Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Monthly EM&A Report October 2018

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016
		Environmental Team for Operational
		Environmental Monitoring and Audit for Siu
		Ho Wan Sewage Treatment Works
Report No.:	:	0041/17/ED/0378B

Prepared by:	Andy K. H. Choi
i iopuiou by.	

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/18-0178

28 November 2018

Drainage Services Department

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. CHUNG Ching Hong, Romeo (E/CM9)

Dear Sir,

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (OCTOBER 2018)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for October 2018 (Report No.: 0041/17/ED/0378B) from the Environmental Team (ET), Messrs. Fugro Technical Services Ltd., received on 27 November 2018 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/ri/rc

By Post and E-mail

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 19
5.	CHINESE WHITE DOLPHIN MONITORING	. 27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 31
10.	FUTURE KEY ISSUES	. 32
11.	CONCLUSION	. 33

FIGURE

Monitoring Stations of Air Sensitive Receivers
Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
Location of the Tide Gauge

Figure 4 Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix E	Results and Graphical Presentation of Water Quality Monitoring
Appendix F	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix G	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix H	Benthic Survey Report
Appendix I	Photos of Grab Samplers
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0378B

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the fifteenth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 October 2018 to 31 October 2018 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 12 October 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Report No.: 0041/17/ED/0378B

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current H_2S measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Page 3

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Egineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Romeo Chung	2594 7266	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 5

Report No.: 0041/17/ED/0378B

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment Manufacturer / Model		Serial Number	Sensor Number	
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D	

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 6

Report No.: 0041/17/ED/0378B

Table 2.2 Categories of Odour Intensity				
Odour Level Odour Intensity Classification Criteria				
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described		
1	Slight Identifiable odour, barely noticeable			
2	Noticeable	Identifiable odour, noticeable		
3	Strong	Identifiable odour, strong		
4	Extreme	Severe odour		

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H_2S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency		
H ₂ S concentration monitoring Odour patrol	15 minutes	¹ Weekly basis for 6 months during the initial operation stage		
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring		

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 7

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

2.5.1 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in Table 2.4.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit	
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 8

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any compliant or noncompliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 9

Report No.: 0041/17/ED/0378B

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

Table 3.1	Location of Water Quality Monitoring
-----------	--------------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monite	oring Parameters
In-situ Measurement	Laboratory Analysis
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)
Temperature (degree Celsius)	5-day BOD (mg/l)
pH value	Suspended Solids (mg/l)
Water depth (m)	Ammonia as N (mg/l)
Salinity (ppt)	Nitrate as N (mg/l)
Turbidity (NTU)	Nitrite as N (mg/l)
Current Speed (m/s)	Total inorganic nitrogen (mg/l)
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)

Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 11

Table 3.4 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality	Aqua TROLL 600 Multiparameter Sonde	584601
Monitoring Device		525120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

E-mail : matlab@fugro.com

Website : www.fugro.com

TUGRO

Report No.: 0041/17/ED/0378B

Tuen Mun, N.T.,

Hong Kong.

Page 12

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0378B

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 12 October 2018. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

Table 3.6	Summary of	In-situ	Monitoring	Results	(Mid-ebb)

	3.6				phitoring Results	· ·			1	1
Monitoring	Water	Sam	plin	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth	g De	pth	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)	-	(mg/L)	Celsius)				(m/s)	(degree
	、 <i>,</i>	()			,				× ,	magnetic)
		S	1	7.20	26.83	8.33	31.90	5.1	0.20	119.5
		S	1	7.15	26.85	8.34	31.96	5.3	0.24	254.3
	. –	М	8.5	7.14	26.87	8.35	32.27	5.5	0.34	163.8
A	17	M	8.5	7.10	26.88	8.35	32.45	5.5	0.35	177.5
		В	16	7.01	26.91	8.36	32.64	6.4	0.46	191.1
		В	16	6.99	26.91	8.36	32.60	5.6	0.46	182.2
		S	1	7.15	26.84	8.38	32.57	7.7	0.25	107.2
		S	1	7.07	26.86	8.38	32.58	7.0	0.26	105.4
_		М	7	7.01	26.94	8.39	32.72	5.8	0.09	190.2
В	14	М	7	6.99	26.94	8.39	32.73	5.8	0.09	95.3
		В	13	7.01	26.98	8.39	32.91	5.4	0.19	186.7
		В	13	7.01	26.98	8.39	32.90	5.2	0.16	185.3
		S	1	8.34	26.36	8.71	31.50	4.8	0.15	208.7
		S	1	8.01	26.45	8.72	31.39	4.5	0.17	243.8
0	40	М	6	7.57	26.65	8.65	32.59	6.4	0.14	174.3
С	12	М	6	7.16	26.75	8.62	32.80	6.9	0.19	167.1
		В	11	6.86	26.84	8.55	32.87	9.5	0.03	204.2
		В	11	6.84	26.84	8.54	32.89	9.5	0.07	214.1
		S	1	8.00	26.52	8.47	31.83	4.4	0.15	127.4
		S	1	7.70	26.61	8.46	31.52	4.7	0.14	96.9
	10	М	6.5	7.07	26.84	8.42	32.79	6.4	0.17	164.3
D	13	М	6.5	6.94	26.86	8.42	32.77	6.6	0.14	153.1
		В	12	6.88	26.87	8.42	32.98	7.1	0.10	200.0
		В	12	6.89	26.87	8.43	32.96	7.1	0.08	209.6
		S	1	7.62	26.46	8.44	33.52	4.2	0.18	121.0
		S	1	7.30	26.56	8.44	33.46	4.2	0.12	156.8
	10	М	8	6.99	26.72	8.43	33.55	4.2	0.18	204.9
E	16	М	8	6.96	26.74	8.43	33.55	4.0	0.18	201.9
		В	15	6.87	26.82	8.42	33.63	4.3	0.20	184.9
		В	15	6.86	26.83	8.42	33.64	4.6	0.19	227.0
		S	1	7.38	26.44	8.44	33.25	3.8	0.18	114.2
		S	1	7.18	26.54	8.44	33.17	4.0	0.19	115.1
_		М	11. 5	6.97	26.75	8.43	33.30	4.3	0.21	152.8
F	23	М	11. 5	6.96	26.78	8.43	33.33	4.3	0.27	151.3
		В	22	6.90	26.82	8.42	33.37	4.3	0.15	168.6
		В	22	6.89	26.84	8.42	33.34	4.2	0.16	184.2
		S	1	7.84	26.40	8.43	33.27	5.8	0.13	133.1
G	22	S	1	7.54	26.51	8.44	33.24	5.0	0.19	138.1
		М	11	7.21	26.75	8.44	33.09	4.6	0.17	162.1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Report No.: 0041/17/ED/0378B

Monitoring Station	Water Depth (m)	Sam g De (m)	•	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		M 11		7.17	26.75	8.43	33.18	4.7	0.18	177.2
		В	21	7.00	26.81	8.43	33.30	4.9	0.22	231.2
		В	21	6.98	26.82	8.43	33.32	5.2	0.28	213.6
		S	1	8.03	26.41	8.46	33.02	5.0	0.20	100.2
		S	1	7.59	26.62	8.44	32.93	5.1	0.14	144.2
н	19	Μ	9.5	7.20	26.79	8.43	33.11	4.4	0.14	126.7
	19	M 9.5 B 18		7.12	26.80	8.43	33.17	4.3	0.16	138.0
				7.00	26.87	8.43	33.15	4.6	0.18	224.4
		В	18	7.00	26.88	8.43	33.18	4.5	0.13	249.8

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Table					nitoring Results	s (Mid-				
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dept	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
										magnetic)
		S	1	7.41	27.45	8.41	31.65	4.5	0.12	130.7
		S	1	7.29	27.32	8.42	31.56	4.6	0.08	114.7
۸	15	М	7.5	6.94	27.18	8.41	32.23	7.3	0.15	145.9
A	15	М	7.5	6.95	27.18	8.41	32.27	7.4	0.13	107.1
		В	14	6.88	27.11	8.41	32.75	9.5	0.22	261.4
		В	14	6.87	27.11	8.41	32.85	9.4	0.20	244.5
		S	1	7.62	27.24	8.42	32.39	6.6	0.29	179.5
		S	1	7.27	27.16	8.42	32.45	7.6	0.33	181.3
В	14	М	7	6.91	27.04	8.42	32.72	10.2	0.22	169.3
D	14	М	7	6.90	27.03	8.42	32.73	11.9	0.25	234.5
		В	13	6.89	26.99	8.42	32.93	16.0	0.21	172.3
		В	13	6.89	26.99	8.42	32.95	15.4	0.18	222.6
		S	1	7.62	26.96	8.41	31.59	5.1	0.12	116.9
С		S	1	7.49	26.95	8.41	31.63	5.4	0.13	237.7
	12	М	6	7.10	26.95	8.40	32.06	8.1	0.11	137.7
C	12	М	6	7.06	26.95	8.40	32.08	8.3	0.11	90.7
		В	11	6.90	26.97	8.39	32.32	11.4	0.20	107.3
		В	11	6.90	26.97	8.39	32.33	11.3	0.28	129.7
		S	1	8.15	27.44	8.41	31.31	5.1	0.19	98.5
		S	1	7.83	27.41	8.40	31.32	4.8	0.16	106.4
D	14	М	7	7.43	27.17	8.40	31.56	5.3	0.26	105.5
D	14	М	7	7.31	27.12	8.40	31.58	5.4	0.27	112.7
		В	13	7.06	27.08	8.39	32.19	13.2	0.33	91.1
		В	13	6.99	27.07	8.39	32.17	12.8	0.38	98.1
		S	1	7.15	26.76	8.40	32.38	8.5	0.14	140.2
		S	1	7.12	26.77	8.40	32.36	8.4	0.19	141.0
Е	14	М	7	7.05	26.83	8.40	32.59	8.0	0.14	187.4
E	14	М	7	7.03	26.85	8.40	32.73	8.1	0.11	161.4
		В	13	6.95	26.92	8.40	33.01	7.6	0.22	185.7
		В	13	6.95	26.92	8.40	32.99	6.4	0.22	180.1
		S	1	7.41	26.98	8.40	32.45	8.6	0.09	146.7
F	10	S	1	7.26	26.97	8.40	32.38	8.7	0.13	153.8
F	18 -	М	9	7.02	26.98	8.39	32.84	6.7	0.05	201.0
		М	9	7.00	26.98	8.39	32.84	7.0	0.08	220.4

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Page 15

BOD₅

(mg/L)

Report No.: 0041/17/ED/0378B

Monitoring Station	Water Depth (m)	Sam Dept (m)	pling th	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)	
		B 17		6.97	26.98	8.39	32.97	6.0	0.08	224.2	
		В	17	6.95	26.98	8.39	33.00	5.9	0.05	249.1	
		S	1	6.95	26.82	8.37	32.21	6.8	0.28	170.2	
		S	1	6.95	26.82	8.37	32.18	6.8	0.27	158.3	
G	12	13	М	6.5	6.91	26.82	8.36	32.30	8.7	0.31	171.4
G	15	M 6.5		6.92	26.82	8.37	32.30	8.8	0.39	177.3	
		В	12	6.90	26.86	8.37	32.72	9.5	0.44	186.0	
		В	12	6.90	26.86	8.37	32.62	10.0	0.39	170.3	
		S	1	7.22	26.00	8.35	32.90	7.1	0.18	128.5	
		S	1	7.15	26.10	8.34	32.79	6.8	0.16	123.7	
н	19	M 9.5 M 9.5		6.96	26.57	8.35	32.64	9.9	0.33	133.9	
П	19			6.97	26.60	8.35	32.58	9.2	0.35	124.0	
		В	18	6.93	26.69	8.36	32.73	10.7	0.28	118.2	
		В	18	6.93	26.70	8.36	32.73	11.3	0.27	108.0	

3.8.2 Results of laboratory analysis of water quality are presented in Table 3.8 (Mid-ebb) and Table 3.9 (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in Appendix E.

l č			Summa	ary of Lad	oratory A	nalysis R	esuits (ivi	(aae-bi		
Monitoring	Water	Sam	npling	TSS	NH ₃	NO_2^{-1}	NO ₃ ⁻	TIN	E.coli	Total P
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)			
		S	1	10.5	0.039	0.090	0.302	0.431	NOT DETECTED	0.04
									NOT	

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

	(m)	(m)		(9, –)	(mg/L)	(mg/L)	(mg/L)	(9, –)	(******	(9, –)	(9, _)
		S	1	10.5	0.039	0.090	0.302	0.431	NOT DETECTED	0.04	<1.0
		S	1	10.2	0.012	0.093	0.302	0.407	NOT DETECTED	0.04	<1.0
Δ	17	М	8.5	7.5	0.024	0.094	0.298	0.416	NOT DETECTED	0.04	<1.0
A		М	8.5	6.2	0.032	0.097	0.296	0.425	NOT DETECTED	0.04	<1.0
		В	16	7.6	0.035	0.094	0.299	0.428	NOT DETECTED	0.04	<1.0
		В	16	8.7	0.013	0.096	0.292	0.401	NOT DETECTED	0.04	<1.0
		S	1	9.9	0.019	0.086	0.263	0.369	NOT DETECTED	0.04	<1.0
		S	1	11.0	0.017	0.088	0.264	0.370	NOT DETECTED	0.04	<1.0
В	14	М	7	10.1	0.041	0.084	0.267	0.392	NOT DETECTED	0.04	<1.0
	14	М	7	10.6	0.023	0.086	0.269	0.378	NOT DETECTED	0.04	<1.0
		В	13	12.4	0.021	0.088	0.262	0.371	NOT DETECTED	0.04	<1.0
		В	13	12.1	0.022	0.078	0.276	0.375	NOT DETECTED	0.04	<1.0
С	12	S	1	14.7	< 0.005	0.080	0.314	0.394	NOT	0.04	<1.0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0378B

Monitoring Station	Water Depth (m)	Sam Dep (m)	npling th	TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
	(111)	(111)			(119/)	(mg/ ⊑)	(mg/ L)		DETECTED		
		S	1	14.9	0.010	0.080	0.313	0.403	NOT DETECTED	0.04	<1.0
		М	6	9.5	0.008	0.090	0.302	0.400	NOT DETECTED	0.04	<1.0
		М	6	8.6	<0.005	0.081	0.308	0.388	NOT DETECTED	0.04	<1.0
		В	11	8.0	0.017	0.084	0.312	0.413	NOT DETECTED	0.04	2.4
		В	11	8.0	0.029	0.089	0.303	0.421	NOT DETECTED	0.04	2.5
		S	1	12.0	0.020	0.084	0.298	0.402	NOT DETECTED	0.04	3.0
		S	1	12.4	0.011	0.097	0.340	0.448	NOT DETECTED	0.04	<1.0
D	13	М	6.5	11.3	0.016	0.086	0.300	0.402	NOT DETECTED	0.04	3.0
D	15	М	6.5	11.5	<0.005	0.077	0.308	0.385	NOT DETECTED	0.04	3.0
		В	12	13.9	0.008	0.084	0.302	0.393	NOT DETECTED	0.04	3.0
		В	12	13.1	0.011	0.090	0.295	0.397	NOT DETECTED	0.04	3.0
		S	1	15.5	0.052	0.079	0.250	0.381	290	0.04	<1.0
		S	1	16.1	0.036	0.079	0.244	0.360	260	0.04	<1.0
Е	16	Μ	8	12.1	0.049	0.082	0.251	0.382	310	0.04	<1.0
L	10	М	8	11.9	0.043	0.073	0.248	0.364	270	0.04	<1.0
		В	15	9.3	0.042	0.086	0.240	0.368	190	0.04	<1.0
		В	15	10.1	0.032	0.085	0.245	0.362	150	0.04	<1.0
		S	1	12.6	0.046	0.088	0.249	0.383	200	0.04	<1.0
		S	1	11.8	0.055	0.085	0.249	0.389	250	0.04	<1.0
F	23	M	11.5	12.5	0.044	0.085	0.246	0.374	160	0.04	<1.0
	_	M	11.5	12.2	0.048	0.080	0.255	0.382	180	0.04	<1.0
		В	22	12.1	0.047	0.077	0.258	0.382	130	0.04	<1.0
		B	22	12.4	0.040	0.078	0.255	0.373	160	0.04	<1.0
		S	1	19.6	0.036	0.073	0.238	0.346	180	0.04	<1.0
		S	1	19.9	0.036	0.075	0.234	0.345	140	0.04	<1.0
G	22	M	11	9.3	0.036	0.078	0.233	0.347	92	0.04	<1.0
		M B	11 21	9.5 11.4	0.039	0.077	0.236	0.352	85 170	0.04	<1.0 <1.0
		B	21	11.4	0.038	0.076	0.237	0.351	220	0.04	1.1
		Б S	1	10.2	0.032	0.076	0.236	0.344	220	0.04	<1.0
		S	1	11.2	0.021	0.078	0.200	0.304	260	0.04	<1.0
		M	9.5	9.1	0.032	0.085	0.257	0.381	180	0.04	<1.0
Н	19	M	9.5	8.5	0.039	0.085	0.259	0.384	150	0.04	<1.0
		B	18	8.4	0.033	0.085	0.255	0.372	280	0.04	<1.0
		B	18	9.0	0.027	0.085	0.258	0.370	310	0.04	<1.0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 17

Report No.: 0041/17/ED/0378B

Та	able 3.9	Ś	Summa	ary of Lab	oratory A	nalysis R	esults (Mi	id-flood)			
Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		``` <i>`</i>	(mg/L)	(mg/L)	(mg/L)	,	,	× 0 /	· • • /
		Ś	1	10.7	0.014	0.098	0.318	0.430	43	0.04	1.0
		S	1	10.0	0.009	0.104	0.325	0.438	35	0.04	<1.0
	4 -	М	7.5	11.0	0.022	0.103	0.311	0.436	1	0.04	<1.0
A	15	М	7.5	10.6	0.010	0.102	0.313	0.424	4	0.04	<1.0
		В	14	11.6	< 0.005	0.097	0.318	0.415	1	0.04	<1.0
		В	14	12.6	0.008	0.093	0.319	0.420	2	0.04	<1.0
		S	1	17.3	0.044	0.079	0.232	0.355	27	0.04	<1.0
		S	1	17.9	0.039	0.080	0.236	0.355	31	0.04	<1.0
_		M	7	17.0	0.056	0.078	0.239	0.373	17	0.04	<1.0
В	14	M	7	16.7	0.056	0.073	0.242	0.371	13	0.04	<1.0
		В	13	24.8	0.039	0.073	0.244	0.357	68	0.04	<1.0
		B	13	24.6	0.038	0.080	0.237	0.356	58	0.04	<1.0
		S	1	9.0	0.034	0.101	0.300	0.436	13	0.04	<1.0
		S	1	8.3	0.025	0.099	0.300	0.424	10	0.04	<1.0
		M	6	5.8	0.046	0.098	0.300	0.445	10	0.04	<1.0
C	12	M	6	6.9	0.030	0.090	0.307	0.427	10	0.04	<1.0
		B	11	8.7	0.037	0.090	0.306	0.433	17	0.04	<1.0
		B	11	9.0	0.055	0.098	0.300	0.453	12	0.04	<1.0
		S	1	9.3	0.018	0.100	0.299	0.417	45	0.04	<1.0
		S	1	8.0	0.023	0.096	0.303	0.422	58	0.04	<1.0
		M	7	7.1	0.022	0.095	0.299	0.416	51	0.04	<1.0
D	14	M	7	7.3	0.022	0.100	0.299	0.425	63	0.04	<1.0
		B	13	4.6	0.013	0.097	0.299	0.409	28	0.04	<1.0
		B	13	4.9	0.010	0.098	0.200	0.405	39	0.04	<1.0
		S	1	11.5	0.065	0.091	0.298	0.454	53	0.04	<1.0
		S	1	12.0	0.036	0.099	0.294	0.429	60	0.04	<1.0
		M	7	11.3	0.057	0.089	0.302	0.448	42	0.04	<1.0
E	14	M	7	11.6	0.045	0.098	0.294	0.438	33	0.04	<1.0
		B	13	11.2	0.037	0.092	0.300	0.429	26	0.04	<1.0
		B	13	11.1	0.030	0.094	0.299	0.422	21	0.04	<1.0
		S	1	17.6	0.049	0.090	0.254	0.394	470	0.05	<1.0
		S	1	20.9	0.032	0.085	0.255	0.372	620	0.05	<1.0
		M	9	14.3	0.024	0.091	0.254	0.369	280	0.05	<1.0
F	18	M	9	15.3	0.027	0.087	0.255	0.369	370	0.04	<1.0
		B	17	13.8	0.075	0.085	0.253	0.414	340	0.05	<1.0
		B	17	13.5	0.053	0.090	0.252	0.396	430	0.04	1.1
		S	1	19.9	0.046	0.083	0.278	0.407	68	0.05	<1.0
		S	1	20.0	0.026	0.090	0.270	0.387	71	0.05	<1.0
		M	6.5	15.4	0.020	0.090	0.270	0.387	80	0.05	1.1
G	13	M	6.5	15.3	0.027	0.097	0.271	0.387	88	0.05	<1.0
		B	12	15.8	0.023	0.095	0.268	0.380	160	0.05	<1.0
		B	12	16.5	0.018	0.093	0.269	0.387	120	0.05	<1.0
		S	1	21.8	0.023	0.094	0.269	0.307	120	0.05	1.1
		S	1	20.0	0.034	0.090	0.262	0.400	140	0.05	1.1
		M	9.5	18.8	0.032	0.093	0.262	0.387	73	0.05	1.2
Н	19	M	9.5	20.8	0.033	0.091	0.263	0.388	62	0.05	1.1
		B	18	18.2	0.033	0.080	0.269	0.388	100	0.05	1.0
		B	18	18.5	0.021	0.087	0.262	0.370	140	0.05	1.0
		D	10	10.0	0.033	0.000	0.270	0.300	140	0.05	1.2

Hong Kong.

Page 18

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Date	Air Temperature			Mean	Total				
	Maximum	Mean	Minimum	Relative	Rainfall				
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)				
				(%)					
12 October 2018	27.1	23.8	22.0	73	0.3				

 Table 3.10
 Weather condition of water quality monitoring

Website : www.fugro.com

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 19

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey
--

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
E	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Monitoring Parameters								
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey							
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)							
Distribution) (%)								
Total organic carbon* (%)	Chromium (µg/L)							
pH value	Copper (µg/L)							
Ammonia as N (mg-N/kg)	Lead (µg/L)							
Total nitrogen (mg-N/kg)	Mercury ((µg/L)							
Total phosphorus (mg-N/kg)	Nickel (µg/L)							
Cadmium (mg/kg)	Zinc (µg/L)							
Chromium (mg/kg)	Arsenic (µg/L)							
Copper (mg/kg)	Silver (µg/L)							
Lead (mg/kg)								
Mercury (mg/kg)]							
Nickel (mg/kg)								
Zinc (mg/kg)								
Arsenic (mg/kg)]							
Silver (mg/kg)								

Page 20

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 21

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 22

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 12 October 2018. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 23

Report No.: 0041/17/ED/0378B

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

10010	Carrina	,	oracory c	anaryoio					<u> </u>				
Monitoring	рН	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/k	(mg	(mg	(mg	(mg/	(mg	(mg	(mg	(mg
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	kg)	/kg)	/kg)	/kg)	/kg)
			N/kg)	P/kg)									
A	8.3	1.7	1240	602	<0.10	76.4	31.7	42.5	0.14	26.4	106	18.2	0.21
В	8.5	2.2	1280	576	<0.10	35.2	31.3	34.8	0.11	21.0	96.5	9.9	0.23
С	8.2	6.7	1520	671	0.12	47.0	37.9	42.5	0.12	28.5	121	13.9	0.26
D	8.2	6.8	1510	622	0.11	47.1	38.5	42.6	0.13	28.6	126	12.7	0.29
E	8.2	16.2	2240	734	0.11	50.7	44.0	45.0	0.15	30.6	135	12.3	0.34
F	8.3	14.6	1950	729	0.11	51.0	44.7	45.8	0.21	31.0	136	12.4	0.34
G	8.6	1.7	930	537	<0.10	14.2	15.0	18.8	<0.0	8.3	38.3	6.1	<0.1
0	0.0	1.7	930	557	<0.10	14.2	15.0	10.0	5	0.5	50.5	0.1	0
Н	8.3	2.2	1490	744	0.16	52.4	61.7	46.2	0.13	31.5	152	14.4	0.68

Table 4.5 Summary of laboratory analysis results for benthic survey

Monitoring Station	Total organic	Grai	n size pr	ofile (%	%)	Description
Otation	carbon (%)	Gravel	Sand	Sand Silt Clay		
А	0.88	1	18	41	40	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
В	0.80	5	22	42	31	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
С	0.94	0	5	55	40	Dark grey, slightly sandy SILT/CLAY
D	1.02	0	6	54	40	Dark grey, slightly sandy SILT/CLAY with shell fragments
E	1.16	0	4	56	40	Dark grey, slightly sandy SILT/CLAY with shell fragments
F	1.16	2	8	51	39	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
G	0.96	2	12	46	40	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
Н	0.87	0	2	58	40	Dark grey, slightly sandy SILT/CLAY

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Table 4.0 Weather condition of water quality monitoring							
Date	Air Temperature			Mean	Total		
	Maximum Mean Minimum		Minimum	Relative	Rainfall		
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)		
				(%)			
12 October	27.1	23.8	22.0	73	0.3		
2018							

 Table 4.6
 Weather condition of water quality monitoring

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 24

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring	Abundance	Total	Number of			
Station	(ind.)	Biomass (g)	Taxa	Diversity (H')	Evenness (J)	
A	18	19.44	12	2.37	0.95	
В	18	4.72	10	2.25	0.98	
С	16	4.84	9	1.98	0.90	
D	19	0.05	9	1.76	0.80	
E	30	27.92	18	2.73	0.94	
F	28	18.91	13	2.15	0.84	
G	46	7.79	22	2.83	0.91	
Н	27	15.22	19	2.78	0.96	
TOTAL	202	98.89	(50 N)			

Table 4.7Summary of benthic survey data on 12 October 2018

- 4.10.5 The benthic survey results are analyzed and presented as below:
 - i) Abundance

A total of 202 macrobenthic organisms were collected from the eight stations during the October 2018 monitoring period. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 21 individuals (ind.) compared to the August 2018 results. Macrobenthic abundance showed decreasing trend this wet season (April 2018 to October 2018) monitoring albeit insignificant (p-value = 0.30; F crit = 2.64; α = 0.05). The decreasing trend might be attributed to weather disturbances (i.e. tropical storms) that hit Hong Kong week(s) before the sampling activities for June 2018, August 2018, and October 2018 monitoring periods. Wave actions brought about by these weather disturbances might have caused intermediate disturbances in the sampling stations, particularly that these stations are characteristically shallow waters (11m to 23m). Wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Molluscs, particularly bivalves, were significantly affected by these disturbances as shown in their decreasing abundance since April 2018 monitoring period.

Across monitoring stations, the distribution of macrobenthic abundance remained to be significantly variable (p-value = 0.03; F crit = 2.31; α = 0.05). Relatively higher abundances were recorded in the reference Stations E (30 ind.), F (28 ind.), G (46 ind.), and H (27 ind.) while lower abundances were recorded in the impact Stations C (16 ind.) and D (19 ind.) and reference Stations A and B, both have 18 ind. In correlation with particle grain size distribution, it can be observed that relatively higher abundances were noted in stations with slightly higher slit/clay percentages. Silt/clay substrates are preferred by annelids, the most abundant and ubiquitous groups during in this monitoring period.

ii) Biomass

The total wet biomass for all the eight stations during the October 2018 monitoring period was 98.89g, which is relatively higher than the biomass recorded during the August 2018 monitoring period. The increase in total wet biomass from August 2018 to October 2018 might be attributed to the larger sizes of bivalves collected during this monitoring period despite their relatively lower and decreasing abundances.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 25

The highest biomass was observed in Station E (27.92g) and A (19.44g) and the lowest remained to be at the impact station, Station D (0.05g). Highest biomass remained at Station E and A because of the bivalves, *Ruditapes philippinarum* and *Paphia undulata*, continued to contribute significantly to the total wet biomass due to their larger sizes despite the decline in their abundance. Biomass decreased in Station A, Station C and Station D compared to the August 2018 monitoring period, which may be due to the shift in the macrobenthic assemblage, which is currently dominated by smaller organisms (i.e. annelids).

iii) Taxonomic Composition

A total of five phyla comprised of 36 families and 50 taxa were identified in the eight stations during the October 2018 monitoring period. With the previous increase in the number of annelid species and abundance and the decrease in the abundance of bivalves, annelids (i.e. polychaetes) remained to dominate the current benthic assemblages comprising about 65.35% of the sampled population. The shift in benthic assemblage from the April 2018 monitoring period might be attributed to wave actions generated by the series of typhoons which cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ("benthic storms") was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

The current benthic assemblage is observed to be similar with the wet season baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period capitellid and nepthyid were the most abundant group.

Same as with abundance distribution, relatively higher numbers of taxa identified were recorded in the reference Stations E (18), F (13), G (22), and H (19) while lower abundances were recorded in reference Stations A (12) and B (10) and impact Stations C and D, both have 9 ind. The relatively higher number of taxa identified were mainly contributed by the species of polychaetes recorded at these stations.

iv) Diversity

Diversity indices (H') for the October 2018 monitoring period ranged from very low (1.76 at Station D and 1.98 at Station C) to moderate (2.83 at Station G). Compared to the August 2018 monitoring periods, decrease in diversity in majority of stations (except station G and H) was observed. This decrease might be due to the dominance of the annelids in the new habitats made available by wave actions caused by weather disturbances. The decrease in diversity consequently lowered the heterogeneity of the benthic communities as showed by their decreased Evenness (J) Index.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 26

The detailed benthic survey results are provided in Appendix H.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 27

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 10 July 2018, "*Monitoring of Marine Mammals in Hong Kong Waters (2017-18)*", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD's webpage.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 28

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix J.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0378B

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 30

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 12 October 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Page 31

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date	
Air	0	0	0	
Noise	0	0	0	
Water	0	0	0	
Waste	0	0	0	
Others	0	0	0	
Total	0	0	0	

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 32

Report No.: 0041/17/ED/0378B

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H₂S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H₂S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

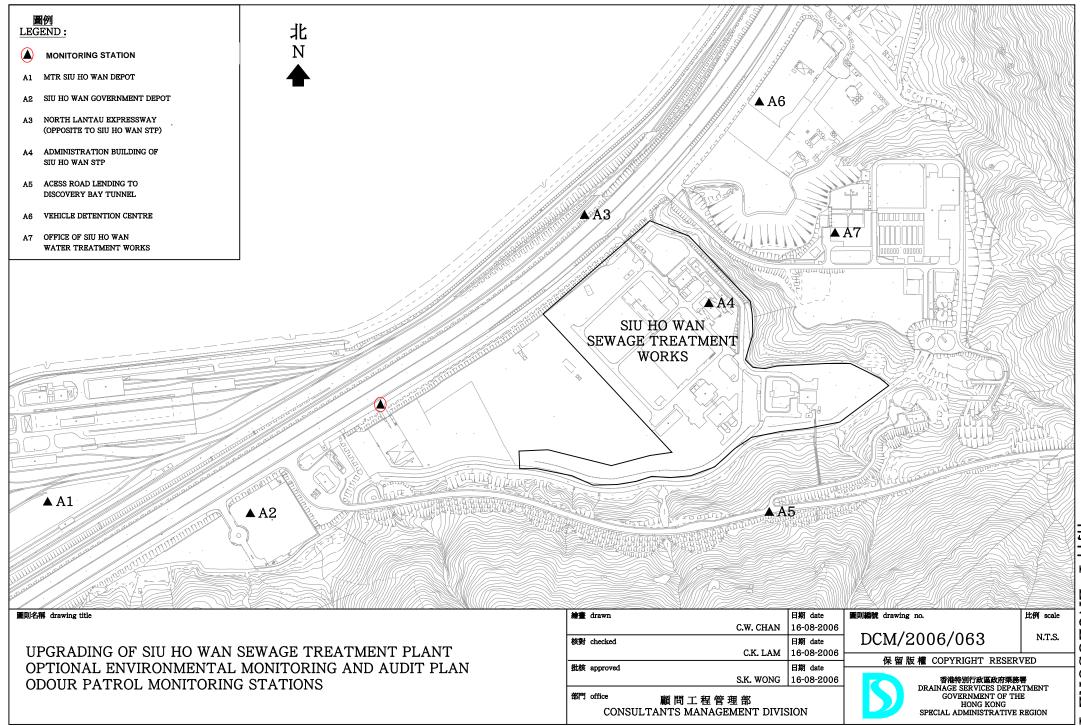
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 33

Report No.: 0041/17/ED/0378B

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 12 October 2018 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 10 July 2018, "*Monitoring of Marine Mammals in Hong Kong Waters (2017-18)*" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

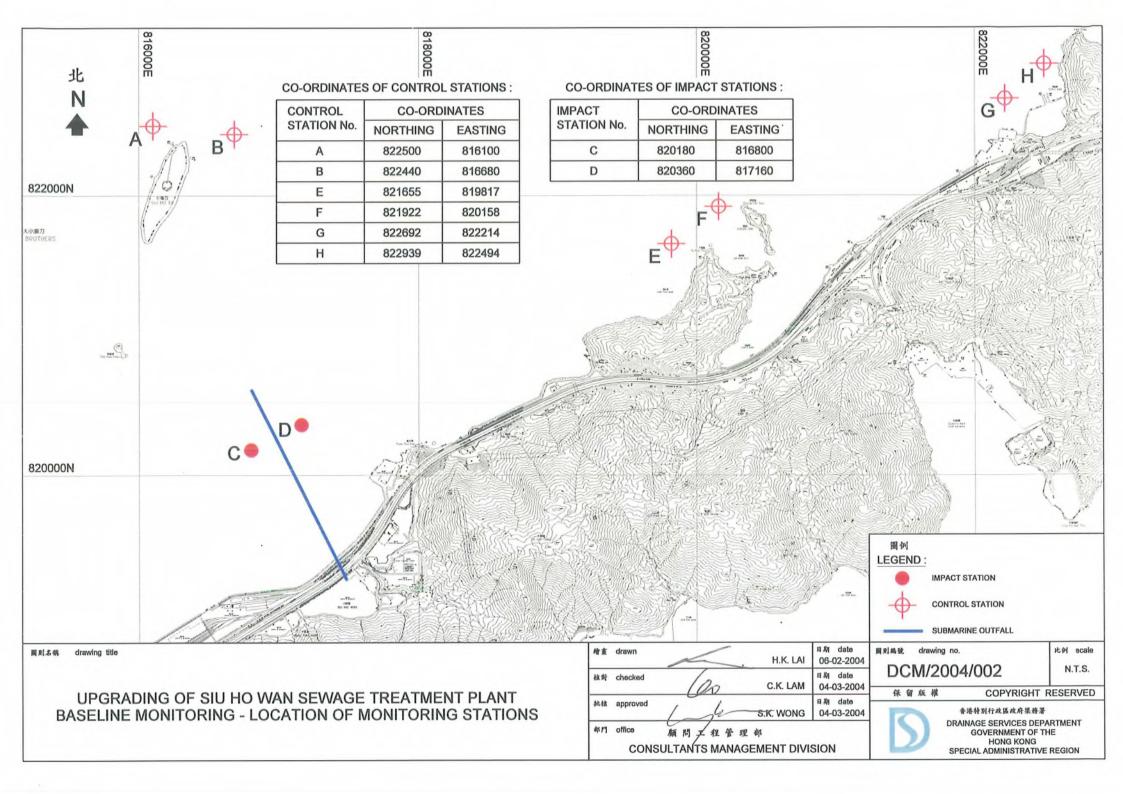
Report No.: 0041/17/ED/0378B

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Figure 4

Location of Survey Areas of Chinese White Dolphins

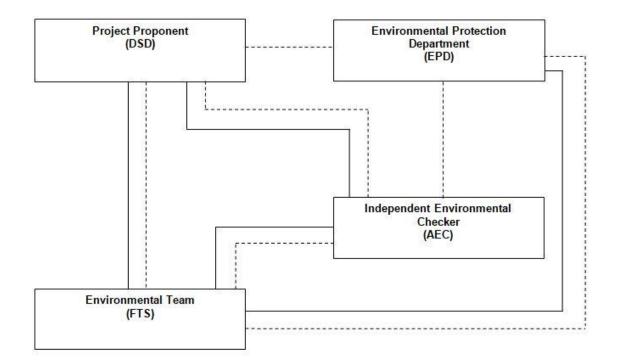
Ninepins Sai Kung Po Toi Lamma Northeast Lantau Southeast Lantau B TMCLKL IKLR03 NCLKI **3RS** <u>z</u> <u>Ej</u> work zon Southwest Lantau Deep Bay Northwest Lantau HKLR09 West Lantau

Figure 4. Ten Line-Transect Survey Areas within the Study Area for the 2017-18 Monitoring Study

Source: Monitoring of Marine Mammals in Hong Kong Waters (2017-18), AFCD

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,				
5 Lok Yi Street, Tai Lam,				
Tuen Mun, N.T.,				
Hong Kong.				

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 October	2	3	4	5	6
7	8	9	10	11	12 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (08:35) Mid-Ebb (14:32)	
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
				1 November	2	3	
4	5	6	7	8	9	10	
		10			- 10		
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30		

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

	ACTION					
EVENT	ET	IEC	*Operator			
Action Level						
One complaint received for specific odour event	 Check Operator's working methods; Discuss with Operator on required remedial actions 	 Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; Amend operation methods if appropriate 			
Limit Level	I		1			
More than	1. Investigated the causes of	1. Discuss amongst ET	1. Indentify/ confirm			
one complaint	complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control	and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures	source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals			

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181891(1)

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	÷	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	•	Serial No. 584601
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA181891/2
Date of calibration	:	28/09/2018
Next calibration date	:	27/12/2018
Test method used	:	In-house comparison method

5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181891(1)

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C f	or Q.C. solution(6.86) and at 25°	C for Q.C. solution(9.18)
Theoretical	Measured	Deviation
9.18	9.21	+0.03
6.86	6.88	+0.02

B. Salinity calibration

	Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation			
10	10.07	+0.07	± 0.5			
20	20.06	+0.06	± 1.0			
30	30.11	+0.11	± 1.5			
40	39.91	-0.09	± 2.0			

C. Dissolved Oxygen calibration

T.:	Dissolved oxygen	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	8.09	8.08		
2	8.14	8.12		
3	8.11	8.09		
Average	8.11	8.10		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 23/10/2018 Date

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181891(1)

Page 3 of 3

Results :

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.25	25.30

E. Turbidity calibration

	Turbidity, N.T.U.					
Theoretical	Measured	Deviation	Maximum acceptable Deviation			
4	4.08	+0.08	± 0.4			
8	8.08	+0.08	± 0.6			
40	40.79	+0.79	± 3.0			
80	80.98	+0.98	± 4.0			

Certified by Approved Signatory : HO Kin Man, John

Assistant General Manager – Laboratories

Date ** End of Report **

VS 10/2018

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181891

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	;	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	. :	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 525120
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA181891/1
Date of calibration	÷	28/09/2018
Next calibration date	:	27/12/2018

Test method used : In-house comparison method

Report No.: 142626WA181891

Page 2 of 3

Results:

Hong Kong.

A. pH calibration

pH reading at 25°C f	or Q.C. solution(6.86) and at 25	°C for Q.C. solution(9.18)
Theoretical	Measured	Deviation
9.18	9.22	+0.04
6.86	6.86	±0.00

Website : www.fugro.com

B. Salinity calibration

	Salinity, ppt											
Theoretical	Measured	Deviation	Maximum acceptable Deviation									
10	10.04	+0.04	± 0.5									
20	20.06	+0.06	± 1.0									
30	30.14	+0.14	± 1.5									
40	39.96	-0.04	± 2.0									

C. Dissolved Oxygen calibration

Trial Na	Dissolved oxygen content, mg/L								
Trial No.	By calibrated D.O. meter	By D.O. meter							
1	8.10	8.11							
2	8.07	8.06							
3	8.09	8.08							
Average	8.09	8.08							

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 10/2018 Date

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA181891

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.26	25.31

E. Turbidity calibration

Turbidity, N.T.U.											
Theoretical	Measured	Deviation	Maximum acceptable Deviation								
4	4.07	+0.07	± 0.4								
8	8.05	+0.05	± 0.6								
40	40.76	+0.76	± 3.0								
80	80.96	+0.96	± 4.0								

Certified by

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories

Date ** End of Report **

23/10/2018

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906				
System Type	M9				
System Orientation	Down				
Compass Type	Sontek				
Compass Offset (degrees)	N/A				
Communications Output	RS232				
Recorder Size (GB)	14.9				
Firmware Version	4.02				
Date Tested	05/23/2017				

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

PASS
PASS
DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

												l	n-situ Meas	sureme	nt			Laboratory Analysis								
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)		Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)	
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	
А	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	S	1	1	8.33	31.90	26.83	113.3	7.20	5.1	0.20	119.5	10.5	0.039	0.090	0.302	0.431	ND	0.04	<1.0	
A	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	S	1	2	8.34	31.96	26.85	112.6	7.15	5.3	0.24	254.3	10.2	0.012	0.093	0.302	0.407	ND	0.04	<1.0	
A	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	М	8.5	1	8.35	32.27	26.87	112.6	7.14	5.5	0.34	163.8	7.5	0.024	0.094	0.298	0.416	ND	0.04	<1.0	
A	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	M	8.5	2	8.35	32.45	26.88	111.9	7.10	5.5	0.35	177.5	6.2	0.032	0.097	0.296	0.425	ND	0.04	<1.0	
A	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	В	16	1	8.36	32.64	26.91	110.5	7.01	6.4	0.46	191.1	7.6	0.035	0.094	0.299	0.428	ND	0.04	<1.0	
A	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:05	17	В	16	2	8.36	32.60	26.91	110.2	6.99	5.6	0.46	182.2	8.7	0.013	0.096	0.292	0.401	ND	0.04	<1.0	
B	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:16		S	1	1	8.38	32.57	26.84	114.9	7.15	7.7	0.25	107.2	9.9	0.019	0.086	0.263	0.369	ND	0.04	<1.0	
B	12/10/2018	Mid-Ebb Mid-Ebb	Cloudy Cloudy	Moderate	13:16	14 14	S M	1	2	8.38	32.58	26.86 26.94	112.7	7.07	7.0 5.8	0.26	105.4 190.2	11.0 10.1	0.017	0.088	0.264	0.370	ND ND	0.04	<1.0 <1.0	
B	12/10/2018	Mid-Ebb	Cloudy	Moderate Moderate	13:16	14	M	7	2	8.39	32.72	26.94	110.6 110.3	6.99	5.8	0.09	95.3	10.1	0.041	0.084	0.267	0.392		0.04	<1.0	
B	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:16		B	13	1	8.39	32.7.3	26.94	110.3	7.01	5.8	0.09	186.7	12.6	0.023	0.088	0.269	0.378	ND	0.04	<1.0	
B	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:16		B	13	2	8.39	32.91	26.98	110.7	7.01	5.2	0.19	185.3	12.4	0.021	0.088	0.262	0.375	ND	0.04	<1.0	
Č	12/10/2018	Mid-Ebb	Cloudy	Moderate	13.32	12	ŝ	1	1	8 71	31 50	26.36	130.3	8 34	4.8	0.10	208.7	14.7	<0.022	0.070	0.314	0.394	ND	0.04	<1.0	
C	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:32		S	1	2	8.72	31.39	26.45	125.4	8.01	4.5	0.15	243.8	14.9	0.010	0.080	0.313	0.004	ND	0.04	<1.0	
Ċ	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:32	12	M	6	1	8.65	32.59	26.65	118.9	7.57	6.4	0.14	174.3	9.5	0.008	0.090	0.302	0.400	ND	0.04	<1.0	
C	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:32	12	M	6	2	8.62	32.80	26.75	112.5	7.16	6.9	0.19	167.1	8.6	< 0.005	0.081	0.308	0.388	ND	0.04	<1.0	
С	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:32	12	В	11	1	8.55	32.87	26.84	108.0	6.86	9.5	0.03	204.2	8.0	0.017	0.084	0.312	0.413	ND	0.04	2.4	
С	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:32	12	В	11	2	8.54	32.89	26.84	107.8	6.84	9.5	0.07	214.1	8.0	0.029	0.089	0.303	0.421	ND	0.04	2.5	
D	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:47	13	S	1	1	8.47	31.83	26.52	125.4	8.00	4.4	0.15	127.4	12.0	0.020	0.084	0.298	0.402	ND	0.04	3.0	
D	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:47	13	S	1	2	8.46	31.52	26.61	120.9	7.70	4.7	0.14	96.9	12.4	0.011	0.097	0.340	0.448	ND	0.04	<1.0	
D	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:47	13	М	6.5	1	8.42	32.79	26.84	111.3	7.07	6.4	0.17	164.3	11.3	0.016	0.086	0.300	0.402	ND	0.04	3.0	
D	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:47		М	6.5	2	8.42	32.77	26.86	109.3	6.94	6.6	0.14	153.1	11.5	< 0.005	0.077	0.308	0.385	ND	0.04	3.0	
D	12/10/2018	Mid-Ebb	Cloudy	Moderate	13:47		B	12 12	1	8.42	32.98 32.96	26.87	108.4	6.88	7.1	0.10	200.0	13.9	0.008	0.084	0.302	0.393	ND	0.04	3.0	
D F	12/10/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate	13:47 14·04		B S	12	2	8.43	32.96	26.87	108.5 119.2	6.89	7.1	0.08	209.6 121.0	13.1	0.011	0.090	0.295	0.397	ND 290	0.04	3.0	
F	12/10/2018	Mid-Ebb Mid-Ebb	Cloudy	Moderate Moderate	14:04 14:04	16 16	S	1	1	8.44	33.52	26.46 26.56	119.2	7.62	4.2	0.18	121.0	15.5 16.1	0.052	0.079	0.250	0.381	290	0.04	<1.0	
E F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:04	16	M	8	1	8.44	33.40	26.72	109.9	6.99	4.2	0.12	204.9	12.1	0.036	0.079	0.244	0.380	310	0.04	<1.0	
E E	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:04	16	M	8	2	8.43	33.55	26.72	109.9	6.96	4.2	0.18	204.9	11.9	0.049	0.082	0.231	0.364	270	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14.04		B	15	1	8 42	33.63	26.82	108.1	6.87	4.3	0.10	184.9	93	0.043	0.075	0.240	0.368	190	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14.04	16	B	15	2	8.42	33.64	26.83	108.1	6.86	4.6	0.19	227.0	10.1	0.042	0.085	0.245	0.362	150	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:16	23	S	1	1	8.44	33.25	26.44	115.5	7.38	3.8	0.18	114.2	12.6	0.046	0.088	0.249	0.383	200	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:16	23	S	1	2	8.44	33.17	26.54	112.6	7.18	4.0	0.19	115.1	11.8	0.055	0.085	0.249	0.389	250	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudv	Moderate	14:16	23	М	11.5	1	8.43	33.30	26.75	109.7	6.97	4.3	0.21	152.8	12.5	0.044	0.085	0.246	0.374	160	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudv	Moderate	14:16	23	М	11.5	2	8.43	33.33	26.78	109.5	6.96	4.3	0.27	151.3	12.2	0.048	0.080	0.255	0.382	180	0.04	<1.0	
F	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:16	23	В	22	1	8.42	33.37	26.82	108.4	6.90	4.3	0.15	168.6	12.1	0.047	0.077	0.258	0.382	130	0.04	<1.0	
E E	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:16	23	В	22	2	8.42	33.34	26.84	108.5	6.89	4.2	0.16	184.2	12.4	0.040	0.078	0.255	0.373	160	0.04	<1.0	
G	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:33	22	S	1	1	8.43	33.27	26.40	122.6	7.84	5.8	0.13	133.1	19.6	0.036	0.073	0.238	0.346	180	0.04	<1.0	
G	12/10/2018	Mid-Ebb		Moderate	14:33		S	1	2	8.44	33.24	26.51	118.1	7.54	5.0	0.19	138.1	19.9	0.036	0.075	0.234	0.345	140	0.04	<1.0	
G	12/10/2018	Mid-Ebb Mid-Ebb	Cloudv Cloudv	Moderate Moderate	14:33	22	M	11	2	8.44	33.09 33.18	26.75 26.75	113.4 112.8	7.21	4.6	0.17	162.1 177.2	9.3	0.036	0.078	0.233	0.347	<u>92</u> 85	0.04	<1.0 <1.0	
G	12/10/2018	Mid-Ebb		Moderate	14:33	22	B	21	2	8.43	33.18	26.81	112.8	7.00	4.7	0.18	231.2	9.5	0.039	0.077	0.236	0.352	170	0.04	<1.0	
G	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:33	22	B	21	2	8.43	33.30	26.81	109.9	6.98	4.9 5.2	0.22	231.2	11.4	0.038	0.076	0.237	0.351	220	0.04	<1.0	
H	12/10/2018	Mid-Ebb	Cloudy	Moderate	14.33	19	S	1	1	8.46	33.02	26.41	125.6	8.03	5.0	0.20	100.2	10.2	0.032	0.076	0.236	0.344	280	0.04	<1.0	
Н	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:48	19	S	1	2	8.44	32.93	26.62	119.0	7.59	5.1	0.14	144.2	11.2	0.021	0.078	0.257	0.377	260	0.04	<1.0	
Н	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:48	19	M	9.5	1	8.43	33.11	26.79	113.3	7.20	4.4	0.14	126.7	9.1	0.037	0.085	0.259	0.381	180	0.04	<1.0	
H	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:48	19	M	9.5	2	8.43	33.17	26.80	112.1	7.12	4.3	0.14	138.0	8.5	0.039	0.085	0.259	0.384	150	0.04	<1.0	
Н	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:48	19	В	18	1	8.43	33.15	26.87	110.3	7.00	4.6	0.18	224.4	8.4	0.033	0.085	0.255	0.372	280	0.04	<1.0	
Н	12/10/2018	Mid-Ebb	Cloudy	Moderate	14:48	19	В	18	2	8.43	33.18	26.88	110.3	7.00	4.5	0.13	249.8	9.0	0.027	0.085	0.258	0.370	310	0.04	<1.0	

Note: 1. ND: Not Detected

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)		Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	12/10/2018	Mid-Flood	Cloudy	Moderate	9:52	15	S	1	1	8.41	31.65	27.45	117.9	7.41	4.5	0.12	130.7	10.7	0.014	0.098	0.318	0.430	43	0.04	1.0
Α	12/10/2018	Mid-Flood	Cloudy	Moderate	9:52	15	S	1	2	8.42	31.56	27.32	115.8	7.29	4.6	0.08	114.7	10.0	0.009	0.104	0.325	0.438	35	0.04	<1.0
A	12/10/2018	Mid-Flood	Cloudv	Moderate	9:52	15	M	7.5	1	8.41	32.23	27.18	110.0	6.94	7.3	0.15	145.9	11.0	0.022	0.103	0.311	0.436	1	0.04	<1.0
A	12/10/2018	Mid-Flood	Cloudy	Moderate	9:52	15	M	7.5	2	8.41	32.27	27.18	110.1	6.95	7.4	0.13	107.1	10.6	0.010	0.102	0.313	0.424	4	0.04	<1.0
A	12/10/2018	Mid-Flood	Cloudy	Moderate	9:52	15	В	14	1	8.41	32.75	27.11	108.8	6.88	9.5	0.22	261.4	11.6	< 0.005	0.097	0.318	0.415	1	0.04	<1.0
A	12/10/2018	Mid-Flood	Cloudy	Moderate	9:52	15	В	14	2	8.41	32.85	27.11	108.6	6.87	9.4	0.20	244.5	12.6	0.008	0.093	0.319	0.420	2	0.04	<1.0
B	12/10/2018	Mid-Flood Mid-Flood	Cloudy	Moderate	9:41 9:41	14 14	S	1	1	8.42	32.39	27.24	120.9 115.1	7.62	6.6	0.29	179.5	17.3 17.9	0.044	0.079	0.232	0.355	27	0.04	<1.0
B	12/10/2018	Mid-Flood	Cloudy	Moderate Moderate	9:41	14	M	7	2	8.42	32.45	27.04	109.3	6.91	10.2	0.33	181.3 169.3	17.9	0.039	0.080	0.236	0.355	17	0.04	<1.0
B	12/10/2018	Mid-Flood	Cloudy	Moderate	9:41	14	M	7	2	8.42	32.72	27.04	109.3	6.90	11.9	0.22	234.5	16.7	0.056	0.078	0.239	0.373	13	0.04	<1.0
B	12/10/2018	Mid-Flood	Cloudy	Moderate	9.41	14	B	13	1	8.42	32.73	26.99	109.0	6.89	16.0	0.25	172.3	24.8	0.039	0.073	0.242	0.371	68	0.04	<1.0
B	12/10/2018	Mid-Flood	Cloudy	Moderate	9.41	14	B	13	2	8 42	32.95	26.99	108.9	6.89	15.4	0.18	222.6	24.6	0.039	0.07.3	0.244	0.356	58	0.04	<1.0
C	12/10/2018			Moderate	9.22	12	S	1	1	8.41	31.59	26.96	120.3	7.62	5.1	0.10	116.9	9.0	0.034	0.101	0.300	0.436	13	0.04	<1.0
Č	12/10/2018	Mid-Flood	Cloudy	Moderate	9.22	12	S	1	2	8 41	31.63	26.95	118.2	7 49	5.4	0.12	237.7	8.3	0.025	0.099	0.300	0.424	10	0.04	<10
C	12/10/2018	Mid-Flood	Cloudy	Moderate	9:22	12	M	6	1	8.40	32.06	26.95	112.0	7.10	8.1	0.11	137.7	5.8	0.046	0.098	0.300	0.445	10	0.04	<1.0
C	12/10/2018	Mid-Flood	Cloudy	Moderate	9:22	12	М	6	2	8.40	32.08	26.95	111.4	7.06	8.3	0.11	90.7	6.9	0.030	0.090	0.307	0.427	10	0.04	<1.0
С	12/10/2018	Mid-Flood	Cloudy	Moderate	9:22	12	В	11	1	8.39	32.32	26.97	109.0	6.90	11.4	0.20	107.3	8.7	0.037	0.090	0.306	0.433	17	0.04	<1.0
С	12/10/2018	Mid-Flood	Cloudv	Moderate	9:22	12	В	11	2	8.39	32.33	26.97	108.8	6.90	11.3	0.28	129.7	9.0	0.055	0.098	0.300	0.453	12	0.04	<1.0
D	12/10/2018	Mid-Flood	Cloudy	Moderate	9:03	14	S	1	1	8.41	31.31	27.44	129.5	8.15	5.1	0.19	98.5	9.3	0.018	0.100	0.299	0.417	45	0.04	<1.0
D	12/10/2018	Mid-Flood		Moderate	9:03	14	S	1	2	8.40		27.41	124.4	7.83	4.8	0.16	106.4	8.0	0.023	0.096	0.303	0.422	58	0.04	<1.0
D	12/10/2018	Mid-Flood	Cloudv	Moderate	9:03	14	М	7	1	8.40	31.56	27.17	117.6	7.43	5.3	0.26	105.5	7.1	0.022	0.095	0.299	0.416	51	0.04	<1.0
D	12/10/2018	Mid-Flood	Cloudv	Moderate	9:03	14	М	7	2	8.40	31.58	27.12	115.7	7.31	5.4	0.27	112.7	7.3	0.026	0.100	0.299	0.425	63	0.04	<1.0
D	12/10/2018	Mid-Flood	Cloudy	Moderate	9:03	14	В	13	1	8.39	32.19	27.08	111.6	7.06	13.2	0.33	91.1	4.6	0.013	0.097	0.299	0.409	28	0.04	<1.0
D	12/10/2018	Mid-Flood	Cloudy	Moderate	9:03	14	В	13	2	8.39	32.17	27.07	110.5	6.99	12.8	0.38	98.1	4.9	0.010	0.098	0.297	0.405	39	0.04	<1.0
E	12/10/2018	Mid-Flood	Cloudy	Moderate	8:52	14	S	1	1	8.40	32.38	26.76	112.5	7.15	8.5	0.14	140.2	11.5	0.065	0.091	0.298	0.454	53	0.04	<1.0
E	12/10/2018	Mid-Flood		Moderate	8:52	14	S	1	2	8.40	32.36	26.77	112.1	7.12	8.4	0.19	141.0	12.0	0.036	0.099	0.294	0.429	60	0.04	<1.0
E E	12/10/2018	Mid-Flood	Cloudy	Moderate	8:52	14	M	7	2	8.40	32.59	26.83 26.85	111.0	7.05	<u>8.0</u> 8.1	0.14	187.4 161.4	11.3	0.057	0.089	0.302	0.448	<u>42</u> 33	0.04	<1.0
E	12/10/2018	Mid-Flood Mid-Flood		Moderate Moderate	8:52	14 14	B	13	2	8.40 8.40	32.73	26.85	110.8 109.7	6.95	7.6	0.11	161.4	11.6 11.2	0.045	0.098	0.294	0.438	26	0.04	<1.0
E	12/10/2018	Mid-Flood	Cloudy	Moderate	8:52	14	B	13	2	8.40	32.99	26.92	109.7	6.95	6.4	0.22	185.7	11.2	0.037	0.092	0.300	0.429	26	0.04	<1.0
F	12/10/2018	Mid-Flood	Cloudy	Moderate	8:39	14	S	1	1	8.40	32.99	26.92	116.9	7.41	8.6	0.09	146.7	17.6	0.030	0.094	0.299	0.422	470	0.04	<1.0
F	12/10/2018	Mid-Flood	Cloudy	Moderate	8:39	18	S	1	2	8 40	32.38	26.97	114.6	7.26	8.7	0.03	153.8	20.9	0.043	0.030	0.255	0.372	620	0.05	<1.0
F	12/10/2018	Mid-Flood	Cloudy	Moderate	8:39	18	M	9	1	8.39	32.84	26.98	110.8	7.02	6.7	0.05	201.0	14.3	0.032	0.000	0.254	0.369	280	0.05	<1.0
F	12/10/2018	Mid-Flood	Cloudy	Moderate	8:39	18	M	9	2	8.39	32.84	26.98	110.6	7.00	7.0	0.08	220.4	15.3	0.027	0.087	0.255	0.369	370	0.04	<1.0
F	12/10/2018	Mid-Flood	Cloudy	Moderate	8:39	18	В	17	1	8.39		26.98	110.0	6.97	6.0	0.08	224.2	13.8	0.075	0.085	0.253	0.414	340	0.05	<1.0
F	12/10/2018	Mid-Flood	Cloudv	Moderate	8:39	18	В	17	2	8.39	33.00	26.98	109.7	6.95	5.9	0.05	249.1	13.5	0.053	0.090	0.252	0.396	430	0.04	1.1
G	12/10/2018	Mid-Flood		Moderate	8:20	13	S	1	1	8.37	32.21	26.82	109.5	6.95	6.8	0.28	170.2	19.9	0.046	0.083	0.278	0.407	68	0.05	<1.0
G	12/10/2018	Mid-Flood		Moderate	8:20	13	S	1	2	8.37		26.82	109.5	6.95	6.8	0.27	158.3	20.0	0.026	0.090	0.270	0.387	71	0.05	<1.0
G	12/10/2018	Mid-Flood	Cloudv	Moderate	8:20	13	М	6.5	1	8.36	32.30	26.82	108.9	6.91	8.7	0.31	171.4	15.4	0.027	0.090	0.271	0.387	80	0.05	1.1
G	12/10/2018	Mid-Flood	Cloudv	Moderate	8:20	13	М	6.5	2	8.37		26.82	109.0	6.92	8.8	0.39	177.3	15.3	0.023	0.097	0.267	0.387	88	0.05	<1.0
G	12/10/2018	Mid-Flood	Cloudy	Moderate	8:20	13	В	12	1	8.37	32.72	26.86	108.7	6.90	9.5	0.44	186.0	15.8	0.018	0.095	0.268	0.380	160	0.05	<1.0
G	12/10/2018	Mid-Flood	Cloudy	Moderate	8:20	13	В	12	2	8.37		26.86	108.7	6.90	10.0	0.39	170.3	16.5	0.025	0.094	0.269	0.387	120	0.05	<1.0
Н	12/10/2018	Mid-Flood	Cloudy	Moderate	8:06	19	S	1	1	8.35		26.00	112.3	7.22	7.1	0.18	128.5	21.8	0.054	0.090	0.262	0.406	150	0.05	1.1
H	12/10/2018		Cloudy	Moderate	8:06	19	S	1	2	8.34	32.79	26.10	111.4	7.15	6.8	0.16	123.7	20.0	0.032	0.093	0.262	0.387	140	0.05	1.2
H	12/10/2018	Mid-Flood	Cloudy	Moderate	8:06	19	M	9.5	1	8.35	32.64	26.57	109.3	6.96	9.9	0.33	133.9	18.8	0.033	0.091	0.263	0.387	73	0.05	1.1
H	12/10/2018	Mid-Flood	Cloudy	Moderate	8:06	19	M B	0.0	- 4	0.00	02.00	26.60	109.4	6.97 6.93	9.2 10.7	0.35	124.0 118.2	20.8	0.033	0.086	0.269	0.388	<u>62</u> 100	0.06	1.1
н	12/10/2018	Mid-Flood		Moderate	8:06	19 19	B	18 18	1	8.36	32.73	26.69 26.70	109.0 108.9	6.93	10.7	0.28	118.2	18.2 18.5	0.021	0.087	0.262	0.370	100	0.05	1.0
н	12/10/2018	IVIId-Flood	Cloudy	ivioderate	8:06	19	В	18	- 2	8.36	32.73	26.70	108.9	6.93	11.3	0.27	108.0	18.5	0.033	0.085	0.270	0.388	140	0.05	1.2

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFIC,	ATE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 29
Contact	: MR CYRUS LAI	Contact	: Richard Fung	Work Order	: HK1853811
Address	EROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 		
E-mail	: c.lai@fugro.com	E-mail	: richard.fung@alsglobal.com		
Telephone	: +852 3565 4374	Telephone	: +852 2610 1044		
Facsimile	:	Facsimile	: +852 2610 2021		
Project	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM F FOR SIU HO WAN SEWAGE TREATMENT PLANT	OR OPERATIONAL E	ENVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 12-Oct-2018
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 29-Oct-2018
C-O-C number	:			No. of samples received	: 96
Site	:			No. of samples analysed	: 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics
Ng Sin Kou, May	Assistant Laboratory Manager	Microbiology

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 12-Oct-2018 to 29-Oct-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1853811

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

Sample(s) arrived in the laboratory at 20:05. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E	
	Cli	ent samplir	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	
Compound	CAS Number	LOR	Unit	HK1853811-001	HK1853811-002	HK1853811-003	HK1853811-004	HK1853811-005	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	10.5	10.2	7.5	6.2	7.6	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.039	0.012	0.024	0.032	0.035	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.093	0.094	0.097	0.094	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.302	0.302	0.298	0.296	0.299	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.431	0.407	0.416	0.425	0.428	
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100mL	NOT DETECTED					

Page Number : 4 of 29 Client : FUGRO TECHN

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Matrix: WATER Client sample ID				B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-006	HK1853811-007	HK1853811-008	HK1853811-009	HK1853811-010
EA/ED: Physical and Aggregate Properties								·
EA025: Suspended Solids (SS)		0.5	mg/L	8.7	9.9	11.0	10.1	10.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.013	0.019	0.017	0.041	0.023
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.096	0.086	0.088	0.084	0.086
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.292	0.263	0.264	0.267	0.269
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.401	0.369	0.370	0.392	0.378
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number 2 5 of 29

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-011	HK1853811-012	HK1853811-013	HK1853811-014	HK1853811-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.4	12.1	14.7	14.9	9.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.021	0.022	<0.005	0.010	0.008
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.088	0.078	0.080	0.080	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.262	0.276	0.314	0.313	0.302
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.371	0.375	0.394	0.403	0.400
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number : 6 of 29 Client : FUGRO TECH

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-016	HK1853811-017	HK1853811-018	HK1853811-019	HK1853811-020
EA/ED: Physical and Aggregate Properties			·					
EA025: Suspended Solids (SS)		0.5	mg/L	8.6	8.0	8.0	12.0	12.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.017	0.029	0.020	0.011
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.081	0.084	0.089	0.084	0.097
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.308	0.312	0.303	0.298	0.340
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.388	0.413	0.421	0.402	0.448
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	2.4	2.5	3.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number 2 7 of 29

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID				D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-021	HK1853811-022	HK1853811-023	HK1853811-024	HK1853811-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.3	11.5	13.9	13.1	15.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.016	<0.005	0.008	0.011	0.052
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.086	0.077	0.084	0.090	0.079
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.300	0.308	0.302	0.295	0.250
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.402	0.385	0.393	0.397	0.381
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	3.0	3.0	3.0	3.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED	290

Page Number : 8 of 29

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Matrix: WATER Clien				E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-026	HK1853811-027	HK1853811-028	HK1853811-029	HK1853811-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	16.1	12.1	11.9	9.3	10.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.036	0.049	0.043	0.042	0.032
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.079	0.082	0.073	0.086	0.085
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.244	0.251	0.248	0.240	0.245
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.360	0.382	0.364	0.368	0.362
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	260	310	270	190	150

Page Number 2 9 of 29

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-031	HK1853811-032	HK1853811-033	HK1853811-034	HK1853811-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.6	11.8	12.5	12.2	12.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.046	0.055	0.044	0.048	0.047
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.088	0.085	0.085	0.080	0.077
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.249	0.249	0.246	0.255	0.258
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.383	0.389	0.374	0.382	0.382
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	200	250	160	180	130

Page Number : 10 of 29 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1853811

Sub-Matrix: WATER		Clie	ent sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Cli	ient samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-036	HK1853811-037	HK1853811-038	HK1853811-039	HK1853811-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.4	19.6	19.9	9.3	9.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.040	0.036	0.036	0.036	0.039
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.078	0.073	0.075	0.078	0.077
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.255	0.238	0.234	0.233	0.236
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.373	0.346	0.345	0.347	0.352
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	160	180	140	92	85

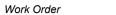
Page Number : 11 of 29 Client : FUGRO TECHNICA

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E		
	Client sampling date / time			12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018		
Compound	CAS Number	LOR	Unit	HK1853811-041	HK1853811-042	HK1853811-043	HK1853811-044	HK1853811-045		
EA/ED: Physical and Aggregate Properties	EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	11.4	11.2	10.2	11.2	9.1		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.038	0.032	0.021	0.032	0.037		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.076	0.076	0.076	0.088	0.085		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.237	0.236	0.266	0.257	0.259		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.351	0.344	0.364	0.377	0.381		
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EP: Aggregate Organics					0	8		8		
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.1	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	170	220	280	260	180		

Page Number 12 of 29 Client FUGRO TECHNICAL SERVICES LIMITED

HK1853811

Sub-Matrix: WATER		Clie	ent sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Cli	ent samplir	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-046	HK1853811-047	HK1853811-048	HK1853811-049	HK1853811-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	8.4	9.0	10.7	10.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.039	0.033	0.027	0.014	0.009
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.085	0.085	0.085	0.098	0.104
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.259	0.255	0.258	0.318	0.325
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.384	0.372	0.370	0.430	0.438
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	150	280	310	43	35


Page Number : 13 of 29 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-051	HK1853811-052	HK1853811-053	HK1853811-054	HK1853811-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.0	10.6	11.6	12.6	17.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.022	0.010	<0.005	0.008	0.044
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.103	0.102	0.097	0.093	0.079
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.311	0.313	0.318	0.319	0.232
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.436	0.424	0.415	0.420	0.355
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	4	1	2	27

Page Number 14 of 29 Client FUGRO TECHNICAL SERVICES LIMITED

HK1853811

Sub-Matrix: WATER		Clie	ent sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Client sampling date / time			12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-056	HK1853811-057	HK1853811-058	HK1853811-059	HK1853811-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	17.9	17.0	16.7	24.8	24.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.039	0.056	0.056	0.039	0.038
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.080	0.078	0.073	0.073	0.080
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.236	0.239	0.242	0.244	0.237
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.355	0.373	0.371	0.357	0.356
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	31	17	13	68	58

Page Number . 15 of 29 Client FUGRO TECHNICAL SERVICES LIMITED

_

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-061	HK1853811-062	HK1853811-063	HK1853811-064	HK1853811-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	8.3	5.8	6.9	8.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.034	0.025	0.046	0.030	0.037
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.101	0.099	0.098	0.090	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.300	0.300	0.300	0.307	0.306
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.436	0.424	0.445	0.427	0.433
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	13	10	10	10	17

Page Number 16 of 29 Client FUGRO TECHNICAL SERVICES LIMITED Work Order

HK1853811

Sub-Matrix: WATER		Clie	ent sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
	Cli	ent samplir	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-066	HK1853811-067	HK1853811-068	HK1853811-069	HK1853811-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	9.3	8.0	7.1	7.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.055	0.018	0.023	0.022	0.026
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.098	0.100	0.096	0.095	0.100
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.300	0.299	0.303	0.299	0.299
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.453	0.417	0.422	0.416	0.425
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	45	58	51	63

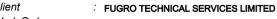
Page Number : 17 of 29 Client : FUGRO TECHNIC

ent : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-071	HK1853811-072	HK1853811-073	HK1853811-074	HK1853811-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.9	11.5	12.0	11.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.013	0.010	0.065	0.036	0.057
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.097	0.098	0.091	0.099	0.089
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.299	0.297	0.298	0.294	0.302
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.409	0.405	0.454	0.429	0.448
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	28	39	53	60	42

Page Number : 18 of 29 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-076	HK1853811-077	HK1853811-078	HK1853811-079	HK1853811-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.6	11.2	11.1	17.6	20.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.045	0.037	0.030	0.049	0.032
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.098	0.092	0.094	0.090	0.085
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.294	0.300	0.299	0.254	0.255
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.438	0.429	0.422	0.394	0.372
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	33	26	21	470	620


Page Number : 19 of 29 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F		
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018		
Compound	CAS Number	LOR	Unit	HK1853811-081	HK1853811-082	HK1853811-083	HK1853811-084	HK1853811-085		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	14.3	15.3	13.8	13.5	19.9		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.024	0.027	0.075	0.053	0.046		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.091	0.087	0.085	0.090	0.083		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.254	0.255	0.253	0.252	0.278		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.369	0.369	0.414	0.396	0.407		
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.04	0.05	0.04	0.05		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	1.1	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	280	370	340	430	68		

Page Number 20 of 29 Client FUGRO TECHNICAL

Sub-Matrix: WATER		Clie	ent sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup		
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018		
Compound	CAS Number	LOR	Unit	HK1853811-086	HK1853811-087	HK1853811-088	HK1853811-089	HK1853811-090		
EA/ED: Physical and Aggregate Properties	EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	20.0	15.4	15.3	15.8	16.5		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.026	0.027	0.023	0.018	0.025		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.090	0.097	0.095	0.094		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.270	0.271	0.267	0.268	0.269		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.387	0.387	0.387	0.380	0.387		
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.1	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	71	80	88	160	120		

Page Number 21 of 29 Client FUGRO TECHN

ent : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	: WATER Client sample ID			H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
	Cli	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853811-091	HK1853811-092	HK1853811-093	HK1853811-094	HK1853811-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	21.8	20.0	18.8	20.8	18.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.032	0.033	0.033	0.021
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.093	0.091	0.086	0.087
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.262	0.262	0.263	0.269	0.262
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.406	0.387	0.387	0.388	0.370
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.06	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.2	1.1	1.1	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	150	140	73	62	100

Page Number : 22 of 29 Client : FUGRO TECHNIC/

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup	 	
	Cli	ent samplir	ng date / time	12-Oct-2018	 	
Compound	CAS Number	LOR	Unit	HK1853811-096	 	
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)		0.5	mg/L	18.5	 	
ED/EK: Inorganic Nonmetallic Parameters						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.033	 	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.085	 	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.270	 	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.388	 	
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	 	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	 	
EP: Aggregate Organics						
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	 	
EM: Microbiological Testing						
EM002: E. coli		1	CFU/100mL	140	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER	- I				Lab	oratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1981436)						
HK1853811-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	10.5	10.0	4.87
HK1853811-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	12.4	12.2	1.62
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1981437)						
HK1853811-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	11.3	11.1	1.79
HK1853811-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	12.6	12.2	2.62
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1981438)						
HK1853811-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	11.4	11.0	3.80
HK1853811-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	11.0	10.5	4.19
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1981440)						
HK1853811-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	9.0	8.2	9.36
HK1853811-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	5.2	12.3
EA/ED: Physical and A	ggregate Properties (QC Lot	: 1981441)						
HK1853811-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	14.3	13.7	4.28
HK1853811-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	21.8	20.2	7.97
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1980317)						
HK1853811-010	B/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.086	0.087	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	1980319)						
		EK057A: Nitrite as N	14797-65-0	0.005	mg/L		0.082	5.13
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1980321)						
		EK057A: Nitrite as N	14797-65-0	0.005	mg/L		0.102	4.93
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1980323)						
HK1853811-070	D/M/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.100	0.099	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1980325)						
HK1853811-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.094	0.085	9.27
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1984023)						
HK1853811-010	B/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.023	0.020	15.2
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1984024)						
HK1853811-030	E/B/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.032	0.036	13.9
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	1984025)						
HK1853811-050	A/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.009	0.008	0.00

 Page Number
 : 24 of 29

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK1853811

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 1	1984026)			1						
HK1853811-070	D/M/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.026	0.023	12.7			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 1	1984027)									
HK1853811-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.025	0.030	19.2			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002210)									
HK1853811-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002211)									
HK1853811-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002212)									
HK1853811-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002213)									
HK1853811-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002214)									
HK1853811-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002215)									
HK1853811-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002216)									
HK1853811-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002217)									
HK1853811-070	D/M/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	2002218)			_						
HK1853811-090	G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	•	1		-	· · · · ·					
HK1853811-090	G/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB	3) Report		Laboratory Contr	rol Spike (LCS) and Labor	atory Control S	pike Duplicate (i	DCS) Report		
				1	Spike Spike Recovery (%) Recovery Lin				ry Limits(%)	(%) RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties	(QC Lot: 1981436)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	92.0		85	115			
A/ED: Physical and Aggregate Properties (QC Lot: 1981437)												

Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Cont	trol Spike (LCS) and Lab	oratory Control S	Spike Duplicate (I	DCS) Report	
				1	Spike	Spike Re	ecovery (%)	Recove	ery Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC	C Lot: 1981437) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	107		85	115		
EA/ED: Physical and Aggregate Properties (QC	C Lot: 1981438)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115		
EA/ED: Physical and Aggregate Properties (QC	C Lot: 1981440)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	108		85	115		
EA/ED: Physical and Aggregate Properties (QC	C Lot: 1981441)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	96.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1980317)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	96.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1980319)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1980321)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	111		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1980323)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	99.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1980325)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	97.6		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1984023)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	112		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1984024)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	96.8		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1984025)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	97.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1984026)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	97.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 1984027)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	99.2		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2002210)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.4		85	115		

Page Number 26 of 29 Client FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (MI	3) Report		Laboratory Com	trol Spike (LCS) and Lab	aboratory Control Spike Duplicate (DCS) Report			
					Spike	Spike Ri	ecovery (%)	Recove	ny Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002211)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.4		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002212)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.6		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002213)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.2		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002214)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.6		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002215)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	100		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002216)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002217)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.6		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002218)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.5		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	2002219)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.6		90	104		
EP: Aggregate Organics (QC Lot: 1980340)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	110		81	115		
EP: Aggregate Organics (QC Lot: 1980495)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	100		81	115		
EP: Aggregate Organics (QC Lot: 1980496)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	101		81	115		
EP: Aggregate Organics (QC Lot: 1980497)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		81	115		
EP: Aggregate Organics (QC Lot: 1980498)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		81	115		
EP: Aggregate Organics (QC Lot: 1982422)									·		
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		81	115		

Page Number	:	27 of 29
Client	:	FUGRO TECHNICAL SERVICES LIMITED
Work Order		HK1853811

Matrix: WATER			Method Blank (ME	l) Report		Laboratory Contro	ol Spike (LCS) and Labo	pratory Control S	pike Duplicate (i	DCS) Report	RPD (%)			
					Spike	Spike Red	covery (%)	Recove	ny Limits(%)	RP	D (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control			
											Limit			
EP: Aggregate Organics (QC Lot: 1982428)														
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		81	115					

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER					Matrix Spi	ke (MS) and Matn	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorganie	c Nonmetallic Parameters (QC	C Lot: 1980317)								
HK1853811-010	B/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	102		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1980319)				·				·
HK1853811-030	E/B/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	108		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1980321)	·							1
HK1853811-050	A/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	109		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC	C Lot: 1980323)								
HK1853811-070	D/M/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	103		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC	C Lot: 1980325)								
HK1853811-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	108		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1984023)								
HK1853811-010	B/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	90.1		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC	C Lot: 1984024)								
HK1853811-030	E/B/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	95.3		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1984025)								
HK1853811-050	A/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	95.5		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1984026)								
HK1853811-070	D/M/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	91.9		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 1984027)								
HK1853811-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	91.8		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC	C Lot: 2002210)								
HK1853811-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	94.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 2002211)								

Page Number : 29 of 29 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1853811

HK1853811-090 G/B/F/Dup

HK1853811-090 G/B/F/Dup

ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2002219)

Control Limit

25

25

25

25

RPD (%)

Value

75

75

125

125

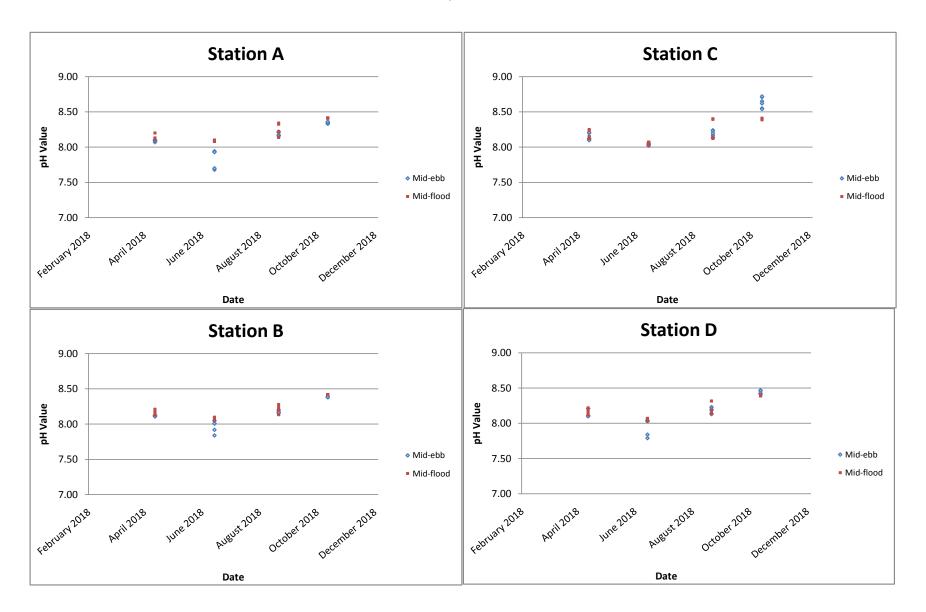
Matrix: WATER					Matrix Spl	ike (MS) and Matrix	x Spike Duplic	ate (MSD) R	eport
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Va
sample ID									
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 20	02211) - Continued							
HK1853811-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	92.0		75	125	
ED/EK: Inorganie	c Nonmetallic Parameters (QC Lot: 20	02212)							
HK1853811-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	94.0		75	125	
ED/EK: Inorganie	Nonmetallic Parameters (QC Lot: 20	02213)							
HK1853811-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.0		75	125	
ED/EK: Inorgani	Nonmetallic Parameters (QC Lot: 20	02214)							
HK1853811-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	98.0		75	125	
ED/EK: Inorgani	Nonmetallic Parameters (QC Lot: 20	02215)							
HK1853811-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.0		75	125	
ED/EK: Inorgani	Nonmetallic Parameters (QC Lot: 20	02216)			<u>`</u>				
HK1853811-070	·	EK067P: Total Phosphorus - Filtered		0.5 mg/L	92.3		75	125	
ED/EK: Inorgani	Nonmetallic Parameters (QC Lot: 20	02217)			·				
HK1853811-070		EK067P: Total Phosphorus as P		0.5 mg/L	90.0		75	125	
ED/EK: Inorgani	Nonmetallic Parameters (QC Lot: 20	02218)					1		1
							1		

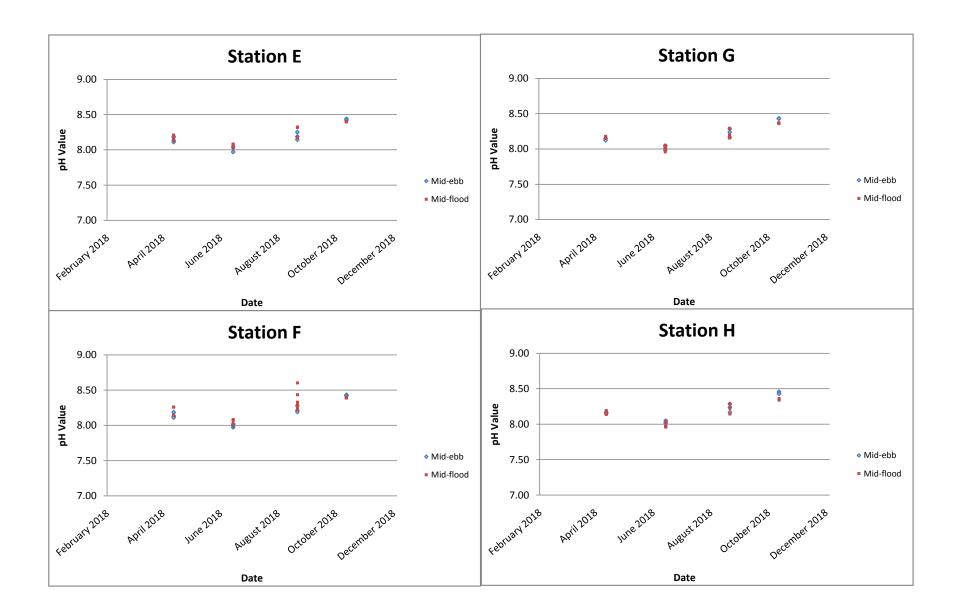
0.5 mg/L

0.5 mg/L

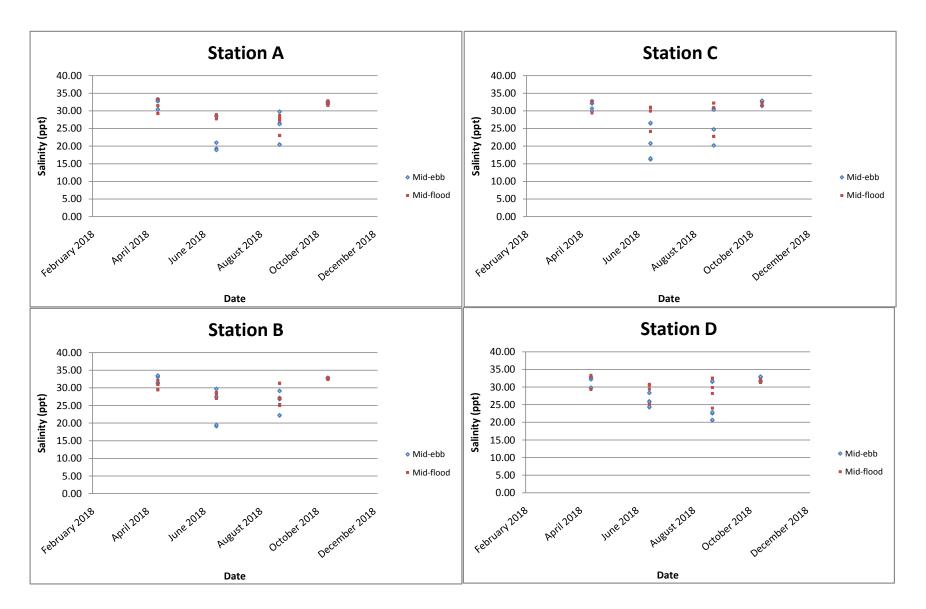
94.0

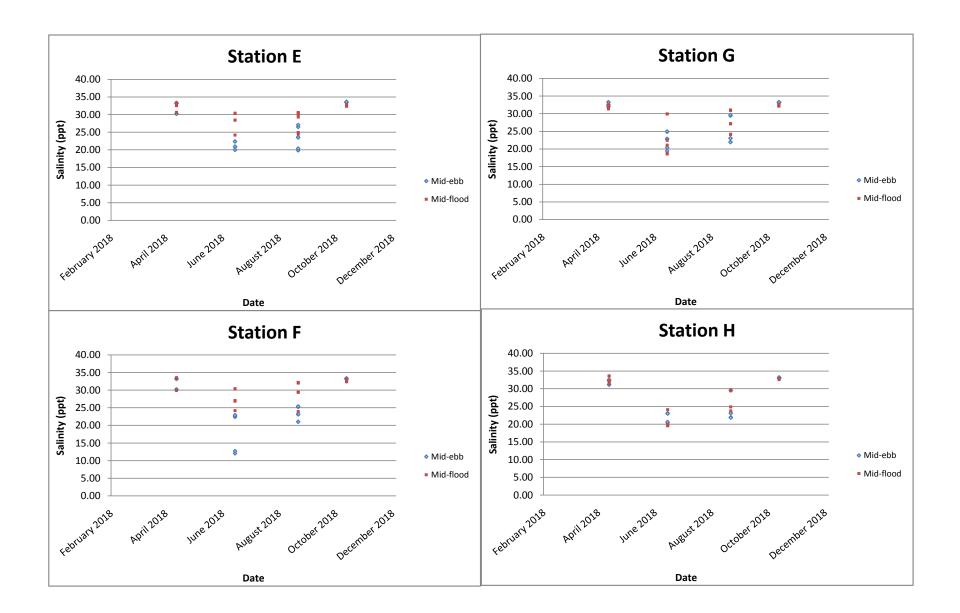
88.5

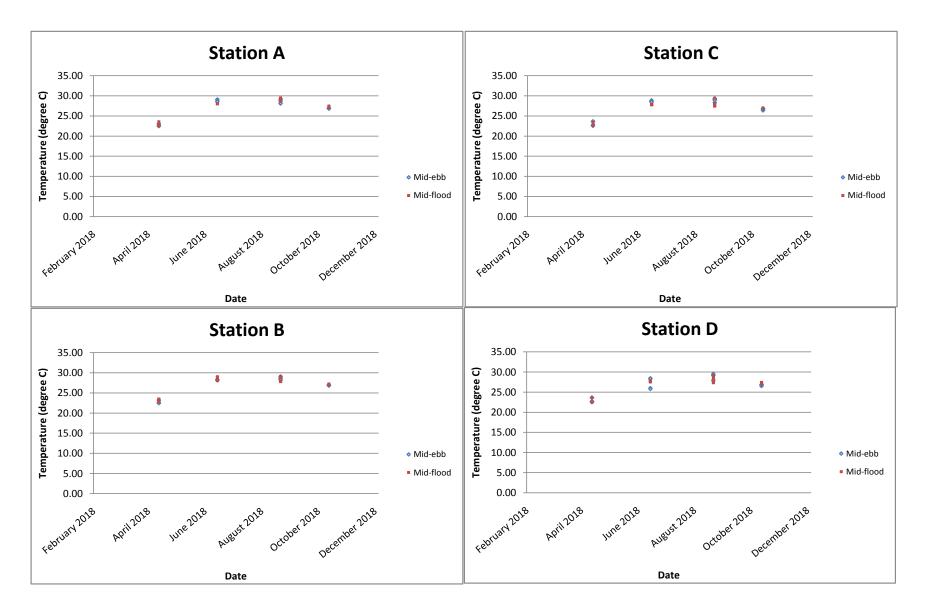



EK067P: Total Phosphorus - Filtered

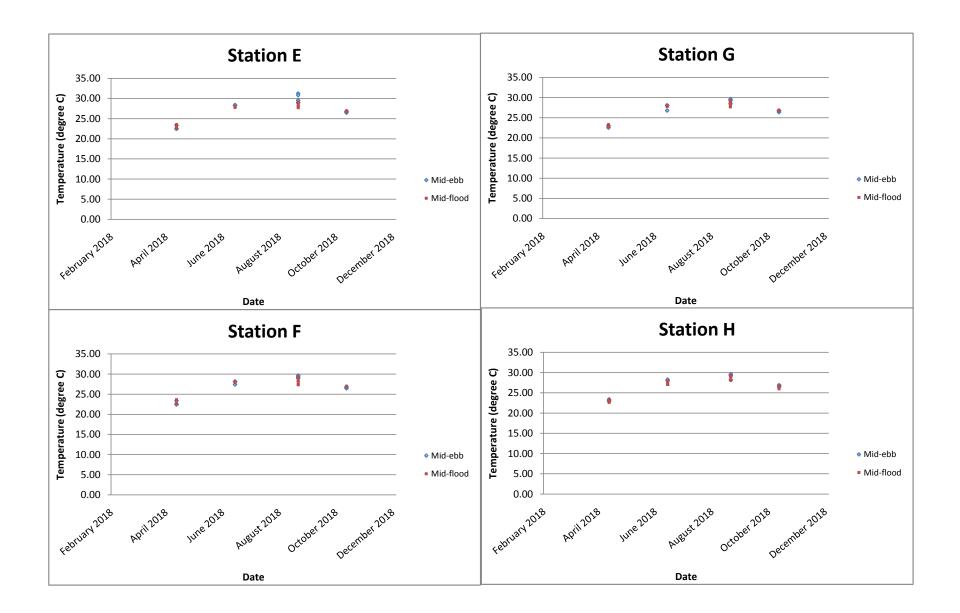
EK067P: Total Phosphorus as P

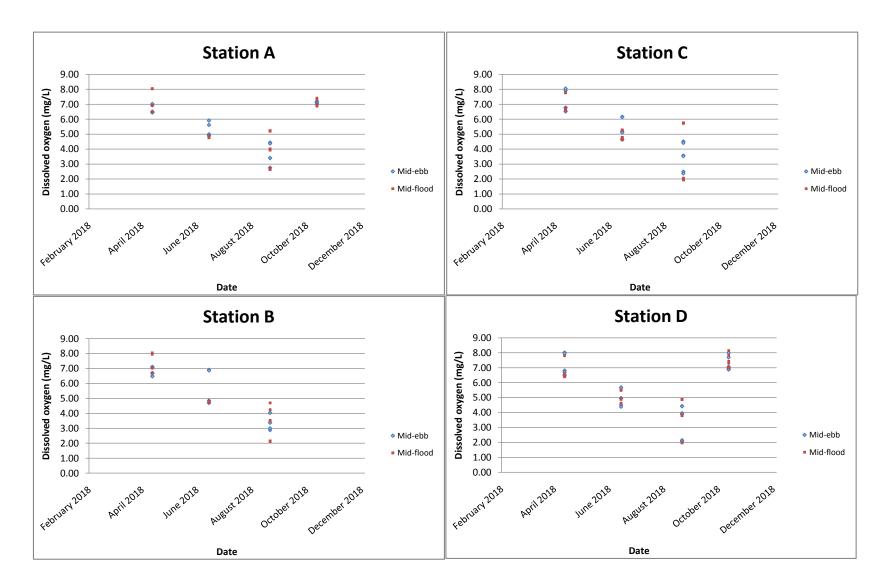

pH value

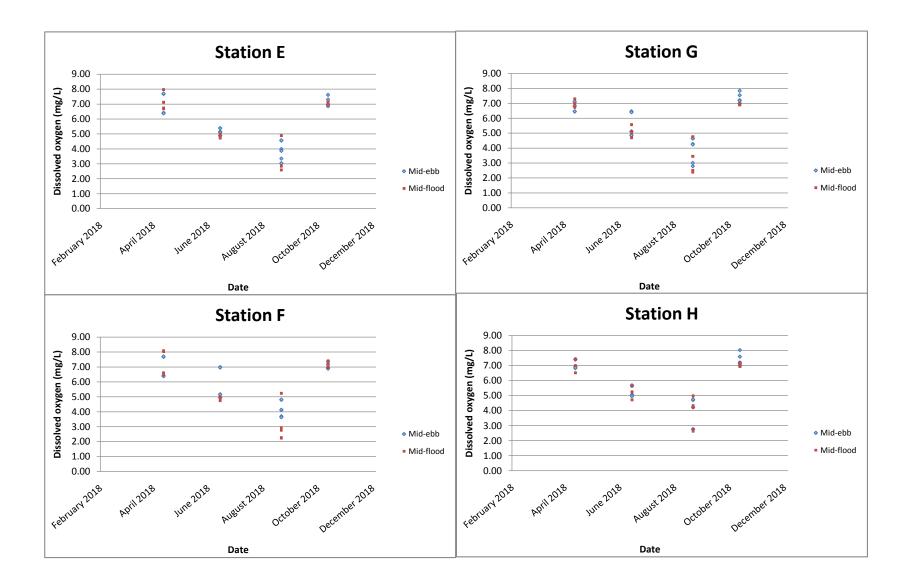

pH value



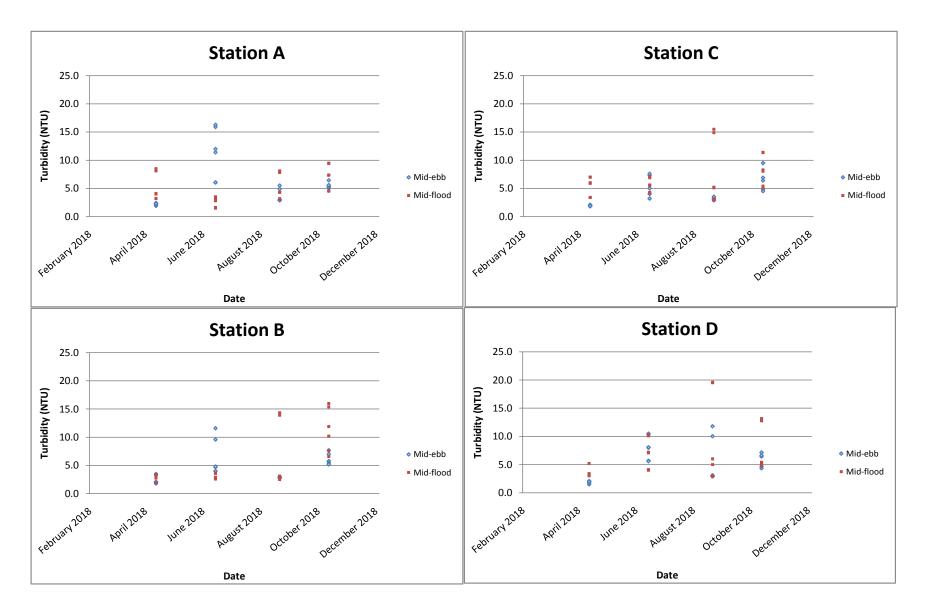
Salinity (ppt)

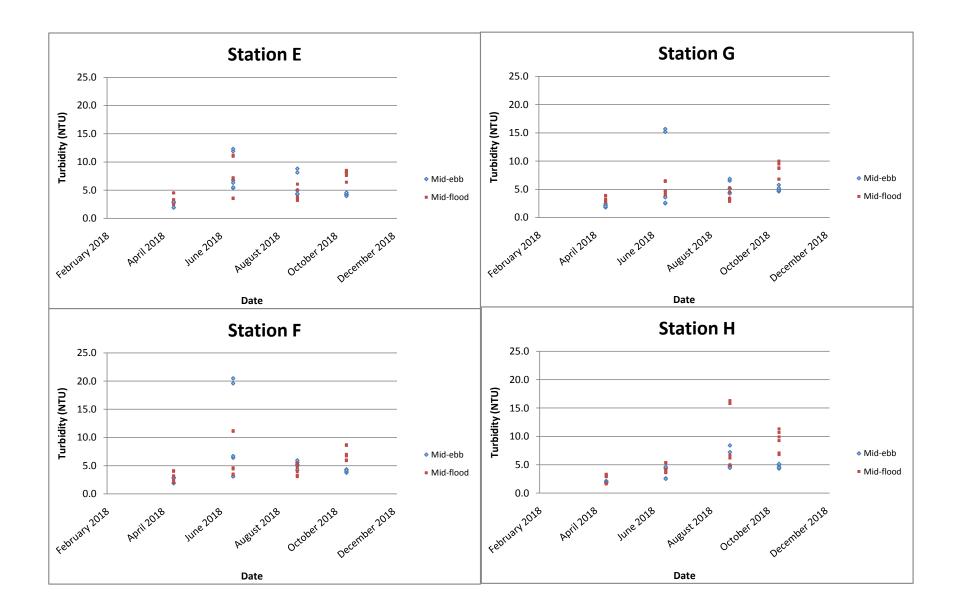


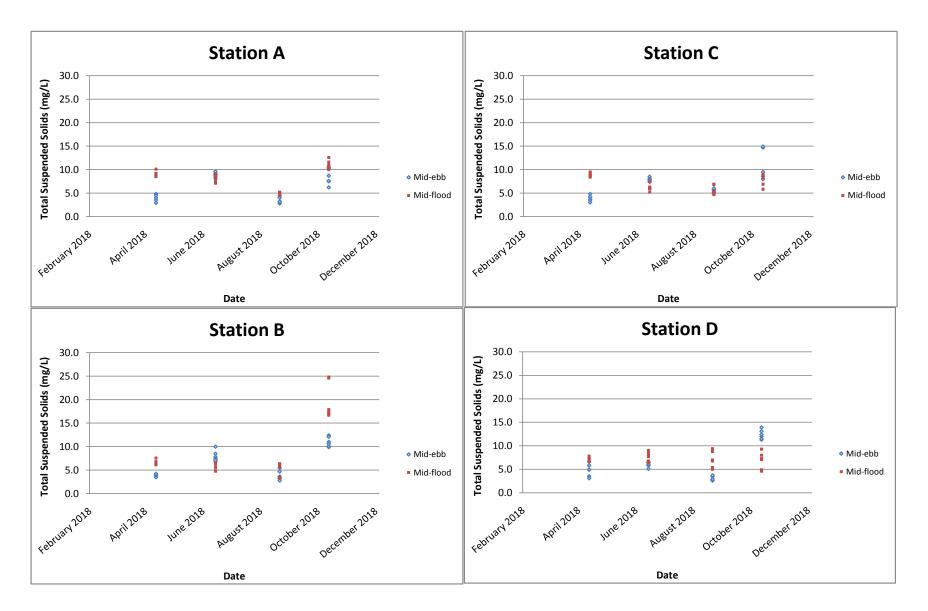

Salinity (ppt)

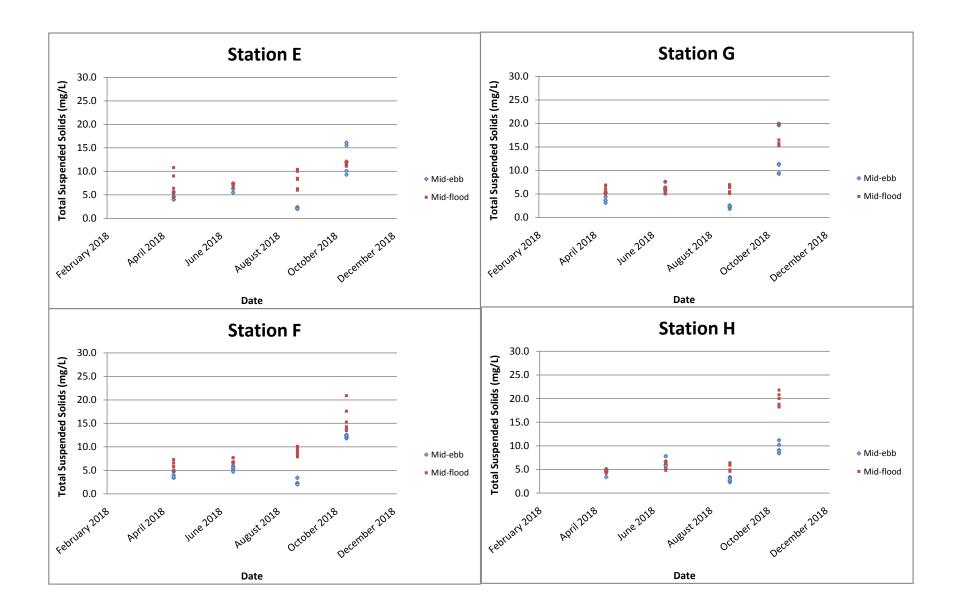


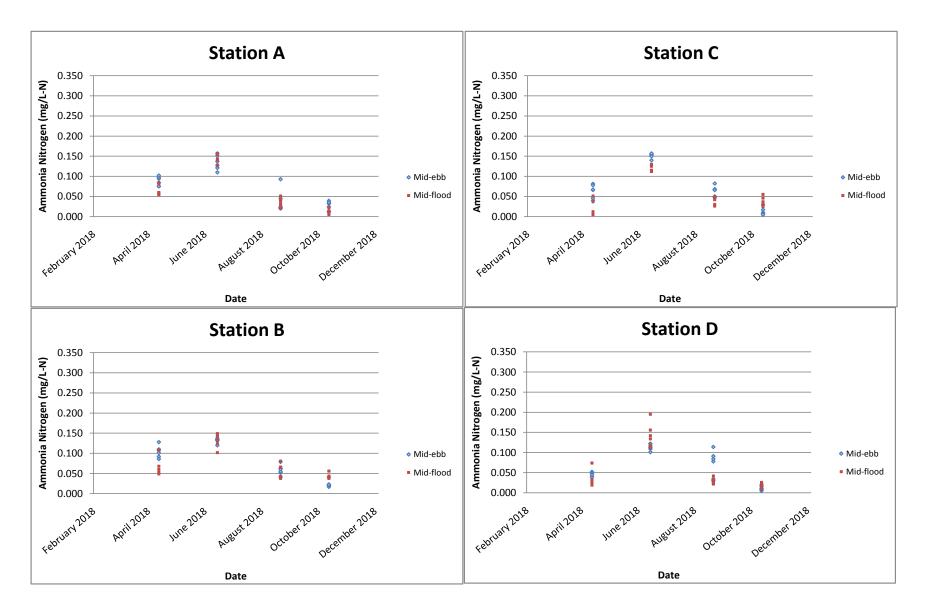
Temperature (degree C)

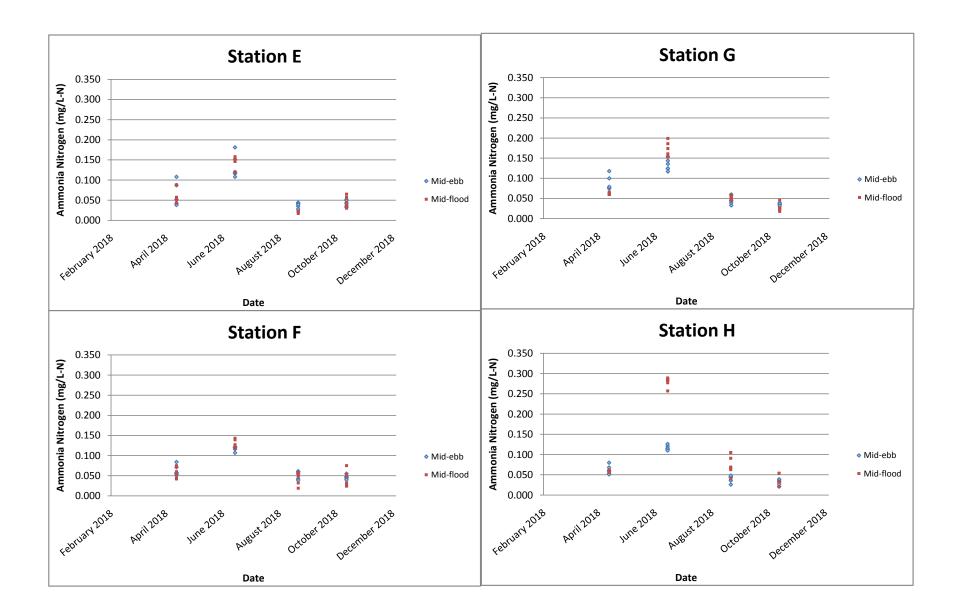


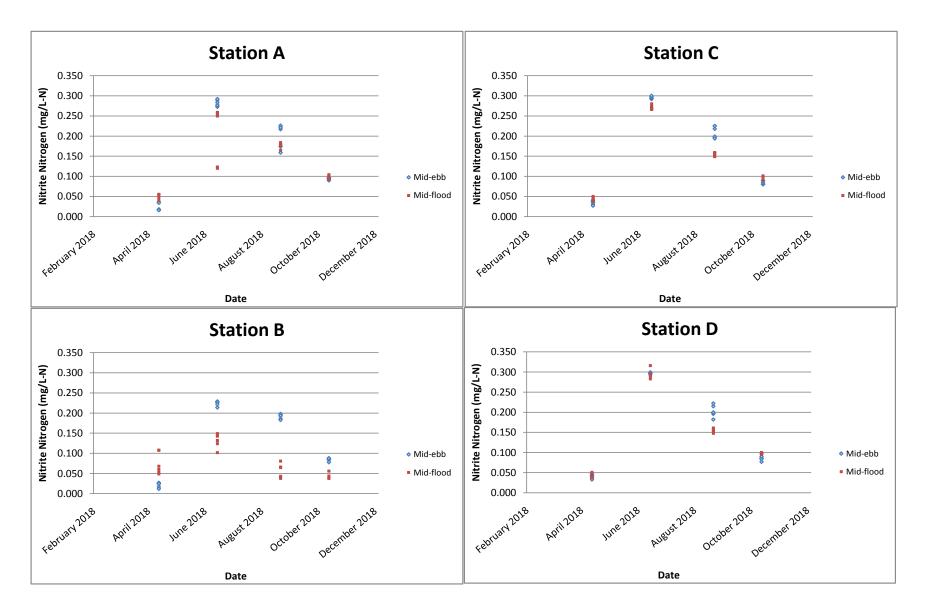

Dissolved oxygen (mg/L)

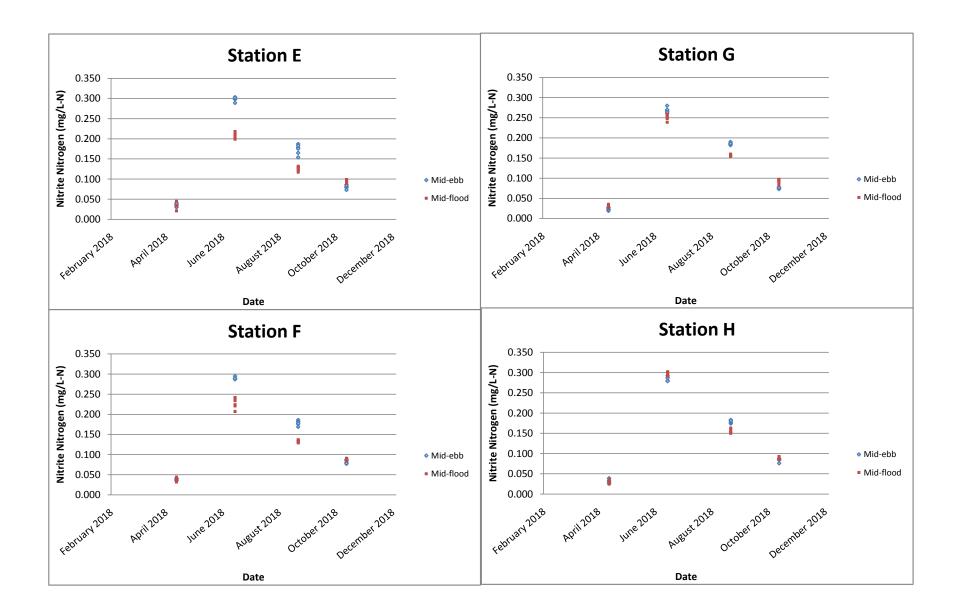


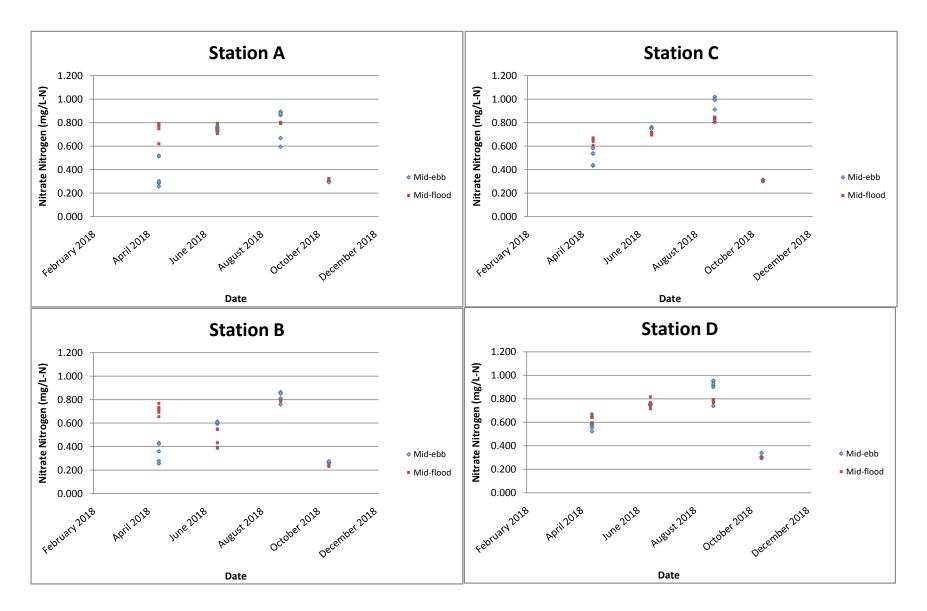

Turbidity (NTU)

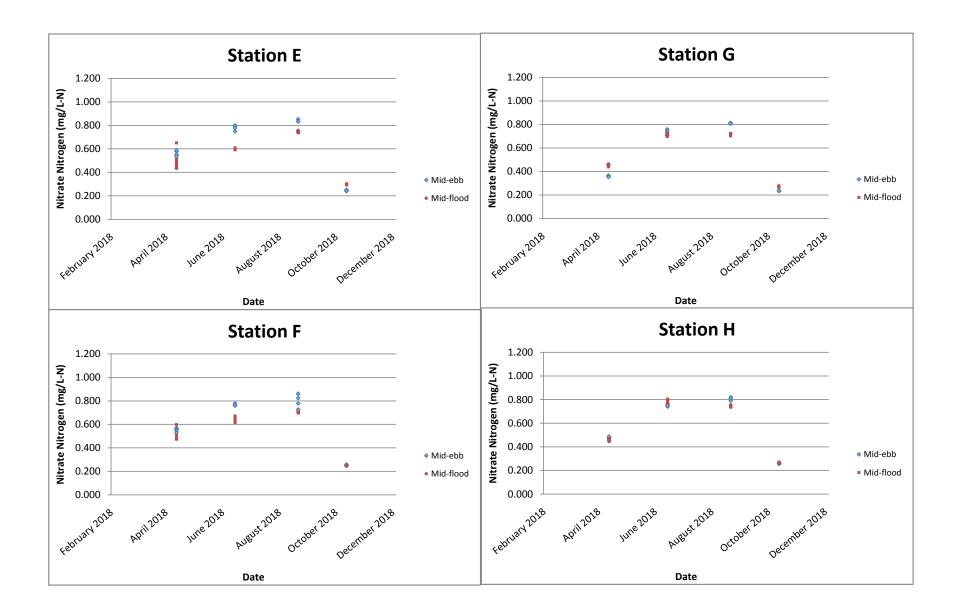


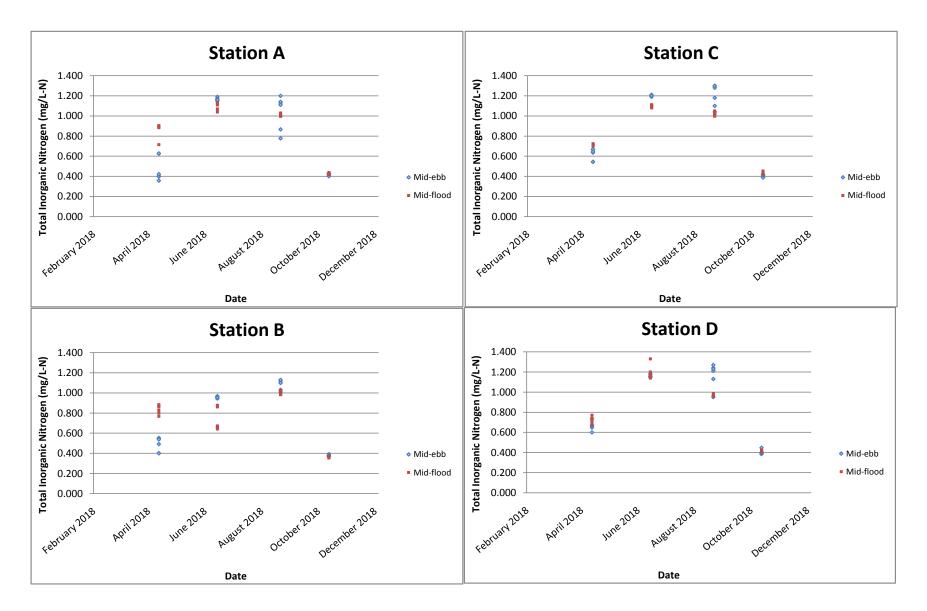

Turbidity (NTU)

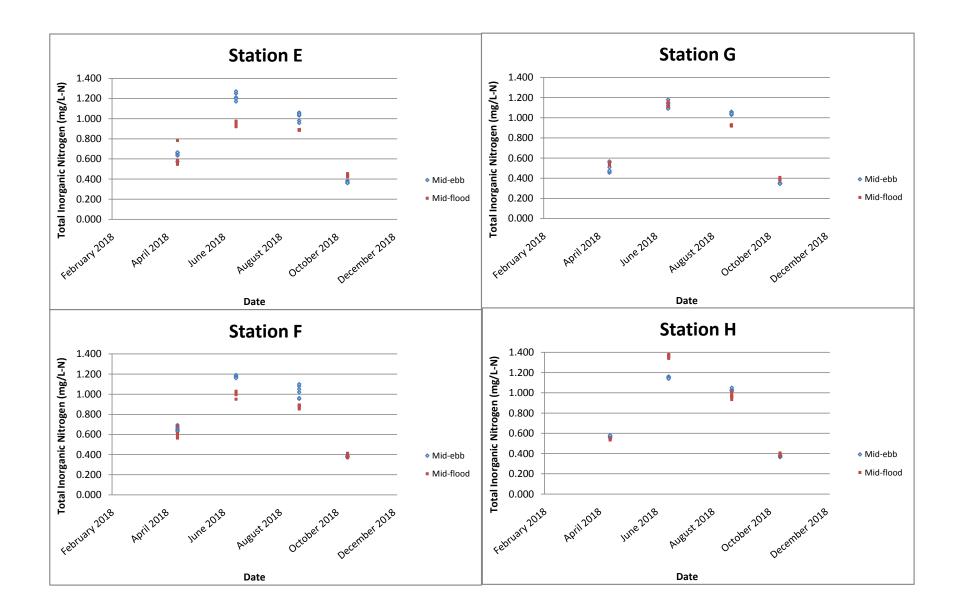


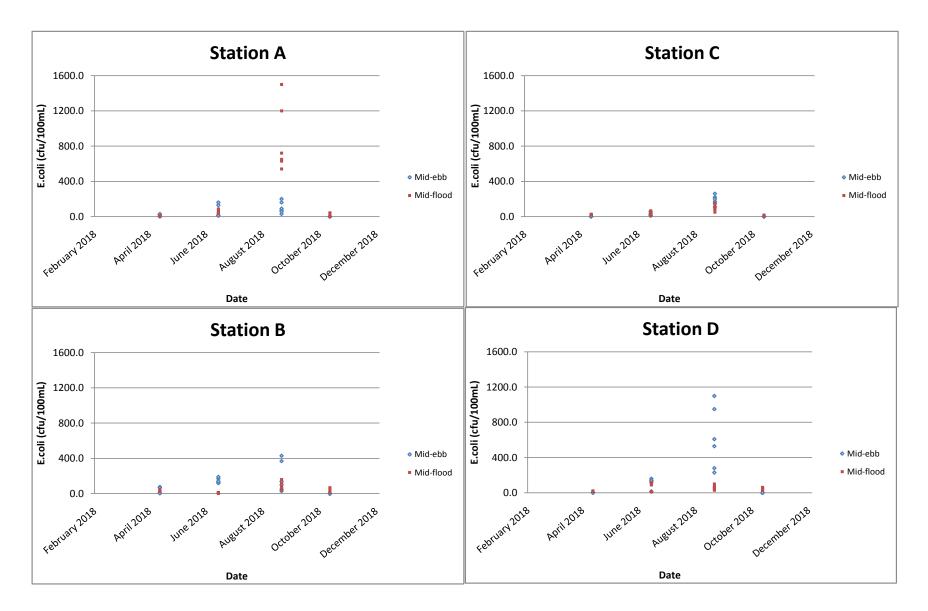


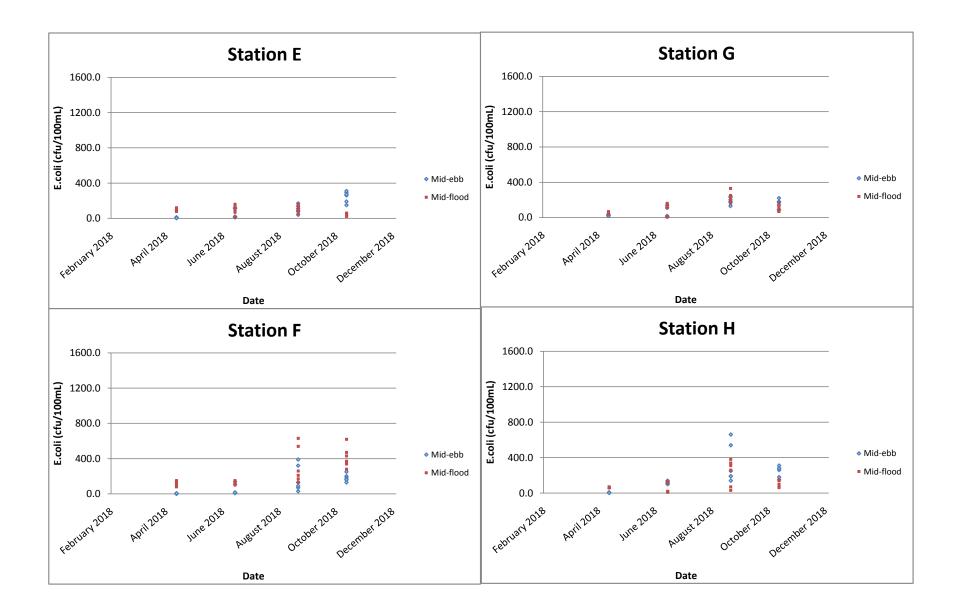


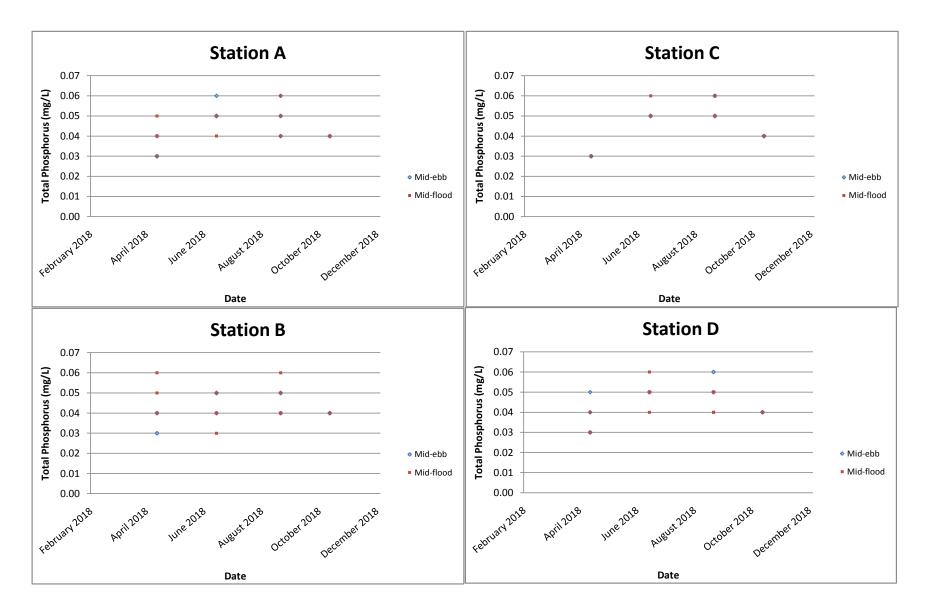


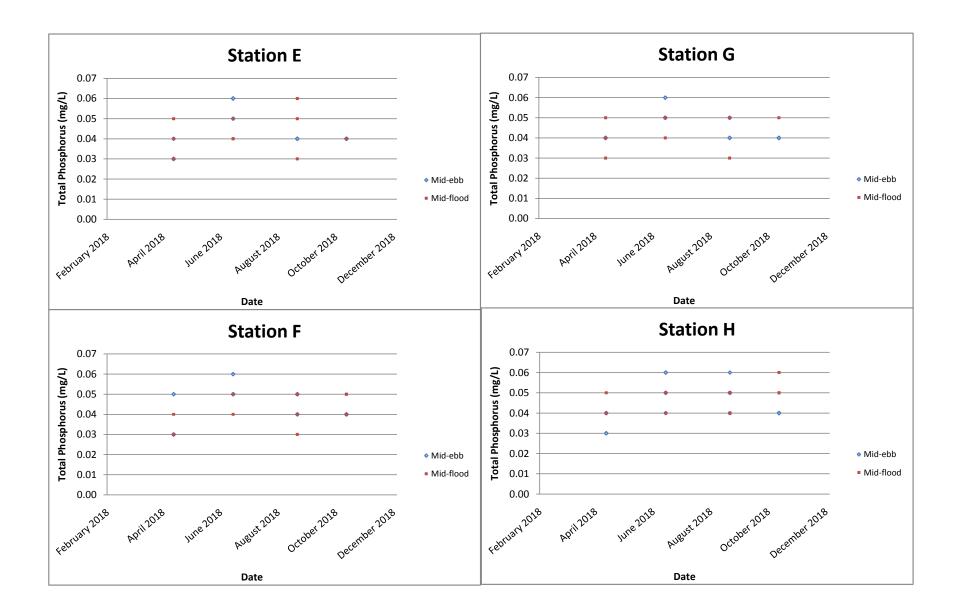


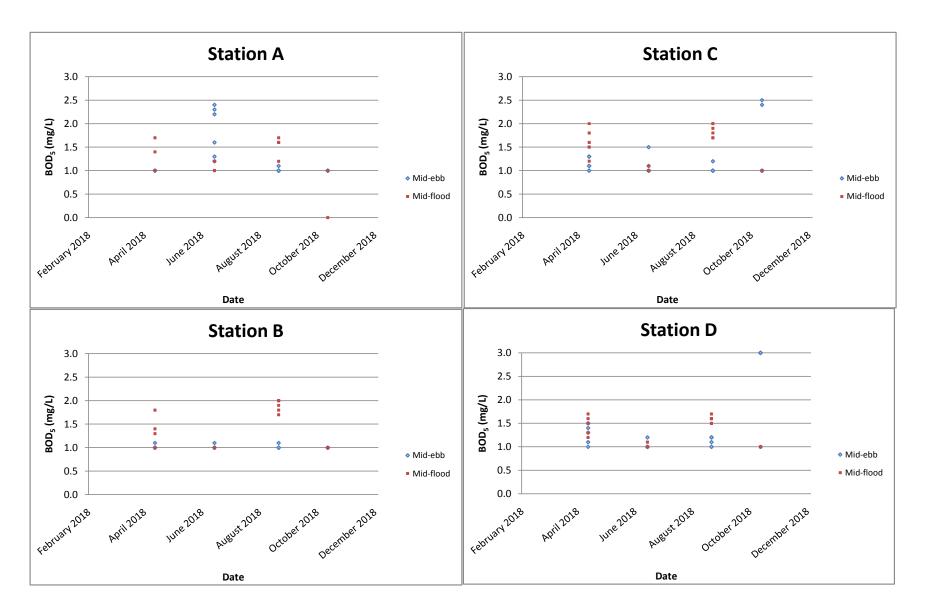


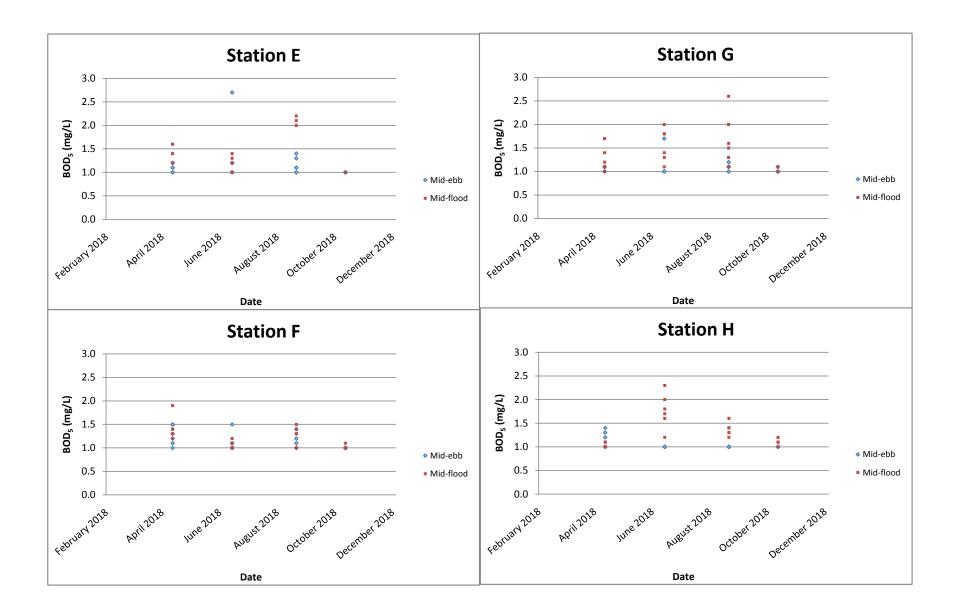









E.coli (cfu/100mL)



BOD₅ (mg/L)

 $BOD_5 (mg/L)$

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

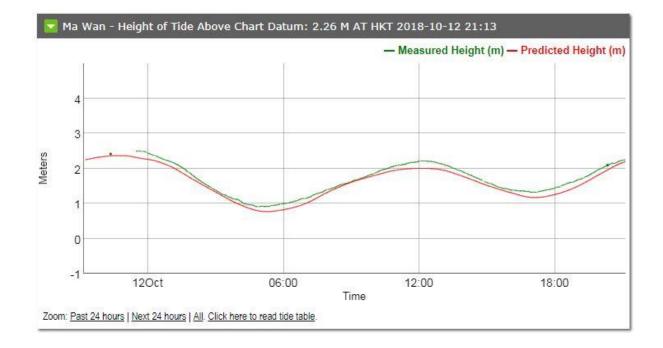
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix F

Tidal Data obtained from Ma Wan Marine Tradffic Station

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.


FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring	I					
Monitoring Location	Location Date		Sea Condition	Time	pН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	12/10/2018	Cloudy	Moderate	15:50	8.3	1.7	1240	602	<0.10	76.4	31.7	42.5	0.14	26.4	106	18.2	0.21
В	12/10/2018	Cloudy	Moderate	16:13	8.5	2.2	1280	576	<0.10	35.2	31.3	34.8	0.11	21.0	96.5	9.9	0.23
С	12/10/2018	Cloudy	Moderate	16:35	8.2	6.7	1520	671	0.12	47.0	37.9	42.5	0.12	28.5	121	13.9	0.26
D	12/10/2018	Cloudy	Moderate	16:52	8.2	6.8	1510	622	0.11	47.1	38.5	42.6	0.13	28.6	126	12.7	0.29
E	12/10/2018	Cloudy	Moderate	17:15	8.2	16.2	2240	734	0.11	50.7	44.0	45.0	0.15	30.6	135	12.3	0.34
F	12/10/2018	Cloudy	Moderate	17:28	8.3	14.6	1950	729	0.11	51.0	44.7	45.8	0.21	31.0	136	12.4	0.34
G	12/10/2018	Cloudy	Moderate	17:38	8.6	1.7	930	537	<0.10	14.2	15.0	18.8	<0.05	8.3	38.3	6.1	<0.10
н	12/10/2018	Cloudy	Moderate	18:18	8.3	2.2	1490	744	0.16	52.4	61.7	46.2	0.13	31.5	152	14.4	0.68

			0		Benthic Survey								
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon	Particle Size Distrbution							
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)				
А	12/10/2018	Cloudy	Moderate	11:27	0.88	1	18	41	40				
В	12/10/2018	Cloudy	Moderate	11:46	0.80	5	22	42	31				
С	12/10/2018	Cloudy	Moderate	12:08	0.94	0	5	55	40				
D	12/10/2018	Cloudy	Moderate	12:22	1.02	0	6	54	40				
E	12/10/2018	Cloudy	Moderate	12:50	1.16	0	4	56	40				
F	12/10/2018	Cloudy	Moderate	13:06	1.16	2	8	51	39				
G	12/10/2018	Cloudy	Moderate	13:32	0.96	2	12	46	40				
н	12/10/2018	Cloudy	Moderate	13:51	0.87	0	2	58	40				

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFICA	TE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 13
Contact	: MR CYRUS LAI	Contact	: Richard Fung	Work Order	: HK1853822
Address	EROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: c.lai@fugro.com	E-mail	: richard.fung@alsglobal.com		
Telephone	: +852 3565 4374	Telephone	: +852 2610 1044		
Facsimile	:	Facsimile	: +852 2610 2021		
Project	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM F FOR SIU HO WAN SEWAGE TREATMENT PLANT	OR OPERATIONAL EN	NVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 12-Oct-2018
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 31-Oct-2018
C-O-C number	:			No. of samples received	: 24
Site	:			No. of samples analysed	: 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics
Fung Lim Chee, Richard	General Manager	Metals

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 12-Oct-2018 to 29-Oct-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1853822

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

Results of HK1853822-1 are reference only as sample contained high amount calcareous material(broken shell).

pH determined and reported on a 1:5 soil / water extract.

Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Sediment sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

pH value is reported as at 25°C.

Ammonia, Nitrite and Nitrate determined and reported on a 1:5 soil / 1M KCl solution extract.

Analytical Results

Sub-Matrix: SEDIMENT		Clie	nt sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplir	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853822-001	HK1853822-002	HK1853822-003	HK1853822-004	HK1853822-005
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.3	8.5	8.2	8.2	8.2
EA055: Moisture Content (dried @ 103°C)		0.1	%	51.7	43.2	59.2	58.5	60.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	1.7	2.2	6.7	6.8	16.2
EK062A: Total Nitrogen as N		10	mg/kg	1240	1280	1520	1510	2240
EK067A: Total Phosphorus as P		10	mg/kg	602	576	671	622	734
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	18.2	9.9	13.9	12.7	12.3
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	0.12	0.11	0.11
EG020: Chromium	7440-47-3	0.5	mg/kg	76.4	35.2	47.0	47.1	50.7
EG020: Copper	7440-50-8	0.20	mg/kg	31.7	31.3	37.9	38.5	44.0
EG020: Lead	7439-92-1	0.20	mg/kg	42.5	34.8	42.5	42.6	45.0
EG020: Mercury	7439-97-6	0.05	mg/kg	0.14	0.11	0.12	0.13	0.15
EG020: Nickel	7440-02-0	0.20	mg/kg	26.4	21.0	28.5	28.6	30.6
EG020: Silver	7440-22-4	0.10	mg/kg	0.21	0.23	0.26	0.29	0.34
EG020: Zinc	7440-66-6	0.5	mg/kg	106	96.5	121	126	135

Page Number : 4 of 13 Client : FUGRO TECHNICAL

ent : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1853822

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853822-006	HK1853822-007	HK1853822-008	HK1853822-009	HK1853822-010
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	8.3	8.6	8.3		
EA055: Moisture Content (dried @ 103°C)		0.1	%	63.5	33.0	58.1	55.0	53.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	14.6	1.7	2.2		
EK062A: Total Nitrogen as N		10	mg/kg	1950	930	1490		
EK067A: Total Phosphorus as P		10	mg/kg	729	537	744		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	12.4	6.1	14.4		
EG020: Cadmium	7440-43-9	0.10	mg/kg	0.11	<0.10	0.16		
EG020: Chromium	7440-47-3	0.5	mg/kg	51.0	14.2	52.4		
EG020: Copper	7440-50-8	0.20	mg/kg	44.7	15.0	61.7		
EG020: Lead	7439-92-1	0.20	mg/kg	45.8	18.8	46.2		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.21	<0.05	0.13		
EG020: Nickel	7440-02-0	0.20	mg/kg	31.0	8.30	31.5		
EG020: Silver	7440-22-4	0.10	mg/kg	0.34	<0.10	0.68		
EG020: Zinc	7440-66-6	0.5	mg/kg	136	38.3	152		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.88	0.80

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1853822

Sub-Matrix: SEDIMENT	D-Matrix: SEDIMENT Client sample ID				D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Client sampling date / time				12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853822-011	HK1853822-012	HK1853822-013	HK1853822-014	HK1853822-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	62.4	61.8	60.2	61.5	51.1
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.94	1.02	1.16	1.16	0.96

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1853822

Sub-Matrix: SEDIMENT	ub-Matrix: SEDIMENT Client sample ID									
	Cli	ent samplir	ng date / time	12-Oct-2018						
Compound	CAS Number	LOR	Unit	HK1853822-016						
EA/ED: Physical and Aggregate Properties										
EA055: Moisture Content (dried @ 103°C)		0.1	%	58.0						
EP: Aggregate Organics										
EP005: Total Organic Carbon		0.05	%	0.87						

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1853822

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplii	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Compound	CAS Number	LOR	Unit	HK1853822-017	HK1853822-018	HK1853822-019	HK1853822-020	HK1853822-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	1	2	2	2	1
EG020: Copper	7440-50-8	1	µg/L	1	2	2	2	1
EG020: Lead	7439-92-1	1	µg/L	<1	2	1	1	1
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	µg/L	1	2	2	1	1
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	<10	<10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1853822

Sub-Matrix: WATER		Clie	nt sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Clie	ent samplir	ng date / time	12-Oct-2018	12-Oct-2018	12-Oct-2018	
Compound	CAS Number	LOR	Unit	HK1853822-022	HK1853822-023	HK1853822-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	<1	2	<1	
EG020: Copper	7440-50-8	1	µg/L	<1	2	<1	
EG020: Lead	7439-92-1	1	µg/L	<1	1	<1	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	<1	1	<1	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	ratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and Ag	gregate Properties (QC Lot:	1981909)						
HK1853822-001	A/Sediment	EA002: pH Value		0.1	pH Unit	8.3	8.4	1.20
EA/ED: Physical and Ag	gregate Properties (QC Lot:	1982066)						
HK1853822-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	51.7	52.1	0.760
HK1853822-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	62.4	62.2	0.355
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot:	1992272)						
HK1853822-001	A/Sediment	EK055: Ammonia as N	7664-41-7	1	mg/kg	1.7	2	0.00
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot:	1994444)						
HK1853668-001	Anonymous	EK067A: Total Phosphorus as P		10	mg/kg	1850	1960	5.56
EG: Metals and Major C	Cations (QC Lot: 1981390)							
HK1853822-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.11	0.10	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	31.3	31.4	0.387
		EG020: Lead	7439-92-1	0.05	mg/kg	34.8	34.7	0.290
		EG020: Nickel	7440-02-0	0.05	mg/kg	21.0	21.2	0.862
		EG020: Silver	7440-22-4	0.05	mg/kg	0.23	0.23	0.00
		EG020: Arsenic	7440-38-2	0.5	mg/kg	9.9	11.0	10.0
		EG020: Chromium	7440-47-3	0.5	mg/kg	35.2	35.5	0.866
		EG020: Zinc	7440-66-6	0.5	mg/kg	96.5	96.2	0.398
EP: Aggregate Organics	s (QC Lot: 2002472)							
HK1853822-010	B/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.80	0.80	0.00
HK1855071-003	Anonymous	EP005: Total Organic Carbon		0.05	%	8.88	8.90	0.241
Matrix: WATER					Labo	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major C	Cations - Total (QC Lot: 1981	473)						
HK1853822-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	0.00
		EG020: Chromium	7440-47-3	1	μg/L	2	2	0.00
		EG020: Copper	7440-50-8	1	μg/L	2	2	0.00
		EG020: Lead	7439-92-1	1	μg/L	2	1	0.00

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
EG: Metals and Major	Cations - Total (QC Lot: 19814	73) - Continued								
HK1853822-018	B/Rinsate Blank	EG020: Nickel	7440-02-0	1	μg/L	2	1	0.00		
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00		
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.00		
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.00		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Contra	ol Spike (LCS) and Lab	oratory Control S	pike Duplicate (D	CS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 1992272)										
EK055: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	108		85	119		
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 1994444)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	111		85	115		
EG: Metals and Major Cations (QC Lot: 1981)	390)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	94.0		80	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	102		84	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	95.6		80	120		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	102		85	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	99.7		87	118		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	97.8		84	124		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	98.6		85	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	87.1		85	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	98.0		80	120		
EP: Aggregate Organics (QC Lot: 2002472)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	101		92	105		
Matrix: WATER			Method Blank (MB)	Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control Sj	oike Duplicate (D	ICS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit

Page Number : 11 of 13 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK1853822

Matrix: WATER			Method Blank (MB	l) Report		Laboratory Contr	ol Spike (LCS) and Labo	ratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Total (QC Lot: 1981473) - Continue	ed									
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	98.7		83	110		
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	97.4		85	109		
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	99.0		86	111		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	103		90	111		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	98.0		89	111		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	93.7		80	118		
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	98.1		87	110		
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	95.9		80	114		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	101		86	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spik	e (MS) and Matri	ix Spike Duplic	ate (MSD) Re	aport	
				Spike	Spike Rei	covery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	Major Cations (QC Lot: 19813	90)								
HK1853822-001	A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	81.2		75	125		
		EG020: Cadmium	7440-43-9	5 mg/kg	102		75	125		
		EG020: Chromium	7440-47-3	5 mg/kg	# Not Determined		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	82.0		75	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined		75	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	83.8		75	125		
		EG020: Nickel	7440-02-0	5 mg/kg	83.4		75	125		
		EG020: Silver	7440-22-4	5 mg/kg	96.0		75	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75	125		
EP: Aggregate (Organics (QC Lot: 2002472)		· · · · · · · · · · · · · · · · · · ·							
	A/Benthic Survey	EP005: Total Organic Carbon		40 %	95.4		75	125		
Matrix: WATER			[Matrix Spik	e (MS) and Matri	ix Spike Duplic	ate (MSD) Re	eport	
			-	Spike		covery (%)	1	Limits (%)	-	D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	Major Cations - Total (QC Lot:	1981473)								
HK1853822-017	A/Rinsate Blank	EG020: Arsenic	7440-38-2	100 µg/L	89.8		75	125		
		EG020: Cadmium	7440-43-9	100 µg/L	87.6		75	125		
		EG020: Chromium	7440-47-3	100 µg/L	86.2		75	125		
		EG020: Copper	7440-50-8	100 µg/L	83.8		75	125		
		EG020: Lead	7439-92-1	100 µg/L	80.1		75	125		
			7439-97-6	2 µg/L	76.0		75	125		
		EG020: Mercury	1433-31-0							
		EG020: Mercury EG020: Nickel	7440-02-0	100 μg/L	76.0		75	125		
					76.0 84.2		75 75	125 125		

Page Number	່ 13 of 13
Client	FUGRO TECHNICAL SERVICES LIMITED
Work Order	HK1853822

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

(ALS)

CONTACT	MR CYRUS LAI WORK ORDER	HK1853822
CLIENT	FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, SUB-BATCH 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG DATE OF ISSUE	: 1 : 12-OCT-2018 : 30-OCT-2018
PROJECT	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR NO. OF SAMPLES OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR CLIENT ORDER SIU HO WAN SEWAGE TREATMENT PLANT	: 24 : 0041/17

General Comments

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- Results of HK1853822-1 are reference only as sample contained high amount calcareous material (broken shell).
- pH determined and reported on a 1:5 soil / water extract.
- Water sample(s) digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Sediment sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.
- Ammonia, Nitrite and Nitrate determined and reported on a 1:5 soil / 1M KCl solution extract.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Richard Fung

Position General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK1853822

SUB-BATCH

PROJECT

¹ FUGRO TECHNICAL SERVICES LIMITED

CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1853822-001	A/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-002	B/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-003	C/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-004	D/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-005	E/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-006	F/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-007	G/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-008	H/Sediment	SEDIMENT	12-Oct-2018	
HK1853822-009	A/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-010	B/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-011	C/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-012	D/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-013	E/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-014	F/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-015	G/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-016	H/Benthic Survey	SEDIMENT	12-Oct-2018	J2999-272.36
HK1853822-017	A/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-018	B/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-019	C/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-020	D/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-021	E/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-022	F/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-023	G/Rinsate Blank	WATER	12-Oct-2018	
HK1853822-024	H/Rinsate Blank	WATER	12-Oct-2018	

SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3 : 2001 TEST CERTIFICATE

Gammon

Report No : J2999-272.36

1

		Sample	Origin	4Y	4Y#	**,	t . t		1Y		2	port, port tomer		81				Page 1 of 2
Works Urder No. : 2/2	Date : 16/10/2018	Description		Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fraements	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly sandy SILT/CLAY	Dark grey, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly gravelly, slightly sandy SILT/CLAY	with shell fragments	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45 "C± 5"C (Å). Test 5.2 Moisture Content at 105"C ± 5"C (B). Test 5.3 Comparative Moisture Content 45/105 "C± 5"C (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	Sampling History - Refer the Individual Test Report, Estimated Uncertainty - Refer the Individual Test Report [‡] - Information provided by customer		Date : 26/10/2018		Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.		
		on	Percentage Gravel Sand Silt Clay (%) (%) (%) (%)	40	31	40	40	40	39		5°C (B)				1	creditati prior wri		
		stributi	Percentage Sand Silt (%) (%)	41	42	55	54	56	51		05°C ±	ied; Dried; ieved;				ttory Ac ss with		
66		ize Dis	vel Sau (%)	-	22	5	9	4	90	_	itent at 1	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;				g Labora ced unle	e. 7	
.: 1299		Particle Size Distribution			s	0	0	0	17		ture Con	A.D. W.S			cer	ng Kon	ial Estat 26917541	
Job No. : J2999	Contract No.:	Par	# Test Method	1,5,7	1,5,7	1,5,7	1.5.7	1.5.7	1,5,7		5.2 Mois 1.7 (7).	v.L. Test		\leq	itory Off	ler the Ho all not be	e O Industr 0, Fax : 2	
	Cont	Preparation Method									Test Method in accordance with GEOSPEC 3 2001 Test 5.1 Moisture Content at 45 °C + 5°C (Å), Test 5.2 M Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7)	N.P Non Plastic, A.R As Received; H.P Hand Picked; - Moisture Content for A.L. Test	_	2	Chung Hei Wing V	355 - TEST) und This report shi	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel. 26991980, Fax: 26917547	
		Passing 1 425µm	Test Sieve (%)								1 at 45 °C: 1), 8.4 (4), 8	N.P Non Plastic, A.R As Received; H.P Hand Picked; * - Moisture Contei		Approved By :	and the second second	(Reg. No. (aboratories	Teet Jang Street (wan O, N.	
.5		Test 6.2 Liquidity	Index								ture Conten 2 (2), 8.3 (2	le; mple;	ntary Report	Appl		a laboratory ccredited L	21 Chun V Tseung k	
		TestTestTest6.16.16.2PlasticPlasticityLiquidPlasticity	Index (%)								est 5.1 Mois st 8.1 (1), 8	 P. Piston Sample; M Mazier Sample; D Small Disturbed Sample; Portable triple tube Sample; 	Tf - To Follow on supplementary Report.			credited this rectory of A		
		Test 6.1 Plastic I	Limit Limit (%) (%)								3 2001 T	P - Piston Sample; M - Mazier Sample, D - Small Disturbed - Portable triple to	Follow o			AS) has ac		
		Test 6.1 Liquid	Limit (%)								EOSPEC.	M-I-M-I-M-I-M-I-M-I-M-I-M-I-M-I-M-I-M-I	Tf - Tf			rvice (HK/		
		∆ Moisture Content	(%)								ordance with G ordance with G					ccreditation Se tivities as listed		
Pty Ltd			Depth (m)								ethod in acc ethod in acc	le; ole;				ong Kong A aboratory ac		
(HK)		ple	Type	D	D	D	D	D	D		Test M Test M	ample; ed Samp rel Samp	ple,			H -		5
Customer : ALS Technichem (HK) Pty Ltd		Sample	No.	A/Benthic Survey	B/Benthic Survey	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey		Δ = #	 Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample; 	IS - Insufficient Sample,	14	T.K.Lam		ion Ltd	30.13 / Issue 1 / Rev
Customer : /	Project : -	Sample ID	No.	HK1853822-009	HK 1853822-010	HK1853822-011	HK 1853822-012	HK1853822-013	HK1853822-014		Legend	Symbols CL	Notes	Checked by			O Gammon Construction Ltd	Form : GESS001 / Jun.30.13 / Issue 1 / Rev 3

of 2

SUMMARY OF SOIL CLASSIFICATION TEST RESULT TEST CERTIFICATE GEOSPEC 3:2001

Customer : ALS Technichem (HK) Pty Ltd

Gammon

Report No : J2999-272.36

6671 ON HONS	Works Order No. : 272	Date : 16/10	Descript	•			40 Dark grey, slightly gravelly, sligl	with shell fragments	40 Dark grey, slightly sandy SILT/C	
			E		Clay	(%)	40		40	
			butio	tage	Silt	(%)	46		58	
			Distri	Percentage	Sand	(%)	12		5	
	J2999		Particle Size Distribution		Test Gravel Sand Silt Clay	(%)	2		0	
	Job No. : J2999	Contract No.:	Parti	#	Test	Method (%) (%) (%) (%)	1,5,7		1,5,7	
		Cont	ng Preparation m Method							
	1		gu El	_	e	-				

Sample	Origin		0						X	A Y port; font iomer	A Y port:	A Y port; port tomer	A Y port; tomer 118
Description				Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY	TypeDepth(%)(%)(%)SileveTestGravelSiltClayD(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)D(%)(Dark grey, slightly gravelly, slightly sandy SILT//CLAY with shell fragments Dark grey, slightly sandy SILT//CLAY Test 5.3 Comparative Moisture Content 45/105 "C± 5"C (C) Test 5.3 Comparative Moisture Content 45/105 "C± 5"C (C) sampling History Estimated Uncertainty - Refer the Individual Test Report. Estimated Uncertainty - Refer the Individual Test Report.	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY Test 5.3 Comparative Moisture Content 45/105 °C± 5°C (Test 5.3 Comparative Moisture Content 45/105 °C± 5°C (Estimated Uncertainty - Refer the Individual Test Estimated Uncertainty - Refer the Individual Test Estimated Uncertainty - Information provided by	Dark grey, slightly gravelly, slightly sandy SILT/C with shell fragments Dark grey, slightly sandy SILT/CLAY Test 5.3 Comparative Moisture Content 45/105 °C + 5°C (Test 5.3 Comparative Moisture Content 45/105 °C + 5°C (Fistimated Uncertainty - Refer the Individual Test Fistimated Uncertainty - Refer the Individual Test Bate - Information provided by c Date	Chepth (%)
ution	age		Silt Clay (%) (%)	and the state of t	STREET, STREET	and the second	and the second se		Silt Clay (%) (%) (%) 58 40 Di 58 40 Di C ± 5°C (B), T	Silt Clay (%) (%) 58 40 Dr 58 40 Dr 58 40 Dr C±5°C(B), T	Silt Clay (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Silt Clay (%) (%) (%) 58 40 Di 58 40 Di 58 40 Di 11 ti	Silt Clay (%) (%) (%) 58 40 Di 58 40 Di 58 40 Di 10 C ± 5°C (B), T
Particle Size Distribution	Percentage	Gravel Sand Silt Clay	(%) (%) (%)						%0 (%) (%) (%) 2 12 4 4 0 2 5 5 5 ontent at 105 %C 0 0 0 0	(%) (%) <th(%)< th=""> <th(%)< th=""> <th(%)< th=""></th(%)<></th(%)<></th(%)<>	%0 (%)	%0 (%)	%0 (%0) (%) (%) 2 12 4 4 0 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 0 2 5 5 0 0 2 5 0 0 2 5 0 0 0 5 0 0 0 5 0 0 0 105 0 0 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Particle ?	#	-	Method (%)	Construction of the Annual Statement of the Annual Sta	Constant of the second s				1,5,7 2 1,5,7 2 1,5,7 0 1,5,7 0 5,2 Moisture Co	1,5,7 2 1,5,7 2 1,5,7 0 1,5,7 0 1,5,7 0 7(7) 5.2 Moisture Co	1,5,7 2 1,5,7 2 1,5,7 0 1,5,7 0 7,7 0 7(7). A.D. O.D. W.S.	1,5,7 2 1,5,7 2 1,5,7 0 1,5,7 0 7(7) 7(7) A.D. O.D. W.S. L. Test. W.S.	I 1,5,7 0 (%) 1,5,7 2 1,5,7 0 1,5,7 0 1,5,7 0 0 1,5,7 0 0 1,5,7 0 0 1,5,7 0 0 1,5,7 1,7,7
Passing Preparation 425µm Method			2	2	2	2	2	2	Sieve Te To T, 1,5 (%) $Meth$ 1,5	Sieve Test (%) Metho 1,5,7 1,	M M M M M M M M M M M M M M M M M M M	Test Method 1,5,7,	M # 5 ^o C (A), Test 5.5 # 5 (5), 8 (6), 8.7 B 5 (5), 8 (6), 8.7 B 5 (5), 8 (6), 8.7 Plastic; Received; a Plastic; Received; a Piter for A.L ure Content for A.L This report shall S: This report shall
Passing I ity 425µm			Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Sieve (%) (%) <td>Sieve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>Sleve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>Sieve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td>	Sieve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Sleve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Sieve (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
<u><u>v</u> L</u>	Index Index	(%)	The second se		:				1 Moisture Conte	5 1 Moisture Conte s 1 Moisture Conte e e tube Sample,	SPEC 3 : 2001 Test 5 1 Moisture Content SPEC 3 : 2001 Test 5 1 Moisture Content SPEC 3 : 2001 Test 8 1 (1), 8 2 (2), 8 3 (3 P - Piston Sample; M - Mazier Sample; M - Mazier Sample; T - Portable triple tube Sample; Tf - To Follow on supplementary Report	5 1 Moisture Conte 5 1 Moisture Conte e e e et e tube Sample, tube Sample, Ap	5 1 Moisture Contro 5 1 Moisture Contro 8 1 (1), 8 2 (2), 8 3 4 c c c c c c c c c c c c c c c c c c c
t Test T 6.1 6 id Plastic Plas	Limit Limit In	(%)							C 2001 Test :	PEC 3 : 2001 Test 5 1 Molisture C PEC 3 : 2001 Test 5 1 Molisture C PEC3 : 2001 Test 8 1 (1), 8.2 (2) P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample;	Contraction Section Section Section Section Section Semple Postable uriple Portable uriple Por	2001 Test 5 2011 Test 5 2012 Test 6 2013 : 2001 Test 6 2013 : 2001 Test 6 2014 Test 8 2014 Test 8 2014 Test 8 2014 Test 9 2014	Contraction of the second of t
Δ Moisture 6.1 Content Liquid	Limi	(%) (%)							ance with GEOSPF	ance with GEOSPEC ance with GEOSPEC M - P - M - P - M -	ance with GEOSPE Bance with GEOSPE P P PT - Tf -	ance with GEOSPE ance with GEOSPE P D P T - T f .	ance with GEOSPE ance with GEOSPE ance with GEOSPE P P PT - PT - T f
		Type Depth (m)	D		0				D Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3	D st Method in accord st Method in accord ample;	D ti Method in accord ti Method in accord te; ample; tample;	St Method in accord ta Method in accord tample;	o ti Method in accord te; ample; laboratory activ
Sample		No. Ty	G/Benthic Survey D									9 N L D 3	
Sample ID		No.	HK1853822-015 G/		HK 1853822-016 H/Benthic Survey	HK1853822-016 H/	HK 1853822-016 H/	HK 1853822-016 H/	HK 1853822-016 H/	HK1853822-016 H/I Leuend Leuend BLLB BLLB SPTI	3822-016	3822-016	3822-016

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

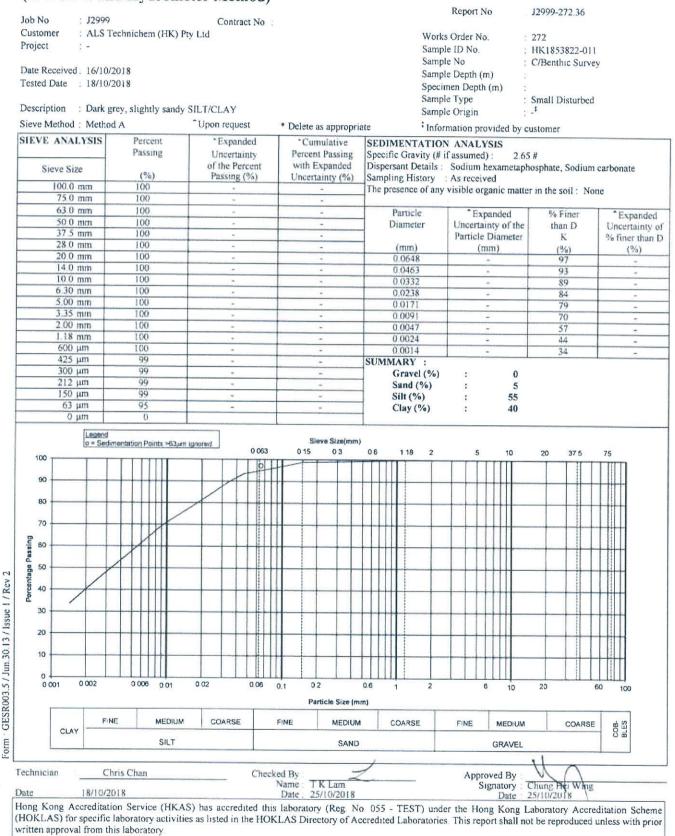
Job No. Custom Project	J299 her ALS		Contract No				J2999-272.36 272 HK1853822-009	
Tested I	eceived : 16/10 Date : 18/10	0/2018			Specia	e Depth (m) : nen Depth (m) :	A/Benthic Survey Small Disturbed	Ŷ
Descrip Sieve M	tion : Dark dethod : Meth		elly, slightly sandy SILT Upon request	CLAY with shell fra * Delete as appropri			<u>*</u>	
	ANALYSIS	Percent	*Expanded	"Cumulative	SEDIMENTATIO	mation provided by c	ustomer	
Si	eve Size	Passing (%)	Uncertainty of the Percent Passing (%)	Percent Passing with Expanded Uncertainty (%)	Specific Gravity (# i Dispersant Details :	f assumed) : 2.65 Sodium hexametaph	5 # nosphate, Sodium	carbonate
	100.0 mm	100	rassing (76)	- Uncertainty (76)	The presence of any	As received visible organic matte	r in the soil : Nor	ne -
	75 0 mm	100	-	-				
	63.0 mm 50.0 mm 37.5 mm	100 100 100			Particle Diameter	Expanded Uncertainty of the Particle Diameter	% Finer than D K	*Expanded Uncertainty % finer than
	28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
	20.0 mm	100	-	-	0.0679	-	82	
	14.0 mm 10.0 mm	100		-	0.0483	•	80	-
	6.30 mm	100			0.0344 0.0245	-	77 75	-
	5.00 min	100	-	-	0.0175	-	71	-
	3.35 mm	100	-	-	0.0092	•	65	-
	2.00 mm 1.18 mm	99 98		-	0.0047 0.0024	-	55	-
	600 µm	97	-	-	0.0014	-	43 36	
	425 µm	97	*	-	SUMMARY :			
_	300 µm	96	-	-	Gravel (%)	: 1		
	212 μm 150 μm	93 89	-	-	Sand (%)	: 18		
	63 µm	81	-	1	Silt (%) Clay (%)	: 41 : 40		
	0 µm	0						
100		dimentation Pointa >63,	m ignored 0,063	Sieve Size(mm 0.15 0.3	06 1.18 2	5 10	20 37.5	75
100 90								
			0					
80								
70						+ + + + + + + + + + + + + +		
60 s								
Pas								
ntage Passing 05 09								++++
40						<u> </u>		
۵ 30								
						+ + + + + + + + + + + + + + + + + + + +		
20 -								
						┿┿╋		
20 - 10 -								
20 - 10 - 0 -	001 0.002	0.006 0.01	0.02 0.06	01 02 Particle Size (m	0.6 1 2 m)	6 10	20 6	50 100
20 - 10 - 0 -	001 0 002	0.008 0.01			m)	FINE MEDIUM	20 E	
20 - 10 - 0 -	001 0.002			Particle Size (m	m) I COARSE			00 100 00
20 - 10 - 0 -	001 0 002	INE MEDIUI		Particle Size (m FINE MEDIUN	m) I COARSE	FINE MEDIUM		
20 - 10 - 0 -		INE MEDIUI	M COARSE	Particle Size (m FINE MEDIUN	m) I COARSE	FINE MEDIUM GRAVEL Approved By :		

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T Tel :26991980, Fax : 26917547

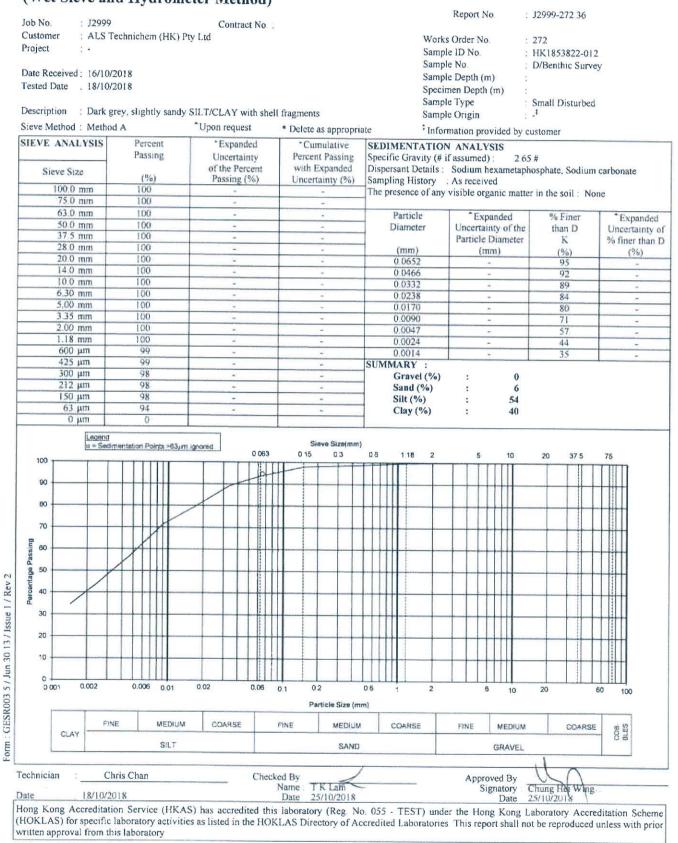
TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)


Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg No 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

© Gammon Construction Ltd

Technology Centre

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)



© Gammon Construction Ltd

Technology Centre

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

C Gammon Construction Ltd

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T. Tel (26991980, Fax (26917547

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

ob No. Eustomer Project	J2999 ALS Te	chnichem (HK) P	Contract No : 'ty Ltd		Samp!	e ID No.	J2999-272.36 272 HK1853822-013	
Date Received Tested Date	16/10/20 18/10/20				Specin	e Depth (m) : nen Depth (m) :	E/Benthic Survey	
Description	Dark gre	y, slightly sandy	SILT/CLAY with shell	fragments			Small Disturbed	
ieve Method :	Method	A	[*] Upon request	* Delete as appropri		mation provided by c	ustomer	
IEVE ANAL	YSIS	Percent Passing	*Expanded Uncertainty	Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# i	ANALYSIS fassumed). 2 65	#	······································
Sieve Size	e	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details . Sampling History	As received	osphate, Sodium	carbonate
100.0 r		100	-	-	The presence of any	visible organic matte	r in the soil : Nor	e
75.0 r		100	-	-				
63.0 r		100	-	-	Particle	*Expanded	% Finer	*Expand
50.0 r 37_5 r		100	-	-	Diameter	Uncertainty of the	than D	Uncertainty
28.0 1	the second s	100		-	(mm)	Particle Diameter	K	% finer that
20.0 1		100	-	-	0.0644	(mm)	(%i) 98	(%)
14.0 r		100	-	-	0.0461	-	94	-
10.0 r		100	-	-	0.0331	-	89	-
6.30 r		100	-	•	0.0237	-	85	-
5.00 r		100	-	-	0.0170	-	80	-
-3.35 r 2.00 r		100	-		0.0090	*	70	-
1.18 m		100	-	-	0.0047	-	58	-
600 4		100	-	*	0.0024	-	44 35	+
425 H	the second se	100			SUMMARY :	-	33	*
300 µ		99	-	-	Gravel (%)	: 0		
212 µ		99		-	Sand (%)	: 4		
150 µ		99	-	-	Silt (%)	: 56		
63 µ 0 µ		96 0	-	-	Clay (%)	: 40		
100	10 - Seding	entation Points >63,µm	0.063	Sieve Size(mm 0 15 0 3	06 1.18 2	5 10	20 37.5	75
90		╂╌╄╌┠┼┼┟╏──			+++++++++++	┽╍┽╍┝┼┼┼╢╏──╸		
80								
70						┿╼┿╼┽┽┿┿┿╋		
2								
5 60					╅┾┼┼╉┊──┼─	╋╍┿┽╡┊┊╞┼┠		
g 50		1						
ntag								
brcontag	1	┝╌┞╌┞┼╏┼┨───						
Por	T							
Porcontag 30								
Por								
30								
30								
30 20 10								
40 40 30 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 002	0.006 0.01	0.02 0.06 0	1 0.2		6 10	20 6	0 100
30 20 10 0	0 002			1 0.2 Particle Size (m	im)			
30 20 10 0	1			Particle Size (m	m) CDARSE		20 COARSE	0 100
	1	MEDIUM		Particle Size (m	m) CDARSE	FINE MEDIUM		1

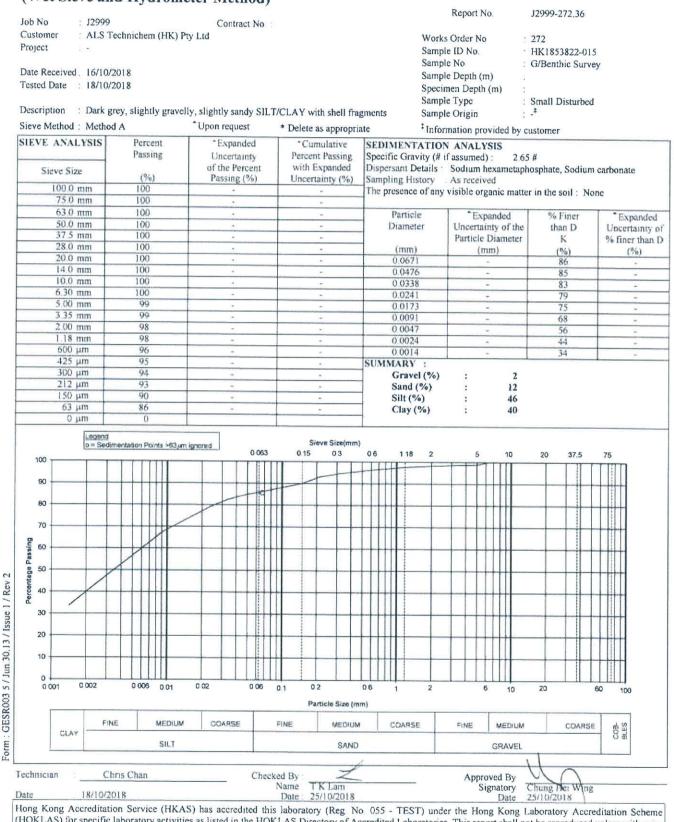
Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T Tel 26991980, Fax . 26917547

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No	: J1	2999						C	ontra	ct N	0. 1								ł	Report	No.		: J299	9-272	36			
Customer Project			echnic	chen	n (H	K) Pt	y Lto													order N D No			: 272 : HK1	85382	22-014	L.		
																			mple				: F/Be					
Date Receiv																				Depth	(m)		1					
Tested Date	: 13	8/10/2	2018																	n Dep		1)	1					
	374		325	276 A.S														Sar	nple	Гуре	2		: Smal	l Dist	urbed			
Description	: D	ark g	rey, sl	ight	ily g	ravell					ILT	/CL/	AY w	th she	ell frag	ments	s	Sar	nple	Origin			÷‡					
Sieve Metho	od : M	lethod	I A				¹ Up	pon r	eque	st		* D	elete	as app	propria	ite		‡ In	forma	tion p	rovio	led by	custom	ner				
SIEVE AN	ALYS	IS	ſ	Perci	ent	1	-	- Ex	xpand	ded		T		mulati			IM	ENTATI										
			F	Pass	ing				certai			1		It Pass				Gravity					55 #					
Sieve	Size							of th	e Per	rcent	T.		with F	Expan	ded	Disp	ersa	nt Detail	s: S	odium	hex	ametar	ohospha	ate, Se	odium	carbo	onate	
		_		(%				Pass	sing	(%)		1	Incert	tainty	(%)	Samp	pling	g History	1 : A	s rece	ived							
	0 mm			100					. The			-		-		The	pres	ence of a	iny vi	sible o	organ	ic mat	ter in th	ne soil	: No	пе		
Concerning of the second s	0 mm			100					-			-		-			-	11-1										
and the second se	0 mm	and the second states in the s		100					-					-		-		article			xpan			% Fin			Expa	nde
	5 mm			100		-			-	-				-	<u> </u>	1	Dis	anoter				of the		than I K	D.		icertai	
and the second state of th	0 mm	the second second	manufactions at	100					-			-		-		1	(1	mm)			(mm)			(%)		28	finer t	
	0 mm	and shaked a state of		100					-	-				-				0656			-		-	90		1	(70	********
	0 mm	and the state of t		100	-				*					-				0467			-		1	88		1	-	
	0 mm			100					~					-				0333			-			85			-	
	io mm			100					-			-	_	-				0237			-		_	83			-	
	0 mm			100				-	-			-		-		-		0170			-			78			+	
	mm 0			99		_			~			-		-				0090	_		-			70			-	
and the second state of the second	8 mm	-		97					-			-		-				0024			-			43			-	
	() µm			96				*****	-		1/2/0111	-		-				0014	-				-	34		+	-	
42	5 µm			95					+	And in case of the				-		SUM		RY :	-					24		1	-	
	0 µm			94										-				ravel (%	6)	:		2						
	2 µm			94					-					-			Sa	and (%)		:		8						
and the second se	0 µm			93					-			-		-	_			lt (%)		:		51						
	3 μm 0 μm			90 0					*					-			C	lay (%)		:		39						
100	0	gend • Sedir	nentatio	on Po	sints >	-63, <i>i</i> m	ignore	Nd		00	63	1	5 0 15	leve Siz O	ze(mm) 3	06	H	1.18 2	-1	5	11	10	20	3	7.5	75	П	
90				+	-++-						0		+				111			-	-			-	1		4	
								-	-	T																		
80		-	++	++	++		1	-	+	+		-		+-+			+++		-		++	++-			+++	-	+	
70						/																						
				T	n					T	T	T	1				111							-	11		+1	
arcentage Passing 6 6 8 8			++	A	++		-		_	+	11	1			_		111	1				111			1			
pas			V	11														1										
e 50		->	41	++	++		-		-	+-	++		-				+++	1		-+-	++	+++			1			
Sent		1																										
40	1		T	T	11		-	1	1	T	++	1	1					1			++			-	1	1	+	
30	1		++		11							1						1										
													1				IT	1			T						T	
20		-	++	++	-++-		-	-+	-	+-	++				-		+++	1			-++			_	44		+1	
																		1										
10			++	11	11		-	+	-	11	++	+	-		-			1		-+-	++	+++		-	+++	+++	+	
0						-												1										
0 001	0.00	12	0	006	0.0)1	0.0	s		0.0	6	01		2 Inticle S	Size (m	06 n)	1	2			6	10	20			60	100	
		FIN	Ε		ME	DRUM		COA	RSE			FINE		M	EDIUM		co	ARSE		FINE		MEDIUN		C	DARSE		0 19	
C	LAY -				S	ĻΤ									SAND							RAVEL					BLES	
																1							11	-				-
																1							1	-				
echnician		Cł	ris Cl	han						C	heel	ced B	ly -		17					Ant	NOVe	d By	11	()				
	_	Cł (10/2)		han		_				C	heel	ked B Nam Dat	ne T	K La 5/10/2						Apj		d By : atory	Chung	g Nei	Wing			


ratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior becific lat written approval from this laboratory

Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate,

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

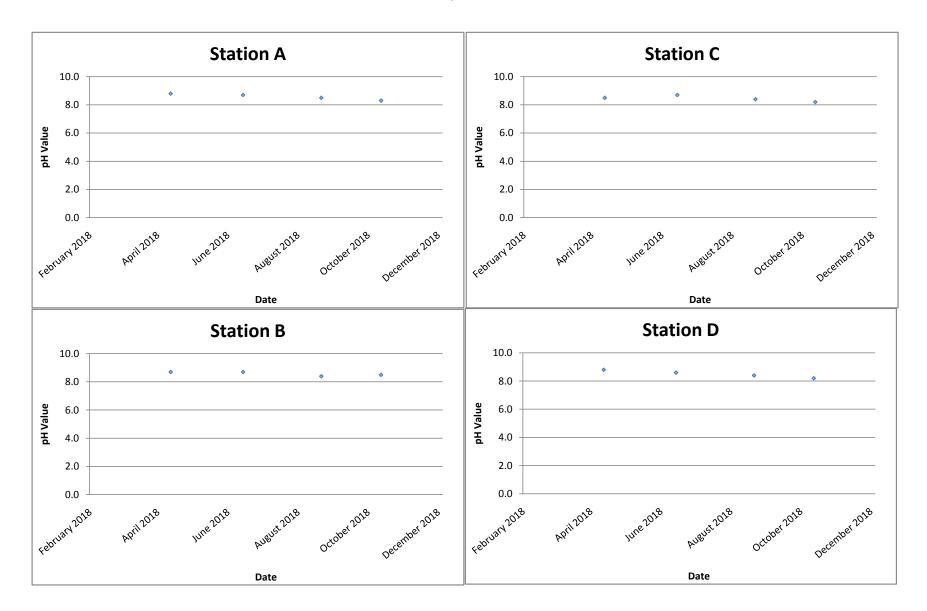
Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 055 - TEST) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

C Gammon Construction Ltd

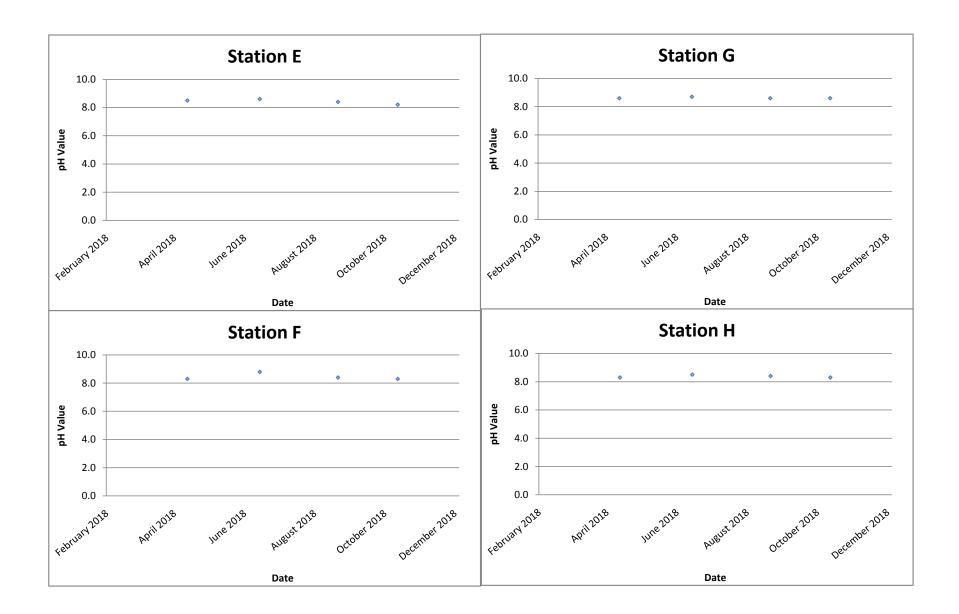
Technology Centre

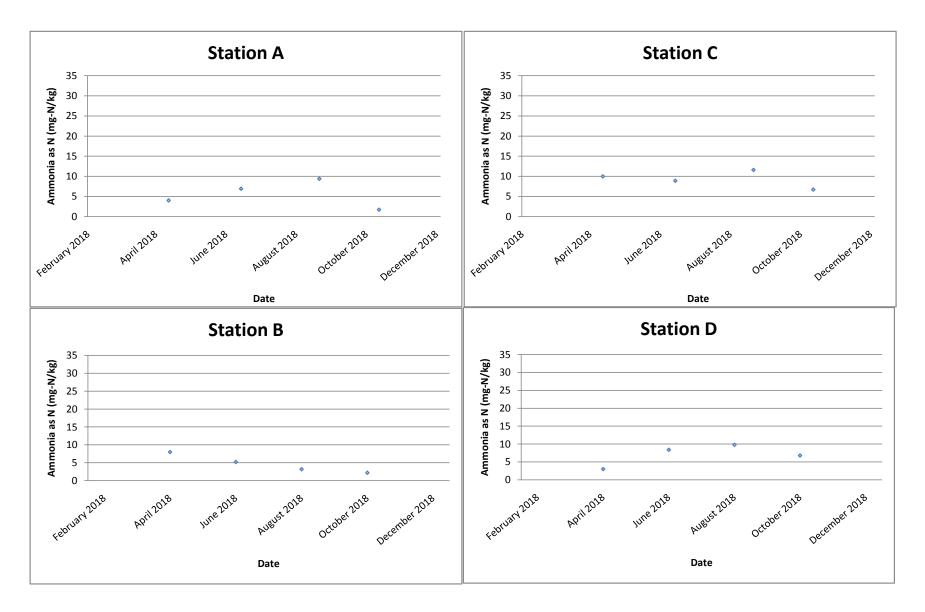
21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N T Tel 26991980, Fax 26917547

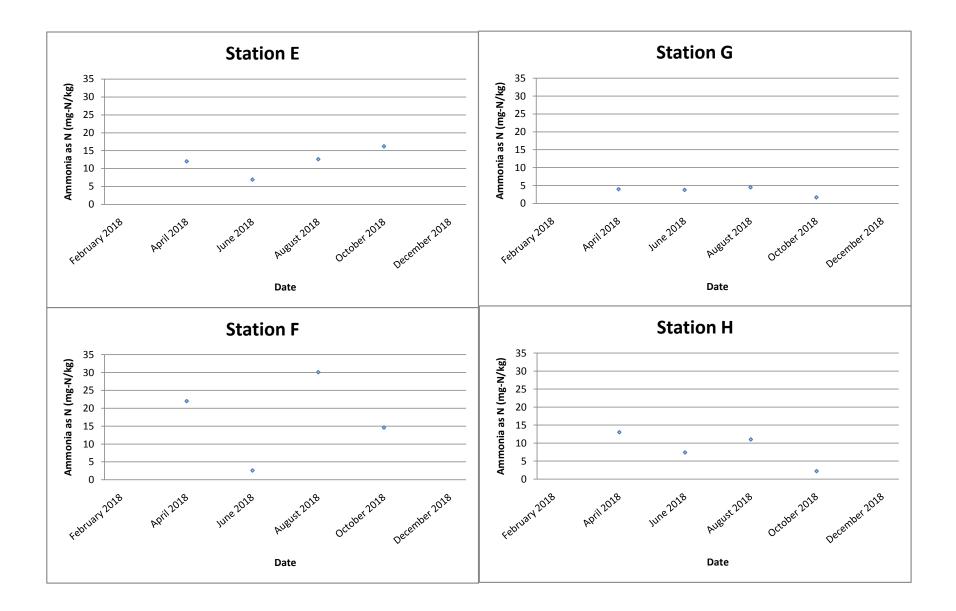
TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

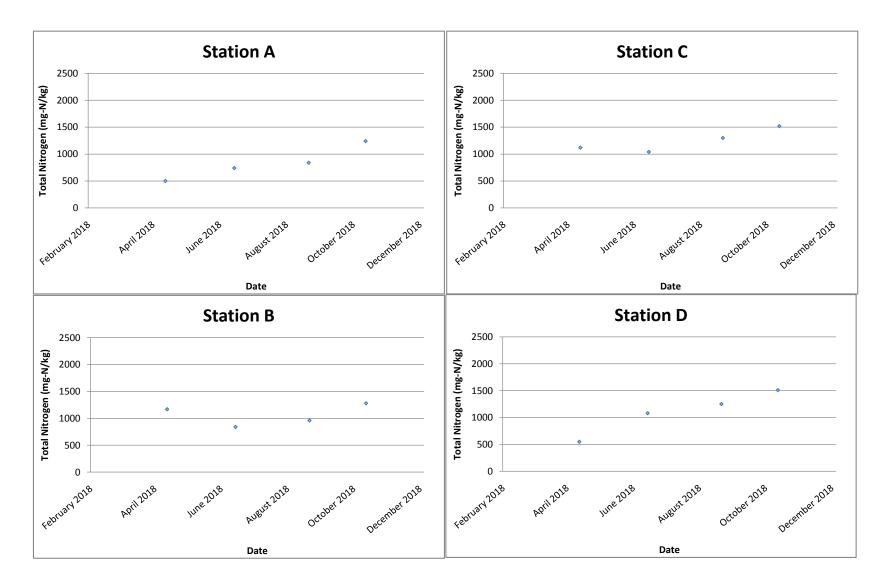

Job No.	5 a 1	J2999		Contract	Ma			Report N		J2999-272 36	
Custom			nichem (HK) Pt	Contract	NO. :			- 0 - 1 - 1			
Project			inement (The) I t	y Lui				s Order No		272	
rojeci		20 10						ole ID No.	2	HK1853822-016	
Data Da	noniumd .	16/10/2018	1					ole No		H/Benthic Surve	У
							Samp	ole Depth (n	n) :		
l'ested l	Date	18/10/2018	\$				Speci	imen Depth	(m)		
115		_					Samp	le Type		Small Disturbed	
Descrip	otion	Dark grey,	slightly sandy S				Samp	ole Origin		3	
		Method A		*Upon request	* D	elete as appropri-	ate ^t Info	rmation pro	wided by ci	ustomer	
SIEVE	ANALY	SIS	Percent Passing	*Expanded		*Cumulative	SEDIMENTATIO				
			rassing	Uncertainty		Percent Passing	Specific Gravity (#	if assumed)): 2.65	#	
Si	eve Size		18/5	of the Perce	m	with Expanded	Dispersant Details :	Sodium h	exametaph	osphate, Sodium	carbonate
	100.0 mi		(%) 100	Passing (%		Incertainty (%)	Sampling History	As receiv	ed		
	75.0 m		100	*		-	The presence of any	visible org	anic matter	r in the soil : Noi	ne
	and the second second second	and the second se	and the second se	-		-					
	63.0 mi	and the second se	100	-		*	Particle	*Exp	anded	% Finer	*Expande
	50.0 mi		100	-			Diameter	Uncertai	nty of the	than D	Uncertainty
	37.5 m	the second se	100	+				Particle	Diameter	K	% finer that
	28.0 m		100				(mm)	(m		(%)	(%)
	20.0 mi		100	-		-	0.0635		-	100	
	14.0 mi	and a line of the second second	100	-		-	0.0455		-	96	-
	10.0 mi	TI	100			-	0.0326			92	
	6.30 mr	п	100	-		-	0.0234	-		87	-
	5:00 mm	n	100			-	0.0168		-		-
	3:35 mm		100	-		-	0.0089	-	-	83	-
	2.00 mm		100	-		-	0.0046	-		73	-
	1.18 mm		100	-				to formation and the second	-	58	-
	600 µm		100	-		-	0.0024			44	-
	425 µm		100	-		-	0.0014	1	-	35	-
	300 µm	and the second se	100			-	SUMMARY :		-12		
	212 µm		100	*		-	Gravel (%)	:	0		
	150 µm	and the second se	100	*		-	Sand (%)	:	2		
			100				1 (111) (B())		20		
	the second party and where	Address of the owner of the owner of the owner of the owner owner owner owner owner owner owner owner owner own	0.0			-	Silt (%)		58		
100 -	63 µm 0 µm) Legend	98 0 tion Points >63µm is	anored	063	- Sieve Size(mm) 0 15 0 3	Clay (%)	5	10	20 37 5	75
90 - 80 - 70 -	63 µm 0 µm) Legend	D	anored		- Sieve Size(mm)	Clay (%)	:	40	20 37 5	75
90 - 80 - 70 - 60 - 50 - 40 - 20 - 10 -	63 µm 0 µm) Legend	D	anored		- Sieve Size(mm)	Clay (%)	:	40		
90 - 80 - 70 - 70 - 70 - 70 - 70 - 70 - 7	63 μm 0 μm	agend > Sedmenta	D			Sieve Size(mm) 0 15 0 3	Clay (%)	:			
90 - 90 - 70 - 10 - 10 - 0 -	63 μm 0 μm	agend > Sedmenta	0			Sieve Size(mm) 0 15 0 3	Clay (%)	5			
90 - 80 - 70 - 10 - 10 - 0 -	63 µm	agend > Sedmenta	0			Sieve Size(mm) 0 15 0 3	Clay (%)	5	40 10 10 10 10	20 6	0 100
90 - 80 - 70 - 10 - 10 - 0 -	63 μm 0 μm	agend > Sedmenta	0	0 02 0	00 01	Sieve Size(mm) 0 15 0 3	Clay (%)	5	40		
90 - 90 - 70 - 10 - 10 - 0 -	63 µm	agend > Sedmenta	0	0 02 0	00 01	Sievo Size(mm) 015 03	Clay (%)	5	40 10 10 10 10	20 6	0 100
90 - 00	63 µm	agend > Sedmenta	D Een Points >63,em is 0 0006 D 01 MEDIUM SILT	anored 0	00 01	Sieve Size(mm) 0.15 0.3	Clay (%)	5 5 6 FINE	40	20 6	0 100
90 - 80 - 70 - 10 - 20 - 10 - 0 -	63 µm	lagend > Sedmenta 0 FINE	D Een Points >63,em is 0 0006 D 01 MEDIUM SILT	anored 0	De 01	Sieve Size(mm) 0.15 0.3	Clay (%)	5 5 6 FINE	40	20 6	0 100

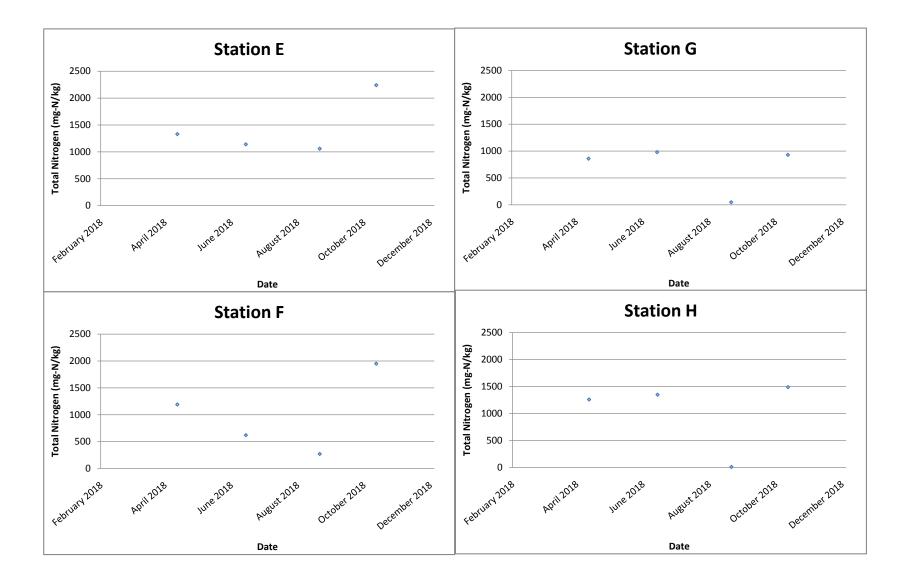
C Gammon Construction Ltd

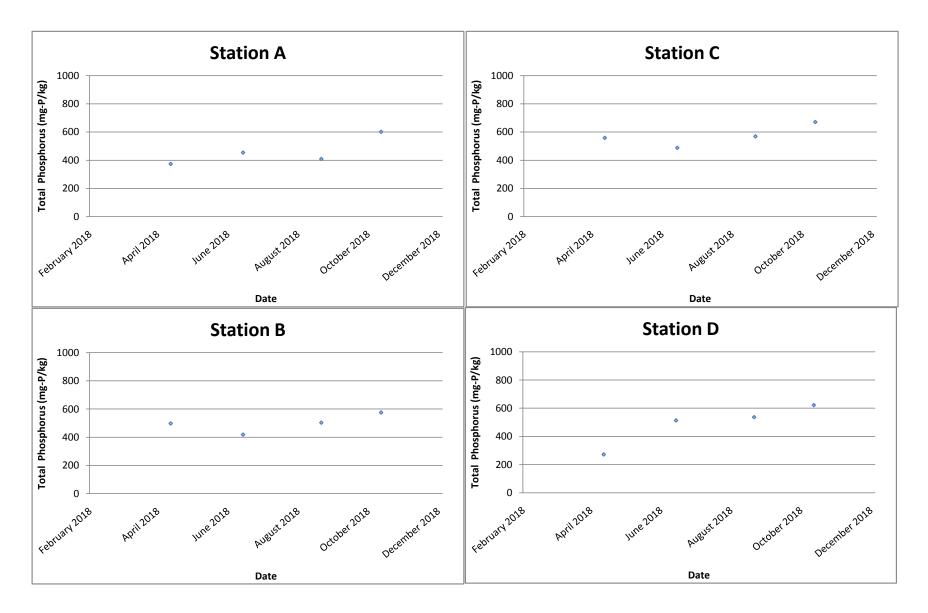

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate,

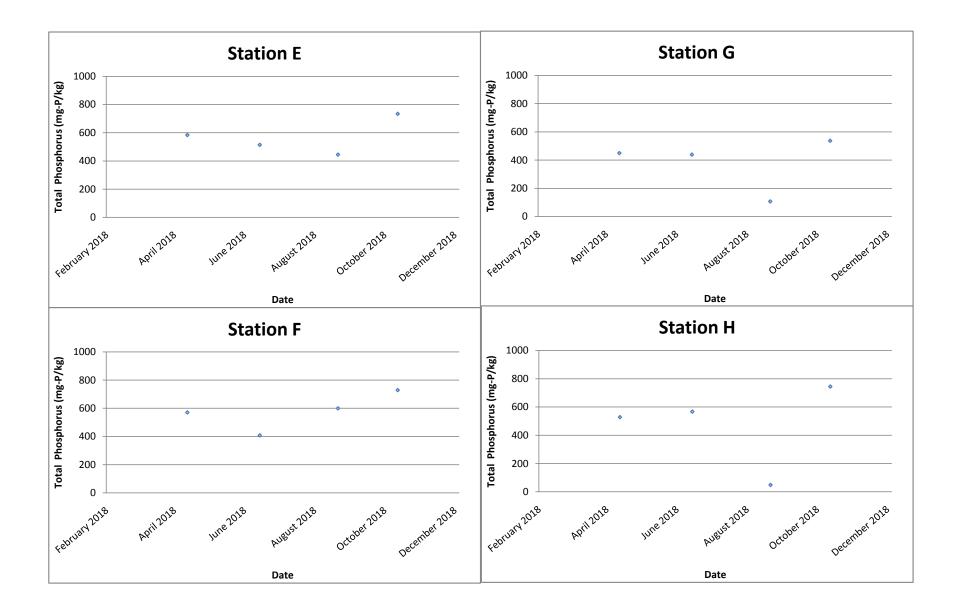

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

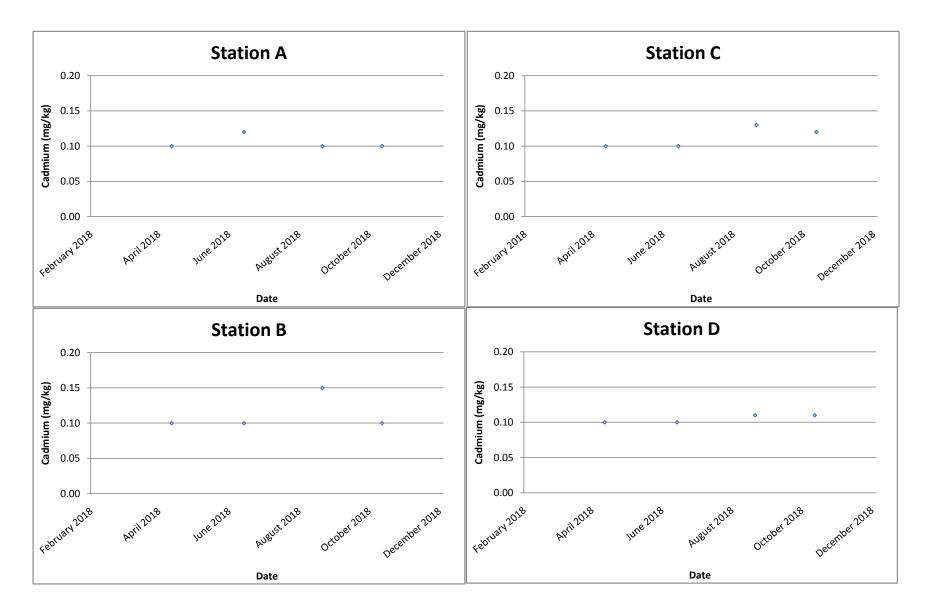

pH value

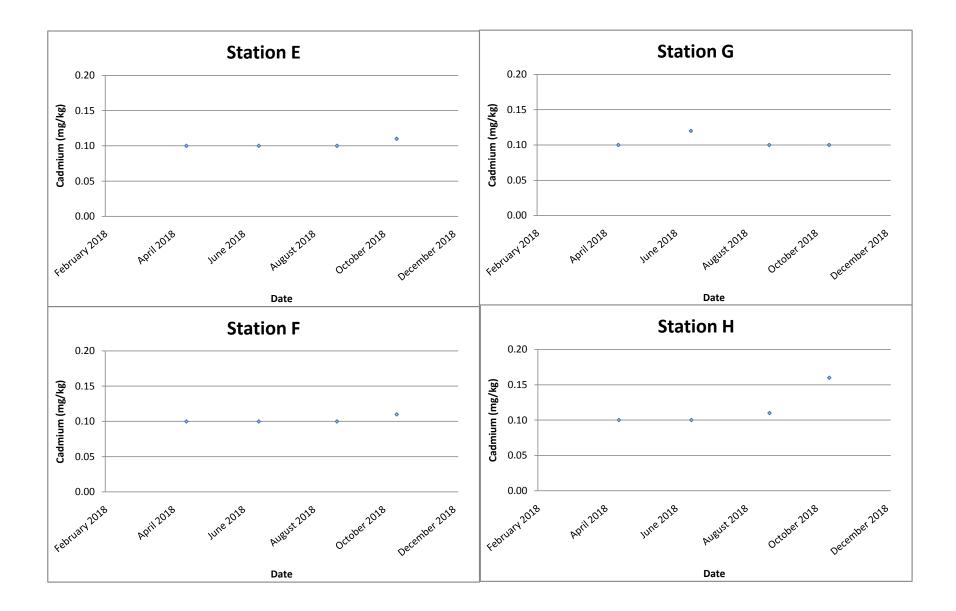


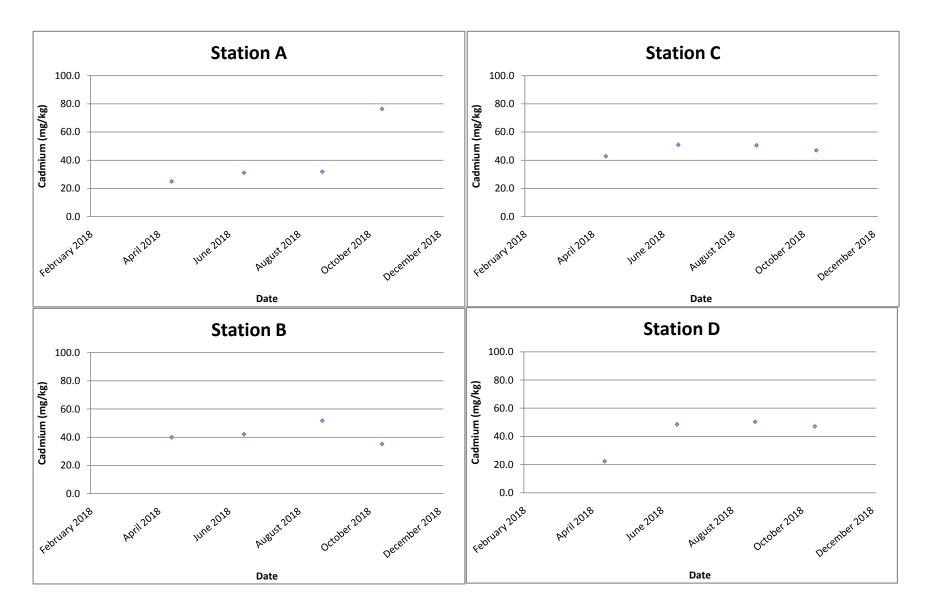

pH value

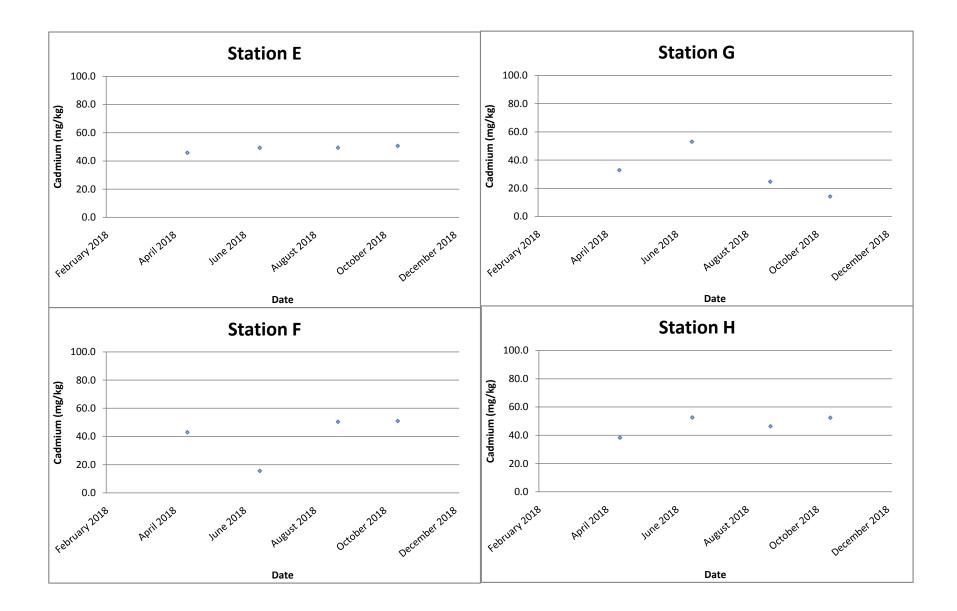


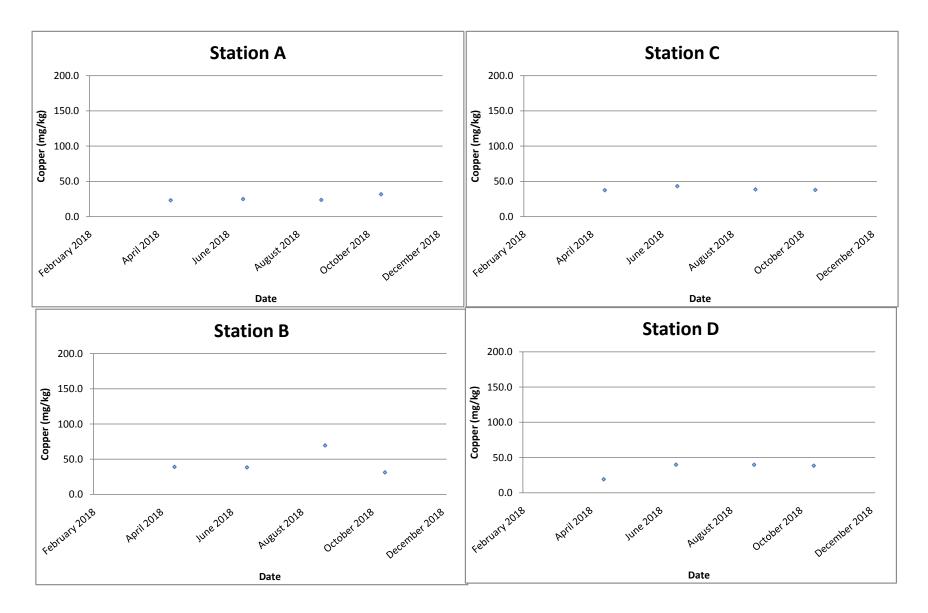


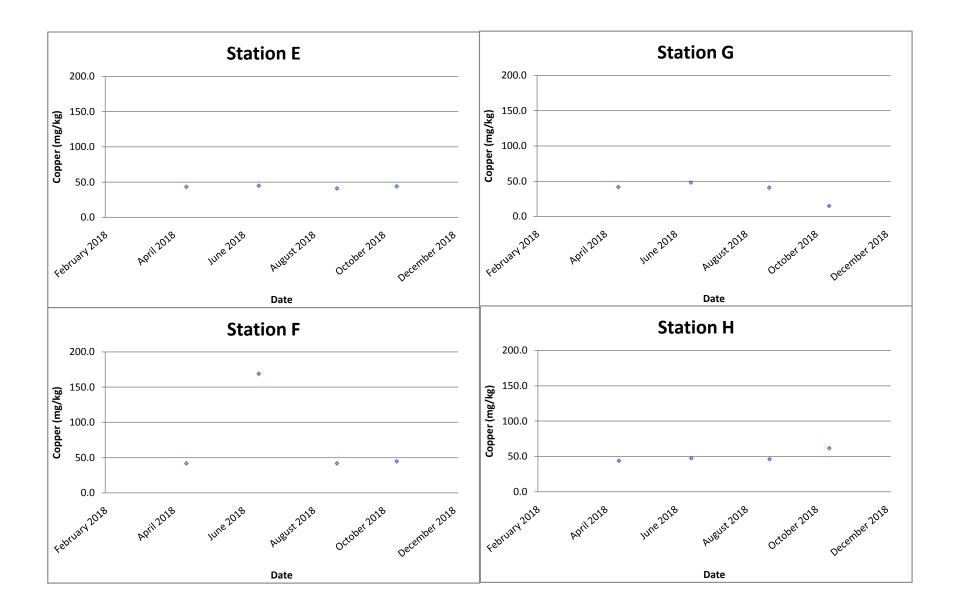


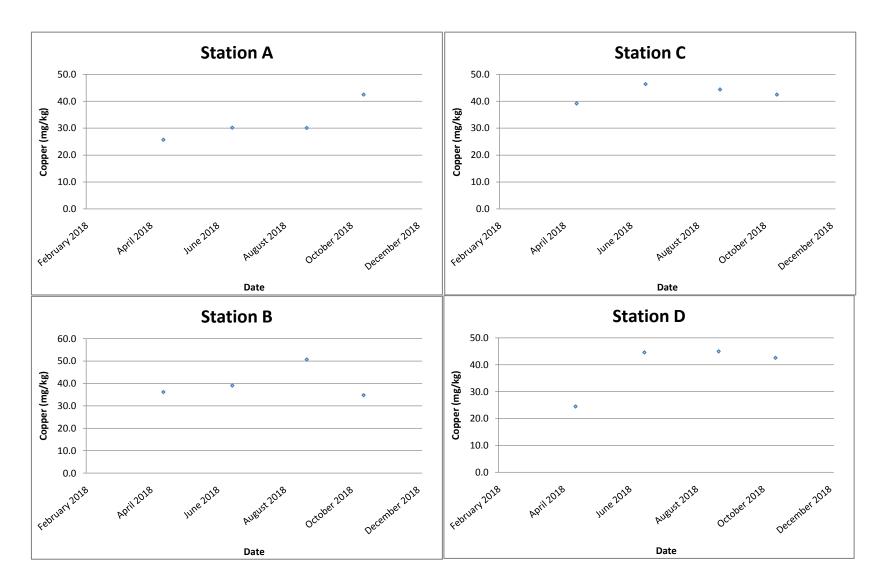


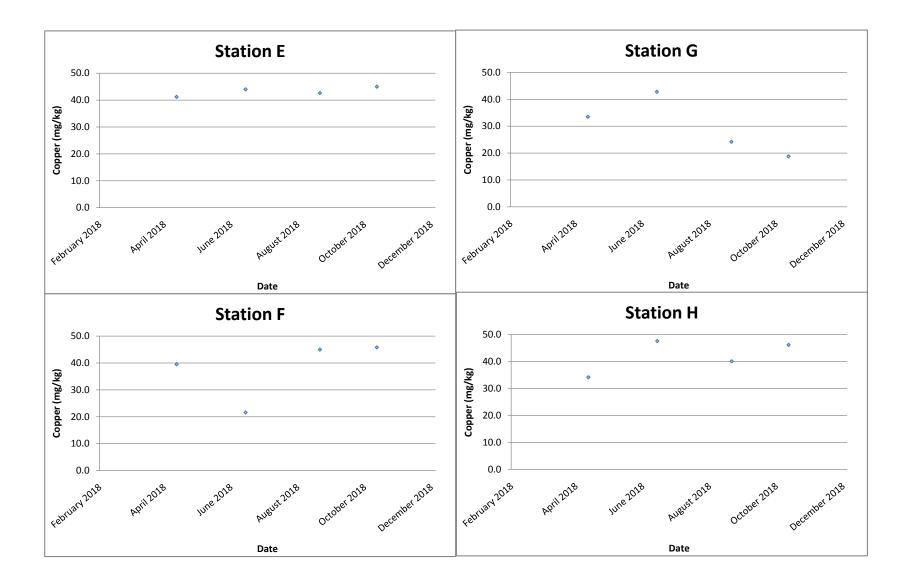

Cadmium (mg/kg)

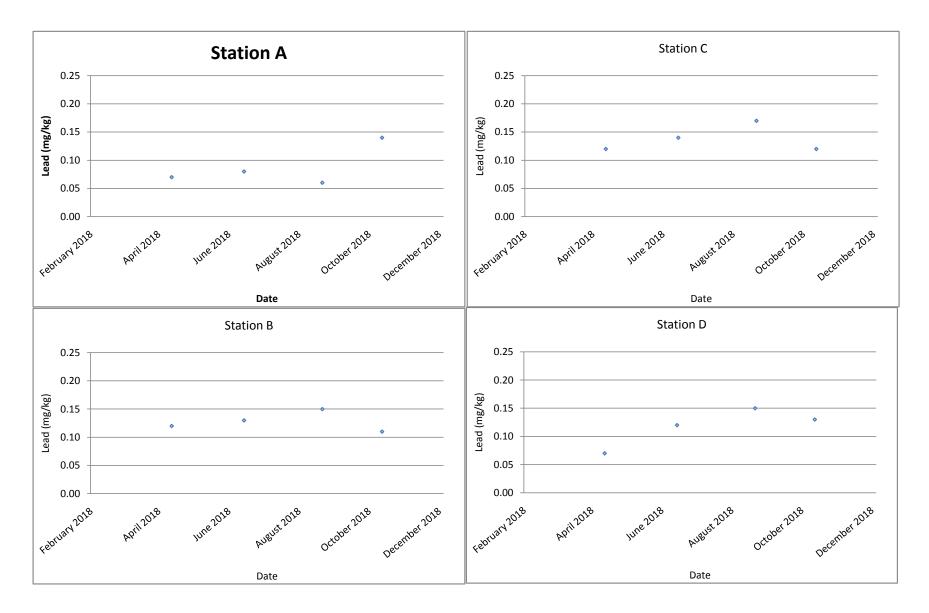

Cadmium (mg/kg)

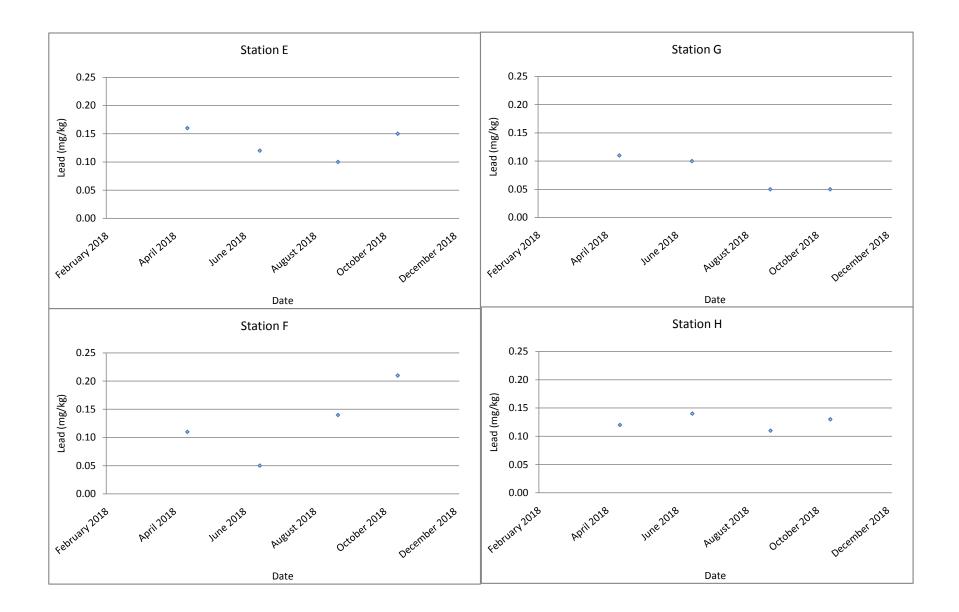

Chromium (mg/kg)

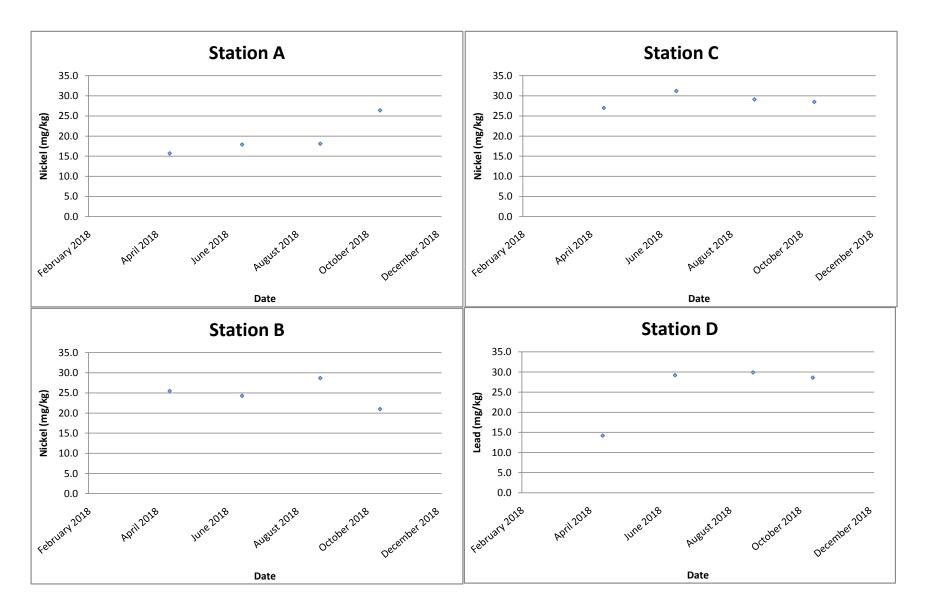

Chromium (mg/kg)

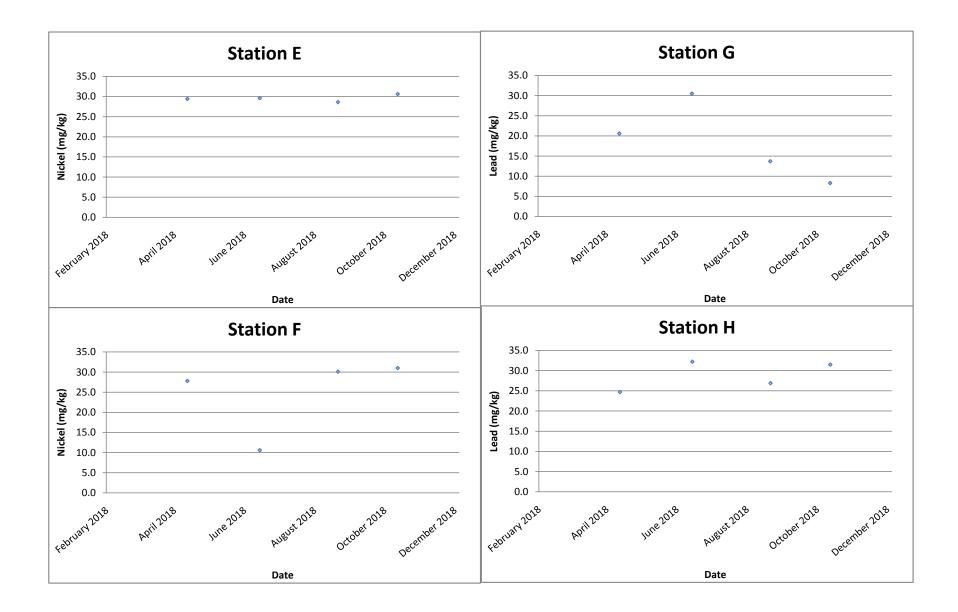

Copper (mg/kg)

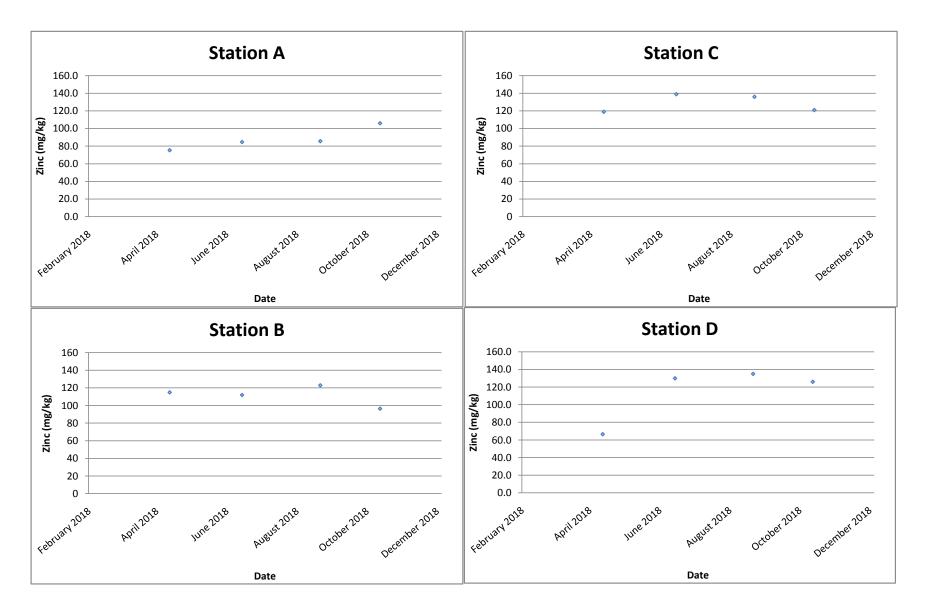

Copper (mg/kg)

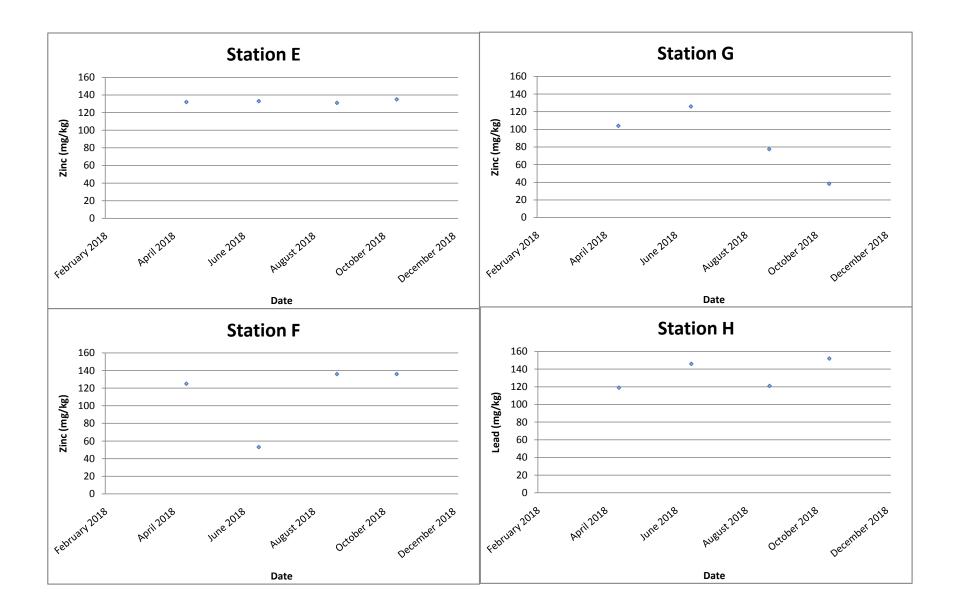

Lead (mg/kg)

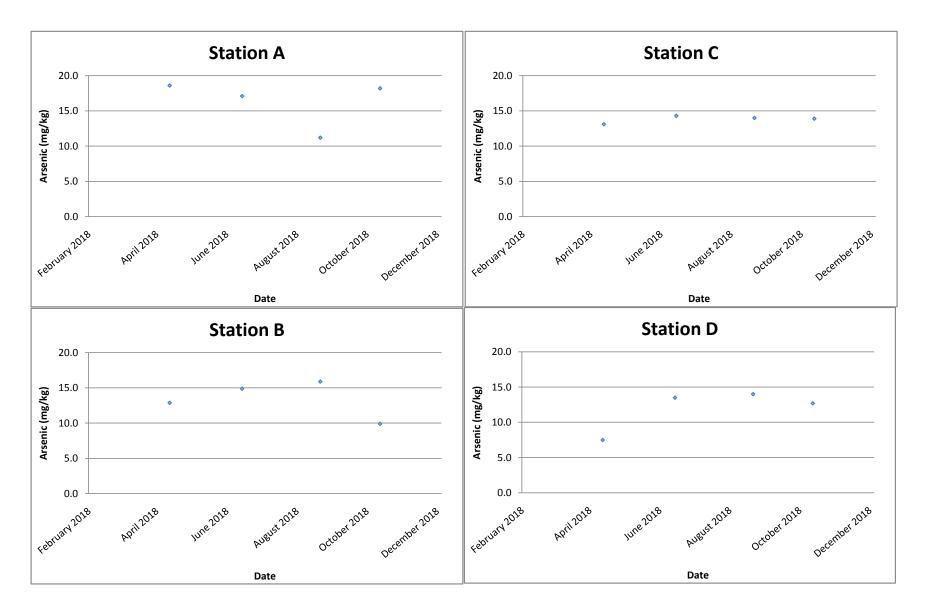

Lead (mg/kg)

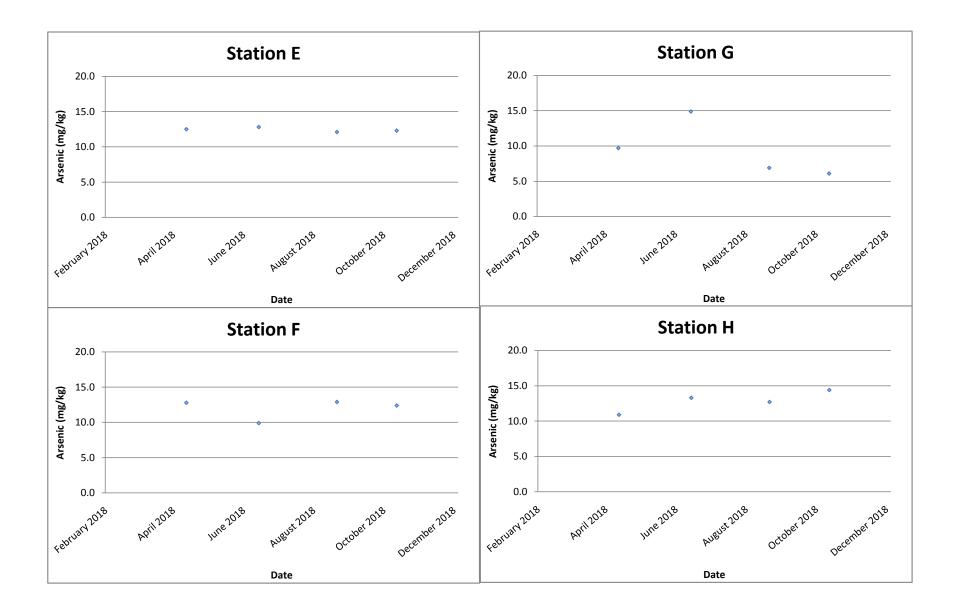

Mercury (mg/kg)

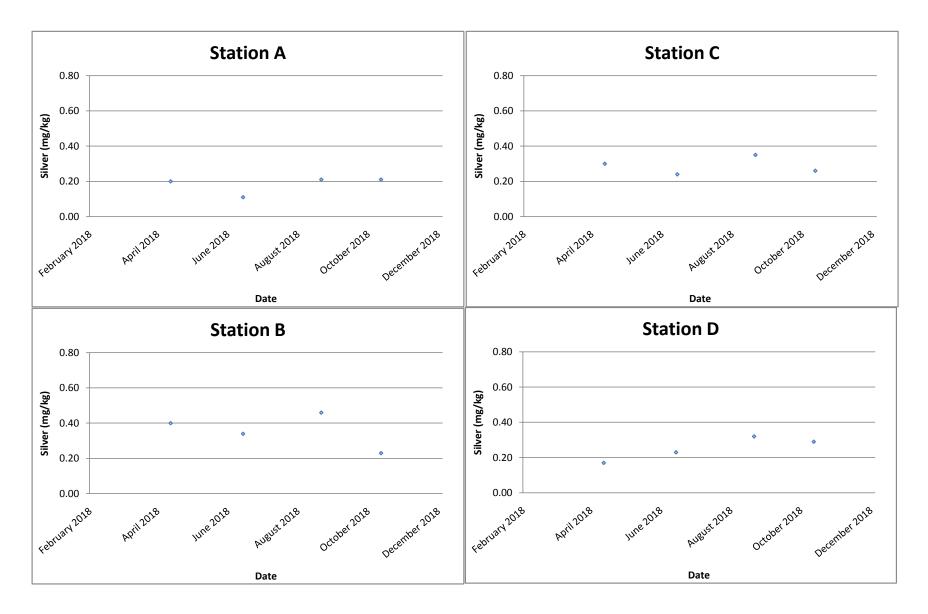

Mercury (mg/kg)

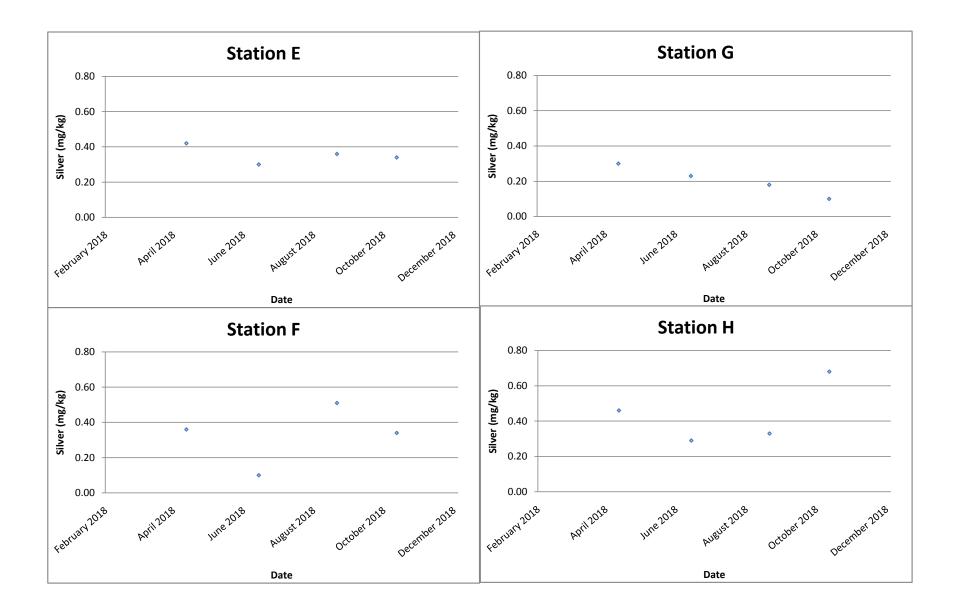

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix H

Benthic Survey Report

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Benthic Faunal Monitoring

Conducted in October 2018

Summary Report

Abundance

A total of 202 macrobenthic organisms were collected from the eight stations during the October 2018 monitoring period. Figure 1 shows the abundance distribution across monitoring periods and stations. Results of the current monitoring remained to be lower compared to the baseline data (August 2004) and showed a decrease in total abundance by 21 individuals (ind.) compared to the August 2018 results. Macrobenthic abundance showed decreasing trend this wet season (April 2018 to October 2018) monitoring albeit insignificant (p-value = 0.30; F crit = 2.64; α = 0.05). The decreasing trend might be attributed to weather disturbances (i.e. tropical storms) that hit Hong Kong week(s) before the sampling activities for June 2018, August 2018, and October 2018 monitoring periods. Wave actions brought about by these weather disturbances might have caused intermediate disturbances in the sampling stations, particularly that these stations are characteristically shallow waters (11m to 23m). Wave action may affect bottom sediments up to 50m in depth based on studies conducted by Coleman et al. (1997). Molluscs, particularly bivalves, were significantly affected by these disturbances as shown in their decreasing abundance since April 2018 monitoring period.

Across monitoring stations, the distribution of macrobenthic abundance remained to be significantly variable (p-value = 0.03; F crit = 2.31; α = 0.05). Relatively higher abundances were recorded in the reference Stations E (30 ind.), F (28 ind.), G (46 ind.), and H (27 ind.) while lower abundances were recorded in the impact Stations C (16 ind.) and D (19 ind.) and reference Stations A and B, both have 18 ind. In correlation with particle grain size distribution, it can be observed that relatively higher abundances were noted in stations with slightly higher slit/clay percentages. Silt/clay substrates are preferred by annelids, the most abundant and ubiquitous groups during in this monitoring period.

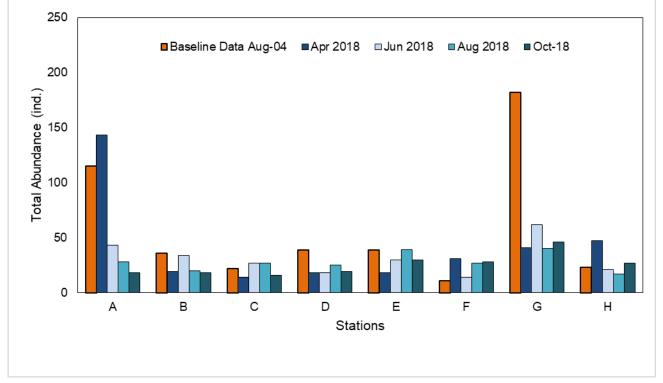
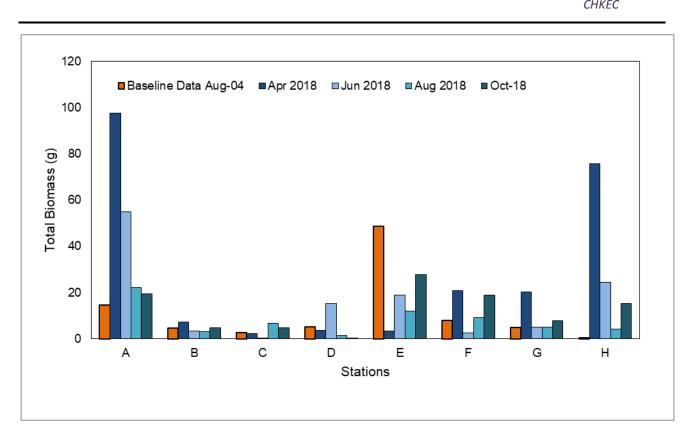
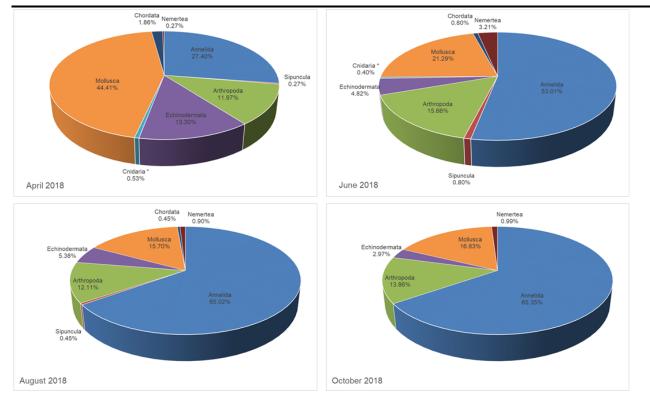


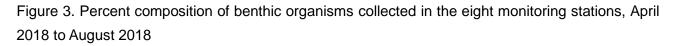
Figure 1. Total abundance (ind.) of benthic organisms

Biomass

The total wet biomass for all the eight stations during the October 2018 monitoring period was 98.89g, which is relatively higher than the biomass recorded during the August 2018 monitoring period. Figure 2 shows the biomass distribution across monitoring periods and stations. The increase in total wet biomass from August 2018 to October 2018 might be attributed to the larger sizes of bivalves collected during this monitoring period despite their relatively lower and decreasing abundances.

The highest biomass was observed in Station E (27.92g) and A (19.44g) and the lowest remained to be at the impact station, Station D (0.05g). Highest biomass remained at Station E and A because of the bivalves, *Ruditapes philippinarum* and *Paphia undulata*, continued to contribute significantly to the total wet biomass due to their larger sizes despite the decline in their abundance. Biomass decreased in Station A, Station C and Station D compared to the August 2018 monitoring period, which may be due to the shift in the macrobenthic assemblage, which is currently dominated by smaller organisms (i.e. annelids).


Figure 2. Total biomass (g) of benthic organisms

Taxonomic Composition

A total of five phyla comprised of 36 families and 50 taxa were identified in the eight stations during the October 2018 monitoring period. With the previous increase in the number of annelid species and abundance and the decrease in the abundance of bivalves, annelids (i.e. polychaetes) remained to dominate the current benthic assemblages comprising about 65.35% of the sampled population (Figure 3). The shift in benthic assemblage from the April 2018 monitoring period (Figure 3) might be attributed to wave actions generated by the series of typhoons which cleared existing habitats providing opportunities for smaller benthic organisms such as polychaetes to colonize the area. A study shows that disturbance generated by episodic strong currents ("benthic storms") was linked to high species dominance by polychaetes (58-64% ampharetids), bivalves, isopods and tanaids (Thistle et al.1985).

The current benthic assemblage is observed to be similar with the wet season baseline data (August 2004) which were both dominated by polychaetes. However, during the baseline study capitellid and cirratulid were the dominant polychaetes which indicates unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). For the present monitoring period capitellid and nepthyid were the most abundant group.

Same as with abundance distribution, relatively higher numbers of taxa identified were recorded in the reference Stations E (18), F (13), G (22), and H (19) while lower abundances were recorded in reference Stations A (12) and B (10) and impact Stations C and D, both have 9 ind. The relatively higher number of taxa identified were mainly contributed by the species of polychaetes recorded at these stations.

Diversity

Diversity indices (H') for the October 2018 monitoring period ranged from very low (1.76 at Station D and 1.98 at Station C) to moderate (2.83 at Station G). Compared to the August 2018 monitoring periods, decrease in diversity in majority of stations (except station G and H) was observed. This

decrease might be due to the dominance of the annelids in the new habitats made available by wave actions caused by weather disturbances. The decrease in diversity consequently lowered the heterogeneity of the benthic communities as showed by their decreased Evenness (J) Index.

Data summaries are shown in Appendix A and representatives of taxa identified are in Appendix B.

References:

- Borja, A., Franco, J. and Perez, V. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pol Bul. 40:1100-1114.
- Coleman, N., A.S.H Gason, and G.C.B. Poore. 1997. High species richness in the shallow marine waters of south-east Australia. Mar Ecol Prog Ser. 154:17-26.
- Fauchald K. 1977. The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

- Huang, Z.G. 1994. Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.
- Pearson, T. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Bio Biol Annu Rev . 16: 229-311.
- Rouse G. W. and F.Pleijel.2001. Polychaetes. Oxford University Press. United Kingdom.
- Thistle, D., Yingst and J.Y., Fauchald, K.1985. A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic). Mar. Geol. 66:91-112.
- Xu F. S. and S.P Zhang S. P. 2008. An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor : Map 9/

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: November 8, 2018

Appendix A: Data Summaries

Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	18	19.44	12	2.37	0.95
В	18	4.72	10	2.25	0.98
C*	16	4.84	9	1.98	0.90
D*	19	0.05	9	1.76	0.80
Е	30	27.92	18	2.73	0.94
F	28	18.91	13	2.15	0.84
G	46	7.79	22	2.83	0.91
Н	27	15.22	19	2.78	0.96
TOTAL	202	98.89	(50 N)		

Summary of Benthic Survey Data (October 2018)

*Impact Sites

Summary of Benthic Survey Baseline Data (August 2004, wet season)

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')
А	115	14.56	24	0.93
В	36	4.76	14	0.89
C*	22	2.66	13	0.80
D*	39	5.07	11	0.62
E	39	48.69	16	0.89
F	11	8.07	9	0.68
G	182	4.91	31	1.10
Н	23	0.49	11	0.81

*Impact Sites

Taxonomic Composition (%) of Benthic Survey

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-2018
Annelida	73.29	31.12	53.01	65.02	65.35
Sipuncula	0.21	0.30	0.80	0.45	0.00
Arthropoda	18.80	13.60	15.66	12.11	13.86
Echinodermata	3.63	15.11	4.82	5.38	2.97
Cnidaria *	0.43	0.60	0.40	0	0
Mollusca	3.42	50.45	21.29	15.69	16.83
Chordata	0.21	2.11	0.80	0.45	0.00
Nemertea	0	0.30	3.21	0.90	0.99

Taxonomic Composition (abundance) of Benthic Survey

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-2018
Annelida	343	103	132	145	132
Sipuncula	1	1	2	1	0
Arthropoda	88	45	39	27	28
Echinodermata	17	5	12	12	6
Cnidaria *	2	2	1	0	0
Mollusca	16	167	53	35	34
Chordata	1	7	2	1	0
Nemertea	0	1	8	2	2
Grand total	468	331	249	223	202

*referred to as Coelentera in the baseline monitoring

Composition, Abundance, and Percent Composition of Benthic Communities October 2018

Dhudum	Class	Order	Fomily	Correct			М	onitorir	ng Stati	ons			%
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н	Composition
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0	1	0	0	0	1	2	1	2.48
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	3	1	1	1	1	2	0	4.46
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	1	0	0	0	0	0	0	0	0.50
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	1	2	0	2	2	2	2	2	6.44
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	1	2	2	1	0	2.97
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	1	0	1	0	0.99
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	3	0	0	0	0	0	9	0	5.94
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0	0	2	0	0.99
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	0	0	0	0	1	1	0	1	1.49
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia (P. paradoxa)	0	0	0	0	0	0	1	0	0.50
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	1	0	0	0	0	0	0.50
Annelida	Polychaeta	-	Maldanidae	Maldanella	1	0	0	1	0	0	0	0	0.99
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	3	0	5	0	3	0	1	0	5.94
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0	0	0	0	2	0	2	1.98
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	2	2	3	9	2	2	0	1	10.40
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	0	0	0	0	0	1	0.50
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	2	0	0.99
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	1	1	0	1	10	1	1	7.43
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	0	0	0	1	0.50
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	1	0	0	0	0	0.50
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	0	0	0	0	0	0	1	0.50
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0	1	0	0	0	0	0	0.50
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	1	0	0	0	0	0	1	0	0.99

1687-SHW-R2-June-text report. doc

Dhuduum	Class	Ordor	Family	0.0000			М	onitorir	ng Statio	ons			%
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	Н	Composition
Annelida	Polychaeta	Terebellida	Pectiinariidae	Pectinaria(Lagis)	0	0	0	0	0	0	1	0	0.50
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	0	0	1	4	1	2.97
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0	0	0	0	0	0	1	0.50
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	0	0	0	0	4	1	2.48
Annelida	Oligochaeta	Sabellida	Oweniidae	Owenia	0	0	0	0	0	0	1	0	0.50
Annelida Total					12	9	12	15	13	22	35	14	65.35
N					7	5	6	6	8	9	16	12	28
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	2	2	0	1	0	4	2	5.45
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	2	0	0	0	0	0	0	0.99
Arthropoda	Crustacea	Decapoda	Paguroidea	Hermit crab	0	0	0	0	0	0	1	0	0.50
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1	0	0	1	2	0	1	2	3.47
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis	0	0	1	0	0	0	0	0	0.50
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	1	1	0	2	0	1.98
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0	0	1	0	0	0.50
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0	1	0	0	0	0	0	0.50
Arthropoda Total					1	4	4	2	4	1	8	4	13.86
N					1	2	3	2	3	1	4	2	8
Echinodermata	-	-	-	UNID sp.	0	0	0	0	0	0	1	0	0.50
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0	0	0	2	3	0	0	0	2.48
Echinodermata Total					0	0	0	2	3	0	1	0	2.97
					0	0	0	1	1	0	1	0	2
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0	0	0	0	0	0	0	1	0.50
Mollusca	Bivalvia	Veneroida	Psammobiidae	c.f. Soletellina chinensis	1	0	0	0	0	1	0	0	0.99
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	0	1	0	0	1	0.99
Mollusca	Bivalvia	Veneroida	Veneridae	Circe (C. scripta)	0	0	0	0	1	0	0	0	0.50
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	1	2	0	0	5	3	0	2	6.44
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0	0	0	0	0	1	0.50
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	1	0	0	0	0	0	2	4	3.47

Dhudum	Class	Order	Family	Genus			M	onitorir	ng Statio	ons			%
Phylum	Class	Order		Genus	Α	В	С	D	E	F	G	Н	Composition
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0	0	0	0	1	0	0	0	0.50
Mollusca	Gastropoda	Buccinoidea	Nassariidae	Nassarius(N. succinctus)	0	0	0	0	1	0	0	0	0.50
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0	1	0	0	0	0	0	0	0.50
Mollusca	Scaphopoda	-	Dentaliidae	-	2	2	0	0	0	0	0	0	1.98
Mollusca Total					5	5	0	0	9	4	2	9	16.83
N					4	3	0	0	5	2	1	5	11
Nemertea	Enopla	-	-	UNID 1	0	0	0	0	1	1	0	0	0.99
Nemertea Total					0	0	0	0	1	1	0	0	0.99
N					0	0	0	0	1	1	0	0	1
				GRAND TOTAL	18	18	16	19	30	28	46	27	202
				TOTAL (N)	12	10	9	9	18	13	22	19	50

Biomass of Benthic Communities October 2018

Phylum	Class	Order	Family	Genus				Monitor	ing Station	S		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	н
Phylum	Class	Order	Family	Genus	A	В	С	D	E	F	G	Н
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0	0.003	0	0	0	0.002	0.002	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	0.005	0.002	0.001	0.001	0.001	0.001	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.002	0	0	0	0	0.000	0	0
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.001	0.002	0	0.002	0.002	0.002	0.001	0.005
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	0.001	0.003	0.001	0.003	0
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	0.001	0
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0.004	0	0	0	0	0	0.011	0
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0	0	0.004	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	0	0	0	0	0.002	0.001	0	0.001
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia (P. paradoxa)	0	0	0	0	0	0	0.001	0
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0.001	0	0	0	0	0
Annelida	Polychaeta	-	Maldanidae	Maldanella	0.003	0	0	0.002	0	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0.007	0	0.018	0	0.005	0	0.002	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0	0	0.000	0	0.006	0	0.018
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.002	0.001	0.002	0.012	0.002	0.002	0	0.001
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	0	0	0	0	0	0.013
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris	0	0	0	0	0	0	0.004	0
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	0.001	0.002	0	0.002	0.295	0.002	0.001
Annelida	Polychaeta	Spionida	Spionidae	Laonice(L. cirrata)	0	0	0	0	0	0	0	0.001
Annelida	Polychaeta	Spionida	Spionidae	Polydora	0	0	0	0.001	0	0	0	0
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	0	0	0	0	0	0	0.002
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0	0.007	0	0	0	0.000	0

1687-SHW-R2-June-text report. doc

Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda	0.001	0	0	0	0	0	0.001	0
Annelida	Polychaeta	Terebellida	Pectiinariidae	Pectinaria(Lagis)	0	0	0	0	0	0	0.026	0
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	0	0	0.001	0.017	0.012
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0	0	0	0	0	0	0.001
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0	0	0	0	0	0	0.022	0.002
Annelida	Oligochaeta	Sabellida	Oweniidae	Owenia	0	0	0	0	0	0	0.002	0
Annelida Total					0.02	0.012	0.032	0.019	0.017	0.311	0.1	0.057
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	0.012	0.013	0	0.008	0	0.028	0.138
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	0.351	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Paguroidea	Hermit crab	0	0	0	0	0	0	2.800	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	2.506	0	0	0.009	0.056	0	0.031	0.034
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis	0	0	4.788	0	0	0	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0.001	0.001	0	0.001	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0	0	0.001	0	0
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0.000	0.005	0	0	0	0.000	0
Arthropoda Total					2.506	0.363	4.806	0.01	0.065	0.001	2.860	0.172
Echinodermata	-	-	-	UNID sp.	0	0.000	0	0	0	0	1.533	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0	0	0	0.025	1.955	0	0	0
Echinodermata Total					0	0	0	0.025	1.955	0	1.533	0
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0.000	0	0	0	0	0	0.000	4.100
Mollusca	Bivalvia	Veneroida	Psammobiidae	c.f. Soletellina chinensis	8.500	0	0	0	0	8.200	0.000	0.000
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	0.000	0.035	0	0	0.024
Mollusca	Bivalvia	Veneroida	Veneridae	Circe (C. scripta)	0.000	0	0	0	0.010	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	4.300	3.300	0	0	24.600	10.400	0.000	7.300
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0	0	0.000	0.000	0.000	0.069
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	4.100	0	0	0	0	0	3.300	3.498
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0.000	0	0	0	0.032	0	0	0
Mollusca	Gastropoda	Buccinoidea	Nassariidae	Nassarius(N. succinctus)	0.000	0.000	0	0.000	1.200	0.000	0.000	0.000
Mollusca	Gastropoda	Sorbeoconcha	Turritellidae	Turritella (T.terebra)	0.000	1.033	0.000	0.000	0.000	0.000	0.000	0.000

Mollusca	Scaphopoda	-	Dentaliidae	-	0.011	0.007	0.000	0.000	0.000	0.000	0.000	0.000
Mollusca Total					16.911	4.340	0.000	0.000	25.877	18.600	3.300	14.991
Nemertea	Enopla	-	-	UNID 1	0	0	0	0	0.005	0.002	0	0
Nemertea Total					0	0	0	0	0.005	0.002	0	0
				Grand Total	19.437	4.715	4.838	0.054	27.919	18.914	7.793	15.22

Note: T means biomass <0.001 g round to 0.001g

Benthic Species Recorded during the Baseline Study August 2004

			led In Aug	e Treatment Pla ust 2004	1				
ĨĎ	Station	Number	Mass (q)	Phylum	Class	Order 🗠 👍	Family	Genus	Species
1	A1	2	0.0108	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	A1	2	0.2632	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
3	A1	3	0.0031	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
4	A1	1	0.0008	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
5	A1	1	0.0092	Annelida	Polychaeta	Phyliodocida	Glyceridae	Glycera	Glycera onomichiensis
6	A1	1	0.0012	Annelida	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubia
7	A1	1	0.0203	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
8	A1	3	0.0027	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
9	A1	1	0.0193	Annelida	Polychaeta	Terebellida	Terebellidae	Pista	Pista cristata
10	Ai	9	0.0598	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
11	A1	1	0.0097	Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
12	A2	1	0.1911	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
13	A2	1	0.0003	Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	Capitella capitata
14	A2 ·	1	9.2414	Coelentera	Anthozoa	Pennatulacea	Veretillidae	Cavernularia	Cavernularia sp.
15	A2	15	0.0536	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
16	A2	1	0.0028	Mollusca	Bivalvia	Venerolda	Ungulinidae	Cycladicama	Cycladicama sp.
17	A2	3	0.0392	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice indica
18	A2	3	0.3728	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
19	A2	1	0.0064	Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
20	A2	2	0.0448	Annelida	Polychaeta	Phyllodocida	Polynoidae	LepIdonotus	Lepidonotus sp.
21	A2	3	0.968	Annelida	Polychaeta	Terebellida	Terebellidae	Loimia	Loimia medusa
22	A2	1	0.0051	Annelida	Polychaeta	Phyllodocida	Hesionidae	Micropodarke	Micropodarke dubia
23	A2	5	2.0379	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthaimus	Neoxenophthalmus obscurus
24	A2	35	0.3411	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
24 25	A2	2	0.0408	Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	Poecilochaetus serpens
26	A2	5	0.0136	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
27	A2.	4	0.6328	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
28	A2	3	0.0292	Mollusca	Bivalvia	Venerolda	Veneridae	Ruditapes	Ruditapes philippinarum
29	A2	1	0.0059	Annelida	Polychaeta	Orbinlida	Orbiniidae	Scoloplos	Scoloplos sp.
30	A2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
31	A2	1	0.0014	Annelida	Polychaeta	Phyllodocida	Syllidae	Syllis	Syllis sp.
32	.A2	1		Coelentera	Anthozoa	Pennatulacea	Virgulariidae	Virgularia	Virgularia gustaviana
33	B1	1		Annelida	Polychaeta	Phyllodocida	Nephtyldae	Aglaophamus	Aglaophamus dibranchis
34	B1	1		Annelida	Polychaeta	Amphinomida	Amphinomidae	Amphinome	Amphinome rostrata
35	B1	1		Echinodermata	Stelleroidea	Ophiurida	Amphiuridae	Amphiodia	Amphiodia sp.
34 35 36 37	B1	4		Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
37	B1	2		Echinodermata	Echinoldea	Spatangoida	Loveniidae	Lovenia	Lovenia subcarlnata
38	B1	1	0.0346	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
39	B1	2	0.2395	Arthropoda	Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
10	B1	1		Mollusca	Bivalvia	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta

				Treatment D	ant		N		
Upgra	ading of s	SIU HO WI	an sewage	Treatment Pl		·····			une and a second data and also and a low and a low of the
Bentl	tic Specie	es Record	ied In Aug	USL 2004	Class	Order 18 April	Eamily	Genus	Species
والمراجعة والمراجعة			Mass (g)	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
41		4	0.0139	Contraction of the local division of the loc	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
42	B1		0.0042	Annelida Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
43	B1	1	0.0163		Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
44	<u>B2</u>	3	0.0054	Annelida	·····	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
45	B2	3	0.1089	Annelida	Polychaeta	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
46	82	1	0.0384	Arthropoda	Crustacea	Veneroida	Tellnidae	Nitidotellina	Nitidoteilina minuta
47	<u> </u>	1	0,0028	Mollusca	Bivalvia	Capitellida	Capitellidae	Notomastus	Notomastus latericens
48	B2	5	0.0158	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio cirrifera
49	B2	2	0.0006	Annelida	Polychaeta	Phyllodocida	Pilargildae	Sigambra	Sigambra hanaokai
50	B2	1	0.0008	Annelida	Polychaeta	Decapoda	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
51	B2	1	0.1426	Arthropoda	Crustacea	Phyllodocida	Nephtyidae	Adiaophamus	Agiaophamus dibranchis
52	C1	3	0.0152	Annelida	Polychaeta		Maldanidae	Euclymene	Euclymene sp.
53	Ci	1	0.0123	Annelida	Polychaeta	Capitellida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
54	C1	2	0.0348	Annelida	Polychaeta	Eunicida	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
55	C1	2	0.4967	Arthropoda	Crustacea	Decapoda	Capitellidae	Notomastus	Notomastus latericens
56	C1	3	0.0418	Annelida	Polychaeta	Capitellida	Veneridae	Paphia	Paphia' undulata
57	Ci	1	1.6743	Mollusca	Bivalvia	Veneroida	Spionidae	Paraprionospio	Paraprionospio pinnata
58	C1	2	0.0017	Annelida	Polychaeta	Spionida	Semelidae	Theora	Theora lata
59	C1	1	0.009	Moilusca	Bivalvia	Veneroida	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
60	Cl	1	0.0503	Arthropoda	Crustacea	Decapoda	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
61	C2	2	0.0099	Annelida	Polychaeta	Phyllodocida	Amphinomidae	Amphinome	Amphinome rostrata
62	C2	1	0.0243	Annelida	Polychaeta	Amphinomida	Glyceridae	Glycera	Glycera onomichiensis
63	C2	1	0.285	Annelida	Polychaeta	Phyllodocida	Goneplacidae	Hexapus	Hexapus granuliforus
64	C2	1	0.0049	Arthropoda	Crustacea	Decapoda	Pilargildae	Sigambra	Sigambra hanaokai
65	C2	1	0.0012	Annelida	Polychaeta	Phyllodocida Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
65	D1	2	0.0065	Annelida	Polychaeta	Phyllodocida	Maldanidae	Euclymene	Euclymene sp.
67	D1	1	0.0106	Annelida	Polychaeta	Capitellida	Goneplacidae	Eucrate	Eucrate haswelli
68	D1	1	0.5246	Arthropoda	Crustacea	Decapoda	Glyceridae	Glycera	Glycera onomichiensis
69	D1	3	0.4472	Annelida	Polychaeta	Phyliodocida	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
70	D1	2	0.254	Arthropoda	Crustacea	Decapoda		Notomastus	Notomastus latericens
71	D1	8	0.0887	Annelida	Polychaeta	Capitellida	Capitellidae	Ophella	Ophelina grandis
72	D1	2	0.0648	Annelida	Polychaeta	Ophellida	Ophellidae	Paphia	Paphia undulata
73	Di	1.	3.3726	Mollusca	Bivalvia	Venerolda	Veneridae	Paraprionospio	Paraprionospio pinnata
74	D1	2	0.0092	Annelida	Polýchaeta	Spionida	Spionidae Nuculanidae	Saccella	Saccella sp.
75	Di	1	0.0514	Mollusca	BivalVia	Nuculoida		Sigambra	Sigambra hanaokai
76	Dĺ	1	0,0021	Annelida	Polychaeta	Phyllodocida	Pilargiidae	and the second s	Notomastus latericens
77	D2	12	0.155	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Ophelina grandis
78	D2	1	0.0797	Annelida	Polychaeta	Opheliida	Opheliidae	Ophelia	
79	D2	1	0.0031	Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	Paraprionospio pinnata
80	D2	1	0.0012	Annelida	Polychaeta	Phyllodocida	Pllargiidae	Sigambra	Sigambra hanaokai

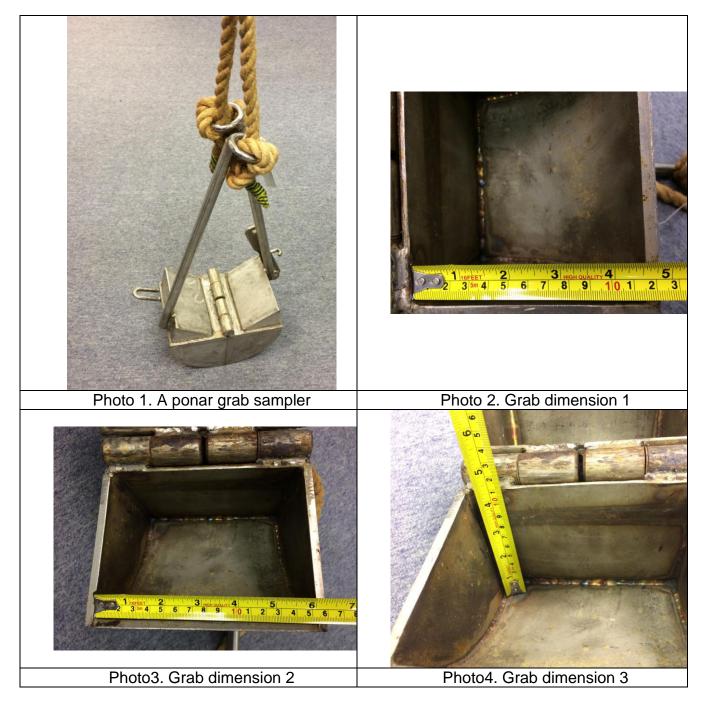
nnr	ading of	Siu Ho W	an Sewade	e Treatment Pla	nt			, ·	٠,
			led In Aug						
				Phylum	Class	Order a state	Family	Genus	Species
1	E1	3 3	0.0423	Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	E1	1	0,0014	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
	E1	10	41.4922	Echinodermata	Echinoidea	Spatangoida	Loveniidae	Lovenia	Lovenia subcarinata
3			0.0672	Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
4	<u> </u>	2			Crustacea	Decapoda	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscu
5	<u>E1</u>	1	0.0171	Arthropoda Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
6	E1	2	0.013	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio multipinnata
7	E1 E1	1	0.0098	Annelida	Polychaeta	Phyllodocida	Pilarglidae	Sigambra	Sigambra hanaokai
3		1		Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis	Sternaspis sculata
9	E1	1	0.0203	Mollusca	Bivalvia	Veneroida	Semelidae	Theora	Theora lata
)	E1	1			Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	Typhlocarcinus nudus
	E1	1	0.0823 0.023	Arthropoda Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
2	E2	2	0.023	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
3	<u>E2</u> E2	1	0.0005	Arthropoda	Crustacea	Amphipoda	Corophildae	Corophium	Corophium sp.
4	E2	4	0.0010	Annelida	Polychaeta	Eunicida	Onuphidae	Diopatra	Diopatra sp.
5				Annelida	Polychaeta	Phyllodocida	Hesionidae	Leocrates	Leocrates chinensis
5	E2	1	0.0062			Terebellida	Terebellidae	Lolmia	Loimia medusa
/	<u>E2</u>	1	0,446	Annelida	Polychaeta	Spatangolda	Lovenlidae	Lovenia	Lovenia subcarinata
3	E2	2	6,348	Echinodermata	Echinoidea	Eunicida	Lumbrineridae	Lumbrineris	Lumbrineris sp.
	E2	1	0.0067	Annelida	Polychaeta Bivalvia	Veneroida	Tellinidae	Nitidotellina	Nitidotellina minuta
0	<u>E2</u>	1	0.0336	Mollusca		Capitellida	Capitellidae	Notomastus	Notomastus latericens
1	E2	4	0.0477	Annelida	Polychaeta Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
2	<u>F1</u>	1	0.0162	Arthropoda			Nassarildae	Nassarius	
3	F1	1	0.4824	Mollusca	Gastropoda	Neogastropoda	Capitellidae	a de la companya de l	Nassarius sp. Notomastus latericens
4	F1	1	0.0088	Annelida	Polychaeta	Capitellida	Spionidae	Notomastus	÷,,
5	F1		0,0046	Annellda	Polychaeta	Spionida	Pilargiidae	Paraprionospio Sigambra	Paraprionospio pinnata
5	F1	1	0.0018	Annelida	Polychaeta	Phyllodocida Storpacpida	Sternaspidae		Sigambra hanaokai Sternaspis sculata
7	F1		0.0126	Annelida	Polychaeta	Sternaspida		Sternaspis	
8	F2		0.0284	Annelida	Polychaeta	Phyllodocida Spatangoida	Nephtyidae Loveniidae	Aglaophamus	Aglaophamus dibranchis
	<u>F2</u>	2	7.2811	Echinodermata	Echinoidea	Spatangoida		Lovenia Notomastus	Lovenia subcarinata Notomastus latericens
0	F2	1	0.0222	Annelida	Polychaeta	Capitellida	Capitellidae Opheliidae		<u> </u>
[F2	<u> </u>	0.2073	Annelida	Polychaeta	Ophellida		Ophelia Alebaus	Ophelina grandis
2	G1	7		Arthropoda	Crustacea	Decapoda	Alpheidae Apseudidae		Alpheus sp.
}	G1		0.0003	Arthropoda	Crustacea	Tanaidacea	Callianassidae	Apseudes Callianassa	Apseudes sp.
 	G1	1			Crustacea	Decapoda Spionida	Cirratulidae	Cirratulus	Callianassa sp.
;	G1	3			Polychaeta		Corophiidae		Cirratulus sp. Corophium sp.
5	G1	4		Arthropoda	Crustacea Polychaota	Amphipoda Eunicida	Eunicidae	Corophium Eunice	Corophium sp.
1	G1	9			Polychaeta				Eunice indica
}	G1	1		Annelida	Polychaeta	Phyllodocida Deceneda	Giyceridae		Glycera onomichiensis
}	Gl	2			Crustacea	Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
)	G1	1	0.0245	Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus	Lepidonotus sp.

								•	· · · · · · · · · · · · · · · · · · ·
Upgra	ading of	Siu Ho Wa	n Sewage	Treatment Pla	<u>nt</u>				
Benth	nic Speci	es Record	ed In Augu	ist 2004		Order	Family	Genus	Species
ID	Station	Number		Phylum	Class Annual C	Over the second s	Pinnotheridae	Neoxenophthalmus	Neoxenophthalmus obscurus
121	G1	,3		Arthropoda	Crustacea	Decapoda	Nereidae	Nerels	Nerels sp.
122	G1	4	0.0108	Annelida	Polychaeta	Phyllodocida	Capitellidae	Nótomastus	Notomastus latericens
123	G1	20	0.0822	Annelida	Polychaeta	Capitellida	Spionidae	Prionospio	Prionospio ehlersi
124	G1	1	0.0005	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queensiandica
125	G1	2	0.0053	Annelida	Polychaeta	Spionida	Porcellanidae	Raphidopus	Raphidopus ciliatus
126	Gl	1	0.094	Arthropoda	Crustacea	Decapoda	Syllidae	Syllis	Syllis sp.
127	G1	2	0.0006	Annelida	Polychaeta	Phyliodocida		Aglaophamus	Aglaophamus dibranchis
128	G2	1	0.0027	Annelida	Polychaeta	Phyllodocida	Nephtyldae	Alpheus	Alpheus sp.
29	G2	2	0.108	Arthropoda	Crustacea	Decapoda	Alpheidae	the second s	Apseudes sp.
130	G2	1	0.0028	Arthropoda	Crustacea	Tanaidacea	Apseudidae	Apseudes	Cirratulus sp.
131	G2	3	0.0058	Annelida	Polychaeta	Splonida	Cirratulidae	Cirratulus	Eucrate haswelli
132	 G2	1	0.2476	Arthropoda	Crustacea	Decapoda	Goneplacidae	Eucrate	Eunice Indica
133	 G2	2	0.063	Annelida	Polychaeta	Eunlcida	Eunicidae	Eunice	······································
134	G2 G2	1	0.0169	Annelida	Polychaeta	Terebellida	Terebellidae	Lanice	Lanice sp.
	<u>62</u>	1	0.0645	Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	Mytilopsis sallei
135	<u> </u>	2	0.0017	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
136	<u> </u>	1	0.0017	Annelida	Polychaeta	Ophelilda	Ophellidae	Ophelia	Ophelina grandis
137		7	0.0211	Annelida	Polychaeta	Spionida	Spionidae	Prionospio	Prionospio queenslandica
138	<u>G2</u>	5	0.3759	Arthropoda	Crustacea	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
139	G2	÷	0.0002	Annelida	Polychaeta	Phyllodocida	Syllidae	Syllis	Syllis sp.
140	G2	1		Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
141	G2	1	0.0026	Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	Alpheus sp.
142	G2	7	0.0952	Annelida	Polychaeta	Terebeilida	Terebellidae	Amaeana	Amaeana sp.
143	G2	1	0.0469	Annelida	Polychaeta	Spionida	Cirratulidae	Cirratulus	Cirratulus sp.
144	G2	1		Arthropoda	Crustacea	Amphipoda	Corophiidae	Corophium	Corophium sp.
145	G2	7	0.0042	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	Eunice Indica
146	G2	8	0.1768		Polychaeta	Phyllodocida	Polynoidae	Gattyana	Gattyana sp.
147	G2	1	0.0025	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	Glycera onomichiensis
148	G2	4	0.0105	Annelida		Decapoda	Goneplacidae	Hexapus	Hexapus granuliforus
149	G2	1	0.0162	Arthropoda	Crustacea Polychaeta	Phyllodocida	Nereidae	Nereis	Nereis sp.
150	G2	1	0.0019	Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	Notomastus latericens
151	G2	7	0.0485	Annelida	Polychaeta	Splonida	Spionidae	Paraprionospio	Paraprionospio pinnata
152	G2	1	0.0084	Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Phyllodoce	Phyllodoce sp.
153	G2	1	0.0012	Annelida	and the second	Decapoda	Porcellanidae	Raphidopus	Raphidopus ciliatus
154	G2	1	0.1746	Arthropoda	Crustacea	Perciformes	Taenioididae	Trypauchen	Trypauchen vagina
155	G2	1	0.0453	Chordata	Osteichthyes	Phyliodocida	Nephtyidae	Aglaophamus	Aglaophamus dibranchis
156	G2.	2	0.0161	Annelida	Polychaeta	Decapoda	Alpheidae	Alpheus	Alpheus sp.
157	G2	3	0.4835	Arthropoda	Crustacea	and the second se	Cirratulidae	Cirratulus	Cirratulus sp.
158	G2	1	0.0032	Annelida	Polychaeta	Spionida.	Eunicidae	Eunice	Eunice indica
159	G2	3	0.0444	Annelida	Polychaeta	Eunicida			Glycera onomichiensis
160	G2	2	0.0351	Annelida	Polychaeta	Phyllodocida	Glyceridae	Glýcera	

Appendix B: Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B


Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0378B

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality		•		
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality				
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	Managei	nent			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0378B

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented