Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

# Monthly EM&A Report April 2018

Client : Drainage Services Department

Project : Contract No. CM 14/2016

**Environmental Team for Operational** 

Environmental Monitoring and Audit for Siu

Ho Wan Sewage Treatment Works

Report No.: : 0041/17/ED/0302B

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung

Environmental Team Leader Fugro Technical Services Limited

# Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/18-0086

29 May 2018

**Drainage Service Department** 

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. CHUNG Ching Hong, Romeo (E/CM9)

Dear Sir,

RE: CONTRACT No. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (APRIL 2018)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for April 2018 (Report No.: 0041/17/ED/0302B) received from the Environmental Team (ET), Messrs. Fugro Technical Services Ltd., on 29 May 2018 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of Allied Environmental Consultants Ltd.

Grace M. H. KWOK Independent Environmental Checker

GK/ri/rc

c.c. Fugro Technical Service (ET Leader)

AECOM

Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

By Post and E-mail



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

# **TABLE OF CONTENTS**

|     | EXECUTIVE SUMMARY                                                     | 1  |
|-----|-----------------------------------------------------------------------|----|
| 1.  | INTRODUCTION                                                          | 3  |
| 2.  | AIR QUALITY MONITORING                                                | 5  |
| 3.  | WATER QUALITY MONITORING                                              | 10 |
| 4.  | SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY                        | 19 |
| 5.  | CHINESE WHITE DOLPHIN MONITORING                                      | 26 |
| 6.  | ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITGATION MEASURES   | 27 |
| 7.  | ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS                | 28 |
| 8.  | SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS | 29 |
| 9.  | SUMMARY OF ENVIRONMENTAL COMPLAINTS                                   | 30 |
| 10. | FUTURE KEY ISSUES                                                     | 31 |
| 11. | CONCLUSION                                                            | 32 |
|     |                                                                       |    |

# **FIGURE**

| Figure 1 | Monitoring Location of Air Sensitive Receiver                                                    |
|----------|--------------------------------------------------------------------------------------------------|
| Figure 2 | Monitoring Locations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey |

Figure 3 Location of the Tide Gauge

Figure 4 Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

## **APPENDICES**

**Project Organization Chart** Appendix A Appendix B Monitoring Schedule for Present and Next Reporting Period Appendix C **Event and Action Plan for Air Quality Monitoring** Appendix D Copy of the Calibration Certificates of H<sub>2</sub>S Analyzer Appendix E **Results and Graphical Presentation of Air Quality Monitoring** Copy of the Calibration Certificates for Water Quality Monitoring Equipment Appendix F Appendix G **Results and Graphical Presentation of Water Quality Monitoring Tidal Data obtained from Ma Wan Marine Traffic Station** Appendix H Appendix I Results and Graphical Presentation of Laboratory Analysis for Sediment Quality **Monitoring and Benthic Survey** Appendix J **Benthic Survey Report** Appendix K **Photos of Grab Samplers** Appendix L **Environmental Mitigation Implementation Schedule (EMIS)** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 1

## **EXECUTIVE SUMMARY**

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring i.e.  $H_2S$  concentration monitoring, odour patrol monitoring and olfactometry analysis of  $H_2S$ , in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the ninth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 April 2018 to 30 April 2018 (the "reporting period").

#### **Breaches of Action and Limit Levels**

Air quality monitoring i.e.  $H_2S$  concentration monitoring, odour patrol monitoring and olfactometry analysis was carried out on 4, 9, 18 and 25 April 2018. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 12 April 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future propose.

## **Compliant Log**

There was no complaint received in relation to the environmental impact during the report period.

## **Notifications of Summons and Successful Prosecutions**

There were no notifications of summons or prosecutions received during the reporting period.

### **Summary of the Environmental Mitigations Measures**

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust was implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 2

# **Future Key Issues**

The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the operation of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.

During this reporting period, H<sub>2</sub>S data collected (total 4 measurements) could not be considered as representative data to reflect the odour impact from SHWSTW as the wind direction during the measurement was in a non-ideal direction (SE) or interfered by other dominant odour source in the surrounding environment (e.g. vegetation and gasoline). Due to inadequacy of representative data, current H2S measurement and olfactometry analysis was considered as unsuitable way to establish the relationship of H2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H2S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, temporary suspension of air quality monitoring was proposed and submitted for EPD's approval.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 3

## 1. INTRODUCTION

## 1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

## 1.2 Project Description

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Egineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWD monitoring.

# 1.3 Project Organization

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

| Organization | Role                                          | Contact Person  | Telephone<br>No. | Fax No.   |
|--------------|-----------------------------------------------|-----------------|------------------|-----------|
| DSD          | Project<br>Proponent<br>Representative        | Mr. Romeo Chung | 2594 7266        | 3104 6426 |
| AECOM        | Engineer<br>Representative<br>(ER)            | Ms. Joanne Tsoi | 3922 9423        | 3922 9797 |
| AEC          | Independent<br>Environmental<br>Checker (IEC) | Ms. Grace Kwok  | 2815 7028        | 2815 5399 |
| FTS          | ET Leader<br>(ETL)                            | Mr. Colin Yung  | 3565 4114        | 2450 8032 |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 4

# 1.4 Work Undertaken during the Report Period

- 1.4.1 During this reporting period, the principal work activities included:
  - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
  - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 5

## 2. AIR QUALITY MONITORING

## 2.1 Methodology of H<sub>2</sub>S Concentration Monitoring

2.1.1 15-min H<sub>2</sub>S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H<sub>2</sub>S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H<sub>2</sub>S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H<sub>2</sub>S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

| Equipment                                     | Manufacturer<br>/ Model | Serial<br>Number | Sensor<br>Number | Calibration<br>Date | Next<br>Calibration<br>Date |
|-----------------------------------------------|-------------------------|------------------|------------------|---------------------|-----------------------------|
| Gold Film<br>Hydrogen<br>Sulphide<br>Analyzer | JEROME<br>X631 0003     | 2966             | 14-11-23-<br>R2D | 2 June 2017         | 1 June 2018                 |

# 2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
  - i. Prevailing Weather Condition;
  - ii. Wind Direction;
  - iii. Wind Speed;
  - iv. Location where Odour is detected;
  - v. Source of Odour detected;
  - vi. Perceived intensity of Odour detected:
  - viii. Duration of Odour detected; and
  - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 6

Table 2.2 Categories of Odour Intensity

| Table 212 Categories of Casar Interiorly |                    |                                                                                             |  |  |  |  |
|------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| Odour Level                              | Odour<br>Intensity | Classification Criteria                                                                     |  |  |  |  |
| 0                                        | Not detected       | No odour perceives or an odour so weak that it cannot be readily characterised or described |  |  |  |  |
| 1                                        | Slight             | Identifiable odour, barely noticeable                                                       |  |  |  |  |
| 2                                        | Noticeable         | Identifiable odour, noticeable                                                              |  |  |  |  |
| 3                                        | Strong             | Identifiable odour, strong                                                                  |  |  |  |  |
| 4                                        | Extreme            | Severe odour                                                                                |  |  |  |  |

## 2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was appointed to be the laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

## 2.4 Monitoring Location

2.4.1 H<sub>2</sub>S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Repot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

## 2.5 Monitoring Frequency and Duration

The durations and frequencies of H<sub>2</sub>S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

|                                                              |                         | <u>,                                     </u>                             |
|--------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|
|                                                              | Duration                | Frequency                                                                 |
| H <sub>2</sub> S concentration<br>monitoring<br>Odour patrol | 15 minutes              | <sup>1</sup> Weekly basis for 6 months during the initial operation stage |
| Odour sampling for olfactometry analysis                     | <sup>3</sup> 15 minutes | <sup>2</sup> First week of the odour patrol monitoring                    |

## Remark:

<sup>1)</sup> In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and  $H_2S$  concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Page 7

- 2) In case the relationship between  $H_2S$  concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
- 3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
- 2.5.1 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

## 2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in **Table 2.4**.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

| Parameter Action |                                                    | Limit                                                               |  |
|------------------|----------------------------------------------------|---------------------------------------------------------------------|--|
| Odour            | One complaint received for<br>specific odour event | Two or more independent complaints receive for specific odour event |  |

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

## 2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer. The calibration certificates for the analyzers are shown in **Appendix D**.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

## 2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring i.e. H<sub>2</sub>S concentration monitoring, odour patrol monitoring and olfactometry analysis was carried out on 4, 9, 18 and 25 April 2018.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.5**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 8

Table 2.5 Summary of Meteorological Data in Reporting Period

| Date          | Time          | Temperature<br>(°C) | Relative<br>Humidity<br>(%) | Wind<br>Direction | Wind<br>speed<br>(km/h) |
|---------------|---------------|---------------------|-----------------------------|-------------------|-------------------------|
| 4 April 2018  | 10:30 - 10:45 | 26.0                | 68.0                        | E                 | 1.4                     |
| 9 April 2018  | 10:03 – 10:18 | 25.0                | 65.0                        | Е                 | 1.1                     |
| 18 April 2018 | 10:03 – 10:18 | 21.8                | 81.0                        | E                 | 2.4                     |
| 25 April 2018 | 10:00 – 10:16 | 23.5                | 77.0                        | SE                | 2.6                     |

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.6**. Graphical plots of results and details of monitoring data are shown in **Appendix E**.

Table 2.6 Summary of Air Quality Monitoring Result in Reporting Period

| Table 2:0 Callinary of Air Quality Monitoring Result in Reporting Ferrod |                          |         |                                |                             |          |  |
|--------------------------------------------------------------------------|--------------------------|---------|--------------------------------|-----------------------------|----------|--|
|                                                                          | Monitoring Parameter     |         |                                |                             |          |  |
| Monitoring<br>Location                                                   | H₂S concentration* (ppb) |         | Odour Patrol^<br>(Odour Level) | Olfacto<br>Analysis<br>(OU/ | of odour |  |
|                                                                          | Range                    | Average | Range                          | Range                       | Average  |  |
| ASR                                                                      | 1 - 20                   | 6.0     | 1 - 1                          | 15 - 19                     | 17.5     |  |

Remark:

<sup>\*</sup>The value of H₂S Concentration was taken in average of 15 min for each measurement.

<sup>^</sup>Odour Level: 0 - Not detected, 1 - Slight, 2 - Moderate, 3 - Strong, 4 - Extreme

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Page 9

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m³). However in the reporting period, H<sub>2</sub>S data collected in reporting period (total 4 measurements) could not be considered as representative data to reflect the odour impact from SHWSTW. In the measurement conducted on 25 April 2018, non-ideal wind direction (SE) was recorded during the measurement. In other words, the wind direction was not from SHWSTW towards ASR.
- 2.8.5 For the measurements on 4, 9 and 18 April 2018, only non-target smell (vegetation & gasoline) was recorded from onsite odour patrol which indicated that no effluent smell could be recorded during the measurement and the result of olfactometry analysis to nature of odour was non-specified. Hence, the result (17 & 19 OU) from olfactometry analysis could be considered interfered and dominated by non-target smell from the surrounding environment. Therefore the measured H<sub>2</sub>S data from the reporting period could not reflect the odour impact from SHWSTW during operational phase and correlation between the H<sub>2</sub>S concentration and the olfactometry analysis was unable to be drawn in the reporting period.
- 2.8.6 Due to non-ideal wind direction (e.g. SE) or domination of non-target smell (e.g. vegetation & gasoline) during the measurements conducted in past 9 months, inadequacy of representative data was result in the past 9 months. Current H<sub>2</sub>S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H<sub>2</sub>S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.7 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period. Althought results of olfactometry analysis from the odour sampling during the reporting period exceeded the compliance of 5 odour units (based on averaging time of 5 seconds at the nearest ASR), no relationship can be drawn from the H<sub>2</sub>S concentration and the exceeded results of the odour unit from the olfactometry analysis so far in the reporting period. Besides, based on the onsite odour patrol monitoring and the records of wind direction, the exceedances from the olfactometry analysis were not project-related. Therefore, no non-compliance of odour monitoring at ASR were recorded in the reporting period.
- 2.8.8 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, temporary suspension of air quality monitoring was proposed and submitted for EPD's approval.
- 2.8.9 In addition to the specific sources of odour (e.g. vegetation and gasoline) recorded in the reporting period that would contribute to the odour nuisance at ASR, some other odour sources in neighbouring environment such as nearby Refuse Transfer Station might also affect the results of  $H_2S$  concentration monitoring and odour monitoring.
- 2.8.10 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 10

## 3. WATER QUALITY MONITORING

## 3.1 Monitoring Location

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at 8 designated monitoring locations (2 impact stations and 6 control stations) during the first five years of the operational phase of the Project. The monitoring locations shall be the same monitoring locations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring location is shown in **Table 3.1**. The monitoring locations of water quality monitoring are also shown in **Figure 2**.

Table 3.1 Location of Water Quality Monitoring

|   | Sampling Location                  | Easting | Northing |
|---|------------------------------------|---------|----------|
| Α | The Brothers, Control Station      | 816 100 | 822 500  |
| В | The Brothers, Control Station      | 816 680 | 822 440  |
| С | Siu Ho Wan Outfall, Impact Station | 816 800 | 820 180  |
| D | Siu Ho Wan Outfall, Impact Station | 817 160 | 820 360  |
| Е | Cheung Sok, Control Station        | 819 817 | 821 655  |
| F | Cheung Sok, Control Station        | 820 158 | 821 922  |
| G | Tai Ching Chau, Control Station    | 822 214 | 822 692  |
| Н | Tai Ching Chau, Control Station    | 822 494 | 822 939  |

## 3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

| Monitoring Parameters               |                                                   |  |  |  |  |
|-------------------------------------|---------------------------------------------------|--|--|--|--|
| In-situ Measurement                 | Laboratory Analysis                               |  |  |  |  |
| Dissolved oxygen (mg/L)             | E. coli (cfu/100ml)                               |  |  |  |  |
| Temperature (degree Celsius)        | 5-day BOD (mg/l)                                  |  |  |  |  |
| pH value                            | Suspended Solids (mg/l)                           |  |  |  |  |
| Water depth (m)                     | Ammonia as N (mg/l)                               |  |  |  |  |
| Salinity (ppt)                      | Nitrate as N (mg/l)                               |  |  |  |  |
| Turbidity (NTU)                     | Nitrite as N (mg/l)                               |  |  |  |  |
| Current Speed (m/s)                 | Total inorganic nitrogen (mg/l)                   |  |  |  |  |
| Current Direction (degree magnetic) | Total phosphorus (soluble and particulate) (mg/l) |  |  |  |  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Page 11

Report No.: 0041/17/ED/0302B

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena shall be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department.

# 3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) was used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) which integrated with echo sounder function was used to measure water depth, current velocity (speed and direction). The measured data by ADCP will then be downloaded on site to computer on board. The measured water depth data by ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler shall be tied with the multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**.

Table 3.3 Water Quality Monitoring and Sampling Equipment

| Parameter                                                                             | Equipment                               | Model                                                                          | Range                              | Equipment Accuracy                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature,<br>Dissolved<br>Oxygen,<br>salinity, pH,<br>Turbidity,<br>Sampling Depth | Water Quality<br>Monitoring<br>Device   | 1) YSI 6920V2-2-M<br>Sonde<br>2) Aqua TROLL 600<br>Multiparameter<br>Sonde     | Turb: 0-1000NTU Depth: 0-61 meters | Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m |
| Water Depth,<br>Current Speed,<br>Current<br>Direction                                | Acoustic<br>Doppler Current<br>Profiler | RiverSurveyor M9                                                               | Water Depth: 0-80m                 | Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic                                                                                                                                        |
| Positioning                                                                           | DGPS                                    | Simrad MX521B Smart<br>Antenna with Simrad<br>MX610 CDU                        | NA                                 | GPS: ±1m                                                                                                                                                                                                                                           |
| Water Sampling                                                                        | Water Sampler                           | Aquatic Research<br>Transparent PC Vertical<br>Water Sampler 2.2L / 3L<br>/ 5L | NA                                 | NA                                                                                                                                                                                                                                                 |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Page 12

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel was used as survey vessel. DGPS logging device with accuracy ±1m at 95% confidence level shall be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey shall be automatically and electronically logged. Powered winch shall be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor was present throughout the monitoring exercise on the Survey Vessel.
- 3.3.3 Water samples were collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles were pre-rinsed with the same water samples. The sampling bottles were then taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD<sub>5</sub>, Suspended Solids, NH<sub>3</sub>-N, NO<sub>3</sub>-N, NO<sub>2</sub>-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

# 3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is appointed to be the laboratory for analysis of water samples. The methods adopted by the laboratories and the reporting limits are detailed in **Table 3.4**.

Table 3.4 Laboratory Measurement/Analysis Methods and Reporting Limits

| Analysis Description                       | Method                                                     | Reporting limits |
|--------------------------------------------|------------------------------------------------------------|------------------|
| E. coli                                    | DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test | 1 cfu/100mL      |
| 5-day Biochemical Oxygen Demand            | APHA 5210B                                                 | 1 mg/L           |
| Total Suspended Solid                      | APHA 2540D                                                 | 0.5 mg/L         |
| Ammonia as N                               | APHA 4500 NH3: G                                           | 0.005 mg/L       |
| Nitrate as N                               | APHA 4500 NO3: I                                           | 0.005 mg/L       |
| Nitrite as N                               | APHA 4500 NO2 B&H                                          | 0.005 mg/L       |
| Total Inorganic Nitrogen                   | By Calculation                                             | 0.01 mg/L        |
| Total phosphorus (soluble and particulate) | APHA 4500 P: J                                             | 0.01 mg/L        |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 13

# 3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programmed shall be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at 8 designated locations will be carried out for each monitoring event. For each location at each tide, duplicate samples for in-situ parameter and laboratory analysis at 3 designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

## 3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval, Copies of calibration certificates for the water quality monitoring equipment are attached in **Appendix F**.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings were taken. If the difference between the first and second readings of DO or turbidity was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

## 3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 14

# 3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 12 April 2018. A summary of the in-situ water quality monitoring results are presented in **Table 3.5** (Mid-ebb) and **Table 3.6** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix G.** 

Table 3.5 Summary of In-situ Monitoring Results (Mid-ebb)

| Monitoring | Water | Sam  | plin     | Dissolved | Temperature | рН   | Salinity | Turbidity | Current | Current   |
|------------|-------|------|----------|-----------|-------------|------|----------|-----------|---------|-----------|
| Station    | Depth | g De | pth      | oxygen    | (degree     |      | (ppt)    | (NTU)     | speed   | velocity  |
|            | (m)   | (m)  |          | (mg/L)    | Celsius)    |      |          |           | (m/s)   | (degree   |
|            | ` ,   | ,    |          | , ,       | ,           |      |          |           |         | magnetic) |
| _          |       | S    | 1        | 6.94      | 22.97       | 8.07 | 30.42    | 1.9       | 0.20    | 100.5     |
|            |       | S    | 1        | 7.03      | 23.07       | 8.10 | 30.44    | 2.1       | 0.24    | 104.9     |
| ^          | 47    | М    | 8.5      | 6.51      | 22.54       | 8.09 | 32.86    | 2.3       | 0.12    | 107.2     |
| Α          | 17    | М    | 8.5      | 6.48      | 22.58       | 8.09 | 32.71    | 2.4       | 0.12    | 113.9     |
|            |       | В    | 16       | 6.45      | 22.50       | 8.10 | 33.27    | 2.4       | 0.16    | 209.5     |
|            |       | В    | 16       | 6.46      | 22.50       | 8.10 | 33.31    | 2.3       | 0.18    | 224.6     |
|            |       | S    | 1        | 7.12      | 23.16       | 8.13 | 31.46    | 1.9       | 0.08    | 140.8     |
|            |       | S    | 1        | 7.07      | 23.25       | 8.12 | 31.23    | 1.8       | 0.10    | 136.6     |
| Ь          | 4.4   | М    | 7        | 6.70      | 22.58       | 8.11 | 33.15    | 2.1       | 0.19    | 195.6     |
| В          | 14    | М    | 7        | 6.70      | 22.58       | 8.12 | 33.17    | 2.1       | 0.17    | 201.6     |
|            |       | В    | 13       | 6.49      | 22.48       | 8.12 | 33.50    | 3.3       | 0.07    | 205.9     |
|            |       | В    | 13       | 6.48      | 22.48       | 8.11 | 33.52    | 3.5       | 0.07    | 205.4     |
|            |       | S    | 1        | 7.92      | 23.62       | 8.20 | 30.70    | 2.1       | 0.13    | 245.4     |
|            |       | S    | 1        | 8.05      | 23.67       | 8.21 | 29.99    | 1.8       | 0.14    | 239.4     |
| С          | 12    | М    | 6        | 6.78      | 22.73       | 8.12 | 32.12    | 2.0       | 0.36    | 222.9     |
| C          | 12    | М    | 6        | 6.77      | 22.72       | 8.12 | 32.12    | 2.0       | 0.34    | 204.9     |
|            |       | В    | 11       | 6.54      | 22.56       | 8.10 | 32.74    | 1.9       | 0.37    | 244.7     |
|            |       | В    | 11       | 6.52      | 22.56       | 8.10 | 32.75    | 1.9       | 0.36    | 237.1     |
|            |       | S    | 1        | 8.02      | 23.66       | 8.21 | 29.72    | 1.5       | 0.22    | 131.8     |
|            |       | S    | 1        | 7.96      | 23.62       | 8.21 | 29.86    | 1.8       | 0.19    | 136.6     |
| D          | 13    | М    | 6.5      | 6.81      | 22.68       | 8.11 | 32.26    | 2.1       | 0.23    | 164.6     |
|            | 13    | М    | 6.5      | 6.71      | 22.70       | 8.11 | 32.18    | 1.9       | 0.22    | 158.2     |
|            |       | В    | 12       | 6.53      | 22.56       | 8.10 | 32.70    | 2.0       | 0.12    | 205.9     |
|            |       | В    | 12       | 6.46      | 22.53       | 8.10 | 32.90    | 2.0       | 0.12    | 205.4     |
|            |       | S    | 1        | 7.68      | 23.37       | 8.18 | 30.21    | 1.9       | 0.16    | 181.2     |
|            |       | S    | 1        | 7.70      | 23.37       | 8.19 | 30.23    | 1.9       | 0.15    | 163.1     |
| Е          | 17    | М    | 8.5      | 6.41      | 22.51       | 8.13 | 33.17    | 2.8       | 0.35    | 229.1     |
|            | 17    | М    | 8.5      | 6.40      | 22.50       | 8.13 | 33.21    | 2.8       | 0.25    | 228.5     |
|            |       | В    | 16       | 6.39      | 22.46       | 8.11 | 33.28    | 2.9       | 0.40    | 256.4     |
|            |       | В    | 16       | 6.39      | 22.46       | 8.11 | 33.28    | 2.9       | 0.35    | 257.7     |
|            |       | S    | 1        | 7.68      | 23.37       | 8.18 | 30.21    | 1.9       | 0.30    | 119.4     |
|            |       | S    | 1        | 7.70      | 23.37       | 8.19 | 30.23    | 1.9       | 0.31    | 117.5     |
| _          | 22    | М    | 11.<br>5 | 6.41      | 22.51       | 8.13 | 33.17    | 2.8       | 0.45    | 133.1     |
| F          | 23    | М    | 11.<br>5 | 6.40      | 22.50       | 8.13 | 33.21    | 2.8       | 0.47    | 141.5     |
|            |       | В    | 22       | 6.39      | 22.46       | 8.11 | 33.28    | 2.9       | 0.26    | 133.1     |
|            |       | В    | 22       | 6.39      | 22.46       | 8.11 | 33.28    | 2.9       | 0.31    | 128.9     |
|            |       | S    | 1        | 7.10      | 23.07       | 8.15 | 31.98    | 2.1       | 0.20    | 179.5     |
| G          | 18    | S    | 1        | 7.10      | 23.06       | 8.15 | 31.95    | 2.1       | 0.21    | 181.5     |
| G          |       | М    | 9        | 6.82      | 22.98       | 8.15 | 32.50    | 1.8       | 0.36    | 227.4     |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 15

| Monitoring<br>Station | Water<br>Depth<br>(m) | Samplin<br>g Depth<br>(m) |    | Dissolved<br>oxygen<br>(mg/L) | Temperature<br>(degree<br>Celsius) | рН   | Salinity<br>(ppt) | Turbidity<br>(NTU) | Current<br>speed<br>(m/s) | Current<br>velocity<br>(degree<br>magnetic) |
|-----------------------|-----------------------|---------------------------|----|-------------------------------|------------------------------------|------|-------------------|--------------------|---------------------------|---------------------------------------------|
|                       |                       | М                         | 9  | 6.82                          | 22.99                              | 8.15 | 32.54             | 1.8                | 0.37                      | 231.6                                       |
|                       |                       | В                         | 17 | 6.45                          | 22.55                              | 8.13 | 33.31             | 2.4                | 0.35                      | 217.8                                       |
|                       |                       | В                         | 17 | 6.46                          | 22.55                              | 8.12 | 33.31             | 2.0                | 0.33                      | 215.6                                       |
|                       |                       | S                         | 1  | 7.42                          | 23.20                              | 8.17 | 31.15             | 2.1                | 0.22                      | 116.4                                       |
|                       |                       | S                         | 1  | 7.40                          | 23.40                              | 8.17 | 31.15             | 2.1                | 0.22                      | 114.3                                       |
| Н                     | 18                    | М                         | 9  | 6.96                          | 22.90                              | 8.16 | 32.34             | 2.0                | 0.31                      | 158.4                                       |
| 17                    | 10                    | М                         | 9  | 6.96                          | 22.90                              | 8.16 | 32.34             | 2.0                | 0.33                      | 154.2                                       |
|                       |                       | В                         | 17 | 6.83                          | 22.96                              | 8.15 | 32.35             | 1.8                | 0.40                      | 135.6                                       |
|                       |                       | В                         | 17 | 6.85                          | 22.96                              | 8.15 | 32.56             | 1.8                | 0.42                      | 139.2                                       |

Table 3.6 Summary of In-situ Monitoring Results (Mid-flood)

| Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring | Water |   | pling | Dissolved                             | Temperature |      | Salinity | Turbidity | Current | Current  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---|-------|---------------------------------------|-------------|------|----------|-----------|---------|----------|
| Mathematics   Mathematics |            |       |   | th    | oxygen                                | (degree     | -    |          | (NTU)     | speed   | velocity |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | (m)   |   |       |                                       |             |      | ,        | ,         | (m/s)   | (dearee  |
| A      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ,     | , |       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /           |      |          |           | ( /     |          |
| A      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       | S | 1     | 8.05                                  | 23.55       | 8.20 | 29.31    | 3.2       | 0.05    |          |
| A      14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |   |       |                                       |             |      |          |           |         |          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          |       |   |       |                                       |             |      |          |           |         |          |
| B 13 6.50 22.53 8.11 33.35 8.1 0.27 246.9 B 13 6.49 22.53 8.11 33.36 8.5 0.27 264.5 S 1 7.96 23.52 8.21 29.46 2.8 0.26 221.5 S 1 8.05 23.44 8.21 29.56 2.8 0.22 177.5 S 1 8.05 23.44 8.21 29.56 2.8 0.22 177.5 B 13 6.69 22.79 8.13 30.96 1.9 0.04 136.1 B 13 6.69 22.79 8.13 32.06 3.3 0.11 211.3 B 13 6.68 22.79 8.13 32.16 3.4 0.10 253.8 S 1 7.77 23.39 8.25 29.40 3.4 0.08 192.6 S 1 7.79 23.37 8.24 29.48 3.4 0.09 204.0 M 6 6.76 22.76 8.15 32.46 6.0 0.19 243.8 B 11 6.63 22.68 8.12 32.75 7.0 0.23 240.4 B 11 6.69 22.67 8.15 32.46 0.0 0.19 243.8 B 11 6.69 22.67 8.12 32.78 7.0 0.17 245.3 S 1 7.81 23.61 8.22 29.40 3.4 0.11 232.0 M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8 M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8 M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8 B 13 6.39 22.53 8.12 33.33 5.2 0.34 216.1 B 13 6.39 22.53 8.12 33.33 5.2 0.34 216.1 B 13 6.39 22.59 8.12 33.35 5.2 0.35 221.1 B 13 6.39 22.59 8.12 33.35 5.2 0.35 221.1 B 13 6.39 22.59 8.14 33.55 2.0 0.35 221.1 B 13 6.39 22.59 8.12 33.35 5.2 0.35 221.1 B 13 6.39 22.59 8.12 33.35 5.2 0.35 221.1 B 13 6.39 22.59 8.14 33.55 2.5 0.44 204.2 B 13 6.68 22.69 8.15 32.58 2.5 0.46 206.0 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8 B 13 6.68 22.63 8.13 33.34 4.5 0.22 176.7                                                                                                                                                                                                                                                                                                                                                                                                                               | A          | 14    |   |       |                                       |             |      |          |           |         |          |
| B 13 6.49 22.53 8.11 33.36 8.5 0.27 264.5  S 1 7.96 23.52 8.21 29.46 2.8 0.26 221.5  S 1 8.05 23.44 8.21 29.56 2.8 0.22 177.5  M 7 7.07 23.05 8.17 30.96 1.9 0.08 170.9  M 7 7.03 23.05 8.17 30.99 1.9 0.04 136.1  B 13 6.69 22.79 8.13 32.16 3.4 0.10 253.8  B 13 6.68 22.79 8.13 32.16 3.4 0.10 253.8  S 1 7.77 23.39 8.25 29.40 3.4 0.08 192.6  S 1 7.79 23.37 8.24 29.48 3.4 0.09 204.0  S 1 7.79 23.37 8.24 29.48 3.4 0.09 204.0  M 6 6.73 22.74 8.15 32.52 5.9 0.14 239.4  B 11 6.63 22.68 8.12 32.75 7.0 0.23 240.4  B 11 6.63 22.68 8.12 32.75 7.0 0.23 240.4  B 11 6.69 22.67 8.12 32.78 7.0 0.17 245.3  S 1 7.81 23.61 8.22 29.40 3.4 0.11 232.0  M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8  M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8  M 7 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8  M 7 7 6.69 22.61 8.14 33.14 33.3 0.38 223.8  B 13 6.39 22.53 8.12 33.35 5.2 0.34 216.1  B 13 6.39 22.53 8.12 33.35 5.2 0.34 216.1  S 1 7.96 23.49 8.20 30.64 3.3 0.18 175.4  S 1 7.97 23.49 8.21 30.62 3.3 0.17 169.6  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.68 22.63 8.13 33.34 4.5 0.22 172.7  B 18 8 13 6.68 22.63 8.13 33.35 2.5 0.44 204.2  B 18 803 23.62 8.26 29.94 2.4 0.22 172.7  B 18 803 23.62 8.26 29.94 2.4 0.22 172.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |   | 13    | 6.50                                  |             |      |          |           |         |          |
| B    14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       | В |       |                                       |             | 8.11 |          |           | 0.27    | 264.5    |
| B  14    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       | S | 1     | 7.96                                  |             | 8.21 | 29.46    | 2.8       | 0.26    | 221.5    |
| B       14       M       7       7.03       23.05       8.17       30.99       1.9       0.04       136.1         B       13       6.69       22.79       8.13       32.06       3.3       0.11       211.3         B       13       6.68       22.79       8.13       32.16       3.4       0.10       253.8         S       1       7.77       23.39       8.25       29.40       3.4       0.08       192.6         S       1       7.79       23.37       8.24       29.48       3.4       0.09       204.0         M       6       6.76       22.76       8.15       32.46       6.0       0.19       243.8         M       6       6.73       22.74       8.15       32.52       5.9       0.14       239.4         B       11       6.63       22.68       8.12       32.75       7.0       0.23       240.4         B       11       6.63       22.68       8.12       32.78       7.0       0.17       245.3         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       | S |       | 8.05                                  |             |      |          |           |         |          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 4.4   | М | 7     | 7.07                                  | 23.05       | 8.17 | 30.96    | 1.9       | 0.08    | 170.9    |
| C         B         13         6.68         22.79         8.13         32.16         3.4         0.10         253.8           S         1         7.77         23.39         8.25         29.40         3.4         0.08         192.6           S         1         7.79         23.37         8.24         29.48         3.4         0.09         204.0           M         6         6.76         22.76         8.15         32.46         6.0         0.19         243.8           M         6         6.73         22.74         8.15         32.52         5.9         0.14         239.4           B         11         6.63         22.68         8.12         32.75         7.0         0.23         240.4           B         11         6.63         22.68         8.12         32.78         7.0         0.17         245.3           S         1         7.81         23.62         8.19         29.37         3.0         0.10         236.0           S         1         7.81         23.61         8.22         29.40         3.4         0.11         232.0           S         1         7.81         23.61         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В          | 14    | М | 7     | 7.03                                  | 23.05       | 8.17 | 30.99    | 1.9       | 0.04    | 136.1    |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       | В | 13    | 6.69                                  | 22.79       | 8.13 | 32.06    | 3.3       | 0.11    | 211.3    |
| C       12       S       1       7.79       23.37       8.24       29.48       3.4       0.09       204.0         M       6       6.76       22.76       8.15       32.46       6.0       0.19       243.8         M       6       6.73       22.74       8.15       32.52       5.9       0.14       239.4         B       11       6.63       22.68       8.12       32.75       7.0       0.23       240.4         B       11       6.59       22.67       8.12       32.78       7.0       0.17       245.3         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.62       8.17       33.07       3.3       0.42       222.8         M       7       6.59       22.61       8.14       33.14       3.3       0.38       223.8         B       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       | В | 13    | 6.68                                  | 22.79       | 8.13 | 32.16    | 3.4       | 0.10    | 253.8    |
| C       12       M       6       6.76       22.76       8.15       32.46       6.0       0.19       243.8         M       6       6.73       22.74       8.15       32.52       5.9       0.14       239.4         B       11       6.63       22.68       8.12       32.75       7.0       0.23       240.4         B       11       6.59       22.67       8.12       32.78       7.0       0.17       245.3         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.61       8.22       29.40       3.4       0.11       232.0         M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         B       13       6.39       22.53       8.12       33.35       5.2       0.35       221.1         E       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |   | 1     | 7.77                                  | 23.39       | 8.25 | 29.40    | 3.4       | 0.08    | 192.6    |
| D       M       6       6.73       22.74       8.15       32.52       5.9       0.14       239.4         B       11       6.63       22.68       8.12       32.75       7.0       0.23       240.4         B       11       6.59       22.67       8.12       32.78       7.0       0.17       245.3         S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.61       8.22       29.40       3.4       0.11       232.0         S       1       7.81       23.61       8.22       29.40       3.4       0.11       232.0         M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         B       13       6.39       22.61       8.14       33.14       3.3       0.38       223.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       | S | 1     | 7.79                                  | 23.37       | 8.24 | 29.48    | 3.4       | 0.09    | 204.0    |
| D         M         6         6.73         22.74         6.15         32.52         5.9         0.14         239.4           B         11         6.63         22.68         8.12         32.75         7.0         0.23         240.4           B         11         6.59         22.67         8.12         32.78         7.0         0.17         245.3           S         1         7.81         23.62         8.19         29.37         3.0         0.10         236.0           S         1         7.81         23.61         8.22         29.40         3.4         0.11         232.0           M         7         6.61         22.62         8.17         33.07         3.3         0.42         222.8           M         7         6.59         22.61         8.14         33.14         3.3         0.38         223.8           B         13         6.39         22.53         8.12         33.33         5.2         0.34         216.1           B         13         6.39         22.53         8.12         33.35         5.2         0.35         221.1           E         14         7.97         23.49 <td< td=""><td>_</td><td>12</td><td>M</td><td></td><td>6.76</td><td>22.76</td><td>8.15</td><td>32.46</td><td>6.0</td><td>0.19</td><td>243.8</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          | 12    | M |       | 6.76                                  | 22.76       | 8.15 | 32.46    | 6.0       | 0.19    | 243.8    |
| B 11 6.59 22.67 8.12 32.78 7.0 0.17 245.3  S 1 7.81 23.62 8.19 29.37 3.0 0.10 236.0  S 1 7.81 23.61 8.22 29.40 3.4 0.11 232.0  M 7 6.61 22.62 8.17 33.07 3.3 0.42 222.8  M 7 6.59 22.61 8.14 33.14 3.3 0.38 223.8  B 13 6.39 22.53 8.12 33.33 5.2 0.34 216.1  B 13 6.39 22.53 8.12 33.35 5.2 0.34 216.1  S 1 7.96 23.49 8.20 30.64 3.3 0.18 175.4  S 1 7.97 23.49 8.21 30.62 3.3 0.17 169.6  M 7 7.11 22.96 8.15 32.58 2.5 0.46 206.0  M 7 7.13 22.96 8.14 32.53 2.5 0.44 204.2  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.74 22.63 8.13 33.36 4.5 0.29 163.2  F 18 N 9 6.60 22.70 8.14 33.35 3.1 0.50 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 12    | M | 6     | 6.73                                  | 22.74       | 8.15 | 32.52    | 5.9       | 0.14    | 239.4    |
| D       14       S       1       7.81       23.62       8.19       29.37       3.0       0.10       236.0         S       1       7.81       23.61       8.22       29.40       3.4       0.11       232.0         M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         M       7       6.59       22.61       8.14       33.14       3.3       0.38       223.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         B       13       6.39       22.53       8.12       33.35       5.2       0.35       221.1         S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.14       32.58       2.5       0.46       206.0         M       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |   |       | 6.63                                  | 22.68       | 8.12 | 32.75    | 7.0       | 0.23    | 240.4    |
| D       S       1       7.81       23.61       8.22       29.40       3.4       0.11       232.0         M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         M       7       6.59       22.61       8.14       33.14       3.3       0.38       223.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         B       13       6.39       22.53       8.12       33.35       5.2       0.35       221.1         S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |   |       |                                       | 22.67       | 8.12 | 32.78    |           | 0.17    |          |
| D       M       7       6.61       22.62       8.17       33.07       3.3       0.42       222.8         M       7       6.59       22.61       8.14       33.14       3.3       0.38       223.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         B       13       6.39       22.53       8.12       33.35       5.2       0.35       221.1         S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68       22.63       8.13       33.36       4.5       0.29       165.8         B       13       6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |   | 1     | 7.81                                  | 23.62       |      | 29.37    | 3.0       | 0.10    | 236.0    |
| B       13       6.59       22.61       8.14       33.14       3.3       0.38       223.8         B       13       6.39       22.53       8.12       33.33       5.2       0.34       216.1         B       13       6.39       22.53       8.12       33.35       5.2       0.35       221.1         S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68       22.63       8.13       33.34       4.5       0.32       165.8         B       13       6.74       22.63       8.13       33.36       4.5       0.29       163.2         S       1       8.09       23.61<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |   |       |                                       |             |      |          |           |         |          |
| E    M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D          | 11    | M |       | 6.61                                  | 22.62       | 8.17 | 33.07    |           | 0.42    | 222.8    |
| E         13         6.39         22.53         8.12         33.35         5.2         0.35         221.1           S         1         7.96         23.49         8.20         30.64         3.3         0.18         175.4           S         1         7.97         23.49         8.21         30.62         3.3         0.17         169.6           M         7         7.11         22.96         8.15         32.58         2.5         0.46         206.0           M         7         7.13         22.96         8.14         32.53         2.5         0.44         204.2           B         13         6.68         22.63         8.13         33.34         4.5         0.32         165.8           B         13         6.74         22.63         8.13         33.36         4.5         0.29         163.2           S         1         8.09         23.61         8.26         29.94         2.4         0.22         172.7           S         1         8.03         23.62         8.26         29.94         2.0         0.20         167.5           M         9         6.60         22.70         8.14 <t< td=""><td></td><td>14</td><td>M</td><td></td><td>6.59</td><td>22.61</td><td>8.14</td><td></td><td>3.3</td><td>0.38</td><td>223.8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 14    | M |       | 6.59                                  | 22.61       | 8.14 |          | 3.3       | 0.38    | 223.8    |
| E       14       S       1       7.96       23.49       8.20       30.64       3.3       0.18       175.4         S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68       22.63       8.13       33.34       4.5       0.32       165.8         B       13       6.74       22.63       8.13       33.36       4.5       0.29       163.2         S       1       8.09       23.61       8.26       29.94       2.4       0.22       172.7         S       1       8.03       23.62       8.26       29.94       2.0       0.20       167.5         M       9       6.60       22.70       8.14       33.35       3.1       0.50       200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |   |       | 6.39                                  |             | 8.12 | 33.33    |           | 0.34    | 216.1    |
| E       14       S       1       7.97       23.49       8.21       30.62       3.3       0.17       169.6         M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68       22.63       8.13       33.34       4.5       0.32       165.8         B       13       6.74       22.63       8.13       33.36       4.5       0.29       163.2         S       1       8.09       23.61       8.26       29.94       2.4       0.22       172.7         S       1       8.03       23.62       8.26       29.94       2.0       0.20       167.5         M       9       6.60       22.70       8.14       33.35       3.1       0.50       200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |   | 13    | 6.39                                  | 22.53       | 8.12 | 33.35    | 5.2       | 0.35    | 221.1    |
| E       M       7       7.11       22.96       8.15       32.58       2.5       0.46       206.0         M       7       7.13       22.96       8.14       32.53       2.5       0.44       204.2         B       13       6.68       22.63       8.13       33.34       4.5       0.32       165.8         B       13       6.74       22.63       8.13       33.36       4.5       0.29       163.2         S       1       8.09       23.61       8.26       29.94       2.4       0.22       172.7         S       1       8.03       23.62       8.26       29.94       2.0       0.20       167.5         M       9       6.60       22.70       8.14       33.35       3.1       0.50       200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       | S |       |                                       |             |      |          |           |         |          |
| F 18 M 7 7.13 22.96 8.14 32.53 2.5 0.44 204.2  B 13 6.68 22.63 8.13 33.34 4.5 0.32 165.8  B 13 6.74 22.63 8.13 33.36 4.5 0.29 163.2  S 1 8.09 23.61 8.26 29.94 2.4 0.22 172.7  S 1 8.03 23.62 8.26 29.94 2.0 0.20 167.5  M 9 6.60 22.70 8.14 33.35 3.1 0.50 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |   |       | 7.97                                  |             |      | 30.62    |           |         |          |
| F 18   M   7   7.13   22.96   8.14   32.53   2.5   0.44   204.2     B   13   6.68   22.63   8.13   33.34   4.5   0.32   165.8     B   13   6.74   22.63   8.13   33.36   4.5   0.29   163.2     S   1   8.09   23.61   8.26   29.94   2.4   0.22   172.7     S   1   8.03   23.62   8.26   29.94   2.0   0.20   167.5     M   9   6.60   22.70   8.14   33.35   3.1   0.50   200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          | 11    |   |       |                                       |             |      |          |           |         |          |
| B     13     6.74     22.63     8.13     33.36     4.5     0.29     163.2       S     1     8.09     23.61     8.26     29.94     2.4     0.22     172.7       S     1     8.03     23.62     8.26     29.94     2.0     0.20     167.5       M     9     6.60     22.70     8.14     33.35     3.1     0.50     200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L          | 14    |   |       |                                       |             |      |          |           |         |          |
| F 18 S 1 8.09 23.61 8.26 29.94 2.4 0.22 172.7 S 1 8.03 23.62 8.26 29.94 2.0 0.20 167.5 M 9 6.60 22.70 8.14 33.35 3.1 0.50 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |   |       |                                       |             |      |          |           |         |          |
| F 18 S 1 8.03 23.62 8.26 29.94 2.0 0.20 167.5 M 9 6.60 22.70 8.14 33.35 3.1 0.50 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |   |       |                                       |             |      |          |           |         |          |
| M 9 6.60 22.70 8.14 33.35 3.1 0.50 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |   |       |                                       |             |      |          |           |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F          | 12    |   |       |                                       |             |      |          |           |         |          |
| M 9 6.61 22.70 8.14 33.35 3.2 0.48 189.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F   1      | 10    |   |       |                                       |             |      |          |           |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       | М | 9     | 6.61                                  | 22.70       | 8.14 | 33.35    | 3.2       | 0.48    | 189.4    |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 16

| Monitoring<br>Station | Water<br>Depth | Dep | pling<br>th | Dissolved oxygen | Temperature (degree | рН   | Salinity (ppt) | Turbidity<br>(NTU) | Current speed | Current velocity |
|-----------------------|----------------|-----|-------------|------------------|---------------------|------|----------------|--------------------|---------------|------------------|
|                       | (m)            | (m) |             | (mg/L)           | Celsius)            |      |                |                    | (m/s)         | (degree          |
|                       |                |     |             |                  |                     |      |                |                    |               | magnetic)        |
|                       |                | В   | 17          | 6.46             | 22.63               | 8.14 | 33.54          | 4.1                | 0.45          | 183.9            |
|                       |                | В   | 17          | 6.46             | 22.63               | 8.14 | 33.55          | 4.0                | 0.37          | 183.6            |
|                       |                | S   | 1           | 7.30             | 23.32               | 8.17 | 31.40          | 2.7                | 0.15          | 266.6            |
|                       |                | S   | 1           | 7.29             | 23.22               | 8.18 | 31.43          | 2.7                | 0.16          | 269.2            |
| G                     | 13             | М   | 6.5         | 6.96             | 23.04               | 8.16 | 32.26          | 3.1                | 0.40          | 230.8            |
| G                     | 13             | М   | 6.5         | 6.98             | 23.04               | 8.16 | 32.29          | 3.2                | 0.39          | 235.7            |
|                       |                | В   | 12          | 6.75             | 22.80               | 8.15 | 32.67          | 3.8                | 0.37          | 240.0            |
|                       |                | В   | 12          | 6.73             | 22.80               | 8.15 | 32.78          | 3.9                | 0.34          | 242.3            |
|                       |                | S   | 1           | 7.40             | 23.28               | 8.19 | 31.49          | 1.6                | 0.39          | 137.1            |
|                       |                | S   | 1           | 7.46             | 23.28               | 8.19 | 31.55          | 1.7                | 0.34          | 132.7            |
| Н                     | 19             | М   | 9.5         | 7.00             | 23.03               | 8.17 | 32.10          | 2.9                | 0.38          | 163.7            |
| "                     | 19             | М   | 9.5         | 7.00             | 23.02               | 8.17 | 32.19          | 2.9                | 0.40          | 166.1            |
|                       |                | В   | 18          | 6.53             | 22.63               | 8.14 | 33.61          | 3.3                | 0.22          | 144.3            |
|                       |                | В   | 18          | 6.52             | 22.63               | 8.14 | 33.64          | 3.3                | 0.24          | 146.9            |

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.7** (Mid-ebb) and **Table 3.8** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix G**.

Table 3.7 Summary of Laboratory Analysis Results (Mid-ebb)

|            | able 3.7 |     |        |        | oratory A |        |        |        |             |         |                  |
|------------|----------|-----|--------|--------|-----------|--------|--------|--------|-------------|---------|------------------|
| Monitoring | Water    |     | npling | TSS    | $NH_3$    | $NO_3$ | $NO_2$ | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
| Station    | Depth    | Dep | th     | (mg/L) | as N      | as N   | as N   | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|            | (m)      | (m) |        |        | (mg/L)    | (mg/L) | (mg/L) |        |             |         |                  |
|            |          | S   | 1      | 2.9    | 0.075     | 0.036  | 0.514  | 0.625  | 1.0         | 0.04    | <1.0             |
|            |          | S   | 1      | 3.5    | 0.075     | 0.034  | 0.519  | 0.628  | 2.0         | 0.03    | <1.0             |
| Α          | 17       | М   | 8.5    | 4.0    | 0.094     | 0.018  | 0.285  | 0.398  | 21.0        | 0.03    | <1.0             |
| _ ^        | 17       | М   | 8.5    | 4.8    | 0.097     | 0.016  | 0.290  | 0.403  | 19.0        | 0.03    | <1.0             |
|            |          | В   | 16     | 4.7    | 0.102     | 0.017  | 0.302  | 0.422  | 26.0        | 0.03    | <1.0             |
|            |          | В   | 16     | 4.5    | 0.084     | 0.016  | 0.257  | 0.357  | 29.0        | 0.03    | <1.0             |
|            |          | S   | 1      | 3.9    | 0.092     | 0.025  | 0.432  | 0.548  | 7.0         | 0.04    | <1.0             |
|            |          | S   | 1      | 3.6    | 0.101     | 0.027  | 0.425  | 0.553  | 5.0         | 0.03    | <1.0             |
| В          | 14       | М   | 7      | 3.5    | 0.128     | 0.017  | 0.257  | 0.402  | 76.0        | 0.04    | <1.0             |
| D          | 14       | М   | 7      | 4.2    | 0.110     | 0.012  | 0.279  | 0.401  | 69.0        | 0.03    | <1.0             |
|            |          | В   | 13     | 4.0    | 0.108     | 0.024  | 0.360  | 0.492  | 5.0         | 0.04    | <1.0             |
|            |          | В   | 13     | 4.2    | 0.086     | 0.025  | 0.427  | 0.538  | 6.0         | 0.03    | 1.1              |
|            |          | S   | 1      | 3.6    | 0.040     | 0.041  | 0.583  | 0.664  | 1.0         | 0.03    | 1.1              |
|            |          | S   | 1      | 4.1    | 0.046     | 0.040  | 0.584  | 0.670  | <1          | 0.03    | 1.3              |
| С          | 12       | М   | 6      | 4.8    | 0.066     | 0.035  | 0.535  | 0.636  | 1.0         | 0.03    | 1.3              |
|            | 12       | М   | 6      | 3.5    | 0.067     | 0.038  | 0.539  | 0.644  | 2.0         | 0.03    | 1.0              |
|            |          | В   | 11     | 3.0    | 0.081     | 0.030  | 0.433  | 0.544  | 2.0         | 0.03    | 1.1              |
|            |          | В   | 11     | 4.2    | 0.078     | 0.027  | 0.439  | 0.544  | 3.0         | 0.03    | 1.0              |
|            |          | S   | 1      | 3.5    | 0.052     | 0.037  | 0.576  | 0.664  | <1          | 0.05    | 1.5              |
|            |          | S   | 1      | 4.9    | 0.050     | 0.042  | 0.556  | 0.648  | 1.0         | 0.03    | 1.4              |
| D          | 13       | М   | 6.5    | 3.1    | 0.049     | 0.040  | 0.577  | 0.666  | 3.0         | 0.03    | 1.3              |
|            | 13       | М   | 6.5    | 4.9    | 0.040     | 0.044  | 0.590  | 0.674  | 4.0         | 0.04    | 1.1              |
|            |          | В   | 12     | 5.8    | 0.045     | 0.033  | 0.522  | 0.600  | 1.0         | 0.03    | 1.0              |
|            |          | В   | 12     | 6.6    | 0.039     | 0.047  | 0.650  | 0.736  | 2.0         | 0.03    | 1.5              |
| E          | 17       | S   | 1      | 4.6    | 0.052     | 0.038  | 0.543  | 0.633  | 6.0         | 0.03    | 1.2              |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 17

| Monitoring | Water | Sam | npling | TSS    | NH <sub>3</sub> | NO <sub>3</sub> | NO <sub>2</sub> | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------|-------|-----|--------|--------|-----------------|-----------------|-----------------|--------|-------------|---------|------------------|
| Station    | Depth | Dep |        | (mg/L) | as N            | as N            | as N            | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
| Otation:   | (m)   | (m) |        | (g, =) | (mg/L)          | (mg/L)          | (mg/L)          | (g, =) | (6.4, 1002) | (9, =)  | (g, =)           |
|            | ,     | Š   | 1      | 5.6    | 0.051           | 0.034           | 0.554           | 0.639  | 8.0         | 0.03    | 1.0              |
|            |       | М   | 8.5    | 4.0    | 0.087           | 0.035           | 0.535           | 0.657  | 11.0        | 0.03    | 1.1              |
|            |       | М   | 8.5    | 4.6    | 0.108           | 0.030           | 0.436           | 0.574  | 9.0         | 0.04    | <1.0             |
|            |       | В   | 16     | 4.0    | 0.042           | 0.041           | 0.579           | 0.662  | 3.0         | 0.03    | 1.2              |
|            |       | В   | 16     | 4.0    | 0.038           | 0.040           | 0.588           | 0.666  | 3.0         | 0.03    | 1.1              |
|            |       | S   | 1      | 3.4    | 0.084           | 0.040           | 0.569           | 0.693  | 1.0         | 0.03    | 1.5              |
|            |       | S   | 1      | 4.0    | 0.071           | 0.039           | 0.564           | 0.674  | 1.0         | 0.03    | 1.5              |
| F          | 23    | М   | 11.5   | 3.4    | 0.052           | 0.041           | 0.562           | 0.655  | 4.0         | 0.03    | 1.2              |
| Г          | 23    | М   | 11.5   | 3.5    | 0.055           | 0.035           | 0.555           | 0.645  | 3.0         | 0.03    | <1.0             |
|            |       | В   | 22     | 4.7    | 0.058           | 0.036           | 0.549           | 0.643  | 4.0         | 0.05    | 1.1              |
|            |       | В   | 22     | 5.0    | 0.055           | 0.040           | 0.532           | 0.627  | 6.0         | 0.05    | 1.3              |
|            |       | S   | 1      | 3.1    | 0.075           | 0.019           | 0.361           | 0.455  | 25.0        | 0.04    | 1.0              |
|            |       | S   | 1      | 4.4    | 0.078           | 0.022           | 0.361           | 0.461  | 20.0        | 0.04    | 1.0              |
| G          | 18    | М   | 9      | 3.6    | 0.118           | 0.026           | 0.366           | 0.510  | 36.0        | 0.04    | 1.1              |
| G          | 10    | М   | 9      | 5.4    | 0.100           | 0.022           | 0.353           | 0.475  | 31.0        | 0.04    | <1.0             |
|            |       | В   | 17     | 3.7    | 0.078           | 0.028           | 0.454           | 0.560  | 17.0        | 0.04    | 1.1              |
|            |       | В   | 17     | 5.2    | 0.079           | 0.026           | 0.462           | 0.567  | 20.0        | 0.04    | 1.1              |
|            |       | S   | 1      | 4.7    | 0.054           | 0.027           | 0.481           | 0.562  | 4.0         | 0.03    | 1.2              |
|            |       | S   | 1      | 4.8    | 0.068           | 0.039           | 0.449           | 0.556  | 5.0         | 0.03    | 1.4              |
| ш          | 10    | М   | 9      | 5.1    | 0.061           | 0.031           | 0.462           | 0.574  | 8.0         | 0.03    | 1.3              |
| П          | H 18  | М   | 9      | 3.4    | 0.080           | 0.026           | 0.474           | 0.580  | 6.0         | 0.04    | <1.0             |
|            |       | В   | 17     | 4.6    | 0.051           | 0.038           | 0.477           | 0.566  | 2.0         | 0.04    | <1.0             |
|            |       | В   | 17     | 4.4    | 0.059           | 0.033           | 0.488           | 0.580  | 2.0         | 0.04    | <1.0             |

Table 3.8 Summary of Laboratory Analysis Results (Mid-flood)

| Table 3.8 Summary of Laboratory Analysis Results (Mid-flood) |       |     |        |        |        |        |        |        |             |         |                  |
|--------------------------------------------------------------|-------|-----|--------|--------|--------|--------|--------|--------|-------------|---------|------------------|
| Monitoring                                                   | Water | Sam | npling | TSS    | $NH_3$ | $NO_3$ | $NO_2$ | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
| Station                                                      | Depth | Dep | th     | (mg/L) | as N   | as N   | as N   | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|                                                              | (m)   | (m) |        |        | (mg/L) | (mg/L) | (mg/L) |        |             |         |                  |
|                                                              |       | S   | 1      | 8.6    | 0.060  | 0.053  | 0.774  | 0.887  | 12.0        | 0.05    | <1.0             |
|                                                              |       | S   | 1      | 9.1    | 0.056  | 0.053  | 0.792  | 0.901  | 11.0        | 0.04    | <1.0             |
| Α                                                            | 14    | М   | 7      | 9.1    | 0.057  | 0.055  | 0.784  | 0.896  | 1.0         | 0.04    | <1.0             |
| _ ^                                                          | 14    | М   | 7      | 8.5    | 0.054  | 0.040  | 0.621  | 0.715  | 2.0         | 0.03    | <1.0             |
|                                                              |       | В   | 13     | 9.2    | 0.084  | 0.047  | 0.773  | 0.904  | 10.0        | 0.04    | 1.7              |
|                                                              |       | В   | 13     | 10.1   | 0.081  | 0.055  | 0.748  | 0.884  | 8.0         | 0.04    | 1.4              |
|                                                              |       | S   | 1      | 6.7    | 0.108  | 0.051  | 0.717  | 0.876  | 31.0        | 0.04    | <1.0             |
|                                                              |       | S   | 1      | 6.2    | 0.108  | 0.044  | 0.710  | 0.862  | 29.0        | 0.04    | <1.0             |
| В                                                            | 14    | М   | 7      | 6.8    | 0.060  | 0.048  | 0.692  | 0.800  | 49.0        | 0.04    | <1.0             |
| D                                                            | 14    | М   | 7      | 7.6    | 0.053  | 0.063  | 0.769  | 0.885  | 45.0        | 0.04    | 1.3              |
|                                                              |       | В   | 13     | 6.8    | 0.068  | 0.045  | 0.656  | 0.769  | 25.0        | 0.06    | 1.4              |
|                                                              |       | В   | 13     | 6.2    | 0.049  | 0.044  | 0.735  | 0.828  | 28.0        | 0.05    | 1.8              |
|                                                              |       | S   | 1      | 8.7    | 0.005  | 0.050  | 0.659  | 0.714  | 22.0        | 0.03    | 1.6              |
|                                                              |       | S   | 1      | 9.5    | <0.005 | 0.048  | 0.670  | 0.718  | 26.0        | 0.03    | 1.5              |
| С                                                            | 12    | М   | 6      | 9.4    | 0.037  | 0.038  | 0.640  | 0.715  | 24.0        | 0.03    | 1.5              |
|                                                              | 12    | М   | 6      | 8.4    | 0.051  | 0.042  | 0.607  | 0.700  | 20.0        | 0.03    | 1.2              |
|                                                              |       | В   | 11     | 8.8    | 0.012  | 0.047  | 0.665  | 0.724  | 18.0        | 0.03    | 2.0              |
|                                                              |       | В   | 11     | 8.8    | 0.010  | 0.044  | 0.664  | 0.718  | 21.0        | 0.03    | 1.8              |
|                                                              |       | S   | 1      | 6.6    | 0.074  | 0.039  | 0.597  | 0.710  | 17.0        | 0.03    | 1.3              |
| D                                                            | 14    | S   | 1      | 7.3    | 0.074  | 0.048  | 0.648  | 0.770  | 16.0        | 0.03    | 1.5              |
| D                                                            | 14    | М   | 7      | 6.9    | 0.034  | 0.051  | 0.596  | 0.680  | 23.0        | 0.03    | 1.2              |
|                                                              |       | М   | 7      | 7.2    | 0.025  | 0.043  | 0.642  | 0.710  | 19.0        | 0.04    | 1.6              |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 18

| Monitoring | Water | Sam | pling | TSS    | NH <sub>3</sub> | NO <sub>3</sub> | NO <sub>2</sub> | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------|-------|-----|-------|--------|-----------------|-----------------|-----------------|--------|-------------|---------|------------------|
| Station    | Depth | Dep | th    | (mg/L) | as N            | as N            | as N            | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|            | (m)   | (m) |       |        | (mg/L)          | (mg/L)          | (mg/L)          |        |             |         |                  |
|            |       | В   | 13    | 7.1    | 0.029           | 0.037           | 0.672           | 0.738  | 15.0        | 0.03    | 1.5              |
|            |       | В   | 13    | 7.8    | 0.019           | 0.047           | 0.645           | 0.711  | 18.0        | 0.03    | 1.7              |
|            |       | S   | 1     | 4.4    | 0.057           | 0.033           | 0.456           | 0.546  | 110.0       | 0.03    | 1.4              |
|            |       | S   | 1     | 5.6    | 0.051           | 0.033           | 0.491           | 0.575  | 120.0       | 0.04    | 1.4              |
| Е          | 14    | М   | 7     | 5.2    | 0.053           | 0.035           | 0.475           | 0.563  | 89.0        | 0.04    | 1.4              |
|            | 14    | М   | 7     | 6.4    | 0.043           | 0.035           | 0.510           | 0.588  | 94.0        | 0.04    | 1.6              |
|            |       | В   | 13    | 9      | 0.088           | 0.021           | 0.443           | 0.552  | 86.0        | 0.05    | 1.2              |
|            |       | В   | 13    | 10.8   | 0.088           | 0.045           | 0.651           | 0.784  | 78.0        | 0.03    | 1.6              |
|            |       | S   | 1     | 4.8    | 0.055           | 0.032           | 0.477           | 0.564  | 84.0        | 0.03    | 1.4              |
|            |       | S   | 1     | 5.9    | 0.060           | 0.032           | 0.478           | 0.571  | 80.0        | 0.03    | 1.4              |
| F          | 18    | М   | 9     | 5.8    | 0.075           | 0.035           | 0.503           | 0.613  | 120.0       | 0.04    | 1.9              |
| Г          | 10    | М   | 9     | 4.9    | 0.073           | 0.032           | 0.474           | 0.579  | 150.0       | 0.04    | 1.2              |
|            |       | В   | 17    | 6.6    | 0.045           | 0.037           | 0.509           | 0.591  | 110.0       | 0.04    | 1.4              |
|            |       | В   | 17    | 7.3    | 0.042           | 0.044           | 0.598           | 0.685  | 130.0       | 0.03    | 1.3              |
|            |       | S   | 1     | 5      | 0.060           | 0.027           | 0.443           | 0.530  | 35.0        | 0.03    | 1.1              |
|            |       | S   | 1     | 6.1    | 0.061           | 0.035           | 0.461           | 0.557  | 40.0        | 0.04    | 1.1              |
| G          | 13    | М   | 6.5   | 5.6    | 0.066           | 0.030           | 0.456           | 0.552  | 67.0        | 0.04    | 1.2              |
| G          | 13    | М   | 6.5   | 6.9    | 0.063           | 0.030           | 0.450           | 0.543  | 62.0        | 0.04    | 1.7              |
|            |       | В   | 12    | 5      | 0.060           | 0.033           | 0.440           | 0.533  | 53.0        | 0.05    | 1.4              |
|            |       | В   | 12    | 6.8    | 0.062           | 0.030           | 0.440           | 0.532  | 58.0        | 0.04    | <1.0             |
|            |       | S   | 1     | 4.8    | 0.059           | 0.025           | 0.467           | 0.551  | 59.0        | 0.04    | <1.0             |
|            | H 19  | S   | 1     | 4.5    | 0.056           | 0.027           | 0.469           | 0.552  | 63.0        | 0.04    | 1.0              |
| Н          |       | М   | 9.5   | 4.8    | 0.061           | 0.030           | 0.457           | 0.548  | 57.0        | 0.05    | 1.1              |
|            | 19    | М   | 9.5   | 4.8    | 0.057           | 0.026           | 0.451           | 0.534  | 60.0        | 0.04    | 1.1              |
|            |       | В   | 18    | 5      | 0.062           | 0.025           | 0.458           | 0.545  | 70.0        | 0.04    | 1.0              |
|            |       | В   | 18    | 4.2    | 0.059           | 0.036           | 0.447           | 0.542  | 64.0        | 0.04    | 1.1              |

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Location of the tide gauge The tidal data is present in **Appendix H**.
- 3.8.4 No special phenomena were observed during water quality monitoring on 12 April 2018. The weather condition is summarized and presented in **Table 3.9**.

Table 3.9 Weather condition of water quality monitoring

| Date          | Aiı                 | r Temperati      | ure                 | Mean                        | Total            |
|---------------|---------------------|------------------|---------------------|-----------------------------|------------------|
|               | Maximum<br>(deg. C) | Mean<br>(deg. C) | Minimum<br>(deg. C) | Relative<br>Humidity<br>(%) | Rainfall<br>(mm) |
| 12 April 2018 | 28.1                | 25.6             | 23.9                | 82                          | 0                |

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 19

## 4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

## 4.1 Monitoring Location

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at 8 designated monitoring locations (2 impact stations and 6 control stations) during the first five years of the operational phase of the Project. The proposed monitoring locations shall be the same monitoring locations that were used for the baseline monitoring programme programme and have been approved by EPD. The coordinates of the monitoring location is shown in **Table 4.1**. The monitoring locations of sediment quality monitoring and benthic survey are also shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

|   | Sampling Location                  | Easting | Northing |
|---|------------------------------------|---------|----------|
| Α | The Brothers, Control Station      | 816 100 | 822 500  |
| В | The Brothers, Control Station      | 816 680 | 822 440  |
| С | Siu Ho Wan Outfall, Impact Station | 816 800 | 820 180  |
| D | Siu Ho Wan Outfall, Impact Station | 817 160 | 820 360  |
| Е | Cheung Sok, Control Station        | 819 817 | 821 655  |
| F | Cheung Sok, Control Station        | 820 158 | 821 922  |
| G | Tai Ching Chau, Control Station    | 822 214 | 822 692  |
| Н | Tai Ching Chau, Control Station    | 822 494 | 822 939  |

## 4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

| Monitoring Parameters                  |                                  |  |  |  |  |  |  |
|----------------------------------------|----------------------------------|--|--|--|--|--|--|
| Sediment Quality Monitoring            | Rinsate Blank for Benthic Survey |  |  |  |  |  |  |
| Grain size profit* (i.e. Particle Size | Cadmium (µg/L)                   |  |  |  |  |  |  |
| Distribution) (%)                      |                                  |  |  |  |  |  |  |
| Total organic carbon* (%)              | Chromium (µg/L)                  |  |  |  |  |  |  |
| pH value                               | Copper (µg/L)                    |  |  |  |  |  |  |
| Ammonia as N (mg-N/kg)                 | Lead (µg/L)                      |  |  |  |  |  |  |
| Total nitrogen (mg-N/kg)               | Mercury ((µg/L)                  |  |  |  |  |  |  |
| Total phosphorus (mg-N/kg)             | Nickel (μg/L)                    |  |  |  |  |  |  |
| Cadmium (mg/kg)                        | Zinc (µg/L)                      |  |  |  |  |  |  |
| Chromium (mg/kg)                       | Arsenic (μg/L)                   |  |  |  |  |  |  |
| Copper (mg/kg)                         | Silver (µg/L)                    |  |  |  |  |  |  |
| Lead (mg/kg)                           |                                  |  |  |  |  |  |  |
| Mercury (mg/kg)                        |                                  |  |  |  |  |  |  |
| Nickel (mg/kg)                         |                                  |  |  |  |  |  |  |
| Zinc (mg/kg)                           |                                  |  |  |  |  |  |  |
| Arsenic (mg/kg)                        |                                  |  |  |  |  |  |  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 20

| Monitoring Parameters       |                                  |  |  |  |  |  |
|-----------------------------|----------------------------------|--|--|--|--|--|
| Sediment Quality Monitoring | Rinsate Blank for Benthic Survey |  |  |  |  |  |
| Silver (mg/kg)              |                                  |  |  |  |  |  |

<sup>\*</sup>Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena shall be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department.

# 4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) shall be used for collection of samples for sediment analysis. The grab shall be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab shall be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix K**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) shall be used for collecting sediment samples for benthic survey. The top of the grab shall have openings to allow the easy flow of water through the grab as it descends. The openings shall be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once a sediment sample is taken. In addition the top openings shall be sealable by movable flaps which shall close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix K**.
- 4.3.3 Class III commercially licensed vessel was used as survey vessel. DGPS logging device in the ADCP with accuracy ±1m at 95% confidence level shall be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey shall be automatically and electronically logged. Powered winch shall be used on-board the Survey Vessel to assist the monitoring. 4 fixed sieve stations shall be equipped on Survey Vessel. Experienced supervisor was present throughout the monitoring exercise on the Survey Vessel.

## 4.4 Sampling Procedure

## Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) shall be deployed at each of the benthic survey locations to collect single grab sample at each location. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) should be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples should be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve should be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Page 21

to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) shall be deployed at each of the benthic survey locations to collect single grab sample at each location. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples shall be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

## 4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is appointed to be the laboratory for analysis of sediment samples. The methods adopted by the laboratories and the reporting limits are detailed in **Table 4.3**.

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

| Table 4.5 Laboratory Measurement/Analysis Methods and Reporting Limits |                                                                                |                  |  |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|--|--|--|--|
| Analysis Description                                                   | Method                                                                         | Reporting limits |  |  |  |  |
| Particle Size Distribution                                             | Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method) | 1%               |  |  |  |  |
| Total Organic Carbon                                                   | APHA 5310B                                                                     | 0.05%            |  |  |  |  |
| pH value                                                               | APHA 4500H: B                                                                  | 0.1 pH unit      |  |  |  |  |
| Ammonia as N                                                           | APHA 4500 NH3: B&G                                                             | 0.5 mg/kg        |  |  |  |  |
| Total Nitrogen                                                         | APHA 4500 Norg: D & APHA 4500 NO3: I                                           | 10 mg/kg         |  |  |  |  |
| Total Phosphorus                                                       | APHA 4500P: B&H                                                                | 10 mg/kg         |  |  |  |  |
| Cadmium                                                                | USEPA 6020A Digestion method: 3051A                                            | 0.1 mg/kg        |  |  |  |  |
| Chromium                                                               |                                                                                | 0.5 mg/kg        |  |  |  |  |
| Copper                                                                 |                                                                                | 0.2 mg/kg        |  |  |  |  |
| Lead                                                                   |                                                                                | 0.2 mg/kg        |  |  |  |  |
| Mercury                                                                |                                                                                | 0.05 mg/kg       |  |  |  |  |
| Nickel                                                                 |                                                                                | 0.2 mg/kg        |  |  |  |  |
| Zinc                                                                   |                                                                                | 0.5 mg/kg        |  |  |  |  |
| Arsenic                                                                |                                                                                | 0.5 mg/kg        |  |  |  |  |
| Silver                                                                 |                                                                                | 0.1 mg/kg        |  |  |  |  |

## 4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Page 22

0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

## 4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

## 4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank shall be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

#### 4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future propose, no specific event and action has to be followed.

## 4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 12 April 2018. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix I.** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 23

Table 4.4 Summary of laboratory analysis results for sediment monitoring

| Table 4.4 Summary of laboratory analysis results for seament monitoring |       |                 |       |       |      |      |      |      |      |      |      |      |      |
|-------------------------------------------------------------------------|-------|-----------------|-------|-------|------|------|------|------|------|------|------|------|------|
| Monitoring                                                              | рН    | NH <sub>3</sub> | Total | Total | Cd   | Cr   | Cu   | Pb   | Hg   | Ni   | Zn   | As   | Ag   |
| Station                                                                 | value | as N            | N     | Р     | (mg/ | (mg  | (mg  | (mg  | (mg/ | (mg  | (mg  | (mg  | (mg  |
|                                                                         |       | (mg/L)          | (mg-  | (mg-  | kg)  | /kg) | /kg) | /kg) | kg)  | /kg) | /kg) | /kg) | /kg) |
|                                                                         |       |                 | N/kg) | P/kg) |      |      |      |      |      |      |      |      |      |
| Α                                                                       | 8.8   | 4               | 500   | 374   | <0.1 | 25.0 | 23.2 | 25.7 | 0.07 | 15.7 | 75.3 | 18.6 | 0.20 |
| В                                                                       | 8.7   | 8               | 1170  | 498   | <0.1 | 40.0 | 39.1 | 36.2 | 0.12 | 25.5 | 115  | 12.9 | 0.40 |
| С                                                                       | 8.5   | 10              | 1120  | 559   | <0.1 | 42.8 | 37.5 | 39.2 | 0.12 | 27.0 | 119  | 13.1 | 0.30 |
| D                                                                       | 8.8   | 3               | 550   | 272   | <0.1 | 22.4 | 19.3 | 24.5 | 0.07 | 14.2 | 66.5 | 7.5  | 0.17 |
| Е                                                                       | 8.5   | 12              | 1330  | 584   | <0.1 | 45.8 | 43.3 | 41.2 | 0.16 | 29.4 | 132  | 12.5 | 0.42 |
| F                                                                       | 8.3   | 22              | 1190  | 571   | <0.1 | 43.0 | 41.8 | 39.5 | 0.11 | 27.8 | 125  | 12.8 | 0.36 |
| G                                                                       | 8.6   | 4               | 860   | 450   | <0.1 | 32.9 | 41.8 | 33.5 | 0.11 | 20.6 | 104  | 9.7  | 0.30 |
| Н                                                                       | 8.3   | 13              | 1260  | 528   | <0.1 | 38.3 | 43.9 | 34.2 | 0.12 | 24.7 | 119  | 10.9 | 0.46 |

Table 4.5 Summary of laboratory analysis results for benthic survey

| Table 4.5 Cultilitary of laboratory distarysis results for bentine survey |            |                        |      |      |      |                                                                             |  |
|---------------------------------------------------------------------------|------------|------------------------|------|------|------|-----------------------------------------------------------------------------|--|
| Monitoring Total organic                                                  |            | Grain size profile (%) |      |      |      | Description                                                                 |  |
| Otation                                                                   | carbon (%) | Gravel                 | Sand | Silt | Clay |                                                                             |  |
| А                                                                         | 0.80       | 7                      | 47   | 28   | 18   | Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments          |  |
| В                                                                         | 1.12       | 0                      | 15   | 49   | 36   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |
| С                                                                         | 1.00       | 0                      | 4    | 58   | 38   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |
| D                                                                         | 1.13       | 0                      | 9    | 58   | 33   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |
| Е                                                                         | 1.27       | 0                      | 6    | 57   | 37   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |
| F                                                                         | 1.21       | 0                      | 3    | 59   | 38   | Dark grey, slightly sandy SILT/CLAY                                         |  |
| G                                                                         | 1.26       | 7                      | 15   | 50   | 28   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments |  |
| Н                                                                         | 1.00       | 6                      | 20   | 47   | 27   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments |  |

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix I**.
- 4.10.3 No special phenomena were observed during water quality monitoring on 12 April 2018. The weather condition is summarized and presented in **Table 4.6**.

Table 4.6 Weather condition of water quality monitoring

| Date          | Air Temperature |          |          | Mean     | Total    |
|---------------|-----------------|----------|----------|----------|----------|
|               | Maximum         | Mean     | Minimum  | Relative | Rainfall |
|               | (deg. C)        | (deg. C) | (deg. C) | Humidity | (mm)     |
|               |                 |          |          | (%)      |          |
| 12 April 2018 | 28.1            | 25.6     | 23.9     | 82       | 0        |

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 24

# 4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Table 4.7 Summary of benthic survey data on 12 April 2018

| Monitoring | Abundance | Total       | Number of | Diversity (H') | Evenness (J) |
|------------|-----------|-------------|-----------|----------------|--------------|
| Station    | (ind.)    | Biomass (g) | Taxa      |                | (- /         |
| Α          | 143       | 97.76       | 16        | 1.56           | 0.56         |
| В          | 19        | 7.36        | 10        | 2.16           | 0.94         |
| С          | 14        | 2.18        | 8         | 1.95           | 0.94         |
| D          | 18        | 3.65        | 7         | 1.73           | 0.89         |
| Е          | 18        | 3.31        | 9         | 2.11           | 0.96         |
| F          | 31        | 20.90       | 13        | 2.16           | 0.84         |
| G          | 41        | 20.36       | 17        | 2.47           | 0.87         |
| Н          | 47        | 75.66       | 18        | 2.54           | 0.88         |
| TOTAL      | 331       | 231.17      | 41        |                |              |

## 4.10.5 The benthic survey results are analyzed and presented as below:

## i) Abundance

A total of 331 macrobenthic organisms were collected from the eight monitoring stations. The lowest abundance was 14 individuals (ind.) recorded in Station C and the highest was 143 ind. in Station A. Abundance distribution showed that the impact stations, Stations C and D, have relatively lower abundances compared to the reference stations. Noticeable also is that abundances generally increase as the distance from the impact stations increases.

## ii) Biomass

The total wet biomass for all the eight monitoring stations was 231.17g. The highest total biomass was observed in Station A (97.76g), while Station C (2.18g) exhibited the lowest biomass. The relatively higher biomass observed in Station A were due to the increased number of the bivalve species, Ruditapes variegatus. Similar to abundance distribution, biomass at the impact stations were generally lower compared to those of the reference stations.

## iii) Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. A total of eight phyla comprising of 35 families and 41 genera were identified. The benthic fauna composition is dominated by Mollusca (50.45%), Annelida (31.12%), and Arthropoda (13.60%). The most dominant species (abundance >10) was the bivalve, *R. variegatus*, with the abundance of 90 ind. and 12 ind. in Stations A and H, respectively. *Talonostrea talonata*, another species of bivalve also showed dominance in Station A with 12 ind. recorded.

## iv) Diversity

Benthic diversity index (H') ranged from 1.72-1.95 in impact stations and 1.56-2.54 among the reference stations, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values. The diversity indices (0.62-1.1) during the baseline study (August 2004) was lower than that of the present study for all stations.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 25

The detailed benthic survey results are provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 26

# 5. CHINESE WHITE DOLPHIN MONITORING

# 5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report, "Monitoring of Marine Mammals in Hong Kong Waters (2016-17)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2017. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The next annual report (2017-18) shall be published around June 2018. The updated status of the distribution and abundance of CWDs will be provided once the annual report (2017-18) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 27

# 6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITGATION MEASURES

# 6.1 Implemtation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 28

## 7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management was implemented:
  - The influent of waste water shall be treated by CEPT with UV disinfection;
  - Trip-ticket system shall be implemented for sludge and sediment;
  - The acceptance criteria for Landfill disposal should be followed;
  - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 29

# 8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring i.e. H<sub>2</sub>S concentration monitoring, odour patrol monitoring and olfactometry analysis was carried out on 4, 9, 18 and 25 April 2018. No exceedances of Action/Limit levels at ASR were recorded.
- 8.1.2 Although results of olfactometry analysis from the odour sampling during the reporting period exceeded the compliance of 5 odour units (based on averaging time of 5 seconds at the nearest ASR), no relationship can be drawn from the H<sub>2</sub>S concentration and the exceeded results of the odour unit from the olfactometry analysis so far in the reporting period. Besides, based on the onsite odour patrol monitoring and the records of wind direction, the exceedances from the olfactometry analysis were not project-related. Therefore, no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 30

# 9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to the environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

**Table 9.1 Cumulative Statistics on Complaints** 

| Environmental<br>Parameters | Cumulative No.<br>Brought Forward | No. of Complaints<br>This Month | Cumulative Project-<br>to-Date |
|-----------------------------|-----------------------------------|---------------------------------|--------------------------------|
| Air                         | 0                                 | 0                               | 0                              |
| Noise                       | 0                                 | 0                               | 0                              |
| Water                       | 0                                 | 0                               | 0                              |
| Waste                       | 0                                 | 0                               | 0                              |
| Others                      | 0                                 | 0                               | 0                              |
| Total                       | 0                                 | 0                               | 0                              |

Table 9.2 Cumulative Statistics on Notification of Summons and Successful Prosecutions

| Environmental<br>Parameters | Cumulative No.<br>Brought Forward | No. of Notification of<br>Summons and<br>Prosecutions This<br>Month | Cumulative Project-<br>to-Date |
|-----------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------|
| Air                         | 0                                 | 0                                                                   | 0                              |
| Noise                       | 0                                 | 0                                                                   | 0                              |
| Water                       | 0                                 | 0                                                                   | 0                              |
| Waste                       | 0                                 | 0                                                                   | 0                              |
| Others                      | 0                                 | 0                                                                   | 0                              |
| Total                       | 0                                 | Ō                                                                   | 0                              |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 31

## 10. FUTURE KEY ISSUES

- 10.1.1 The key issues to be considered in the coming reporting month include:
  - i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
  - ii. As inadequacy of representative data was result in the past 9 months, current H<sub>2</sub>S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H2S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
  - iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, temporary suspension of air quality monitoring was proposed and submitted for EPD's approval.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B Page 32

## 11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H<sub>2</sub>S concentration monitoring, odour patrol monitoring and olfactometry analysis was carried out in the reporting month. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period. Although results of olfactometry analysis from the odour sampling during the reporting period exceeded the criterion of 5 odour units (based on averaging time of 5 seconds at the nearest ASR), onsite odour patrol monitoring indicated that the measurements were affected by other dominant odour or non-ideal wind directions and no relationship can be drawn from the H<sub>2</sub>S concentration and the exceeded results of the odour unit from the olfactometry analysis so far in the reporting period. Besides, based on the onsite odour patrol monitoring and the records of wind direction, the exceedances from the olfactometry analysis were not project-related. Therefore, no non-compliance of odour monitoring at ASR were recorded in the reporting period.
- 11.1.2 During this reporting period, H<sub>2</sub>S data collected (total 4 measurements) could not be considered as representative data to reflect the odour impact from SHWSTW. In the measurement conducted on 25 April 2018, non-ideal wind direction (SE) was recorded during the measurement. In other words, the wind direction was not from SHWSTW towards ASR.
- 11.1.3 For the measurements on 4, 9 and 18 April 2018, only non-target smell (vegetation & gasoline) was recorded from onsite odour patrol which indicated that no effluent smell could be recorded during the measurement and the result of olfactometry analysis to nature of odour was non-specified. Hence, the result (17 & 19 OU) from olfactometry analysis could be considered interfered and dominated by non-target smell from the surrounding environment. Therefore the measured H<sub>2</sub>S data from the reporting period could not reflect the odour impact from SHWSTW during operational phase and correlation between the H2S concentration and the olfactometry analysis was unable to be drawn in the reporting period. As inadequacy of representative data was result in the past 8 months, current H<sub>2</sub>S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m<sup>3</sup>). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H<sub>2</sub>S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, temporary suspension of air quality monitoring was proposed and submitted for EPD's approval.
- 11.1.4 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 12 April 2018 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and **Section 4**. No special phenomena were observed during the monitoring.
- 11.1.5 The latest AFCD's report, "Monitoring of Marine Mammals in Hong Kong Waters (2016-17)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2017. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

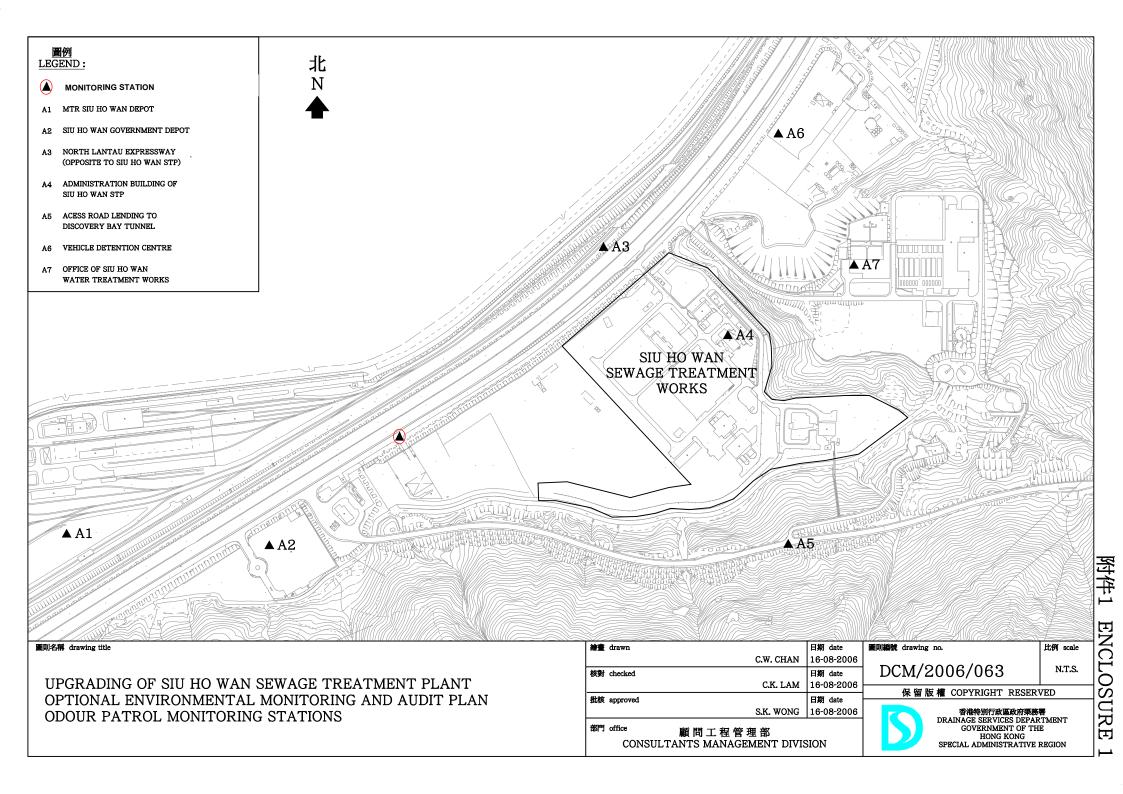


Report No.: 0041/17/ED/0302B

Page 33

year). The next annual report (2017-18) shall be published around June 2018. The updated status of the distribution and abundance of CWDs will be provided once the annual report (2017-18) is uploaded to AFCD's webpage. The updated status of the distribution and abundance of CWDs will be provided once the annual report (2017-18) is uploaded to AFCD's webpage.

- 11.1.6 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.7 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to the environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



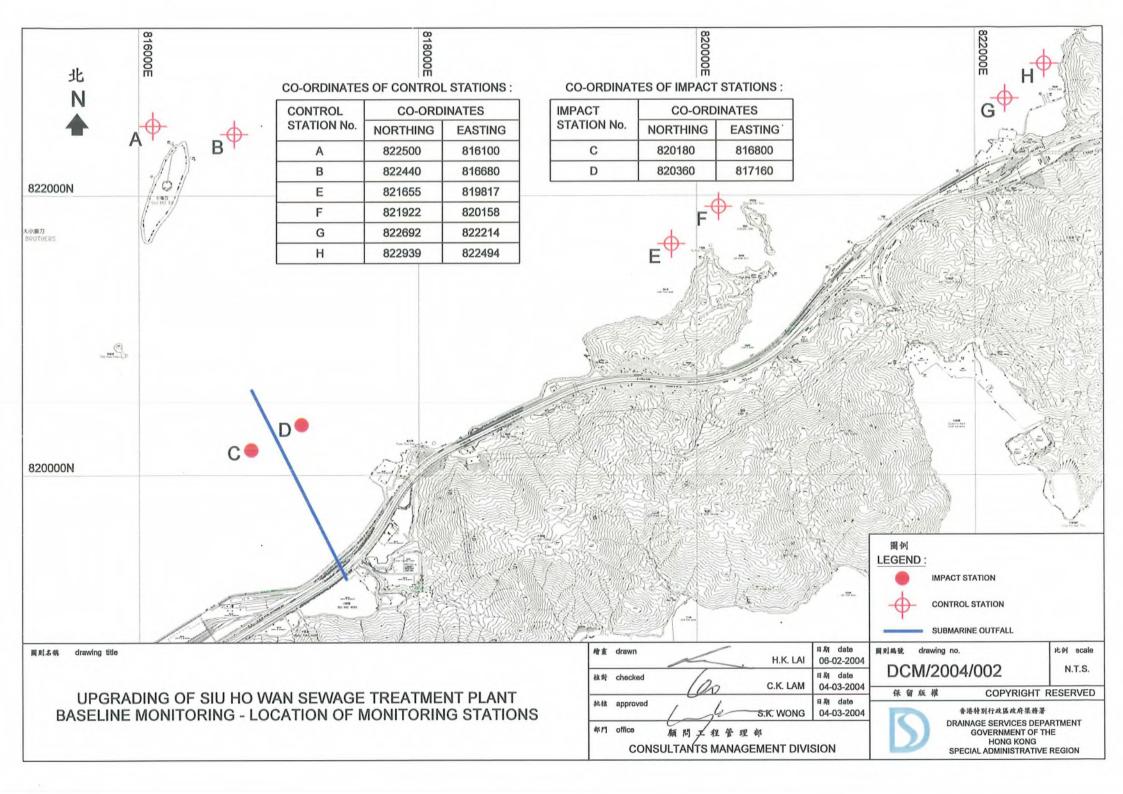
Report No.: 0041/17/ED/0302B

#### Figure 1

Monitoring Location of Air Sensitive Receiver



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Figure 2

Monitoring Locations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



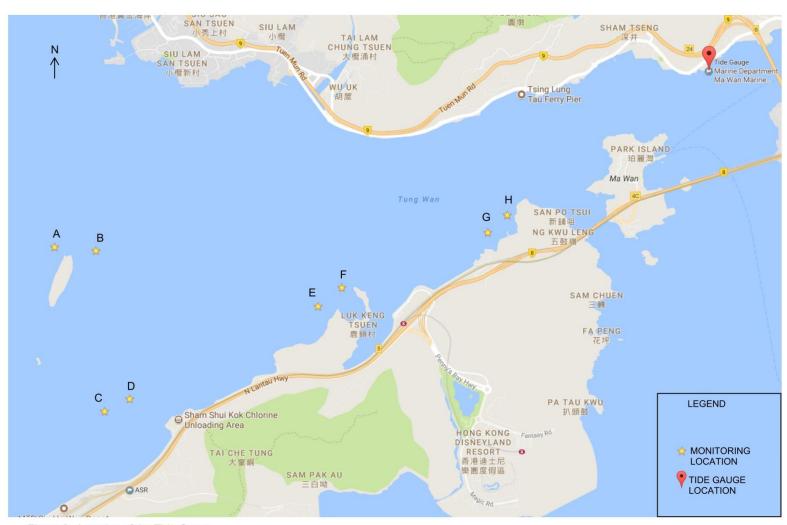



Figure 2 - Location of the Tide Gauge

Source: Google Maps

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Figure 4

Location of Survey Areas of Chinese White Dolphins

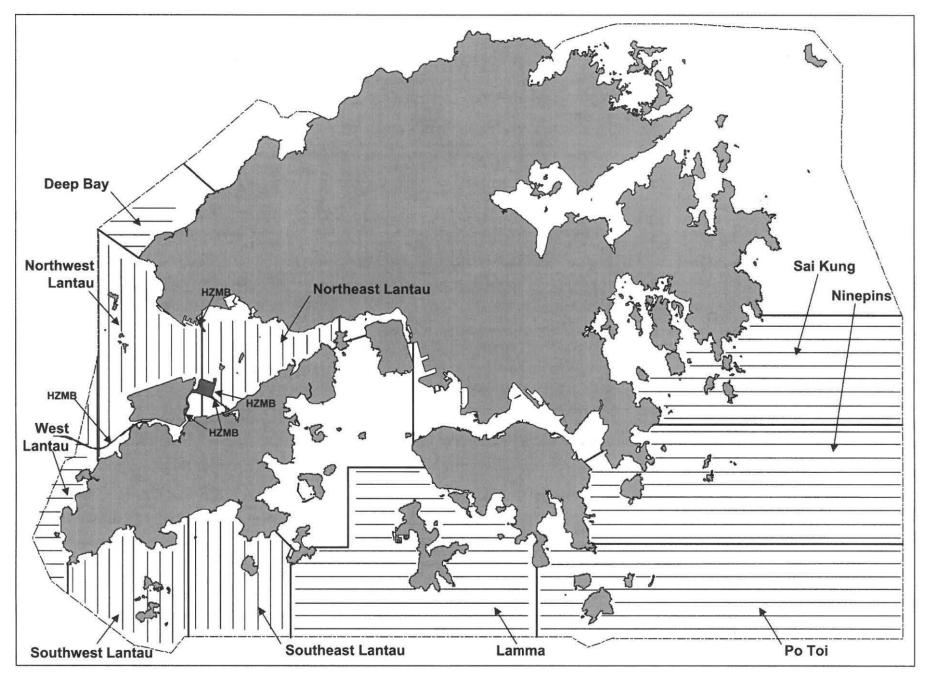
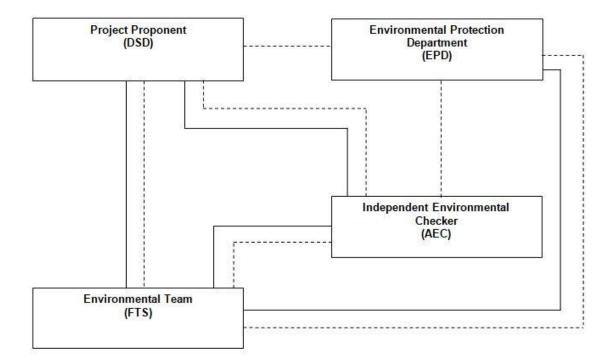



Figure 2 Ten Line-Transect Survey Areas within the Study Area chosen for the Present Monitoring Study (2016-17)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B


Appendix A

**Project Organization Chart** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B



Legend:

Line of Reporting
Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Monitoring Schedule for Present Reporting Period

| Sun     | Mon                                                                                                    | Tue | Wed                                                                                         | Thur                                                                                                             | Fri | Sat |
|---------|--------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1 April | 2                                                                                                      | 3   | 4 H <sub>2</sub> S concentration monitoring and odour patrol monitoring and odour sampling  | 5                                                                                                                | 6   | 7   |
| 8       | 9<br>H <sub>2</sub> S concentration<br>monitoring and odour<br>patrol monitoring and<br>odour sampling | 10  | 11                                                                                          | 12 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Ebb (10:51) Mid-Flood (15:56) | 13  | 14  |
| 15      | 16                                                                                                     | 17  | 18<br>H₂S concentration<br>monitoring and odour<br>patrol monitoring and<br>odour sampling  | 19                                                                                                               | 20  | 21  |
| 22      | 23                                                                                                     | 24  | 25 H <sub>2</sub> S concentration monitoring and odour patrol monitoring and odour sampling | 26                                                                                                               | 27  | 28  |
| 29      | 30                                                                                                     |     |                                                                                             |                                                                                                                  |     |     |

#### Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Monitoring Schedule for Next Reporting Period

| Sun | Mon | Tue   | Wed                                                                                        | Thur | Fri | Sat |  |
|-----|-----|-------|--------------------------------------------------------------------------------------------|------|-----|-----|--|
|     |     | 1 May | 2 H <sub>2</sub> S concentration monitoring and odour patrol monitoring and odour sampling | 3    | 4   | 5   |  |
| 6   | 7   | 8     | 9<br>H₂S concentration<br>monitoring and odour<br>patrol monitoring and<br>odour sampling  | 10   | 11  | 12  |  |
| 13  | 14  | 15    | 16<br>H₂S concentration<br>monitoring and odour<br>patrol monitoring and<br>odour sampling | 17   | 18  | 19  |  |
| 20  | 21  | 22    | 23 H₂S concentration monitoring and odour patrol monitoring and odour sampling             | 24   | 25  | 26  |  |
| 27  | 28  | 29    | 30<br>H₂S concentration<br>monitoring and odour<br>patrol monitoring and<br>odour sampling | 31   |     |     |  |

#### Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

| E\ (E\ IT                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACTION                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVENT                                           | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IEC                                                                                                                                                                                                                                                      | *Operator                                                                                                                                                                                                                                                                                                                        |
| Action Level                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |
| One complaint received for specific odour event | Check Operator's working methods;     Discuss with Operator on required remedial actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Discuss with ET and Operator on the possible remedial actions; 2. Advise the Operator on the effectiveness of the proposed remedial measures; 3 Supervise implementation of remedial measures                                                         | 1. Identify/ confirm source with ET; 2. Discuss with ET for remedial actions required; 3. Ensure remedial actions properly implemented 4. Rectify any unacceptable practice; 5. Amend operation methods if appropriate                                                                                                           |
| Limit Level                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                  |
| More than one complaint                         | 1. Investigated the causes of complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control | 1. Discuss amongst ET and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures | 1. Indentify/ confirm source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals |

<sup>\*</sup> The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix D

Copy of Calibration Certificates of H<sub>2</sub>S Analyzer

#### ARIZONA INSTRUMENT LLC

3375 N. Delaware St., Chandler, AZ 85225 (800) 528-7411 • (602) 470-1414 www.azic.com • customerservice@azic.com



#### Certification of Instrument Calibration

Guyline (Asia) Ltd Rm 1611, Eastern Harbour Centre Quarry Bay, RMA# 2459849

This is to certify that the Jerome **X631 0003** Gold Film Hydrogen Sulfide Analyzer, Serial Number **2966**, with Sensor Number **14-11-23-R2D**, was calibrated with standard units traceable to NIST.

Calibration Status as Received:

**Out of Calibration** 

|           |         | Actual |         | Calibr | ation Gas | Allowable Range |
|-----------|---------|--------|---------|--------|-----------|-----------------|
| Incoming: | Range 1 | 0.346  | ppm H2S | 0.500  | ppm H2S   | +/- 6%          |
|           | RSD %   | 10.17  | æ       |        |           | <5%             |
| Outgoing: | Range 1 | 0.476  | ppm H2S | 0.500  | ppm H2S   | +/- 6%          |
|           | RSD %   | 2.18   |         |        |           | <5%             |

Calibration Status as Left:

In Calibration

Estimated Uncertainty of Calibration System: 2.8%

Calibration Date: 02-Jun-2017

Recalibration Date: 01-Jun-2018

Temperature °F:

% Relative Humidity:

Cheryl Hradel

Approved By:\_\_\_\_

Title: Cheryl Hradek - Quality Control

Date Approved: 05-Jun-2017

Equipment Used:

H2S Calibration Standard: CC-57152 NIST#: 1385481

Calibration Date: 17-Aug-2016 Calibration Date Due: 18-Aug-2019

Mass Flow Controller B: 124604 NIST#: 152971

Calibration Date: 28-Nov-2016 Calibration Date Due: 28-Nov-2017

Mass Flow Controller D: 124602 NIST#: 151792

Calibration Date: 08-Nov-2016 Calibration Date Due: 08-Nov-2017

Digital Multimeter: 66961028 NIST#: 7000660

Calibration Date: 28-Mar-2017 Calibration Date Due: 28-Mar-2018

Flowmeter: US10H44183 NIST#: 1813; 1817; 1796

Calibration Date: 08-Nov-2016 Calibration Date Due: 09-Nov-2017

Calibration Procedure Used: 730-0032

Arizona Instrument certifies that the above listed instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracy are traceable to the NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY within the limitations of the Institute's calibration services, or have been derived from accepted values of natural physical constants, or have been derived by the ratio type of self-calibration techniques.

Disclaimer: Any unauthorized adjustments, removal or breaking of QC seals, or other customer modifications on your Jerome Analyzer WILL VOID this factory calibration. Because any of the above acts could affect the calibration and readings of the instrument, their certification will no longer be valid and, further. Arizona Instrument LLC WILL NOT be responsible for any liabilities created as a result of using the instrument after such adjustments, seal removal, or modifications.

As long as a functional test is within range, according to the procedure outlined in the Operator's Manual, the instrument is performing correctly

This document shall not be reproduced, except in full, without the written approval of Arizona Instrument.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix E

| Date of Measurement:  | 04 April 2018 |
|-----------------------|---------------|
| Monitoring Location:  | ASR           |
| Start Time:           | 10:30         |
| End Time:             | 10:45         |
| Temperature (°C)      | 26.0          |
| Wind Speed (m/s)      | 1.4           |
| Wind Direction        | E             |
| Relative Humidity (%) | 68            |

| Date (YYYY-MM-DD) | Time (hh:mm:ss)         | H2S conc. (ppm) |
|-------------------|-------------------------|-----------------|
| 2018-04-04        | 10:30:14                | 0.004           |
| 2018-04-04        | 10:31:14                | 0.001           |
| 2018-04-04        | 10:32:14                | 0.003           |
| 2018-04-04        | 10:33:14                | 0.013           |
| 2018-04-04        | 10:34:14                | 0.005           |
| 2018-04-04        | 10:35:14                | 0.003           |
| 2018-04-04        | 10:36:14                | 0.003           |
| 2018-04-04        | 10:37:14                | 0.001           |
| 2018-04-04        | 10:38:14                | 0.002           |
| 2018-04-04        | 10:39:14                | 0.001           |
| 2018-04-04        | 10:40:14                | 0.003           |
| 2018-04-04        | 10:41:14                | 0.007           |
| 2018-04-04        | 10:42:14                | 0.003           |
| 2018-04-04        | 10:43:14                | 0.003           |
| 2018-04-04        | 10:44:14                | 0.003           |
|                   | Average H2S conc. (ppm) | 0.004           |

| Date of Measurement:  | 09 April 2018 |
|-----------------------|---------------|
| Monitoring Location:  | ASR           |
| Start Time:           | 10:03         |
| End Time:             | 10:18         |
| Temperature (°C)      | 25.0          |
| Wind Speed (m/s)      | 1.1           |
| Wind Direction        | Е             |
| Relative Humidity (%) | 65            |

| Date (YYYY-MM-DD) | Time (hh:mm:ss)         | H2S conc. (ppm) |
|-------------------|-------------------------|-----------------|
| 2018-04-09        | 10:03:08                | 0.014           |
| 2018-04-09        | 10:04:08                | 0.012           |
| 2018-04-09        | 10:05:08                | 0.009           |
| 2018-04-09        | 10:06:08                | 0.003           |
| 2018-04-09        | 10:07:08                | 0.003           |
| 2018-04-09        | 10:08:08                | 0.004           |
| 2018-04-09        | 10:09:08                | 0.008           |
| 2018-04-09        | 10:10:08                | 0.007           |
| 2018-04-09        | 10:11:08                | 0.008           |
| 2018-04-09        | 10:12:08                | 0.004           |
| 2018-04-09        | 10:13:08                | 0.003           |
| 2018-04-09        | 10:14:08                | 0.007           |
| 2018-04-09        | 10:15:08                | 0.003           |
| 2018-04-09        | 10:16:08                | 0.004           |
| 2018-04-09        | 10:17:08                | 0.004           |
|                   | Average H2S conc. (ppm) | 0.006           |

| Date of Measurement:  | 18 April 2018 |
|-----------------------|---------------|
| Monitoring Location:  | ASR           |
| Start Time:           | 10:03         |
| End Time:             | 10:18         |
| Temperature (°C)      | 21.8          |
| Wind Speed (m/s)      | 2.4           |
| Wind Direction        | E             |
| Relative Humidity (%) | 81            |

| Date (YYYY-MM-DD) | Time (hh:mm:ss)         | H2S conc. (ppm) |
|-------------------|-------------------------|-----------------|
| 2018-04-18        | 10:03:51                | 0.010           |
| 2018-04-18        | 10:04:51                | 0.005           |
| 2018-04-18        | 10:05:51                | 0.008           |
| 2018-04-18        | 10:06:51                | 0.007           |
| 2018-04-18        | 10:07:51                | 0.007           |
| 2018-04-18        | 10:08:51                | 0.006           |
| 2018-04-18        | 10:09:51                | 0.007           |
| 2018-04-18        | 10:10:51                | 0.006           |
| 2018-04-18        | 10:11:51                | 0.007           |
| 2018-04-18        | 10:12:51                | 0.004           |
| 2018-04-18        | 10:13:51                | 0.004           |
| 2018-04-18        | 10:14:51                | 0.003           |
| 2018-04-18        | 10:15:51                | 0.003           |
| 2018-04-18        | 10:16:51                | 0.003           |
| 2018-04-18        | 10:17:51                | 0.003           |
|                   | Average H2S conc. (ppm) | 0.006           |

| Date of Measurement:  | 25 April 2018 |
|-----------------------|---------------|
| Monitoring Location:  | ASR           |
| Start Time:           | 10:01         |
| End Time:             | 10:16         |
| Temperature (°C)      | 23.5          |
| Wind Speed (m/s)      | 2.6           |
| Wind Direction        | SE            |
| Relative Humidity (%) | 77            |

| Date (YYYY-MM-DD) | Time (hh:mm:ss)         | H2S conc. (ppm) |
|-------------------|-------------------------|-----------------|
| 2018-04-25        | 10:01:56                | 0.003           |
| 2018-04-25        | 10:02:56                | 0.003           |
| 2018-04-25        | 10:03:56                | 0.006           |
| 2018-04-25        | 10:04:56                | 0.010           |
| 2018-04-25        | 10:05:56                | 0.020           |
| 2018-04-25        | 10:06:56                | 0.018           |
| 2018-04-25        | 10:07:56                | 0.007           |
| 2018-04-25        | 10:08:56                | 0.007           |
| 2018-04-25        | 10:09:56                | 0.013           |
| 2018-04-25        | 10:10:56                | 0.014           |
| 2018-04-25        | 10:11:56                | 0.017           |
| 2018-04-25        | 10:12:56                | 0.015           |
| 2018-04-25        | 10:13:56                | 0.004           |
| 2018-04-25        | 10:14:56                | 0.006           |
| 2018-04-25        | 10:15:56                | 0.004           |
|                   | Average H2S conc. (ppm) | 0.010           |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



## Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Monitoring Report

| * LEGEND:  (A) PROPOSED ODOUR PATRICL EQUATORAGE STAYEING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 北<br>N                            |                                          |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------|----------------------|
| Ã,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Original Special Colors   | SIU EIG WAN<br>SEWAGE TREATMENT<br>WORKS |                      |
| The state of the s | Proposed Odour Monitoring Station |                                          | Discovery Bay Tunnel |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                          |                      |

| Odour Patrol Monitoring Date: 4-4-2013     |                 |                 | Weather:        | Fine            |               |
|--------------------------------------------|-----------------|-----------------|-----------------|-----------------|---------------|
| Location:                                  | ASR - Cheung Tu | ung Road near t | he Bus Depot at | the west of tre | eatment plant |
| Temperature:                               | 26°C            | Start Time:     | 10:30           | End Time:       | 10:45         |
| Wind Speed:                                |                 | .4m/s           | Wind Direction: | E               |               |
| Nature of Odour:                           | Gasolin         | ne,             |                 |                 |               |
| *Odour Intensity:<br>(tick as appropriate) | ☐ Not detected  | ☑ Slight        | ☐ Noticeable    | ☐ Strong        | □ Extreme     |
| *Classification Criteria:                  |                 |                 |                 |                 |               |

Not detected : No odour perceived or an odour so weak that it cannot be readily characterised or

described.

Slight : Identifiable odour, barely noticeable

Noticeable : Identifiable odour, noticeable Strong : Identifiable odour, strong

Extreme : Severe odour

Recorded by:

Name:

Date:

Name:

Volume

Vol

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Tel Fax E-mail : matlab@fugro.com Website: www.fugro.com



#### Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Monitoring Report**

| LEGEND:  A PSOPULID OPEN PATRICL MONTONING STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 北口              | ,                                 |                                       |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|---------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                   |                                       |                              |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                   | June 1                                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Sec.                              | SIU HÜ WAN<br>WAGE TREATMENT<br>WORKS |                              |
| The state of the s | Propo<br>Monito | sed Odour Patrol<br>oring Station |                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                   |                                       | a with to Disease You Turned |

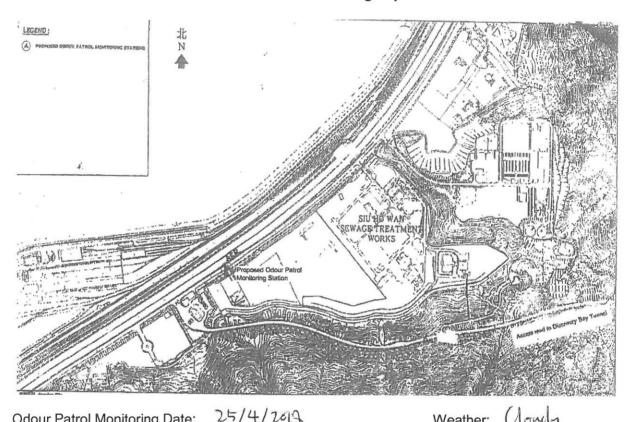
|                                                                                                                                                            |                                                                                                             | /AR 1/8 I             |                  |                |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|------------------|----------------|----------------|
| Odour Patrol Mo                                                                                                                                            | onitoring Date:                                                                                             | 14/2018               |                  | Weather:       | Fine           |
| Location:                                                                                                                                                  | ASR - Cheung Tu                                                                                             | ing Road near t       | the Bus Depot at | the west of tr | reatment plant |
| Temperature:                                                                                                                                               | 25°C.                                                                                                       | Start Time:           | 10:03            | End Time:      | 10:19          |
| Wind Speed:                                                                                                                                                | 1.1                                                                                                         | m15                   | Wind Direction:  | E              | 70 (0          |
| Nature of Odour:                                                                                                                                           | - XIII                                                                                                      | egetations            |                  |                |                |
| *Odour Intensity:<br>(tick as appropriate)                                                                                                                 | ☐ Not detected                                                                                              | <sup>3</sup> ☑ Slight | ☐ Noticeable     | ☐ Strong       | □ Extreme      |
| *Classification                                                                                                                                            | Criteria:                                                                                                   |                       |                  |                | 400            |
| Not detected : I                                                                                                                                           | Not detected : No odour perceived or an odour so weak that it cannot be readily characterised or described. |                       |                  |                |                |
| Slight : Identifiable odour, barely noticeable                                                                                                             |                                                                                                             |                       |                  |                |                |
| Noticeable : Identifiable odour, noticeable                                                                                                                |                                                                                                             |                       |                  |                |                |
|                                                                                                                                                            | dentifiable odour, st                                                                                       | rong                  |                  |                |                |
| Extreme . 3                                                                                                                                                | Severe odour                                                                                                |                       |                  |                |                |
| Recorded by:  Name:  Date:  Name:  9/4/2019  Checked by:  Name:  Name:  1/4/2019  Date:  Name:  9-4-2019                                                   |                                                                                                             |                       |                  |                |                |
| The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company. |                                                                                                             |                       |                  |                |                |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



## Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Monitoring Report

| LEGEND:  (A) PROPOSED ODCUR PATRICL MONTONING STAYRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 北川                       |                         |                                    |               |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|------------------------------------|---------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |                         |                                    |               |                                    |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ,:                     |                         |                                    |               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Scw                     | SIU HE WAN<br>GETREATMENT<br>WORKS | in the second |                                    |
| A State of the Sta | Proposed C<br>Monitoring | Odour Patrol<br>Sistion |                                    |               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                         | <u> </u>                           |               | access and to Discovery Say Yusand |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                         |                                    | 7 7/1         |                                    |


| Odour Patrol Mo                                                                                                                                            | nitoring Date:\                                             | 14/2019               | 17:               | Weather:                    | Cloudy                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|-------------------|-----------------------------|-------------------------|
| Location:                                                                                                                                                  | ASR - Cheung Tun                                            | g Road near th        | ne Bus Depot at t | the west of tre             | eatment plant           |
| Temperature:                                                                                                                                               | 21.8°C                                                      | Start Time:           | [0:03             | End Time:                   | 10-18                   |
| Wind Speed:                                                                                                                                                | 2.1                                                         | 4m/s                  | Wind Direction:   |                             | E                       |
| Nature of Odour:                                                                                                                                           | V                                                           | eg etitions           |                   |                             |                         |
| *Odour Intensity:<br>(tick as appropriate)                                                                                                                 | ☐ Not detected                                              | <sup>'</sup> ⊠ Slight | ☐ Noticeable      | ☐ Strong                    | □ Extreme               |
| *Classification                                                                                                                                            | Criteria:                                                   |                       |                   |                             |                         |
| de                                                                                                                                                         | No odour perceived c<br>escribed.<br>dentifiable odour, bar |                       | weak that it can  | not be readily              | / characterised or      |
|                                                                                                                                                            | : Identifiable odour, noticeable                            |                       |                   |                             |                         |
|                                                                                                                                                            | dentifiable odour, stro                                     | ong                   |                   |                             |                         |
| Extreme : S                                                                                                                                                | Severe odour                                                |                       |                   |                             |                         |
| Recorded b<br>Nam<br>Dat                                                                                                                                   | e: WAN ICAH<br>e: 1914/2019                                 | S C                   |                   | cked by:<br>Name:(<br>Date: | Mor Com Ho<br>19-4-2018 |
| The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company. |                                                             |                       |                   |                             |                         |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



## Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Monitoring Report



| Ododi i diloi Mo                           | intorning Dato.  | 1 12 00     | -                | vveatherc       | 100-00        |
|--------------------------------------------|------------------|-------------|------------------|-----------------|---------------|
|                                            | 700- YOU         |             |                  |                 | 87 X          |
| Location:                                  | ASR – Cheung Tun | g Road near | the Bus Depot at | the west of tre | eatment plant |
| Temperature:                               | 23.5°C           | Start Time: |                  | End Time:       |               |
| Wind Speed:                                | 2.tm             | 1/5         | Wind Direction:  | 2 E             |               |
| Nature of Odour:                           | gasoline         | ,           |                  |                 |               |
| *Odour Intensity:<br>(tick as appropriate) | ☐ Not detected   | ☐ Slight    | ☐ Noticeable     | ☐ Strong        | ☐ Extreme     |
| +Olifi4i                                   | Oultanias        | *           |                  |                 |               |

\*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be readily characterised or

described.

Slight : Identifiable odour, barely noticeable

Noticeable : Identifiable odour, noticeable Strong : Identifiable odour, strong

Extreme : Severe odour

Recorded by:
Name:
Date: V5/4/2014

Checked by:

Name: 1/20 Kam Ho Date: 25 - 4-20/8

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.



CLIENT:

ALS Technichem (HK) Ptv Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u> +852 2610 1044 <u>F</u> +852 2610 2021

**CERTIFICATE OF ANALYSIS** Furgo Technical Services WORK ORDER: HK1824767

Limited

CONTACT: Cyrus Lai

Room 723 & 725, 7/F, Block ADDRESS:

B, Profit Industrial Building

1-15 Kwai Fung Crescent,

Kwai Chung Hong Kong

PROJECT: Odour Survey for Siu Ho Wan

Sewage Treatment Plant

SITE: Siu Ho Wan

PO:

LABORATORY:

SUB-BATCH:

DATE RECEIVED:

4 April 2018 30 April 2018

Hong Kong

DATE OF ISSUE:

SAMPLE TYPE:

Air

NO. OF SAMPLES: 1

#### **COMMENTS**

Air sample(s) were collected by ALS Technichem (HK) staff on 4th April, 2018 at Siu Ho Wan.

The sample(s) were analysed and reported on an as received basis.

#### **NOTES**

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

General Manage Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Right Solutions • Right Partner www.alsglobal.com





#### METHOD STATEMENT A. Odour Concentration

#### 1. Odour Sampling

Odour gas sample was collected by passive sampling technique. A Nalophan<sup>TM</sup> sampling bag was placed inside an air-tight sampler and then drawn to vacuum. Approximately 60 litre of gas sample was collected into the sampling bag for testing.

The sample was collected at the ASR of the Siu Ho Wan and shown in Appendix 1.

#### 2. Olfactometry Testing

Odour concentration was determined by a Forced-choice Dynamic Olfactometer in accordance with the European Standard Method (EN13725).

This European Standard specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors and the emission rate of odours emanating from point sources, area sources with outward flow and area sources without outward flow.

This European Standard is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor.

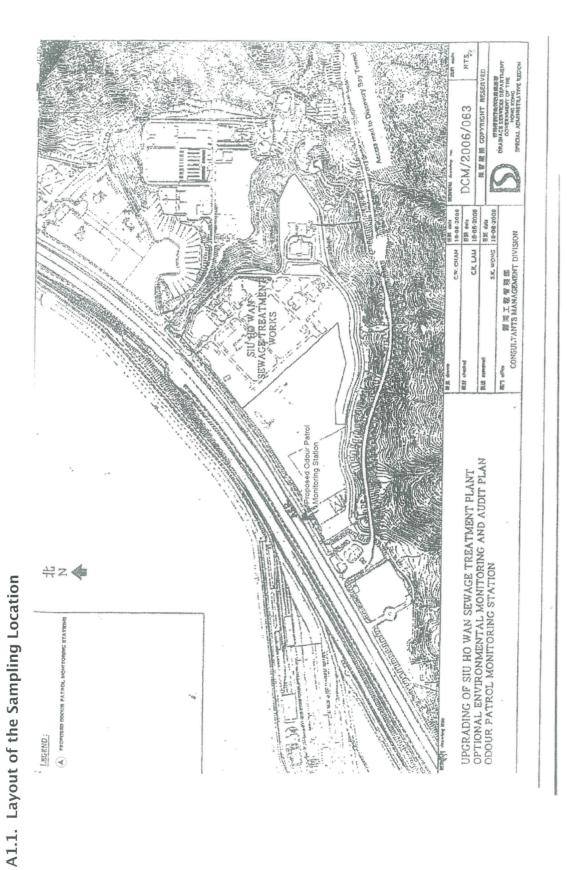
The unit of measurement is the odour unit per cubic metre:  $OU_E/m^3$ . The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition  $1 OU_E/m^3$ . The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from  $10^1 OU_E/m^3$  to  $10^7 OU_E/m^3$ .

Olfactometry Testing was performed by using the ScentroidTM SS6000 Olfactometer. The testing was performed by at least five qualified panellists who have been selected through an n-butanol screening test.

All testing finished within 24 hours after sample receipt.



## 1. Odour Concentration RESULT


| Wind                                            | East             |
|-------------------------------------------------|------------------|
| Wind<br>Speed<br>(m/s)                          | 1.4              |
| Relative<br>Humidity<br>(%)                     | 89               |
| Ambient<br>Temperature<br>(°C)                  | 26               |
| Odour<br>Concentration<br>(OU <sub>E</sub> /m³) | 19               |
| LOR<br>(OU <sub>E</sub> /m³)                    | 5                |
| Sampling<br>Time                                | 10:30            |
| Sampling Date                                   | 4 April 2018     |
| Sample<br>Type                                  | Air              |
| Location                                        | Siu Ho Wan - ASR |
| ALS Sample ID                                   | HK1824767-A001   |

### Remark:

LOR denotes limit of reporting.
 The Ambient temperature, relative humidity, wind speed and wind direction were measured and provided by the client.
 The collected sample volume of the gas sample is sufficient for olfactometry analysis.



## APPENDIX 1





ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u> +852 2610 1044 <u>F</u> +852 2610 2021

**CERTIFICATE OF ANALYSIS** 

CLIENT:

Furgo Technical Services

WORK ORDER:

HK1824768

Limited

CONTACT:

Cyrus Lai

Room 723 & 725, 7/F, Block

LABORATORY:

Hong Kong

ADDRESS:

B, Profit Industrial Building

SUB-BATCH:

1-15 Kwai Fung Crescent,

9 April 2018

Kwai Chung

DATE RECEIVED: DATE OF ISSUE:

30 April 2018

Hong Kong Odour Survey for Siu Ho Wan

SAMPLE TYPE:

Air

PROJECT:

Sewage Treatment Plant

SITE:

Siu Ho Wan

NO. OF SAMPLES:

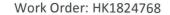
1

PO:

#### **COMMENTS**

Air sample(s) were collected by ALS Technichem (HK) staff on 9th April, 2018 at Siu Ho Wan.

The sample(s) were analysed and reported on an as received basis.


#### **NOTES**

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

General Manag

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.





#### **METHOD STATEMENT**

A. Odour Concentration

1. Odour Sampling

Odour gas sample was collected by passive sampling technique. A Nalophan<sup> $\mathrm{IM}$ </sup> sampling bag was placed inside an air-tight sampler and then drawn to vacuum. Approximately 60 litre of gas sample was collected into the sampling bag for testing.

The sample was collected at the ASR of the Siu Ho Wan and shown in Appendix 1.

#### 2. Olfactometry Testing

Odour concentration was determined by a Forced-choice Dynamic Olfactometer in accordance with the European Standard Method (EN13725).

This European Standard specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors and the emission rate of odours emanating from point sources, area sources with outward flow and area sources without outward flow.

This European Standard is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor.

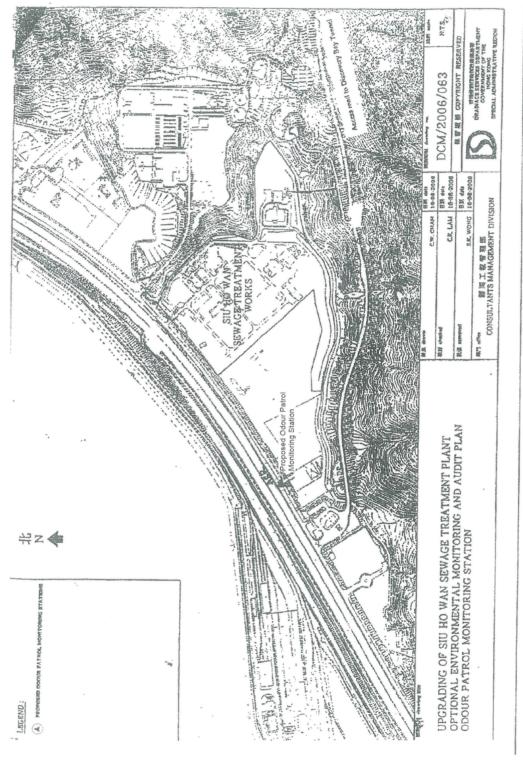
The unit of measurement is the odour unit per cubic metre:  $OU_E/m^3$ . The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition  $1 OU_E/m^3$ . The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from  $10^1 OU_E/m^3$  to  $10^7 OU_E/m^3$ .

Olfactometry Testing was performed by using the ScentroidTM SS6000 Olfactometer. The testing was performed by at least five qualified panellists who have been selected through an n-butanol screening test.

All testing finished within 24 hours after sample receipt.



## 1. Odour Concentration


| Wind                                            | East             |
|-------------------------------------------------|------------------|
| Wind<br>Speed<br>(m/s)                          | 1.1              |
| Relative<br>Humidity<br>(%)                     | 65               |
| Ambient<br>Temperature<br>(°C)                  | 25               |
| Odour<br>Concentration<br>(OU <sub>E</sub> /m³) | 17               |
| LOR<br>(OU <sub>E</sub> /m³)                    | 5                |
| Sampling<br>Time                                | 10:03            |
| Sampling Date                                   | 9 April 2018     |
| Sample<br>Type                                  | Air              |
| Location                                        | Siu Ho Wan - ASR |
| ALS Sample ID                                   | HK1824768-A001   |

Remark: 1. *LOR denotes limit of reporting.* 2. The Ambient temperature, relative humidity, wind speed and wind direction were measured and provided by the client. 3. The collected sample volume of the gas sample is sufficient for olfactometry analysis.



## APPENDIX 1

# A1.1. Layout of the Sampling Location



Page 4 of 4



ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u> +852 2610 1044 <u>F</u> +852 2610 2021

CERTIFICATE OF ANALYSIS

CLIENT:

Furgo Technical Services

WORK ORDER:

LABORATORY:

DATE RECEIVED:

DATE OF ISSUE:

SUB-BATCH:

HK1826778

Hong Kong

18 April 2018

30 April 2018

Limited

CONTACT:

Cvrus Lai

ADDRESS:

Room 723 & 725, 7/F, Block

B, Profit Industrial Building

1-15 Kwai Fung Crescent,

Kwai Chung Hong Kong

Odour Survey for Siu Ho Wan

Sewage Treatment Plant

SITE: PO:

Siu Ho Wan

SAMPLE TYPE:

Air

PROJECT:

NO. OF SAMPLES:

1

**COMMENTS** 

Air sample(s) were collected by ALS Technichem (HK) staff on 18th April, 2018 at Siu Ho Wan.

The sample(s) were analysed and reported on an as received basis.

#### **NOTES**

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

General Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.





#### **METHOD STATEMENT**

A. Odour Concentration

1. Odour Sampling

Odour gas sample was collected by passive sampling technique. A Nalophan™ sampling bag was placed inside an air-tight sampler and then drawn to vacuum. Approximately 60 litre of gas sample was collected into the sampling bag for testing.

The sample was collected at the ASR of the Siu Ho Wan and shown in Appendix 1.

#### 2. Olfactometry Testing

Odour concentration was determined by a Forced-choice Dynamic Olfactometer in accordance with the European Standard Method (EN13725).

This European Standard specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors and the emission rate of odours emanating from point sources, area sources with outward flow and area sources without outward flow.

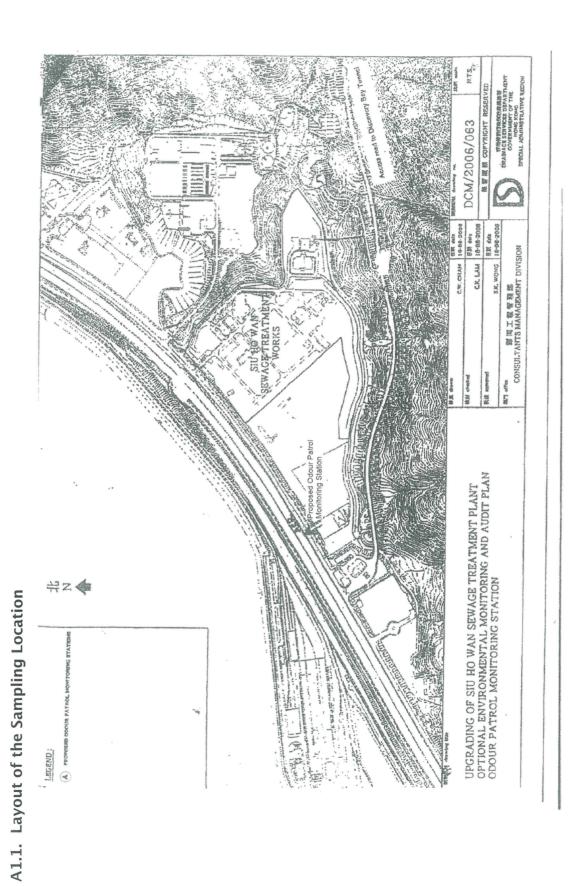
This European Standard is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor.

The unit of measurement is the odour unit per cubic metre:  $OU_E/m^3$ . The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition 1  $OU_E/m^3$ . The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from  $10^1 OU_E/m^3$  to  $10^7 OU_E/m^3$ .

Olfactometry Testing was performed by using the ScentroidTM SS6000 Olfactometer. The testing was performed by at least five qualified panellists who have been selected through an n-butanol screening test.

All testing finished within 24 hours after sample receipt.




## 1. Odour Concentration RESULT

| Wind                                            | East             |
|-------------------------------------------------|------------------|
| Wind<br>Speed<br>(m/s)                          | 2.4              |
| Relative<br>Humidity<br>(%)                     | 81               |
| Ambient<br>Temperature<br>(°C)                  | 21.8             |
| Odour<br>Concentration<br>(OU <sub>E</sub> /m³) | 19               |
| LOR<br>(OU <sub>E</sub> /m³)                    | 5                |
| Sampling<br>Time                                | 10:03            |
| Sampling Date                                   | 18 April 2018    |
| Sample<br>Type                                  | Air              |
| Location                                        | Siu Ho Wan - ASR |
| ALS Sample ID                                   | HK1826778-A001   |

Remark: 1. *LOR denotes limit of reporting.* 2. The Ambient temperature, relative humidity, wind speed and wind direction were measured and provided by the client. 3. The collected sample volume of the gas sample is sufficient for olfactometry analysis.



## APPENDIX 1





ALS Technichem (HK) Ptv Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong

 $\underline{\mathbf{T}} + 852\ 2610\ 1044\ \underline{\mathbf{F}} + 852\ 2610\ 2021$ 

**CERTIFICATE OF ANALYSIS** 

CLIENT:

Furgo Technical Services

WORK ORDER:

HK1826779

Limited

CONTACT: ADDRESS:

Cyrus Lai

Room 723 & 725, 7/F, Block

LABORATORY:

Hong Kong

B, Profit Industrial Building

SUB-BATCH:

1-15 Kwai Fung Crescent,

DATE RECEIVED:

25 April 2018 30 April 2018

Kwai Chung

Hong Kong

SAMPLE TYPE:

DATE OF ISSUE:

Air

PROJECT:

Odour Survey for Siu Ho Wan Sewage Treatment Plant

1

SITE: PO:

Siu Ho Wan

NO. OF SAMPLES:

**COMMENTS** 

Air sample(s) were collected by ALS Technichem (HK) staff on 25th April, 2018 at Siu Ho Wan.

The sample(s) were analysed and reported on an as received basis.

#### **NOTES**

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

General Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.





#### METHOD STATEMENT

A. Odour Concentration

1. Odour Sampling

Odour gas sample was collected by passive sampling technique. A Nalophan™ sampling bag was placed inside an air-tight sampler and then drawn to vacuum. Approximately 60 litre of gas sample was collected into the sampling bag for testing.

The sample was collected at the ASR of the Siu Ho Wan and shown in Appendix 1.

#### 2. Olfactometry Testing

Odour concentration was determined by a Forced-choice Dynamic Olfactometer in accordance with the European Standard Method (EN13725).

This European Standard specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors and the emission rate of odours emanating from point sources, area sources with outward flow and area sources without outward flow.

This European Standard is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor.

The unit of measurement is the odour unit per cubic metre:  $OU_E/m^3$ . The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition  $1 OU_E/m^3$ . The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from  $10^1 OU_E/m^3$  to  $10^7 OU_E/m^3$ .

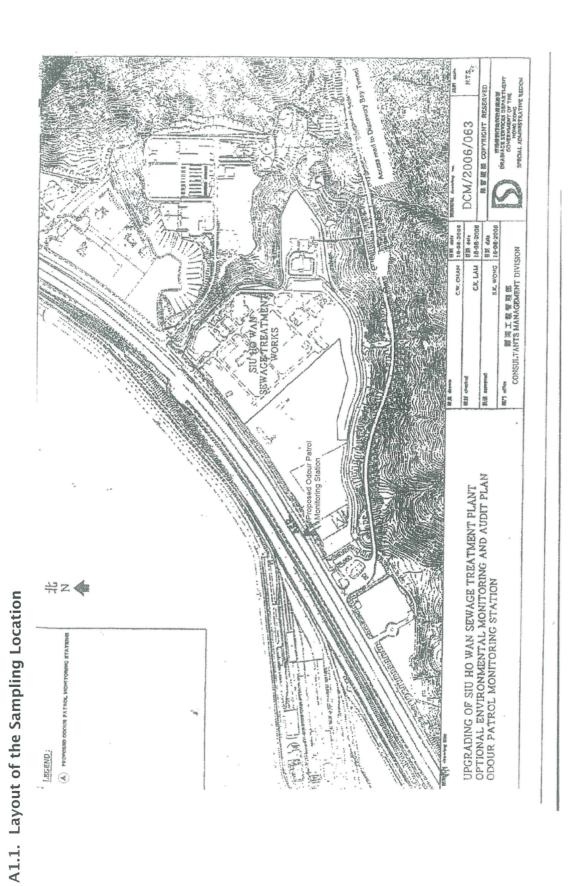
Olfactometry Testing was performed by using the ScentroidTM SS6000 Olfactometer. The testing was performed by at least five qualified panellists who have been selected through an n-butanol screening test.

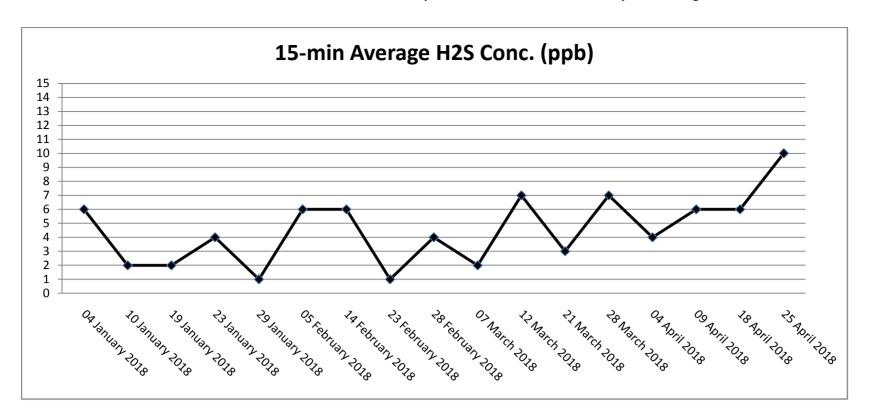
All testing finished within 24 hours after sample receipt.

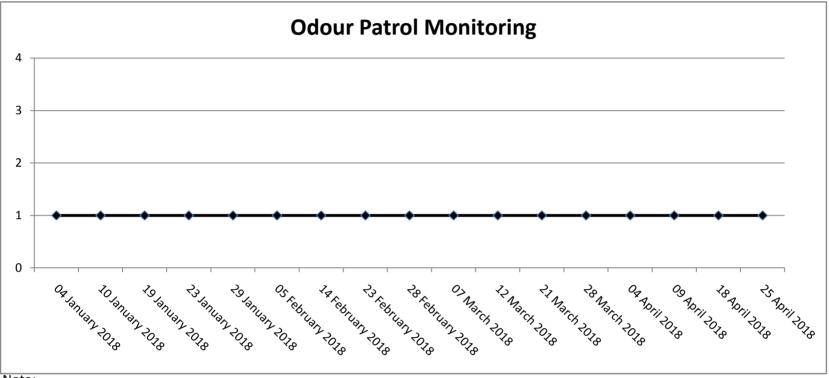


# 1. Odour Concentration

| Wind                                            | South East       |
|-------------------------------------------------|------------------|
| Wind<br>Speed<br>(m/s)                          | 2.6              |
| Relative<br>Humidity<br>(%)                     | 77               |
| Ambient<br>Temperature<br>(°C)                  | 23.5             |
| Odour<br>Concentration<br>(OU <sub>E</sub> /m³) | 15               |
| LOR<br>(OU <sub>E</sub> /m³)                    | 5                |
| Sampling<br>Time                                | 10:01            |
| Sampling Date                                   | 25 April 2018    |
| Sample<br>Type                                  | Air              |
| Location                                        | Siu Ho Wan - ASR |
| ALS Sample ID                                   | HK1826779-A001   |

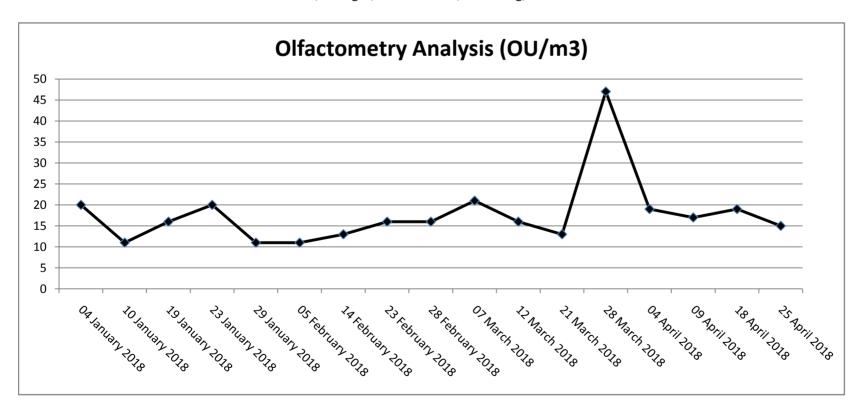

## Remark:


LOR denotes limit of reporting.
 The Ambient temperature, relative humidity, wind speed and wind direction were measured and provided by the client.
 The collected sample volume of the gas sample is sufficient for olfactometry analysis.


Page 4 of 4



# APPENDIX 1








Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix F

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA180326(3)



Page 1 of 3

#### Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

#### Information Supplied by Client

Client

Fugro Technical Services Limited

Client's address

Rm. 23, 25, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description

One Aqua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 536385

Test required

Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

**Laboratory Information** 

Lab. sample ID

WA180326/4

Date of calibration

26/02/2018

Next calibration date

25/05/2018

Test method used

In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 142626WA180326(3)

Page 2 of 3

#### Results:

#### A. pH calibration

| pH reading at 18°C for Q.C. solution(6.86) and at 18°C for Q.C. solution(9.18) |          |           |
|--------------------------------------------------------------------------------|----------|-----------|
| Theoretical                                                                    | Measured | Deviation |
| 9.18                                                                           | 9.17     | -0.01     |
| 6.86                                                                           | 6.87     | +0.01     |

#### **B.** Salinity calibration

|             | Salinity, ppt |           |                                 |  |
|-------------|---------------|-----------|---------------------------------|--|
| Theoretical | Measured      | Deviation | Maximum acceptable<br>Deviation |  |
| 10          | 10.09         | +0.09     | ± 0.5                           |  |
| 20          | 20.04         | +0.04     | ± 1.0                           |  |
| 30          | 29.90         | -0.10     | ± 1.5                           |  |
| 40          | 39.85         | -0.15     | ± 2.0                           |  |

#### C. Dissolved Oxygen calibration

| Trial NIa | Dissolved oxygen         | Dissolved oxygen content, mg/L |  |  |
|-----------|--------------------------|--------------------------------|--|--|
| Trial No. | By calibrated D.O. meter | By D.O. meter                  |  |  |
| 1         | 8.55                     | 8.54                           |  |  |
| 2         | 8.60                     | 8.59                           |  |  |
| 3         | 8.60                     | 8.58                           |  |  |
| Average   | 8.58                     | 8.57                           |  |  |

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by :

Approved Signatory : HO Kin Man, John Manager – Chemistry Department

Date

21/3/2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 142626WA180326(3)

Page 3 of 3

#### Results:

#### D. Temperature calibration

| Thermometer reading, °C | Meter reading, °C |
|-------------------------|-------------------|
| 17.40                   | 17.54             |

#### E. Turbidity calibration

|             | Turbidity, N.T.U. |           |                                 |  |
|-------------|-------------------|-----------|---------------------------------|--|
| Theoretical | Measured          | Deviation | Maximum acceptable<br>Deviation |  |
| 4           | 4.05              | +0.05     | ± 0.4                           |  |
| 8           | 8.09              | +0.09     | ± 0.6                           |  |
| 40          | 40.60             | +0.60     | ± 3.0                           |  |
| 80          | 81.67             | +1.67     | ± 4.0                           |  |

Certified by :

Approved Signatory : HO Kin Man, John Manager – Chemistry Department

2018

Date

\*\* End of Report \*\*

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA180549(7)



Page 1 of 3

#### Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

#### Information Supplied by Client

Client

Fugro Technical Services Limited

Client's address

Rm. 23, 25, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description

One Agua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 525253

Test required

Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

**Laboratory Information** 

Lab. sample ID

WA180549/8

Date of calibration

19/03/2018

Next calibration date

18/06/2018

Test method used

In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA180549(7)

Page 2 of 3

#### Results:

#### A. pH calibration

| pH reading at 25°C fe | or Q.C. solution(6.86) and at 25 | 5°C for Q.C. solution(9.18) |
|-----------------------|----------------------------------|-----------------------------|
| Theoretical           | Measured                         | Deviation                   |
| 9.18                  | 9.20                             | +0.02                       |
| 6.86                  | 6.87                             | +0.01                       |

#### **B.** Salinity calibration

|             | Salinity, ppt |           |                                 |  |
|-------------|---------------|-----------|---------------------------------|--|
| Theoretical | Measured      | Deviation | Maximum acceptable<br>Deviation |  |
| 10          | 10.08         | +0.08     | ± 0.5                           |  |
| 20          | 20.14         | +0.14     | ± 1.0                           |  |
| 30          | 30.17         | +0.17     | ± 1.5                           |  |
| 40          | 40.28         | +0.28     | ± 2.0                           |  |

#### C. Dissolved Oxygen calibration

|           | Dissolved oxygen         | Dissolved oxygen content, mg/L |  |  |
|-----------|--------------------------|--------------------------------|--|--|
| Trial No. | By calibrated D.O. meter | By D.O. meter                  |  |  |
| 1         | 8.14                     | 8.15                           |  |  |
| 2         | 8.10                     | 8.13                           |  |  |
| 3         | 8.11                     | 8.12                           |  |  |
| Average   | 8.12                     | 8.13                           |  |  |

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by:

Approved Signatory: HO Kin Man, John Manager - Chemistry Department

Date

12/4/2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA180549(7)

Page 3 of 3

#### Results:

#### D. Temperature calibration

| Thermometer reading, °C | Meter reading, °C |
|-------------------------|-------------------|
| 24.80                   | 24.66             |

#### E. Turbidity calibration

|             | Turbidity, N.T.U. |           |                                 |  |
|-------------|-------------------|-----------|---------------------------------|--|
| Theoretical | Measured          | Deviation | Maximum acceptable<br>Deviation |  |
| 4           | 4.07              | +0.07     | ± 0.4                           |  |
| 8           | 8.10              | +0.10     | ± 0.6                           |  |
| 40          | 40.01             | +0.01     | ± 3.0                           |  |
| 80          | 81.62             | +1.62     | ± 4.0                           |  |

Certified by :

Approved Signatory: HO Kin Man, John Manager - Chemistry Department

Date

\*\* End of Report \*\*



9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

#### Certificate of Calibration

#### **TEST REPORT**

| TEST REFORT              |            |             |
|--------------------------|------------|-------------|
| Serial Number            | 5906       |             |
| System Type              | M9         | <del></del> |
| System Orientation       | Down       |             |
| Compass Type             | Sontek     |             |
| Compass Offset (degrees) | N/A        |             |
| Communications Output    | RS232      |             |
| Recorder Size (GB)       | 14.9       |             |
| Firmware Version         | 4.02       |             |
| Date Tested              | 05/23/2017 |             |

#### **POWER TEST**

| Command Mode (W):    | 0.17 | Range: 0.00 - 0.30 |  |
|----------------------|------|--------------------|--|
| Sleep Mode (W):      | N/A  | Range: N/A         |  |
| Ping Mode - 18V (W): | 2.67 | Range: 1.50 – 3.50 |  |
| Power Check          |      | PASS               |  |

#### **NOISE TEST**

| Beam 1 – 3.0 MHz (counts)       | 95   |
|---------------------------------|------|
| Beam 2 – 1.0 MHz (counts)       | 96   |
| Beam 3 – 3.0 MHz (counts)       | 95   |
| Beam 4 – 1.0 MHz (counts)       | 101  |
| Beam 5 – 3.0 MHz (counts)       | 93   |
| Beam 6 – 1.0 MHz (counts)       | 95   |
| Beam 7 – 3.0 MHz (counts)       | 91   |
| Beam 8 – 1.0 MHz (counts)       | 100  |
| Beam Vertical – 500KHz (counts) | 88   |
| Noise Test                      | PASS |

#### **VERIFICATION**

| Velocity Check          | PASS |
|-------------------------|------|
| Transmit Output         | PASS |
| Sensitivity             | PASS |
| Temperature Sensor      | PASS |
| Compass Heading Check   | PASS |
| Compass Level Check     | PASS |
| Burn-in (24 hrs)        | PASS |
| Load Default Parameters | DONE |

#### **OPTIONS**

| Bottom Track            | Installed |  |
|-------------------------|-----------|--|
| SmartPulse HD TM        | Enabled   |  |
| Stationary              | Disabled  |  |
| GPS Compass Integration | Disabled  |  |
| RiverSurveyor           | Enabled   |  |
| HydroSurveyor           | Disabled  |  |

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

#### Appendix G

Results and Graphical Presentation of Water Quality Monitoring

| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |           |         |         |        |       |       |     |      |           |      |       | ı     | n-situ Meas | uremer | nt  |       |                   |                     |          |          | Laborato | y Analysis            | S    |                                           |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|---------|---------|--------|-------|-------|-----|------|-----------|------|-------|-------|-------------|--------|-----|-------|-------------------|---------------------|----------|----------|----------|-----------------------|------|-------------------------------------------|----------------------------|
| A 124/2018 Mol-Elb Cloudy. Smooth. 10:15. 17 S. 1. 1. 1. 8.79 8.2 8. 22.54 90.9 6.51 2. 10. 20.4 10.52 2. 10. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10.52 2. 10. 20.4 10. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Date      |         | Weather |        | Time  | Depth |     |      | Replicate | рН   |       |       | Saturation  | -      |     | Speed | Direction (degree | Suspended<br>Solids | Nitrogen | Nitrogen | Nitrogen | Inorganic<br>Nitrogen |      | phosphorus<br>(solube and<br>particulate) | BOD <sub>5</sub><br>(mg/L) |
| A 12/4/2018 Mid-Bb Cloudy Smooth 10:15 17 B 18 2.8 10 30:44 2307 97.8 7/3 2.1 0.24 104.9 3.5 0.075 0.734 0.515 17 0.034 0.515 17 0.034 0.115 17 B 8 8.6 32.8 62.254 0.007 0.61 2.3 0.12 107.2 40 0.009 0.018 0.2525 0.358 2.10 0.033 4.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| A 12/4/2018 Mide Bu Cloudy Smooth 10:15 17 M 8.6 1 8.00 32.66 22.54 90.9 8.61 23 0.12 1072 4.0 0.004 0.018 0.285 0.388 21.0 0.03 *c1.0 A 12/4/2018 Mide Bu Cloudy Smooth 10:15 17 B 8.6 1 7.0 10.3 12.25 12.55 10.0 10.0 12.13 13.0 4.6 0.072 0.011 0.030 1.0 10.0 10.0 10.0 10.0 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| A 12/4/2018 Mel-Ph. Clourk. Smooth 10:16 17 B 6 16 1 810 33:77 22:58 90.8 6.48 2.4 0.12 113.9 4.8 0.097 0.066 0.290 0.403 19.0 0.03 4:10 8 12/4/2018 Mel-Ph. Clourk. Smooth 10:40 14 S 1 1.8 10.3 3:77 22:56 90.8 1.0 1.0 16 20.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     | 11   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| A 12/4/2018 Miel-Bb (Boult Smooth 10:15 17 B 16 1 8:10 30:27 22:50 90:4 6:45 2.4 0.16 22:6 4.5 0.084 0.016 0.027 0.307 22:0 0.003 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| A 124/2018 Mid-Ehn Cloudy. Smooth 10:15 17 B 16 2 B 10 33:31 22:50 S0.4 6.46 2.3 0.18 224 B 4:5 0.088 0.016 0.257 0.357 29.0 0.03 <10 ct   column   |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| R   12/4/2018   Mid-Ehn   Clourty   Smooth   10/40   4   8   1   1   8   13   31.48   23.16   89.7   7.12   1.8   0.08   14.08   3.9   0.022   0.025   0.025   0.042   7.6   0.04   1.8   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2    |   |           |         |         |        |       |       | B   |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| R 124/2018 Mist-Ehn Cloudy Smooth 10:40 14 M 7 7 1 8.11 33.15 22.88 89.7 707 18. 0.10 136.6 3.6 0.101 0.027 0.425 0.555 5.0 0.03 4:10 8.124/2018 Mist-Ehn Cloudy Smooth 10:40 14 M 7 7 1 8.11 33.15 22.88 89.2 6.70 2.1 0.19 19:56 3.5 0.128 0.017 0.227 0.402 76.0 0.04 4:10 8.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.10 19. 0.1 |   |           |         |         |        |       |       | 9   |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| R   124/2018   Mid-Fbb   Clouck   Smooth   10-00   14   M   7   1   811   33.15   22.88   94.2   6.70   2.1   0.19   195.6   3.5   0.128   0.017   0.257   0.402   76.0   0.04   s1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0      |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          | 0.553                 |      |                                           |                            |
| R   124/2018   Mid-Ebb   Clouck   Smooth   10-40   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       | M   | 7    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| B   124/2018   Mid-Ebb   Cloudy   Smooth   1040   14   B   13   2   8.11   33.52   22.48   91.0   6.48   3.5   0.07   206.4   4.2   0.086   0.025   0.427   0.538   6.0   0.03   1.1   C   124/2018   Mid-Ebb   Cloudy   Smooth   11/07   12   S   1   1   8.70   0.077   2.21   0.11   2.64   4.3   0.040   0.041   0.583   0.666   6.0   0.03   1.1   C   124/2018   Mid-Ebb   Cloudy   Smooth   11/07   12   S   1   2   8.21   2.999   2.347   113.0   8.05   1.8   0.14   2.934   4.1   0.046   0.046   0.055   0.555   0.658   0.555   0.658   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055   0.055     | В | 12/4/2018 | Mid-Ebb | Cloudy  | Smooth | 10:40 | 14    | М   |      | 2         | 8.12 |       |       |             | 6.70   |     |       | 201.6             | 4.2                 |          |          |          |                       | 69.0 | 0.03                                      |                            |
| C 124/2018 Mid-Ebb Clourt Smooth 11:07 12 S 1 1 8.01 8.07 8.07 23.62 1195.6 7.92 21 0.13 245.4 3.6 0.040 0.041 0.583 0.664 1.0 0.03 13. C 124/2018 Mid-Ebb Clourt Smooth 11:07 12 M 6 1 8.12 32.12 22.73 95.1 6.78 12.0 0.36 22.2 9 4.8 0.066 0.035 0.555 0.636 1.0 0.03 13. C 124/2018 Mid-Ebb Clourt Smooth 11:07 12 M 6 1 8.12 32.12 22.73 95.1 6.78 12.0 0.36 22.2 9 4.8 0.066 0.035 0.555 0.636 1.0 0.03 13. C 124/2018 Mid-Ebb Clourt Smooth 11:07 12 M 6 2 1 8.12 32.12 22.73 95.1 6.78 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0.03 12.0 0. |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 S 1 2 8:11 28:99 23:67 11:30 8:05 1.8 0.14 239:4 4.1 0.046 0.040 0.584 0.670 c.1 0.03 1.3 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 M 6 1 8:12 32:12 22.73 95:1 6.78 20:0 3.86 22:9 4.8 0.066 0.035 0.535 0.638 1.0 0.03 1.3 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 M 6 2 8:12 32:12 22.72 94:6 6.77 2.0 0.34 20:49 3.5 0.0687 0.038 0.634 2.0 0.03 1.3 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 1 2 8:10 32.76 22:56 91:0 6.54 1.9 0.37 24.47 3.0 0.081 10.030 0.433 0.544 2.0 0.03 1.1 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2 8:10 32.75 22:56 91:0 6.54 1.9 0.37 24.47 3.0 0.081 10.030 0.433 0.544 2.0 0.03 1.1 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2 8:10 32.76 22:56 91:0 6.54 1.9 0.37 24.7 3.0 0.081 10.030 0.433 0.544 3.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2 8:10 32.76 22:56 91:4 6.52 1.9 0.36 2371 4.2 0.078 0.027 0.439 0.544 3.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 1.4 1.2 8.10 13.76 22:56 95:6 1.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |           |         |         |        |       |       |     | 13   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 M 6 1 8.12 32:12 22.73 95.1 6.78 2.0 0.36 222.9 4.8 0.066 0.035 0.635 0.636 1.0 0.03 1.3 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 M 6 2 8.12 32:12 22.73 95.1 6.78 2.0 0.34 2.0 0.34 0.35 0.687 0.067 0.036 0.633 0.634 0.0 0.03 1.0 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 M 11 1 8.10 3.74 2.256 91.4 6.52 1.9 0.36 23.71 4.2 0.078 0.027 0.433 0.544 2.0 0.03 1.0 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2 8.10 32.75 22.56 91.4 6.52 1.9 0.36 23.71 4.2 0.078 0.027 0.433 0.544 2.0 0.03 1.0 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 2 8.10 32.75 22.56 91.4 6.52 1.9 0.36 23.71 4.2 0.078 0.027 0.433 0.544 2.0 0.03 1.0 C 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 2 8.10 32.75 22.56 91.4 6.52 1.9 0.36 23.71 4.2 0.078 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| C. 12/4/2018 Mid-Ebb. Cloudy. Smooth 11:07, 12 M 6, 2 812 32:12 22:72 94.6 8.77, 2.0 0.34 204.9 3.5 0.667, 0.038 0.539 0.644 2.0 0.03 1.1 C. 12/4/2018 Mid-Ebb. Cloudy. Smooth 11:07, 12 B 11 2.8:10 32:75 22:56 91.4 6.52 1.9 0.36 237.1 4.2 0.078 0.027 0.439 0.544 3.0 0.03 1.1 C. 12/4/2018 Mid-Ebb. Cloudy. Smooth 11:07, 12 B 11 2.8:10 32:75 22:56 91.4 6.52 1.9 0.36 237.1 4.2 0.078 0.027 0.439 0.544 3.0 0.03 1.1 C. 12/4/2018 Mid-Ebb. Cloudy. Smooth 11:20 13 S 1.0 S 1. |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          | 0.584    |                       |      |                                           |                            |
| C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 1 8.10 3274 22.56 91.0 6.54 19 0.37 2447 3.0 0.081 0.030 0.433 0.544 2.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2.810 32.74 22.56 91.4 6.52 1.9 0.36 237.1 4.2 0.078 0.027 0.439 0.544 3.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 1 8.21 29.72 23.66 112.3 R.02 1.5 0.22 131.8 3.5 0.052 0.037 0.576 0.664 2.1 0.05 1.5 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1.811 32.26 22.68 96.6 6.81 2.1 0.23 164.6 3.1 0.049 0.049 0.577 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1.811 32.26 22.68 96.6 6.81 2.1 0.23 164.6 3.1 0.049 0.049 0.577 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2.811 32.18 22.70 94.0 6.71 1.9 0.22 188.2 4.9 0.040 0.044 0.559 0.666 1.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1.811 32.6 22.6 8 96.6 6.81 2.1 0.23 164.6 3.1 0.049 0.049 0.577 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2.811 32.18 22.70 94.0 6.71 1.9 0.22 188.2 4.9 0.040 0.044 0.559 0.666 1.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2.811 32.10 22.6 8 96.6 6.81 2.1 0.23 164.6 3.1 0.049 0.049 0.577 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2.811 32.10 2.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.81 2.2 0.2 1.82 2.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 0.2 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0                           |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          | 0.535    |                       |      |                                           |                            |
| C 12/4/2018 Mid-Ebb Cloudy Smooth 11:07 12 B 11 2 8:10 32.75 22.56 91.4 6.52 1.9 0.36 237.1 4.2 0.078 0.037 0.576 0.033 0.544 3.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 1 8.21 92.72 23.66 11:23 8.02 1.5 0.22 1318.3 5. 0.052 0.037 0.576 6.664 1 0.05 1.5 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1 8.11 32.6 22.68 8.6 8.6 8.1 2.1 0.23 164.6 3.1 0.049 0.040 0.057 0.003 1.5 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1 8.11 32.6 22.68 8.6 8.6 8.1 2.1 0.23 164.6 3.1 0.049 0.040 0.040 0.577 0.003 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2 8.11 32.18 22.70 94.0 6.71 1.9 0.22 158.2 4.9 0.040 0.044 0.590 0.674 4.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2 8.10 32.70 94.0 6.71 1.9 0.22 158.2 4.9 0.040 0.044 0.0590 0.674 4.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 2 8.10 32.90 22.53 90.4 6.46 2.0 0.12 205.4 6.6 0.039 0.047 0.650 0.738 2.2 0.003 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 2 8.10 32.90 22.53 90.4 6.46 2.0 0.12 205.4 6.6 0.039 0.047 0.650 0.738 0.20 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:46 17 S 1 1 8.11 30.21 22.33 10.25 7.70 1.9 0.15 1.831 3.5 6.0 0.051 0.038 0.047 0.650 0.738 0.20 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:46 17 S 1 2 8.11 30.21 22.33 10.25 7.70 1.9 0.15 1.831 5.6 0.051 0.038 0.047 0.650 0.738 0.20 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:46 17 S 1 2 8.11 30.22 22.53 90.4 6.46 2.0 0.12 205.4 6.6 0.039 0.047 0.650 0.738 0.431 0.003 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:46 17 S 1 2 8.11 30.22 22.53 90.4 6.46 2.0 0.12 205.4 6.6 0.039 0.047 0.650 0.738 0.431 0.003 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.17 22.51 0.00 6.41 2.8 0.35 22.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.17 22.51 0.00 6.41 2.8 0.35 22.0 0.003 0.047 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.     |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| D   12/4/2018   Mid-Ebb   Cloudy   Smooth   11:20   13   S   1   1   8.21   29.72   23.66   112.3   8.02   1.5   0.22   131.8   3.5   0.052   0.037   0.576   0.664   <1   0.05   1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 S 1 2 8.21 99.68 23.62 111.6 7.66 1.8 0.19 136.6 4.9 0.050 0.042 0.556 0.648 1.0 0.03 1.4 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1 8.11 32.18 22.70 94.0 6.71 1.9 0.22 158.2 4.9 0.040 0.040 0.576 0.668 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2 8.11 32.18 22.70 94.0 6.71 1.9 0.22 158.2 4.9 0.040 0.044 0.590 0.674 4.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 2 8.10 32.90 22.53 90.4 6.6 2.0 0.12 205.9 5.8 0.045 0.033 0.522 0.600 1.0 0.03 1.0 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 2 8.10 32.90 22.53 90.4 6.66 2.0 0.12 205.4 6.6 0.033 0.047 0.530 0.674 4.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 2 8.10 32.90 22.53 90.4 6.66 2.0 0.12 205.4 6.6 0.033 0.047 0.530 0.033 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 1 8.18 30.21 23.37 102.5 7.70 1.9 0.16 181.2 4.6 0.052 0.038 0.534 0.633 0.633 0.033 0.047 0.536 0.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 2 8.19 30.23 22.37 102.5 7.70 1.9 0.15 163.1 5.6 0.051 0.034 0.554 0.639 8.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.37 22.51 80.0 6.41 2.8 0.35 22.85 4.6 0.0010 0.035 0.554 0.639 8.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.37 22.51 80.0 6.41 2.8 0.35 22.85 4.6 0.0010 0.035 0.554 0.639 8.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 2 8.13 33.37 22.51 80.0 6.41 2.8 0.35 22.85 4.6 0.0010 0.035 0.554 0.659 1.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.35 17.7 2.51 0.0 0.65 0.058 0.668 3.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.35 17.7 2.7 1 0.0 0.05 0.058 0.058 0.058 0.058 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0 |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 1 8.11 32.6 22.68 95.6 6.81 2.1 0.23 164.6 3.1 0.049 0.040 0.577 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2 8.11 32.8 22.70 94.0 6.71 19 0.22 158.2 4.9 0.040 0.044 0.579 0.666 3.0 0.03 1.3 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 R 12 1 8.10 32.90 22.55 90.6 6.71 19 0.22 158.2 4.9 0.040 0.044 0.059 0.674 4.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 R 12 2 8.10 32.90 22.55 90.6 6.66 2.0 0.12 205.4 6.6 0.033 0.572 0.650 0.736 2.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:46 17 S 1 1 8.18 30.21 2.337 105.5 7.70 1.9 0.15 1631 5.6 0.055 0.738 0.653 0.653 0.633 0.047 0.655 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.738 0.045 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          | 0.037    |          |                       |      |                                           | 1.0                        |
| D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 M 6.5 2 8.11 32:18 22:70 94.0 6.71 1.9 0.22 158.2 4.9 0.040 0.044 0.590 0.674 4.0 0.04 1.1 D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 1 8.10 32:90 22:55 91.9 6.53 2.0 0.12 205.9 5.8 0.045 0.033 0.047 0.650 0.736 2.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 1 8.10 32:18 0.21 23:37 106.9 7.80 1.9 0.16 18:12 4.6 0.052 0.038 0.047 0.650 0.736 2.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 2 8.19 30:23 23:7 106.9 7.80 1.0 1.5 163.1 5.6 0.051 0.034 0.554 0.639 8.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33:17 22:51 90.0 6.41 2.8 0.35 22.9 1.4 0.0087 0.035 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.5 10.0 0.03 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33:17 22:51 90.0 6.41 2.8 0.35 22.9 1.4 0.0087 0.035 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0. |   |           |         |         |        |       |       | M   | 6.5  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| D 12/4/2018 Mid-Ebb Cloudy Smooth 11:20 13 B 12 1 8:10 32:70 22:55 90.4 6.48 2.0 0.12 205.9 5.8 0.045 0.033 0.522 0.600 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03 1.0 0.03  |   |           |         |         |        |       |       |     |      | 2         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           | 1.1                        |
| E 12/42/018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 1 8.18 30.21 23.37 102.5 7.70 1.9 0.15 163.1 5.6 0.051 0.038 0.533 0.633 0.033 0.03 1.0 0.03 1.2 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0.000 1.0 0. | D |           |         |         |        |       |       | В   |      | 1         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 S 1 2 8.19 30.23 23.37 102.5 7.70 1.9 0.15 163.1 5.6 0.051 0.034 0.554 0.639 8.0 0.03 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.17 22.51 90.0 6.41 2.8 0.35 220.1 4.0 0.087 0.035 0.535 0.657 11.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 2 8.13 33.21 22.50 89.9 6.40 2.8 0.25 228.5 4.6 0.108 0.030 0.436 0.574 9.0 0.04 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 1 8.11 33.28 22.46 89.4 6.39 2.9 0.40 2.564 4.0 0.042 0.041 0.579 0.662 3.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.30 119.4 3.4 0.084 0.040 0.589 0.689 1.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 2 8.19 3.37 106.7 7.68 1.9 0.30 119.4 3.4 0.084 0.040 0.569 0.689 1.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.40 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.6 6.40 2.8 0.47 131.3 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.6 6.40 2.8 0.47 131.3 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.6 6.40 2.8 0.47 131.3 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.6 6.40 2.8 0.47 131.3 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.6 6.40 2.8 0.47 131.3 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 13.3 2.2 2.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.056 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0. | D | 12/4/2018 | Mid-Ebb | Cloudy  | Smooth | 11:20 | 13    | В   | 12   | 2         | 8.10 | 32.90 | 22.53 | 90.4        | 6.46   | 2.0 | 0.12  | 205.4             | 6.6                 | 0.039    | 0.047    | 0.650    | 0.736                 | 2.0  | 0.03                                      | 1.5                        |
| E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 1 8.13 33.17 22.51 90.0 6.41 2.8 0.35 229.1 4.0 0.035 0.535 0.637 11.0 0.03 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 2 8.13 33.21 22.50 89.9 6.40 2.8 0.25 228.5 4.6 0.108 0.030 0.436 0.574 9.0 0.04 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 1 8.11 33.28 22.46 89.4 6.39 2.9 0.40 256.4 4.0 0.042 0.041 0.579 0.662 3.0 0.03 12 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 2 8.11 33.28 22.46 89.4 6.39 2.9 0.40 256.4 4.0 0.042 0.041 0.579 0.662 3.0 0.03 12 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.30 119.4 3.4 0.088 0.040 0.589 0.683 1.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.035 0.555 0.645 3.0 0.03 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.035 0.555 0.645 3.0 0.03 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.035 0.555 0.040 0.532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.035 0.040 0.532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.035 0.055 0.040 0.532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 1 1 1 8.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.465 0.000 0.05 0.04 1.0 E 12/4/ |   | 12/4/2018 | Mid-Ebb | Cloudy  | Smooth | 11:45 | 17    | S   | 1    |           | 8.18 | 30.21 | 23.37 | 106.9       | 7.68   | 1.9 | 0.16  | 181.2             | 4.6                 | 0.052    |          |          | 0.633                 | 6.0  | 0.03                                      |                            |
| E 124/2018 Mid-Ebb Cloudy Smooth 11:45 17 M 8.5 2 8.13 33.21 22.50 89.9 6.40 2.8 0.25 228.5 4.6 0.082 0.030 0.436 0.574 9.0 0.04 <1.0 E 124/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 1 8.11 33.28 22.46 89.4 6.39 2.9 0.40 256.4 4.0 0.042 0.041 0.579 0.662 3.0 0.03 1.0 E 124/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 2 8.11 33.28 22.46 89.4 6.39 2.9 0.35 257.7 4.0 0.038 0.040 0.589 0.663 3.0 0.03 1.5 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.66 1.9 0.30 119.4 3.4 0.084 0.040 0.569 0.693 1.0 0.03 1.5 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 2 8.19 30.23 23.37 106.5 7.70 1.9 0.31 117.5 4.0 0.071 0.039 0.564 0.674 1.0 0.03 1.5 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.569 0.663 3.0 0.03 1.5 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.035 0.555 0.645 3.0 0.03 1.0 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.035 0.555 0.645 3.0 0.03 1.0 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 13.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 13.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.040 0.532 0.627 6.0 0.05 1.1 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.040 0.532 0.627 6.0 0.05 1.1 E 124/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.040 0.056 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| E 12/4/2018 Mid-Ebh Cloudy Smooth 11:45 17 B 16 1 8.11 33.28 22.46 89.4 6.39 2.9 0.40 256.4 4.0 0.042 0.041 0.579 0.662 3.0 0.03 1.2 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:45 17 B 16 2 8.11 33.28 22.46 89.4 6.39 2.9 0.35 257.7 4.0 0.038 0.040 0.588 0.666 3.0 0.03 1.5 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.30 119.4 3.4 0.084 0.040 0.599 0.693 1.0 0.03 1.5 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.5 7.70 1.9 0.31 117.5 4.0 0.071 0.039 0.564 0.674 1.0 0.03 1.5 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 0.645 3.0 0.03 1.5 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.056 0.035 0.549 0.633 4.0 0.05 1.1 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.3 E 12/4/2018 Mid-Ebh Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.3 E 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 2.307 99.4 7.10 2.1 0.20 17.9.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.20 17.9.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.20 17.9.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.20 17.9.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 29.8 97.5 6.82 1.8 0.37 23.16 6.4 0.078 0.022 0.361 0.455 25.0 0.04 1.0 E 12/4/2018 Mid-Ebh Cloudy Smooth 12 |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:45 17 B 16 2 B.11 33.28 22.46 89.4 6.39 2.9 0.35 257.7 4.0 0.038 0.040 0.588 0.666 3.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.30 119.4 3.4 0.084 0.040 0.569 0.693 1.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 B.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 B.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 B.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 B.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 B.15 31.95 23.06 99.6 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 B.15 32.50 22.98 97.5 6.82 1.8 0.36 22.7 4 3.6 0.118 0.026 0.366 0.510 3.60 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 B.15 32.50 29.98 97.5 6.82 1.8 0.36 22.7 4 3.6 0.118 0.026 0.366 0.510 3.60 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 B.15 32.34 22.99 97.3 6.82 1.8 0.36 22.7 4 3.6 0.118 0.026 0.366 0.510 3.60 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 B.15 32.50 22.98 97.5 6.86 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.2 4.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 B.16 32.34 22.99 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 1 8.18 30.21 23.37 106.7 7.68 1.9 0.30 119.4 3.4 0.084 0.040 0.569 0.693 1.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 2 8.19 30.23 23.37 106.5 7.70 1.9 0.31 117.5 4.0 0.071 0.039 0.564 0.674 1.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 <1.2 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 8.11 33.28 22.46 91.3 6.39 2.9 0.26 13.31 4.7 0.058 0.036 0.559 0.643 4.0 0.03 <1.0 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.26 13.31 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.36 22.74 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.50 22.98 97.5 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.351 0.461 2.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.16 32.34 22.99 97.3 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.33 158.4 5.1 0.061 0.031 0.462 0.567 20.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 S 1 2 8:19 30.23 23.37 106.5 7.70 1.9 0.31 117.5 4.0 0.071 0.039 0.564 0.674 1.0 0.03 1.5 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8:13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8:13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 1.2 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 8:11 33.22 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.3 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8:11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8:15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 2 8:15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 2 8:15 31.95 23.06 99.6 7.10 2.1 0.21 18:15 4.4 0.078 0.022 0.361 0.461 20.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 9 1 8:15 32.50 22.98 97.5 6.82 18 0.36 22.74 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 9 1 8:15 32.50 22.98 97.5 6.82 18 0.36 22.74 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8:15 33.31 22.55 90.3 6.45 2.4 0.35 21.78 3.7 0.078 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8:13 33.31 22.55 90.3 6.45 2.4 0.35 21.78 3.7 0.078 0.028 0.451 0.562 4.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8:13 33.31 22.55 90.3 6.45 2.4 0.35 21.78 3.7 0.078 0.028 0.451 0.562 4.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8:13 33.31 22.55 90.3 6.45 2.4 0.35 21.78 3.7 0.078 0.028 0.451 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8:13 33.31 22.55 90.3 6.45 2.4 0.35 21.78 3.7 0.078 0.028 0.451 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 1 |   |           |         |         |        |       |       | В   | 16   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 1 8.13 33.17 22.51 93.8 6.41 2.8 0.45 133.1 3.4 0.052 0.041 0.562 0.655 4.0 0.03 1.2 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11.5 2 8.13 33.21 22.50 93.5 6.40 2.8 0.47 141.5 3.5 0.055 0.055 0.055 0.055 0.645 3.0 0.03 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 23.07 99.4 71.0 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 0.0532 0.627 6.0 0.05 1.3 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.21 181.5 4.4 0.078 0.022 0.361 0.461 20.0 0.04 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 31.95 23.06 99.6 7.10 2.1 0.21 181.5 4.4 0.078 0.022 0.361 0.461 20.0 0.04 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.54 22.99 97.5 6.82 1.8 0.36 22.74 3.6 0.118 0.026 0.366 0.510 3.0 0.04 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.54 22.99 97.3 6.82 1.8 0.36 22.74 3.6 0.118 0.026 0.366 0.510 3.0 0.04 1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.33 12.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.35 21.78 3.7 0.078 0.028 0.450 1.0 0.04 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.35 21.78 3.7 0.078 0.028 0.450 0.560 1.70 0.04 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.33 15.6 5.2 0.079 0.026 0.450 0.560 1.70 0.04 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.33 15.6 5.2 0.079 0.026 0.450 0.560 1.70 0.04 1.1 E 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.5 6.46 2.0 0.33 15.4 2.3 0.061 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0. |   |           |         |         |        |       |       | 3   | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 M 11:5 2 8:13 33:21 22:50 93.5 6:40 2.8 0.47 141:5 3.5 0.055 0.035 0.555 0.645 3.0 0.03 <1.0 Example 11:45 0.0 Ex |   |           |         |         |        |       |       |     | 11.5 |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 1 8.11 33.28 22.46 91.3 6.39 2.9 0.26 133.1 4.7 0.058 0.036 0.549 0.643 4.0 0.05 1.3 F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 2 8.15 31.95 23.06 99.6 7.10 2.1 0.21 181.5 4.4 0.078 0.022 0.361 0.461 20.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.36 22.74 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.54 22.99 97.3 6.82 1.8 0.36 22.74 3.6 0.118 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.54 22.99 97.3 6.82 1.8 0.36 22.74 3.6 0.118 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.15 33.31 22.55 90.3 6.45 2.4 0.35 217.8 3.7 0.078 0.022 0.353 0.475 31.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8. |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| F 12/4/2018 Mid-Ebb Cloudy Smooth 11:55 23 B 22 2 8.11 33.28 22.46 91.3 6.39 2.9 0.31 128.9 5.0 0.055 0.040 0.532 0.627 6.0 0.05 1.3 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 C 1. |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 S 1 1 8.15 31.98 23.07 99.4 7.10 2.1 0.20 179.5 3.1 0.075 0.019 0.361 0.455 25.0 0.04 1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.36 227.4 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.36 227.4 3.6 0.118 0.026 0.366 0.510 36.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.54 22.99 97.3 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B B 17 1 8.13 33.31 22.55 90.3 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B B 17 1 8.13 33.31 22.55 90.3 6.46 2.4 0.35 217.8 3.7 0.078 0.028 0.454 0.560 17.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2.817 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.066 0.074 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.066 0.077 0.077 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.066 0.077 0.077 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth  | F |           |         |         |        |       |       | В   |      |           |      |       |       |             |        |     |       |                   |                     |          |          | 0.532    |                       |      |                                           |                            |
| G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 31.95 23.06 99.6 7.10 2.1 0.21 181.5 4.4 0.078 0.022 0.361 0.461 20.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 1 8.15 32.50 22.98 97.5 6.82 1.8 0.36 227.4 3.6 0.118 0.026 0.366 0.510 3.60 0.004 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.54 22.99 97.3 6.82 1.8 0.36 227.4 3.6 0.118 0.026 0.366 0.510 3.60 0.004 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.3 6.45 2.4 0.35 21.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0 C 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.3 6.45 2.4 0.35 217.8 3.7 0.078 0.028 0.454 0.560 17.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2.8 17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.35 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.35 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:1 |   | 12/4/2018 | Mid-Ebb |         |        | 12:09 | 18    | S   | 11   |           |      |       |       |             | 7.10   | 2.1 |       |                   | 3.1                 |          | 0.019    | 0.361    | 0.455                 | 25.0 | 0.04                                      | 1.0                        |
| G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 M 9 2 8.15 32.54 22.99 97.3 6.82 1.8 0.37 231.6 5.4 0.100 0.022 0.353 0.475 31.0 0.04 <1.0   G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.3 6.45 2.4 0.35 217.8 3.7 0.078 0.028 0.454 0.560 17.0 0.04 1.1   G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.04 1.1   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2.817 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2.817 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.4   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3   H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.06 0.077 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |         |         |        |       |       |     | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| G 12/4/2018 Mid-Ebh Cloudy Smooth 12:09 18 B 17 1 8.13 33.31 22.55 90.3 6.45 2.4 0.35 217.8 3.7 0.078 0.028 0.454 0.560 17.0 0.04 1.1 G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.40 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.566 2.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2 8.17 31.15 23.40 104.9 7.40 2.1 0.22 114.3 4.8 0.068 0.039 0.449 0.556 5.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 9 17 1 8.15 32.35 22.96 96.3 6.83 18 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |         |         |        |       |       | 141 |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| G 12/4/2018 Mid-Ebb Cloudy Smooth 12:09 18 B 17 2 8.12 33.31 22.55 90.5 6.46 2.0 0.33 215.6 5.2 0.079 0.026 0.462 0.567 20.0 0.04 1.1 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2 8.17 31.15 23.40 104.9 7.40 2.1 0.22 116.4 4.7 0.054 0.068 0.039 0.449 0.556 5.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.5 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 9 17 1 8.15 32.35 22.96 96.3 6.83 1.8 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |         |         |        |       |       | 171 |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 1 8.17 31.15 23.20 105.0 7.42 2.1 0.22 116.4 4.7 0.054 0.027 0.481 0.562 4.0 0.03 1.2 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2 8.17 31.15 23.40 104.9 7.40 2.1 0.22 116.4 4.7 0.054 0.039 0.449 0.556 5.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.6 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 17 1 8.15 32.35 22.96 96.3 6.83 1.8 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 S 1 2 8.17 31.15 23.40 104.9 7.40 2.1 0.22 114.3 4.8 0.068 0.039 0.449 0.556 5.0 0.03 1.4 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.6 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.6 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.6 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 17 1 8.15 32.35 22.96 96.3 6.83 18 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |         |         |        |       |       | В   | 17   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 1 8.16 32.34 22.90 97.5 6.96 2.0 0.31 158.4 5.1 0.061 0.031 0.462 0.574 8.0 0.03 1.3 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.6 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 17 1 8.15 32.35 22.96 96.3 6.36 18.0 0.00 1.35 6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |         |         |        |       |       | 5   | 1    |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 M 9 2 8.16 32.34 22.90 97.6 6.96 2.0 0.33 154.2 3.4 0.080 0.026 0.474 0.580 6.0 0.04 <1.0 H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 17 1 8.15 32.35 22.96 96.3 6.83 1.8 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |         |         |        |       |       |     | 0    | _         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| H 12/4/2018 Mid-Ebb Cloudy Smooth 12:19 18 B 17 1 8.15 32.35 22.96 96.3 6.83 1.8 0.40 135.6 4.6 0.051 0.038 0.477 0.566 2.0 0.04 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 12/7/2010 |         |         |        |       |       |     |      |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |      |                                           |                            |
| - L D 11/2/9/2010 D 9/10/00 D 9/10/0 | H |           |         | Cloudy  | Smooth | 12:19 |       | В   | 17   | 2         | 8.15 | 32.56 | 22.96 | 96.4        | 6.85   | 1.8 | 0.42  | 139.2             | 4.4                 | 0.059    | 0.033    | 0.488    | 0.580                 | 2.0  | 0.04                                      | <1.0                       |

| Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |           |           |         |        |          |       |     |     |           |      |       | ı     | n-situ Meas | uremer | nt  |       |                   |                     |          |          | Laborato | y Analysis            | <u> </u> |                                           |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|-----------|---------|--------|----------|-------|-----|-----|-----------|------|-------|-------|-------------|--------|-----|-------|-------------------|---------------------|----------|----------|----------|-----------------------|----------|-------------------------------------------|----------------------------|
| A 1244/2018 Mat-Plond Cloudy. Smooth. 1652 14 S 1 1 820 821 2255 1125 867 803 12 000 226 884 91 0.056 0.053 0.726 0.001 110 0.04 ±1.0  A 1244/2018 Mat-Plond Cloudy. Smooth. 1652 14 M 7 1 873 3146 2291 867 803 12 0.002 2264 91 0.056 0.053 0.726 0.003 110 0.04 ±1.0  A 1244/2018 Mat-Plond Cloudy. Smooth. 1652 14 M 7 1 813 3146 2291 867 803 12 0.002 2264 91 0.005 0.005 0.003 110 0.04 ±1.0  A 1244/2018 Mat-Plond Cloudy. Smooth. 1652 14 M 7 1 813 3146 2291 867 803 12 0.002 2261 88 0.005 0.005 0.005 0.000 110 0.04 ±1.0  A 1244/2018 Mat-Plond Cloudy. Smooth. 170 14 S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Date      |           | Weather |        | Time     | Depth |     |     | Replicate | рН   |       |       | Saturation  | -      |     | Speed | Direction (degree | Suspended<br>Solids | Nitrogen | Nitrogen | Nitrogen | Inorganic<br>Nitrogen |          | phosphorus<br>(solube and<br>particulate) | BOD <sub>5</sub><br>(mg/L) |
| A   12/4/2018  Mid-Froot   Cloudy   Smooth   16:42   14   5   1   2   8.70   29:73   32:55   19:72   8.03   3.2   0.092   2084   9.1   0.056   0.0762   0.081   11.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0.04   ±1.0   0   |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| A   12/4/2018  Mid-Finot Cloudy   Smooth   16:52   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| A   12/4/2018   Mid-Flood Cloudy   Smooth   16/52   14   B   13   18   11   33/56   22/53   30/6   6/60   8   16/72   27/51   8   6   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   6   6/60   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16/72   8   16   |   |           |           |         |        |          |       |     | 11  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| A   12/4/2018   Mid-Flood Cloudy   Smooth   16/52   14   B   13   18/11   33/36   22/53   91,0   6/49   6/49   72/71   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0   91,0      |   |           |           |         |        |          |       |     | 7   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| A 12/42/018 [Mid-Flood Cloudy Smooth 16/52] 44 8 13 2 811 33.38 22 83 910 8 768 28 0 72 284.5 10.1 0.081 0.056 0.748 0.884 8.0 0.04 1.4  B 12/42/018 [Mid-Flood Cloudy Smooth 17/52] 4 N 7 1 8.7 1 3.06 23.05 10.8 1.7 10.8 1.0 10.8 1.0 10.0 10.0 10.0 10.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |           |           |         |        |          |       |     | 12  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| R   12/4/2018   Mis-Flood   Cloudy   Smooth   17/02   4   S   1   8   12   821   29.46   23.5   10.08   7.76   2.8   0.26   221.5   6.7   0.108   0.046   0.710   0.862   29.0   0.04   4.10   8   12/4/2018   Mis-Flood   Cloudy   Smooth   17/02   14   M   7   1   8.17   30.66   22.46   30.1   7.07   1.0   0.08   17/00   6.6   0.066   0.048   0.862   0.660   4.00   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10   0.04   4.10     |   |           |           |         |        |          |       | B   |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| R   12/4/2018   Mid-Flood   Clourk   Smooth   17/10   14   S   1   2   8/21   30.68   23.64   11/19   R.06   28   0.02   17/7   6.12   0.048   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   0.068   |   |           |           |         |        |          |       | 9   |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| B   124/2018  Mid-Flood   Clourt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |           |           |         |        |          |       | Š   | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| R   1242/018   Mid-Flood   Clouch   Smooth   17:02   14   M   7   2   8.17   30.98   23.05   88.5   7.03   1.9   0.04   136.1   7.6   0.053   0.058   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768   0.768    |   |           |           |         |        |          |       | M   | 7   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| B 124/2018 MM-Fbood Cloudy. Smooth 17:26 12 S 1 1 8.75, 29.40 2.75 2.79 33.4 6.88 3.4 0.10 253.8 6.2 0.049 0.044 0.735 0.828 28.0 0.05 18. C 124/2018 MM-Fbood Cloudy. Smooth 17:15 12 S 1 1 1 8.75, 29.40 2.37 10.05 10.06 10.05 10.05 0.05 0.05 0.05 0.05 0.05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В | 12/4/2018 | Mid-Flood | Cloudy  | Smooth | 17:02    | 14    | М   |     | 2         | 8.17 | 30.99 |       |             |        |     | 0.04  | 136.1             | 7.6                 |          | 0.063    |          |                       |          | 0.04                                      |                            |
| C 124/2018 Mid-Elond Clourty Smooth 17:16 12 S 1 2 8 1 1 8 25 12940 2339 1082 777 3.4 0.08 1926 8 7. 0.006 0.060 0.659 0.714 22.0 0.03 15 C 124/2018 Mid-Elond Clourty Smooth 17:16 12 M 6 1 8 15 32.46 22.76 95.1 6.76 6.0 0.19 243.8 9.4 0.037 0.038 0.640 0.715 24.0 0.03 1.5 C 124/2018 Mid-Elond Clourty Smooth 17:16 12 M 6 6 2 8 15 32.52 2.74 94.1 6.73 5.9 0.14 238 4 8.4 8.4 0.037 0.038 0.640 0.715 24.0 0.03 1.5 C 124/2018 Mid-Elond Clourty Smooth 17:16 12 M 6 6 2 8 15 32.52 2.74 94.1 6.73 5.9 0.14 238 4 8.4 8.4 0.051 0.049 0.6677 0.700 20.0 0.03 1.5 C 124/2018 Mid-Elond Clourty Smooth 17:16 12 M 6 1 8 15 32.66 22.78 23.0 6.63 7.0 0.17 286.1 6.8 0.010 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.0 |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| C 124/2018 Mist-Flood Cloudy Smooth 17:15 12 S 1 2 824 29.48 23.37 108.2 7.79 3.4 0.08 204.0 9.5 c.0.005 0.048 0.670 0.718 26.0 0.03 1.5 C 124/2018 Mist-Flood Cloudy Smooth 17:15 12 M 6 1 8.15 32.46 27.6 9.5 1.6 7.6 6.0 1.9 243.8 9.4 0.037 0.038 0.640 0.715 22.0 0.03 1.5 C 124/2018 Mist-Flood Cloudy Smooth 17:15 12 M 6 1 8.15 32.46 8.8 9.7 1.4 6.73 5.9 0.14 239.4 8.4 0.051 0.042 0.607 0.700 2.0 0.0 0.03 1.5 C 124/2018 Mist-Flood Cloudy Smooth 17:15 12 B 11 1 8.12 32.75 22.68 92.7 6.63 7.0 0.23 2.40.4 8.8 0.012 0.047 0.665 0.724 18.0 0.03 1.5 C 124/2018 Mist-Flood Cloudy Smooth 17:15 12 B 11 1 2 8.12 32.78 22.68 92.7 6.63 7.0 0.17 245.3 8.8 0.012 0.047 0.665 0.724 18.0 0.03 1.8 D 124/2018 Mist-Flood Cloudy Smooth 17:15 12 B 11 1 2 8.12 32.78 22.68 92.7 8.30 0.658 7.0 0.17 245.3 8.8 0.010 0.044 0.664 0.718 21.0 0.03 1.8 D 124/2018 Mist-Flood Cloudy Smooth 17:30 14 N 7 2 8.12 3.78 22.67 93.0 0.658 7.2 1.0 0.17 245.3 8.8 0.010 0.044 0.664 0.718 21.0 0.03 1.8 D 124/2018 Mist-Flood Cloudy Smooth 17:30 14 N 7 2 8.14 33.14 3.1 8.12 3.307 22.6 93.0 0.661 3.3 0.42 22.28 6.8 0.034 0.051 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 |   |           |           |         |        |          |       |     | 13  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 M 6 1 8.15 32:66 22.76 98.1 6.76 8.0 0.19 243.8 9.4 0.037 0.038 0.640 0.715 24.0 0.03 1.5 C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 M 6 2 8.15 32:57 22.68 1.6 7.0 0.23 240.4 8.6 0.011 0.042 0.607 0.700 0.03 1.5 C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 M 11 1 8.12 32.75 22:68 92.7 6.65 7.0 0.23 240.4 8.6 0.012 0.044 0.666 0.778 21.0 0.03 1.5 C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 M 11 1 8.12 32.75 22:68 92.7 6.65 7.0 0.17 245.3 8.6 0.010 0.044 0.666 0.778 21.0 0.03 1.8 D 124/2018 Mid-Flood Cloudy Smooth 17:15 12 M 11 1 8.12 32.75 22:67 33.0 6.69 7.0 0.17 245.3 8.6 0.010 0.044 0.666 0.778 21.0 0.03 1.8 D 124/2018 Mid-Flood Cloudy Smooth 17:30 14 M 5 1 2 8.2 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| C 124/2018 Mid-Flood Cloudy Smooth 17:16 12 M 6 2 8.15 3252 2274 94.1 6.73 5.9 0.14 2394 8.4 0.051 0.042 0.607 0.700 20.0 0.03 1.2 C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 B 11 2 8.12 3278 22.67 93.0 6.59 7.0 0.23 240.4 8.8 0.011 0.047 0.665 0.724 10.0 0.03 2.0 C 124/2018 Mid-Flood Cloudy Smooth 17:15 12 B 11 2 8.12 3278 22.67 93.0 6.59 7.0 0.01 7.245.3 8.8 0.010 0.044 0.664 0.718 21.0 0.03 1.8 D 124/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 1 2 8.12 3278 22.67 93.0 6.59 7.0 0.17 2245.3 8.8 0.010 0.044 0.664 0.718 21.0 0.03 1.8 D 124/2018 Mid-Flood Cloudy Smooth 17:30 14 N 7 2 8.13 23.0 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| C 12/4/2018 Mid-Flood Cloudy Smooth 17:15 12 B 111 B 8.12 3275 2268 92.7 6.63 7.0 0.23 240.4 8.8 0.012 0.047 0.666 0.724 18.0 0.03 1.8 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 1 8.13 275 2267 93.0 6.59 7.0 0.17 245.3 8.8 0.010 0.044 0.664 0.718 12.0 0.03 1.8 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 1 8.19 29.37 23.62 10.8 7.8 1 3.0 0.10 23.6 6.6 0.0724 0.038 0.597 0.710 17.0 0.03 1.8 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 2 8.2 2.8 2.9 0.034 0.5 1 1 2 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| C 12/4/2018 Mid-Flood Cloudy Smooth 17:15 12 B 11 2 B 12 32/B 22.67 33.0 6.59 7.0 0.17 245.3 B 8 0.010 0.044 0.664 0.718 21.0 0.03 1.8 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 1 8.19 29.37 23.62 108.77 18.1 3.0 1.0 236.0 6.6 0.004 0.039 0.593 0.593 0.003 1.8 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 S 1 2 B.22 29.40 23.0 6.18 7.18 3.0 0.11 232.0 7.3 0.074 0.048 0.664 0.770 16.0 0.03 1.5 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 M 7 1 8.17 33.07 22.62 33.0 6.18 3.3 0.42 222.8 6.9 0.034 0.051 0.556 0.680 23.0 0.03 1.2 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 M 7 2 8.14 33.07 22.62 33.0 6.18 3.3 0.42 222.8 6.9 0.034 0.061 0.051 0.058 0.680 23.0 0.03 1.2 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 M 7 2 8.14 33.14 22.61 92.5 6.59 3.3 0.38 223.8 7.2 0.025 0.043 0.642 0.710 19.0 0.04 1.6 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 2 B.12 33.33 22.53 89.7 6.39 5.2 0.35 221.1 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 2 B.12 33.35 22.53 89.6 6.39 5.2 0.35 221.1 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 2 B.12 33.35 22.53 89.6 6.39 5.2 0.35 221.1 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17:33 14 B 13 8.0 0.064 23.49 111.3 7.96 3.3 0.18 175.4 4.4 0.057 0.053 0.466 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17:33 14 B 13 3.0 0.064 23.49 111.3 7.96 3.3 0.17 169.6 5.6 0.061 0.033 0.466 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1.8 1.2 3.0 0.064 23.49 111.3 7.96 3.3 0.17 169.6 5.6 0.061 0.033 0.466 0.764 111.0 0.033 0.466 0.711 18.0 0.003 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| D   12/4/2018 Mid-Flood   Cloudy   Smooth   17:30   14   S   1   1   8.19   29.37   23.62   108.7   7.81   3.0   0.10   236.0   6.6   0.074   0.038   0.597   0.710   17.0   0.03   1.3   1.3   1.3   1.4   1.5   1.4   1.5   1.5   1.4   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5    |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| Description      |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 M 7 1 8.17 33.07 22.62 93.0 6.61 3.3 0.42 222.8 6.9 0.034 0.051 0.596 0.680 23.0 0.03 1.2 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 1 8.12 33.33 14 22.61 92.5 6.59 3.3 0.38 22.8 7.2 0.025 0.043 0.642 0.710 19.0 0.04 1.6 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 1 8.12 33.35 22.53 89.6 6.59 2.0 3.4 216.1 7.1 0.029 0.037 0.672 0.738 15.0 0.03 1.7 F 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 2 8.12 33.35 22.53 89.6 6.39 5.2 0.34 216.1 7.1 0.029 0.037 0.672 0.738 15.0 0.03 1.7 F 12/4/2018 Mid-Flood Cloudy Smooth 17:50 14 S 1 1 8.20 30.64 23.49 111.3 7.96 3.3 0.18 175.4 4 4 0.052 0.033 0.456 0.546 110.0 0.03 1.7 F 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 S 1 1 8.21 30.62 23.49 111.6 7.97 3.3 0.17 16.66 5.6 0.051 0.033 0.456 0.546 110.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.15 32.58 22.96 99.6 7.11 2.5 0.46 206.0 5.2 0.053 0.035 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.15 32.58 22.96 190.0 7.13 2.5 0.44 20.42 6.4 0.043 0.035 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.13 33.36 22.63 94.5 6.69 8.4 5 0.22 165.8 9 0.088 0.045 0.055 0.053 0.055 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 13.34 22.63 94.5 6.69 3.6 6.68 4.5 0.32 165.8 9 0.088 0.045 0.055 0.053 0.055 0.475 0.0563 89.0 0.04 1.6 F 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 13.34 22.63 94.5 6.674 4.5 0.29 165.2 0.053 0.035 0.476 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 13.34 22.63 94.5 6.674 4.5 0.29 165.2 0.053 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055  |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           | 1.5                        |
| D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 M 7 2 8.414 33.14 22.61 92.5 6.59 3.3 0.38 223.8 7.2 0.025 0.043 0.642 0.710 19.0 0.04 1.6 D 12/4/2018 Mid-Flood Cloudy Smooth 17:30 14 B 13 2 8.12 33.35 22.53 89.6 6.39 5.2 0.35 221.1 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.5 D 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 2 8.12 33.35 22.53 89.6 6.39 5.2 0.35 221.1 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.5 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 S 1 1 8.20 30.64 23.49 111.3 7.96 3.3 0.18 175.4 4.4 0.057 0.033 0.456 0.546 110.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 S 1 2 8.21 30.62 23.49 111.6 7.97 3.3 0.17 189.6 5.6 0.051 0.033 0.491 0.576 120.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.13 2.58 22.99 99.6 7.11 2.5 0.46 206.0 5.2 0.053 0.035 0.475 0.568 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 2 8.14 32.53 22.98 100.0 7.13 2.5 0.44 204.2 6.4 0.043 0.035 0.510 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 2 8.13 33.34 22.63 33.6 6.68 4.5 0.32 165.8 9 0.088 0.045 0.589 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 2 8.13 33.34 22.63 33.6 6.68 4.5 0.32 165.8 9 0.088 0.045 0.589 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.2 1 1 8.2 9.94 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.2 1 1 8.2 9.94 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.5 1 2 8.26 29.94 23.66 112.7 8.03 2.0 0.20 167.5 5.9 0.060 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.2 1 1 8.2 1 1 8.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4                                                                                                                             |   |           |           |         |        |          |       | M   | 7   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| D 12/4/2018 Mid-Flood Cloudy Smooth 17-30 14 B 13 1 8.12 33.35 22.53 88.6 6.39 5.2 0.34 216.1 7.1 0.029 0.037 0.672 0.738 15.0 0.03 1.5 E 12/4/2018 Mid-Flood Cloudy Smooth 17-30 14 B 13 2 8.12 33.35 22.53 88.6 6.39 5.2 0.35 22.11 7.8 0.019 0.047 0.645 0.711 18.0 0.03 1.7 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 S 1 1 8.20 30.64 23.49 111.6 7.79 3.3 0.18 175.4 4 0.057 0.033 0.456 0.546 110.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 S 1 1 8.12 36.2 2.349 111.6 7.79 3.3 0.18 175.4 4 0.057 0.033 0.456 0.546 110.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 M 7 1 8.15 32.58 22.96 99.6 7.11 2.5 0.46 206.0 5.2 0.053 0.035 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 M 7 2 8.14 32.53 22.96 100.0 7.13 2.5 0.44 204.2 8.4 0.043 0.035 0.545 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 B 13 2 8.13 33.4 22.63 93.6 6.88 4.6 0.32 165.8 9 0.088 0.02 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 B 13 2 8.13 33.4 22.63 93.6 6.88 4.6 0.32 165.8 9 0.088 0.02 0.47 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 B 13 2 8.13 33.6 22.63 93.6 6.88 4.6 0.32 165.8 9 0.088 0.02 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 B 13 2 8.13 33.6 22.63 94.5 6.74 4.5 0.29 163.2 10.8 0.085 0.052 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17-53 14 B 13 2 8.13 33.36 22.63 94.5 6.74 4.5 0.29 163.2 10.8 0.085 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18.07 18 S 1 1 8.26 29.4 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.085 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18.07 18 M 9 1 8.84 33.35 22.70 92.8 6.60 3.1 0.50 20.5 5.8 0.060 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18.07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 20.5 5.8 0.060 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18.07 18 M 9 1 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.052 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18.07 18 M 9 1 8.14 33.55  |   |           |           |         |        |          |       |     | 7   | 2         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           | 1.6                        |
| F   12/42/018   Mid-Flood   Cloudy   Smooth   17:53   14   S   1   2   8 21   30.64   23.49   111.3   7.96   3.3   0.18   17:54   4.4   0.057   0.033   0.456   0.546   110.0   0.03   1.4   E   12/42/018   Mid-Flood   Cloudy   Smooth   17:53   14   M   7   1   8.15   32.58   22.96   99.6   7.11   2.5   0.46   206.0   5.2   0.053   0.035   0.475   0.563   89.0   0.04   1.4   E   12/42/018   Mid-Flood   Cloudy   Smooth   17:53   14   M   7   2   8.14   32.52   22.96   99.6   7.11   2.5   0.46   206.0   5.2   0.053   0.035   0.475   0.563   89.0   0.04   1.4   E   12/42/018   Mid-Flood   Cloudy   Smooth   17:53   14   B   13.   1.8   13.33   2.2   2.36   100.0   7.13   2.5   0.44   2.04   2.6   4.0   0.043   0.035   0.475   0.563   89.0   0.04   1.6   E   12/42/018   Mid-Flood   Cloudy   Smooth   17:53   14   B   13.   1.8   13.33   2.2   2.38   3.8   6.68   4.5   0.32   165.8   9.0   0.088   0.021   0.443   0.552   86.0   0.05   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2      | D |           |           |         |        | 17:30    |       | В   | 13  | 1         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 S 1 2 8.21 30.62 23.49 111.6 7.97 3.3 0.17 169.6 5.6 0.051 0.033 0.435 0.552 120.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.15 32.58 22.96 99.6 7.11 2.5 0.46 206.0 5.2 0.053 0.035 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.15 32.58 22.96 10.0 7.13 2.5 0.44 204.2 6.4 0.043 0.035 0.510 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 33.44 22.63 39.6 6.68 4.5 0.32 1658.8 9 0.088 0.021 0.443 0.552 86.0 0.05 1.2 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 33.44 22.63 94.6 6.68 4.5 0.32 1658.8 9 0.088 0.021 0.443 0.552 86.0 0.05 1.2 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.26 29.94 23.60 1113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.26 29.94 23.60 112.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.26 29.94 23.60 112.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 2.8 8.0 9 2.4 0.0 0.0 167.5 5.9 0.060 0.032 0.477 0.564 84.0 0.0 0.0 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.0 0.0 1.2 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.55 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.478 0.599 150.0 0.0 0.0 1.5 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.54 22.63 90.9 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.050 0.050 0.035 0.050 0.03 0.035 0.050 0.03 0.03                                                                                                                                                                                                                                                                                                                                                                                                                 | D | 12/4/2018 | Mid-Flood | Cloudy  | Smooth | 17:30    | 14    | В   | 13  | 2         | 8.12 | 33.35 | 22.53 | 89.6        | 6.39   | 5.2 | 0.35  | 221.1             | 7.8                 | 0.019    | 0.047    | 0.645    | 0.711                 | 18.0     | 0.03                                      | 1.7                        |
| E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 1 8.15 32.58 22.96 99.6 7.11 2.5 0.46 206.0 5.2 0.033 0.035 0.475 0.563 89.0 0.04 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 2 8.14 32.53 22.96 100.0 7.13 2.5 0.44 204.2 6.4 0.043 0.035 0.510 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1 8.13 33.34 22.63 93.6 6.68 4.5 0.32 165.8 9 0.088 0.021 0.443 0.552 86.0 0.05 1.2 E 10/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 2 8.13 33.34 22.63 94.5 6.74 4.5 0.29 163.2 10.8 0.088 0.021 0.443 0.552 86.0 0.05 1.2 E 10/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.6 2.94 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.651 0.651 0.784 78.0 0.03 1.6 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 2 8.56 2.94 23.62 112.7 8.03 2.0 0.00 1.67.5 5.9 0.060 0.032 0.477 0.564 84.0 0.03 1.4 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 2 8.36 2.94 23.62 112.7 8.03 2.0 0.00 167.5 5.9 0.060 0.032 0.477 0.564 84.0 0.03 1.4 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.067 0.033 0.033 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.478 0.571 80.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.14 32.22 102.3 7.29 2.7 0.15 266.6 5 0.066 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 0.39 137.1 4.8 0.059 0.055 0.467 0.551 59.0 0.04 1.1 G 12 | E | 12/4/2018 | Mid-Flood | Cloudy  | Smooth | 17:53    | 14    | S   | 1   |           | 8.20 | 30.64 | 23.49 | 111.3       | 7.96   | 3.3 | 0.18  | 175.4             | 4.4                 | 0.057    |          | 0.456    | 0.546                 | 110.0    | 0.03                                      | 1.4                        |
| E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 M 7 2 8.814 32:53 22:96 100.0 7.13 2.5 0.44 204.2 6.4 0.043 0.035 0.510 0.588 94.0 0.04 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 1.813 33.4 22:63 93.6 6.8 4.5 0.32 165.8 9 0.088 0.021 0.433 0.552 8.60 0.055 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 17:53 14 B 13 2 8.13 33.36 22:63 94.5 6.74 4.5 0.29 163.2 10.8 0.088 0.021 0.443 0.552 8.60 0.03 1.6 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1.826 29.94 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 2 8.26 29.94 23.62 112.7 8.03 2.0 0.20 167.5 5.9 0.060 0.032 0.478 0.571 80.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 2 8.26 29.94 23.62 112.7 8.03 2.0 0.20 167.5 5.9 0.060 0.032 0.478 0.571 80.0 0.03 1.4 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.80 3.1 0.50 200.5 5.8 0.075 0.033 0.503 0.613 120.0 0.04 1.9 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1.814 33.35 22.70 92.7 6.61 3.2 0.88 189.4 4.9 0.073 0.032 0.478 0.579 150.0 0.04 1.9 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1.814 33.55 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.033 0.503 0.613 120.0 0.04 1.9 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1.814 33.55 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.04 1.9 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1.814 33.55 22.70 92.7 6.61 3.2 0.88 189.4 4.9 0.073 0.032 0.478 0.579 150.0 0.04 1.9 E 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.70 92.7 6.66 4.4 0.0 3.7 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.8 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:05 13 M 6.5 1 8.16 32.29 3.0 9.9 6.66 3.1 0.04 2.0 0.04 2.0 0.04 0.037 0.030 0.040 0.030 0.040 0.055 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F   12/4/2018   Mid-Flood   Cloudy   Smooth   17:53   14   B   13   1   8.13   33.34   22.63   93.6   6.66   4.5   0.32   165.8   9   0.088   0.021   0.443   0.552   86.0   0.05   1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |           |           |         |        |          |       |     | 7   |           |      |       |       |             |        |     |       |                   |                     |          |          |          | 0.563                 |          |                                           |                            |
| F   12/4/2018   Mid-Flood   Cloudy   Smooth   17:53   14   B   13   2   8.13   33:36   22:63   94:5   6.74   4.5   0.29   163:2   10.8   0.088   0.045   0.651   0.784   78:0   0.03   1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |           |         |        |          |       |     | 7   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 S 1 1 8.26 29.94 23.61 113.2 8.09 2.4 0.22 172.7 4.8 0.055 0.032 0.477 0.564 84.0 0.03 1.4 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.035 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.474 0.579 150.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.474 0.579 150.0 0.04 1.2 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.55 22.63 90.8 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.509 0.591 150.0 0.04 1.4 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 11.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 11.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 2 8.18 31.43 23.22 102.3 7.29 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 0.00 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 23.8 5.6 0.066 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 13.29 23.04 98.1 6.98 3.2 0.39 23.57 6.9 0.063 0.030 0.456 0.552 67.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 13.29 23.04 98.1 6.98 3.2 0.39 23.57 6.9 0.063 0.030 0.456 0.552 67.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.457 0.551 59.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.065 0.060 0.030 0.457 0.554 57.0 0.04 1.0 H 12/4 |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 2 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 2 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.474 0.579 150.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.55 22.63 90.8 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.509 0.591 110.0 0.04 1.2 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.16 32.26 23.04 97.9 6.6 3.1 0.40 23.08 5.6 0.66 0.030 0.461 0.557 40.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.6 3.1 0.40 23.08 5.6 0.66 0.030 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.6 3.1 0.40 23.08 5.6 0.66 0.030 0.30 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.29 23.04 98.1 6.98 3.2 0.39 235.7 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.033 0.440 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.033 0.440 0.533 53.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.033 0.440 0.533 53.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.033 0.440 0.533 53.0 0.04 <1.0 H 1 |   |           |           |         |        |          |       | В   | 13  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 1 8.14 33.35 22.70 92.8 6.60 3.1 0.50 200.5 5.8 0.075 0.035 0.503 0.613 120.0 0.04 1.9 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 2 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.509 0.591 150.0 0.04 1.2 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.35 22.70 90.8 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.509 0.591 150.0 0.04 1.2 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 3.50 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.14 31.43 23.22 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 3.50 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.18 31.43 23.22 102.3 7.29 2.7 0.16 269.2 6.1 0.061 0.035 0.461 0.557 40.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.29 23.04 97.9 6.96 3.1 0.40 230.8 5.6 0.066 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 2 8.16 32.29 23.04 98.1 6.98 3.2 0.39 23.57 6.9 0.063 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 94.9 6.75 3.8 0.37 240.0 5 0.060 0.030 0.456 0.533 53.0 0.05 1.4 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.75 3.8 0.37 240.0 5 0.060 0.030 0.456 0.553 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.5 0.056 0.057 0.056 0.057 0.554 50.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.5 0.056 0.057 0.056 0.457 0.554 57.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.5 0.056 0.057 0.056 0.457 0.554 57.0  |   |           |           |         |        |          |       | 3   | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 M 9 2 8.14 33.35 22.70 92.7 6.61 3.2 0.48 189.4 4.9 0.073 0.032 0.474 0.579 150.0 0.04 1.2 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.55 22.63 90.8 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.509 0.591 110.0 0.04 1.4 1.2 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.18 31.43 23.22 102.3 7.29 2.7 0.15 266.6 5 0.060 0.027 0.443 0.550 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 230.8 5.6 0.066 0.030 0.456 0.557 40.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 230.8 5.6 0.066 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 2 8.16 32.29 23.04 98.1 6.98 3.2 0.39 235.7 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 2.78 2.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.450 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 3.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.440 0.533 53.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.069 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.00 1 |   |           |           |         |        |          |       |     | 4   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 1 8.14 33.54 22.63 90.8 6.46 4.1 0.45 183.9 6.6 0.045 0.037 0.509 0.591 110.0 0.04 1.4 F 12/4/2018 Mid-Flood Cloudy Smooth 18:07 18 B 17 2 8.14 33.55 22.63 90.9 6.46 4.0 0.37 183.6 7.3 0.042 0.044 0.0598 0.685 130.0 0.03 1.3 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.433 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.18 31.43 23.22 102.4 7.30 2.7 0.16 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.18 31.43 23.22 102.4 7.29 2.7 0.16 269.2 6.1 0.061 0.035 0.461 0.557 40.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 23.08 5.6 0.066 0.030 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.29 23.04 98.1 6.98 3.2 0.39 235.7 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 94.9 6.75 3.8 0.37 240.0 5 0.060 0.030 0.450 0.543 62.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.75 3.8 0.37 240.0 5 0.060 0.030 0.450 0.533 53.0 0.05 1.4 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.75 3.8 0.37 240.0 5 0.060 0.030 0.440 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.062 0.030 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.069 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/ |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| F   12/4/2018   Mid-Flood   Cloudy   Smooth   18:07   18   B   17   2   8.14   33.55   22.63   90.9   6.46   4.0   0.37   183.6   7.3   0.042   0.044   0.598   0.685   130.0   0.03   1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 1 8.17 31.40 23.32 102.4 7.30 2.7 0.15 266.6 5 0.060 0.027 0.443 0.530 35.0 0.03 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 S 1 2 8.18 31.43 23.22 102.3 7.29 2.7 0.16 269.2 6.1 0.061 0.035 0.461 0.557 40.0 0.04 1.1 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 230.8 5.6 0.066 0.030 0.456 0.555 40.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 2 8.16 32.29 23.04 98.1 6.98 3.2 0.39 23.57 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 95.2 6.75 3.8 0.37 240.0 5 0.060 0.033 0.450 0.543 62.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.440 0.533 53.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.061 0.030 0.457 0.548 57.0 0.00 0.04 | F |           |           |         |        |          |       | В   |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 1 8.16 32.26 23.04 97.9 6.96 3.1 0.40 230.8 5.6 0.066 0.030 0.456 0.552 67.0 0.04 1.2 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 2 8.16 32.29 23.04 98.1 6.98 3.2 0.39 235.7 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 95.2 6.75 3.8 0.37 240.0 5 0.060 0.033 0.440 0.533 53.0 0.05 1.4 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.440 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.458 0.545 70.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                       | G | 12/4/2018 | Mid-Flood |         |        | 18:15    | 13    | S   | 11  |           | 8.17 | 31.40 | 23.32 |             | 7.30   |     |       |                   | 5                   |          | 0.027    | 0.443    | 0.530                 | 35.0     | 0.03                                      | 1.1                        |
| G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 M 6.5 2 8.16 32.29 23.04 98.1 6.98 3.2 0.39 235.7 6.9 0.063 0.030 0.450 0.543 62.0 0.04 1.7 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 95.2 6.75 3.8 0.37 240.0 5 0.060 0.033 0.440 0.533 53.0 0.05 1.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          | 0.461    |                       |          |                                           |                            |
| G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 1 8.15 32.67 22.80 95.2 6.75 3.8 0.37 240.0 5 0.060 0.033 0.440 0.533 53.0 0.05 1.4 G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.440 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.46 1.7 0.34 132.7 4.5 0.056 0.027 0.469 0.552 63.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.10 23.03 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           | 1.2                        |
| G 12/4/2018 Mid-Flood Cloudy Smooth 18:15 13 B 12 2 8.15 32.78 22.80 94.9 6.73 3.9 0.34 242.3 6.8 0.062 0.030 0.440 0.532 58.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.46 1.7 0.34 132.7 4.5 0.056 0.027 0.469 0.552 63.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |           |           |         |        |          |       | 171 |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 1 8.19 31.49 23.28 103.5 7.40 1.6 0.39 137.1 4.8 0.059 0.025 0.467 0.551 59.0 0.04 <1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.46 1.7 0.34 132.7 4.5 0.056 0.027 0.469 0.552 63.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.457 0.548 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 B 18 1 8.14 33.61 22.63 92.0 6.53 3.3 0.22 144.3 5 0.062 0.025 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 S 1 2 8.19 31.55 23.28 103.5 7.46 1.7 0.34 132.7 4.5 0.056 0.027 0.469 0.552 63.0 0.04 1.0 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 B 18 1 8.14 33.61 22.63 92.0 6.53 3.3 0.22 144.3 5 0.062 0.025 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           |           |         |        |          |       |     | 12  |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 1 8.17 32.10 23.03 98.0 7.00 2.9 0.38 163.7 4.8 0.061 0.030 0.457 0.548 57.0 0.05 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 B 18 1 8.14 33.61 22.63 92.0 6.53 3.3 0.22 144.3 5 0.062 0.025 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |           |           |         |        |          |       |     | 1   |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 M 9.5 2 8.17 32.19 23.02 98.0 7.00 2.9 0.40 166.1 4.8 0.057 0.026 0.451 0.534 60.0 0.04 1.1 H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 B 18 1 8.14 33.61 22.63 92.0 6.53 3.3 0.22 144.3 5 0.062 0.025 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |           |           |         |        | 11/./-1/ |       |     | 0.5 | _         |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| H 12/4/2018 Mid-Flood Cloudy Smooth 18:25 19 B 18 1 8.14 33.61 22.63 92.0 6.53 3.3 0.22 144.3 5 0.062 0.025 0.458 0.545 70.0 0.04 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |           |           |         |        | 10.20    |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |           |           |         |        |          |       |     |     |           |      |       |       |             |        |     |       |                   |                     |          |          |          |                       |          |                                           |                            |
| - II IIZ/9/ZVIODIVIU/CHOOGLOODUV I OHOOHI LIO.ZOL (M. L. D L. 10. L.Z. L.O.14 L.O.04 L. Z.C.O. L. M. J. L.O.22 L.O.32 L.O.24 L. L.O.34 L. L.O.34 L. U.C.M. U.C.M. U.C.M. U.C.M. U.C.M. U.C.A. L. U.C.M. U.C.M. U.C.M. U.C.M. U.C.A. L.O. L.Z. L.O.14 L.O.30.04 L.Z.C.O. L. M.J. L.O.22 L.O.32 L.O.24 L.D.M. L.O.32 L.O.34 L.O.32 L.O.34 L.O.32 L.O.34 L.O.32 L.O.34 L.O.32 L.O.34     | H |           |           | Cloudy  | Smooth | 18:25    | - 117 | В   | 18  | 2         | 8.14 | 33.64 | 22.63 | 91.7        | 6.52   | 3.3 | 0.24  | 146.9             | 4.2                 | 0.059    | 0.023    | 0.447    | 0.542                 | 64.0     | 0.04                                      | 1.1                        |

#### ALS Technichem (HK) Pty Ltd

#### **ALS Laboratory Group**

**ANALYICAL CHEMISTRY & TESTING SERVICES** 

FUNG CRESCENT,



Authorised results for

#### CERTIFICATE OF ANALYSIS

Kwai Chung, N.T., Hong Kong

: MATERIALAB CONSULTANTS : ALS Technichem (HK) Pty Ltd : 1 of 28 Client Laboratory Page

LIMITED

: HK1824746 : MR CYRUS LAI : Elaine Cheung Work Order Contact Contact

: RM 723 & 725 7/F, BLOCK B PROFIT : 11/F., Chung Shun Knitting Address Address

> **INDUSTRIAL BUILDING, NO. 1-15 KWAI** Centre, 1 - 3 Wing Yip Street,

KWAI CHUNG, N.T. HONG KONG

: elaine.cheung@alsglobal.com E-mail E-mail

: +852 2610 1044 Telephone Telephone

: +852 2610 2021 Facsimile Facsimile

: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT : 12-Apr-2018 **Date Samples Received** Project

FOR SIU HO WAN SEWAGE TREATMENT PLANT

: HKE/1654/2017\_R1 : 24-Apr-2018 : 0041/17 Order number Issue Date Quote number

No. of samples received C-O-C number : 96 : 96 Site No. of samples analysed

This report may not be reproduced except with prior written approval from the testing laboratory. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Fung Lim Chee, Richard General Manager Inorganics Ng Sin Kou, May **Assistant Laboratory Manager** Microbiology

Position

Page Number : 2 of 28

Client : MATERIALAB CONSULTANTS LIMITED

Work Order HK1824746



#### **General Comments**

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 12-Apr-2018 to 23-Apr-2018.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

#### Specific Comments for Work Order: HK1824746

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sample(s) arrived in the laboratory at 17:25. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

3 of 28

Client MATERIALAB CONSULTANTS LIMITED

Work Order HK1824746

### ALS

#### Analytical Results

| Sub-Matrix: <b>WATER</b>                 |            | Clie        | ent sample ID  | A/S/E         | A/S/E/Dup     | A/M/E         | A/M/E/Dup     | A/B/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-001 | HK1824746-002 | HK1824746-003 | HK1824746-004 | HK1824746-005 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 2.9           | 3.5           | 4.0           | 4.8           | 4.7           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.075         | 0.075         | 0.094         | 0.097         | 0.102         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.036         | 0.034         | 0.018         | 0.016         | 0.017         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.514         | 0.519         | 0.285         | 0.290         | 0.302         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.625         | 0.628         | 0.398         | 0.403         | 0.422         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 1             | 2             | 21            | 19            | 26            |

4 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | A/B/E/Dup     | B/S/E         | B/S/E/Dup     | B/M/E         | B/M/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Clie       | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-006 | HK1824746-007 | HK1824746-008 | HK1824746-009 | HK1824746-010 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.5           | 3.9           | 3.6           | 3.5           | 4.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.084         | 0.092         | 0.101         | 0.128         | 0.110         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.016         | 0.025         | 0.027         | 0.017         | 0.012         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.257         | 0.432         | 0.425         | 0.257         | 0.279         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.357         | 0.548         | 0.553         | 0.402         | 0.401         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.04          | 0.03          | 0.04          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.03          | 0.03          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 29            | 7             | 5             | 76            | 69            |

5 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | B/B/E         | B/B/E/Dup     | C/S/E         | C/S/E/Dup     | C/M/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-011 | HK1824746-012 | HK1824746-013 | HK1824746-014 | HK1824746-015 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.0           | 4.2           | 3.6           | 4.1           | 4.8           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.108         | 0.086         | 0.040         | 0.046         | 0.066         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.024         | 0.025         | 0.041         | 0.040         | 0.035         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.360         | 0.427         | 0.583         | 0.584         | 0.535         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.492         | 0.538         | 0.664         | 0.670         | 0.636         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | 1.1           | 1.1           | 1.3           | 1.3           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 5             | 6             | 1             | NOT DETECTED  | 1             |

6 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | C/M/E/Dup     | C/B/E         | C/B/E/Dup     | D/S/E         | D/S/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-016 | HK1824746-017 | HK1824746-018 | HK1824746-019 | HK1824746-020 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.5           | 3.0           | 4.2           | 3.5           | 4.9           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.067         | 0.081         | 0.078         | 0.052         | 0.050         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.038         | 0.030         | 0.027         | 0.037         | 0.042         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.539         | 0.433         | 0.439         | 0.576         | 0.556         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.644         | 0.544         | 0.544         | 0.664         | 0.648         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.05          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.0           | 1.1           | 1.0           | 1.5           | 1.4           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 2             | 2             | 3             | NOT DETECTED  | 1             |

7 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | D/M/E         | D/M/E/Dup     | D/B/E         | D/B/E/Dup     | E/S/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-021 | HK1824746-022 | HK1824746-023 | HK1824746-024 | HK1824746-025 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.1           | 4.9           | 5.8           | 6.6           | 4.6           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.049         | 0.040         | 0.045         | 0.039         | 0.052         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.040         | 0.044         | 0.033         | 0.047         | 0.038         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.577         | 0.590         | 0.522         | 0.650         | 0.543         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.666         | 0.674         | 0.600         | 0.736         | 0.633         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.04          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.3           | 1.1           | 1.0           | 1.5           | 1.2           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 3             | 4             | 1             | 2             | 6             |

: 8 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | E/S/E/Dup     | E/M/E         | E/M/E/Dup     | E/B/E         | E/B/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-026 | HK1824746-027 | HK1824746-028 | HK1824746-029 | HK1824746-030 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.6           | 4.0           | 4.6           | 4.0           | 4.0           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.051         | 0.087         | 0.108         | 0.042         | 0.038         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.034         | 0.035         | 0.030         | 0.041         | 0.040         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.554         | 0.535         | 0.436         | 0.579         | 0.588         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.639         | 0.657         | 0.574         | 0.662         | 0.666         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.04          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.0           | 1.1           | <1.0          | 1.2           | 1.1           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 8             | 11            | 9             | 3             | 3             |

9 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | F/S/E         | F/S/E/Dup     | F/M/E         | F/M/E/Dup     | F/B/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-031 | HK1824746-032 | HK1824746-033 | HK1824746-034 | HK1824746-035 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.4           | 4.0           | 3.4           | 3.5           | 4.7           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.084         | 0.071         | 0.052         | 0.055         | 0.058         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.040         | 0.039         | 0.041         | 0.035         | 0.036         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.569         | 0.564         | 0.562         | 0.555         | 0.549         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.693         | 0.674         | 0.655         | 0.645         | 0.643         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.05          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.5           | 1.5           | 1.2           | <1.0          | 1.1           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 1             | 1             | 4             | 3             | 4             |

: 10 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | F/B/E/Dup     | G/S/E         | G/S/E/Dup     | G/M/E         | G/M/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-036 | HK1824746-037 | HK1824746-038 | HK1824746-039 | HK1824746-040 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.0           | 3.1           | 4.4           | 3.6           | 5.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.055         | 0.075         | 0.078         | 0.118         | 0.100         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.040         | 0.019         | 0.022         | 0.026         | 0.022         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.532         | 0.361         | 0.361         | 0.366         | 0.353         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.627         | 0.455         | 0.461         | 0.510         | 0.475         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.05          | 0.04          | 0.04          | 0.04          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.3           | 1.0           | 1.0           | 1.1           | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 6             | 25            | 20            | 36            | 31            |

: 11 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | G/B/E         | G/B/E/Dup     | H/S/E         | H/S/E/Dup     | H/M/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-041 | HK1824746-042 | HK1824746-043 | HK1824746-044 | HK1824746-045 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.7           | 5.2           | 4.7           | 4.8           | 5.1           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.078         | 0.079         | 0.054         | 0.068         | 0.081         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.028         | 0.026         | 0.027         | 0.039         | 0.031         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.454         | 0.462         | 0.481         | 0.449         | 0.462         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.560         | 0.567         | 0.562         | 0.556         | 0.574         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.1           | 1.1           | 1.2           | 1.4           | 1.3           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 17            | 20            | 4             | 5             | 8             |

: 12 of 28

HK1824746

Client

: MATERIALAB CONSULTANTS LIMITED

Work Order



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/M/E/Dup     | H/B/E         | H/B/E/Dup     | A/S/F         | A/S/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-046 | HK1824746-047 | HK1824746-048 | HK1824746-049 | HK1824746-050 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.4           | 4.6           | 4.4           | 8.6           | 9.1           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.080         | 0.051         | 0.059         | 0.060         | 0.056         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.026         | 0.038         | 0.033         | 0.053         | 0.053         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.474         | 0.477         | 0.488         | 0.774         | 0.792         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.580         | 0.566         | 0.580         | 0.887         | 0.901         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.04          | 0.05          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 6             | 2             | 2             | 12            | 11            |

: 13 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | A/M/F         | A/M/F/Dup     | A/B/F         | A/B/F/Dup     | B/S/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-051 | HK1824746-052 | HK1824746-053 | HK1824746-054 | HK1824746-055 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 9.1           | 8.5           | 9.2           | 10.1          | 6.7           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.057         | 0.054         | 0.084         | 0.081         | 0.108         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.055         | 0.040         | 0.047         | 0.055         | 0.051         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.784         | 0.621         | 0.773         | 0.748         | 0.717         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.896         | 0.715         | 0.904         | 0.884         | 0.876         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.03          | 0.04          | 0.04          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | 1.7           | 1.4           | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 1             | 2             | 10            | 8             | 31            |

: 14 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | B/S/F/Dup     | B/M/F         | B/M/F/Dup     | B/B/F         | B/B/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-056 | HK1824746-057 | HK1824746-058 | HK1824746-059 | HK1824746-060 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 6.2           | 6.8           | 7.6           | 6.8           | 6.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.108         | 0.060         | 0.053         | 0.068         | 0.049         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.044         | 0.048         | 0.063         | 0.045         | 0.044         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.710         | 0.692         | 0.769         | 0.656         | 0.735         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.862         | 0.800         | 0.885         | 0.769         | 0.828         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.04          | 0.06          | 0.05          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | 1.3           | 1.4           | 1.8           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 29            | 49            | 45            | 25            | 28            |

Page Number Client

: 15 of 28

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | C/S/F         | C/S/F/Dup     | C/M/F         | C/M/F/Dup     | C/B/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-061 | HK1824746-062 | HK1824746-063 | HK1824746-064 | HK1824746-065 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 8.7           | 9.5           | 9.4           | 8.4           | 8.8           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.005         | <0.005        | 0.037         | 0.051         | 0.012         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.050         | 0.048         | 0.038         | 0.042         | 0.047         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.659         | 0.670         | 0.640         | 0.607         | 0.665         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.714         | 0.718         | 0.715         | 0.700         | 0.724         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.01          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.6           | 1.5           | 1.5           | 1.2           | 2.0           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 22            | 26            | 24            | 20            | 18            |

: 16 of 28

: MATERIALAB CONSULTANTS LIMITED

Work Order

Client

HK1824746

| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | C/B/F/Dup     | D/S/F         | D/S/F/Dup     | D/M/F         | D/M/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-066 | HK1824746-067 | HK1824746-068 | HK1824746-069 | HK1824746-070 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 8.8           | 6.6           | 7.3           | 6.9           | 7.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.010         | 0.074         | 0.074         | 0.034         | 0.025         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.044         | 0.039         | 0.048         | 0.051         | 0.043         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.664         | 0.597         | 0.648         | 0.596         | 0.642         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.718         | 0.710         | 0.770         | 0.680         | 0.710         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.01          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.8           | 1.3           | 1.5           | 1.2           | 1.6           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 21            | 17            | 16            | 23            | 19            |



: 17 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | D/B/F         | D/B/F/Dup     | E/S/F         | E/S/F/Dup     | E/M/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-071 | HK1824746-072 | HK1824746-073 | HK1824746-074 | HK1824746-075 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 7.1           | 7.8           | 4.4           | 5.6           | 5.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.029         | 0.019         | 0.057         | 0.051         | 0.053         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.037         | 0.047         | 0.033         | 0.033         | 0.035         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.672         | 0.645         | 0.456         | 0.491         | 0.475         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.738         | 0.711         | 0.546         | 0.575         | 0.563         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.04          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.5           | 1.7           | 1.4           | 1.4           | 1.4           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 15            | 18            | 110           | 120           | 89            |

: 18 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | E/M/F/Dup     | E/B/F         | E/B/F/Dup     | F/S/F         | F/S/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-076 | HK1824746-077 | HK1824746-078 | HK1824746-079 | HK1824746-080 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 6.4           | 9.0           | 10.8          | 4.8           | 5.9           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.043         | 0.088         | 0.088         | 0.055         | 0.060         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.035         | 0.021         | 0.045         | 0.032         | 0.032         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.510         | 0.443         | 0.651         | 0.477         | 0.478         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.588         | 0.552         | 0.784         | 0.564         | 0.571         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.05          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.6           | 1.2           | 1.6           | 1.4           | 1.4           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 94            | 86            | 78            | 84            | 80            |

: 19 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | F/M/F         | F/M/F/Dup     | F/B/F         | F/B/F/Dup     | G/S/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-081 | HK1824746-082 | HK1824746-083 | HK1824746-084 | HK1824746-085 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.8           | 4.9           | 6.6           | 7.3           | 5.0           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.075         | 0.073         | 0.045         | 0.042         | 0.060         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.035         | 0.032         | 0.037         | 0.044         | 0.027         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.503         | 0.474         | 0.509         | 0.598         | 0.443         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.613         | 0.579         | 0.591         | 0.685         | 0.530         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.04          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.9           | 1.2           | 1.4           | 1.3           | 1.1           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 120           | 150           | 110           | 130           | 35            |

Page Number : 20 of 28
Client : MATERIA

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: <b>WATER</b>                 |            | Clie        | ent sample ID  | G/S/F/Dup     | G/M/F         | G/M/F/Dup     | G/B/F         | G/B/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-086 | HK1824746-087 | HK1824746-088 | HK1824746-089 | HK1824746-090 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 6.1           | 5.6           | 6.9           | 5.0           | 6.8           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.061         | 0.066         | 0.063         | 0.060         | 0.062         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.035         | 0.030         | 0.030         | 0.033         | 0.030         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.461         | 0.456         | 0.450         | 0.440         | 0.440         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.557         | 0.552         | 0.543         | 0.533         | 0.532         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.04          | 0.05          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.1           | 1.2           | 1.7           | 1.4           | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 40            | 67            | 62            | 53            | 58            |

: 21 of 28

Client

: MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/S/F         | H/S/F/Dup     | H/M/F         | H/M/F/Dup     | H/B/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-091 | HK1824746-092 | HK1824746-093 | HK1824746-094 | HK1824746-095 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.8           | 4.5           | 4.8           | 4.8           | 5.0           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.059         | 0.056         | 0.061         | 0.057         | 0.062         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.025         | 0.027         | 0.030         | 0.026         | 0.025         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.467         | 0.469         | 0.457         | 0.451         | 0.458         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.551         | 0.552         | 0.548         | 0.534         | 0.545         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.04          | 0.05          | 0.04          | 0.04          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | 1.0           | 1.1           | 1.1           | 1.0           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 59            | 63            | 57            | 60            | 70            |

22 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/B/F/Dup     | <br> | <br> |
|------------------------------------------|------------|-------------|----------------|---------------|------|------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018   | <br> | <br> |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824746-096 | <br> | <br> |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |      |      |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.2           | <br> | <br> |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |      |      |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.059         | <br> | <br> |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.036         | <br> | <br> |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.447         | <br> | <br> |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.542         | <br> | <br> |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | <br> | <br> |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | <br> | <br> |
| EP: Aggregate Organics                   |            |             |                |               |      |      |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.1           | <br> | <br> |
| EM: Microbiological Testing              |            |             |                |               |      |      |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 64            | <br> | <br> |

23 of 28

Client

: MATERIALAB CONSULTANTS LIMITED

Work Order HK1824746

## ALS

### Laboratory Duplicate (DUP) Report

| Matrix: WATER           |                              |                                     |            | ı    | Lab  | oratory Duplicate (DUP) | Report              |                |
|-------------------------|------------------------------|-------------------------------------|------------|------|------|-------------------------|---------------------|----------------|
| Laboratory<br>sample ID | Client sample ID             | Method: Compound                    | CAS Number | LOR  | Unit | Original Result         | Duplicate<br>Result | <i>RPD</i> (%) |
| EA/ED: Physical and A   | ggregate Properties (QC Lot  | : 1566743)                          |            |      |      |                         |                     |                |
| HK1824746-001           | A/S/E                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 2.9                     | 3.6                 | 22.1           |
| HK1824746-011           | B/B/E                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 4.0                     | 3.6                 | 10.6           |
| EA/ED: Physical and A   | ggregate Properties (QC Lot  | : 1566744)                          |            |      |      |                         |                     |                |
| HK1824746-021           | D/M/E                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 3.1                     | 4.6                 | 40.6           |
| HK1824746-031           | F/S/E                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 3.4                     | 4.2                 | 19.5           |
| EA/ED: Physical and A   | ggregate Properties (QC Lot  | : 1566745)                          |            |      |      |                         |                     |                |
| HK1824746-041           | G/B/E                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 3.7                     | 4.1                 | 11.2           |
| HK1824746-051           | A/M/F                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 9.1                     | 9.6                 | 5.79           |
| EA/ED: Physical and A   | ggregate Properties (QC Lot  | : 1566746)                          |            |      |      |                         |                     |                |
| HK1824746-061           | C/S/F                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 8.7                     | 8.0                 | 7.90           |
| HK1824746-071           | D/B/F                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 7.1                     | 8.1                 | 12.6           |
| EA/ED: Physical and A   | ggregate Properties (QC Lot  | : 1566747)                          |            |      |      |                         |                     |                |
| HK1824746-081           | F/M/F                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 5.8                     | 5.3                 | 10.4           |
| HK1824746-091           | H/S/F                        | EA025: Suspended Solids (SS)        |            | 0.5  | mg/L | 4.8                     | 4.2                 | 13.4           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565878)                            |            |      |      |                         |                     |                |
| HK1824746-001           | A/S/E                        | EK067P: Total Phosphorus as P       |            | 0.01 | mg/L | 0.04                    | 0.04                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565879)                            |            |      |      |                         |                     |                |
| HK1824746-001           | A/S/E                        | EK067P: Total Phosphorus - Filtered |            | 0.01 | mg/L | 0.03                    | 0.03                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565880)                            |            |      |      |                         |                     |                |
| HK1824746-021           | D/M/E                        | EK067P: Total Phosphorus as P       |            | 0.01 | mg/L | 0.03                    | 0.04                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565881)                            |            |      |      |                         |                     |                |
| HK1824746-021           | D/M/E                        | EK067P: Total Phosphorus - Filtered |            | 0.01 | mg/L | 0.02                    | 0.02                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565882)                            |            |      |      |                         |                     |                |
| HK1824746-041           | G/B/E                        | EK067P: Total Phosphorus as P       |            | 0.01 | mg/L | 0.04                    | 0.04                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565883)                            |            |      |      |                         |                     |                |
| HK1824746-041           | G/B/E                        | EK067P: Total Phosphorus - Filtered |            | 0.01 | mg/L | 0.02                    | 0.02                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565884)                            |            |      |      |                         |                     |                |
| HK1824746-061           | C/S/F                        | EK067P: Total Phosphorus as P       |            | 0.01 | mg/L | 0.03                    | 0.03                | 0.00           |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 1565885)                            |            |      |      |                         |                     |                |
| HK1824746-061           | C/S/F                        | EK067P: Total Phosphorus - Filtered |            | 0.01 | mg/L | 0.01                    | 0.02                | 0.00           |

24 of 28

Client

: MATERIALAB CONSULTANTS LIMITED

Work Order

HK1824746



| Matrix: WATER                         |                              |                                     |            |       | Labo   | ratory Duplicate (DUP) | Report    |                |
|---------------------------------------|------------------------------|-------------------------------------|------------|-------|--------|------------------------|-----------|----------------|
| Laboratory                            | Client sample ID             | Method: Compound                    | CAS Number | LOR   | Unit   | Original Result        | Duplicate | <i>RPD</i> (%) |
| sample ID                             |                              |                                     |            |       |        |                        | Result    |                |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1565886)                          |            |       | I      |                        |           |                |
| HK1824746-081                         | F/M/F                        | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L   | 0.04                   | 0.05      | 0.00           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1565887)                          |            |       |        |                        |           |                |
| HK1824746-081                         | F/M/F                        | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L   | 0.02                   | 0.02      | 0.00           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1566374)                          |            |       |        |                        |           |                |
| HK1824746-001                         | A/S/E                        | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L   | 0.036                  | 0.036     | 0.00           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1566377)                          |            |       |        |                        |           |                |
| HK1824746-021                         | D/M/E                        | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L   | 0.040                  | 0.036     | 10.0           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1566380)                          |            |       |        |                        |           |                |
| HK1824746-041                         | G/B/E                        | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L   | 0.028                  | 0.025     | 7.94           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1566382)                          | ,          |       |        |                        |           |                |
| HK1824746-061                         | C/S/F                        | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L   | 0.050                  | 0.042     | 17.7           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1566385)                          | ,          |       | _      |                        |           |                |
| HK1824746-081                         | F/M/F                        | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L   | 0.035                  | 0.038     | 8.72           |
| ED/EK: Inorganic Nonr                 | metallic Parameters (QC Lot: | : 1567190)                          |            |       | J      |                        |           |                |
| HK1824746-001                         | A/S/E                        | EK055A: Ammonia as N                | 7664-41-7  | 0.005 | mg/L   | 0.075                  | 0.074     | 2.14           |
|                                       | metallic Parameters (QC Lot: | : 1567191)                          |            |       |        | -                      |           |                |
| HK1824746-023                         | D/B/E                        | EK055A: Ammonia as N                | 7664-41-7  | 0.005 | mg/L   | 0.045                  | 0.044     | 0.00           |
|                                       | metallic Parameters (QC Lot: |                                     | 7004 41 7  | 0.000 | mg/L   | 0.040                  | 0.044     | 0.00           |
| ED/ER. Morganic Noni<br>HK1824746-041 | G/B/E                        | EK055A: Ammonia as N                | 7664-41-7  | 0.005 | mg/L   | 0.078                  | 0.079     | 1.31           |
|                                       |                              |                                     | 7004-41-7  | 0.005 | IIIg/L | 0.076                  | 0.079     | 1.31           |
|                                       | netallic Parameters (QC Lot: |                                     | 7004 44 7  | 0.005 |        | 0.007                  | 0.004     | 40.0           |
| HK1824746-063                         | C/M/F                        | EK055A: Ammonia as N                | 7664-41-7  | 0.005 | mg/L   | 0.037                  | 0.034     | 10.6           |
| <del>_</del>                          | netallic Parameters (QC Lot: | <u>'</u>                            |            |       |        |                        |           |                |
| HK1824746-091                         | H/S/F                        | EK055A: Ammonia as N                | 7664-41-7  | 0.005 | mg/L   | 0.059                  | 0.063     | 7.04           |

#### Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

| Matrix: WATER                            |                   |     | Method Blank (MB) | ) Report | Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report |           |            |                    |      |         |         |
|------------------------------------------|-------------------|-----|-------------------|----------|------------------------------------------------------------------------------------|-----------|------------|--------------------|------|---------|---------|
|                                          |                   |     |                   |          | Spike                                                                              | Spike Red | covery (%) | Recovery Limits(%) |      | RPD (%) |         |
| Method: Compound                         | CAS Number        | LOR | Unit              | Result   | Concentration                                                                      | LCS       | DCS        | Low                | High | Value   | Control |
|                                          |                   |     |                   |          |                                                                                    |           |            |                    |      |         | Limit   |
| EA/ED: Physical and Aggregate Properties | (QC Lot: 1566743) |     |                   |          |                                                                                    |           |            |                    |      |         |         |
| EA025: Suspended Solids (SS)             |                   | 0.5 | mg/L              | <0.5     | 20 mg/L                                                                            | 87.0      |            | 85                 | 115  |         |         |
| EA/ED: Physical and Aggregate Properties | (QC Lot: 1566744) |     |                   |          |                                                                                    |           |            |                    |      |         |         |

25 of 28

Client : MATERIALAB CONSULTANTS LIMITED



| Matrix: WATER                                      |               |         | Method Blank (ME | 3) Report |               | Laboratory Cont | rol Spike (LCS) and Labo | ratory Control S | Spike Duplicate (i | DCS) Report |         |
|----------------------------------------------------|---------------|---------|------------------|-----------|---------------|-----------------|--------------------------|------------------|--------------------|-------------|---------|
|                                                    |               |         | 1                |           | Splke         | Spike Re        | acovery (%)              | Recov            | ery Limits(%)      | RP          | D (%)   |
| Method: Compound                                   | CAS Number    | LOR     | Unit             | Result    | Concentration | LCS             | DCS                      | Low              | High               | Value       | Control |
|                                                    |               |         |                  |           |               |                 |                          |                  |                    |             | Limit   |
| EA/ED: Physical and Aggregate Properties (QC Lot:  | 1566744) - Co | ntinued |                  |           |               |                 |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                       |               | 0.5     | mg/L             | <0.5      | 20 mg/L       | 114             |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC Lot:  | 1566745)      |         |                  |           |               |                 |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                       |               | 0.5     | mg/L             | <0.5      | 20 mg/L       | 110             |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC Lot:  | 1566746)      |         |                  |           |               |                 |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                       |               | 0.5     | mg/L             | <0.5      | 20 mg/L       | 86.5            |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC Lot:  | 1566747)      |         |                  |           |               |                 |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                       |               | 0.5     | mg/L             | <0.5      | 20 mg/L       | 90.5            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565878)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus as P                      |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 102             |                          | 92               | 104                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565879)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered                |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 98.2            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565880)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus as P                      |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 102             |                          | 92               | 104                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565881)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered                |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 96.5            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565882)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus as P                      |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 102             |                          | 92               | 104                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565883)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered                |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 97.3            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565884)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus as P                      |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 103             |                          | 92               | 104                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565885)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered                |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 97.6            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565886)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus as P                      |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 102             |                          | 92               | 104                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 565887)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered                |               | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 95.0            |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1 | 566374)       |         |                  |           |               |                 |                          |                  |                    |             |         |
| EK057A: Nitrite as N                               | 14797-65-0    | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 94.2            |                          | 85               | 115                |             |         |

Page Number : 26 of 28

Client MATERIALAB CONSULTANTS LIMITED



| Matrix: WATER                                    |            |       | Method Blank (MB | 3) Report |               | Laboratory Contro | ol Spike (LCS) and Labor | atory Control Si | olke Duplicate (l | DCS) Report |         |
|--------------------------------------------------|------------|-------|------------------|-----------|---------------|-------------------|--------------------------|------------------|-------------------|-------------|---------|
|                                                  |            |       |                  |           | Spike         | Spike Red         | covery (%)               | Recove           | ry Limits(%)      | RPI         | D (%)   |
| Method: Compound                                 | CAS Number | LOR   | Unit             | Result    | Concentration | LCS               | DCS                      | Low              | High              | Value       | Control |
|                                                  |            |       |                  |           |               |                   |                          |                  |                   |             | Limit   |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1566377)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK057A: Nitrite as N                             | 14797-65-0 | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 103               |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1566380)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK057A: Nitrite as N                             | 14797-65-0 | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 99.4              |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1566382)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK057A: Nitrite as N                             | 14797-65-0 | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 96.2              |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1566385)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK057A: Nitrite as N                             | 14797-65-0 | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 113               |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1567190)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK055A: Ammonia as N                             | 7664-41-7  | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 101               |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1567191)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK055A: Ammonia as N                             | 7664-41-7  | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 105               |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1567192)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK055A: Ammonia as N                             | 7664-41-7  | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 97.2              |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1567193)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK055A: Ammonia as N                             | 7664-41-7  | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 99.2              |                          | 85               | 115               |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lot: | 1567194)   |       |                  |           |               |                   |                          |                  |                   |             |         |
| EK055A: Ammonia as N                             | 7664-41-7  | 0.005 | mg/L             | <0.005    | 0.05 mg/L     | 98.0              |                          | 85               | 115               |             |         |
| EP: Aggregate Organics (QC Lot: 1566583)         |            |       |                  |           |               |                   |                          |                  |                   |             |         |
| EP030: Biochemical Oxygen Demand                 |            |       | mg/L             |           | 198 mg/L      | 106               |                          | 81               | 115               |             |         |
| EP: Aggregate Organics (QC Lot: 1566584)         |            |       |                  |           |               |                   |                          |                  |                   |             |         |
| EP030: Biochemical Oxygen Demand                 |            |       | mg/L             |           | 198 mg/L      | 100               |                          | 81               | 115               |             |         |
| EP: Aggregate Organics (QC Lot: 1566585)         |            |       |                  |           |               |                   |                          |                  |                   |             |         |
| EP030: Biochemical Oxygen Demand                 |            |       | mg/L             |           | 198 mg/L      | 102               |                          | 81               | 115               |             |         |
| EP: Aggregate Organics (QC Lot: 1566586)         |            |       |                  |           |               |                   |                          |                  |                   |             |         |
| EP030: Biochemical Oxygen Demand                 |            |       | mg/L             |           | 198 mg/L      | 103               |                          | 81               | 115               |             |         |
| EP: Aggregate Organics (QC Lot: 1566587)         |            |       |                  |           |               |                   |                          |                  |                   |             |         |
| EP030: Biochemical Oxygen Demand                 |            |       | mg/L             |           | 198 mg/L      | 103               |                          | 81               | 115               |             |         |

: 27 of 28

Client

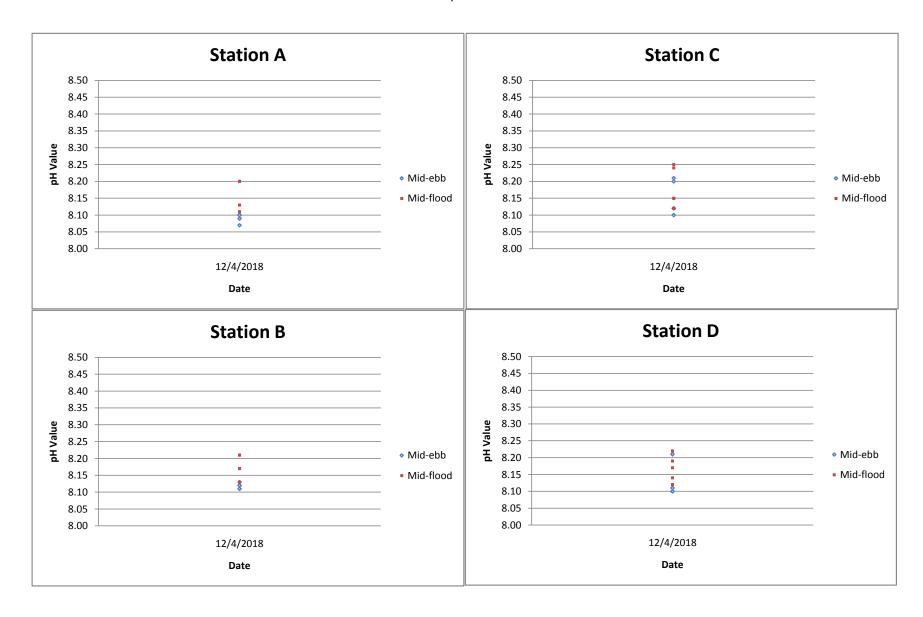
: MATERIALAB CONSULTANTS LIMITED

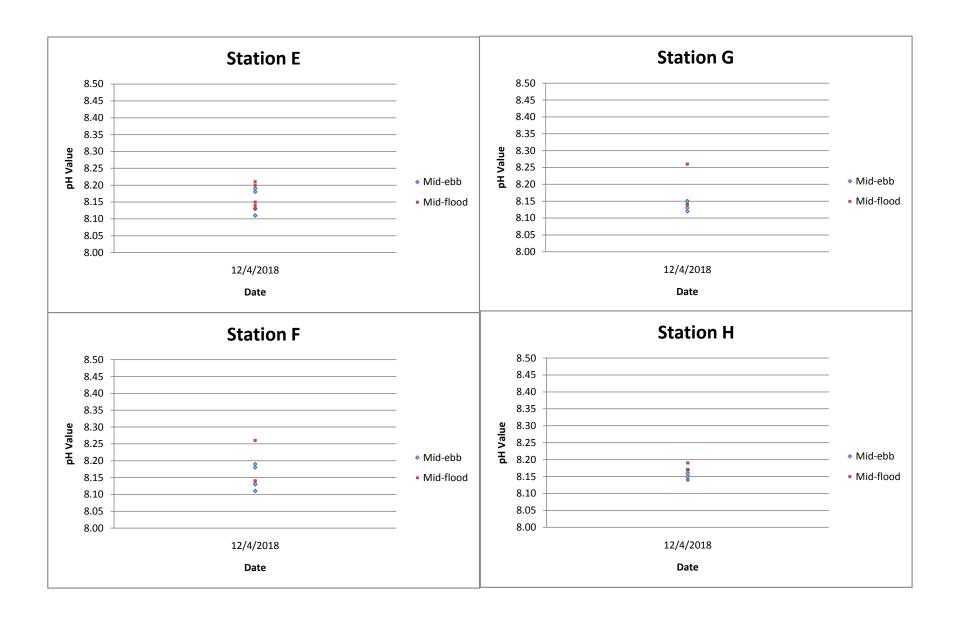
Work Order HK1824746

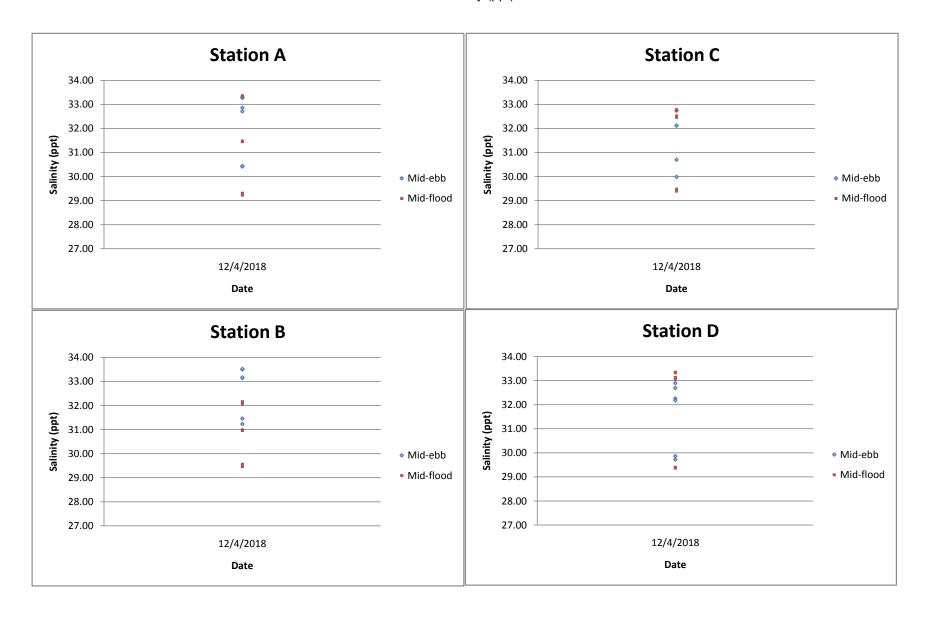
# ALS

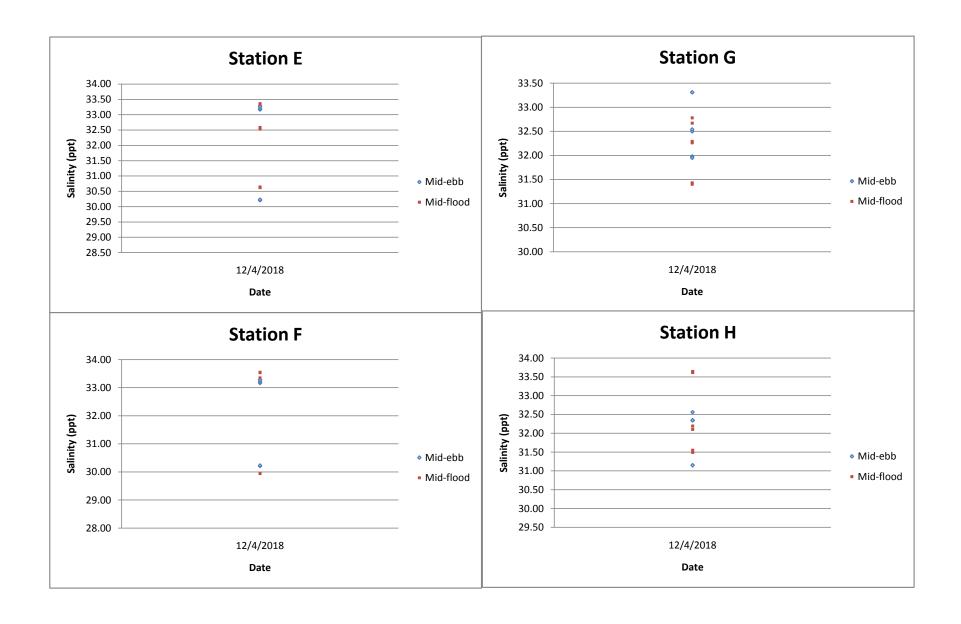
#### Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

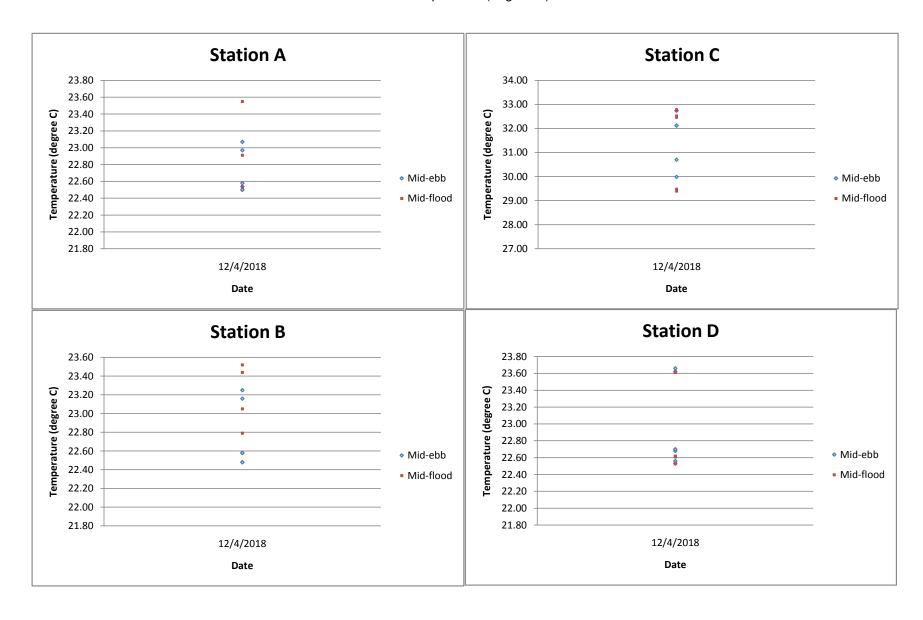
| Matrix: WATER           |                                  |                                     |                |               | Matrix Sp. | ike (MS) and Matri | ix Spike Duplic | ate (MSD) Re | port  |                  |
|-------------------------|----------------------------------|-------------------------------------|----------------|---------------|------------|--------------------|-----------------|--------------|-------|------------------|
|                         |                                  |                                     |                | Spike         | Spike Re   | ecovery (%)        | Recovery        | Limits (%)   | RPL   | D (%)            |
| Laboratory<br>sample ID | Client sample ID                 | Method: Compound                    | CAS Number     | Concentration | MS         | MSD                | Low             | High         | Value | Control<br>Limit |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | ot: 1565878)                        |                |               |            |                    |                 |              |       |                  |
| HK1824746-00            | 1 A/S/E                          | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 90.1       |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | ot: 1565879)                        |                |               |            |                    |                 |              |       |                  |
| HK1824746-00            | 1 A/S/E                          | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 98.0       |                    | 75              | 125          |       | 25               |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565880)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-02            | 1 D/M/E                          | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 100        |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565881)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-02            | 1 D/M/E                          | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 100        |                    | 75              | 125          |       | 25               |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565882)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-04            | 1 G/B/E                          | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 106        |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | ot: 1565883)                        |                |               |            |                    |                 |              |       |                  |
| HK1824746-04            | 1 G/B/E                          | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 110        |                    | 75              | 125          |       | 25               |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565884)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-06            | 1 C/S/F                          | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 90.5       |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565885)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-06            | 1 C/S/F                          | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 99.2       |                    | 75              | 125          |       | 25               |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1565886)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-08            | 1 F/M/F                          | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 111        |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | ot: 1565887)                        |                |               |            |                    |                 |              |       |                  |
| HK1824746-08            | 1 F/M/F                          | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 102        |                    | 75              | 125          |       | 25               |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | ot: 1566374)                        |                |               |            |                    |                 |              |       |                  |
| HK1824746-00            | 1 A/S/E                          | EK057A: Nitrite as N                | 14797-65-      | 0.5 mg/L      | 100        |                    | 75              | 125          |       |                  |
|                         |                                  |                                     | 0              |               |            |                    |                 |              |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1566377)                       |                |               |            |                    |                 |              |       |                  |
| HK1824746-02            | 1 D/M/E                          | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.5 mg/L      | 105        |                    | 75              | 125          |       |                  |
| ED/EK: Inorgar          | nic Nonmetallic Parameters (QC L | _ot: 1566380)                       |                |               |            |                    |                 |              |       |                  |
|                         | 1 G/B/E                          |                                     |                |               |            |                    |                 |              |       |                  |

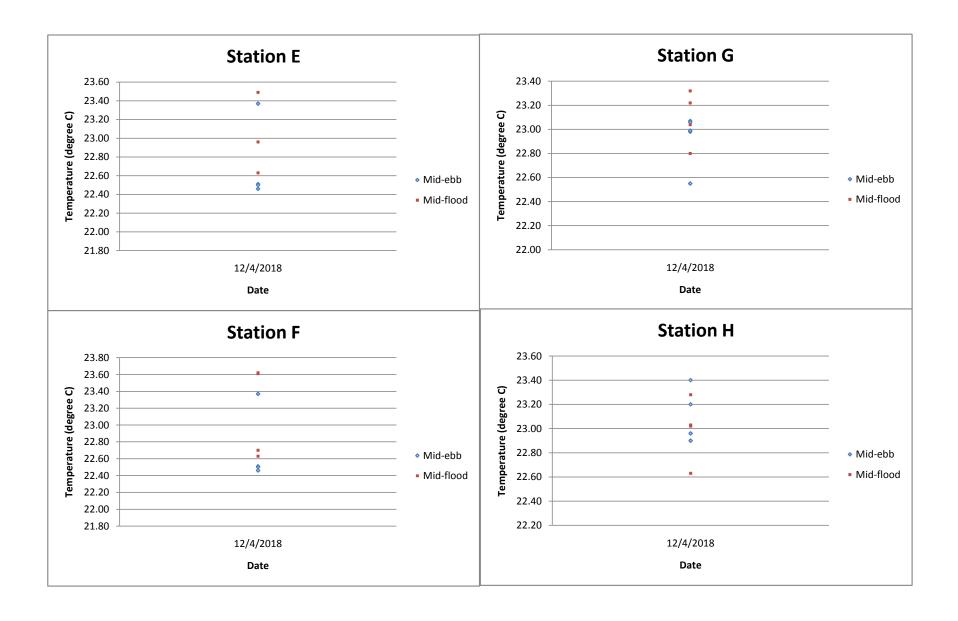

: 28 of 28

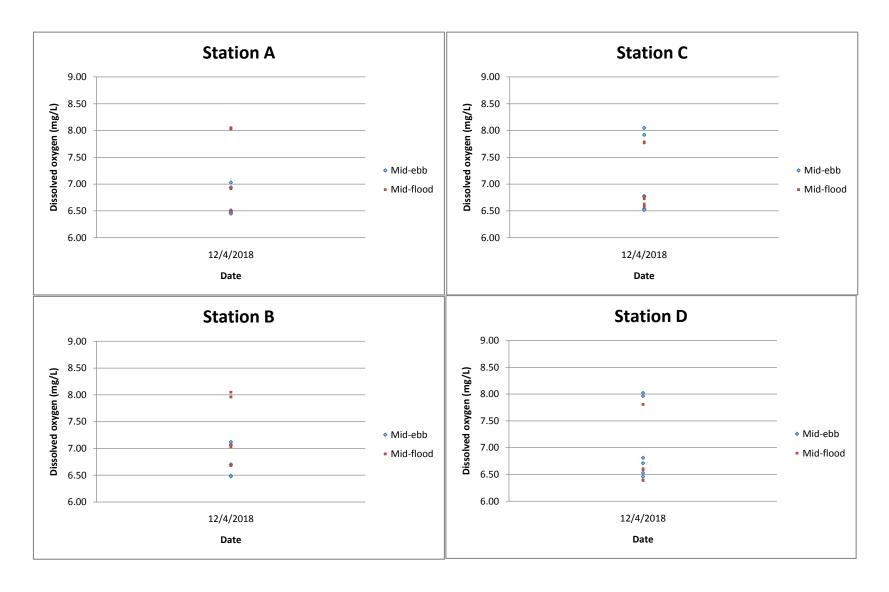

Client

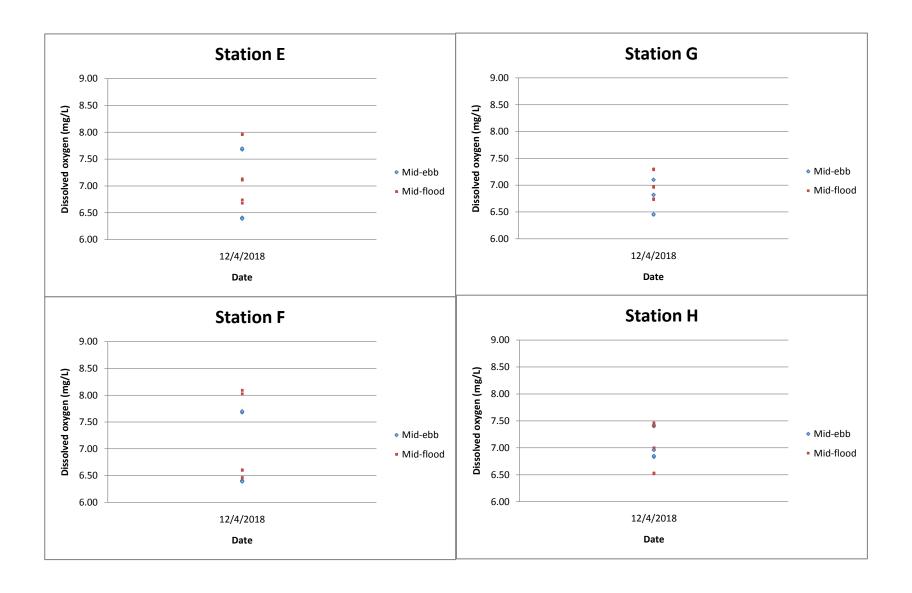

: MATERIALAB CONSULTANTS LIMITED

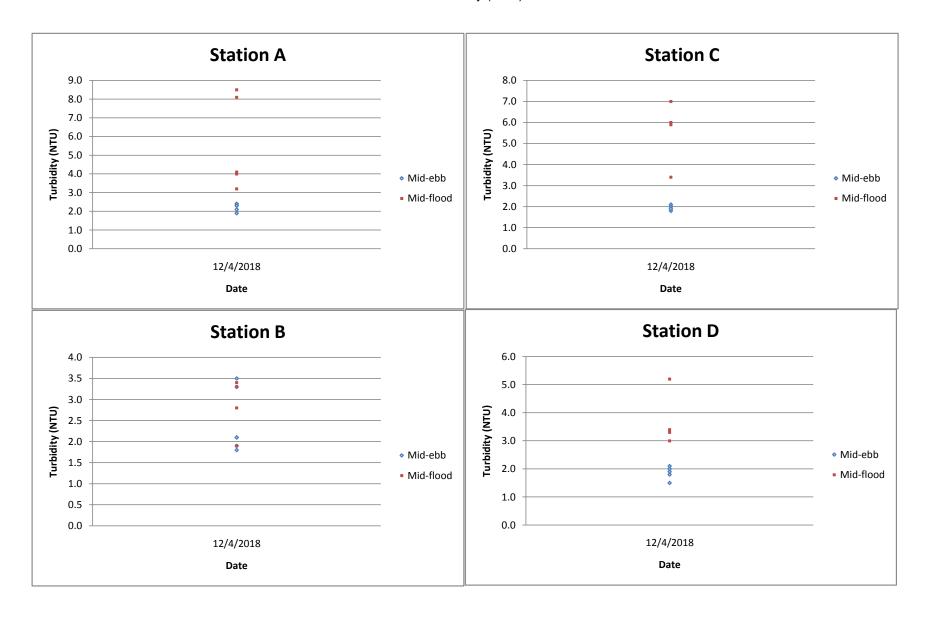


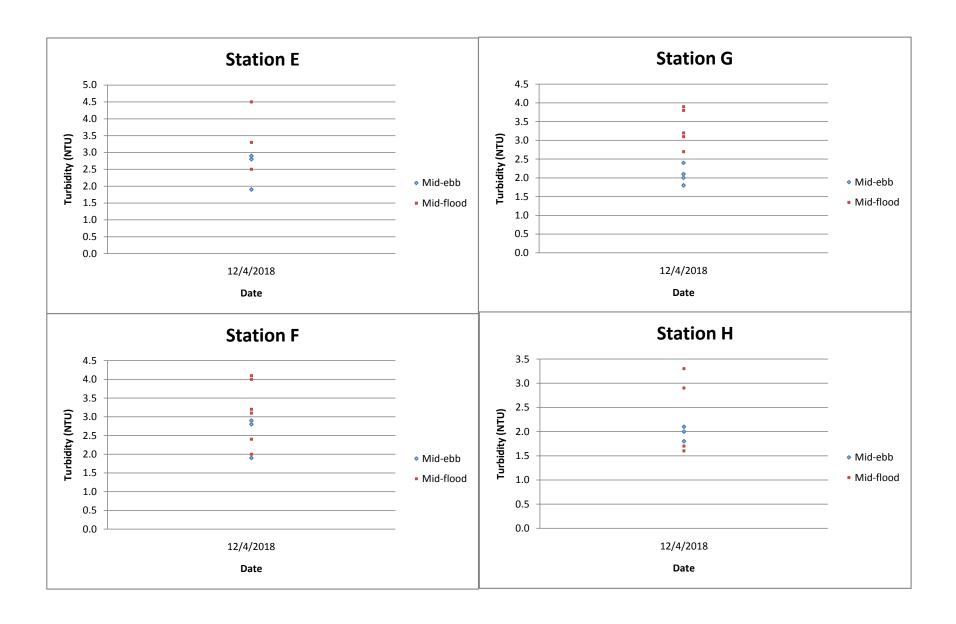


| Matrix: WATER           |                                       |                      |            | Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report |                    |     |                     |      |         |                  |
|-------------------------|---------------------------------------|----------------------|------------|-----------------------------------------------------------|--------------------|-----|---------------------|------|---------|------------------|
|                         |                                       |                      |            | Spike<br>Concentration                                    | Spike Recovery (%) |     | Recovery Limits (%) |      | RPD (%) |                  |
| Laboratory<br>sample ID | Client sample ID                      | Method: Compound     | CAS Number |                                                           | MS                 | MSD | Low                 | High | Value   | Control<br>Limit |
|                         |                                       |                      |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-041           | G/B/E                                 | EK057A: Nitrite as N | 14797-65-  | 0.5 mg/L                                                  | 90.6               |     | 75                  | 125  |         |                  |
|                         |                                       |                      | 0          |                                                           |                    |     |                     |      |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 66382)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-061           | C/S/F                                 | EK057A: Nitrite as N | 14797-65-  | 0.5 mg/L                                                  | 93.8               |     | 75                  | 125  |         |                  |
|                         |                                       |                      | 0          |                                                           |                    |     |                     |      |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 66385)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-081           | F/M/F                                 | EK057A: Nitrite as N | 14797-65-  | 0.5 mg/L                                                  | 97.4               |     | 75                  | 125  |         |                  |
|                         |                                       |                      | 0          |                                                           |                    |     |                     |      |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 67190)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-001           | A/S/E                                 | EK055A: Ammonia as N | 7664-41-7  | 0.5 mg/L                                                  | 99.1               |     | 75                  | 125  |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 67191)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-023           | D/B/E                                 | EK055A: Ammonia as N | 7664-41-7  | 0.5 mg/L                                                  | 103                |     | 75                  | 125  |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 67192)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-041           | G/B/E                                 | EK055A: Ammonia as N | 7664-41-7  | 0.5 mg/L                                                  | 107                |     | 75                  | 125  |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 67193)               |            | '                                                         |                    |     |                     |      |         |                  |
| HK1824746-063           | •                                     | EK055A: Ammonia as N | 7664-41-7  | 0.5 mg/L                                                  | 103                |     | 75                  | 125  |         |                  |
| ED/EK: Inorgan          | ic Nonmetallic Parameters (QC Lot: 15 | 67194)               |            |                                                           |                    |     |                     |      |         |                  |
| HK1824746-091           |                                       | EK055A: Ammonia as N | 7664-41-7  | 0.5 mg/L                                                  | 103                |     | 75                  | 125  |         |                  |

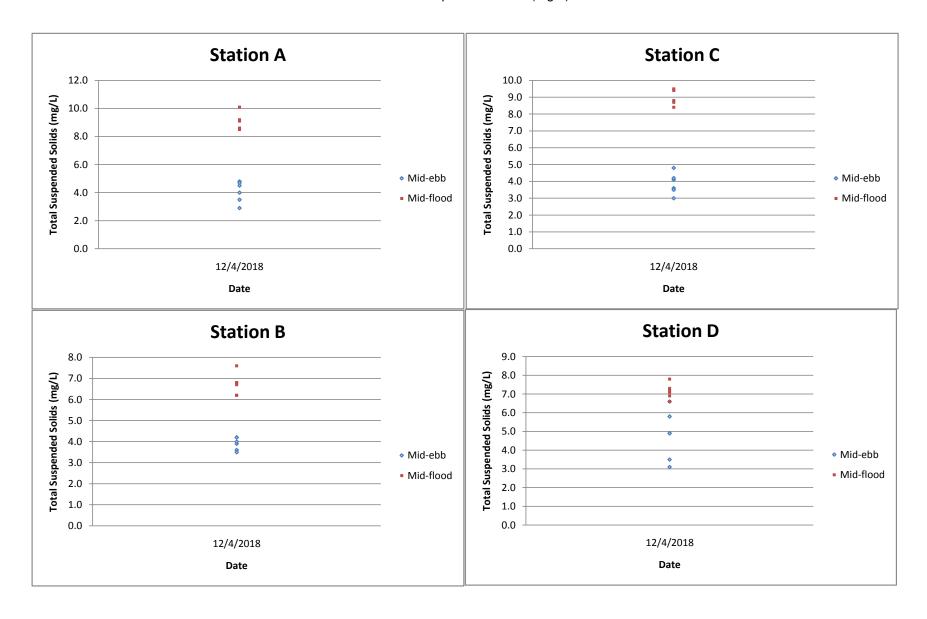


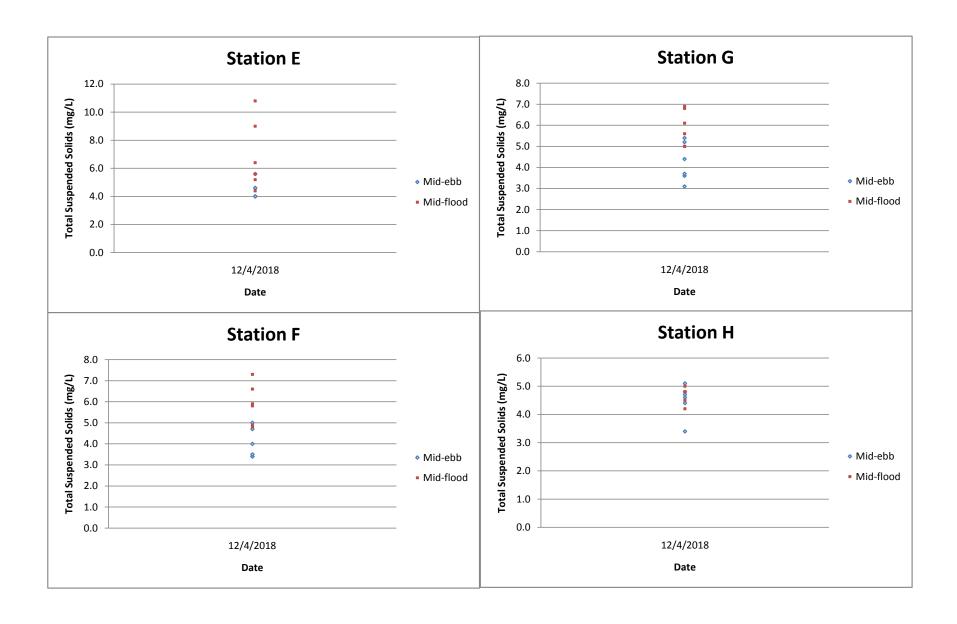



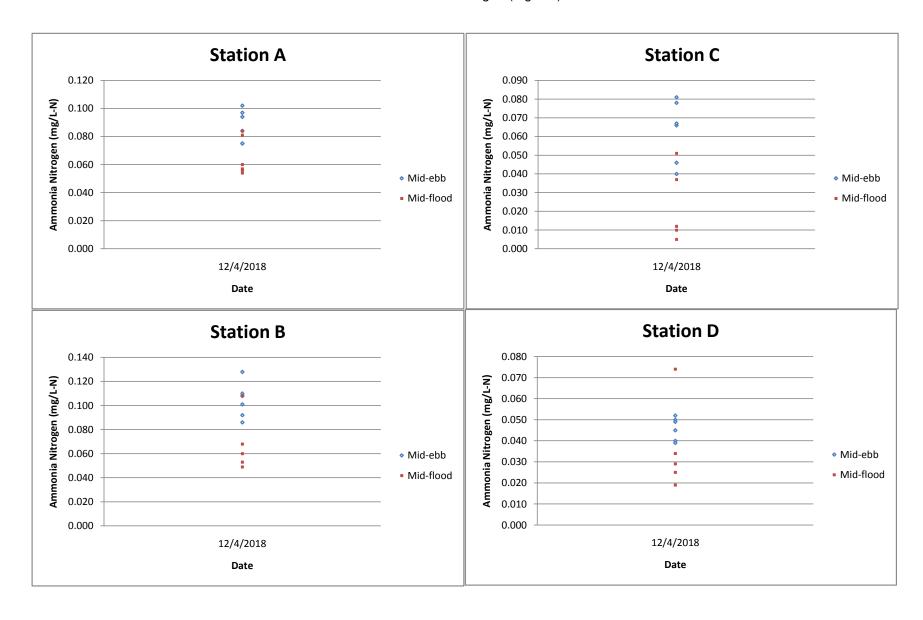



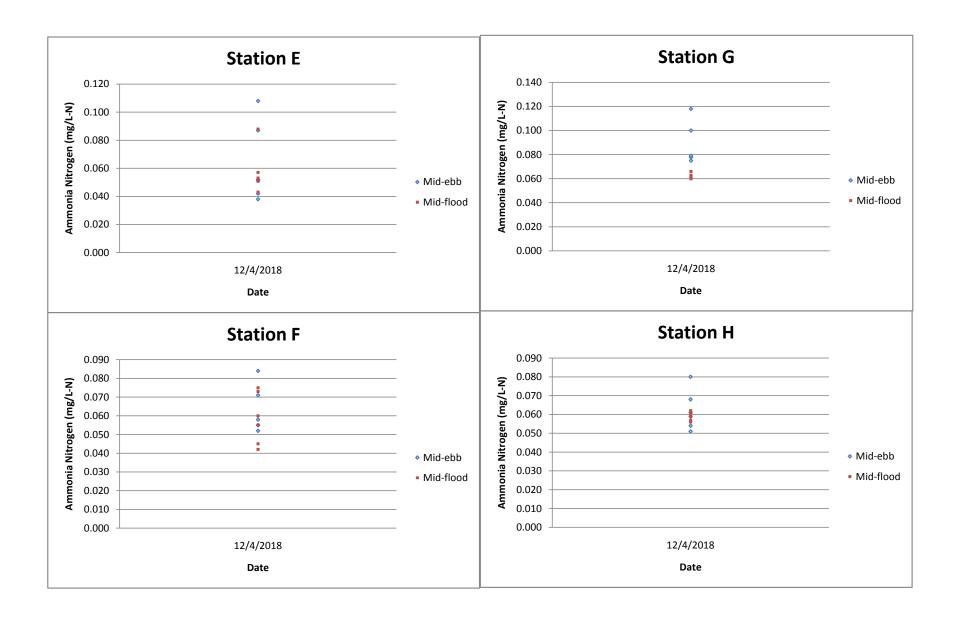



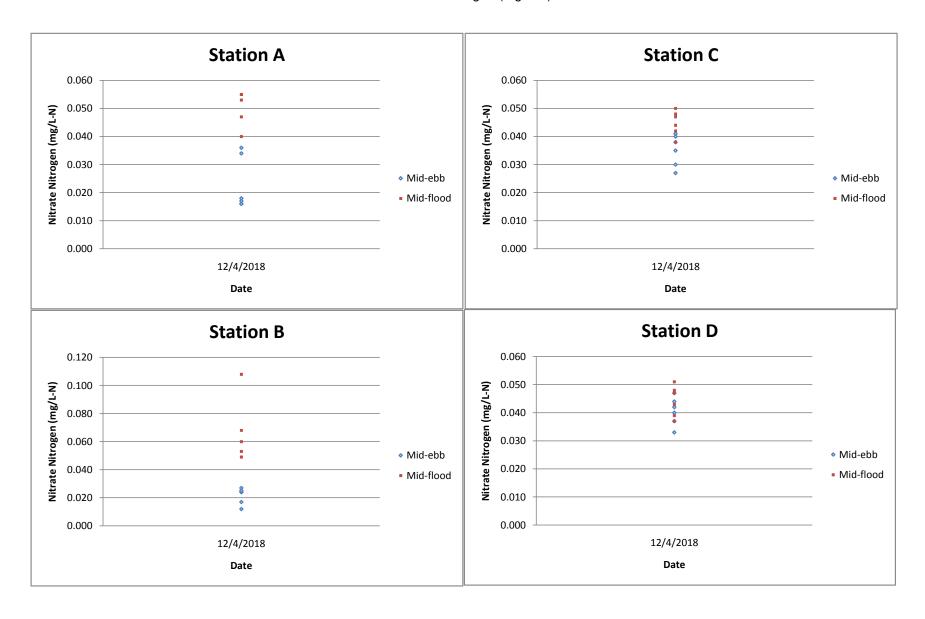



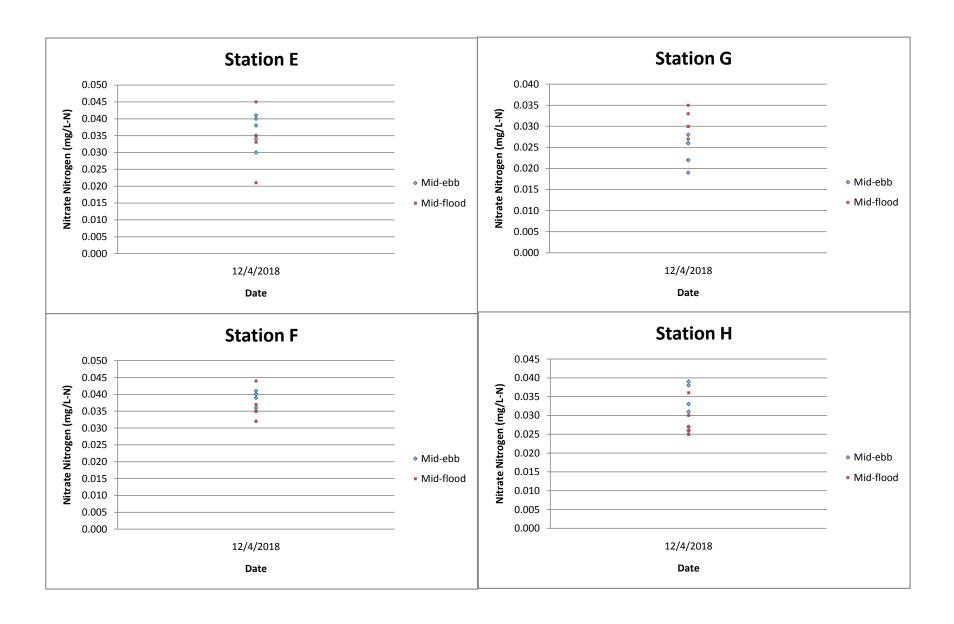



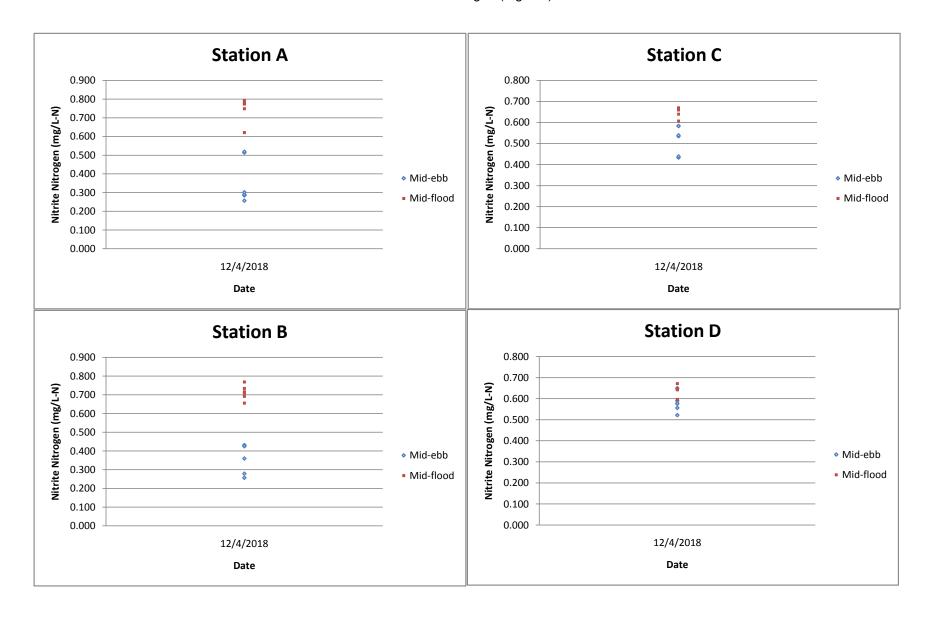



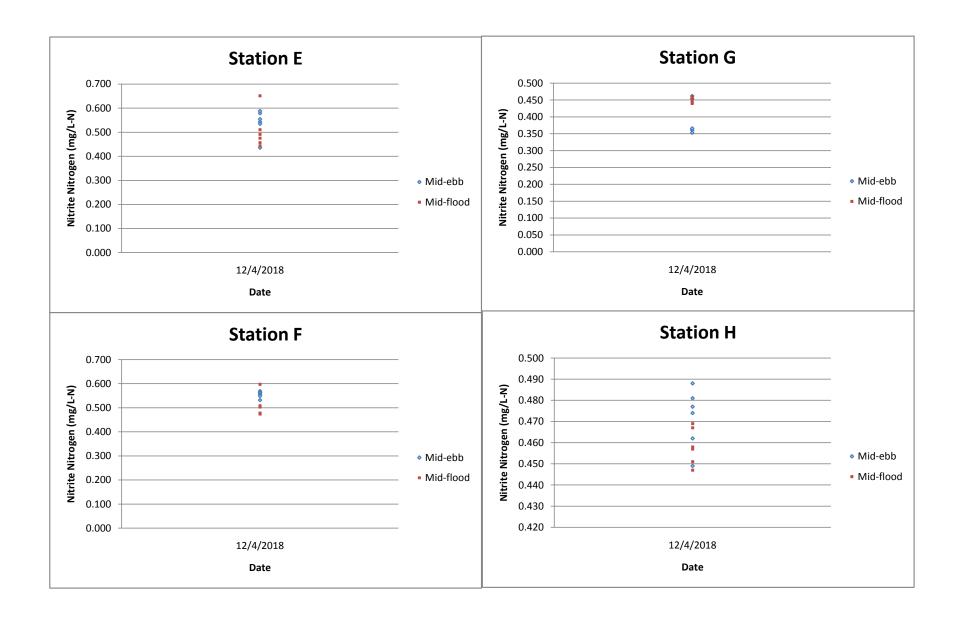



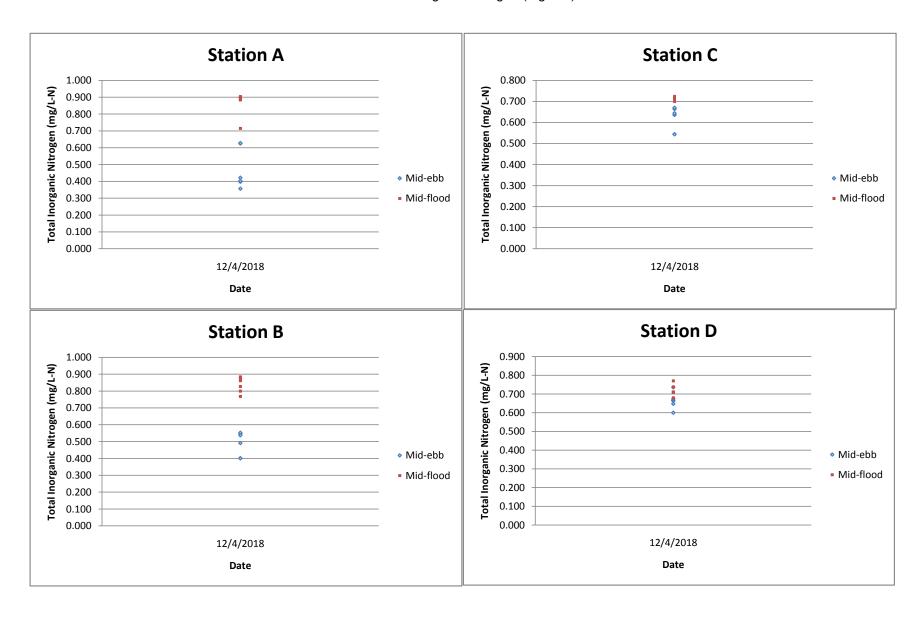



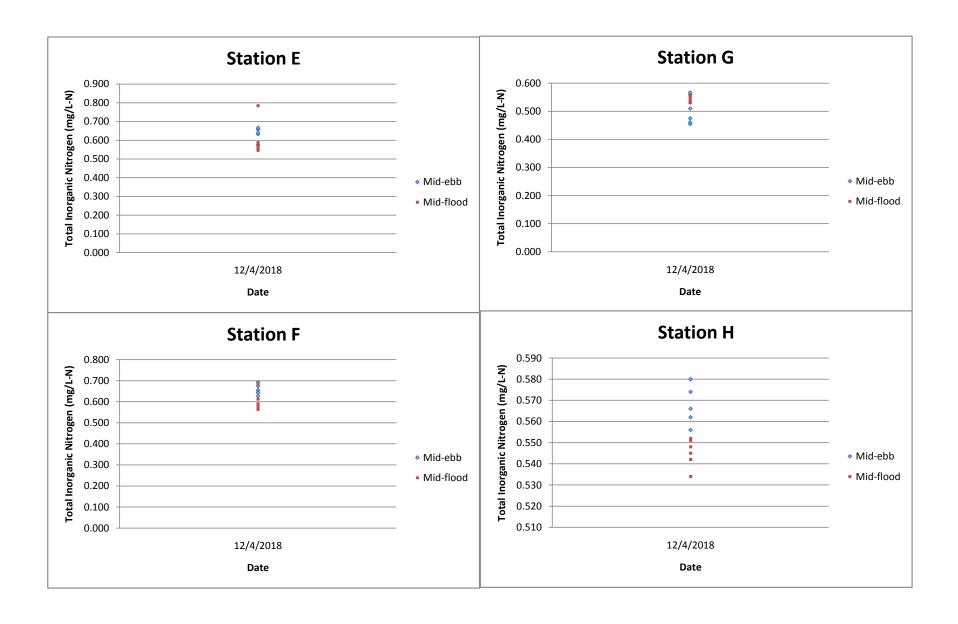



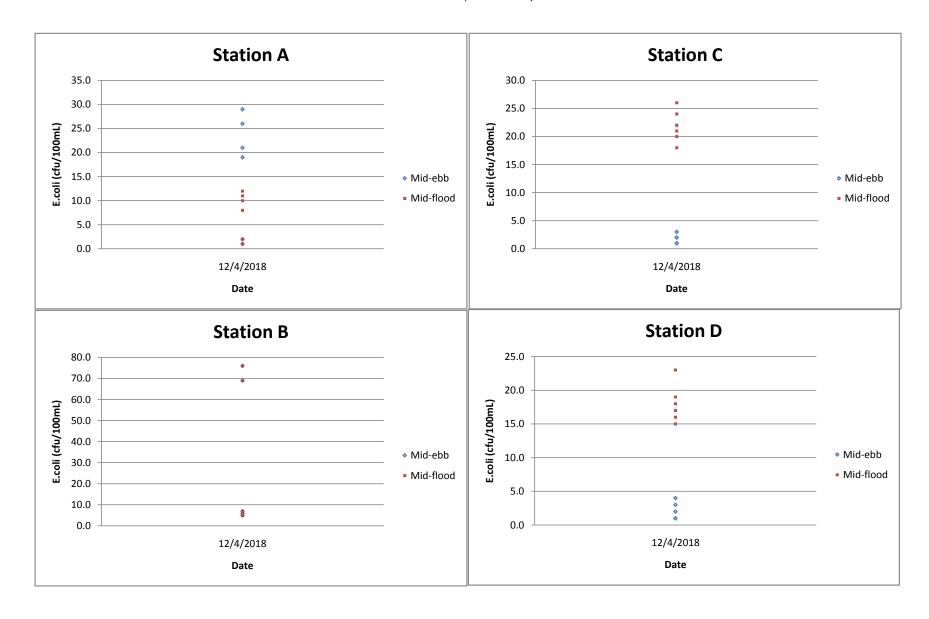



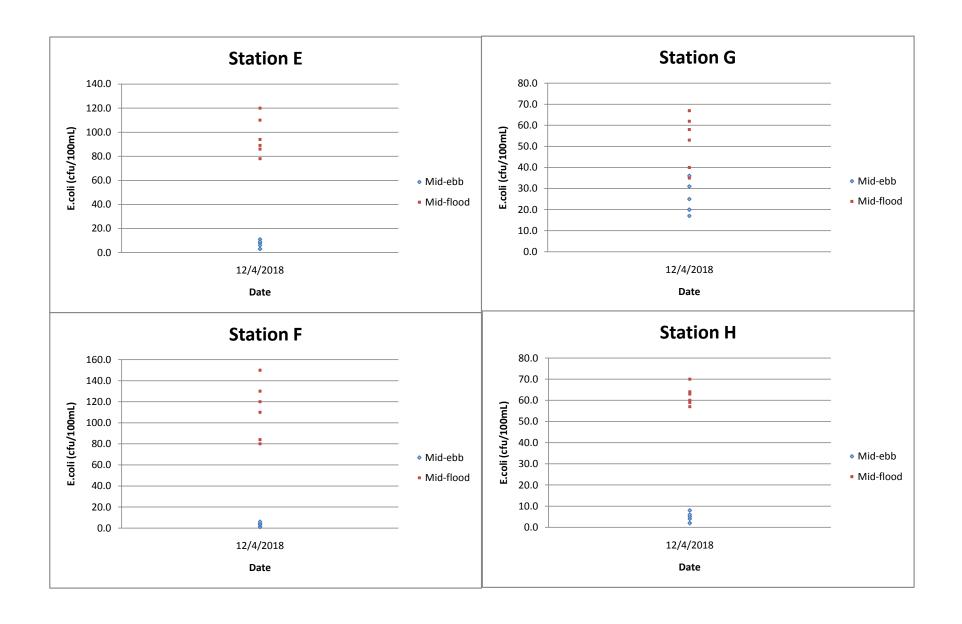



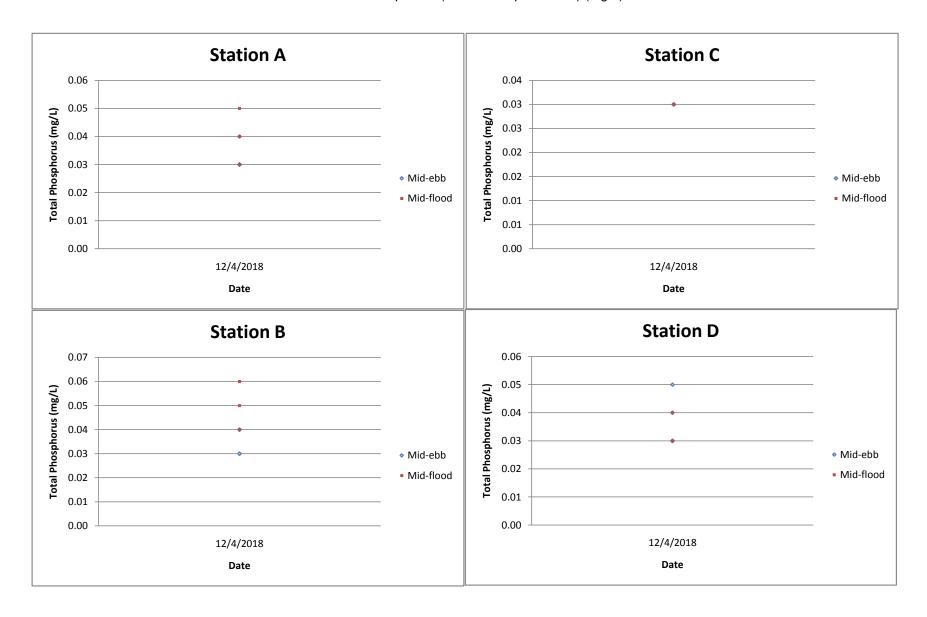



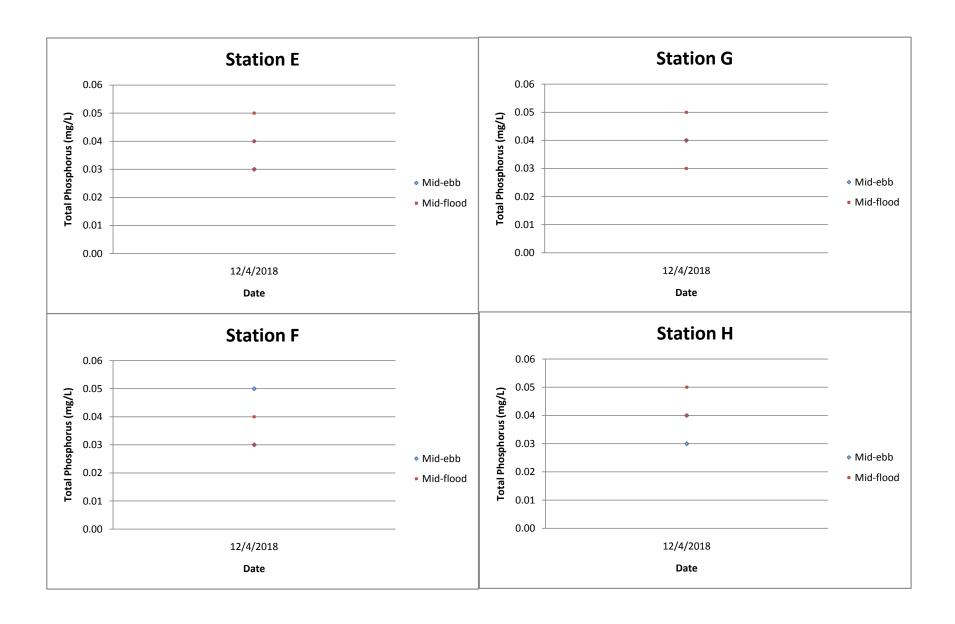



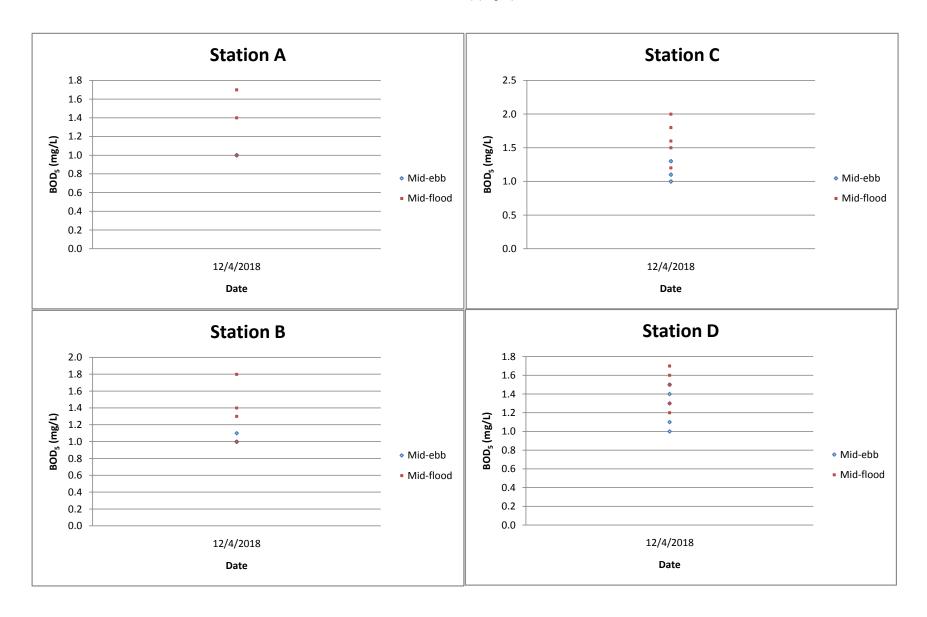



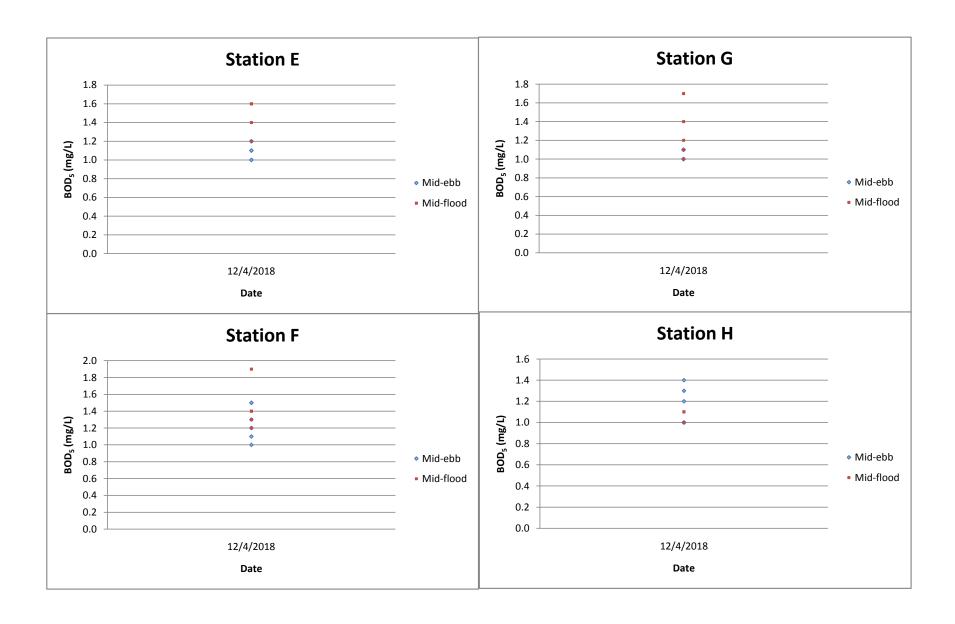














## **FUGRO TECHNICAL SERVICES LIMITED**

Tel

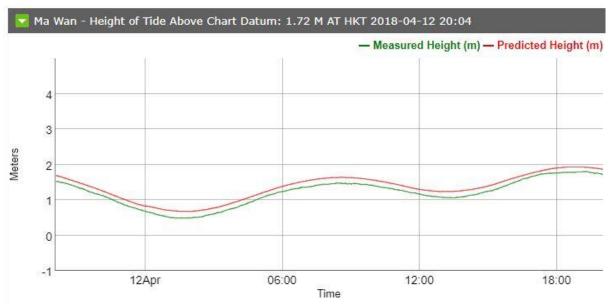
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Fax E-mail: matlab@fugro.com
Website: www.fugro.com



Report No.: 0041/17/ED/0302B

## Appendix H


Tidal Data obtained from Ma Wan Marine Traffic Station

## **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B



Source: Tidal Data is obtained from the tide gauge of Hydrographic Office of Marine Department

## **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

## Appendix I

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

|                        |           |         |                  |       |     |                            |                             |                               |                    |                     | Sediment Monitoring |                 |                    |                   |                 |                    |                   |
|------------------------|-----------|---------|------------------|-------|-----|----------------------------|-----------------------------|-------------------------------|--------------------|---------------------|---------------------|-----------------|--------------------|-------------------|-----------------|--------------------|-------------------|
| Monitoring<br>Location | Date      | Weather | Sea<br>Condition | Time  | pН  | Ammonia as N (mg-<br>N/kg) | Total Nitrogen<br>(mg-N/kg) | Total Phosphorus<br>(mg-P/kg) | Cadmium<br>(mg/kg) | Chromium<br>(mg/kg) | Copper<br>(mg/kg)   | Lead<br>(mg/kg) | Mercury<br>(mg/kg) | Nickel<br>(mg/kg) | Zinc<br>(mg/kg) | Arsenic<br>(mg/kg) | Silver<br>(mg/kg) |
| Α                      | 12/4/2018 | Cloudy  | Smooth           | 15:23 | 8.8 | 4                          | 500                         | 374                           | <0.10              | 25.0                | 23.2                | 25.7            | 0.07               | 15.7              | 75.3            | 18.6               | 0.20              |
| В                      | 12/4/2018 | Cloudy  | Smooth           | 15:07 | 8.7 | 8                          | 1170                        | 498                           | <0.10              | 40.0                | 39.1                | 36.2            | 0.12               | 25.5              | 115             | 12.9               | 0.40              |
| С                      | 12/4/2018 | Cloudy  | Smooth           | 14:46 | 8.5 | 10                         | 1120                        | 559                           | <0.10              | 42.8                | 37.5                | 39.2            | 0.12               | 27.0              | 119             | 13.1               | 0.30              |
| D                      | 12/4/2018 | Cloudy  | Smooth           | 14:33 | 8.8 | 3                          | 550                         | 272                           | <0.10              | 22.4                | 19.3                | 24.5            | 0.07               | 14.2              | 66.5            | 7.5                | 0.17              |
| E                      | 12/4/2018 | Cloudy  | Smooth           | 14:03 | 8.5 | 12                         | 1330                        | 584                           | <0.10              | 45.8                | 43.3                | 41.2            | 0.16               | 29.4              | 132             | 12.5               | 0.42              |
| F                      | 12/4/2018 | Cloudy  | Smooth           | 13:43 | 8.3 | 22                         | 1190                        | 571                           | <0.10              | 43.0                | 41.8                | 39.5            | 0.11               | 27.8              | 125             | 12.8               | 0.36              |
| G                      | 12/4/2018 | Cloudy  | Smooth           | 13:15 | 8.6 | 4                          | 860                         | 450                           | <0.10              | 32.9                | 41.8                | 33.5            | 0.11               | 20.6              | 104             | 9.7                | 0.30              |
| Н                      | 12/4/2018 | Cloudy  | Smooth           | 12:37 | 8.3 | 13                         | 1260                        | 528                           | <0.10              | 38.3                | 43.9                | 34.2            | 0.12               | 24.7              | 119             | 10.9               | 0.46              |

|                        |           |         |                  |       |                      |            | Benthic Survey |             |          |
|------------------------|-----------|---------|------------------|-------|----------------------|------------|----------------|-------------|----------|
| Monitoring<br>Location | Date      | Weather | Sea<br>Condition | Time  | Total Organic Carbon |            | Particle Size  | Distrbution |          |
| LUCATION               |           |         | Condition        |       | (%)                  | Gravel (%) | Sand (%)       | Silt (%)    | Clay (%) |
| Α                      | 12/4/2018 | Cloudy  | Smooth           | 15:23 | 0.80                 | 7          | 47             | 28          | 18       |
| В                      | 12/4/2018 | Cloudy  | Smooth           | 15:07 | 1.12                 | 0          | 15             | 49          | 36       |
| С                      | 12/4/2018 | Cloudy  | Smooth           | 14:46 | 1.00                 | 0          | 4              | 58          | 38       |
| D                      | 12/4/2018 | Cloudy  | Smooth           | 14:33 | 1.13                 | 0          | 9              | 58          | 33       |
| Е                      | 12/4/2018 | Cloudy  | Smooth           | 14:03 | 1.27                 | 0          | 6              | 57          | 37       |
| F                      | 12/4/2018 | Cloudy  | Smooth           | 13:43 | 1.21                 | 0          | 3              | 59          | 38       |
| G                      | 12/4/2018 | Cloudy  | Smooth           | 13:15 | 1.26                 | 7          | 15             | 50          | 28       |
| Н                      | 12/4/2018 | Cloudy  | Smooth           | 12:37 | 1.00                 | 6          | 20             | 47          | 27       |

## ALS Technichem (HK) Pty Ltd

## **ALS Laboratory Group**

**ANALYICAL CHEMISTRY & TESTING SERVICES** 



## CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 12

LIMITED

Contact : MR CYRUS LAI Contact : Elaine Cheung Work Order : HK1824751

Address : ROOM 723 & 725, 7/F, BLOCK B, PROFIT Address : 11/F., Chung Shun Knitting

INDUSTRIAL BUILDING, 1-15 KWAI FONG

Centre, 1 - 3 Wing Yip Street,

CRESCENT, Kwai Chung, N.T., Hong Kong

KWAI FONG, HONG KONG

E-mail : c.lai@fugro.com : elaine.cheung@alsglobal.com

Telephone : +852 3565 4374 Telephone : +852 2610 1044

Facsimile : --- Facsimile : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT Date Samples Received : 12-Apr-2018

FOR SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 Quote number : HKE/1654/2017\_R1 Issue Date : 30-Apr-2018

C-O-C number : --
No. of samples received : 24

Site : --
No. of samples analysed : 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics
Fung Lim Chee, Richard General Manager Metals

Page Number : 2 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1824751



## **General Comments**

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 12-Apr-2018 to 26-Apr-2018.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

### Specific Comments for Work Order: HK1824751

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

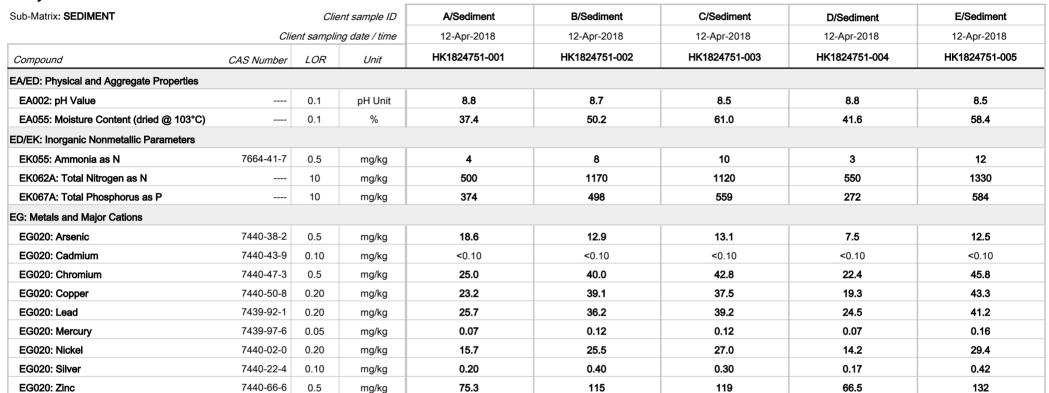
Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Soil sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

pH determined and reported on a 1:5 soil / water extract.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.


pH value is reported as at 25°C.

3 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1824751

## Analytical Results





4 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: <b>SEDIMENT</b>              |            | Clie        | ent sample ID  | F/Sediment    | G/Sediment    | H/Sediment    | A/Benthic Survey | B/Benthic Survey |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|------------------|------------------|
|                                          | Clie       | ent samplir | ng date / time | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018   | 12-Apr-2018      | 12-Apr-2018      |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824751-006 | HK1824751-007 | HK1824751-008 | HK1824751-009    | HK1824751-010    |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |                  |                  |
| EA002: pH Value                          |            | 0.1         | pH Unit        | 8.3           | 8.6           | 8.3           |                  |                  |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 63.2          | 49.5          | 52.3          | 43.7             | 54.0             |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |                  |                  |
| EK055: Ammonia as N                      | 7664-41-7  | 0.5         | mg/kg          | 22            | 4             | 13            |                  |                  |
| EK062A: Total Nitrogen as N              |            | 10          | mg/kg          | 1190          | 860           | 1260          |                  |                  |
| EK067A: Total Phosphorus as P            |            | 10          | mg/kg          | 571           | 450           | 528           |                  |                  |
| EG: Metals and Major Cations             |            |             |                |               |               |               |                  |                  |
| EG020: Arsenic                           | 7440-38-2  | 0.5         | mg/kg          | 12.8          | 9.7           | 10.9          |                  |                  |
| EG020: Cadmium                           | 7440-43-9  | 0.10        | mg/kg          | <0.10         | <0.10         | <0.10         |                  |                  |
| EG020: Chromium                          | 7440-47-3  | 0.5         | mg/kg          | 43.0          | 32.9          | 38.3          |                  |                  |
| EG020: Copper                            | 7440-50-8  | 0.20        | mg/kg          | 41.8          | 41.8          | 43.9          |                  |                  |
| EG020: Lead                              | 7439-92-1  | 0.20        | mg/kg          | 39.5          | 33.5          | 34.2          |                  |                  |
| EG020: Mercury                           | 7439-97-6  | 0.05        | mg/kg          | 0.11          | 0.11          | 0.12          |                  |                  |
| EG020: Nickel                            | 7440-02-0  | 0.20        | mg/kg          | 27.8          | 20.6          | 24.7          |                  |                  |
| EG020: Silver                            | 7440-22-4  | 0.10        | mg/kg          | 0.36          | 0.30          | 0.46          |                  |                  |
| EG020: Zinc                              | 7440-66-6  | 0.5         | mg/kg          | 125           | 104           | 119           |                  |                  |
| EP: Aggregate Organics                   |            |             |                |               |               |               |                  |                  |
| EP005: Total Organic Carbon              |            | 0.05        | %              |               |               |               | 0.80             | 1.12             |

Page Number : 5 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: <b>SEDIMENT</b>              |            | Clie        | ent sample ID  | C/Benthic Survey | D/Benthic Survey | E/Benthic Survey | F/Benthic Survey | G/Benthic Survey |
|------------------------------------------|------------|-------------|----------------|------------------|------------------|------------------|------------------|------------------|
|                                          | Cli        | ent samplir | ng date / time | 12-Apr-2018      | 12-Apr-2018      | 12-Apr-2018      | 12-Apr-2018      | 12-Apr-2018      |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824751-011    | HK1824751-012    | HK1824751-013    | HK1824751-014    | HK1824751-015    |
| EA/ED: Physical and Aggregate Properties |            |             |                |                  |                  |                  |                  |                  |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 61.2             | 59.2             | 58.8             | 60.2             | 56.5             |
| EP: Aggregate Organics                   |            |             |                |                  |                  |                  |                  |                  |
| EP005: Total Organic Carbon              |            | 0.05        | %              | 1.00             | 1.13             | 1.27             | 1.21             | 1.26             |

6 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: <b>SEDIMENT</b>              |            | Clie        | ent sample ID  | H/Benthic Survey | <br> | <br> |
|------------------------------------------|------------|-------------|----------------|------------------|------|------|
|                                          | Cli        | ent samplii | ng date / time | 12-Apr-2018      | <br> | <br> |
| Compound                                 | CAS Number | LOR         | Unit           | HK1824751-016    | <br> | <br> |
| EA/ED: Physical and Aggregate Properties |            |             |                |                  |      |      |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 51.6             | <br> | <br> |
| EP: Aggregate Organics                   |            |             |                |                  |      |      |
| EP005: Total Organic Carbon              |            | 0.05        | %              | 1.00             | <br> | <br> |

Page Number : 7 of 12
Client : FUGRO

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                    |            | Clie        | ent sample ID  | A/Rinsate Blank | B/Rinsate Blank | C/Rinsate Blank | D/Rinsate Blank | E/Rinsate Blank |
|--------------------------------------|------------|-------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                      | Clie       | ent samplii | ng date / time | 12-Apr-2018     | 12-Apr-2018     | 12-Apr-2018     | 12-Apr-2018     | 12-Apr-2018     |
| Compound                             | CAS Number | LOR         | Unit           | HK1824751-017   | HK1824751-018   | HK1824751-019   | HK1824751-020   | HK1824751-021   |
| EG: Metals and Major Cations - Total |            |             |                |                 |                 |                 |                 |                 |
| EG020: Arsenic                       | 7440-38-2  | 10          | μg/L           | <10             | <10             | <10             | <10             | <10             |
| EG020: Cadmium                       | 7440-43-9  | 0.2         | μg/L           | <0.2            | <0.2            | <0.2            | <0.2            | <0.2            |
| EG020: Chromium                      | 7440-47-3  | 1           | μg/L           | <1              | 2               | 2               | <1              | <1              |
| EG020: Copper                        | 7440-50-8  | 1           | μg/L           | 1               | 2               | 2               | <1              | <1              |
| EG020: Lead                          | 7439-92-1  | 1           | μg/L           | <1              | 2               | 1               | <1              | <1              |
| EG020: Mercury                       | 7439-97-6  | 0.5         | μg/L           | <0.5            | <0.5            | <0.5            | <0.5            | <0.5            |
| EG020: Nickel                        | 7440-02-0  | 1           | μg/L           | 2               | 2               | 2               | 2               | 2               |
| EG020: Silver                        | 7440-22-4  | 1           | μg/L           | <1              | <1              | <1              | <1              | <1              |
| EG020: Zinc                          | 7440-66-6  | 10          | μg/L           | <10             | <10             | <10             | <10             | <10             |

∴ 8 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                    |            | Clie        | ent sample ID  | F/Rinsate Blank | G/Rinsate Blank | H/Rinsate Blank | <br> |
|--------------------------------------|------------|-------------|----------------|-----------------|-----------------|-----------------|------|
|                                      | Clie       | ent samplii | ng date / time | 12-Apr-2018     | 12-Apr-2018     | 12-Apr-2018     | <br> |
| Compound                             | CAS Number | LOR         | Unit           | HK1824751-022   | HK1824751-023   | HK1824751-024   | <br> |
| EG: Metals and Major Cations - Total |            |             |                |                 |                 |                 |      |
| EG020: Arsenic                       | 7440-38-2  | 10          | μg/L           | <10             | <10             | <10             | <br> |
| EG020: Cadmium                       | 7440-43-9  | 0.2         | μg/L           | <0.2            | <0.2            | <0.2            | <br> |
| EG020: Chromium                      | 7440-47-3  | 1           | μg/L           | 1               | 2               | <1              | <br> |
| EG020: Copper                        | 7440-50-8  | 1           | μg/L           | 2               | 2               | <1              | <br> |
| EG020: Lead                          | 7439-92-1  | 1           | μg/L           | 1               | 2               | <1              | <br> |
| EG020: Mercury                       | 7439-97-6  | 0.5         | μg/L           | <0.5            | <0.5            | <0.5            | <br> |
| EG020: Nickel                        | 7440-02-0  | 1           | μg/L           | 2               | 2               | 1               | <br> |
| EG020: Silver                        | 7440-22-4  | 1           | μg/L           | <1              | <1              | <1              | <br> |
| EG020: Zinc                          | 7440-66-6  | 10          | μg/L           | <10             | <10             | <10             | <br> |

9 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1824751

## ALS

## Laboratory Duplicate (DUP) Report

| Matrix: SOIL            |                               |                                         |            |      | Labo    | oratory Duplicate (DUP) | Report              |                |
|-------------------------|-------------------------------|-----------------------------------------|------------|------|---------|-------------------------|---------------------|----------------|
| Laboratory<br>sample ID | Client sample ID              | Method: Compound                        | CAS Number | LOR  | Unit    | Original Result         | Duplicate<br>Result | <i>RPD</i> (%) |
| EA/ED: Physical and Ac  | ggregate Properties (QC Lot   | : 1572819)                              |            |      |         |                         |                     |                |
| HK1824751-001           | A/Sediment                    | EA055: Moisture Content (dried @ 103°C) |            | 0.1  | %       | 37.4                    | 37.0                | 1.11           |
| HK1824751-011           | C/Benthic Survey              | EA055: Moisture Content (dried @ 103°C) |            | 0.1  | %       | 61.2                    | 60.7                | 0.809          |
| EA/ED: Physical and Ac  | gregate Properties (QC Lot    | : 1573147)                              |            |      |         |                         |                     |                |
| HK1824751-001           | A/Sediment                    | EA002: pH Value                         |            | 0.1  | pH Unit | 8.8                     | 8.8                 | 0.00           |
| ED/EK: Inorganic Nonm   | netallic Parameters (QC Lot:  | 1576181)                                |            |      |         |                         |                     |                |
| HK1824751-001           | A/Sediment                    | EK067A: Total Phosphorus as P           |            | 20   | mg/kg   | 374                     | 355                 | 5.26           |
| ED/EK: Inorganic Nonm   | netallic Parameters (QC Lot:  | 1577650)                                |            |      |         |                         |                     |                |
| HK1824751-001           | A/Sediment                    | EK055: Ammonia as N                     | 7664-41-7  | 1    | mg/kg   | 4                       | 4                   | 0.00           |
| EG: Metals and Major C  | Cations (QC Lot: 1569178)     |                                         |            |      |         |                         |                     |                |
| HK1824751-002           | B/Sediment                    | EG020: Cadmium                          | 7440-43-9  | 0.01 | mg/kg   | <0.10                   | <0.10               | 0.00           |
|                         |                               | EG020: Mercury                          | 7439-97-6  | 0.02 | mg/kg   | 0.12                    | 0.12                | 0.00           |
|                         |                               | EG020: Copper                           | 7440-50-8  | 0.05 | mg/kg   | 39.1                    | 37.8                | 3.36           |
|                         |                               | EG020: Lead                             | 7439-92-1  | 0.05 | mg/kg   | 36.2                    | 36.4                | 0.576          |
|                         |                               | EG020: Nickel                           | 7440-02-0  | 0.05 | mg/kg   | 25.5                    | 24.6                | 3.70           |
|                         |                               | EG020: Silver                           | 7440-22-4  | 0.05 | mg/kg   | 0.40                    | 0.38                | 4.32           |
|                         |                               | EG020: Arsenic                          | 7440-38-2  | 0.5  | mg/kg   | 12.9                    | 12.6                | 2.06           |
|                         |                               | EG020: Chromium                         | 7440-47-3  | 0.5  | mg/kg   | 40.0                    | 38.7                | 3.20           |
|                         |                               | EG020: Zinc                             | 7440-66-6  | 0.5  | mg/kg   | 115                     | 114                 | 1.39           |
| EP: Aggregate Organica  | s (QC Lot: 1587105)           |                                         |            |      |         |                         |                     |                |
| HK1824751-010           | B/Benthic Survey              | EP005: Total Organic Carbon             |            | 0.05 | %       | 1.12                    | 1.06                | 6.12           |
| HK1825143-003           | Anonymous                     | EP005: Total Organic Carbon             |            | 0.05 | %       | 4.74                    | 4.98                | 4.95           |
| Matrix: WATER           |                               |                                         |            |      | Labo    | oratory Duplicate (DUP) | Report              |                |
| Laboratory<br>sample ID | Client sample ID              | Method: Compound                        | CAS Number | LOR  | Unit    | Original Result         | Duplicate  Result   | RPD (%)        |
| EG: Metals and Major C  | Cations - Total (QC Lot: 1569 | 9204)                                   |            |      |         |                         |                     |                |
| HK1824751-018           | B/Rinsate Blank               | EG020: Cadmium                          | 7440-43-9  | 0.2  | μg/L    | <0.2                    | <0.2                | 0.00           |
|                         |                               | EG020: Mercury                          | 7439-97-6  | 0.5  | μg/L    | <0.5                    | <0.5                | 0.00           |
|                         |                               | EG020: Chromium                         | 7440-47-3  | 1    | μg/L    | 2                       | 2                   | 0.00           |
|                         |                               | EG020: Copper                           | 7440-50-8  | 1    | μg/L    | 2                       | 2                   | 0.00           |
|                         |                               | EG020: Lead                             | 7439-92-1  | 1    | μg/L    | 2                       | 2                   | 0.00           |

: 10 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1824751



| Matrix: WATER           |                                   |                  |            |     | Laboratory Duplicate (DUP) Report |                 |           |         |  |  |
|-------------------------|-----------------------------------|------------------|------------|-----|-----------------------------------|-----------------|-----------|---------|--|--|
| Laboratory              | Client sample ID                  | Method: Compound | CAS Number | LOR | Unit                              | Original Result | Duplicate | RPD (%) |  |  |
| sample ID               |                                   |                  |            |     |                                   |                 | Result    |         |  |  |
| EG: Metals and Major Ca | tions - Total (QC Lot: 1569204) - | Continued        |            |     |                                   |                 |           |         |  |  |
| HK1824751-018           | B/Rinsate Blank                   | EG020: Nickel    | 7440-02-0  | 1   | μg/L                              | 2               | 2         | 0.00    |  |  |
|                         |                                   | EG020: Silver    | 7440-22-4  | 1   | μg/L                              | <1              | <1        | 0.00    |  |  |
|                         |                                   | EG020: Arsenic   | 7440-38-2  | 10  | μg/L                              | <10             | <10       | 0.00    |  |  |
|                         |                                   | EG020: Zinc      | 7440-66-6  | 10  | μg/L                              | <10             | <10       | 0.00    |  |  |

## Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

| Matrix: SOIL                                  |              |      | Method Blank (MB) | ) Report |               | Laboratory Cont | rol Spike (LCS) and Lab | oratory Control S | pike Duplicate (L | OCS) Report |                  |
|-----------------------------------------------|--------------|------|-------------------|----------|---------------|-----------------|-------------------------|-------------------|-------------------|-------------|------------------|
|                                               |              |      |                   |          | Spike         | Spike Re        | ecovery (%)             | Recove            | ry Limits(%)      | RPI         | D (%)            |
| Method: Compound                              | CAS Number   | LOR  | Unit              | Result   | Concentration | LCS             | DCS                     | Low               | High              | Value       | Control<br>Limit |
| ED/EK: Inorganic Nonmetallic Parameters (QC L | ot: 1576181) |      |                   |          |               |                 |                         | ·                 |                   |             |                  |
| EK067A: Total Phosphorus as P                 |              | 20   | mg/kg             | <20      | 695 mg/kg     | 92.8            |                         | 85                | 115               |             |                  |
| ED/EK: Inorganic Nonmetallic Parameters (QC L | ot: 1577650) |      |                   |          |               |                 |                         |                   |                   |             |                  |
| EK055: Ammonia as N                           | 7664-41-7    | 1    | mg/kg             | <1       | 5 mg/kg       | 106             |                         | 85                | 119               |             |                  |
| EG: Metals and Major Cations (QC Lot: 1569178 | )            |      |                   |          |               |                 |                         |                   |                   |             |                  |
| EG020: Arsenic                                | 7440-38-2    | 0.5  | mg/kg             | <0.5     | 5 mg/kg       | 89.1            |                         | 85                | 115               |             |                  |
| EG020: Cadmium                                | 7440-43-9    | 0.01 | mg/kg             | <0.01    | 5 mg/kg       | 95.5            |                         | 85                | 115               |             |                  |
| EG020: Chromium                               | 7440-47-3    | 0.5  | mg/kg             | <0.5     | 5 mg/kg       | 95.7            |                         | 85                | 115               |             |                  |
| EG020: Copper                                 | 7440-50-8    | 0.05 | mg/kg             | <0.05    | 5 mg/kg       | 97.6            |                         | 85                | 115               |             |                  |
| EG020: Lead                                   | 7439-92-1    | 0.05 | mg/kg             | <0.05    | 5 mg/kg       | 107             |                         | 85                | 115               |             |                  |
| EG020: Mercury                                | 7439-97-6    | 0.02 | mg/kg             | <0.02    | 0.1 mg/kg     | 110             |                         | 85                | 115               |             |                  |
| EG020: Nickel                                 | 7440-02-0    | 0.05 | mg/kg             | <0.05    | 5 mg/kg       | 93.4            |                         | 85                | 115               |             |                  |
| EG020: Silver                                 | 7440-22-4    | 0.05 | mg/kg             | <0.05    | 5 mg/kg       | 103             |                         | 85                | 115               |             |                  |
| EG020: Zinc                                   | 7440-66-6    | 0.5  | mg/kg             | <0.5     | 5 mg/kg       | 98.6            |                         | 85                | 115               |             |                  |
| EP: Aggregate Organics (QC Lot: 1587105)      |              |      |                   |          |               |                 |                         |                   |                   |             |                  |
| EP005: Total Organic Carbon                   |              | 0.05 | %                 | <0.05    | 40 %          | 101             |                         | 88                | 110               |             |                  |
| Matrix: WATER                                 |              |      | Method Blank (MB) | ) Report |               | Laboratory Cont | rol Spike (LCS) and Lab | oratory Control S | oike Duplicate (L | DCS) Report |                  |
|                                               |              |      |                   |          | Spike         | Spike Re        | ecovery (%)             | Recove            | ry Limits(%)      | RPI         | D (%)            |
| Method: Compound                              | CAS Number   | LOR  | Unit              | Result   | Concentration | LCS             | DCS                     | Low               | High              | Value       | Control<br>Limit |

Page Number : 11 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED



| Matrix: WATER                              |                         |     | Method Blank (MB | 3) Report |               | Laboratory Conti   | rol Spike (LCS) and Labor | ratory Control S   | pike Duplicate ( | DCS) Report |         |
|--------------------------------------------|-------------------------|-----|------------------|-----------|---------------|--------------------|---------------------------|--------------------|------------------|-------------|---------|
|                                            |                         |     |                  |           | Spike         | Spike Recovery (%) |                           | Recovery Limits(%) |                  | RP          | D (%)   |
| Method: Compound                           | CAS Number              | LOR | Unit             | Result    | Concentration | LCS                | DCS                       | Low                | High             | Value       | Control |
|                                            |                         |     |                  |           |               |                    |                           |                    |                  |             | Limit   |
| EG: Metals and Major Cations - Total (QC L | ot: 1569204) - Continue | d   |                  |           |               |                    |                           |                    |                  |             |         |
| EG020: Arsenic                             | 7440-38-2               | 10  | μg/L             | <10       | 100 μg/L      | 91.7               |                           | 79                 | 109              |             |         |
| EG020: Cadmium                             | 7440-43-9               | 0.2 | μg/L             | <0.2      | 100 μg/L      | 94.4               |                           | 80                 | 106              |             |         |
| EG020: Chromium                            | 7440-47-3               | 1   | μg/L             | <1        | 100 μg/L      | 93.0               |                           | 77                 | 115              |             |         |
| EG020: Copper                              | 7440-50-8               | 1   | μg/L             | <1        | 100 μg/L      | 102                |                           | 77                 | 113              |             |         |
| EG020: Lead                                | 7439-92-1               | 1   | μg/L             | <1        | 100 μg/L      | 106                |                           | 80                 | 110              |             |         |
| EG020: Mercury                             | 7439-97-6               | 0.5 | μg/L             | <0.5      | 2 μg/L        | 99.4               |                           | 75                 | 121              |             |         |
| EG020: Nickel                              | 7440-02-0               | 1   | μg/L             | <1        | 100 μg/L      | 93.4               |                           | 78                 | 112              |             |         |
| EG020: Silver                              | 7440-22-4               | 1   | μg/L             | <1        | 100 μg/L      | 102                |                           | 78                 | 104              |             |         |
| EG020: Zinc                                | 7440-66-6               | 10  | μg/L             | <10       | 100 μg/L      | 93.1               |                           | 76                 | 114              |             |         |

: 12 of 12

Client : F

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1824751

## Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

| Matrix: SOIL            |                                |                             |            |               | Matrix Spil | ke (MS) and Matri | ix Spike Duplic | ate (MSD) Re | eport |                  |
|-------------------------|--------------------------------|-----------------------------|------------|---------------|-------------|-------------------|-----------------|--------------|-------|------------------|
|                         |                                |                             |            | Spike         | Spike Re    | covery (%)        | Recovery        | Limits (%)   | RPL   | 7(%)             |
| Laboratory<br>sample ID | Client sample ID               | Method: Compound            | CAS Number | Concentration | MS          | MSD               | Low             | High         | Value | Control<br>Limit |
| EG: Metals and          | Major Cations (QC Lot: 15691   | 78)                         |            |               | ,           |                   | •               |              |       |                  |
| HK1824751-001           | A/Sediment                     | EG020: Arsenic              | 7440-38-2  | 5 mg/kg       | 89.2        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Cadmium              | 7440-43-9  | 5 mg/kg       | 90.0        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Chromium             | 7440-47-3  | 5 mg/kg       | 79.8        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Copper               | 7440-50-8  | 5 mg/kg       | 88.4        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Lead                 | 7439-92-1  | 5 mg/kg       | 96.4        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Mercury              | 7439-97-6  | 0.1 mg/kg     | 80.4        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Nickel               | 7440-02-0  | 5 mg/kg       | 86.8        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Silver               | 7440-22-4  | 5 mg/kg       | 102         |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Zinc                 | 7440-66-6  | 5 mg/kg       | # Not       |                   | 75              | 125          |       |                  |
|                         |                                |                             |            |               | Determined  |                   |                 |              |       |                  |
| EP: Aggregate (         | Organics (QC Lot: 1587105)     | <u> </u>                    |            |               |             |                   |                 |              |       |                  |
| HK1825920-001           | Anonymous                      | EP005: Total Organic Carbon |            | 40 %          | 102         |                   | 75              | 125          |       |                  |
| Matrix: WATER           |                                |                             |            |               | Matrix Spil | ke (MS) and Matri | x Spike Duplic  | ate (MSD) Re | eport |                  |
|                         |                                |                             |            | Spike         | Spike Re    | covery (%)        | Recovery        | Limits (%)   | RPL   | 7(%)             |
| Laboratory<br>sample ID | Client sample ID               | Method: Compound            | CAS Number | Concentration | MS          | MSD               | Low             | High         | Value | Control<br>Limit |
| EG: Metals and          | Major Cations - Total (QC Lot: | 1569204)                    |            |               |             |                   |                 |              |       |                  |
| HK1824751-017           | A/Rinsate Blank                | EG020: Arsenic              | 7440-38-2  | 100 μg/L      | 98.3        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Cadmium              | 7440-43-9  | 100 μg/L      | 102         |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Chromium             | 7440-47-3  | 100 μg/L      | 89.2        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Copper               | 7440-50-8  | 100 μg/L      | 82.8        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Lead                 | 7439-92-1  | 100 μg/L      | 88.8        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Mercury              | 7439-97-6  | 2 μg/L        | 86.4        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Nickel               | 7440-02-0  | 100 μg/L      | 77.4        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Silver               | 7440-22-4  | 100 μg/L      | 97.1        |                   | 75              | 125          |       |                  |
|                         |                                | EG020: Zinc                 | 7440-66-6  | 100 μg/L      | 84.6        |                   | 75              | 125          |       |                  |



## ALS Technichem (HK) Pty Ltd

## ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES



## SUB-CONTRACTING REPORT

: MR CYRUS LAI CONTACT

HK1824751 WORK ORDER

CLIENT : FUGRO TECHNICAL SERVICES LIMITED

: ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, SUB-BATCH

: 12-APR-2018 DATE RECEIVED

1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG

DATE OF ISSUE : 27-APR-2018

: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR

NO. OF SAMPLES

: 24

OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR CLIENT ORDER

: 0041/17

SIU HO WAN SEWAGE TREATMENT PLANT

## General Comments

ADDRESS

**PROJECT** 

Sample(s) were received in chilled condition.

- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Soil sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- pH determined and reported on a 1:5 soil / water extract.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.

## Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

WORK ORDER SUB-BATCH : HK1824751

1

CLIENT PROJECT FUGRO TECHNICAL SERVICES LIMITED

' COLUMN TO SERVICE OF THE SERVICE O

CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE

TREATMENT PLANT



| ALS Lab       | Client's Sample ID | Sample   | Sample Date | External Lab Report No. |
|---------------|--------------------|----------|-------------|-------------------------|
| ID            |                    | Туре     |             |                         |
| HK1824751-001 | A/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-002 | B/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-003 | C/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-004 | D/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-005 | E/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-006 | F/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-007 | G/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-008 | H/Sediment         | SEDIMENT | 12-Apr-2018 |                         |
| HK1824751-009 | A/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-010 | B/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-011 | C/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-012 | D/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-013 | E/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-014 | F/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-015 | G/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-016 | H/Benthic Survey   | SEDIMENT | 12-Apr-2018 | J2999-272.30            |
| HK1824751-017 | A/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |
| HK1824751-018 | B/Rinsate Blank    | WATER    | 12-Apr-2018 | 1                       |
| HK1824751-019 | C/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |
| HK1824751-020 | D/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |
| HK1824751-021 | E/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |
| HK1824751-022 | F/Rinsate Blank    | WATER    | 12-Apr-2018 | 8                       |
| HK1824751-023 | G/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |
| HK1824751-024 | H/Rinsate Blank    | WATER    | 12-Apr-2018 |                         |

# SUMMARY OF SOIL CLASSIFICATION TEST RESULT TEST CERTIFICATE

GEOSPEC 3: 2001



Report No: J2999-272.30

Works Order No.: 272

Date: 16/04/2018

Job No.: J2999 Contract No.: Customer: ALS Technichem (HK) Pty Ltd

Project : -

Origin Sample Dark grey, slightly sandy SILT/CLAY with shell fragments Dark grey, slightly gravelly, slightly sandy SILT/CLAY Estimated Uncertainty - Refer the Individual Test Report. \* - Information provided by customer. - Refer the Individual Test Report; 26/04/2018 Dark grey, slightly gravelly, sandy SILT/CLAY Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A), Test 5.2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45/105°C ± 5°C (C) Dark grey, slightly sandy SILT/CLAY Description Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Date: with shell fragments with shell fragments Sampling History Gravel Sand Silt Clay 33 18 36 38 37 38 28 Particle Size Distribution 58 58 57 28 49 59 20 A.D. - Air Dried; O.D. - Oven Dried; W.S. - Wet Sieved; 15 47 15 6 9 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547 0 0 0 0 0 Deputy Laboratory Manager Method Test 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 H.P. - Hand Picked; - Moisture Content for A.L. Test Test Method in accordance with GEOSPEC3: 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7). Technology Centre Approved By:

Lau Wai Chrong Passing Preparation Method A.R. - As Received; N.P. - Non Plastic; Sieve Liquid Plastic Plasticity Liquidity 425 µm Test 8 Tf - To Follow on supplementary Report. Index Test 6.2 PT - Portable triple tube Sample; D - Small Disturbed Sample; Index Test 8 6.1 M - Mazier Sample; P - Piston Sample; Limit Limit Test % 6.1 Test % 6.1 △ Moisture Content (%) Depth (m) SPTL - SPT Split-Barrel Sample; LB - Large Disturbed Sample; Type Undisturbed Sample; Q Ω Ω Q Sample 1S - Insufficient Sample T K Lam BLK - Block Sample; HK1824751-015 G/Benthic Survey HK1824751-009 A/Benthic Survey HK1824751-011 C/Benthic Survey HK1824751-012 D/Benthic Survey HK1824751-013 E/Benthic Survey HK1824751-010 B/Benthic Survey HK1824751-014 F/Benthic Survey No. = 7 C Cammon Construction Ltd Sample ID Checked by: So. Symbols egend: Notes:

Form: GESS001 / Jun. 30, 13 / Issue 1 / Rev 3

## TEST CERTIFICATE SUMMARY OF SOIL CLASSIFICATION 7

SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3: 2001

Customer: ALS Technichem (HK) Pty Ltd

Project: -



Report No: J2999-272.30

Date: 16/04/2018 Works Order No.: 272 Job No.: J2999 Contract No.:

Origin Sample Dark grey, slightly gravelly, slightly sandy SILT/CLAY Estimated Uncertainty - Refer the Individual Test Report.

<sup>†</sup> - Information provided by customer. - Refer the Individual Test Report; 26/04/2018 Test Method in accordance with GEOSPEC 3: 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A). Test 5.2 Moisture Content at 105°C ± 5°C (B). Test 5.3 Comparative Moisture Content 45/105°C± 5°C (C) Description Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Date: with shell fragments Sampling History Clay (%) (%) (%) 27 Particle Size Distribution Gravel Sand Silt Percentage 47 O.D. - Oven Dried; W.S. - Wet Sieved; A.D. - Air Dried; 20 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547 Method (%) 9 Deputy Laboratory Manager Test 1,5,7 A.R. - As Received; H.P. - Hand Picked; - Moisture Content for A.L. Test. Test Method in accordance with GEOSPEC3: 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7). Approved By:

Lau Wai Cheong Technology Centre Passing Preparation Method N.P. - Non Plastic; Liquid Plastic Plasticity Liquidity 425µm Sieve Test % Tf - To Follow on supplementary Report. Index 6.2 Test PT - Portable triple tube Sample; D - Small Disturbed Sample; Limit Limit Index Test 6.1 % M - Mazier Sample; P - Piston Sample; Test % 6.1 6.1 Test %) Δ Moisture Content % Depth (m) SPTL - SPT Split-Barrel Sample; LB - Large Disturbed Sample; BLK - Block Sample; Type Undisturbed Sample; Sample 1S - Insufficient Sample; FK Lam HK1824751-016 H/Benthic Survey = V # = No. C Gammon Construction Ltd Sample ID No. Checked by Symbols: egend: Notes:

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

12999

Contract No. :

Report No. : J2999-272.30

Job No. Customer

Works Order No. Sample ID No.

: 272

Gammon

Project

: ALS Technichem (HK) Pty Ltd

: HK1824751-009

Sample No.

: A/Benthic Survey

Date Received: 16/04/2018

Sample Depth (m) Specimen Depth (m)

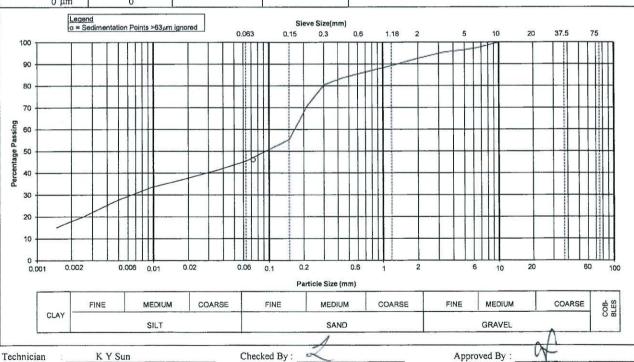
Tested Date : 18/04/2018

Sample Type

Small Disturbed

Description : Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A

\*Upon request

\* Delete as appropriate

<sup>‡</sup> Information provided by customer

| Sieve Method . Method | Λ                  | o poir request                | Defete as appropri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in i | nation provided by eas            | otornor .       |                |
|-----------------------|--------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|-----------------|----------------|
| SIEVE ANALYSIS        | Percent<br>Passing | *Expanded<br>Uncertainty      | *Cumulative<br>Percent Passing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEDIMENTATION<br>Specific Gravity (# i   | f assumed): 2.65 #                |                 | 380            |
| Sieve Size            | (%)                | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dispersant Details :<br>Sampling History | Sodium hexametapho<br>As received | sphate, Sodiun  | n carbonate    |
| 100.0 mm              | 100                | -                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The presence of any                      | visible organic matter            | in the soil: No | one            |
| 75.0 mm               | 100                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                   |                 |                |
| 63.0 mm               | 100                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Particle                                 | *Expanded                         | % Finer         | *Expanded      |
| 50.0 mm               | 100                | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diameter                                 | Uncertainty of the                | than D          | Uncertainty of |
| 37.5 mm               | 100                | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Particle Diameter                 | K               | % finer than D |
| 28.0 mm               | 100                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mm)                                     | (mm)                              | (%)             | (%)            |
| 20.0 mm               | 100                | -                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0724                                   | -                                 | 46              | -              |
| 14.0 mm               | 100                |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0515                                   | -                                 | 44              |                |
| 10.0 mm               | 100                | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0367                                   | -                                 | 42              | -              |
| 6.30 mm               | 97                 | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0261                                   |                                   | 39              |                |
| 5.00 mm               | 97                 |                               | A STATE OF THE STA | 0.0186                                   |                                   | 37              | -              |
| 3.35 mm               | 95                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0097                                   | -                                 | 34              |                |
| 2.00 mm               | 93                 |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0049                                   | ,                                 | 28              | -              |
| 1.18 mm               | 89                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0025                                   | -                                 | 20              |                |
| 600 µm                | 86                 |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0015                                   |                                   | 15              |                |
| 425 μm                | 84                 | *                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUMMARY :                                |                                   |                 |                |
| 300 μm                | 80                 | 1.                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gravel (%)                               | : 7                               |                 |                |
| 212 µm                | 71                 |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sand (%)                                 | : 47                              |                 |                |
| 150 µm                | 55                 | *                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silt (%)                                 | : 28                              |                 |                |
| 63 µm                 | 46                 |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clay (%)                                 | : 18                              |                 |                |
| 0 μm                  | 0                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27,032 8                                 |                                   |                 |                |



TK Lam

21/04/2018

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior

Name: Date:

written approval from this laboratory. @ Gammon Construction Ltd

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel: 26991980, Fax: 26917547

Lau Wai Cheong

21/04/2018

Signatory:

Date

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Job No. : ALS Technichem (HK) Pty Ltd Customer

Project

12999

Contract No. :

Expanded

Report No. : J2999-272.30

Works Order No.

: 272 HK1824751-010

Gammon

Sample ID No. Sample No.

B/Benthic Survey

Sample Depth (m)

Specimen Depth (m) Sample Type

Sample Origin

Small Disturbed

Sieve Method: Method A

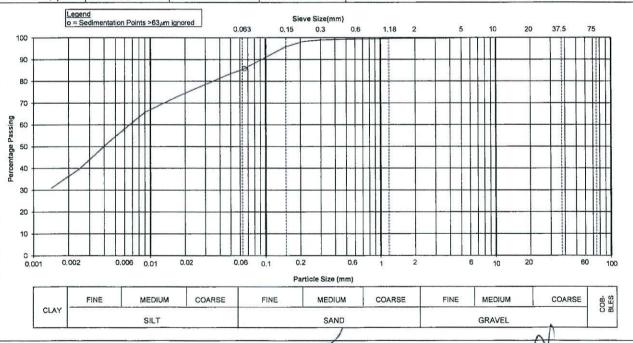
SIEVE ANALYSIS

Date Received: 16/04/2018

Tested Date : 18/04/2018

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments \*Upon request

Percent


\* Delete as appropriate Cumulative

<sup>‡</sup> Information provided by customer

SEDIMENTATION ANALYSIS 2.65 # Specific Gravity (# if assumed):

| Sieve Size | Passing<br>(%) | Uncertainty<br>of the Percent<br>Passing (%) | Percent Passing<br>with Expanded<br>Uncertainty (%) | Specific Gravity (# i<br>Dispersant Details :<br>Sampling History | Sodium hexametaphos                     |                 | ı carbonate    |
|------------|----------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-----------------|----------------|
| 100.0 mm   | 100            |                                              |                                                     | The presence of any                                               | visible organic matter                  | in the soil: No | one            |
| 75.0 mm    | 100            |                                              | -                                                   |                                                                   | 5-2                                     |                 | Anna Maria     |
| 63.0 mm    | 100            |                                              |                                                     | Particle                                                          | *Expanded                               | % Finer         | ^Expanded      |
| 50.0 mm    | 100            |                                              | -                                                   | Diameter                                                          | Uncertainty of the                      | than D          | Uncertainty of |
| 37.5 mm    | 100            |                                              |                                                     |                                                                   | Particle Diameter                       | K               | % finer than D |
| 28.0 mm    | 100            | -                                            | -                                                   | (mm)                                                              | (mm)                                    | (%)             | (%)            |
| 20.0 mm    | 100            |                                              |                                                     | 0.0655                                                            | - 1                                     | 86              | -              |
| 14.0 mm    | 100            |                                              | -                                                   | 0.0467                                                            | -                                       | 83              | -              |
| 10.0 mm    | 100            |                                              | -                                                   | 0.0334                                                            | -                                       | 80              |                |
| 6.30 mm    | 100            |                                              |                                                     | 0.0239                                                            | -                                       | 76              |                |
| 5.00 mm    | 100            |                                              | -                                                   | 0.0171                                                            |                                         | 73              |                |
| 3.35 mm    | 100            |                                              |                                                     | 0.0090                                                            |                                         | 66              |                |
| 2.00 mm    | 100            | •                                            | -                                                   | 0.0047                                                            |                                         | 53              | -              |
| 1.18 mm    | 100            |                                              |                                                     | 0.0024                                                            | -                                       | 40              | -              |
| 600 µm     | 99             |                                              | *                                                   | 0.0014                                                            | -                                       | 31              | -              |
| 425 µm     | 99             |                                              |                                                     | SUMMARY:                                                          | *************************************** |                 |                |
| 300 μm     | 99             |                                              |                                                     | Gravel (%)                                                        | : 0                                     |                 |                |
| 212 µm     | 98             |                                              | *                                                   | Sand (%)                                                          | : 15                                    |                 |                |
| 150 µm     | 96             |                                              | +                                                   | Silt (%)                                                          | : 49                                    |                 |                |

Clay (%) 63 µm 85 36



Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

K Y Sun

Checked By :

TK Lam Name

Approved By

Lau Wai Cheong

21/04/2018 Date :

Signatory : Date : 21/04/2018

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Contract No. :

: ALS Technichem (HK) Pty Ltd Customer

J2999

Project

Job No.

Date Received: 16/04/2018

Tested Date : 18/04/2018

Description Dark grey, slightly sandy SILT/CLAY with shell fragments Sieve Method: Method A

\*Upon request

\* Delete as appropriate

Gammon



Report No. : J2999-272.30

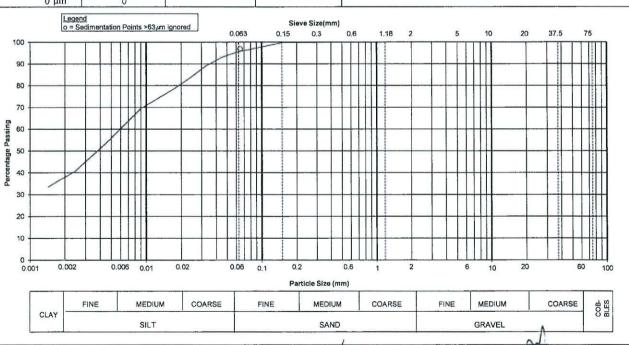
Works Order No. : 272

Sample ID No. : HK1824751-011

Sample No. C/Benthic Survey

Sample Depth (m)

Specimen Depth (m)


Sample Type

Small Disturbed

Sample Origin

<sup>‡</sup> Information provided by customer

| Sieve triction . triction |                    | open request                  | Defete as appropri               | 1111011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mation provided by ea.            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |
|---------------------------|--------------------|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|----------------|
| SIEVE ANALYSIS            | Percent<br>Passing | *Expanded Uncertainty         | *Cumulative<br>Percent Passing   | SEDIMENTATION<br>Specific Gravity (# i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | #                                       |                |
| Sieve Size                | (%)                | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%) | Dispersant Details :<br>Sampling History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sodium hexametapho<br>As received | sphate, Sodiun                          | carbonate      |
| 100.0 mm                  | 100                | -                             |                                  | The presence of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | visible organic matter            | in the soil: No                         | one            |
| 75.0 mm                   | 100                |                               |                                  | Name and the same |                                   |                                         |                |
| 63.0 mm                   | 100                | -                             |                                  | Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Expanded                          | % Finer                                 | *Expanded      |
| 50.0 mm                   | 100                |                               |                                  | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uncertainty of the                | than D                                  | Uncertainty o  |
| 37.5 mm                   | 100                | -                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Particle Diameter                 | K                                       | % finer than l |
| 28.0 mm                   | 100                | -                             |                                  | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm)                              | (%)                                     | (%)            |
| 20.0 mm                   | 100                | -                             | -                                | 0.0647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                 | 97                                      | *              |
| 14.0 mm                   | 100                |                               |                                  | 0.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 93                                      | -              |
| 10.0 mm                   | 100                |                               | -                                | 0,0331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 89                                      | -              |
| 6.30 mm                   | 100                |                               |                                  | 0.0238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                 | 84                                      | -              |
| 5.00 mm                   | 100                | -                             |                                  | 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                 | 78                                      | -              |
| 3.35 mm                   | 100                |                               |                                  | 0.0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 70                                      | -              |
| 2.00 mm                   | 100                |                               |                                  | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 55                                      | -              |
| 1.18 mm                   | 100                | -                             | -                                | 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 41                                      | -              |
| 600 μm                    | 100                |                               | -                                | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                 | 34                                      | -              |
| 425 μm                    | 100                |                               |                                  | SUMMARY :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                         |                |
| 300 μm                    | 100                |                               |                                  | Gravel (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 0                               |                                         |                |
| 212 μm                    | 100                |                               | -                                | Sand (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 4                               |                                         |                |
| 150 µm                    | 100                | -                             | -                                | Silt (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 58                              |                                         |                |
| 63 μm                     | 96                 | -                             | -                                | Clay (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 38                              |                                         |                |
| 0 μm                      | 0                  |                               |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                         |                |



Technician

Form : GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

K Y Sun

Checked By: TK Lam Name:

Approved By Signatory

Lau Wai Cheong 21/04/2018

Date: 21/04/2018 Date Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Contract No. :

Report No. : J2999-272.30

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 272 : HK1824751-012

Gammon

Project

Job No.

Sample ID No.

: J2999

Sample No.

: D/Benthic Survey

Date Received: 16/04/2018

Sample Depth (m) Specimen Depth (m)

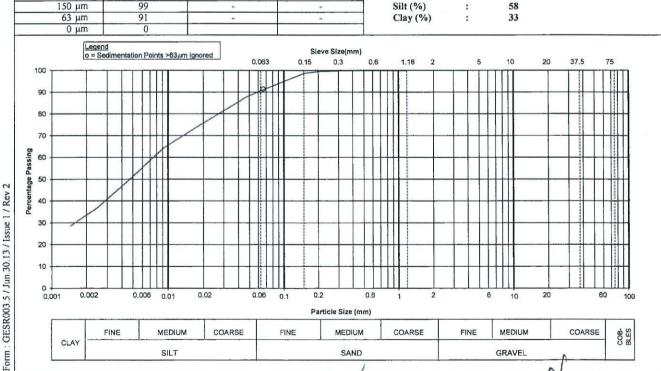
Tested Date : 18/04/2018

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Type

Small Disturbed

Sieve Method: Method A


\*Upon request

\* Delete as appropriate

Sample Origin <sup>‡</sup> Information provided by customer

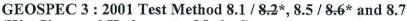
| SIEVE ANALYSIS | Percent<br>Passing | *Expanded<br>Uncertainty      | *Cumulative<br>Percent Passing   | SEDIMENTATION Specific Gravity (#      |                                                             | ¥               |             |
|----------------|--------------------|-------------------------------|----------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------|-------------|
| Sieve Size     | (%)                | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%) | Dispersant Details<br>Sampling History | <ul> <li>Sodium hexametapho</li> <li>As received</li> </ul> | sphate, Sodiun  | n carbonate |
| 100.0 mm       | 100                |                               |                                  | The presence of an                     | y visible organic matter                                    | in the soil: No | one         |
| 75.0 mm        | 100                |                               | -                                |                                        |                                                             |                 |             |
| 63.0 mm        | 100                | -                             | -                                | Particle                               | Expanded                                                    | % Finer         | *Expan      |
| 50.0 mm        | 100                |                               |                                  | Diameter                               | Uncertainty of the                                          | than D          | Uncertain   |

| A comm   | 100.0 mm | 100 |   |      | The presence of any | visible organic matter | in the soil: No | one                                     |
|----------|----------|-----|---|------|---------------------|------------------------|-----------------|-----------------------------------------|
|          | 75.0 mm  | 100 |   |      |                     |                        |                 |                                         |
| har at a | 63.0 mm  | 100 |   | -    | Particle            | Expanded               | % Finer         | *Expanded                               |
|          | 50.0 mm  | 100 |   |      | Diameter            | Uncertainty of the     | than D          | Uncertainty of                          |
|          | 37.5 mm  | 100 | - | -    |                     | Particle Diameter      | K               | % finer than D                          |
|          | 28.0 mm  | 100 |   | -    | (mm)                | (mm)                   | (%)             | (%)                                     |
|          | 20.0 mm  | 100 | 4 | -    | 0.0659              | -                      | 91              | -                                       |
|          | 14.0 mm  | 100 | - | -    | 0.0471              | *                      | 88              | -                                       |
|          | 10.0 mm  | 100 |   |      | 0.0338              | -                      | 83              |                                         |
|          | 6.30 mm  | 100 |   | -    | 0.0242              |                        | 78              | -                                       |
|          | 5.00 mm  | 100 | - | J-9. | 0.0173              | -                      | 74              |                                         |
|          | 3.35 mm  | 100 |   | -    | 0.0092              | -                      | 64              | -                                       |
|          | 2.00 mm  | 100 |   | -    | 0.0047              |                        | 50              |                                         |
|          | 1.18 mm  | 100 |   |      | 0.0025              | -                      | 37              |                                         |
|          | 600 µm   | 100 | - | -    | 0.0014              |                        | 29              | -                                       |
|          | 425 μm   | 100 |   | -    | SUMMARY :           | ·/·                    |                 | *************************************** |
|          | 300 µm   | 100 | * | -    | Gravel (%)          | : 0                    |                 |                                         |
|          | 212 µm   | 100 |   | -    | Sand (%)            | : 9                    |                 |                                         |
|          |          |     |   |      |                     |                        |                 |                                         |



Technician

K Y Sun


Checked By : Name : TK Lam Date: 21/04/2018 Approved By

Signatory : Lau Wai Cheong

Date: 21/04/2018

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

## PARTICLE SIZE DISTRIBUTION



(Wet Sieve and Hydrometer Method)

Report No. : J2999-272.30

12999 Job No. Contract No. : : ALS Technichem (HK) Pty Ltd Customer

Works Order No. : 272

Project 8 - Sample ID No.

: HK1824751-013

Gammon

Sample No.

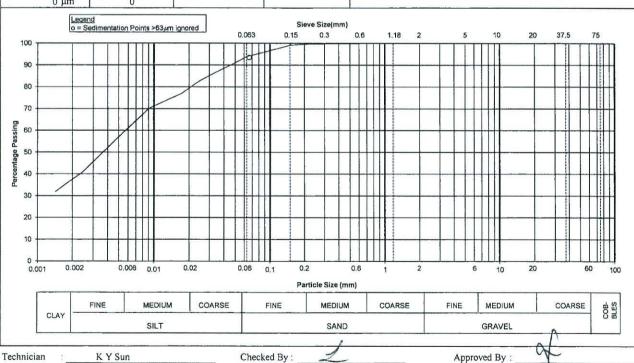
: E/Benthic Survey

Date Received: 16/04/2018

Sample Depth (m)

Tested Date : 18/04/2018

Specimen Depth (m)


Small Disturbed

Sample Type Description : Dark grey, slightly sandy SILT/CLAY with shell fragments Sample Origin

Sieve Method: Method A

\*Upon request \* Delete as appropriate <sup>‡</sup> Information provided by customer

| SIEVE ANALYSIS | Percent        | Expanded                                     | *Cumulative                                         | SEDIMENTATION ANALYSIS                                                                                                               |                        |                 |                |  |  |
|----------------|----------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|----------------|--|--|
| Sieve Size     | Passing<br>(%) | Uncertainty<br>of the Percent<br>Passing (%) | Percent Passing<br>with Expanded<br>Uncertainty (%) | Specific Gravity (# if assumed): 2.65 # Dispersant Details: Sodium hexametaphosphate, Sodium carbonate Sampling History: As received |                        |                 |                |  |  |
| 100.0 mm       | 100            |                                              |                                                     | The presence of any                                                                                                                  | visible organic matter | in the soil: No | one            |  |  |
| 75.0 mm        | 100            | -                                            | -                                                   |                                                                                                                                      |                        |                 |                |  |  |
| 63.0 mm        | 100            |                                              |                                                     | Particle                                                                                                                             | ^Expanded              | % Finer         | Expanded       |  |  |
| 50.0 mm        | 100            |                                              |                                                     | Diameter                                                                                                                             | Uncertainty of the     | than D          | Uncertainty of |  |  |
| 37.5 mm        | 100            | -                                            | -                                                   |                                                                                                                                      | Particle Diameter      | K               | % finer than D |  |  |
| 28.0 mm        | 100            | •                                            |                                                     | (mm)                                                                                                                                 | (mm)                   | (%)             | (%)            |  |  |
| 20.0 mm        | 100            | -                                            | -                                                   | 0,0660                                                                                                                               |                        | 94              | 24             |  |  |
| 14.0 mm        | 100            | -                                            | -                                                   | 0.0471                                                                                                                               | -                      | 90              | -              |  |  |
| 10.0 mm        | 100            | *                                            | 4                                                   | 0.0336                                                                                                                               | *                      | 87              | -              |  |  |
| 6.30 mm        | 100            | -                                            | -                                                   | 0.0241                                                                                                                               |                        | 82              | -              |  |  |
| 5.00 mm        | 100            | *                                            |                                                     | 0.0173                                                                                                                               | -                      | 77              | -              |  |  |
| 3.35 mm        | 100            | -                                            | -                                                   | 0.0091                                                                                                                               | -                      | 70              | +              |  |  |
| 2.00 mm        | 100            | -                                            | -                                                   | 0.0047                                                                                                                               | -                      | 56              | -              |  |  |
| 1.18 mm        | 100            |                                              | -                                                   | 0.0024                                                                                                                               | -                      | 41              |                |  |  |
| 600 μm         | 100            | -                                            | -                                                   | 0.0014                                                                                                                               | -                      | 32              | -              |  |  |
| 425 μm         | 100            |                                              |                                                     | SUMMARY :                                                                                                                            |                        |                 |                |  |  |
| 300 μm         | 100            |                                              | -                                                   | Gravel (%)                                                                                                                           | : 0                    |                 |                |  |  |
| 212 μm         | 100            |                                              |                                                     | Sand (%)                                                                                                                             | : 6                    |                 |                |  |  |
| 150 μm         | 99             |                                              |                                                     | Silt (%)                                                                                                                             | : 57                   |                 |                |  |  |
| 63 μm          | 94             |                                              | 1.0                                                 | Clay (%)                                                                                                                             | : 37                   |                 |                |  |  |
| 0 μm           | 0              |                                              |                                                     |                                                                                                                                      |                        |                 |                |  |  |



Signatory Date 21/04/2018 Date : Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

TK Lam

Name

18/04/2018

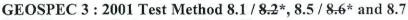
Form: GESR003.5 / Jun. 30.13 / Issue 1 / Rev 2

Lau Wal Cheong

21/04/2018

: J2999

Date Received: 16/04/2018


Tested Date : 18/04/2018

Job No.

Project

Customer

## PARTICLE SIZE DISTRIBUTION



Contract No. :

(Wet Sieve and Hydrometer Method)

: ALS Technichem (HK) Pty Ltd

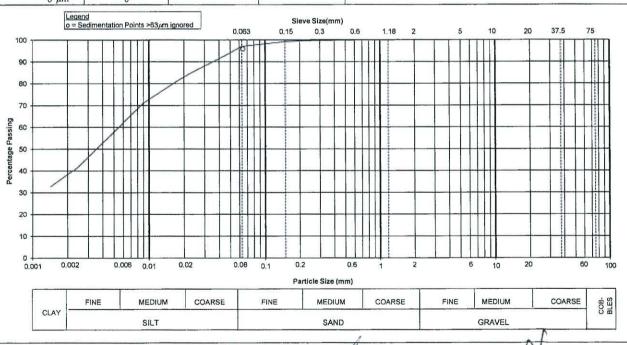
Description Dark grey, slightly sandy SILT/CLAY

: J2999-272.30 Report No.

Gammon

Works Order No. : 272 Sample ID No.

: HK1824751-014 Sample No. : F/Benthic Survey


Sample Depth (m)

Specimen Depth (m)

: Small Disturbed Sample Type

Sample Origin

| Sieve Method : Method | A                  | *Upon request                       | * Delete as appropri                     | ate <sup>‡</sup> Infor                                         | mation provided by cus | stomer                                  |                |
|-----------------------|--------------------|-------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------|-----------------------------------------|----------------|
| SIEVE ANALYSIS        | Percent<br>Passing | Expanded Uncertainty of the Percent | Cumulative Percent Passing with Expanded | SEDIMENTATION<br>Specific Gravity (# i<br>Dispersant Details : |                        |                                         | n carbonate    |
| Sieve Size            | (%)                | Passing (%)                         | Uncertainty (%)                          | Sampling History                                               | : As received          | • • • • • • • • • • • • • • • • • • • • |                |
| 100.0 mm              | 100                | -                                   | -                                        | The presence of any                                            | visible organic matter | in the soil: No                         | one            |
| 75.0 mm               | 100                |                                     | -                                        |                                                                |                        |                                         |                |
| 63.0 mm               | 100                | -                                   | -                                        | Particle                                                       | Expanded               | % Finer                                 | *Expanded      |
| 50.0 mm               | 100                | -                                   | -                                        | Diameter                                                       | Uncertainty of the     | than D                                  | Uncertainty of |
| 37.5 mm               | 100                | -                                   | -                                        |                                                                | Particle Diameter      | K                                       | % finer than D |
| 28.0 mm               | 100                |                                     | -                                        | (mm)                                                           | (mm)                   | (%)                                     | (%)            |
| 20.0 mm               | 100                | -                                   |                                          | 0.0638                                                         |                        | 96                                      | -              |
| 14.0 mm               | 100                | •                                   | -                                        | 0.0456                                                         | -                      | 93                                      | *              |
| 10.0 mm               | 100                | •                                   |                                          | 0.0326                                                         |                        | 89                                      | 2              |
| 6.30 mm               | 100                | 2                                   | -                                        | 0.0234                                                         | -                      | 85                                      | -              |
| 5.00 mm               | 100                | -                                   | -                                        | 0.0168                                                         |                        | 81                                      |                |
| 3.35 mm               | 100                | -                                   |                                          | 0.0089                                                         | -                      | 71                                      | -              |
| 2.00 mm               | 100                |                                     | -                                        | 0.0046                                                         |                        | 56                                      |                |
| 1.18 mm               | 100                | -                                   |                                          | 0.0024                                                         |                        | 42                                      | •              |
| 600 µm                | 100                | *                                   | -                                        | 0.0014                                                         | -                      | 33                                      |                |
| 425 μm                | 100                |                                     | -                                        | SUMMARY:                                                       |                        |                                         |                |
| 300 μm                | 100                | -                                   |                                          | Gravel (%)                                                     | : 0                    |                                         |                |
| 212 μm                | 100                | -                                   | -                                        | Sand (%)                                                       | : 3                    |                                         |                |
| 150 μm                | 99                 | -                                   |                                          | Silt (%)                                                       | : 59                   |                                         |                |
| 63 μm                 | 97                 | -                                   | -                                        | Clay (%)                                                       | : 38                   |                                         |                |
| 0 μm                  | 0                  |                                     |                                          |                                                                |                        |                                         |                |



Lau Wai Cheong Technician K Y Sun Checked By Approved By Name T K Lam Signatory 21/04/2018 : 18/04/2018 21/04/2018 Date: Date:

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Tseung Kwan O, N.T. Tel: 26991980, Fax: 26917547

Form: GESR003.5 / Jun. 30.13 / Issue 1 / Rev 2

## Gammon



## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: J2999

Contract No.:

: ALS Technichem (HK) Pty Ltd

Percent

Works Order No.

Report No.

: J2999-272.30

Customer Project

Sample ID No.

: 272 : HK1824751-015

Sample No.

Date Received: 16/04/2018

Sample Depth (m)

G/Benthic Survey

Specimen Depth (m)

Tested Date : 18/04/2018

Sample Type

: Small Disturbed

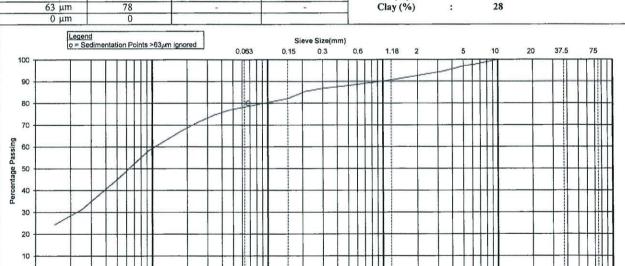
SIEVE ANALYSIS

Description Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

\*Expanded

Sample Origin

Sieve Method: Method A


\*Upon request

\* Delete as appropriate

‡ Information provided by customer

SEDIMENTATION ANALYSIS Specific Gravity (# if assumed): \*Cumulative 2 65 #

| SIEVE ANALISIS | T Groome    | Linpanaoa                                    | D                                                   | S S S S S S S S S S S S S S S S S S S | A CONTRACTOR OF THE PARTY OF TH | ii .            |                |
|----------------|-------------|----------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Sieve Size     | Passing (%) | Uncertainty<br>of the Percent<br>Passing (%) | Percent Passing<br>with Expanded<br>Uncertainty (%) | Sampling History                      | Sodium hexametapho<br>As received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sphate, Sodium  |                |
| 100.0 mm       | 100         | -                                            | -                                                   | The presence of any                   | visible organic matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in the soil: No | one            |
| 75.0 mm        | 100         |                                              | -                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
| 63.0 mm        | 100         | I -                                          |                                                     | Particle                              | *Expanded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % Finer         | *Expanded      |
| 50.0 mm        | 100         | T -                                          |                                                     | Diameter                              | Uncertainty of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | than D          | Uncertainty of |
| 37.5 mm        | 100         | *                                            | -                                                   |                                       | Particle Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K               | % finer than I |
| 28.0 mm        | 100         |                                              |                                                     | (mm)                                  | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)             | (%)            |
| 20.0 mm        | 100         | -                                            | -                                                   | 0.0674                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80              |                |
| 14.0 mm        | 100         | -                                            |                                                     | 0.0481                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77              | -              |
| 10.0 mm        | 100         | -                                            | -                                                   | 0.0342                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75              | 1              |
| 6.30 mm        | 98          | *                                            | -                                                   | 0.0245                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71              | -              |
| 5.00 mm        | 97          | -                                            | -                                                   | 0.0175                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67              | _              |
| 3.35 mm        | 95          |                                              | -                                                   | 0.0093                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58              | *              |
| 2.00 mm        | 93          | -                                            |                                                     | 0.0048                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44              | -              |
| 1.18 mm        | 91          |                                              |                                                     | 0.0025                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31              | -              |
| 600 µm         | 89          |                                              | -                                                   | 0.0015                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24              |                |
| 425 µm         | 88          |                                              |                                                     | SUMMARY:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |
| 300 μm         | 87          |                                              | -                                                   | Gravel (%)                            | : 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                |
| 212 µm         | 86          |                                              |                                                     | Sand (%)                              | : 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                |
| 150 μm         | 82          | -                                            | -                                                   | Silt (%)                              | : 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                |
|                |             |                                              |                                                     | T (1)                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                |



K Y Sun Checked By: Approved By Technician Lau Wal Cheong Name: TK Lam Signatory 21/04/2018 21/04/2018 Date: Date

0.2

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Particle Size (mm)

MEDIUM

SAND

Form: GESR003.5 / Jun. 30.13 / Issue 1 / Rev 2

0.001

CLAY

0.002

FINE

0.006 0.01

MEDIUM

0.02

COARSE

0.06 0.1

FINE

COARSE

FINE

MEDIUM

GRAVEL

60

COB-

COARSE

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Report No.

: J2999-272.30

Job No. Customer : J2999

Contract No. :

Works Order No.

: 272

Sample ID No.

Gammon

Project

: ALS Technichem (HK) Pty Ltd

Sample No.

HK1824751-016

Date Received: 16/04/2018

Sample Depth (m)

: H/Benthic Survey

Tested Date : 18/04/2018

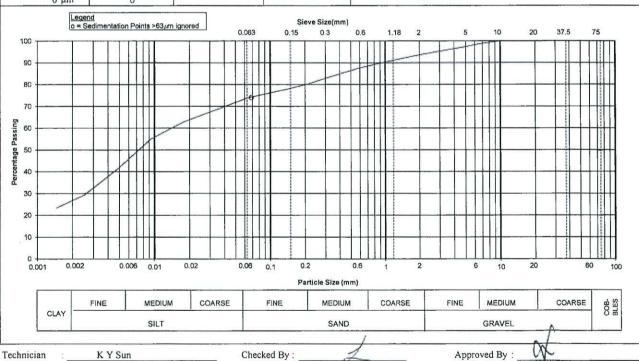
Specimen Depth (m)

Sample Type

Small Disturbed

Description : Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A

\*Upon request

\* Delete as appropriate

<sup>‡</sup> Information provided by customer

| SIEVE ANALYSIS | Percent<br>Passing | ^Expanded Uncertainty         | *Cumulative<br>Percent Passing | SEDIMENTATION<br>Specific Gravity (# i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | #                     |                |  |  |
|----------------|--------------------|-------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|----------------|--|--|
| Sieve Size     | (%)                | of the Percent<br>Passing (%) | with Expanded Uncertainty (%)  | Dispersant Details: Sodium hexametaphosphate, Sodium carbonate Sampling History: As received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                       |                |  |  |
| 100.0 mm       | 100                | -                             |                                | The presence of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | visible organic matter | in the soil: No       | one            |  |  |
| 75.0 mm        | 100                |                               | -                              | land the second |                        | and the second second | - V            |  |  |
| 63.0 mm        | 100                | -                             |                                | Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *Expanded              | % Finer               | Expanded       |  |  |
| 50.0 mm        | 100                |                               | -                              | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uncertainty of the     | than D                | Uncertainty of |  |  |
| 37.5 mm        | 100                |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Particle Diameter      | K                     | % finer than D |  |  |
| 28.0 mm        | 100                | -                             |                                | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mm)                   | (%)                   | (%)            |  |  |
| 20.0 mm        | 100                |                               |                                | 0.0684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 74                    | -              |  |  |
| 14.0 mm        | 100                | *                             |                                | 0.0487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 72                    | -              |  |  |
| 10.0 mm        | 100                |                               | -                              | 0.0347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 69                    | -              |  |  |
| 6.30 mm        | 99                 |                               |                                | 0.0248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 66                    | -              |  |  |
| 5.00 mm        | 97                 |                               | -                              | 0.0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 63                    | -              |  |  |
| 3.35 mm        | 96                 | -                             |                                | 0.0093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                      | 55                    | -              |  |  |
| 2.00 mm        | 94                 |                               |                                | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 41                    |                |  |  |
| 1.18 mm        | 91                 | •                             | -                              | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                      | 29                    | -              |  |  |
| 600 µm         | 88                 |                               |                                | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 23                    | -              |  |  |
| 425 µm         | 85                 | -                             |                                | SUMMARY :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 min                |                       |                |  |  |
| 300 μm         | 83                 | -                             |                                | Gravel (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 6                    |                       |                |  |  |
| 212 µm         | 80                 |                               |                                | Sand (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 20                   |                       |                |  |  |
| 150 μm         | 78                 | -                             |                                | Silt (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 47                   |                       |                |  |  |
| 63 μm          | 74                 | 4                             | -                              | Clay (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 27                   |                       |                |  |  |
| 0 μm           | 0                  |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                       |                |  |  |

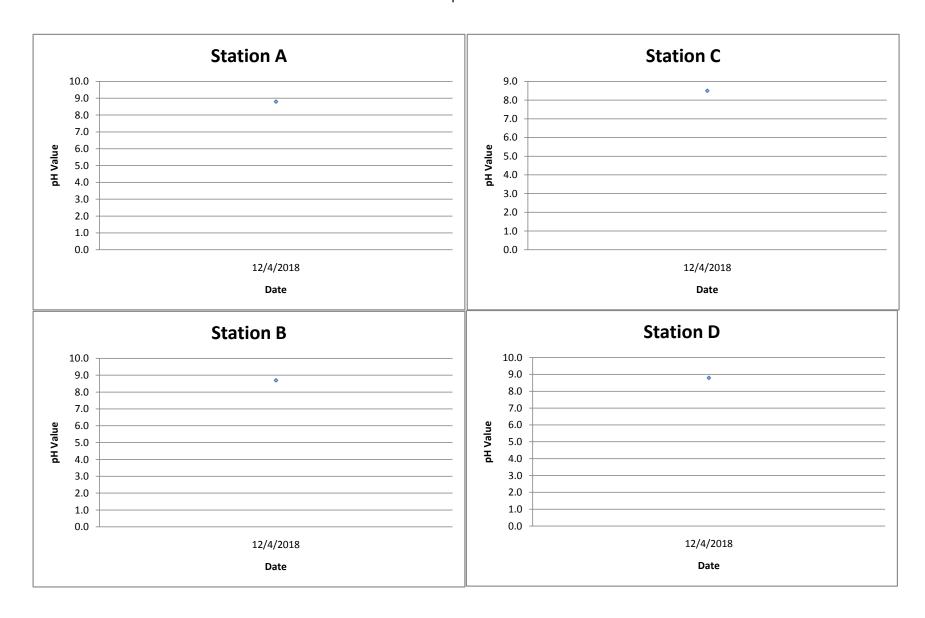


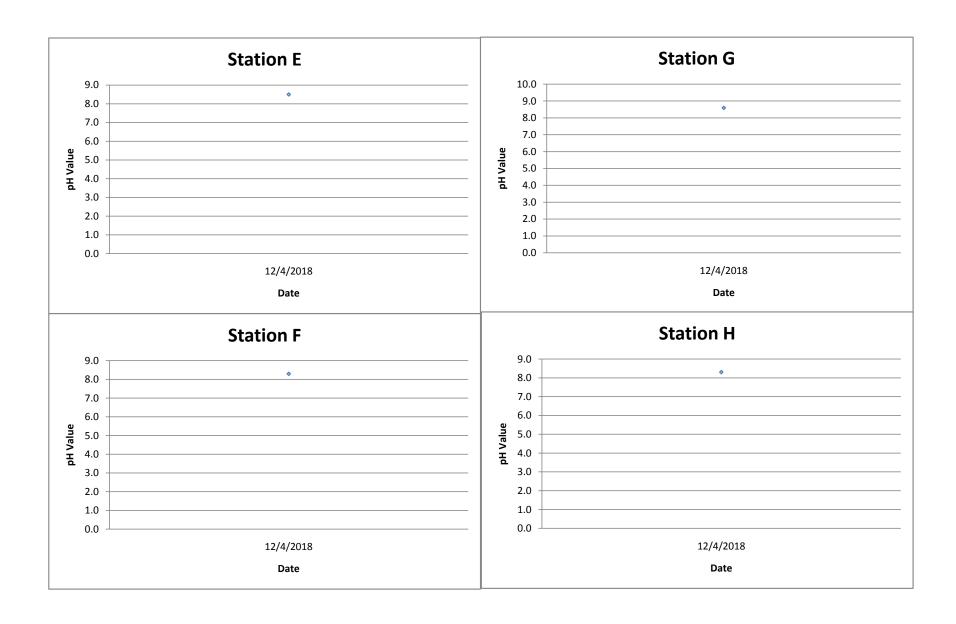
21/04/2018 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

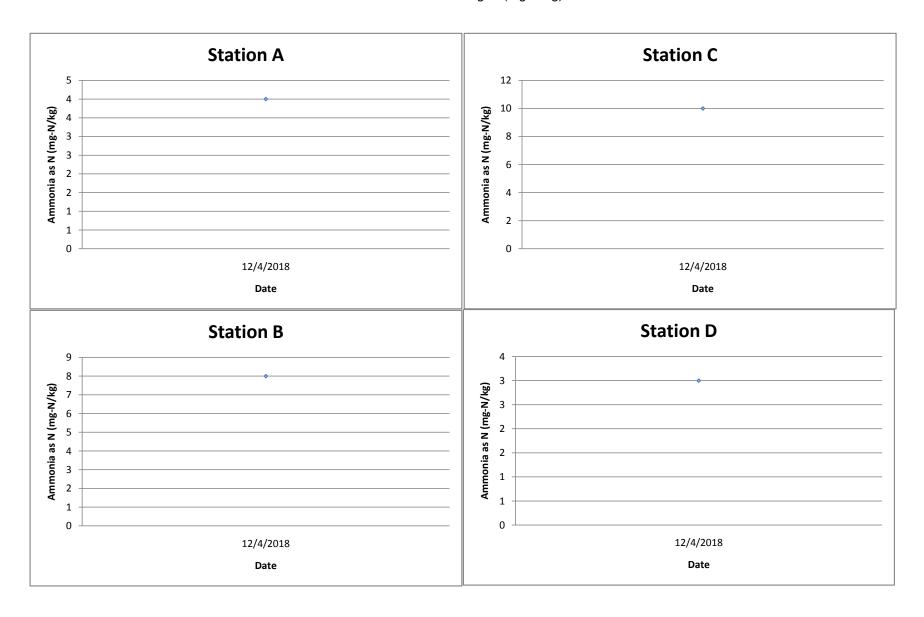
TK Lam

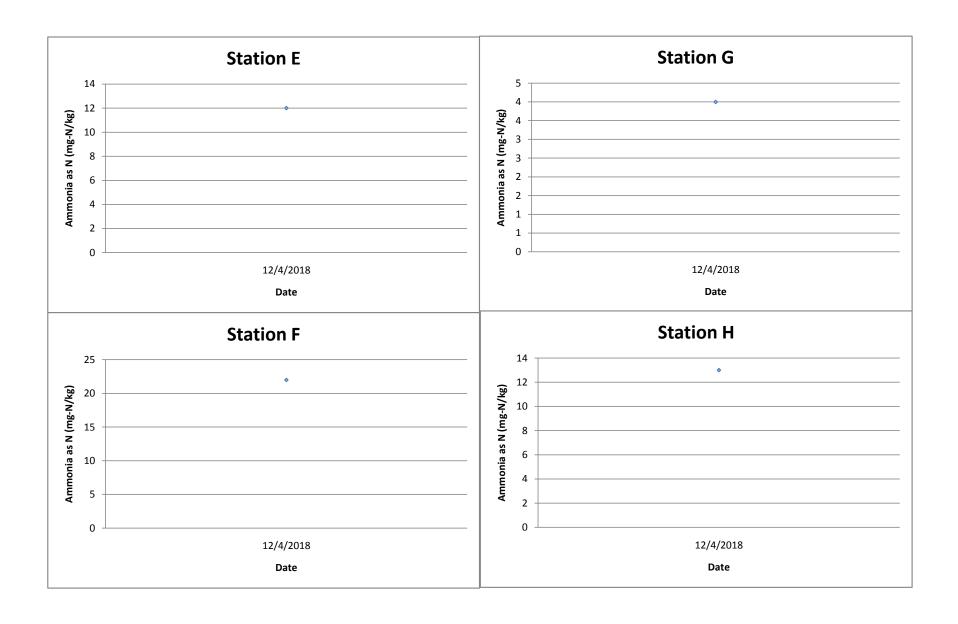
Name:

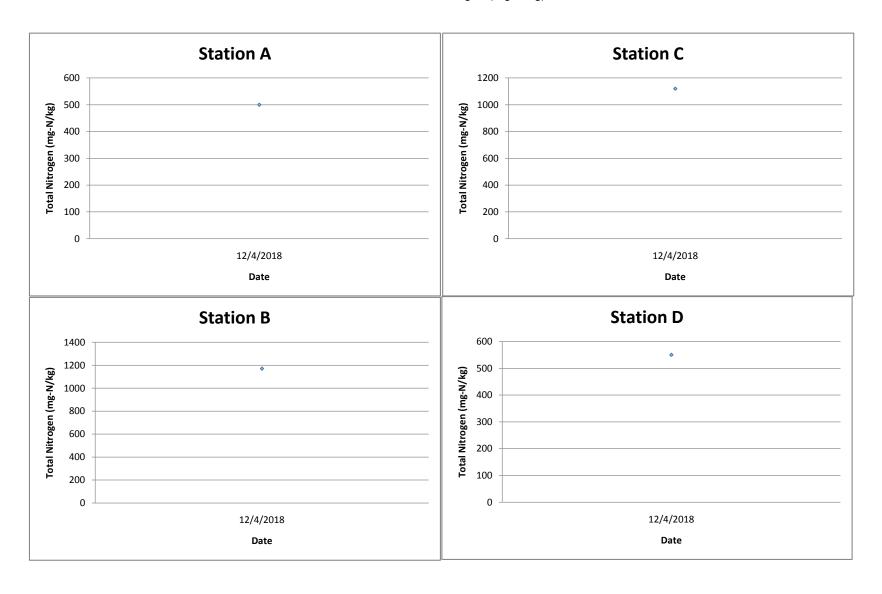
Date:

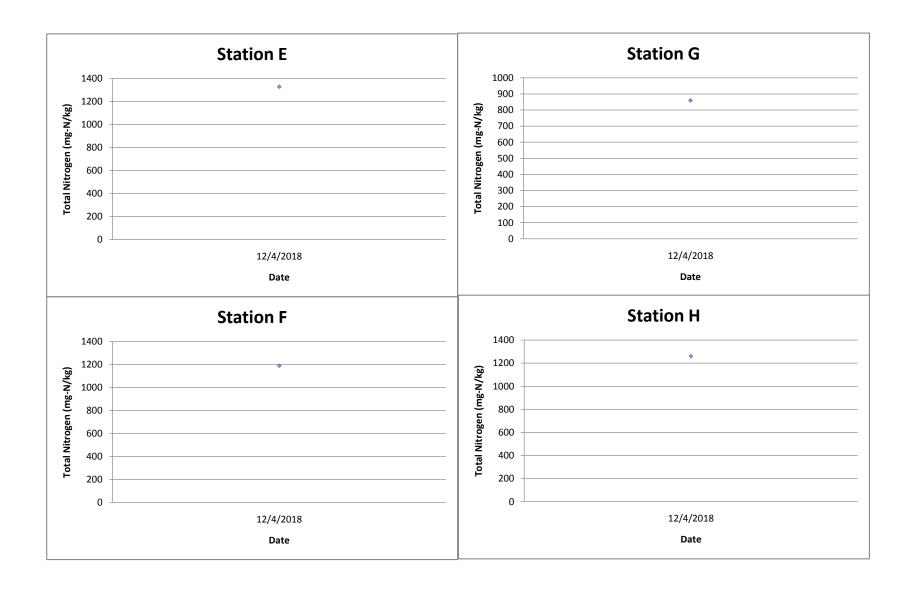

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

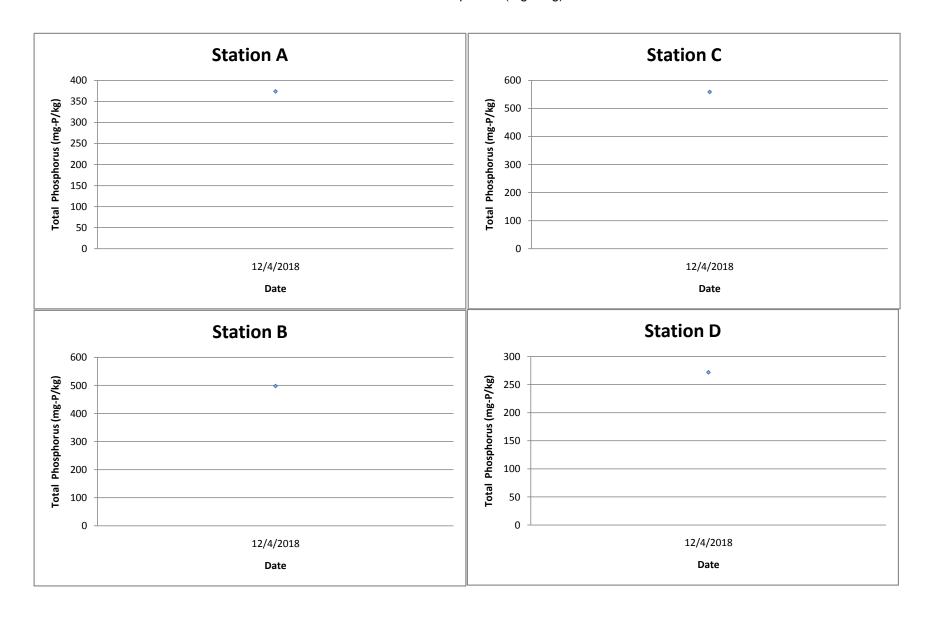

Lau Wai Cheong

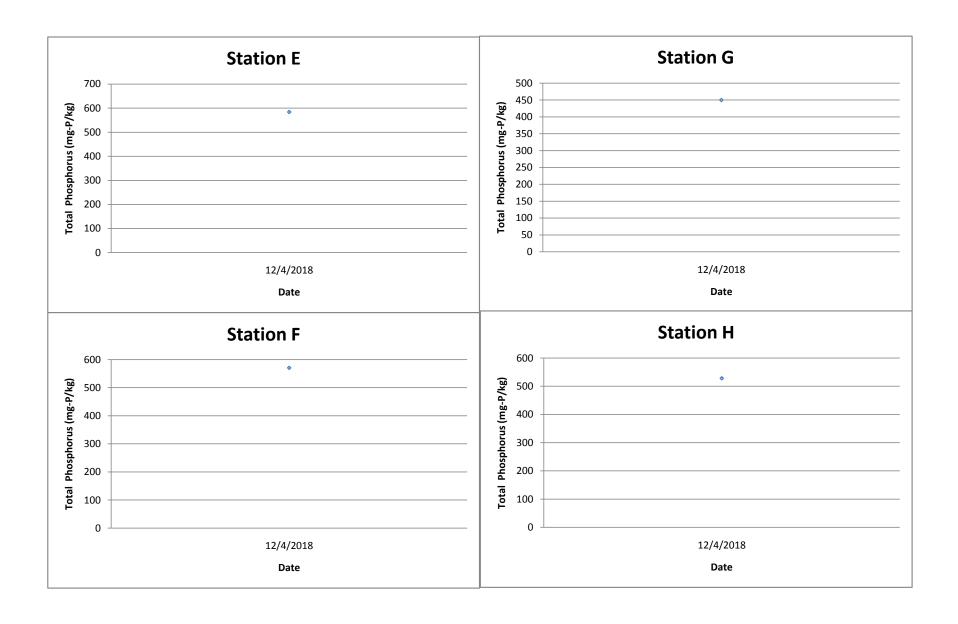

21/04/2018

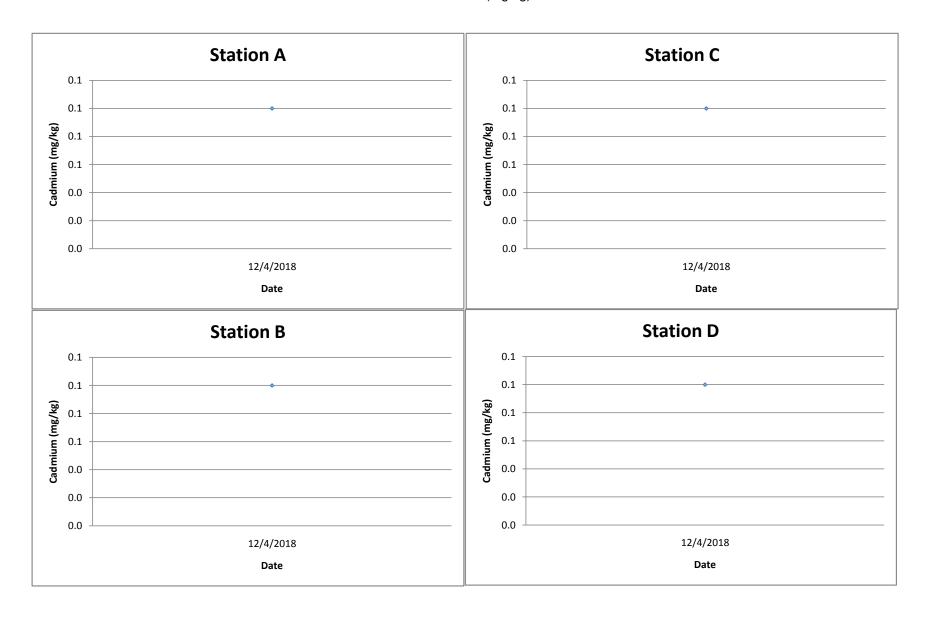

Signatory

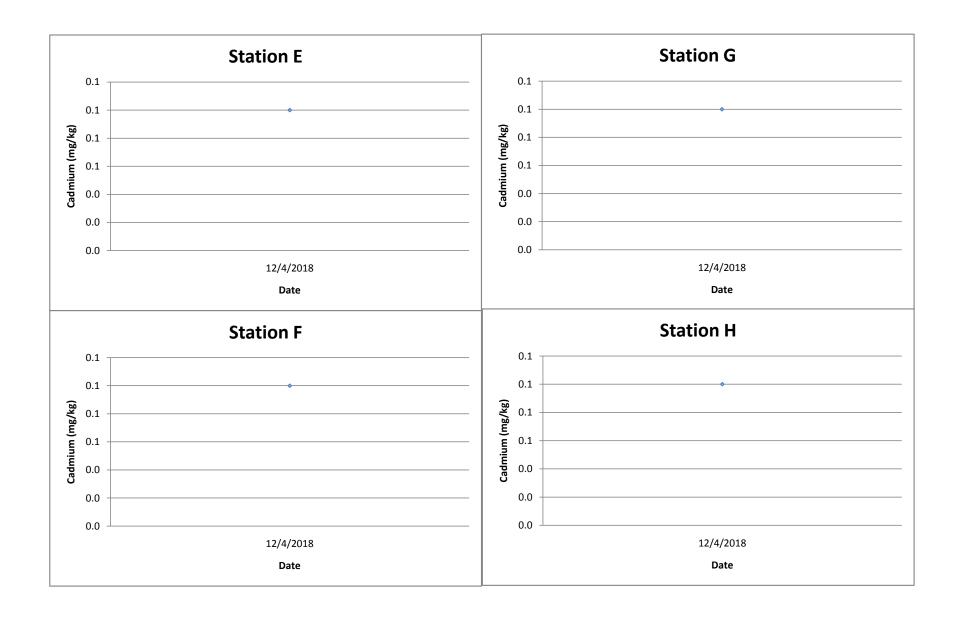

Date

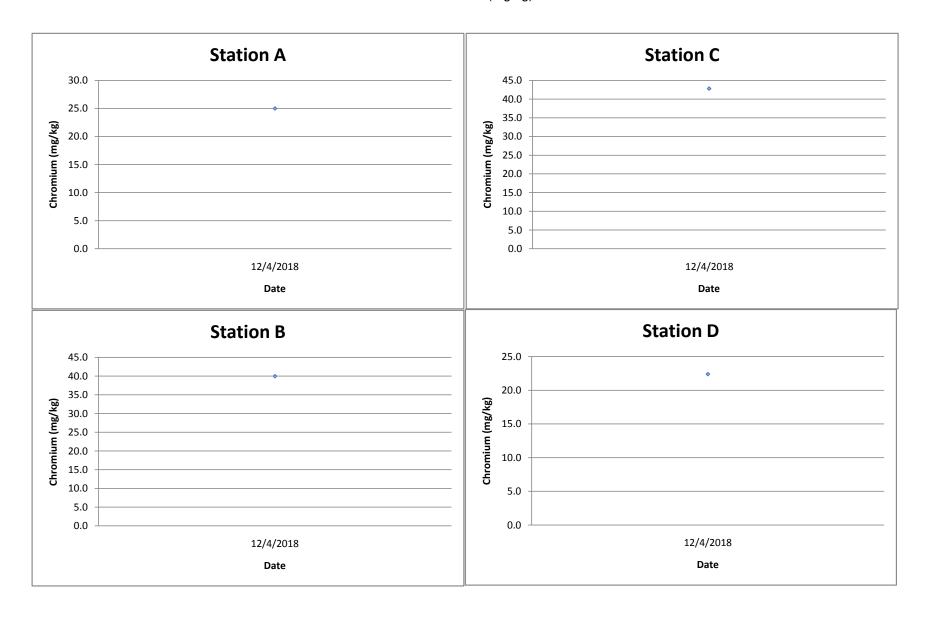


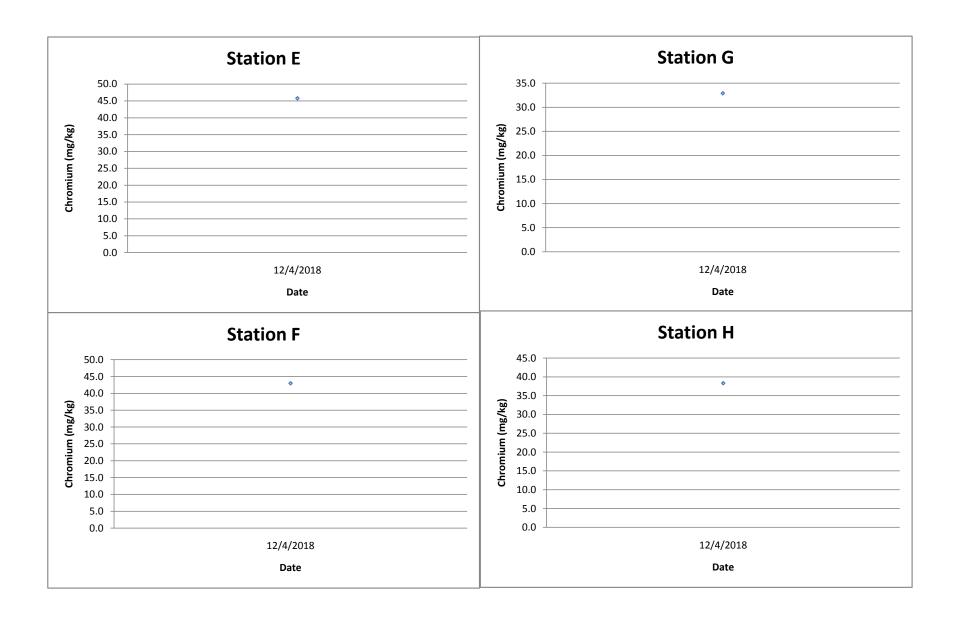



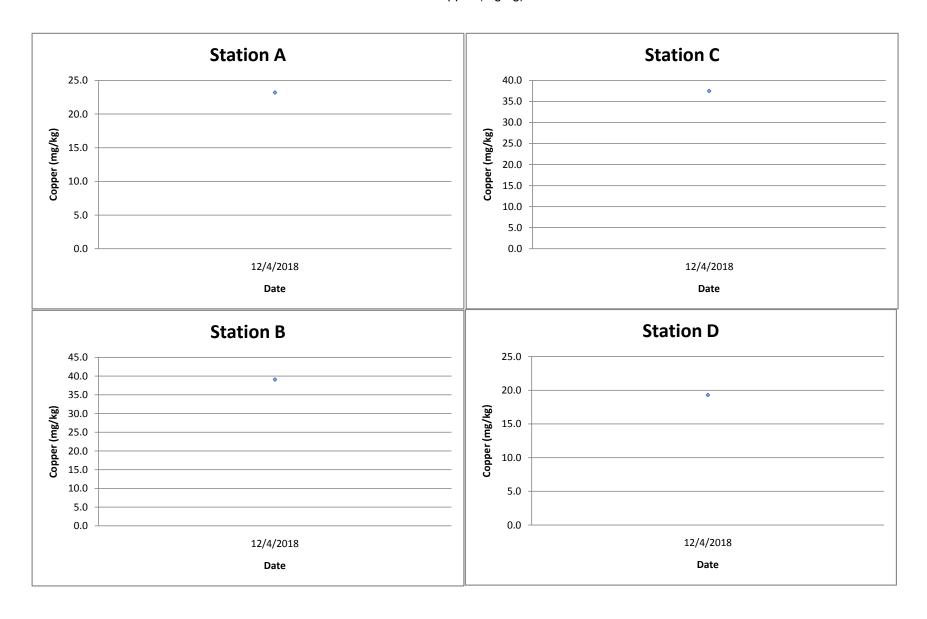



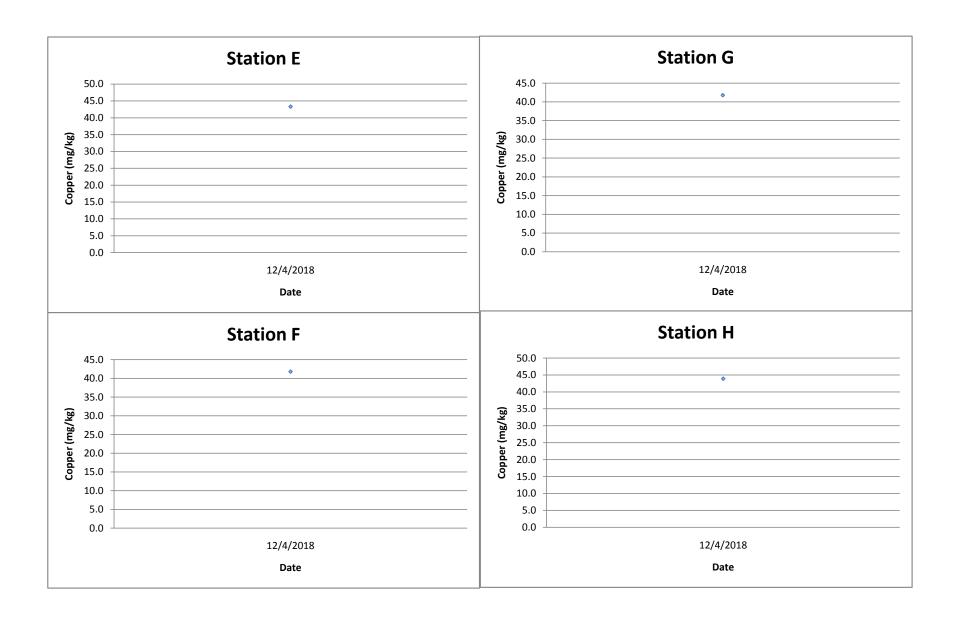



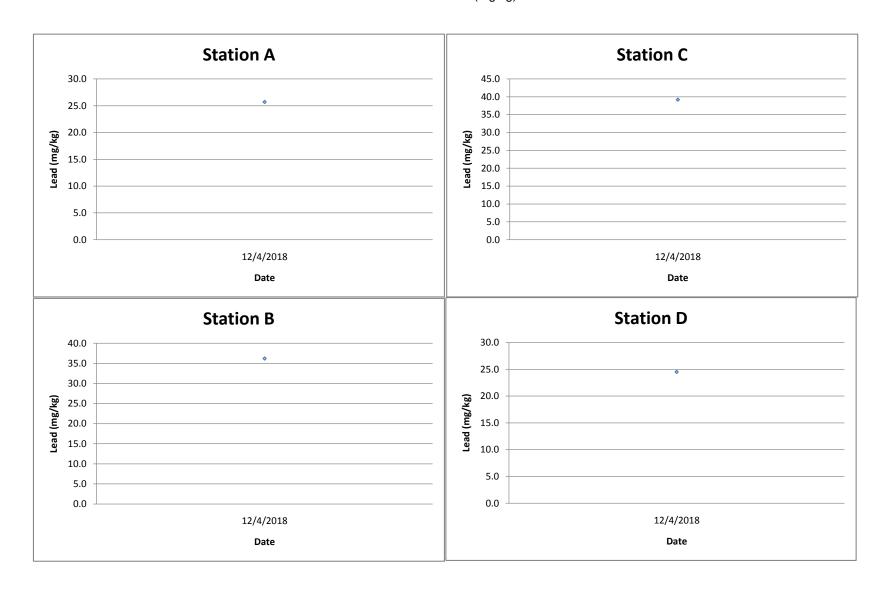



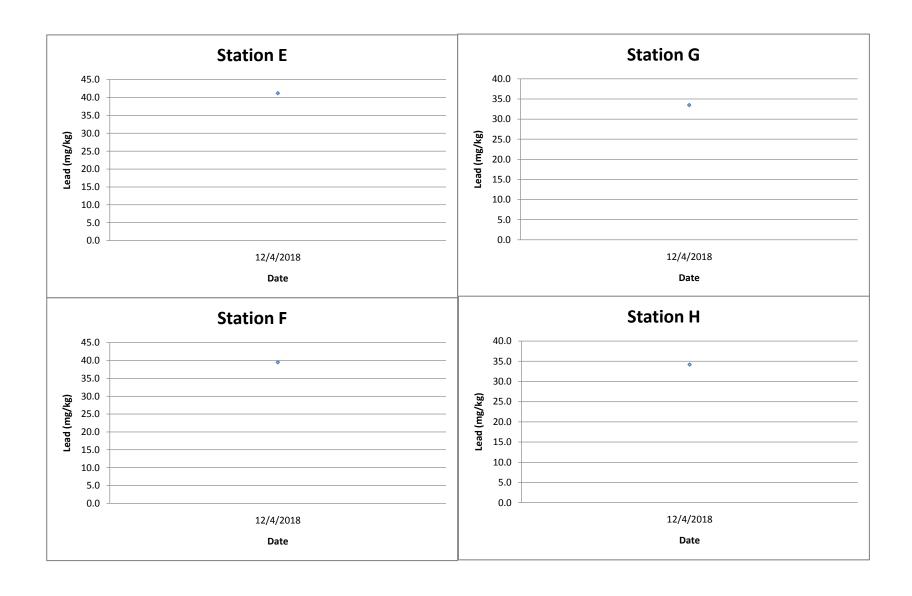



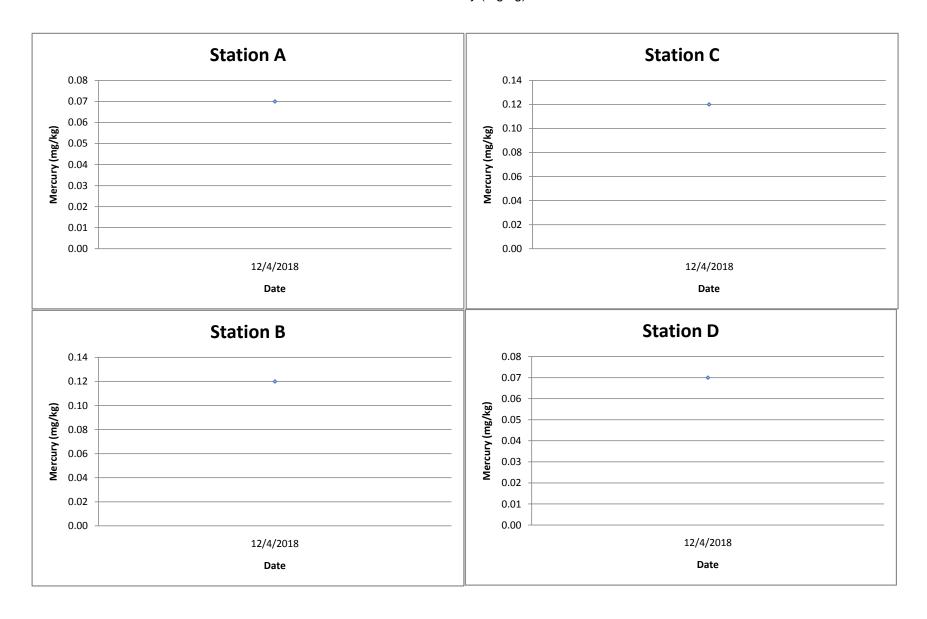



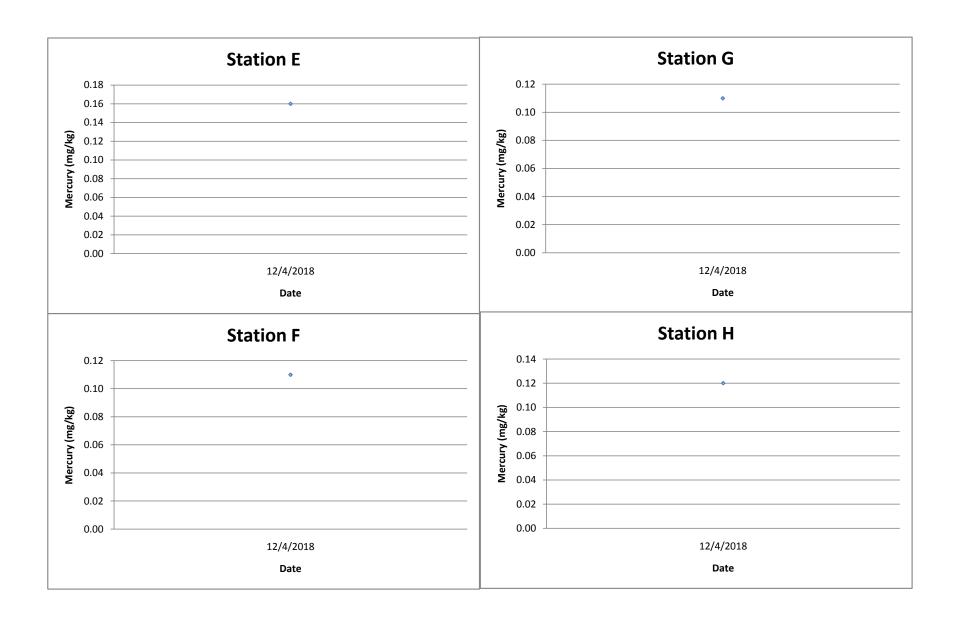



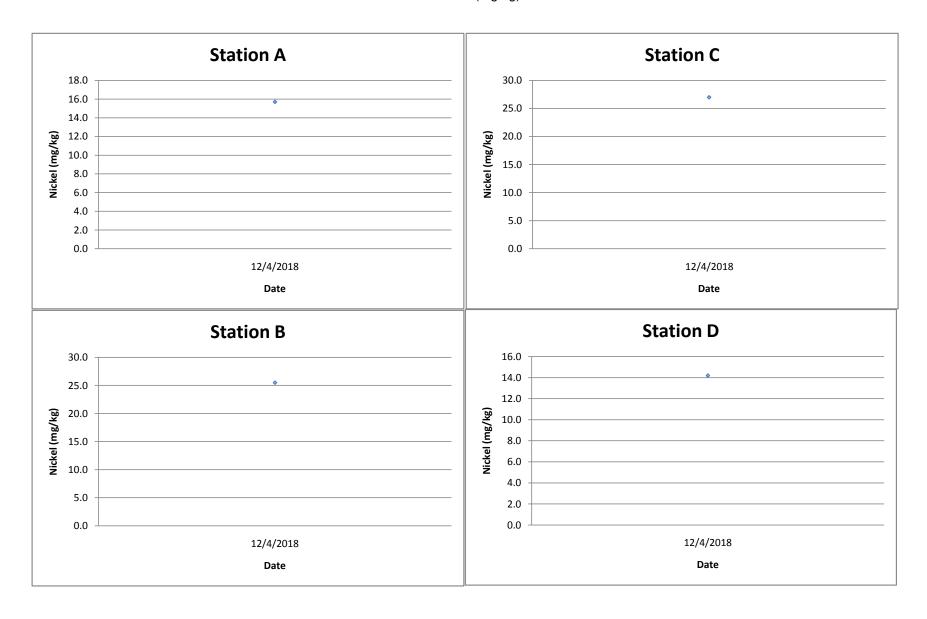



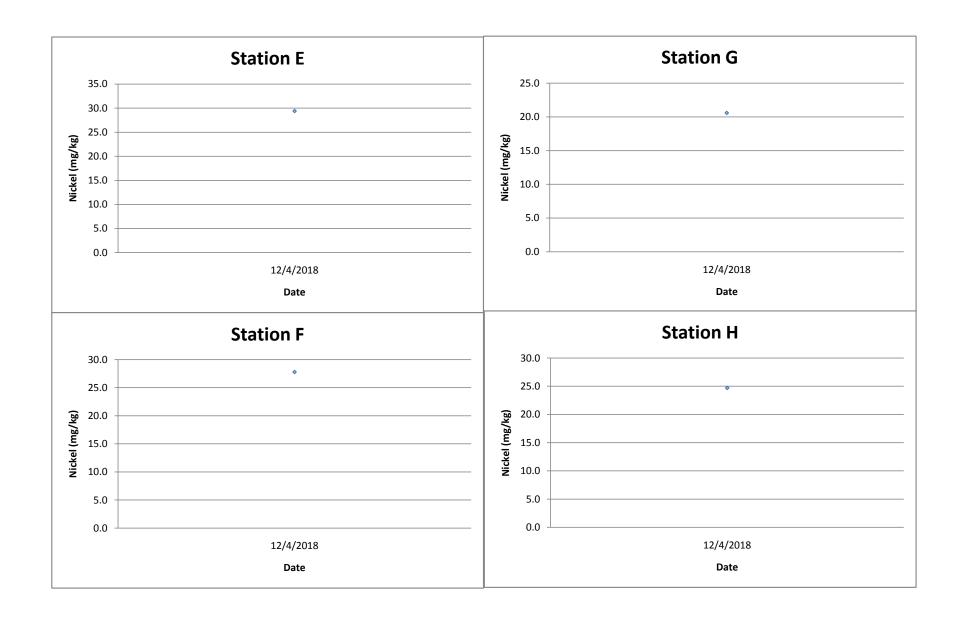



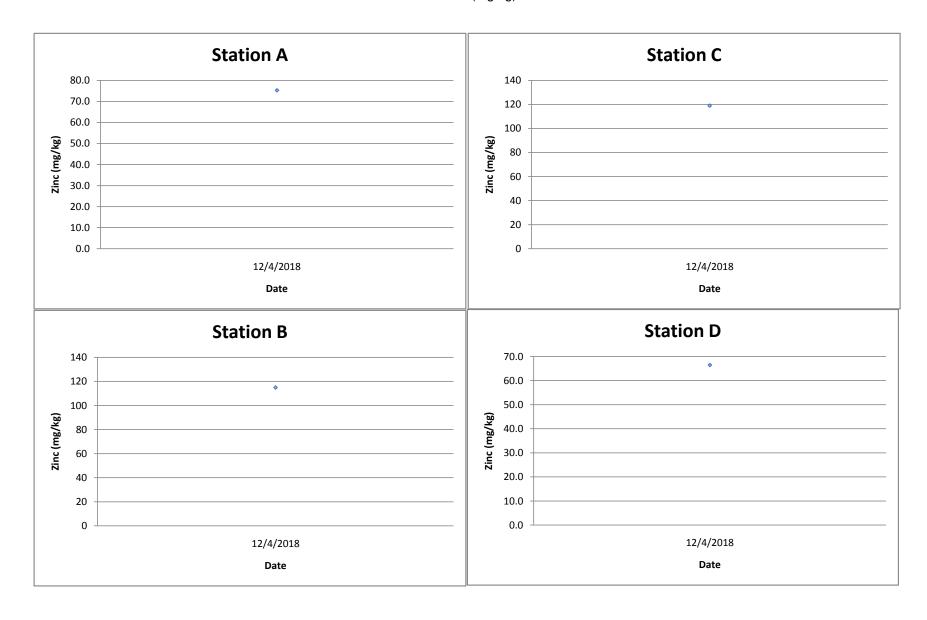



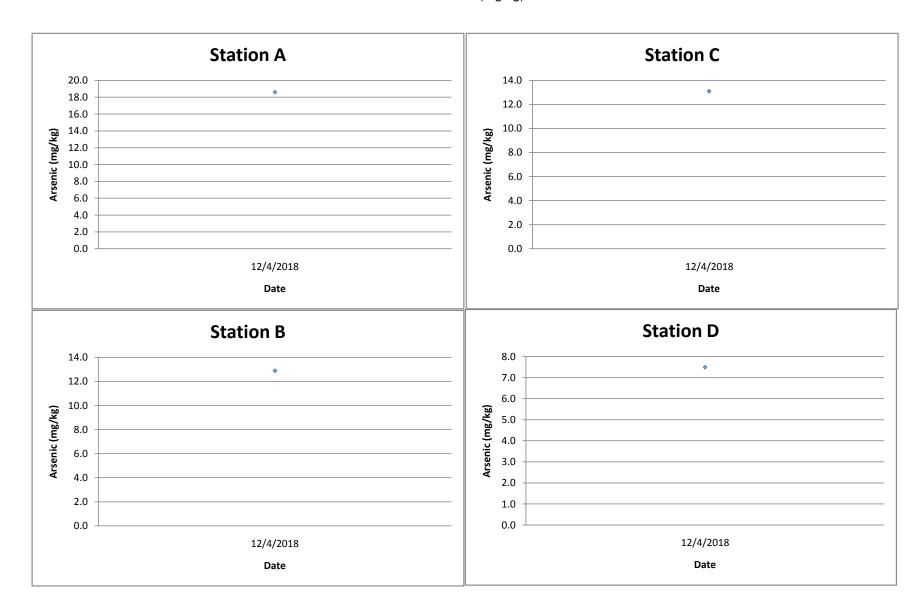



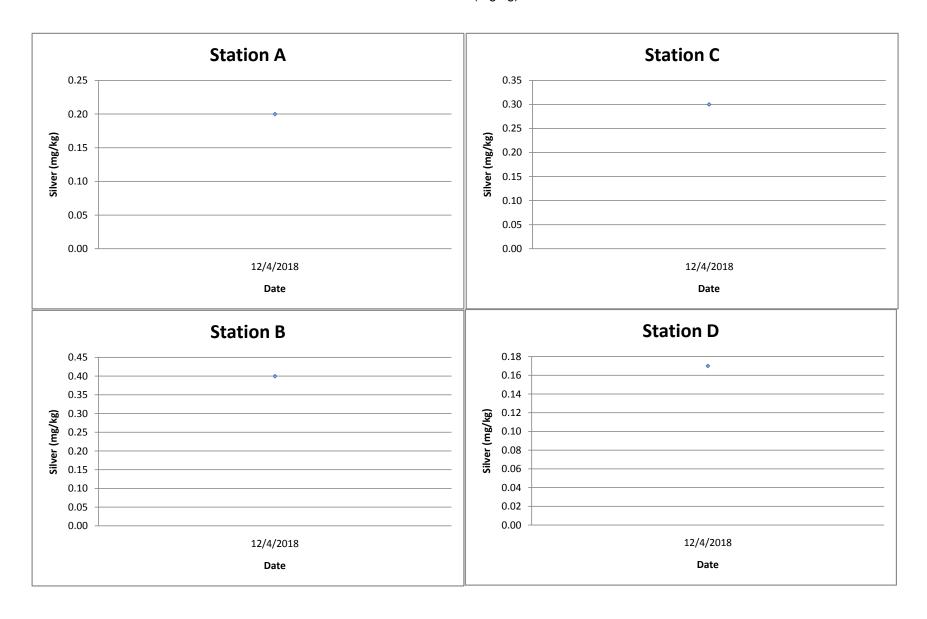



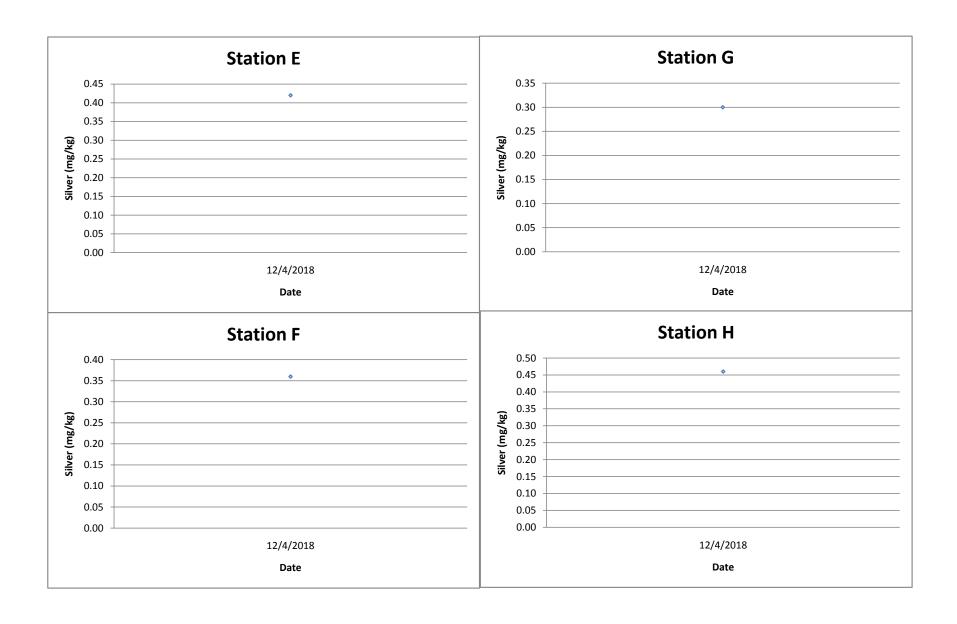


















Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Appendix J

Benthic Survey Report



# **Benthic Faunal Monitoring**

## **Conducted in April 2018**

# **Summary Report**

#### **Abundance**

A total of 331 macrobenthic organisms were collected from the eight monitoring stations. The lowest abundance was 14 individuals (ind.) recorded in Station C and the highest was 143 ind. in Station A. Abundance distribution showed that the impact stations, Stations C and D, have relatively lower abundances compared to the reference stations, a similar trend is observed in the baseline data (August 2004) (Figure 1). Noticeable also is that abundances generally increase as the distance from the impact stations increases. This observation is indicative of a point-source disturbance, which will be verified with continued monitoring.

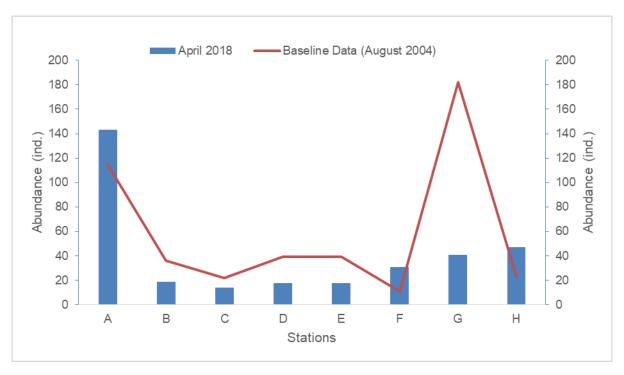



Figure 1. Total abundance (ind.) of benthic organisms collected in the eight monitoring stations, August 2004 and April 2018

#### **Biomass**

The total wet biomass for all the eight monitoring stations was 231.17g. The highest total biomass was observed in Station A (97.76g), while Station C (2.18g) exhibited the lowest biomass. The relatively higher biomass observed in Station A were due to the increased number of the bivalve species, *Ruditapes* 



*variegatus*. Similar to abundance distribution, biomass at the impact stations were generally lower compared to those of the reference stations, which was also observed in the baseline data (August 2004) as shown in Figure 2.

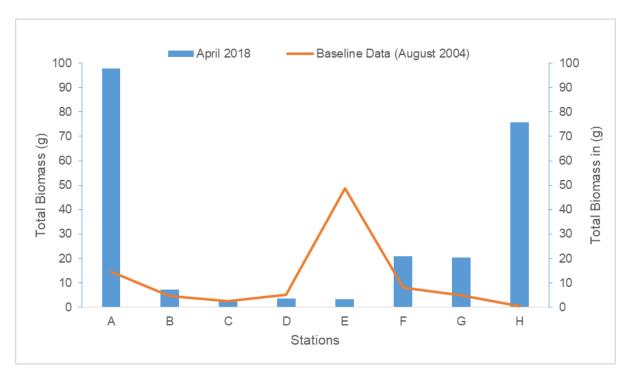



Figure 2. Total biomass (g) of benthic organisms collected in the eight monitoring stations, August 2004 and April 2018

#### **Taxonomic Composition**

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. During the present study, a total of eight phyla comprising of 35 families and 41 genera were identified. The benthic assemblage was dominated by Mollusca (50.45%), Annelida (31.12%), and Arthropoda (13.60%) (Figure 3). During the baseline (August 2004) study, the dominant phyla were Annelida (73.29%), Arthropoda (18.80%) and Echinodermata (3.63%). No nemerteans were collected in the baseline study. A table for comparison is shown in Appendix A. From the data of the baseline study, Phylum Coelentera was referred to as Cnidaria.



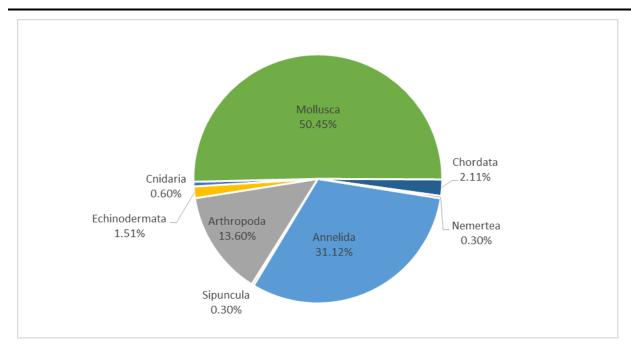



Figure 3. Percent composition of benthic organisms collected in the eight monitoring stations, April 2018

The most dominant species (abundance >10) was the bivalve, *R. variegatus*, with the abundance of 90 ind. and 12 ind. in Stations A and H, respectively. *Talonostrea talonata*, another species of bivalve also showed dominance in Station A with 12 ind. recorded. Compared to the baseline study (August 2004), the most dominant groups were the capitellid and cirratulid polychaetes, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

During the baseline study, the highest number of genera was recorded in Station G and the lowest in Station F. For the present study, the highest number of genera was recorded in Station H and the lowest in Station D. Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

Data and Data summaries are shown in Appendix A and representatives of taxa identified are in Appendix B.



#### **Diversity**

Benthic diversity index (H) ranged from 1.72 – 1.95 in impact stations and 1.56 – 2.54 among the reference stations as shown in Appendix A, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values. The diversity indices (0.62 – 1.1) during the baseline study (August 2004) was lower than that of the present study for all stations, as shown in the summary table in Appendix A.

#### References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Polltuion Bulletin, 40, 1100-1114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

### **Approved by Supervisor**

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor : Marth

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant

Date: May 2, 2018



## **Appendix A: Data Summaries**

### Summary of Benthic Survey Data, April 2018

| Station | Abundance (ind.) | Total Biomass (g) | Number of Taxa | Diversity (H') | Evenness (J) |
|---------|------------------|-------------------|----------------|----------------|--------------|
| Α       | 143              | 97.76             | 16             | 1.56           | 0.56         |
| В       | 19               | 7.36              | 10             | 2.16           | 0.94         |
| C*      | 14               | 2.18              | 8              | 1.95           | 0.94         |
| D*      | 18               | 3.65              | 7              | 1.73           | 0.89         |
| Е       | 18               | 3.31              | 9              | 2.11           | 0.96         |
| F       | 31               | 20.90             | 13             | 2.16           | 0.84         |
| G       | 41               | 20.36             | 17             | 2.47           | 0.87         |
| Н       | 47               | 75.66             | 18             | 2.54           | 0.88         |
| TOTAL   | 331              | 231.17            | 41 **          |                |              |

<sup>\*</sup>Impact Sites, \*\*Total count of different identified Taxa

### Summary of Benthic Survey Baseline Data, August 2004

| Stations | Abundance | Total Biomass | Number of Taxa | Diversity (H') |
|----------|-----------|---------------|----------------|----------------|
| Stations | (ind.)    | (g)           | Number of Taxa |                |
| Α        | 115       | 14.56         | 24             | 0.93           |
| В        | 36        | 4.76          | 14             | 0.89           |
| C*       | 22        | 2.66          | 13             | 0.80           |
| D*       | 39        | 5.07          | 11             | 0.62           |
| Е        | 39        | 48.69         | 16             | 0.89           |
| F        | 11        | 8.07          | 9              | 0.68           |
| G        | 182       | 4.91          | 31             | 1.10           |
| Н        | 23        | 0.49          | 11             | 0.81           |

<sup>\*</sup>Impact Sites



### Taxonomic Composition (%) of Benthic Survey, Baseline (August 2004) and April 2018

| Taxonomic Composition | Aug-04 | Apr-18 |
|-----------------------|--------|--------|
| Annelida              | 73.29% | 31.12% |
| Sipuncula             | 0.21%  | 0.30%  |
| Arthropoda            | 18.80% | 13.60% |
| Echinodermata         | 3.63%  | 15.11% |
| Cnidaria *            | 0.43%  | 0.60%  |
| Mollusca              | 3.42%  | 50.45% |
| Chordata              | 0.21%  | 2.11%  |
| Nemertea              | 0%     | 0.30%  |

## Taxonomic Composition (abundance) of Benthic Survey, Baseline (August 2004) and April 2018

| Taxonomic Composition | Aug-04 | Apr-18 |
|-----------------------|--------|--------|
| Annelida              | 343    | 103    |
| Sipuncula             | 1      | 1      |
| Arthropoda            | 88     | 45     |
| Echinodermata         | 17     | 5      |
| Cnidaria *            | 2      | 2      |
| Mollusca              | 16     | 167    |
| Chordata              | 1      | 7      |
| Nemertea              | -      | 1      |
| Grand total           | 468    | 331    |



# Benthic Species Recorded in April 2018

| Rec. | Station | Abundance | Total<br>biomass | Date of  |               |               |                 |                  | Genus/         |
|------|---------|-----------|------------------|----------|---------------|---------------|-----------------|------------------|----------------|
| No.  | code    | (ind.)    | (g)              | Sampling | Phylum        | Class         | Order           | Family           | Species        |
| 1    | А       | 3         | 0.911            | 12/04/18 | Annelida      | Polychaeta    | Aciculata       | Glyceridae       | Glycera        |
| 2    | Α       | 1         | 3.221            | 12/04/18 | Annelida      | Polychaeta    | Amphinomida     | Amphinomidae     | Chloeia parva  |
| 3    | Α       | 3         | 0.013            | 12/04/18 | Annelida      | Polychaeta    | Aciculata       | Nereidae         | Ceratonereis   |
| 4    | А       | 5         | 1.028            | 12/04/18 | Annelida      | Polychaeta    | Aciculata       | Nereidae         | Nereis         |
| 5    | А       | 3         | 0.865            | 12/04/18 | Annelida      | Polychaeta    | Capitellida     | Capitellidae     | Capitella      |
| 6    | А       | 4         | 1.334            | 12/04/18 | Annelida      | Polychaeta    | Phyllodocida    | Nephtyidae       | Nephthys       |
| 7    | А       | 1         | 0.003            | 12/04/18 | Annelida      | Polychaeta    | Spionida        | Poecilochaetidae | Poecilochaetus |
| 8    | А       | 1         | 0.002            | 12/04/18 | Annelida      | Oligochaeta   | Lumbriculida    | Lumbriculidae    | -              |
| 9    | А       | 1         | 1.321            | 12/04/18 | Arthropoda    | Crustacea     | Decapoda        | Alpheidae        | Alpheus        |
| 10   | А       | 7         | 4.803            | 12/04/18 | Arthropoda    | Crustacea     | Decapoda        | Pilumnidae       | Typhlocarcinus |
| 11   | А       | 5         | 0.003            | 12/04/18 | Arthropoda    | Malacostraca  | Amphipoda       | Gammaridae       | Gammarus       |
| 12   | А       | 2         | 0.901            | 12/04/18 | Echinodermata | Ophiuroidea   | Ophiurida       | Amphiuridae      | Amphioplus     |
| 13   | А       | 1         | 1.755            | 12/04/18 | Mollusca      | Bivalvia      | Mytiloida       | Mytilidae        | Modiolus       |
|      |         | 12        | 27.200           |          | Mollusca      | Bivalvia      | Ostreoida       | Ostreidae        | Talonostrea(T. |
| 14   | А       | .2        | 27.200           | 12/04/18 | Wiellagea     | Bivaivia      | Collocida       | Conoidad         | talonata)      |
|      |         | 90        | 29.100           |          | Mollusca      | Bivalvia      | Veneroida       | Veneridae        | Ruditapes(R.   |
| 15   | Α       |           |                  | 12/04/18 |               |               |                 |                  | variegatus)    |
| 16   | Α       | 4         | 25.300           | 12/04/18 | Chordata      | Ascidiacea    | Stolidobranchia | -                | -              |
| 17   | В       | 4         | 0.033            | 12/04/18 | Annelida      | Polychaeta    | Aciculata       | Nereidae         | Ceratonereis   |
| 18   | В       | 1         | 0.002            | 12/04/18 | Annelida      | Polychaeta    | Aciculata       | Nereidae         | Nereis         |
| 19   | В       | 1         | 0.002            | 12/04/18 | Annelida      | Polychaeta    | Capitellida     | Capitellidae     | Capitella      |
| 20   | В       | 3         | 0.008            | 12/04/18 | Annelida      | Polychaeta    | Phyllodocida    | Nephtyidae       | Nephthys       |
| 21   | В       | 1         | 0.001            | 12/04/18 | Annelida      | Polychaeta    | Spionida        | Spionidae        | Prionospio     |
| 22   | В       | 2         | 0.003            | 12/04/18 | Annelida      | Polychaeta    | Terebellida     | Pectinariidae    | Lagis          |
| 23   | В       | 1         | Т                | 12/04/18 | Arthropoda    | Malacostraca  | Amphipoda       | Gammaridae       | Gammarus       |
| 24   | В       | 1         | 3.195            | 12/04/18 | Echinodermata | Holothuroidea | Molpadiida      | Caudinidae       | Acaudina       |
|      |         | 2         | 1.450            |          | Mallugge      | Discolui-     | \/eners: -      | \/o = o = i = -  | Paphia (P.     |
| 25   | В       | 2         | 1.156            | 12/04/18 | Mollusca      | Bivalvia      | Veneroida       | Veneridae        | undulata)      |
| 26   | В       | 3         | 2.958            | 12/04/18 | Mollusca      | Bivalvia      | Veneroida       | Veneridae        | Ruditapes(R.   |



|    |          |   |       |          |               |                 |               |                  | voriogatus     |
|----|----------|---|-------|----------|---------------|-----------------|---------------|------------------|----------------|
|    |          |   |       |          | -             |                 |               |                  | variegatus)    |
| 27 | С        | 2 | 0.003 | 12/04/18 | Annelida      | Polychaeta      | Capitellida   | Capitellidae     | Capitella      |
| 28 | С        | 2 | 0.004 | 12/04/18 | Annelida      | Polychaeta      | Phyllodocida  | Nephtyidae       | Nephthys       |
| 29 | С        | 1 | 0.001 | 12/04/18 | Annelida      | Polychaeta      | Spionida      | Poecilochaetidae | Poecilochaetus |
| 30 | С        | 1 | 0.002 | 12/04/18 | Annelida      | Polychaeta      | Spionida      | Spionidae        | Prionospio     |
| 31 | С        | 1 | 0.003 | 12/04/18 | Annelida      | Polychaeta      | Terebellida   | Terebellidae     | Terebella      |
| 32 | С        | 2 | 0.001 | 12/04/18 | Arthropoda    | Malacostraca    | Amphipoda     | Gammaridae       | Gammarus       |
| 33 | С        | 1 | 0.006 | 12/04/18 | Echinodermata | Ophiuroidea     | Ophiurida     | Amphiuridae      | Amphioplus     |
| 34 | С        | 4 | 2.156 | 12/04/18 | Mollusca      | Bivalvia        | Veneroida     | Tellinidae       | c.f. Augulus   |
| 35 | D        | 2 | 0.008 | 12/04/18 | Annelida      | Polychaeta      | Aciculata     | Glyceridae       | Glycera        |
| 36 | D        | 1 | 0.002 | 12/04/18 | Annelida      | Polychaeta      | Canalipalpata | Oweniidae        | Owenia         |
| 37 | D        | 4 | 0.006 | 12/04/18 | Annelida      | Polychaeta      | Phyllodocida  | Nephtyidae       | Nephthys       |
| 38 | D        | 1 | 0.001 | 12/04/18 | Annelida      | Polychaeta      | Spionida      | Poecilochaetidae | Poecilochaetus |
| 39 | D        | 1 | 0.136 | 12/04/18 | Arthropoda    | Crustacea       | Decapoda      | Pilumnidae       | Typhlocarcinus |
| 40 | D        | 6 | 0.481 | 12/04/18 | Mollusca      | Bivalvia        | Veneroida     | Tellinidae       | c.f. Augulus   |
|    |          | 2 | 2.047 |          | Mallugge      | Divolvie        | Vanaraida     | Vanaridaa        | Paphia (P.     |
| 41 | D        | 3 | 3.017 | 12/04/18 | Mollusca      | Bivalvia        | Veneroida     | Veneridae        | undulata)      |
| 42 | E        | 3 | 0.005 | 12/04/18 | Annelida      | Polychaeta      | Aciculata     | Nereidae         | Nereis         |
| 43 | Е        | 1 | 0.002 | 12/04/18 | Annelida      | Polychaeta      | Capitellida   | Capitellidae     | Capitella      |
| 44 | Е        | 3 | 0.007 | 12/04/18 | Annelida      | Polychaeta      | Phyllodocida  | Nephtyidae       | Nephthys       |
| 45 | E        | 3 | 0.004 | 12/04/18 | Annelida      | Polychaeta      | Spionida      | Poecilochaetidae | Poecilochaetus |
| 46 | Е        | 1 | 0.001 | 12/04/18 | Annelida      | Oligochaeta     | Lumbriculida  | Lumbriculidae    | -              |
| 47 | E        | 2 | Т     | 12/04/18 | Arthropoda    | Malacostraca    | Amphipoda     | Gammaridae       | Gammarus       |
| 48 | E        | 2 | 0.918 | 12/04/18 | Mollusca      | Bivalvia        | Veneroida     | Tellinidae       | c.f. Augulus   |
|    |          | 2 | 2 265 |          | Molluggo      | Pivolvio        | Veneroida     | Veneridae        | Paphia (P.     |
| 49 | E        | 2 | 2.365 | 12/04/18 | Mollusca      | Bivalvia        | veneroida     | venendae         | undulata)      |
| 50 | Е        | 1 | 0.004 | 12/04/18 | Nemertea      | Enopla          | -             | -                | UNID 1         |
| 51 | F        | 1 | 0.003 | 12/04/18 | Annelida      | Polychaeta      | Aciculata     | Glyceridae       | Glycera        |
| 52 | F        | 2 | 0.001 | 12/04/18 | Annelida      | Polychaeta      | Canalipalpata | Oweniidae        | Owenia         |
| 53 | F        | 2 | 0.002 | 12/04/18 | Annelida      | Polychaeta      | Capitellida   | Capitellidae     | Capitella      |
| 54 | F        | 1 | 0.002 | 12/04/18 | Annelida      | Polychaeta      | Phyllodocida  | Nephtyidae       | Nephthys       |
| 55 | F        | 3 | 0.004 | 12/04/18 | Annelida      | Polychaeta      | Spionida      | Poecilochaetidae | Poecilochaetus |
| 56 | F        | 1 | 0.001 | 12/04/18 | Annelida      | Oligochaeta     | Lumbriculida  | Lumbriculidae    | -              |
| 57 | F        | 1 | Т     | 12/04/18 | Sipuncula     | Sipunculiformes | Sipunculidea  | Sipunculidae     | Sipunculus     |
|    | <u> </u> | i | l     | l        |               | L               | l             | i                | i              |

5/28/2018



|    |   |    |        | 1        |            |                |                  |                  |                               |
|----|---|----|--------|----------|------------|----------------|------------------|------------------|-------------------------------|
| 58 | F | 7  | 0.002  | 12/04/18 | Arthropoda | Malacostraca   | Amphipoda        | Gammaridae       | Gammarus                      |
| 59 | F | 1  | 3.851  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Psammobiidae     | Psammotaea                    |
| 60 | F | 9  | 4.392  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | Ruditapes(R. variegatus)      |
| 61 | F | 1  | 1.526  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | Chione (C.                    |
| 62 | F | 1  | 0.211  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | Timoclea (T.<br>scabra)       |
| 63 | F | 1  | 10.900 | 12/04/18 | Chordata   | Actinopterygii | Perciformes      | Gobiidae         | UNID goby                     |
| 64 | G | 1  | 0.002  | 12/04/18 | Annelida   | Polychaeta     | Aciculata        | Glyceridae       | Glycera                       |
| 65 | G | 1  | 0.001  | 12/04/18 | Annelida   | Polychaeta     | Phyllodocimorpha | Goniadidae       | Glycinde                      |
| 66 | G | 3  | 0.017  | 12/04/18 | Annelida   | Polychaeta     | Aciculata        | Nereidae         | Nereis                        |
| 67 | G | 1  | 0.001  | 12/04/18 | Annelida   | Polychaeta     | Canalipalpata    | Oweniidae        | Owenia                        |
| 68 | G | 5  | 0.021  | 12/04/18 | Annelida   | Polychaeta     | Capitellida      | Capitellidae     | Capitella                     |
| 69 | G | 6  | 0.054  | 12/04/18 | Annelida   | Polychaeta     | Phyllodocida     | Nephtyidae       | Nephthys                      |
| 70 | G | 1  | 0.001  | 12/04/18 | Annelida   | Polychaeta     | Spionida         | Poecilochaetidae | Poecilochaetus                |
| 71 | G | 1  | 0.001  | 12/04/18 | Annelida   | Oligochaeta    | Lumbriculida     | Lumbriculidae    | -                             |
| 72 | G | 10 | 0.004  | 12/04/18 | Arthropoda | Malacostraca   | Amphipoda        | Gammaridae       | Gammarus                      |
| 73 | G | 1  | 1.062  | 12/04/18 | Arthropoda | Malacostraca   | Decapoda         | Leucosiidae      | Nursia                        |
| 74 | G | 2  | 0.500  | 12/04/18 | Arthropoda | Maxillopoda    | Sessilia         | Balanidae        | Balanus                       |
| 75 | G | 1  | 0.731  | 12/04/18 | Cnidaria   | Anthozoa       | Pennatulacea     | Virgulariidae    | c.f. Virgularia               |
| 76 | G | 2  | 9.200  | 12/04/18 | Mollusca   | Bivalvia       | Ostreoida        | Ostreidae        | Ostrea                        |
| 77 | G | 3  | 7.800  | 12/04/18 | Mollusca   | Bivalvia       | Ostreoida        | Ostreidae        | Talonostrea(T. talonata)      |
| 78 | G | 1  | 0.435  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | Ruditapes(R. variegatus)      |
| 79 | G | 1  | 0.328  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | c.f. Meretrix<br>(M. lusoria) |
| 80 | G | 1  | 0.198  | 12/04/18 | Mollusca   | Bivalvia       | Veneroida        | Veneridae        | Timoclea (T. scabra)          |
| 81 | Н | 3  | 0.003  | 12/04/18 | Annelida   | Polychaeta     | Aciculata        | Nereidae         | Nereis                        |
| 82 | Н | 1  | 0.001  | 12/04/18 | Annelida   | Polychaeta     | Canalipalpata    | Oweniidae        | Owenia                        |
| 83 | Н | 3  | 0.002  | 12/04/18 | Annelida   | Polychaeta     | Capitellida      | Capitellidae     | Capitella                     |
| 84 | Н | 1  | Т      | 12/04/18 | Annelida   | Polychaeta     | -                | Maldanidae       | Maldanella                    |
| 85 | Н | 1  | 0.001  | 12/04/18 | Annelida   | Polychaeta     | -                | Opheliidae       | c.f. Ophelia                  |



| 86 | Н | 4  | 0.256  | 12/04/18 | Annelida      | Polychaeta    | Phyllodocida    | Nephtyidae       | Nephthys                    |
|----|---|----|--------|----------|---------------|---------------|-----------------|------------------|-----------------------------|
| 87 | Н | 1  | 0.002  | 12/04/18 | Annelida      | Polychaeta    | Spionida        | Poecilochaetidae | Poecilochaetus              |
| 88 | Н | 1  | 0.001  | 12/04/18 | Annelida      | Polychaeta    | Spionida        | Spionidae        | Prionospio                  |
| 89 | Н | 2  | 0.918  | 12/04/18 | Arthropoda    | Crustacea     | Decapoda        | Penaeidae        | Shrimp juvenile             |
| 90 | Н | 2  | 2.225  | 12/04/18 | Arthropoda    | Crustacea     | Decapoda        | Pilumnidae       | Typhlocarcinus              |
| 91 | Н | 2  | 0.800  | 12/04/18 | Arthropoda    | Malacostraca  | Decapoda        | Porcellanidae    | Porcellanella<br>(P. picta) |
| 92 | Н | 1  | 1.189  | 12/04/18 | Echinodermata | Holothuroidea | Molpadiida      | Caudinidae       | Acaudina                    |
| 93 | Н | 1  | 42.000 | 12/04/18 | Cnidaria      | Anthozoa      | Pennatulacea    | Pennatulidae     | Pteroeides                  |
| 94 | Н | 1  | 0.834  | 12/04/18 | Mollusca      | Bivalvia      | Adapedonta      | Solenidae        | Solen                       |
| 95 | н | 6  | 11.800 | 12/04/18 | Mollusca      | Bivalvia      | Ostreoida       | Ostreidae        | Talonostrea(T. talonata)    |
| 96 | Н | 3  | 2.019  | 12/04/18 | Mollusca      | Bivalvia      | Veneroida       | Veneridae        | Paphia (P.<br>undulata)     |
| 97 | н | 12 | 6.112  | 12/04/18 | Mollusca      | Bivalvia      | Veneroida       | Veneridae        | Ruditapes(R. variegatus)    |
| 98 | Н | 2  | 7.500  | 12/04/18 | Chordata      | Ascidiacea    | Stolidobranchia | -                | -                           |

Note: T means biomass <0.001 g round to 0.001g



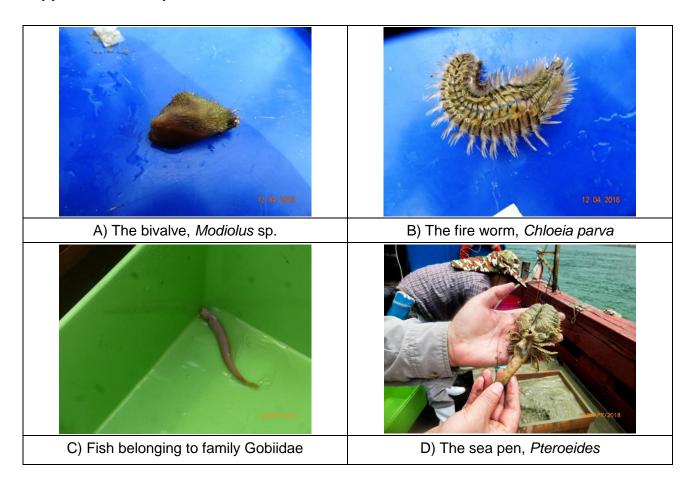
# Benthic Species Recorded during the Baseline Study (August 2004)

| Upgr                 | ading of  | Siu Ho Wa | n Sewage  | Treatment Pla | int                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                           |
|----------------------|-----------|-----------|-----------|---------------|--------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
| Bent                 | nic Speci | es Record | ed In Aug | ust 2004      | s between the property of the second |                     | 120 MARTIN TO THE REST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                           |
| ID,                  |           |           |           |               | Class                                | Order of the second | the transport of the property material comments and the state of the s | Genus            | Species                   |
| 1                    | A1        | 2         | 0.0108    | Annelida      | Polychaeta                           | Phyllodocida        | Nephtyidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aglaophamus      | Aglaophamus dibranchis    |
| 2                    | A1        | 2         | 0.2632    | Arthropoda    | Crustacea                            | Decapoda            | Alpheidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alpheus          | Alpheus sp.               |
| 3                    | A1        | 3         | 0.0031    | Annelida      | Polychaeta                           | Spionida            | Cirratulidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cirratulus       | Cirratulus sp.            |
| 4.                   | A1        | 1         | 0.0008    | Annelida      | Polychaeta                           | Eunicida            | Eunicidae '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eunice           | Eunice indica             |
| 5                    | A1        | 11        | 0.0092    | Annelida      | Polychaeta                           | Phyllodocida        | Glyceridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glycera          | Glycera onomichiensis     |
| 6                    | A1        | 1         | 0.0012    | Annelida      | Polychaeta                           | Phyllodocida        | Hesionidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Micropodarke     | Micropodarke dubia        |
| 7                    | A1        | 1         | 0.0203    | Arthropoda    | Crustacea                            | Decapoda            | Pinnotheridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Neoxenophthalmus | Neoxenophthalmus obscurus |
| 8                    | A1        | 3         | 0.0027    | Annelida      | Polychaeta                           | Capitellida         | Capitellidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notomastus       | Notomastus latericens     |
| 9                    | A1        | 1         | 0.0193    | Annelida      | Polychaeta                           | Terebellida         | Terebellidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pista            | Pista cristata            |
| 10                   | Ai        | 9         | 0.0598    | Annelida      | Polychaeta                           | Spionida            | Spionidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prionospio       | Prionospio queenslandica  |
| 11                   | A1        | 1         | 0.0097    | Annelida      | Polychaeta                           | Sternaspida         | Sternaspidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sternaspis       | Sternaspis sculata        |
| 12                   | A2        | 1         | 0.1911    | Arthropoda    | Crustacea                            | Decapoda            | Alpheidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alpheus          | Alpheus sp.               |
| 13                   | A2        | 1         | 0.0003    | Annelida      | Polychaeta                           | Capitellida         | Capitellidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Capitella        | Capitella capitata        |
| 14                   | A2 ·      | 1         | 9,2414    | Coelentera    | Anthozoa                             | Pennatulacea        | Veretillidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cavernularia     | Cavernularia sp.          |
| 15                   | A2        | 15        | 0.0536    | Annelida      | Polychaeta                           | Splonida            | Cirratulidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cirratulus ·     | Cirratulus sp.            |
| 16                   | A2        | 1         | 0,0028    | Mollusca      | Bivalvia .                           | Venerolda           | Ungulinidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cycladicama      | Cycladicama sp            |
| 17                   | A2        | 3         | 0.0392    | Annelida      | Polychaeta                           | Eunicida            | Eunicidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eunice           | Eunice indica             |
| 18                   | A2        | 3         | 0.3728    | Annelida      | Polychaeta                           | Phyllodocida        | Glyceridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glycera          | Glycera onomichiensis     |
| 19                   | - A2      | 1         | 0.0064    | Annelida      | Polychaeta                           | Phyllodocida        | Hesionidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leocrates        | Leocrates chinensis       |
| 20                   | A2        | 2         | 0.0448    | Annelida      | Polychaeta                           | Phyllodocida        | Polynoidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lepidonotus      | Lepidonotus sp.           |
| 21                   | A2        | 3         | 0.968     | Annelida      | Polychaeta                           | Terebellida         | Terebellidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Loimia           | Loimia medusa             |
| 22                   | A2        | 1         | 0.0051    | Annelida      | Polychaeta                           | Phyllodocida        | Hesionidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Micropodarke     | Micropodarke dubia        |
| 23                   | A2        | 5         | 2.0379    | Arthropoda    | Crustacea                            | Decapoda            | Pinnotheridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Neoxenophthalmus | Neoxenophthalmus obscurus |
| 24                   | A2        | 35        | 0.3411    | Annelida      | Polychaeta                           | Capitellida         | Capitellidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notomastus       | Notomastus latericens     |
| 25                   | A2        | 2         | 0.0408    | Annelida      | Polychaeta                           | Spionida .          | Poecilochaetidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Poecilochaetus   | Poecilochaetus serpens    |
| 26                   | A2        | 5         | 0.0136    | Annelida      | Polychaeta                           | Spionida            | Spionidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prionospio       | Prionospio queenslandica  |
| 27                   | A2.       | 4         | 0.6328    | Arthropoda    | Crustacea                            | Decapoda            | Porcellanidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raphidopus       | Raphidopus ciliatus       |
| 28                   | A2        | 3         | 0.0292    | Mollusca      | Bivalvia                             | Venerolda           | Veneridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ruditapes        | Ruditapes philippinarum   |
| 29                   | A2        | 1         | 0.0059    | Annelida      | Polychaeta                           | Orbinlida           | Orbiniidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scoloplos        | Scoloplos sp.             |
| 30                   | A2        | 1         | 0.0012    | Annelida      | Polychaeta                           | Phyllodocida        | Pilargildae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sigambra         | Sigambra hanaokai         |
| 31                   | A2        | 1         | 0.0014    | Annelida      | Polychaeta                           | Phyllodocida        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Syllis sp.                |
| 32                   | .A2       | 1         | 0.1345    | Coelentera    | Anthozoa                             | Pennatulacea        | Virgulariidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Virgularia gustaviana     |
| 33                   | B1        | 1         |           | Annelida      | Polychaeta                           | Phyllodocida        | Nephtyldae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aglaophamus      | Aglaophamus dibranchis    |
| 34                   | B1        | 1         |           | Annelida      | Polychaeta                           | Amphinomida         | Amphinomidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amphinome        | Amphinome rostrata        |
| 32<br>33<br>34<br>35 | B1        | 1         |           | Echinodermata | Stelleroidea                         | Ophiurida           | Amphluridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Amphiodia        | Amphiodia sp.             |
| 36                   | B1        | 4         | 0.0063    | Arthropoda    | Crustacea                            | Amphipoda           | Corophildae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Corophium        | Corophium sp.             |
| 37                   | B1        | 2         | 4.0772    | Echinodermata | Echinoldea                           |                     | The second secon | Lovenia ·        | Lovenia subcarlnata       |
| 38                   | B1        | 1         | 0.0346    | Annelida      | Polychaeta                           | Eunicida            | Lumbrineridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lumbrineris      | Lumbrineris sp.           |
| 39                   | B1        | 2         | 0.2395    | Arthropoda    | Crustacea                            | Decapoda            | Pinnotheridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Neoxenophthalmus | Neoxenophthalmus obscurus |
| 40                   | B1        | 1         | ****      | Mollusca      | Bivalvia                             | Veneroida           | Tellinidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitidotellina    | Nitidotellina minuta      |



| [    |           | Civ Un W  | n Cowana           | Treatment Pla          | int         |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-----------|-----------|--------------------|------------------------|-------------|------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upgi | aging of  | olu no wa | all Dewaye         | Treatment Pla          |             |                  |               | article meanings and testing a state of the | over the state of |
| Bent | nic Speci | es Kecoro | ed In Augu         | DAVIDA                 | Class       | Order            | Family        | Genus 🗼 🧓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -    |           |           | Mass (g)<br>0.0139 | Annelida               | Polychaeta  | Capitellida      | Capitellidae  | Notomastus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notomastus latericens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41   | 81        | 4         | 0.0133             | Annelida               | Polychaeta  | Spionida         | Spionidae     | Paraprionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paraprionospio pinnata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42   | B1        |           | 0.0042             | Annelida               | Polychaeta  | Spionida         | Splonidae     | Prionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prionospio multipinnata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 43   | <u>B1</u> |           | ····               | Annelida               | Polychaeta  | Phyllodocida     | Nephtyidae    | Aglaophamus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aglaophamus dibranchis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 44   | B2        | 3         | 0.0054             | Annelida               | Polychaeta  | Eunicida         | Lumbrineridae | Lumbrineris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lumbrineris sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 45   | B2        | 3         | 0.1089             | Arthropoda             | Crustacea   | Decapoda         | Pinnotheridae | Neoxenophthalmus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Neoxenophthalmus obscurus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 46   | <u>B2</u> | <u> </u>  | 0.0384             |                        | Bivalvia    | Veneroida        | Tellinidae    | Nitidotellina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nitidotellina minuta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47   | B2        | 1         | 0.0028             | Mollusca               | Polychaeta  | Capitellida      | Capitellidae  | Notomastus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notomastus latericens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 48   | B2        | 5         | 0.0158             | Annelida               | Polychaeta  | Spionida         | Spionidae     | Prionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prionospio cirrifera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 49   | B2        | 2         | 0.0006             | Annelida               | Polychaeta  | Phyllodocida     | Pilargildae   | Sigambra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sigambra hanaokai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50   | B2        | 1         | 0.0008             | Annelida               | Crustacea   | Decapoda         | Pilumnidae    | Typhlocarcinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Typhlocarcinus nudus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 51   | B2        | 1         | 0.1426             | Arthropoda             | Polychaeta  | Phyllodocida     | Nephtyidae    | Aglaophamus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aglaophamus dibranchis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52   | C1        | 3         | 0.0152             | Annelida               | Polychaeta  | Capitellida      | Maldanidae    | Eudymene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eudymene sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 53   | C1        | 1         | 0.0123             | Annelida               | Polychaeta  | Eunicida         | Lumbrineridae | Lumbrineris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lumbrineris sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 54   | C1        | 2         | 0.0348             | Annelida               | Crustacea   | Decapoda         | Pinnotheridae | Neoxenophthalmus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Neoxenophthalmus obscurus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 55   | C1_       | 2         | 0.4967             | Arthropoda             | Polychaeta  | Capitellida      | Capitellidae  | Notomastus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notomastus latericens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56   | C1        | 3         | 0.0418             | Annelida               | Bivalvia    | Veneroida        | Veneridae     | Paphia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paphla undulata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 57   | C1        | 1         | 1,6743             | Mollusca               | Polychaeta  | Spionida         | Spionidae     | Paraprionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paraprionospio pinnata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 58   | C1_       | 2         | 0.0017             | Annelida               | Bivalvia    | Veneroida        | Semelidae     | Theora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Theora lata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 59   | C1        | 11        | 0.009              | Mollusca               | Crustacea   | Decapoda         | Pilumnidae    | Typhlocardnus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Typhlocarcinus nudus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60   | C1        | 1         | 0.0503             | Arthropoda<br>Annelida | Polychaeta  | Phyllodocida     | Nephtyidae    | Aglaophamus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aglaophamus dibranchis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 61   | C2        | 2         | 0.0099             | Annelida               | Polychaeta  | Amphinomida      | Amphinomidae  | Amphinome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amphinome rostrata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 62   | C2        | 11        | 0.0243             | Annelida               | Polychaeta  | Phyllodocida     | Glyceridae    | Glycera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Glycera onomichiensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 63   | C2        | 1         | 0.285              | 4                      | Crustacea   | Decapoda         | Goneplacidae  | Hexapus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexapus granuliforus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 64   | C2        | 1         | 0.0049             | Arthropoda<br>Annelida | Polychaeta  | Phyllodocida     | Pilargildae   | Sigambra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sigambra hanaokai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 65   | <u>C2</u> | 1         | 0.0012             | Annelida               | Polychaeta  | Phyllodocida     | Nephtyidae    | Aglaophamus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aglaophamus dibranchis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 65   | D1        | 2         | 0.0065             | Annelida               | Polychaeta  | Capitellida      | Maldanidae    | Euclymene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Euclymene sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 67   | D1        | 1         | 0.0106             | Arthropoda             | Crustacea   | Decapoda         | Goneplacidae  | Eucrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eucrate haswelli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 68   | D1        | 1         |                    | Annelida               | Polychaeta  | Phyliodocida     | Glyceridae    | Glycera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Glycera onomichiensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 69   | D1        | 3         | 0.4472             |                        | Crustacea   | Decapoda         | Pinnotheridae | Neoxenophthalmus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Neoxenophthalmus obscurus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70   | D1        | 2         | 0.254              | Arthropoda<br>Annelida | Polychaeta  | Capitellida      | Capitellidae  | Notomastus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notomastus latericens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 71   | D1        | 8         | 0.0887             |                        | Polychaeta  | Ophellida        | Ophellidae    | Ophelia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ophelina grandis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 72   | D1        | 2         | 0.0648             | Annelida<br>Mollusca   | Bivalvia    | Venerolda        | Veneridae     | Paphia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paphia undulata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 73   | D1        | 1.        | 3.3726             |                        | Polychaeta  | Spionida         | Spionidae     | Paraprionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paraprionospio pinnata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74   | D1        | 2         | 0.0092             | Annelida               | BivalVia    | Nuculoida        | Nuculanidae   | Saccella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Saccella sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 75   | D1        | 1         | 0.0514             | Mollusca               | Polychaeta  | Phyllodocida     | Pilargiidae   | Sigambra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sigambra hanaokai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 76   | D1'       | 1         | 0,0021             | Annelida               | Polychaeta  | Capitellida      | Capitellidae  | Notomastus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notomastus latericens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 77   | D2        | 12        | 0.155              | Annelida               | Polychaeta  | Opheliida        | Opheliidae    | Ophelia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ophelina grandis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 78   | D2        | 1         | 0.0797             | Annelida               | Polychaeta  | Spionida         | Spionidae     | Paraprionospio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paraprionospio pinnata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 79   | D2        | 1         | 0.0031             | Annelida               | Polychaeta  | Phyllodocida     | Pilargiidae   | Sigambra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sigambra hanaokai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80   | D2        | 11        | 0.0012             | Annelida               | Trolychaeta | 12 1171100000000 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |




| Unar | ading of      | Sin Ho W | an Sewage  | Treatment Pla | nt          |               | <u></u>        | , .              | ·                         |
|------|---------------|----------|------------|---------------|-------------|---------------|----------------|------------------|---------------------------|
|      |               |          | led In Aug |               |             |               |                |                  | <u></u>                   |
|      |               |          | Mass (g)   |               | Class       | Order a P     | Family         | Genus 1          | Species                   |
| 81   | E1            | 3        | 0.0423     | Annelida      | Polychaeta  | Phyllodocida  | Nephtyidae     | Aglaophamus      | Aglaophamus dibranchis    |
| 82   | <u> </u>      | 1        | 0.0014     | Arthropoda    | Crustacea   | Amphipoda     | Corophildae    | Corophium        | Corophium sp.             |
| 83   | <u> </u>      | 10       | 41.4922    | Echinodermata | Echinoidea  | Spatangoida   | Lovenlidae     | Lovenia          | Lovenia subcarinata       |
| 84   | <u></u><br>E1 | 2        | 0.0672     | Annelida      | Polychaeta  | Eunlcida      | Lumbrineridae  | Lumbrineris      | Lumbrineris sp.           |
| 85   | <u> </u>      | 1        | 0.0171     | Arthropoda    | Crustacea   | Decapoda      | Pinnotheridae  | Neoxenophthalmus | Neoxenophthalmus obscurus |
| 86   | <u> </u>      | 2        | 0.013      | Annelida      | Polychaeta  | Capitellida   | Capitellidae   | Notomastus       | Notomastus latericens     |
| 87   | E1            | 1        | 0.0098     | Annelida      | Polychaeta  | Spionida      | Spionidae      | Prionospio       | Prionospio multipinnata   |
| 88   | E1            | 1        | 0.0021     | Annelida      | Polychaeta  | Phyllodocida  | Pilarglidae    | Sigambra         | Sigambra hanaokai         |
| 89   | E1            | 1        | 0.0203     | Annelida      | Polychaeta  | Sternaspida   | Sternaspidae   | Sternaspis       | Sternaspis sculata        |
| 90   | E1            | 1        | 0,006      | Mollusca      | Blvalvla    | Veneroida     | Semelidae      | Theora           | Theora lata               |
| 91   | E1            | 1        | 0.0823     | Arthropoda    | Crustacea   | Decapoda      | Pilumnidae     | Typhlocarcinus   | Typhlocarcinus nudus      |
| 92   | E2            | 2        | 0.023      | Annelida      | Polychaeta  | Phyllodocida  | Nephtyidae     | Aglaophamus      | Aglaophamus dibranchis    |
| 93   | E2            | 1        | 0.0083     | Arthropoda    | Crustacea   | Decapoda      | Alpheidae      | Alpheus          | Alpheus sp.               |
| 94   | E2            | 1        | 0.0016     | Arthropoda    | Crustacea   | Amphipoda     | Corophiidae    | Corophium        | Corophium sp.             |
| 95   | E2            | 1        | 0.0171     | Annelida      | Polychaeta  | Eunlada       | Onuphidae      | Diopatra         | Diopatra sp.              |
| 96   | E2            | 1        | 0.0062     | Annelida      | Polychaeta  | Phyllodocida  | Hesionidae     | Leocrates        | Leocrates chinensis       |
| 97   | E2 .          | 1        | 0,446      | Annelida      | Polychaeta  | Terebellida   | Terebellidae   | Lolmia           | Loimla medusa             |
| 98   | E2            | 2        | 6,348      | Echinodermata | Echinoidea  | Spatangolda   | Lovenlidae     | Lovenia          | Lovenia subcarinata       |
| 99   | E2            | i        | 0.0067     | Annelida      | Polychaeta  | Eunicida      | Lumbrineridae  | Lumbrineris      | Lumbrineris sp.           |
| 100  | E2            | 1        | 0.0336     | Mollusca      | Bivalvia    | Veneroida     | Tellinidae     | Nitidotellina    | Nitidotellina minuta      |
| 101  | E2            | 4        | 0.0477     | Annelida      | Polychaeta  | Capitellida   | Capitellidae   | Notomastus       | Notomastus latericens     |
| 102  | F1            | 1        | 0.0162     | Arthropoda    | Crustacea   | Decapoda      | Alpheldae      | Alpheus          | Alpheus sp.               |
| 103  | F1            | 1        | 0.4824     | Mollusca      | Gastropoda  | Neogastropoda | Nassarildae    | Nassarius        | Nassarius sp.             |
| 104  | F1            | 1        | 0.0088     | Annelida      | Polychaeta  | Capitellida   | Capitellidae   | Notomastus       | Notomastus latericens     |
| 105  | F1            | 1        | 0,0046     | Annellda      | Polychaeta  | Spionida      | Spionidae      | Paraprionospio   | Paraprionospio pinnata    |
| 106  | F1            | 1        | 0.0018     | Annelida      | Polychaeta  | Phyllodocida  | Pilargildae    | Sigambra         | Sigambra hanaokai         |
| 107  | F1            | 1        | 0.0126     | Annelida      | Polychaeta  | Sternaspida   | Sternaspidae   | Sternaspis       | Sternaspis sculata        |
| 108  | F2            | 1        | 0.0284     | Annelida      | Polychaeta  | Phyllodocida  | Nephtyidae     | Aglaophamus      | Aglaophamus dibranchis    |
| 109  | F2            | 2        | 7.2811     | Echinodermata | Echinoidea  | Spatangoida   | Lovenildae     | Lovenia          | Lovenia subcarinata       |
| 110  | F2            | 1        | 0.0222     | Annelida      | Polychaeta  | Capitellida   | Capitellidae   | Notomastus       | Notomastus latericens     |
| 111  | F2            | 1        | 0,2073     | Annelida      | Polychaeta  | Opheliida     | Opheliidae     | Ophelia          | Ophelina grandis          |
| 112  | G1            | 7        | 0.1547     | Arthropoda    | Crustacea   | Decapoda      | Alpheidae      | Alpheus          | Alpheus sp.               |
| 113  | G1            | 1        |            | Arthropoda    | Crustacea . | Tanaidacea    | Apseudidae     | Apseudes         | Apseudes sp.              |
| 114  | G1            | 1        |            |               | Crustacea   | Decapoda      | Callianassidae | Callianassa      | Callianassa sp.           |
| 115  | G1            | 3        |            | Annelida      | Polychaeta  | Spionida      | Cirratulidae   | Cirratulus       | Cirratulus sp.            |
| 116  | G1            | 4        |            |               | Crustacea   | Amphipoda     | Corophiidae    | Corophium        | Corophium sp.             |
| 117  | G1            | 9        |            |               | Polychaeta  | Eunicida      | Eunicidae      | Eunice           | Eunice indica             |
| 118  | GÍ            | 1        | 0.0397     |               | Polychaeta  | Phyllodocida  | Glyceridae     | Glycera          | Glycera onomichiensis     |
| 119  | G1            | 2        |            |               | Crustacea   | Decapoda      |                | Hexapus          | Hexapus granuliforus      |
| 120  | G1            | 1        | 0.0245     | Annelida      | Polychaeta  | Phyllodocida  | Polynoidae     | Lepidonotus      | Lepidonotus sp.           |



|       | . dt      | Nie Ha Wa | n Saucan   | Treatment Pla | nt           |                           |                                                 |                                                   |                           |
|-------|-----------|-----------|------------|---------------|--------------|---------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------|
| Upgra | iding of  | SIU HO Wa | ed In Augu | Treatment Pla |              |                           | ALAL LANGUAGO GOVERNI E PERSONAL DE L'ARTÉMISSE | annanisanski kiristologova pova presidenti (1966) |                           |
| Bentr | iic Speci | es Record | Mass (g)   | Dhu iim.      | Class        | rorder (50%)              | Family .                                        | Genus (1994)                                      | Species (Sec. 2)          |
|       |           |           | 0.819      | Arthropoda    | Crustacea    |                           | Pinnotheridae                                   | Neoxenophthalmus                                  | Neoxenophthalmus obscurus |
| 121   | G1        | 3         | 0.0108     | Annelida      | Polychaeta   | Phyllodocida              | Nereidae                                        | Nerels                                            | Nerels sp.                |
| 122   | G1        | 4         | 0.0108     | Annelida      | Polychaeta   | Capitellida               | Capitellidae ·                                  | Notomastus · · ·                                  | Notomastus latericens     |
| 123   | G1        | 20        | 0.0022     | Annelida      | Polychaeta   | Spionida                  | Spionidae                                       | Prionospio                                        | Prionospio ehlersi        |
| 124   | G1        | <u>_</u>  | 0.0003     | Annelida      | Polychaeta   | Spionida                  | Spionidae                                       | Prionospio                                        | Prionospio queenslandica  |
| 125   | G1        | 2         |            | Arthropoda    | Crustacea    | Decapoda                  | Porcellanidae                                   | Raphidopus                                        | Raphidopus ciliatus       |
| 126   | G1        | 1         | 0.094      | Annelida      | Polychaeta   | Phyllodocida              | Syllidae                                        | Syllis                                            | Syllis sp.                |
| 127   | G1        | 22        | 0.0006     | Annelida      | Polychaeta   | Phyllodocida              | Nephtyldae                                      | Aglaophamus                                       | Aglaophamus dibranchis    |
| 128   | G2        | <u>l</u>  | 0.0027     |               | Crustacea    | Decapoda                  | Alph <b>eid</b> ae                              | Alpheus                                           | Alpheus sp.               |
| 129   | G2        | 2         | 0.108      | Arthropoda    | Crustacea    | Tanaidacea                | Apseudidae                                      | Apseudes                                          | Apseudes sp.              |
| 130   | G2_       | 1         | 0.0028     | Arthropoda    | Polychaeta   | Splonida                  | Cirratulidae                                    | Cirratulus                                        | Cirratulus sp.            |
| 131   | G2        | 3         | 0.0058     | Annelida      | Crustacea    | Decapoda                  | Goneplacidae                                    | Eucrate                                           | Eucrate haswelli          |
| 132   | G2        | 1         | 0,2476     | Arthropoda    | Polychaeta   | Eunicida                  | Eunicidae                                       | Eunice                                            | Eunice Indica             |
| 133   | G2        | 2         | 0.063      | Annelida      | Polychaeta   | Terebellida               | Terebellidae                                    | Lanice                                            | Lanice sp.                |
| 134   | G2        | 1         | 0.0169     | Annelida      | Bivalvia     | Venerolda                 | Dreissenidae                                    | Mytilopsis                                        | Mytilopsis sallei         |
| 135   | G2        | 1         | 0.0645     | Mollusca      |              | Capitellida               | Capitellidae                                    | Notomastus                                        | Notomastus latericens     |
| 136   | G2_       | 22        | 0.0017     | Annelida      | Polychaeta   | Opheliida                 | Opheliidae                                      | Ophelia                                           | Ophelina grandis          |
| 137   | G2        | 11        | 0.0059     | Annelida      | Polychaeta   | Spionida                  | Spionidae                                       | Prionospio                                        | Prionospio queenslandica  |
| 138   | G2        | 7         | 0.0211     | Annelida      | Polychaeta   | Decapoda                  | Porcellanidae                                   | Raphidopus                                        | Raphidopus ciliatus       |
| 139   | G2        | 5         | 0.3769     | Arthropoda    | Crustacea    | Phyllodocida              | Syllidae                                        | Syllis                                            | Syllis sp.                |
| 140   | G2        | 1         | 0.0002     | Annelida      | Polychaeta   | Phyllodocida              | Nephtyidae                                      | Aglaophamus                                       | Aglaophamus dibranchis    |
| 141   | G2        | 11        | 0.0026     | Annelida      | Polychaeta . | Decapoda                  | Alpheidae                                       | Alpheus                                           | Alpheus sp.               |
| 142   | G2        | 7         | 0.0952     | Arthropoda    | Crustacea    | Terebellida               | Terebellidae                                    | Amaeana                                           | Amaeana sp.               |
| 143   | G2        | 1         | 0.0469     | Annelida      | Polychaeta   | Spionida                  | Cirratulidae                                    | Cirratulus                                        | Cirratulus sp.            |
| 144   | G2        | 11        | 0,0008     | Annellda      | Polychaeta   | Amphipoda                 | Corophildae                                     | Corophium                                         | Corophium sp.             |
| 145   | G2_       | 7         | 0.0042     | Arthropoda    | Crustacea    | Eunicida                  | Eunicidae                                       | Eunice                                            | Eunice Indica             |
| 146   | G2        | 8         | 0.1768     | Annelida      | Polychaeta   | Phyllodocida Phyllodocida | Polynoidae                                      | Gattyana                                          | Gattyana sp.              |
| 147   | G2        | 11        | 0.0025     | Annelida      | Polychaeta   | Phyllodocida Phyllodocida | Glyceridae                                      | Glycera                                           | Glycera onomichiensis     |
| 148   | G2        | 4         | 0.0105     | Annelida      | Polychaeta   |                           | Gonepladdae                                     | Hexapus                                           | Hexapus granuliforus      |
| 149   | G2        | 1         | 0.0162     | Arthropoda    | Crustacea    | Decapoda<br>Phyllodocida  | Nereidae                                        | Nereis                                            | Nereis sp.                |
| 150   | G2        | 1         | 0.0019     | Annelida      | Polychaeta   | Capitellida               | Capitellidae                                    | Notomastus                                        | Notomastus latericens     |
| 151   | G2        | 7         | 0.0485     | Annelida      | Polychaeta   | Splonida                  | Spionidae                                       | Paraprionospio                                    | Paraprionospio pinnata    |
| 152   | G2        | 11        | 0.0084     | Annelida      | Polychaeta   | Phyllodocida Phyllodocida | Phyllodocidae                                   | Phyllodoce                                        | Phyllodoce sp.            |
| 153   | G2        | 11        | 0.0012     | Annelida      | Polychaeta   |                           | Porcellanidae                                   | Raphidopus                                        | Raphidopus ciliatus       |
| 154   | G2        | 11        | 0.1746     | Arthropoda    | Crustacea    | Decapoda Perciformes      | Taenloididae                                    | Trypauchen                                        | Trypauchen vagina         |
| 155   | G2        | 1         | 0.0453     | Chordata .    | Osteichthyes | Phyllodocida Phyllodocida | Nephtyidae                                      | Aglaophamus                                       | Aglaophamus dibranchis    |
| 156   | G2        | 2         | 0.0161     | Annelida      | Polychaeta   | <del>,   </del>           | Alpheidae                                       | Alpheus                                           | Alpheus sp.               |
| 157   | G2        | 3         | 0.4835     | Arthropoda ·  | Crustacea    | Decapoda                  | Cirratulidae                                    | Cirratulus                                        | Cirratulus sp.            |
| 158   | G2        | 1         | 0.0032     | Annelida      | Polychaeta   | Spionida .                |                                                 | Eunice                                            | Eunice indica             |
| 159   | G2        | 3         | 0.0444     | Annelida      | Polychaeta   | Eunicida                  | Eunicidae<br>Clycoridae                         |                                                   | Glycera onomichiensis     |
| 160   | G2        | 2         | 0.0351     | Annelida      | Polychaeta   | Phyllodocida              | Glyceridae                                      | Glycera                                           | Orrotta orromationolo     |



## Appendix B: Representative Taxa Identified



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

Appendix K

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B





Photo 1. A polar grab sampler



Photo3. Grab dimension 2

Photo 2. Grab dimension 1



Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B





Photo 1. A modified Van Veen grab sampler



Photo 2. Grab dimension 1



Photo3. Grab dimension 2

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0302B

### Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                 | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| Air Qu     | ıality      |             |                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                          |
| NA         | 4.5         | NA          | Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.                                                                                                                                                                                                                                                           | SHWSTW                   | Implemented              |
| 3.4        | 4.5         | NA          | Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.                                                                                                                                                                                                                                                              | SHWSTW                   | Implemented              |
| 3.4        | 4.5         | NA          | Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented                                                                                                                                                                                             | SHWSTW                   | Implemented              |
| Water      | Quality     |             |                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                          |
| 3.3        | NA          | 4.01        | To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage                                                                                                                                                                  | SHWSTW                   | Implemented              |
| Waste      | Manager     | nent        | -                                                                                                                                                                                                                                                                                                                                                                                                 | •                        |                          |
| 3.6        | NA          | NA          | Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers                                                                                                                                                                                                                                                                    | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.                                                                                                                                                                                                                                | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.                                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.                                                                                                                                                                                                                                                        | SHWSTW                   | Implemented              |
| NA         | NA          | 5.03        | The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.04        | The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents. | SHWSTW                   | Implemented              |
| NA         | NA          | 5.05        | Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.                                                                                                                                                                                            | SHWSTW                   | Implemented              |
| NA         | NA          | 5.06        | In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.                                                                                                                                                                                                                                                                               | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Temporary storage aareas should be identify and provided for the temporary storage of general                                                                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                      | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
|            |             |             | refuse to facilitate collection                                                                                                                                                                                                                                                                                                                                                                                        |                          |                          |
| NA         | NA          | 5.07        | Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately                                                                                                                                                                                                                                                                                                               | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Sufficient dustbins should be provided for domestic waste if required.                                                                                                                                                                                                                                                                                                                                                 | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.                                                                                                                                                                                                                                                                                         | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.                                                                                                                                                                                                                    | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.                                                                                                                                                                                                                                                                              | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | The burning of refuse on-site is prohibited by law and shall not be undertaken                                                                                                                                                                                                                                                                                                                                         | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Toilet wastewater shall be transported to the STW for treatment                                                                                                                                                                                                                                                                                                                                                        | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.                                                                                                                                                                                                                                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.08        | All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.                                                                                                                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.09        | To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.                                                                                                                                                 | SHWSTW                   | Implemented              |
| NA         | NA          | 5.10        | Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.                                                                                                                                                                                                                                                                                                | SHWSTW                   | Implemented              |
| NA         | NA          | 5.11        | The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly. | SHWSTW                   | Implemented              |
| NA         | NA          | 5.12        | Weekly tidying should be performed weekly within the site.                                                                                                                                                                                                                                                                                                                                                             | SHWSTW                   | Implemented              |
| NA         | NA          | 5.13        | The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.                                                                                         | SHWSTW                   | Implemented              |

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0302B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                         | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|-------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| NA         | NA          | 5.14        | All wastes generated through the operational phase will be manages in accordance with the | SHWSTW                   | Implemented              |
|            |             |             | protocols set out in the WMP Section 5.14.                                                |                          |                          |