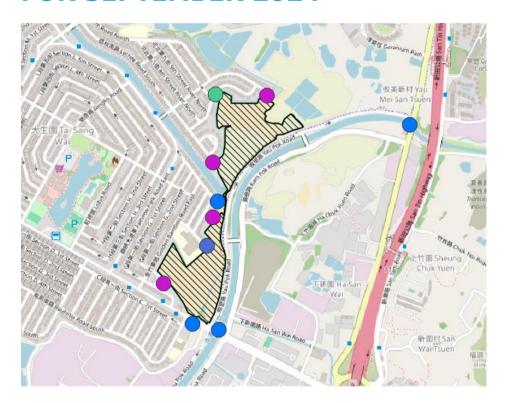
Intended for

### **Architectural Services Department**

Document type

Report


Date

October 2024

# LIGHT PUBLIC HOUSING AT YAU POK ROAD, YUEN LONG

# **MONTHLY EM&A REPORT**

# **FOR SEPTEMBER 2024**



### LIGHT PUBLIC HOUSING AT YAU POK ROAD, YUEN LONG

#### **MONTHLY EM&A REPORT FOR SEPTEMBER 2024**

Revision

1

Date

08/10/2024

Prepared by

**Theo Chan (Environmental Consultant)** 

Certified by

Y H Hui (Environmental Team Leader)

Disclaimer

No part of this document may be reproduced or transmitted, in any form or by any means electronic, mechanical, photographic, recording or otherwise, or stored in a retrieval system of any nature without the written permission of Ramboll Hong Kong Ltd, application for which shall be made to Ramboll Hong Kong Ltd.

This report is made on behalf of Ramboll Hong Kong Ltd. No individual is personally liable in connection with the preparation of this report. By receiving this report and acting on it, the client or any third party relying on it accepts that no individual is personally liable in contract, tort or breach of statutory duty (including negligence).

Ref

R9595\_v1.0.doc

Ramboll Hong Kong Limited 21/F BEA Harbour View Centre 56 Gloucester Road Wan Chai Hong Kong T +852 3465 2888 F +852 3465 2899 www.ramboll.com





**BY EMAIL** 

Our Ref: BATF55902\_2024\_19

10/10/2024

Ms. LAM Yue Wai, Mandy Architectural Services Department Architectural Branch Division 3

Unit 1204, 12/F, 14 Taikoo Wan Road, Taikoo Shing, Hong Kong

Dear Madam,

Light Public Housing at Yau Pok Road, Yuen Long
Independent Environmental Checker Consultancy Services
Verification of Environmental Monitoring and Audit (EM&A) Report (September 2024)

We refer to the captioned EM&A Report for September 2024, which was certified by Environmental Team Leader on 8 October 2024 (*Ref.: R9595\_v1.0.doc*).

Please note that we have no adverse comments on the captioned EM&A Report for September 2024. Therefore, the captioned EM&A Report for September 2024 is hereby verified in accordance with the requirement stipulated in Condition 3.5 of EP-629/2023.

Should you have any query, please feel free to contract the undersigned at 2186 7995 (chun-kwok.chan@egis-group.com).

Yours faithfully,

CHAN Chun Kwok

Independent Environmental Checker

CC.

ET Leader – Ramboll (Attn: Mr. Y H Hui) [By email: <a href="mailto:yhhui@ramboll.com">yhhui@ramboll.com</a>]
Project Management Consultant – RLP (Attn: Mr. Alfred Woo) [By email: <a href="mailto:alfredwoo@rlp.asia">alfredwoo@rlp.asia</a>]

# **CONTENTS**

|      |        |                                                            | Page |
|------|--------|------------------------------------------------------------|------|
| EXEC | CUTIVE | SUMMARY                                                    | VII  |
| 1.0  | INTRO  | ODUCTION                                                   |      |
|      | 1.1    | Background                                                 | 1    |
|      | 1.2    | Project Organisation                                       |      |
|      | 1.3    | Construction Programme and Works Undertaken                | 2    |
|      | 1.4    | Status of Environmental Licences, Notification and Permits | 3    |
| 2.0  | AIR Q  | QUALITY                                                    | 4    |
|      | 2.1    | Monitoring Requirement                                     | 4    |
|      | 2.2    | Monitoring Equipment                                       | 4    |
|      | 2.3    | Monitoring Location                                        | 4    |
|      | 2.4    | Monitoring Methodology                                     | 5    |
|      | 2.5    | Monitoring Results                                         | 6    |
| 3.0  | NOIS   | E                                                          | 7    |
|      | 3.1    | Monitoring Requirement                                     | 7    |
|      | 3.2    | Monitoring Equipment                                       | 7    |
|      | 3.3    | Monitoring Parameters, Frequency and Location              | 7    |
|      | 3.4    | Monitoring Methodology                                     | 8    |
|      | 3.5    | Monitoring Results                                         | 9    |
| 4.0  | WATE   | R QUALITY                                                  | 10   |
|      | 4.1    | Monitoring Requirement                                     | 10   |
|      | 4.2    | Monitoring Equipment                                       | 10   |
|      | 4.3    | Monitoring Parameters, Frequency and Locations             | 10   |
|      | 4.4    | Monitoring Methodology                                     | 11   |
|      | 4.5    | Monitoring Results                                         | 12   |
| 5.0  | ECOL   | OGY                                                        | 13   |
|      | 5.1    | Monitoring Requirements                                    | 13   |
|      | 5.2    | Monitoring Methodology                                     | 13   |
|      | 5.3    | Monitoring Results                                         | 13   |
| 6.0  | WAST   | E MANAGEMENT                                               | 18   |
|      | 6.1    | Monitoring Requirements                                    | 18   |
|      | 6.2    | Waste Management Status                                    | 18   |
| 7.0  | LAND   | SCAPE AND VISUAL                                           | 19   |
|      | 7.1    | Audit Requirements                                         | 19   |
|      | 7.2    | Results and Observations                                   | 19   |



| 8.0     | ENVI     | RONMENTAL AUDIT                                                 | 20 |
|---------|----------|-----------------------------------------------------------------|----|
|         | 8.1      | Site Audits                                                     | 20 |
|         | 8.2      | Implementation Status of Environmental Mitigation Measures      | 20 |
| 9.0     | ENVI     | RONMENTAL COMPLAINT AND NON-CONFORMANCE                         | 21 |
|         | 9.1      | Environmental Exceedance                                        | 21 |
|         | 9.2      | Complaints, Notification of Summons and Prosecution             | 21 |
| 10.0    | FUTU     | JRE KEY ISSUES                                                  | 22 |
|         | 10.1     | Construction Programme                                          | 22 |
|         | 10.2     | 2 Key Issues for the Coming Month                               | 22 |
|         | 10.3     | Monitoring Schedules                                            | 22 |
| 11.0    | CON      | CLUSION AND RECOMMENDATIONS                                     | 23 |
|         | 11.1     | Conclusion                                                      | 23 |
|         | 11.2     | Recommendations                                                 | 23 |
| LIST    | OF T     | ABLES                                                           |    |
| Table 1 | L        | Contact Information of Key Personnel                            | 2  |
| Table 2 | <u>)</u> | Mitigation Measures for the Related Construction Work           | 2  |
| Table 3 |          | Environmental Licenses, Notification and Permits                |    |
| Table 4 |          | Air Quality Monitoring Equipment                                |    |
| Table 5 |          | Air Quality Monitoring Station                                  |    |
| Table 6 |          | Summary of Air Quality Monitoring Results                       |    |
| Table 7 |          | Noise Monitoring Equipment                                      |    |
| Table 8 |          | Noise Monitoring Station                                        |    |
| Table 9 |          | Noise Monitoring Parameters, Frequency, and Duration            |    |
| Table 1 |          | Summary of Noise Monitoring Results                             |    |
| Table 1 |          | Water Quality Monitoring Equipment                              |    |
| Table 1 |          | Water Quality Monitoring Stations                               |    |
| Table 1 |          | Laboratory Analysis for Suspended Solids (SS)                   |    |
| Table 1 |          | Summary of Water Quality Exceedances                            |    |
| Table 1 |          | Comparison of Bird Abundance                                    |    |
| Table 1 |          | Comparison of Bird Species Richness                             |    |
| Table 1 |          | Comparison of Bird Abundance in NTMDC                           |    |
| Table 1 |          | Comparison of Brid Abundance in Temporary Pond of YMST          |    |
| Table 2 |          | Cumulative Statistics on Complaints and Successful Prosecutions |    |



# **LIST OF FIGURES**

Figure 1 Location of the Project Site
Figure 2 Typical Construction Phase Environmental Monitoring and Audit Procedure
Figure 3 Locations of Air Quality, Noise and Water Quality Monitoring Stations

### LIST OF APPENDICES

|            | W I ENDICES                                                                   |
|------------|-------------------------------------------------------------------------------|
| Appendix A | Construction Programme                                                        |
| Appendix B | Action and Limit Levels                                                       |
| Appendix C | Calibration Certificates of Air, Noise and Water Quality Monitoring Equipment |
| Appendix D | Environmental Monitoring Schedules                                            |
| Appendix E | Monitoring Results                                                            |
| Appendix F | Weather and Meteorological Conditions                                         |
| Appendix G | Event and Action Plan                                                         |
| Appendix H | Waste Flow Table                                                              |
| Appendix I | Summaries of Environmental Complaint Warning Summon and Notification of       |
|            | Successful Prosecution                                                        |
| Appendix J | Summary of Observations and Findings made in Site Audit and Inspection in the |
|            | Reporting Period                                                              |
| Appendix K | Notification of Exceedance                                                    |
| Appendix L | Implementation Status of Environment Mitigation Measures                      |



# **EXECUTIVE SUMMARY**

- i. This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for the project "Light Public Housing at Yau Pok Road, Yuen Long". Ramboll Hong Kong Limited has been appointed by the Contractor to undertake the Environmental Team (ET) services for the project and implement the EM&A programmes.
- ii. This Monthly EM&A Report summarises findings of the EM&A programme during the reporting period from 1 September 2024 to 30 September 2024. As informed by the Contractor, major activities in the reporting period were:
  - Scaffolding
  - Formwork
  - Re-bar Fixing
  - Concreting
  - Backfilling
  - Installation of MiC Modules
  - Fitting-out works

#### **Breaches of Action and Limit Levels**

- iii. No works related air quality exceedances were recorded in the reporting period.
- iv. No works related noise exceedances were recorded in the reporting period.
- v. No works related water quality exceedances were recorded in the reporting period.

#### Complaint Log

vi. No works related environmental complaints were received in the reporting period.

#### Notifications of any Summons and Successful Prosecutions

vii. No notifications of summons and prosecutions were received in the reporting period.

#### Reporting Change

viii. There were no reporting changes during the reporting period.

#### Future Key Issues

- ix. The main works anticipated in the next three months are as follow:
  - Scaffolding
  - Formwork
  - Re-bar Fixing
  - Concreting
  - Backfilling
  - Lifting
  - Fitting out works



# 1.0 INTRODUCTION

# 1.1 Background

- 1.1.1 The project site is bounded by Yau Pok Road to the east, Fairview Park to the west and north, farmland to the north-east, and Fairview Park Boulevard to the south, and is currently zoned Recreation under the Approved Mai Po and Fairview Park Outline Zoning Plan (OZP) No. S/YL-MP/6. The location of the project site is shown in **Figure 1**.
- 1.1.2 The Project is a Designated Project (DP) under Item P1, Part I of Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO), Cap. 499, "A residential or recreational development, other than New Territories exempted houses, within Deep Bay Buffer Zone 1 or 2". The Architectural Services Department as the Project Proponent has submitted a Project Profile (PP-652/2023) for direct application of environmental permit on 28 April 2023. Subsequently, the Director of Environmental Protection (DEP) has granted the Environmental Permit No. EP-629/2023 on 16 June 2023.
- 1.1.3 Ramboll Hong Kong Limited has been appointed as the Environmental Team (ET) to undertake the ET services for implementing the EM&A programmes for the project.
- 1.1.4 The main construction works commenced on 27 March 2024. This Monthly EM&A report summarises the key findings of the EM&A programme from 1 September 2024 to 30 September 2024 (reporting period) and is submitted to fulfil Condition 3.5 of the EP and Section 10.3 of the EM&A Manual submitted under Condition 3.1 of EP-629/2023.

### 1.2 Project Organisation

1.2.1 The project organisation structure with respect to the EM&A Programme is shown in **Figure 2**. The key personnel's contact name and phone numbers are listed in **Table 1**.



**Table 1** Contact Information of Key Personnel

| Party                                            | Role                                          | Post                                          | Name              | Telephone |
|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------|-----------|
| Architectural<br>Services<br>Department<br>(ASD) | Permit Holder                                 | Project Manager                               | Ms. Mandy<br>Lam  | 2154 3145 |
| Ronald Lu &<br>Partners (Hong<br>Kong) Limited   | Engineer's<br>Representative                  | Project Engineer                              | Mr. Alfred<br>Woo | 3189 9337 |
| Egis Engineering & Consulting Hong Kong Limited  | Independent<br>Environmental<br>Checker (IEC) | Independent<br>Environmental<br>Checker (IEC) | Mr. C K Chan      | 2186 7995 |
| Ramboll Hong<br>Kong Limited                     | Environmental<br>Team (ET)                    | Environmental<br>Team Leader<br>(ETL)         | Mr. Y H Hui       | 3465 2850 |
|                                                  |                                               | Site Agent                                    | Mr. Gary Hui      | 9659 4427 |
| Chevalier – China Railway Joint Venture (CCRJV)  | Contractor                                    | Environmental<br>Officer (EO)                 | Mr. Marcus Lai    | 4446 1882 |

# 1.3 Construction Programme and Works Undertaken

1.3.1 The construction programme is shown in **Appendix A**. Major activities and the corresponding mitigation measures in the reporting period are presented in **Table 2**.

**Table 2** Mitigation Measures for the Related Construction Work

|   | Major Activities | Mitigation Measures                            |
|---|------------------|------------------------------------------------|
| - | Formwork         | - Frequent watering of exposed earth           |
| - | Backfilling      | - Use of mist cannon                           |
| - | Site Clearance   | - Covering stockpiles                          |
|   |                  | - Installation of rigid partitions with bottom |
|   |                  | edges sealed with cement along site boundary   |

- 1.3.2 The main works will be anticipated in the next three months are as follows:
  - Scaffolding
  - Formwork
  - Re-bar Fixing
  - Concreting



- Backfilling
- Lifting
- Fitting out works

# 1.4 Status of Environmental Licences, Notification and Permits

1.4.1 A summary of the relevant permits, licenses and/or notifications on environmental protection for this Contract is presented in **Table 3**.

**Table 3** Environmental Licenses, Notification and Permits

| Permit/ Notification/ License         | Valid Period       |                     | Status       |  |
|---------------------------------------|--------------------|---------------------|--------------|--|
| No.                                   | From               | То                  | Status       |  |
| Environmental Permit (EP)             |                    |                     |              |  |
| EP-629/2023                           | 16 Jun 2023        | N/A                 | Valid        |  |
| Notification of Carrying out Notifiab | le Works under Air | Pollution Control ( | Construction |  |
| Dust) Regulation                      |                    |                     |              |  |
| 500374                                | 29 Nov 2023        | N/A                 | Valid        |  |
| Billing Account for Disposal of Cons  | truction Waste     |                     |              |  |
| 7049452                               | 13 Dec 2023        | N/A                 | Valid        |  |
| Construction Noise Permit             |                    |                     |              |  |
| GW-RN0853-24                          | 24 Jul 2024        | 23 Nov 2024         | Valid        |  |
| Chemical Waste Producer Registration  |                    |                     |              |  |
| 5213-541-C4921-01                     | 21 Dec 2023        | N/A                 | Valid        |  |
| Wastewater Discharge License          |                    |                     |              |  |
| WT10002483-2023                       | 15 Apr 2024        | 14 Apr 2029         | Valid        |  |



# 2.0 AIR QUALITY

# 2.1 Monitoring Requirement

2.1.1 In accordance with the EM&A manual, 1-hour (1-hr) Total Suspended Particulates (TSP) levels were measured at the designated air quality monitoring stations to monitor the potential impacts of construction dust on air quality. For construction phase impact monitoring of 1-hr TSP, a sampling frequency of at least three times every 6 days shall be undertaken when the highest dust impacts are anticipated to occur based on the nature of the construction works.

# 2.2 Monitoring Equipment

- 2.2.1 Portable direct reading dust meters were used to carry out the 1-hr TSP monitoring at the designated monitoring stations. The 1-hr TSP sampling was determined by High Volume Sampler to check the validity and accuracy of the result measured by direct reading method.
- 2.2.2 The details of the air quality monitoring equipment used are listed in **Table 4** below.

**Table 4** Air Quality Monitoring Equipment

| Item | Brand | Model            | Equipment                          | Serial No. |
|------|-------|------------------|------------------------------------|------------|
| 1    | TSI   | SidePak<br>AM520 | Portable direct reading dust meter | 5201750012 |
| 2    | TSI   | SidePak<br>AM520 | Portable direct reading dust meter | 5201750007 |
| 3    | TSI   | SidePak<br>AM520 | Portable direct reading dust meter | 5201750006 |
| 4*   | TISCH | TE-5170          | High Volume Sampler                | 1260       |
| 5*   | TISCH | TE-5025A         | Calibration Kit                    | 4064       |

<sup>\*</sup> For comparison with the portable dust meter.

## 2.3 Monitoring Location

2.3.1 In accordance with the EM&A Manual, five air quality monitoring locations, namely AM1 to AM5 were designated (**Table 5**) and the location of the air monitoring stations are shown in **Figure 3**.



AM5

Ground Level

| Station ID | ASR ID#    | Location      | Location of<br>Measurement |
|------------|------------|---------------|----------------------------|
| AM1        | A04        | Fairview Park | Ground Level               |
| AM2        | A01        | Fairview Park | Ground Level               |
| AM3        | A05A, A05B | Fairview Park | Ground Level               |
| AM4        | A06, A28   | Fairview Park | Ground Level               |
|            |            |               |                            |

**Table 5** Air Quality Monitoring Station

Fairview Park

### 2.4 Monitoring Methodology

A16A

- 2.4.1 The monitoring procedure for air quality monitoring using portable meter method, in accordance with the manufacturer's instruction, shall be as below:
  - 1. Press the "PAGE" key to switch on the equipment.
  - 2. Press "UP" or "DOWN" key to select "Data Log" mode.
  - 3. Press "UP" or "DOWN" key to select "Run Manual" mode.
  - 4. Press the "Start/Stop" to start sampling. Light beep sound indicates the sampling in operation.
  - 5. Place the zero cap to allow zero check sampling for 60 seconds. Proceed to next step if reading drops to zero, otherwise conduct zero calibration as per the equipment operation manual and repeat this step.
  - 6. Press "Start/Stop" key to stop the zero-check sampling. Remove the zero cap.
  - 7. Press the "Start/Stop" to start sampling. Record the start time of sampling and allow for sampling for 1 hour.
  - 8. Press "Start/Stop" key to stop the sampling event after 1 hour.
  - 9. Repeat steps 7-8 for the next sampling event.

#### Maintenance and Calibration

2.4.2 The portable direct reading dust meters would be checked before every monitoring event and calibrated annually. Calibration certificates of the portable meter direct dust meters are presented in **Appendix C**.

#### Weather condition

2.4.3 The weather conditions, including wind data and direction during the monitoring period were collected from the nearest weather station established by the Hong



<sup>#</sup>The ASR IDs are referring to Table 4.3 of the Project Profile (PP-652/2023)

Kong Observatory, the Hong Kong Wetland Park Station, and are provided in **Appendix F**.

#### Monitoring Schedule

2.4.4 The impact air quality monitoring was conducted at the designated monitoring station as scheduled. The schedule of air quality monitoring in reporting period is provided in **Appendix D**.

#### 2.5 Monitoring Results

- 2.5.1 No works related Action / Limit Level exceedances were recorded for 1-hr TSP at AM1 to AM5.
- 2.5.2 No adverse effects arose from the project related factors were noted during the reporting period.
- 2.5.3 The monitoring data of 1-hr TSP are summarized in **Table 6**. Detailed monitoring data are presented in **Appendix E**.

**Table 6** Summary of Air Quality Monitoring Results

| Station | Average<br>(µg/ m³) | Range<br>(µg/ m³) | Action Level<br>(μg/ m³) | Limit Level<br>(µg/ m³) |
|---------|---------------------|-------------------|--------------------------|-------------------------|
| AM1     | 34                  | 24 – 45           | 277                      | 500                     |
| AM2     | 30                  | 16 - 38           | 280                      | 500                     |
| AM3     | 36                  | 28 – 43           | 280                      | 500                     |
| AM4     | 44                  | 31 - 84           | 280                      | 500                     |
| AM5     | 33                  | 21 - 41           | 296                      | 500                     |

- 2.5.4 The Action and Limit Levels for air quality monitoring have been set and are presented in **Appendix B**.
- 2.5.5 The Event and Action Plan for air quality is given in **Appendix G**.

# 3.0 NOISE

#### 3.1 Monitoring Requirement

3.1.1 In accordance with the EM&A Manual, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conducted between 0700 and 1900 on normal weekdays at the designated monitoring locations. As supplementary information for data auditing, statistical results such as  $L_{10}$  and  $L_{90}$  shall also be obtained for reference.

#### 3.2 Monitoring Equipment

3.2.1 Sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications were used for carrying out the noise monitoring. Immediately prior to and following each noise measurement, the accuracy of the sound level meter would be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The details of the noise monitoring equipment used are listed in **Table 7** below.

**Table 7 Noise Monitoring Equipment** 

| Item | Brand   | Model    | Equipment              | Serial No. |
|------|---------|----------|------------------------|------------|
| 1    | SVANTEK | SVAN 971 | Sound Level Meter      | 87094      |
| 2    | SCANTEK | SV35A    | Sound Level Calibrator | 64263      |

#### 3.3 Monitoring Parameters, Frequency and Location

3.3.1 In accordance with the EM&A Manual, five noise quality monitoring stations, namely NM1 to NM5 was designated (**Table 8**) and the locations of the noise monitoring stations are shown in **Figure 3**. The details of the monitoring parameters described in **Table 9**.



**Table 8 Noise Monitoring Station** 

| Station ID | NSR ID# | Location           | Location of<br>Measurement |
|------------|---------|--------------------|----------------------------|
| NM1        | N1      | Fairview Park      | Ground Level*              |
| NM2        | N10     | Bethel High School | Ground Level*              |
| NM3        | N4      | Fairview Park      | Ground Level*              |
| NM4        | N5      | Fairview Park      | Ground Level*              |
| NM5        | N20     | Fairview Park      | Ground Level*              |

<sup>\*</sup>For Free Field measurement, +3dB(A) should be added to the measured results.

**Table 9 Noise Monitoring Parameters, Frequency, and Duration** 

| Station       | Parameter                                                                                         | Frequency and Duration                                                              |
|---------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| NM1 to<br>NM5 | Leq $_{(30 \text{ min})}$ , $(L_{10} \text{ and } L_{90} \text{ will be recorded for reference})$ | At each station at 0700-1900 hours on normal weekdays at a frequency of once a week |

# 3.4 Monitoring Methodology

#### 3.4.1 The monitoring procedures are as follow:

- For free field measurement, the meter was positioned away from any nearby reflective surfaces and be at a position 1.2m above the ground. All records for free field noise levels were adjusted with a correction of +3 dB(A).
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
  - Frequency weighting: A
  - Time weighting: Fast
  - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.



<sup>#</sup>The NSR IDs are referring to Table 4.4 of the Project Profile (PP-652/2023).

- ullet At the end of the monitoring period, the L<sub>eq</sub>, L<sub>10</sub> and L<sub>90</sub> shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
- Noise monitoring would be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring would be conducted to ensure sufficient data is obtained.

#### Maintenance and Calibration

3.4.2 The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory. The calibration certificates are presented in **Appendix C**.

#### Monitoring Schedule

3.4.3 The noise monitoring was conducted at the designated monitoring stations as scheduled. The schedule of noise monitoring in the reporting period is provided in **Appendix D.** 

## 3.5 Monitoring Results

- 3.5.1 No works related Action / Limit Level exceedances were recorded at NM1 to NM5.
- 3.5.2 No adverse effects that arose from the project related factors were noted during the reporting period.
- 3.5.3 The noise monitoring data are summarized in **Table 10**. Detailed monitoring data are presented in **Appendix E**.

**Table 10 Summary of Noise Monitoring Results** 

| Time<br>Period        | Station | Range*<br>L <sub>eq</sub> (30 min) dB(A) | Action Level                              | Limit<br>Level<br>dB(A) |
|-----------------------|---------|------------------------------------------|-------------------------------------------|-------------------------|
|                       | NM1     | 57 - 62                                  |                                           | 75                      |
| 0700-                 | NM2     | 66 - 70                                  | When one documented complaint is received | 70 / 65*                |
| 1900 hrs<br>on normal | NM3     | 61 - 72                                  |                                           | 75                      |
| weekdays              | NM4     | 58 - 68                                  |                                           | 75                      |
|                       | NM5     | 57 - 60                                  |                                           | 75                      |

<sup>\*</sup> Free-field measurement for all stations (+3 dB(A) correction has been applied).

- 3.5.4 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix B**.
- 3.5.5 The Event and Action Plan for noise is given in **Appendix G**.



<sup>\*\*</sup> Reduced to 65 dB(A) during school examination periods.

# 4.0 WATER QUALITY

# 4.1 Monitoring Requirement

4.1.1 In accordance with the EM&A Manual, water quality monitoring at designated locations at the nearby inland water bodies are proposed to be carried out during the construction phase to monitor any sub-standard water discharge into the nearby water bodies from the site. Water quality monitoring is conducted for three days per week with sampling and measurement at the designated stations.

### 4.2 Monitoring Equipment

4.2.1 The details of the water quality monitoring equipment used is listed in **Table 11** below.

**Table 11 Water Quality Monitoring Equipment** 

| Model Equipment |                                                                    | Serial Number |
|-----------------|--------------------------------------------------------------------|---------------|
| YSI ProDSS      | Multi-Parameters (Dissolved Oxygen, Temperature, pH and Turbidity) | 21K101469     |

4.2.2 Calibration certificates of the monitoring equipment are presented in **Appendix** C.

# 4.3 Monitoring Parameters, Frequency and Locations

4.3.1 Four designated water monitoring stations were proposed for monitoring during construction phase and the locations of the monitoring locations are shown in **Figure 3**. The details of the station are described in **Table 12** and **Table 13**.

**Table 12 Water Quality Monitoring Stations** 

| Station | Nature  | Location         | Coordinates |          |
|---------|---------|------------------|-------------|----------|
| Station | Nature  | Location         | Easting     | Northing |
| C1      | Control | Fairview Park    | 837093      | 823201   |
| W1      | Impact  | Nullah           | 837506      | 823280   |
| C3      | Control | Ngau Tam Mei     | 837779      | 823965   |
| W3      | Impact  | Drainage Channel | 837072      | 823299   |



Station **Monitoring Parameters** Monitoring Frequency - Temperature (°C); 3 days per week - pH; C1 (36 hours interval - Turbidity (NTU); W1 was allowed - Water Depth (m); C3 between subsequent - Dissolved Oxygen (DO) (mg/L & % Saturation); sets of W3 measurement) - Suspended Solids (SS) (mg/L).

**Table 13 Water Quality Parameters and Monitoring Frequency** 

4.3.2 Water quality monitoring is conducted for three days per week The schedule of water quality monitoring in reporting period is provided in **Appendix D**.

# 4.4 Monitoring Methodology

#### Sampling Procedure

4.4.1 All in-situ monitoring instrument were checked and calibrated before use. DO meter and turbidimeter shall be calibrated by a HOKLAS accredited laboratory, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.

#### Turbidity, DO, Temperature and pH

- 4.4.2 Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.4.3 Place the entire probe into the water bodies and make sure all the probes are fully immersed during measurement.

#### Suspended Solids (SS)

- 4.4.4 The SS determination shall be carried in a HOKLAS accredited laboratory, and the testing method shall meet the technical specification listed in the table below, or the equivalent endorsed under the HOKLAS. The HOKLAS accredited laboratory shall has comprehensive quality assurance and quality control programmes, including conducting one duplicated sample analysis for every batch of 20 samples analysed.
- 4.4.5 Water samples were collected for the laboratory analysis of SS. The water samples for SS determination should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and keep in dark during both on-site temporary storage and shipment to the testing laboratory. The samples shall be delivered to the laboratory within 24 hours of collection and be analysed as soon as possible after collection.



4.4.6 The test method for SS determination is summarized in **Table 14** below.

**Table 14 Laboratory Analysis for Suspended Solids (SS)** 

| Parameter             | Analytical Method                                                 | Limit of Reporting |
|-----------------------|-------------------------------------------------------------------|--------------------|
| Suspended Solids (SS) | In house method based on APHA 2540D; ALS Method Code: EA-025EA025 | 2 mg/L             |

#### 4.5 Monitoring Results

- 4.5.1 Water quality monitoring was conducted at all designated monitoring stations in the reporting period. The detailed monitoring results and graphical presentations are provided in **Appendix E**.
- 4.5.2 A total of zero Action Level and zero Limit Level exceedances were recorded at the two impact stations. The number of exceedances recorded in the reporting period is summarized in **Table 15**.

**Table 15 Summary of Water Quality Exceedances** 

| Station | Exceedance | DO | Turbidity | SS  | Total |
|---------|------------|----|-----------|-----|-------|
| W1      | Action     | 0  | 0         | 0   | 0     |
|         | Limit      | 0  | 0         | 0   | 0     |
| W3      | Action     | 0  | 0         | 0   | 0     |
|         | Limit      | 0  | 0         | 0/1 | 0/1   |

Notes: if exceedance is recorded, (x / y) denote the number of works related exceedances vs total number of exceedances recorded.

- 4.5.3 For the exceedance recorded on 19 September 2024, installation of MiC modules was carried out during the monitoring period, according to the information provided by the Contractor. Mitigation measures were implemented to control water quality impact from above mentioned works such as installed rigid partitions with bottom edges sealed with cement along the site boundary abutting the water channels, to prevent surface runoff and direct wastewater to AquaSet before discharge. The AquaSed with chemical agent to enhance sedimentation has been checked by contractor, which was functional and well maintained. No direct discharge of surface runoff or effluent were observed from construction activities into the concerned waterbody on the monitoring days and during the regular site audits. Hence, the exceedance was not considered related to the project works.
- 4.5.4 The details of Notification of Exceedance are shown in **Appendix K.**
- 4.5.5 The Event and Action Plan for water quality is given in **Appendix G**.



# **5.0 ECOLOGY**

#### **5.1** Monitoring Requirements

5.1.1 A number of mitigation measures will be implemented to minimize the potential impact to birds during construction phase. There will be no piling work and the Modular-In-Construction (MiC) method will be adopted. Ecological monitoring activities during the construction phase is a requirement under Condition 3.1 of the EP No. EP-629/2023. The ecological monitoring programme has been detailed in the EM&A Manual for the project prepared under the same EP condition. Ecology monitoring is a precautionary measure to verify the accuracy of impact assessment and detect any unpredictable impact arising from the proposed development, monthly monitoring of birds during the construction period is recommended.

#### 5.2 Monitoring Methodology

5.2.1 Monitoring survey was conducted on 3 September 2024. Transect count method was used. The survey covered the sensitive habitats within 500m of the Project Site, with focus at the Ngau Tam Mei Drainage Channel (NTMDC) and the temporary ponds of Yau Mei Sun Tsuen (YMST) abutting the north-eastern boundary of the Project Site. Bird species and their abundance were recorded by habitat during the survey.

#### 5.3 Monitoring Results

- 5.3.1 A total of 27 bird species were recorded in habitats along the survey transects in September 2024. Most of the recorded species are common and widely distributed in Hong Kong.
- 5.3.2 Bird abundance and species richness of each habitat type were compared to those of pre-construction condition (**Table 16** and **Table 17**). Bird abundance and species richness in all surveyed habitat types increased or remained unchanged in September 2024. No decline of bird abundance or species richness was observed in any habitat type.
- 5.3.3 Increase of bird abundance and species richness was observed in NTMDC and temporary ponds of YMST in September 2024. New bird species were recorded in these two habitat types in September 2024 (**Table 18** and **Table 19**). If the construction activities had caused adverse disturbance on birds utilizing the habitats near the Project Site, no new species would be recorded in these habitats during construction phase.
- 5.3.4 The recommended mitigation measures were considered effective in minimizing the construction disturbance to birds utilizing the habitats near the Project Site.

#### **Table 16 Comparison of Bird Abundance**



| Habitats               | August 2024 | Pre-construction<br>Condition* | Difference<br>(increase: +;<br>Decrease: -) |
|------------------------|-------------|--------------------------------|---------------------------------------------|
| Drainage Channel       | 79          | 29                             | +                                           |
| Temporary Pond of YMST | 14          | 8.5                            | +                                           |
| Agricultural Land      | 5           | 1.5                            | +                                           |
| Developed Area         | 16          | 13                             | +                                           |
| Grassland              | 6           | 3.5                            | +                                           |
| Shrubland/grassland    | 23          | 18.5                           | +                                           |
| Pond                   | 24          | 15.5                           | +                                           |
| Plantation             | 16          | 5                              | +                                           |
| Reed                   | 4           | 4                              | No change                                   |
| Waste Ground           | 8           | 6                              | +                                           |

<sup>\*</sup> mean of two pre-construction surveys.

**Table 17 Comparison of Bird Species Richness** 

| Habitats               | August 2024 | Pre-construction<br>Condition* | Difference<br>(increase: +;<br>Decrease: -) |
|------------------------|-------------|--------------------------------|---------------------------------------------|
| Drainage Channel       | 21          | 15                             | +                                           |
| Temporary Pond of YMST | 8           | 7.5                            | +                                           |
| Agricultural Land      | 3           | 1                              | +                                           |
| Developed Area         | 6           | 5.5                            | +                                           |
| Grassland              | 3           | 2                              | +                                           |
| Shrubland/grassland    | 8           | 6                              | +                                           |
| Pond                   | 13          | 12                             | +                                           |
| Plantation             | 7           | 4.5                            | +                                           |



| Habitats     | August 2024 | Pre-construction<br>Condition* | Difference<br>(increase: +;<br>Decrease: -) |
|--------------|-------------|--------------------------------|---------------------------------------------|
| Reed         | 4           | 1.5                            | +                                           |
| Waste Ground | 5           | 3.5                            | +                                           |

<sup>\*</sup> mean of two pre-construction surveys.

**Table 18 Comparison of Bird Abundance in NTMDC** 

| Species                   | August 2024 | Pre-<br>construction<br>Condition* | Difference<br>(increase: +;<br>Decrease: -) |
|---------------------------|-------------|------------------------------------|---------------------------------------------|
| Chinese Pond Heron        | 2           | 0.5                                | +                                           |
| Grey Heron                | 1           | 2.5                                | -                                           |
| Great Egret               | 1           | 0.5                                | +                                           |
| Little Egret              | 3           | 2                                  | +                                           |
| Great Cormorant           | 0           | 0.5                                | -                                           |
| White-breasted Waterhen   | 1           | 0.5                                | +                                           |
| Common Greenshank         | 0           | 0.5                                | -                                           |
| Common Sandpiper          | 0           | 1                                  | -                                           |
| Domestic Pigeon           | 0           | 0.5                                | -                                           |
| Red Turtle Dove           | 1           | 0                                  | +                                           |
| Common Kingfisher         | 2           | 0                                  | +                                           |
| White-throated Kingfisher | 0           | 0.5                                | -                                           |
| Cinereous Tit             | 1           | 0.5                                | +                                           |
| Red-whiskered Bulbul      | 2           | 0.5                                | +                                           |
| Chinese Bulbul            | 16          | 4                                  | +                                           |
| Dusky Warbler             | 0           | 1                                  | -                                           |



| Species               | August 2024 | Pre-<br>construction<br>Condition* | Difference<br>(increase: +;<br>Decrease: -) |
|-----------------------|-------------|------------------------------------|---------------------------------------------|
| Arctic Warbler        | 1           | 0                                  | +                                           |
| Yellow-browed Warbler | 0           | 1.5                                | -                                           |
| Yellow-bellied Prinia | 1           | 1                                  | No change                                   |
| Plain Prinia          | 1           | 0                                  | +                                           |
| Common Tailorbird     | 8           | 1                                  | +                                           |
| Masked Laughingthrush | 2           | 1.5                                | +                                           |
| Japanese White-eye    | 19          | 4                                  | +                                           |
| Crested Myna          | 1           | 1                                  | No change                                   |
| Chinese Blackbird     | 0           | 0.5                                | -                                           |
| Oriental Magpie-Robin | 2           | 0.5                                | +                                           |
| Eurasian Tree Sparrow | 7           | 0                                  | +                                           |
| Scaly-breasted Munia  | 5           | 0                                  | +                                           |
| White Wagtail         | 2           | 1.5                                | +                                           |
| Olive-backed Pipit    | 0           | 1.5                                | -                                           |

<sup>\*</sup> mean of two pre-construction surveys.

 Table 19
 Comparison of Brid Abundance in Temporary Pond of YMST

| Species                    | August 2024 | Pre-construction<br>Condition* | Change<br>(increase: +;<br>Decrease: -) |
|----------------------------|-------------|--------------------------------|-----------------------------------------|
| Grey Heron                 | 0           | 1.5                            | -                                       |
| Great Egret                | 2           | 0                              | +                                       |
| Little Egret               | 2           | 0                              | +                                       |
| White-breasted<br>Waterhen | 0           | 0.5                            | -                                       |



| Species                 | August 2024 | Pre-construction<br>Condition* | Change<br>(increase: +;<br>Decrease: -) |
|-------------------------|-------------|--------------------------------|-----------------------------------------|
| Black-winged Stilt      | 0           | 1                              | -                                       |
| Common Greenshank       | 0           | 0.5                            | -                                       |
| Wood Sandpiper          | 1           | 0                              | +                                       |
| Spotted Dove            | 0           | 0.5                            | -                                       |
| Black Drongo            | 1           | 0                              | +                                       |
| Chinese Bulbul          | 2           | 0                              | +                                       |
| Oriental Magpie         | 0           | 0.5                            | -                                       |
| Collared Crow           | 0           | 0.5                            | -                                       |
| Dusky Warbler           | 0           | 0.5                            | -                                       |
| Yellow-bellied Prinia   | 0           | 1                              | -                                       |
| Common Tailorbird       | 1           | 0                              | +                                       |
| Eurasian Tree Sparrow   | 3           | 0                              | +                                       |
| Scaly-breasted Munia    | 2           | 0                              | +                                       |
| Crested Myna            | 0           | 0.5                            | -                                       |
| Black-collared Starling | 0           | 1                              | -                                       |
| White Wagtail           | 0           | 0.5                            | -                                       |

<sup>\*</sup> mean of two pre-construction surveys.

#### 6.0 WASTE MANAGEMENT

### **6.1** Monitoring Requirements

6.1.1 According to the EM&A Manual, it is the Contractor's responsibility to ensure that all wastes produced during the construction works for the project are handled, stored and disposed of in accordance with good waste management practices, EPD's regulations and requirements. An environmental management plan (EMP) should be prepared and submitted to the Supervisor for approval. The monitoring and auditing requirements of the EMP should be followed with regard to the management of C&D material. Site inspections would be undertaken by the ET at least once every week during the construction period.

## 6.2 Waste Management Status

- 6.2.1 Site audits were carried out on a weekly basis to monitor and audit to ensure that proper storage, transportation and disposal practices of waste materials generated during construction activities, such as C&D materials and general refuse are being implemented. The monthly summary of waste flow table is presented in **Appendix H**.
- 6.2.2 No outstanding issues were reported during the reporting period.



# 7.0 LANDSCAPE AND VISUAL

## 7.1 Audit Requirements

7.1.1 All measures undertaken by both the Contractor and the specialist Landscape Sub-Contractor during the construction phase and first year of the operational phase shall be audited by a Registered Landscape Architect or certified Arborist, as a member of the ET, on a regular basis to ensure compliance with the intended aims of the mitigation measures. The qualification of proposed Registered Landscape Architect or certified Arborist shall be submitted to the ER for approval and agreed with the IEC. Site inspections should be undertaken at least once every two weeks throughout the construction period and once every two months during the operational phase.

#### 7.2 Results and Observations

7.2.1 Landscape and Visual Audit was undertaken bi-weekly and no outstanding issues were reported during the reporting period.



# **8.0 ENVIRONMENTAL AUDIT**

#### 8.1 Site Audits

- 8.1.1 Site audits should be carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.
- 8.1.2 In the reporting period, four site inspections with the Contractor were carried out on 9, 13, 20 and 27 September 2024, while joint site inspection with the representative of IEC was conducted on 27 September 2024 in the reporting period.
- 8.1.3 Dust issues were identified, and recommendations were given in the reporting period Issues were rectified in subsequent inspections. Details of observations recorded during the site inspections are summarized in **Appendix J**.

#### 8.2 Implementation Status of Environmental Mitigation Measures

8.2.1 The Contractor had implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manual. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix L**.



# 9.0 ENVIRONMENTAL COMPLAINT AND NON-CONFORMANCE

#### 9.1 Environmental Exceedance

- 9.1.1 No works related air quality exceedances were recorded in the reporting period.
- 9.1.2 No works related noise exceedances were recorded in the reporting period.
- 9.1.3 No works related water quality exceedances were recorded in the reporting period.

# 9.2 Complaints, Notification of Summons and Prosecution

- 9.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting period.
- 9.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix I.**
- 9.2.3 Cumulative statistic on complaints and successful prosecutions are summarized in **Table 20**.

**Table 20 Cumulative Statistics on Complaints and Successful Prosecutions** 

| Period         | Complaints | Successful<br>Prosecutions |
|----------------|------------|----------------------------|
| September 2024 | 0          | 0                          |
| Total          | 0          | 0                          |



# **10.0 FUTURE KEY ISSUES**

## 10.1 Construction Programme

10.1.1 The construction programme is provided in **Appendix A**.

# 10.2 Key Issues for the Coming Month

- 10.2.1 There were no reporting changes during the reporting period.
- 10.2.2 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, wastewater, water quality, ecology, landscape and visual impact issues.

## 10.3 Monitoring Schedules

10.3.1 The tentative environmental monitoring schedule for the next month is provided in **Appendix D**.



## 11.0 CONCLUSION AND RECOMMENDATIONS

#### 11.1 Conclusion

- 11.1.1 The main construction works commenced on 27 March 2024. Accordingly, the construction phase EM&A programme for the Project also commenced on 27 March 2024.
- 11.1.2 No works related Action/Limit Level exceedances were recorded at the designate station for construction phase air quality monitoring carried out in the reporting period.
- 11.1.3 No works related Action/Limit Level exceedances were recorded at the designated station for construction noise monitoring carried out in the reporting period.
- 11.1.4 No works related Action/Limit Level exceedances were recorded at the designated stations for construction phase water quality monitoring carried out in the reporting period.
- 11.1.5 In the reporting period, four environmental site audit and inspections were carried out. Recommendations on remedial actions were given to the Contractor for remediating the deficiencies identified during the site audit and inspections.
- 11.1.6 Ecological monitoring was conducted in the reporting period. No evidence of construction impact on bird communities was observed. The mitigation measures were considered effective in minimisation of construction disturbance on birds.
- 11.1.7 Audit and monitoring of the implementation of landscape and visual mitigation measures were conducted bi-weekly and no specific observations was identified.
- 11.1.8 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting period.

#### 11.2 Recommendations

- 11.2.1 The recommended environmental mitigation measures, as proposed in the Project Profile and EM&A Manual shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 11.2.2 According to the environmental site audit and inspections performed in the reporting period, the following recommendations were provided:



# Air Quality Impact

No specific observation was identified in the reporting period.

#### **Construction Noise Impact**

• No specific observation was identified in the reporting period.

#### Water Quality Impact

No specific observation was identified in the reporting period.

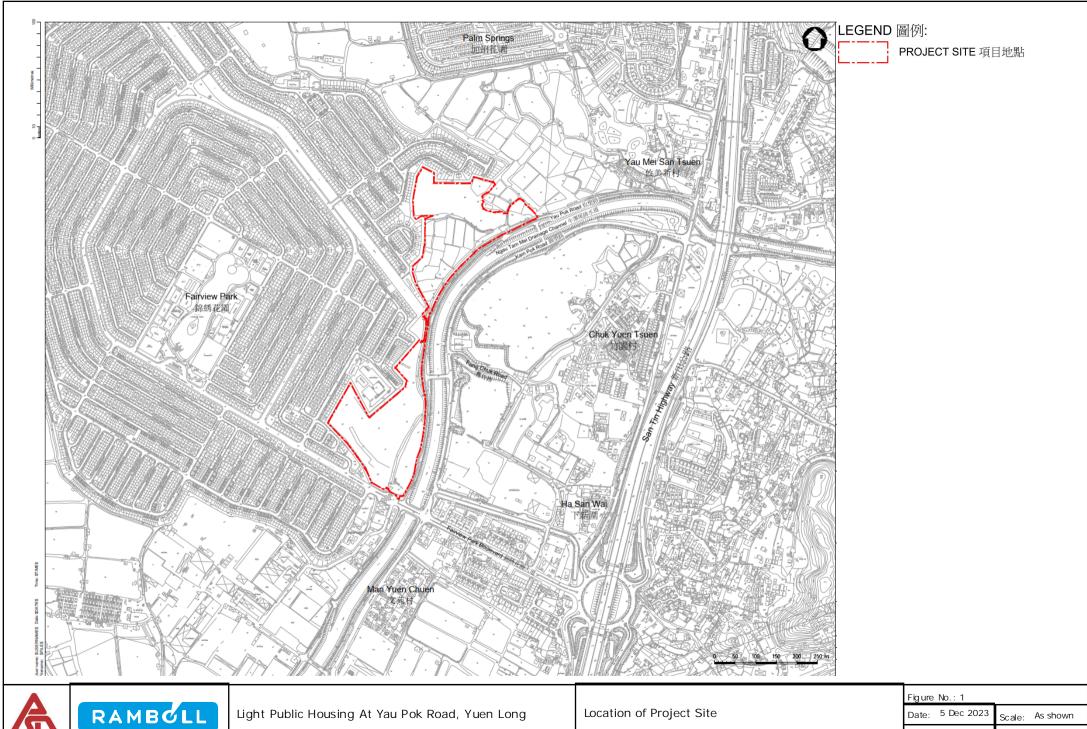
## Chemical and Waste Management

• No specific observation was identified in the reporting period.

# **Ecology**

No specific observation was identified in the reporting period.

### Landscape and Visual Impact


• No specific observation was identified in the reporting period.

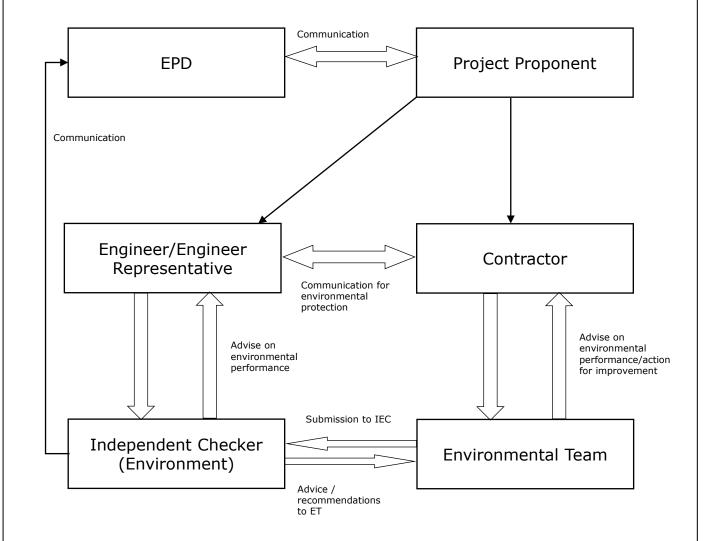
### Permit / License

No specific observation was identified in the reporting period.



Figure 1 Location of the Project Site




Light Public Housing At Yau Pok Road, Yuen Long

Location of Project Site

Date: 5 Dec 2023

Scale: As shown Check: YH Drawn:

Figure 2 Typical Construction Phase Environmental Monitoring and Audit Procedure



#### **Notes:**

Please refer to the EM&A Manual for duties and responsibilities of each party.

#### **Submission from ET to IEC:**

- •Implementation status proforma on mitigation action;
- Proactive environmental protection proforma for construction method alternative;
- •Regulatory compliance proforma listing licenses/permit compliance;
- Site inspection proforma;
- Complaint report;
- •EM&A report for endorsement;
- •Effectiveness of EIA recommendations.

#### Advice / Recommendations from IEC to ET:

- •Advise on environmental performance
- •Return/sign off audit proformas
- •Environmental concerns recommendations on construction methods





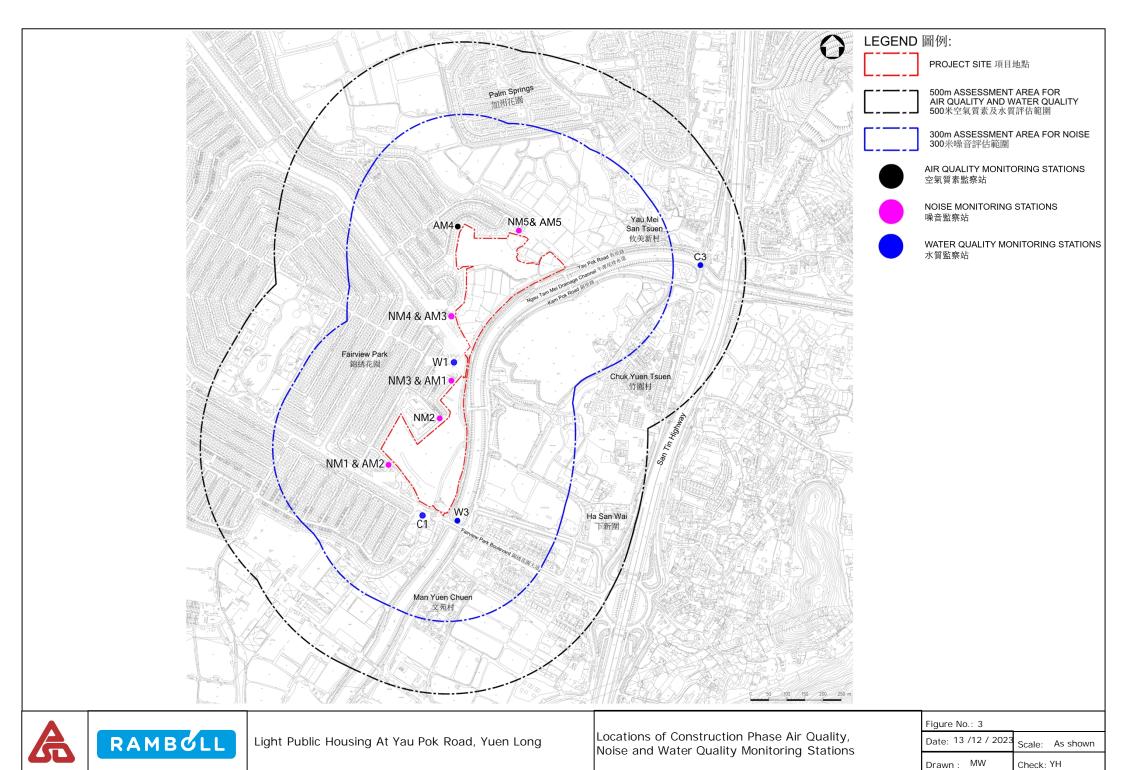

Light Public Housing at Yau Pok Road, Yuen Long Typical Construction Phase Environmental Monitoring and Audit Procedures

Figure No.: 2

Aug 2024 Scale: N/A

Drawn : MW | Check: YH

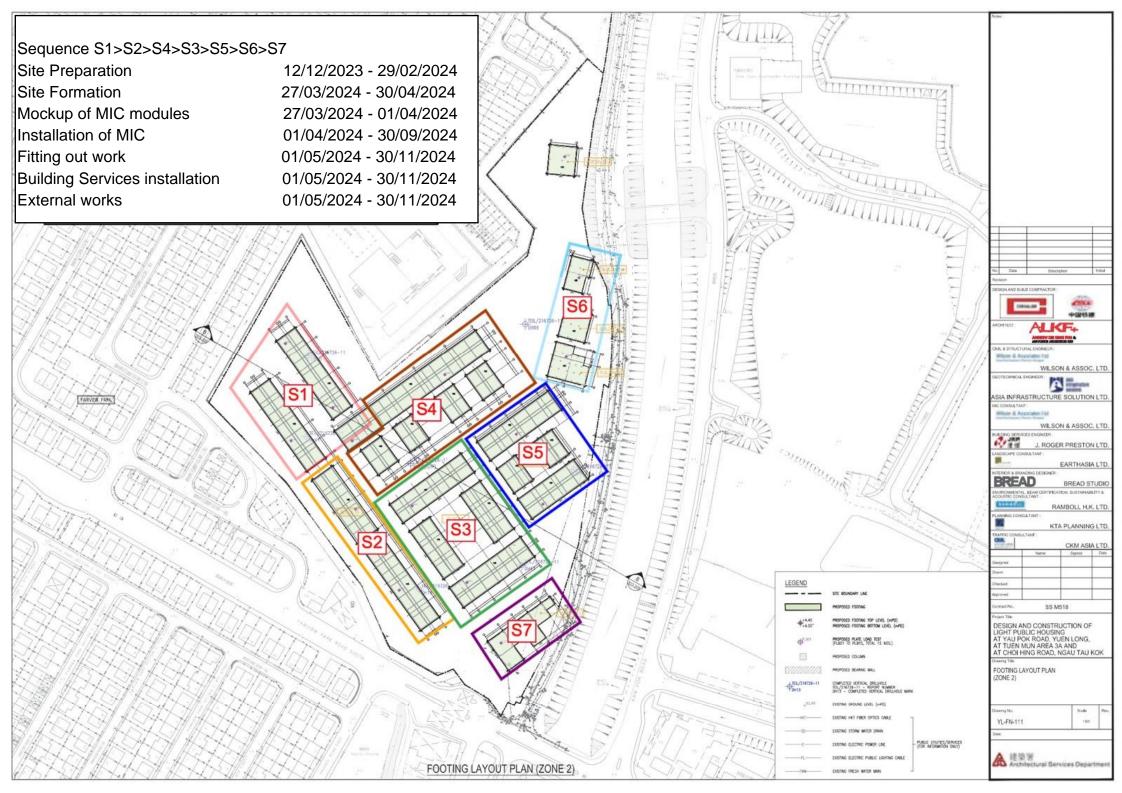
Figure 3 Locations of Air Quality, Noise and Water Quality Monitoring Stations

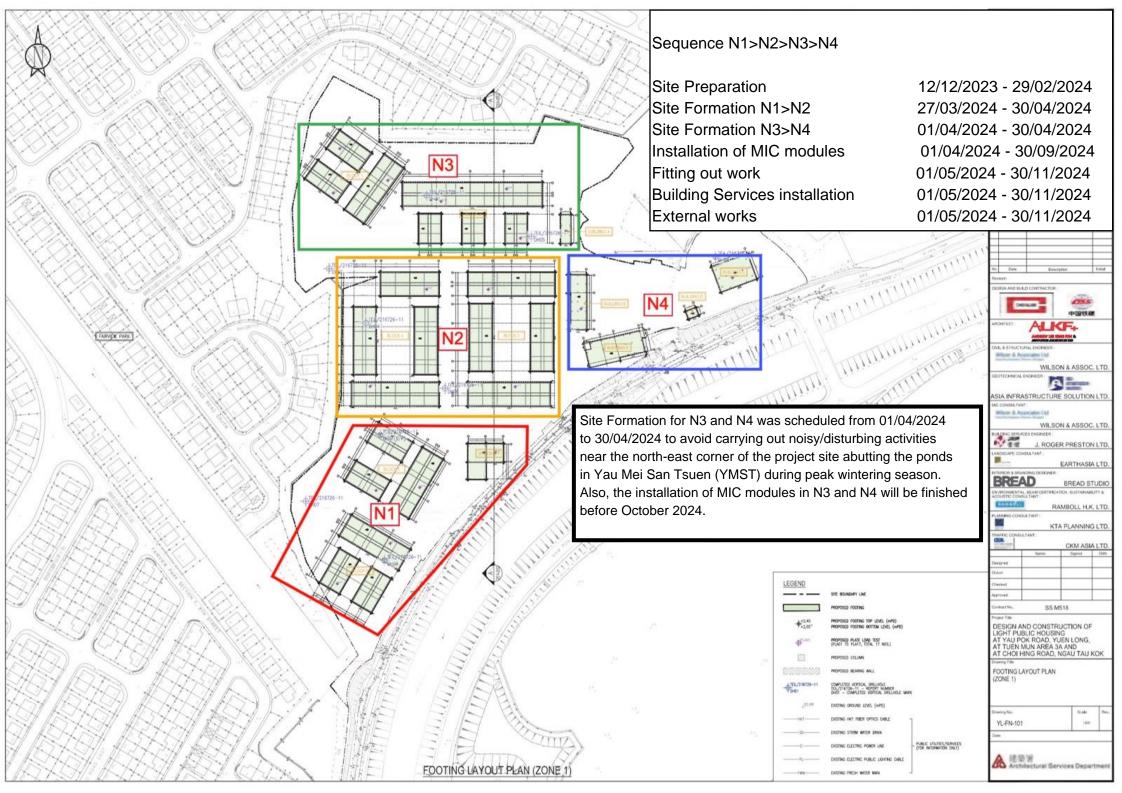


Appendix A Construction Programme



Contract No. SS M518


Design & Construction of Light Public Housing at Yau Pok Road, Yuen Long, at Tuen


Mun Area 3A, and Choi Hing Road, Ngau Tau Kok

Yau Pok Road, Yuen Long Construction Works Schedule

|                                |          | raar     | ok Roda, rac | ir Long oonst | action works | Soricadic |          |          |          |          |          |          |
|--------------------------------|----------|----------|--------------|---------------|--------------|-----------|----------|----------|----------|----------|----------|----------|
| Construction Works             | Dec 2023 | Jan 2024 | Feb 2024     | Mar 2024      | Apr 2024     | May 2024  | Jun 2024 | Jul 2024 | Aug 2024 | Sep 2024 | Oct 2024 | Nov 2024 |
| Site Preparation work          |          |          |              |               |              |           |          |          |          |          |          |          |
| Site Formation                 |          |          |              |               |              |           |          |          |          |          |          |          |
| Mock up of Mic modules         |          |          |              |               |              |           |          |          |          |          |          |          |
| Installation of Mic modules    |          |          |              |               |              |           |          |          |          |          |          |          |
| Fitting out work               |          |          |              |               |              |           |          |          |          |          |          |          |
| Building Services installation |          |          |              |               |              |           |          |          |          |          |          |          |
| External works                 |          |          |              |               |              |           |          |          |          |          |          |          |

Note: The major nosiy / disturbing activities are site formation, mock up of MIC modules and installation of MIC modules, which would be completed before October 2024, therefore the peak wintering season (between October and March) for migratory birds would not be affected. Fitting out work, building services installation and external works are not nosiy / disturbing activities and would not adversely affect the migratory birds.





Appendix B Action and Limit Levels



# **Action / Limit Levels for Air Quality**

| Monitoring Statiton | Action Level | Limit Level |
|---------------------|--------------|-------------|
| AM1                 | 277 μg/m³    | 500 μg/m³   |
| AM2                 | 280 μg/m³    | 500 μg/m³   |
| AM3                 | 280 μg/m³    | 500 μg/m³   |
| AM4                 | 280 μg/m³    | 500 μg/m³   |
| AM5                 | 296 μg/m³    | 500 μg/m³   |

#### Note:

1. Action level = (baseline level \* 1.3 + Limit level)/2; For baseline level > 384  $\mu g/m3$  , Action level = Limit level

#### **Action and Limit Levels for Construction Noise**

| Monitoring Statiton | Time Period                        | Action Level          | Limit Level                      |
|---------------------|------------------------------------|-----------------------|----------------------------------|
| NM1 to NM5          | 0700 to 1900 on normal<br>weekdays | When one documented   | Leq(30min) 75 dB(A) <sup>3</sup> |
| NIMI TO NIMS        | Restricted hours                   | complaint is received | Same as CNP                      |

#### Note:

- 1. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- 2. Correction of  $+3\ dB(A)$  shall be made to the free field measurements.
- 3. Reduce to 10 dB(A) for schools and 65 dB(A) during school examination periods.

#### **Action and Limit Levels for Water Quality**

| -                   |       |       | ·        |         |           |      |      |
|---------------------|-------|-------|----------|---------|-----------|------|------|
| Monitoring Statiton | DO (n | ng/L) | Turbidit | y (NTU) | SS (mg/L) |      |      |
|                     | AL    | LL    | AL       | LL      | AL        | LL   |      |
|                     | W1    | 3.22  | 3.14     | 42.7    | 45.3      | 63.1 | 74.3 |
|                     | W3    | 3.36  | 3.34     | 51.7    | 51.8      | 66.5 | 67.7 |

Appendix C Calibration Certificates of Air, Noise and Water Quality

Monitoring Equipment



# **ALS Technichem (HK) Pty Ltd**

# **ALS Laboratory Group**

ANALYTICAL CHEMISTRY & TESTING SERVICES



#### SUB-CONTRACTING REPORT

CONTACT

: MR ALLEN CHAN

**SOLUTION LTD** 

WORK ORDER

HK2345336

**CLIENT** 

**: ENVIRONMENTAL PIONEERS &** 

**ADDRESS** 

: FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE,

SUB-BATCH

DATE RECEIVED : 10-NOV-2023

20 LEE CHUNG STREET, CHAI WAN, HONG

KONG

DATE OF ISSUE : 24-NOV-2023

**PROJECT** 

HONG KONG

NO. OF SAMPLES : 1

CLIENT ORDER

#### General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting (AUES).

#### Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

**Position** 

Richard Fung

Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release

: HK2345336 WORK ORDER

SUB-BATCH

: 1 : ENVIRONMENTAL PIONEERS & SOLUTION LTD CLIENT

PROJECT



| ALS Lab       | Client's Sample ID | Sample<br>Type | Sample Date | External Lab Report No. |
|---------------|--------------------|----------------|-------------|-------------------------|
| HK2345336-001 | S/N:5201750006     | Equipments     | 10-Nov-2023 | S/N:5201750006          |

 $\mathsf{Page}: 2 \text{ of } 2$ 

# **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

Type: Laser Dust monitor

Manufacturer: TSI AM520

Serial No. 5201750006

Equipment Ref: NA

Job Order HK2345336

#### **Standard Equipment:**

Standard Equipment: Higher Volume Sampler (TSP)

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 11 September 2023

## **Equipment Verification Results:**

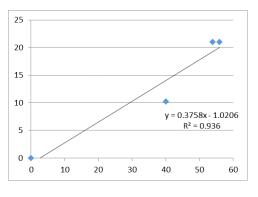
Verification Date: 15 November 2023

| Hour      | Time          | Mean<br>Temp<br>°C | Mean<br>Pressure<br>(hPa) | Concentration in ug/m³ (Standard Equipment) | Concentration in ug/m³ (Calibrated Equipment) | Tolerance<br>(ug/m³) |
|-----------|---------------|--------------------|---------------------------|---------------------------------------------|-----------------------------------------------|----------------------|
| 2hr01mins | 09:31 ~ 11:32 | 22.8               | 1021.7                    | 21.0                                        | 56.0                                          | +35.0                |
| 2hr14mins | 11:45 ~ 13:59 | 22.8               | 1021.7                    | 10.2                                        | 40.0                                          | +29.8                |
| 2hr06mins | 14:08 ~ 16:14 | 22.8               | 1021.7                    | 21.1                                        | 54.0                                          | +32.9                |

#### Linear Regression of Y or X

Slope (K-factor): <u>0.3758 (μg/m³)/CPM</u>

Correlation Coefficient (R) 0.9674


Date of Issue 21 November 2023

#### Remarks:

1. **Strong** Correlation (R>0.8)

Factor <u>0.3758 (μg/m³)/CPM</u> should be applied for TSP monitoring

\*If R<0.5, repair or re-verification is required for the equipment



Operator : Martin Li Signature : Date : 21 November 2023

QC Reviewer : Ben Tam Signature : Date : 21 November 2023

#### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 11-Sep-23
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 10-Dec-23

TE-5170) S/N:1260

#### CONDITIONS

Sea Level Pressure (hPa) 1007.3 Corrected Pressure (mm Hg) 755.475
Temperature (°C) 26.5 Temperature (K) 300

#### **CALIBRATION ORIFICE**

| Make->             | TISCH     | Qstd Slope ->     | 2.10977   |
|--------------------|-----------|-------------------|-----------|
| Model->            | 5025A     | Qstd Intercept -> | -0.03782  |
| Calibration Date-> | 15-Dec-22 | Expiry Date->     | 15-Dec-23 |

#### **CALIBRATION**

| Plate | H20 (L) | H2O (R) | H20  | Qstd     | Ι       | IC        | LINEAR                |
|-------|---------|---------|------|----------|---------|-----------|-----------------------|
| No.   | (in)    | (in)    | (in) | (m3/min) | (chart) | corrected | REGRESSION            |
| 18    | 5.9     | 5.9     | 11.8 | 1.637    | 53      | 52.71     | Slope = 32.7794       |
| 13    | 4.6     | 4.6     | 9.2  | 1.448    | 46      | 45.75     | Intercept = -0.7928   |
| 10    | 3.5     | 3.5     | 7.0  | 1.265    | 42      | 41.77     | Corr. coeff. = 0.9963 |
| 8     | 2.6     | 2.6     | 5.2  | 1.093    | 36      | 35.80     |                       |
| 5     | 1.4     | 1.4     | 2.8  | 0.807    | 25      | 24.86     |                       |

#### Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

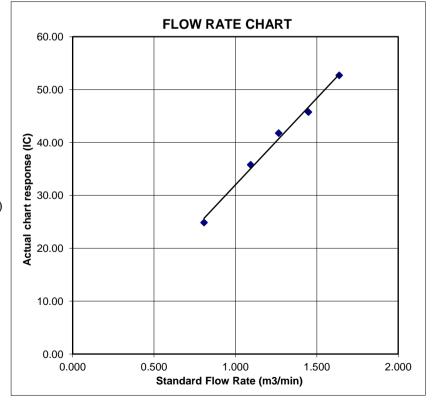
b = calibrator Qstd intercept

Ta = actual temperature during calibration ( deg K )

Pstd = actual pressure during calibration ( mm Hg )

## For subsequent calculation of sampler flow:

1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure





# RECALIBRATION DUE DATE:

December 15, 2023

# Certificate of Calibration

**Calibration Certification Information** 

Cal. Date: December 15, 2022

Rootsmeter S/N: 438320

Ta: 295

Pa: 748.0

°K mm Hg

Operator: Jim Tisch
Calibration Model #:

TE-5025A

Calibrator S/N: 4064

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4430         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0210         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9170         | 7.9           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8730         | 8.8           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7210         | 12.8          | 8.00           |

| -           | Data Tabulation |                                                                             |        |          |                           |  |  |  |  |  |  |
|-------------|-----------------|-----------------------------------------------------------------------------|--------|----------|---------------------------|--|--|--|--|--|--|
| Vstd        | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | $\sqrt{\Delta H (Ta/Pa)}$ |  |  |  |  |  |  |
| (m3)        | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)                  |  |  |  |  |  |  |
| 0.9900      | 0.6861          | 1.4101                                                                      | 0.9957 | 0.6900   | 0.8881                    |  |  |  |  |  |  |
| 0.9858      | 0.9655          | 1.9943                                                                      | 0.9914 | 0.9711   | 1.2560                    |  |  |  |  |  |  |
| 0.9838      | 1.0728          | 2.2296                                                                      | 0.9894 | 1.0790   | 1.4042                    |  |  |  |  |  |  |
| 0.9826      | 1.1255          | 2.3385                                                                      | 0.9882 | 1.1320   | 1.4728                    |  |  |  |  |  |  |
| 0.9772      | 1.3554          | 2.8203                                                                      | 0.9829 | 1.3632   | 1.7762                    |  |  |  |  |  |  |
| m=          |                 | 2.10977                                                                     |        | m=       | 1.32110                   |  |  |  |  |  |  |
| <b>QSTD</b> | b=              | -0.03782                                                                    | QA     | b=       | -0.02382                  |  |  |  |  |  |  |
|             | r=              | 0.99998                                                                     |        | r=       | 0.99998                   |  |  |  |  |  |  |

|                                                                                    | Calculations                                                                                             |               |                                                         |  |  |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------|--|--|--|--|--|
| $Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta) Va = \Delta Vol((Pa-\Delta P)/Pa)$ |                                                                                                          |               |                                                         |  |  |  |  |  |
| Qstd=                                                                              | Vstd/∆Time                                                                                               | Qa=           | Va/ΔTime                                                |  |  |  |  |  |
|                                                                                    | For subsequent flow ra                                                                                   | te calculatio | ns:                                                     |  |  |  |  |  |
| Qstd=                                                                              | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa=           | $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$ |  |  |  |  |  |

| Standard Conditions                       |                               |   |  |  |  |  |  |  |
|-------------------------------------------|-------------------------------|---|--|--|--|--|--|--|
| Tstd:                                     | 298.15 °K                     |   |  |  |  |  |  |  |
| Pstd:                                     | 760 mm Hg                     |   |  |  |  |  |  |  |
|                                           | Key                           | - |  |  |  |  |  |  |
| ΔH: calibrator manometer reading (in H2O) |                               |   |  |  |  |  |  |  |
| ΔP: rootsme                               | ter manometer reading (mm Hg) |   |  |  |  |  |  |  |
|                                           | osolute temperature (°K)      |   |  |  |  |  |  |  |
| Pa: actual ba                             | arometric pressure (mm Hg)    |   |  |  |  |  |  |  |
| b: intercept                              |                               |   |  |  |  |  |  |  |
| m: slope                                  |                               |   |  |  |  |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

# **ALS Technichem (HK) Pty Ltd**

# **ALS Laboratory Group**

ANALYTICAL CHEMISTRY & TESTING SERVICES



#### SUB-CONTRACTING REPORT

CONTACT

: MR ALLEN CHAN

WORK ORDER

HK2423025

**CLIENT** 

**: ENVIRONMENTAL PIONEERS &** 

**SOLUTION LTD** 

**ADDRESS** 

: FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE,

SUB-BATCH

DATE RECEIVED : 7-JUN-2024

20 LEE CHUNG STREET, CHAI WAN, HONG

KONG

DATE OF ISSUE : 21-JUN-2024

HONG KONG

**PROJECT** 

NO. OF SAMPLES : 1

CLIENT ORDER

#### General Comments

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting (AUES).

#### **Signatories**

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release

: HK2423025 WORK ORDER

SUB-BATCH

: 1 : ENVIRONMENTAL PIONEERS & SOLUTION LTD CLIENT

PROJECT



| ALS Lab       | Client's Sample ID | Sample<br>Type | Sample Date | External Lab Report No. |
|---------------|--------------------|----------------|-------------|-------------------------|
| HK2423025-001 | S/N:5201750007     | Equipments     | 07-Jun-2024 | S/N:5201750007          |

----- END OF REPORT -----

 $\mathsf{Page}: 2 \ \mathsf{of} \ 2$ 

# **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

Type: Laser Dust monitor

Manufacturer: TSI AM520

Serial No. 5201750007

Equipment Ref: NA

Job Order HK2423025

#### **Standard Equipment:**

Standard Equipment: Higher Volume Sampler (TSP)

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 16 May 2024

## **Equipment Verification Results:**

Verification Date: 14 June 2024

| Hour     | Time          | Mean<br>Temp<br>°C | Mean<br>Pressure<br>(hPa) | Concentration in ug/m³ (Standard Equipment) | Concentration in ug/m³ (Calibrated Equipment) | Tolerance<br>(ug/m³) |
|----------|---------------|--------------------|---------------------------|---------------------------------------------|-----------------------------------------------|----------------------|
| 2hr01min | 09:52 ~ 11:53 | 29.7               | 1004.1                    | 33.0                                        | 45.0                                          | +12.0                |
| 2hr02min | 12:06 ~ 14:08 | 29.7               | 1004.1                    | 30.2                                        | 41.0                                          | +10.8                |
| 2hr01min | 14:16 ~ 16:17 | 29.7               | 1004.1                    | 49.6                                        | 54.0                                          | +4.4                 |

#### **Linear Regression of Y or X**

Slope (K-factor): <u>0.8445 (µg/m³)/CPM</u>

Correlation Coefficient (R) 0.9789

Date of Issue 21 June 2024

#### Remarks:

1. **Strong** Correlation (R>0.8)

 Factor <u>0.8445 (μg/m³)/CPM</u> should be applied for TSP monitoring

\*If R<0.5, repair or re-verification is required for the equipment

60 50 40 30 20 10 y = 0.8445x - 1.35  $R^2 = 0.9582$ 0 10 20 30 40 50 60

QC Reviewer : Ben Tam Signature : Date : 21 June 2024

#### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 16-May-24
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 16-Aug-24

TE-5170) S/N:1260

#### CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

| 1014 | 3. |
|------|----|
| 26.  | .2 |

Corrected Pressure (mm Hg)
Temperature (K)

761.1 299

#### **CALIBRATION ORIFICE**

| Make->             | TISCH     |
|--------------------|-----------|
| Model->            | 5025A     |
| Calibration Date-> | 15-Dec-23 |

Qstd Slope ->
Qstd Intercept ->
Expiry Date->

2.13163 -0.03523 15-Dec-24

#### **CALIBRATION**

| Plate | H20 (L) | H2O (R) | H20  | Qstd     | I       | IC        | LINEAR                |
|-------|---------|---------|------|----------|---------|-----------|-----------------------|
| No.   | (in)    | (in)    | (in) | (m3/min) | (chart) | corrected | REGRESSION            |
| 18    | 5.8     | 5.8     | 11.6 | 1.612    | 55      | 54.93     | Slope = 32.8104       |
| 13    | 4.6     | 4.6     | 9.2  | 1.438    | 48      | 47.94     | Intercept = 1.7774    |
| 10    | 3.5     | 3.5     | 7.0  | 1.256    | 44      | 43.94     | Corr. coeff. = 0.9981 |
| 8     | 2.4     | 2.4     | 4.8  | 1.043    | 36      | 35.95     |                       |
| 5     | 1.1     | 1.1     | 2.2  | 0.711    | 25      | 24.97     |                       |

#### Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

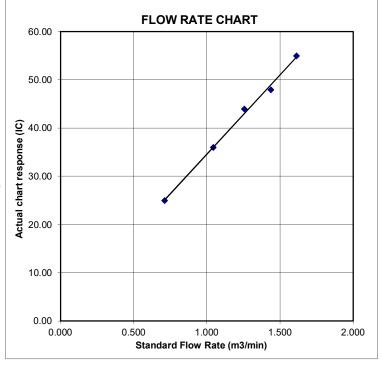
b = calibrator Qstd intercept

Ta = actual temperature during calibration ( deg K )

Pstd = actual pressure during calibration ( mm Hg )

#### For subsequent calculation of sampler flow:

1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure





# RECALIBRATION **DUE DATE:**

December 15, 2024

# libration

**Calibration Certification Information** 

Cal. Date: December 15, 2023 Rootsmeter S/N: 438320

Ta: 295 Pa: 748.5 °K

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 1941

mm Hg

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4590         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0360         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9260         | 8.0           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8840         | 8.9           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7290         | 12.9          | 8.00           |

| Data Tabulation |          |                                                                             |        |          |            |  |
|-----------------|----------|-----------------------------------------------------------------------------|--------|----------|------------|--|
| Vstd            | Qstd     | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | √∆H(Ta/Pa) |  |
| (m3)            | (x-axis) | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)   |  |
| 0.9907          | 0.6790   | 1.4106                                                                      | 0.9957 | 0.6825   | 0.8878     |  |
| 0.9864          | 0.9522   | 1.9949                                                                      | 0.9914 | 0.9570   | 1.2556     |  |
| 0.9843          | 1.0630   | 2.2304                                                                      | 0.9893 | 1.0684   | 1.4037     |  |
| 0.9831          | 1.1121   | 2.3393                                                                      | 0.9881 | 1.1178   | 1.4723     |  |
| 0.9778          | 1.3413   | 2.8213                                                                      | 0.9828 | 1.3481   | 1.7756     |  |
|                 | m=       | 2.13163                                                                     |        | m=       | 1.33479    |  |
| QSTD            | b=       | -0.03523                                                                    | QA     | b=       | -0.02217   |  |
|                 | r=       | 0.99999                                                                     |        | r=       | 0.99999    |  |

| Calculations |                                                                                                          |     |                                                         |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------|--|--|--|
| Vstd=        | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)                                                                              | Va= | ΔVol((Pa-ΔP)/Pa)                                        |  |  |  |
| Qstd=        | <b>Qstd=</b> Vstd/ΔTime                                                                                  |     | Va/ΔTime                                                |  |  |  |
|              | For subsequent flow rate calculations:                                                                   |     |                                                         |  |  |  |
| Qstd=        | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa= | $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$ |  |  |  |

| Standard Conditions                      |                                           |  |  |  |  |  |
|------------------------------------------|-------------------------------------------|--|--|--|--|--|
| Tstd:                                    | 298.15 °K                                 |  |  |  |  |  |
| Pstd:                                    | 760 mm Hg                                 |  |  |  |  |  |
|                                          | Key                                       |  |  |  |  |  |
|                                          | ΔH: calibrator manometer reading (in H2O) |  |  |  |  |  |
| ΔP: rootsmeter manometer reading (mm Hg) |                                           |  |  |  |  |  |
| Ta: actual absolute temperature (°K)     |                                           |  |  |  |  |  |
| Pa: actual barometric pressure (mm Hg)   |                                           |  |  |  |  |  |
| b: intercept                             |                                           |  |  |  |  |  |
| m: slope                                 | m: slope                                  |  |  |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

# **ALS Technichem (HK) Pty Ltd**

# **ALS Laboratory Group**

ANALYTICAL CHEMISTRY & TESTING SERVICES

**SOLUTION LTD** 



#### SUB-CONTRACTING REPORT

CONTACT : MR ALLEN CHAN WORK ORDER

HK2423027

**CLIENT** 

**: ENVIRONMENTAL PIONEERS &** 

**ADDRESS** 

: FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, 20 LEE CHUNG STREET, CHAI WAN, HONG

SUB-BATCH

DATE RECEIVED : 7-JUN-2024

KONG

DATE OF ISSUE : 21-JUN-2024

**PROJECT** 

HONG KONG

NO. OF SAMPLES : 1

CLIENT ORDER

#### General Comments

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting (AUES).

#### **Signatories**

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

This report supersedes any previous report(s) with the same work order number.

All pages of this report have been checked and approved for release

: HK2423027 WORK ORDER

SUB-BATCH

: 1 : ENVIRONMENTAL PIONEERS & SOLUTION LTD CLIENT

PROJECT



| ALS Lab       | Client's Sample ID | Sample<br>Type | Sample Date | External Lab Report No. |
|---------------|--------------------|----------------|-------------|-------------------------|
| HK2423027-001 | S/N:5201750012     | Equipments     | 07-Jun-2024 | S/N:5201750012          |

----- END OF REPORT -----

# **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

Type: Laser Dust monitor

Manufacturer: TSI AM520

Serial No. 5201750012

Equipment Ref: NA

Job Order HK2423027

#### **Standard Equipment:**

Standard Equipment: Higher Volume Sampler (TSP)

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 16 May 2024

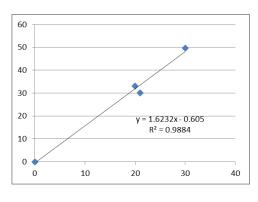
## **Equipment Verification Results:**

Verification Date: 14 June 2024

| Hour     | Time          | Mean<br>Temp<br>°C | Mean<br>Pressure<br>(hPa) | Concentration in ug/m³ (Standard Equipment) | Concentration in ug/m³ (Calibrated Equipment) | Tolerance<br>(ug/m³) |
|----------|---------------|--------------------|---------------------------|---------------------------------------------|-----------------------------------------------|----------------------|
| 2hr01min | 09:52 ~ 11:53 | 29.7               | 1004.1                    | 33.0                                        | 20.0                                          | -13.0                |
| 2hr02min | 12:06 ~ 14:08 | 29.7               | 1004.1                    | 30.2                                        | 21.0                                          | -9.2                 |
| 2hr01min | 14:16 ~ 16:17 | 29.7               | 1004.1                    | 49.6                                        | 30.0                                          | -19.6                |

#### **Linear Regression of Y or X**

Correlation Coefficient (R) 0.9942


Date of Issue 21 June 2024

#### Remarks:

1. **Strong** Correlation (R>0.8)

Factor <u>0.9942 (μg/m³)/CPM</u> should be applied for TSP monitoring

<sup>\*</sup>If R<0.5, repair or re-verification is required for the equipment



QC Reviewer : Ben Tam Signature : Date : 21 June 2024

#### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 16-May-24
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 16-Aug-24

TE-5170) S/N:1260

#### CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

| 1014 | 3. |
|------|----|
| 26.  | .2 |

Corrected Pressure (mm Hg)
Temperature (K)

761.1 299

#### **CALIBRATION ORIFICE**

| Make->             | TISCH     |
|--------------------|-----------|
| Model->            | 5025A     |
| Calibration Date-> | 15-Dec-23 |

Qstd Slope ->
Qstd Intercept ->
Expiry Date->

2.13163 -0.03523 15-Dec-24

#### **CALIBRATION**

| Plate | H20 (L) | H2O (R) | H20  | Qstd     | I       | IC        | LINEAR                |
|-------|---------|---------|------|----------|---------|-----------|-----------------------|
| No.   | (in)    | (in)    | (in) | (m3/min) | (chart) | corrected | REGRESSION            |
| 18    | 5.8     | 5.8     | 11.6 | 1.612    | 55      | 54.93     | Slope = 32.8104       |
| 13    | 4.6     | 4.6     | 9.2  | 1.438    | 48      | 47.94     | Intercept = 1.7774    |
| 10    | 3.5     | 3.5     | 7.0  | 1.256    | 44      | 43.94     | Corr. coeff. = 0.9981 |
| 8     | 2.4     | 2.4     | 4.8  | 1.043    | 36      | 35.95     |                       |
| 5     | 1.1     | 1.1     | 2.2  | 0.711    | 25      | 24.97     |                       |

#### Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

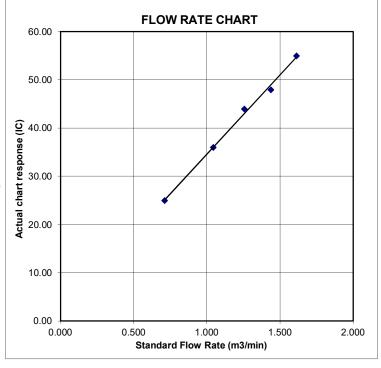
b = calibrator Qstd intercept

Ta = actual temperature during calibration ( deg K )

Pstd = actual pressure during calibration ( mm Hg )

#### For subsequent calculation of sampler flow:

1/m(( I )[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure





# RECALIBRATION **DUE DATE:**

December 15, 2024

# libration

**Calibration Certification Information** 

Cal. Date: December 15, 2023 Rootsmeter S/N: 438320

Ta: 295 Pa: 748.5 °K

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 1941

mm Hg

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4590         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0360         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9260         | 8.0           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8840         | 8.9           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7290         | 12.9          | 8.00           |

|             | Data Tabulation |                                                                             |        |          |            |  |  |  |
|-------------|-----------------|-----------------------------------------------------------------------------|--------|----------|------------|--|--|--|
| Vstd        | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | √∆H(Ta/Pa) |  |  |  |
| (m3)        | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)   |  |  |  |
| 0.9907      | 0.6790          | 1.4106                                                                      | 0.9957 | 0.6825   | 0.8878     |  |  |  |
| 0.9864      | 0.9522          | 1.9949                                                                      | 0.9914 | 0.9570   | 1.2556     |  |  |  |
| 0.9843      | 1.0630          | 2.2304                                                                      | 0.9893 | 1.0684   | 1.4037     |  |  |  |
| 0.9831      | 1.1121          | 2.3393                                                                      | 0.9881 | 1.1178   | 1.4723     |  |  |  |
| 0.9778      | 1.3413          | 2.8213                                                                      | 0.9828 | 1.3481   | 1.7756     |  |  |  |
|             | m=              | 2.13163                                                                     |        | m=       | 1.33479    |  |  |  |
| <b>QSTD</b> | b=              | -0.03523                                                                    | QA     | b=       | -0.02217   |  |  |  |
|             | r=              | 0.99999                                                                     |        | r=       | 0.99999    |  |  |  |

|                                                                                      | Calculations                                                                                                                                                                                                                            |              |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| $Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$ $Va = \Delta Vol((Pa-\Delta P)/Pa)$ |                                                                                                                                                                                                                                         |              |  |  |  |  |  |
| Qstd=                                                                                | Vstd/∆Time                                                                                                                                                                                                                              | Qa= Va/ΔTime |  |  |  |  |  |
|                                                                                      | For subsequent flow rate calculations:                                                                                                                                                                                                  |              |  |  |  |  |  |
| Qstd=                                                                                | $\mathbf{Qstd} = \frac{1}{m} \left( \sqrt{\Delta H \left( \frac{Pa}{Pstd} \right) \left( \frac{Tstd}{Ta} \right)} \right) - b \right) \qquad \mathbf{Qa} = \frac{1}{m} \left( \sqrt{\Delta H \left( Ta/Pa \right)} \right) - b \right)$ |              |  |  |  |  |  |

| Standard Conditions |                               |  |  |  |  |
|---------------------|-------------------------------|--|--|--|--|
| Tstd:               | 298.15 °K                     |  |  |  |  |
| Pstd:               | 760 mm Hg                     |  |  |  |  |
|                     | Key                           |  |  |  |  |
|                     | or manometer reading (in H2O) |  |  |  |  |
|                     | ter manometer reading (mm Hg) |  |  |  |  |
|                     | solute temperature (°K)       |  |  |  |  |
|                     | rometric pressure (mm Hg)     |  |  |  |  |
| b: intercept        |                               |  |  |  |  |
| m: slope            |                               |  |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com





# CERTIFICATE OF CALIBRATION

Certificate No.:

24CA0205 04

**Page** 

of

2

Item tested

Description:

Sound Level Meter (Class 1)

Microphone

Manufacturer: Type/Model No.: SVANTEK, Poland 971

**BSWA** 

Serial/Equipment No.:

231

Adaptors used:

61421

550847

Item submitted by

**Customer Name:** 

**Environmental Pioneers & Solutions Limited** 

Address of Customer:

Flat A, 8/F, Chaiwan Industrial Centre, 20 Lee Chung Street, Chai Wan, Hong Kong

Request No.: Date of receipt:

05-Feb-2024

Date of test:

07-Feb-2024

Reference equipment used in the calibration

Description:

Model:

Serial No.

**Expiry Date:** 

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

28-Aug-2024

CIGISMEC

Signal generator

DS 360

61227

28-Jun-2024

CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

#### **Test specifications**

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Actual Measurement data are documented on worksheets.

**Approved Signatory:** 

Date:

08-Feb-2024

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



2



# CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

24CA0205 04

Page

of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subtest:                                         | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α                                                | Pass    | 0.3                          |                    |
| 3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3-11-3- | C                                                | Pass    | 0.8                          | 0.4                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lin                                              | Pass    | 1.6                          | 2.1                |
| Linearity range for Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At reference range , Step 5 dB at 4 kHz          | Pass    |                              | 2.2                |
| ameany range for 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference SPL on all other ranges                | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 dB below upper limit of each range             |         | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 dB above lower limit of each range             | Pass    | 0.3                          |                    |
| Linearity range for SPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | Pass    | 0.3                          |                    |
| Frequency weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At reference range , Step 5 dB at 4 kHz A        | Pass    | 0.3                          |                    |
| ricquericy weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ĉ                                                | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | Pass    | 0.3                          |                    |
| Time weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lin                                              | Pass    | 0.3                          |                    |
| Time weightings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Single Burst Fast                                | Pass    | 0.3                          |                    |
| Dools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Single Burst Slow                                | Pass    | 0.3                          |                    |
| Peak response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Single 100µs rectangular pulse                   | Pass    | 0.3                          |                    |
| R.M.S. accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Crest factor of 3                                | Pass    | 0.3                          |                    |
| Time weighting I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Repeated at frequency of 100 Hz                  | Pass    | 0.3                          |                    |
| Time averaging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 ms burst duty factor 1/10 <sup>3</sup> at 4kHz | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3                          |                    |
| Pulse range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Sound exposure level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Overload indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPL                                              | Pass    | 0.3                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Leq                                              | Pass    | 0.4                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · •                                              | . 400   | 0.4                          |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

End -

Fung Chi Yip

07-Feb-2024

Checked by:

Ćhan Yuk Yiu

Y-Feb-2024 V

Date: 08-Feb-2024

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

971

Serial No.

61421

Date

07-Feb-2024

Microphone

type:

231

Serial No.

550847

Report: 24CA0205 04

#### **SELF GENERATED NOISE TEST**

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

16.9

dB

Noise level in C weighting

16.9 dB

Noise level in Lin (Z)

21.9

dB

#### LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

| Reference/Expected level | Actua          | al level   | Tolerance | Devia          | Deviation  |  |  |
|--------------------------|----------------|------------|-----------|----------------|------------|--|--|
| ,                        | non-integrated | integrated |           | non-integrated | integrated |  |  |
| dB                       | dB             | dB         | +/- dB    | dB             | dB         |  |  |
| 94.0                     | 94.0           | 94.0       | 0.7       | 0.0            | 0.0        |  |  |
| 99.0                     | 99.0           | 99.0       | 0.7       | 0.0            | 0.0        |  |  |
| 104.0                    | 104.0          | 104.0      | 0.7       | 0.0            | 0.0        |  |  |
| 109.0                    | 109.0          | 109.0      | 0.7       | 0.0            | 0.0        |  |  |
| 114.0                    | 114.0          | 114.0      | 0.7       | 0.0            | 0.0        |  |  |
| 119.0                    | 119.0          | 119.0      | 0.7       | 0.0            | 0.0        |  |  |
| 124.0                    | 124.0          | 124.0      | 0.7       | 0.0            | 0.0        |  |  |
| 125.0                    | 125.0          | 125.0      | 0.7       | 0.0            | 0.0        |  |  |
| 126.0                    | 126.0          | 126.0      | 0.7       | 0.0            | 0.0        |  |  |
| 127.0                    | 127.0          | 127.0      | 0.7       | 0.0            | 0.0        |  |  |
| 128.0                    | 128.0          | 128.0      | 0.7       | 0.0            | 0.0        |  |  |
| 89.0                     | 89.0           | 89.0       | 0.7       | 0.0            | 0.0        |  |  |
| 84.0                     | 84.0           | 84.0       | 0.7       | 0.0            | 0.0        |  |  |
| 79.0                     | 79.0           | 79.0       | 0.7       | 0.0            | 0.0        |  |  |
| 74.0                     | 74.0           | 74.0       | 0.7       | 0.0            | 0.0        |  |  |
| 69.0                     | 69.0           | 69.0       | 0.7       | 0.0            | 0.0        |  |  |
| 64.0                     | 64.0           | 64.0       | 0.7       | 0.0            | 0.0        |  |  |
| 59.0                     | 59.0           | 59.0       | 0.7       | 0.0            | 0.0        |  |  |
| 54.0                     | 54.0           | 54.0       | 0.7       | 0.0            | 0.0        |  |  |
| 49.0                     | 49.0           | 49.0       | 0.7       | 0.0            | 0.0        |  |  |
| 44.0                     | 43.9           | 43.9       | 0.7       | -0.1           | -0.1       |  |  |
| 39.0                     | 38.9           | 38.9       | 0.7       | -0.1           | -0.1       |  |  |
| 34.0                     | 33.7           | 33.7       | 0.7       | -0.3           | -0.3       |  |  |
| 33.0                     | 32.6           | 32.6       | 0.7       | -0.4           | -0.4       |  |  |
| 32.0                     | 31.6           | 31.6       | 0.7       | -0.4           | -0.4       |  |  |
| 31.0                     | 30.7           | 30.7       | 0.7       | -0.3           | -0.3       |  |  |

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007



香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



Test Data for Sound Level Meter

Page 2 of 5

Sound level meter type:

971

Serial No.

61421

Date

-0.6

07-Feb-2024

Microphone

type:

231

Serial No.

550847

Report: 24CA0205 04

30.0

29.4

29.4 0.7

-0.6

Measurements for an indication of the reference SPL on all other ranges which include it

| Other ranges | Expected level | Actual level | Tolerance | Deviation |
|--------------|----------------|--------------|-----------|-----------|
| dB           | dB             | dB           | +/- dB    | dB        |
| 30-128       | 94.0           | 94.0         | 0.7       | 0.0       |
| 40-142       | 94.0           | 94.0         | 0.7       | 0.0       |

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

| Ranges | Reference/Expected level | Actual level | Tolerance | Deviation |
|--------|--------------------------|--------------|-----------|-----------|
| dB     | dB                       | dB           | +/- dB    | dB        |
| 30-128 | 32.0                     | 31.6         | 0.7       | -0.4      |
| 30-120 | 126.0                    | 126.0        | 0.7       | 0.0       |
| 40-142 | 42.0                     | 41.8         | 0.7       | -0.2      |
| 10 142 | 140.0                    | 139.9        | 0.7       | -0.1      |

#### FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

| Frequency | Ref. level | Expected level | Actual level | Tolerance(dB) |     | Deviation |
|-----------|------------|----------------|--------------|---------------|-----|-----------|
| Hz        | dB         | dB             | dB           | +             | -   | dB        |
| 1000.0    | 94.0       | 94.0           | 94.0         | 0.0           | 0.0 | 0.0       |
| 31.6      | 94.0       | 54.6           | 54.8         | 1.5           | 1.5 | 0.2       |
| 63.1      | 94.0       | 67.8           | 67.9         | 1.5           | 1.5 | 0.1       |
| 125.9     | 94.0       | 77.9           | 77.9         | 1.0           | 1.0 | 0.0       |
| 251.2     | 94.0       | 85.4           | 85.4         | 1.0           | 1.0 | 0.0       |
| 501.2     | 94.0       | 90.8           | 90.8         | 1.0           | 1.0 | 0.0       |
| 1995.0    | 94.0       | 95.2           | 95.2         | 1.0           | 1.0 | 0.0       |
| 3981.0    | 94.0       | 95.0           | 95.1         | 1.0           | 1.0 | 0.1       |
| 7943.0    | 94.0       | 92.9           | 93.1         | 1.5           | 3.0 | 0.2       |
| 12590.0   | 94.0       | 89.7           | 89.7         | 3.0           | 6.0 | 0.0       |

Frequency weighting C:

| Frequency | Ref. level | Expected level | Actual level | Tolera | nce(dB) | Deviation |
|-----------|------------|----------------|--------------|--------|---------|-----------|
| Hz        | dB         | dB             | dB           | +      | -       | dB        |
| 1000.0    | 94.0       | 94.0           | 94.0         | 0.0    | 0.0     | 0.0       |
| 31.6      | 94.0       | 91.0           | 91.0         | 1.5    | 1.5     | 0.0       |
| 63.1      | 94.0       | 93.2           | 93.2         | 1.5    | 1.5     | 0.0       |
| 125.9     | 94.0       | 93.8           | 93.8         | 1.0    | 1.0     | 0.0       |
| 251.2     | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 501.2     | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 1995.0    | 94.0       | 93.8           | 93.8         | 1.0    | 1.0     | 0.0       |
| 3981.0    | 94.0       | 93.2           | 93.2         | 1.0    | 1.0     | 0.0       |

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab** 

Test Data for Sound Level Meter

Page 3 of 5

| Sound level met | ter type: | 971 |      | Serial No. | 614 | 21  | Date    | 07-Feb-2024 |
|-----------------|-----------|-----|------|------------|-----|-----|---------|-------------|
| Microphone      | type:     | 231 |      | Serial No. | 550 | 847 |         |             |
|                 |           |     |      |            |     |     | Report: | 24CA0205 04 |
| 7943.0          | 94.0      |     | 91.0 | 91.1       | 1.5 | 3.0 | 0.1     |             |
| 12590.0         | 94.0      |     | 87.8 | 87.7       | 3.0 | 6.0 | -0.1    |             |

Frequency weighting Z:

| Frequency | Ref. level | Expected level | Actual level | Tolera | nce(dB) | Deviation |
|-----------|------------|----------------|--------------|--------|---------|-----------|
| Hz        | dB         | dB             | dB           | +      | _       | dB        |
| 1000.0    | 94.0       | 94.0           | 94.0         | 0.0    | 0.0     | 0.0       |
| 31.6      | 94.0       | 94.0           | 94.0         | 1.5    | 1.5     | 0.0       |
| 63.1      | 94.0       | 94.0           | 94.0         | 1.5    | 1.5     | 0.0       |
| 125.9     | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 251.2     | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 501.2     | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 1995.0    | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 3981.0    | 94.0       | 94.0           | 94.0         | 1.0    | 1.0     | 0.0       |
| 7943.0    | 94.0       | 94.0           | 93.9         | 1.5    | 3.0     | -0.1      |
| 12590.0   | 94.0       | 94.0           | 93.9         | 3.0    | 6.0     | -0.1      |

#### TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

| Ref. level | Expected level | Actual level | Tolerance(dB) |     | Deviation |
|------------|----------------|--------------|---------------|-----|-----------|
| dB         | dB             | dB           | +             | -   | dB        |
| 124.0      | 123.0          | 123.0        | 1.0           | 1.0 | 0.0       |

#### TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

| Ref. level | Expected level | Actual level | Tolerance(dB) |     | Deviation |  |
|------------|----------------|--------------|---------------|-----|-----------|--|
| dB         | dB             | dB           | +             | -   | dB        |  |
| 124.0      | 119.9          | 119.9        | 1.0           | 1.0 | 0.0       |  |

#### **PEAK RESPONSE TEST**

dB

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities: (Weighting C, set the generator signal to single, Lcpeak)

dB

| Ref. level           | Response to 10 ms | Response to 100 us | Tolerance | Deviation |
|----------------------|-------------------|--------------------|-----------|-----------|
| dB                   | dB                | dB                 | +/- dB    | dB        |
| 127.0                | 127.0             | 127.6              | 2.0       | 0.6       |
| Negative polarities: |                   |                    |           |           |
| Ref. level           | Response to 10 ms | Response to 100 us | Tolerance | Deviation |
|                      |                   |                    |           |           |

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

dB

dB

+/- dB



SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

971

Serial No.

61421

Date 07-Feb-2024

0.6

Microphone

tvpe:

231

Serial No. 550847

Report: 24CA0205 04

127.0

127.0

2.0

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

127.6

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

|               | Ref. Level | Expected level | Tone burst signal | Tolerance | Deviation |
|---------------|------------|----------------|-------------------|-----------|-----------|
| Time wighting | dB         | dB             | indication(dB)    | +/- dB    | dB        |
| Slow          | 125.0+6.6  | 125.0          | 124.8             | 0.5       | -0.2      |

#### TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

#### Single sinusoidal burst of duration 5 ms:

| Ref. Level | Single burst indication |             | Tolerance | Deviation |
|------------|-------------------------|-------------|-----------|-----------|
| dB         | Expected (dB)           | Actual (dB) | +/- dB    | dB        |
| 128.0      | 119.2                   | 119.1       | 2.0       | -0.1      |

#### Repeated at 100 Hz

| Ref. Level | Repeated but  | Repeated burst indication |        | Deviation |
|------------|---------------|---------------------------|--------|-----------|
| dB         | Expected (dB) | Actual (dB)               | +/- dB | dB        |
| 128.0      | 125.3         | 125.1                     | 1.0    | -0.2      |

#### TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

| Repetition Time | Level of   | Expected | Actual | Tolerance | Deviation | Remarks      |
|-----------------|------------|----------|--------|-----------|-----------|--------------|
|                 | tone burst | Leq      | Leq    |           |           |              |
| msec            | dB         | dB       | dB     | +/- dB    | dB        |              |
| 1000            | 98.0       | 98.0     | 97.5   | 1.0       | -0.5      | 60s integ.   |
| 10000           | 88.0       | 88.0     | 87.5   | 1.0       | -0.5      | 6min. integ. |

#### PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

#### The integrating sound level meter set to Leq:

| Duration | Rms level of    | Expected | Actual | Tolerance | Deviation |
|----------|-----------------|----------|--------|-----------|-----------|
| msec     | tone burst (dB) | dB       | dB     | +/- dB    | dB        |
| 10       | 98.0            | 68.0     | 68.0   | 1.7       | 0.0       |

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007



香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com



Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

971

Serial No.

61421

Date

07-Feb-2024

Microphone

type:

231

Serial No.

550847

Report: 24CA0205 04

The integrating sound level meter set to SEL:

| Duration | Rms level of    | Expected | Actual | Tolerance | Deviation |
|----------|-----------------|----------|--------|-----------|-----------|
| msec     | tone burst (dB) | dB       | dB     | +/- dB    | dB        |
| 10.0     | 98.0            | 78.0     | 78.0   | 1.7       | 0.0       |

#### **OVERLOAD INDICATION TEST**

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

| Level            | Level reduced by | Further reduced | Difference | Tolerance | Deviation |
|------------------|------------------|-----------------|------------|-----------|-----------|
| at overload (dB) | 1 dB             | 3 dB            | dB         | dB        | dB        |
| 125.4            | 124.4            | 121.4           | 3.0        | 1.0       | 0.0       |

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

1 msec

| Rms level        | Level reduced by | Expected level | Actual level | Tolerance | Deviation |
|------------------|------------------|----------------|--------------|-----------|-----------|
| at overload (dB) | 1 dB             | dB             | dB           | dB        | dB        |
| 128.8            | 127.8            | 87.8           | 87.8         | 2.2       | 0.0       |

#### **ACOUSTIC TEST**

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

| Frequency | Expected level | Actual level  | Tolerar | nce (dB) | Deviation |
|-----------|----------------|---------------|---------|----------|-----------|
| Hz        | dB             | Measured (dB) | +       | -        | dB        |
| 1000      | 94.0           | 94.0          | 0.0     | 0.0      | 0.0       |
| 125       | 77.9           | 77.9          | 1.0     | 1.0      | 0.0       |
| 8000      | 92.9           | 92.5          | 1.5     | 3.0      | -0.4      |

-----END-----

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007



# 輝創工程有限公司

Sun Creation Engineering Limited

**Calibration & Testing Laboratory** 

# Certificate of Calibration

校正證書

Certificate No.: C241019

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC24-0187)

Date of Receipt / 收件日期: 31 January 2024

Description / 儀器名稱

Acoustic Calibrator

Manufacturer / 製造商

Svantek

Model No. / 型號

SV30A

Serial No. / 編號

7908

Supplied By / 委託者

Environmental Pioneers & Solutions Limited

Flat A, 8/F., Chai Wan Industrial Centre,

20 Lee Chung Street, Chai Wan, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :  $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :  $(50 \pm 25)\%$ 

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

24 February 2024

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed specified limits.

These limits refer to manufacturer's published tolerances as requested by the customer.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Hottinger Brüel & Kjær Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

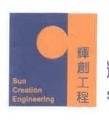
Tested By 測試

K C Lee Engineer

Certified By 核證

written approval of this laboratory

H C Chan


Date of Issue 簽發日期

26 February 2024

Engineer

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



# 輝創工程有限公司

Sun Creation Engineering Limited

**Calibration & Testing Laboratory** 

# Certificate of Calibration

Certificate No.: C241019

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement 1. of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

> Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator

Certificate No. C233799 CDK2302738

Measuring Amplifier C221750

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

| UUT           | Measured Value | Mfr's Limit | Uncertainty of Measured Value |
|---------------|----------------|-------------|-------------------------------|
| Nominal Value | (dB)           | (dB)        | (dB)                          |
| 94 dB, 1 kHz  | 94.15          | ± 0.3       | ± 0.20                        |
| 114 dB, 1 kHz | 114.15         |             |                               |

Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's          | Uncertainty of Measured Value |
|-------------------|----------------|----------------|-------------------------------|
| (kHz)             | (kHz)          | Limit          | (Hz)                          |
| 1                 | 1.000 01       | 1 kHz ± 0.02 % | ± 0.01                        |

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

#### Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

E-mail/電郵: callab@suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Page 2 of 2

## REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BD090004

Date of Issue

: 02 September 2024

Page No.

: 1 of 2

#### PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Flat 2207, Yu Fun House Yu Chui Court, Shatin

New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS Multi Parameters

Manufacturer:

YSI

Serial Number:

21K101469

Date of Received:

30 August 2024

Date of Calibration :

Date of Next Calibration :

30 August 2024 30 November 2024

Request No.:

D-BD090004

#### PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

**Test Parameter** 

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Conductivity

APHA 21e 2510 B

Turbidity

APHA 21e 2130 B (Nephelometric Method)

#### **PART D - CALIBRATION RESULT**

#### (1) pH value

| Target ( pH unit ) | Display Reading ( pH unit ) | Tolerance | Result       |
|--------------------|-----------------------------|-----------|--------------|
| 4.00               | 4.06                        | 0.06      | Satisfactory |
| 7.42               | 7.48                        | 0.06      | Satisfactory |
| 10.01              | 10.09                       | 0.08      | Satisfactory |

Tolerance of pH value should be less than  $\pm$  0.2 ( pH unit )

#### (2) Temperature

| Reading of Ref. thermometer ( °C ) | Display Reading (°C) | Tolerance | Result       |
|------------------------------------|----------------------|-----------|--------------|
| 10.0                               | 10.0                 | 0.0       | Satisfactory |
| 20.0                               | 20.0                 | 0.0       | Satisfactory |
| 40.0                               | 40.0                 | 0.0       | Satisfactory |

Tolerance of Temperature should be less than  $\pm\,2.0$  ( °C )

#### (3) Salinity

| Expected Reading (g/L) | Display Reading (g/L) | Tolerance (%) | Result       |
|------------------------|-----------------------|---------------|--------------|
| 10                     | 10.04                 | 0.40          | Satisfactory |
| 20                     | 20.10                 | 0.50          | Satisfactory |
| 30                     | 30.12                 | 0.40          | Satisfactory |

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning Assistant Manager



# REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BD090004

Date of Issue

: 02 September 2024

Page No.

: 2 of 2

#### (4) Dissolved oxygen

| Expected Reading ( mg/L ) | Display Reading ( mg/L ) | Tolerance | Result       |
|---------------------------|--------------------------|-----------|--------------|
| 7.65                      | 7.57                     | -0.08     | Satisfactory |
| 5.23                      | 5.17                     | -0.06     | Satisfactory |
| 3.72                      | 3.79                     | 0.07      | Satisfactory |
| 0.30                      | 0.10                     | -0.20     | Satisfactory |

Tolerance of Dissolved oxygen should be less than  $\pm$  0.5 ( mg/L )

#### (5) Conductivity

| Expected Reading ( μS/cm at 25°C ) | Display Reading | Tolerance (%) | Result       |
|------------------------------------|-----------------|---------------|--------------|
| 146.9                              | 151.0           | 2.8           | Satisfactory |
| 1412                               | 1362            | -3.5          | Satisfactory |
| 12890                              | 12813           | -0.6          | Satisfactory |
| 58670                              | 58930           | 0.4           | Satisfactory |
| 111900                             | 114176          | 2.0           | Satisfactory |

Tolerance of Conductivity should be less than  $\pm$  10.0 ( % )

#### (6) Turbidity

| Expected Reading (NTU) | Display Reading (NTU) | Tolerance (a) (%) | Result       |
|------------------------|-----------------------|-------------------|--------------|
| 0                      | 0.05                  |                   | Satisfactory |
| 10                     | 9.85                  | -1.5              | Satisfactory |
| 20                     | 19.66                 | -1.7              | Satisfactory |
| 100                    | 97.39                 | -2.6              | Satisfactory |
| 800                    | 811.10                | 1.4               | Satisfactory |

Tolerance of Turbidity should be less than  $\pm$  10.0 (%)

#### Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted from relevant international standards.
- ·The results relate only to the calibrated equipment as received
- 'The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted from relevant international standards.

--- END OF REPORT ---

<sup>(</sup>a) For 0 NTU, Display Reading should be less than 1 NTU

Appendix D Environmental Monitoring Schedules



# Impact Monitoring for Light Public Housing at Yau Pok Road, Yuen Long

# **Impact Monitoring Schedule for September 2024**

| Sunday | Monday                           | Tuesday             | Wednesday                        | Thursday  | Friday                           | Saturday                         |
|--------|----------------------------------|---------------------|----------------------------------|-----------|----------------------------------|----------------------------------|
| Sep 01 | Sep 02                           | Sep 03              | Sep 04                           | Sep 05    | Sep 06                           | Sep 07                           |
|        | *** Water                        |                     | *Noise<br>**1hr-TSP<br>*** Water |           | *** Water                        |                                  |
| Sep 08 | Sep 09                           | Sep 10              | Sep 11                           | Sep 12    | Sep 13                           | Sep 14                           |
|        | *** Water                        | *Noise<br>**1hr-TSP | *** Water                        | •         | *** Water                        |                                  |
| Sep 15 | Sep 16                           | Sep 17              | Sep 18                           | Sep 19    | Sep 20                           | Sep 21                           |
|        | *Noise<br>**1hr-TSP<br>*** Water |                     |                                  | *** Water |                                  | *Noise<br>**1hr-TSP<br>*** Water |
| Sep 22 | Sep 23                           | Sep 24              | Sep 25                           | Sep 26    | Sep 27                           | Sep 28                           |
|        | *** Water                        |                     | *** Water                        |           | *Noise<br>**1hr-TSP<br>*** Water |                                  |
| Sep 29 | Sep 30                           |                     |                                  |           |                                  |                                  |
| _      | *** Water                        |                     |                                  |           |                                  |                                  |
|        |                                  |                     |                                  |           |                                  |                                  |
|        |                                  |                     |                                  |           |                                  |                                  |

<sup>\*</sup> Noise Monitoring at NM1, NM2, NM3, NM4 & NM5

<sup>\*\* 1</sup>hr-TSP Monitoring at AM1, AM2, AM3, AM4 & AM5

<sup>\*\*\*</sup> Water Quality Monitoring at W1, W3, C1, C3

# Impact Monitoring for Light Public Housing at Yau Pok Road, Yuen Long

# **Impact Monitoring Schedule for October 2024**

| Sunday | Monday    | Tuesday   | Wednesday | Thursday  | Friday    | Saturday  |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|
|        |           | Oct 01    | Oct 02    | Oct 03    | Oct 04    | Oct 05    |
|        |           |           | *** Water | *Noise    | *** Water |           |
|        |           |           |           | **1hr-TSP |           |           |
|        |           |           |           |           |           |           |
| Oct 06 | Oct 07    | Oct 08    | Oct 09    | Oct 10    | Oct 11    | Oct 12    |
|        | *** Water | *Noise    | *** Water |           |           | *** Water |
|        |           | **1hr-TSP |           |           |           |           |
|        |           |           |           |           |           |           |
| Oct 13 | Oct 14    | Oct 15    | Oct 16    | Oct 17    | Oct 18    | Oct 19    |
|        | *Noise    |           | *** Water |           | *** Water | *Noise    |
|        | **1hr-TSP |           |           |           |           | **1hr-TSP |
|        | *** Water |           |           |           |           |           |
| Oct 20 | Oct 21    | Oct 22    | Oct 23    | Oct 24    | Oct 25    | Oct 26    |
|        | *** Water |           | *** Water |           | *Noise    |           |
|        |           |           |           |           | **1hr-TSP |           |
|        |           |           |           |           | *** Water |           |
| Oct 27 | Oct 28    | Oct 29    | Oct 30    | Oct 31    |           |           |
|        | *** Water |           | *** Water | *Noise    |           |           |
|        |           |           |           | **1hr-TSP |           |           |
|        |           |           |           |           |           |           |
|        |           |           |           |           |           |           |
|        |           |           |           |           |           |           |
|        |           |           |           |           |           |           |
|        |           |           |           |           |           |           |

<sup>\*</sup> Noise Monitoring at NM1, NM2, NM3, NM4 & NM5

<sup>\*\* 1</sup>hr-TSP Monitoring at AM1, AM2, AM3, AM4 & AM5

<sup>\*\*\*</sup> Water Quality Monitoring at W1, W3, C1, C3

Appendix E Monitoring Results



## **Appendix E - Monitoring Result (Air Quality)**

Monitoring Station: AM1

| Monitoring Station. AMI |         |              |          |  |  |  |  |
|-------------------------|---------|--------------|----------|--|--|--|--|
| Date                    | Weather | Time         | 1-hr TSP |  |  |  |  |
| 04/09/2024              | Sunny   | 09:48        | 45       |  |  |  |  |
| 04/09/2024              | Sunny   | 10:48        | 32       |  |  |  |  |
| 04/09/2024              | Sunny   | 11:48        | 33       |  |  |  |  |
| 10/09/2024              | Sunny   | 09:56        | 37       |  |  |  |  |
| 10/09/2024              | Sunny   | 10:56        | 33       |  |  |  |  |
| 10/09/2024              | Sunny   | 11:56        | 42       |  |  |  |  |
| 16/09/2024              | Cloudy  | 09:58        | 24       |  |  |  |  |
| 16/09/2024              | Cloudy  | 10:58        | 27       |  |  |  |  |
| 16/09/2024              | Cloudy  | 11:58        | 26       |  |  |  |  |
| 21/09/2024              | Cloudy  | 09:19        | 32       |  |  |  |  |
| 21/09/2024              | Cloudy  | 10:19        | 36       |  |  |  |  |
| 21/09/2024              | Cloudy  | 11:19        | 41       |  |  |  |  |
| 27/09/2024              | Sunny   | 09:43        | 37       |  |  |  |  |
| 27/09/2024              | Sunny   | 10:43        | 33       |  |  |  |  |
| 27/09/2024              | Sunny   | 11:43        | 32       |  |  |  |  |
|                         |         | Average      | 34       |  |  |  |  |
|                         |         | Maximum      | 45       |  |  |  |  |
|                         |         | Minimum      | 24       |  |  |  |  |
|                         |         | Action Level | 277      |  |  |  |  |
|                         |         | Limit Level  | 500      |  |  |  |  |
|                         |         |              |          |  |  |  |  |

Monitoring Station: AM2

|         | , tatioiii , ii ii E |          |
|---------|----------------------|----------|
| Weather | Time                 | 1-hr TSP |
| Sunny   | 10:03                | 28       |
| Sunny   | 11:03                | 33       |
| Sunny   | 12:03                | 37       |
| Sunny   | 10:11                | 37       |
| Sunny   | 11:11                | 34       |
| Sunny   | 12:11                | 33       |
| Cloudy  | 10:13                | 16       |
| Cloudy  | 11:13                | 16       |
| Cloudy  | 12:13                | 19       |
| Cloudy  | 09:34                | 28       |
| Cloudy  | 10:34                | 30       |
| Cloudy  | 11:34                | 32       |
| Sunny   | 09:58                | 38       |
| Sunny   | 10:58                | 33       |
| Sunny   | 11:58                | 33       |
|         | Average              | 30       |
|         | Maximum              | 38       |
|         | Minimum              | 16       |
|         | Action Level         | 280      |
|         | Limit Level          | 500      |

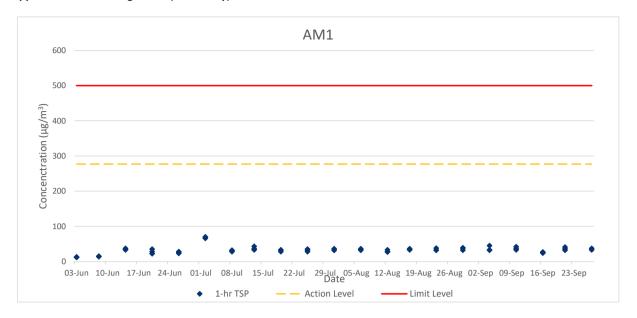
Monitoring Station: AM3

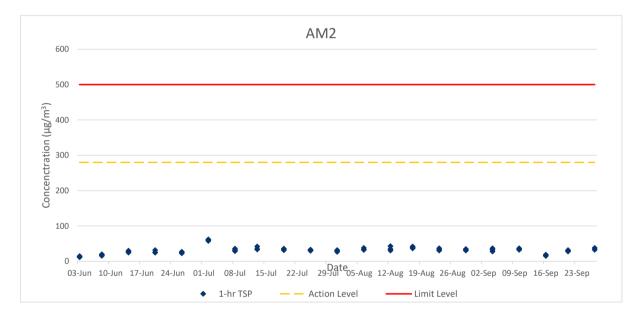
| Monitoring Station: AMS |              |          |  |  |  |  |  |  |
|-------------------------|--------------|----------|--|--|--|--|--|--|
| Weather                 | Time         | 1-hr TSP |  |  |  |  |  |  |
| Sunny                   | 10:15        | 42       |  |  |  |  |  |  |
| Sunny                   | 11:15        | 39       |  |  |  |  |  |  |
| Sunny                   | 12:15        | 43       |  |  |  |  |  |  |
| Sunny                   | 10:23        | 38       |  |  |  |  |  |  |
| Sunny                   | 11:23        | 33       |  |  |  |  |  |  |
| Sunny                   | 12:23        | 40       |  |  |  |  |  |  |
| Cloudy                  | 10:25        | 32       |  |  |  |  |  |  |
| Cloudy                  | 11:25        | 33       |  |  |  |  |  |  |
| Cloudy                  | 12:25        | 28       |  |  |  |  |  |  |
| Cloudy                  | 09:46        | 42       |  |  |  |  |  |  |
| Cloudy                  | 10:46        | 38       |  |  |  |  |  |  |
| Cloudy                  | 11:46        | 30       |  |  |  |  |  |  |
| Sunny                   | 10:10        | 37       |  |  |  |  |  |  |
| Sunny                   | 11:10        | 32       |  |  |  |  |  |  |
| Sunny                   | 12:10        | 31       |  |  |  |  |  |  |
|                         | Average      | 36       |  |  |  |  |  |  |
|                         | Maximum      | 43       |  |  |  |  |  |  |
|                         | Minimum      | 28       |  |  |  |  |  |  |
|                         | Action Level | 280      |  |  |  |  |  |  |
|                         | Limit Level  | 500      |  |  |  |  |  |  |
|                         |              |          |  |  |  |  |  |  |

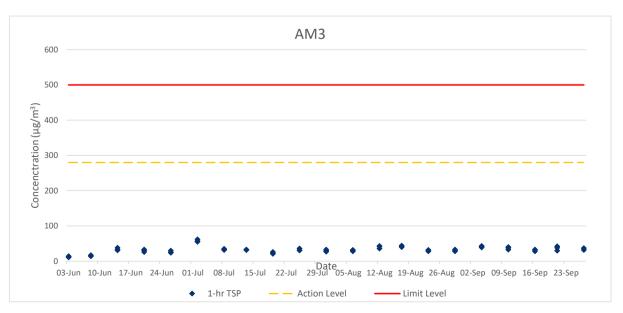
Monitoring Station: AM4

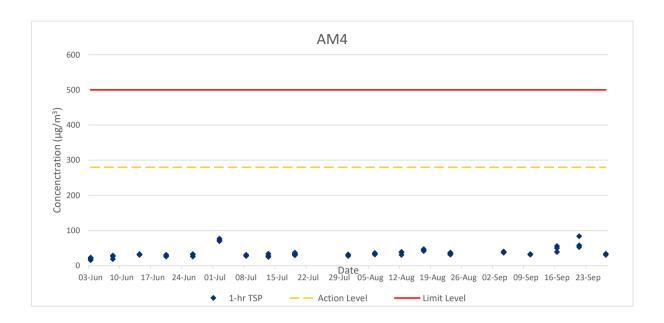
| Monitoring Station: AM4 |         |              |          |  |  |  |  |  |
|-------------------------|---------|--------------|----------|--|--|--|--|--|
| Date                    | Weather | Time         | 1-hr TSP |  |  |  |  |  |
| 04/09/2024              | Sunny   | 14:30        | 40       |  |  |  |  |  |
| 04/09/2024              | Sunny   | 15:30        | 37       |  |  |  |  |  |
| 04/09/2024              | Sunny   | 16:30        | 39       |  |  |  |  |  |
| 10/09/2024              | Sunny   | 14:38        | 32       |  |  |  |  |  |
| 10/09/2024              | Sunny   | 15:38        | 33       |  |  |  |  |  |
| 10/09/2024              | Sunny   | 16:38        | 32       |  |  |  |  |  |
| 16/09/2024              | Cloudy  | 14:40        | 56       |  |  |  |  |  |
| 16/09/2024              | Cloudy  | 15:40        | 39       |  |  |  |  |  |
| 16/09/2024              | Cloudy  | 16:40        | 50       |  |  |  |  |  |
| 21/09/2024              | Cloudy  | 14:01        | 53       |  |  |  |  |  |
| 21/09/2024              | Cloudy  | 15:01        | 84       |  |  |  |  |  |
| 21/09/2024              | Cloudy  | 16:01        | 58       |  |  |  |  |  |
| 27/09/2024              | Sunny   | 14:25        | 34       |  |  |  |  |  |
| 27/09/2024              | Sunny   | 15:25        | 31       |  |  |  |  |  |
| 27/09/2024              | Sunny   | 16:25        | 36       |  |  |  |  |  |
|                         |         | Average      | 44       |  |  |  |  |  |
|                         |         | Maximum      | 84       |  |  |  |  |  |
|                         |         | Minimum      | 31       |  |  |  |  |  |
|                         |         | Action Level | 280      |  |  |  |  |  |
|                         |         |              |          |  |  |  |  |  |

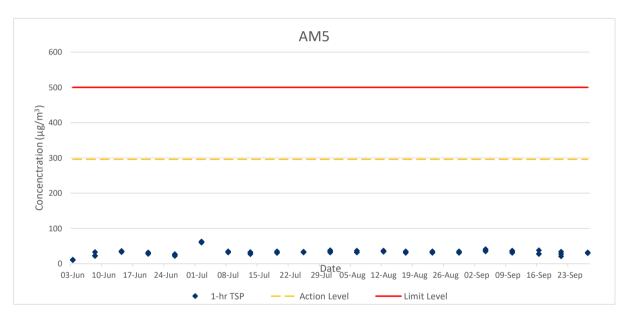
Monitoring Station: AM5


| Monitoring Station: AM5 |              |          |  |  |  |  |  |  |
|-------------------------|--------------|----------|--|--|--|--|--|--|
| Weather                 | Time         | 1-hr TSP |  |  |  |  |  |  |
| Sunny                   | 14:52        | 35       |  |  |  |  |  |  |
| Sunny                   | 15:52        | 41       |  |  |  |  |  |  |
| Sunny                   | 16:52        | 38       |  |  |  |  |  |  |
| Sunny                   | 15:00        | 34       |  |  |  |  |  |  |
| Sunny                   | 16:00        | 31       |  |  |  |  |  |  |
| Sunny                   | 17:00        | 37       |  |  |  |  |  |  |
| Cloudy                  | 15:02        | 28       |  |  |  |  |  |  |
| Cloudy                  | 16:02        | 38       |  |  |  |  |  |  |
| Cloudy                  | 17:02        | 28       |  |  |  |  |  |  |
| Cloudy                  | 14:23        | 21       |  |  |  |  |  |  |
| Cloudy                  | 15:23        | 34       |  |  |  |  |  |  |
| Cloudy                  | 16:23        | 28       |  |  |  |  |  |  |
| Sunny                   | 14:47        | 32       |  |  |  |  |  |  |
| Sunny                   | 15:47        | 30       |  |  |  |  |  |  |
| Sunny                   | 16:47        | 33       |  |  |  |  |  |  |
|                         | Average      | 33       |  |  |  |  |  |  |
|                         | Maximum      | 41       |  |  |  |  |  |  |
|                         | Minimum      | 21       |  |  |  |  |  |  |
|                         | Action Level | 296      |  |  |  |  |  |  |
|                         | Limit Level  | 500      |  |  |  |  |  |  |


Unit: μg/m3


Limit Level


500


## **Appendix E - Monitoring Result (Air Quality)**











## Appendix E - Monitoring Result (Noise)

Monitoring Station: NM1

| Date       | Time             | Leq (30 min)(dB(A)) | L10(dB(A)) | L90(dB(A)) |
|------------|------------------|---------------------|------------|------------|
| 04/09/2024 | 09:57            | 59                  | 63         | 54         |
| 10/09/2024 | 10/09/2024 10:04 |                     | 58         | 55         |
| 16/09/2024 | 10:00            | 61                  | 62         | 54         |
| 21/09/2024 | 09:24            | 61                  | 65         | 51         |
| 27/09/2024 | 10:01            | 62                  | 63         | 58         |

Note: +3dB for Free Field is added.

Monitoring Station: NM2

| Date       | Time  | Leq (30 min)(dB(A)) | L10(dB(A)) | L90(dB(A)) |
|------------|-------|---------------------|------------|------------|
| 04/09/2024 | 10:32 | 68                  | 69         | 61         |
| 10/09/2024 | 10:39 | 70                  | 71         | 66         |
| 16/09/2024 | 10:35 | 66                  | 68         | 62         |
| 21/09/2024 | 09:59 | 70                  | 72         | 66         |
| 27/09/2024 | 10:36 | 70                  | 72         | 60         |

Note: +3dB for Free Field is added.

Monitoring Station: NM3

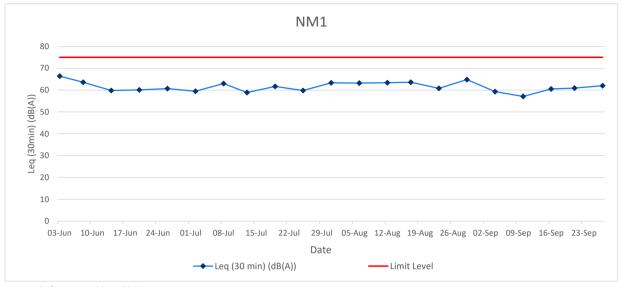
| Date       | Time  | Leq (30 min)(dB(A)) | L10(dB(A)) | L90(dB(A)) |
|------------|-------|---------------------|------------|------------|
| 04/09/2024 | 11:07 | 66                  | 67         | 65         |
| 10/09/2024 | 11:14 | 67                  | 68         | 66         |
| 16/09/2024 | 11:10 | 61                  | 63         | 55         |
| 21/09/2024 | 10:34 | 71                  | 72         | 70         |
| 27/09/2024 | 11:11 | 72                  | 73         | 70         |

Note: +3dB for Free Field is added.

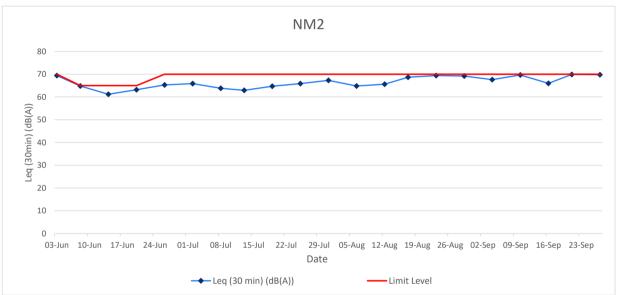
Monitoring Station: NM4

| Date       | Time  | Leq (30 min)(dB(A)) | L10(dB(A)) | L90(dB(A)) |
|------------|-------|---------------------|------------|------------|
| 04/09/2024 | 11:42 | 68                  | 70         | 59         |
| 10/09/2024 | 11:49 | 62                  | 64         | 57         |
| 16/09/2024 | 11:45 | 66                  | 69         | 56         |
| 21/09/2024 | 11:09 | 58                  | 59         | 55         |
| 27/09/2024 | 11:46 | 62                  | 65         | 58         |

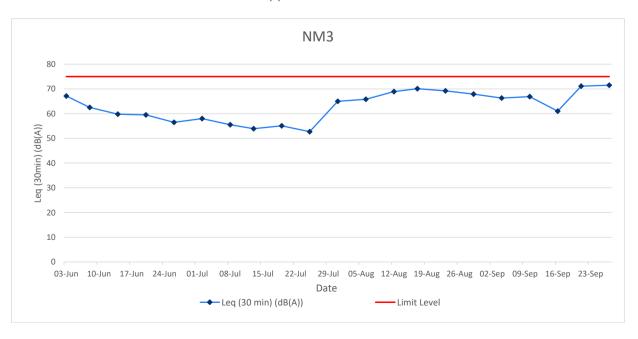
Note: +3dB for Free Field is added.

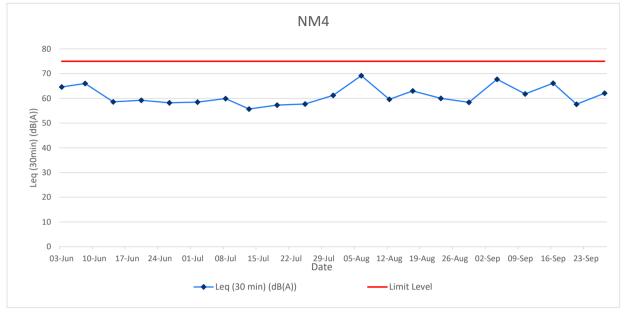

Monitoring Station: NM5

| Date       | Time  | Leq (30 min)(dB(A)) | L10(dB(A)) | L90(dB(A)) |
|------------|-------|---------------------|------------|------------|
| 04/09/2024 | 12:17 | 57                  | 59         | 52         |
| 10/09/2024 | 12:24 | 58                  | 59         | 54         |
| 16/09/2024 | 12:20 | 60                  | 63         | 56         |
| 21/09/2024 | 11:44 | 59                  | 60         | 56         |
| 27/09/2024 | 12:21 | 59                  | 61         | 54         |

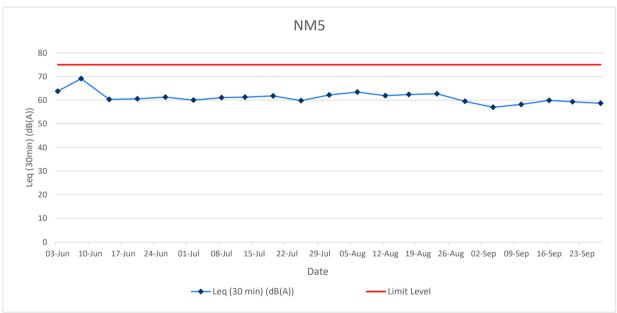

Note: +3dB for Free Field is added.

Limit Level: 75 dB(A), reduced to 70 dB(A) for NM2


Appendix E - Monitoring Result (Noise)




Note: +3dB for Free Field is added.




Note: +3dB for Free Field is added. Limit Level reduced to 70 dB(A) for schools.





Note: +3dB for Free Field is added.



Note: +3dB for Free Field is added.

#### Appendix E - Monitoring Result (Water Quality )

| Date       | Monitoring<br>Location | Time          | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|------------|------------------------|---------------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|            |                        |               |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 2 Sep 2024 | C1                     | 08:29         | <0.5               | 28.6        | 28.6    | 9.4   | 9.4     | 3.4       | 3.3     | 43.5         | 43.2    | 7.0          | 7.0     | 10        | 10.0    |
|            | CI                     | 08:29         |                    | 28.6        | 20.0    | 9.4   | 3.4     | 3.3       | 3.3     | 42.9         | 43.2    | 7.0          | 7.0     | 10        | 10.0    |
|            | C3                     | 08:42         | <0.5               | 30.0        | 30.0    | 7.0   | 7.0     | 4.3       | 4.3     | 56.7         | 56.5    | 22.0         | 22.0    | 20        | 20.0    |
|            | Co                     | 08:42         | V0.5               | 30.0        | 30.0    | 7.0   | 7.0     | 4.3       | 4.3     | 56.2         | 30.5    | 22.1         | 22.0    | 20        | 20.0    |
|            | \M/1                   | W1 08:24 <0.5 | :24                | 29.4        | 29.4    | 7.8   | 7.8     | 3.8       | 3.8     | 49.4         | 49.5    | 21.7         | 21.7    | 26        | 25.0    |
|            | VV I                   |               | 29.4               | 25.4        | 7.8     | 7.0   | 3.8     | 3.0       | 49.5    | 43.3         | 21.7    | 21.7         | 24      | 23.0      |         |
|            | W3                     | 08:34         | <0.5               | 29.8        | 29.9    | 7.8   | 7.8     | 4.7       | 4.6     | 61.9         | 61.4    | 22.7         | 22.8    | 26        | 25.5    |
|            | WS                     | 08:34         | \U.5               | 29.9        | 25.5    | 7.8   | 7.0     | 4.6       | 4.0     | 60.9         | 01.4    | 22.9         | 22.0    | 25        | 23.3    |

| Date       | Monitoring<br>Location | -     | Water<br>Depth (m) | Temperatur | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ntion)  | Turbidity (N | TU)     | SS (mg/L) |         |
|------------|------------------------|-------|--------------------|------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|            |                        |       |                    | Value      | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 4 Sep 2024 | C1                     | 08:24 | <0.5               | 28.4       | 28.4    | 8.4   | 8.4     | 3.3       | 3.3     | 43           | 42.8    | 8.5          | 8.5     | 11        | 10.5    |
|            | CI                     | 08:24 | V0.5               | 28.4       | 20.4    | 8.4   | 0.4     | 3.3       | 3.3     | 42.6         | 42.0    | 8.5          | 0.5     | 10        | 10.5    |
|            | C3                     | 08:36 | <0.5               | 27.8       | 27.8    | 7.6   | 7.7     | 4.8       | 4.7     | 61.1         | 59.3    | 58.0         | 57.4    | 54        | - 55.5  |
|            | L3                     | 08:36 | V0.5               | 27.8       | 27.0    | 7.7   | 7.7     | 4.5       | 4.7     | 57.5         | 39.3    | 56.8         | 37.4    | 57        | 33.3    |
|            | W1                     | 08:18 | √0 E               | 29.3       | 29.3    | 7.9   | 7.9     | 4.1       | 4.1     | 53.6         | 53.6    | 39.3         | 39.0    | 49        | 47.5    |
|            | WI                     | 08:18 | < 0.5              | 29.3       | 29.5    | 7.9   | 7.5     | 4.1       | 4.1     | 53.5         | 33.0    | 38.8         | 33.0    | 46        | 47.3    |
|            | W3                     | 08:29 | 29 <0.5            | 28.6       | 28.6    | 7.7   | 7.7     | 3.8       | 3.7     | 48.5         | 48.2    | 50.6         | 50.6    | 56        | 58.5    |
|            | W/3                    | 08:29 | - <0.5 -           | 28.6       | 20.0    | 7.7   | 7.7     | 3.7       | 3.7     | 47.9         | +0.2    | 50.7         | 50.0    | 61        | 36.3    |

| Date       | Monitoring<br>Location | Time  | Water<br>Depth (m) | Temperatur | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|------------|------------------------|-------|--------------------|------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|            |                        |       |                    | Value      | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 6 Sep 2024 | C1                     | 13:09 | <0.5               | 29.0       | 29.0    | 8.6   | 8.6     | 5.7       | 5.7     | 74.6         | 74.4    | 9.5          | 9.4     | 15        | 15.0    |
|            | CI                     | 13:09 | \0.5               | 29.0       | 23.0    | 8.6   | 0.0     | 5.7       | 3.7     | 74.1         | 74.4    | 9.4          | 3.4     | 15        | 15.0    |
|            | C3                     | 13:20 | <0.5               | 26.8       | 26.8    | 7.3   | 7.3     | 6.9       | 6.8     | 85.7         | 85.6    | 19.6         | 19.5    | 13        | 13.5    |
|            | CS                     | 13:20 | ₹0.5               | 26.8       | 20.0    | 7.3   | 7.3     | 6.8       | 0.0     | 85.5         | 65.0    | 19.4         | 19.5    | 14        | 13.3    |
|            | W1                     | 13:04 | <0.5               | 27.4       | 27.4    | 7.7   | 7.7     | 5.6       | 5.6     | 71.2         | 71.2    | 39.6         | 39.5    | 37        | 37.0    |
|            | VVI                    | 13:04 | ₹0.5               | 27.4       | 27.4    | 7.7   | 7.7     | 5.6       | 3.0     | 71.2         | /1.2    | 39.3         | 33.3    | 37        | 37.0    |
|            | W3                     | 13:14 | <0.5               | 27.9       | 27.9    | 7.8   | 7.8     | 5.9       | 5.9     | 75.7         | 75.5    | 31.3         | 31.3    | 25        | 25.0    |
|            | VV 3                   | 13:14 | \U.5               | 27.9       | 27.9    | 7.8   | 7.8     | 5.9       | 5.9     | 75.3         | /3.5    | 31.3         | 31.3    | 25        | 25.0    |

| Date       | Monitoring<br>Location | -              | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ntion)  | Turbidity (N | TU)     | SS (mg/L) |         |
|------------|------------------------|----------------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|            |                        |                |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 9 Sep 2024 | C1                     | 09:26          | <0.5               | 27.8        | 27.8    | 10.3  | 10.3    | 4.0       | 4.0     | 50.8         | 50.6    | 8.1          | 8.1     | 11        | 11.0    |
|            | CI                     | 09:26          | \0.5               | 27.8        | 27.0    | 10.3  | 10.5    | 3.9       | 4.0     | 50.3         | 30.0    | 8.1          | 0.1     | 11        | 11.0    |
|            | C3                     | 09:37          | <0.5               | 27.5        | 27.6    | 7.5   | 7.5     | 7.7       | 7.7     | 97.6         | 97.7    | 7.2          | 7.2     | 7         | 7.0     |
|            | CS                     | 09:37          | \0.5               | 27.6        | 27.0    | 7.5   | , ,     | 7.7       | 7.7     | 97.7         | 37.7    | 7.3          | 7.2     | 7         | 7.0     |
|            | W1                     | 09:20          | <0.5               | 29.0        | 29.0    | 8.2   | 8.2     | 3.3       | 3.3     | 43.2         | 43.1    | 22.6         | 22.4    | 26        | 26.5    |
|            | VV I                   | 09:20          | \0.5               | 29.0        | 23.0    | 8.2   | 0.2     | 3.3       | 3.      | 42.9         | 13.1    | 22.2         | 22.4    | 27        | 20.5    |
|            | W3                     | 09:31          | <0.5               | 27.7        | 27.7    | 9.7   | 9.7     | 6.4       | 6.4     | 81.5         | 81.1    | 24.2         | 24.3    | 37        | 37.0    |
|            | WJ                     | 09:31<br>09:31 | \0.5               | 27.7        | 27.7    | 9.7   | 5.7     | 6.4       | 5.      | 80.7         | 01.1    | 24.3         | 24.3    | 37        | 37.0    |

|             | Monitoring<br>Location |       | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 11 Sep 2024 | C1                     | 09:30 | <0.5               | 30.2        | 30.2    | 9.6   | 9.6     | 3.4       | 3.4     | 45.2         | 44.9    | 15.0         | 15.0    | 18        | 18.5    |
|             | CI                     | 09:30 | \0.J               | 30.2        | 30.2    | 9.6   | 3.0     | 3.4       | 3.4     | 44.6         | 44.3    | 15.0         | 13.0    | 19        | 10.5    |
|             | C3                     | 09:42 | <0.5               | 28.4        | 28.4    | 7.4   | 7.4     | 7.6       | 7.7     | 98.4         | 98.5    | 8.0          | 7.9     | 13        | 11.5    |
|             | CS                     | 09:42 | V0.5               | 28.4        | 20.4    | 7.4   | 7.4     | 7.7       | 7.7     | 98.6         | 30.3    | 7.9          | 7.3     | 10        | 11.5    |
|             | W1                     | 09:25 | <0.5               | 31.2        | 31.2    | 9.3   | 9.3     | 3.7       | 3.6     | 49.6         | 49.2    | 12.4         | 12.3    | 22        | 23.0    |
|             | WI                     | 09:25 | V0.5               | 31.2        | 31.2    | 9.3   | 3.3     | 3.6       | 3.0     | 48.7         | 49.2    | 12.3         | 12.3    | 24        | 23.0    |
|             | W3                     | 09:35 | ∠0.5               | 28.5        | 28.5    | 9.0   | 9.0     | 6.2       | 6.2     | 80           | 79.8    | 20.9         | 20.9    | 26        | 26.0    |
|             | VVS                    | 09:35 | <0.5               | 28.5        | 20.5    | 9.0   | 3.0     | 6.2       | 0.2     | 79.5         | 13.0    | 21.0         | 20.9    | 26        | 20.0    |

| Date        | Monitoring<br>Location | Time  | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 13 Sep 2024 | C1                     | 08:33 | <0.5               | 28.5        | 28.5    | 10.1  | 10.1    | 3.8       | 3.8     | 48.6         | 48.4    | 25.6         | 25.5    | 41        | 42.0    |
|             | C1                     | 08:33 | \0.5               | 28.5        | 20.3    | 10.1  | 10.1    | 3.7       | 3.0     | 48.2         | 40.4    | 25.3         | 23.3    | 43        | 42.0    |
|             | C3                     | 08:44 | <0.5               | 26.7        | 26.7    | 7.3   | 7.3     | 7.5       | 7.5     | 93.3         | 93.3    | 4.4          | 4.5     | 5         | 4.5     |
|             | CS                     | 08:44 | \0.5               | 26.7        | 20.7    | 7.3   | 7.5     | 7.5       | 7.5     | 93.3         | 33.3    | 4.5          | 4.5     | 4         | 4.5     |
|             | W1                     | 08:28 | <0.5               | 30.5        | 30.5    | 8.2   | 8.2     | 4.5       | 4.5     | 60.1         | 60.0    | 37.3         | 37.2    | 42        | 41.5    |
|             | WI                     | 08:28 | \0.5               | 30.5        | 30.3    | 8.2   | 0.2     | 4.5       | 4.5     | 59.9         | 00.0    | 37.0         | 37.2    | 41        | 41.5    |
|             | W3                     | 08:38 | <0.5               | 28.3        | 28.3    | 7.3   | 7.3     | 5.1       | 5.1     | 65.7         | 65.5    | 23.0         | 22.9    | 27        | 27.5    |
|             | VV 3                   | 08:38 | <b>\0.5</b>        | 28.3        | 20.3    | 7.3   | 7.3     | 5.1       | 5.1     | 65.2         | 03.5    | 22.9         | 22.9    | 28        | 27.5    |

| Date        | Monitoring<br>Location | -     | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ntion)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 16 Sep 2024 | C1                     | 09:17 | <0.5               | 29.0        | 29.0    | 9.5   | 9.5     | 6.0       | 6.0     | 77.8         | 77.7    | 7.2          | 7.2     | 7         | 7.5     |
|             | CI                     | 09:17 |                    | 29.0        | 23.0    | 9.5   | 3.3     | 6.0       | 0.0     | 77.6         | 77.7    | 7.2          | 7.2     | 8         | 7.5     |
|             | С3                     | 09:28 | <0 E               | 28.7        | 28.7    | 7.4   | 7.4     | 5.6       | 5.6     | 72.6         | 72.5    | 20.8         | 20.8    | 24        | 24.5    |
|             | CS                     | 09:28 | <0.5               | 28.7        | 20.7    | 7.4   | 7.4     | 5.6       | 5.0     | 72.3         | 72.5    | 20.8         | 20.8    | 25        | 24.5    |
|             | W1                     | 09:12 | <0.5               | 29.2        | 29.2    | 8.0   | 8.0     | 4.8       | 4.8     | 63           | 62.9    | 25.1         | 25.0    | 32        | 32.0    |
|             | VV I                   | 09:12 | ₹0.5               | 29.2        | 23.2    | 8.0   | 6.0     | 4.8       | 1.0     | 62.7         | 02.5    | 25.0         | 23.0    | 32        | 32.0    |
|             | W3                     | 09:22 | <0.5               | 30.0        | 30.0    | 7.3   | 7.3     | 4.3       | 4.3     | 57.2         | 56.7    | 9.1          | 9.1     | 10        | 10.0    |
|             | W 3                    | 09:22 | \U.3               | 30.0        | 30.0    | 7.3   | 7.3     | 4.2       | 4.3     | 56.1         | 30.7    | 9.0          | 3.1     | 10        | 10.0    |

| Date        | Monitoring<br>Location | Time  | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 19 Sep 2024 | C1                     | 08:09 | <0.5               | 28.4        | 28.4    | 9.2   | 9.2     | 3.7       | 3.7     | 47.4         | 47.0    | 7.6          | 7.6     | 12        | 11.5    |
|             | CI                     | 08:09 |                    | 28.4        | 20.4    | 9.2   | 5.2     | 3.6       | 5.7     | 46.6         | 47.0    | 7.6          | 7.0     | 11        | 11.5    |
|             | C3                     | 08:25 | <0.5               | 27.1        | 27.1    | 7.2   | 7.2     | 5.2       | 5.1     | 65           | 64.8    | 35.5         | 35.4    | 41        | 41.0    |
|             | CS                     | 08:25 | V0.5               | 27.1        | 27.1    | 7.2   | 7.2     | 5.1       | 5.1     | 64.6         | 04.0    | 35.3         | 33.4    | 41        | 41.0    |
|             | W1                     | 08:03 | <0.5               | 29.1        | 29.1    | 7.8   | 7.8     | 4.1       | 4.1     | 53.3         | 53.3    | 25.2         | 25.2    | 33        | 33.0    |
|             | VV I                   | 08:03 | V0.5               | 29.1        | 23.1    | 7.8   | 7.0     | 4.1       | 4.1     | 53.2         | 33.3    | 25.3         | 23.2    | 33        | 33.0    |
|             | W3                     | 08:19 | <0.5               | 28.2        | 28.2    | 7.5   | 7.5     | 3.5       | 3.5     | 44.5         | 44.5    | 51.3         | 51.3    | 76        | 76.5    |
|             | VV3                    | 08:19 | V0.5               | 28.2        | 20.2    | 7.5   | ,,      | 3.5       | 3.      | 44.5         | 44.5    | 51.4         | 31.3    | 77        | 70.3    |

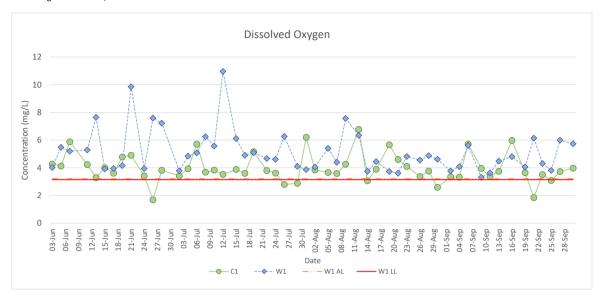
| Date        | Monitoring<br>Location | Time  | Water<br>Depth (m) | Temperature | e (°C)  | pН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 21 Sep 2024 | C1                     | 10:24 | <0.5               | 29.0        | 29.0    | 7.9   | 7.9     | 1.9       | 1.9     | 24.3         | 24.3    | 25.5         | 24.8    | 38        | 39.5    |
|             | CI                     | 10:24 | V0.5               | 29.0        | 25.0    | 7.9   | 7.5     | 1.8       | 1.5     | 24.2         | 24.3    | 24.1         | 24.0    | 41        | 39.3    |
|             | C3                     | 10:50 | <0.5               | 28.9        | 28.9    | 7.6   | 7.6     | 6.5       | 6.5     | 84.1         | 84.1    | 49.7         | 50.1    | 38        | 39.0    |
|             | Co                     | 10:50 | V0.5               | 28.9        | 20.5    | 7.6   | 7.0     | 6.5       | 0.5     | 84.1         | 04.1    | 50.4         | 30.1    | 40        | 39.0    |
|             | W1                     | 10:17 | √0 E               | 29.1        | 29.1    | 8.1   | 8.1     | 6.2       | 6.1     | 81.5         | 81.5    | 23.4         | 23.6    | 28        | 29.0    |
|             | WI                     | 10:17 | <0.5               | 29.1        | 29.1    | 8.1   | 0.1     | 6.1       | 0.1     | 81.4         | 61.5    | 23.8         | 23.0    | 30        | 29.0    |
|             | W3                     | 10:38 | <0.5               | 29.1        | 29.1    | 7.8   | 7.8     | 6.6       | 6.6     | 86.3         | 86.4    | 47.7         | 47.7    | 57        | 55.5    |
|             | VV3                    | 10:38 | \U.3               | 29.1        | 23.1    | 7.8   | 7.0     | 6.6       | 0.0     | 86.4         | 50.4    | 47.7         | 47.7    | 54        | 33.3    |

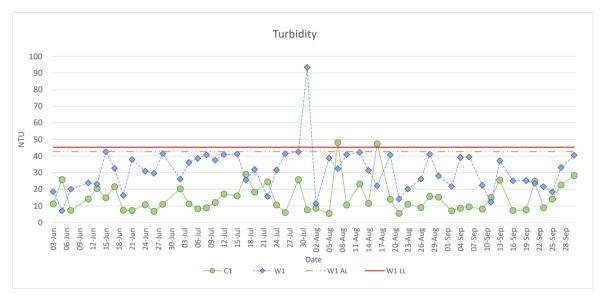
| Date        | Monitoring<br>Location | Time              | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------------------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |                   |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 23 Sep 2024 | C1                     | 08:39             | <0.5               | 26.6        | 26.6    | 7.8   | 7.8     | 3.5       | 3.5     | 44.4         | 44.1    | 8.8          | 8.8     | 18        | 17.5    |
|             | CI                     | 08:39             | \0.5               | 26.6        | 20.0    | 7.8   | 7.0     | 3.5       | 3.3     | 43.8         | 44.1    | 8.8          | 0.0     | 17        | 17.5    |
|             | C2                     | 08:53             | <0.5               | 26.0        | 26.0    | 7.3   | 7.2     | 6.9       | 6.9     | 84.7         | 84.7    | 12.6         | 12.2    | 17        | 16.5    |
|             | CS                     | C3 08:53<br>08:53 | ₹0.5               | 26.0        | 20.0    | 7.2   | 7.2     | 6.9       | 0.9     | 84.6         | 04.7    | 11.8         | 12.2    | 16        | 10.5    |
|             | \A/1                   | 08:34             | <0.5               | 26.9        | 26.9    | 7.6   | 7.6     | 4.3       | 4.3     | 54.8         | 54.6    | 21.4         | 21.6    | 31        | 31.5    |
|             | W1 08:34               | ₹0.5              | 26.9               | 20.9        | 7.6     | 7.0   | 4.3     | 4.3       | 54.4    | 34.0         | 21.7    | 21.0         | 32      | 31.3      |         |
|             | 14/2                   | 08:49             | <0.5               | 25.8        | 25.8    | 7.6   | 7.6     | 6.4       | 6.4     | 79           | 78.9    | 11.6         | 11.8    | 20        | 19.5    |
|             | W3 08:49               | \0.5              | 25.8               | 23.8        | 7.6     | 7.0   | 6.4     | 0.4       | 78.7    | 70.9         | 12.0    | 11.8         | 19      | 19.5      |         |

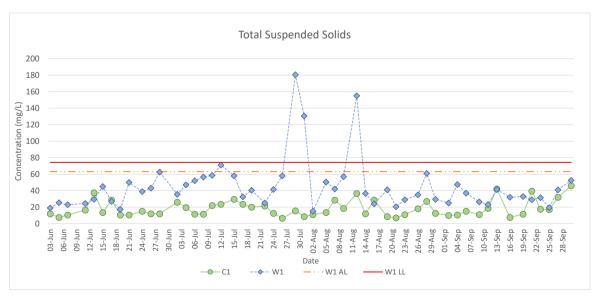
| Date        | Monitoring<br>Location |                   | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ation)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------------------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |                   |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 25 Sep 2024 | C1                     | 08:35             | <0.5               | 27.6        | 27.6    | 10.0  | 10.0    | 3.1       | 3.1     | 39.7         | 39.3    | 14.1         | 14.0    | 17        | 17.0    |
|             | CI                     | 08:35             | V0.5               | 27.6        | 27.0    | 10.0  | 10.0    | 3.1       | 5.1     | 38.9         | 33.3    | 14.0         | 14.0    | 17        | 17.0    |
|             | C3                     | 08:47             | <0.5               | 27.0        | 27.0    | 7.4   | 7.4     | 7.5       | 7.5     | 94.7         | 94.7    | 23.3         | 23.4    | 31        | 31.0    |
|             | CS                     | 08:47             | V0.5               | 27.0        | 27.0    | 7.4   | 7.4     | 7.5       | 7.5     | 94.7         | 34.7    | 23.5         | 23.4    | 31        | 31.0    |
|             | W1                     | 08:29             | <0.5               | 27.7        | 27.7    | 8.1   | 8.0     | 3.8       | 3.8     | 48.6         | 48.5    | 18.3         | 18.4    | 19        | 19.5    |
|             | VV I                   | 08:29             | V0.5               | 27.7        | 27.7    | 8.0   | 5.0     | 3.8       | 5.0     | 48.4         | 40.5    | 18.4         | 10.4    | 20        | 13.3    |
|             | W3 08:40               | <0.5              | 26.7               | 26.7        | 8.9     | 8.9   | 5.0     | 5.0       | 62.5    | 62.3         | 49.5    | 49.5         | 61      | 61.0      |         |
|             | WV3                    | W3 08:40<br>08:40 | \U.5               | 26.7        | 20.7    | 8.9   | 0.5     | 5.0       | 3.0     | 62.1         | 02.3    | 49.4         | 45.5    | 61        | 01.0    |

| Date        | Monitoring<br>Location | -     | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ntion)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 27 Sep 2024 | C1                     | 09:56 | <0.5               | 29.1        | 29.1    | 9.3   | 9.3     | 3.8       | 3.7     | 48.9         | 48.7    | 22.4         | 22.6    | 32        | 32.0    |
|             | CI                     | 09:56 | \0.5               | 29.1        | 23.1    | 9.3   | 3.      | 3.7       | 5.7     | 48.5         | 10.7    | 22.7         | 22.0    | 32        | 32.0    |
|             | C3                     | 10:06 | <0.5               | 28.0        | 28.0    | 7.4   | 7.4     | 7.6       | 7.6     | 96.9         | 96.9    | 22.1         | 22.0    | 22        | 20.5    |
|             | CS                     | 10:06 | \U.5               | 28.0        | 20.0    | 7.4   | 7.4     | 7.6       | 7.0     | 96.9         | 30.3    | 21.9         | 22.0    | 19        | 20.5    |
|             | W1                     | 09:50 | ∠0 E               | 30.9        | 30.9    | 8.1   | 8.1     | 6.0       | 6.0     | 80.9         | 80.8    | 33.2         | 33.0    | 46        | 41.0    |
|             | W I                    | 09:50 | <0.5               | 30.9        | 30.9    | 8.1   | 0.1     | 6.0       | 0.0     | 80.7         | 00.0    | 32.9         | 33.0    | 36        | 41.0    |
|             | W3                     | 10:00 | <0.5               | 29.0        | 29.0    | 8.5   | 8.5     | 4.8       | 4.7     | 62.2         | 61.7    | 31.3         | 31.0    | 36        | 37.0    |
|             | WS                     | 10:00 | V0.5               | 29.0        | 29.0    | 8.5   | 0.5     | 4.7       | 4.7     | 61.2         | 01.7    | 30.7         | 31.0    | 38        | 37.0    |

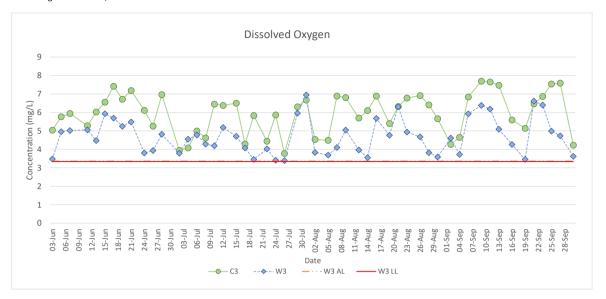
| Date        | Monitoring<br>Location | _     | Water<br>Depth (m) | Temperature | e (°C)  | рН    |         | DO (mg/L) |         | DO (% satura | ntion)  | Turbidity (N | TU)     | SS (mg/L) |         |
|-------------|------------------------|-------|--------------------|-------------|---------|-------|---------|-----------|---------|--------------|---------|--------------|---------|-----------|---------|
|             |                        |       |                    | Value       | Average | Value | Average | Value     | Average | Value        | Average | Value        | Average | Value     | Average |
| 30 Sep 2024 | C1                     | 09:17 | <0.5               | 28.2        | 28.2    | 9.6   | 9.6     | 4.0       | 4.0     | 51.2         | 51.0    | 28.4         | 28.3    | 58        | 46.0    |
|             | CI                     | 09:17 | <b>\0.5</b>        | 28.2        | 20.2    | 9.6   | 5.0     | 4.0       | 4.0     | 50.8         | 31.0    | 28.2         | 20.3    | 34        | 40.0    |
|             | C3                     | 09:27 | <0.5               | 29.1        | 29.1    | 7.3   | 7.3     | 4.2       | 4.2     | 55.3         | 55.2    | 19.1         | 19.1    | 16        | 16.5    |
|             | CJ                     | 09:27 | <b>\0.5</b>        | 29.1        | 25.1    | 7.3   | ,       | 4.2       | 4.2     | 55.1         | 55.2    | 19.1         | 13.1    | 17        | 10.5    |
|             | W1                     | 09:11 | <0.5               | 29.9        | 29.9    | 8.1   | 8.1     | 5.7       | 5.7     | 75.9         | 75.9    | 40.4         | 40.5    | 50        | 52.5    |
|             | ***                    | 09:11 | \0.J               | 29.9        | 23.3    | 8.1   | 0.1     | 5.7       | 3.7     | 75.8         | 73.3    | 40.5         | 40.5    | 55        | 32.3    |
|             | W3                     | 09:21 | <0.5               | 29.6        | 29.6    | 7.3   | 7.3     | 3.7       | 3.6     | 48.5         | 47.7    | 9.1          | 9.3     | 12        | 12.0    |
|             | VV3                    | 09:21 | \U.5               | 29.6        | 23.0    | 7.3   | 7.5     | 3.6       | 3.0     | 46.9         | 47.7    | 9.5          | 3.3     | 12        | 12.0    |

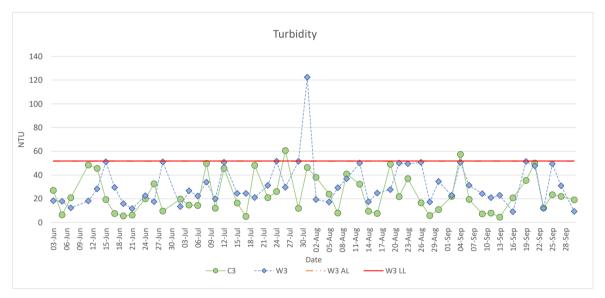

- Remarks:

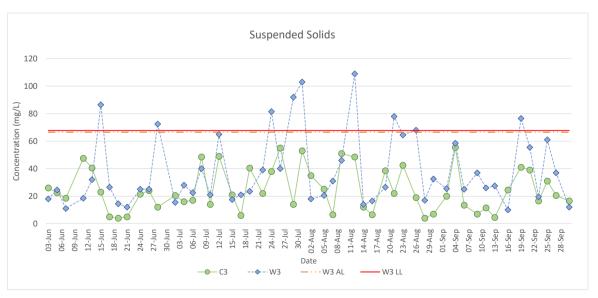

  1. Action Level exceedances are Bolded; Limit Level exceedances are Bolded and Underlined


  2. In case of measurements below reporting limit, the reporting limit will be used to calculate the average values.

#### Appendix E - Monitoring Result (Water Quality)


Monitoring Results for C1, W1






## Monitoring Results for C3, W3









## **Results of Ecological Monitoring Surveys of September 2024**

Abundance of bird species recorded in habitats within 500m of Project Site on 4 September 2024 (Habitats: DC = Drainage Channel, TP = Temporary Pond of YMST, AL = Agricultural Land, DA = Developed Area, G = Grassland, SG =

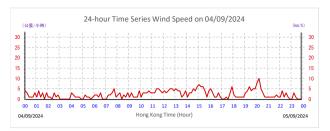
shrubland/grassland, PO = Pond, PL = Plantation, RE = Reed and WG = Waste Ground)

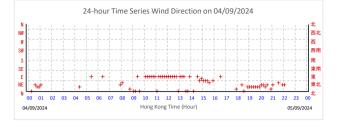
|                         | Scientific Names           |    |    |    |    |   | itats |    |    |    | <i>j</i> | Commence of Distribution in                                                                                              |
|-------------------------|----------------------------|----|----|----|----|---|-------|----|----|----|----------|--------------------------------------------------------------------------------------------------------------------------|
| Common Names            | Scientific Names           | DC | TP | AL | DA | G | SG    | РО | PL | RE | WG       | Commonness and Distribution in Hong Kong *                                                                               |
| Chinese Pond Heron      | Ardeola bacchus            | 2  |    |    |    |   |       | 1  |    |    | 1        | Common resident. Widely distributed in Hong Kong.                                                                        |
| Grey Heron              | Ardea cinerea              | 1  |    |    |    |   |       | 1  |    |    |          | Common winter visitor. Found in Deep Bay area, Starling Inlet, Kowloon Park, Cape D'Aguilar.                             |
| Great Egret             | Ardea alba                 | 1  | 2  |    |    |   |       | 1  |    |    |          | Common resident, migrant and winter visitor. Widely distributed in Hong Kong.                                            |
| Little Egret            | Egretta garzetta           | 3  | 2  |    |    |   |       | 1  |    |    |          | Common resident, migrant and winter visitor. Widely distributed in coastal area throughout Hong Kong.                    |
| White-breasted Waterhen | Amaurornis phoenicurus     | 1  |    |    |    |   |       |    |    |    |          | Common resident. Widely distributed in wetland throughout Hong Kong.                                                     |
| Green Sandpiper         | Tringa ochropus            |    |    |    |    |   |       | 1  |    |    |          | Common migrant and winter visitor. Found in Deep Bay area, Shuen Wan, Long Valley, Kam Tin, Shek Kong, Ho Chung.         |
| Wood Sandpiper          | Tringa glareola            |    | 1  |    |    |   |       | 1  |    |    |          | Common migrant and winter visitor. Widely distributed in wetland area throughout Hong Kong.                              |
| Red Turtle Dove         | Streptopelia tranquebarica | 1  |    |    |    |   |       |    |    |    |          | Common passage migrant and winter visitor. Found in Deep Bay area, Cheung Chau, Po Toi, Lantau Island, Hong Kong Island. |
| Spotted Dove            | Spilopelia chinensis       |    |    |    | 7  | 1 | 2     |    |    |    | 1        | Abundant resident. Widely distributed in Hong Kong.                                                                      |
| Common Kingfisher       | Alcedo atthis              | 2  |    |    |    |   |       | 1  |    |    |          | Common passage migrant and winter visitor. Widely distributed in wetland habitat throughout Hong Kong.                   |



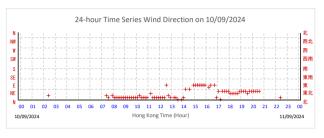
| G N                     |                            |    |    |    |    | Hab | itats |    |    |    |    | Common and Distribution in                                                     |  |
|-------------------------|----------------------------|----|----|----|----|-----|-------|----|----|----|----|--------------------------------------------------------------------------------|--|
| Common Names            | Scientific Names           | DC | TP | AL | DA | G   | SG    | РО | PL | RE | WG | Commonness and Distribution in Hong Kong *                                     |  |
| Long-tailed Shrike      | Lanius schach              |    |    |    |    |     | 1     |    |    |    |    | Common resident. Widely distributed in open areas throughout Hong Kong.        |  |
| Black Drongo            | Dicrurus macrocercus       |    | 1  |    |    |     |       |    |    |    |    | Common summer visitor. Widely distributed in open area throughout Hong Kong.   |  |
| Cinereous Tit           | Parus cinereus             | 1  |    |    |    |     |       |    | 1  |    |    | Common resident. Widely distributed in Hong Kong.                              |  |
| Red-whiskered Bulbul    | Pycnonotus jocosus         | 2  |    |    |    |     |       |    |    |    |    | Abundant resident. Widely distributed in Hong Kong.                            |  |
| Chinese Bulbul          | Pycnonotus sinensis        | 16 | 2  | 3  | 3  | 3   | 7     | 3  | 3  |    | 2  | Abundant resident. Widely distributed in Hong Kong.                            |  |
| Arctic Warbler          | Phylloscopus borealis      | 1  |    |    |    |     |       |    |    |    |    | Common passage migrant. Widely distributed in woodland throughout Hong Kong.   |  |
| Yellow-bellied Prinia   | Prinia flaviventris        | 1  |    |    | 1  |     | 1     |    |    | 1  |    | Common resident. Widely distributed in Hong Kong.                              |  |
| Plain Prinia            | Prinia inornata            | 1  |    | 1  |    |     | 3     | 1  |    | 1  |    | Locally common resident. Widely distributed in grassland throughout Hong Kong. |  |
| Common Tailorbird       | Orthotomus sutorius        | 8  | 1  |    | 1  |     | 1     | 2  |    | 1  |    | Common resident. Widely distributed in Hong Kong.                              |  |
| Masked Laughingthrush   | Pterorhinus perspicillatus | 2  |    |    |    |     | 3     |    | 2  |    |    | Abundant resident. Widely distributed in shrubland throughout Hong Kong.       |  |
| Japanese White-eye      | Zosterops simplex          | 19 |    |    |    |     |       | 3  | 4  |    | 3  | Abundant resident. Widely distributed in Hong Kong.                            |  |
| Crested Myna            | Acridotheres cristatellus  | 1  |    |    |    |     | 5     |    | _  |    |    | Abundant resident. Widely distributed in Hong Kong.                            |  |
| Black-collared Starling | Gracupica nigricollis      |    |    |    |    |     |       |    | 2  |    |    | Common resident. Widely distributed in Hong Kong.                              |  |
| Oriental Magpie-Robin   | Copsychus saularis         | 2  |    | 1  | 1  |     |       |    |    | 1  | 1  | Abundant resident. Widely distributed in Hong Kong.                            |  |
| Eurasian Tree Sparrow   | Passer montanus            | 7  | 3  |    | 3  |     |       | 2  | 2  |    |    | Abundant resident. Widely distributed in Hong Kong.                            |  |

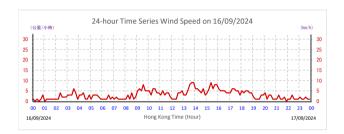


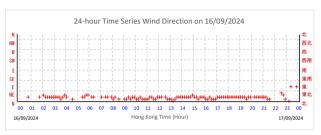

| Common Names Scientific Names |                     |    | Habitats |    |    |   |    |    |    |    |      | Commonness and Distribution in                                                        |
|-------------------------------|---------------------|----|----------|----|----|---|----|----|----|----|------|---------------------------------------------------------------------------------------|
| Common Names                  | Scientific Names    | DC | TP       | AL | DA | G | SG | РО | PL | RE | 14/0 | Hong Kong *                                                                           |
| Scaly-breasted Munia          | Lonchura punctulata | 5  | 2        |    |    | 2 |    | 6  | 2  |    |      | Abundant resident. Widely distributed in Hong Kong.                                   |
| White Wagtail                 | Motacilla alba      | 2  |          |    |    |   |    |    |    |    |      | Resident, common passage migrant and winter visitor. Widely distributed in Hong Kong. |
| Total Birds                   |                     | 79 | 14       | 5  | 16 | 6 | 23 | 24 | 16 | 4  | 8    |                                                                                       |
| Total Species                 |                     | 21 | 8        | 3  | 6  | 3 | 8  | 13 | 7  | 4  | 5    |                                                                                       |

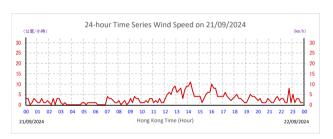

<sup>\*</sup> followed Hong Kong Biodiversity Information Hub (https://bih.gov.hk/en/species-database/index.html?taxon\_group\_id=2&page=1&order\_by=)

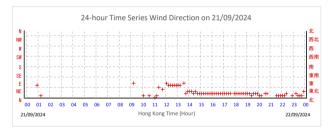
**Appendix F Weather and Meteorological Conditions** 

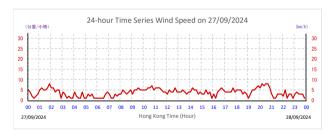


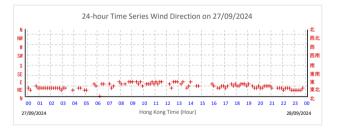


#### Appendix F - Weather














Appendix G Event and Action Plan



## Appendix G Event and Action Plan for Air Quality

| EVENT                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACTION                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                                       |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | ET Leader                                                                                                                                                                                                                                                                                                                                                                                                                                | IEC                                                                                                                                                                                                                                                                                                                        | ER                                                                                                                                                          | CONTRACTOR                                                                                                                                                                            |
| Action Level                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                       |
| Exceedance<br>for one<br>sample                            | Identify source, investigate the causes of exceedance and propose remedial measures     Inform ER, IEC and Contractor     Repeat measurement to confirm finding     Increase monitoring frequency to daily                                                                                                                                                                                                                               | Check monitoring data submitted by ET     Check Contractor's working method                                                                                                                                                                                                                                                | 1. Notify Contractor                                                                                                                                        | <ol> <li>1.Rectify any unacceptable practice</li> <li>2. Amend working methods if appropriate</li> </ol>                                                                              |
| Exceedance<br>for two or<br>more<br>consecutive<br>samples | <ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures</li> <li>Inform ER, IEC and Contractor</li> <li>Repeat measurements to confirm findings</li> <li>Increase monitoring frequency to daily</li> <li>Discuss with IEC and Contractor on remedial actions</li> <li>If exceedance continues, arrange meeting with IEC and ER</li> <li>If exceedance stops, cease additional monitoring</li> </ol> | <ol> <li>Checking monitoring data submitted by ET</li> <li>Check Contractor's working method</li> <li>Discuss with ET Leader and Contractor on possible remedial measures</li> <li>Advise the ER on the effectiveness of the proposed remedial measures</li> <li>Supervisor implementation of remedial measures</li> </ol> | <ol> <li>Confirm receipt of notification of failure in writing</li> <li>Notify Contractor</li> <li>Ensure remedial measures properly implemented</li> </ol> | <ol> <li>Submit proposals for remedial actions to IEC within 3 working days of notification</li> <li>Implement the agreed proposals</li> <li>Amend proposal if appropriate</li> </ol> |



| EVENT                                                      | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                            | ET Leader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IEC                                                                                                                                                                                                                                                                                                                 | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Limit Level                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Exceedance<br>for one<br>sample                            | <ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures</li> <li>Inform ER, EPD, IEC and Contractor</li> <li>Repeat measurement to confirm finding</li> <li>Increase monitoring frequency to daily</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results</li> </ol>                                                                                                                                                                                                                                                                   | <ol> <li>Checking monitoring data submitted by ET</li> <li>Check Contractor's working method</li> <li>Discuss with ET and Contractor on possible remedial measures</li> <li>Advise the ER on the effectiveness of the proposed remedial measures</li> <li>Supervisor implementation of remedial measures</li> </ol> | Confirm receipt of notification of failure in writing     Notify Contractor     Ensure remedial measures properly implemented                                                                                                                                                                                                                                                                                                                      | <ol> <li>Take immediate action to avoid further exceedance</li> <li>Submit proposals for remedial actions to IEC within 3 working days of notification</li> <li>Implement the agreed proposals</li> <li>Amend proposal if appropriate</li> </ol>                                                                                                                            |  |  |  |  |  |  |  |
| Exceedance<br>for two or<br>more<br>consecutive<br>samples | <ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures</li> <li>Notify ER, EPD, IEC and Contractor</li> <li>Repeat measurement to confirm findings</li> <li>Increase monitoring frequency to daily</li> <li>Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented</li> <li>Arrange meeting with IEC and ER to discuss the remedial actions to be taken</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results</li> <li>If exceedance stops, cease additional monitoring</li> </ol> | <ol> <li>Discuss amongst ER, ET and Contractor on the potential remedial actions</li> <li>Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly</li> <li>Supervise the implementation of remedial measures</li> </ol>                                 | <ol> <li>Confirm receipt of notification of failure in writing</li> <li>Notify Contractor</li> <li>In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented</li> <li>Ensure remedial measures properly implemented</li> <li>If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated</li> </ol> | <ol> <li>Take immediate action to avoid further exceedance</li> <li>Submit proposals for remedial actions to IEC within 3 working days of notification</li> <li>Implement the agreed proposals</li> <li>Resubmit proposals if problem still not under control</li> <li>Stop the relevant portion of works as determined by the ER until the exceedance is abated</li> </ol> |  |  |  |  |  |  |  |



Appendix G Event and Action Plan for Construction Noise Monitoring

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                    | CTION                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVENT        | ET Leader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IEC                                                                                                                                                                                                                                                                                  | ER                                                                                                                                                                                                                                                                                                                                                                                                                                 | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACTION LEVEL                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |
| Action Level | <ol> <li>Notify ER, IEC and Contractor</li> <li>Carry out investigation</li> <li>Report the results of investigation to the ER, IEC and Contractor</li> <li>Discuss with the IEC and Contractor, and formulate remedial measures</li> <li>Increase monitoring frequency to check mitigation effectiveness</li> </ol>                                                                                                                                                                                                                                           | <ol> <li>Review the analysed results submitted by the ET</li> <li>Review the proposed remedial measures by the Contractor and advise the ER accordingly</li> <li>Supervise the implementation of remedial measures</li> </ol>                                                        | <ol> <li>Confirm receipt of notification of failure in writing</li> <li>Notify Contractor</li> <li>Require Contractor to propose remedial measures for the analysed noise problem</li> <li>Ensure remedial measures are properly implemented</li> </ol>                                                                                                                                                                            | Submit noise mitigation proposals to IEC     Implement noise mitigation proposals                                                                                                                                                                                                                                                                                           |
| Limit Level  | <ol> <li>Notify IEC, ER, EPD and Contractor</li> <li>Identify source</li> <li>Repeat measurement to confirm findings</li> <li>Increase monitoring frequency to daily</li> <li>Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented</li> <li>Inform IEC, ER and EPD the causes &amp; actions taken for the exceedances</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results</li> <li>If exceedance stops, cease additional monitoring</li> </ol> | <ol> <li>Discuss amongst ER, ET, and Contractor on the potential remedial actions</li> <li>Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly</li> <li>Supervise the implementation of remedial measures</li> </ol> | <ol> <li>Confirm receipt of notification of failure in writing</li> <li>Notify Contractor</li> <li>Require Contractor to propose remedial measures for the analysed noise problem</li> <li>Ensure remedial measures are properly implemented</li> <li>If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated</li> </ol> | <ol> <li>Take immediate action to avoid further exceedance</li> <li>Submit proposals for remedial actions to IEC within 3 working days of notification</li> <li>Implement the agreed proposals</li> <li>Resubmit proposals if problem still not under control</li> <li>Stop the relevant portion of works as determined by the ER until the exceedance is abated</li> </ol> |



Appendix G Event and Action Plan for Water Quality Monitoring

| EVENT                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           | ACTION                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | ET                                                                                                                                                                                                                                                                                                                                                                 | IEC                                                                                                                                                                                                                                       | ER                                                                                                                                                                                               | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                             |
| Action level being exceeded by one sampling day                      | 1.Identify source(s) of impact; 2.Inform IEC, contractor and ER; 3.Check monitoring data, all plant, equipment and Contractor's working methods; 4.Discuss mitigation measures with IEC and Contractor; and 5.Repeat measurement on next day of exceedance.                                                                                                        | 1. Discuss with ET and Contractor on the mitigation measures.  2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and  3. Assess the effectiveness of the implemented mitigation measures. | <ol> <li>Discuss with IEC on the proposed mitigation measures; and</li> <li>Make agreement on the mitigation measures to be implemented.</li> </ol>                                              | <ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice, if any;</li> <li>Check all plant and equipment;</li> <li>Consider changes of working methods;</li> <li>Discuss with ET and IEC and propose mitigation measures;</li> <li>Implement the agreed mitigation measures.</li> </ol>                                |
| Action level being exceeded by two or more consecutive sampling days | 1.Identify source(s) of impact; 2.Inform IEC, contractor and ER; 3.Check monitoring data, all plant, equipment and Contractor's working methods; 4.Discuss mitigation measures with IEC, ER and Contractor; 5.Ensure mitigation measures are implemented; 6.Prepare to increase the monitoring frequency to daily; 7.Repeat measurement on next day of exceedance. | Discuss with ET and Contractor on the mitigation measures.     Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and     Assess the effectiveness of the implemented mitigation measures.    | 1. Discuss with IEC on the proposed mitigation measures; and 2. Make agreement on the mitigation measures to be implemented. 3. Assess the effectiveness of the implemented mitigation measures. | <ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment and</li> <li>Consider changes of working methods;</li> <li>Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days;</li> <li>Implement the agreed mitigation measures.</li> </ol> |



| EVENT                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVENI                                                               | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IEC                                                                                                                                                                                                                                                                                                            | ER                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Limit Level                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Limit level being exceeded by one sampling day                      | 1.Repeat measurement on next day of exceedance to confirm findings; 2.Identify source(s) of impact; 3.Inform IEC, contractor, ER and EPD; 4.Check monitoring data, all plant, equipment and Contractor's working methods; 5.Ensure mitigation measures are implemented; and 6.Discuss mitigation measures with IEC, ER and Contractor;                                                                                                                                                                       | 1. Check monitoring data submitted by ET and Contractor's working methods;  2. Discuss with ET and Contractor on possible mitigation measures; and  3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly.                                                          | <ol> <li>Confirm receipt of notification of failure in writing;</li> <li>Discuss with IEC, ET and Contractor on the proposed mitigation;</li> <li>Request Contractor to critically review the working methods;</li> <li>Make agreement on mitigation measures to be implemented; and</li> <li>Ensure mitigation measures are properly implemented.</li> </ol>                                                                             | <ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment and consider changes of working methods;</li> <li>Discuss with ET, IEC and ER and propose mitigation measures to ER and IEC within 3 working days; and</li> <li>Implement the agreed mitigation measures.</li> </ol>                                                                                                                                                                   |
| Limit level being exceeded by two or more consecutive sampling days | <ol> <li>Repeat measurement on next day of exceedance to confirm findings;</li> <li>Identify source(s) of impact;</li> <li>Inform IEC, contractor, ER and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, ER and Contractor;</li> <li>Ensure mitigation measures are implemented; and</li> <li>Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days.</li> </ol> | 1. Check monitoring data submitted by ET and Contractor's working methods.  2. Discuss with ET and Contractor on possible mitigation measures;  3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and  4. Supervise the implementation of mitigation measures. | 1. Discuss with IEC, ET and Contractor on the proposed mitigation measures;  2. Request Contractor to critically review the working methods;  3. Make agreement on the mitigation measures to be implemented;  4. Ensure mitigation measures are properly implemented; and  5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. | <ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Take immediate action to avoid further exceedance;</li> <li>Discuss with ET, IEC and ER and propose mitigation measures to ER and IEC within 3 working days;</li> <li>Implement the agreed mitigation measures;</li> <li>Resubmit proposals of mitigation measures if problem still not under control; and</li> <li>As directed by the ER, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.</li> </ol> |



Appendix H Waste Flow Table

| Architectural Services Departmen | Architectural | Services | Department |
|----------------------------------|---------------|----------|------------|
|----------------------------------|---------------|----------|------------|

Form No. D/OI.03/09.002

| Contract No. / Works Order No.: - SSM51 | 8 |
|-----------------------------------------|---|
|-----------------------------------------|---|

**Final Submission** 

No

Monthly Summary Waste Flow Table for 2024

[year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

|           |                                              | Actual Quantities of                   | f Inert Construction Waste Generated N | Monthly                         |                                   |
|-----------|----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|-----------------------------------|
| Month     | (a)=(b)+(c)+(d)+(e) Total Quantity Generated | (b)<br>Broken Concrete<br>(see Note 4) | (c)<br>Reused in the Contract          | (d)<br>Reused in other Projects | (e)<br>Disposed of as Public Fill |
|           | (in '000m <sup>3</sup> )                     | (in '000m <sup>3</sup> )               | (in '000m <sup>3</sup> )               | (in '000m <sup>3</sup> )        | (in '000m <sup>3</sup> )          |
| Jan       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Feb       | 0.020                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.020                             |
| Mar       | 0.429                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.429                             |
| Apr       | 0.182                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.182                             |
| May       | 0.091                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.091                             |
| Jun       | 0.039                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.039                             |
| Sub-total | 0.761                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.761                             |
| Jul       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Aug       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Sep       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Oct       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Nov       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Dec       | 0.000                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.000                             |
| Total     | 0.761                                        | 0.000                                  | 0.000                                  | 0.000                           | 0.761                             |

First Issue Date - 20 : 07 : 2009

## **Architectural Services Department**

Form No. D/OI.03/09.002

|           |           |          |           |          | Actual Quanti              | ities of Non-ine | ert Construction         | n Waste Gener | ated Monthly   |          |                                          |             |                                                 |
|-----------|-----------|----------|-----------|----------|----------------------------|------------------|--------------------------|---------------|----------------|----------|------------------------------------------|-------------|-------------------------------------------------|
| Month     | Tim       | ber      | Me        | tals     | Paper/ cardboard packaging |                  | Plastics<br>(see Note 3) |               | Chemical Waste |          | Other Recyclable Materials(pls. specify) |             | General<br>Refuse<br>disposed of<br>at Landfill |
|           | (in '00   | 00kg)    | (in '00   | 00kg)    | (in '00                    | 00kg)            | (in '000kg)              |               | (in '00        | 00kg)    | (in '0                                   | (in '000kg) |                                                 |
|           | generated | recycled | generated | recycled | generated                  | recycled         | generated                | recycled      | generated      | recycled | generated                                | recycled    | generated                                       |
| Jan       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 3.023                                           |
| Feb       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.215                                           |
| Mar       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.293                                           |
| Apr       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.267                                           |
| May       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.280                                           |
| Jun       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.254                                           |
| Sub-total | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 4.329                                           |
| Jul       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.494                                           |
| Aug       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.364                                           |
| Sep       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.429                                           |
| Oct       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.000                                           |
| Nov       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.000                                           |
| Dec       | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 0.000                                           |
| Total     | 0.000     | 0.000    | 0.000     | 0.000    | 0.000                      | 0.000            | 0.000                    | 0.000         | 0.000          | 0.000    | 0.000                                    | 0.000       | 5.616                                           |

Notes:

- (1) The performance targets are given in the Particular Specification on Environmental Management Plan.
- (2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) Broken concrete for recycling into aggregates.
- (5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m<sup>3</sup> by volume.

First Issue Date - 20:07:2009 Current Issue Date - 18:04:2017

Appendix I Summaries of Environmental Complaint Warning Summon and Notification of Successful Prosecution





# **Environmental Complaints Log**

| Complaint<br>Log | Date of<br>Complaint | Received<br>from | Location | Nature of<br>Complaint | Outcome | Status |
|------------------|----------------------|------------------|----------|------------------------|---------|--------|
| N/A              | N/A                  | N/A              | N/A      | N/A                    | N/A     | N/A    |

Appendix J Summary of Observations and Findings made in Site Audit and Inspection in the Reporting Period





# **Summary of Site Audit in Reporting Month**

| Parameter                     | Date | Observations and Reminders |
|-------------------------------|------|----------------------------|
| Air Quality                   | N/A  | No particular observation  |
| Noise                         | N/A  | No particular observation  |
| Water Quality                 | N/A  | No particular observation  |
| Chemical and Waste Management | N/A  | No particular observation  |
| Ecology                       | N/A  | No particular observation  |
| Landscape and Visual          | N/A  | No particular observation  |
| Permits/ Licences             | N/A  | No particular observation  |

**Appendix K Notification of Exceedance** 



# Light Public Housing at Yau Pok Road, Yuen Long

# **Water Quality Monitoring**

# **Notification of Exceedance / Investigation Report**

| KPR_202409_W001    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Monitoring Details |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 19 Sep 24          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                                              | 08:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| W3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| DO (mg/L)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity (N                                      | NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| DO (mg/L)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity (N                                      | ITU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| AL                 | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 3.2                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.7                                              | 45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3.4                | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.7                                              | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <b>√</b>           | Notifiy ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / IEC / Cont                                      | ractor on 8 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | October 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                    | • Others:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| According to       | o the inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation provid                                      | ed by the Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ontractor, ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stallation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| MIC module         | es was carrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d out on 19                                       | September 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| mentioned          | works were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | implement i                                       | ncluding inst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alled rigid p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | artitions with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| bottom edg         | es sealed wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | th cement a                                       | long the site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | boundary a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | butting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| water chann        | nels , to prev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent surface                                       | runoff and d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | irect wastev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vater to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| AquaSet be         | fore dischar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge;                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| • The Aguas        | Set has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | checked by                                        | contractor a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd ET during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g regular site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| into the cor       | into the concerned waterbody were observed on monitoring day and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| during the r       | egular site a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | udit.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | as no eviden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ce to sugges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    | The following Control are mentioned bottom edge water channed AquaSet bed audit, and is No surface into the conduring the reception of the conduction of the | 19 Sep 24  W3  DO (mg/L)  AL LL  3.2 3.1  3.4 3.3 | 19 Sep 24 Time  W3  DO (mg/L) Turbidity (Note of the information provide o | The followings were reviewed / considered:  Control and mitigation measure for water qual mentioned works were implement including inst bottom edges sealed with cement along the site water channels , to prevent surface runoff and day AquaSet before discharge;  The AquaSet has been checked by contractor a audit, and is functional and well maintained; and No surface runoff and no effluent discharge frointo the concerned waterbody were observed or during the regular site audit. Hence, it is considered to Turbidity (NTU)  Turbidity (NTU)  Turbidity (NTU)  AL  LL  AL  LL  3.2  45.3  51.7  51.8   Notifiy ER / IEC / Contractor on 8 of the concerned water qual mentioned by the Considered:  Control and mitigation measure for water qual mentioned works were implement including instruction and with cement along the site water channels , to prevent surface runoff and day and is functional and well maintained; and No surface runoff and no effluent discharge frointo the concerned waterbody were observed or during the regular site audit.  Hence, it is considered that there was no eviden exceedance was related to the project works, and | Time   08:19  W3  DO (mg/L)   Turbidity (NTU)   SS (mg/L)  AL   LL   AL   LL   AL   3.2   3.1   42.7   45.3   63.1   3.4   3.3   51.7   51.8   66.5  ✓ • Notifiy ER / IEC / Contractor on 8 October 202. • Others:  According to the information provided by the Contractor, ins MIC modules was carried out on 19 September 2024.  The followings were reviewed / considered: • Control and mitigation measure for water quality impact fr mentioned works were implement including installed rigid p bottom edges sealed with cement along the site boundary a water channels , to prevent surface runoff and direct wastev AquaSet before discharge; • The AquaSet has been checked by contractor and ET during audit, and is functional and well maintained; and • No surface runoff and no effluent discharge from construction into the concerned waterbody were observed on monitoring during the regular site audit.  Hence, it is considered that there was no evidence to sugges exceedance was related to the project works, and was possile |  |

| Prepared by:   | Theo Chan | Certifeid by: Y H, Hui (ET Leader) |
|----------------|-----------|------------------------------------|
| Signature:     | M         | Signature:                         |
| Date of Issue: | 8 Oct 24  |                                    |

| Date        | Station | Time  | Water     | Temperatu | ıre (°C) | pН    |         | DO (mg/L) |         | DO (% sat | uration) | Turbidity ( | NTU)    | SS (mg/L) |         |
|-------------|---------|-------|-----------|-----------|----------|-------|---------|-----------|---------|-----------|----------|-------------|---------|-----------|---------|
|             |         |       | Depth (m) | Value     | Average  | Value | Average | Value     | Average | Value     | Average  | Value       | Average | Value     | Average |
| 19 Sep 2024 | C1      | 08:09 | <0.5      | 28.4      | 28.4     | 9.2   | 9.2     | 3.7       | 3.7     | 47.4      | 47.0     | 7.6         | 7.6     | 12        | 11.5    |
|             |         | 08:09 | <0.5      | 28.4      |          | 9.2   |         | 3.6       |         | 46.6      |          | 7.6         |         | 11        | -       |
|             | С3      | 08:25 | <0.5      | 27.1      | 27.1     | 7.2   | 7.2     | 5.2       | 5.1     | 65        | 64.8     | 35.5        | 35.4    | 41        | 41.0    |
|             |         | 08:25 | <0.5      | 27.1      |          | 7.2   |         | 5.1       |         | 64.6      |          | 35.3        |         | 41        |         |
|             | W1      | 08:03 | <0.5      | 29.1      | 29.1     | 7.8   | 7.8     | 4.1       | 4.1     | 53.3      | 53.3     | 25.2        | 25.2    | 33        | 33.0    |
|             |         | 08:03 | <0.5      | 29.1      |          | 7.8   |         | 4.1       |         | 53.2      |          | 25.3        |         | 33        |         |
|             | W3      | 08:19 | <0.5      | 28.2      | 28.2     | 7.5   | 7.5     | 3.5       | 3.5     | 44.5      | 44.5     | 51.3        | 51.3    | 76        | 76.5    |
|             |         | 08:19 | <0.5      | 28.2      |          | 7.5   |         | 3.5       |         | 44.5      |          | 51.4        |         | 77        |         |

Note:

<sup>1.</sup> Bold numbers indicate action level exceeded

<sup>2.</sup> Bold and underlined numbers indicate limit level exceeded

**Appendix L** Implementation Status of Environment Mitigation Measures





| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                 | Objectives of the recommended measures & main concerns to address                                                                                                  | Implementation<br>Status |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Air Quality      |                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                    |                          |
| A1               | PP: 6.2.1<br>EIA: 3.9.1                | Dust and gaseous emissions mitigation measures as stipulated in the Air Pollution Control (Construction Dust) Regulation, Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation and Air Pollution Control (Fuel Restriction) Regulation;                                                                               | Air Pollution (Construction Dust) Regulation, Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation, Air Pollution (Fuel Restriction) Regulation | ✓                        |
| A2               | PP: 6.2.1<br>EIA: 3.9.1                | The designated haul road should be hard paved to minimize fugitive dust emission;                                                                                                                                                                                                                                                        | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | ✓                        |
| А3               | PP: 6.2.1<br>EIA: 3.9.1                | During the site formation works, the active works areas should be water sprayed with water browser or sprayed manually hourly during construction period. The Contractor should ensure that the amount of water spraying is just enough to dampen the exposed surfaces without over-watering which could result in surface water runoff; | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| A4               | PP: 6.2.1<br>EIA: 3.9.1                | Dump trucks for transporting dusty materials should be totally enclosed using impervious sheeting;                                                                                                                                                                                                                                       | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | ✓                        |
| A5               | PP: 6.2.1<br>EIA: 3.9.1                | Any excavated dusty materials or stockpile of dusty materials should be covered entirely by impervious sheeting or sprayed with water so as to maintain the entire surface wet, and recovered or backfilled or reinstated as soon as possible;                                                                                           | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| A6               | PP: 6.2.1<br>EIA: 3.9.1                | Dusty materials remaining after a stockpile is removed should be wetted with water;                                                                                                                                                                                                                                                      | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| A7               | PP: 6.2.1<br>EIA: 3.9.1                | The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with e.g. concrete, bituminous materials or hardcore or similar;                                                                                                                                | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| A8               | PP: 6.2.1<br>EIA: 3.9.1                | The Contractor shall only transport adequate amount of fill materials to the Project Site to minimize stockpiling of fill materials on-site, thus reducing fugitive dust emission due to wind erosion;                                                                                                                                   | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| А9               | PP: 6.2.1<br>EIA: 3.9.1                | Should temporary stockpiling of dusty materials be required, it shall be either covered entirely by impervious sheeting, placed in an area sheltered on the top and the 3 sides; or sprayed with water so as to maintain the entire surface wet;                                                                                         | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | <b>√</b>                 |
| A10              | PP: 6.2.1<br>EIA: 3.9.1                | All dusty materials shall be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty material wet;                                                                                                                                                                                          | Air Pollution (Construction<br>Dust) Regulation                                                                                                                    | ✓                        |

\_

<sup>&</sup>lt;sup>1</sup> PP (2023) = approved Project Profile (PP-652/2023); EIA (2014) = approved EIA Report (AEIAR-182/2014)



| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                                                                                                        | Objectives of the recommended measures & main concerns to address | Implementation<br>Status |
|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
| A11              | PP: 6.2.1<br>EIA: 3.9.1                | Vehicle speed to be limited to 10 kph except on completed access roads;                                                                                                                                                                                                                                                                                                                                                         | Air Pollution (Construction<br>Dust) Regulation                   | ✓                        |
| A12              | PP: 6.2.1<br>EIA: 3.9.1                | The portion of road leading only to a construction site that is within 30 m of a designated vehicle entrance or exit should be kept clear of dusty materials;                                                                                                                                                                                                                                                                   | Air Pollution (Construction<br>Dust) Regulation                   | <b>√</b>                 |
| A13              | PP: 6.2.1<br>EIA: 3.9.1                | Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites;                                                                                                                                                                                                                                                                                                    | Air Pollution (Construction<br>Dust) Regulation                   | ✓                        |
| A14              | PP: 6.2.1<br>EIA: 3.9.1                | The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle;                                                                                                                                                                                                                             | Air Pollution (Construction<br>Dust) Regulation                   | <b>√</b>                 |
| A15              | PP: 6.2.1<br>EIA: 3.9.1                | The working area of excavation should be sprayed with water immediately before, during and immediately after (as necessary) the operations so as to maintain the entire surface wet;                                                                                                                                                                                                                                            | Air Pollution (Construction<br>Dust) Regulation                   | <b>√</b>                 |
| A16              | PP: 6.2.1<br>EIA: 3.9.1                | Use of effective dust screens, sheeting or netting to be provided to enclose dry scaffolding which may be provided from the ground floor level of the building or if a canopy is provided at the first floor level, from the first floor level, up to the highest level (maximum three floors high for this Project) of the scaffolding where scaffolding is erected around the perimeter of a building under construction; and | Air Pollution (Construction<br>Dust) Regulation                   | ✓                        |
| A17              | PP: 6.2.1                              | Electric power supply shall be provided for on-site machinery as far as practicable.                                                                                                                                                                                                                                                                                                                                            | Air Pollution (Construction<br>Dust) Regulation                   | <b>√</b>                 |
| <u>Noise</u>     | T                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                          |
| N1               | PP: 6.3.1-6.3.4<br>EIA: 4.8.1          | Adoption of quieter construction method;                                                                                                                                                                                                                                                                                                                                                                                        | Noise control                                                     | ✓                        |
| N2               | PP: 6.3.1-6.3.4<br>EIA: 4.8.1          | Use of QPMEs;                                                                                                                                                                                                                                                                                                                                                                                                                   | Noise control                                                     | ✓                        |
| N3               | PP: 6.3.1-6.3.4<br>EIA: 4.8.2, 4.8.3   | Use of movable noise barriers and noise enclosure;                                                                                                                                                                                                                                                                                                                                                                              | Noise control                                                     | <b>√</b>                 |
| N4               | PP: 6.3.1-6.3.4<br>EIA: 4.8.4          | Scheduling of works; and                                                                                                                                                                                                                                                                                                                                                                                                        | Noise control                                                     | <b>√</b>                 |



| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                                               | Objectives of the recommended measures & main concerns to address       | Implementation<br>Status |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|
| N5               | PP: 6.3.1-6.3.4<br>EIA: 4.8.4          | Implementation of good site practices and noise management.                                                                                                                                                                                                                                                                                                            | Noise control                                                           | ✓                        |
| Water Qua        | <u>lity</u>                            |                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                          |
| W1               | PP: 6.4.1<br>EIA: 5.6.1.1              | High loading of suspended solids (SS) in construction site runoff shall be prevented through proper site management;                                                                                                                                                                                                                                                   | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W2               | PP: 6.4.1<br>EIA: 5.6.1.1              | The boundary of critical work areas shall be surrounded by ditches or embankment;                                                                                                                                                                                                                                                                                      | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W3               | PP: 6.4.1<br>EIA: 5.6.1.1              | Accidental release of soil or refuse into the adjoining land should be prevented by the provision of site earth bunds, etc. at the Project Site boundary. These facilities should be constructed in advance of site formation works and roadworks;                                                                                                                     | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W4               | PP: 6.4.1<br>EIA: 5.6.1.1              | Consideration should be given to plan construction activities to allow the use of natural topography of the PS as a barrier to minimize uncontrolled non-point source discharge of construction site runoff;                                                                                                                                                           | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W5               | PP: 6.4.1<br>EIA: 5.6.1.1              | Temporary ditches, earth bunds should be provided to facilitate directed and controlled discharge of runoff into storm drains via sand/ silt removal facilities such as sand traps, silt traps and sediment retention basin. Oil and grease removal facilities should also be provided where appropriate, for example, in area near plant workshop/ maintenance areas; | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W6               | PP: 6.4.1<br>EIA: 5.6.1.1              | Sand and silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, and at the onset of and after each rainstorm to ensure that these facilities area functioning properly;                                                                                                                      | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W7               | PP: 6.4.1<br>EIA: 5.6.1.1              | Slope exposure should be minimized where practicable especially during the wet season. Exposed soil surfaces should be protected from rainfall through covering temporarily exposed slope surfaces or stockpiles with tarpaulin or the like;                                                                                                                           | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W8               | PP: 6.4.1<br>EIA: 5.6.1.1              | Haul roads should be protected by crushed rock, gravel or other granular materials to minimize discharge of contaminated runoff;                                                                                                                                                                                                                                       | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W9               | PP: 6.4.1<br>EIA: 5.6.1.1              | Slow down water run-off flowing across exposed soil surfaces;                                                                                                                                                                                                                                                                                                          | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W10              | PP: 6.4.1<br>EIA: 5.6.1.1              | Plant workshop/ maintenance areas should be bunded and constructed on a hard standing. Sediment traps and oil interceptors should be provided at appropriate locations;                                                                                                                                                                                                | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W11              | PP: 6.4.1<br>EIA: 5.6.1.1              | Manholes (including newly constructed ones) should be adequately covered or temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system;                                                                                                                                                                          | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |



| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                              | Objectives of the recommended measures & main concerns to address       | Implementation<br>Status |
|------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|
| W12              | PP: 6.4.1<br>EIA: 5.6.1.1              | Construction works should be programmed to minimize soil excavation works where practicable during rainy conditions;                                                                                                                                                                                                                                  | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W13              | PP: 6.4.1<br>EIA: 5.6.1.1              | Chemical stores should be contained (bunded) to prevent any spills from contact with water bodies. All fuel tanks and/ or storage areas should be provided with locks and be sited on hard surface;                                                                                                                                                   | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W14              | PP: 6.4.1EIA:<br>5.6.1.1               | Chemical waste arising from the Project Site should be properly stored, handled, treated and disposed of in compliance with the requirements stipulated under the Waste Disposal (Chemical Waste) (General) Regulation;                                                                                                                               | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W15              | PP: 6.4.1<br>EIA: 5.6.1.1              | Drainage facilities must be adequate for the controlled release of storm flows;                                                                                                                                                                                                                                                                       | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W16              | PP: 6.4.1<br>EIA: 5.6.1.1              | Appropriate peripheral drainage system shall be constructed along the Project Site boundary to divert away surface runoff in accordance with requirements stipulated in ProPECC PN 2/23 to collect surface runoff and discharge it into the nearby existing stormwater drains nearby roadside of Yau Pok Road, and via which into the existing NTMDC; | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W17              | PP: 6.4.1<br>EIA: 5.6.1.1              | Temporary drains, sedimentation basins, sand traps and similar facilities shall be provided during the construction works in accordance with the ProPECC PN 2/23; and                                                                                                                                                                                 | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W18              | PP: 6.4.1<br>EIA: 5.6.1.1              | The Contractor shall apply for a discharge licence under the WPCO and the discharge shall comply with the terms and conditions of the licence;                                                                                                                                                                                                        | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W19              | PP: 6.4.1<br>EIA: 5.6.1.2              | Sewage generated from the construction workforce should be contained in chemical toilets before connection to public foul sewer becomes available. Chemical toilets should be provided at a minimum rate of about 1 per 50 workers. The facility should be serviced and cleaned by a specialist contractor at regular intervals;                      | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W20              | PP: 6.4.1<br>EIA: 5.6.1.2              | Vehicle wheel washing facilities should be provided at the site exit such that mud, debris, etc. deposited onto the vehicle wheels or body can be washed off before the vehicles are leaving the site area;                                                                                                                                           | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W21              | PP: 6.4.1<br>EIA: 5.6.1.2              | Section of the road between the wheel washing bay and the public road should be paved with backfill to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains;                                                                                                                                                  | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |



| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                                                                           | Objectives of the recommended measures & main concerns to address       | Implementation<br>Status |
|------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|
| W22              | PP: 6.4.1<br>EIA: 5.6.1.2              | Although use of bentonite in diaphragm wall and bore-pile construction is not expected, in case bentonite slurries is generated it should be reconditioned and reused as far as practicable;                                                                                                                                                                                                       | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>√</b>                 |
| W23              | PP: 6.4.1<br>EIA: 5.6.1.2              | Spent bentonite should be kept in a separate slurry collection system for disposal at a marine spoil grounds subject to obtaining a marine dumping licence from EPD. If used bentonite slurry is to be disposed of through public drainage system, it should be treated to meet the respective applicable effluent standards for discharges into sewers, storm drains or the receiving waters; and | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | ✓                        |
| W24              | PP: 6.4.1<br>EIA: 5.6.1.3              | Spillage of fuel oils or other polluting fluids should be prevented at source. It is recommended that all stocks should be stored inside proper containers and sited on sealed areas, preferably surrounded by bunds.                                                                                                                                                                              | Stormwater and Non-point<br>Source Pollution Control,<br>ProPECC PN2/23 | <b>~</b>                 |
| <b>Ecology</b>   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                          |
| E1               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Plan construction sequence carefully to minimise site formation in the northeastern corner of the PS where it abuts the temporary ponds in YMST in peak wintering season for migratory birds (i.e. October - March);                                                                                                                                                                               | Avoidance of disturbance                                                | ✓                        |
| E2               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Provide screening / barriers along the Project Site boundary to reduce the visual disturbance arising from the construction activities to nearby habitats such as NTMDC and the temporary ponds in YMST;                                                                                                                                                                                           | Avoidance of disturbance                                                | <b>√</b>                 |
| E3               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Demarcate the construction site clearly and regularly check the boundaries to ensure that they are not breached;                                                                                                                                                                                                                                                                                   | Avoidance of disturbance                                                | <b>√</b>                 |
| E4               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Brief site workers and other staff the sensitivity of the surrounding areas before commencement of the works, and instruct them not to disturb any areas nearby;                                                                                                                                                                                                                                   | Avoidance of disturbance                                                | <b>~</b>                 |
| E5               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Use quiet PME and movable noise barriers wherever necessary;                                                                                                                                                                                                                                                                                                                                       | Avoidance of disturbance                                                | ✓                        |
| E6               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Phasing of construction activities to minimise concurrent operation of PME;                                                                                                                                                                                                                                                                                                                        | Avoidance of disturbance                                                | ✓                        |
| E7               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8- 6.5.3   | Use only well-maintained plant on-site.                                                                                                                                                                                                                                                                                                                                                            | Avoidance of disturbance                                                | <b>√</b>                 |
| E8               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Ensure the plant to be serviced regularly during the construction program;                                                                                                                                                                                                                                                                                                                         | Avoidance of disturbance                                                | ✓                        |
| E9               | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Machines and plant (such as trucks) that may be in intermittent use to be shut down between work periods or to be throttled down to a minimum;                                                                                                                                                                                                                                                     | Avoidance of disturbance                                                | <b>√</b>                 |



| EM&A<br>Log Ref. | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                     | Objectives of the recommended measures & main concerns to address | Implementation<br>Status |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
| E10              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Plant known to emit noise strongly in one direction to be, wherever possible, orientated so that the noise is directed away from the NTMDC and the wetlands in YMST project;                                                                                                 | Avoidance of disturbance                                          | ✓                        |
| E11              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Material stockpiles and other structures to be effectively utilized, wherever practicable, in screening noise from on-site construction activities                                                                                                                           | Avoidance of disturbance                                          | ✓                        |
| E12              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Comply with NCO and implement general good site practices;                                                                                                                                                                                                                   | Avoidance of disturbance                                          | ✓                        |
| E13              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Implement dust control measures e.g. hard paving of the haul road, frequent watering, covering dusty materials, careful site formation scheduling etc.;                                                                                                                      | Avoidance of disturbance                                          | <b>√</b>                 |
| E14              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Controlled wastewater discharge to the nearby water bodies in accordance with the guidelines stipulated in EPD's ProPECC PN2/23 to properly control site run-off and drainage and to minimise the potential water quality impact;                                            | Avoidance of disturbance                                          | <b>√</b>                 |
| E15              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Provide a properly designed temporary drainage system within the construction site to direct discharge away from the watercourses downstream to nearby drainage channel. The drainage system will be equipped with sand/silt removal facilities to treat the surface runoff; | Avoidance of disturbance                                          | 1                        |
| E16              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Provide portable chemical toilets for site workers. Ensure that chemical toilets are used and properly maintained, and that licensed contractors are employed to collect and dispose of the waste off-site at approved locations;                                            | Avoidance of disturbance                                          | <b>√</b>                 |
| E17              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Implementation of measures to minimise magnitude of construction runoff and to avoid/minimise the potential impact of spillage events, if any;                                                                                                                               | Avoidance of disturbance                                          | <b>√</b>                 |
| E18              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Excavated materials will be covered and/or properly disposed of as soon as possible to avoid being washed into nearby water bodies; and                                                                                                                                      | Avoidance of disturbance                                          | <b>√</b>                 |
| E19              | PP: 6.5.1 - 6.5.3<br>EIA: 8.8          | Other mitigation measures proposed for potential impacts on water quality for this Project.                                                                                                                                                                                  | Avoidance of disturbance                                          | <b>√</b>                 |
| Landscape        | and Visual                             |                                                                                                                                                                                                                                                                              |                                                                   |                          |
| LV1              | PP: 6.6.1<br>EIA: 11.10.1              | Proper protection of existing trees designated to retained in-situ;                                                                                                                                                                                                          | Avoid impacts on adjacent landscape                               | ✓                        |
| LV2              | PP: 6.6.1<br>EIA: 11.10.1              | Optimisations of construction areas and providing temporary landscape on temporary construction;                                                                                                                                                                             | Avoid impacts on adjacent<br>landscape                            | ✓                        |
| LV3              | PP: 6.6.1<br>EIA: 11.10.1              | Preservation of marsh and reedbed;                                                                                                                                                                                                                                           | Avoid impacts on adjacent landscape                               | ✓                        |



| EM&A<br>Log Ref.   | PP (2023) /<br>EIA (2014) <sup>1</sup> | Recommended Environmental Protection Measures/ Mitigation Measures in Construction Phase                                                                                                                                                                                                                                                                                                                                                                                                   | Objectives of the recommended measures & main concerns to address         | Implementation<br>Status |
|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| LV4                | PP: 6.6.1<br>EIA: 11.10.1              | Define works area and temporary works area to minimise the extent of construction works area and its residual impacts during construction;                                                                                                                                                                                                                                                                                                                                                 | Avoid impacts on adjacent<br>landscape                                    | <b>√</b>                 |
| LV5                | PP: 6.6.1<br>EIA: 11.10.1              | Protection of watercourse/ channels of higher ecological value;                                                                                                                                                                                                                                                                                                                                                                                                                            | Avoid impacts on adjacent landscape                                       | <b>\</b>                 |
| LV6                | PP: 6.6.1<br>EIA: 11.10.1              | Good site practice should be adopted to minimize landscape and visual impact, for example to adopt suitable height and design of temporary barriers / noise barrier to help blend in with the surrounding environment, retention of existing trees as screen planting, control of night-time lighting by hooding all lights, and reduction of construction period to practical minimum.                                                                                                    | Avoid impacts on adjacent<br>landscape                                    | <b>~</b>                 |
| <u>Cultural He</u> | <u>ritage</u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                          |
| CH1                | PP 6.7.2                               | As a precautionary measure, the Antiquities and Monuments Office (AMO) should be informed immediately in case of discovery of antiquities or supposed antiquities in the course of works, so that appropriate mitigation measures, if needed, can be timely formulated and implemented in agreement with AMO.                                                                                                                                                                              | Preserve any terrestrial<br>archaeology or built heritage<br>resources.   | N/A                      |
| Waste Man          | agement                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                          |
| WM1                | PP: 6.8.1-6.8.5<br>EIA: 7.5            | All C&D materials generated should be sorted into different categories on-site for recycling and reuse as fill materials as far as practicable prior to disposal at public filling reception facilities and landfills. To prohibit illegal dumping and landfilling of C&D materials, the dump trucks engaged on site should be equipped with GPS or equivalent automatic system for real time tracking and monitoring of their travel routings, parking locations and disposal activities. | Waste management                                                          | <b>~</b>                 |
| WM2                | PP: 6.8.1-6.8.5<br>EIA: 7.5            | Chemical wastes should be handled, stored and disposed of properly and in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.                                                                                                                                                                                                                                                                                                                                        | Waste management, ProPECC<br>PN2/23, Water Pollution<br>Control Ordinance | <b>√</b>                 |
| WM3                | PP: 6.8.1-6.8.5<br>EIA: 7.4.5          | General refuse should be stored in enclosed bins or compaction units. A reputable waste collector should be employed by the contractor to remove general refuse from the Project Site on a daily basis or every other day to minimise odour, pest and litter impacts.                                                                                                                                                                                                                      | Waste management, Air<br>Pollution Control (Open<br>Burning) Regulation   | <b>√</b>                 |