Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Monthly EM&A Report August 2018

Client : Drainage Services Department

Project : Contract No. CM 14/2016

Environmental Team for Operational

Environmental Monitoring and Audit for Siu

Ho Wan Sewage Treatment Works

Report No.: : 0041/17/ED/0357A

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung

Environmental Team Leader Fugro Technical Services Limited

Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/18-0156

3 October 2018

Drainage Services Department

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. CHUNG Ching Hong, Romeo (E/CM9)

Dear Sir,

RE: CONTRACT No. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (AUGUST 2018)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for August 2018 (Report No.: 0041/17/ED/0357A) received from the Environmental Team (ET), Messrs. Fugro Technical Services Ltd., on 28 September 2018 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of Allied Environmental Consultants Ltd.

Grace M. H. KWOK

Independent Environmental Checker

GK/ri/rc

c.c. Fugro Technical Service (ET Leader)
AECOM

Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

問環

有培

司估

By Post and E-mail

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	18
5.	CHINESE WHITE DOLPHIN MONITORING	26
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	27
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	28
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	29
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	30
10.	FUTURE KEY ISSUES	31
11.	CONCLUSION	32

FIGURE

- Figure 1 Monitoring Stations of Air Sensitive Receivers
- Figure 2 Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
- Figure 3 Location of the Tide Gauge
- Figure 4 Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

APPENDICES

Appendix A Project Organization Chart

Appendix B Monitoring Schedule for Present and Next Reporting Period

Appendix C Event and Action Plan for Air Quality Monitoring

Appendix D Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Appendix E Results and Graphical Presentation of Water Quality Monitoring

Appendix F Tidal Data obtained from Ma Wan Marine Traffic Station

Appendix G Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

Appendix H Benthic Survey Report

Appendix I Photos of Grab Samplers

Appendix J Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 1

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the thirteenth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 August 2018 to 31 August 2018 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 21 August 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 2

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current H_2S measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 3

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 Project Description

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Egineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 Project Organization

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Romeo Chung	2594 7266	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 5

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H₂S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H₂S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H₂S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H₂S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer / Model	Serial Number	Sensor Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected:
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 6

Table 2.2 Categories of Odour Intensity

rabio ziz Gatogorios di Gasar interiorey			
Odour Level	Odour Intensity	Classification Criteria	
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described	
1	Slight	Identifiable odour, barely noticeable	
2	Noticeable	Identifiable odour, noticeable	
3	Strong	Identifiable odour, strong	
4	Extreme	Severe odour	

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

Table 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	Duration	Frequency	
H ₂ S concentration monitoring Odour patrol	15 minutes	¹ Weekly basis for 6 months during the initial operation stage	
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring	

Remark:

¹⁾ In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Page 7

- 2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
- 3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
- 2.5.1 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in **Table 2.4**.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 8

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 9

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

Table 3.1 Location of Water Quality Monitoring

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monitoring Parameters			
In-situ Measurement	Laboratory Analysis		
Dissolved oxygen (mg/L)	E. coli (cfu/100ml)		
Temperature (degree Celsius)	5-day BOD (mg/l)		
pH value	Suspended Solids (mg/l)		
Water depth (m)	Ammonia as N (mg/l)		
Salinity (ppt)	Nitrate as N (mg/l)		
Turbidity (NTU)	Nitrite as N (mg/l)		
Current Speed (m/s)	Total inorganic nitrogen (mg/l)		
Current Direction (degree magnetic) Total phosphorus (soluble and particulate) (

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 10

Report No.: 0041/17/ED/0357A

3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be

also recorded.

3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Table 3.3 Water Quality Monitoring and Sampling Equipment

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	1) YSI 6920V2-2-M Sonde 2) Aqua TROLL 600 Multiparameter Sonde	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 11

Table 3.4 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality	Aqua TROLL 600 Multiparameter Sonde	584601
Monitoring Device	Multiparameter Sonde	525120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 12

Analysis Description	Method	Reporting limits
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 13

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 21 August 2018. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

Table 3.6 Summary of In-situ Monitoring Results (Mid-ebb)

Monitoring	Water	Sam	plin	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth	g De		oxygen	(degree	-	(ppt)	(NTU)	speed	velocity
	(m)	(m)	•	(mg/L)	Čelsius)		,	,	(m/s)	(degree
	,	,		, ,	,				,	magnetic)
		S	1	4.44	29.20	8.22	20.48	2.9	0.10	178.2
		S	1	4.37	29.10	8.21	20.43	2.9	0.15	178.4
	47	М	8.5	3.40	28.70	8.17	26.47	3.0	0.21	163.3
Α	17	М	8.5	3.41	28.70	8.17	26.22	2.9	0.23	170.7
		В	16	2.75	28.10	8.16	29.81	4.9	0.53	236.6
ļ.		В	16	2.75	28.10	8.16	29.74	5.5	0.50	244.4
		S	1	4.04	29.09	8.20	22.18	2.9	0.08	129.8
ļ		S	1	4.03	29.08	8.20	22.29	3.0	0.09	127.0
В	14	М	7	3.39	28.60	8.17	26.79	2.9	0.41	223.3
B	14	М	7	3.37	28.70	8.17	27.18	2.8	0.40	223.2
ļ.		В	13	2.88	28.20	8.16	29.16	2.8	0.32	238.0
		В	13	3.00	28.30	8.16	29.14	2.8	0.30	236.4
		S	1	4.51	29.20	8.24	20.22	3.2	0.08	183.5
ļ		S	1	4.42	29.30	8.23	20.18	3.2	0.11	207.5
С	12	М	6	3.57	29.00	8.17	24.80	2.9	0.22	194.1
	12	М	6	3.53	29.10	8.20	24.70	3.0	0.20	188.3
ļ		В	11	2.49	28.90	8.14	30.70	3.5	0.33	242.7
		В	11	2.37	28.30	8.13	30.30	3.5	0.33	249.1
		S	1	4.44	29.51	8.23	20.54	3.0	0.23	144.4
ļ		S	1	4.42	29.45	8.23	20.71	3.1	0.21	144.0
D	13	М	6.5	3.96	29.21	8.20	22.54	3.1	0.19	152.6
	13	М	6.5	3.90	29.18	8.19	22.91	2.9	0.19	152.2
ļ.		В	12	2.15	27.95	8.13	31.50	10.0	0.31	221.0
		В	12	2.08	27.87	8.14	31.71	11.8	0.31	217.4
ļ		S	1	4.56	31.24	8.25	19.84	4.2	0.19	151.8
ļ		S	1	4.57	30.80	8.26	20.37	4.4	0.18	151.5
Е	16	М	8	3.99	29.56	8.19	23.49	5.0	0.29	200.6
	10	М	8	3.87	29.49	8.19	23.60	5.0	0.17	200.4
ļ		В	15	3.35	29.01	8.15	26.49	8.1	0.27	258.2
		В	15	3.04	28.92	8.14	27.08	8.8	0.20	230.9
ļ		S	1	4.80	29.62	8.28	21.04	5.5	0.23	160.5
ļ		S	1	4.81	29.62	8.28	21.03	5.0	0.21	157.5
_	00	М	11. 5	4.12	29.29	8.21	23.11	4.2	0.32	185.3
F	23	М	11. 5	4.13	29.29	8.21	23.24	5.2	0.34	186.2
		В	22	3.70	28.98	8.19	25.23	5.1	0.20	181.7
		В	22	3.64	28.94	8.19	25.40	5.9	0.24	165.4
		S	1	4.64	29.66	8.29	22.00	5.2	0.18	161.9
G	22	S	1	4.65	29.61	8.28	21.95	5.1	0.22	166.4
0		M	11	4.27	29.33	8.24	23.04	4.4	0.34	220.7

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Page 14

Monitoring Station	Water Depth (m)	Samplin g Depth (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		М	11	4.24	29.30	8.24	23.06	4.3	0.38	231.2
		В	21	3.01	28.56	8.16	29.43	6.5	0.48	243.3
		В	21	2.79	28.45	8.16	29.67	6.8	0.46	245.9
		S	1	4.70	29.57	8.29	21.95	4.9	0.26	143.4
		S	1	4.74	29.58	8.29	21.85	4.5	0.27	144.9
Н	19	M	9.5	4.23	29.25	8.24	23.10	4.7	0.33	189.6
П	19	М	9.5	4.23	29.23	8.24	23.12	4.4	0.35	186.2
		В	18	2.76	28.19	8.17	29.60	7.2	0.53	189.7
		В	18	2.77	28.19	8.17	29.55	8.4	0.55	191.6

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Monitoring	Water		pling	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth	Dep	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
		, ,								magnetic)
		S	1	5.23	29.38	8.34	23.01	3.1	0.28	197.7
		S	1	5.19	29.49	8.32	23.06	3.2	0.22	174.3
^	4.5	М	7.5	3.93	29.17	8.21	27.36	4.3	0.26	147.8
А	15	М	7.5	4.01	29.15	8.22	27.33	4.3	0.26	167.1
		В	14	2.62	28.57	8.14	28.70	7.8	0.24	157.3
		В	14	2.71	28.58	8.14	28.05	8.1	0.26	150.2
		S	1	4.70	29.11	8.28	24.98	2.5	0.29	217.3
		S	1	4.25	29.02	8.25	25.28	2.9	0.34	244.1
Ь	14	М	7	3.54	28.74	8.21	26.92	3.1	0.25	141.2
В	14	М	7	3.50	28.71	8.20	27.16	3.1	0.23	136.3
		В	13	2.16	27.90	8.14	31.32	14.3	0.10	112.3
		В	13	2.12	27.84	8.14	31.33	13.9	0.17	157.3
		S	1	5.77	29.43	8.40	22.72	2.9	0.25	234.4
		S	1	5.72	29.42	8.39	22.76	3.1	0.08	252.3
С	12	М	6	2.06	28.06	8.12	30.85	5.2	0.51	223.4
	12	М	6	2.01	27.99	8.12	30.91	5.1	0.34	200.3
		В	11	1.94	27.50	8.14	32.24	14.9	0.12	156.4
		В	11	1.95	27.43	8.14	32.24	15.5	0.08	184.4
		S	1	4.88	29.08	8.32	24.05	2.9	0.20	238.8
		S	1	4.88	29.14	8.32	24.05	3.0	0.15	267.7
D	14	М	7	3.84	28.73	8.18	28.22	5.0	0.61	232.0
	14	М	7	3.79	28.24	8.13	29.89	6.0	0.65	233.8
		В	13	2.00	27.47	8.15	32.53	19.5	0.21	222.7
		В	13	1.97	27.36	8.15	32.57	19.6	0.22	203.3
		S	1	4.89	28.88	8.32	24.92	3.3	0.21	151.3
		S	1	4.90	29.01	8.32	24.50	3.2	0.13	138.8
Е	14	М	7	2.87	28.12	8.17	29.95	5.0	0.15	114.1
	14	М	7	2.84	28.15	8.18	29.34	6.1	0.10	106.3
		В	13	2.59	27.72	8.18	30.61	3.7	0.06	159.2
		В	13	2.60	27.72	8.18	30.57	3.6	0.09	192.3
		S	1	5.24	29.12	8.26	23.94	3.1	0.34	232.0
F	18	S	1	5.23	29.21	8.33	23.96	3.3	0.42	241.5
	10	М	9	2.93	28.27	8.29	29.39	5.4	0.23	185.9
		М	9	2.75	28.20	8.22	29.44	5.2	0.20	234.0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 15

Monitoring Station	Water Depth	Dep	npling th	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current	Current velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree magnetic)
		D	47	2.27	07.44	0.44	22.00	4.7	0.55	
		В	17	2.27	27.44	8.44	32.00	4.7	0.55	220.4
		В	17	2.23	27.33	8.60	32.21	4.0	0.49	230.9
		S	1	4.77	29.16	8.29	24.15	2.8	0.10	142.8
		S	1	4.77	29.18	8.29	24.19	3.1	0.08	159.2
G	13	М	6.5	3.46	28.60	8.20	27.16	3.4	0.07	188.4
G	13	М	6.5	3.45	28.59	8.20	27.17	3.4	0.10	184.1
		В	12	2.52	27.83	8.16	30.95	5.3	0.09	210.9
		В	12	2.39	27.74	8.16	31.06	4.5	0.06	219.7
		S	1	5.00	29.20	8.29	23.74	4.9	0.13	197.8
		S	1	4.97	29.23	8.29	23.75	5.0	0.13	174.0
Н	19	M	9.5	4.35	29.06	8.22	24.85	6.7	0.21	175.8
H 18	19	М	9.5	4.20	29.05	8.22	24.88	6.2	0.18	173.3
		В	18	2.76	28.22	8.14	29.43	15.8	0.19	227.9
		В	18	2.63	28.10	8.14	29.64	16.3	0.20	218.2

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix E**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Station Depth (m) Complete (mg/L) as N (mg/L) as N (mg/L) (mg/L		Water			TSS	NH ₃	NO ₂	NO ₃	TIN	E.coli	Total P	BOD ₅
Mathematical Process of the Content of the Conten	Monitoring					-						-
A	Station			tri	(mg/L)				(mg/L)	(Clu/TOUTIL)	(mg/L)	(mg/L)
A		(m)		1		_						
A 17				1								
B 16 4.4 0.023 0.159 0.595 0.777 60 0.06 <1.0 B 16 4.4 0.023 0.159 0.595 0.777 60 0.04 <1.0 B 16 4.4 0.023 0.159 0.595 0.777 60 0.04 <1.0 B 16 4.0 0.024 0.174 0.668 0.866 30 0.04 <1.0 S 1 3.2 0.052 0.193 0.857 1.100 430 0.04 <1.0 S 1 2.8 0.063 0.196 0.864 1.120 370 0.05 <1.0 M 7 3.6 0.079 0.198 0.852 1.130 30 0.05 <1.0 M 7 3.6 0.055 0.194 0.856 1.100 50 0.05 1.1 B 13 4.7 0.061 0.186 0.760 1.010 100 0.04 <1.0 B 13 5.5 0.041 0.183 0.810 1.030 140 0.05 <1.0 B 13 5.5 0.041 0.183 0.810 1.030 140 0.05 <1.0 S 1 5.2 0.066 0.218 1.020 1.300 220 0.06 1.2 S 1 5.8 0.050 0.225 1.000 1.280 170 0.06 <1.0 M 6 5.0 0.082 0.225 0.994 1.300 150 0.06 <1.0 M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 B 11 5.7 0.066 0.199 0.841 1.100 260 0.05 <1.0 B 11 6.0 0.048 0.194 0.804 1.040 200 0.05 <1.0 B 11 6.0 0.048 0.194 0.804 1.040 200 0.05 <1.0 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2 M 6.5 2.6 0.114 0.198 0.956 1.270 530 0.05 1.1 M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 <1.0 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0				1								
B 16 4.4 0.023 0.159 0.595 0.777 60 0.06 <1.0 B 16 4.4 0.023 0.159 0.595 0.777 60 0.04 <1.0 B 16 4.0 0.024 0.174 0.668 0.866 30 0.04 <1.0 S 1 3.2 0.052 0.193 0.857 1.100 430 0.04 <1.0 S 1 2.8 0.063 0.196 0.864 1.120 370 0.05 <1.0 S 1 2.8 0.063 0.196 0.864 1.120 370 0.05 <1.0 M 7 3.6 0.079 0.198 0.852 1.130 30 0.05 <1.0 M 7 3.6 0.055 0.194 0.856 1.100 50 0.05 1.1 B 13 4.7 0.061 0.186 0.760 1.010 100 0.04 <1.0 B 13 5.5 0.041 0.183 0.810 1.030 140 0.05 <1.0 S 1 5.2 0.066 0.218 1.020 1.300 220 0.06 1.2 S 1 5.8 0.050 0.225 1.000 1.280 170 0.06 <1.0 S 1 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 B 11 5.7 0.066 0.199 0.841 1.100 260 0.05 <1.0 B 11 6.0 0.048 0.194 0.804 1.040 200 0.05 <1.0 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2 M 6.5 2.6 0.114 0.198 0.956 1.270 530 0.05 1.1 M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 1.2 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 1.2	Δ	17	M	8.5	3.2	0.022	0.226	0.864	1.110	70	0.05	1.1
B 16 4.0 0.024 0.174 0.668 0.866 30 0.04 <1.0 S 1 3.2 0.052 0.193 0.857 1.100 430 0.04 <1.0 S 1 2.8 0.063 0.196 0.864 1.120 370 0.05 <1.0 M 7 3.6 0.079 0.198 0.852 1.130 30 0.05 <1.0 M 7 3.6 0.055 0.194 0.856 1.100 50 0.05 1.1 B 13 4.7 0.061 0.186 0.760 1.010 100 0.04 <1.0 B 13 5.5 0.041 0.183 0.810 1.030 140 0.05 <1.0 S 1 5.8 0.050 0.225 1.000 1.280 170 0.06 <1.0 S 1 5.8 0.050 0.225 1.000 1.280 170 0.06 <1.0 M 6 5.0 0.082 0.225 0.994 1.300 150 0.06 <1.0 M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 B 11 6.0 0.048 0.194 0.804 1.040 200 0.05 <1.0 S 1 2.7 0.091 0.196 0.948 1.240 1100 0.06 <1.0 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2 M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 1.2 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0		17	M	8.5	3.2	0.045	0.221	0.879	1.140	90	0.06	<1.0
B 14 S			В	16	4.4	0.023	0.159	0.595	0.777	60	0.04	<1.0
B 14 S				16	4.0	0.024	0.174	0.668	0.866	30	0.04	<1.0
B			S	1	3.2	0.052	0.193	0.857	1.100	430	0.04	<1.0
C M 7 3.6 0.055 0.194 0.856 1.100 50 0.05 1.1 B 13 4.7 0.061 0.186 0.760 1.010 100 0.04 <1.0			S	1	2.8	0.063	0.196	0.864	1.120	370	0.05	<1.0
C 12 M	Ь	4.4	М	7	3.6	0.079	0.198	0.852	1.130	30	0.05	<1.0
C	В	14	М	7	3.6	0.055	0.194	0.856	1.100	50	0.05	1.1
C			В	13	4.7	0.061	0.186	0.760	1.010	100	0.04	<1.0
C			В	13	5.5	0.041	0.183	0.810	1.030	140	0.05	<1.0
D M 6 5.0 0.082 0.225 0.994 1.300 150 0.06 <1.0 M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0			S	1	5.2	0.066	0.218	1.020	1.300	220	0.06	1.2
D M 6 5.5 0.068 0.197 0.912 1.180 110 0.05 <1.0 B 11 5.7 0.066 0.199 0.841 1.100 260 0.05 <1.0			S	1	5.8	0.050	0.225	1.000	1.280	170	0.06	<1.0
D 13 M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 <1.0 M 6.5 5.9 0.084 0.200 0.900 1.130 230 0.05 <1.0	_	40	М	6	5.0	0.082	0.225	0.994	1.300	150	0.06	<1.0
B 11 5.7 0.066 0.199 0.841 1.100 260 0.05 <1.0 B 11 6.0 0.048 0.194 0.804 1.040 200 0.05 <1.0 S 1 2.7 0.091 0.196 0.948 1.240 1100 0.06 <1.0 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2 M 6.5 2.6 0.114 0.198 0.956 1.270 530 0.05 1.1 M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 1.2 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0 B 12 3.7 0.034 0.200 0.900 1.130 230 0.05 1.2	C	12	М	6	5.5	0.068	0.197	0.912	1.180	110	0.05	<1.0
D			В	11	5.7	0.066	0.199	0.841		260	0.05	
D S 1 2.7 0.091 0.196 0.948 1.240 1100 0.06 <1.0			В	11	6.0	0.048	0.194	0.804	1.040	200	0.05	<1.0
D 13 S 1 2.9 0.078 0.222 0.913 1.210 950 0.06 1.2			S	1		0.091	0.196	0.948	1.240	1100	0.06	
D				1								
M 6.5 2.9 0.084 0.215 0.928 1.230 610 0.05 1.2 B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0		40		6.5								
B 12 3.5 0.030 0.182 0.739 0.951 280 0.05 <1.0 B 12 3.7 0.034 0.200 0.900 1.130 230 0.05 1.2	ט	13										
B 12 3.7 0.034 0.200 0.900 1.130 230 0.05 1.2												
	Е	16	S	1	2.0	0.035	0.187	0.833	1.050	110	0.04	1.1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 16

Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂	NO ₃	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		(g, =)	(mg/L)	(mg/L)	(mg/L)	(g, –)	(6.6% 166.11=)	(9, –)	(g, _/
	, ,	Ŝ	1	2.0	0.028	0.178	0.852	1.060	170	0.04	1.1
		М	8	2.4	0.044	0.154	0.834	1.030	140	0.04	1.3
		М	8	2.1	0.042	0.165	0.834	1.040	80	0.04	1.4
		В	15	2.3	0.042	0.183	0.755	0.980	40	0.04	<1.0
		В	15	2.1	0.039	0.175	0.742	0.957	90	0.04	<1.0
		S	1	2.3	0.061	0.182	0.778	1.020	390	0.05	<1.0
		S	1	2.3	0.059	0.169	0.726	0.954	320	0.05	<1.0
F	23	М	11.5	2.2	0.042	0.186	0.824	1.050	30	0.05	1.2
Г	23	М	11.5	2.0	0.039	0.182	0.858	1.080	70	0.04	1.4
		В	22	3.4	0.060	0.176	0.725	0.962	130	0.04	1.1
		В	22	3.4	0.055	0.178	0.862	1.100	90	0.04	1.0
		S	1	2.3	0.033	0.190	0.812	1.030	240	0.05	1.1
		S	1	1.8	0.046	0.186	0.811	1.040	200	0.04	1.1
G	22	М	11	2.4	0.039	0.182	0.814	1.030	180	0.04	1.2
G	22	М	11	2.2	0.059	0.185	0.813	1.060	230	0.05	1.1
		В	21	2.6	0.060	0.183	0.810	1.050	170	0.04	1.0
		В	21	2.4	0.044	0.186	0.806	1.040	130	0.04	1.0
		S	1	2.7	0.043	0.174	0.810	1.030	140	0.05	1.0
		S	1	2.3	0.036	0.177	0.814	1.030	190	0.06	<1.0
Н	19	М	9.5	2.6	0.045	0.181	0.792	1.020	250	0.04	1.0
П	19	М	9.5	2.6	0.044	0.182	0.791	1.020	190	0.05	<1.0
		В	18	3.4	0.048	0.183	0.819	1.050	540	0.05	<1.0
		В	18	3.1	0.026	0.182	0.813	1.020	660	0.05	<1.0

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

1 6	Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)										
Monitoring	Water	Sam	npling	TSS	NH_3	NO_2	NO_3	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	5.1	0.028	0.184	0.793	1.000	630	0.04	1.7
		S	1	5.0	0.020	0.177	0.800	0.996	720	0.06	1.6
Α	15	М	7.5	4.6	0.051	0.180	0.795	1.030	650	0.06	1.6
_ ^	13	М	7.5	5.0	0.039	0.165	0.804	1.010	540	0.06	1.2
		В	14	5.2	0.042	0.176	0.798	1.010	1200	0.06	1.6
		В	14	4.9	0.032	0.177	0.792	1.000	1500	0.05	1.6
		S	1	3.6	0.041	0.152	0.791	0.984	120	0.04	2.0
		S	1	3.4	0.066	0.156	0.793	1.010	160	0.05	1.7
В	14	М	7	6.0	0.038	0.155	0.791	0.984	60	0.04	1.8
	'-	М	7	6.3	0.065	0.159	0.791	1.020	40	0.04	2.0
		В	13	6.4	0.081	0.148	0.797	1.030	80	0.06	2.0
		В	13	5.7	0.043	0.153	0.791	0.987	120	0.04	1.9
		S	1	4.9	0.047	0.149	0.823	1.020	150	0.05	2.0
		S	1	5.4	0.026	0.159	0.812	0.997	90	0.05	1.9
С	12	М	6	4.9	0.046	0.156	0.818	1.020	140	0.06	1.7
	12	М	6	4.7	0.030	0.151	0.824	1.000	110	0.05	1.8
		В	11	6.9	0.042	0.159	0.816	1.020	80	0.05	1.7
		В	11	6.8	0.049	0.157	0.849	1.050	50	0.06	2.0
		S	1	5.0	0.034	0.148	0.795	0.977	40	0.04	1.7
D	14	S	1	5.4	0.022	0.158	0.790	0.970	60	0.04	1.6
	'-	М	7	6.8	0.042	0.158	0.784	0.983	100	0.05	1.5
	-	М	7	7.0	0.024	0.152	0.786	0.962	70	0.04	1.5

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 17

Report No.: 0041/17/ED/0357A

					T		110 -				
Monitoring	Water		pling	TSS	NH ₃	NO_2	NO_3	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		В	13	8.8	0.029	0.161	0.768	0.958	30	0.04	1.6
		В	13	9.4	0.025	0.155	0.784	0.963	50	0.05	1.6
		S	1	6.3	0.022	0.123	0.738	0.883	90	0.05	2.2
		S	1	6.0	0.021	0.129	0.741	0.892	50	0.05	2.0
Е	14	М	7	8.3	0.017	0.122	0.748	0.888	70	0.03	2.0
	14	М	7	8.5	0.022	0.129	0.738	0.889	130	0.03	2.1
		В	13	10.4	0.022	0.132	0.739	0.893	160	0.06	2.1
		В	13	10.0	0.022	0.117	0.748	0.886	120	0.06	2.1
		S	1	7.9	0.052	0.129	0.705	0.886	170	0.05	1.5
		S	1	8.3	0.048	0.137	0.698	0.883	130	0.05	1.0
F	18	М	9	9.0	0.032	0.133	0.701	0.866	630	0.04	1.3
Г	10	М	9	8.8	0.052	0.135	0.701	0.888	540	0.03	1.4
		В	17	10.1	0.058	0.131	0.704	0.893	260	0.05	1.3
		В	17	9.6	0.019	0.134	0.701	0.853	210	0.05	1.3
		S	1	5.5	0.053	0.157	0.721	0.931	250	0.05	2.0
		S	1	5.1	0.059	0.160	0.704	0.923	330	0.03	1.1
G	13	М	6.5	6.5	0.053	0.154	0.720	0.927	240	0.05	1.5
G	13	М	6.5	6.4	0.050	0.155	0.720	0.926	160	0.05	1.6
		В	12	7.0	0.045	0.156	0.717	0.918	190	0.05	1.3
		В	12	6.8	0.052	0.154	0.724	0.931	230	0.05	2.6
		S	1	4.6	0.105	0.150	0.756	1.010	30	0.05	1.6
		S	1	4.9	0.063	0.159	0.742	0.964	70	0.04	1.3
Н	19	М	9.5	6.0	0.069	0.163	0.735	0.966	380	0.05	1.2
	19	М	9.5	6.4	0.040	0.153	0.740	0.933	310	0.04	1.4
		В	18	6.3	0.091	0.152	0.740	0.984	340	0.05	1.4
		В	18	5.9	0.067	0.152	0.738	0.957	260	0.04	1.3

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and affected the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10 Weather condition of water quality monitoring

Date	Aiı	r Temperat	ure	Mean	Total
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
21 August 2018	30.2	28.3	26.7	86	25.7

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 18

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Monitoring Parameters									
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey								
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)								
Distribution) (%)									
Total organic carbon* (%)	Chromium (µg/L)								
pH value	Copper (µg/L)								
Ammonia as N (mg-N/kg)	Lead (µg/L)								
Total nitrogen (mg-N/kg)	Mercury ((µg/L)								
Total phosphorus (mg-N/kg)	Nickel (µg/L)								
Cadmium (mg/kg)	Zinc (µg/L)								
Chromium (mg/kg)	Arsenic (µg/L)								
Copper (mg/kg)	Silver (µg/L)								
Lead (mg/kg)									
Mercury (mg/kg)									
Nickel (mg/kg)									
Zinc (mg/kg)									
Arsenic (mg/kg)									
Silver (mg/kg)									

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Page 19

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 20

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

Table 4.5 Laboratory Med	asarement Analysis Methods and Ne	porting Limits	
Analysis Description	Method	Reporting limits	
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%	
Total Organic Carbon	APHA 5310B	0.05%	
pH value	APHA 4500H: B	0.1 pH unit	
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg	
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg	
Total Phosphorus	APHA 4500P: B&H	10 mg/kg	
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg	
Chromium		0.5 mg/kg	
Copper		0.2 mg/kg	
Lead		0.2 mg/kg	
Mercury		0.05 mg/kg	
Nickel		0.2 mg/kg	
Zinc		0.5 mg/kg	
Arsenic		0.5 mg/kg	
Silver		0.1 mg/kg	

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Page 21

- weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.
- 4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 21 August 2018. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G.**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 22

Table 4.4 Summary of laboratory analysis results for sediment monitoring

Table		Carrina	,		ariaryoro								
Monitoring	рН	NH_3	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	N	Р	(mg/k	(mg	(mg	(mg	(mg/	(mg	(mg	(mg	(mg
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	kg)	/kg)	/kg)	/kg)	/kg)
			N/kg)	P/kg)									
Α	8.5	9.4	840	409	<0.10	31.9	23.7	30.1	0.06	18.1	85.6	11.2	0.21
В	8.4	3.2	960	504	0.15	51.8	69.6	50.7	0.15	28.7	123	15.9	0.46
С	8.4	11.6	1300	569	0.13	50.6	38.5	44.4	0.17	29.1	136	14.0	0.35
D	8.4	9.8	1250	537	0.11	50.4	39.8	45.0	0.15	29.9	135	14.0	0.32
Е	8.4	12.6	1060	445	<0.10	49.4	40.9	42.6	0.10	28.6	131	12.1	0.36
F	8.4	30.1	270	600	<0.10	50.4	41.9	45.0	0.14	30.1	136	12.9	0.51
G	8.6	4.5	50	107	<0.10	24.7	40.9	24.2	<0.0 5	13.7	77.5	6.9	0.18
Н	8.4	11.0	<10	49	0.11	46.3	46.2	40.1	0.11	26.9	121	12.7	0.33

Table 4.5 Summary of laboratory analysis results for benthic survey

Table 4.5 Sufficially of laboratory analysis results for bentine survey								
Monitoring Station	Total organic	Grain size profile (%)				Description		
Station	carbon (%)	Gravel	Sand	Silt	Clay			
А	0.76	2	25	42	31	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments		
В	0.86	1	18	49	32	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments		
С	0.86	0	3	61	36	Dark grey, slightly sandy SILT/CLAY		
D	0.90	0	9	51	40	Dark grey, slightly sandy SILT/CLAY		
Е	1.08	0	5	59	36	Dark grey, slightly sandy SILT/CLAY with shell fragments		
F	1.10	0	2	61	37	Dark grey, slightly sandy SILT/CLAY		
G	0.88	0	12	54	34	Dark grey, slightly sandy SILT/CLAY with shell fragments		
Н	0.77	0	6	56	38	Dark grey, slightly sandy SILT/CLAY with shell fragments		

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Heavy marine traffic was observed nearby the Project site and its vicinity and affected the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Table 4.6 Weather condition of water quality monitoring

Date	Ai	r Temperat	ure	Mean	Total	
	Maximum	Mean	Minimum	Relative	Rainfall	
	(deg. C) (deg. C) (deg		(deg. C)	Humidity	(mm)	
				(%)		
21 August 2018	30.2	28.3	26.7	86	25.7	

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 23

4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Table 4.7 Summary of benthic survey data on 14 June 2018

Manitarina	•	Total		Ī	
Monitoring	Abundance	Total	Number of	Diversity (H')	Evenness (J)
Station	(ind.)	Biomass (g)	Taxa	Diversity (11)	Everifiess (0)
Α	28	22.18	20	2.92	0.97
В	20	3.16	16	2.72	0.98
С	27	6.70	17	2.64	0.93
D	25	1.34	13	2.40	0.93
Е	39	12.11	20	2.74	0.91
F	27	9.31	14	2.44	0.92
G	40	4.97	21	2.76	0.91
Н	17	4.22	11	2.26	0.94
TOTAL	223	63.99	52		

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 223 macrobenthic organisms were collected from the eight monitoring stations during the August 2018 monitoring period. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 26 individuals (ind.) compared to the June 2018 monitoring results. Macrobenthic abundance showed decreasing trend since the wet season (August 2004) baseline monitoring albeit insignificant (p-value = 0.38 ; F crit = 2.94 ; α = 0.05). The decreasing trend might be attributed to weather disturbances (i.e. tropical storms) that hit Hong Kong week(s) before the sampling activities for June 2018 and August 2018 monitoring periods. Wave action brought about by these weather disturbances might have caused intermediate disturbances in the sampling stations, particularly that these stations are characteristically shallow waters (11m to 23m). Wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Molluscs, particularly bivalves, were substantially affected by these disturbances as shown in their decreasing abundance since April 2018 monitoring period.

Across monitoring stations, the distribution of macrobenthic abundance is significantly variable (p-value = 0.03; F crit = 2.42; α = 0.05). As previously reported, the number of macrobenthic organisms might be correlated with the particle or grain size distribution as relatively higher abundances were recorded in stations with moderately sorted sediments and lower abundances in well-sorted sediments. Well-sorted sediments can only provide a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at stations with relatively homogenous grain size distribution. However, for the present monitoring period, no clear correlation between the abundances and sediment characteristics was observed which might due to the constant re-working of sediments brought about by the series of weather disturbances affecting the sampling stations.

ii) Biomass

The total wet biomass for all the eight monitoring stations during the August 2018 monitoring period was 63.99g, which is less than the biomass recorded during the

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0357A

previous monitoring periods. The decrease in total wet biomass (from April 2018 to August 2018) might be attributed to the parallel decline in the abundance of bivalves brought about by the series of weather disturbances that have impacted the sampling stations week(s) before the sampling activities.

The highest biomass continued to be observed in Station A (22.18g) and the lowest this present monitoring period is at the impact station, Station D (1.34g). Highest biomass remained at Station A because of the bivalves, *Ruditapes philippinarum* and *Paphia undulata*, remained to contribute significantly to the total wet biomass due to their larger sizes despite the decline in their abundance. Biomass generally decreased in all stations except at Station C and Station F due to the shift in the macrobenthic assemblage, which is currently dominated by smaller organisms (i.e. annelids).

iii) Taxonomic Composition

A total of seven phyla comprised of 37 families and 52 taxa were identified during the August 2018 monitoring period. With the previous increase in the number of annelid species and abundance and the decrease in the abundance of bivalves, annelids (i.e. polychaetes) remained to dominate the current benthic assemblages comprising about 65.02% of the sampled population. The intermediate disturbance in the form of wave action generated by the weather disturbances, as previously reported, might have cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ("benthic storms") was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

The current benthic assemblage is observed to be similar with the baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period capitellid and nepthyid were the most abundant group.

Station G remained to have the highest number of taxa (21) identified, followed by Station A and Station E both each have 20 taxa. The relatively higher number of taxa identified were mainly contributed by the species of polychaetes recorded at these stations. Station H had the lowest number (11) of taxa identified. Interestingly, the number of taxa in the impact stations (Station C and Station D) is increasing since April 2018 monitoring period.

iv) Diversity

Diversity indices (H') for the August 2018 monitoring period ranged from low (2.26 at Station H) to moderate (2.92 at Station A). Compared to the baseline and previous monitoring periods, increase in diversity in all stations (except at Station G) was observed. This increase might be due to the colonization of opportunistic species (i.e. annelids) of the new habitats made available by wave actions caused by weather disturbances. The increase in diversity consequently increase homogeneity of the benthic communities as showed by their high Evenness (J) Index.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Page 25

Report No.: 0041/17/ED/0357A

The detailed benthic survey results are provided in Appendix H.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 26

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 10 July 2018, "Monitoring of Marine Mammals in Hong Kong Waters (2017-18)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 27

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 28

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 29

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 21 August 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 30

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Table 9.1 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.2 Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 31

10. FUTURE KEY ISSUES

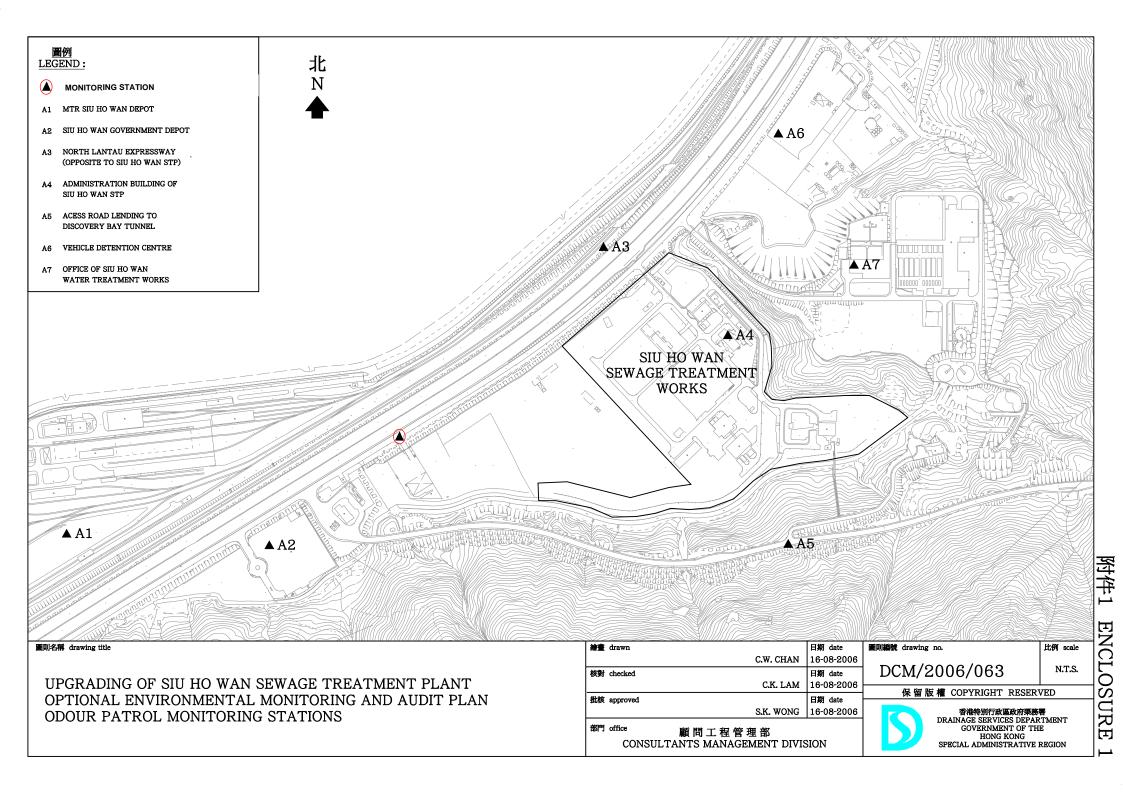
- 10.1.1 The key issues to be considered in the coming reporting month include:
 - i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
 - ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H₂S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H₂S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
 - iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A Page 32

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H2S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 21 August 2018 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic was observed nearby the Project site and its vicinity and affected the water quality. The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 10 July 2018, "Monitoring of Marine Mammals in Hong Kong Waters (2017-18)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions*. *All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.

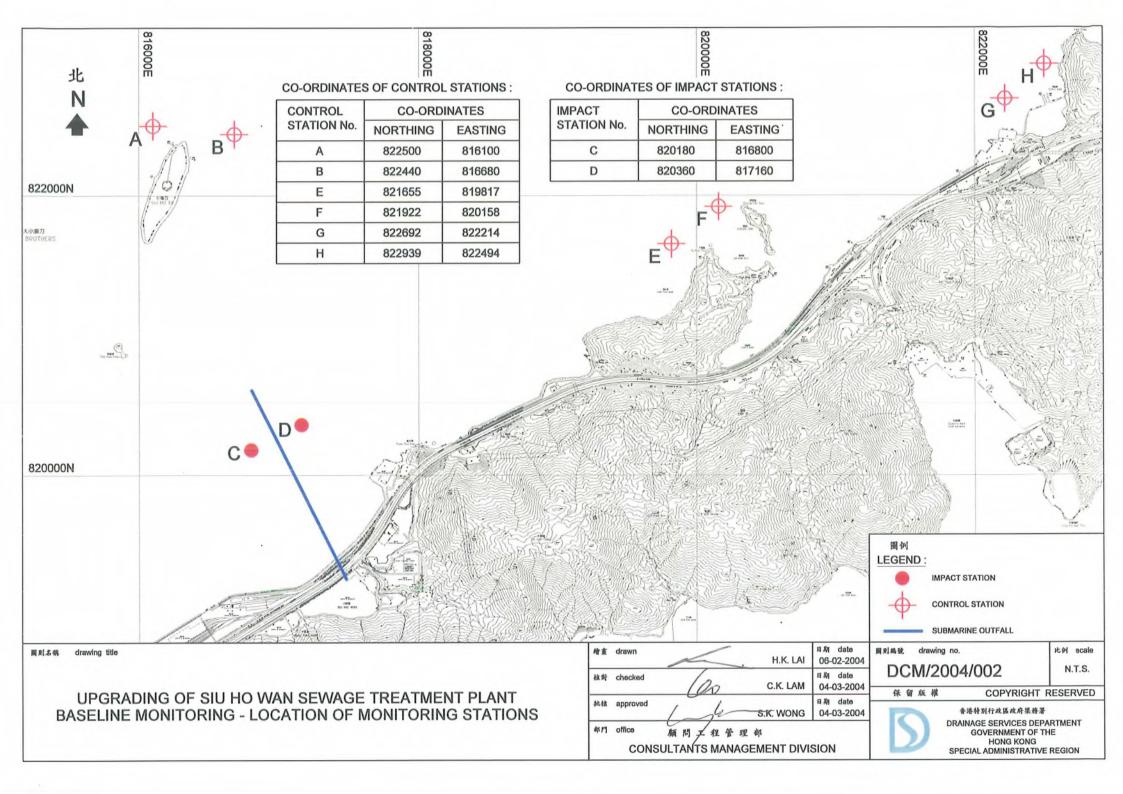

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Figure 1

Monitoring Stations of Air Sensitive Receivers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

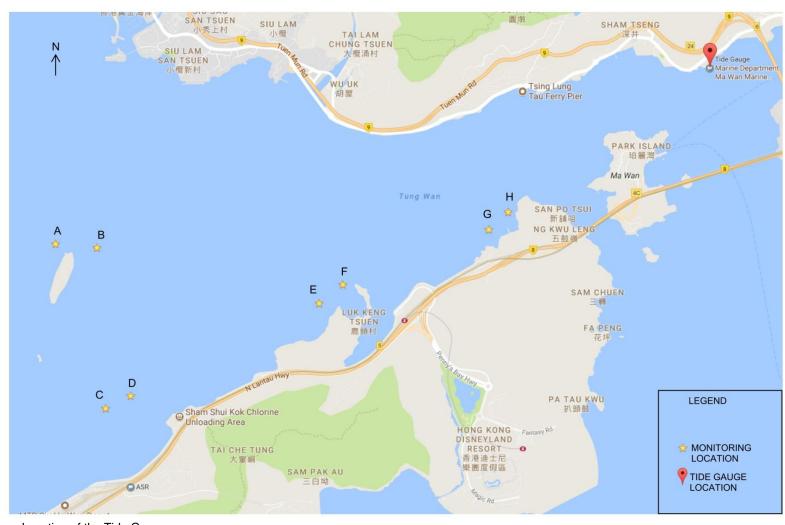

Report No.: 0041/17/ED/0357A

Figure 3

Location of the Tide Gauge

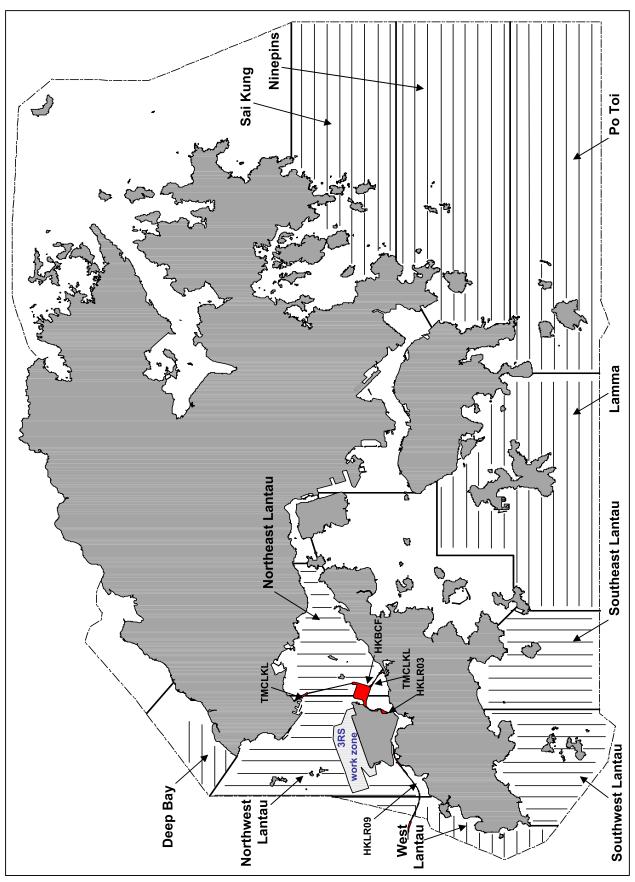
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Location of the Tide Gauge

Source: Google Maps

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

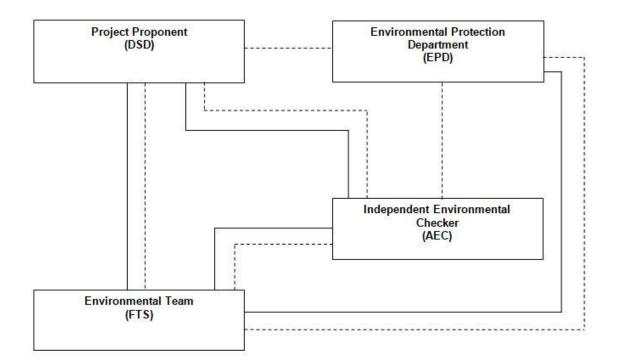
Figure 4

Location of Survey Areas of Chinese White Dolphins

Source: Monitoring of Marine Mammals in Hong Kong Waters (2017-18), AFCD

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Legend:

Line of Reporting

Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
			1 August	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Ebb (09:33) Mid-Flood (17:05)	22	23	24	25	
26	27	28	29	30	31		

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
						1 September
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30						

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

EVENIT		ACTION	
EVENT	ET	IEC	*Operator
Action Level			
One complaint received for specific odour event	Check Operator's working methods; Discuss with Operator on required remedial actions	Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures	1. Identify/ confirm source with ET; 2. Discuss with ET for remedial actions required; 3. Ensure remedial actions properly implemented 4. Rectify any unacceptable practice; 5. Amend operation methods if appropriate
Limit Level		•	
More than one complaint	1. Investigated the causes of complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control	1. Discuss amongst ET and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures	1. Indentify/ confirm source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals

^{*} The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181114(1)

4(1)

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client : Fugro Technical Services Limited (MCL)

Client's address : Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description : One Aqua Troll 600 Multi-parameter Water Quality Meter

Client sample ID : Serial No. 584601

Test required : Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID : WA181114/2

Date of calibration : 11/06/2018

Next calibration date : 10/09/2018

Test method used : In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181114(1)

Page 2 of 3

Results:

A. pH calibration

pH reading at 26°C f	pH reading at 26°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)			
Theoretical	Measured	Deviation		
9.18	9.20	+0.02		
6.86	6.82	-0.04		

B. Salinity calibration

	Salinity, ppt				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.06	+0.06	± 0.5		
20	20.11	+0.11	± 1.0		
30	30.30	+0.30	± 1.5		
40	39.84	-0.16	± 2.0		

C. Dissolved Oxygen calibration

Trial Na	Dissolved oxyge	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.97	7.96		
2	7.96	7.95		
3	7.99	7.94		
Average	7.97	7.95		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by :

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories

Date

7/2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 142626WA181114(1)

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
26.04	25.99

E. Turbidity calibration

	Turbidity, N.T.U.				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.05	+0.05	± 0.4		
8	8.08	+0.08	± 0.6		
40	39.92	-0.08	± 3.0		
80	80.23	+0.23	± 4.0		

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories

Date

** End of Report **

10 (7/2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181114

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client : Fugro Technical Services Limited (MCL)

Client's address : Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description : One Aqua Troll 600 Multi-parameter Water Quality Meter

Client sample ID : Serial No. 525120

Test required : Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID : WA181114/1

Date of calibration : 11/06/2018

Next calibration date : 10/09/2018

Test method used : In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 142626WA181114

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C fo	pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)		
Theoretical	Measured	Deviation	
9.18	9.21	+0.03	
6.86	6.87	+0.01	

B. Salinity calibration

	Salinity, ppt				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.04	+0.04	± 0.5		
20	20.17	+0.17	± 1.0		
30	29.96	-0.04	± 1.5		
40	39.91	-0.09	± 2.0		

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen content, mg/L		
Thai No.	By calibrated D.O. meter	By D.O. meter	
1	8.03	8.01	
2	8.00	7.97	
3	7.94	7.93	
Average	7.99	7.97	

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

101 2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 E-mail: matlab@fugro.com

Website: www.fugro.com

Report No.: 142626WA181114

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.29	25.33

E. Turbidity calibration

	Turbidity, N.T.U.													
Theoretical	Measured	Deviation	Maximum acceptable Deviation											
4	4.05	+0.05	± 0.4											
8	8.10	+0.10	± 0.6											
40	40.77	+0.77	± 3.0											
80	81.06	+1.06	± 4.0											

Certified by :

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories

Date

** End of Report **

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

5906					
M9					
Down					
Sontek					
N/A					
RS232					
14.9					
4.02					
05/23/2017					
	M9 Down Sontek N/A RS232 14.9 4.02				

POWER TEST

Command Mode (W):	0.17	Range: 0.00 - 0.30
Sleep Mode (W):	N/A	Range: N/A
Ping Mode - 18V (W):	2.67	Range: 1.50 – 3.50
Power Check		PASS

NOISE TEST

95
96
95
101
93
95
91
100
88
PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

OT TIOTIS		
Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

												ı	n-situ Meas	uremer	nt						Laborator	y Analysis	S		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A		Mid-Ebb		Moderate			S	1	1	8.22	20.48	29.20	65.9	4.44	2.9	0.10	178.2	2.8	0.093	0.225	0.885	1.200	160	0.05	1.0
Α	21/8/2018	Mid-Ebb		Moderate	8:04	17	S	1	2	8.21	20.43	29.10	64.9	4.37	2.9	0.15	178.4	3.1	0.020	0.217	0.893	1.130	200	0.05	<1.0
A	21/8/2018	Mid-Ebb		Moderate	8:04	17	M	8.5	1	8.17	26.47	28.70	51.7	3.40	3.0	0.21	163.3	3.2	0.022	0.226	0.864	1.110	70	0.05	1,1
A	21/8/2018	Mid-Ebb Mid-Ebb		Moderate Moderate	8:04	17 17	M B	8.5 16	1	8.17 8.16	26.22	28.70 28.10	51.9 42.2	3.41 2.75	2.9 4.9	0.23	170.7 236.6	3.2 4.4	0.045	0.221	0.879	1.140 0.777	90 60	0.06	<1.0 <1.0
A	21/8/2018	Mid-Ebb		Moderate		17	B B	16	2	8.16	29.81	28.10	42.2	2.75	5.5	0.50	244.4	4.4	0.023	0.159	0.595	0.866	30	0.04	<1.0
B	21/8/2018	Mid-Ebb		Moderate	8:38	14	S	1	1	8.20	22 18	29.10	60.7	4.04	2.9	0.08	129.8	3.2	0.024	0.174	0.857	1.100	430	0.04	<1.0
B	21/8/2018	Mid-Ebb		Moderate	8:38	14	S	1	2	8.20	22.10	29.08	60.5	4.03	3.0	0.00	127.0	2.8	0.052	0.196	0.864	1.120	370	0.05	<1.0
В	21/8/2018	Mid-Ebb		Moderate	8:38	14	M	7	1	8.17	26.79	28.60	51.6	3.39	2.9	0.41	223.3	3.6	0.079	0.198	0.852	1,130	30	0.05	<1.0
В	21/8/2018	Mid-Ebb	Cloudy	Moderate	8:38	14	М	7	2	8.17	27.18	28.70	51.4	3.37	2.8	0.40	223.2	3.6	0.055	0.194	0.856	1.100	50	0.05	1.1
В		Mid-Ebb		Moderate			В	13	1	8.16	29.16	28.20	44.1	2.88	2.8	0.32	238.0	4.7	0.061	0.186	0.760	1.010	100	0.04	<1.0
В		Mid-Ebb		Moderate	8:38	14	В	13	2	8.16	29.14	28.30	45.8	3.00	2.8	0.30	236.4	5.5	0.041	0.183	0.810	1.030	140	0.05	<1.0
С	21/8/2018	Mid-Ebb		Moderate	9:03	12	S	1	1	8.24	20.22	29.20	66.8	4.51	3.2	0.08	183.5	5.2	0.066	0.218	1.020	1.300	220	0.06	1.2
C	21/8/2018	Mid-Ebb		Moderate	9:03	12	S	1	2	8.23	20.18	29.30	65.6	4.42	3.2	0.11	207.5	5.8	0.050	0.225	1.000	1.280	170	0.06	<1.0
C		Mid-Ebb		Moderate	9:03	12	M	6	1_	8.17	24.80	29.00	54.1	3.57	2.9	0.22	194.1	5.0	0.082	0.225	0.994	1.300	150	0.06	<1.0
C		Mid-Ebb Mid-Ebb		Moderate Moderate	9:03	12 12	M B	6 11	1	8.20 8.14	24.70 30.70	29.10 28.90	53.4 38.7	3.53 2.49	3.0	0.20	188.3 242.7	5.5 5.7	0.068	0.197	0.912	1.180	110	0.05	<1.0 <1.0
C	21/8/2018	Mid-Ebb		Moderate	9:03	12	B B	11	2	8.14	30.70	28.90	38.7	2.37	3.5	0.33	242.7	6.0	0.066	0.199	0.841	1.100 1.040	260 200	0.05	<1.0
D	21/8/2018	Mid-Ebb		Moderate	9.03	13	S	1	1	8 23	20.54	29.51	66.0	4.44	3.0	0.33	144.4	2.7	0.046	0.194	0.804	1.240	1100	0.05	<1.0
D		Mid-Ebb		Moderate	9.16	13	9	1	2	8 23	20.34	29.31	65.8	4.44	3.0	0.23	144.4	2.7	0.091	0.196	0.940	1.210	950	0.06	12
D		Mid-Ebb		Moderate	9:16	13	M	6.5	1	8.20	22.54	29.21	59.4	3.96	3.1	0.19	152.6	2.6	0.078	0.198	0.956	1.270	530	0.05	1.1
D	21/8/2018	Mid-Ebb		Moderate	9:16	13	M	6.5	2	8.19	22.91	29.18	58.7	3.90	2.9	0.19	152.2	2.9	0.084	0.215	0.928	1,230	610	0.05	1.2
D	21/8/2018	Mid-Ebb	Cloudy	Moderate	9:16	13	В	12	1	8.13	31.50	27.95	33.2	2.15	10.0	0.31	221.0	3.5	0.030	0.182	0.739	0.951	280	0.05	<1.0
D	21/8/2018	Mid-Ebb	Cloudy	Moderate	9:16	13	В	12	2	8.14	31.71	27.87	32.1	2.08	11.8	0.31	217.4	3.7	0.034	0.200	0.900	1.130	230	0.05	1.2
E	21/8/2018	Mid-Ebb	Cloudy	Moderate	9:46	16	S	1	1	8.25	19.84	31.24	69.5	4.56	4.2	0.19	151.8	2.0	0.035	0.187	0.833	1.050	110	0.04	1.1
E		Mid-Ebb		Moderate	9:46	16	S	1	2	8.26	20.37	30.80	69.5	4.57	4.4	0.18	151.5	2.0	0.028	0.178	0.852	1.060	170	0.04	1.1
E		Mid-Ebb		Moderate	9:46	16	M	8	1	8.19	23.49	29.56	60.4	3.99	5.0	0.29	200.6	2.4	0.044	0.154	0.834	1.030	140	0.04	1.3
E	21/8/2018	Mid-Ebb		Moderate	9:46	16	M	8	2	8.19	23.60	29.49	58.7	3.87	5.0	0.17	200.4	2.1	0.042	0.165	0.834	1.040	80	0.04	1.4
<u>E</u>		Mid-Ebb		Moderate	9:46		В	15	1_	8.15	26.49	29.01	51.3	3.35	8.1	0.27	258.2	2.3	0.042	0.183	0.755	0.980	40	0.04	<1.0
E F	21/8/2018 21/8/2018	Mid-Ebb		Moderate Moderate	9:46 9:52	16 23	B	15	1	8.14 8.28	27.08	28.92 29.62	46.6 71.8	3.04 4.80	8.8 5.5	0.20	230.9 160.5	2.1	0.039 0.061	0.175 0.182	0.742 0.778	0.957 1.020	90 390	0.04	<1.0 <1.0
F		Mid-Ebb Mid-Ebb		Moderate	9:52	23	5	1	2	8.28	21.04	29.62	71.8	4.80	5.5	0.23	157.5	2.3	0.061	0.182	0.778	0.954	390	0.05	<1.0
F		Mid-Ebb		Moderate	9:52	23	M	11.5	1	8.28	23.11	29.62	62.0	4.81	4.2	0.21	185.3	2.3	0.059	0.169	0.726	1.050	320	0.05	1.2
F		Mid-Ebb		Moderate	9:52	23	M	11.5	2	8.21	23.24	29.29	62.2	4.13	5.2	0.34	186.2	2.0	0.042	0.182	0.858	1.080	70	0.03	1.4
F		Mid-Ebb		Moderate	9:52		B	22	1	8.19	25.23	28.98	56.1	3.70	5.1	0.34	181.7	3.4	0.060	0.176	0.725	0.962	130	0.04	1.1
F		Mid-Ebb		Moderate	9:52	23	В	22	2	8.19	25.40	28.94	55.2	3.64	5.9	0.24	165.4	3.4	0.055	0.178	0.862	1.100	90	0.04	1.0
Ġ		Mid-Ebb		Moderate	10:22		S	1	1	8.29	22.00	29.66	69.9	4.64	5.2	0.18	161.9	2.3	0.033	0.190	0.812	1.030	240	0.05	1.1
G		Mid-Ebb		Moderate	10:22		S	1	2	8.28	21.95	29.61	69.8	4.65	5.1	0.22	166.4	1.8	0.046	0.186	0.811	1.040	200	0.04	1.1
G		Mid-Ebb		Moderate			M	11	1	8.24	23.04	29.33	64.3	4.27	4.4	0.34	220.7	2.4	0.039	0.182	0.814	1.030	180	0.04	1.2
G		Mid-Ebb		moderate	10:22		M	11	2	8.24		29.30	63.8	4.24	4.3	0.38	231.2	2.2	0.059	0.185	0.813	1.060	230	0.05	1.1
G		Mid-Ebb		Moderate	10:22	22	В	21	1_	8.16	29.43	28.56	46.5	3.01	6.5	0.48	243.3	2.6	0.060	0.183	0.810	1.050	170	0.04	1.0
G	21/8/2018	Mid-Ebb		Moderate	10:22	22	В	21	2	8.16	29.67	28.45	43.2	2.79	6.8	0.46	245.9	2.4	0.044	0.186	0.806	1.040	130	0.04	1.0
H		Mid-Ebb Mid-Ebb		Moderate Moderate	10:30		S	1	1	8.29	21.95	29.57	70.6 71.2	4.70	4.9	0.26	143.4	2.7	0.043	0.174	0.810	1.030	140	0.05	1.0
H		Mid-Ebb Mid-Ebb		Moderate Moderate	10:30		M	9.5	1	8.29	23.10	29.58 29.25	63.6	4.74	4.5 4.7	0.27	144.9 189.6	2.3 2.6	0.036	0.177 0.181	0.814 0.792	1.030 1.020	190 250	0.06	<1.0 1.0
H		Mid-Ebb		Moderate	10.00	19	M	9.5 9.5	2	8.24	23.10	29.25	63.6	4.23	4.7	0.33	189.6	2.6	0.045	0.181	0.792	1.020	190	0.04	<1.0
Н	21/8/2018	Mid-Ebb		Moderate	10.30		R R	18	1	8 17	29.60	28.23	42.5	2.76	7.2	0.53	189.7	3.4	0.044	0.183	0.791	1.020	540	0.05	<1.0
H	21/8/2018					19	B	18	2	8 17	29.55	28.19	42.6	2.70	8.4	0.55	191.6	3.4	0.048	0.183	0.813	1.030	660	0.05	<1.0
	Z 1/0/ZU101	IVIIU-LUD		wouciale	. 10.30	1.7		10		0.1/	(27.33)	20.15	42.0		0.4	U.J.	151.0	. J. I	v.uzb	U. 10Z	0.013	1.020	OOO	0.00	- 51.0

												ı	n-situ Meas	uremer	nt						Laborator	y Analysis	S		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A	21/8/2018			Moderate			S	1	_1_	8.34	23.01	29.38	78.8	5.23	3.1	0.28	197.7	5.1	0.028	0.184	0.793	1.000	630	0.04	1.7
A		Mid-Flood		Moderate			S	1	2	8.32	23.06	29.49	78.4	5.19	3.2	0.22	174.3	5.0	0.020	0.177	0.800	0.996	720	0.06	1.6
A	21/8/2018	Mid-Flood Mid-Flood		Moderate Moderate			M M	7.5 7.5	1 2	8.21	27.36	29.17 29.15	60.5 61.3	3.93	4.3	0.26	147.8 167.1	4.6 5.0	0.051	0.180	0.795 0.804	1.030	650	0.06	1.6
A	21/8/2018			Moderate			B B	14	1	8.22	28.70	29.15	40.4	2.62	7.8	0.26	157.3	5.0	0.039	0.165 0.176	0.804	1.010	540 1200	0.06	1.6
A		Mid-Flood		Moderate			R	14	2	8.14	28.05	28.58	41.6	2.02	8.1	0.26	150.2	4.9	0.042	0.176	0.790	1.000	1500	0.05	1.6
B		Mid-Flood		Moderate		14	S	1	1	8.28	24.98	29.11	71.0	4.70	2.5	0.29	217.3	3.6	0.032	0.177	0.732	0.984	120	0.03	2.0
В		Mid-Flood		Moderate		14	S	1	2	8.25	25.28	29.02	64.5	4.25	2.9	0.34	244.1	3.4	0.066	0.156	0.793	1.010	160	0.05	1.7
В	21/8/2018	Mid-Flood		Moderate	17:36	14	M	7	1	8.21	26.92	28.74	54.0	3.54	3.1	0.25	141.2	6.0	0.038	0.155	0.791	0.984	60	0.04	1.8
В	21/8/2018	Mid-Flood	Cloudy	Moderate	17:36	14	М	7	2	8.20	27.16	28.71	53.5	3.50	3.1	0.23	136.3	6.3	0.065	0.159	0.791	1.020	40	0.04	2.0
В	21/8/2018			Moderate			В	13	_1_	8.14	31.32	27.90	33.5	2.16	14.3	0.10	112.3	6.4	0.081	0.148	0.797	1.030	80	0.06	2.0
В	21/8/2018			Moderate			В	13	2	8.14	31.33	27.84	32.7	2.12	13.9	0.17	157.3	5.7	0.043	0.153	0.791	0.987	120	0.04	1.9
C		Mid-Flood		Moderate			S	1	_1_	8.40	22.72	29.43	86.8	5.77	2.9	0.25	234.4	4.9	0.047	0.149	0.823	1.020	150	0.05	2.0
<u>C</u>		Mid-Flood					S	1	2	8.39	22.76	29.42	86.1	5.72	3.1	0.08	252.3	5.4	0.026	0.159	0.812	0.997	90	0.05	1.9
C	21/8/2018			Moderate			M	6	1	8.12	30.85	28.06 27.99	31.9	2.06	5.2 5.1	0.51	223.4	4.9	0.046	0.156 0.151	0.818 0.824	1.020	140	0.06	1.7
C	21/8/2018			Moderate Moderate			M B	6 11	1	8.12	30.91	27.99	31.1 30.1	2.01	5.1 14.9	0.34	200.3 156.4	4.7 6.9	0.030	0.151	0.824	1.000	110 80	0.05	1.8
C		Mid-Flood		Moderate			B	11	2	8.14	32.24	27.43	30.1	1.95	15.5	0.12	184.4	6.8	0.042	0.159	0.849	1.020	50	0.06	2.0
D		Mid-Flood		Moderate		14	S	1	1	8.32	24.05	29.08	73.6	4.88	2.9	0.00	238.8	5.0	0.043	0.137	0.795	0.977	40	0.00	1.7
D	21/8/2018			Moderate			S	1	2	8.32	24.05	29.14	73.7	4.88	3.0	0.20	267.7	5.4	0.034	0.148	0.790	0.970	60	0.04	1.6
D	21/8/2018			Moderate			M	7	1	8.18	28.22	28.73	59.1	3.84	5.0	0.61	232.0	6.8	0.042	0.158	0.784	0.983	100	0.05	1.5
D	21/8/2018	Mid-Flood		Moderate	17:05	14	M	7	2	8.13	29.89	28.24	58.2	3.79	6.0	0.65	233.8	7.0	0.024	0.152	0.786	0.962	70	0.04	1.5
D	21/8/2018	Mid-Flood		Moderate			В	13	1	8.15	32.53	27.47	30.9	2.00	19.5	0.21	222.7	8.8	0.029	0.161	0.768	0.958	30	0.04	1.6
D	21/8/2018			Moderate			В	13	2	8.15	32.57	27.36	30.5	1.97	19.6	0.22	203.3	9.4	0.025	0.155	0.784	0.963	50	0.05	1.6
E	21/8/2018			Moderate			S	1	_1	8.32	24.92	28.88	73.9	4.89	3.3	0.21	151.3	6.3	0.022	0.123	0.738	0.883	90	0.05	2.2
E	21/8/2018						S	1	2	8.32	24.50	29.01	74.0	4.90	3.2	0.13	138.8	6.0	0.021	0.129	0.741	0.892	50	0.05	2.0
<u> </u>	21/8/2018			Moderate			M	7	1	8.17	29.95	28.12	44.2	2.87	5.0	0.15	114.1	8.3	0.017	0.122	0.748	0.888	70	0.03	2.0
E F	21/8/2018			Moderate Moderate			M B	13	1	8.18	29.34 30.61	28.15 27.72	43.5 39.8	2.84	6.1 3.7	0.10	106.3 159.2	8.5 10.4	0.022	0.129	0.738	0.889	130	0.03	2.1
		Mid-Flood		Moderate			B	13	2	8.18	30.57	27.72	39.8	2.60	3.6	0.06	192.3	10.4	0.022	0.132	0.739	0.893	160 120	0.06	2.1
F	21/8/2018			Moderate			S	1	1	8.26	23.94	29.12	79.0	5.24	3.1	0.09	232.0	7.9	0.022	0.117	0.746	0.886	170	0.05	1.5
F	21/8/2018			Moderate			S	1	2	8.33	23.96	29.21	79.0	5.23	3.3	0.42	241.5	8.3	0.032	0.123	0.698	0.883	130	0.05	1.0
F	21/8/2018			Moderate			M	9	1	8.29	29.39	28.27	45.1	2.93	5.4	0.23	185.9	9.0	0.032	0.133	0.701	0.866	630	0.03	1.3
F	21/8/2018			Moderate			M	9	2	8.22	29.44	28.20	42.3	2.75	5.2	0.20	234.0	8.8	0.052	0.135	0.701	0.888	540	0.03	1.4
F	21/8/2018			Moderate			В	17	1	8.44	32.00	27.44	35.1	2.27	4.7	0.55	220.4	10.1	0.058	0.131	0.704	0.893	260	0.05	1.3
F	21/8/2018			Moderate		18	В	17	2	8.60	32.21	27.33	34.4	2.23	4.0	0.49	230.9	9.6	0.019	0.134	0.701	0.853	210	0.05	1.3
G	21/8/2018			Moderate			S	1	1	8.29	24.15	29.16	72.1	4.77	2.8	0.10	142.8	5.5	0.053	0.157	0.721	0.931	250	0.05	2.0
G	21/8/2018						S	1	2	8.29	24.19	29.18	72.2	4.77	3.1	0.08	159.2	5.1	0.059	0.160	0.704	0.923	330	0.03	1.1
G	21/8/2018 21/8/2018			Moderate			M M	6.5	1 2	8.20	27.16	28.60	52.8	3.46	3.4 3.4	0.07	188.4	6.5	0.053 0.050	0.154	0.720	0.927 0.926	240	0.05	1.5
G G				Moderate Moderate	16:16 16:16		M R	6.5 12	1	8.20	30.95	28.59 27.83	52.6 38.9	3.45 2.52	5.4 5.3	0.10	184.1 210.9	6.4 7.0	0.050	0.155 0.156	0.720 0.717	0.926	160 190	0.05	1.6
G		Mid-Flood		Moderate			B B	12	2	8.16	31.06	27.74	36.9	2.39	4.5	0.09	210.9	6.8	0.045	0.156	0.717	0.918	230	0.05	2.6
H	21/8/2018			Moderate			S	1	1	8.29	23.74	29.20	75.4	5.00	4.9	0.06	197.8	4.6	0.052	0.154	0.724	1.010	30	0.05	1.6
H	21/8/2018			Moderate			5	1	2	8 29	23.75	29.20	75.4	4.97	5.0	0.13	174.0	4.0	0.103	0.159	0.730	0.964	70	0.03	1.3
H	21/8/2018						M	9.5	1	8.22	24.85	29.06	65.9	4.35	6.7	0.13	175.8	6.0	0.069	0.163	0.735	0.966	380	0.05	1.2
H	21/8/2018			Moderate			M	9.5	2	8.22	24.88	29.05	63.6	4.20	6.2	0.18	173.3	6.4	0.040	0.153	0.740	0.933	310	0.04	1.4
H		Mid-Flood	Cloudy	Moderate	16:06	19	В	18	1	8.14	29.43	28.22	42.4	2.76	15.8	0.19	227.9	6.3	0.091	0.152	0.740	0.984	340	0.05	1.4
Н	21/8/2018	Mid-Flood	Cloudy	Moderate	16:06	19	В	18	2	8.14	29.64	28.10	40.5	2.63	16.3	0.20	218.2	5.9	0.067	0.152	0.738	0.957	260	0.04	1.3

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 28

LIMITED

Contact : MR CYRUS LAI Contact : Richard Fung Work Order : HK1843485

Address : ROOM 723 & 725, 7/F, BLOCK B, PROFIT Address : 11/F., Chung Shun Knitting

INDUSTRIAL BUILDING, 1-15 KWAI FONG

Centre, 1 - 3 Wing Yip Street,

CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong

Telephone : +852 3565 4374 Telephone : +852 2610 1044

Facsimile : --- Facsimile : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT Date Samples Received : 21-Aug-2018

FOR SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 Quote number : HKE/1654/2017_R1 Issue Date : 04-Sep-2018

C-O-C number : — No. of samples received : 96

Site : — No. of samples analysed : 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Ng Sin Kou, May Assistant Laboratory Manager Microbiology

Page Number : 2 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843485

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 21-Aug-2018 to 04-Sep-2018.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1843485

Sample(s) were received in chilled condition.

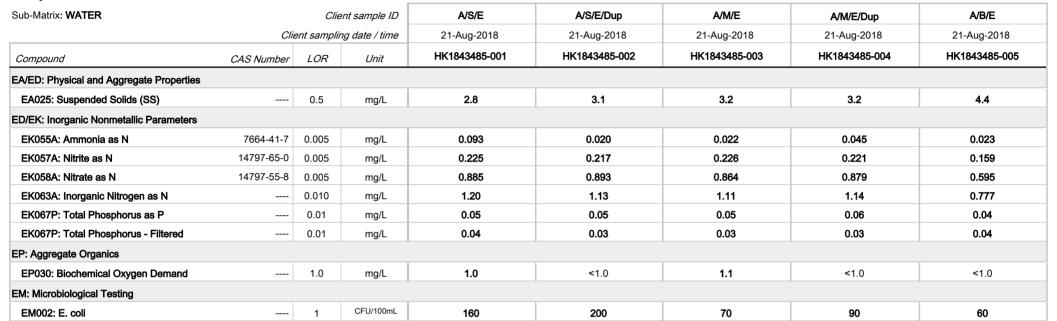
Water sample(s) analysed and reported on as received basis.

Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

Sample(s) arrived in the laboratory at 19:45. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.


3 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843485

Analytical Results

4 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-006	HK1843485-007	HK1843485-008	HK1843485-009	HK1843485-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.0	3.2	2.8	3.6	3.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.024	0.052	0.063	0.079	0.055
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.174	0.193	0.196	0.198	0.194
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.668	0.857	0.864	0.852	0.856
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.866	1.10	1.12	1.13	1.10
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	30	430	370	30	50

5 of 28

Client : FU

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-011	HK1843485-012	HK1843485-013	HK1843485-014	HK1843485-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.7	5.5	5.2	5.8	5.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.061	0.041	0.066	0.050	0.082
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.186	0.183	0.218	0.225	0.225
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.760	0.810	1.02	1.00	0.994
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.01	1.03	1.30	1.28	1.30
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.06	0.06	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.2	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	100	140	220	170	150

6 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-016	HK1843485-017	HK1843485-018	HK1843485-019	HK1843485-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.5	5.7	6.0	2.7	2.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.068	0.066	0.048	0.091	0.078
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.197	0.199	0.194	0.196	0.222
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.912	0.841	0.804	0.948	0.913
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.18	1.10	1.04	1.24	1.21
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.06	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	110	260	200	1100	950

7 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	nt sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-021	HK1843485-022	HK1843485-023	HK1843485-024	HK1843485-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.9	3.5	3.7	2.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.114	0.084	0.030	0.034	0.035
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.198	0.215	0.182	0.200	0.187
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.956	0.928	0.739	0.900	0.833
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.27	1.23	0.951	1.13	1.05
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.2	<1.0	1.2	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	530	610	280	230	110

: 8 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Client sampling date / time			21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-026	HK1843485-027	HK1843485-028	HK1843485-029	HK1843485-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.0	2.4	2.1	2.3	2.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.028	0.044	0.042	0.042	0.039
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.178	0.154	0.165	0.183	0.175
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.852	0.834	0.834	0.755	0.742
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.06	1.03	1.04	0.980	0.957
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.3	1.4	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	170	140	80	40	90

9 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Client sampling date / time			21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-031	HK1843485-032	HK1843485-033	HK1843485-034	HK1843485-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.3	2.2	2.0	3.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.061	0.059	0.042	0.039	0.060
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.182	0.169	0.186	0.182	0.176
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.778	0.726	0.824	0.858	0.725
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.02	0.954	1.05	1.08	0.962
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.2	1.4	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	390	320	30	70	130

: 10 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

ub-Matrix: WATER		Clie	ent sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-036	HK1843485-037	HK1843485-038	HK1843485-039	HK1843485-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.4	2.3	1.8	2.4	2.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.055	0.033	0.046	0.039	0.059
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.178	0.190	0.186	0.182	0.185
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.862	0.812	0.811	0.814	0.813
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.10	1.03	1.04	1.03	1.06
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.04	0.04	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.0	1.1	1.1	1.2	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	90	240	200	180	230

Page Number : 11 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-041	HK1843485-042	HK1843485-043	HK1843485-044	HK1843485-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.4	2.7	2.3	2.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.060	0.044	0.043	0.036	0.045
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.183	0.186	0.174	0.177	0.181
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.810	0.806	0.810	0.814	0.792
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.05	1.04	1.03	1.03	1.02
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.05	0.06	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.0	1.0	1.0	<1.0	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	170	130	140	190	250

: 12 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-046	HK1843485-047	HK1843485-048	HK1843485-049	HK1843485-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.6	3.4	3.1	5.1	5.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.044	0.048	0.026	0.028	0.020
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.182	0.183	0.182	0.184	0.177
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.791	0.819	0.813	0.793	0.800
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.02	1.05	1.02	1.00	0.996
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.04	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	1.7	1.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	190	540	660	630	720

: 13 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

Sub-Matrix: WATER		Clie	ent sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-051	HK1843485-052	HK1843485-053	HK1843485-054	HK1843485-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	5.0	5.2	4.9	3.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.051	0.039	0.042	0.032	0.041
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.180	0.165	0.176	0.177	0.152
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.795	0.804	0.798	0.792	0.791
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.03	1.01	1.01	1.00	0.984
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.06	0.06	0.05	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.2	1.6	1.6	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	650	540	1200	1500	120

Client

14 of 28FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Cli	ent samplii	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-056	HK1843485-057	HK1843485-058	HK1843485-059	HK1843485-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.4	6.0	6.3	6.4	5.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.066	0.038	0.065	0.081	0.043
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.156	0.155	0.159	0.148	0.153
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.793	0.791	0.791	0.797	0.791
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.01	0.984	1.02	1.03	0.987
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.04	0.06	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.01	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.7	1.8	2.0	2.0	1.9
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	160	60	40	80	120

: 15 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Cli	ent samplin	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-061	HK1843485-062	HK1843485-063	HK1843485-064	HK1843485-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.9	5.4	4.9	4.7	6.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.047	0.026	0.046	0.030	0.042
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.149	0.159	0.156	0.151	0.159
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.823	0.812	0.818	0.824	0.816
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.02	0.997	1.02	1.00	1.02
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.06	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	1.9	1.7	1.8	1.7
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	150	90	140	110	80

Page Number Client

: 16 of 28

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
	Cli	ent samplii	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-066	HK1843485-067	HK1843485-068	HK1843485-069	HK1843485-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.8	5.0	5.4	6.8	7.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.049	0.034	0.022	0.042	0.024
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.157	0.148	0.158	0.158	0.152
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.849	0.795	0.790	0.784	0.786
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.05	0.977	0.970	0.983	0.962
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.04	0.04	0.05	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.01	0.01	0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	1.7	1.6	1.5	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	50	40	60	100	70

: 17 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-071	HK1843485-072	HK1843485-073	HK1843485-074	HK1843485-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.8	9.4	6.3	6.0	8.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.029	0.025	0.022	0.021	0.017
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.161	0.155	0.123	0.129	0.122
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.768	0.784	0.738	0.741	0.748
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.958	0.963	0.883	0.892	0.888
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.05	0.05	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.6	2.2	2.0	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	30	50	90	50	70

: 18 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

Sub-Matrix: WATER		Clie	ent sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-076	HK1843485-077	HK1843485-078	HK1843485-079	HK1843485-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	10.4	10.0	7.9	8.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.022	0.022	0.022	0.052	0.048
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.129	0.132	0.117	0.129	0.137
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.738	0.739	0.748	0.705	0.698
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.889	0.893	0.886	0.886	0.883
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.06	0.06	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.1	2.1	2.1	1.5	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	130	160	120	170	130

: 19 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-081	HK1843485-082	HK1843485-083	HK1843485-084	HK1843485-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	8.8	10.1	9.6	5.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.032	0.052	0.058	0.019	0.053
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.133	0.135	0.131	0.134	0.157
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.701	0.701	0.704	0.701	0.721
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.866	0.888	0.893	0.853	0.931
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.4	1.3	1.3	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	630	540	260	210	250

: 20 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-086	HK1843485-087	HK1843485-088	HK1843485-089	HK1843485-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.1	6.5	6.4	7.0	6.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.059	0.053	0.050	0.045	0.052
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.160	0.154	0.155	0.156	0.154
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.704	0.720	0.720	0.717	0.724
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.923	0.927	0.926	0.918	0.931
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.01	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.5	1.6	1.3	2.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	330	240	160	190	230

Page Number : 21 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

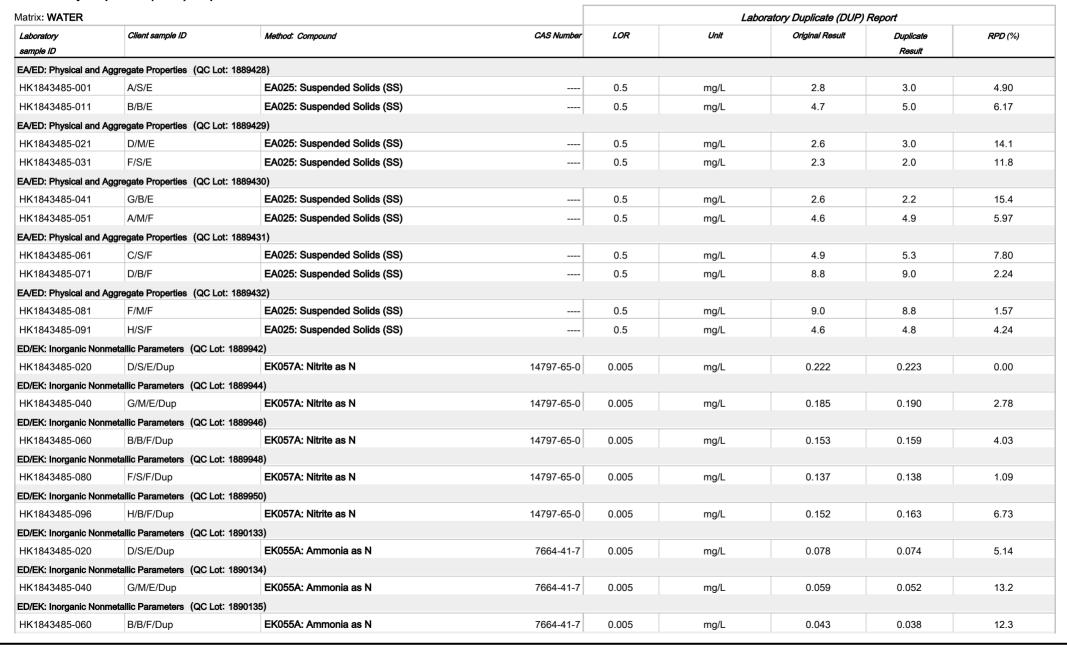
Sub-Matrix: WATER		Clie	ent sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
	Cli	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843485-091	HK1843485-092	HK1843485-093	HK1843485-094	HK1843485-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.9	6.0	6.4	6.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.105	0.063	0.069	0.040	0.091
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.150	0.159	0.163	0.153	0.152
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.756	0.742	0.735	0.740	0.740
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.01	0.964	0.966	0.933	0.984
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.05	0.04	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.3	1.2	1.4	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	30	70	380	310	340

: 22 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			H/B/F/Dup	 	
	Cli	ent samplir	ng date / time	21-Aug-2018	 	
Compound	CAS Number	LOR	Unit	HK1843485-096	 	
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	 	
ED/EK: Inorganic Nonmetallic Parameters						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.067	 	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.152	 	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.738	 	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.957	 	
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	 	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	 	
EP: Aggregate Organics						
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	 	
EM: Microbiological Testing						
EM002: E. coli		1	CFU/100mL	260	 	


23 of 28

Client :

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843485

Laboratory Duplicate (DUP) Report

24 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

HK1843485

Matrix: WATER					Labo	oratory Duplicate (DUP) i	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
ED/EK: Inorganic Noni	metallic Parameters (QC Lot:	: 1890136)						
HK1843485-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.048	0.050	4.27
ED/EK: Inorganic Noni	metallic Parameters (QC Lot:	: 1890137)						
HK1843485-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.067	0.067	0.00
ED/EK: Inorganic Noni	metallic Parameters (QC Lot:	: 1893323)						
HK1843485-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893324)						
HK1843485-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893325)						
HK1843485-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00
ED/EK: Inorganic Noni	metallic Parameters (QC Lot:	: 1893326)						
HK1843485-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893327)						
HK1843485-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.06	0.00
ED/EK: Inorganic Noni	metallic Parameters (QC Lot:	: 1893328)						
HK1843485-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893329)						
HK1843485-070	D/M/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893330)						
HK1843485-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893331)						
HK1843485-090	G/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.00
ED/EK: Inorganic Noni	netallic Parameters (QC Lot:	: 1893332)						
HK1843485-090	G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	r LOR Unit		Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties	(QC Lot: 1889428)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115			
EA/ED: Physical and Aggregate Properties	(QC Lot: 1889429)											

25 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Contr	ol Spike (LCS) and Labo	oratory Control S	pike Duplicate (L	DCS) Report	
					Splke	Spike Re	covery (%)	Recove	ry Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC Lot:	1889429) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	98.5		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot:	1889430)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	99.5		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot:	1889431)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	101		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot:	1889432)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	889942)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	99.2		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	889944)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	889946)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	109		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	889948)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	112		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	889950)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	105		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	890133)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	91.8		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	890134)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	94.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	890135)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	86.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	890136)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	87.8		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	890137)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	93.6		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 1	893323)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.0		90	104		

Page Number :
Client :

26 of 28

FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (MB	lethod Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Splke	Spike Red	covery (%)	Recove	ry Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893324)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	107		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893325)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893326)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.7		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893327)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893328)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.6		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893329)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893330)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893331)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 1893332)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	94.0		85	115		
EP: Aggregate Organics (QC Lot: 1889993)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	96.2		81	115		
EP: Aggregate Organics (QC Lot: 1889994)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.2		81	115		
EP: Aggregate Organics (QC Lot: 1889995)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	85.8		81	115		
EP: Aggregate Organics (QC Lot: 1889996)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	89.2		81	115		
EP: Aggregate Organics (QC Lot: 1889997)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	87.9		81	115		

: 27 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

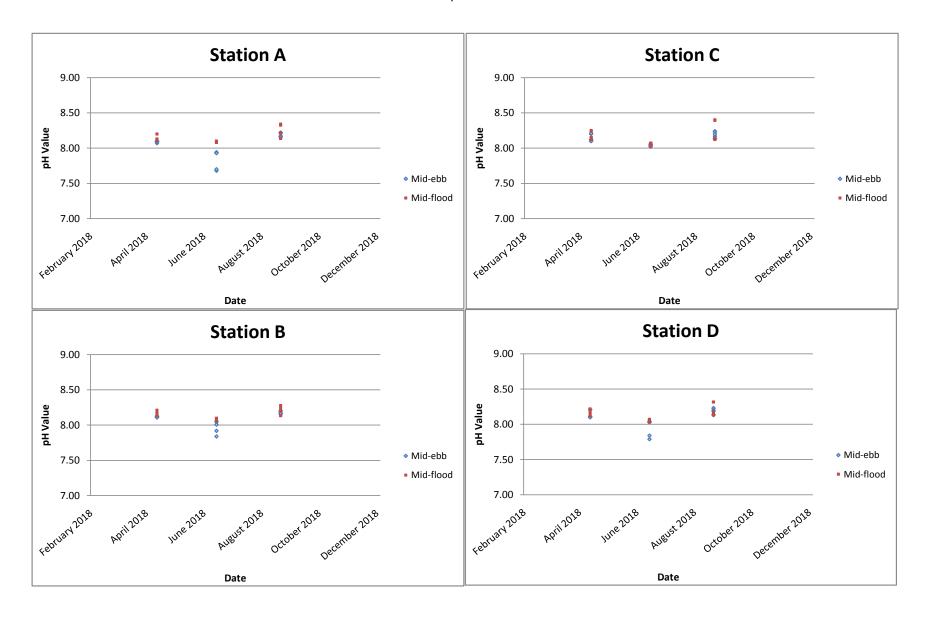
Work Order HK1843485

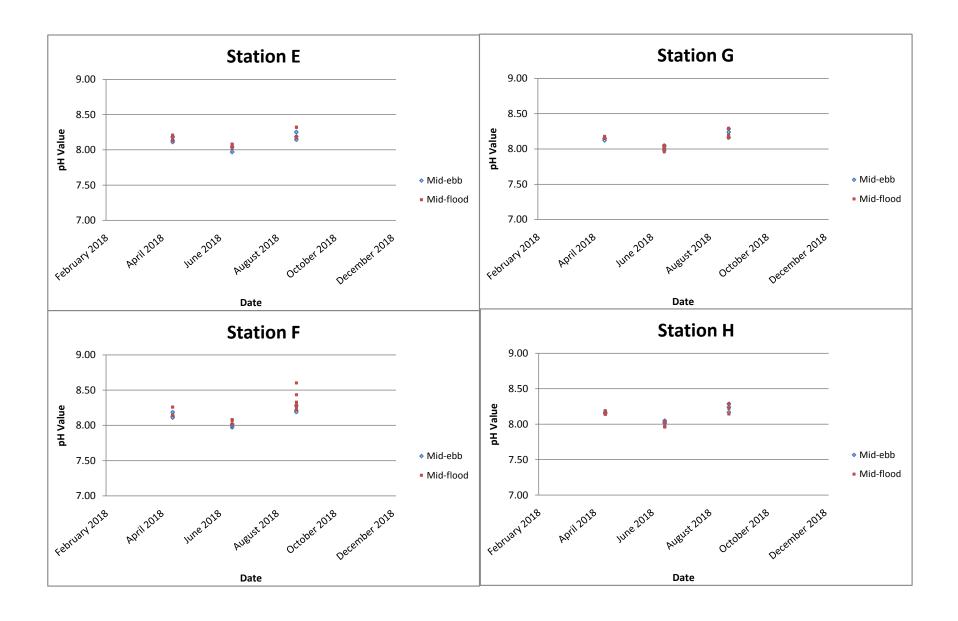
ALS

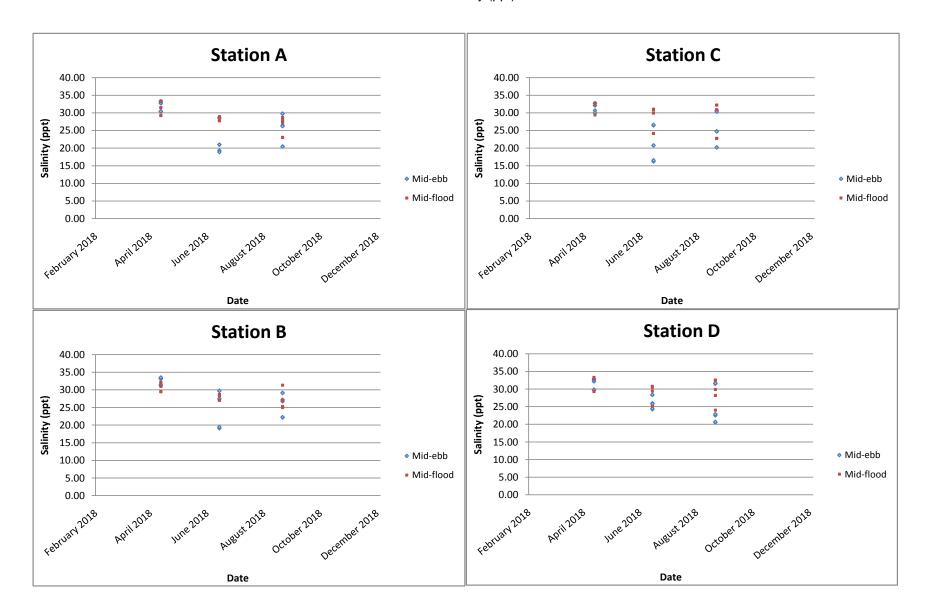
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

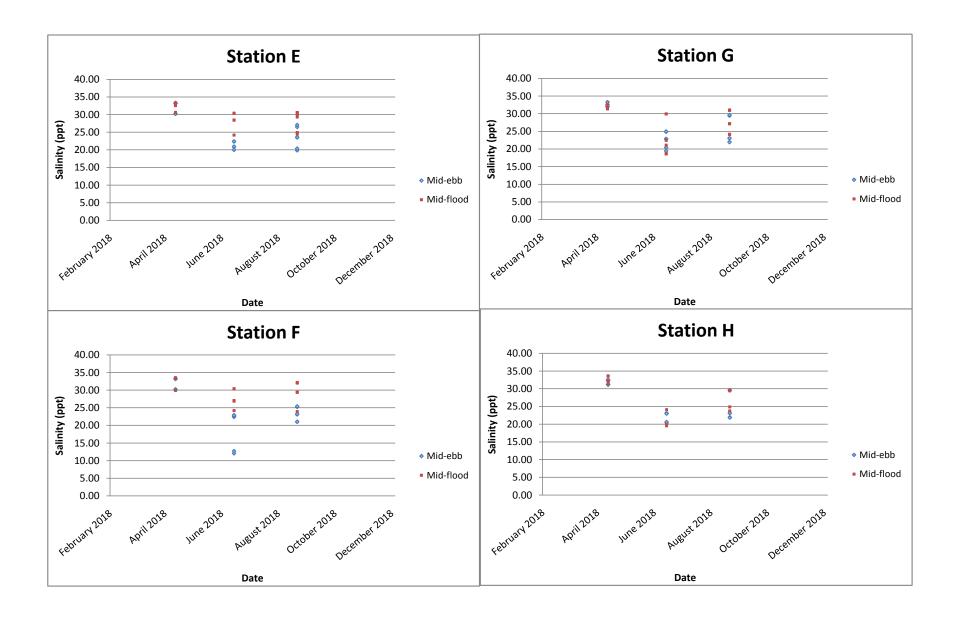
Matrix: WATER					Matrix Sp	ike (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPL	7(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1889942)								
HK1843485-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	102		75	125		
ED/EK: Inorganic	c Nonmetallic Parameters (QC	C Lot: 1889944)		'		'	<u>'</u>			
HK1843485-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	107		75	125		
ED/EK: Inorganic	c Nonmetallic Parameters (QC	C Lot: 1889946)								
HK1843485-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	109		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1889948)								
HK1843485-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	106		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1889950)	·							
HK1843485-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.5 mg/L	106		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1890133)								
HK1843485-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.05 mg/L	107		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1890134)								
HK1843485-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.05 mg/L	106		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1890135)								
HK1843485-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.05 mg/L	110		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1890136)								
HK1843485-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.05 mg/L	118		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1890137)								
HK1843485-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.05 mg/L	103		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1893323)								
HK1843485-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	94.3		75	125		
ED/EK: Inorganio	c Nonmetallic Parameters (QC	C Lot: 1893324)								

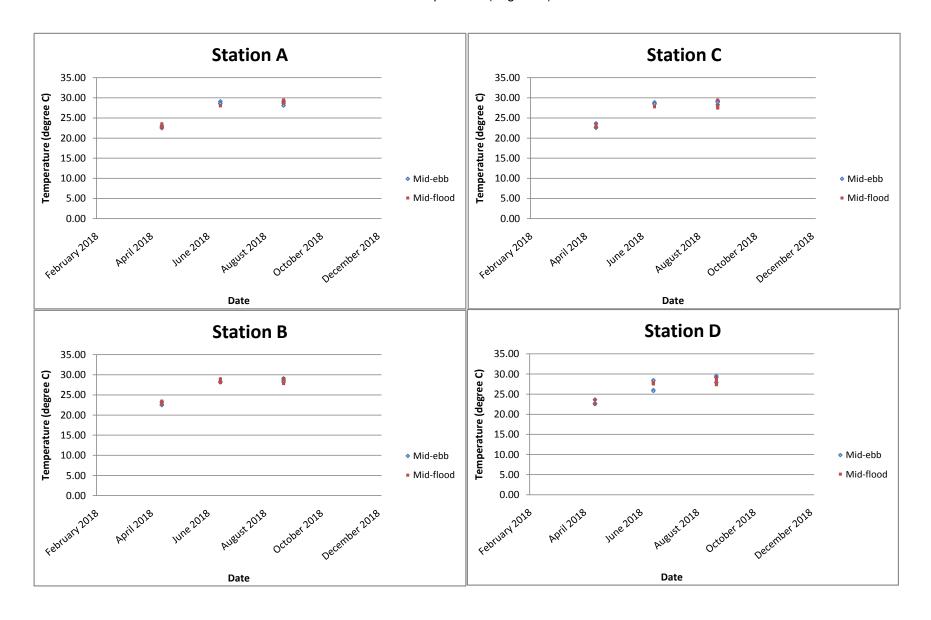
: 28 of 28

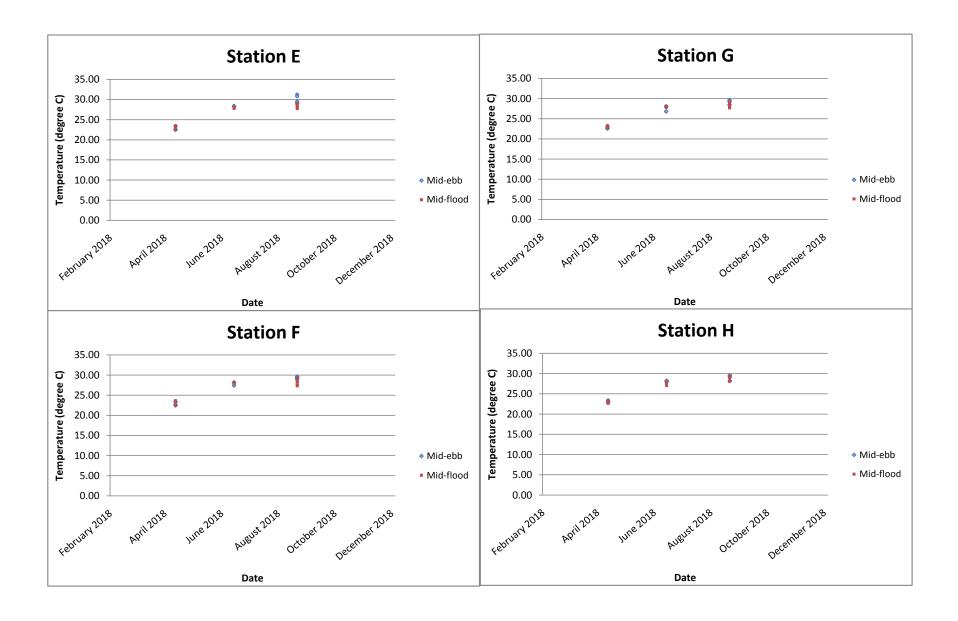

Client

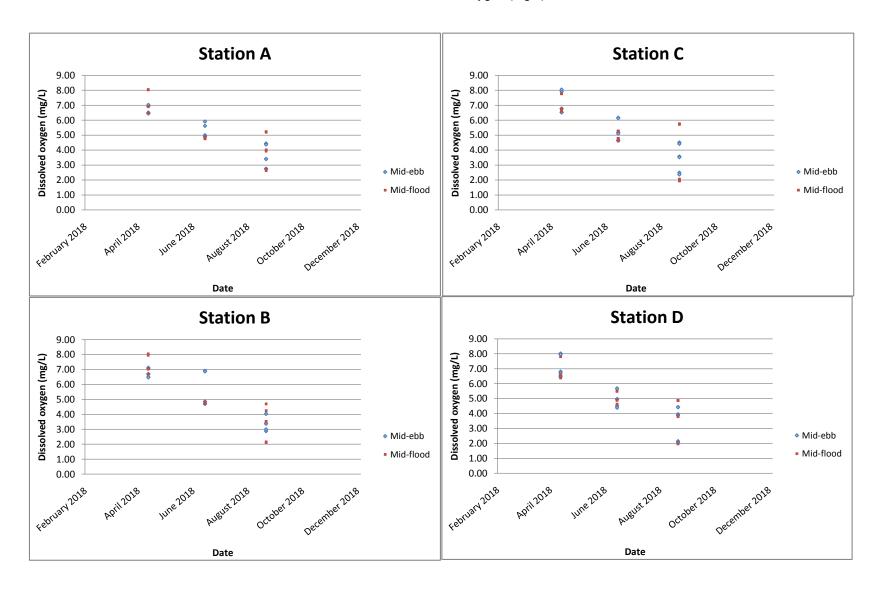

FUGRO TECHNICAL SERVICES LIMITED

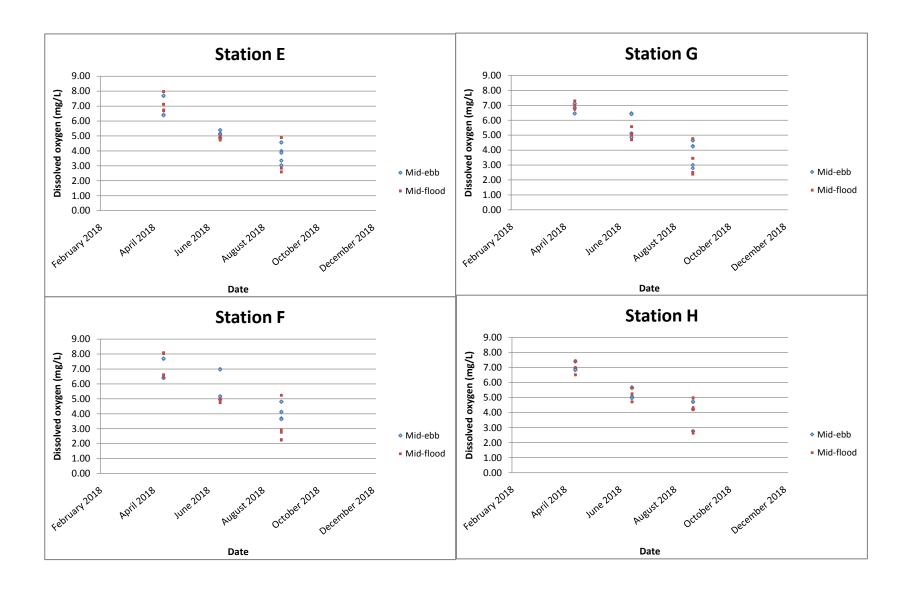

Work Order

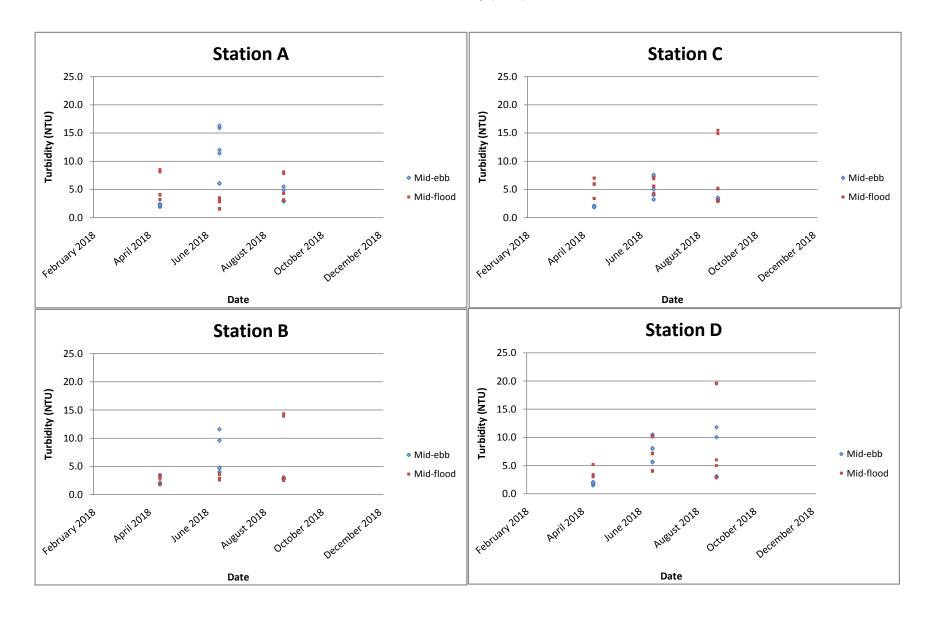

Matrix: WATER					Matrix Spi	ike (MS) and Matn	ix Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory	Client sample ID	Method: Compound CAS No.	umber (Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 1893	324) - Continued								
HK1843485-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	89.4		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	325)								
HK1843485-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	94.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	326)								
HK1843485-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	88.5		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	327)								
HK1843485-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	89.2		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	328)								
HK1843485-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	89.6		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	329)								
HK1843485-070	D/M/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	90.9		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	330)								
HK1843485-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	88.9		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 1893	331)		-						
HK1843485-090		EK067P: Total Phosphorus as P		0.5 mg/L	96.1		75	125		
	c Nonmetallic Parameters (QC Lot: 1893)			<u> </u>						
HK1843485-090		EK067P: Total Phosphorus - Filtered		0.5 mg/L	87.2		75	125		25
					J	1				

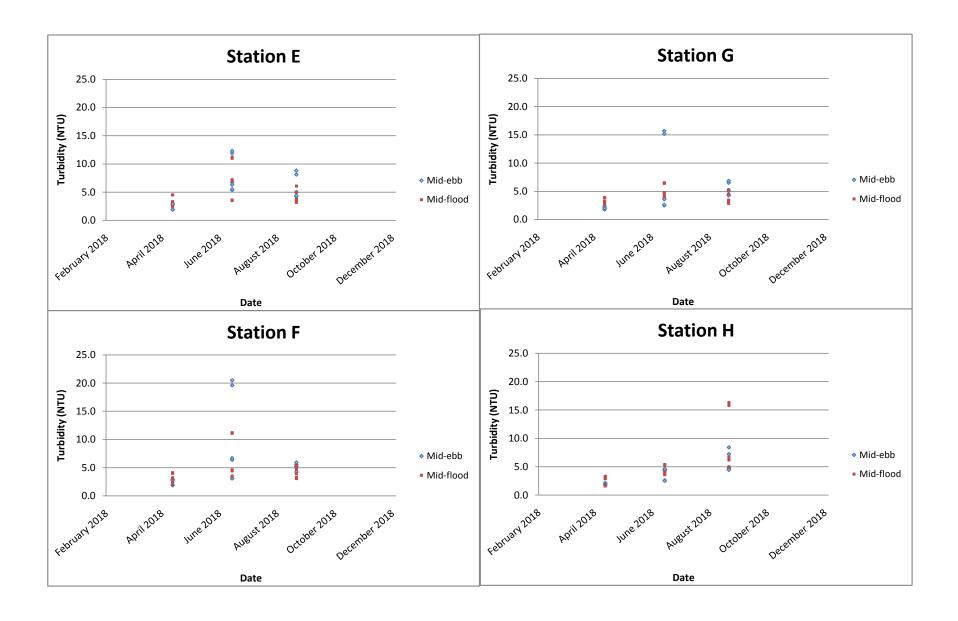


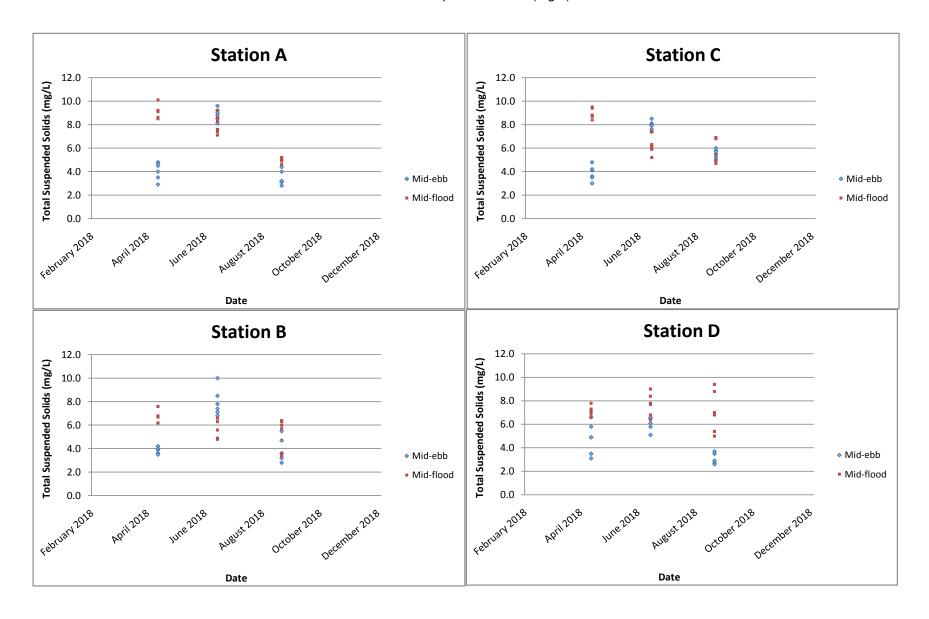


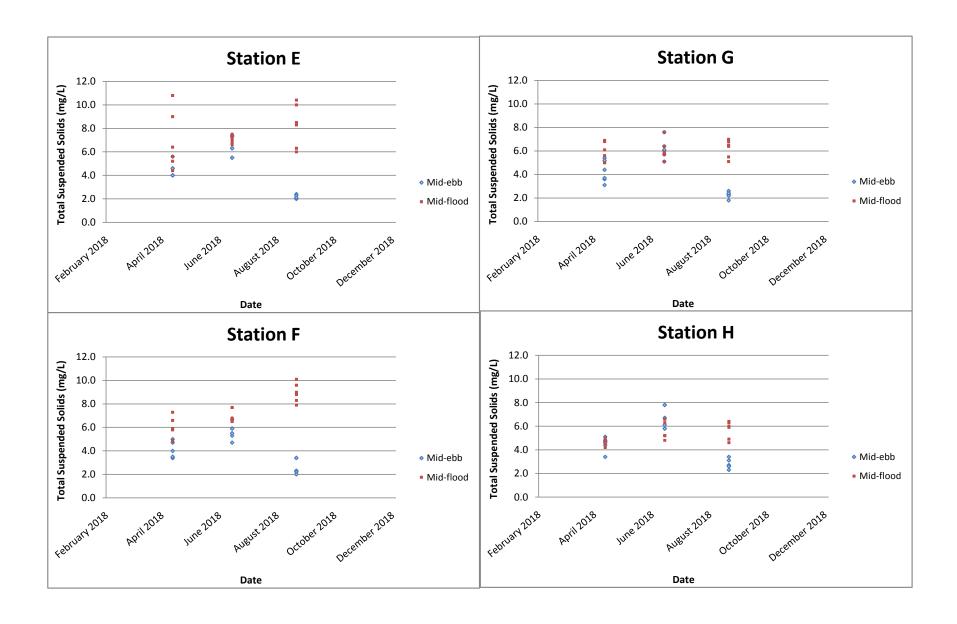


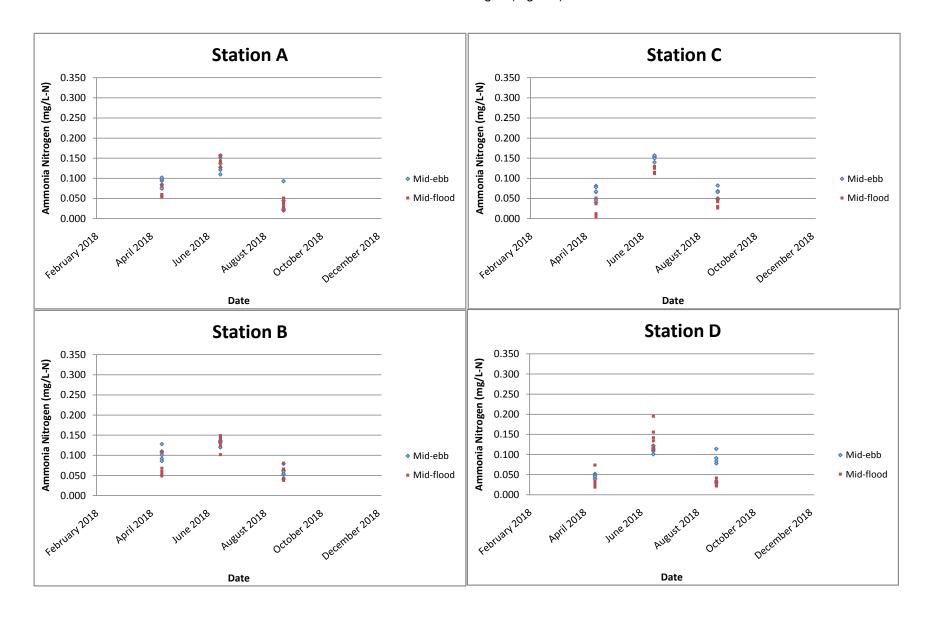


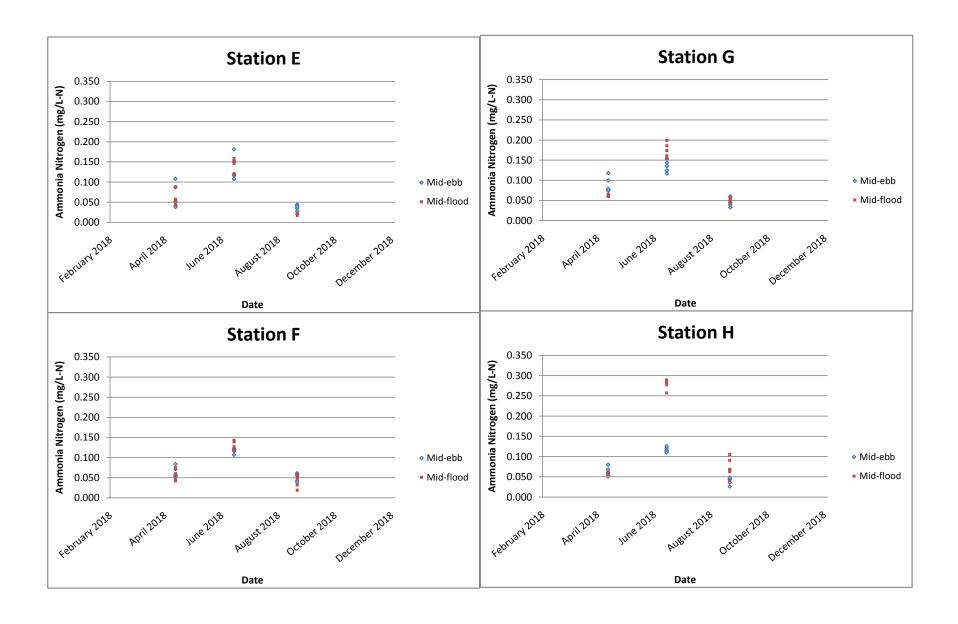


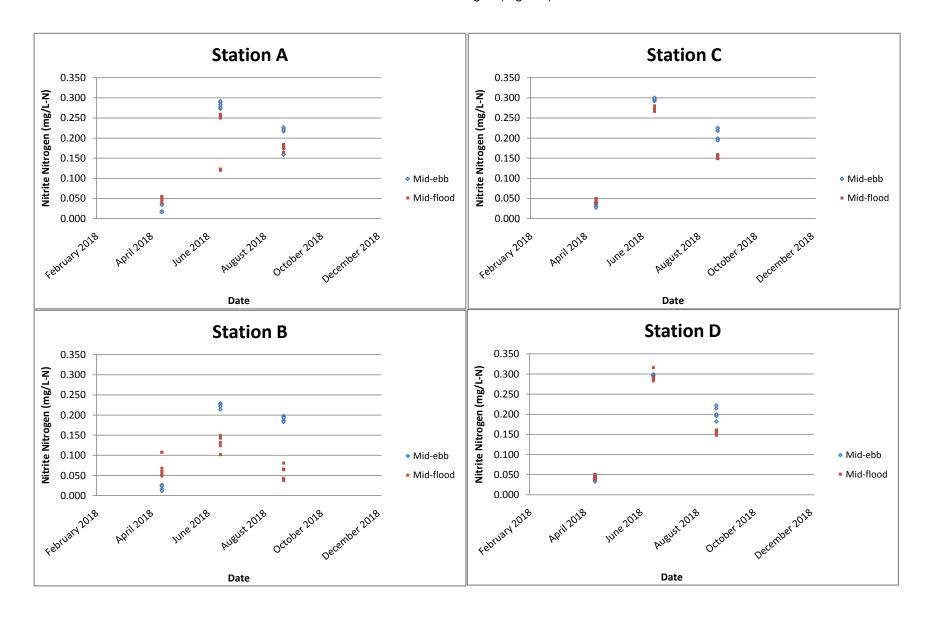


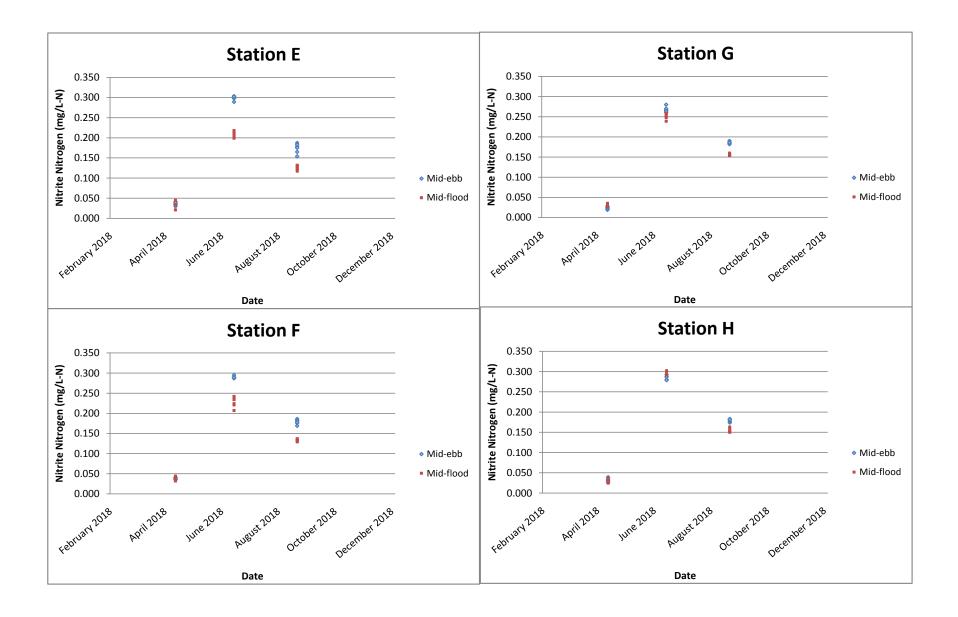


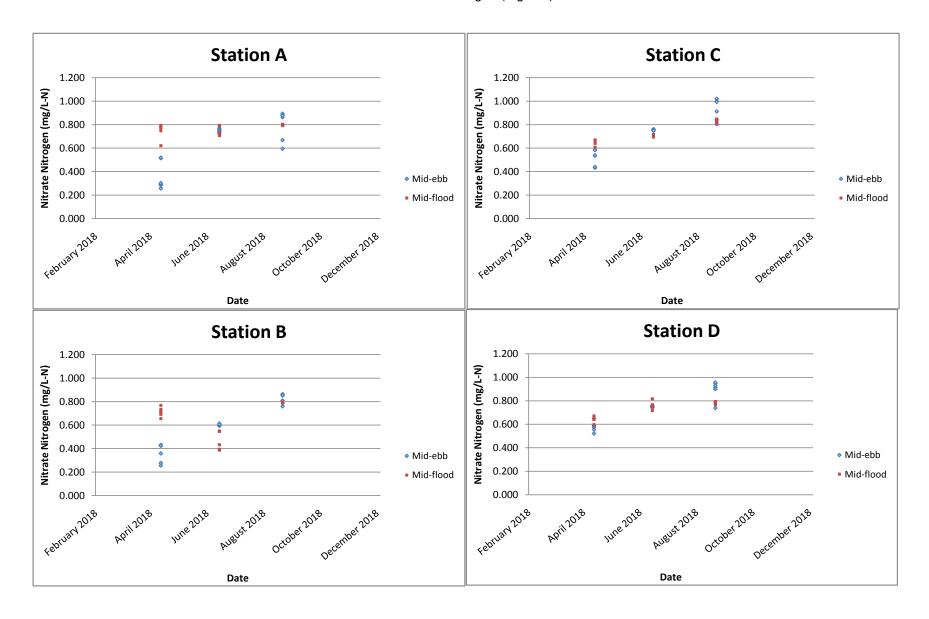


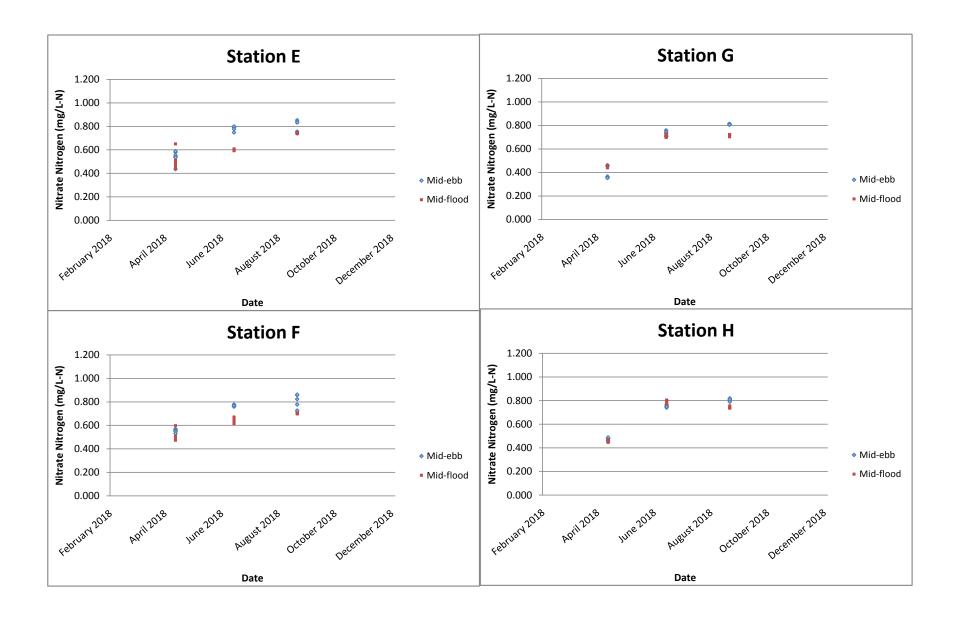


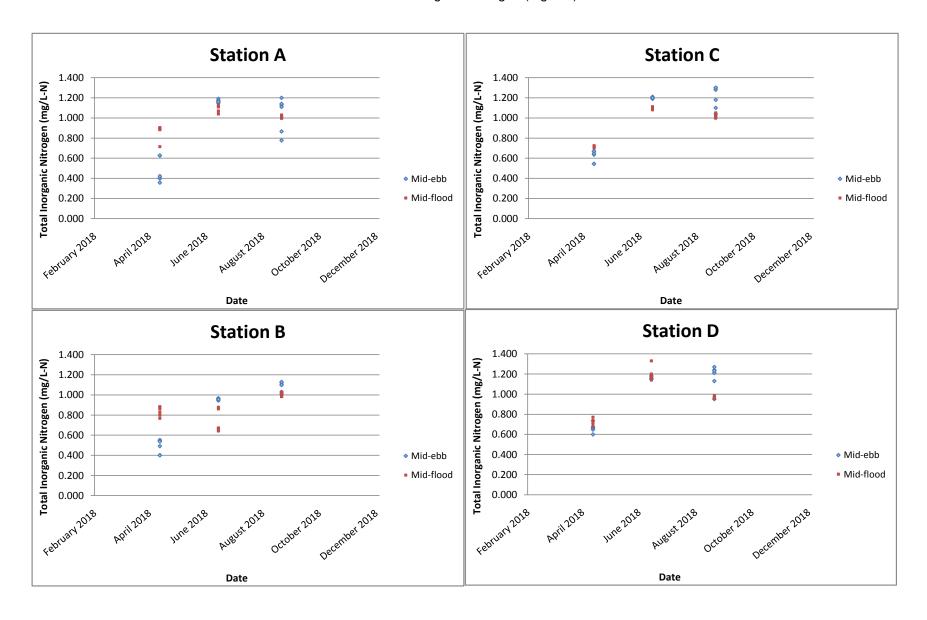


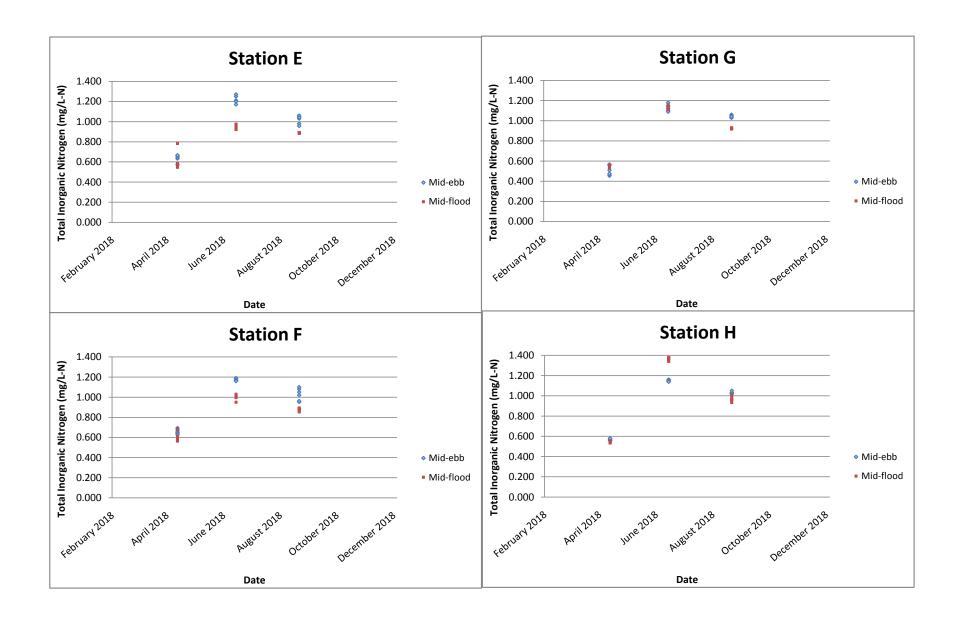


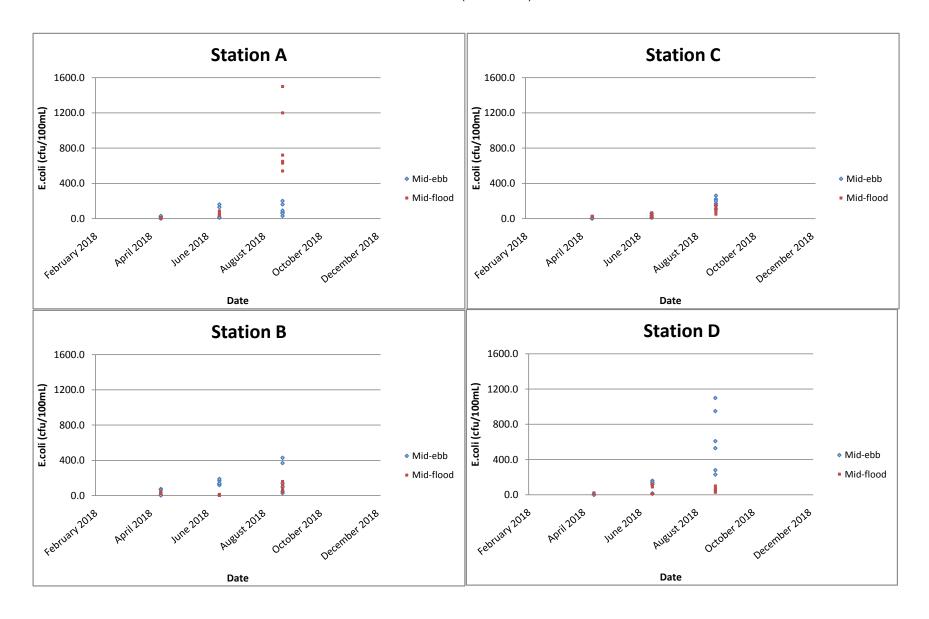


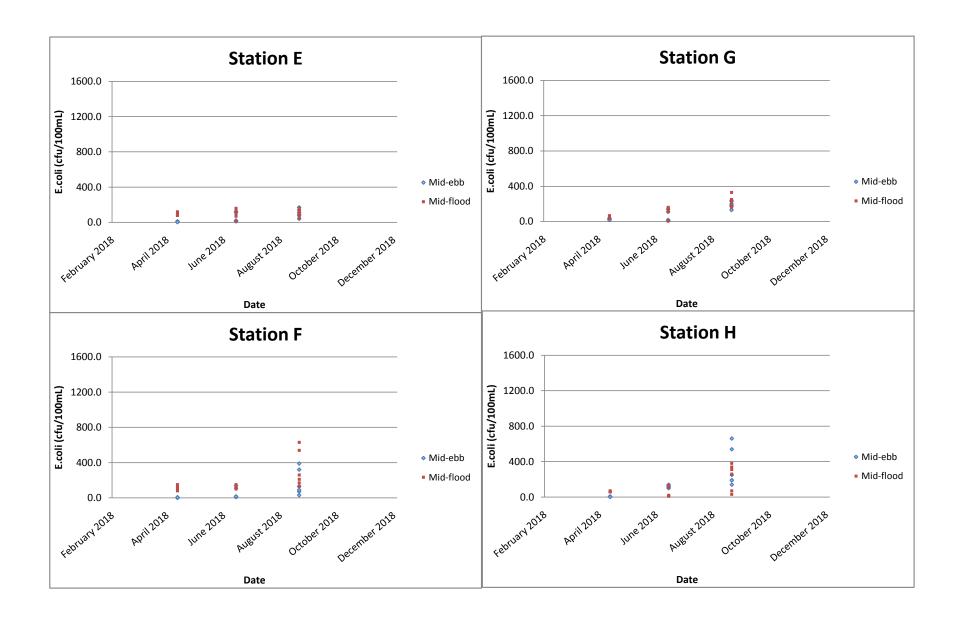


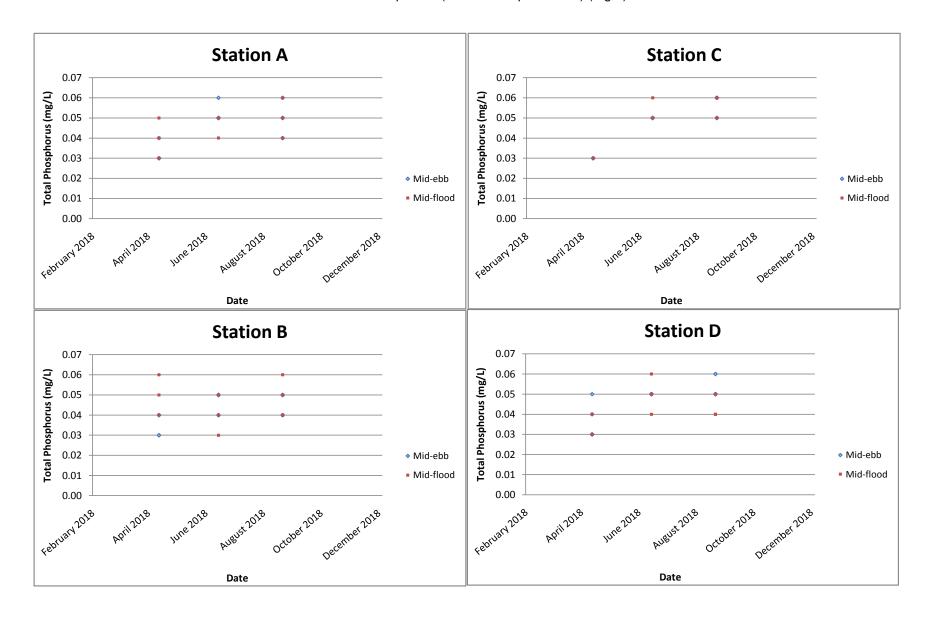


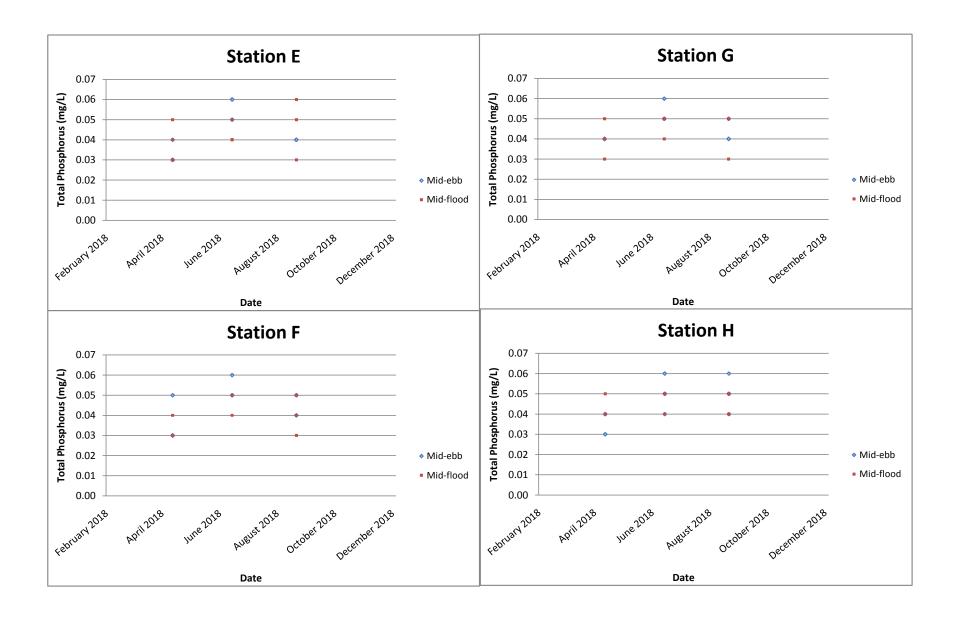


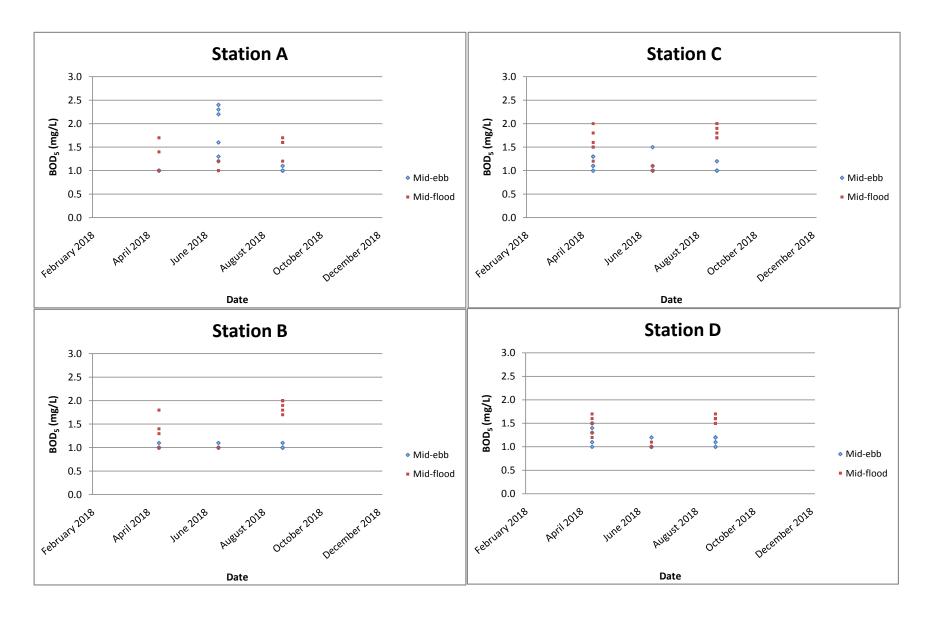


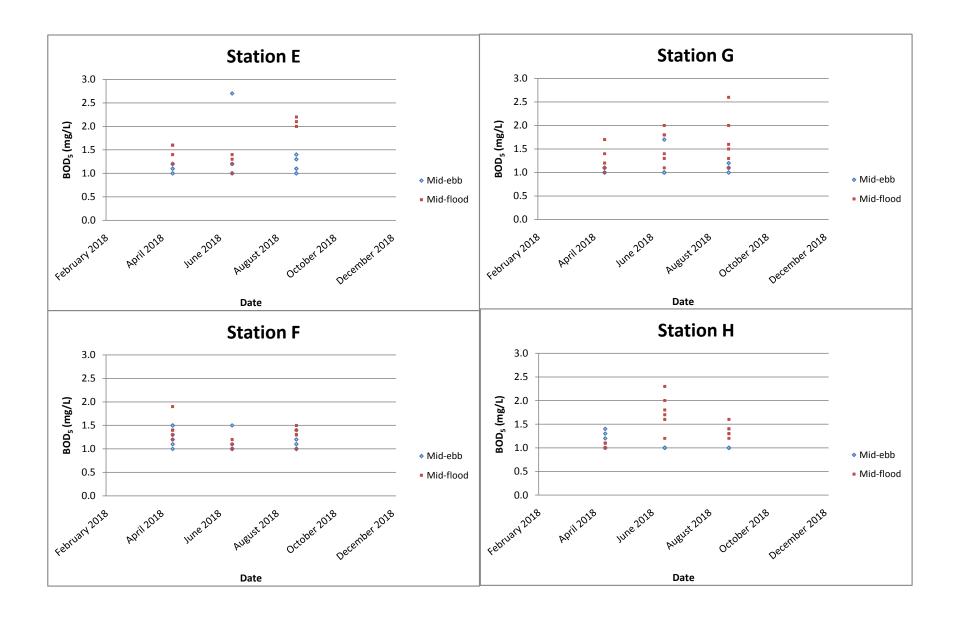












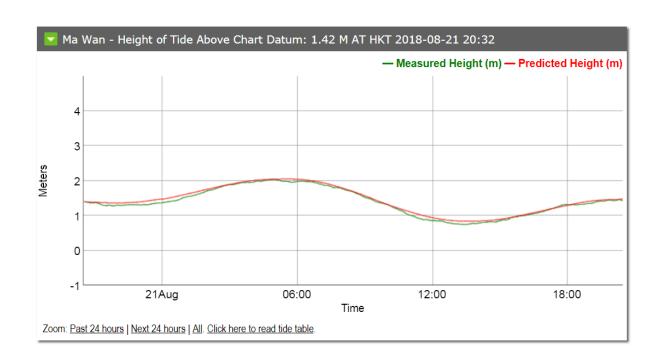
FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix F


Tidal Data obtained from Ma Wan Marine Tradffic Station

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

											Sediment Monitoring						
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
Α	21/8/2018	Cloudy	Moderate	11:27	8.5	9.4	840	409	<0.10	31.9	23.7	30.1	0.06	18.1	85.6	11.2	0.21
В	21/8/2018	Cloudy	Moderate	11:46	8.4	3.2	960	504	0.15	51.8	69.6	50.7	0.15	28.7	123	15.9	0.46
С	21/8/2018	Cloudy	Moderate	12:08	8.4	11.6	1300	569	0.13	50.6	38.5	44.4	0.17	29.1	136	14.0	0.35
D	21/8/2018	Cloudy	Moderate	12:22	8.4	9.8	1250	537	0.11	50.4	39.8	45.0	0.15	29.9	135	14.0	0.32
E	21/8/2018	Cloudy	Moderate	12:50	8.4	12.6	1060	445	<0.10	49.4	40.9	42.6	0.10	28.6	131	12.1	0.36
F	21/8/2018	Cloudy	Moderate	13:06	8.4	30.1	270	600	<0.10	50.4	41.9	45.0	0.14	30.1	136	12.9	0.51
G	21/8/2018	Cloudy	Moderate	13:32	8.6	4.5	50	107	<0.10	24.7	40.9	24.2	< 0.05	13.7	77.5	6.9	0.18
Н	21/8/2018	Cloudy	Moderate	13:51	8.4	11.0	<10	49	0.11	46.3	46.2	40.1	0.11	26.9	121	12.7	0.33

			0		Benthic Survey							
Monitoring Location	Date	Weather	Sea Time	Condition Time			Total Organic Carbon		Particle Size	Distrbution		
LUCATION			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)			
Α	21/8/2018	Cloudy	Moderate	11:27	0.76	2	25	42	31			
В	21/8/2018	Cloudy	Moderate	11:46	0.86	1	18	49	32			
С	21/8/2018	Cloudy	Moderate	12:08	0.86	0	3	61	36			
D	21/8/2018	Cloudy	Moderate	12:22	0.90	0	9	51	40			
Е	21/8/2018	Cloudy	Moderate	12:50	1.08	0	5	59	36			
F	21/8/2018	Cloudy	Moderate	13:06	1.10	0	2	61	37			
G	21/8/2018	Cloudy	Moderate	13:32	0.88	0	12	54	34			
Н	21/8/2018	Cloudy	Moderate	13:51	0.77	0	6	56	38			

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 12

LIMITED

Contact : MR CYRUS LAI Contact : Richard Fung Work Order : HK1843496

Address : ROOM 723 & 725, 7/F, BLOCK B, PROFIT Address : 11/F., Chung Shun Knitting

INDUSTRIAL BUILDING, 1-15 KWAI FONG

Centre, 1 - 3 Wing Yip Street,

CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong

E-mail : c.lai@fugro.com : richard.fung@alsglobal.com

Telephone : +852 3565 4374 Telephone : +852 2610 1044

Facsimile : --- Facsimile : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT Date Samples Received : 21-Aug-2018

FOR SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 Quote number : HKE/1654/2017_R1 Issue Date : 07-Sep-2018

C-O-C number : — No. of samples received : 24

Site : — No. of samples analysed : 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics
Fung Lim Chee, Richard General Manager Metals

Page Number : 2 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843496

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 21-Aug-2018 to 30-Aug-2018.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1843496

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

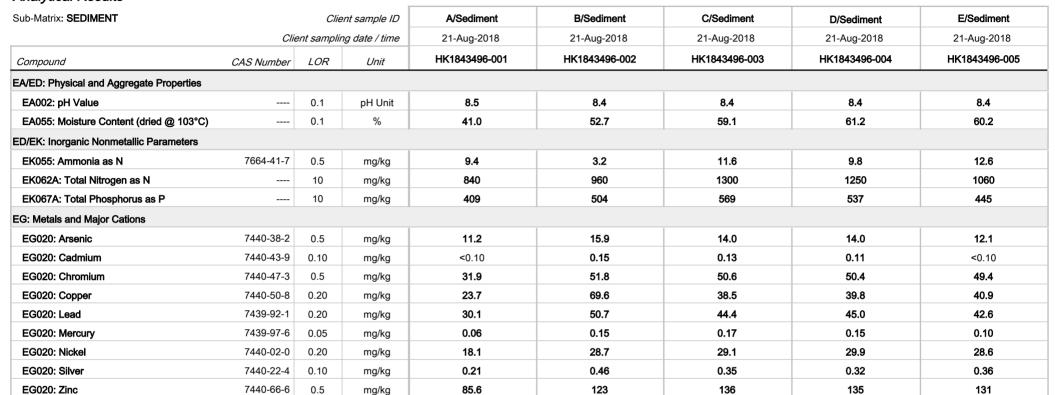
pH determined and reported on a 1:5 soil / water extract.

Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Sediment sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.


pH value is reported as at 25°C.

3 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843496

Analytical Results

∴ 4 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843496-006	HK1843496-007	HK1843496-008	HK1843496-009	HK1843496-010
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.4	8.6	8.4		
EA055: Moisture Content (dried @ 103°C)		0.1	%	64.2	38.4	56.9	51.9	53.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	30.1	4.5	11.0		
EK062A: Total Nitrogen as N		10	mg/kg	270	50	<10		
EK067A: Total Phosphorus as P		10	mg/kg	600	107	49		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	12.9	6.9	12.7		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	0.11		
EG020: Chromium	7440-47-3	0.5	mg/kg	50.4	24.7	46.3		
EG020: Copper	7440-50-8	0.20	mg/kg	41.9	40.9	46.2		
EG020: Lead	7439-92-1	0.20	mg/kg	45.0	24.2	40.1		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.14	<0.05	0.11		
EG020: Nickel	7440-02-0	0.20	mg/kg	30.1	13.7	26.9		
EG020: Silver	7440-22-4	0.10	mg/kg	0.51	0.18	0.33		
EG020: Zinc	7440-66-6	0.5	mg/kg	136	77.5	121		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.76	0.86

Page Number : 5 of 12
Client : FUGRO

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT	-Matrix: SEDIMENT Client sample ID				D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Cli	ent samplii	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843496-011	HK1843496-012	HK1843496-013	HK1843496-014	HK1843496-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	63.3	55.3	60.1	63.6	55.6
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.86	0.90	1.08	1.10	0.88

Page Number : 6 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT	trix: SEDIMENT Client sample ID				 	
	Clie	ent samplii	ng date / time	21-Aug-2018	 	
Compound	CAS Number	LOR	Unit	HK1843496-016	 	
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	55.1	 	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.77	 	

. 7 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplir	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018	21-Aug-2018
Compound	CAS Number	LOR	Unit	HK1843496-017	HK1843496-018	HK1843496-019	HK1843496-020	HK1843496-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	μg/L	<1	<1	<1	<1	<1
EG020: Copper	7440-50-8	1	μg/L	1	2	1	1	1
EG020: Lead	7439-92-1	1	μg/L	<1	<1	<1	<1	<1
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	μg/L	2	2	2	2	2
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	μg/L	<10	<10	<10	<10	<10

: 8 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Clie	ent samplii	ng date / time	21-Aug-2018	21-Aug-2018	21-Aug-2018	
Compound	CAS Number	LOR	Unit	HK1843496-022	HK1843496-023	HK1843496-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	μg/L	<1	<1	<1	
EG020: Copper	7440-50-8	1	μg/L	<1	<1	1	
EG020: Lead	7439-92-1	1	μg/L	<1	<1	<1	
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	μg/L	1	1	1	
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	μg/L	<10	<10	<10	

9 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843496

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	1889706)						
HK1843496-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	41.0	40.7	0.739
HK1843496-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	63.3	63.5	0.436
EA/ED: Physical and A	ggregate Properties (QC Lot:	1889741)						
HK1843496-001	A/Sediment	EA002: pH Value		0.1	pH Unit	8.5	8.5	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 1	895846)						
HK1845281-001	Anonymous	EK055: Ammonia as N	7664-41-7	1	mg/kg	14000	14400	2.92
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 1	901777)						
HK1843496-001	A/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	409	471	13.9
EG: Metals and Major (Cations (QC Lot: 1889491)							
HK1843496-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	0.15	0.15	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.15	0.15	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	69.6	66.5	4.64
		EG020: Lead	7439-92-1	0.05	mg/kg	50.7	48.2	5.04
		EG020: Nickel	7440-02-0	0.05	mg/kg	28.7	27.5	4.38
		EG020: Silver	7440-22-4	0.05	mg/kg	0.46	0.45	2.98
		EG020: Arsenic	7440-38-2	0.5	mg/kg	15.9	15.2	4.79
		EG020: Chromium	7440-47-3	0.5	mg/kg	51.8	50.5	2.62
		EG020: Zinc	7440-66-6	0.5	mg/kg	123	119	2.82
EP: Aggregate Organic	s (QC Lot: 1893089)		·					
HK1843496-010	B/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.86	0.72	17.2
Matrix: WATER	·				l ah	oratory Duplicate (DUP) I	Renort	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major (Cations - Total (QC Lot: 18894	174)		'		-		
HK1843496-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	0.00
	EG020: Chromium	7440-47-3	1	μg/L	<1	<1	0.00	
		EG020: Copper	7440-50-8	1	μg/L	2	2	0.00
		EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.00
		EG020: Nickel	7440-02-0	1	μg/L	2	2	0.00

: 10 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843496

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)		
EG: Metals and Major Ca	tions - Total (QC Lot: 1889474) -	Continued								
HK1843496-018	B/Rinsate Blank	EG020: Silver	7440-22-4	1	μg/L	<1	<1	0.00		
		EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	0.00		
		EG020: Zinc	7440-66-6	10	μg/L	<10	<10	0.00		

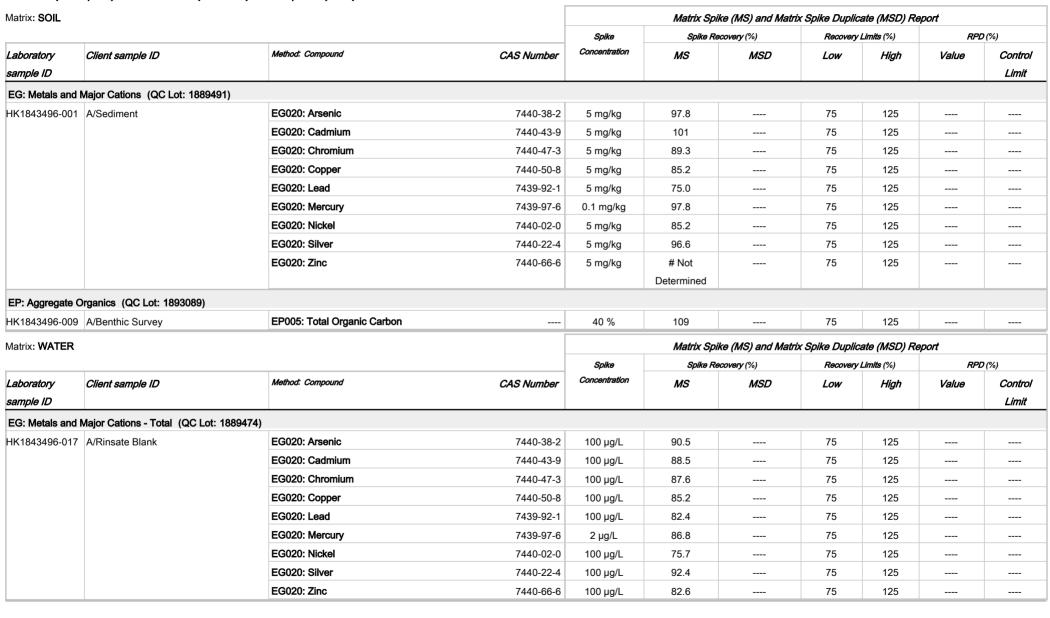
Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Re	ecovery (%)	Recove	ery Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 1895846)										
EK055: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	99.9		85	119		
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 1901777)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	87.3		85	115		
EG: Metals and Major Cations (QC Lot: 188	9491)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	88.7		80	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	98.4		84	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	96.6		80	120		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	100		85	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	102		87	118		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	106		84	124		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	98.2		85	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	99.0		85	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	110		80	120		
EP: Aggregate Organics (QC Lot: 1893089)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	101		92	105		
Matrix: WATER			Method Blank (MB)) Report		Laboratory Cont	rol Spike (LCS) and Labo	oratory Control S	pike Duplicate (l	DCS) Report	
					Spike	Spike Re	ecovery (%)	Recove	ery Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Total (QC L	ot: 1889474)										
EG020: Arsenic	7440-38-2	10	μg/L	<10	100 μg/L	97.1		83	110		

11 of 12

Client : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recove	ory Limits(%)	RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Total	(QC Lot: 1889474) - Continue	ed									
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	100 μg/L	97.1		85	109		
EG020: Chromium	7440-47-3	1	μg/L	<1	100 μg/L	99.5		86	111		
EG020: Copper	7440-50-8	1	μg/L	<1	100 μg/L	103		90	111		
EG020: Lead	7439-92-1	1	μg/L	<1	100 μg/L	102		89	111		
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	2 μg/L	101		80	118		
EG020: Nickel	7440-02-0	1	μg/L	<1	100 μg/L	102		87	110		
EG020: Silver	7440-22-4		μg/L		100 μg/L	94.8		80	114		
EG020: Zinc	7440-66-6	10	μg/L	<10	100 μg/L	104		86	114		


: 12 of 12

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1843496

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR CYRUS LAI

WORK ORDER

HK1843496

CLIENT

: FUGRO TECHNICAL SERVICES LIMITED

ADDRESS

: ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, SUB-BATCH

: 1

1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG

DATE RECEIVED

: 21-AUG-2018

DATE OF ISSUE

: 7-SEP-2018

PROJECT

: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR

NO. OF SAMPLES

: 24

OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR CLIENT ORDER

: 0041/17

SIU HO WAN SEWAGE TREATMENT PLANT

General Comments

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- pH determined and reported on a 1:5 soil / water extract.
- Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Sediment sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

WORK ORDER

: HK1843496

SUB-BATCH

CLIENT

: 1

FUGRO TECHNICAL SERVICES LIMITED

PROJECT : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL

ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE

TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1843496-001	A/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-002	B/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-003	C/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-004	D/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-005	E/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-006	F/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-007	G/Sediment G/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-008	H/Sediment	SEDIMENT	21-Aug-2018	
HK1843496-009	A/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-010	B/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-011	C/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-012	D/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-013	E/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-014	F/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-015	G/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-016	H/Benthic Survey	SEDIMENT	21-Aug-2018	J2999-272.34
HK1843496-017	A/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-018	B/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-019	C/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-020	D/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-021	E/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-022	F/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-023	G/Rinsate Blank	WATER	21-Aug-2018	
HK1843496-024	H/Rinsate Blank	WATER	21-Aug-2018	

TEST CERTIFICATE SUMMARY OF GEOSPEC 3:2

MMARY OF SOIL CLASSIFICATION TEST RESULT EOSPEC 3: 2001		Gammon MS
		Report No: J2999-272.34
Customer: ALS Technichem (HK) Pty Ltd	Job No.: J2999	Works Order No. : 272
Project:	Contract No.:	Date: 24/08/2018
	Commence of the Commence of th	

Sample ID	Sample	ple	7	0	Test 6.1	Test 6.1	Test 6.1	Test 6.2	Passing P	Passing Preparation	Partic	Particle Size Distribution	Distrib	ution		
				Content	Liquid	Plastic P	Liquid Plastic Plasticity Liquidity 425µm	Index	425µm	Method	#	٥	Dorogantogo	000	Description	Sample
No.	No.	Type	Depth (m)	(%)	(%)	(%)		Vapili	Sieve (%)		Test Method	Gravel Sand Silt (%) (%) (%)	Sand Sand (%)	Silt Clay (%) (%)		1112 110
HK1843496-009	HK 1843496-009 A/Benthic Survey	Ω									1,5,7	2	25 ,	42 31	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	**,
HK1843496-010	B/Benthic Survey	Ω									1,5,7	1	18	49 32	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	**
HK1843496-011	HK1843496-011 C/Benthic Survey	D									1,5,7	0	3 (61 36	Dark grey, slightly sandy SILT/CLAY	*,
HK1843496-012	HK 1843496-012 D/Benthic Survey	Ω									1,5,7	0	6	51 40	Dark grey, slightly sandy SILT/CLAY	#.
HK1843496-013	E/Benthic Survey	D									1,5,7	0	5	59 36	Dark grey, slightly sandy SILT/CLAY with shell fragments	+,
HK1843496-014	HK1843496-014 F/Benthic Survey	D									1,5,7	0	2 (61 37	Dark grey, slightly sandy SILT/CLAY	++,
HK1843496-015	G/Benthic Survey	D						ellenge oc			1,5,7	0	12	54 34	Dark grey, slightly sandy SILT/CLAY with shell fragments	+ ,
HK1843496-016	HK1843496-016 H/Benthic Survey	D									1,5,7	0	9	56 38	Dark grey, slightly sandy SILT/CLAY with shell fragments	#,
Legend:	= V	Test Me Test Mel	thod in accor	Test Method in accordance with GEOSPEC3: 2001 Test 8.1 (1), 8.2 (2), 8.3 Test Method in accordance with GEOSPEC3: 2001 Test 8.1 (1), 8.2 (2), 8.3	SOSPEC :	3 : 2001 Te	st 5.1 Moistu t 8.1 (1), 8.2	(2), 8.3 (3)	at 45°C ± 5'	cent at 45°C ± 5°C (A), Test 5.2 Moi (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	2 Moisture 8.7 (7).	Content a	it 105°C	± 5°C (B),	Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	
Symbols:	U - Undisturbed Sample;	ample;			Д.	P - Piston Sample;	ple;		N.P Non Plastic;	lastic;		A.D Air Dried;	Dried;		Sampling History - Refer the Individual Test Report,	
	LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample;	ed Samp ; rel Samp	je je;		M-1 D-3	M - Mazier Sample; D - Small Disturbed - Portable triple tu	M - Mazier Sample; D - Small Disturbed Sample; - Portable triple tube Sample;	je,	A.R As Received; H.P Hand Picked; - Moisture Conten	A.R As Received; H.P Hand Picked; - Moisture Content for A.L. Test.		O.D Oven Dried; W.S Wet Sieved;	en Driec et Sievec	++ ++	Estimated Uncertainty - Refer the Individual Test Report. [‡] - Information provided by customer.	
Notes:	1S - Insufficient Sample	ple			Tf - Ti	o Follow or	Tf - To Follow on supplementary Report.	ату Кероп.	-							
Checked by	TKLam	M é						Appro	Approved By :	Chung Hei Wing	- 00				Date : 05/09/2018	
									Pr	Principal Laboratory Officer	atory Office					
7		Hon	ng Kong Acc	dong Kong Accreditation Service (HKAS) has accredited this laborator laboratory activities as listed in the HOKLAS Directory of Accredited	vice (HKA	AS) has acci KLAS Dire	redited this I: ctory of Acc	aboratory ()	Reg. No. 05.	5 - TEST) und This report sha	ler the Hong III not be rep	Kong La	boratory inless wi	Accredital	Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.	
© Gammon Construction Ltd	ction Ltd						15001	21 Chun W Tseung K	Tec/ang Street, wan O, N.T.	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	re O Industrial 80, Fax : 269	Estate,				
Form: GESS001 / Ju	Form: GESS001 / Jun.30.13 / Issue 1 / Rev 3	13														Page 1 of 1

TEST REPORT **DETERMINATION OF**

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: J2999

Report No.

: J2999-272.34

Customer Project

: ALS Technichem (HK) Pty Ltd

Works Order No. Sample ID No.

: 272

Sample No.

HK1843496-009 A/Benthic Survey

Date Received: 24/08/2018

Sample Depth (m)

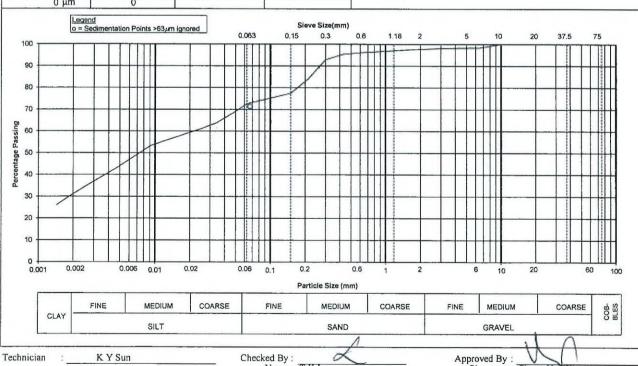
Tested Date : 25/08/2018

Specimen Depth (m) Sample Type

Small Disturbed

Description : Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer

SIEVE ANALYSIS	Percent	^Expanded	^Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# i	f assumed): 2.65 #	ŧ	
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)		Sodium hexametapho	sphate, Sodium	n carbonate
100.0 mm	100	-	-		visible organic matter	in the soil : No	one
75.0 mm	100		4.	7			
63.0 mm	100	-	-	Particle	Expanded	% Finer	*Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-	*	1	Particle Diameter	K	% finer than D
28.0 mm	100	-		(mm)	(mm)	(%)	(%)
20.0 mm	100	-		0.0666	-	71	-
14.0 mm	100			0.0476	-	69	-
10.0 mm	100	-	-	0.0342	-	64	-
6.30 mm	98	*		0.0244	-	61	-
5.00 mm	98	-	-	0.0174	-	58	-
3.35 mm	98	-	-	0.0091		53	-
2.00 mm	98		-	0.0047	-	43	-
1.18 mm	97		-	0.0024	-	34	
600 µm	96			0.0014	-	26	(-)
425 μm	95		_	SUMMARY :			
300 μm	93	-	-	Gravel (%)	: 2		
212 µm	84		4	Sand (%)	: 25		
150 μm	78	_	-	Silt (%)	: 42		
63 μm	73			Clay (%)	: 31		
0 μm	0						

: 25/08/2018 Date: 05/09/2018 Date: 05/09/2018 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

TK Lam

Name:

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

Chung Hei Wing

Signatory:

TEST REPORT **DETERMINATION OF**

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: J2999

: J2999-272.34

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

Report No.

: 272

Project

Sample ID No.

: HK1843496-010

Date Received: 24/08/2018

Sample No.

B/Benthic Survey

Sample Depth (m)

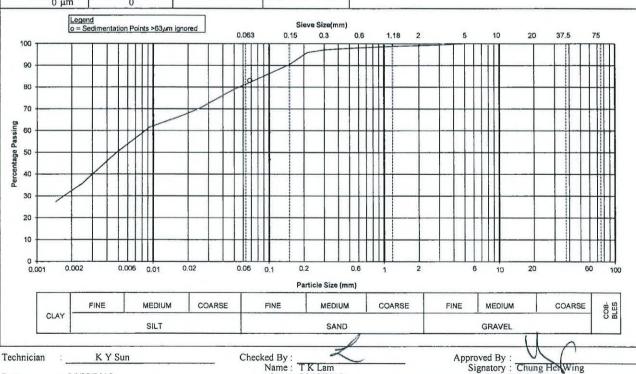
Tested Date : 25/08/2018

Specimen Depth (m) Sample Type

Small Disturbed

Description : Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer

SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	f assumed): 2.65 #		
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History	Sodium hexametapho As received	sphate, Sodiun	n carbonate
100.0 mm	100	-	-	The presence of any	visible organic matter	in the soil: No	one
75.0 mm	100		•		2011		
63.0 mm	100		-	Particle	^Expanded	% Finer	Expanded
50.0 mm	100		•	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100		-	1	Particle Diameter	K	% finer than D
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100		-	0.0681		83	-
14.0 mm	100			0.0487	-	79	-
10.0 mm	100	-	-	0.0348		75	-
6.30 mm	100		-	0.0249	-	70	
5.00 mm	100	-		0.0177		67	
3.35 mm	100		-	0.0093		62	
2.00 mm	99		-	0.0048	-	50	
1.18 mm	99	-	-	0.0025		36	-
600 μm	98	-	-	0.0014	-	27	
425 μm	98			SUMMARY :			
300 μm	97		-	Gravel (%)	: 1		
212 µm	96		-	Sand (%)	: 18		
150 μm	91	-	4	Silt (%)	: 49		
63 µm	81	-	-	Clay (%)	: 32		
0 μm	0						

05/09/2018 Date: Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

: 25/08/2018

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

05/09/2018

TEST REPORT **DETERMINATION OF** PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

Report No.

: J2999-272.34

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

. 272

Project

Sample ID No. Sample No.

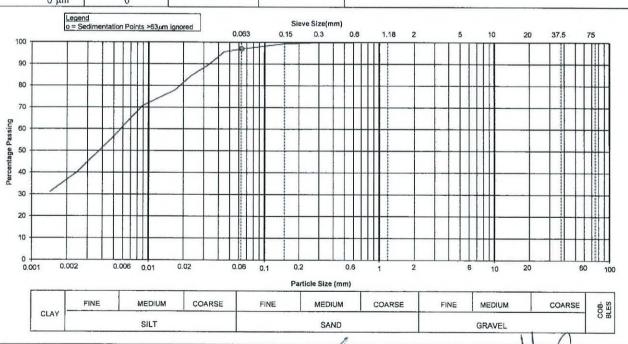
HK1843496-011 C/Benthic Survey

Date Received: 24/08/2018 Tested Date 25/08/2018

Sample Depth (m)

Specimen Depth (m)

Small Disturbed


Sample Type Sample Origin

Dark grey, slightly sandy SILT/CLAY

* Delete as appropriate

[‡] Information provided by customer

Sieve Method: Method A *Upon request SIEVE ANALYSIS *Expanded Percent Cumulative SEDIMENTATION ANALYSIS Passing Uncertainty Percent Passing Specific Gravity (# if assumed): with Expanded Dispersant Details: Sodium hexametaphosphate, Sodium carbonate of the Percent Sieve Size Passing (%) Uncertainty (%) Sampling History : As received 100.0 mm The presence of any visible organic matter in the soil: None 75.0 mm 100 63.0 mm 100 Particle % Finer Expanded Expanded Uncertainty of the 50.0 mm 100 Diameter than D Uncertainty of 37.5 mm 100 Particle Diameter K % finer than D 28.0 mm 100 (mm) (mm) (%) (%) 20.0 mm 0.0631 100 14.0 mm 100 0.0449 96 10.0 mm 100 0.0324 89 6.30 mm 100 0.0233 85 5.00 mm 100 0.0168 78 3.35 mm 100 0.0089 71 2.00 mm 100 0.0046 55 1.18 mm 100 0.0024 40 600 µm 100 0.0014 425 μm 100 SUMMARY : 300 μm 100 Gravel (%) 0 212 µm 100 Sand (%) 3 150 µm 99 Silt (%) 61 97 63 µm Clay (%) 36 0 µm

25/08/2018 Date: 05/09/2018 Date 05/09/2018 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Name:

K Y Sun

Form: GESR003.5 / Jun. 30.13 / Issue 1 / Rev 2

Technician

Approved By

Signatory

TEST REPORT DETERMINATION OF

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: ALS Technichem (HK) Pty Ltd Customer Project

Tested Date 25/08/2018

Date Received: 24/08/2018

Description : Dark grey, slightly sandy SILT/CLAY

* Delete as appropriate

Report No.

: J2999-272.34

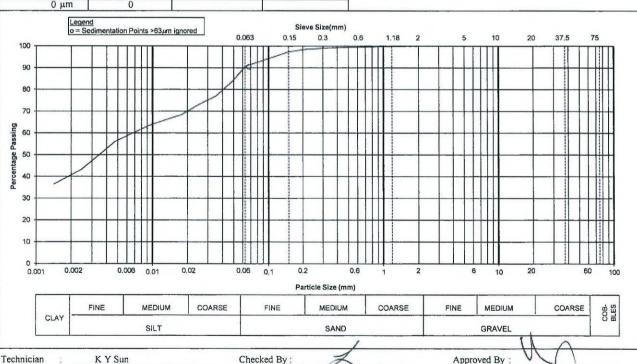
Works Order No.

. 272

Sample ID No.

: HK1843496-012 : D/Benthic Survey

Sample No. Sample Depth (m)


Specimen Depth (m)

Sample Type

: Small Disturbed

Sample Origin

Sieve Method: Method	A	*Upon request	* Delete as appropri	ate ‡ Infor	mation provided by cus	stomer	
SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	f assumed): 2.65 #		
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Sampling History	Sodium hexametapho As received	spnate, Sodiun	1 carbonate
100.0 mm	100	-	-	The presence of any	visible organic matter	in the soil : No	one
75.0 mm	100		-	1			
63.0 mm	100	-	-	Particle	^Expanded	% Finer	*Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty o
37.5 mm	100	-	-		Particle Diameter	K	% finer than I
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0675		91	
14.0 mm	100		-	0.0486	-	84	-
10.0 mm	100	-		0.0349	-	77	-
6.30 mm	100	-		0.0249	-	73	
5.00 mm	100	*		0.0178	-	69	-
3,35 mm	100	-	-	0.0093	-	64	-
2.00 mm	100	*	-	0.0047	-	56	
1.18 mm	100			0.0024	-	43	-
600 μm	100	-	-	0.0014	-	37	
425 μm	99	-	-	SUMMARY :			
300 μm	99	-	-	Gravel (%)	; 0		
212 µm	99	-	-	Sand (%)	; 9		
150 μm	97		*	Silt (%)	: 51		
63 μm	91	•	-	Clay (%)	; 40		
0 um	0						

K Y Sun

TK Lam

Approved By

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

Date: 05/09/2018

Signatory : Chung Hei Wing Date : 05/09/2018 Date

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

TEST REPORT **DETERMINATION OF** PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: J2999

Contract No. :

Works Order No.

Report No.

: J2999-272.34

Customer

: ALS Technichem (HK) Pty Ltd

: 272 : HK1843496-013

Project

Sample ID No. Sample No.

: E/Benthic Survey

Date Received: 24/08/2018

Sample Depth (m)

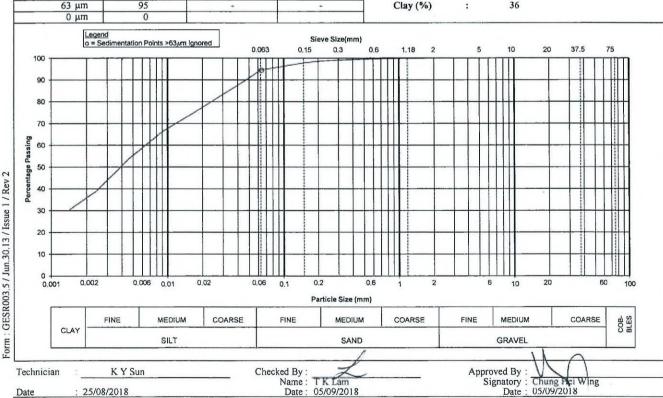
Tested Date : 25/08/2018

Specimen Depth (m) Sample Type

Small Disturbed

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer

SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i		ı	
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History	Sodium hexametapho As received	sphate, Sodiun	n carbonate
100.0 mm	100	-	-	The presence of any	visible organic matter	in the soil: No	one
75.0 mm	100	4	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100		-		Particle Diameter	K	% finer than D
28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0640	-	95	
14.0 mm	100	-	4	0.0460	-	90	
10.0 mm	100	-	-	0.0330	-	85	-
6.30 mm	100			0.0237	-	80	
5.00 mm	100	-		0.0170		75	-
3.35 mm	100	*		0.0090	-	66	.*.
2.00 mm	100	-		0.0047	-	54	
1.18 mm	100	-		0.0024	*	39	-
600 µm	100			0.0014	-	31	
425 μm	99	-		SUMMARY :			-
300 μm	99	-	-	Gravel (%)	: 0		
212 µm	99			Sand (%)	: 5		
150 µm	98	-	-	Silt (%)	: 59		
62 um	05	1		Class (0/)	. 36		

Date: 05/09/2018 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior

written approval from this laboratory. © Gammon Construction Ltd

: 25/08/2018

TEST REPORT DETERMINATION OF

PARTICLE SIZE DISTRIBUTION

Job No.

Report No.

: J2999-272.34

Gammon

Customer

Works Order No.

: 272

Project

: ALS Technichem (HK) Pty Ltd

Sample ID No.

: HK1843496-014

Sample No.

: F/Benthic Survey

Date Received: 24/08/2018

Sample Depth (m)

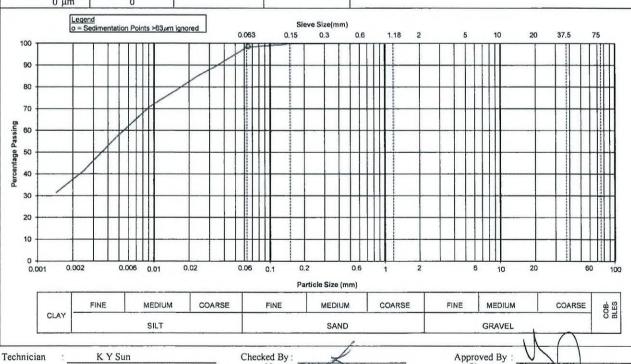
Tested Date : 25/08/2018

Specimen Depth (m)

Sample Type

Small Disturbed

Description Dark grey, slightly sandy SILT/CLAY Sieve Method : Method A


*Upon request

* Delete as appropriate

Sample Origin

[‡] Information provided by customer

sieve Method . Method		o pon request	Delete as appropri	ate mion	mation pro	rided by cus	torner	
SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	^Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	f assumed)	2.65 #		
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History			sphate, Sodium	n carbonate
100.0 mm	100	-	-	The presence of any	visible org	anic matter i	n the soil : No	one
75.0 mm	100		-		_			
63.0 mm	100		-	Particle	^Exp	anded	% Finer	Expanded
50.0 mm	100	-		Diameter	Uncertain	nty of the	than D	Uncertainty o
37.5 mm	100				Particle !	Diameter	K	% finer than I
28.0 mm	100	-	-	(mm)	(m	m)	(%)	(%)
20.0 mm	100			0.0644			99	-
14.0 mm	100		-	0.0462			94	-
10.0 mm	100		-	0.0331			89	
6.30 mm	100			0.0237			85	-
5.00 mm	100	-	-	0.0170			80	-
3.35 mm	100	+	-	0.0090			71	-
2.00 mm	100			0.0047	,		57	-
1.18 mm	100	-	-	0.0024			41	
600 µm	100	-		0.0014			31	-
425 µm	100	-	-	SUMMARY :	***************************************			
300 μm	100		-	Gravel (%)	:	0		
212 µm	100			Sand (%)	:	2		
150 µm	100	-	-	Silt (%)	:	61		
63 µm	98		-	Clay (%)	:	37		
0 μm	0							

: 25/08/2018 05/09/2018 Date: Date Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

T K Lam

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

Signatory

Chung Hei Wing

05/09/2018

TEST REPORT **DETERMINATION OF**

Gammon

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

Contract No.:

Report No.

: J2999-272.34

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

. 272

Project

Sample ID No.

HK1843496-015

Sample No.

: G/Benthic Survey

Date Received: 24/08/2018

Tested Date : 25/08/2018

Sample Depth (m) Specimen Depth (m)

Sample Type

Small Disturbed

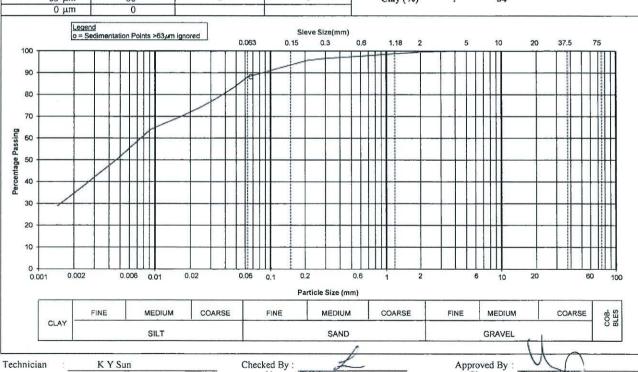
Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Origin

Sieve Method: Method A CIEVE ANALYSIS

Percent

*Upon request


*Eunandad

* Delete as appropriate *Cumulativa

*Information provided by customer

CEDIMENTATION ANALYCIC

SIEVE ANALYSIS	Percent	Expanded	Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# i	f assumed): 2.65	#	
Siava Sina		of the Percent	with Expanded	Dispersant Details:	Sodium hexametaph	osphate, Sodium	carbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History	As received	* 250	
100.0 mm	100	•	17	The presence of any	visible organic matter	r in the soil: No	ne
75.0 mm	100	-	-	7 250			
63.0 mm	100	1		Particle	*Expanded	% Finer	^Expanded
50.0 mm	100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than D
28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
20.0 mm	100			0.0671	-	88	
14.0 mm	100		-	0.0481	*	83	*
10.0 mm	100		-	0.0344	-	79	-
6.30 mm	100			0.0246		74	
5.00 mm	100	-	-	0.0176	-	71	
3.35 mm	100	*	-	0.0092	-	64	-
2.00 mm	100	*	-	0.0048		51	
1.18 mm	99	•	-	0.0024	-	39	-
600 µm	98		*	0.0014		29	1.50
425 μm	97	-		SUMMARY:			***************************************
300 μm	97	•	-	Gravel (%)	: 0		
212 µm	96	-		Sand (%)	: 12		
150 µm	94		-	Silt (%)	: 54		
63 μm	88	*	-	Clay (%)	: 34		
0 μm	0			S 52 - 6			

natory: Chung Hei Wing Date: 05/09/2018 : 25/08/2018 Date: 05/09/2018 Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

TKLam

Name:

Form: GESR003.5 / Jun.30.13 / Issue 1 / Rev 2

Signatory

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Gammon

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

Customer

Project

: ALS Technichem (HK) Pty Ltd

Percent

Date Received: 24/08/2018

Tested Date : 25/08/2018

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

SIEVE ANALYSIS

Contract No.:

Works Order No.

: 272

: J2999-272.34

Sample ID No.

: HK1843496-016

Sample No.

Report No.

: H/Benthic Survey

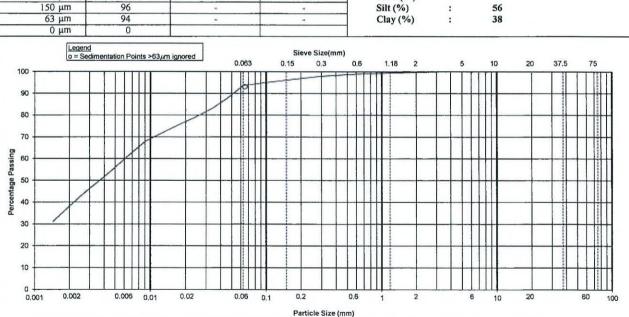
Sample Depth (m)

Specimen Depth (m)

Sample Type

: Small Disturbed

Sample Origin


*Upon request Sieve Method : Method A * Delete as appropriate

*Expanded

[‡] Information provided by customer SEDIMENTATION ANALYSIS

Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History	Sodium hexametapho		n carbonate
100.0 mm	100		-	The presence of any	visible organic matter	in the soil: No	one
75.0 mm	100				The section of the se		
63.0 mm	100			Particle	^Expanded	% Finer	^Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100		-		Particle Diameter	K	% finer than D
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100		-	0.0650		93	
14.0 mm	100		-	0.0467	-	88	-
10.0 mm	100			0.0335		83	
6.30 mm	100	-	-	0.0240	-	79	
5.00 mm	100			0.0171		76	-
3.35 mm	100		-	0.0090	-	68	
2.00 mm	100		-	0.0047	-	55	-
1.18 mm	99		*	0.0024	-	42	-
600 µm	99	-	-	0.0014	-	31	
425 μm	99			SUMMARY :			
300 µm	98	-	-	Gravel (%)	: 0		
212 μm	97	-	-	Sand (%)	: 6		

*Cumulative

Technician

Form: GESR003.5 / Jun. 30.13 / Issue 1 / Rev 2

K Y Sun

FINE

Checked By:

FINE

COARSE

MEDIUM

SILT

TK Lam Name:

Approved By Signatory:

MEDIUM

GRAVEL

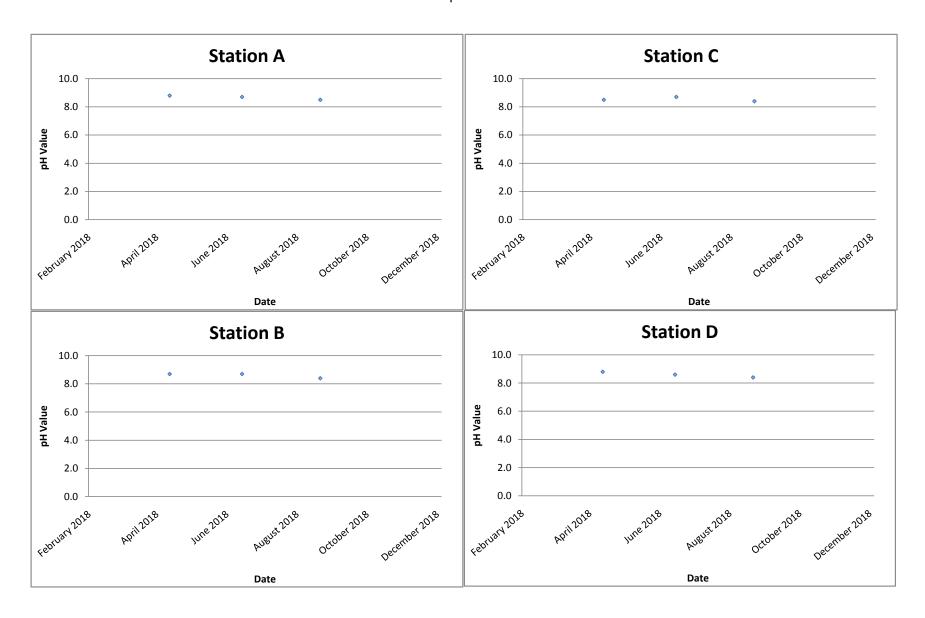
FINE

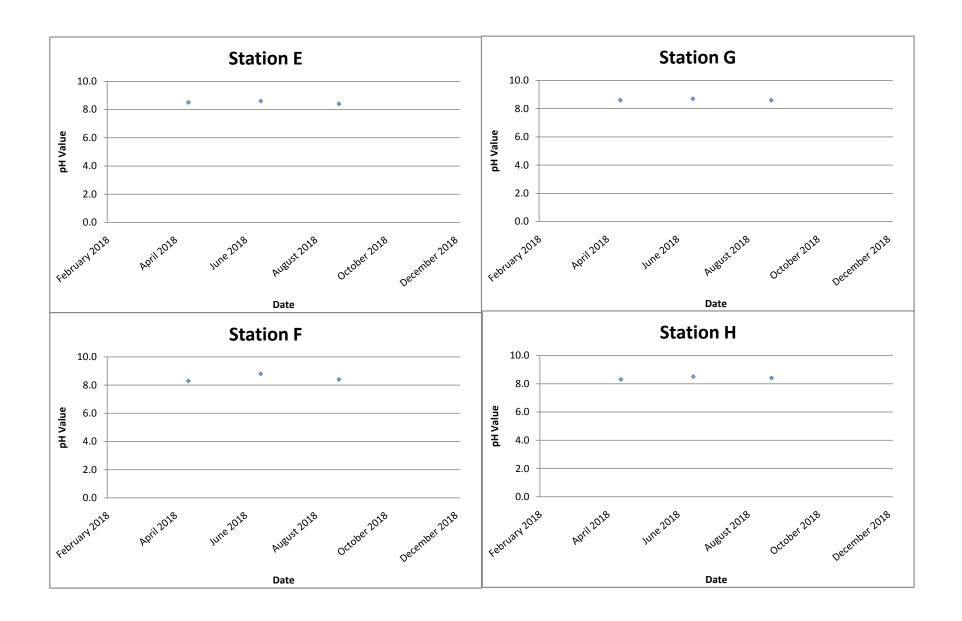
Chung Hei Wing

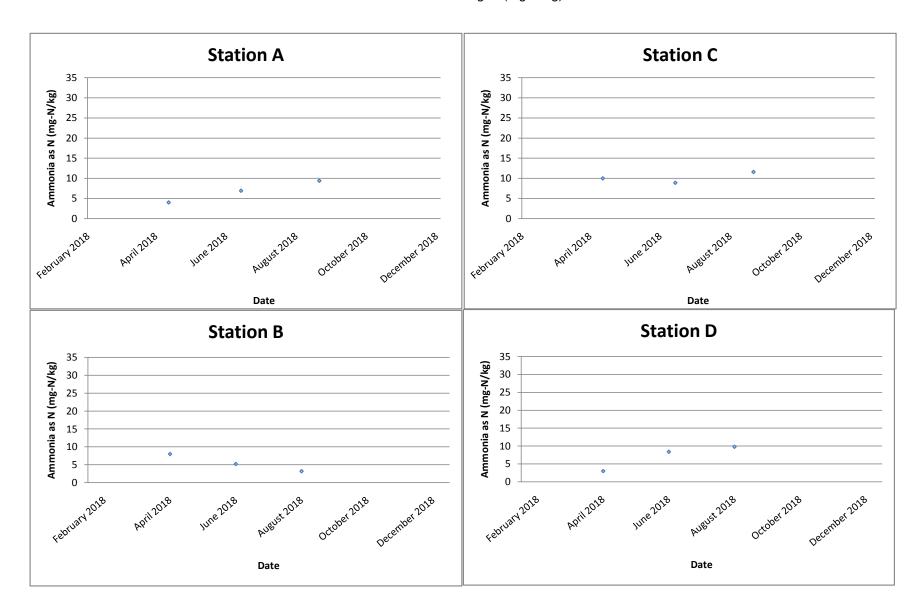
COARSE

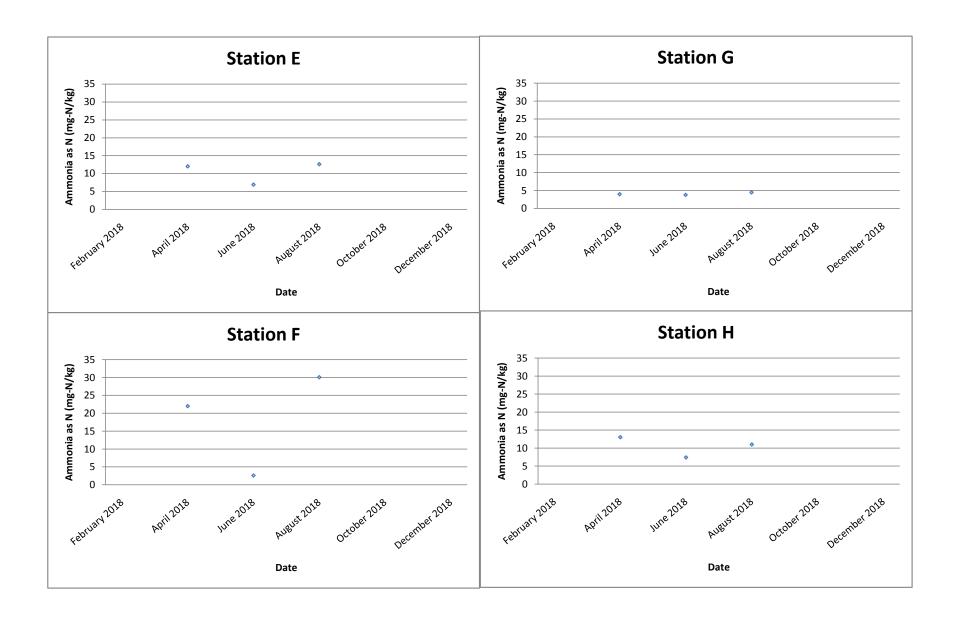
CLAY

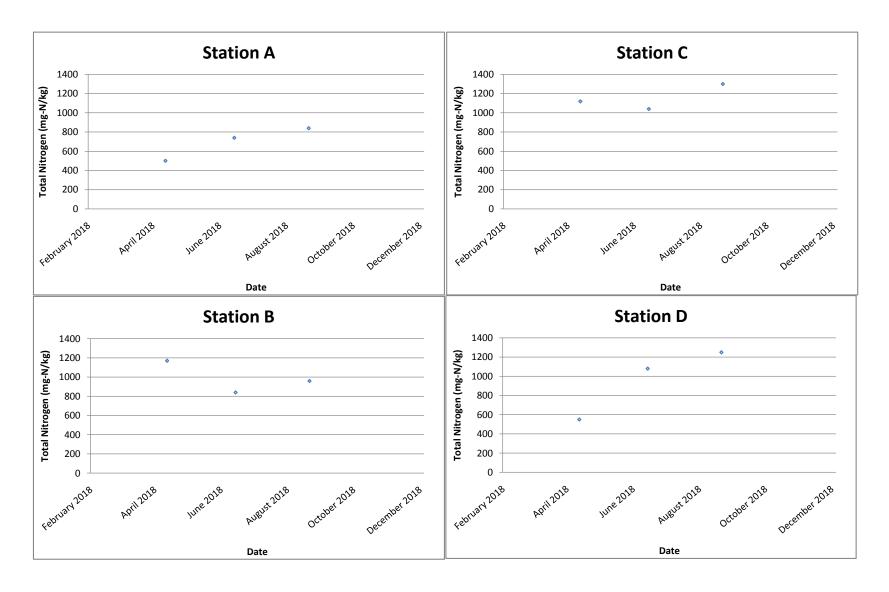
Date: 05/09/2018

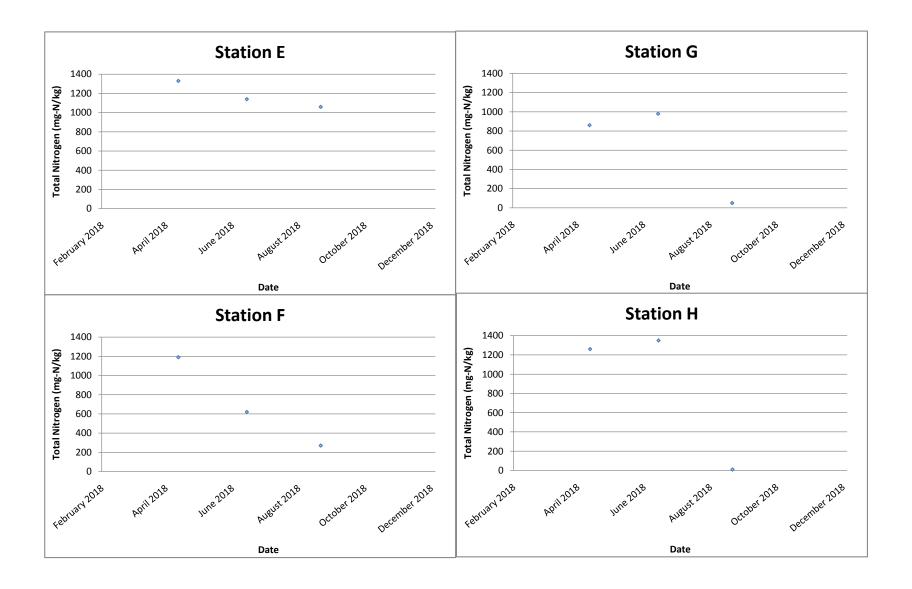

Date: 05/09/2018

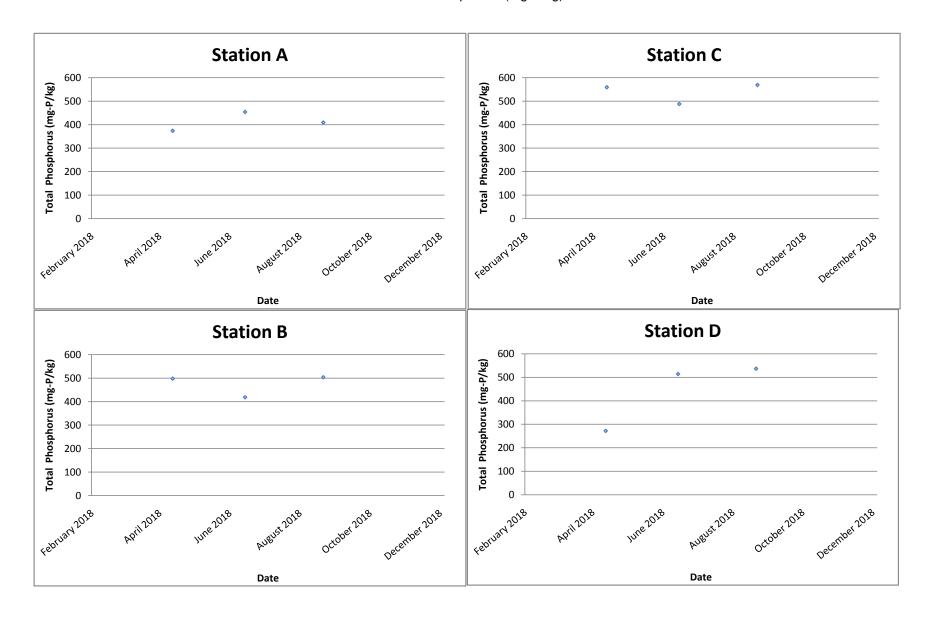

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

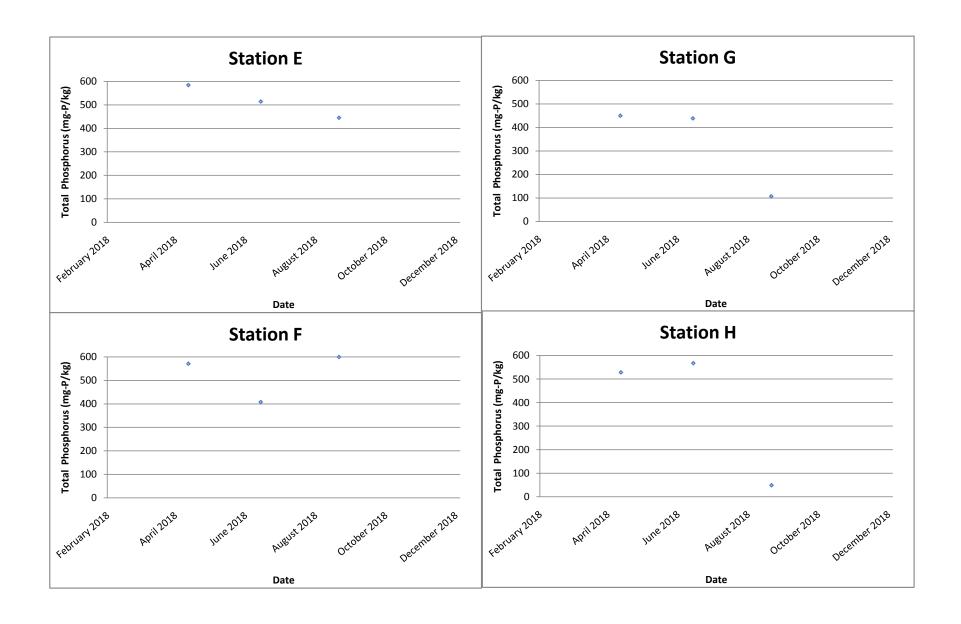

MEDIUM

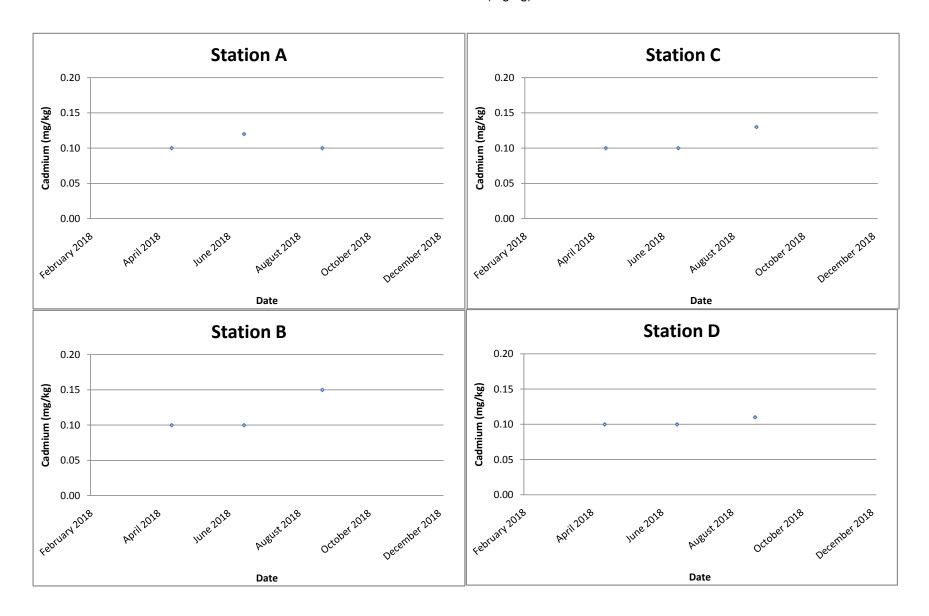

SAND

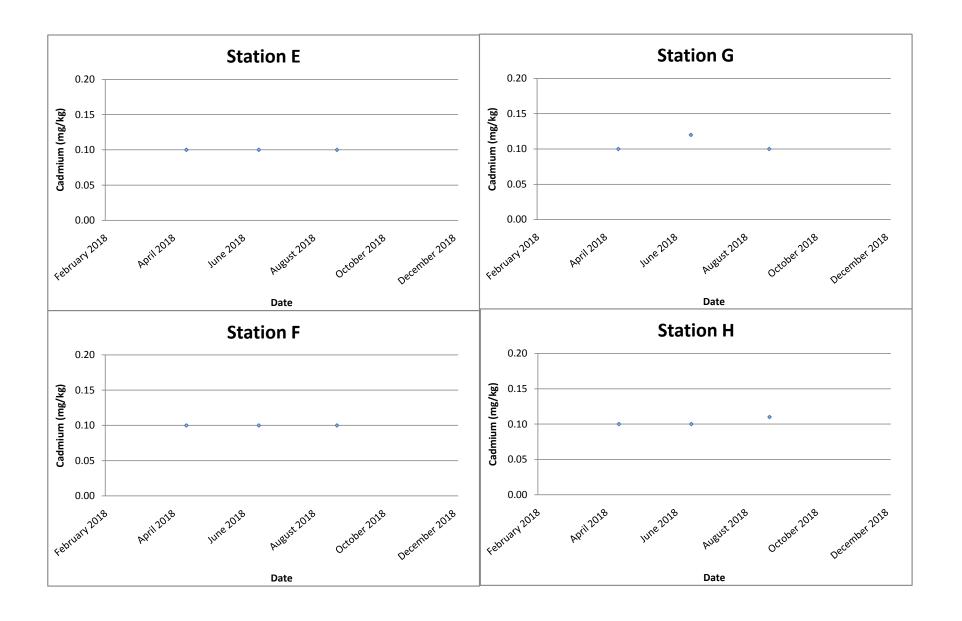

COARSE

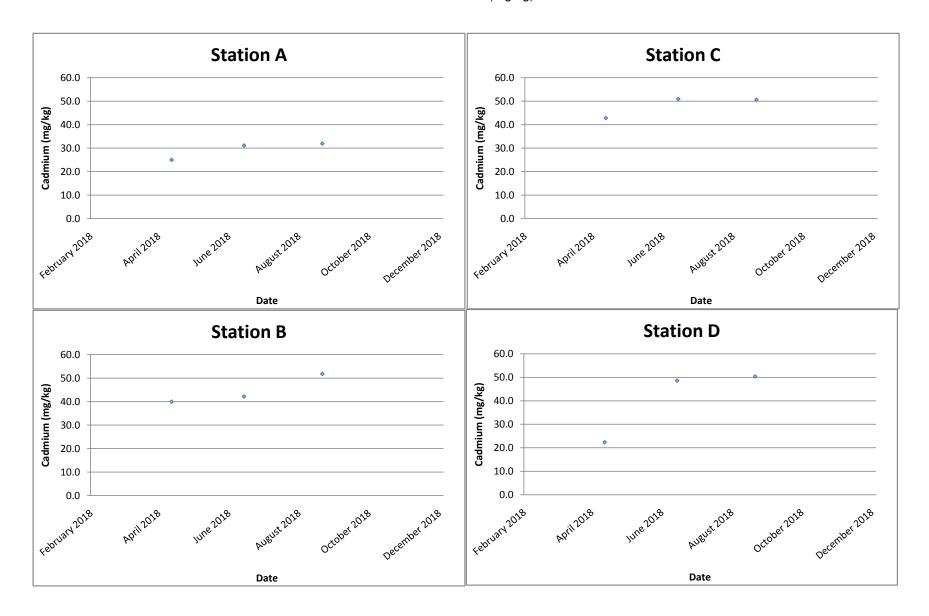


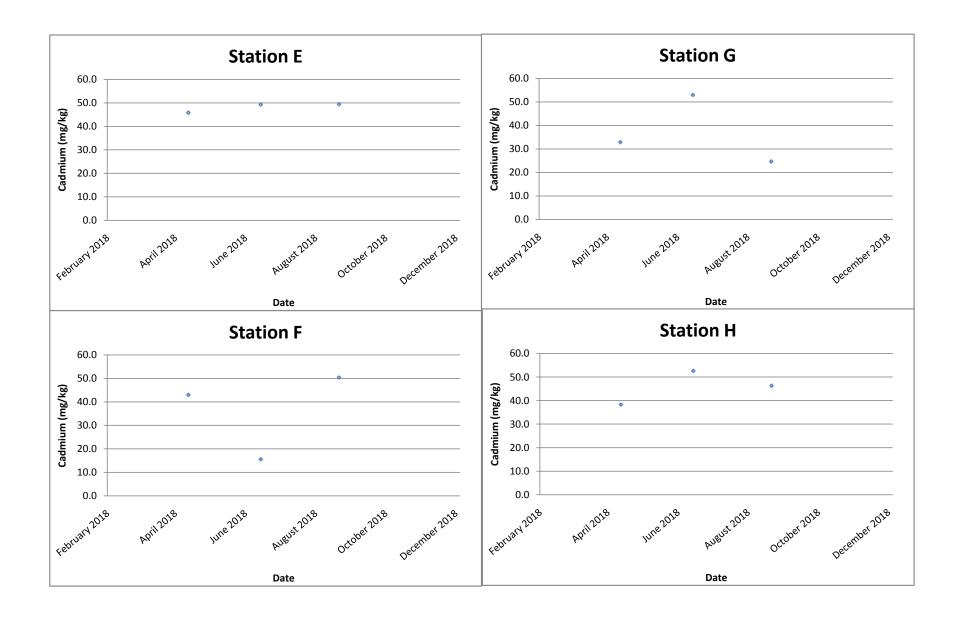


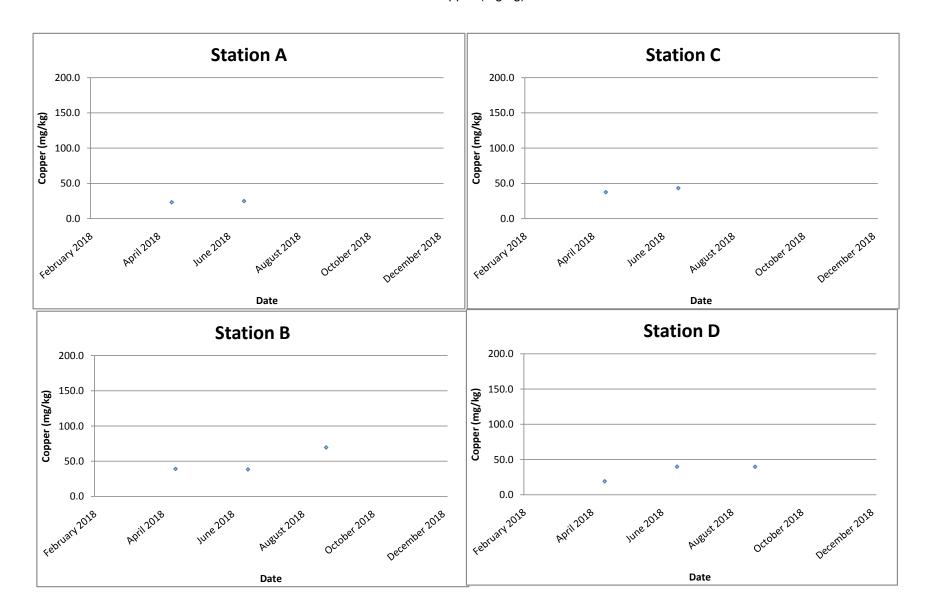


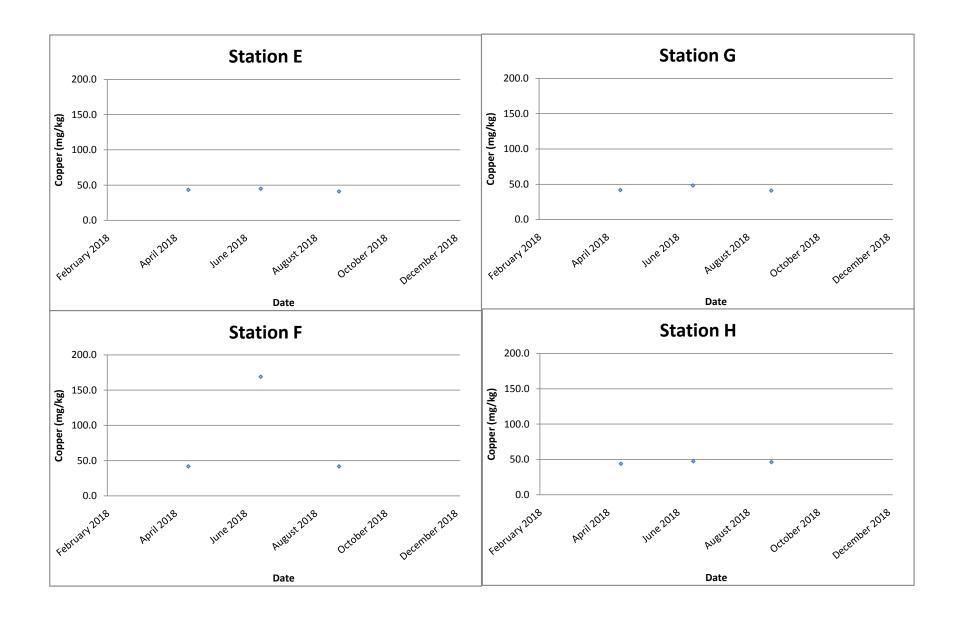


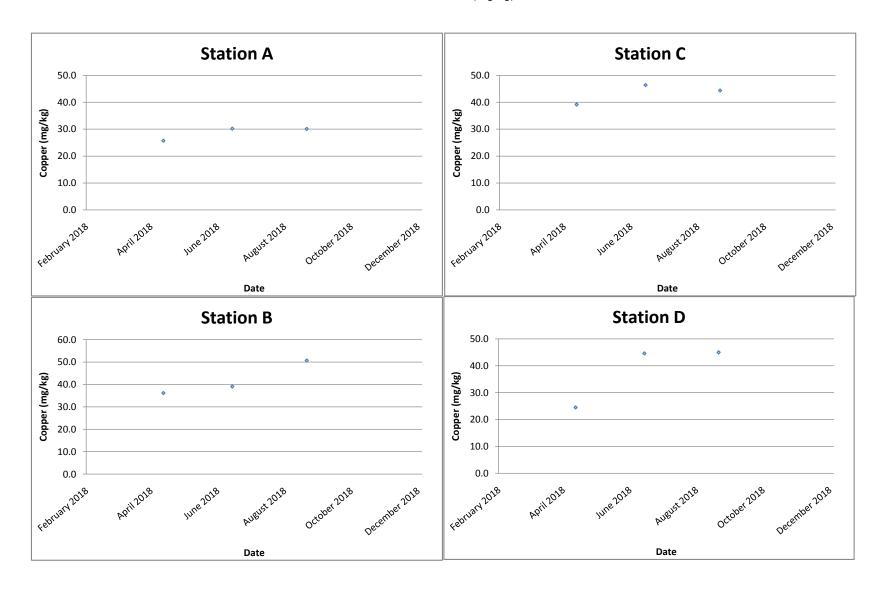


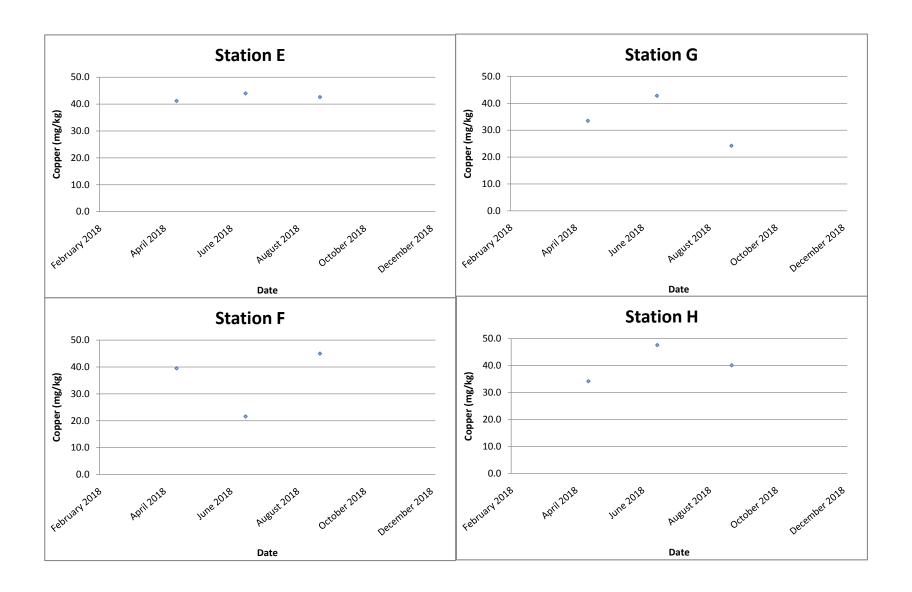


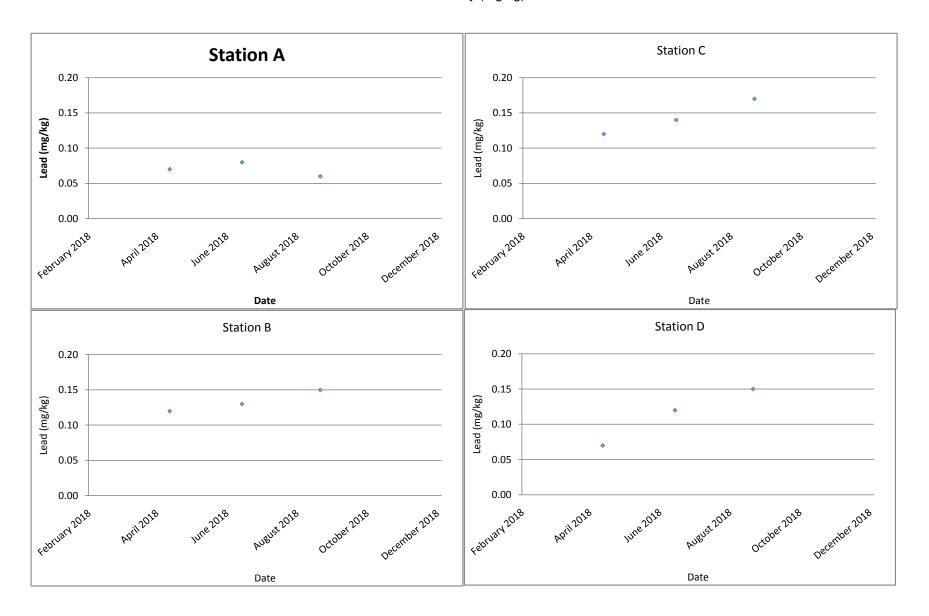


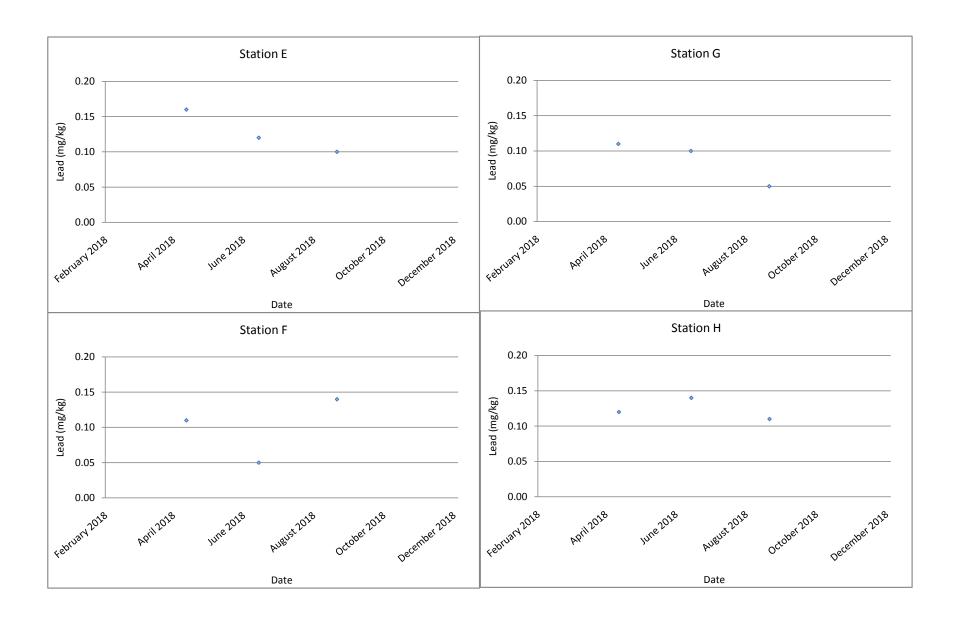


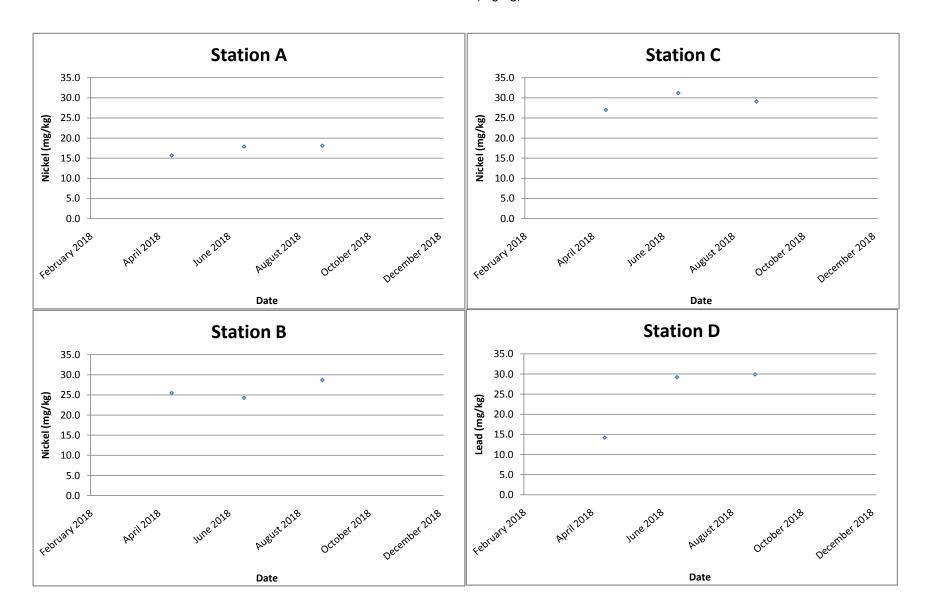


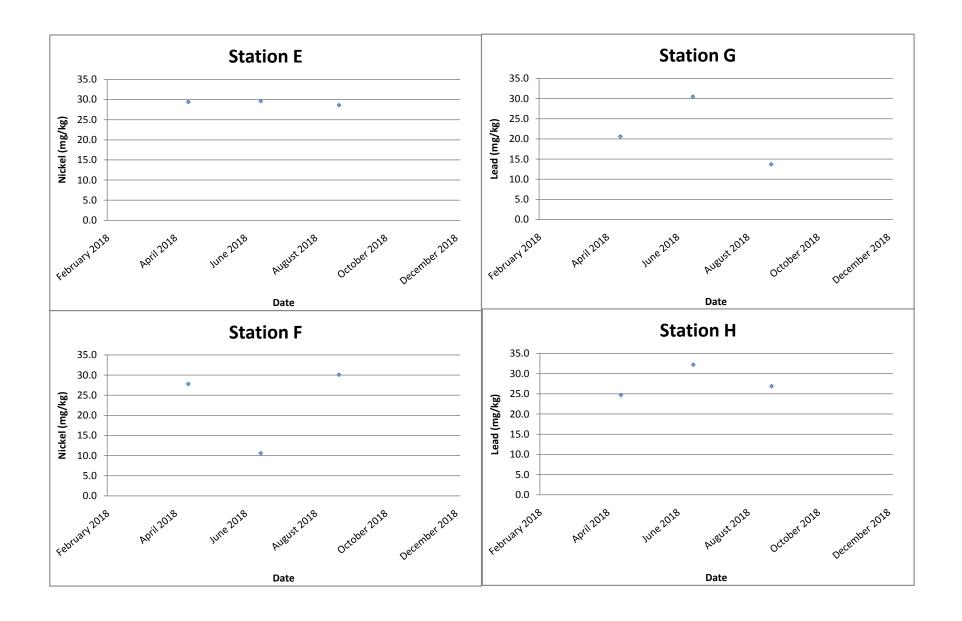


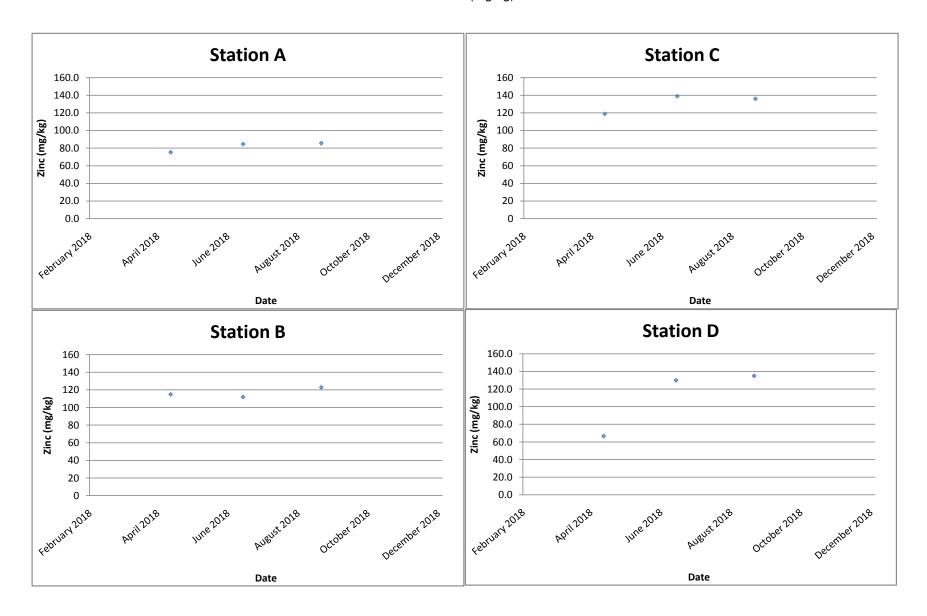


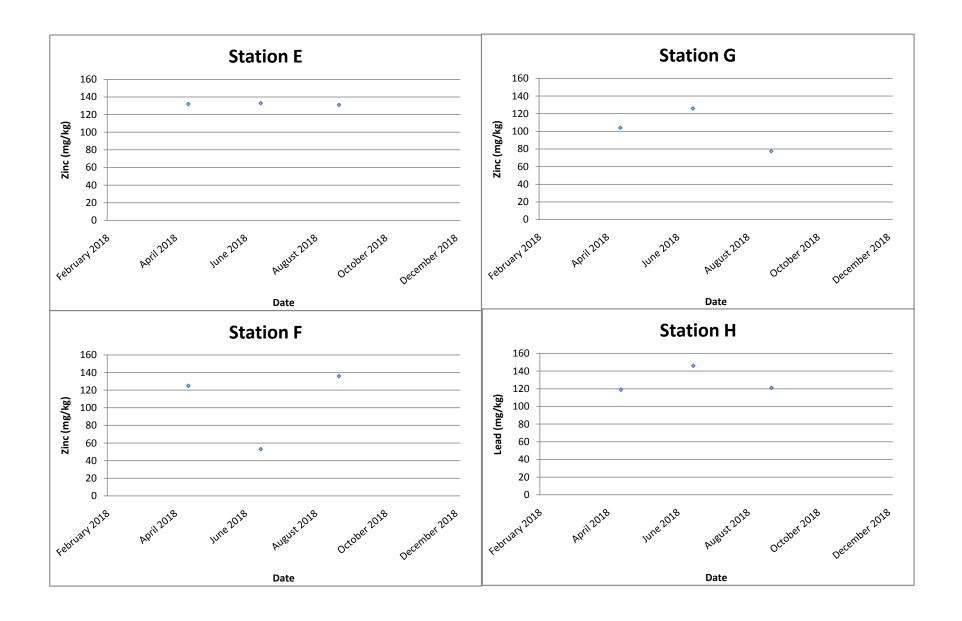


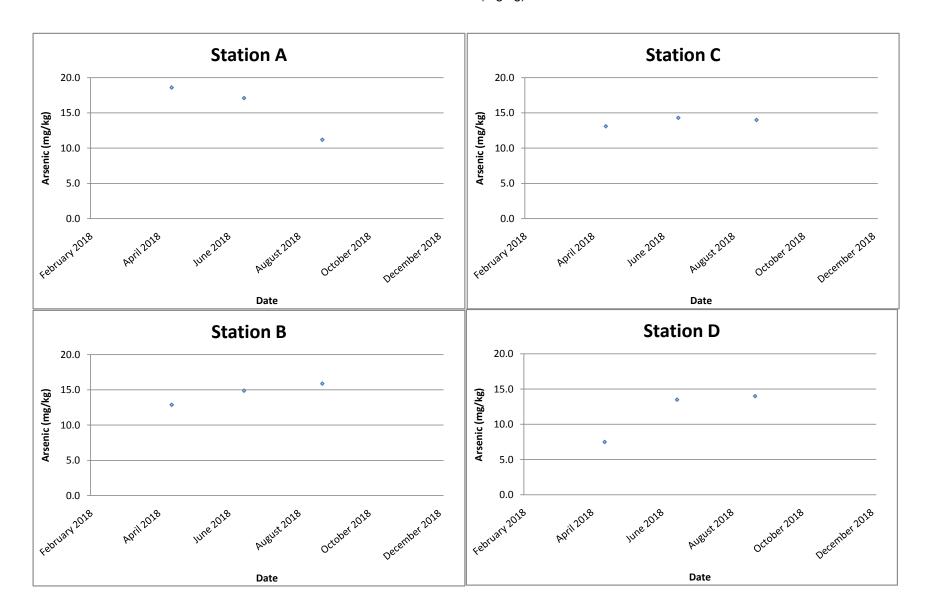


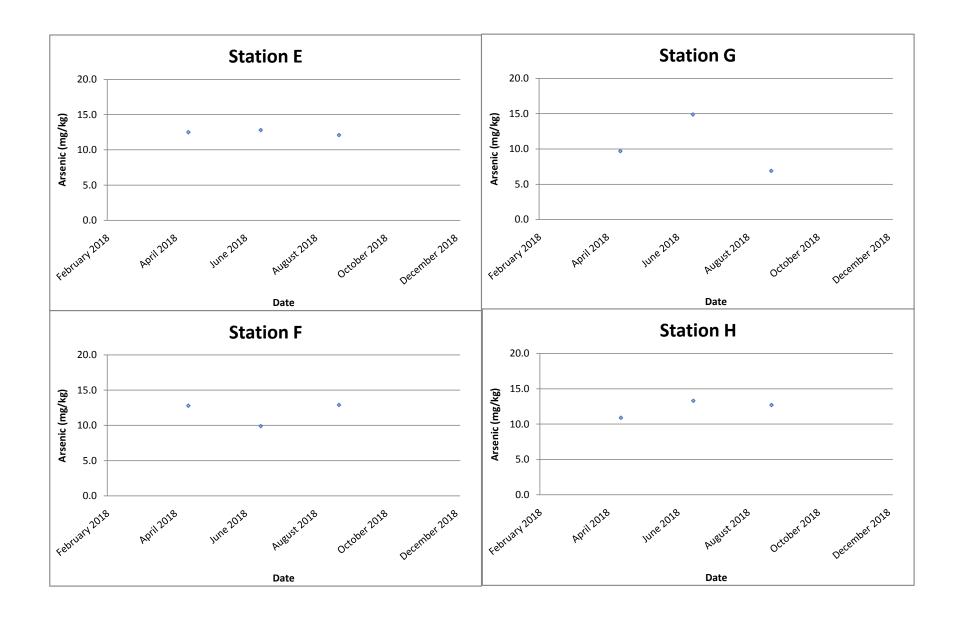


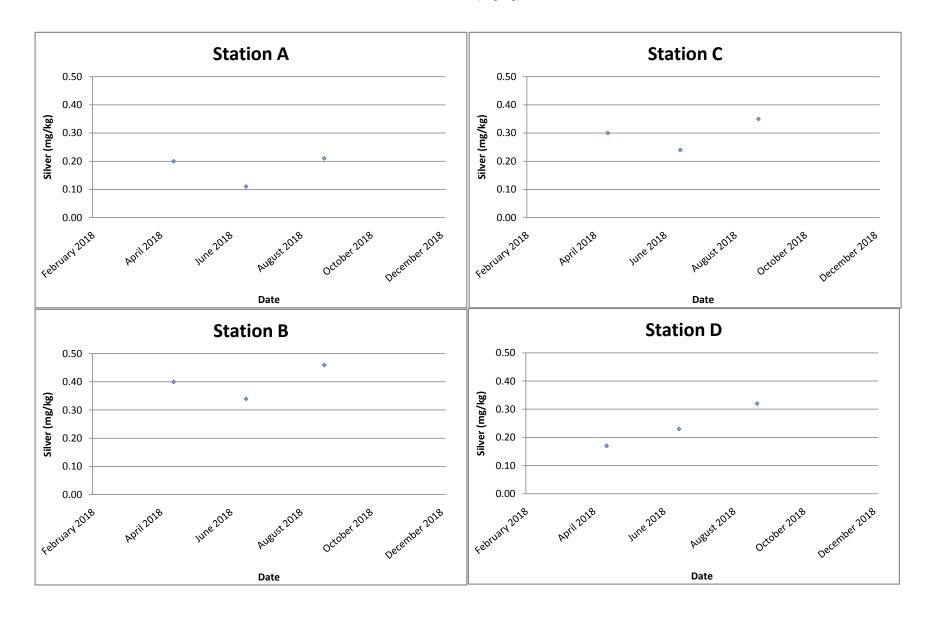














FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix H

Benthic Survey Report

Benthic Faunal Monitoring Conducted in August 2018 Summary Report

Abundance

A total of 223 macrobenthic organisms were collected from the eight monitoring stations during the August 2018 monitoring period. Figure 1 shows the abundance distribution across monitoring periods and stations. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 26 individuals (ind.) compared to the June 2018 monitoring results. Macrobenthic abundance showed decreasing trend since the wet season (August 2004) baseline monitoring albeit insignificant (p-value = 0.38; F crit = 2.94; α = 0.05). The decreasing trend might be attributed to weather disturbances (i.e. tropical storms) that hit Hong Kong week(s) before the sampling activities for June 2018 and August 2018 monitoring periods. Wave action brought about by these weather disturbances might have caused intermediate disturbances in the sampling stations, particularly that these stations are characteristically shallow waters (11m to 23m). Wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Molluscs, particularly bivalves, were substantially affected by these disturbances as shown in their decreasing abundance since April 2018 monitoring period.

Across monitoring stations, the distribution of macrobenthic abundance is significantly variable (p-value = 0.03; F crit = 2.42; α = 0.05). As previously reported, the number of macrobenthic organisms might be correlated with the particle or grain size distribution as relatively higher abundances were recorded in stations with moderately sorted sediments and lower abundances in well-sorted sediments. Well-sorted sediments can only provide a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at stations with relatively homogenous grain size distribution. However, for the present monitoring period, no clear correlation between the abundances and sediment characteristics was observed which might due to the constant re-working of sediments brought about by the series of weather disturbances affecting the sampling stations.

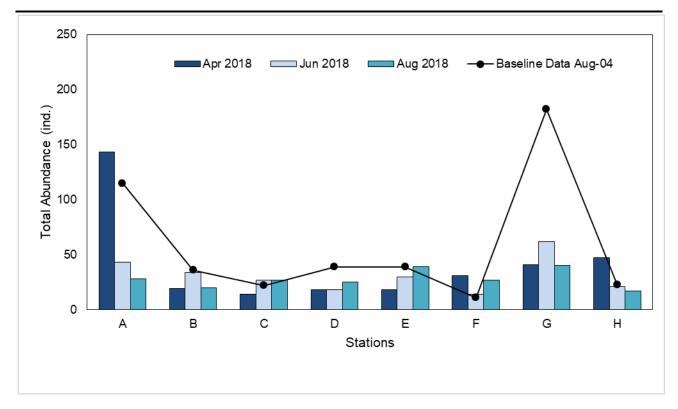


Figure 1. Total abundance (ind.) of benthic organisms

Biomass

The total wet biomass for all the eight monitoring stations during the August 2018 monitoring period was 63.99g, which is less than the biomass recorded during the previous monitoring periods. Figure 2 shows the biomass distribution across monitoring periods and stations. The decrease in total wet biomass (from April 2018 to August 2018) might be attributed to the parallel decline in the abundance of bivalves brought about by the series of weather disturbances that have impacted the sampling stations week(s) before the sampling activities.

The highest biomass continued to be observed in Station A (22.18g) and the lowest this present monitoring period is at the impact station, Station D (1.34g). Highest biomass remained at Station A because of the bivalves, *Ruditapes philippinarum* and *Paphia undulata*, remained to contribute significantly to the total wet biomass due to their larger sizes despite the decline in their abundance. Biomass generally decreased in all stations except at Station C and Station F due to the shift in the macrobenthic assemblage, which is currently dominated by smaller organisms (i.e. annelids).

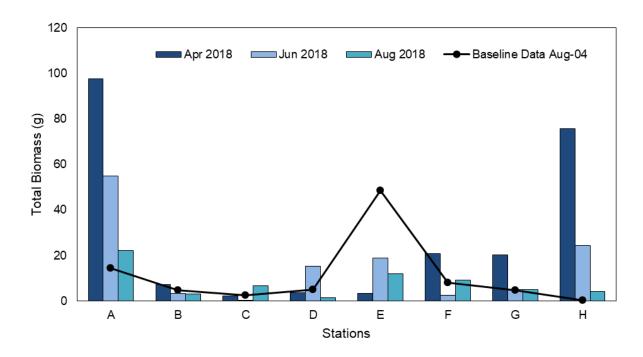


Figure 2. Total biomass (g) of benthic organisms

Taxonomic Composition

A total of seven phyla comprised of 37 families and 52 taxa were identified during the August 2018 monitoring period. With the previous increase in the number of annelid species and abundance and the decrease in the abundance of bivalves, annelids (i.e. polychaetes) remained to dominate the current benthic assemblages comprising about 65.02% of the sampled population (Figure 3). The intermediate disturbance in the form of wave action generated by the weather disturbances, as previously reported, might have cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ("benthic storms") was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

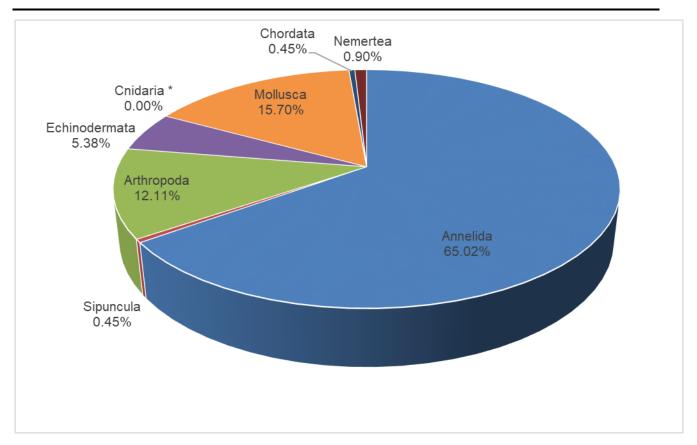


Figure 3. Percent composition of benthic organisms collected in the eight monitoring stations, August 2018

The current benthic assemblage is observed to be similar with the baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period capitellid and nepthyld were the most abundant group.

Station G remained to have the highest number of taxa (21) identified, followed by Station A and Station E both each have 20 taxa. The relatively higher number of taxa identified were mainly contributed by the species of polychaetes recorded at these stations. Station H had the lowest number (11) of taxa identified. Interestingly, the number of taxa in the impact stations (Station C and Station D) is increasing since April 2018 monitoring period.

Diversity

Diversity indices (H') for the August 2018 monitoring period ranged from low (2.26 at Station H) to

moderate (2.92 at Station A). Compared to the baseline and previous monitoring periods, increase in diversity in all stations (except at Station G) was observed. This increase might be due to the colonization of opportunistic species (i.e. annelids) of the new habitats made available by wave actions caused by weather disturbances. The increase in diversity consequently increase homogeneity of the benthic communities as showed by their high Evenness (J) Index.

Data summaries are shown in Appendix A and representatives of taxa identified are in Appendix B.

References:

Borja, A., Franco, J. and Perez, V. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pol Bul. 40:1100-1114.

Coleman, N., A.S.H Gason, and G.C.B. Poore. 1997. High species richness in the shallow marine waters of south-east Australia. Mar Ecol Prog Ser. 154:17-26.

Fauchald K. 1977. The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Gray, J.S. 1974. Animal-sediment relationships. Oceanogr Mar Bio Biol Annu Rev. 12:223-216.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang, Z.G. 1994. Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and R. Rosenberg.1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Bio Biol Annu Rev . 16: 229-311.

Rouse G. W. and F.Pleijel.2001. Polychaetes. Oxford University Press. United Kingdom.

Thistle, D., Yingst and J.Y., Fauchald, K.1985. A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic). Mar. Geol. 66:91–112.

Xu F. S. and S.P Zhang S. P. 2008. An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Margh

Signature of Supervisor

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant

Date: September 5, 2018

Appendix A: Data Summaries

Summary of Benthic Survey Data (August 2018)

Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	28	22.18	20	2.92	0.97
В	20	3.16	16	2.72	0.98
C*	27	6.70	17	2.64	0.93
D*	25	1.34	13	2.40	0.93
Е	39	12.11	20	2.74	0.91
F	27	9.31	14	2.44	0.92
G	40	4.97	21	2.76	0.91
Н	17	4.22	11	2.26	0.94
TOTAL	223	63.99	52 (N)		

^{*}Impact Sites

Summary of Benthic Survey Baseline Data (August 2004, wet season)

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')
Α	115	14.56	24	0.93
В	36	4.76	14	0.89
C*	22	2.66	13	0.80
D*	39	5.07	11	0.62
Е	39	48.69	16	0.89
F	11	8.07	9	0.68
G	182	4.91	31	1.10
Н	23	0.49	11	0.81

^{*}Impact Sites

Taxonomic Composition (%) of Benthic Survey

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18
Annelida	73.29	31.12	53.01	65.02
Sipuncula	0.21	0.30	0.80	0.45
Arthropoda	18.80	13.60	15.66	12.11
Echinodermata	3.63	15.11	4.82	5.38
Cnidaria *	0.43	0.60	0.40	0
Mollusca	3.42	50.45	21.29	15.69
Chordata	0.21	2.11	0.80	0.45
Nemertea	0	0.30	3.21	0.90

Taxonomic Composition (abundance) of Benthic Survey

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18
Annelida	343	103	132	145
Sipuncula	1	1	2	1
Arthropoda	88	45	39	27
Echinodermata	17	5	12	12
Cnidaria *	2	2	1	0
Mollusca	16	167	53	35
Chordata	1	7	2	1
Nemertea	-	1	8	2
Grand total	468	331	249	223

^{*}referred to as Coelentera in the baseline monitoring

Composition, Abundance, and Percent Composition of Benthic Communities August 2018

Dhylum	Phylum Class Order Family Genus Monitoring Stations						%						
Phylum	Class	Order	Faililly	Genus	Α	В	С	D	ш	F	G	Н	Composition
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	1	0	0	0	0	0	1	0	0.90
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	2	0	2	3	6	8	4	11.21
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	2	0	0	0	1	1	1	1	2.69
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	2	2	0	0	1	0	5	2	5.38
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	1	1	1	1	2	2	2	0	4.48
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	1	0	0.45
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0	1	1	0	1	0	0	0	1.35
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	0	0	0	0	0	1	0	0	0.45
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	1	0	0	0	0	0	0	0	0.45
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	1	0	0	0	0	0	0	0.45
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0	1	0	0	1	0	0	0	0.90
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	1	0	0	2	0	0	1	1	2.24
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia (P. paradoxa)	0	0	0	1	0	0	1	0	0.90
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra (c.f. S. hanaokai)	0	0	0	0	0	0	1	0	0.45
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	0	1	2	0	1.35
Annelida	Polychaeta	-	Maldanidae	Maldanella	0	1	0	0	0	0	0	0	0.45

					Monitoring Stations							%	
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н	Composition
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	1	0	2	0	1	0	0	0	1.79
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	1	0	2	0	1	1	0	2.24
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	1	0	5	5	6	0	0	2	8.52
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	2	1	1.35
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	2	0	1	4	0	4	4	1	7.17
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	1	0	0	0	0.45
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	0	0	0	1	0	0.45
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	1	2	0	0	0	0	1	0	1.79
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	1	1	1	0	2	1	0	2.69
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	1	0	0	0	0	0	0	0	0.45
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	1	1	0	0	0	0	0	0.90
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	1	0	0	0	0	0	1	0.90
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	2	0	0	0	0	0	0.90
Annelida	Oligochaeta	Sabellida	Sabellidae	Sabella	2	0	0	0	1	0	0	0	1.35
Annelida Total					16	15	14	18	18	18	33	13	65.02
N					12	12	8	8	10	8	16	8	30
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp.1	0	0	0	0	1	0	0	0	0.45
Sipuncula Total					0	0	0	0	1	0	0	0	0.45
N					0	0	0	0	1	0	0	0	1

							Moni	torin	g Sta	tions	;		%
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н	Composition
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	1	0	1	0	0	0	2	1.79
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	1	0	0	0	0	0	0	0	0.45
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1	0	1	0	0	0	0	0	0.90
Arthropoda	Crustacea	Decapoda	Goneplacidae	Scalopidia (S. spinosipes)	0	0	1	0	0	0	0	0	0.45
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	1	0	1	0	0.90
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	1	2	2	6	2	2	0	6.73
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	2	0	0	0	0	0	0	0.90
Arthropoda Total					2	4	4	3	7	2	3	2	12.11
N					2	3	3	2	2	1	2	1	7
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0	0	4	2	3	1	1	1	5.38
Echinodermata Total					0	0	4	2	3	1	1	1	5.38
N					0	0	1	1	1	1	1	1	1
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0	0	0	0	0	0	1	0	0.45
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	1	1	3	2	0	0	3.14
Mollusca	Bivalvia	Veneroida	Veneridae	Chione (C. isabellina)	0	0	0	0	0	0	0	1	0.45
Mollusca	Bivalvia	Veneroida	Veneridae	Circe (C. scripta)	1	0	0	0	1	0	0	0	0.90
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	0	1	0	3	2	2	0	3.59
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	1	1	0	1	1	1	0	0	2.24
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	2	0	0	0	0	0	0	0	0.90
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0	0	1	0	1	1	0	0	1.35

Dlavdriga	Class	Ordon	Family	Convo			Moni	torin	g Sta	tions	;		%
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н	Composition
Mollusca	Gastropoda	Buccinoidea	Nassariidae	Nassarius	2	0	0	0	0	0	0	0	0.90
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.javana)	3	0	0	0	0	0	0	0	1.35
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0	0	1	0	0	0	0	0	0.45
Mollusca Total					9	1	4	2	9	6	3	1	15.70
N					5	1	4	2	5	4	2	1	11
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID goby	1	0	0	0	0	0	0	0	0.45
Chordata Total					1	0	0	0	0	0	0	0	0.45
N					1	0	0	0	0	0	0	0	1
Nemertea	Enopla	-	-	UNID 1	0	0	1	0	1	0	0	0	0.90
Nemertea Total					0	0	1	0	1	0	0	0	0.90
N					0	0	1	0	1	0	0	0	1
Grand Total					28	20	27	25	39	27	40	17	100.00
TOTAL N					20	16	17	13	20	14	21	11	52

Biomass of Benthic Communities August 2018

Phylum	Class	Order	Family	Genus				Bioma	ss (g)			
					Α	В	С	D	Е	F	G	Н
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0.004	0	0	0	0	0	0.004	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	0.007	0	0.008	0.010	0.037	0.054	0.011
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.003	0	0	0	0.001	0.001	0.001	0.001
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.005	0.008	0	0	0.002	0	0.009	0.003
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0.001	0.002	0.003	0.002	0.001	0.003	0.002	0
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	0.009	0
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0	0.002	0.002	0	0.002	0	0	0
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	0	0	0	0	0	0.001	0	0
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0.002	0	0	0	0	0	0	0
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0.001	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0	0.001	0	0	0.001	0	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	0.001	0	0	0.002	0	0	0.002	0.002
Amadida	Dalvahaata	Dhydladasida	Developedentidos	Paralacydonia	0	0	0	0.004	0	0	0.004	0
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	(P. paradoxa)	0	0	0	0.001	0	0	0.001	0
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0	0	0	0	0	0	0.003	0
Affilellud	Polychaeta	Phyllodocida	Pilargidae	(c.f. S. hanaokai)	U	U	U	U	<u> </u>	U	0.003	U
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	0	0.001	0.002	0

Phylum	Class	Order	Family	Genus				Bioma	ıss (g)			
					Α	В	С	D	Е	F	G	Н
Annelida	Polychaeta	-	Maldanidae	Maldanella	0	0.001	0	0	0	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0.007	0	0.021	0	0.006	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0.013	0	0.010	0	0.016	0.007	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.001	0	0.008	0.012	0.011	0	0	0.004
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	0.003	0.001
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0.105	0	0.007	0.015	0	0.005	0.045	0.007
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	0.001	0	0	0
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	0	0	0	0.002	0
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0.002	0.002	0	0	0	0	0.002	0
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0.009	0.004	0.009	0	0.019	0.010	0
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	0.001	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0.001	0.001	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0.002	0	0	0	0	0	0.002
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	0.011	0	0	0	0	0
Annelida	Oligochaeta	Sabellida	Sabellidae	Sabella	0.005	0	0	0	0.003	0	0	0
		Annelida 1	- Гotal		0.137	0.049	0.057	0	0.038	0.083	0.156	0.031
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus sp.1	0	0	0	0	0.001	0	0	0
		Sipuncula 1	Total Total		0	0	0	0	0.001	0	0	0

9/26/2018

Phylum	Class	Order	Family	Genus				Bioma	ıss (g)			
					Α	В	С	D	E	F	G	Н
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	0.015	0	0.008	0	0	0	0.298
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	3.335	0	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	3.013	0	0.021	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Goneplacidae	Scalopidia (S. spinosipes)	0	0	0.003	0	0	0	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	Т	0	0.001	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	Т	0.001	0.001	0.002	0.001	Т	0
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	1.300	0	0	0	0	0	0
		Arthropoda ¹	Total		6.348	1.315	0.025	0	0.002	0.001	0.001	0.298
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0	0	0.366	0.029	0.112	0.509	0.115	0.138
		Echinodermat	a Total		0	0	0.366	0	0.112	0.509	0.115	0.138
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0	0	0	0	0	0	1.100	0
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0.009	0.010	0.033	0.022	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Chione (C. isabellina)	0	0	0	0	0	0	0	3.750
Mollusca	Bivalvia	Veneroida	Veneridae	Circe (C. scripta)	1.100	0	0	0	0.041	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	0	5.035	0	9.400	5.700	3.600	0
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	1.008	1.793	0	1.235	1.763	2.985	0	0
Mollusca	Bivalvia	Vanaraida	Veneridae	Ruditapes	6.100	0	0	0	0	0	0	0
ivioliusca	Divaivia	Veneroida	venendae	(R. philippinarum)	6.100		U	U	U	U	U	U
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0	0	0.003	0	0.021	0.009	0	0
Mollusca	Gastropoda	Buccinoidea	Nassariidae	Nassarius	2.800	0	0	0	0	0	0	0

Phylum	Class	Order	Family	Genus				Bioma	ass (g)			
					Α	В	С	D	Е	F	G	Н
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.javana)	4.600	0	0	0	0	0	0	0
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0	0	1.200	0	0	0	0	0
		Mollusca T	otal		15.608	1.793	6.247	1	11.258	8.716	4.700	3.750
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID goby	0.085	0	0	0	0	0	0	0
		Chordata	Total		0.085	0	0	0	0	0	0	0
Nemertea	Enopla	-	-	UNID 1	0	0	0.002	0	0.703	0	0	0
		Nemertea T	otal		0	0	0.002	0	0.703	0	0	0
	Grand Total						6.70	1.34	12.11	9.31	4.97	4.22

Note: T means biomass <0.001 g round to 0.001g

Benthic Species Recorded during the Baseline Study August 2004

Upgr	ading of	Siu Ho Wa	n Sewage	Treatment Pla	int				
		es Record			and the state of t	and the state of t			NA SANDARI SOTTAINI SANGURA CHAMBA (CAMPAN) (CAMPAN)
ID,	Station	Number	Mass (g)	Phylum 6	Class	Order	to be notice with the major major that the major that and the second states of	Genus 🔻 🗸	Species ve
1	A1	2	0.0108	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	A1	2	0.2632	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
3	A1	3	0.0031	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
4	A1	1	0.0008	Annelida	Polychaeta	Eunicida	Eunicidae '	Eunice	Eunice indica
5	A1	1	0.0092	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
6	A1	1	0.0012	Annelida	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubia
7	A1	1	0.0203	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
8	A1	3	0.0027	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
9	A1	1	0.0193	Annelida	Polychaeta	Terebellida	Terebellidae	Pista	Pista cristata
10	Ai	9	0.0598	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
11	A1	1	0.0097	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
12	A2	1	0.1911	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
13	A2	1	0.0003	Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	Capitella capitata
14	A2 ·	1	9,2414	Coelentera	Anthozoa	Pennatulacea	Veretillidae	Cavernularia	Cavernularia sp.
15	A2	15	0.0536	Annelida	Polychaeta	Splonida	Cirratulidae	Cirratulus ·	Cirratulus sp.
16	A2	1	0,0028	Mollusca	Bivalvia	Venerolda	Ungulinidae	Cycladicama	Cycladicama sp.
17	A2	3	0.0392	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
18	A2	3	0.3728	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
19	- A2	1	0.0064	Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
20	A2	2	0.0448	Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	Lepidonotus sp.
21	A2	3	0.968	Annelida	Polychaeta	Terebellida	Terebellidae	Loimia	Loimia medusa
22	A2	1	0.0051	Annel/da	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubia
23	A2	5	2.0379	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
24	A2	35	0.3411	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
25	A2	2	0.0408	Annelida	Polychaeta	Spionida .	Poecilochaetidae	Poecilochaetus	Poecilochaetus serpens
26	A2	5	0.0136	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
27	A2	4	0.6328	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
28	A2	3	0.0292	Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	Ruditapes philippinarum
29	A2	1	0.0059	Annelida	Polychaeta	Orbinlida	Orbiniidae	Scoloplos	Scoloplos sp.
30	A2	1	0.0012	Annelida	······	*****		Sigambra	Sigambra hanaokai
31	A2	1	0.0014	Annelida				Syllis	Syllis sp.
32	.A2	1	0.1345	Coelentera	transmitted the second	Pennatulacea		Virgularia	Virgularia gustaviana
33	B1	1	0,0234	Annelida	Polychaeta	············			Aglaophamus dibranchis
34	B1	1	0.0235	Annelida				Amphinome	Amphinome rostrata
35	81	1	0.0009	Echinodermata	***************************************			Amphiodia	Amphiodia sp.
36	B1	4	0.0063	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
37	B1	2	4.0772	Echinodermata	Echinoldea	Spatangoida	Loveniidae	Lovenia ·	Lovenia subcarlnata
38	B1	1		Annelida			Lumbrineridae	Lumbrineris	Lumbrineris sp.
39	B1	2		Arthropoda			Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
40	B1	1	0000 - 00	Mollusca				Nitidotellina	Nitidotellina minuta

			- C	Treatment Dia	nt				
Upgr	ading of	SIU HO WE	n Sewage	Treatment Pla	1				TO SEE THE SEE
Bent	hic Speci	es Record	ed In Augu	ISC ZUV4	Class	Order	Family	iGenus:	Species;
The same			Mass (0)	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
41	81	4	0.0139	Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
42	B1		0.0042	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
43	B1	1	0.0163	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
44	B2	3	0.0054	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
45	B2	3	0.1089		Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
46	82	<u> </u>	0.0384	Arthropoda	Biyalvia	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta
47	<u>B2</u>	1	0.0028	Mollusca	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
48	B2	5	0.0158	Annelida Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio cirrifera
49	B2	2	0.0006	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
50	B2		0.0008		Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
51	B2	11	0.1426	Arthropoda	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
52	C1_	3	0.0152	Annelida	Polychaeta	Capitellida	Maldanidae	Euclymene	Eudymene sp.
53	C1	1	0.0123	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
54	C1	22	0.0348	Annelida	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
55	C1	2	0.4967	Arthropoda	Polycháeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
56	<u>C1</u>	3	0.0418	Annelida	Bivalvia	Veneroida	Veneridae	Paphia	Paphla undulata
57	CI	1	1,6743	Mollusca	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
58	C1_	2	0.0017	Annelida Mailugga	Biyaivia	Veneroida	Semelidae	Theora	Theora lata
59	C1	1	0.009	Mollusca	Crustacea	Decapoda	Pilumnidae	Typhlocardnus	Typhlocarcinus nudus
60	C1	1 - 1	0.0503	Arthropoda	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
61	C2	2	0.0099	Annelida	Polychaeta	Amphinomida	Amphinomidae	Amphinome	Amphinome rostrata
62	C2	1	0.0243	Annelida Annelida	Polychaeta	Phyllodocida	Giyceridae	Glycera	Glycera onomichiensis
63	C2	1	0.285	·	Crustacea	Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
64	C2	1	0.0049	Arthropoda	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
65	C2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
66	D1	22	0.0065	Annelida Annelida	Polychaeta	Capitellida	Maldanidae	Euclymene	Euclymene sp.
67	D1	1	0.0106		Crustacea	Decapoda	Goneplacidae	Eucrate	Eucrate haswelli
68	D1	1	0.5246	Arthropoda	Polychaeta	Phyliodocida	Glyceridae	Glycera	Glycera onomichiensis
69	D1	3	0.4472	Annelida	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
70	D1	2	0.254	Arthropoda	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
71	D1	8	0.0887	Annelida	Polychaeta	Ophelida	Ophellidae	Ophelia	Ophelina grandis
72	D1	2	0.0648	Annelida	Bivalvia	Venerolda	Veneridae	Paphia	Paphia undulata
73	D1	1.	3.3726	Mollusca	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
74	D1	2	0.0092	Annelida	Bivalvia	Nuculoida	Nuculanidae	Saccella	Saccella sp.
75	D1	1	0.0514	Mollusca	Polychaeta	Phyllodocida	Pilargiidae	Sigambra	Sigambra hanaokai
76	Di'	1	0.0021	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
77	D2	12	0.155	Annelida		Opheliida	Opheliidae	Ophelia	Ophelina grandis
78	D2	1	0.0797	Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
79	D2	1	0.0031	Annelida	Polychaeta	Phyllodocida	Pilargiidae	Sigambra	Sigambra hanaokai
80	D2	<u> </u>	0.0012	Annelida	Polychaeta	TEITAIOUOGIG	Francisco Company	1-1-3-41-1-1-1	<u></u>

								Ţ	·
Upgı	ading of	Siu Ho W	an Sewage	Treatment Pla	nt			,	.,
			led In Aug			a analysis analysis and thousand the second and the second	The state of the s	A CONTRACTOR OF THE CONTRACTOR	- Naci Mi Albert (Mikitania Wilania katala ang ki ang ki ki katalana ang mananana ay ang katalan ka na
TO.	Station	Number	Mass (g)	Phylum	Class	Order, je 1	Family	Genus	Species
81:	E1	3	0.0423	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
82	E1	1	0.0014	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
83	E 1	10	41.4922	Echinodermata	Echlnoidea	Spatangoida	Loveniidae	Lovenia	Lovenia subcarinata
84	E1	2	0.0672	Annelida	Polychaeta	Eunlaida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
85	E1	1	0.0171	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
86	E1	2	0,013	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
87	E1	1	0.0098	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
88	E1	1	0.0021	Annelida	Polychaeta	Phyllodocida	Pilarglidae	Sigambra	Sigambra hanaokai
89	E1	1	0.0203	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
90	E1	1	0.006	Mollusca	Blvalvla	Veneroida	Semelidae	Theora	Theora lata
91	E1	1	0.0823	Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
92	E2	2	0.023	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
93	E2	1	0.0083	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
94	E2	1	0.0016	Arthropoda	Crustacea	Amphipoda	Corophiidae	Corophium	Corophium sp.
95	E2	1	0.0171	Annelida	Polychaeta	Eunlaida	Onuphidae	Diopatra	Diopatra sp.
96	E2	1	0.0062	Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
97	E2	1	0,446	Annelida	Polychaeta	Terebellida	Terebellidae	Lolmia	Loimia medusa
98	E2	2	6,348	Echinodermata	Echinoidea	Spatangolda	Lovenlidae	Lovenia	Lovenia subcarinata
99	E2	i	0.0067	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
100	E2	1	0.0336	Mollusca	Bivalvia	Venerolda	Tellinidae	Nitidotellina	Nitidotellina minuta
101	E2	4	0.0477	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
102	F 1	1	0.0162	Arthropoda	Crustacea	Decapoda	Alpheldae	Alpheus	Alpheus sp.
103	F1	1	0.4824	Mollusca	Gastropoda	Neogastropoda	Nassarildae	Nassarlus	Nassarius sp.
104	F1	1	0.0088	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
105	F1	1	0,0046	Annellda	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
106	F1	1	0.0018	Annelida	Polychaeta	Phyllodocida		Sigambra	Sigambra hanaokai
107	F1	1	0.0126	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
108	F2	1	0.0284	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
109	F2	2	7.2811	Echinodermata	Echinoidea	Spatangoida		Lovenia	Lovenia subcarinata
110	F2	1	0.0222	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
111	F2	1	0,2073	Annelida	Polychaeta	Opheliida	Opheliidae	Ophelia	Ophelina grandis
112	G1	7	0.1547	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
113	G1	1	0.0003	Arthropoda	Crustacea .	Tanaidacea	Apseudidae	Apseudes	Apseudes sp.
114	G1	1	0.0414	Arthropoda	Crustacea	Decapoda	Callianassidae	Callianassa	Callianassa sp.
115	G1	3	0.0024	Annelida	Polychaeta	Spionida		Cirratulus	Cirratulus sp.
116	G1	4	0.0033		Crustacea	Amphipoda		Corophium	Corophium sp.
117	G1	9	0.3983	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice Indica
118	GÍ	1	0.0397	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
119	G1	2	0.0173	Arthropoda	Crustacea	Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
120	G1	1	0.0245	Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	Lepidonotus sp.

	. dt. c. = 2.0	Cir. Un Mi	n Courage	Treatment Pla	nt				,
Upgra	iding of	Siu no wa	ed In Augu	ret 2004			ALLE LANGONIA INVESTIGATION IN THE SECOND IN THE SECOND IN	manufactivistici deletatement Del Sacial Mario	
Bentr	IIC Speci	es Record	Macconia	Dhulim.	Class	Order	Family	The same of the sa	Species
10000			0.819	Phylum Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
121	G1	3	0.0108	Annelida	Polychaeta	Phyllodocida	Nereldae	Nerels	Nerels sp.
122	<u>G1</u>	4	0.0108	Annelida	Polychaeta	Capitellida	Capitellidae ·	Notomastus	Notomastus latericens
123	G1	20		Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio ehlersi
124	G1	<u>l</u>	0.0005	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
125	<u>G1</u>	2	0.0053	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
126	G1	11	0.094	Annelida	Polychaeta	Phyllodocida	Syllidae	Syllis	Syllis sp.
127	G1_	22	0.0006	<u> </u>	Polychaeta	Phyllodocida	Nephtyldae	Aglaophamus	Aglaophamus dibranchis
128	G2	1	0.0027	Annelida	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
129	G2	2	0.108	Arthropoda	Crustacea	Tanaidacea	Apseudidae	Apseudes	Apseudes sp.
130	G2	11	0,0028	Arthropoda		Splonida	Cirratulidae	Cirratulus	Cirratulus sp.
131	G2	3	0.0058	Annelida	Polychaeta Crustacea	Decapoda	Goneplacidae	Eucrate	Eucrate haswelli
132	G2	11	0,2476	Arthropoda	· · · · · · · · · · · · · · · · · · ·	Eunicida	Eunicidae	Eunice	Eunice Indica
133	G2	22	0.063	Annelida	Polychaeta	Terebellida	Terebellidae	Lanice	Lanice sp.
134	G2_	1	0.0169	Annelida	Polychaeta	Veneroida	Dreissenidae	Mytilopsis	Mytilopsis sallei
135	G2	11	0.0645	Mollusca	Bivalvia	Capitellida	Capitellidae	Notomastus	Notomastus latericens
136	G2	2	0.0017	Annelida	Polychaeta	Opheliida	Opheliidae	Ophelia	Ophelina grandis
137	G2	11	0.0059	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
138	G2	7	0.0211	Annelida	Polychaeta		Porcellanidae	Raphidopus	Raphidopus ciliatus
139	G2	5	0.3769	Arthropoda	Crustacea	Decapoda Phyllodocida	Syllidae	Syllis	Syllis sp.
140	G2	1	0.0002	Annelida	Polychaeta		Nephtyidae	Aglaophamus	Aglaophamus dibranchis
141	G2	1	0.0026	Annelida	Polychaeta .	Phyllodocida Pagenada	Alpheidae	Alpheus	Alpheus sp.
142	G2	7	0.0952	Arthropoda	Crustacea	Decapoda Terebellida	Terebellidae	Amaeana	Amaeana sp.
143	G2	1	0.0469	Annelida	Polychaeta	· · · · · · · · · · · · · · · · · · ·	Cirratulidae	Cirratulus	Cirratulus sp.
144	G2	11	0,0008	Annellda	Polychaeta	Spionida Amphipoda	Corophiidae	Corophium	Corophium sp.
145	G2	7	0.0042	Arthropoda	Crustacea	Eunicida	Eunicidae	Eunice	Eunice Indica
146	G2	8	0.1768	Annelida	Polychaeta	Phyllodocida Phyllodocida	Polynoidae	Gattyana	Gattyana sp.
147	G2	11	0.0025	Annelida	Polychaeta		Glyceridae	Glycera	Glycera onomichiensis
148	G2	4	0.0105	Annelida	Polychaeta	Phyllodocida	Goneplacidae	Hexapus	Hexapus granuliforus
149	G2	1	0.0162	Arthropoda	Crustacea	Decapoda Decapoda	Nereidae	Nereis	Nereis sp.
150	G2	1	0.0019	Annelida	Polychaeta	Phyllodocida Conitollida	Capitellidae	Notomastus	Notomastus latericens
151	G2	7	0.0485	Annelida	Polychaeta	Capitellida	Spionidae	Paraprionospio	Paraprionospio pinnata
152	G2	11	0.0084	Annelida	Polychaeta	Splonida Phyllodocida	Phyllodocidae	Phyllodoce	Phyllodoce sp.
153	G2	1	0.0012	Annelida	Polychaeta		Porcellanidae	Raphidopus	Raphidopus ciliatus
154	G2	1	0.1746	Arthropoda	Crustacea	Decapoda Perciformes	Taenloididae	Trypauchen	Trypauchen yagina
155	G2	1	0.0453	Chordata	Osteichthyes	Phyllodocida Phyllodocida	Nephtyidae	Adlaophamus	Aglaophamus dibranchis
156	G2	2	0.0161	Annelida	Polychaeta	Decapoda	Alpheidae	Alpheus	Alpheus sp.
157	G2	3	0.4835	Arthropoda ·	Crustacea		Cirratulidae	Cirratulus	Cirratulus sp.
158	G2	1	0.0032	Annelida	Polychaeta	Spionida Supielda	Eunicidae	Eunice	Eunice indica
159	G2	3	0.0444	Annelida	Polychaeta	Eunicida	Glyceridae	Glycera	Glycera onomichiensis
160	G2	2	0.0351	Annelida	Polychaeta	Phyllodocida	Telàremage	Jorycera	Totalia anguadanga

Appendix B: Representative Taxa Identified

A) The bivalve, Turritella javana

C) Three species of Polychaeta, *Poecilochaetus* sp., Sternaspis scutata and Phyllodoce sp.

B) The bivalve, Circe scripta

D) The bivalve, Paphia undulata

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Photo 1. A ponar grab sampler

Photo3. Grab dimension 2

Photo 2. Grab dimension 1

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Photo 1. A modified Van Veen grab sampler

Photo 2. Grab dimension 1

Photo3. Grab dimension 2

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0357A

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ıality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	_			•
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	Manager	nent	-	•	•
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0357A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the	SHWSTW	Implemented
			protocols set out in the WMP Section 5.14.		