Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Monthly EM&A Report June 2018

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016 Environmental Team for Operational
		Environmental Monitoring and Audit for Siu
		Ho Wan Sewage Treatment Works
Report No .:	:	0041/17/ED/0330A

Prepared by: Andy K	ί. Η.	Choi
---------------------	-------	------

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/18-0118

20 July 2018

By Post and E-mail

Drainage Service Department Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. CHUNG Ching Hong, Romeo (E/CM9)

Dear Sir,

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (JUNE 2018)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for June 2018 (Report No.: 0041/17/ED/0330A) received from the Environmental Team (ET), Messrs. Fugro Technical Services Ltd., on 19 July 2018 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/ri/rc

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 18
5.	CHINESE WHITE DOLPHIN MONITORING	. 26
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITGATION MEASURES	. 27
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 28
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 29
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 30
10.	FUTURE KEY ISSUES	. 31
11.	CONCLUSION	. 32

FIGURE

Figure 1	Monitoring Location of Air Sensitive Receiver
Figure 2	Monitoring Locations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
Figure 3	Location of the Tide Gauge
Figure 4	Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix E	Results and Graphical Presentation of Water Quality Monitoring
Appendix F	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix G	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix H	Benthic Survey Report
Appendix I	Photos of Grab Samplers
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0330A

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S , in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the eleventh Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 June 2018 to 30 June 2018 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 14 June 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Compliant Log

There was no complaint received in relation to the environmental impact during the report period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust was implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Report No.: 0041/17/ED/0330A

Future Key Issues

The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the operation of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.

Due to inadequacy of representative data collect between August 2017 and May 2018, current H2S measurement and olfactometry analysis was considered as unsuitable way to establish the relationship of H2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H2S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Report No.: 0041/17/ED/0330A

Page 3

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Egineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWD monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Romeo Chung	2594 7266	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 4

1.4 Work Undertaken during the Report Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 5

Report No.: 0041/17/ED/0330A

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 6

Report No.: 0041/17/ED/0330A

Table 2.2 Categories of Odour Intensity				
Odour Level	Odour Intensity	Classification Criteria		
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described		
1	Slight	Identifiable odour, barely noticeable		
2	Noticeable	Identifiable odour, noticeable		
3	Strong	Identifiable odour, strong		
4	Extreme	Severe odour		

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was appointed to be the laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Repot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H_2S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency		
H ₂ S concentration monitoring Odour patrol	15 minutes	¹ Weekly basis for 6 months during the initial operation stage		
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring		

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 7

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

2.5.1 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in Table 2.4.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 8

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or noncompliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 9

Report No.: 0041/17/ED/0330A

3. WATER QUALITY MONITORING

3.1 Monitoring Location

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at 8 designated monitoring locations (2 impact stations and 6 control stations) during the first five years of the operational phase of the Project. The monitoring locations shall be the same monitoring locations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring location is shown in **Table 3.1**. The monitoring locations of water quality monitoring are also shown in **Figure 2**.

Table 3.1 Location of Water Quality Monitoring

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2Parameters for Water Quality Monitoring

Monitoring Parameters		
In-situ Measurement	Laboratory Analysis	
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)	
Temperature (degree Celsius)	5-day BOD (mg/l)	
pH value	Suspended Solids (mg/l)	
Water depth (m)	Ammonia as N (mg/l)	
Salinity (ppt)	Nitrate as N (mg/l)	
Turbidity (NTU)	Nitrite as N (mg/l)	
Current Speed (m/s)	Total inorganic nitrogen (mg/l)	
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)	

Report No.: 0041/17/ED/0330A

Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena shall be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) was used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) which integrated with echo sounder function was used to measure water depth, current velocity (speed and direction). The measured data by ADCP will then be downloaded on site to computer on board. The measured water depth data by ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler shall be tied with the multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3 Water Quality Monitoring and Sampling Equipment

Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Hong Kong.

Page 11

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel was used as survey vessel. DGPS logging device with accuracy ±1m at 95% confidence level shall be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey shall be automatically and electronically logged. Powered winch shall be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor was present throughout the monitoring exercise on the Survey Vessel.
- 3.3.3 Water samples were collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles were pre-rinsed with the same water samples. The sampling bottles were then taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is appointed to be the laboratory for analysis of water samples. The methods adopted by the laboratories and the reporting limits are detailed in **Table 3.4**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.4 Laboratory Measurement/Analysis Methods and Reporting Limits

E-mail : matlab@fugro.com

Website : www.fugro.com

TUGRO

Report No.: 0041/17/ED/0330A

Tuen Mun, N.T.,

Hong Kong.

Page 12

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programmed shall be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at 8 designated locations will be carried out for each monitoring event. For each location at each tide, duplicate samples for in-situ parameter and laboratory analysis at 3 designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval, Copies of calibration certificates for the water quality monitoring equipment are attached in **Appendix D**.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings were taken. If the difference between the first and second readings of DO or turbidity was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0330A

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 14 June 2018. A summary of the in-situ water quality monitoring results are presented in **Table 3.5** (Mid-ebb) and **Table 3.6** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

Table 3.5	Summary of	In-situ	Monitoring	Results	(Mid-ebb)	
1 4010 0.0	Our finding of	ni ona	monitoring	1 COunto		

	3.5				phitoring Results	· ·		1	1	1
Monitoring	Water	Sam	plin	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth	g De	pth	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)	-	(mg/L)	Celsius)				(m/s)	(degree
	、 <i>,</i>	()			,				× ,	magnetic)
		S	1	5.91	29.09	7.68	19.30	11.4	0.04	251.9
		S	1	5.62	29.06	7.70	18.89	12.0	0.04	253.9
		М	10	4.99	28.62	7.94	20.98	6.0	0.29	219.3
A	20	М	10	4.98	28.61	7.94	20.98	6.1	0.31	221.4
		В	19	4.89	28.56	7.93	28.56	15.9	0.92	265.7
		В	19	4.89	28.55	7.93	28.56	16.3	0.84	266.2
		S	1	6.92	28.20	7.84	19.13	11.6	0.11	114.8
		S	1	6.87	28.20	7.92	19.50	9.6	0.12	121.5
_	10	М	6.5	4.85	28.31	8.01	27.49	4.7	0.61	255.1
В	13	М	6.5	4.84	28.31	8.01	27.47	4.8	0.66	248.8
		В	12	4.71	28.26	8.05	29.72	4.0	0.60	268.1
		В	12	4.70	28.26	8.05	29.78	4.0	0.54	267.3
		S	1	6.17	28.85	8.02	16.20	3.2	0.08	119.5
		S	1	6.14	28.84	8.03	16.54	3.2	0.08	177.5
0	40	М	6.5	5.17	28.63	8.05	20.76	4.0	0.12	165.3
С	13	М	6.5	5.10	28.56	8.06	20.77	5.0	0.11	165.7
		В	12	4.66	28.47	8.04	26.43	7.3	0.26	236.6
		В	12	4.64	28.47	8.04	26.61	7.6	0.29	255.1
		S	1	5.68	28.36	8.04	28.36	5.7	0.24	159.0
		S	1	5.67	28.36	8.04	28.36	5.6	0.24	147.4
	10	М	6.5	4.97	28.43	8.03	24.27	8.0	0.13	142.6
D	13	М	6.5	4.95	28.43	8.03	24.46	8.1	0.17	150.2
		В	12	4.52	26.00	7.79	25.99	10.3	0.48	234.2
		В	12	4.39	25.80	7.84	25.79	10.5	0.50	231.4
		S	1	5.39	28.36	8.04	20.00	5.4	0.22	126.3
		S	1	5.39	28.36	8.04	20.00	5.5	0.21	139.8
Е	16	Μ	8	5.16	28.36	7.97	20.82	6.8	0.28	166.1
E	16	Μ	8	5.10	28.33	7.97	20.97	6.3	0.12	174.2
		В	15	4.89	28.30	7.97	22.35	11.9	0.16	258.0
		В	15	4.88	28.31	7.97	22.41	12.3	0.09	200.1
		S	1	6.99	27.42	7.97	12.07	6.4	0.21	197.5
		S	1	6.96	27.42	7.98	12.71	6.7	0.11	191.6
_		М	11. 5	5.17	28.15	8.02	22.41	3.1	0.18	233.6
F	23	М	11. 5	5.16	28.16	8.02	22.47	3.1	0.20	234.9
		В	22	4.96	28.17	8.00	22.89	19.6	0.16	228.4
		В	22	4.95	28.17	8.01	22.90	20.5	0.16	205.9
		S	1	6.46	26.81	7.98	19.45	2.5	0.18	146.3
G	22	S	1	6.40	26.82	8.01	20.40	2.6	0.21	151.4
		М	11	5.12	28.02	8.05	22.90	3.6	0.36	215.9

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Report No.: 0041/17/ED/0330A

Monitoring Station	Water Depth (m)	Samplin g Depth (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		М	11	5.11	28.03	8.05	22.81	3.6	0.42	224.7
		В	21	4.86	28.10	8.04	24.89	15.2	0.59	266.8
		В	21	4.85	28.10	8.04	24.98	15.7	0.62	276.1
		S	1	5.69	27.96	8.01	20.40	2.6	0.32	166.3
		S	1	5.64	27.98	8.02	20.65	2.5	0.37	173.4
н	19	М	9.5	5.05	28.20	8.05	23.05	4.3	0.34	222.8
п	19	М	9.5	5.04	28.20	8.05	23.07	4.4	0.35	216.2
		В	18	4.97	28.23	8.03	23.00	4.6	0.65	241.9
		В	18	4.97	28.23	8.03	23.00	4.6	0.66	238.1

Table 3.6 Summary of In-situ Monitoring Results (Mid-flood)

Table 3.6 Summary of In-situ Monitoring Results (Mid-flood)										
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dept	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
										magnetic)
		S	1	4.83	28.07	8.09	27.71	1.6	0.26	235.2
		S	1	4.85	28.05	8.10	27.73	1.5	0.25	233.8
А	15	М	7.5	4.81	28.05	8.09	28.06	2.8	0.55	242.1
A	15	М	7.5	4.82	28.07	8.10	28.04	2.9	0.51	245.9
		В	14	4.76	28.02	8.08	28.97	3.5	0.58	204.4
		В	14	4.75	28.03	8.08	28.96	3.3	0.54	214.0
		S	1	4.75	29.04	8.06	27.01	2.6	0.14	257.9
		S	1	4.74	29.01	8.07	27.06	2.7	0.15	258.4
В	11	М	5.5	4.79	28.24	8.09	28.32	2.9	0.33	263.6
D	11	М	5.5	4.80	28.21	8.09	28.34	2.8	0.35	258.7
		В	10	4.84	28.07	8.09	28.70	3.6	0.27	269.9
		В	10	4.82	28.08	8.10	28.68	3.7	0.29	276.2
		S	1	5.28	27.77	8.03	24.18	4.2	0.12	243.3
		S	1	5.27	27.78	8.02	24.14	4.3	0.13	239.7
С	12	М	6	4.79	27.85	8.07	30.93	5.6	0.19	225.7
C	12	М	6	4.78	27.88	8.07	31.07	5.5	0.19	217.4
		В	11	4.63	27.96	8.06	29.96	6.9	0.42	264.6
		В	11	4.62	27.97	8.07	29.98	7.1	0.45	278.2
		S	1	5.51	27.56	8.03	25.24	4.1	0.17	219.0
		S	1	5.49	27.59	8.04	25.25	4.0	0.17	194.5
D	15	М	7.5	4.91	27.82	8.06	30.54	7.1	0.39	268.6
D	15	М	7.5	4.89	27.83	8.07	30.83	7.2	0.34	268.1
		В	14	4.64	27.94	8.07	29.44	10.1	0.63	243.4
		В	14	4.64	27.94	8.07	29.46	10.3	0.69	244.8
		S	1	5.01	27.84	8.02	24.21	3.5	0.18	210.6
		S	1	5.00	27.82	8.03	24.23	3.6	0.17	219.9
Е	19	М	9.5	4.89	28.01	8.07	28.44	7.0	0.49	226.2
L	15	М	9.5	4.85	28.02	8.08	28.49	7.2	0.50	222.4
		В	18	4.74	28.03	8.08	30.33	11.0	0.41	252.5
		В	18	4.72	28.05	8.08	30.41	11.2	0.42	254.3
		S	1	5.01	27.84	8.02	24.20	3.5	0.15	253.4
F	22	S	1	5.00	27.96	8.01	24.23	3.4	0.15	266.8
	22	М	11	4.91	27.97	8.07	26.90	4.4	0.32	241.2
		М	11	4.93	27.96	8.08	27.06	4.6	0.39	235.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Page 15

Report No.: 0041/17/ED/0330A

Monitoring Station	Water Depth (m)	Sampling Depth (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		B 21		4.75	28.03	8.08	30.32	11.1	0.31	224.3
		B 21		4.74	28.01	8.08	30.41	11.2	0.37	235.0
		S	1	5.58	27.82	7.96	18.76	4.1	0.21	104.5
		S	1	5.57	27.83	7.98	18.60	4.0	0.23	101.2
G	14	Μ	7	5.12	27.99	8.01	21.11	4.6	0.34	191.2
G	14	Μ	7	5.02	27.98	8.02	22.46	4.7	0.37	198.6
		В	13	4.69	28.07	8.05	29.95	6.5	0.36	173.1
		В	13	4.70	28.09	8.05	29.94	6.4	0.37	181.1
		S	1	5.66	27.72	7.96	19.84	3.6	0.25	166.5
		S	1	5.64	27.74	7.97	19.53	3.6	0.24	192.4
н	22	М	11	5.26	27.94	7.97	19.85	4.2	0.35	139.6
	22	М	11	5.24	27.93	7.97	19.92	4.0	0.36	142.1
		В	21	4.73	27.08	8.04	24.08	5.3	0.56	164.5
		В	21	4.72	27.07	8.03	24.09	5.4	0.62	171.0

3.8.2 Results of laboratory analysis of water quality are presented in Table 3.7 (Mid-ebb) and Table 3.8 (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in Appendix E.

Table 3.7	Summary	y of Laboratory	/ Analysis	Results ((Mid-ebb)	

Та	Station Depth (m) Depth (m) (mg/L) as N (mg/L) as N (mg/L) as N (mg/L) (mg/L) (mg/L)										
Monitoring	Water	Sam	npling	TSS	NH ₃	NO_2^-	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
			1	8.5				1.150	11.0	0.05	2.4
		S	1	8.8	0.157		0.758	1.190	13.0	0.05	2.2
^	20	Μ	10	9.2	0.121	0.277	0.769	1.170	14.0	0.06	2.3
A	20	Μ	10	9.6	0.110	0.283	0.757	1.150	12.0	0.05	1.6
		В	19	9	0.137	0.289	0.747	1.170	130.0	0.05	1.3
			19	8.1	0.127	0.292	0.739	1.160	160.0	0.05	1.2
			1	6.8	0.137	0.227	0.601	0.965	170.0	0.04	<1.0
		S	1	7.8	0.120	0.228	0.597	0.945	190.0	0.05	1.1
B 13	Μ	6.5		0.133	0.229	0.594	0.956	130.0	0.05	<1.0	
	15	Μ	6.5	7.1	0.135	0.227	0.598	0.960	140.0	0.05	<1.0
		В	12	8.5	0.132	0.222	0.614	0.968	120.0	0.04	<1.0
		В	12	10	0.134	0.214	0.608	0.956	140.0	0.05	<1.0
		S	1	8.1	0.155	0.292	0.754	1.200	36.0	0.05	1.5
		S	1	8.5	0.154	0.293	0.762	1.210	11.0	0.05	1.1
С	13	Μ	6.5	8	0.152	0.294	0.754	1.200	18.0	0.05	1.0
U	15	Μ	6.5	7.9	0.157	0.297	0.749	1.200	14.0	0.05	<1.0
		В	12	7.6	0.140	0.298	0.748	1.190	59.0	0.05	<1.0
		В	12	7.4	0.150	0.300	0.749	1.200	12.0	0.05	<1.0
		S	1	5.1	0.109	0.295	0.751	1.150	16.0	0.05	<1.0
		S	1	5.8	0.112	0.299	0.742	1.150	14.0	0.05	<1.0
П	13	Μ	6.5	6.1	0.101	0.299	0.753	1.150	140.0	0.05	<1.0
	D 13	Μ	6.5	6.5	0.116	0.297	0.750	1.160	120.0	0.05	1.0
		В	12	6.5	0.122	0.296	0.760	1.180	160.0	0.05	<1.0
		В	12	6.6	0.122	0.296	0.757	1.180	140.0	0.05	1.2
E	16	S	1	7.3	0.116	0.298	0.792	1.210	110.0	0.05	1.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0330A

Monitoring	Water	Sam	npling	TSS	NH ₃	NO_2^{-1}	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)	(U)			
		S	1	6.3	0.108	0.303	0.793	1.200	120.0	0.05	<1.0
		Μ	8	6.3	0.151	0.298	0.798	1.250	21.0	0.06	<1.0
		Μ	8	7.4	0.181	0.289	0.799	1.270	14.0	0.06	2.7
		В	15	5.5	0.119	0.303	0.777	1.200	11.0	0.06	1.2
		В	15	5.5	0.120	0.302	0.748	1.170	15.0	0.06	<1.0
		S	1	5.9	0.120	0.289	0.768	1.180	110.0	0.06	1.1
		S	1	5.3	0.122	0.289	0.778	1.190	140.0	0.05	<1.0
F	23	Μ	11.5	5.9	0.119	0.295	0.760	1.170	16.0	0.05	<1.0
I	23	Μ	11.5	4.7	0.121	0.290	0.764	1.170	11.0	0.06	<1.0
		В	22	5.5	0.116	0.287	0.764	1.170	9.0	0.05	1.5
		В	22	6.7	0.107	0.289	0.767	1.160	14.0	0.05	<1.0
		S	1	6	0.154	0.267	0.759	1.180	110.0	0.05	1.7
		S	1	6.1	0.144	0.261	0.715	1.120	140.0	0.05	<1.0
G	22	Μ	11	5.1	0.136	0.280	0.732	1.150	12.0	0.06	1.0
0	~~~	Μ	11	5.7	0.124	0.266	0.706	1.100	13.0	0.05	<1.0
		В	21	6.4	0.125	0.270	0.744	1.140	18.0	0.06	<1.0
		В	21	7.6	0.117	0.264	0.706	1.090	10.0	0.05	<1.0
		S	1	6.1	0.112	0.279	0.748	1.140	100.0	0.05	1.0
		S	1	7.8	0.121	0.280	0.752	1.150	110.0	0.06	<1.0
Н	19	Μ	9.5	7.8	0.116	0.279	0.765	1.160	120.0	0.06	<1.0
	H 19	Μ	9.5	6.7	0.126	0.287	0.750	1.160	110.0	0.05	<1.0
		В	18	5.8	0.115	0.292	0.740	1.150	140.0	0.05	<1.0
		В	18	5.8	0.110	0.287	0.746	1.140	130.0	0.04	<1.0

Table 3.8 Summary of Laboratory Analysis Results (Mid-flood)

Monitoring	Water	Sam	pling	TSS	NH ₃	NO ₂	NO₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	7.6	0.143	0.256	0.716	1.110	86.0	0.05	<1.0
		S	1	7.1	0.155	0.259	0.707	1.120	33.0	0.05	1.0
А	15	М	7.5	7.4	0.140	0.250	0.730	1.120	49.0	0.04	<1.0
~	15	М	7.5	8.3	0.157	0.253	0.720	1.130	40.0	0.05	1.2
		В	14	8.6	0.128	0.123	0.789	1.040	70.0	0.05	<1.0
		В	14	9.2	0.154	0.120	0.794	1.070	35.0	0.05	<1.0
		S	1	6.3	0.144	0.183	0.551	0.878	2.0	0.04	<1.0
		S	1	6.3	0.132	0.183	0.547	0.862	6.0	0.05	<1.0
В	11	М	5.5	4.9	0.149	0.132	0.388	0.669	11.0	0.04	<1.0
Б	11	М	5.5	4.8	0.143	0.134	0.396	0.673	12.0	0.03	<1.0
		В	10	5.6	0.102	0.120	0.434	0.656	14.0	0.03	<1.0
		В	10	6.6	0.124	0.127	0.392	0.643	13.0	0.03	<1.0
		S	1	5.2	0.125	0.267	0.703	1.090	59.0	0.05	<1.0
		S	1	6.2	0.115	0.275	0.696	1.080	65.0	0.05	<1.0
С	12	М	6	6.3	0.126	0.271	0.713	1.110	47.0	0.05	<1.0
C	12	М	6	6.0	0.112	0.266	0.711	1.090	54.0	0.05	<1.0
		В	11	7.4	0.128	0.280	0.695	1.100	32.0	0.05	1.1
		В	11	5.9	0.130	0.268	0.717	1.110	10.0	0.06	<1.0
		S	1	6.8	0.112	0.293	0.747	1.150	110.0	0.05	<1.0
D	15	S	1	8.4	0.119	0.289	0.759	1.170	90.0	0.04	<1.0
U	10	М	7.5	6.4	0.156	0.294	0.754	1.200	11.0	0.05	<1.0
		М	7.5	7.8	0.195	0.316	0.818	1.330	12.0	0.06	<1.0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 17

Report No.: 0041/17/ED/0330A

										- 5	
Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		В	14	9.0	0.142	0.283	0.717	1.140	120.0	0.06	1.1
		В	14	7.7	0.134	0.293	0.767	1.190	110.0	0.05	<1.0
		S	1	7.5	0.119	0.203	0.599	0.921	140.0	0.04	<1.0
		S	1	7.4	0.120	0.212	0.592	0.924	120.0	0.04	<1.0
Е	19	М	9.5	7.2	0.150	0.206	0.596	0.952	81.0	0.04	<1.0
E	19	М	9.5	6.8	0.154	0.218	0.604	0.976	13.0	0.04	1.4
		В	18	6.6	0.146	0.211	0.596	0.953	160.0	0.05	1.2
		В	18	7.0	0.158	0.199	0.609	0.966	69.0	0.04	1.3
		S	1	7.7	0.143	0.234	0.638	1.020	110.0	0.05	<1.0
		S	1	6.6	0.120	0.224	0.662	1.010	120.0	0.05	<1.0
F	22	М	11	6.8	0.118	0.239	0.639	0.996	130.0	0.05	<1.0
F	22	М	11	6.7	0.139	0.221	0.671	1.030	110.0	0.04	1.2
		В	21	7.7	0.124	0.242	0.630	0.996	150.0	0.04	1.1
		В	21	6.5	0.127	0.207	0.616	0.950	100.0	0.04	<1.0
		S	1	5.7	0.153	0.239	0.730	1.120	110.0	0.05	1.4
		S	1	5.8	0.174	0.255	0.702	1.130	130.0	0.05	1.8
G	14	М	7	5.1	0.161	0.251	0.721	1.130	150.0	0.04	1.1
G	14	М	7	5.9	0.199	0.259	0.700	1.160	160.0	0.05	1.8
		В	13	6.4	0.186	0.248	0.727	1.160	4.0	0.05	1.3
		В	13	7.6	0.154	0.259	0.700	1.110	9.0	0.05	2.0
		S	1	5.2	0.277	0.291	0.799	1.370	14.0	0.05	1.8
		S	1	4.8	0.289	0.297	0.767	1.350	19.0	0.05	1.2
Н	22	М	11	6.6	0.283	0.302	0.782	1.370	110.0	0.04	1.7
п	22	М	11	6.3	0.257	0.292	0.796	1.340	130.0	0.04	2.3
		В	21	5.2	0.286	0.292	0.804	1.380	8.0	0.05	1.6
		В	21	6.6	0.284	0.300	0.788	1.370	16.0	0.05	2.0

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. The predicted tidal data is present in **Appendix F**.
- 3.8.4 No special phenomena were observed during water quality monitoring on 14 June 2018. The weather condition is summarized and presented in **Table 3.9**.

 Table 3.9
 Weather condition of water quality monitoring

Date	Aii	r Temperati	Mean	Total					
	Maximum	Mean	Minimum	Relative	Rainfall				
	(deg. C)	(deg. C)	(deg. C)	Humidity (%)	(mm)				
14 June 2018	28.6	26.8	25.4	82	1.3				

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 18

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Location

Report No.: 0041/17/ED/0330A

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at 8 designated monitoring locations (2 impact stations and 6 control stations) during the first five years of the operational phase of the Project. The proposed monitoring locations shall be the same monitoring locations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring location is shown in **Table 4.1**. The monitoring locations of sediment quality monitoring and benthic survey are also shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
E	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic S	urvey
--	-------

Monitoring Pa	rameters				
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey				
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)				
Distribution) (%)					
Total organic carbon* (%)	Chromium (µg/L)				
pH value	Copper (µg/L)				
Ammonia as N (mg-N/kg)	Lead (µg/L)				
Total nitrogen (mg-N/kg)	Mercury ((µg/L)				
Total phosphorus (mg-N/kg)	Nickel (µg/L)				
Cadmium (mg/kg)	Zinc (µg/L)				
Chromium (mg/kg)	Arsenic (µg/L)				
Copper (mg/kg)	Silver (µg/L)				
Lead (mg/kg)					
Mercury (mg/kg)					
Nickel (mg/kg)					
Zinc (mg/kg)					
Arsenic (mg/kg)					

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 19

Report No.: 0041/17/ED/0330A

Monitoring Parameters					
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey				
Silver (mg/kg)					

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena shall be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) shall be used for collection of samples for sediment analysis. The grab shall be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab shall be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) shall be used for collecting sediment samples for benthic survey. The top of the grab shall have openings to allow the easy flow of water through the grab as it descends. The openings shall be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once a sediment sample is taken. In addition the top openings shall be sealable by movable flaps which shall close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel was used as survey vessel. DGPS logging device in the ADCP with accuracy ±1m at 95% confidence level shall be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey shall be automatically and electronically logged. Powered winch shall be used on-board the Survey Vessel to assist the monitoring. 4 fixed sieve stations shall be equipped on Survey Vessel. Experienced supervisor was present throughout the monitoring exercise on the Survey Vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) shall be deployed at each of the benthic survey locations to collect single grab sample at each location. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) should be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples should be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve should be removed into pre-labeled ziplock plastic

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 20

bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) shall be deployed at each of the benthic survey locations to collect single grab sample at each location. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples shall be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is appointed to be the laboratory for analysis of sediment samples. The methods adopted by the laboratories and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits		
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%		
Total Organic Carbon	APHA 5310B	0.05%		
pH value	APHA 4500H: B	0.1 pH unit		
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg		
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg		
Total Phosphorus	APHA 4500P: B&H	10 mg/kg		
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg		
Chromium		0.5 mg/kg		
Copper		0.2 mg/kg		
Lead		0.2 mg/kg		
Mercury		0.05 mg/kg		
Nickel		0.2 mg/kg		
Zinc]	0.5 mg/kg		
Arsenic]	0.5 mg/kg		
Silver		0.1 mg/kg		

Table 4.3	Laboratory Measurement/Analysis Methods and Reporting Limits
-----------	--

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted

Report No.: 0041/17/ED/0330A

Page 21

and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank shall be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future propose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 14 June 2018. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 22

Report No.: 0041/17/ED/0330A

Table	94.4	Summary of laboratory analysis results for sediment monitoring											
Monitoring	рН	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	N	Р	(mg/k	(mg	(mg	(mg	(mg/	(mg	(mg	(mg	(mg
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	kg)	/kg)	/kg)	/kg)	/kg)
			N/kg)	P/kg)									
A	8.7	6.9	740	454	0.12	31.1	24.8	30.2	0.08	17.9	84.6	17.1	0.11
В	8.7	5.2	840	419	<0.10	42.2	38.4	39.1	0.13	24.3	112	14.9	0.34
С	8.7	8.9	1040	488	<0.10	50.9	43.2	46.4	0.14	31.2	139	14.3	0.24
D	8.6	8.4	1080	514	<0.10	48.6	39.9	44.6	0.12	29.2	130. 0	13.5	0.23
E	8.6	6.9	1140	514	<0.10	49.3	44.8	44.0	0.12	29.6	133	12.8	0.30
F	8.8	2.6	620	408	<0.10	15.6	169.	21.6	< 0.0	10.6	53.1	9.9	<0.1
	0.7	0.0	000	400	0.40	50.0	0	40.0	5	00 F	400	110	0
G	8.7	3.8	980	439	0.12	53.0	48.2	42.8	0.10	30.5	126	14.9	0.23
Н	8.5	7.4	1350	567	<0.10	52.6	47.4	47.6	0.14	32.2	146	13.3	0.29

Monitoring Station	Total organic	Grai	n size pr	ofile (%	6)	Description
Station	carbon (%)	Gravel	Sand	nd Silt Cla		
А	0.79	1	14	49	36	Dark grey, slightly sandy SILT/CLAY with shell fragments
В	0.70	1	23	48	28	Dark grey, slightly sandy SILT/CLAY with shell fragments
С	0.86	0	4	61	35	Dark grey, slightly sandy SILT/CLAY with shell fragments
D	0.69	0	14	53	33	Dark grey, slightly sandy SILT/CLAY with shell fragments
E	0.97	0	5	58	37	Dark grey, slightly sandy SILT/CLAY with shell fragments
F	1.03	0	3	60	37	Dark grey, slightly sandy SILT/CLAY with shell fragments
G	0.47	21	36	23	20	Dark grey, sandy SILT/CLAY with shell fragments
Н	0.84	0	11	53	36	Dark grey, slightly sandy SILT/CLAY with shell fragments

4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.

4.10.3 No special phenomena were observed during water quality monitoring on 14 June 2018. The weather condition is summarized and presented in **Table 4.6**.

	outiloi oonun	r quality mon	ltoning			
Date	Aiı	r Temperati	Mean	Total		
	Maximum	Mean	Minimum	Relative	Rainfall	
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)	
				(%)		
14 June 2018	28.6	26.8	25.4	82	1.3	

Table 4.6Weather condition of water quality monitoring

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 23

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	43	55.00	12	1.53	0.62
В	34	3.33	13	2.20	0.86
С	27	0.35	13	2.39	0.93
D	18	15.44	11	2.27	0.95
E	30	18.80	19	2.64	0.90
F	14	2.64	10	2.17	0.94
G	62	5.05	26	2.88	0.88
Н	21	24.48	10	2.15	0.93
TOTAL	249	125.104	53		

Table 4.7Summary of benthic survey data on 14 June 2018

- 4.10.5 The benthic survey results are analyzed and presented as below:
 - i) Abundance

A total of 249 macrobenthic organisms were collected from the eight monitoring stations during the June 2018 monitoring period. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 82 individuals (ind.) compared to the April 2018 monitoring results. The current decrease might be attributed to tropical storm Ewiniar that hit Hong Kong about one week before the sampling activities. Wave action brought about by the typhoon might have caused intermediate disturbance in the sampling stations, particularly that these are characteristically shallow waters (11m to 23m) as wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Bivalves in this monitoring were specifically affected by the perturbations as shown in the significant decrease in their abundance from 167 ind. (April 2018) to only 47 ind. (June 2018).

Highest abundance (62 ind.) was recorded at Station G while the lowest (14 ind.) was at Station F. Relatively high abundance at Station G might be attributed to the moderately sorted sediments characterized by the varying grain sizes at this station. Varying percentages of gravel (21%), sand (36%), silt (23%), and clay (20%) can provide a wide range of niches for benthic organisms to exploit. Furthermore, moderately sorted sediments were observed at Station A where high abundance (43 ind.) was also recorded. On the other hand, the relatively low abundance observed at Station F might be due to the high percentages of silt (60%) and clay (37%) in the substrate indicative of well-sorted sediments. Well-sorted sediments can only offer a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at stations with relatively homogenous grain size distribution. The impact stations (Station C and Station D) remained to have lower abundances compared to the reference stations except for Station F. Similar to Station F, sediments in Stations C and D were characterized by higher percentages of silt and clay.

ii) Biomass

The total wet biomass for all the eight monitoring stations during the June 2018 monitoring period was 125.11 g, which is 106.06 g less than the biomass recorded

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 24

during the April 2018 monitoring period but remained higher compared to the baseline data. The decrease in biomass (from April 2018 to June 2018) might be attributed to the parallel decline in the abundance of bivalves.

The highest and lowest total biomass continued to be observed in Station A (55.00 g) and Station C (0.35 g), respectively. Highest biomass remained at Station A because the bivalve, *Ruditapes philippinarum*, continued to contribute significantly in the total biomass due to their larger sizes despite the decline in their abundance. Biomass at impact stations (Stations C and D) remained to be low together with Station F (2.6 g), Station B (3.3 g), and Station G (5.1 g) as these stations were dominated by smaller organisms (i.e. annelids).

iii) Taxonomic Composition

A total of eight phyla comprised of 41 families and 53 taxa were identified during the June 2018 monitoring period. Compared to the April 2018 monitoring period, there was an increase (12 taxa) in the total number of taxa identified. This can be attributed to the increase in the number of annelid species that have been identified. With the increase in the number of their species and abundance and the decrease in the abundance of bivalves, annelids (polychaetes) dominated the current benthic assemblages comprising about 53.01% of sampled population (Figure 3). The intermediate disturbance in the form of wave action generated by the typhoon might have cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ('benthic storms') was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

The current benthic assemblage is observed to be similar with the baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period Nepthyidae were the most abundant group.

Station G had the highest number of taxa (26) identified and the most number of polychaete taxa. As aforementioned, the more distributed grain sizes in this station provided a wide range of habitat for the organisms to colonize, particularly after an intermediate disturbance. Impact stations (Station C and D) remained to harbour relatively fewer taxa.

iv) Diversity

Diversity indices (H') for the June 2018 monitoring period ranged from very low (1.53 at Station A) to moderate (2.88 at Station G). Compared to the baseline and April 2018 monitoring periods, increase in diversity was observed. The slight improvement in diversity as aforementioned might be due to the colonization of opportunistic species of the cleared habitats due to the natural disturbance brought about by the typhoon.

Station G showed moderate diversity as it has the most variable substrate type which can support a diverse benthic community as shown by the highest number of taxa identified in this station. Station E also exhibited moderate diversity. The very low

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 25

diversity, on the other hand in Station A, might be attributed to the dominance of the bivalve, *R. philippinarum*, which also explains the low Evenness (J) index at this station. *R. philippinarum* was most abundant in Station A as this species prefers sandy substrate, which is the natural characteristic of this station prior to the reworking of sediments of typhoon Ewiniar. The remaining stations, including the impact Stations C and D, remained to have low diversity. Furthermore, all stations but Station A showed homogenous benthic communities as showed by their high Evenness (J) Index.

The detailed benthic survey results are provided in **Appendix H**.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 26

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report, "Monitoring of Marine Mammals in Hong Kong Waters (2016-17)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2017. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2017-18) is uploaded to AFCD's webpage.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 27

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITGATION MEASURES

6.1 Implemtation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 28

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management was implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix J.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 29

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 14 June 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Page 30

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to the environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 31

Report No.: 0041/17/ED/0330A

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. Due to inadequacy of representative data collect between August 2017 and May 2018, current H2S measurement and olfactometry analysis was considered as unsuitable way to establish the relationship of H2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H2S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

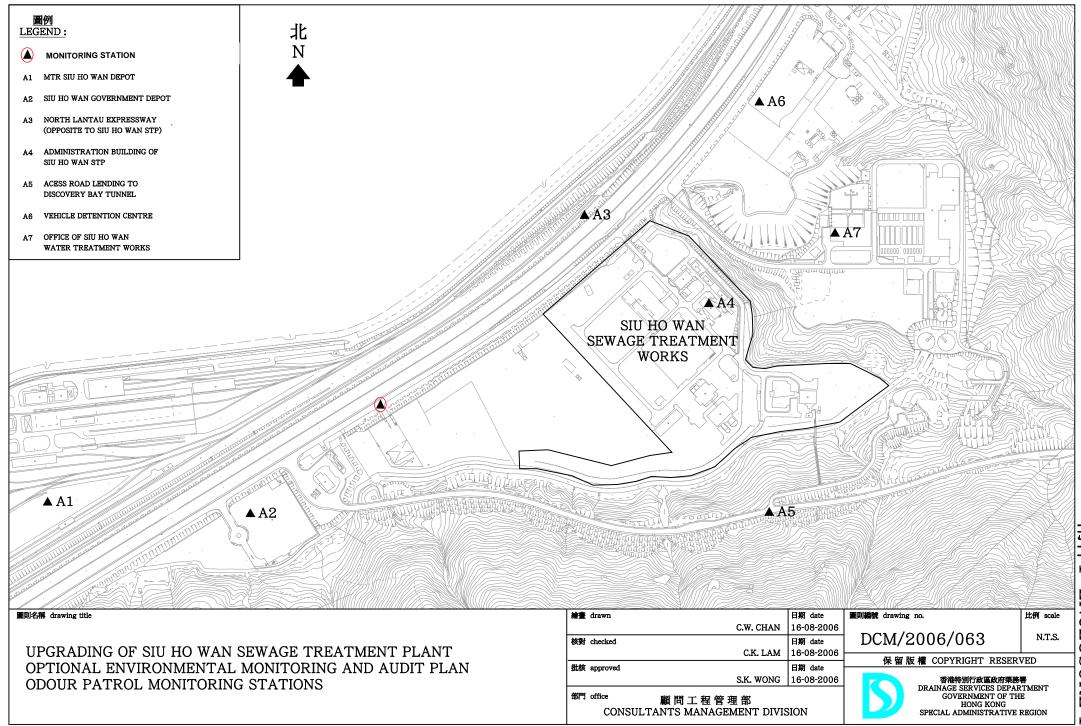
5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 32

Report No.: 0041/17/ED/0330A

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 14 June 2018 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. No special phenomena were observed during the monitoring.
- 11.1.4 The latest AFCD's report, "Monitoring of Marine Mammals in Hong Kong Waters (2016-17)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2017. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2017-18) is uploaded to AFCD's webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation m*easures and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to the environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

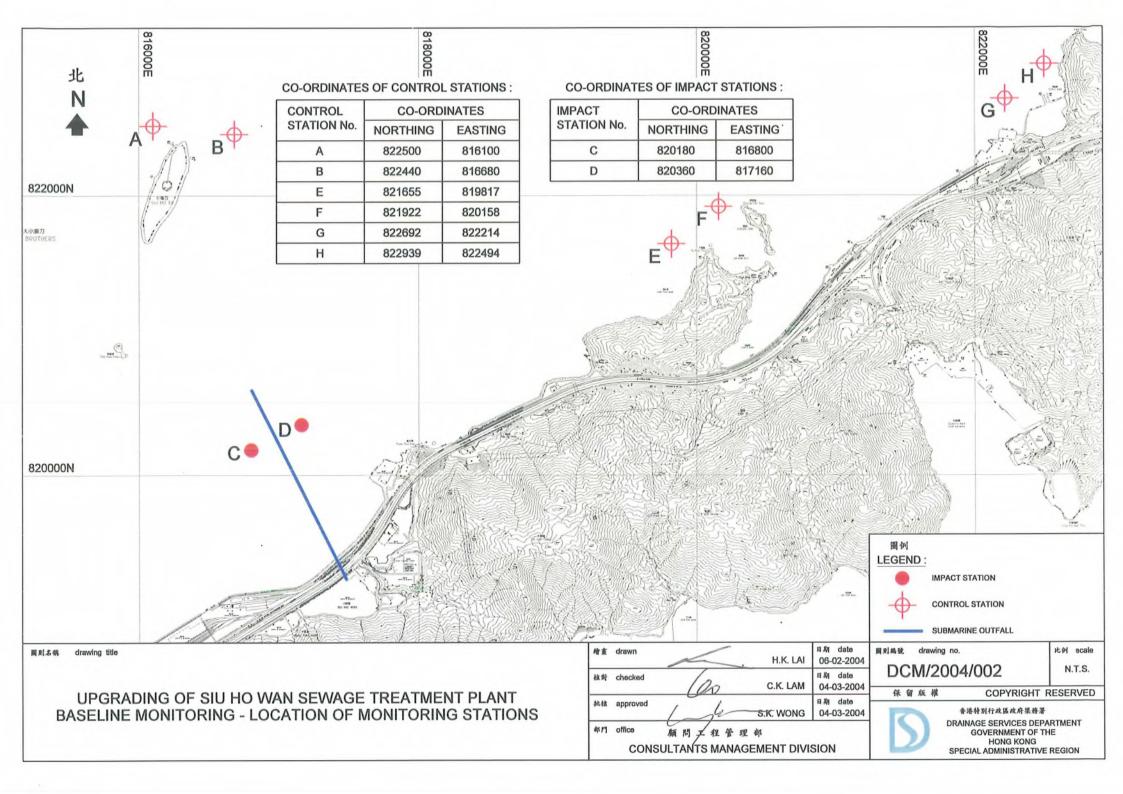
Report No.: 0041/17/ED/0330A

Figure 1

Monitoring Location of Air Sensitive Receiver

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Figure 2

Monitoring Locations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

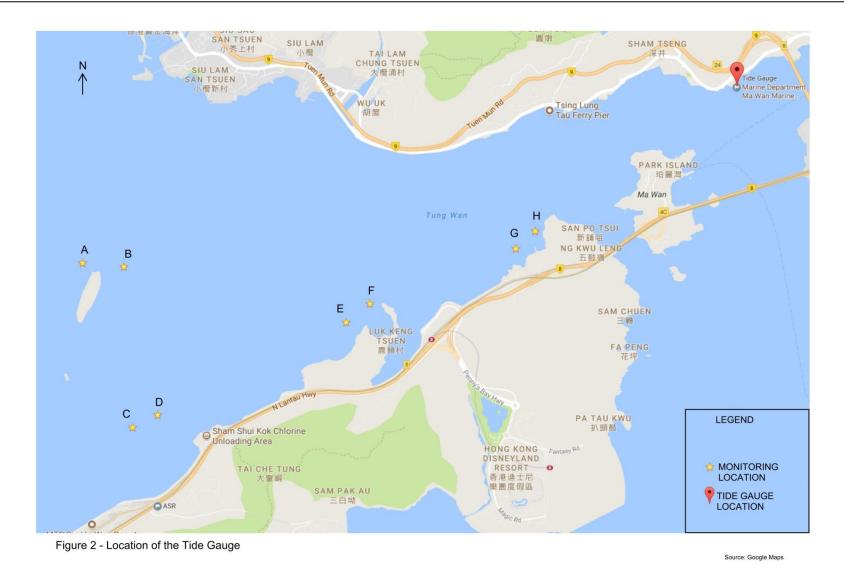

Report No.: 0041/17/ED/0330A

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Figure 4

Location of Survey Areas of Chinese White Dolphins

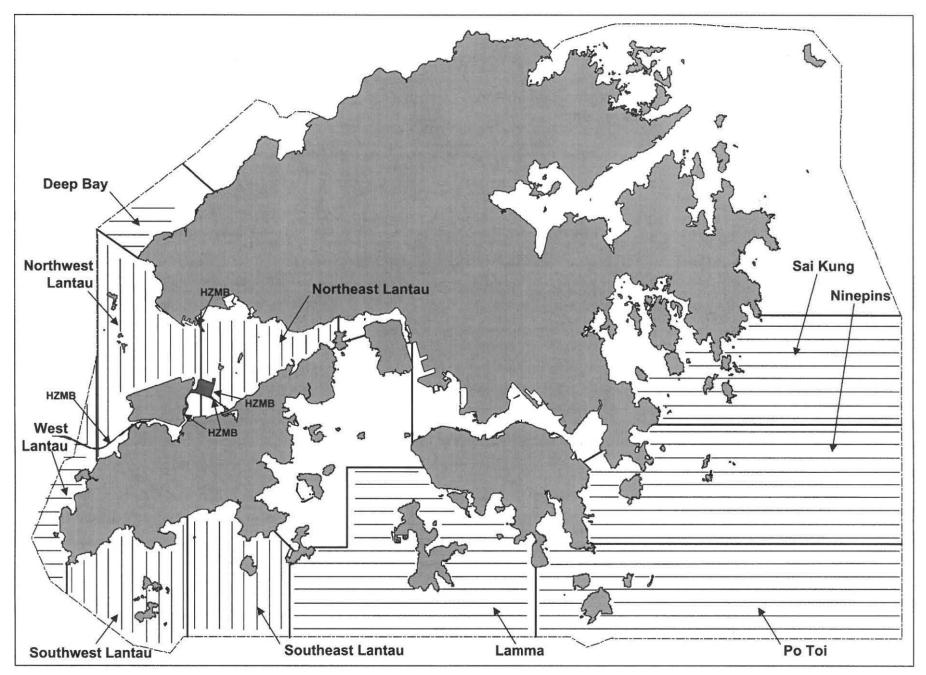
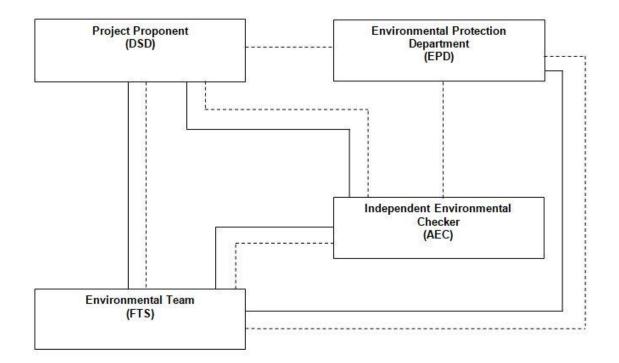


Figure 2 Ten Line-Transect Survey Areas within the Study Area chosen for the Present Monitoring Study (2016-17)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Monitoring Sched	ule for Present	Reporting Period
------------------	-----------------	------------------

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
					1 June	2	
3	4	5	6	7	8	9	
10	11	12	13	14 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (06:02) Mid-Ebb (12:52)	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,				
5 Lok Yi Street, Tai Lam,				
Tuen Mun, N.T.,				
Hong Kong.				

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Monitoring Schedule for Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31					

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

	ACTION				
EVENT	ET	IEC	*Operator		
Action Level					
One complaint received for specific odour event	 Check Operator's working methods; Discuss with Operator on required remedial actions 	 Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; Amend operation methods if appropriate 		
Limit Level					
More than	1. Investigated the causes of	1. Discuss amongst ET	1. Indentify/ confirm		
one complaint	 complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control 	and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures	source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals		

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No. : 142626WA181114

Page 1 of 3

Report on Calibration of Agua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	;	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 525120
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	•	WA181114/1
Date of calibration	:	11/06/2018
Next calibration date	:	10/09/2018
	·	10/09/2010

Test method used In-house comparison method :

Report No. : 142626WA181114

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C fe	or Q.C. solution(6.86) and at 25	°C for Q.C. solution(9.18)
Theoretical	Measured	Deviation
9.18	9.21	+0.03
6.86	6.87	+0.01

B. Salinity calibration

	Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation			
10	10.04	+0.04	± 0.5			
20	20.17	+0.17	± 1.0			
30	29.96	-0.04	± 1.5			
40	39.91	-0.09	± 2.0			

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen	Dissolved oxygen content, mg/L		
Thai NO.	By calibrated D.O. meter By D.O. me			
1	8.03	8.01		
2	8.00	7.97		
3	7.94	7.93		
Average	7.99	7.97		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by : Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories [0[-2018 Date

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No. : 142626WA181114

Page 3 of 3

Results :

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.29	25.33

E. Turbidity calibration

	Turbidity, N.T.U.				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.05	+0.05	± 0.4		
8	8.10	+0.10	± 0.6		
40	40.77	+0.77	± 3.0		
80	81.06	+1.06	± 4.0		

Certified by : Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories

8 (8

0

Date ** End of Report **

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181114(1)

Page 1 of 3

Report on Calibration of Agua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	•	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 584601
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA181114/2
Date of calibration	:	11/06/2018
Next calibration date	:	10/09/2018

Test method used In-house comparison method :

Report No.: 142626WA181114(1)

Page 2 of 3

Results:

A. pH calibration

pH reading at 26°C fo	or Q.C. solution(6.86) and at 25	°C for Q.C. solution(9.18)
Theoretical	Measured	Deviation
9.18	9.20	+0.02
6.86	6.82	-0.04

B. Salinity calibration

	Salinity, ppt				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.06	+0.06	± 0.5		
20	20.11	+0.11	± 1.0		
30	30.30	+0.30	± 1.5		
40	39.84	-0.16	± 2.0		

C. Dissolved Oxygen calibration

Trial No	Dissolved oxyge	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.97	7.96		
2	7.96	7.95		
3	7.99	7.94		
Average	7.97	7.95		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by : Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 0 2018

Date

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181114(1)

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
26.04	25.99

E. Turbidity calibration

	Turbidity, N.T.U.				
Theoretical	Theoretical Measured Deviation				
4	4.05	+0.05	± 0.4		
8	8.08	+0.08	± 0.6		
40	39.92	-0.08	± 3.0		
80	80.23	+0.23	± 4.0		

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 10(7/2018 Date

** End of Report **

a <mark>xylem</mark> brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 - 0.30	
Sleep Mode (W):	N/A	Range : N/A	
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50	
Power Check		PASS	

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD ™	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

										In-situ Measurement									Laborator	ry Analysi	S				
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrogen	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value		Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A	14/6/2018	Mid-Ebb		Moderate			S	1	1	7.68	19.30	29.09	86.8	5.91	11.4	0.04	251.9	8.5	0.151	0.273	0.727	1.150	11.0	0.05	2.4
A	14/6/2018	Mid-Ebb		Moderate	11:42		S	1	2	7.70	18.89	29.06	82.1	5.62	12.0	0.04	253.9	8.8	0.157	0.273	0.758	1.190	13.0	0.05	2.2
A	14/6/2018 14/6/2018	Mid-Ebb Mid-Ebb		Moderate Moderate	11:42		M	10 10	1	7.94	20.98	28.62 28.61	73.6 73.5	4.99	6.0 6.1	0.29	219.3 221.4	9.2 9.6	0.121	0.277	0.769	1.170	<u>14.0</u> 12.0	0.06	2.3
Δ	14/6/2018	Mid-Ebb		Moderate	11:42		B	10	2	7.94	20.98	28.61	73.5	4.98	15.9	0.31	265.7	9.6	0.110	0.283	0.757	1.150	130.0	0.05	1.6
A	14/6/2018	Mid-Ebb	Cloudy	Moderate	11:42		B	19	2	7.93	28.56	28.55	72.0	4.89	16.3	0.84	266.2	8.1	0.137	0.289	0.739	1.160	160.0	0.05	1.2
В	14/6/2018	Mid-Ebb		Moderate	11:53		S	1	1	7.84	19.13	28.20	95.4	6.92	11.6	0.11	114.8	6.8	0.127	0.227	0.601	0.965	170.0	0.04	<1.0
В	14/6/2018	Mid-Ebb	Cloudy	Moderate	11:53	13	S	1	2	7.92	19.50	28.20	95.2	6.87	9.6	0.12	121.5	7.8	0.120	0.228	0.597	0.945	190.0	0.05	1.1
В	14/6/2018	Mid-Ebb		Moderate	11:53		М	6.5	1	8.01	27.49	28.31	73.7	4.85	4.7	0.61	255.1	7.4	0.133	0.229	0.594	0.956	130.0	0.05	<1.0
B	14/6/2018	Mid-Ebb		Moderate	11:53		M	6.5	2	8.01	27.47	28.31	73.6	4.84	4.8	0.66	248.8	7.1	0.135	0.227	0.598	0.960	140.0	0.05	<1.0
B	14/6/2018 14/6/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate Moderate	11:53		B	12 12	1	8.05	29.72 29.78	28.26 28.26	72.4	4.71	4.0	0.60	268.1 267.3	8.5 10	0.132	0.222 0.214	0.614	0.968	120.0 140.0	0.04	<1.0
B	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:05		B S	12	2	8.05	29.78	28.26	72.4 88.8	4.70 6.17	4.0	0.54	267.3	81	0.134	0.214	0.608	1 200	36.0	0.05	<1.0
C	14/6/2018	Mid-Ebb		Moderate	12:05		3 9	1	2	8.02	16.20	28.85	88.5	6.14	3.2	0.08	177.5	8.5	0.155	0.292	0.754	1 210	11.0	0.05	1.5
C C	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:05		M	6.5	1	8.05	20.76	28.63	76.1	5.17	4.0	0.08	165.3	8	0.154	0.293	0.754	1.200	18.0	0.05	1.0
C	14/6/2018	Mid-Ebb		Moderate	12:05	13	M	6.5	2	8.06	20.77	28.56	74.9	5.10	5.0	0.11	165.7	7.9	0.157	0.297	0.749	1.200	14.0	0.05	<1.0
С	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:05	13	В	12	1	8.04	26.43	28.47	70.6	4.66	7.3	0.26	236.6	7.6	0.140	0.298	0.748	1,190	59.0	0.05	<1.0
С	14/6/2018	Mid-Ebb		Moderate	12:05		В	12	2	8.04	26.61	28.47	70.4	4.64	7.6	0.29	255.1	7.4	0.150	0.300	0.749	1.200	12.0	0.05	<1.0
D	14/6/2018	Mid-Ebb		Moderate	12:18		S	1	1	8.04	28.36	28.36	83.0	5.68	5.7	0.24	159.0	5.1	0.109		0.751	1.150	16.0	0.05	<1.0
D	14/6/2018	Mid-Ebb		Moderate	12:18		S	1	2	8.04	28.36	28.36	82.8	5.67	5.6	0.24	147.4	5.8	0.112		0.742	1.150	14.0	0.05	<1.0
D	14/6/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate Moderate	12:18		M	6.5 6.5	1	8.03	24.27	28.43 28.43	74.3	4.97	8.0 8.1	0.13	142.6 150.2	6.1	0.101	0.299	0.753	1.150	140.0	0.05	<1.0
D	14/6/2018	Mid-Ebb		Moderate	12:18		B	0.0 12	1	7 79	25.99	28.43	68.1	4.95	10.3	0.17	234.2	6.5	0.116	0.297	0.750	1.160	160.0	0.05	<1.0
D	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:18		B	12	2	7.84	25.79	25.80	68.2	4.32	10.5	0.46	231.4	6.6	0.122	0.296	0.757	1.180	140.0	0.05	12
F	14/6/2018	Mid-Ebb		Moderate	12:30		S	1	1	8.04	20.00	28.36	78.7	5.39	5.4	0.22	126.3	7.3	0.122		0.792	1 210	110.0	0.05	12
E	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:30	16	S	1	2	8.04	20.00	28.36	78.6	5.39	5.5	0.21	139.8	6.3	0.108	0.303	0.793	1.200	120.0	0.05	<1.0
E	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:30	16	М	8	1	7.97	20.82	28.36	75.1	5.16	6.8	0.28	166.1	6.3	0.151	0.298	0.798	1.250	21.0	0.06	<1.0
E	14/6/2018	Mid-Ebb		Moderate	12:30		M	8	2	7.97	20.97	28.33	74.8	5.10	6.3	0.12	174.2	7.4	0.181	0.289	0.799	1.270	14.0	0.06	2.7
E	14/6/2018	Mid-Ebb		Moderate	12:30		B	15	1	7.97	22.35	28.30	72.2	4.89	11.9	0.16	258.0	5.5	0.119	0.303	0.777	1.200	11.0	0.06	1.2
E F	14/6/2018	Mid-Ebb Mid-Ebb		Moderate Moderate	12:30		B	15	2	7.97	22.41	28.31 27.42	72.2	4.88	12.3 6.4	0.09	200.1	5.5 5.9	0.120	0.302	0.748	1.170	<u>15.0</u> 110.0	0.06	<1.0
F	14/6/2018	Mid-Ebb		Moderate	12:44		5	1	2	7.97	12.07	27.42	96.3	6.99	6.7	0.21	197.5	5.9	0.120	0.289	0.768	1.180	140.0	0.06	<1.0
F	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:44		M	11.5	2	7.98 8.02	22.41	27.42	96.3 76.3	5.17	6.7 3.1	0.11	233.6	5.3	0.122		0.778	1.190	140.0	0.05	<1.0
F	14/6/2018	Mid-Ebb		Moderate	12:44		M	11.5	2	8.02	22.41	28.15	76.3	5.16	3.1	0.18	233.0	4.7	0.119	0.295	0.760	1.170	11.0	0.05	<1.0
F	14/6/2018	Mid-Ebb		Moderate	12:44		B	22	1	8.00	22.89	28.17	73.3	4.96	19.6	0.16	228.4	5.5	0.116	0.287	0.764	1.170	9.0	0.05	1.5
F	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:44		B	22	2	8.01	22.90	28.17	73.3	4.95	20.5	0.16	205.9	6.7	0.107	0.289	0.767	1.160	14.0	0.05	<1.0
G	14/6/2018	Mid-Ebb		Moderate	12:58		S	1	1	7.98		26.81	92.6	6.46	2.5	0.18	146.3	6	0.154	0.267	0.759	1.180	110.0	0.05	1.7
G	14/6/2018	Mid-Ebb	Cloudy	Moderate	12:58		S	1	2	8.01	20.40	26.82	92.4	6.40	2.6	0.21	151.4	6.1	0.144	0.261	0.715	1.120	140.0	0.05	<1.0
G	14/6/2018	Mid-Ebb		Moderate	12:58		M	11	1	8.05	22.90	28.02	75.6	5.12	3.6	0.36	215.9	5.1	0.136	0.280	0.732	1.150	12.0	0.06	1.0
G	14/6/2018 14/6/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate Moderate	12:58		M B	11 21	2	8.05	22.81	28.03 28.10	75.5 72.6	5.11	3.6 15.2	0.42	224.7 266.8	5.7 6.4	0.124	0.266	0.706	1.100	13.0 18.0	0.05	<1.0
G	14/6/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate	12:58		B	21	2	8.04		28.10	72.6	4.86	15.2	0.59	266.8	<u>6.4</u> 7.6	0.125		0.744	1.140	18.0	0.06	<1.0
H	14/6/2018	Mid-Ebb		Moderate	13.14		S	1	1	8.04	20.40	27.96	82.6	5.69	2.6	0.82	166.3	6.1	0.117	0.264	0.708	1.140	10.0	0.05	1.0
Н	14/6/2018	Mid-Ebb		Moderate		10	S	1	2	8.02	20.65	27.98	82.0	5.64	2.5	0.37	173.4	7.8	0.121	0.273	0.752	1,150	110.0	0.06	<1.0
Н	14/6/2018	Mid-Ebb		Moderate	13:14		M	9.5	1	8.05	23.05	28.20	74.8	5.05	4.3	0.34	222.8	7.8	0.116		0.765	1.160	120.0	0.06	<1.0
H	14/6/2018	Mid-Ebb	Cloudy	Moderate	13:14	19	M	9.5	2	8.05	23.07	28.20	74.7	5.04	4.4	0.35	216.2	6.7	0.126	0.287	0.750	1.160	110.0	0.05	<1.0
Н	14/6/2018	Mid-Ebb		Moderate	13:14		В	18	1	8.03	23.00	28.23	73.7	4.97	4.6	0.65	241.9	5.8	0.115	0.292	0.740	1.150	140.0	0.05	<1.0
Н	14/6/2018	Mid-Ebb	Cloudy	Moderate	13:14	19	В	18	2	8.03	23.00	28.23	73.7	4.97	4.6	0.66	238.1	5.8	0.110	0.287	0.746	1.140	130.0	0.04	<1.0

										In-situ Measurement						Laboratory Analysis									
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)			Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A	14/6/2018			Moderate			S	1	1	8.09		28.07	73.4	4.83	1.6	0.26	235.2	7.6	0.143	0.256	0.716	1.110	86.0	0.05	<1.0
A	14/6/2018	Mid-Flood		Moderate	7:17		S	1	2	8.10		28.05	73.4	4.85	1.5	0.25	233.8	7.1	0.155	0.259	0.707	1.120	33.0	0.05	1.0
A	14/6/2018	Mid-Flood		Moderate	7:17		M	7.5	1	8.09		28.05	73.0	4.81	2.8	0.55	242.1	7.4	0.140	0.250	0.730	1.120	49.0	0.04	<1.0
A		Mid-Flood	cloudv	Moderate	7:17		M	7.5	2	8.10		28.07	73.0	4.82	2.9	0.51	245.9	8.3	0.157	0.253	0.720	1.130	40.0	0.05	1.2
A	14/6/2018	Mid-Flood	cloudy	Moderate	7:17		В	14	1	8.08		28.02	72.6	4.76	3.5	0.58	204.4	8.6	0.128	0.123	0.789	1.040	70.0	0.05	<1.0
A		Mid-Flood	cloudv	Moderate	7:17		В	14	2	8.08	28.96	28.03	72.6	4.75	3.3	0.54	214.0	9.2	0.154	0.120	0.794	1.070	35.0	0.05	<1.0
B		Mid-Flood	cloudy	Moderate	7:01		S	1	1	8.06	27.01	29.04	72.6	4.75	2.6	0.14	257.9	6.3	0.144	0.183	0.551	0.878	2.0	0.04	<1.0
В		Mid-Flood		Moderate	7:01		S	1	2	8.07		29.01	72.6	4.74	2.7	0.15	258.4	6.3	0.132	0.183	0.547	0.862	6.0	0.05	<1.0
В		Mid-Flood	cloudv	Moderate	7:01		M	5.5	1	8.09		28.24	72.9	4.79	2.9	0.33	263.6	4.9	0.149	0.132	0.388	0.669	11.0	0.04	<1.0
В	14/6/2018	Mid-Flood	cloudy	Moderate	7:01		M	5.5	2	8.09		28.21	72.9	4.80	2.8	0.35	258.7	4.8	0.143	0.134	0.396	0.673	12.0	0.03	<1.0
B	14/6/2018	Mid-Flood	cloudy	Moderate	7:01	11	B	10	1	8.09	28.70	28.07	73.3	4.84	3.6	0.27	269.9	5.6	0.102	0.120	0.434	0.656	14.0	0.03	<1.0
	14/6/2018	Mid-Flood	cloudv	Moderate	7:01		B	10	2	8.10		28.08	73.4	4.82	3.7	0.29	276.2	6.6	0.124	0.127	0.392	0.643	13.0	0.03	<1.0
<u>с</u>		Mid-Flood	cloudy	Moderate	6:49		s	1	1	8.03		27.77 27.78	78.2 78.1	5.28 5.27	4.2	0.12	243.3 239.7	5.2 6.2	0.125	0.267	0.703	1.090	59.0 65.0	0.05	<1.0
C C	14/6/2018	Mid-Flood Mid-Flood		Moderate Moderate	6:49 6:49		M	6	2	8.02		27.85	73.7	5.27 4.79	4.3	0.13	239.7	6.2	0.115	0.275	0.696	1.080	47.0	0.05	<1.0
C		Mid-Flood	cloudv	Moderate	6:49		M	6	2	8.07		27.85	73.6	4.79	5.5	0.19	225.7	6.0	0.126	0.271	0.713	1.090	47.0 54.0	0.05	<1.0
C C		Mid-Flood	cloudy cloudy	Moderate	6:49		B	<u>ь</u> 11	2	8.07		27.88	70.9	4.78	5.5 6.9	0.19	217.4	6.0 7 4	0.112	0.266	0.695	1 100	<u>54.0</u> 32.0	0.05	<1.0
C C	14/6/2018		cloudy	Moderate	6:49		B	11	2	8.00		27.96	70.9	4.63	7.1	0.42	278.2	5.9	0.128	0.280	0.695	1.110	10.0	0.05	<1.0
		Mid-Flood	cloudy	Moderate	6:38		S S	1	1	8.03		27.56	81.9	5.51	4.1	0.45	219.0	5.9 6.8	0.130	0.200	0.747	1 150	110.0	0.05	<1.0
D		Mid-Flood	cloudy	Moderate	6:38		S	1	2	8.04	25.24	27.59	81.7	5.49	4.1	0.17	194.5	8.4	0.112	0.293	0.747	1.130	90.0	0.03	<1.0
D	14/6/2018	Mid-Flood	cloudy	Moderate	6:38		M	7.5	1	8.06	30.54	27.82	75.3	4.91	7.1	0.39	268.6	6.4	0.119	0.289	0.754	1.200	90.0	0.04	<1.0
D	14/6/2018	Mid-Flood	cloudy	Moderate	6:38		M	7.5	2	8.00		27.83	75.3	4.89	7.2	0.34	268.1	7.8	0.195	0.316	0.818	1.330	12.0	0.05	<1.0
	14/6/2018	Mid-Flood	cloudy	Moderate	6:38		B	14	1	8.07		27.94	71.0	4.64	10.1	0.63	243.4	9.0	0.133	0.283	0.717	1.140	120.0	0.06	11
D	14/6/2018	Mid-Flood	cloudy	Moderate	6:38	15	B	14	2	8.07	29.46	27.94	71.0	4.64	10.1	0.69	244.8	7.7	0.134	0.203	0.767	1,190	110.0	0.05	<1.0
F		Mid-Flood		Moderate			ŝ	1	1	8.02		27.84	74.3	5.01	3.5	0.00	210.6	7.5	0.119	0.203	0.599	0.921	140.0	0.00	<1.0
F		Mid-Flood	cloudy	Moderate	6.22	19	S	1	2	8.03	24.23	27.82	74.2	5.00	3.6	0.17	219.9	74	0.120	0.212	0.592	0.924	120.0	0.04	<1.0
E	14/6/2018	Mid-Flood	cloudv	Moderate	6:22	19	M	9.5	1	8.07		28.01	74.1	4.89	7.0	0.49	226.2	7.2	0.150	0.206	0.596	0.952	81.0	0.04	<1.0
Ē	14/6/2018	Mid-Flood	cloudy	Moderate	6:22	19	M	9.5	2	8.08		28.02	74.1	4.85	7.2	0.50	222.4	6.8	0.154	0.218	0.604	0.976	13.0	0.04	1.4
E	14/6/2018	Mid-Flood		Moderate	6:22		В	18	1	8.08	30.33	28.03	73.0	4.74	11.0	0.41	252.5	6.6	0.146	0.211	0.596	0.953	160.0	0.05	1.2
E	14/6/2018	Mid-Flood	cloudy	Moderate	6:22	19	В	18	2	8.08	30.41	28.05	73.0	4.72	11.2	0.42	254.3	7.0	0.158	0.199	0.609	0.966	69.0	0.04	1.3
F	14/6/2018	Mid-Flood	cloudv	Moderate	6:14		S	1	1	8.02		27.84	74.3	5.01	3.5	0.15	253.4	7.7	0.143	0.234	0.638	1.020	110.0	0.05	<1.0
F	14/6/2018	Mid-Flood		Moderate	6:14		S	1	2	8.01		27.96	74.2	5.00	3.4	0.15	266.8	6.6	0.120	0.224	0.662	1.010	120.0	0.05	<1.0
F	14/6/2018	Mid-Flood	cloudv	Moderate	6:14	22	М	11	1	8.07		27.97	74.1	4.91	4.4	0.32	241.2	6.8	0.118	0.239	0.639	0.996	130.0	0.05	<1.0
F	14/6/2018	Mid-Flood	cloudv	Moderate	6:14	22	М	11	2	8.08	27.06	27.96	74.1	4.93	4.6	0.39	235.2	6.7	0.139	0.221	0.671	1.030	110.0	0.04	1.2
F		Mid-Flood		Moderate	6:14		В	21	1	8.08		28.03	73.0	4.75	11.1	0.31	224.3	7.7	0.124	0.242	0.630	0.996	150.0	0.04	1.1
F	14/6/2018			Moderate	6:14		В	21	2	8.08		28.01	73.0	4.74	11.2	0.37	235.0	6.5	0.127	0.207	0.616	0.950	100.0	0.04	<1.0
G		Mid-Flood		Moderate	5:58		S	1	1	7.96		27.82	80.2	5.58	4.1	0.21	104.5	5.7	0.153	0.239	0.730	1.120	110.0	0.05	1.4
G		Mid-Flood		Moderate	5:58		S	1	2	7.98		27.83	80.0	5.57	4.0	0.23	101.2	5.8	0.174	0.255	0.702	1.130	130.0	0.05	1.8
G	14/6/2018	Mid-Flood	cloudv	Moderate	5:58		M	7	1	8.01		27.99	74.7	5.12	4.6	0.34	191.2	5.1	0.161	0.251	0.721	1.130	150.0	0.04	1.1
G		Mid-Flood		Moderate	5:58		M	7	2	8.02		27.98	74.0	5.02	4.7	0.37	198.6	5.9	0.199	0.259	0.700	1.160	160.0	0.05	1.8
G	14/6/2018	Mid-Flood	cloudy	Moderate	5:58		В	13	1	8.05		28.07	72.0	4.69	6.5	0.36	173.1	6.4	0.186	0.248	0.727	1.160	4.0	0.05	1.3
G	14/6/2018	Mid-Flood	cloudv	Moderate	5:58		B	13	2	8.05	29.94	28.09	72.0	4.70	6.4	0.37	181.1	7.6	0.154	0.259	0.700	1.110	9.0	0.05	2.0
н	14/6/2018	Mid-Flood		Moderate	5:45		3	1	1	7.96		27.72	81.8	5.66	3.6	0.25	166.5	5.2	0.277	0.291	0.799	1.370	14.0	0.05	1.8
H		Mid-Flood	cloudy	Moderate	5:45		S M	1	2	7.97		27.74	81.5	5.64	3.6	0.24	192.4	4.8	0.289	0.297	0.767	1.350	19.0	0.05	1.2
	14/6/2018			Moderate	5:45		M	11				27.94	76.1	5.26			139.6	6.6	0.283	0.302	0.782	1.370	110.0	0.04	1.7
н		Mid-Flood	cloudv	Moderate	5:45		B	21	2	7.97		27.93 27.08	76.0	5.24	4.0	0.36	142.1	6.3 5.2		0.292	0.796	1.340	130.0	0.04	
H		Mid-Flood		Moderate	5:45		L B	21	1	8.04	24.08	27.08	72.2	4.73	5.3	0.56	164.5		0.286		0.804		8.0	0.05	1.6
н	14/6/2018	IVIId-Flood	cloudy	Moderate	5:45	22	ы	21	2	8.03	24.09	27.07	(2.2	4.72	5.4	0.62	171.0	6.6	0.284	0.300	0.788	1.370	16.0	0.05	2.0

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFI	CATE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 28
Contact	: MR CYRUS LAI	Contact	Richard Fung	Work Order	: HK1833568
Address	EROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 		
E-mail	: c.lai@fugro.com	E-mail	: richard.fung@alsglobal.com		
Telephone	: +852 3565 4374	Telephone	: +852 2610 1044		
Facsimile	:	Facsimile	: +852 2610 2021		
Project	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEA FOR SIU HO WAN SEWAGE TREATMENT PLANT	M FOR OPERATIONAI	ENVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 14-Jun-2018
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 29-Jun-2018
C-O-C number	:			No. of samples received	: 96
Site	:			No. of samples analysed	: 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics
Ng Sin Kou, May	Assistant Laboratory Manager	Microbiology

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 14-Jun-2018 to 29-Jun-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1833568

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

Sample(s) arrived in the laboratory at 18:40. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	nt sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
	Cli	ent samplin	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-001	HK1833568-002	HK1833568-003	HK1833568-004	HK1833568-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	8.8	9.2	9.6	9.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.151	0.157	0.121	0.110	0.137
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.273	0.273	0.277	0.283	0.289
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.727	0.758	0.769	0.757	0.747
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.15	1.19	1.17	1.15	1.17
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.06	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.03	0.03	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.4	2.2	2.3	1.6	1.3
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	11	13	14	12	130

Page Number : 4 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-006	HK1833568-007	HK1833568-008	HK1833568-009	HK1833568-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.1	6.8	7.8	7.4	7.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.127	0.137	0.120	0.133	0.135
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.292	0.227	0.228	0.229	0.227
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.739	0.601	0.597	0.594	0.598
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.16	0.965	0.945	0.956	0.960
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.03	0.04	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	<1.0	1.1	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	160	170	190	130	140

Page Number 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-011	HK1833568-012	HK1833568-013	HK1833568-014	HK1833568-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	10.0	8.1	8.5	8.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.132	0.134	0.155	0.154	0.152
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.222	0.214	0.292	0.293	0.294
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.614	0.608	0.754	0.762	0.754
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.968	0.956	1.20	1.21	1.20
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.5	1.1	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	120	140	36	11	18

Page Number : 6 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-016	HK1833568-017	HK1833568-018	HK1833568-019	HK1833568-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.9	7.6	7.4	5.1	5.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.157	0.140	0.150	0.109	0.112
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.297	0.298	0.300	0.295	0.299
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.749	0.748	0.749	0.751	0.742
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.20	1.19	1.20	1.15	1.15
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	14	59	12	16	14

Page Number : 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-021	HK1833568-022	HK1833568-023	HK1833568-024	HK1833568-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.1	6.5	6.5	6.6	7.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.101	0.116	0.122	0.122	0.116
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.299	0.297	0.296	0.296	0.298
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.753	0.750	0.760	0.757	0.792
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.15	1.16	1.18	1.18	1.21
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.03	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.0	<1.0	1.2	1.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	140	120	160	140	110

Page Number 2 8 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-026	HK1833568-027	HK1833568-028	HK1833568-029	HK1833568-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.3	6.3	7.4	5.5	5.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.108	0.151	0.181	0.119	0.120
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.303	0.298	0.289	0.303	0.302
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.793	0.798	0.799	0.777	0.748
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.20	1.25	1.27	1.20	1.17
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.06	0.06	0.06	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	2.7	1.2	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	120	21	14	11	15

Page Number 29 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-031	HK1833568-032	HK1833568-033	HK1833568-034	HK1833568-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.3	5.9	4.7	5.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.120	0.122	0.119	0.121	0.116
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.289	0.289	0.295	0.290	0.287
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.768	0.778	0.760	0.764	0.764
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.18	1.19	1.17	1.17	1.17
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.05	0.05	0.06	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.03	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	<1.0	<1.0	<1.0	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	110	140	16	11	9

Page Number : 10 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-036	HK1833568-037	HK1833568-038	HK1833568-039	HK1833568-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.7	6.0	6.1	5.1	5.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.107	0.154	0.144	0.136	0.124
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.289	0.267	0.261	0.280	0.266
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.767	0.759	0.715	0.732	0.706
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.16	1.18	1.12	1.15	1.10
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.06	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.03	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.7	<1.0	1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	14	110	140	12	13

Page Number : 11 of 28 Client : FUGRO TECHNIC

ent FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-041	HK1833568-042	HK1833568-043	HK1833568-044	HK1833568-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.4	7.6	6.1	7.8	7.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.125	0.117	0.112	0.121	0.116
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.270	0.264	0.279	0.280	0.279
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.744	0.706	0.748	0.752	0.765
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.14	1.09	1.14	1.15	1.16
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.05	0.05	0.06	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.04	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	18	10	100	110	120

Page Number 12 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-046	HK1833568-047	HK1833568-048	HK1833568-049	HK1833568-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.7	5.8	5.8	7.6	7.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.126	0.115	0.110	0.143	0.155
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.287	0.292	0.287	0.256	0.259
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.750	0.740	0.746	0.716	0.707
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.16	1.15	1.14	1.11	1.12
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.04	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.02	0.04	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	110	140	130	86	33

Page Number : 13 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

HK1833568								
Sub-Matrix: WATER		Clie	ent sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Cli	ent sampli	ing date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-051	HK1833568-052	HK1833568-053	HK1833568-054	HK1833568-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.4	8.3	8.6	9.2	6.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.140	0.157	0.128	0.154	0.144
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.250	0.253	0.123	0.120	0.183
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.730	0.720	0.789	0.794	0.551
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.12	1.13	1.04	1.07	0.878
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.05	0.05	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.03	0.04	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.2	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	49	40	70	35	2

Page Number 14 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-056	HK1833568-057	HK1833568-058	HK1833568-059	HK1833568-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.3	4.9	4.8	5.6	6.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.132	0.149	0.143	0.102	0.124
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.183	0.132	0.134	0.120	0.127
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.547	0.388	0.396	0.434	0.392
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.862	0.669	0.673	0.656	0.643
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	6	11	12	14	13

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-061	HK1833568-062	HK1833568-063	HK1833568-064	HK1833568-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.2	6.2	6.3	6.0	7.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.125	0.115	0.126	0.112	0.128
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.267	0.275	0.271	0.266	0.280
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.703	0.696	0.713	0.711	0.695
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.09	1.08	1.11	1.09	1.10
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.04	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	59	65	47	54	32

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

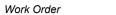
Sub-Matrix: WATER		Clie	ent sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-066	HK1833568-067	HK1833568-068	HK1833568-069	HK1833568-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	6.8	8.4	6.4	7.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.130	0.112	0.119	0.156	0.195
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.268	0.293	0.289	0.294	0.316
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.717	0.747	0.759	0.754	0.818
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.11	1.15	1.17	1.20	1.33
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.05	0.04	0.05	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.04	0.04	0.04	0.04
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	10	110	90	11	12

Page Number : 17 of 28 Client : FUGRO TECHNI

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-071	HK1833568-072	HK1833568-073	HK1833568-074	HK1833568-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	7.7	7.5	7.4	7.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.142	0.134	0.119	0.120	0.150
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.283	0.293	0.203	0.212	0.206
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.717	0.767	0.599	0.592	0.596
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.14	1.19	0.921	0.924	0.952
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.05	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	120	110	140	120	81


Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-076	HK1833568-077	HK1833568-078	HK1833568-079	HK1833568-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.6	7.0	7.7	6.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.154	0.146	0.158	0.143	0.120
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.218	0.211	0.199	0.234	0.224
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.604	0.596	0.609	0.638	0.662
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.976	0.953	0.966	1.02	1.01
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.04	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.4	1.2	1.3	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	13	160	69	110	120

Page Number 19 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Client sampling date / time			14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833568-081	HK1833568-082	HK1833568-083	HK1833568-084	HK1833568-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.7	7.7	6.5	5.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.118	0.139	0.124	0.127	0.153
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.239	0.221	0.242	0.207	0.239
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.639	0.671	0.630	0.616	0.730
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.996	1.03	0.996	0.950	1.12
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.04	0.04	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.2	1.1	<1.0	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	130	110	150	100	110

Page Number : 20 of 28 Client : FUGRO TECHNIC

ient : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER		Clie	ent sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup	
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	
Compound	CAS Number	LOR	Unit	HK1833568-086	HK1833568-087	HK1833568-088	HK1833568-089	HK1833568-090	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	5.8	5.1	5.9	6.4	7.6	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.174	0.161	0.199	0.186	0.154	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.255	0.251	0.259	0.248	0.259	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.702	0.721	0.700	0.727	0.700	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.13	1.13	1.16	1.16	1.11	
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.05	0.05	0.05	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.02	0.01	0.02	<0.01	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	1.1	1.8	1.3	2.0	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100mL	130	150	160	4	9	

Page Number 21 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833568

Sub-Matrix: WATER	Client sample ID			H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F		
	Cli	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018		
Compound	CAS Number	LOR	Unit	HK1833568-091	HK1833568-092	HK1833568-093	HK1833568-094	HK1833568-095		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	5.2	4.8	6.6	6.3	5.2		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.277	0.289	0.283	0.257	0.286		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.291	0.297	0.302	0.292	0.292		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.799	0.767	0.782	0.796	0.804		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.37	1.35	1.37	1.34	1.38		
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.04	0.04	0.05		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.03	0.02	<0.01	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	1.2	1.7	2.3	1.6		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	14	19	110	130	8		

Page Number 22 of 28 Client FUGRO TECHNI

ient : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup							
	Cli	ent samplii	ng date / time	14-Jun-2018							
Compound	CAS Number	LOR	Unit	HK1833568-096							
EA/ED: Physical and Aggregate Properties											
EA025: Suspended Solids (SS)		0.5	mg/L	6.6							
ED/EK: Inorganic Nonmetallic Parameters	ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.284							
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.300							
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.788							
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.37							
EK067P: Total Phosphorus as P		0.01	mg/L	0.05							
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01							
EP: Aggregate Organics											
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0							
EM: Microbiological Testing											
EM002: E. coli		1	CFU/100mL	16							

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1730310)									
HK1833568-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	8.5	8.2	3.89			
HK1833568-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	8.5	8.0	6.04			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1730311)									
HK1833568-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	6.1	6.6	8.22			
HK1833568-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.4	9.78			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1730312)									
HK1833568-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	6.4	5.5	14.7			
HK1833568-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	7.4	8.1	9.71			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1730313)									
HK1833568-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	4.2	19.7			
HK1833568-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	9.0	8.2	8.70			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1730314)									
HK1833568-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.2	8.86			
HK1833568-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	5.2	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730118)									
HK1833568-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730119)									
HK1833568-011	B/B/E	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730120)									
HK1833568-021	D/M/E	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730121)									
HK1833568-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730122)									
HK1833568-041	G/B/E	EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.05	18.2			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730123)									
HK1833568-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730124)									
HK1833568-061	C/S/F	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1730125)									
HK1833568-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.04	0.00			

 Page Number
 :
 24 of 28

 Client
 :
 FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK1833568

Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)				
sample ID							Result					
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730126)										
HK1833568-081	F/M/F	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.00				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730127)										
HK1833568-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.00				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730318)										
HK1833568-001	A/S/E	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.273	0.277	1.45				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730321)										
HK1833568-030	E/B/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.302	0.302	0.00				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730323)										
HK1833568-050	A/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.259	0.266	2.67				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730325)										
HK1833568-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.224	0.235	4.79				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1730327)										
HK1833568-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.259	0.246	5.15				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1731165)										
HK1833568-001	A/S/E	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.151	0.152	0.791				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1731166)										
HK1833568-030	E/B/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.120	0.106	12.2				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1731167)										
HK1833568-050	A/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.155	0.146	6.03				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1731168)										
HK1833568-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.120	0.113	5.92				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1731169)										
HK1833568-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.154	0.154	0.00				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recove	ry Limits(%)	RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (C	C Lot: 1730310)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot: 1730311)											

 Page Number
 : 25 of 28

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 : FUGRO TECHNICAL SERVICES LIMITED

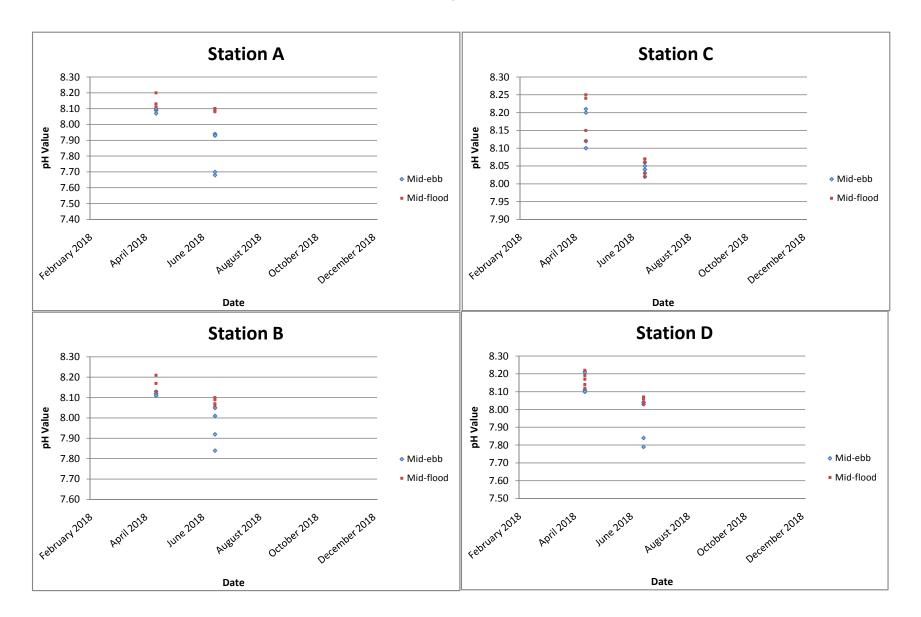
Work Order HK1833568

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike R	асо <i>vегу</i> (%)	Recove	ory Limits(%)	RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties (C	C Lot: 1730311) - Co	ntinued										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	90.0		85	115			
EA/ED: Physical and Aggregate Properties (Q	C Lot: 1730312)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.5		85	115			
EA/ED: Physical and Aggregate Properties (Q	C Lot: 1730313)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115			
EA/ED: Physical and Aggregate Properties (Q	C Lot: 1730314)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	99.0		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730118)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.7		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730119)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.0		92	104			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730120)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.8		92	104			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730121)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.7		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730122)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		92	104			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730123)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.6		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730124)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	94.9		92	104			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730125)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.5		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730126)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.3		92	104			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730127)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.1		85	115			
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 1730318)											
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	109		85	115			

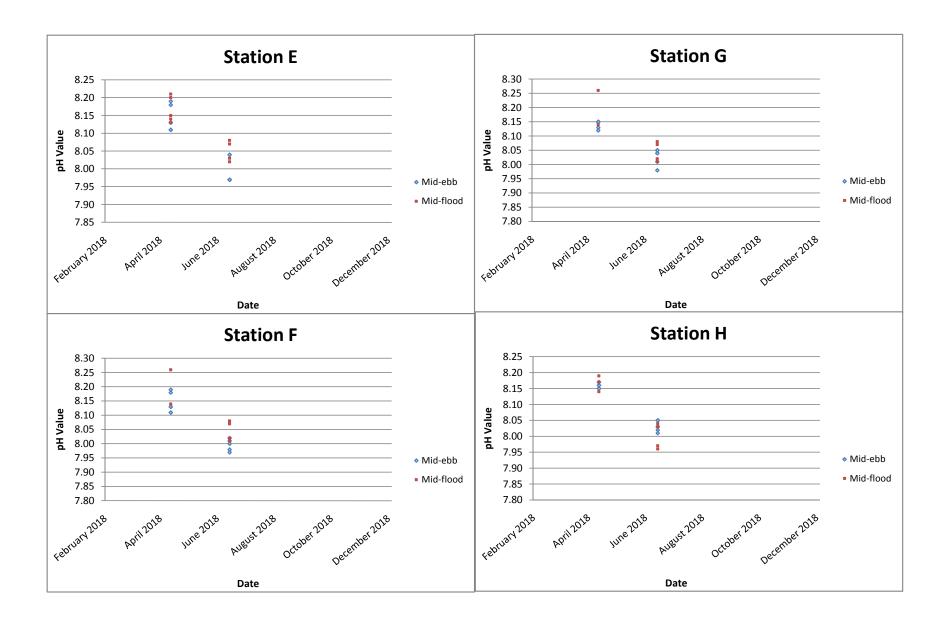
Page Number 26 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK1833568

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				T	Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1730321)			1			1					
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	87.8		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1730323)											
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	107		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1730325)											
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	93.2		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1730327)				-							
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	98.0		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1731165)											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	102		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1731166)											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	106		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1731167)											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	101		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1731168)											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	102		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 1731169)											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	100		85	115			
EP: Aggregate Organics (QC Lot: 1730209)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		81	115			
EP: Aggregate Organics (QC Lot: 1730210)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	94.5		81	115			
EP: Aggregate Organics (QC Lot: 1730211)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	95.4		81	115			
EP: Aggregate Organics (QC Lot: 1730212)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	95.8		81	115			
EP: Aggregate Organics (QC Lot: 1730213)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	100		81	115			

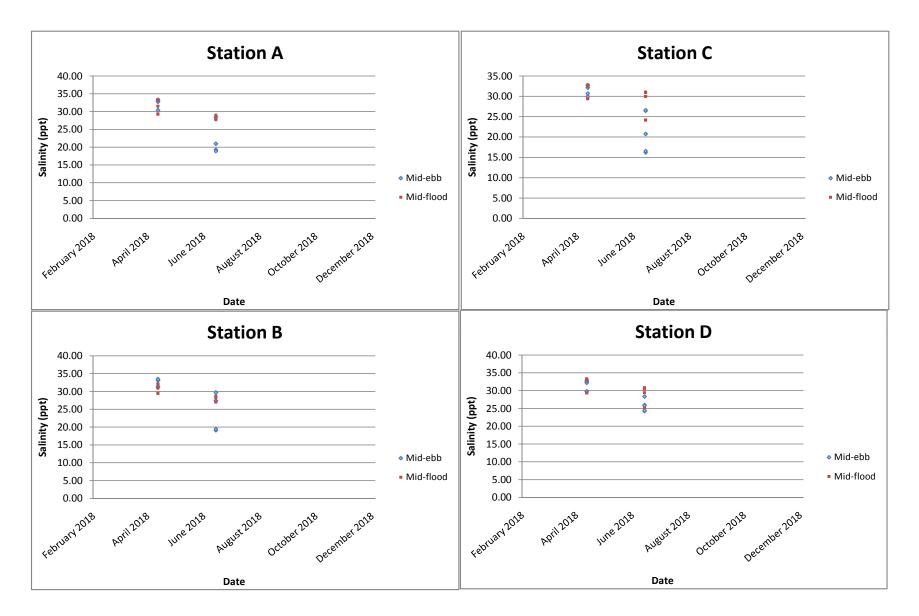
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

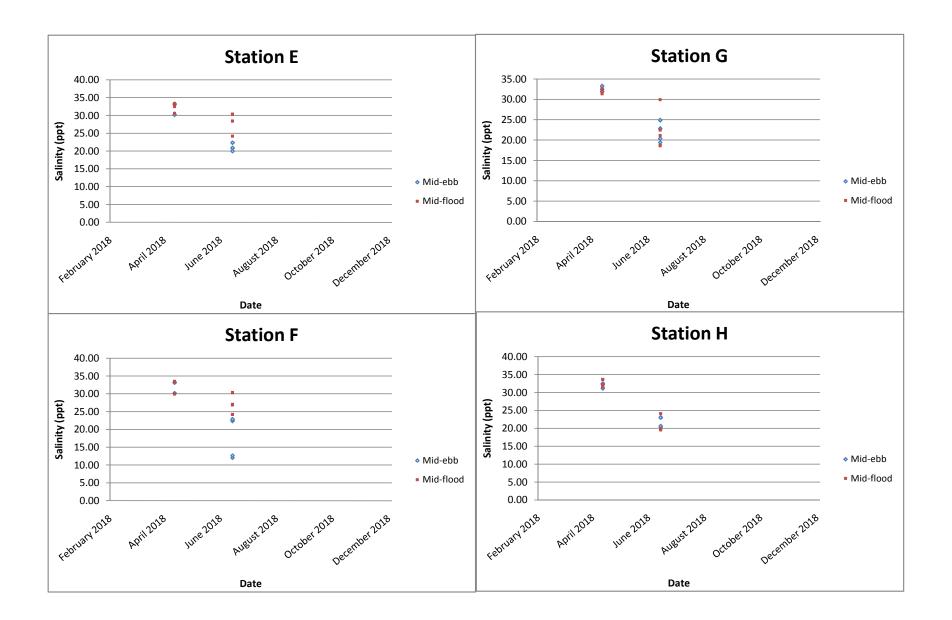

Matrix: WATER					Matrix Spi	ike (MS) and Matn	x Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	<i>Limits</i> (%)	RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound CAS N	lumber ^{Co.}	oncentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)118)								
HK1833568-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered	0).5 mg/L	88.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)119)								
HK1833568-011	B/B/E	EK067P: Total Phosphorus as P	0	0.5 mg/L	90.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)120)								
HK1833568-021	D/M/E	EK067P: Total Phosphorus as P	0).5 mg/L	94.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)121)								
HK1833568-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered	0).5 mg/L	94.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)122)								
HK1833568-041	G/B/E	EK067P: Total Phosphorus as P	0).5 mg/L	92.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)123)								
HK1833568-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered	0).5 mg/L	92.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)124)								
HK1833568-061	C/S/F	EK067P: Total Phosphorus as P	0).5 mg/L	108		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)125)								
HK1833568-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered	0).5 mg/L	92.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)126)								
HK1833568-081	F/M/F	EK067P: Total Phosphorus as P	0).5 mg/L	90.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)127)								
HK1833568-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered	0).5 mg/L	87.4		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)318)								
HK1833568-001	A/S/E	EK057A: Nitrite as N 147	797-65- 0).5 mg/L	112		75	125		
			0							
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730)321)								
HK1833568-030	E/B/E/Dup	EK057A: Nitrite as N 147).5 mg/L	103		75	125		
			0							
-	c Nonmetallic Parameters (QC Lot: 1730)323)								
HK1833568-050	A/S/F/Dup									

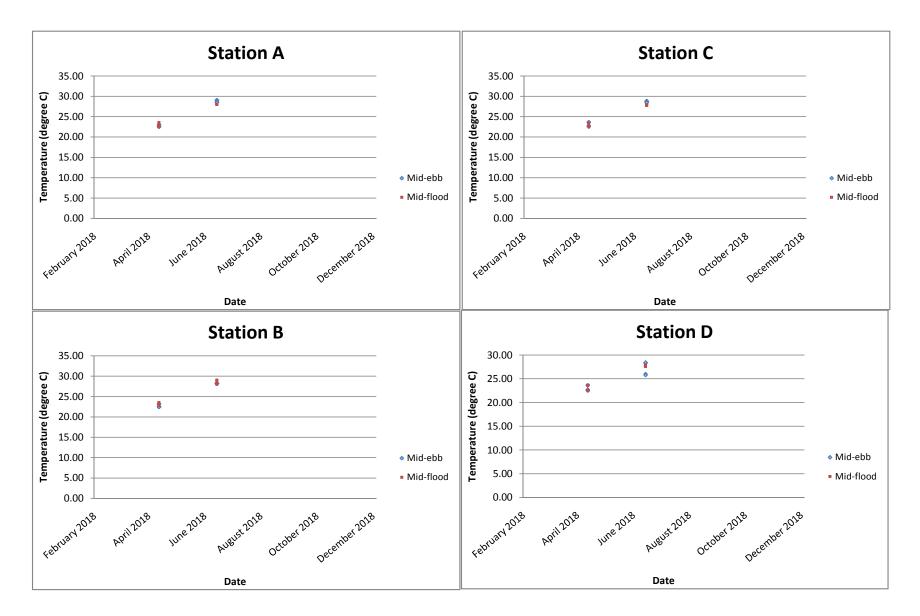
Page Number : 28 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1833568



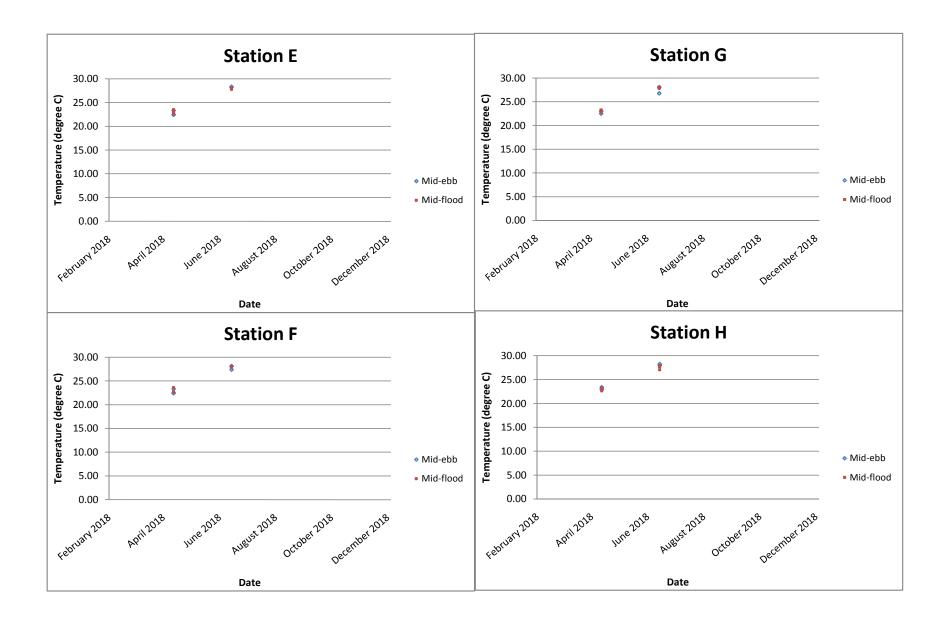
Matrix: WATER					Matrix Sp.	ike (MS) and Matri	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730	323) - Continued								
HK1833568-050	A/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	105		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730	325)								
HK1833568-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	104		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1730	327)								
HK1833568-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	105		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1731	165)								
HK1833568-001	A/S/E	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	85.2		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1731	166)								
HK1833568-030	E/B/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	83.9		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1731	167)								
HK1833568-050	A/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	84.2		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1731	168)								
HK1833568-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	86.5		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1731	169)								
HK1833568-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	108		75	125		

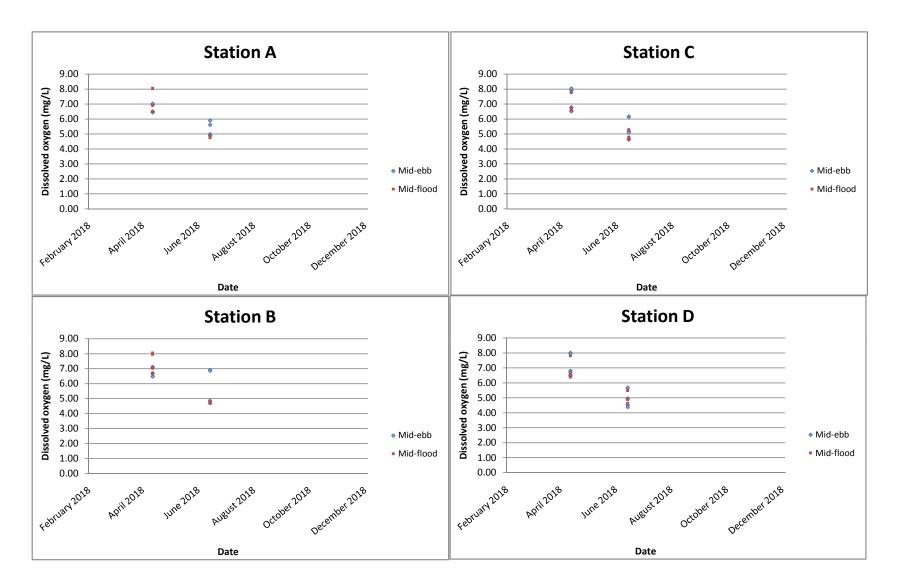

pH value

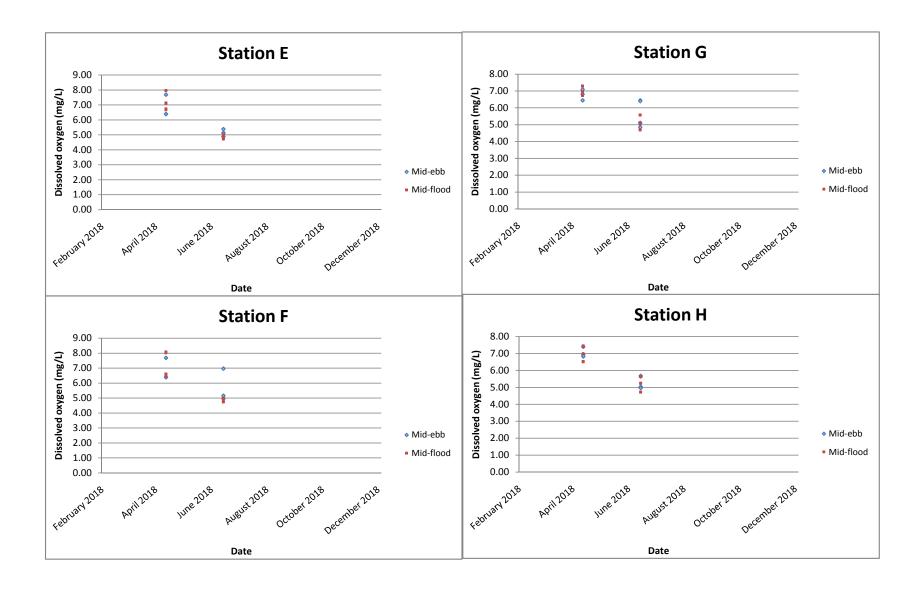

pH value



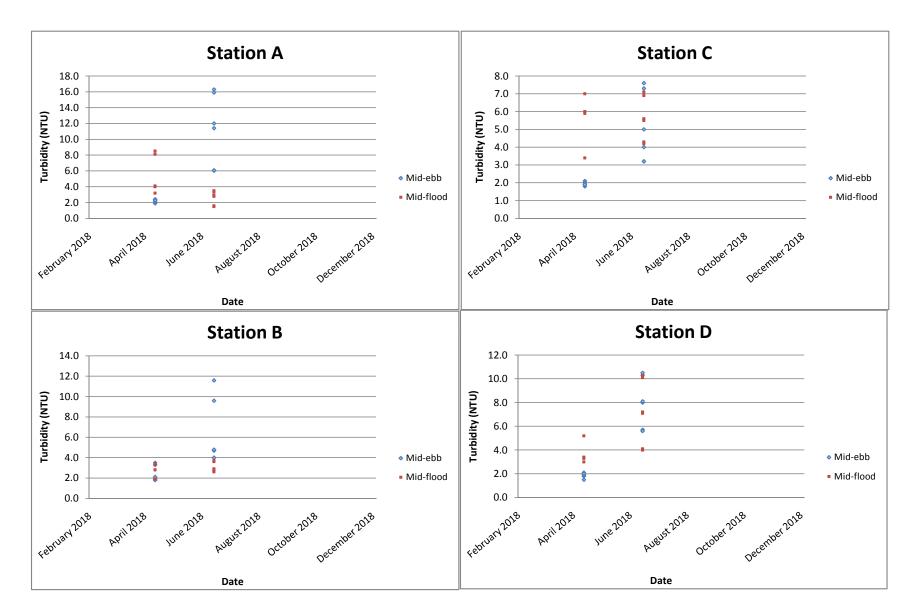
Salinity (ppt)

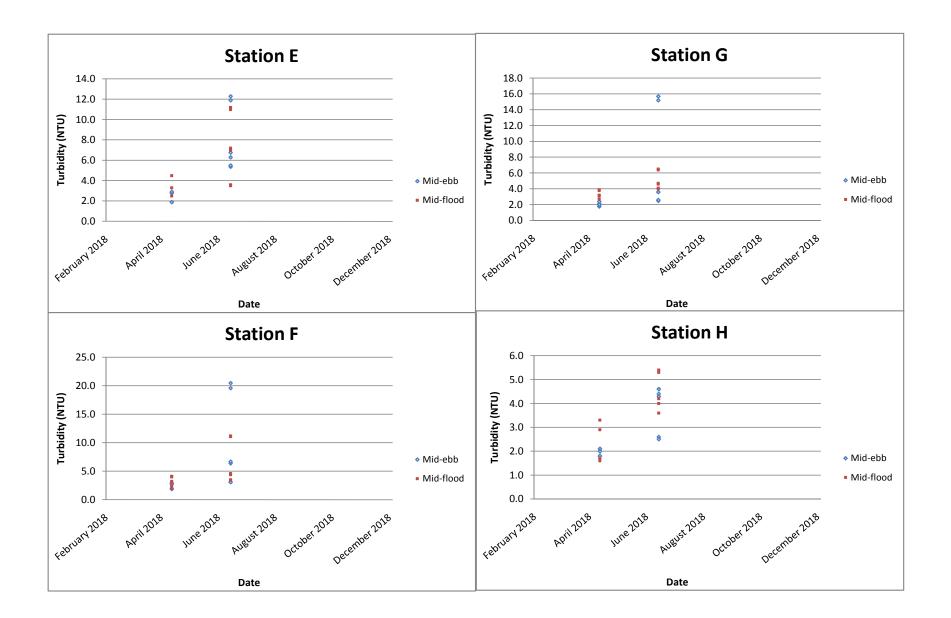


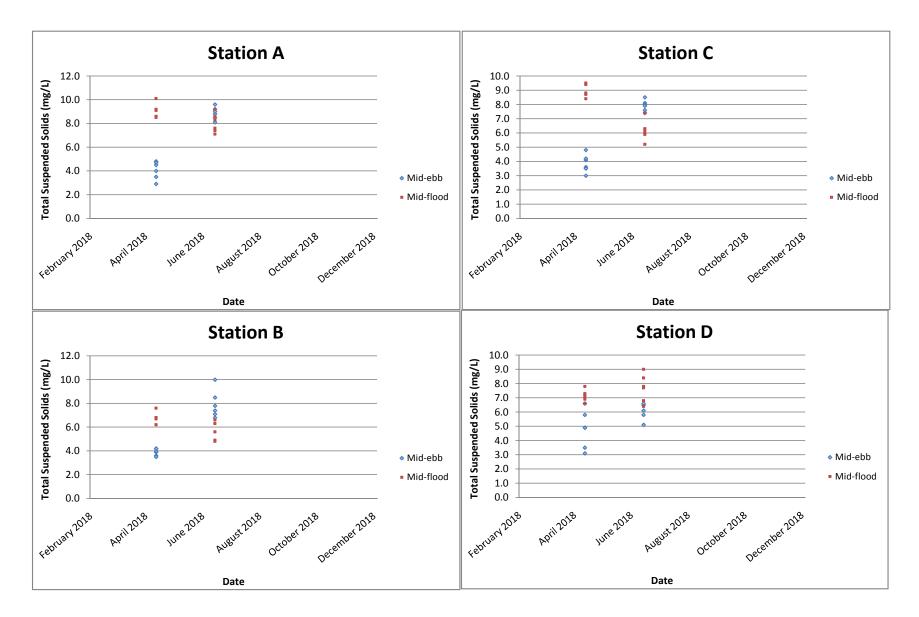

Salinity (ppt)

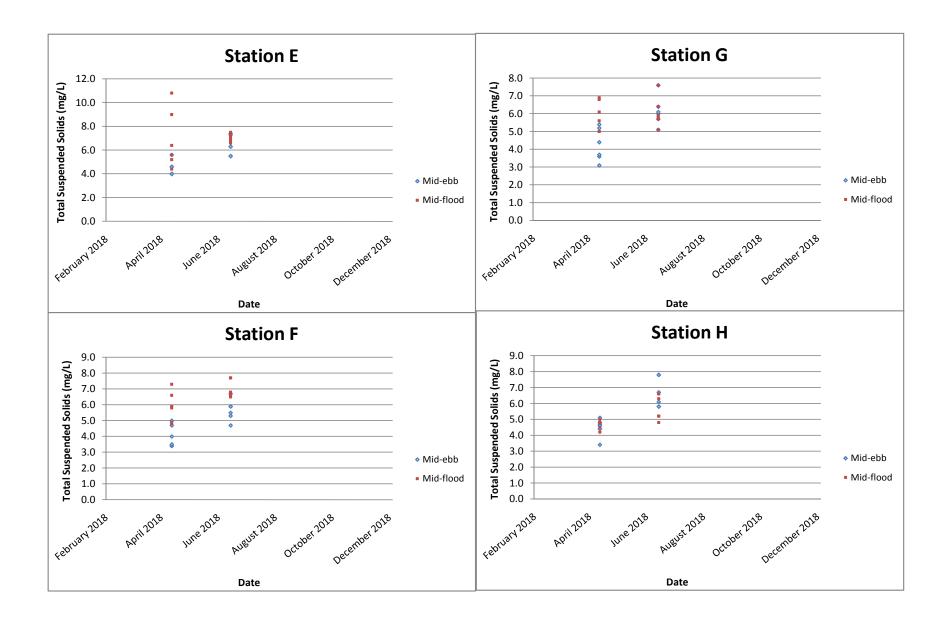


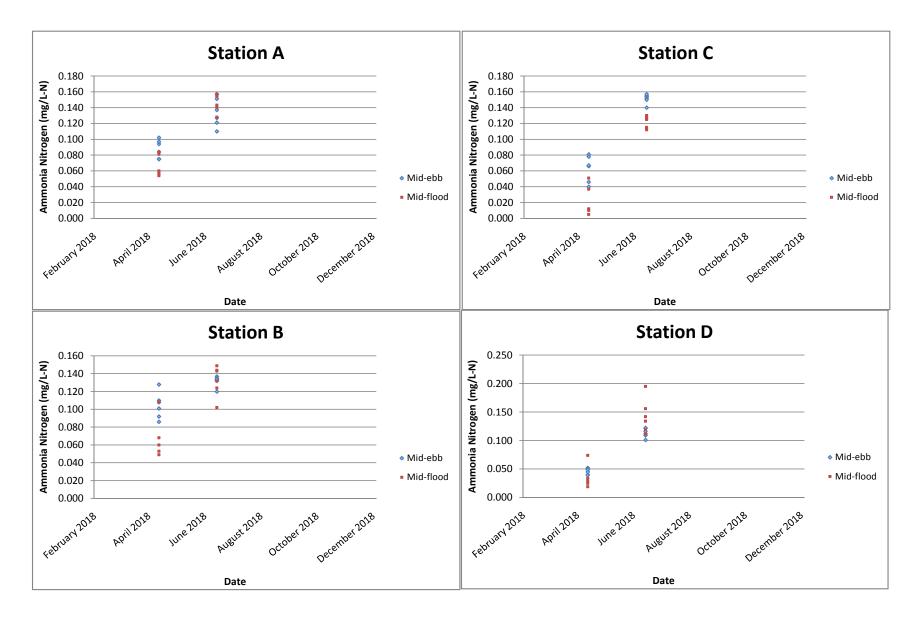
Temperature (degree C)

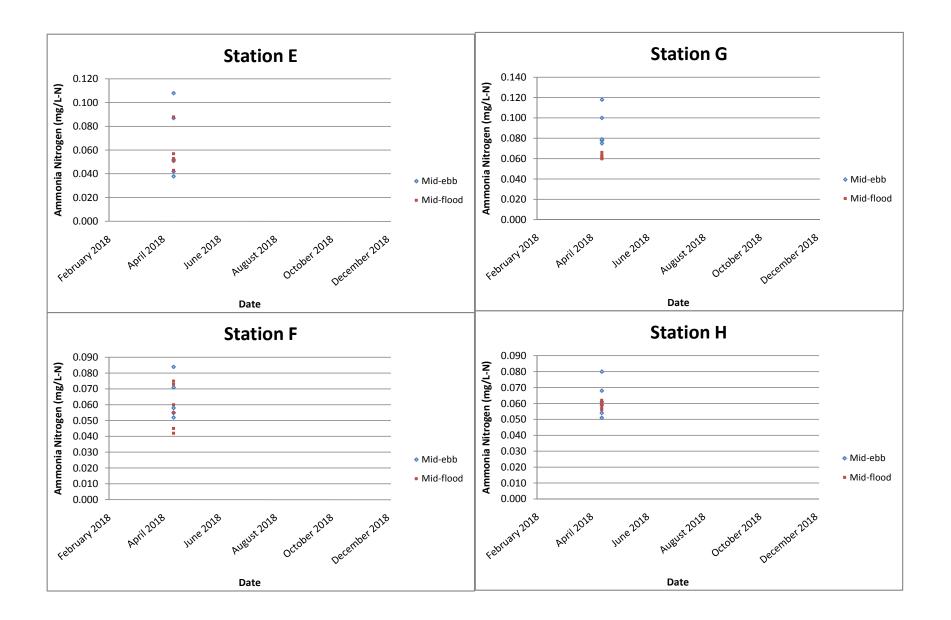


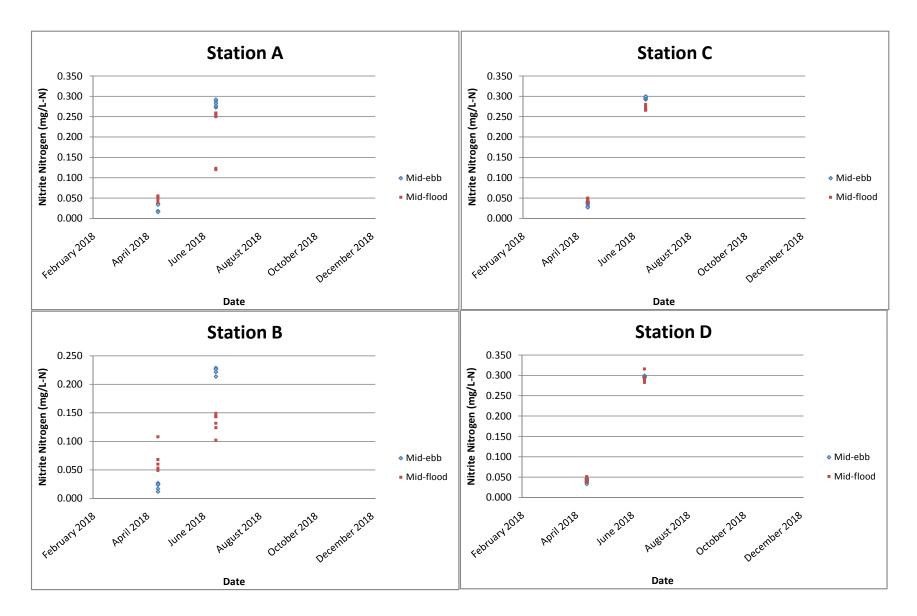

Dissolved oxygen (mg/L)

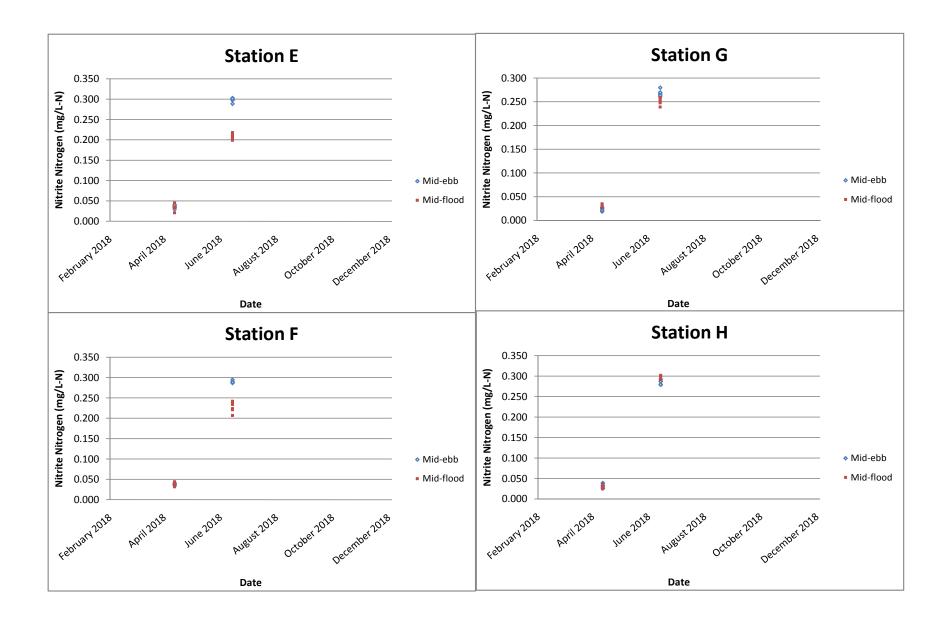


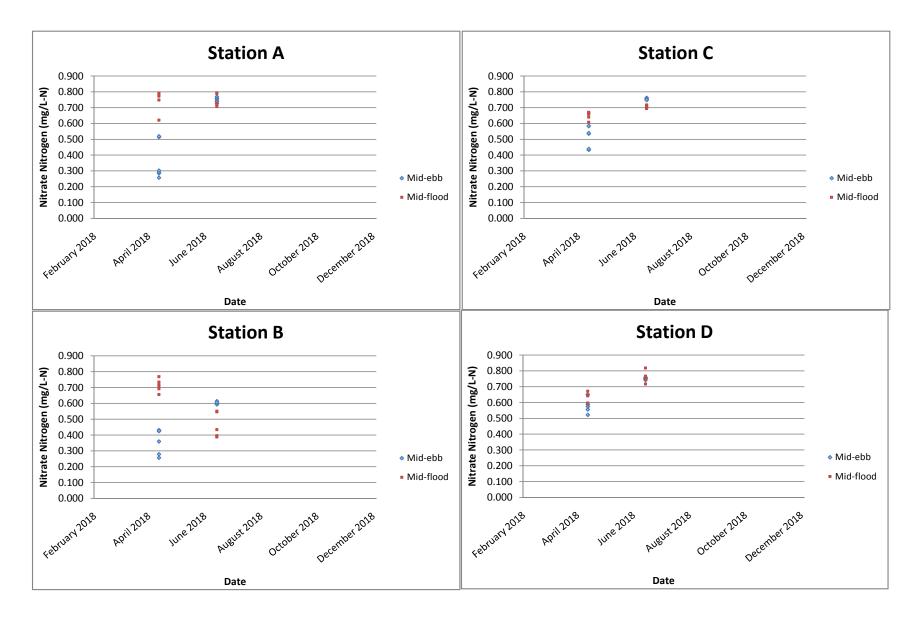

Turbidity (NTU)

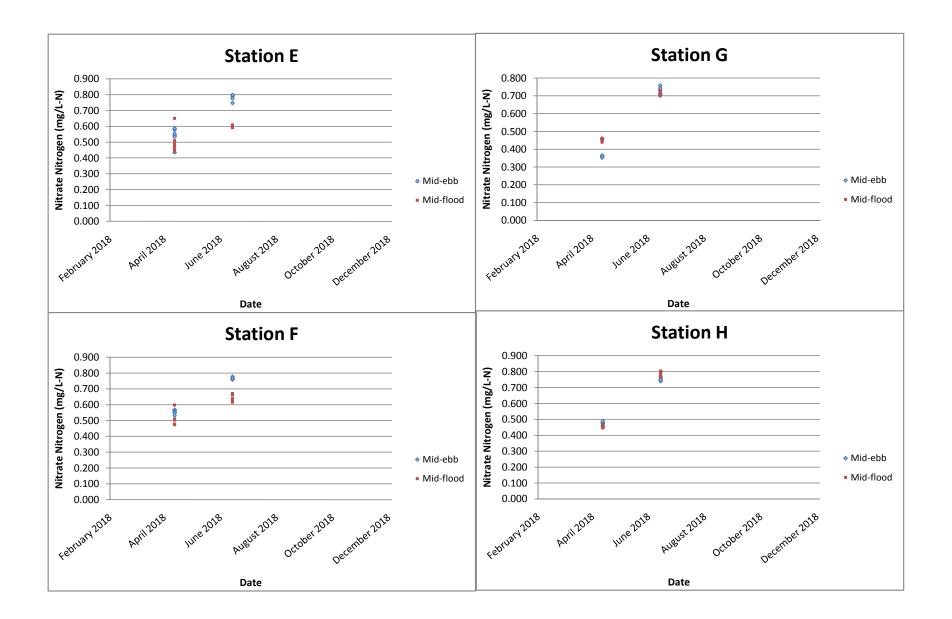


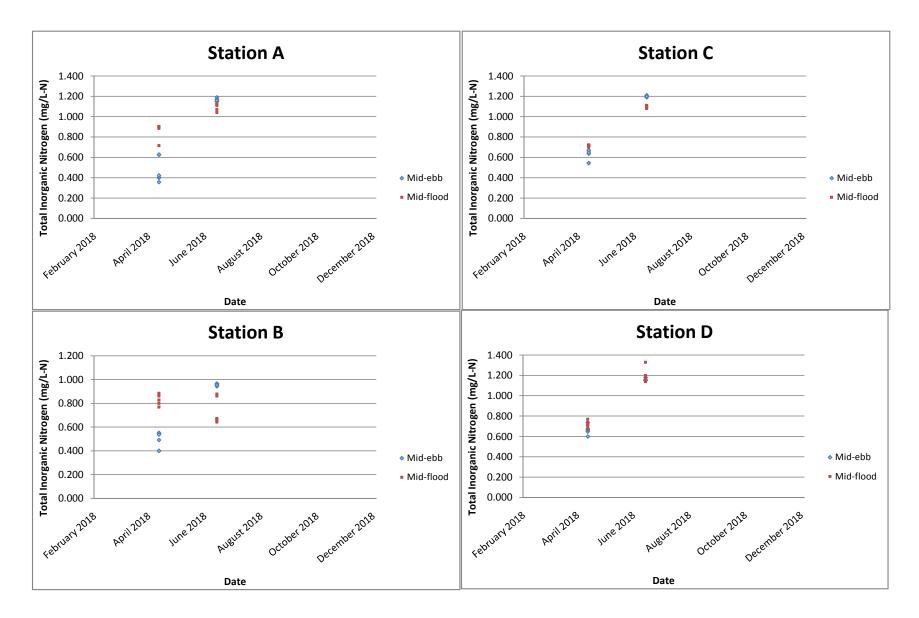

Turbidity (NTU)

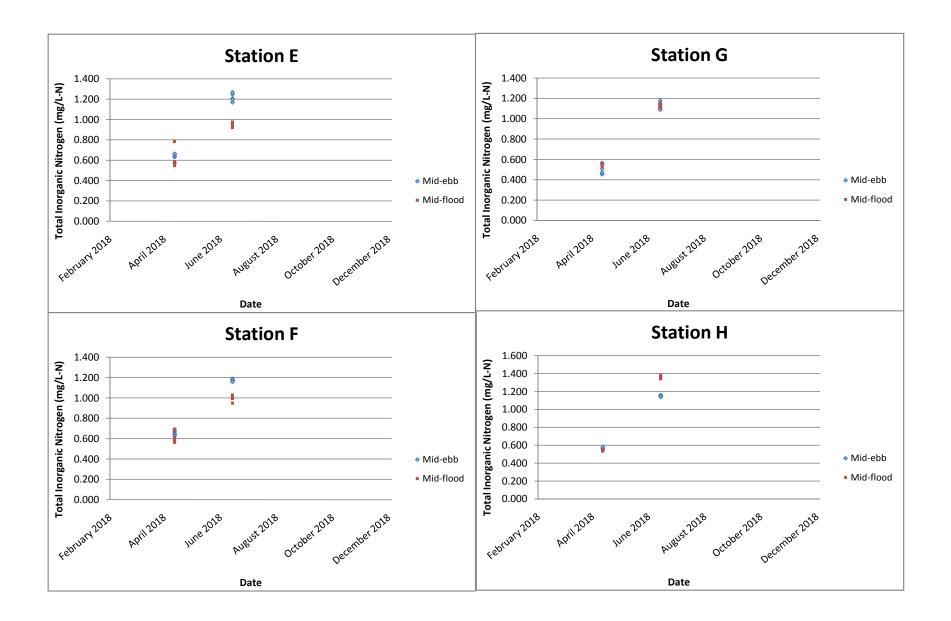


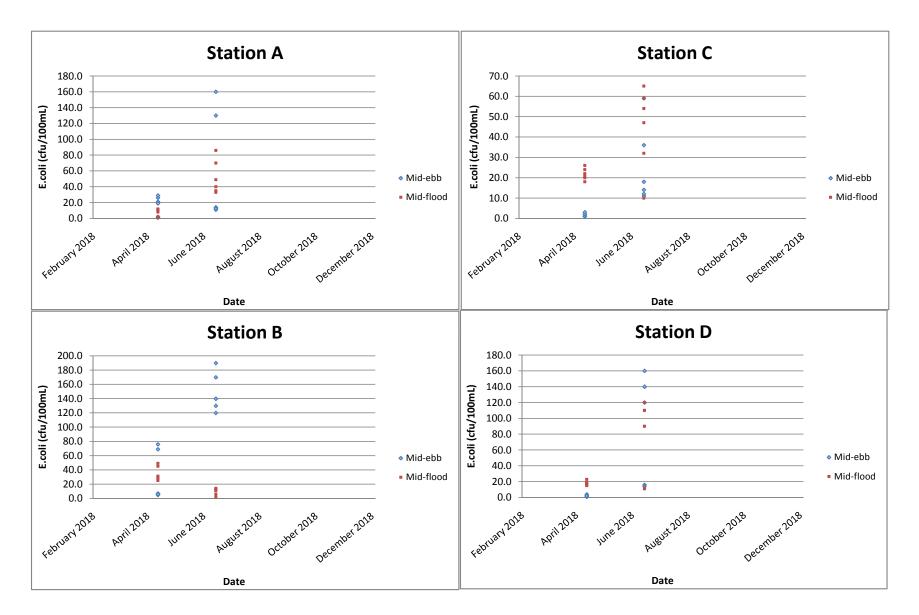


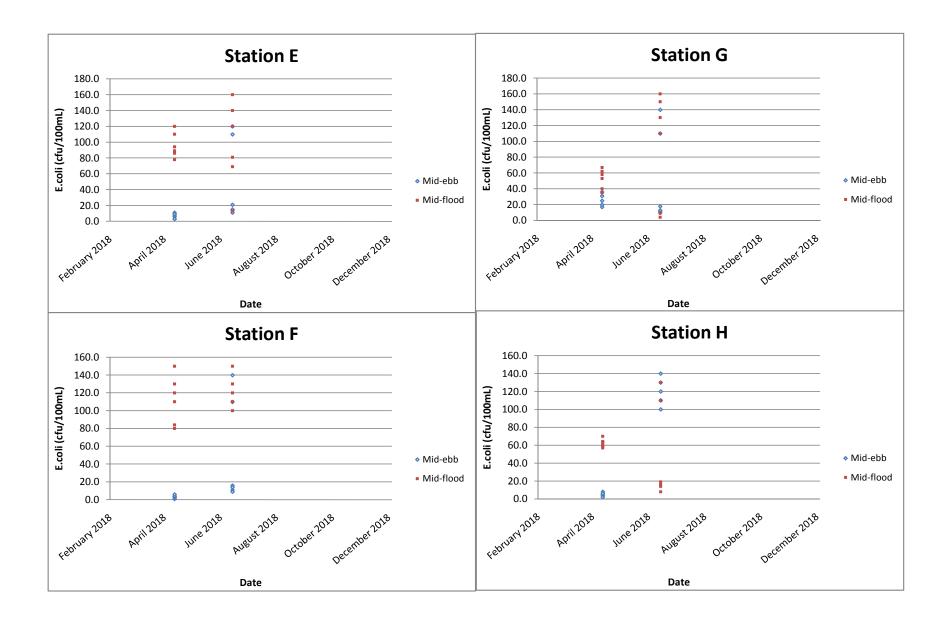


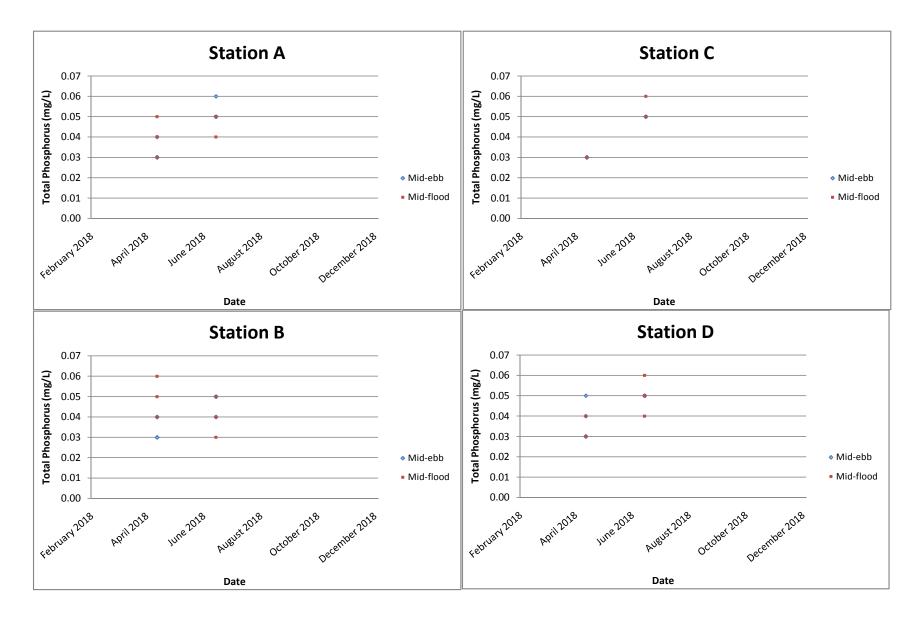


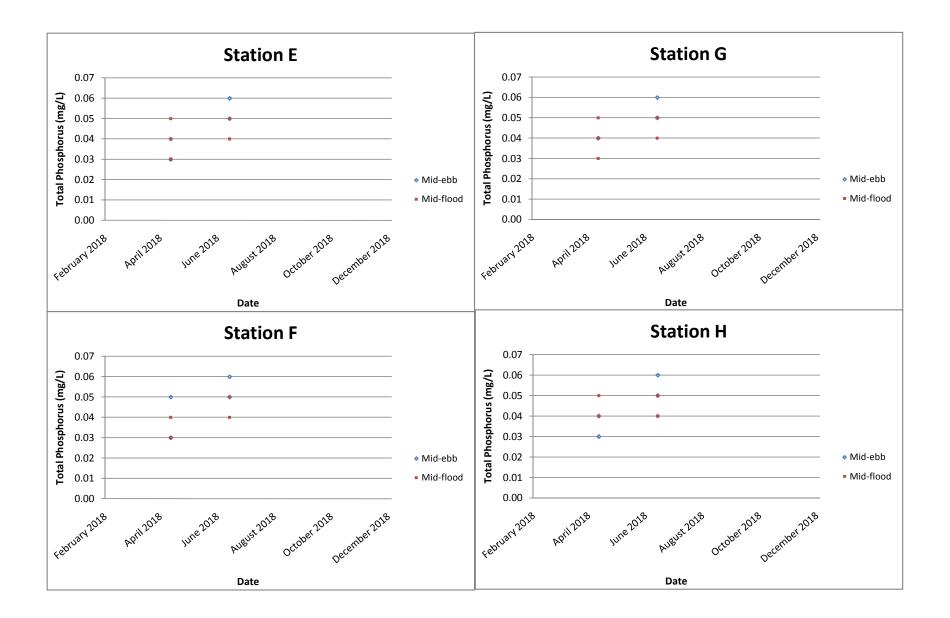


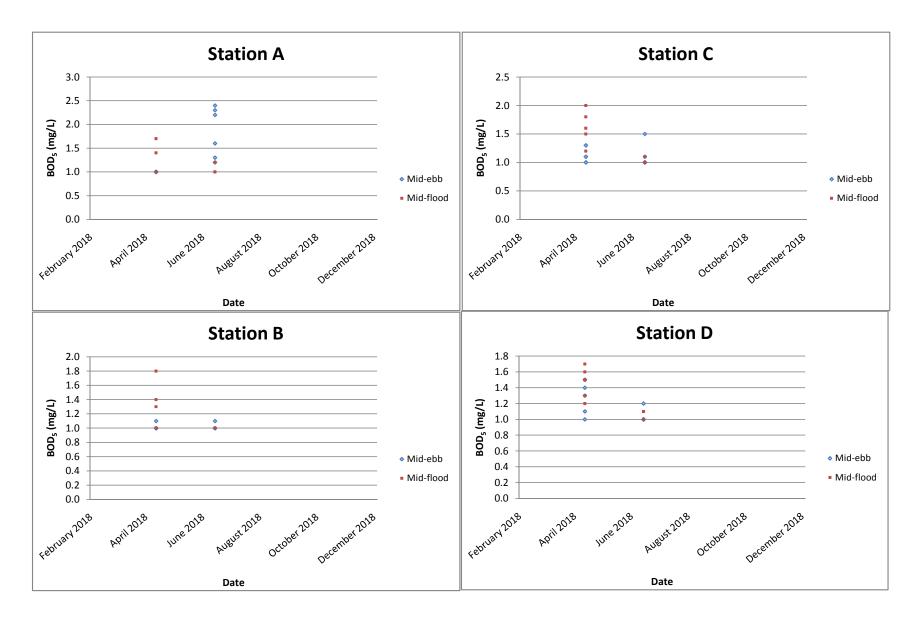









E.coli (cfu/100mL)


E.coli (cfu/100mL)

BOD₅ (mg/L)

BOD₅ (mg/L)

FUGRO TECHNICAL SERVICES LIMITED

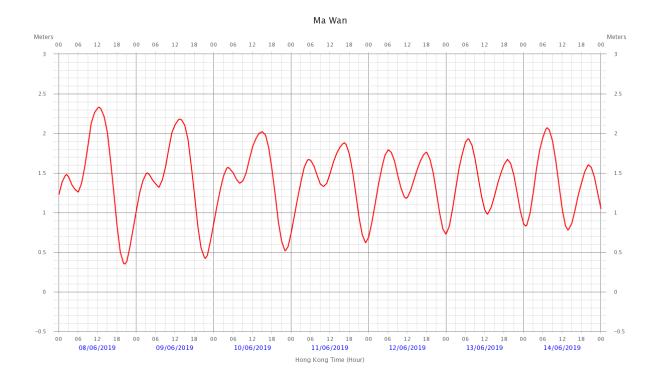
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix F

Predicted Tidal Data of Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

				ea							Sediment Monitoring	I					-
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	14/6/2018	Cloudy	Smooth	14:35	8.7	6.9	740	454	0.12	31.1	24.8	30.2	0.08	17.9	84.6	17.1	0.11
В	14/6/2018	Cloudy	Smooth	15:10	8.7	5.2	840	419	<0.10	42.2	38.4	39.1	0.13	24.3	112	14.9	0.34
С	14/6/2018	Cloudy	Smooth	15:35	8.7	8.9	1040	488	<0.10	50.9	43.2	46.4	0.14	31.2	139	14.3	0.24
D	14/6/2018	Cloudy	Smooth	15:45	8.6	8.4	1080	514	<0.10	48.6	39.9	44.6	0.12	29.2	130.0	13.5	0.23
E	14/6/2018	Cloudy	Smooth	16:10	8.6	6.9	1140	514	<0.10	49.3	44.8	44.0	0.12	29.6	133	12.8	0.30
F	14/6/2018	Cloudy	Smooth	16:23	8.8	2.6	620	408	<0.10	15.6	169.0	21.6	<0.05	10.6	53.1	9.9	<0.10
G	14/6/2018	Cloudy	Smooth	16:40	8.7	3.8	980	439	0.12	53.0	48.2	42.8	0.10	30.5	126	14.9	0.23
н	14/6/2018	Cloudy	Smooth	16:55	8.5	7.4	1350	567	<0.10	52.6	47.4	47.6	0.14	32.2	146	13.3	0.29

							Benthic Survey					
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon	Particle Size Distrbution						
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)			
А	14/6/2018	Cloudy	Smooth	14:35	0.79	1	14	49	36			
в	14/6/2018	Cloudy	Smooth	15:10	0.70	1	23	48	28			
С	14/6/2018	Cloudy	Smooth	15:35	0.86	0	4	61	35			
D	14/6/2018	Cloudy	Smooth	15:45	0.69	0	14	53	33			
E	14/6/2018	Cloudy	Smooth	16:10	0.97	0	5	58	37			
F	14/6/2018	Cloudy	Smooth	16:23	1.03	0	3	60	37			
G	14/6/2018	Cloudy	Smooth	16:40	0.47	21	36	23	20			
Н	14/6/2018	Cloudy	Smooth	16:55	0.84	0	11	53	36			

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFIC	CATE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 13
Contact	: MR CYRUS LAI	Contact	: Richard Fung	Work Order	: HK1833586
Address	EROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 		
E-mail	: c.lai@fugro.com	E-mail	: richard.fung@alsglobal.com		
Telephone	: +852 3565 4374	Telephone	: +852 2610 1044		
Facsimile	:	Facsimile	: +852 2610 2021		
Project	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEA FOR SIU HO WAN SEWAGE TREATMENT PLANT	M FOR OPERATIONAL	. ENVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 14-Jun-2018
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 29-Jun-2018
C-O-C number	:			No. of samples received	: 24
Site	:			No. of samples analysed	: 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics
Fung Lim Chee, Richard	General Manager	Metals

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 14-Jun-2018 to 28-Jun-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1833586

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

pH determined and reported on a 1:5 soil / water extract.

Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Soil sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

pH value is reported as at 25°C.

Analytical Results

•					1	1	1	
Sub-Matrix: SEDIMENT		Clie	nt sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplir	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833586-001	HK1833586-002	HK1833586-003	HK1833586-004	HK1833586-005
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.7	8.7	8.7	8.6	8.6
EA055: Moisture Content (dried @ 103°C)		0.1	%	39.8	48.2	57.3	57.0	53.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	6.9	5.2	8.9	8.4	6.9
EK062A: Total Nitrogen as N		10	mg/kg	740	840	1040	1080	1140
EK067A: Total Phosphorus as P		10	mg/kg	454	419	488	514	514
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	17.1	14.9	14.3	13.5	12.8
EG020: Cadmium	7440-43-9	0.10	mg/kg	0.12	<0.10	<0.10	<0.10	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	31.1	42.2	50.9	48.6	49.3
EG020: Copper	7440-50-8	0.20	mg/kg	24.8	38.4	43.2	39.9	44.8
EG020: Lead	7439-92-1	0.20	mg/kg	30.2	39.1	46.4	44.6	44.0
EG020: Mercury	7439-97-6	0.05	mg/kg	0.08	0.13	0.14	0.12	0.12
EG020: Nickel	7440-02-0	0.20	mg/kg	17.9	24.3	31.2	29.2	29.6
EG020: Silver	7440-22-4	0.10	mg/kg	0.11	0.34	0.24	0.23	0.30
EG020: Zinc	7440-66-6	0.5	mg/kg	84.6	112	139	130	133

Page Number : 4 of 13 Client : FUGRO TECHNICA

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833586

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833586-006	HK1833586-007	HK1833586-008	HK1833586-009	HK1833586-010
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.8	8.7	8.5		
EA055: Moisture Content (dried @ 103°C)		0.1	%	34.3	58.1	57.0	52.7	50.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	2.6	3.8	7.4		
EK062A: Total Nitrogen as N		10	mg/kg	620	980	1350		
EK067A: Total Phosphorus as P		10	mg/kg	408	439	567		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	9.9	14.9	13.3		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.12	<0.10		
EG020: Chromium	7440-47-3	0.5	mg/kg	15.6	53.0	52.6		
EG020: Copper	7440-50-8	0.20	mg/kg	169	48.2	47.4		
EG020: Lead	7439-92-1	0.20	mg/kg	21.6	42.8	47.6		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.10	0.14		
EG020: Nickel	7440-02-0	0.20	mg/kg	10.6	30.5	32.2		
EG020: Silver	7440-22-4	0.10	mg/kg	<0.10	0.23	0.29		
EG020: Zinc	7440-66-6	0.5	mg/kg	53.1	126	146		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.79	0.70

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1833586

								-	
Sub-Matrix: SEDIMENT	Matrix: SEDIMENT Client sample ID				D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey	
	Client sampling date / time			14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	
Compound	CAS Number	LOR	Unit	HK1833586-011	HK1833586-012	HK1833586-013	HK1833586-014	HK1833586-015	
EA/ED: Physical and Aggregate Properties									
EA055: Moisture Content (dried @ 103°C)		0.1	%	58.8	53.4	58.1	62.0	43.5	
EP: Aggregate Organics									
EP005: Total Organic Carbon		0.05	%	0.86	0.69	0.97	1.03	0.47	

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1833586

Sub-Matrix: SEDIMENT	-Matrix: SEDIMENT Client sample ID			H/Benthic Survey						
	Client sampling date / time			14-Jun-2018						
Compound	CAS Number	LOR	Unit	HK1833586-016						
EA/ED: Physical and Aggregate Properties										
EA055: Moisture Content (dried @ 103°C)		0.1	%	56.5						
EP: Aggregate Organics										
EP005: Total Organic Carbon		0.05	%	0.84						

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1833586

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplii	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018	14-Jun-2018
Compound	CAS Number	LOR	Unit	HK1833586-017	HK1833586-018	HK1833586-019	HK1833586-020	HK1833586-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	<1	2	1	2	3
EG020: Copper	7440-50-8	1	µg/L	1	3	2	3	4
EG020: Lead	7439-92-1	1	µg/L	<1	1	<1	2	2
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	μg/L	3	3	3	4	4
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	<10	<10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	nt sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Clie	ent samplir	ng date / time	14-Jun-2018	14-Jun-2018	14-Jun-2018	
Compound	CAS Number	LOR	Unit	HK1833586-022	HK1833586-023	HK1833586-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	3	<1	1	
EG020: Copper	7440-50-8	1	µg/L	4	1	2	
EG020: Lead	7439-92-1	1	µg/L	2	<1	<1	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	4	3	3	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	10	<10	<10	

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	pratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	1736998)						
HK1833586-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	39.8	39.5	0.848
HK1833586-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	58.8	58.9	0.198
EA/ED: Physical and A	ggregate Properties (QC Lot:	1737030)						
HK1833586-001	A/Sediment	EA002: pH Value		0.1	pH Unit	8.7	8.7	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot: 1	1736379)						
HK1833586-001	A/Sediment	EK055: Ammonia as N	7664-41-7	1	mg/kg	6.9	8	17.9
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot: 1	1740921)						
HK1833586-001	A/Sediment	EK067A: Total Phosphorus as P		20	mg/kg	454	427	6.04
EG: Metals and Major	Cations (QC Lot: 1736348)							
HK1833586-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.13	0.13	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	38.4	39.4	2.51
		EG020: Lead	7439-92-1	0.05	mg/kg	39.1	39.4	0.831
		EG020: Nickel	7440-02-0	0.05	mg/kg	24.3	24.5	0.939
		EG020: Silver	7440-22-4	0.05	mg/kg	0.34	0.34	0.00
		EG020: Arsenic	7440-38-2	0.5	mg/kg	14.9	15.4	3.18
		EG020: Chromium	7440-47-3	0.5	mg/kg	42.2	42.1	0.268
		EG020: Zinc	7440-66-6	0.5	mg/kg	112	113	1.27
EP: Aggregate Organic	s (QC Lot: 1730395)							
HK1832335-003	Anonymous	EP005: Total Organic Carbon		0.05	%	<0.05	<0.05	0.00
HK1833685-002	Anonymous	EP005: Total Organic Carbon		0.05	%	1.03	1.04	1.44
EP: Aggregate Organic	s (QC Lot: 1744693)							
HK1833586-010	B/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.70	0.74	4.99
Aatrix: WATER	· · · · · · · · · · · · · · · · · · ·				Labo	pratory Duplicate (DUP)	Report	
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID	•						Result	(19
EG: Metals and Major	Cations - Total (QC Lot: 17363	391)						
HK1833586-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.00
		EG020: Chromium	7440-47-3	1	µg/L	2	2	0.00

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
EG: Metals and Major (Cations - Total (QC Lot: 1736391)	- Continued								
HK1833586-018	B/Rinsate Blank	EG020: Copper	7440-50-8	1	µg/L	3	3	0.00		
		EG020: Lead	7439-92-1	1	µg/L	1	1	0.00		
		EG020: Nickel	7440-02-0	1	µg/L	3	3	0.00		
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00		
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.00		
		EG020: Zinc	7440-66-6	10	µg/L	<10	10	0.00		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)) Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control S	pike Duplicate (L	ICS) Report	
					Spike	Spike Re	covery (%)	Recove	ny Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lo	ot: 1736379)										
EK055: Ammonia as N	7664-41-7	1	mg/kg	<1	5 mg/kg	104		85	119		
ED/EK: Inorganic Nonmetallic Parameters (QC Lo	ot: 1740921)										
EK067A: Total Phosphorus as P		20	mg/kg	<20	695 mg/kg	89.8		85	115		
EG: Metals and Major Cations (QC Lot: 1736348))										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	96.0		85	115		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	94.8		85	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	103		85	115		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	104		85	115		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	101		85	115		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	96.2		85	115		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	101		85	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	98.4		85	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	103		85	115		
EP: Aggregate Organics (QC Lot: 1730395)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	101		88	110		
EP: Aggregate Organics (QC Lot: 1744693)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	99.3		88	110		
Matrix: WATER			Method Blank (MB,) Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control S	pike Duplicate (L	OCS) Report	

Page Number : 11 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1833586

Control

RPD (%)

Value

Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Recovery Limits(%)

Low

High

Spike Recovery (%)

LCS

DCS

Matrix: WATER			Method Blank (MB) Report	
					Spike
Method: Compound	CAS Number	LOR	Unit	Result	Concentration

								0	
									Limit
EG: Metals and Major Cations - Total (QC Lo	t: 1736391)				-				
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	92.6	 79	109	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	94.1	 80	106	
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	106	 77	115	
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	99.8	 77	113	
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	99.4	 80	110	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	97.0	 75	121	
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	98.8	 78	112	
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	93.2	 78	104	
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	101	 76	114	

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spil	ke (MS) and Matn	x Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	соvөгу (%)	Recovery	Limits (%)	RPL	7(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	d Major Cations (QC Lot: 173634	48)								
HK1833586-00	1 A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	105		75	125		
		EG020: Cadmium	7440-43-9	5 mg/kg	93.6		75	125		
		EG020: Chromium	7440-47-3	5 mg/kg	100		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	95.9		75	125		
		EG020: Lead	7439-92-1	5 mg/kg	90.3		75	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	78.1		75	125		
		EG020: Nickel	7440-02-0	5 mg/kg	94.4		75	125		
		EG020: Silver	7440-22-4	5 mg/kg	97.8		75	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75	125		
	Organics (QC Lot: 1730395)				Determined					
HK1832335-00		EP005: Total Organic Carbon		40 %	102		75	125		
				40 //	102		75	125		
	Organics (QC Lot: 1744693) 0 B/Benthic Survey	EP005: Total Organic Carbon		40 %	98.0		75	125		
IK 1033300-011		EP003. Total Organic Carbon		40 %	96.0		75	125		
Matrix: WATER						ke (MS) and Math	· · ·		-	
				Spike		covery (%)	Recovery			D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	d Major Cations - Total (QC Lot:	1736391)								
	7 A/Rinsate Blank	EG020: Arsenic	7440-38-2	100 µg/L	110		75	125		
		EG020: Cadmium	7440-43-9	100 µg/L	88.5		75	125		
		EG020: Chromium	7440-47-3	100 µg/L	116		75	125		
		EG020: Copper	7440-50-8	100 µg/L	101		75	125		
		EG020: Lead	7439-92-1	100 µg/L	82.5		75	125		
		EG020: Mercury	7439-97-6	2 µg/L	83.9		75	125		
		EG020: Nickel	7440-02-0	100 µg/L	104		75	125		
		EG020: Silver	7440-22-4	100 µg/L	83.5		75	125		
		EG020: Zinc	7440-66-6	100 µg/L	93.3		75	125		

Page Number	≟ 13 of 13
Client	FUGRO TECHNICAL SERVICES LIMITED
Work Order	HK1833586

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

		_	
SUB-CONTRACTING REPORT			
: MR CYRUS LAI	WORK ORDER	:	HK1833586
FUGRO TECHNICAL SERVICES LIMITED			
ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING,	SUB-BATCH	:	1
1-15 KWAI FONG CRESCENT,	DATE RECEIVED	;	14-JUN-2018
KWAI FONG, HONG KONG	DATE OF ISSUE	:	28-JUN-2018
CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR	NO. OF SAMPLES	:	24
OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR	CLIENT ORDER	:	0041/17

SIU HO WAN SEWAGE TREATMENT PLANT

General Comments

CONTACT CLIENT

PROJECT

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- pH determined and reported on a 1:5 soil / water extract.
- Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Soil sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	1	Position
Richard Fung	m	General Manager
,,	V	

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH	
CLIENT	

PROJECT

1 FUGRO TECHNICAL SERVICES LIMITED : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1833586-001	A/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-002	B/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-003	C/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-004	D/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-005	E/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-006	F/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-007	G/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-008	H/Sediment	SEDIMENT	14-Jun-2018	
HK1833586-009	A/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-010	B/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-011	C/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-012	D/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-013	E/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-014	F/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-015	G/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-016	H/Benthic Survey	SEDIMENT	14-Jun-2018	J2999-272.33
HK1833586-017	A/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-018	B/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-019	C/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-020	D/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-021	E/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-022	F/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-023	G/Rinsate Blank	WATER	14-Jun-2018	
HK1833586-024	H/Rinsate Blank	WATER	14-Jun-2018	

© Gammon Construction Ltd		Checked by :	Notes: IS - Ins	Symbols: U -L LB -I BLK -F SPTL -:	Legend :		HK1833586-016 H/Ben	HK1833586-015 G/Ben	HK1833586-014 F/Ben	HK1833586-013 E/Ben		HK1833586-011 C/Ben	HK1833586-010 B/Ben	HK1833586-009 A/Ben	No.	Sample ID	Project : -	Customer : ALS Technichem (HK) Pty Ltd		SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3 : 2001
		TKLam	IS - Insufficient Sample;	U - Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample;	$\begin{array}{l} \Delta = & \mathrm{Te} \\ \# = & \mathrm{Te} \end{array}$		H/Benthic Survey	G/Benthic Survey	F/Benthic Survey		D/Benthic Survey		B/Benthic Survey	A/Benthic Survey	No. T	Sample		fechnichem (0F SOIL 2001
	Hong Kong A laboratory as		Z.	iple; Sample; I Sample;	est Method in ac est Method in ac		D	D	ם	D	D	ם	D	D	Type Depth (m)	0		HK) Pty Ltd		CLASS
	Accreditation Ser ctivities as listed				cordance with G cordance with G			-							(%)	∆ Moisture Content				IFICAT
	rvice (HKAS l in the HOK		Tf - To I	P - Pi M - M D - Sr PT - Pc	EOSPEC 3 : EOSPEC3 :										Limit I (%)	Test 6.1 Liquid				TON T
) has accre LAS Direc		Tf - To Follow on supplementary Report	 P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample; - Portable triple tube Sample; 	2001 Test 2001 Test	$\left \right $	-							_	Limit (%)	TestTestTest6.16.16.2Plastic Plasticity Liquidity				EST
	tory of Ac		suppleme	ile; ple; rbed Samp ile tube Sa	t 5.1 Moist 8.1 (1), 8.										Index (%)	Test 6.1 asticity]				RES
21 Chun Tseima	laboratory credited L	App	ntary Repo	le; mple;	ure Contei 2 (2), 8.3 (Index	Test 6.2 Liquidity				ULT
Wang Stre	(Reg. No. aboratorie	Approved By :	T.	N.P Non Plastic; A.R As Received H.P Hand Picked - Moisture Conte	nt at 45°C : 3), 8.4 (4),										Test Sieve (%)	Passing 425µm				
Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	055 - TEST) und s. This report sha	Chung Hei Wing Principal Laboratory Officer	2	N.P Non Plastic; A.R As Received; H.P Hand Picked; - Moisture Content for A.L. Test.	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A), Test 5.2 Moi Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).											Preparation Method	Cont			
re O Industri 80. Fax : 20	ler the Hon all not be re	g atory Offic	>	N.L. Test.	.2 Moistur 3.7 (7).		1,5,7	1,5,7	1,5,7	1,5,7	1,5,7	1,5,7	1,5,7	1,5,7	# Test Method	Part	Contract No.:	Job No.		
al Estate, 6917547	g Kong L produced	e,		A.D A O.D C W.S V	e Content		0	21	0	0	0	0	1	1	Grave (%)	Particle Size Distribution		: J2999		
	aboratory unless w			A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;	at 105°C		11	36	ω	s	14	4	23	14		e Distrib				
	Accreditation the prior v				± 5°C (B)	\vdash	53 36	23 20	60 37	58 37	53 33	61 35	48 28	49 36	Percentage Sand Silt Clay (%) (%) (%)	ution				
	Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.	Date: 27/06/2018		Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. ⁷ - Information provided by customer.	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A), Test 5.2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45/105°C ± 5°C (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).		Dark grey, slightly sandy SLLI/CLAY with shell regments		Dark grey, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly sandy SILT/CLAY with shell fragments		Dark grey, slightly sandy SILT/CLAY with shell fragments	<u>v)</u>	Description	Date : 20/06/2018	Works Order No. : 272	Report No: J2999-272.33	Gammon
				met: nd:			ients _ +	+		nents _ ‡	nents _ ‡	rents _ t	nents _ ‡	nents -‡	Origin	Sample				HS BH

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

h No 👘 I	2000		Contract Ma					
	12999 ALS Technic	hem (HK) Pty	Contract No.	8	Work	Order No. :	272	
		iem (HK) Ply	Lia				HK1833586-009	
roject : -								
	0.00000000				Sampl		A/Benthic Surve	у
ate Received: 2						e Depth (m)		
ested Date : 2	22/06/2018					nen Depth (m) :		
							Small Disturbed	
escription : I	Dark grey, sli	ghtly sandy S	ILT/CLAY with she	ell fragments	Sampl	e Origin :	_ 1	
eve Method : N	Method A		Upon request	* Delete as appropr	iate [‡] Infor	mation provided by o	customer	
IEVE ANALY		ercent	*Expanded	Cumulative	SEDIMENTATION			
LEVE ANALIS		assing		Percent Passing	Specific Gravity (#)		5 #	
	- '	assing	Uncertainty of the Percent	with Expanded	Dispersant Details :			carbonate
Sieve Size		(%)	Passing (%)	Uncertainty (%)	Sampling History		nospilate, obtilain	caroonate
100.0 mm		00	-	-		visible organic matt	er in the soil : No	ne
75.0 mm		00		-		risiole organie mate		no
63.0 mr		00	-	-	Particle	Expanded	% Finer	Expanded
50.0 mr		00		-	Diameter	Uncertainty of the		Uncertainty of
37.5 mr		00	-	-		Particle Diameter	K	% finer than D
28.0 mr		100	*		(mm)	(mm)	(%)	(%)
20.0 mr	and the second se	100	-	-	0.0673	(iiiii) *	86	-
14.0 mr		100	-	-	0.0478	-	84	#
10.0 mr		100		-	0.0341	-	81	-
6.30 mr		100	-	-	0.0242		79	-
5.00 mr		99	*	-	0.0173	-	76	-
3.35 mr		99	*	-	0.0091		68	-
2.00 mr		99	-	-	0.0047	-	54	~
1.18 mr		99	•	-	0.0024	-	39	-
600 µm	n	98	-	-	0.0014	-	32	
425 μm	n	98	-		SUMMARY :	and the second		
300 µm	n	97	-	-	Gravel (%)	: 1		
212 µm		95	+	-	Sand (%)	: 14		
	n							
150 µm	n	91		*	Silt (%)	: 49		
	n n		and a second a second data and a second data with the	the second state of the se		: 49 : 36		
150 μπ 63 μπ 0 μπ	n n Legend	91 85	-	- - Sieve Size(m	Silt (%) Clay (%)		20 37.5	75
150 μm 63 μm 0 μm	n n Legend	91 85 0	-	- - Sieve Size(m	Silt (%) Clay (%)	: 36	20 37.5	75
150 μπ 63 μπ 0 μπ	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µл 63 µл 0 µл 0 µл [100 90	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп [n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп [100 90 80	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µл 63 µл 0 µл 0 µл 100 90 80 70 60 60 60 60 60 60 70 40	n n Legend	91 85 0	- - gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 0 µп [100 90 80 70	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µп 63 µп 0 µп 100 90 80 70 60 70 60 30	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µл 63 µл 0 µл 0 µл 100 90 80 70 60 60 60 60 60 60 70 40	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µл 63 µл 0 µл 0 µл 100 90 80 70 80 70 60 80 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µл 63 µл 0 µл 0 µл 100 90 90 90 90 90 90 90 90 90 90 90 90 9	n n Legend	91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	
150 µп 63 µп 0 µп 100 90 80 70 80 70 80 70 60 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 70 70 70 70 70 70 70 70 70 <		91 85 0	- gnored 0.06		m) 0.6 1.18 2	: 36		
150 µп 63 µп 0 µп 100 90 80 70 80 70 80 70 60 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 70 70 70 70 70 70 70 70 70 <		91 85 0	- gnored 0.06		Silt (%) Clay (%)	: 36	20 37.5	75
150 µm 63 µm 0 µm 0 µm 100 90 80 70 70 70 70 70		91 85 0 on Points >63µm i	- gnored 0.06		Silt (%) Clay (%)	: 36		
150 µm 63 µm 0 µm 0 µm 100 90 80 70 60 80 70 60 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 70 70 70		91 85 0 	gnored 0.06		Silt (%) Clay (%) m) 0.6 1.18 2	: 36 5 10 	20	
150 µm 63 µm 0 µm 0 µm 100 90 90 90 90 90 90 90 90 90		91 85 0 on Points >63µm i	- gnored 0.06	Sieve Size(m)	Silt (%) Clay (%)	: 36	20	
150 µm 63 µm 0 µm 0 µm 100 90 80 70 60 80 70 60 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 70 70 70		91 85 0 	gnored 0.06	Sieve Size(m) 3 0.15 0.3 0.15 0.3 0.1 0.3 0.1 0.2 Particle Size FINE MEDI	Silt (%) Clay (%) 0.6 1.18 2 0.6 1.18 2 0.6 1.2 0.6 1 2 (mm) UM COARSE	: 36	20 M COARS	
150 µm 63 µm 0 µm 90 90 90 90 90 90 90 90 90 90 90 90 90		91 85 0 	gnored 0.06		Silt (%) Clay (%) 0.6 1.18 2 0.6 1.18 2 0.6 1.2 0.6 1 2 (mm) UM COARSE	: 36 5 10 	20 M COARS	
150 µm 63 µm 0 µm 90 90 90 70 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		91 85 0 	gnored 0.06		Silt (%) Clay (%) 0.6 1.18 2 0.6 1.18 2 0.6 1.2 0.6 1 2 (mm) UM COARSE	: 36	20 M COARS	
150 µm 63 µm 0 µm 0 µm 100 90 90 90 90 90 90 90 90 90		91 85 0 	gnored 0.06	Sieve Size(m) 3 0.15 0.3 0.15 0.3 0.15 0.3 0.1 0.3 0.1 0.2 Particle Size FINE MEDI SAN recked By :	Silt (%) Clay (%) 0.6 1.18 2 0.6 1.18 2 0.6 1.2 0.6 1 2 (mm) UM COARSE	: 36	20 M COARS	
150 µл 63 µл 0 µл 0 µл 90 90 90 80 70 70 60 50 60 20 10 0 0.001 0. СLAY		91 85 0 	gnored 0.06		Silt (%) Clay (%) m) 0.6 1.18 2 	: 36	20 M COARS	

written approval from this laboratory. © Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel .26991980, Fax : 26917547

: J2999-272.33

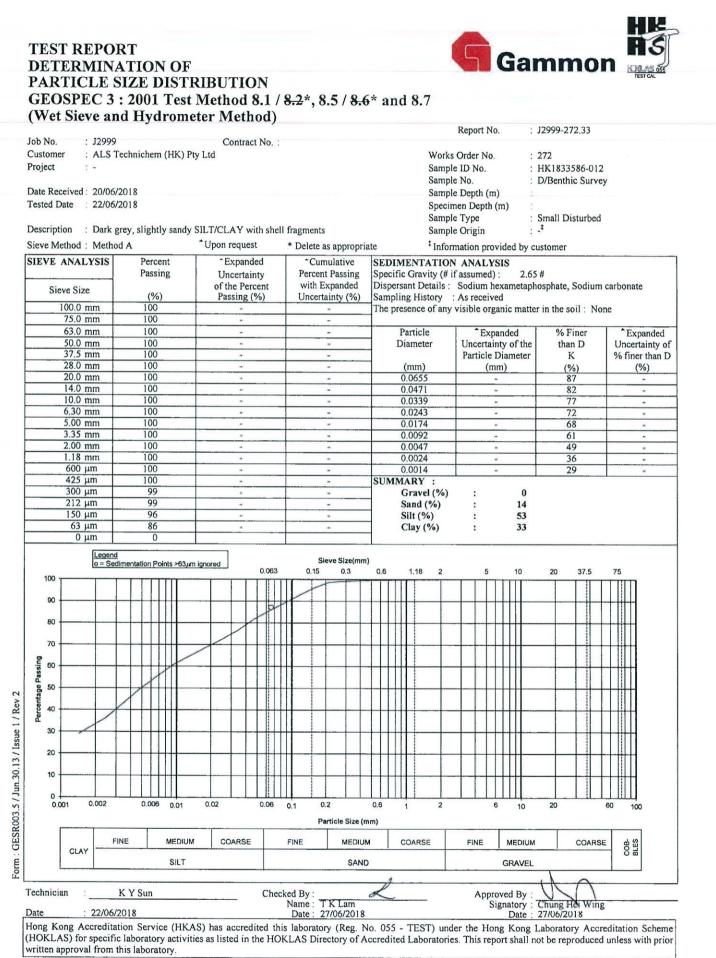
Report No.

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

ob No. : J2	2999		Contract No.	:						
ustomer : A	LS Technic	hem (HK) Pty	Ltd				s Order No.		272	
roject : -						Sam	le ID No.	: 1	HK1833586-010)
							le No.	: 1	B/Benthic Surve	У
ate Received : 20	0/06/2018						ble Depth (m)			5
							imen Depth (m	· ·		
ested Date : 22	2/06/2018						ole Type		Small Disturbed	
escription : D	Dark grey, sli	ghtly sandy S	ILT/CLAY with sh	ell fragments			ole Origin	10		
ieve Method : M	Aethod A		[•] Upon request	* Delete as	s appropria	te [‡] Info	rmation provid	ded by cu	ustomer	
IEVE ANALYS	SIS P	ercent	*Expanded		ulative	SEDIMENTATIC				
	P	assing	Uncertainty		Passing	Specific Gravity (#		2.65		
Sieve Size			of the Percent	1 0.00000000000000000000000000000000000	kpanded	Dispersant Details	: Sodium hex	ametaph	osphate, Sodium	carbonate
		(%)	Passing (%)	Uncerta	inty (%)	Sampling History				
100.0 mm		100	-			The presence of an	y visible organ	ic matter	r in the soil : No	one
75.0 mm	n	100	-		-					
63.0 mm	n	100	-		-	Particle	^Expan	ded	% Finer	Expanded
50.0 mm		100	*		-	Diameter	Uncertaint		than D	Uncertainty
37.5 mm		100	-		-		Particle Di		K	% finer than
28.0 mm		100			-	(mm)	(mm	Contraction Contraction	(%)	(%)
the second s		100	-		*	0.0685		/	76	
20.0 mm		100				0.0488	-		73	-
14.0 mm			-		-					
10.0 mm		100	*		-	0.0349	-		70	-
6.30 mm		100	-		•	0.0249	-		66	-
5.00 mm	n	99			-	0.0178	si		62	
3.35 mm	n	99	-			0.0094	-		55	-
2.00 mm		99	•		-	0.0048	-		42	-
1.18 mm		98			-	0.0025	-		32	-
600 µm		97			*	0.0015	-		24	+
425 μm		97			-	SUMMARY :				
300 µm		96	*	and the second se	*	Gravel (%	:	1		
and the second se		95			-	Sand (%)		23		
212 110						Janu (70)				
212 μm		- Contraction of the second se				Silt (%)		48		
150 µm	1	89	×		-	Silt (%)	:	48		
150 μm 63 μm 0 μm	1 1 Legend	- Contraction of the second se		Si		Clay (%)	: : 5	48 28 10	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 100 90 60 70	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 100 90 60 70	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 90 90 60 70 70 60 70 60 60 70 70 40 40	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	75
150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 8	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70 60 50 60 50 40	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 0 μm 100 90 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 7	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 µm 63 µm 0 µm 90 90 80 70 60 70 60 80 70 80 70 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 0 μm 100 90 60 70 60 70 60 70 60 70 60 70 100 20 10 100 100 100 100 100	1 1 Legend	89 76 0	= -	Si	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 80 70 80 70 80 70 80 70 10 10 10 10 10 90 90 90 90 90 90 90 90 90 90 90 90 90		89 76 0	= -	33 0.15	- - eve Size(mm	Clay (%)	:	28	20 37.5	
150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 80 70 100 90 80 70 100 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100		89 76 0 on Points >63,µm 1 1 1 1 1 1 1 1 1 1 1 1 1		Sin 33 0.15		Clay (%)				
150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 80 70 100 90 80 70 100 90 80 70 100 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100		89 76 0 on Points >63,4m 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0.1 0 Pr		Clay (%)			20	60 100
150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 80 70 100 90 80 70 100 90 80 70 100 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100		89 76 0 on Points >63,µm 0 0 0 0 0 0 0 0 0 0 0 0 0		Sin 33 0.15		Clay (%)	5	28	20	60 100
150 µm 63 µm 0 µm 63 µm 0 µm 100 90 60 70 60 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		89 76 0 on Points >63,4m 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0.1 0 Pr		Clay (%)	5		20	60 100
150 µm 63 µm 0 µm 63 µm 0 µm 100 90 60 70 60 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		89 76 0 on Points >63,µm 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0.1 0 Pr		Clay (%)	5	28	20	60 100
150 µm 63 µm 0 µm 63 µm 0 µm 100 90 60 70 60 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		89 76 0 on Points >63,4m 0 0 0 0 0 0 0 0 0 0 0 0 0		Si 33 0.15 5 0.1 0 FINE		Clay (%)	: 5 6 FINE	28 10 10 10 10 10 10 MEDIUM GRAVEL ved By :	20 1 20	
150 µm 63 µm 0 µm 90 90 70 70 60 70 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		89 76 0 on Points >63,4m 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0.1 0 Pr		Clay (%)	: 5 6 FINE	28		

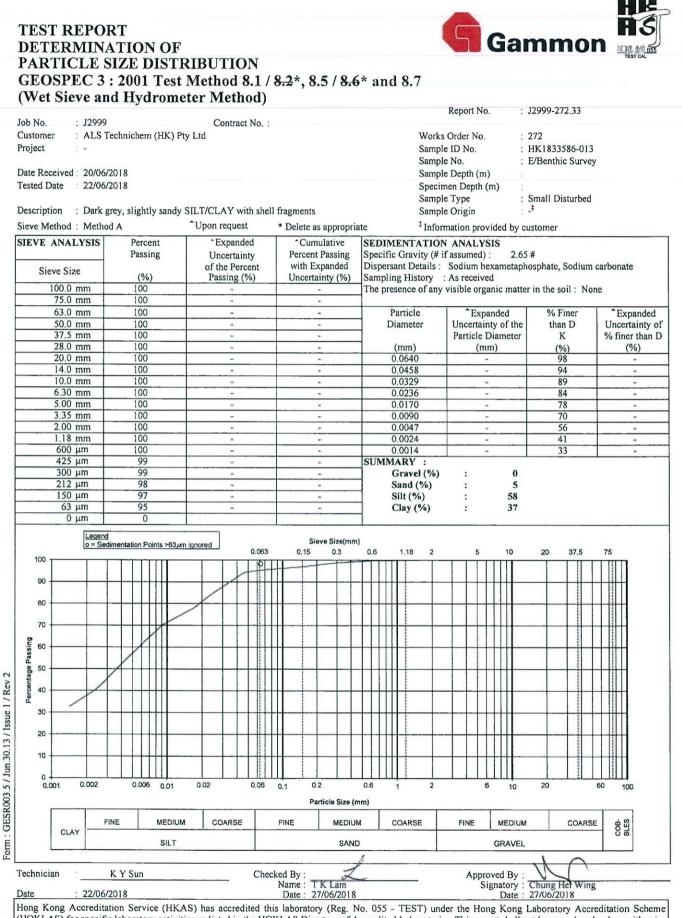
written approval from this laboratory.

© Gammon Construction Ltd


Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

PAR GEO	TICLE SPEC			' 8.2 *, 8	.5 / 8.6	* and 8.7	7	Ga	mmo	TEST CAL							
								Report No.	: J2999-272.33								
ob No. Customo Project	: -	S Technichem (HK)	Contract No. Pty Ltd				Sample Sample		: 272 : HK1833586-011 : C/Benthic Survey								
ested I	ceived : 20/ Date : 22/	06/2018		11 Constants			Specim Sample	en Depth (m) Type	: Small Disturbed	1							
	lethod : Me		y SILT/CLAY with she Upon request	* Delete a	e appropris	ate	Sample	origin nation provided by									
	ANALYSI		[*] Expanded Uncertainty	Cum Percent	ulative Passing	SEDIMENT. Specific Grav	ATION	ANALYSIS assumed): 2.	65 #								
Sie	eve Size	(%)	of the Percent Passing (%)		xpanded ainty (%)	Sampling His		Sodium hexameta As received	prosphate, Sodiun	a carbonate							
	100.0 mm	100	-		-			visible organic mat	ter in the soil : N	one							
	75.0 mm	100			-	Dorti-1	<u> </u>	Funandad	% Finer	*Expanded							
	63.0 mm 50.0 mm	100	-		-	Particl Diamet		*Expanded Uncertainty of th		*Expanded Uncertainty o							
	37.5 mm	100	-		-			Particle Diamete	r K	% finer than I							
	28.0 mm	100	-		-	(mm) 0.0645		(mm) 	(%)	(%)							
	14.0 mm	100	-		•	0.084		-	95	-							
	10.0 mm	100			-	0.0332		-	90	-							
	6.30 mm	100	+		-	0.0240			83								
	5.00 mm 3.35 mm	100			-	0.007/2		-	67	-							
	2.00 mm	100	-		*	0.0047	7	-	54	-							
	1.18 mm	100	-		-	0.0025		-	37	14							
	600 μm 425 μm	100	*		-	0.0014 SUMMARY		•	31	-							
	300 µm	99	-		-		el (%)	: 0									
	212 µm	99	*		*	Sand		: 4									
	150 μm 63 μm	98				Silt (% Clay (: 61									
	0 μm	0			-	Ciay	(70)	. 33									
400		aend Sedimentation Points >63,	µm ignored 0.063		eve Size(mm 0.3) 0.5 1.18	2	5 10	20 37.5	75							
100																	
90 80																	
70								+ + + + + + + + + + + + + + + + + + + +									
Percentage Passing 6 0 0 0																	
enta																	
40 April 40																	
30	+	╺╾╋╼╌╂╌╄╌┼┼┼╄╂╌			┝──┼─┼	┽┽┼┼╢┊╴		╶╞╼┞╶┠╶┟┝┾┣		┼┼┼╢╢							
20																	
20																	
10	++-	╾┼╌╄╌┠╌╎┤┼╎╂						<u>╶┼┈┟╶┟╶┼┾┾</u> ╊		++++							
0	0.001 0.00	2 0.006 0.01	0.02 0.06	0.1 0	.2	0.6 1	2	6 10	20	60 100							
	[]-				article Size (r												
	CLAY -	FINE MEDI		FINE	SAN	I	3E	FINE MEDI		SE COR B COR							
Technic	ian '	K Y Sun	Ch	ecked By :		1-		Approved By	NO	1							
Sound		ix i oun	CI	Name : 7	KLam		-		: Chung Hei Wi	ng							

© Gammon Construction Ltd


Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Page 1 of 1

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

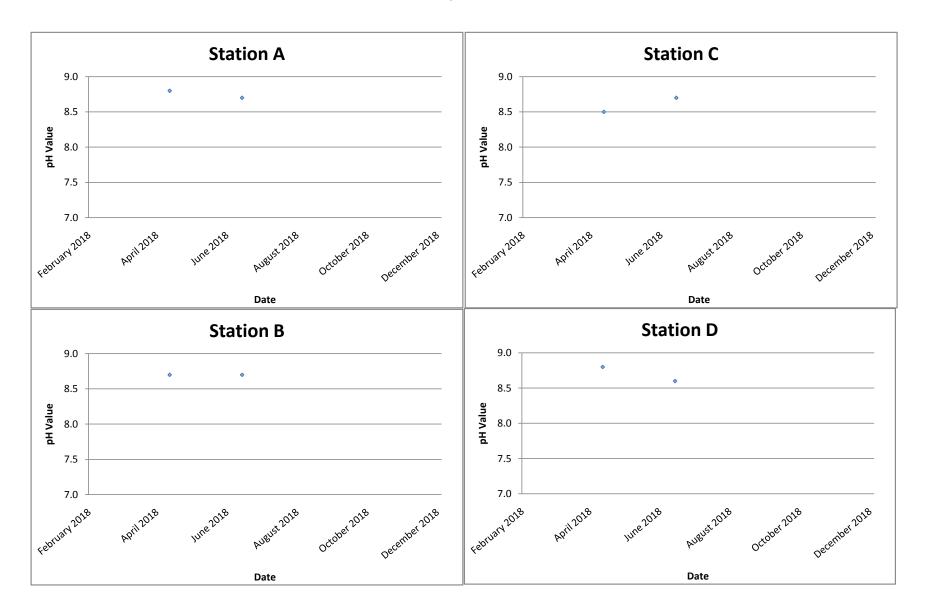
	ETERN ARTIC						RIB	UT	IC	N													C	d	m		1 8 4			OCDOL TES	TCAL
G	EOSPE	C3	: 20)01	T	est	Me	the	d	8.1	1	8.	2*.	8.	5/	8.6	* a	nd	8.7	7											
	Vet Siev																														
											,										Rep	ort N	lo.		: J29	99-2	72.33	\$			
		J299							ntrac	t No) . :																				
			Techni	chen	ı (H	K) Pt	y Ltd													Work).		: 272						
roj	ject :	.)																		Samp					: HK : F/E						
Date	e Received :	20/0/	5/2018																	Samp			n)		- 171	entin	ic Su	ivey			
	ted Date :																			Specia					5						
																				Samp						all D	isturt	bed			
Des	cription :	Dark	grey, s	light	ly s	andy					hell	fra	gme	ents						Samp	le Ori	gin			: -*						
Siev	ve Method :	Meth	od A				^Up	oon re	ques	st		*]	Dele	te as	s appr	opria	te			[‡] Infor	matio	on pro	ovide	d by	custo	mer					
SIE	VE ANAL	YSIS		Perc	ent			^Ex	pand	led					ulativ					ATIO											
1				Pass	ing			Unc							Passi					ity (#					65 #						
	Sieve Size	:		(%)			of the Pass							cpand					etails : tory				meta	phosp	hate,	Sodi	um c	arbo	nate	
	100.0 1	nm		100				1 435	-	,70)		\vdash	One		-	70)				of any				c mat	tter in	the s	soil :	Non	e		
	75.0 1	nm		100					-								1				-			Caluara							
	63.0 1	The rest of the local division in the local		100					-						-				rticle		1.		pand				Finer an D	8			anded
	50.0 1 37.5 1			100			-		-			-			-		1	Dia	amete	er		rticle					an D K				ainty o than I
	28.0 1			100					-			1			-		1	()	mm)	1	1		mm)				%)			(%	
	20.0 1			100					-									_	0638				-				96				-
	14.0 1			100					*	-		-			-				0457				-		-		92 88				*
	6.30 1			100	-				-	-		-					-		0328				-				83	_			-
	5.00 1			100					-				_	_	-				0169				-				78				-
	3.35 1			100					-						•				0090	design of the second	_		-	10.5.8			68				-
	2.00 1			100			-		-			-			-				0047		-		*	-			55 40				-
	600	*********		100			-		-			-			-			717	0014		-		-				33				-
	425	ım		99					-						-		SUM	AMA	RY	:											
	300			99			-		+					_	-					el (%)		:		0							
-	212			99 98					-			-					-		and (ilt (%	•		:		3 60							
	63			97	-										-		1		lay (37							
	0	ım		0	i																										
		Leger												Sie	eve Siz	e(mm															
	100	0=5	edimenta	tion P	oints	>63µn	n ignor	ed		0.0	063		0.	15	0.3		0.6		1.18	2		5		10		20	37.	5	75		
	100			TT		T				L	bH	Ŧ						T				TT		Ш		T		T		Π	
	90		+	++		-			\rightarrow	1	H	+											++-	┼┼╋		+-	-	++	++	H	
	80							\square																						Ш	
				T		1			T			IT					Π					T	T	IT							
	70			++	H	K		-	-	+	₩	\mathbf{H}					++				-	+	++			+	+	++	++	H	
ind	60	_		\square	K						Ш	1											1	Ш						Ш	
pass				1																		IT									
Percentage Passing	50		X	++	$^{++}$	1				+	H	\mathbf{H}					++	++	-			++	++			+	+	++	Ħ		
cent	40		1	\square	Ш	_						1	_										\parallel	111		-				Ш	
Per	-	1																											10100		
	30	+		$^{++}$	$^{\dagger \dagger }$	1	-		-	+		Ħ				-	++-	+++			+	++	++	†† †		+	++			++	
	20	_		++	11	-						1					\square		-			+		111			\square	44		Ш	
																													1		
	10	-	++		Ħ	1			+	-	-	Ħ								-	-	+	++			+		+		H	
	o ——			Ц	Ш	L			_		Ш	1					Ц	Ш					1	Щ		1			Ш	Щ	
	0.001	0.002		0.00	5 (0.01	0.0	J2		0.	06	0.1	1	0.			0.6	1	1	2			6	10		20			60	100	Ļ
														Pa	rticle S	Size (n	ım)														1
			FINE		м	EDIUN	1	CO	ARSE			FI	NE		M	EDIUN	٨	C	OARS	BE	F	INE	1	MEDI	UM		co	ARSE		COB- BLES	
	CLA					т										CANIC								DAV	E1					а С	
	L				:	SILT	- 0	*****								SANE	, 						G	RAV	EL	1					ł.
Ter	hnioise		V V	C					(II-534)		16.0	les.	I.D.				1							dD	1	A	1	(
1 ec	hnician		KY	Sun						(hec		l By ame		KLa	m	×			-			Sign		Ch	ung	Herv	Ving			
100	e	22/0	5/2018												7/06/2										: 27						

© Gammon Construction Ltd

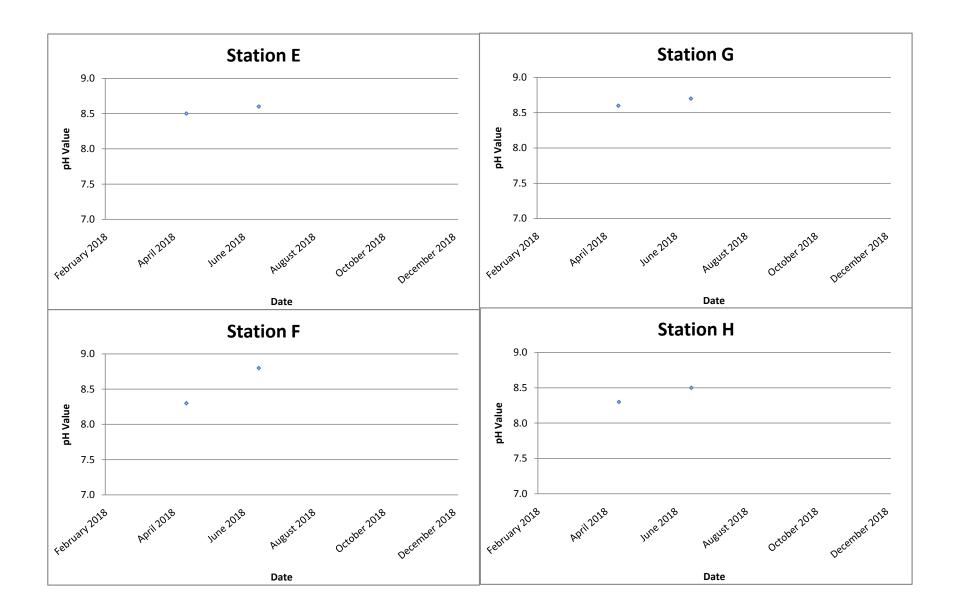
Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

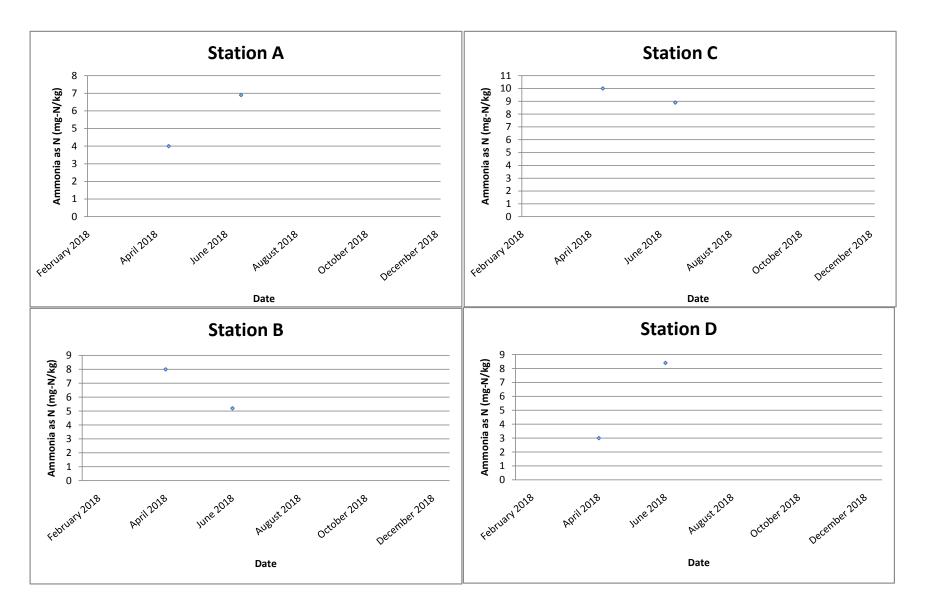
G	EC	RTICL DSPEC t Sieve	C 3	: 20	01	Te	est	M	eth	od 8	8.1		8.2	2*,	8.	5 /	8. 6	* a	nd	8	.7													
				u I	iyu	110	me	lei															Re	oort	No.		;	J299	9-272	2.33				
	No. stom		2999 \LS 1	echni	chen	n (H)	() Pt	y Lto		ontrac	t No	. :									w	orks	Ord	ler N	0.		:	272						
Pro	ject	: -				70															Sample ID No. Sample No.						: HK1833586-015							
		eceived: 2																			Sample Depth (m) Specimen Depth (m							: G/Benthic Survey						
Tes	sted]	Date : 2	2/06/	2018																		mpl			h (n	n)	:	Smal	l Dis	turb	ed			
					andy	SIL	T/CL			shell		mer									Sa	mpl	e Or	igin				_ ‡						
_		ANALY			Perce	ent		U		reques			* I			appu	opria	-	M	EN					_		by c	uston	ner					
511	SVE	ANALY	515		Pass					certain				Рего	cent	Passi	ng	Spe	cific	Gra	avity	//////////////////////////////////////	fas	ume	d):		2.65							
	Si	ieve Size	(%)			of the Percer Passing (%)										Dispersant Details : Sodium I Sampling History : As received					ametaphosphate, Sodium carbona							nate						
		100.0 mr			100					-																	natte	r in tl	ne so	il : 1	None	;		
_		75.0 mr 63.0 mr			100 100				•	-			-					-	P	artic	cle		Γ	^E:	xpar	nded	1		% Fi	ner	Т	*	Expa	anded
_		50.0 mr 37.5 mr			100	-				-									Di	iamo	eter			articl	aint	y of	the		than K			Un	certa	inty o than I
		28.0 mr	n		100					-								1_		(mn			P		(mm		JUCI		(%)		70 1	(%	
		20.0 mr 14.0 mr			100					-			-				-	-		0.072	_		_		-				44		_		-	
_		10.0 mr	n		100														0	.03	65				*				40	1				
		6.30 mr 5.00 mr	_		98 95					•			-					+		0.02			-		-				39		-+			
		3.35 mr	n		91														0	0.00	96								33					-
		2.00 mr 1.18 mr			79 68					-			-						-	0.00			-		-				29 23		+			
_		600 µm			58					*									-	0.00	-				-				18					-
		425 μm 300 μm			55 52					-			+-					SU			Y: vel (:		3	21							
		212 μm 150 μm			50 48					-			-			-					1 (%			:			36							
		63 µn	1		43							_									(%) / (%			:			23 20							
		<u>0</u> μm			0								1					1																
			egend = Sec	d dimentation Points >63µm					n ignored					Sieve Size(mm) 0.15 0.3) 0.6 1.18					5 10				20 37.5						
	100			Т	Π	Π					TI	Π	П		1		T	TT	Π			2	Т	Π	7	H	Ť				Т	75	Π	
	90				$\left \right $			-				+	╢		-				$\left \right $	-		+	1	7			-				-		+	
	80			_				_					1	_	_		_					V	4				1						4	
	70			_																														
																				1														
	60											T	T	1			1	7	III	-										100 5112		COLUMN IN COLUMN	T	
	50			-	+						-		#	1	-	-				-		+	+		-		1			10,910	+	a or the a	+	
Derestand Decine	40				$\left \right $			_	-		1	T	+		-			++	H	1		+		-	\vdash	$\left \right $	+					1000	+	
0	30			-	-	++	_		_			\parallel								-		-	_	-			\vdash			10.00		a d's a d	4	
	20	1	/		Ш																									and a second				
		-									a Non da																			2454AL				
	10										area da	T	T							-		T	1	T								a state	\parallel	
	0		002		0.006	6 O.	01	0.0	02	JL_	0.0	5	0.1		0.2			0.6		1		2			6		10	20)	<u>_ il</u>	6	0	100	
		1000 access	F	INE		ME	DIUM		cc	ARSE			FIN	IE	Par		Size (m EDIUN		0	COAF	RSE			INE		ME	DIUM			COA	RSE		BLES	
		CLAY				S	LT										SAND	1								GRA	VEL						5 8	
																		/										11	-	A				
ec	hnic	cian :		KYS	Sun					1.1.1.2.2	CI	nec	ked	By	:			2						Ap		ved i		V	1	1				

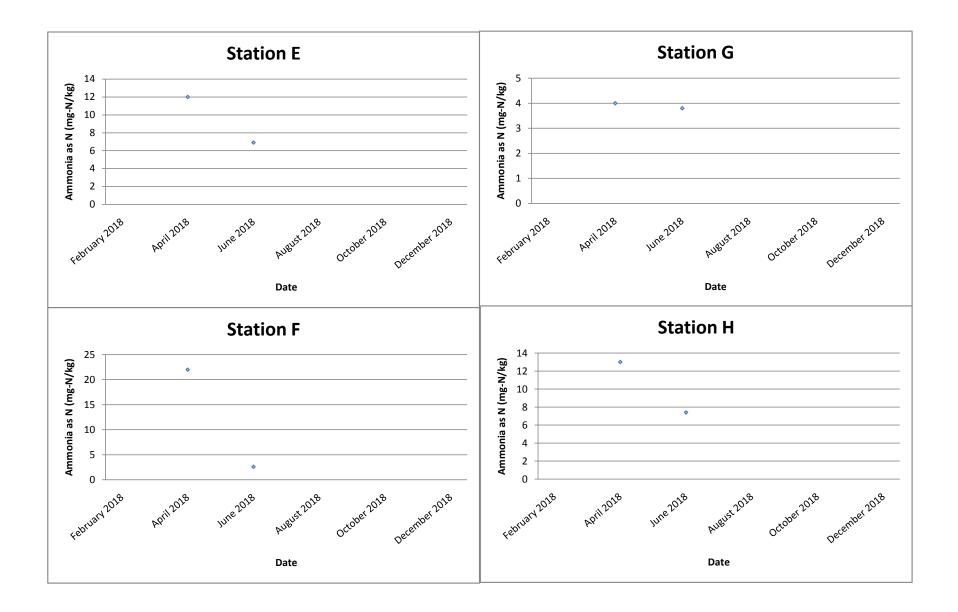
© Gammon Construction Ltd

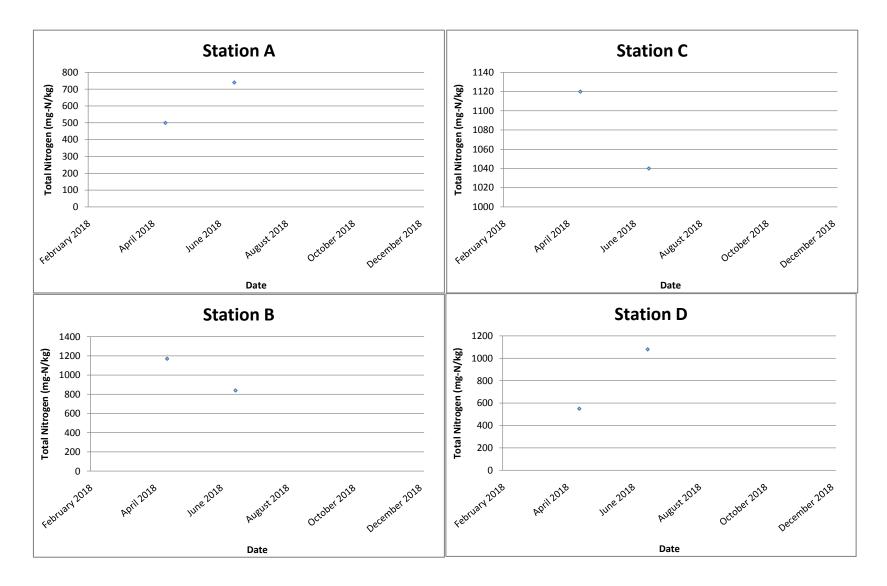

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

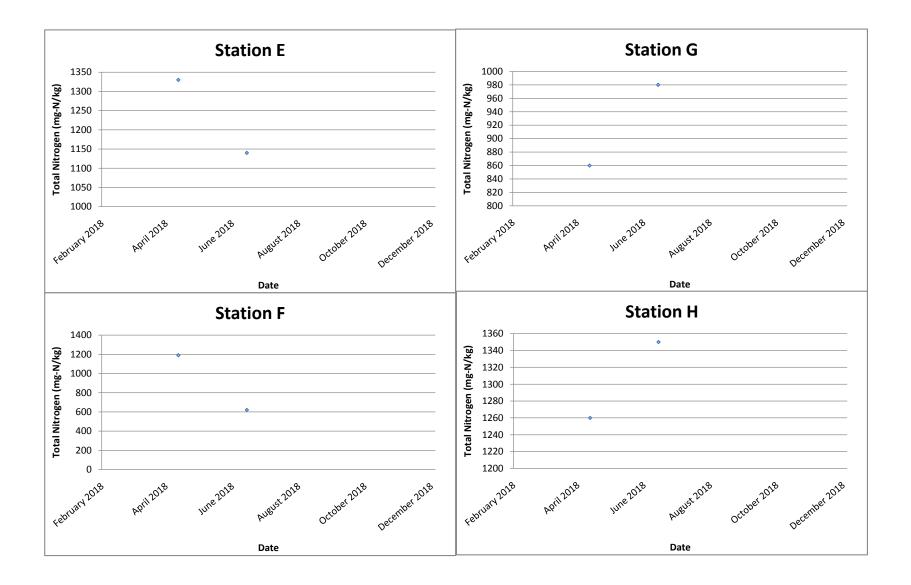
GE	RTICI OSPE et Siev	C 3 :	2001	l Test	Me	tho	18.	1/	<u>8.2</u>	*, 8	8.5 /	/ 8.(ó* a	nd	8.7								
Job No		J2999					act N										Repor	t No.	:	J2999-	-272.33		
Custor			chniche	m (HK) P	ty Ltd		activ	0, :							w	orks	Order	No.		272			
Project	t :	~															ID No).			33586-01		
Date R	leceived :	20/06/2	018													ample	: No. : Depth	(m)	:	H/Ben	thic Surv	/ey	
	Date :		2010/22/01														en Depti		1)				
200000	ntion i i	Deele ee			011 00							8					Туре				Disturbe	d	
Descrip	Method :			tly sandy		on requ		shell									Origin			_ *			
	E ANALY		Perc	ant	Т	*Expa				-		propria	-						ded by c	ustome	:r		
112.4 6	SANALI	515	Pass			Uncert				[•] Curr ercent			SEL	DIME	CNTAT Gravity	10N	ANA	ed)	S 2.65	#			
S	lieve Size		(0)	~	0	of the P	ercent	t	v	vith E	xpand	ded	Dist	persar	nt Detai	ils :	Sodiur	n hex	ametaph	osphat	e, Sodiu	n carbo	onate
	100.0 m	m	<u>(%</u> 100			Passin	g (%)			ncerta	ainty	(%)	Sam	pling	Histor	y :	As rec	eived	ic matte	r in th-	eoil - 1	one	
	75.0 m	m	100)		-				_	-			prese	100 01	any				i in the	5011 N	one	
	63.0 mi 50.0 mi		100			~					-		-		rticle		• • • •	Expan	ded		Finer		Expanded
	37.5 mi		100						-		-		-	Dia	meter				of the ameter	tł	nan D K		finer than
	28.0 mi	n	100)		-					+		1	(n	nm)		i di tit	(mm			K (%)	70	(%)
	20.0 mi 14.0 mi		100			-					-		-	0.0	0664			-			89	_	
	10.0 mt	n	100						-		-		-	111100000000000	0473 0338			-			86 83		-
	6.30 mr		100			-			-		-		1	0.0	0241			-			80		
	5.00 mr 3.35 mr		100		-	-	-		-	a fullent		_	-		0172			*			75		*
	2.00 mi	n	100					_			-				0047					Part Inc.	67 53		
	<u>1.18 mm</u> 600 μm		99 99								w		0.0024				39	_					
	425 μm		99			-					-		SUM		$\frac{0014}{RY}$:			-			31		-
	300 µm		97			-					-			Gr	ravel (*		:		0				
	<u>212 μm</u> 150 μm		95 93					-			Sand (%) Silt (%))	: 11									
	63 µn	1	89								-				ay (%))	:		53 36				
-	0 μπ		0		1																		
	Ŀ	<u>eqend</u> s = Sedin	entation P	oints >63µm	ignored				0.6	1	1.18	2		5	10	20	37.5	75					
100			TTT					TT	Π	L	-		TT	Ш	1	T		П	Ш	T		TTI	Π
90	1		+++-				1	8-	+	T	-		+++	+++		-		$\left \cdot \right $					+
80			+++		-	-	1						11	11									
70					1																		
																1							
essin 60				r++			+	++		+			+++	+++-		-		+++	+			+ +	
ag 50			11		-				1	1			\prod		-								
Percentage Passing b 0 0 0		X																					
Per								T	1						1	1							+1
30			+++					++					+++	+++-	1		+		+++				4
20								11	-														
											1										a quanta		
10								IT							1	1			+++				+1
0		002	0.006	0.01	0.02		0.0	6	0.1	0.2			0.6	ЦІ. і	1;	2		6	10	20		60	⊥ 100
							1			Par	-	Size (m	T			1		1					
	CLAY	FIN	=	MEDIUM		COARS	Ξ		FINE		М	EDIUM		CO	ARSE	-	FINE		MEDIUM		COARS	SE 6	BLES
				SILT								SAND						0	RAVEL				
chnic	ian ·	v	V Sum		-		0	a cal	ad D			-	1					11		A	2		
Gune	iaii	K	Y Sun				CI		ed By Name			4	×	e			Ap	prove		VV	Hei Win		

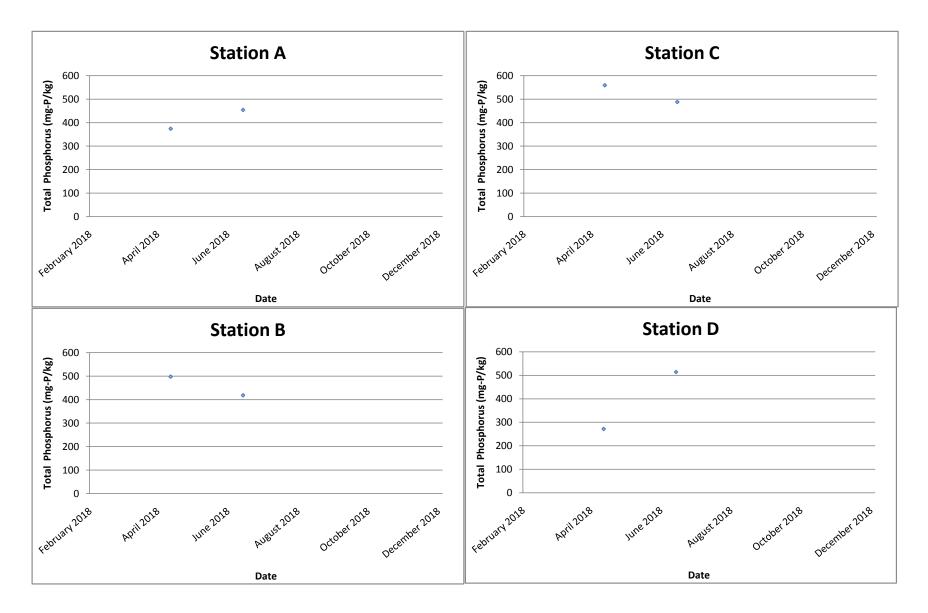

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

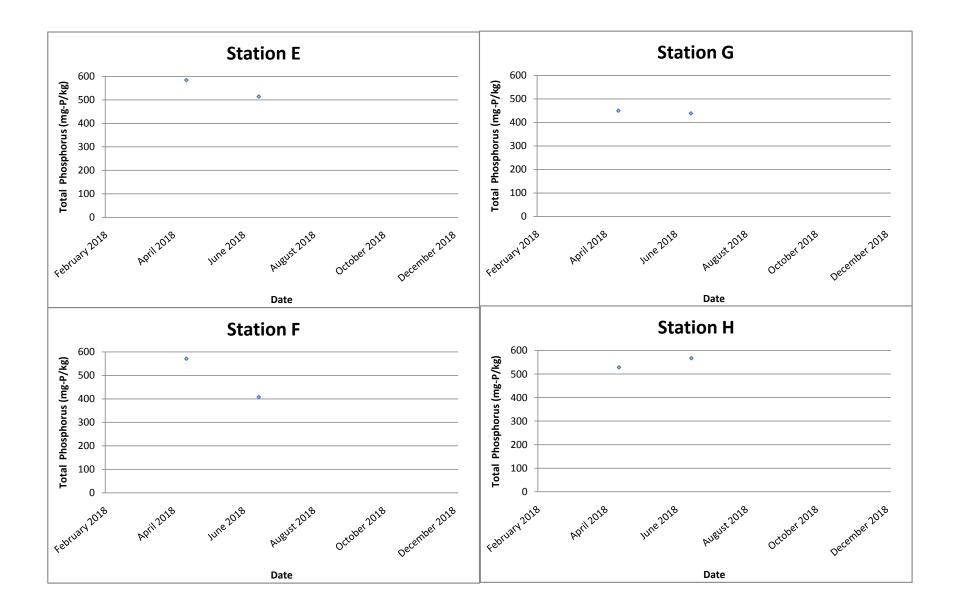

[©] Gammon Construction Ltd

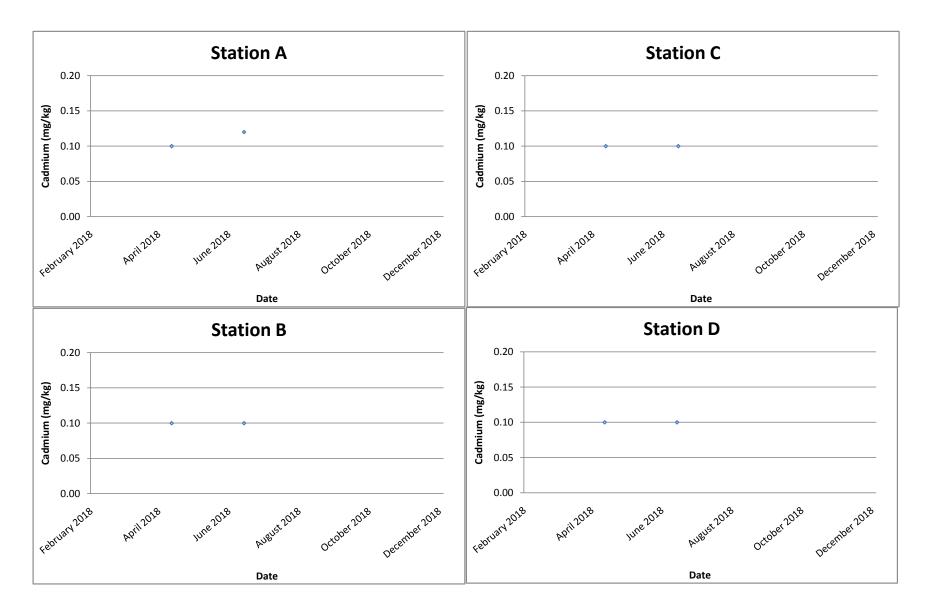

pH value

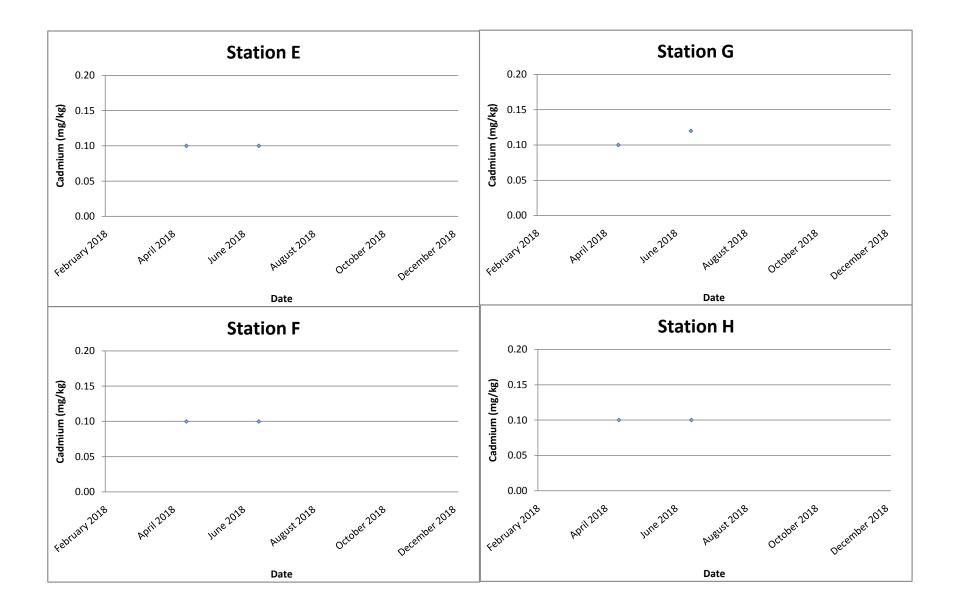


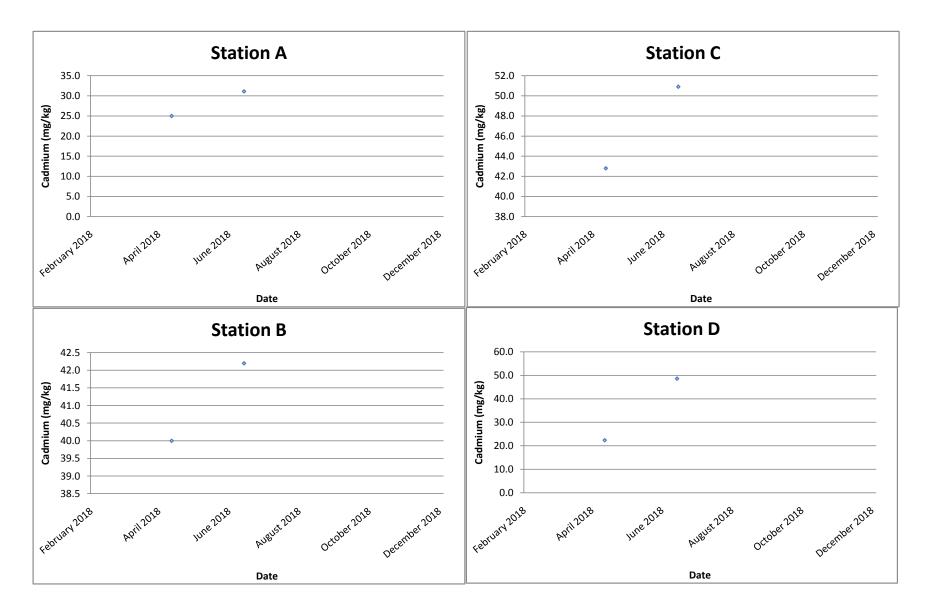

pH value

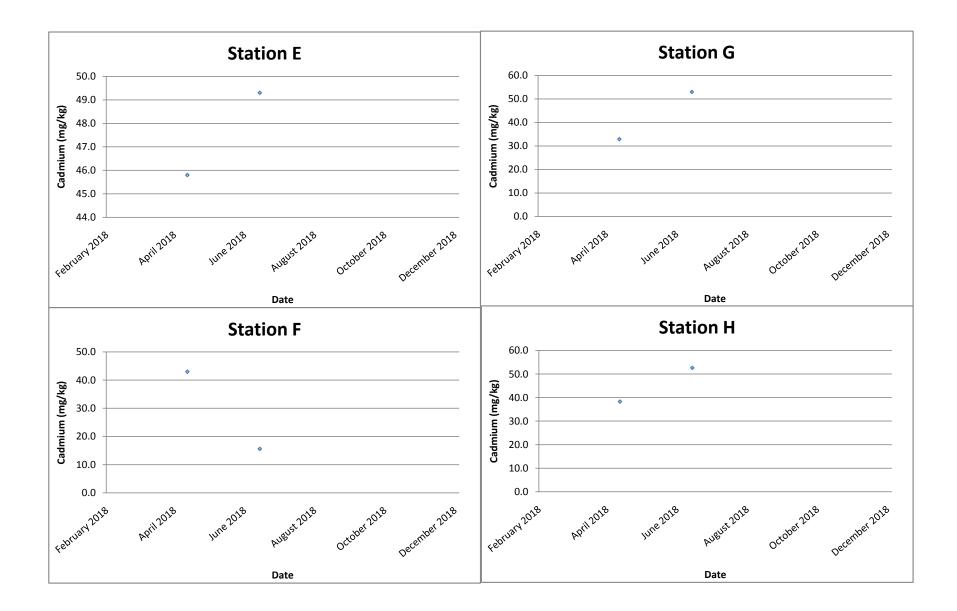


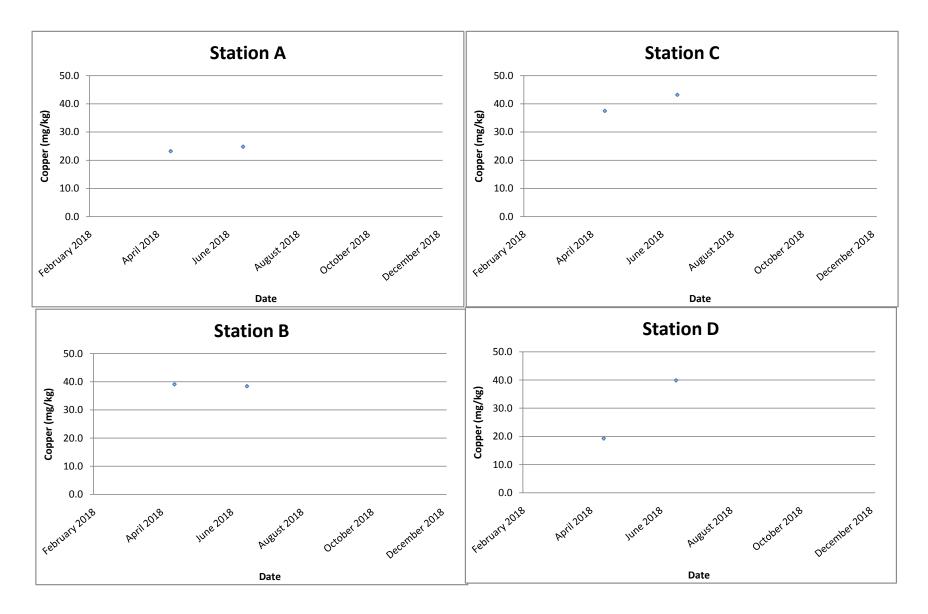


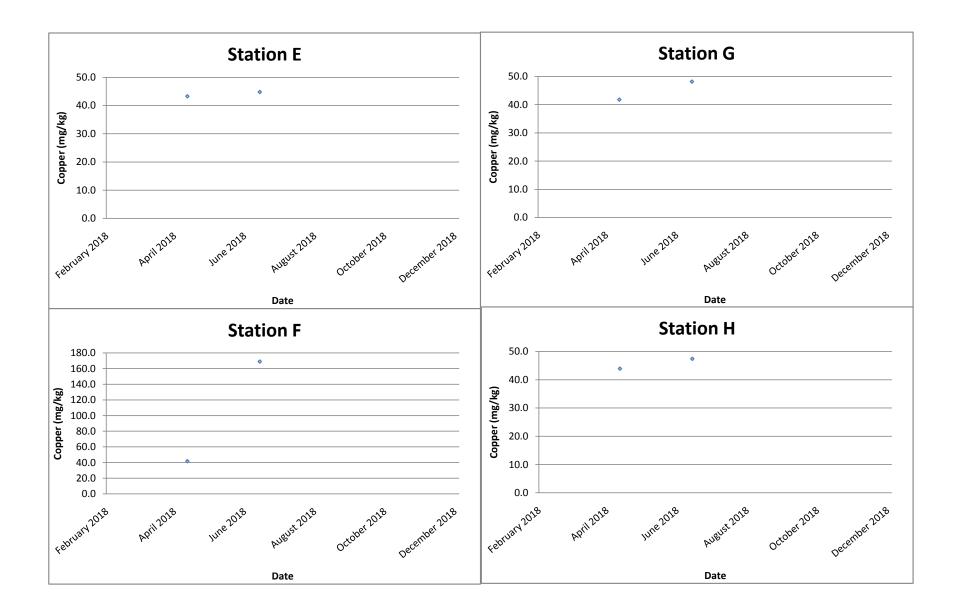


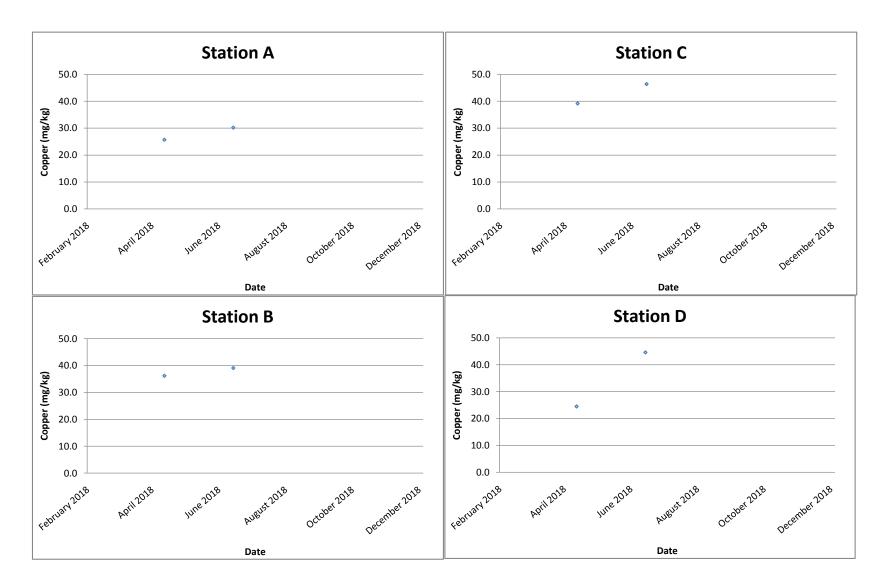


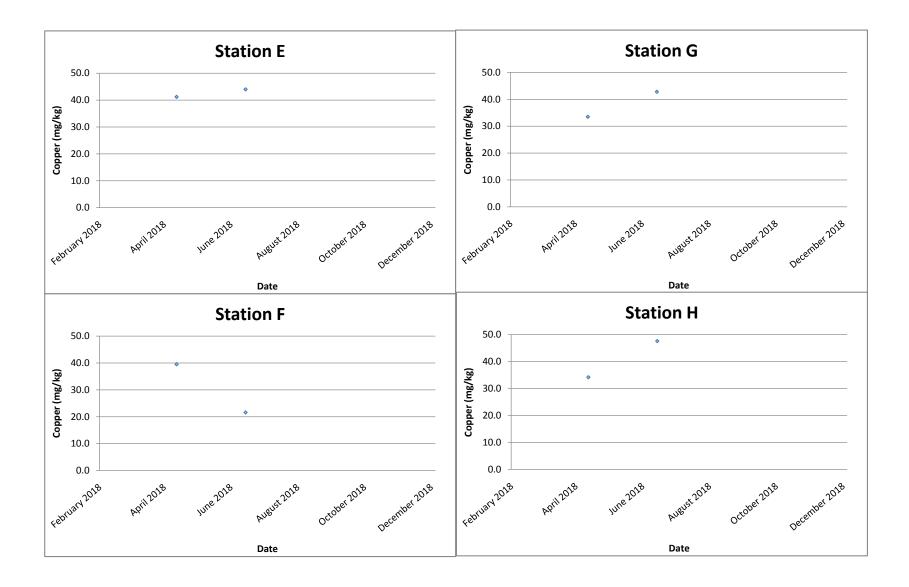

Cadmium (mg/kg)

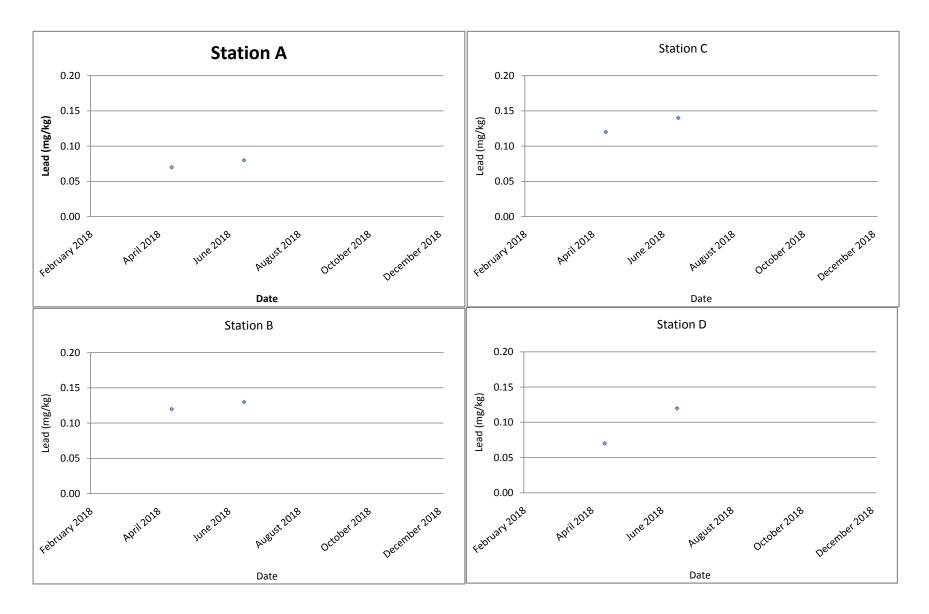

Cadmium (mg/kg)

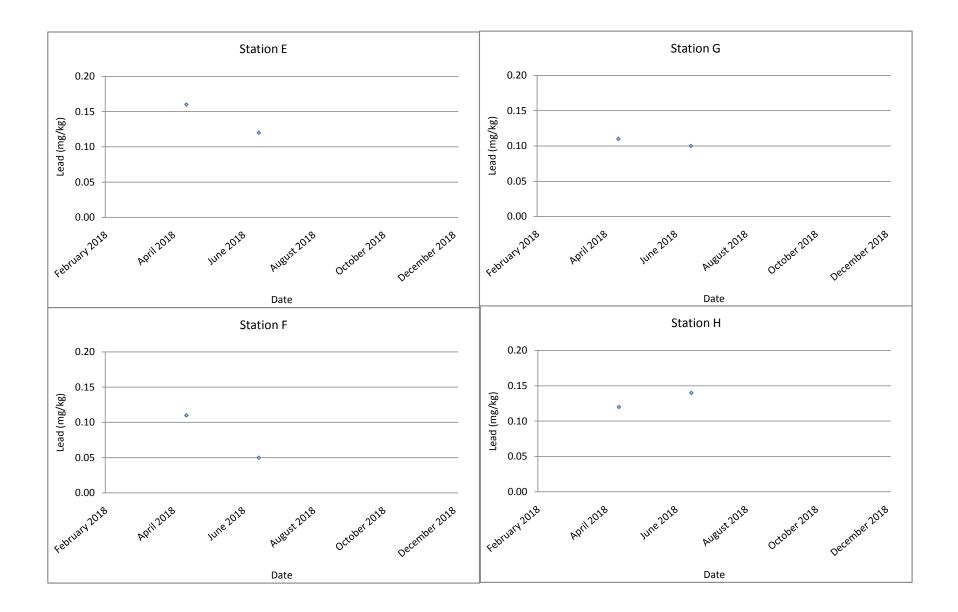

Chromium (mg/kg)

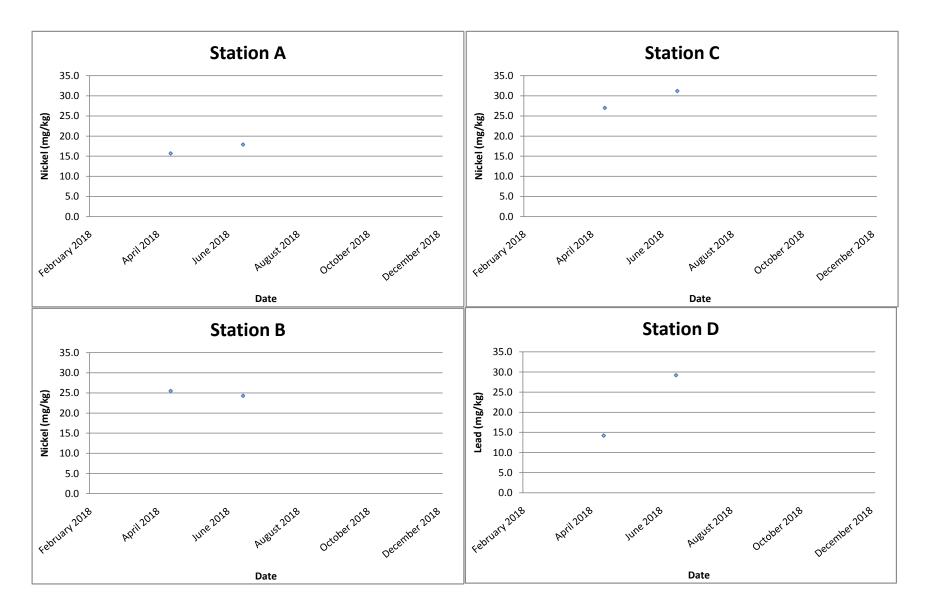

Chromium (mg/kg)

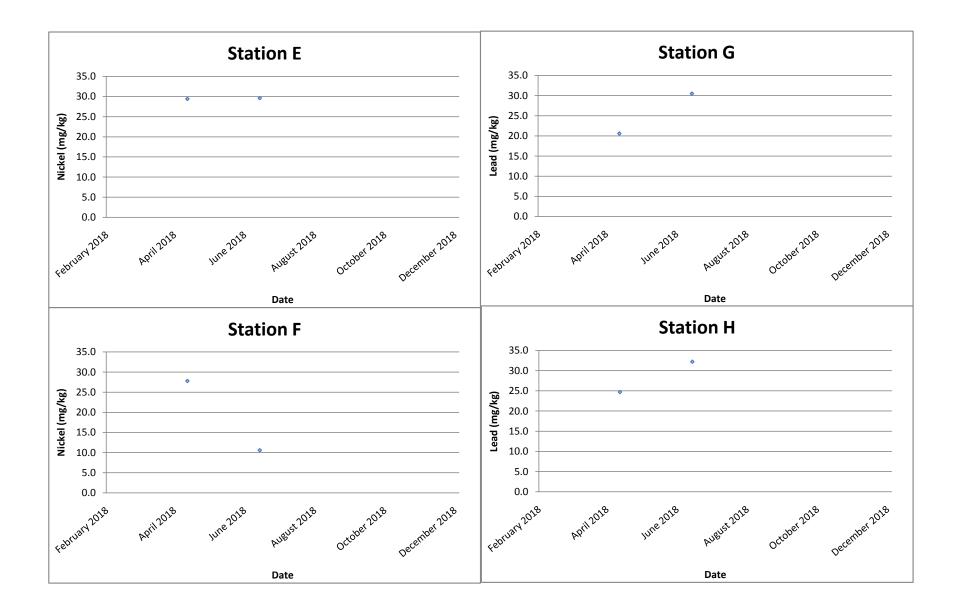

Copper (mg/kg)

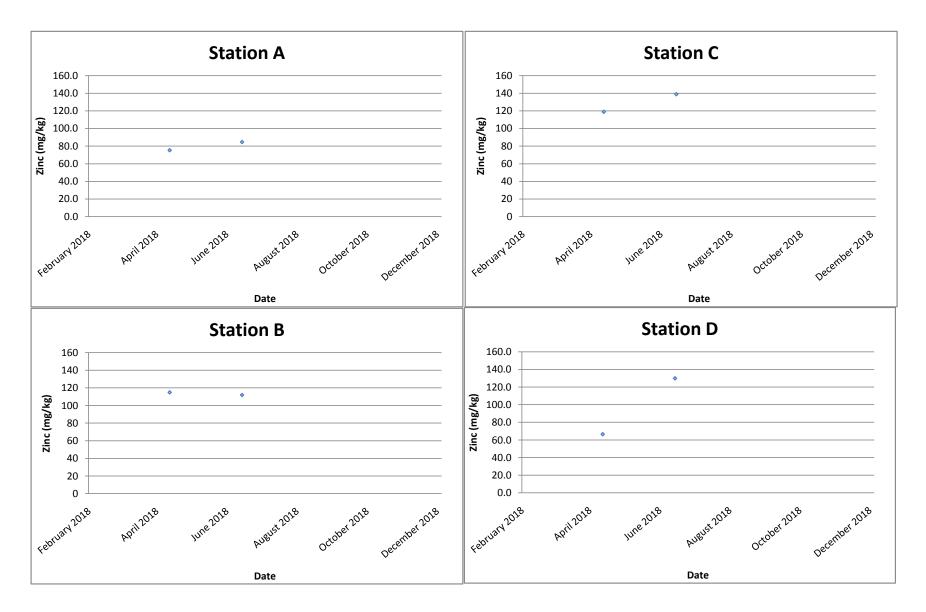

Copper (mg/kg)

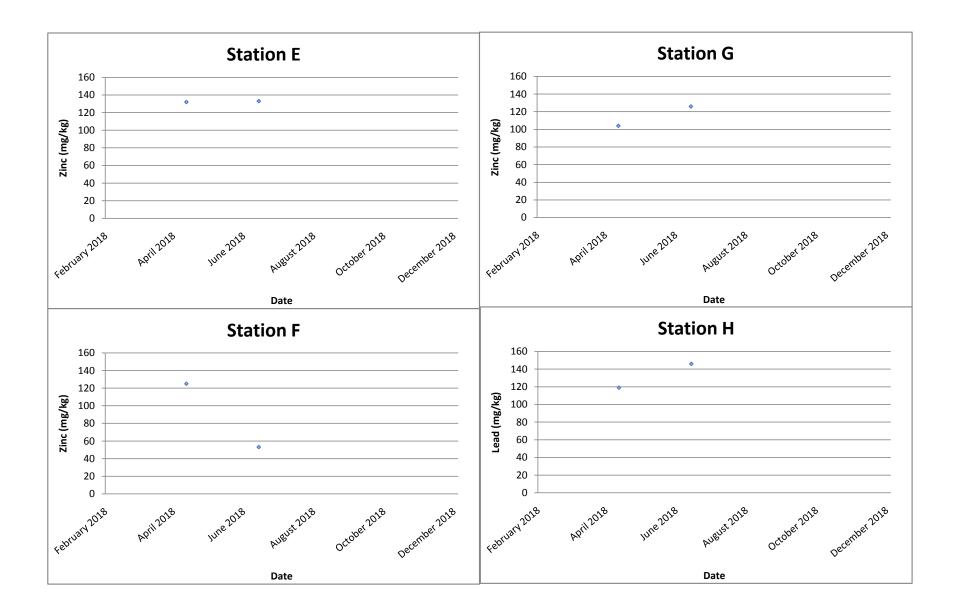

Lead (mg/kg)

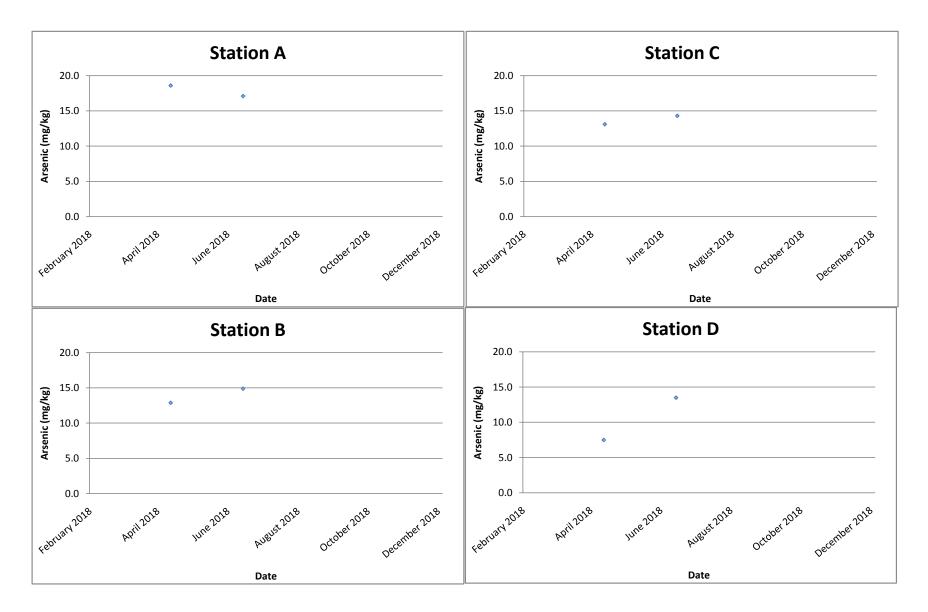

Lead (mg/kg)

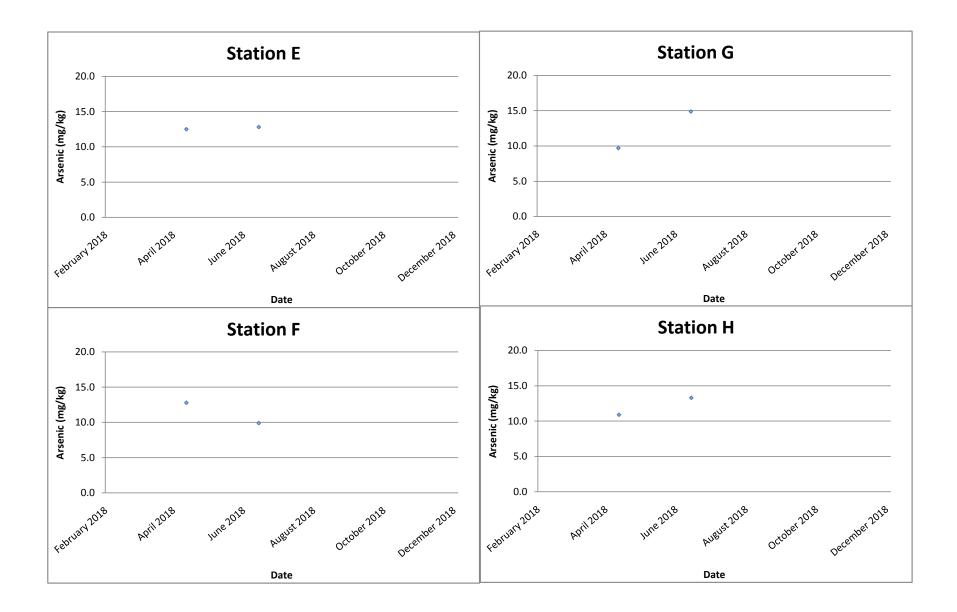

Mercury (mg/kg)

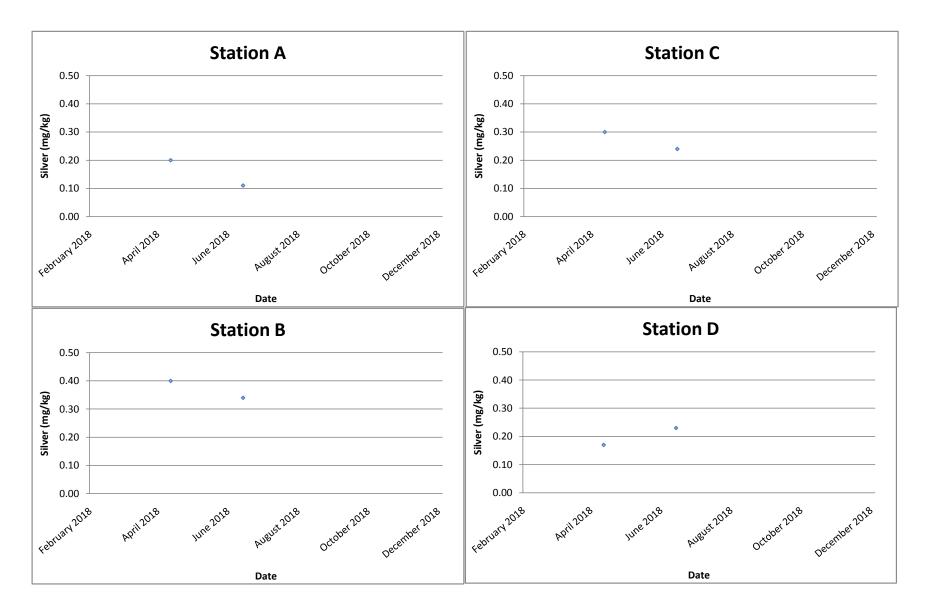

Mercury (mg/kg)

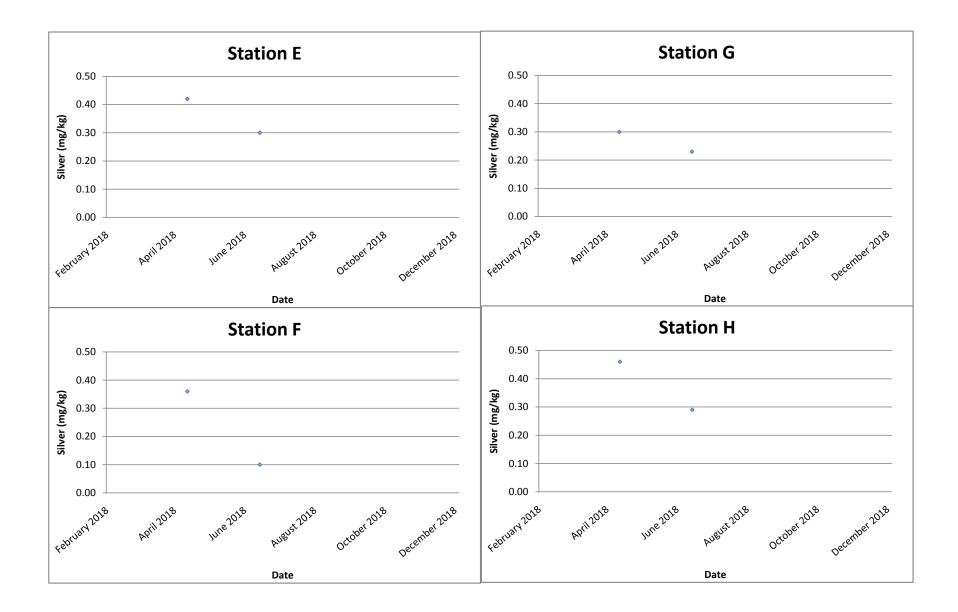

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix H

Benthic Survey Report

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Benthic Faunal Monitoring

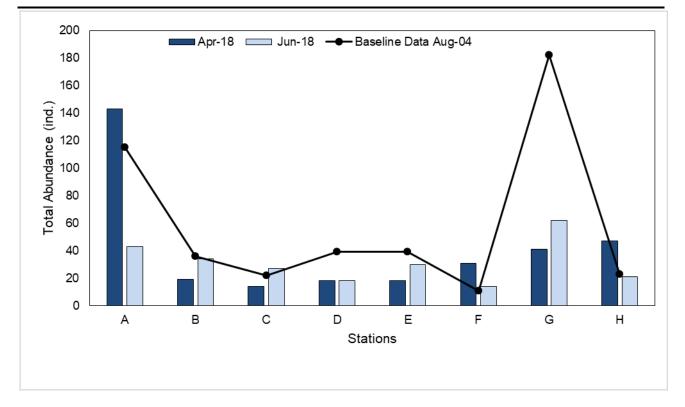
Conducted in June 2018

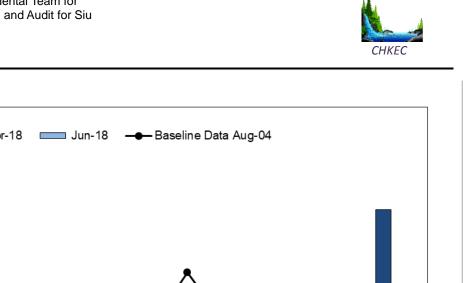
Summary Report

Abundance

A total of 249 macrobenthic organisms were collected from the eight monitoring stations during the June 2018 monitoring period. Figure 1 shows the abundance distribution across monitoring periods and stations. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 82 individuals (ind.) compared to the April 2018 monitoring results. The current decrease might be attributed to tropical storm Ewiniar that hit Hong Kong about one week before the sampling activities. Wave action brought about by the typhoon might have caused intermediate disturbance in the sampling stations, particularly that these are characteristically shallow waters (11m to 23m) as wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Bivalves in this monitoring were specifically affected by the perturbations as shown in the significant decrease in their abundance from 167 ind. (April 2018) to only 47 ind. (June 2018).

Highest abundance (62 ind.) was recorded at Station G while the lowest (14 ind.) was at Station F. Relatively high abundance at Station G might be attributed to the moderately sorted sediments characterized by the varying grain sizes at this station. Varying percentages of gravel (21%), sand (36%), silt (23%), and clay (20%) can provide a wide range of niches for benthic organisms to exploit. Furthermore, moderately sorted sediments were observed at Station A where high abundance (43 ind.) was also recorded. On the other hand, the relatively low abundance observed at Station F might be due to the high percentages of silt (60%) and clay (37%) in the substrate indicative of well-sorted sediments. Well-sorted sediments can only offer a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at station D) remained to have lower abundances compared to the reference stations except for Station F. Similar to Station F, sediments in Stations C and D were characterized by higher percentages of silt and clay.




Figure 1. Total abundance (ind.) of benthic organisms

Biomass

The total wet biomass for all the eight monitoring stations during the June 2018 monitoring period was 125.11 g, which is 106.06 g less than the biomass recorded during the April 2018 monitoring period but remained higher compared to the baseline data. Figure 2 shows the biomass distribution across monitoring periods and stations. The decrease in biomass (from April 2018 to June 2018) might be attributed to the parallel decline in the abundance of bivalves.

The highest and lowest total biomass continued to be observed in Station A (55.00 g) and Station C (0.35 g), respectively. Highest biomass remained at Station A because the bivalve, *Ruditapes philippinarum*, continued to contribute significantly in the total biomass due to their larger sizes despite the decline in their abundance. Biomass at impact stations (Stations C and D) remained to be low together with Station F (2.6 g), Station B (3.3 g), and Station G (5.1 g) as these stations were dominated by smaller organisms (i.e. annelids).

120

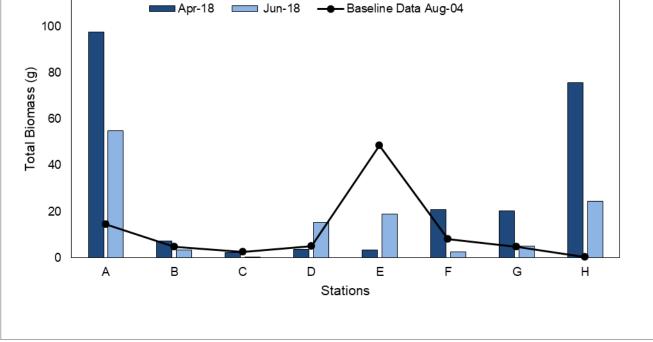


Figure 2. Total biomass (g) of benthic organisms

Taxonomic Composition

A total of eight phyla comprised of 41 families and 53 taxa were identified during the June 2018 monitoring period. Compared to the April 2018 monitoring period, there was an increase (12 taxa) in the total number of taxa identified. This can be attributed to the increase in the number of annelid species that have been identified. With the increase in the number of their species and abundance and the decrease in the abundance of bivalves, annelids (polychaetes) dominated the current benthic assemblages comprising about 53.01% of sampled population (Figure 3). The intermediate disturbance in the form of wave action generated by the typhoon might have cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ('benthic storms') was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

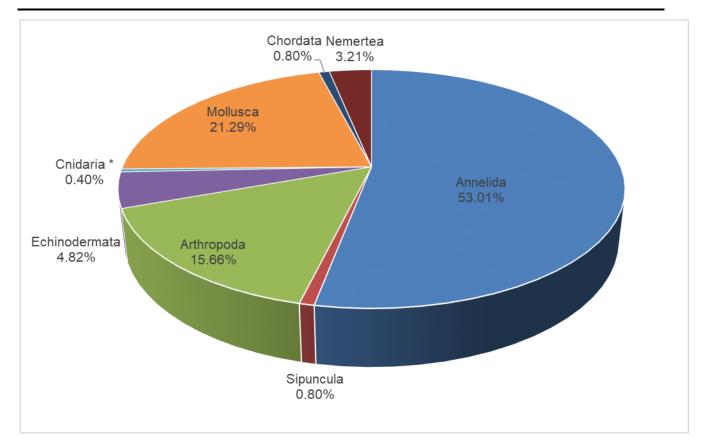


Figure 3. Percent composition of benthic organisms collected in the eight monitoring stations, June 2018

The current benthic assemblage is observed to be similar with the baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period Nepthyidae were the most abundant group.

Station G had the highest number of taxa (26) identified and the most number of polychaete taxa. As aforementioned, the more distributed grain sizes in this station provided a wide range of habitat for the organisms to colonize, particularly after an intermediate disturbance. Impact stations (Station C and D) remained to harbour relatively fewer taxa.

Diversity

Diversity indices (H') for the June 2018 monitoring period ranged from very low (1.53 at Station A) to moderate (2.88 at Station G). Compared to the baseline and April 2018 monitoring periods, increase

in diversity was observed. The slight improvement in diversity as aforementioned might be due to the colonization of opportunistic species of the cleared habitats due to the natural disturbance brought about by the typhoon.

Station G showed moderate diversity as it has the most variable substrate type which can support a diverse benthic community as shown by the highest number of taxa identified in this station. Station E also exhibited moderate diversity. The very low diversity, on the other hand in Station A, might be attributed to the dominance of the bivalve, R. philippinarum, which also explains the low Evenness (J) index at this station. R. philippinarum was most abundant in Station A as this species prefers sandy substrate, which is the natural characteristic of this station prior to the re-working of sediments of typhoon Ewiniar. The remaining stations, including the impact Stations C and D, remained to have low diversity. Furthermore, all stations but Station A showed homogenous benthic communities as showed by their high Evenness (J) Index.

Data summaries are shown in Appendix A and representatives of taxa identified are in Appendix B.

References:

- Borja, A., Franco, J. and Perez, V. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pol Bul. 40:1100-1114.
- Coleman, N., A.S.H Gason, and G.C.B. Poore. 1997. High species richness in the shallow marine waters of south-east Australia. Mar Ecol Prog Ser. 154:17-26.
- Fauchald K. 1977. The Polychaete Worms Definitions And Keys To Orders, Families And Genera.
- Gray, J.S. 1974. Animal-sediment relationships. Oceanogr Mar Bio Biol Annu Rev. 12:223-216.
- Natural History Museum of Los Angeles County. Science Series 28: 1 190.
- Huang, Z.G. 1994. Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.
- Pearson, T. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Bio Biol Annu Rev . 16: 229-311.
- Rouse G. W. and F.Pleijel.2001. Polychaetes. Oxford University Press. United Kingdom.
- Thistle, D., Yingst and J.Y., Fauchald, K.1985. A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic). Mar. Geol. 66:91–112.

Xu F. S. and S.P Zhang S. P. 2008. An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor

Moosh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: June 30, 2018

Appendix A: Data Summaries

Summary of Benthic Survey Data (June 2018)

Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	43	55.00	12	1.53	0.62
В	34	3.33	13	2.20	0.86
C*	27	0.35	13	2.39	0.93
D*	18	15.44	11	2.27	0.95
Е	30	18.80	19	2.64	0.90
F	14	2.64	10	2.17	0.94
G	62	5.05	26	2.88	0.88
Н	21	24.48	10	2.15	0.93
TOTAL	249	125.11	53		

*Impact Sites

Summary of Benthic Survey Baseline Data (August 2004)

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')
А	115	14.56	24	0.93
В	36	4.76	14	0.89
C*	22	2.66	13	0.80
D*	39	5.07	11	0.62
E	39	48.69	16	0.89
F	11	8.07	9	0.68
G	182	4.91	31	1.10
Н	23	0.49	11	0.81

*Impact Sites

Taxonomic Composition	Aug-04	Apr-18	Jun-18
Annelida	73.29	31.12	53.01
Sipuncula	0.21	0.30	0.80
Arthropoda	18.80	13.60	15.66
Echinodermata	3.63	15.11	4.82
Cnidaria *	0.43	0.60	0.40
Mollusca	3.42	50.45	21.29
Chordata	0.21	2.11	0.80
Nemertea	0	0.30	3.21

Taxonomic Composition (%) of Benthic Survey

Taxonomic Composition (abundance) of Benthic Survey

Taxonomic Composition	Aug-04	Apr-18	Jun-18
Annelida	343	103	132
Sipuncula	1	1	2
Arthropoda	88	45	39
Echinodermata	17	5	12
Cnidaria *	2	2	1
Mollusca	16	167	53
Chordata	1	7	2
Nemertea	-	1	8
Grand total	468	331	249

Composition, Abundance, and Percent Composition of Benthic Communities June 2018

										S	SHW-E	Benthi	c Station	6
Phylum	Class	Order	Family	Genus				Abun	dance	•			Total	% Composition
					A	в	С	D	Е	F	G	н		
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0	0	0	0	1	0	0	2	3	1.20
Annelida	Polychaeta	Canalipalpata	Chaetopteridae	Chaetopterus	0	0	1	0	0	0	0	0	1	0.40
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	2	0	1	0	2	1	5	0	11	4.42
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0	0	0	0	0	1	0	0	1	0.40
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0	3	3	0	0	0	1	0	7	2.81
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0	0	0	0	0	0	1	0	1	0.40
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	0	0	0	0	0	1	1	0	2	0.80
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0	0	0	2	2	0.80
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	1	2	0	0	0	0	0	3	1.20
Annelida	Polychaeta	Phyllodocida	Acoetidae	Polyodontes (P. melanonotus)	0	0	0	1	0	0	0	0	1	0.40
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0	0	0	0	1	0	1	0	2	0.80
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	1	0	0	0	1	0	0	0	2	0.80
Annelida	Polychaeta	Phyllodocida	Nereididae	Leonnates persica	0	1	0	0	0	0	5	1	7	2.81
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia	0	0	0	0	0	0	1	0	1	0.40

1687-SHW-R2-June-text report. doc

7/19/2018

										S	HW-E	Benthi	c Station	S
Phylum	Class	Order	Family	Genus				Abun	dance	9			Total	% Composition
					Α	в	С	D	Е	F	G	н		
				(P. paradoxa)										
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra (c.f. S. hanaokai)	0	0	0	0	1	0	1	0	2	0.80
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	0	1	0	0	1	0.40
Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus(L. cirratus)	0	0	0	1	0	0	0	0	1	0.40
Annelida	Polychaeta	-	Maldanidae	Maldanella	0	0	0	1	0	0	1	0	2	0.80
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0	11	5	0	2	0	0	5	23	9.24
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0	0	0	0	3	2	0	5	2.01
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	1	0	1	0.40
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	2	4	2	1	3	0	2	14	5.62
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	1	0	0	0	1	0.40
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	0	0	0	1	0	1	0.40
Annelida	Polychaeta	Spionida	Spionidae	Prionospio (P. malongereni)	2	0	2	0	0	0	2	1	7	2.81
Annelida	Polychaeta	Spionida	Spionidae	Prionospio (c.f. P. saccifera)	0	0	0	0	1	0	0	0	1	0.40
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	5	1	4	1	0	0	0	11	4.42

7/19/2018

10

										S	SHW-E	Benthi	c Station	5
Phylum	Class	Order	Family	Genus				Abun	dance)			Total	% Composition
					A	В	С	D	Е	F	G	Н		
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	2	0	0	0	0	0	0	0	2	0.80
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	1	0	0	0	0	9	0	10	4.02
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	1	0	0	0	0	3	0	4	1.61
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	0	1	0	0	1	0	2	0.80
		Subtotal			7	25	19	10	12	10	36	13	132	53.01
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp.1	0	0	0	0	1	0	0	0	1	0.40
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp.2	0	0	0	0	1	0	0	0	1	0.40
	Subtotal						0	0	2	0	0	0	2	0.80
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	1	3	1	0	1	0	2	3	11	4.42
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	1	0	0	0	1	0	1	0	3	1.20
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1	0	0	0	0	0	2	0	3	1.20
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis	0	0	0	0	0	0	3	0	3	1.20
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0	2	1	0	0	0	2	0	5	2.01
Arthropoda	Malacostraca	Stomatopoda	-	Mantis shrimp juvenile	2	0	1	0	0	0	0	0	3	1.20
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0	0	0	0	0	11	0	11	4.42
		Subtotal			5	5	3	0	2	0	21	3	39	15.66
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	1	0	3	2	3	1	1	1	12	4.82
	Subtotal						3	2	3	1	1	1	12	4.82
Cnidaria	Anthozoa	Alcyonacea	Melithaeinae	Acabaria(A. harbereri)	0	0	0	0	0	0	0	1	1	0.40

										S	6HW-E	Benthi	c Station	S
Phylum	Class	Order	Family	Genus				Abun	dance	!			Total	% Composition
					Α	в	С	D	Е	F	G	н		
		Subtotal		•	0	0	0	0	0	0	0	1	1	0.40
Mollusca	Bivalvia	Mytiloida	Mytilidae	Modiolus(M. elongatus)	0	0	0	0	1	0	0	0	1	0.40
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0	0	0	0	0	0	1	0	1	0.40
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	1	0	0	0	0	1	0.40
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	1	2	0	0	8	1	0	3	15	6.02
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	27	0	0	0	0	1	0	0	28	11.24
Mollusca	Bivalvia	Veneroida	Veneridae	Timoclea (T. scabra)	0	1	0	0	0	0	0	0	1	0.40
Mollusca	Gastropoda	Thecosomata	Cavoliniidae	Cavolinia	0	0	0	0	0	0	2	0	2	0.80
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0	0	0	2	0	0	0	0	2	0.80
Mollusca	Scaphopoda	Dentalioida	Episiphonidae	c.f. Episiphon (E. kiaochowwanensis)	0	0	0	2	0	0	0	0	2	0.80
		Subtotal			28	3	0	5	9	2	3	3	53	21.29
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID goby	0	1	0	0	1	0	0	0	2	0.80
		Subtotal			0	1	0	0	1	0	0	0	2	0.80
Nemertea	Enopla	-	-	UNID 1	2	0	2	1	1	1	1	0	8	3.21
			2	0	2	1	1	1	1	0	8	3.21		

Biomass of Benthic Communities

June 2018

Phylum	Class	Order	Family	Genus				Bioma	ass (g)				Total
					Α	В	С	D	E	F	G	Н	
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0	0	0	0	0.009	0	0	0.006	0.015
Annelida	Polychaeta	Canalipalpata	Chaetopteridae	Chaetopterus	0	0	0.005	0	0	0	0	0	0.005
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0.011	0	0.001	0	0.012	0.008	0.036	0	0.068
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0	0	0	0	0	0.010	0	0	0.01
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0	0.011	0.027	0	0	0	0.001	0	0.039
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0	0	0	0	0	0	0.002	0	0.002
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	0	0	0	0	0	0.002	0.002	0	0.004
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0	0	0	0.005	0.005
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0.005	0.008	0	0	0	0	0	0.013
Annelida	Polychaeta	Phyllodocida	Acoetidae	Polyodontes (P. melanonotus)	0	0	0	0.678	0	0	0	0	0.678
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0	0	0	0	0.002	0	0.002	0	0.004
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	0.003	0	0	0	0.002	0	0	0	0.005
Annelida	Polychaeta	Phyllodocida	Nereididae	Leonnates persica	0	0.002	0	0	0	0	0.049	0.009	0.06
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia (P. paradoxa)	0	0	0	0	0	0	0.002	0	0.002

1687-SHW-R2-June-text report. doc

Phylum	Class	Order	Family	Genus				Bioma	ass (g)				Total
					Α	В	С	D	E	F	G	н	
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra (c.f. S. hanaokai)	0	0	0	0	0.001	0	0.001	0	0.002
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	0	0.004	0	0	0.004
Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus(L. cirratus)	0	0	0	0.001	0	0	0	0	0.001
Annelida	Polychaeta	-	Maldanidae	Maldanella	0	0	0	0.002	0	0	0.001	0	0.003
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0	0.234	0.044	0	0.008	0	0	0.103	0.389
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0	0	0	0	0.077	0.021	0	0.098
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	0.001	0	0.001
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	0.006	0.178	0.151	0.015	0.069	0	0.003	0.422
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	0.001	0	0	0	0.001
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	0	0	0	0.003	0	0.003
Annelida	Polychaeta	Spionida	Spionidae	Prionospio (P. malongereni)	0.003	0	0.001	0	0	0	0.003	0.001	0.008
Annelida	Polychaeta	Spionida	Spionidae	Prionospio (c.f. P. saccifera)	0	0	0	0	0.001	0	0	0	0.001
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0.052	0.004	0.046	0.003	0	0	0	0.105
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	0.006	0	0	0	0	0	0	0	0.006
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0.003	0	0	0	0	0.368	0	0.371

Phylum	Class	Order	Family	Genus				Bioma	ass (g)				Total
					Α	В	С	D	Е	F	G	Н	
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0.072	0	0	0	0	0.004	0	0.076
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	0	0.019	0	0	0.011	0	0.03
		Subtotal			0.023	0.385	0.268	0.897	0.054	0.17	0.507	0.127	2.431
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp. 1	0	0	0	0	0.001	0	0	0	0.001
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp.2	0	0	0	0	0.001	0	0	0	0.001
		Subtotal			0	0	0	0	0.002	0	0	0	0.002
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.082	0.046	0.001	0	0.094	0	0.181	0.798	1.202
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0.004	0	0	0	0.005	0	0.009	0	0.018
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	0.005	0	0	0	0	0	0.017	0	0.022
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis	0	0	0	0	0	0	0.291	0	0.291
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0.002	0.001	0	0	0	0.001	0	0.004
Arthropoda	Malacostraca	Stomatopoda	-	Mantis shrimp juvenile	0.035	0	0.007	0	0	0	0	0	0.042
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0	0	0	0	0	2.200	0	2.2
		Subtotal			0.126	0.048	0.009	0	0.099	0	2.699	0.798	3.779
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0.007	0	0.023	0.030	0.119	0.001	0.813	0.166	1.159
		Subtotal			0.007	0	0.023	0.03	0.119	0.001	0.813	0.166	1.159
Cnidaria	Anthozoa	Alcyonacea	Melithaeinae	Acabaria(A. harbereri)	0	0	0	0	0	0	0	16.592	16.592
		Subtotal			0	0	0	0	0	0	0	16.592	16.592
Mollusca	Bivalvia	Mytiloida	Mytilidae	Modiolus(M. elongatus)	0	0	0	0	0.665	0	0	0	0.665
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0	0	0	0	0	0	0.800	0	0.8

15

Phylum	Class	Order	Family	Genus				Bioma	ass (g)				Total
					Α	В	С	D	Е	F	G	н	
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	0.008	0	0	0	0	0.008
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	1.925	2.794	0	0	17.854	2.458	0	6.794	31.825
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	52.880	0	0	0	0	0.012	0	0	52.892
Mollusca	Bivalvia	Veneroida	Veneridae	Timoclea (T. scabra)	0	0.057	0	0	0	0	0	0	0.057
Mollusca	Gastropoda	Thecosomata	Cavoliniidae	Cavolinia	0	0	0	0	0	0	0.216	0	0.216
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0	0	0	14.500	0	0	0	0	14.5
Mollusca	Scaphopoda	Dentalioida	Episiphonidae	c.f. Episiphon (E. kiaochowwanensis)	0	0	0	0.003	0	0	0	0	0.003
		Subtotal			54.805	2.851	0	14.511	18.519	2.47	1.016	6.794	100.966
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID goby	0	0.047	0	0	0.006	0	0	0	0.053
		Subtotal			0	0.047	0	0	0.006	0	0	0	0.053
Nemertea	Enopla	-	-	UNID 1	0.041	0	0.053	0.004	0.006	0.003	0.017	0	0.124
		Subtotal		0.041	0	0.053	0.004	0.006	0.003	0.017	0	0.124	
		Grand total			55.00	3.33	0.35	15.44	18.81	2.64	5.05	24.48	

Benthic Species Recorded during the Baseline Study August 2004

Ben	hic Speci	es Record	led In Aug	e Treatment Pla ust 2004					
ĨĎ	Station	Number	Mass (q)	Phylum	Class	Order	Family	Genus	Species
1	A1	2	0.0108	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	A1	2	0.2632	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
3	A1	3	0.0031	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
4	A1	1	0.0008	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
5	A1	1	0.0092	Annelida	Polychaeta	Phyliodocida	Glyceridae	Glycera	Glycera onomichiensis
6	A1	1	0.0012	Annelida	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubla
7	A1	1	0.0203	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
8	A1	3	0.0027	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
9	A1	1	0.0193	Annelida	Polychaeta	Terebellida	Terebellidae	Pista	Pista cristata
10	Al	9	0.0598	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
11	A1	1	0.0097	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
12	A2	1	0.1911	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
13	A2	1	0.0003	Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	Capitella capitata
14	A2 `	1	9.2414	Coelentera	Anthozoa	Pennatulacea	Veretillidae	Cavernularia	Cavernularia sp.
15	A2	15	0.0536	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
16	A2	1	0.0028	Mollusca	Bivalvia	Venerolda	Ungulinidae	Cycladicama	Cycladicama sp.
17	A2	3	0.0392	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
18	A2	3	0.3728	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
19	A2	1	0.0064	Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
20	A2	2	0.0448	Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	Lepidonotus sp.
21	A2	3	0.968	Annelida	Polychaeta	Terebellida	Terebellidae	Loimia	Loimia medusa
22	A2	1	0.0051	Annelida	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubia
23	A2	5	2.0379	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthaimus	Neoxenophthalmus obscurus
24	A2	35	0.3411	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
25	A2	2	0.0408	Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	Poecilochaetus serpens
26	A2	5	0.0136	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
27	A2.	4	0.6328	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
28	A2	3	0.0292	Mollusca	Bivalvia	Venerolda	Veneridae	Ruditapes	Ruditapes philippinarum
29	A2	1	0.0059	Annelida	Polychaeta	Orbinlida	Orbiniidae	Scoloplos	Scoloplos sp.
30	A2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
31	A2	1	0.0014	Annelida	Polychaeta	Phyllodocida	Syllidae	Syllis	Syllis sp.
32	.A2	1	0.1345	Coelentera	Anthozoa	Pennatulacea	Virgulariidae	Virgularia	Virgularia gustaviana
3	B1	1	0.0234	Annelida	Polychaeta	Phyllodocida	Nephtyldae	Aglaophamus	Aglaophamus dibranchis
14	B1	1	0.0235	Annelida	Polychaeta	Amphinomida	Amphinomidae	Amphinome	Amphinome rostrata
15	81	1	0.0009	Echinodermata	Stelleroidea	Ophiurida	Amphiuridae	Amphiodia	Amphiodia sp.
32 33 34 35 36	B1	4	0.0063	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
37	B1	2	4.0772	Echinodermata	Echinoldea	Spatangoida	Loveniidae	Lovenia	Lovenia subcarlnata
38	B1	1	0.0346	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
39	B1	2	0.2395	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
10	B1	1	0.007	Mollusca	Bivalvia	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta

			- Courono	Trastment D	ant			· · · · · · · · · · · · · · · · · · ·	
lpgr	ading of s	SIU HO WE	in Sewage	Treatment P		·····			and the second
3ent	hic Specie	es Recoro	ed In Augu	15L 2004	Class	Order	Eamily	Genus	Species
			Mass (g)	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
41		4	0.0139	Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
42	<u>B1</u>		0.0042	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
43	<u>B1</u>	1	0.0163		Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
44	<u>B2</u>	3	0.0054	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
45	<u>B2</u>	3	0.1089	Annelida		Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
46	<u> </u>	1	0.0384	Arthropoda	Crustacea	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta
47	B2	1	0.0028	Mollusca	Bivalvia	Capitellida	Capitellidae	Notomastus	Notomastus latericens
48	B2	5	0.0158	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio cirrifera
49	B2	2	0.0006	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
50	B2	1	0.0008	Annelida	Polychaeta		Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
51	B2	1	0.1426	Arthropoda	Crustacea	Decapoda	Nephtyidae	Adlaophamus	Agiaophamus dibranchis
52	C1	3	0.0152	Annelida	Polychaeta	Phyllodocida	Maldanidae	Euclymene	Eudymene sp.
53	Ci	1	0.0123	Annelida	Polychaeta	Capitellida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
54	C1	2	0.0348	Annelida	Polychaeta	Eunicida	······································	Neoxenophthalmus	Neoxenophthalmus obscurus
55	C1	2	0.4967	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Notomastus	Notomastus latericens
56	C1	3	0.0418	Annelida	Polychaeta	Capitellida	Capitellidae		Paphia undulata
57	Ci	1	1,6743	Mollusca	Bivalvia	Veneroida	Veneridae	Paphia	Paraprionospio pinnata
58	Ci	2	0.0017	Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Theora lata
59	C1	1	0.009	Mollusca	Bivalvia	Veneroida	Semelidae	Theora	Typhlocarcinus nudus
60	Ci	1	0.0503	Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhiocarcinus	Aglaophamus dibranchis
61	- 02	2	0.0099	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	
62	C2	1	0.0243	Annelida	Polychaeta	Amphinomida	Amphinomidae	Amphinome	Amphinome rostrata Glycera onomichiensis
63	C2	1	0.285	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	the second secon
64	<u>C2</u>	1	0.0049	Arthropoda	Crustacea	Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
65	C2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
66	 D1	2	0,0065	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
67	D1	1	0.0106	Annelida	Polychaeta	Capitellida	Maldanidae	Euclymene	Euclymene sp.
67 68	D1	1	0.5246	Arthropoda	Crustacea	Decapoda	Goneplacidae	Eucrate	Eucrate haswelli
		3	0.4472	Annelida	Polychaeta	Phyliodocida	Glyceridae	Glycera	Glycera onomichiensis
69	D1		0.254	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
70	D1	2	0.0887	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
71	D1	8		Annelida	Polychaeta	Opheliida	Ophellidae	Ophelia	Ophelina grandis
72	D1	2	0.0648		Bivalvia	Venerolda	Veneridae	Paphia	Paphia undulata
73	Di	1	3.3726	Mollusca Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
74	D1	2	0.0092		Bivalvia	Nuculoida	Nuculanidae	Saccella	Saccella sp.
75	Di		0.0514	Mollusca	Polychaeta	Phyllodocida	Pilargiidae	Sigambra	Sigambra hanaokai
76	D1	1	0.0021	Annelida		Capitellida	Capitellidae	Notomastus	Notomastus latericens
77	D2	12	0.155	Annelida	Polychaeta	Opheliida	Opheliidae	Ophelia	Ophelina grandis
78	D2	1	0.0797	Annelida	Polychaeta	and the second sec	Spionidae	Paraprionospio	Paraprionospio pinnata
79	D2	1	0.0031	Annelida	Polychaeta	Spionida	~~~~	Sigambra	Sigambra hanaokai
80	D2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Pllargiidae	jayannia	Terdennie unioeden

loar	ading of	Siu Ho W	an Sewade	Treatment Pla	nt			, •	* 1
			led In Aug		1		•	-	
				Phylam	Class	Order a	Family	Genus	Species
31	Ei	3	0.0423	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	E1	1	0,0014	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
3	E1	10	41.4922	Echinodermata	Echinoidea	Spatangoida	Loveniidae	Lovenia	Lovenia subcarinata
4	E1	2	0.0672	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
5	E1	1	0.0171	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscu
6	E1	2	0.013	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
7	E1	1	0.0098	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
8	Ē1	1	0.0021	Annelida	Polychaeta	Phyllodocida	Pilarglidae	Sigambra	Sigambra hanaokai
9	 E1	1	0.0203	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
0	E1	1	0.006	Mollusca	Bivalvia	Veneroida	Semelidae	Theora	Theora lata
1	E1	1	0.0823	Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
2	E2	2	0.023	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
3	E2	1	0.0083	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
4	E2	1	0.0016	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
5	E2	1	0.0171	Annelida	Polychaeta	Eunicida	Onuphidae	Diopatra	Diopatra sp.
5	E2	1	0.0062	Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
7	E2	1	0,446	Annelida	Polychaeta	Terebellida	Terebellidae	Lolmia	Loimia medusa
3	E2	2	6,348	Echinodermata	Echinoidea	Spatangolda	Lovenlidae	Lovenla	Lovenia subcarinata
3	E2	1	0.0067	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
0	E2	1	0.0336	Mollusca	Bivalvia	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta
1	E2	4	0.0477	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
2	 F1	1	0.0162	Arthropoda	Crustacea	Decapoda	Alpheldae	Alpheus	Alpheus sp.
3	F1	1	0.4824	Mollusca	Gastropoda	Neogastropoda	Nassarildae	Nassarius	Nassarius sp.
4	F1	1	0.0088	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
5	F1	1	0.0046	Anneilda	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
6	F1	1	0.0018	Annelida	Polychaeta	Phyllodocida	Pilargiidae	Sigambra	Sigambra hanaokai
7	F1	1	0.0126	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
8	F2	1	0.0284	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
9	F2	2	7.2811	Echinodermata	Echinoidea	Spatangoida	Lovenildae	Lovenia	Lovenia subcarinata
0	F2	1	0.0222	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
1	F2	1	0,2073	Annelida	Polychaeta	Ophellida	Opheliidae	Ophelia	Ophelina grandis
2	G1	7	0,1547	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
3	G1	1	0.0003	Arthropoda	Crustacea	Tanaidacea	Apseudidae	Apseudes	Apseudes sp.
4	G1	1	0.0414	how we have a second	Crustacea	Decapoda	Callianassidae	Callianassa	Callianassa sp.
5	G1	3	0.0024		Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
6	G1	4	0.0033	Arthropoda	Crustacea	Amphipoda	Corophiidae	Corophium	Corophium sp.
7	G1	9	0.3983	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
8	Gí	1		Annelida	Polychaeta	Phyllodocida	Giyceridae	Glycera	Glycera onomichiensis
9	G1	2		Arthropoda	Crustacea	Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
	G1	1			Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	Lepidonotus sp.

	dine of	Sin Ha W	an Sewane	Treatment P	ant			· .	
upgra	ading of	Siu fio ma	led In Aug	ist 2004			ester an a factor international field and the	- maintaine in the second and the second	
senu	lic speci	es Record	Mass (g)	Phylum	Class	Order	Family		Species
	G1	3	0.819	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
<u>121</u>	G1	4	0.0108	Annelida	Polychaeta	Phyllodocida	Nereidae	Nerels	Nerels sp.
122	G1	20	0.0822	Annelida	Polychaeta	Capitellida	Capitellidae	Nótomastus	Notomastus latericens
123		1	0.0005	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio ehlersi
124	G1	2	0.0053	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queensiandica
125	G1	1	0.094	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
126	Gl		0.0006	Annelida	Polychaeta	Phyllodocida	Syllidae	Syllis	Syllis sp.
127	<u>G1</u>	2	0.0000	Annelida	Polychaeta	Phyllodocida	Nephtyldae	Aglaophamus	Aglaophamus dibranchis
128	G2			Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
129	G2	2	0.108	Arthropoda	Crustacea	Tanaidacea	Apseudidae	Apseudes	Apseudes sp.
130	G2	1	0.0028	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
131	G2	3	0.0058	Arthropoda	Crustacea	Decapoda	Goneplacidae	Eucrate	Eucrate haswelli
132	G2	1	0.2476	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice Indica
133	G2	2	0.063		Polychaeta	Terebellida	Terebellidae	Lanice	Lanice sp.
134	G2	1	0.0169	Annelida	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	Mytilopsis sallei
135	G2	1	0.0645	Mollusca	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
136	G2	2	0.0017	Annelida	Polychaeta	Opheliida	Ophellidae	Ophelia	Ophelina grandis
137	G2	1	0.0059	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
138	G2	7	0.0211	Annelida		Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
139	G2	5	0.3769	Arthropoda	Crustacea	Phyllodocida	Syllidae	Syllis	Syllis sp.
140	G2	1	0.0002	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
141	G2	1	0.0026	Annelida	Polychaeta	Decapoda	Alpheidae	Alpheus	Alpheus sp.
142	G2	7	0.0952	Arthropoda	Crustacea	Terebellida	Terebellidae	Amaeana	Amaeana sp.
143	G2	1	0.0469	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
144	G2	1	0,0008	Annelida	Polychaeta	Amphipoda	Corophiidae	Corophium	Corophium sp.
145	G2	7	0.0042	Arthropoda	Crustacea	Eunicida	Eunicidae	Eunice	Eunice Indica
146	G2	8	0.1768	Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	Gattyana sp.
147	G2	1	0.0025	Annelida	Polychaeta	and a second	Glyceridae	Glycera	Glycera onomichiensis
148	G2	4	0.0105	Annelida	Polychaeta	Phyllodocida	Goneplacidae	Hexapus	Hexapus granuliforus
149	G2	1	0.0162	Arthropoda	Crustacea	Decapoda	Nereidae	Nereis	Nereis sp.
150	G2	1	0.0019	Annelida	Polychaeta	Phyllodocida	Capitellidae	Notomastus	Notomastus latericens
151	G2	7	0.0485	Annelida	Polychaeta	Capitellida	Spionidae	Paraprionospio	Paraprionospio pinnata
152	G2	1	0.0084	Annelida	Polychaeta	Splonida	Phyllodocidae	Phyllodoce	Phyllodoce sp.
153	G2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Porcellanidae	Raphidopus	Raphidopus ciliatus
154	G2	1	0.1746	Arthropoda	Crustacea	Decapoda	Taenioididae	Trypauchen	Trypauchen vagina
155	G2	1	0.0453	Chordata	Osteichthyes	Perciformes	Nephtyidae	Adlaophamus	Agiaophamus dibranchis
156	G2.	2	0.0161	Annelida	Polychaeta	Phyllodocida	Alpheidae	Alpheus	Alpheus sp.
157	G2	3	0.4835	Arthropoda	Crustacea	Decapoda	Cirratulidae	Cirratulus	Cirratulus sp.
158	G2	1	0.0032	Annelida	Polychaeta	Spionida		Eunice	Eunice indica
159	G2	3	0.0444	Annelida	Polychaeta	Eunicida	Eunicidae		Glycera onomichiensis
160	G2	2	0.0351	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	

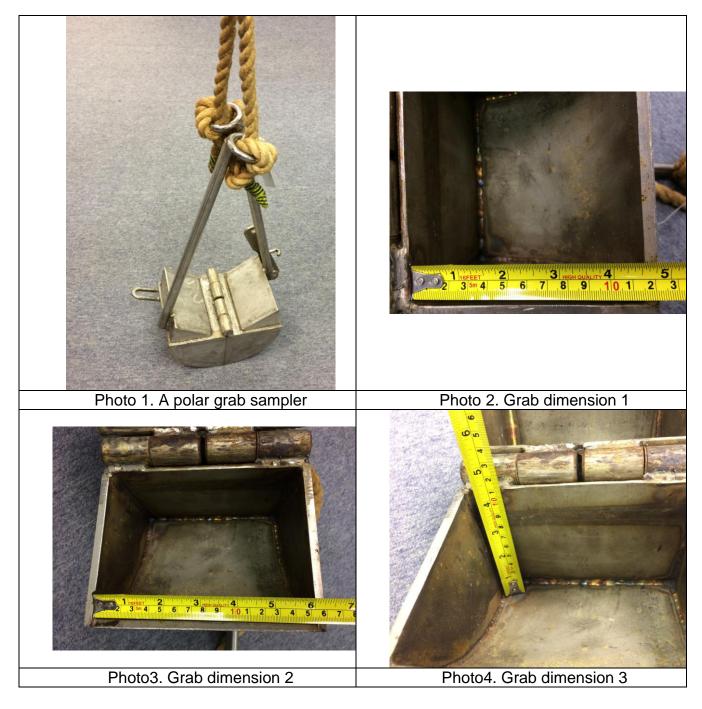
,

Image: Constraint of the polychaeta, Polycodontes melanonotusImage: Constraint of the polychaeta, Polycodontes melanonotusImage: Constraint of the polychaeta, Polycodontes melanonotusD) The sea pen, Acabaria harbereri

Appendix B: Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A


Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0330A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•		·	•
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
	e Manage	ment			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0330A

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented