0.1 < 0.1 < 0.1 < 0.1 (IPY), $\mu g/L$ < 0.1 < 0.1 Dibenz(a,h)anthracene < 0.1 < 0.1 < 0.1 < 0.1 (DBA), µg/L < 0.1 < 0.1 < 0.1 Benzo(g,h,i)Perylene < 0.1 < 0.1 < 0.1 (BPE), $\mu g/L$

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB 腫力 consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 15 of 25

D	ΔΘ	*1	14	•

Results:	17/2 C D 4	W3-M R4	W3-B R4	W4-S R4	W4-M R4	W4-B R4
Sample ID	W3-S R4		36414-81	36414-82	36414-83	36414-84
Sample No.	36414-79	36414-80	30414-81	30414-02		
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(NAP), μg/L						
Acenaphthylene	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L Acenaphthene				.0.1	<0.1	<0.1
(ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
Fluorene		.0.1	-0.1	<0.1	<0.1	<0.1
(FLU), µg/L	< 0.1	<0.1	<0.1	\0.1	<0.1	
Phenanthrene	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), µg/L	<0.1	V0.1	\0.1	30.1		
Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANT), μg/L	\\0.1	30.1				
Fluoranthene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(FLT) , μg/L	-0.1					
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L			1			
Chrysene	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(CHR) , μg/L						<0.1
Pyrene	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene			1	-0.1	<0.1	<0.1
(BbF), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	\\0.1
Benzo(a)Pyrene		-0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	<0.1	<0.1	<0.1	V0.1	10.1	
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BkF), µg/L	<0.1	<u></u>	-0.1			
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	×0.1					+
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA) , μg/L						
Benzo(g,h,i)Perylene	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
(BPE) , μg/L						

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

16 of 25

esults: Sample ID	W5-S R4	W5-M R4	W5-B R4	W6-S R4	W6-M R4	W6-B R4
Sample No.	36414-85	36414-86	36414-87	36414-88	36414-89	36414-90
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), µg/L Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), µg/L Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), µg/L Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), µg/L Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L Benzo(a)Anthracene (BaA) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than *************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414C Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22 17 of 25

Page:

Results:	W/7 0 D4	W7-M R4	W7-B R4	W8-S R4	W8-M R4	W8-B R4
Sample ID	W7-S R4	36414-92	36414-93	36414-94	36414-95	36414-96
Sample No.	36414-91	36414-92			40.1	<0.1
Naphthalene	< 0.1	<0.1	<0.1	<0.1	<0.1	V0.1
(NAP), μg/L			0.4	<0.1	<0.1	<0.1
Acenaphthylene	< 0.1	<0.1	<0.1	<0.1	VO.1	
(ANY), μg/L			<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	< 0.1	<0.1	<0.1	VO.1		
Fluorene	.0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), µg/L	<0.1	<0.1	-0.1			
Phenanthrene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(PHE), µg/L	<0.1	10.1				
Anthracene	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
(ANT), μg/L	-0.1		 	1		<0.1
Fluoranthene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L	·				<0.1	<0.1
Benzo(a)Anthracene	< 0.1	< 0.1	<0.1	<0.1	<0.1	VO.1
(BaA) , μg/L	1		-0.1	<0.1	<0.1	< 0.1
Chrysene	<0.1	<0.1	<0.1	\\ \		
(CHR), μg/L		.0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-0.1		
Benzo(b)Fluoranthene	10.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
(BbF), μg/L	<0.1	0.1				
Benzo(a)Pyrene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(BaP) , μg/L	V0.1					0.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , μg/L					-0.1	<0.1
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	<0.1	<0.1	<0.1	V0.1
(IPY) , μg/L				-0.1	<0.1	<0.1
Dibenz(a,h)anthracene	< 0.1	<0.1	<0.1	<0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(DBA), µg/L			10.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	< 0.1	<0.1	<0.1	<0.1		
(BPE) , μg/L						

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 18 of 25

Results:				Ü		
Sample ID	W1-S R5	W1-M R5	W1-B R5	W2-S R5	W2-M R5	W2-B R5
Sample No.	36414-97	36414-98	36414-99	36414-100	36414-101	36414-102
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L						
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L Acenaphthene						
(ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), μg/L	~0.1	70.1	30.1	10.1		311
Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE) , μg/L						
Anthracene	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
(ANT), µg/L Fluoranthene					.0.1	-0.1
(FLT), µg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L	V 0.1	\0.1	\0.1	-0.1	10.1	
Chrysene	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(CHR) , μg/L						
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(PYR), μg/L Benzo(b)Fluoranthene						.0.1
(BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP) , μg/L	V.1	-0.1	-0.1	-0.1		011
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L				,		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L Dibenz(a,h)anthracene					-0.1	-0.1
(DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE), μg/L	~0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70.1	70.1	10.1	-011

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 19 of 25

Results:						
Sample ID	W3-S R5	W3-M R5	W3-B R5	W4-S R5	W4-M R5	W4-B R5
Sample No.	36414-103	36414-104	36414-105	36414-106	36414-107	36414-108
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	\0.1	-0.1	-0.1	-011		
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANY), μg/L						
Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), μg/L						
Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), µg/L Anthracene						
(ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene					-0.1	-0.1
(FLT), μg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene		-0.1	c0.1	<0.1	<0.1	<0.1
(BaA), µg/L	<0.1	<0.1	<0.1	<0.1	\0.1	\0.1
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L	<0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V0.1	\U.1	\0.1	
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	₹0.1	30.1	30.1	-0.1		
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BbF) , μg/L	-0.1	.0.1				
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP) , μg/L						
Benzo(k) Fluoranthene	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1
(BkF), μg/L	V					
Indeno(1,2,3-cd)pyrene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(IPY), μg/L		-				
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L Benzo(g,h,i)Perylene		-	+			
(BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DFE), µg/L	1					<u> </u>

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414C Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

20 of 25 Page:

Results:						
Sample ID	W5-S R5	W5-M R5	W5-B R5	W6-S R5	W6-M R5	W6-B R5
Sample No.	36414-109	36414-110	36414-111	36414-112	36414-113	36414-114
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(NAP), μg/L	~0.1	\0. 1	٠٠.١	١٥.1	.0.1	
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANY), μg/L	-0.1	V.1				
Acenaphthene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANA) , μg/L						
Fluorene	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(PHE) , μg/L						
Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L						
Fluoranthene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(FLT), μg/L Benzo(a)Anthracene						
(BaA), μg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Chrysene						
(CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene						
(PYR), μg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene		.0.1			r0 1	-0.1
(BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	-0.1	-0.1	-O 1	<0.1	<0.1	<0.1
(BaP), µg/L	<0.1	<0.1	<0.1	<0.1	\0.1	\0.1
Benzo(k) Fluoranthene	-O 1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L	<0.1	<0.1	\\0.1	\0.1	\0.1	VO.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	V.1	VO.1	\0.1	\0.1	30.1	10.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L	~0.1	~0.1	-0.1	-0.1	-0.1	
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , μg/L	1			I	<u></u>	1

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414C Report No.: Date of Issue: 2022-03-22 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

21 of 25 Page:

Results:						
Sample ID	W7-S R5	W7-M R5	W7-B R5	W8-S R5	W8-M R5	W8-B R5
Sample No.	36414-115	36414-116	36414-117	36414-118	36414-119	36414-120
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than *******************************

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page:

22 of 25

Results:		WILLIAM C	WI D.D.C	W2-S R6	W2-M R6	W2-B R6
Sample ID	W1-S R6	W1-M R6	W1-B R6		36414-125	36414-126
Sample No.	36414-121	36414-122	36414-123	36414-124	36414-125	30414-120
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	***					
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY) , μg/L						
Acenaphthene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA) , μg/L						
Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU), µg/L Phenanthrene						
	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), µg/L Anthracene						
	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), µg/L Fluoranthene					.0.1	c0 1
(FLT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene				.0.1	-0.1	c0 1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene		0.4	-0.1	<0.1	<0.1	<0.1
(CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Pyrene		.0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	<0.1	<0.1	<0.1	\(\) 0.1	~0.1	٦٥.1
Benzo(b)Fluoranthene	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L	<0.1	<0.1	\0.1	V.1	-0.1	-0.11
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	<0.1	VO.1	V.1	10.1		
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L	V0.1	V0,1	VO.1	10.1		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(IPY) , μg/L	· · · · · ·	10.1				
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(DBA) , μg/L	30.1					
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(BPE) , μg/L			1			<u> </u>

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB 腫力 consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 23 of 25

Results:

Results:	7710 G D C	WA MADE	W3-B R6	W4-S R6	W4-M R6	W4-B R6
Sample ID	W3-S R6	W3-M R6		36414-130	36414-131	36414-132
Sample No.	36414-127	36414-128	36414-129	30414-130	30414-131	
Naphthalene (NAP), µg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), µg/L Fluorene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLU) , μg/L Phenanthrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PHE), µg/L Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANT), μg/L Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR) , μg/L Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

TEST REPORT

Report No.: 36414C 2022-03-22 Date of Issue:

2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

Page:

24 of 25

Results: Sample ID	W5-S R6	W5-M R6	W5-B R6	W6-S R6	W6-M R6	W6-B R6
Sample No.	36414-133	36414-134	36414-135	36414-136	36414-137	36414-138
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY) , µg/L Acenaphthene (ANA) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), μg/L Fluorene (FLU), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) < = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414C 2022-03-22 Date of Issue: Date Received: 2022-03-11 2022-03-11 Date Tested: 2022-03-22 Date Completed:

25 of 25 Page:

Results:						
Sample ID	W7-S R6	W7-M R6	W7-B R6	W8-S R6	W8-M R6	W8-B R6
Sample No.	36414-139	36414-140	36414-141	36414-142	36414-143	36414-144
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 36414D Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22 Page: 1 of 49

ATTN:

Mr. Cyrus Fung

Sample Description : 144 liquid samples as received from customer said to be seawater

Laboratory No. : 36414D Sampling Date : 2022-03-11

Item	Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L
3	2,4,4'-Trichlorobiphenyl (PCB28)		0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		0.02 μg/L
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)		0.02 μg/L
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		0.02 μg/L
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		0.02 μg/L
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)		0.02 μg/L
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		0.02 μg/L
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		0.02 μg/L
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)		0.02 μg/L
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)		0.02 μg/L
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		0.02 μg/L
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		0.02 μg/L
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		0.02 μg/L
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)		0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)		0.02 μg/L
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)		0.02 μg/L
21	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)		0.02 μg/L
22	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)		0.02 μg/L
23	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)		0.02 μg/L
24	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)		0.02 μg/L
25	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)		0.02 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
Page:	2 of 49

Sample ID	W1-S R1	W1-M R1	W1-BR1
Sample No.	36414-1	36414-2	36414-3
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	<0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	<0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 3 of 49

Results:	•		
Sample ID	W2-S R1	W2-M R1	W2-B R1
Sample No.	36414-4	36414-5	36414-6
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	<0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	<0.02	<0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	<0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 4 of 49

ìe.	S1	ıŀ	fs	•

Results:		.,	
Sample ID	W3-S R1	W3-M R1	W3-B R1
Sample No.	36414-7	36414-8	36414-9
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	<0.02	< 0.02

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: Date Received: 2022-03-11 Date Tested: 2022-03-11 Date Completed: 2022-03-22

5 of 49 Page:

Results: Sample ID	W4-S R1	W4-M R1	W4-B R1
Sample No.	36414-10	36414-11	36414-12
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) < = less than**********************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

6 of 49 Page:

tesults: Sample ID	W5-S R1	W5-M R1	W5-B R1
Sample No.	36414-13	36414-14	36414-15
2.4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than ************************

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

TEST REPORT

36414D Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

7 of 49 Page:

Results:	W6-S R1	W6-M R1	W6-B R1
Sample ID	36414-16	36414-17	36414-18
Sample No. 2.4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2,3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3°,4,4°-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4°,5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
N	

Page: 8 of 49

Results:			
Sample ID	W7-S R1	W7-M R1	W7-B R1
Sample No.	36414-19	36414-20	36414-21
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

36414D Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

9 of 49 Page:

Results:	W8-S R1	W8-M R1	W8-B R1
Sample ID		36414-23	36414-24
Sample No.	36414-22		<0.02
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

4D
2-03-22
2-03-11
2-03-11
2-03-22

Page: 10 of 49

Results:			r
Sample ID	W1-S R2	W1-M R2	W1-B R2
Sample No.	36414-25	36414-26	36414-27
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66) , μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) < = less than

TEST REPORT

Report No.: 36414D Date of Issue: 2022-03-22 Date Received: 2022-03-11 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page:

11 of 49

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Results:			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample ID	W2-S R2	W2-M R2	W2-B R2
2,2',5-Trichlorobiphenyl (PCB18), µg/L 2,2',5-Trichlorobiphenyl (PCB28), µg/L 2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L 2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L 2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L 2,2',5,5'-Tetrachlorobiphenyl (PCB66), µg/L 2,2',3,5'-Tetrachlorobiphenyl (PCB66), µg/L 2,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L 2,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L 2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L 2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L 2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L 2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L 2,3',4,4',5-Pentachlorobiphenyl (PCB181), µg/L 2,2',3,4,4',5-Pentachlorobiphenyl (PCB128), µg/L 2,2',3,4,4',5-Hexachlorobiphenyl (PCB183), µg/L 2,2',3,4,4',5-Hexachlorobiphenyl (PCB156), µg/L 2,2',3,4,4',5-Hexachlorobiphenyl (PCB157), µg/L 2,3',3,4,4',5-Hexachlorobiphenyl (PCB157), µg/L 2,3',3',4,4',5-Hexachlorobiphenyl (PCB167), µg/L 2,3',3',4,4',5-Hexachlorobiphenyl (PCB167), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB167), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,4,4',5,5'-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,3',4,4',5-Hexachlorobiphenyl (PCB169), µg/L 2,2',3,4,4',5,5'-Hexachlorobiphenyl (PCB180), µg/L 2,2',3,4',5,5'-Hexachlo	Sample No.	36414-28	36414-29	36414-30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52) , μg/L	2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	<0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77) , μg/L	2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB101), µg/L	2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB118), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB118), μg/L <0.02 <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB118), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB118), μg/L <0.02 <0.02 <0.02 <0.02 <2,3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L <0.02 <0.02 <0.02 <0.02 <2,0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0	3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB18), μg/L <0.02 <0.02 <0.02 <0.02 <2.03, 4,4',5-Pentachlorobiphenyl (PCB123), μg/L <0.02 <0.02 <0.02 <0.02 <3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L <0.02 <0.02 <0.02 <0.02 <2.03, 3',4,4'-Hexachlorobiphenyl (PCB128), μg/L <0.02 <0.02 <0.02 <0.02 <2.002 <0.02 <2.002 <2.002 <2.002 <0.02 <0.02 <0.02 <2.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB128), μg/L <0.02 <0.02 <0.02 <0.02 3,3',4,4',5-Pentachlorobiphenyl (PCB128), μg/L <0.02 <0.02 <0.02 <0.02 2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L <0.02 <0.02 <0.02 <0.02 2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L <0.02 <0.02 <0.02 <0.02 2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L <0.02 <0.02 <0.02 <0.02 2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L <0.02 <0.02 <0.02 <0.02 2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L <0.02 <0.02 <0.02 2,3,3',4,4',5,5'-Hexachlorobiphenyl (PCB157), μg/L <0.02 <0.02 <0.02 2,3,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L <0.02 <0.02 <0.02 2,3,3',4,4',5,5'-Hexachlorobiphenyl (PCB169), μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5,5'-Hexachlorobiphenyl (PCB170), μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB187), μg/L <0.02 <0.02 <0.02 <0.02 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L <0.02 <0.02 <0.02 <0.02 <0.02	2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126) , μg/L <0.02 <0.02 <0.02 <2.02 <2.22',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L <0.02 <0.02 <0.02 <0.02 <2.22',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L <0.02 <0.02 <0.02 <0.02 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.22',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <2.002 <0.02 <0.02 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.22',3,4,4',5,5'-Heptachlorobiphenyl (PCB187) , μg/L <2.002 <0.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.002 <2.00	2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L <0.02 <0.02 <0.02 <2.02 <2.03,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L <0.02 <0.02 <0.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.02 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.03 <2.	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L <0.02 <0.02 <0.02 2,3,3',4,4',5-Hexachlorobiphenyl (PCB157) , μg/L <0.02 <0.02 <0.02 2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L <0.02 <0.02 <0.02 3,3',4,4',5,5'-Hexachlorobiphenyl (PCB169) , μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5'-G-Heptachlorobiphenyl (PCB187) , μg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.0	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Hexachlorobiphenyl (PCB157) , μg/L <0.02 <0.02 <0.02 2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L <0.02 <0.02 <0.02 3,3',4,4',5,5'-Hexachlorobiphenyl (PCB169) , μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (PCB170) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L <0.02 <0.02 <0.02	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L <0.02 <0.02 <0.02 3,3',4,4',5,5'-Hexachlorobiphenyl (PCB169), μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5'-Heptachlorobiphenyl (PCB187), μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L <0.02 <0.02 <0.02	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L <0.02 <0.02 <0.02 <2.2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L <0.02 <0.02 <0.02 <0.02 <2.2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L <0.02 <0.02 <0.02 <2.2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L <0.02 <0.02 <0.02 <2.2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L <0.02 <0.02 <0.02	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L <0.02 <0.02 <0.02 2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L <0.02 <0.02 <0.02 2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L <0.02 <0.02 <0.02 2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L <0.02 <0.02 <0.02	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L <0.02 <0.02 <0.02 <2,2',3,4',5,5'-G-Heptachlorobiphenyl (PCB187), µg/L <0.02 <0.02 <0.02	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , µg/L <0.02 <0.02 <0.02	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	<0.02	< 0.02
2,2,3,1,3,5,3,0 100 memorio committee (100 mem	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	<0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414D Date of Issue: 2022-03-22 2022-03-11 Date Received: Date Tested: 2022-03-11 2022-03-22 Date Completed:

12 of 49 Page:

Posulte.

Results:			
Sample ID	W3-S R2	W3-M R2	W3-B R2
Sample No.	36414-31	36414-32	36414-33
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	<0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) < = less than

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

36414D Report No.: Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: 2022-03-22 Date Completed:

13 of 49

Page:

Results:	N/4 C DO	NVA MADO	W4-B R2
Sample ID	W4-S R2	W4-M R2	
Sample No.	36414-34	36414-35	36414-36
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

14 of 49 Page:

Degultar

Results:			
Sample ID	W5-S R2	W5-M R2	W5-B R2
Sample No.	36414-37	36414-38	36414-39
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	<0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

TEST REPORT

36414D Report No.: 2022-03-22 Date of Issue: Date Received: 2022-03-11 Date Tested: 2022-03-11 Date Completed: 2022-03-22

15 of 49 Page:

Results:			WIG D DA
Sample ID	W6-S R2	W6-M R2	W6-B R2
Sample No.	36414-40	36414-41	36414-42
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 16 of 49

2	es	11	ŀ	te	

Sample ID	W7-S R2	W7-M R2	W7-B R2
Sample No.	36414-43	36414-44	36414-45
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	<0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page:

17 of 49

tesults: Sample ID	W8-S R2	W8-M R2	W8-B R2
Sample No.	36414-46	36414-47	36414-48
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB 匯力 consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 18 of 49

D	esn	lte.	

Results:			
Sample ID	W1-S R3	W1-M R3	W1-B R3
Sample No.	36414-49	36414-50	36414-51
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	< 0.02	< 0.02

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

19 of 49 Page:

Results:	_		
Sample ID	W2-S R3	W2-M R3	W2-B R3
Sample No.	36414-52	36414-53	36414-54
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	<0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

	Report No.:	36414D
	Date of Issue:	2022-03-22
	Date Received:	2022-03-11
	Date Tested:	2022-03-11
	Date Completed:	2022-03-22
- 1		

20 of 49 Page:

Results:		F	
Sample ID	W3-S R3	W3-M R3	W3-B R3
Sample No.	36414-55	36414-56	36414-57
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

21 of 49 Page:

Results:			
Sample ID	W4-S R3	W4-M R3	W4-B R3
Sample No.	36414-58	36414-59	36414-60
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 22 of 49

Results:

Sample ID	W5-S R3	W5-M R3	W5-B R3
Sample No.	36414-61	36414-62	36414-63
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	<0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L	< 0.02	<0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	<0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 23 of 49

Results: Sample ID	W6-S R3	W6-M R3	W6-B R3
Sample No.	36414-64	36414-65	36414-66
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 24 of 49

Results:		ı	
Sample ID	W7-S R3	W7-M R3	W7-B R3
Sample No.	36414-67	36414-68	36414-69
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 25 of 49

Results:			1
Sample ID	W8-S R3	W8-M R3	W8-B R3
Sample No.	36414-70	36414-71	36414-72
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	<0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 26 of 49

Results:

Results: Sample ID	W1-S R4	W1-M R4	W1-B R4
^	36414-73	36414-74	36414-75
Sample No.	<0.02	<0.02	<0.02
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L		<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02		
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	<0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 27 of 49

Results:

Results:			
Sample ID	W2-S R4	W2-M R4	W2-B R4
Sample No.	36414-76	36414-77	36414-78
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
	00.00

Page: 28 of 49

Results:	

Results: Sample ID	W3-S R4	W3-M R4	W3-B R4
Sample No.	36414-79	36414-80	36414-81
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

36414D Report No .: Date of Issue: 2022-03-22 2022-03-11 Date Received: Date Tested: 2022-03-11 2022-03-22 Date Completed:

29 of 49 Page:

Results:			r
Sample ID	W4-S R4	W4-M R4	W4-B R4
Sample No.	36414-82	36414-83	36414-84
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	<0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

ĺ	Report No.:	36414D
	Date of Issue:	2022-03-22
	Date Received:	2022-03-11
	Date Tested:	2022-03-11
	Date Completed:	2022-03-22
	70	20 -640

30 of 49 Page:

D		1	4	
к	es	11	TS	:

Sample ID	W5-S R4	W5-M R4	W5-B R4
Sample No.	36414-85	36414-86	36414-87
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than ********************************

TEST REPORT

36414D Report No.: Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

31 of 49 Page:

₹esu	

Results:			
Sample ID	W6-S R4	W6-M R4	W6-B R4
Sample No.	36414-88	36414-89	36414-90
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
	22 240

Page: 32 of 49

_		•		
	65			

Sample ID	W7-S R4	W7-M R4	W7-B R4
Sample No.	36414-91	36414-92	36414-93
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

36414D Report No .: 2022-03-22 Date of Issue: Date Received: 2022-03-11 2022-03-11 Date Tested: Date Completed: 2022-03-22

33 of 49 Page:

Results:			
Sample ID	W8-S R4	W8-M R4	W8-B R4
Sample No.	36414-94	36414-95	36414-96
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105) , μg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than *********************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22
	2.1.2.10

Page: 34 of 49

Results:			
Sample ID	W1-S R5	W1-M R5	W1-B R5
Sample No.	36414-97	36414-98	36414-99
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: Date Received: 2022-03-11 2022-03-11 Date Tested: 2022-03-22 Date Completed:

35 of 49 Page:

Results:			1
Sample ID	W2-S R5	W2-M R5	W2-B R5
Sample No.	36414-100	36414-101	36414-102
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	<0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414D
2022-03-22
2022-03-11
2022-03-11
2022-03-22
36 of 49

Posulte.

Results:			T
Sample ID	W3-S R5	W3-M R5	W3-B R5
Sample No.	36414-103	36414-104	36414-105
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

Page: 37 of 49

Results: Sample ID	W4-S R5	W4-M R5	W4-B R5
Sample No.	36414-106	36414-107	36414-108
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

Posulte.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 36414D Date of Issue: 2022-03-22 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22 Page: 38 of 49

		Γ
W5-S R5	W5-M R5	W5-B R5
36414-109	36414-110	36414-111
<0.02	< 0.02	< 0.02
<0.02	< 0.02	<0.02
<0.02	< 0.02	<0.02
<0.02	< 0.02	<0.02
<0.02	< 0.02	<0.02
<0.02	< 0.02	<0.02
<0.02	<0.02	< 0.02
< 0.02	< 0.02	< 0.02
<0.02	<0.02	<0.02
< 0.02	< 0.02	< 0.02
< 0.02	<0.02	< 0.02
<0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
<0.02	<0.02	< 0.02
< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
<0.02	< 0.02	< 0.02
<0.02	< 0.02	< 0.02
< 0.02	< 0.02	< 0.02
<0.02	<0.02	< 0.02
<0.02	<0.02	<0.02
	36414-109 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	36414-109 36414-110 <0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414D Date of Issue: 2022-03-22 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

39 of 49 Page:

Results:			
Sample ID	W6-S R5	W6-M R5	W6-B R5
Sample No.	36414-112	36414-113	36414-114
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 40 of 49

Results:

Results:			
Sample ID	W7-S R5	W7-M R5	W7-B R5
Sample No.	36414-115	36414-116	36414-117
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	<0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	<0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 41 of 49

Sample ID	W8-S R5	W8-M R5	W8-B R5
Sample No.	36414-118	36414-119	36414-120
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

 WELLAB 匯力 consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 42 of 49

Results:

Sample ID	W1-S R6	W1-M R6	W1-B R6
Sample No.	36414-121	36414-122	36414-123
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: 2022-03-11 Date Received: Date Tested: 2022-03-11 Date Completed: 2022-03-22

Page: 43 of 49

Results:	·		
Sample ID	W2-S R6	W2-M R6	W2-B R6
Sample No.	36414-124	36414-125	36414-126
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77) , µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 44 of 49

Results:

Sample ID	W3-S R6	W3-M R6	W3-B R6
Sample No.	36414-127	36414-128	36414-129
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 45 of 49

Sample ID Sample No. 2,4'-Dichlorobiphenyl (PCB8), µg/L 2,2',5-Trichlorobiphenyl (PCB18), µg/L 2,4,4'-Trichlorobiphenyl (PCB28), µg/L	W4-S R6 36414-130 <0.02	W4-M R6 36414-131	W4-B R6
2,4'-Dichlorobiphenyl (PCB8), µg/L 2,2',5-Trichlorobiphenyl (PCB18) , µg/L		36414-131	
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02		36414-132
		< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	<0.02
	< 0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	<0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	<0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	<0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	<0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	<0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	<0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36414D
Date of Issue:	2022-03-22
Date Received:	2022-03-11
Date Tested:	2022-03-11
Date Completed:	2022-03-22

Page: 46 of 49

Regulter

Results:			
Sample ID	W5-S R6	W5-M R6	W5-B R6
Sample No.	36414-133	36414-134	36414-135
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	<0.02	< 0.02	<0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L			< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	<0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	<0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	<0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: 36414D 2022-03-22 Date of Issue: Date Received: 2022-03-11 Date Tested: 2022-03-11 Date Completed: 2022-03-22

47 of 49 Page:

Results:			
Sample ID	W6-S R6	W6-M R6	W6-B R6
Sample No.	36414-136	36414-137	36414-138
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	<0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	<0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	<0.02	<0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

36414D Report No.: 2022-03-22 Date of Issue: 2022-03-11 Date Received: 2022-03-11 Date Tested: Date Completed: 2022-03-22

48 of 49 Page:

Results:			
Sample ID	W7-S R6	W7-M R6	W7-B R6
Sample No.	36414-139	36414-140	36414-141
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4°,5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
$2,2^{\circ},3,4,4^{\circ},5,5^{\circ}$ -Heptachlorobiphenyl (PCB180) , μ g/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 36414D

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-22

Page: 49 of 49

Regulter

Results:		r	
Sample ID	W8-S R6	W8-M R6	W8-B R6
Sample No.	36414-142	36414-143	36414-144
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	<0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	<0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	<0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	<0.02	<0.02	<0.02

Remarks: 1) \leq = less than

APPENDIX H
LABORATORY ANALYIS RESULTS FOR
EFFLUENT MONITORING

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

36430 Report No .: 2022-03-17 Date of Issue: Date Received: 2022-03-12 Date Tested: 2022-03-12 Date Completed: 2022-03-17 Page: 1 of 1

ATTN:

Mr. Cyrus Fung

Sample Description: 1 liquid sample as received from customer said to be wastewater

Laboratory No. : 36430 Sampling Date : 2022-03-12

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

Results:

Sample ID	Sample No.	(cfu/100mL)	
Effluent	36430-1	1,500	

Remarks: 1) \leq = less than

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 36431 Date of Issue: 2022-03-22 2022-03-12 Date Received: 2022-03-12 Date Tested: Date Completed: 2022-03-22

1 of 2

ATTN:

Mr. Cyrus Fung

Page:

Sample Description :

Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : 36431 Sampling Date : 2022-03-12

Test Requested & Methodology

Item	Parameters	Ref. Method	Limit of Reporting
1	Cadmium	In-house method SOP039 (ICP/MS)	0.5 μg/L
2	Copper		1 μg/L
3	Nickel		l μg/L
4	Lead		1 μg/L
5	Mercury		0.5 μg/L
6	Chromium		1 μg/L
8	Zine		1 μg/L
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonia	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
11	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg-O ₂ /L
12	Suspended Solids (SS) dried at 103-105°C	APHA 17ed 2540 D	2.5 mg/L
13	pH value at 25°C	APHA 19ed 4500-H ⁺ B	2.0-12.0 pH unit
14	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

TEST REPORT

36431 Report No.: 2022-03-22 Date of Issue: 2022-03-12 Date Received: Date Tested: 2022-03-12 Date Completed: 2022-03-22

Page: 2 of 2

Results.

Resuits:	
Sample ID	Effluent
Sample No.	36431-1
Cadmium (µg/L)	<0.5
Copper (µg/L)	7
Nickel (μg/L)	10
Lead (μg/L)	<1
Mercury (µg/L)	0.5
Chromium (µg/L)	2
Zinc (µg/L)	60
Total Inorganic Nitrogen (mg/L)	25
Ammonia (mg/L)	25
Biochemical Oxygen Demand (mg-O ₂ /L)	44
Suspended Solids dried at 103-105°C	29
(mg/L)	
pH value at 25°C (pH unit)	7.2
E.coli (cfu/100mL)	80,000

Remarks: 1) \leq less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 36431A 2022-03-22 Date of Issue: Date Received: 2022-03-12 Date Tested: 2022-03-12 Date Completed: 2022-03-22

1 of 2

ATTN:

Mr. Cyrus Fung

Page:

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : 36431A Sampling Date : 2022-03-12

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L
3	2,4,4'-Trichlorobiphenyl (PCB28)		0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		0.02 μg/L
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)		0.02 μg/L
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		0.02 μg/L
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		0.02 μg/L
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)		0.02 μg/L
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		0.02 μg/L
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		0.02 μg/L
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)		0.02 μg/L
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)		0.02 μg/L
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		0.02 μg/L
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		0.02 μg/L
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		0.02 μg/L
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)	_	0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)		0.02 μg/L
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)		0.02 μg/L
21	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)		0.02 μg/L
22	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)		0.02 μg/L
23	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)		0.02 μg/L
24	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)		0.02 μg/L
25	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)		0.02 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

Report No.: 36431A Date of Issue: 2022-03-22 Date Received: 2022-03-12 2022-03-12 Date Tested: Date Completed: 2022-03-22

2 of 2 Page:

Sample ID	Effluent
Sample No.	36431-1
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02

Remarks: 1) \leq less than

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 36431B Date of Issue: 2022-03-22 2022-03-12 Date Received: 2022-03-12 Date Tested: Date Completed: 2022-03-22

ATTN:

Mr. Cyrus Fung

1 of 2 Page:

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : 36431B Sampling Date : 2022-03-12

Test Requested & Methodology

Item	Parameters	Ref. Method	Limit of Reporting
1	Naphthalene (NAP)	In-house method SOP 087 (GC/MSD)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
4	Fluorene (FLU)		0.1 μg/L
5	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)		0.1 μg/L
7	Fluoranthene (FLT)		0.1 μg/L
8	Benzo(a)Anthracene (BaA)		0.1 μg/L
9	Chrysene (CHR)		0.1 μg/L
10	Pyrene (PYR)		0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)		0.1 μg/L
12	Benzo(a)Pyrene (BaP)		0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)		0.1 μg/L
14	Indeno(1,2,3-cd)pyrene (IPY)		0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		0.1 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

General Manager

TEST REPORT

 Report No.:
 36431B

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-12

 Date Tested:
 2022-03-12

 Date Completed:
 2022-03-22

Page: 2 of 2

Results:

Kesuris.	
Sample ID	Effluent
Sample No.	36431-1
Naphthalene (NAP), µg/L	<0.1
Acenaphthylene (ANY), μg/L	<0.1
Acenaphthene (ANA), µg/L	<0.1
Fluorene (FLU), µg/L	<0.1
Phenanthrene (PHE), µg/L	<0.1
Anthracene (ANT), µg/L	<0.1
Fluoranthene (FLT), µg/L	<0.1
Benzo(a)Anthracene(BaA), μg/L	<0.1
Chrysene (CHR), µg/L	<0.1
Pyrene(PYR), µg/L	< 0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1
Indeno(1,2,3-cd)pyrene (IPY), µg/L	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	<0.1

Remarks: 1) <= less than

APPENDIX I TOXICITY TESTING RESULT

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22
Page:	1 of 13

ATTN:

Mr. Cyrus Fung

Sample Description: Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

Page:

samples from Pillar Point Wastewater Treatment Plant)

Laboratory No.: 36431C

Sampling Date: Effluent water samples were collected between 2022-03-11 and 2022-03-12

Sample Received Date: 2022-03-12

Sample No.: 36431-1

Test Requested & Methodology:

Item	Parameter	Ref. Method	Limit of Reporting
I	7-Days Diatom (Skeletonema costatum) Growth Inhibition Test	EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test, February	N/A
II	48-hr Barnacle Larvae (Balanus	2009	N/A

Remarks: 1) Uncertainty is calculated as 2S.D.

2) N/A = Not Applicable

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22

Page: 2 of 13

SAMPLE INFORMATION

Sample Information, Receiving and Storage Conditions 1.1

Sample Description:	24 water	samples as received from	customer sa	id to be effluent
Sampling Date	2021-09-0	09 and 2022-03-12		
Sample Receive Date	2022-03-			
Sample Pretreatment		samples were composited	l in Wellab	
Sample Composite Date:	2022-03-	12		
Sample No. & Sample ID:	1)	2022-03-11 10:00	13)	2022-03-11 22:00
	2)	2022-03-11 11:00	14)	2022-03-11 23:00
	3)	2022-03-11 12:00	15)	2022-03-12 00:00
	4)	2022-03-11 13:00	16)	2022-03-12 01:00
	5)	2022-03-11 14:00	17)	2022-03-12 02:00
	6)	2022-03-11 15:00	18)	2022-03-12 03:00
	7)	2022-03-11 16:00	19)	2022-03-12 04:00
	8)	2022-03-11 17:00	20)	2022-03-12 05:00
	9)	2022-03-11 18:00	21)	2022-03-12 06:00
	10)	2022-03-11 19:00	22)	2022-03-12 07:00
	11)	2022-03-11 20:00	23)	2022-03-12 08:00
	12)	2022-03-11 21:00	24)	2022-03-12 09:00
Temperature of Sample(s) at Receipt:	2-6°C			
Sampling Container:	1L plastic	c bottle		
Composite Sample Volume:	14L			
Composite Sample No	36431-1			
& Sample ID:	Effluent			
Sample Storage Condition after Receipt:		dark at 4 ± 2°C until test		
********	******	*******	*****	*******

TEST REPORT

 Report No.:
 36431C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-12

 Date Tested:
 2022-03-12

 Date Completed:
 2022-03-22

 Page:
 3 of 13

2. 7-Days Diatom (Skeletonema costatum) Growth Inhibition Test

2.1 Test Method

This 7-day toxicity test on water sample with *Skeletonema costatum* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Skeletonema costatum* exposed to the five concentrations of test sample for a 7-day test period. The endpoints were cell density and specific growth rate.

2.2 Summary of Test Sample - Diatom7-Days Growth Inhibition Test Particulars

Type of Test	Static Non-Renewal
Test Start and End Date (Time)	Start: 2022-03-12 (13:00)
	End: 2022-03-19 (13:00)
Test Organism:	Skeletonema costatum
Source:	Purchase, Use log phase growing
	culture
Stock Culture Cultivation:	Stock Culture were Cultured in Same Conditions as Testing
	Conditions
Test Duration:	7 Days
Temperature:	22 ± 1°C
Salinity:	30± 1ppt
Dissolved Oxygen:	>5mg/L
pH:	8.0 <u>+</u> 2
Lightand Light Intensity:	3000±500 lux light density
Light Cycle:	12h Light, 12h Dark
Test Chambers:	100mL glass beaker
Test Solution Volume:	25mL
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market.
	Adjusted to 30 ±12 ppt, filter through a 0.22 µm filter and UV
	sterilized
Age of Test Organisms:	Log Phase Growing Cell at Density of 10 ⁶ cell/ mL
Initial Density of Test Organisms per	5.1 x 10 ⁴ cell /mL
Chamber:	
Number of Replicate Chambers per	4
Treatment:	
Renewal of Test Solution:	None
Aeration:	Orbital shaker (120 revolution per minute)

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22

Page: 4 of 13

2.3 Summary of Test Sample Diatom 7-Days Growth Inhibition Test Particulars (Cont.)

Observations:	Colour and Appearance of Culture
Physical / Chemical Data:	Temperature, Dissolved Oxygen, pH, Salinity
Nutrient Regime:	f/2 Medium
Effect:	Cell density and Specific Growth Rate
Endpoints:	NOEC, LOEC and EC50
Test Acceptability Criteria:	Negative control cell density shall have increased by 16 times in 7 days Coefficient of variation of average growth in control replicate <20%
Deviation from Test Method:	No Deviation from Test Method
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's tests with an alpha of 0.05. Calculate EC50 using CETIS, data were analyzed according to USEPA requirement (version1.8.7.16)

2.4 Summary of Reference Toxicant Diatom 7-Days Growth Inhibition Test Particulars

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)
Stock Solution Concentration	20000mg/L Cd ²⁺
Statistical Analysis	7-Day EC50 for Cadmium ion determined by CETIS (version1.8.7.16)
Number of Replicate	4
Chambers per Treatment:	
Other Test Conditions	Same as Test Sample Toxicity Test

TEST REPORT

Report No.: 36431C 2022-03-22 Date of Issue: Date Received: 2022-03-12 2022-03-12 Date Tested: 2022-03-22 Date Completed: 5 of 13

Page:

Test Results (Diatom 7-Days Growth Inhibition Test 2.5 - Cell Density on Day 0, Day 1, Day 3 and Day 7

36431-1	n 1' .	Cell Density (cell/mL)		
Test Concentration (%)	Replicate	Day 0	Day 7	
	1	50,000	1,100,000	
0	2	51,000	1,200,000	
(Negative Control)	3	50,000	1,100,000	
,	4	51,000	1,000,000	
	1	51,000	1,800,000	
	2	51,000	1,800,000	
2.5	3	50,000	1,800,000	
	4	51,000	1,900,000	
	1	51,000	1,600,000	
_	2	51,000	1,900,000	
5	3	50,000	1,900,000	
	4	51,000	1,900,000	
	1	51,000	1,500,000	
	2	50,000	1,500,000	
10	3	51,000	1,500,000	
	4	50,000	1,500,000	
	1	51,000	630,000	
	2	50,000	690,000	
25	3	50,000	660,000	
	4	50,000	630,000	
	1	50,000	<50,000	
~ 0	2	51,000	<50,000	
50	3	50,000	<50,000	
	4	50,000	<50,000	

Remark: < =less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22

Page: 6 of 13

Test Result Summary (Diatom 7-Days Growth Inhibition Test)

36431-1	Replicate	Day 7	Mean
Test Concentration (%)	Replicate	Specific Growth Rate	1110011
	1	0.46	
0	2	0.46	0.46
(Negative Control)	3	0.46	0.40
	4	0.45	
	1	0.53	
2.5	2	0.53	0.53
2.3	3	0.52	0.55
	4	0.54	
	1	0.51	
e	2	0.53	0.53
5	3	0.53	
	4	0.53	
	1	0.44	
10	2	0.43	0.44
10	3	0.44	
	4	0.44	
	1	0.33	
25	2	0.35	0.34
23	3	0.35	0.54
İ	4	0.33	
	1	0.00	
50	2	0.00	0.00
50	3	0.00	0.00
*******	4	0.00	

TEST REPORT

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22
Page:	7 of 13

Page: 7

2.7 Test Result Summary and Interpretation of Diatom 7-Days Growth Inhibition Test

Parameter	36431-1
No Observable Effect Concentration (NOEC)	2.4%
Lowest Observed Effect Concentration (LOEC)	25%
EC50	34.1%
(Upper, Lower Confidence Level)	(35.0, 33.2)

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.lik

TEST REPORT

2022-03-22 2022-03-12
2022-03-12
2022-03-12
2022-03-22

Page: 8 of 13

2.8 QC Records - Diatom 7-Days Growth Inhibition Test, Test Sample and Reference Toxicant Test Validity Criteria

- Test Organism Performance

	Results	Control Limit	
	Negative Control 7-Days Growth Rate	0.50	>0.4
Diatom 7-Days Growth Inhibition Test	Coefficient of variation of Average Growth of Negative Control	2.5%	<20%
	96-h EC50	0.13 mg/L	0.11-0.16 mg/L
	95% Confidence Interval	0.10-0.18 mg/L	N/A

.9 Diatom 7-Days Growth Inhibition Test Validity Criteria (Water Quality)

36431-1 Test	Sali (pp		Oxy	olved ygen g/L)		H unit)	, ,	erature C)
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min
0 (Negative Control)	30.1	29.6	7.2	6.9	7.0	6.8		
6.25	30.2	29.4	7.1	6.6	7.1	6.6	22	21
12.5	30.4	29.4	7.2	6.6	7.2	6.6		
25	30.0	29.3	7.1	6.4	7.4	6.6		
50	30.1	29.4	7.4	6.4	7.3	6.6		
100	30.4	29.3	7.1	6.6	7.1	6.7		
Acceptance Criteria	29-	31	>5r	ng/L	6.0-10.0		21-2	23°C

36431-1 Test	Ammonia (mg NH3-N/L)		Sulphide (mg S²-/L)		Total Suspended Solids (mg/L)	
Concentration (%)	Max	Min	Max	Min	Max	Min
0 (Negative Control)	<0.05	<0.05	<0.1	<0.1	<2.5	<2.5
6.25	1.1	0.05	< 0.1	<0.1	<2.5	<2.5
12.5	3.2	0.19	0.1	< 0.1	5	4
25	6.2	0.22	0.1	< 0.1	8	8
50	14	0.41	0.3	<0.1	16	15
100	25	1.0	0.4	<0.1	27	24
Acceptance Criteria	N/A		N/A		N	/A

Remarks: 1) < = less than, > = more than

TEST REPORT

 Report No.:
 36431C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-12

 Date Tested:
 2022-03-12

 Date Completed:
 2022-03-22

Page: 9 of 13

3. 48-hr Barnacle Larvae (Balanus amphitrite) survival test

3.1 Test Method

This 48-hr toxicity test on water sample with *Balanus amphitrite* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Balanus amphitrite* was exposed to the five concentrations of test sample for a 48-hr test period. The endpoints were survival.

3.2 Summary of Test Sample 48-hr Settlement Barnacle Larvae Test

Type of Test	Static Renewal
Test Start and End Date	Start: 2022-03-12 (13:00)
(Time)	End: 2022-03-14 (13:00)
Test Organism:	Balanus amphirite
Source:	Collect adult barnacle from Ma Liu Shui and Shatin, dissect their brood sac to get larvae
Test Duration:	48-hr
Temperature:	22 ± 1°C
Salinity:	30± 1ppt
Dissolved Oxygen:	>5mg/L
pH:	8.0± 2
Light and light intensity:	3000±500 lux light density
Light Cycle:	Continuous
Test Chambers:	50mL glass beaker
Test Solution Volume:	20mL
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market Adjusted to 30 ± 1 ppt, filter through a 0.22µm filter and UV sterilized
Age of Test Organisms:	Gather stage II nauplii larvae that are positive phototactic, actively swimming
Number of Test Organisms per Chamber:	20
Number of Replicate	4
Chambers per Treatment:	
Renewal of Test Solution:	None
Aeration:	Orbital shaker (120 revolution per minute)

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.:	36431C
Date of Issue:	2022-03-22
Date Received:	2022-03-12
Date Tested:	2022-03-12
Date Completed:	2022-03-22

Page: 10 of 13

3.3 Summary of Test Sample 48-hr Barnacle Larvae Test (Cont.)

Physical / Chemical Data:	Temperature, Dissolved Oxygen, pH, Salinity			
Feeding	None			
Effect:	Survival			
Endpoints:	NOEC, LOEC and EC50			
Test Acceptability Criteria:	Mortality of negative control not exceed 10%			
Deviation from Test Method:	No Deviation from Test Method			
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. Calculate EC50 using CETIS (version1.8.7.16), data were analyzed according to USEPA requirement			

3.4 Summary of Reference Toxicant 48-hr Barnacle Larvae Test

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)		
Stock Solution Concentration	20000mg/L Cd ²⁺		
Statistical Analysis	48-hr EC50 for Cadmium ion Determined by CETIS (version1.8.7.16)		
Number of Replicate Chambers per Treatment:	4		
Other Test Conditions	Same as Test Sample Toxicity Test		

TEST REPORT

 Report No.:
 36431C

 Date of Issue:
 2022-03-22

 Date Received:
 2022-03-12

 Date Tested:
 2022-03-12

 Date Completed:
 2022-03-22

Page: 11 of 13

3.5 <u>Test Results</u>

- Test Result Summary (48-hr Settlement Barnacle Larvae Test)

36431-1 Test Concentration (%)	Replicate	Number Exposed	No. of Living Barnacle Larvae	Percentage survival (%)	Mean Percentage (%)
<u> </u>	1	20	20	100	
0	2	20	20	95	97.5
(Negative Control)	3	20	19	95	97.3
Common	4	20	19	100	
	1	20	18	90	
	2	20	18	90	88.8
6.5	3	20	18	90	88.6
	4	20	17	85	
	1	20	19	95	
	2	20	14	70	77.5
12.5	3	20	14	70	77.5
ļ	4	20	15	75	
	1	20	11	55	
25	2	20	11	55	52.5
25	3	20	10	50	32.3
	4	20	10	50	
	1	20	2	10	
	2	20	2	10	7.5
50	3	20	1	5	7.5
	4	20	1	5	
	1	20	0	0	
4.00	2	20	0	0	0.0
100	3	20	0	0	0.0
	4	20	0	0	

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Γ	Report No.:	36431C
	Date of Issue:	2022-03-22
- 1	Date Received:	2022-03-12
	Date Tested:	2022-03-12
L	Date Completed:	2022-03-22

12 of 13

Page:

3.6 Test Result Summary and Interpretation of 48-hr Barnacle Larvae Test

[Parameter	36431-1
	LC50	25.9%
ĺ	(Upper, Lower Confidence Level)	(27.2%, 24.6%)

TEST REPORT

Report No.: 36431C Date of Issue: 2022-03-22 Date Received: 2022-03-12 Date Tested: 2022-03-12 2022-03-22 Date Completed:

13 of 13 Page:

QC Records (48-hr Barnacle Larvae Test) 3.7

- 48-hr Barnacle Larvae Test, Test Sample and Reference Toxicant Test Validity Criteria (Test Organism Performance)

Parameters	Results	Control Limit
Negative Control 48-hr Mean Survival Percentage	97.5	>50%
96-h EC50	1.1 mg/L	1.00-1.14 mg/L
 95% Confidence Interval	0.95-1.12mg/L	N/A

48-hr Barnacle Larvae Test (Water Quality) 3.8

36431-1 Test	Sali (p _l	•	Dissolved Oxygen (mg/L)		pH (pH unit)		Temperature (°C)	
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min
0 (Negative Control)	30.2	29.6	7.2	6.8	7.2	6.8		
6.5	30.1	29.6	7.3	6.9	7.3	6.9		
12.5	30.4	29.7	7.1	6.5	7.2	6.9	22	21
25	30.3	29.6	7.1	6.6	7.2	6.9		
50	30.3	29.6	7.2	6.6	7.2	6.9		
100	30.1	29.5	7.3	6.4	7.3	6.9]	
Acceptance Criteria	29-	-31	>5n	ng/L	6.0-	10.0	21-2	23°C

36431-1 Test	Ammonia (mg NH ₃ -N/L)		Sulphide (mg S ²⁻ /L)		Total Suspended Solids (mg/L)	
Concentration (%)	Max	Min	Max	Min	Max	Min
0 (Negative Control)	<0.05	<0.05	<0.1	<0.1	<2.5	<2.5
6.5	0.91	0.05	< 0.1	< 0.1	<2.5	<2.5
12.5	2.9	0.14	0.1	<0.1	5	5
25	6.3	0.23	0.1	< 0.1	9	8
50	15	0.40	0.3	< 0.1	16	16
100	24	0.9	0.3	<0.1	27	25
Acceptance Criteria	N/	'A	N	/A	N	/A

Remarks: 1) > = more than

APPENDIX J ACTION AND LIMIT LEVELS

Action and Limit Levels

Action and Limit Levels for Operational Phase Odour Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H ₂ S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of	$AL = LL/2 = 139$ $\mu g/s \text{ of } H_2S$	LL = 277 μ g/s of H ₂ S
OD2	exhaust in m ³ /s and temperature of exhaust (°C)	μg/s 01 11 <u>2</u> 0	1125

APPENDIX K EVENT AND ACTION PLAN

Event and Action Plan

Event / Action Plant for the Operational Phase Odour Monitoring

Event	Action Action			
	ET	IEC	ER L	Contractor
Exceedance of Action Level for one sample at site houndary, ASRs or exhaust of deodourisation unit	Identify source/ reason of exceedance; Inform IEC and ER; Repeat measurement to confirm finding.	Check with Contractor on the operating activities and implementation of odour mitigation measures; Discuss with ET and Contractor on the possible remedial actions; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial actions properly implemented.	Carry out investigation to identify the source/reason of exceedance or complaints. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD if the cause of exceedance is considered to be caused by the project; Implement amended working methods
Exceedance of Limit Level for one or more samples at site boundary, ASRs or exhaust of deodourisation unit	 Notify IEC, ER, Contractor and EPD; Identify source of odour; Increase monitoring frequency; Carry out analysis of the operating activities and implementation of odour mitigation measures to determine possible mitigation to be implemented Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of the remedial actions and keep IEC, EPD and ER informed of the results; Carry out odour measurement using dynamic olfactometry after implementation of remedial measures to confirm their 	Discuss amongst ET, ER and the Contractor on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the ET, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD; Formulate remedial actions; Ensure amended working methods and remedial actions properly implemented. If exceedance continues, consider what portion of the work is responsible and stop that portion of work until the exceedance is abated.