Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Monthly EM&A Report December 2018

Client : Drainage Services Department

Project : Contract No. CM 14/2016

**Environmental Team for Operational** 

Environmental Monitoring and Audit for Siu

Ho Wan Sewage Treatment Works

Report No.: : 0041/17/ED/0398B

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung

Environmental Team Leader Fugro Technical Services Limited

# Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/19-0001

30 January 2019

**Drainage Services Department** 

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Dear Sir.

RE: CONTRACT No. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (DECEMBER 2018)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for December 2018 (Report No.: 0041/17/ED/0398B) from the Environmental Team (ET), Messrs. Fugro Technical Services Ltd., received on 29 January 2019 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of Allied Environmental Consultants Ltd.

Grace M. H. KWOK

Independent Environmental Checker

GK/ri/rc

c.c. Fugro Technical Service (ET Leader)
AECOM

Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)



有境

By Post and E-mail

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

## **TABLE OF CONTENTS**

|     | EXECUTIVE SUMMARY                                                     | 1  |
|-----|-----------------------------------------------------------------------|----|
| 1.  | INTRODUCTION                                                          | 3  |
| 2.  | AIR QUALITY MONITORING                                                | 5  |
| 3.  | WATER QUALITY MONITORING                                              | 10 |
| 4.  | SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY                        | 18 |
| 5.  | CHINESE WHITE DOLPHIN MONITORING                                      | 25 |
| 6.  | ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES  | 26 |
| 7.  | ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS                | 27 |
| 8.  | SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS | 28 |
| 9.  | SUMMARY OF ENVIRONMENTAL COMPLAINTS                                   | 29 |
| 10. | FUTURE KEY ISSUES                                                     | 30 |
| 11. | CONCLUSION                                                            | 31 |

## **FIGURE**

Figure 4

| Figure 1 | Monitoring Stations of Air Sensitive Receivers                                                  |
|----------|-------------------------------------------------------------------------------------------------|
| Figure 2 | Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey |
| Figure 3 | Location of the Tide Gauge                                                                      |

**Location of Survey Areas of Chinese White Dolphins** 

**Photos of Grab Samplers** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

## **APPENDICES**

Appendix I

Appendix J

**Project Organization Chart** Appendix A Appendix B Monitoring Schedule for Present and Next Reporting Period Appendix C **Event and Action Plan for Air Quality Monitoring** Appendix D Copy of the Calibration Certificates for Water Quality Monitoring Equipment Appendix E **Results and Graphical Presentation of Water Quality Monitoring Tidal Data obtained from Ma Wan Marine Traffic Station** Appendix F Appendix G Results and Graphical Presentation of Laboratory Analysis for Sediment Quality **Monitoring and Benthic Survey** Appendix H **Benthic Survey Report** 

**Environmental Mitigation Implementation Schedule (EMIS)** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 1

## **EXECUTIVE SUMMARY**

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e.  $H_2S$  concentration monitoring, odour patrol monitoring and olfactometry analysis of  $H_2S$ ), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the seventeenth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 December 2018 to 31 December 2018 (the "reporting period").

## **Breaches of Action and Limit Levels**

Air quality monitoring (i.e.  $H_2S$  concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 18 December 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

## **Complaint Log**

There were no complaints received in relation to environmental impact during the reporting period.

## **Notifications of Summons and Successful Prosecutions**

There were no notifications of summons or prosecutions received during the reporting period.

## **Summary of the Environmental Mitigations Measures**

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

## Future Key Issues

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 2

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current  $H_2S$  measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of  $H_2S$  concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major  $H_2S$  source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and  $H_2S$  concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 3

## 1. INTRODUCTION

## 1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

## 1.2 Project Description

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Egineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

## 1.3 Project Organization

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

|              | Contact : Creating and recipitation realistics of recipitation |                 |                  |           |
|--------------|----------------------------------------------------------------|-----------------|------------------|-----------|
| Organization | Role                                                           | Contact Person  | Telephone<br>No. | Fax No.   |
| DSD          | Project<br>Proponent<br>Representative                         | Mr. Romeo Chung | 2594 7266        | 3104 6426 |
| AECOM        | Engineer<br>Representative<br>(ER)                             | Ms. Joanne Tsoi | 3922 9423        | 3922 9797 |
| AEC          | Independent<br>Environmental<br>Checker (IEC)                  | Ms. Grace Kwok  | 2815 7028        | 2815 5399 |
| FTS          | ET Leader<br>(ETL)                                             | Mr. Colin Yung  | 3565 4114        | 2450 8032 |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 4

## 1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
  - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
  - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 5

## 2. AIR QUALITY MONITORING

## 2.1 Methodology of H<sub>2</sub>S Concentration Monitoring

2.1.1 15-min H<sub>2</sub>S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H<sub>2</sub>S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H<sub>2</sub>S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H<sub>2</sub>S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

| Equipment                                     | Manufacturer        | Serial | Sensor           |
|-----------------------------------------------|---------------------|--------|------------------|
|                                               | / Model             | Number | Number           |
| Gold Film<br>Hydrogen<br>Sulphide<br>Analyzer | JEROME<br>X631 0003 | 2966   | 14-11-23-<br>R2D |

## 2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
  - i. Prevailing Weather Condition;
  - ii. Wind Direction;
  - iii. Wind Speed;
  - iv. Location where Odour is detected;
  - v. Source of Odour detected;
  - vi. Perceived intensity of Odour detected:
  - viii. Duration of Odour detected; and
  - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 6

Table 2.2 Categories of Odour Intensity

| Odour Level | Odour<br>Intensity | Classification Criteria                                                                     |  |  |
|-------------|--------------------|---------------------------------------------------------------------------------------------|--|--|
| 0           | Not detected       | No odour perceives or an odour so weak that it cannot be readily characterised or described |  |  |
| 1           | Slight             | Identifiable odour, barely noticeable                                                       |  |  |
| 2           | Noticeable         | Identifiable odour, noticeable                                                              |  |  |
| 3           | Strong             | Identifiable odour, strong                                                                  |  |  |
| 4           | Extreme            | Severe odour                                                                                |  |  |

## 2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

## 2.4 Monitoring Location

2.4.1 H<sub>2</sub>S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

## 2.5 Monitoring Frequency and Duration

The durations and frequencies of H<sub>2</sub>S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

| rance and a respective and respective and analysis and and respective |                         |                                                                           |  |  |
|-----------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|--|--|
|                                                                       | Duration                | Frequency                                                                 |  |  |
| H <sub>2</sub> S concentration<br>monitoring<br>Odour patrol          | 15 minutes              | <sup>1</sup> Weekly basis for 6 months during the initial operation stage |  |  |
| Odour sampling for olfactometry analysis                              | <sup>3</sup> 15 minutes | <sup>2</sup> First week of the odour patrol monitoring                    |  |  |

## Remark:

<sup>1)</sup> In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and  $H_2S$  concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Page 7

- 2) In case the relationship between  $H_2S$  concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
- 3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
- 2.5.1 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

## 2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in **Table 2.4**.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

| Parameter | Action                                             | Limit                                                               |  |
|-----------|----------------------------------------------------|---------------------------------------------------------------------|--|
| Odour     | One complaint received for<br>specific odour event | Two or more independent complaints receive for specific odour event |  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 8

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

## 2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

## 2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H<sub>2</sub>S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H<sub>2</sub>S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 9

## 3. WATER QUALITY MONITORING

## 3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

Table 3.1 Location of Water Quality Monitoring

|                                      | Sampling Location                    | Easting | Northing |
|--------------------------------------|--------------------------------------|---------|----------|
| Α                                    | A The Brothers, Control Station      |         | 822 500  |
| В                                    | B The Brothers, Control Station      |         | 822 440  |
| С                                    | C Siu Ho Wan Outfall, Impact Station |         | 820 180  |
| D Siu Ho Wan Outfall, Impact Station |                                      | 817 160 | 820 360  |
| E Cheung Sok, Control Station        |                                      | 819 817 | 821 655  |
| F                                    | F Cheung Sok, Control Station        |         | 821 922  |
| G                                    | G Tai Ching Chau, Control Station    |         | 822 692  |
| Н                                    | H Tai Ching Chau, Control Station    |         | 822 939  |

## 3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

| Monitoring Parameters                                                             |                                 |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------------|--|--|--|
| In-situ Measurement                                                               | Laboratory Analysis             |  |  |  |
| Dissolved oxygen (mg/L)                                                           | E. coli (cfu/100ml)             |  |  |  |
| Temperature (degree Celsius)                                                      | 5-day BOD (mg/l)                |  |  |  |
| pH value                                                                          | Suspended Solids (mg/l)         |  |  |  |
| Water depth (m)                                                                   | Ammonia as N (mg/l)             |  |  |  |
| Salinity (ppt)                                                                    | Nitrate as N (mg/l)             |  |  |  |
| Turbidity (NTU)                                                                   | Nitrite as N (mg/l)             |  |  |  |
| Current Speed (m/s)                                                               | Total inorganic nitrogen (mg/l) |  |  |  |
| Current Direction (degree magnetic) Total phosphorus (soluble and particulate) (m |                                 |  |  |  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

# 3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Table 3.3 Water Quality Monitoring and Sampling Equipment

| Table 5.5 Water Quality Monitoring and Camping Equipment                              |                                         |                                                                                |                                    |                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                                                             | Equipment                               | Model                                                                          | Range                              | Equipment Accuracy                                                                                                                                                                                                                                 |  |
| Temperature,<br>Dissolved<br>Oxygen,<br>salinity, pH,<br>Turbidity,<br>Sampling Depth | Monitoring<br>Device                    | 1) YSI 6920V2-2-M<br>Sonde<br>2) Aqua TROLL 600<br>Multiparameter<br>Sonde     | Turb: 0-1000NTU Depth: 0-61 meters | Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m |  |
| Water Depth,<br>Current Speed,<br>Current<br>Direction                                | Acoustic<br>Doppler Current<br>Profiler | RiverSurveyor M9                                                               | Water Depth: 0-80m                 | Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic                                                                                                                                        |  |
| Positioning                                                                           | DGPS                                    | Simrad MX521B Smart<br>Antenna with Simrad<br>MX610 CDU                        | NA                                 | GPS: ±1m                                                                                                                                                                                                                                           |  |
| Water Sampling                                                                        | Water Sampler                           | Aquatic Research<br>Transparent PC Vertical<br>Water Sampler 2.2L / 3L<br>/ 5L | NA                                 | NA                                                                                                                                                                                                                                                 |  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 11

Table 3.4 Equipment used for H₂S Concentration Monitoring

| Equipment                            | Manufacturer / Model                   | Serial Number |
|--------------------------------------|----------------------------------------|---------------|
| Water Quality                        | Aqua TROLL 600<br>Multiparameter Sonde | 584601        |
| Monitoring Device                    |                                        | 525120        |
| Acoustic Doppler<br>Current Profiler | RiverSurveyor M9                       | 5906          |

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD<sub>5</sub>, Suspended Solids, NH<sub>3</sub>-N, NO<sub>3</sub>-N, NO<sub>2</sub>-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

## 3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

| Analysis Description                       | Method                                                     | Reporting limits |
|--------------------------------------------|------------------------------------------------------------|------------------|
| E. coli                                    | DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test | 1 cfu/100mL      |
| 5-day Biochemical Oxygen Demand            | APHA 5210B                                                 | 1 mg/L           |
| Total Suspended Solid                      | APHA 2540D                                                 | 0.5 mg/L         |
| Ammonia as N                               | APHA 4500 NH3: G                                           | 0.005 mg/L       |
| Nitrate as N                               | APHA 4500 NO3: I                                           | 0.005 mg/L       |
| Nitrite as N                               | APHA 4500 NO2 B&H                                          | 0.005 mg/L       |
| Total Inorganic Nitrogen                   | By Calculation                                             | 0.01 mg/L        |
| Total phosphorus (soluble and particulate) | APHA 4500 P: J                                             | 0.01 mg/L        |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 12

## 3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

## 3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

#### 3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

## 3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 18 December 2018. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.** 

Table 3.6 Summary of In-situ Monitoring Results (Mid-ebb)

| Monitoring<br>Station | Water<br>Depth<br>(m) | Sam<br>g De<br>(m) | • | Dissolved<br>oxygen<br>(mg/L) | Temperature<br>(degree<br>Celsius) | pН   | Salinity<br>(ppt) | Turbidity<br>(NTU) | Current<br>speed<br>(m/s) | Current<br>velocity<br>(degree<br>magnetic) |
|-----------------------|-----------------------|--------------------|---|-------------------------------|------------------------------------|------|-------------------|--------------------|---------------------------|---------------------------------------------|
| Α                     | 17                    | S                  | 1 | 6.33                          | 21.88                              | 8.45 | 35.65             | 1.7                | 0.16                      | 152.6                                       |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Page 13

| Monitoring<br>Station | Water<br>Depth<br>(m) | Sam<br>g De<br>(m) |          | Dissolved<br>oxygen<br>(mg/L) | Temperature<br>(degree<br>Celsius) | рН     | Salinity<br>(ppt) | Turbidity<br>(NTU) | Current<br>speed<br>(m/s) | Current<br>velocity<br>(degree<br>magnetic) |
|-----------------------|-----------------------|--------------------|----------|-------------------------------|------------------------------------|--------|-------------------|--------------------|---------------------------|---------------------------------------------|
|                       |                       | S                  | 1        | 6.33                          | 21.89                              | 8.56   | 35.65             | 1.6                | 0.19                      | 254.2                                       |
| ļ                     |                       | M                  | 8.5      | 6.31                          | 21.89                              | 8.46   | 35.45             | 2.6                | 0.19                      | 177.7                                       |
| ļ                     |                       | M                  | 8.5      | 6.30                          | 21.90                              | 8.56   | 35.56             | 2.7                | 0.34                      | 188.5                                       |
|                       |                       | В                  | 16       | 6.41                          | 21.90                              | 8.48   | 35.46             | 3.4                | 0.57                      | 209.7                                       |
|                       |                       | В                  | 16       | 6.41                          | 21.90                              | 8.56   | 35.45             | 3.6                | 0.56                      | 203.2                                       |
|                       |                       | S                  | 1        | 6.51                          | 21.89                              | 8.56   | 35.43             | 4.0                | 0.30                      | 109.1                                       |
|                       |                       | S                  | 1        | 6.50                          | 21.93                              | 8.53   | 35.91             | 4.0                | 0.21                      | 109.1                                       |
| ļ                     |                       | M                  | 7        | 6.54                          | 21.93                              | 8.57   | 35.85             | 3.9                | 0.22                      | 206.4                                       |
| В                     | 14                    | M                  | 7        | 6.56                          | 21.93                              | 8.53   | 35.82             | 3.8                | 0.22                      | 133.7                                       |
|                       |                       | В                  | 13       | 6.54                          | 21.94                              | 8.57   | 35.84             | 3.5                | 0.23                      | 207.0                                       |
|                       |                       | В                  | 13       | 6.52                          | 21.98                              | 8.53   | 35.98             | 3.3                | 0.29                      | 207.0                                       |
|                       |                       | S                  | 1        | 6.56                          | 21.76                              | 8.45   | 35.96             | 1.4                | 0.23                      | 186.4                                       |
|                       |                       | S                  | 1        | 6.57                          | 21.79                              | 8.42   | 35.84             | 1.4                | 0.15                      | 227.3                                       |
| ļ                     |                       | M                  | 6        | 6.57                          | 21.82                              | 8.41   | 35.82             | 2.4                | 0.13                      | 172.1                                       |
| С                     | 12                    | M                  | 6        | 6.59                          | 21.83                              | 8.39   | 35.93             | 2.5                | 0.13                      | 166.7                                       |
|                       |                       | В                  | 11       | 6.55                          | 21.84                              | 8.38   | 35.97             | 2.5                | 0.17                      | 212.3                                       |
| ļ                     |                       | В                  | 11       | 6.52                          | 21.85                              | 8.37   | 35.99             | 2.3                | 0.03                      | 224.4                                       |
|                       |                       | S                  | 1        | 6.24                          | 21.78                              | 8.29   | 35.35             | 2.4                | 0.12                      | 135.3                                       |
| ļ                     |                       | S                  | 1        | 6.23                          | 21.85                              | 8.24   | 35.89             | 2.1                | 0.17                      | 109.6                                       |
|                       |                       | M                  | 6.5      | 6.32                          | 21.86                              | 8.27   | 35.87             | 2.5                | 0.17                      | 158.9                                       |
| D                     | 13                    | M                  | 6.5      | 6.30                          | 21.88                              | 8.24   | 35.95             | 2.4                | 0.15                      | 152.4                                       |
| ļ                     |                       | В                  | 12       | 6.38                          | 21.87                              | 8.27   | 36.08             | 2.8                | 0.19                      | 208.5                                       |
|                       |                       | В                  | 12       | 6.37                          | 21.87                              | 8.25   | 36.06             | 2.5                | 0.19                      | 215.1                                       |
|                       |                       | S                  | 1        | 6.53                          | 21.74                              | 8.25   | 36.65             | 2.8                | 0.10                      | 122.3                                       |
|                       |                       | S                  | 1        | 6.51                          | 21.75                              | 8.27   | 36.65             | 2.7                | 0.19                      | 152.5                                       |
| ļ                     |                       | M                  | 8        | 6.55                          | 21.79                              | 8.25   | 36.75             | 2.6                | 0.14                      | 195.2                                       |
| Е                     | 16                    | M                  | 8        | 6.54                          | 21.79                              | 8.28   | 36.76             | 2.5                | 0.20                      | 195.2                                       |
| ļ                     |                       | В                  | 15       | 6.50                          | 21.82                              | 8.28   | 36.75             | 2.5                | 0.17                      | 203.2                                       |
| ļ                     |                       | В                  | 15       | 6.51                          | 21.83                              | 8.28   | 36.73             | 2.5                | 0.13                      | 220.3                                       |
|                       |                       | S                  | 1        | 5.80                          | 21.73                              | 8.41   | 36.43             | 3.2                | 0.17                      | 135.0                                       |
| ļ                     |                       | S                  | 1        | 5.81                          | 21.75                              | 8.39   | 36.43             | 3.0                | 0.17                      | 134.2                                       |
|                       |                       | M                  | 11.<br>5 | 5.80                          | 21.78                              | 8.38   | 36.43             | 3.5                | 0.20                      | 173.0                                       |
| F                     | 23                    | М                  | 11.<br>5 | 5.76                          | 21.79                              | 8.35   | 36.38             | 3.2                | 0.25                      | 172.2                                       |
|                       |                       | В                  | 22       | 5.70                          | 21.81                              | 8.36   | 36.47             | 3.1                | 0.15                      | 183.5                                       |
| ļ                     |                       | В                  | 22       | 5.68                          | 21.81                              | 8.35   | 36.48             | 2.8                | 0.16                      | 189.6                                       |
|                       |                       | S                  | 1        | 5.84                          | 21.75                              | 8.38   | 36.19             | 3.3                | 0.14                      | 136.4                                       |
| ļ                     |                       | S                  | 1        | 5.85                          | 21.75                              | 8.39   | 36.28             | 3.2                | 0.20                      | 141.4                                       |
| ļ                     |                       | M                  | 11       | 5.82                          | 21.78                              | 8.40   | 36.25             | 3.9                | 0.21                      | 175.5                                       |
| G                     | 22                    | M                  | 11       | 5.81                          | 21.80                              | 8.38   | 36.25             | 3.7                | 0.24                      | 189.1                                       |
|                       |                       | В                  | 21       | 5.85                          | 21.81                              | 8.37   | 36.34             | 3.9                | 0.24                      | 240.1                                       |
|                       |                       | В                  | 21       | 5.84                          | 21.80                              | 8.39   | 36.44             | 4.1                | 0.32                      | 229.2                                       |
|                       |                       | S                  | 1        | 6.49                          | 21.80                              | 8.37   | 36.27             | 3.7                | 0.37                      | 116.7                                       |
|                       | I                     | S                  | 1        | 6.47                          | 21.81                              | 8.39   | 36.30             | 3.9                | 0.23                      | 151.5                                       |
|                       |                       |                    |          |                               |                                    | . 0.00 | 00.00             | J.3                | 0.20                      | 101.0                                       |
|                       |                       |                    |          |                               |                                    |        |                   |                    |                           |                                             |
| Н                     | 19                    | М                  | 9.5      | 6.54                          | 21.82                              | 8.40   | 36.27             | 4.6                | 0.19                      | 150.7                                       |
| Н                     | 19                    |                    |          |                               |                                    |        |                   |                    |                           |                                             |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 14

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

| Station         Depth (m)         Depth (m)         oxygen (mg/L)         (degree Celsius)         (ppt)         (ppt)         (ept)         (ppt)         (ept)         (ept) | 2.1<br>2.0<br>2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2<br>4.1 | Current speed (m/s)  0.23  0.21  0.45  0.42  0.49  0.45  0.18 | Current<br>velocity<br>(degree<br>magnetic)<br>209.1<br>204.0<br>218.1<br>211.2<br>218.6<br>221.6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| A (m) (m) (mg/L) Celsius)  S 1 6.50 20.53 8.66 35.93 S 1 6.48 20.67 8.66 35.79 M 7.5 6.53 20.74 8.66 35.80 M 7.5 6.50 20.78 8.65 35.67 B 14 6.53 20.82 8.65 35.65 B 14 6.54 20.84 8.65 35.68 S 1 6.34 21.12 8.64 35.58 S 1 6.33 21.12 8.64 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1<br>2.0<br>2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2        | 0.23<br>0.21<br>0.45<br>0.42<br>0.49<br>0.45<br>0.18          | (degree magnetic) 209.1 204.0 218.1 211.2 218.6                                                   |
| M     (m)     (mg/L)     Celsius)       A     S     1     6.50     20.53     8.66     35.93       S     1     6.48     20.67     8.66     35.79       M     7.5     6.53     20.74     8.66     35.80       M     7.5     6.50     20.78     8.65     35.67       B     14     6.53     20.82     8.65     35.65       B     14     6.54     20.84     8.65     35.68       S     1     6.34     21.12     8.64     35.58       S     1     6.33     21.12     8.64     35.67       M     7     6.31     21.13     8.64     35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0<br>2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2               | 0.23<br>0.21<br>0.45<br>0.42<br>0.49<br>0.45<br>0.18          | magnetic) 209.1 204.0 218.1 211.2 218.6                                                           |
| A 15 S 1 6.50 20.53 8.66 35.93 S 1 6.48 20.67 8.66 35.79 M 7.5 6.53 20.74 8.66 35.80 M 7.5 6.50 20.78 8.65 35.67 B 14 6.53 20.82 8.65 35.65 B 14 6.54 20.84 8.65 35.68 S 1 6.34 21.12 8.64 35.58 S 1 6.33 21.12 8.64 35.67 M 7 6.31 21.13 8.64 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0<br>2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2               | 0.21<br>0.45<br>0.42<br>0.49<br>0.45<br>0.18                  | 209.1<br>204.0<br>218.1<br>211.2<br>218.6                                                         |
| A 15 S 1 6.48 20.67 8.66 35.79 M 7.5 6.53 20.74 8.66 35.80 M 7.5 6.50 20.78 8.65 35.67 B 14 6.53 20.82 8.65 35.65 B 14 6.54 20.84 8.65 35.68 S 1 6.34 21.12 8.64 35.58 S 1 6.33 21.12 8.64 35.67 M 7 6.31 21.13 8.64 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0<br>2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2               | 0.21<br>0.45<br>0.42<br>0.49<br>0.45<br>0.18                  | 209.1<br>204.0<br>218.1<br>211.2<br>218.6                                                         |
| A 15 S 1 6.48 20.67 8.66 35.79 M 7.5 6.53 20.74 8.66 35.80 M 7.5 6.50 20.78 8.65 35.67 B 14 6.53 20.82 8.65 35.65 B 14 6.54 20.84 8.65 35.68 S 1 6.34 21.12 8.64 35.58 S 1 6.33 21.12 8.64 35.67 M 7 6.31 21.13 8.64 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5<br>2.4<br>3.4<br>3.5<br>4.1<br>4.2                      | 0.45<br>0.42<br>0.49<br>0.45<br>0.18                          | 218.1<br>211.2<br>218.6                                                                           |
| M     7.5     6.50     20.78     8.65     35.67       B     14     6.53     20.82     8.65     35.65       B     14     6.54     20.84     8.65     35.68       S     1     6.34     21.12     8.64     35.58       S     1     6.33     21.12     8.64     35.67       M     7     6.31     21.13     8.64     35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4<br>3.4<br>3.5<br>4.1<br>4.2                             | 0.42<br>0.49<br>0.45<br>0.18                                  | 211.2<br>218.6                                                                                    |
| M     7.5     6.50     20.78     8.65     35.67       B     14     6.53     20.82     8.65     35.65       B     14     6.54     20.84     8.65     35.68       S     1     6.34     21.12     8.64     35.58       S     1     6.33     21.12     8.64     35.67       M     7     6.31     21.13     8.64     35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4<br>3.5<br>4.1<br>4.2                                    | 0.49<br>0.45<br>0.18                                          | 218.6                                                                                             |
| B     14     6.54     20.84     8.65     35.68       S     1     6.34     21.12     8.64     35.58       S     1     6.33     21.12     8.64     35.67       M     7     6.31     21.13     8.64     35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5<br>4.1<br>4.2                                           | 0.45<br>0.18                                                  |                                                                                                   |
| B     14     6.54     20.84     8.65     35.68       S     1     6.34     21.12     8.64     35.58       S     1     6.33     21.12     8.64     35.67       M     7     6.31     21.13     8.64     35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1<br>4.2                                                  | 0.18                                                          | 221.6                                                                                             |
| S 1 6.33 21.12 8.64 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.2                                                         |                                                               |                                                                                                   |
| M 7 631 2113 864 3568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             | 0.00                                                          | 238.3                                                                                             |
| M 7 6.31 21.13 8.64 35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>A</i> 1                                                  | 0.20                                                          | 239.2                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1                                                         | 0.31                                                          | 240.0                                                                                             |
| B 14 M 7 6.32 21.13 8.64 35.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                         | 0.32                                                          | 252.6                                                                                             |
| B 13 6.41 21.13 8.64 35.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                                         | 0.26                                                          | 245.5                                                                                             |
| B 13 6.44 21.14 8.63 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2                                                         | 0.26                                                          | 262.8                                                                                             |
| S 1 6.49 21.16 8.69 35.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4                                                         | 0.12                                                          | 211.7                                                                                             |
| S 1 6.48 21.16 8.69 35.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                                                         | 0.13                                                          | 239.2                                                                                             |
| C 12 M 6 6.55 21.16 8.69 35.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                         | 0.17                                                          | 203.7                                                                                             |
| C 12 M 6 6.55 21.16 8.69 35.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                         | 0.17                                                          | 185.8                                                                                             |
| B 11 6.53 21.17 8.68 35.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                         | 0.37                                                          | 225.3                                                                                             |
| B 11 6.52 21.17 8.68 35.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                                         | 0.41                                                          | 241.1                                                                                             |
| S 1 6.54 21.12 8.79 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2                                                         | 0.17                                                          | 188.9                                                                                             |
| S 1 6.54 21.12 8.78 35.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1                                                         | 0.16                                                          | 172.5                                                                                             |
| M 7 6.55 21.13 8.77 35.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.8                                                         | 0.36                                                          | 227.8                                                                                             |
| D 14 M 7 6.53 21.14 8.76 35.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6                                                         | 0.32                                                          | 229.2                                                                                             |
| B 13 6.54 21.14 8.75 35.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                                                         | 0.56                                                          | 205.3                                                                                             |
| B 13 6.54 21.14 8.75 35.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8                                                         | 0.62                                                          | 208.2                                                                                             |
| S 1 6.26 21.13 8.79 35.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6                                                         | 0.17                                                          | 193.0                                                                                             |
| S 1 6.25 21.14 8.78 35.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6                                                         | 0.17                                                          | 200.2                                                                                             |
| E 14 M 7 6.29 21.15 8.77 35.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0                                                         | 0.40                                                          | 216.5                                                                                             |
| M 7 6.28 21.17 8.76 35.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                         | 0.40                                                          | 207.1                                                                                             |
| B 13 6.41 21.18 8.75 35.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                                                         | 0.37                                                          | 235.8                                                                                             |
| B 13 6.41 21.19 8.75 35.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                                                         | 0.37                                                          | 235.8                                                                                             |
| S 1 6.52 21.48 8.93 35.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3                                                         | 0.13                                                          | 226.7                                                                                             |
| S 1 6.52 21.45 8.90 35.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3                                                         | 0.14                                                          | 238.6                                                                                             |
| F 18 M 9 6.55 21.45 8.87 35.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.4                                                         | 0.25                                                          | 231.1                                                                                             |
| M 9 6.54 21.44 8.85 35.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3                                                         | 0.31                                                          | 231.5                                                                                             |
| B 17 6.55 21.42 8.83 35.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                                         | 0.25                                                          | 224.3                                                                                             |
| B 17 6.53 21.40 8.82 35.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                                                         | 0.29                                                          | 238.6                                                                                             |
| S 1 5.79 21.60 8.73 35.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                                                         | 0.23                                                          | 120.9                                                                                             |
| S 1 5.81 21.57 8.71 35.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0                                                         | 0.24                                                          | 115.5                                                                                             |
| G 13 M 6.5 5.78 21.56 8.70 35.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                                         | 0.33                                                          | 186.3                                                                                             |
| M 6.5 5.77 21.51 8.69 35.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8                                                         | 0.37                                                          | 193.3                                                                                             |
| B 12 5.72 21.50 8.67 35.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1                                                         | 0.38                                                          | 176.3                                                                                             |
| B 12 5.68 21.47 8.67 35.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2                                                         | 0.38                                                          | 178.4                                                                                             |
| S 1 5.84 21.43 8.65 35.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5                                                         | 0.23                                                          | 157.0                                                                                             |
| S 1 5.84 21.41 8.65 35.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5                                                         | 0.22                                                          | 175.2                                                                                             |
| H 19 M 9.5 5.82 21.39 8.65 35.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8                                                         | 0.34                                                          | 138.1                                                                                             |
| M 9.5 5.80 21.39 8.65 35.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                                                         | 0.36                                                          | 137.5                                                                                             |
| B 18 5.88 21.38 8.65 35.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.4                                                         | 0.49                                                          | 152.9                                                                                             |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 15

| Monitoring<br>Station | Water<br>Depth<br>(m) | Samp<br>Depth<br>(m) | _  | Dissolved<br>oxygen<br>(mg/L) | Temperature<br>(degree<br>Celsius) | рН   | Salinity<br>(ppt) | Turbidity<br>(NTU) | Current<br>speed<br>(m/s) | Current<br>velocity<br>(degree<br>magnetic) |
|-----------------------|-----------------------|----------------------|----|-------------------------------|------------------------------------|------|-------------------|--------------------|---------------------------|---------------------------------------------|
|                       |                       | В                    | 18 | 5.89                          | 21.38                              | 8.64 | 35.24             | 4.5                | 0.53                      | 155.3                                       |

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix E**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

| Monitoring | Water | Sam | npling | TSS    | NH <sub>3</sub> | NO <sub>2</sub> | $NO_3$ | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------|-------|-----|--------|--------|-----------------|-----------------|--------|--------|-------------|---------|------------------|
| Station    | Depth | Dep | th     | (mg/L) | as N            | as N            | as N   | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|            | (m)   | (m) |        |        | (mg/L)          | (mg/L)          | (mg/L) |        |             |         |                  |
|            |       | S   | 1      | 2.5    | 0.086           | 0.013           | 0.075  | 0.174  | 12          | 0.03    | <1.0             |
|            |       | S   | 1      | 2.9    | 0.093           | 0.017           | 0.066  | 0.176  | 21          | 0.03    | <1.0             |
| Α          | 17    | М   | 8.5    | 3.9    | 0.047           | 0.015           | 0.070  | 0.133  | 10          | 0.03    | <1.0             |
| A          | 17    | М   | 8.5    | 4.3    | 0.044           | 0.014           | 0.078  | 0.136  | 7           | 0.03    | <1.0             |
|            |       | В   | 16     | 3.7    | 0.075           | 0.015           | 0.064  | 0.154  | 1           | 0.03    | <1.0             |
|            |       | В   | 16     | 4.1    | 0.052           | 0.014           | 0.075  | 0.141  | ND          | 0.03    | <1.0             |
|            |       | S   | 1      | 2.1    | 0.051           | 0.016           | 0.069  | 0.136  | 8           | 0.03    | <1.0             |
|            |       | S   | 1      | 2.2    | 0.046           | 0.015           | 0.087  | 0.148  | 12          | 0.03    | <1.0             |
| В          | 14    | М   | 7      | 4.0    | 0.048           | 0.016           | 0.077  | 0.141  | 18          | 0.04    | <1.0             |
| Ь          | 14    | М   | 7      | 4.4    | 0.056           | 0.018           | 0.079  | 0.152  | 31          | 0.03    | <1.0             |
|            |       | В   | 13     | 4.5    | 0.045           | 0.013           | 0.086  | 0.143  | 17          | 0.03    | <1.0             |
|            |       | В   | 13     | 4.6    | 0.045           | 0.012           | 0.090  | 0.148  | 25          | 0.03    | <1.0             |
|            |       | S   | 1      | 2.7    | 0.134           | 0.016           | 0.078  | 0.229  | 5           | 0.03    | <1.0             |
|            |       | S   | 1      | 2.9    | 0.141           | 0.015           | 0.073  | 0.229  | 8           | 0.02    | <1.0             |
| С          | 12    | М   | 6      | 3.1    | 0.041           | 0.016           | 0.069  | 0.126  | 10          | 0.03    | <1.0             |
| C          | 12    | М   | 6      | 3.2    | 0.046           | 0.014           | 0.068  | 0.129  | 6           | 0.03    | <1.0             |
|            |       | В   | 11     | 4.1    | 0.045           | 0.016           | 0.067  | 0.128  | 2           | 0.03    | <1.0             |
|            |       | В   | 11     | 4.5    | 0.061           | 0.016           | 0.065  | 0.142  | 3           | 0.03    | <1.0             |
|            |       | S   | 1      | 3.5    | 0.047           | 0.014           | 0.066  | 0.127  | 10          | 0.03    | <1.0             |
|            |       | S   | 1      | 3.4    | 0.047           | 0.016           | 0.066  | 0.130  | 16          | 0.03    | <1.0             |
|            | 13    | М   | 6.5    | 4.2    | 0.054           | 0.015           | 0.067  | 0.136  | 2           | 0.03    | <1.0             |
| D          | 13    | М   | 6.5    | 4.1    | 0.048           | 0.017           | 0.070  | 0.135  | ND          | 0.03    | <1.0             |
|            |       | В   | 12     | 6.2    | 0.050           | 0.016           | 0.063  | 0.129  | 5           | 0.03    | <1.0             |
|            |       | В   | 12     | 6.3    | 0.047           | 0.016           | 0.063  | 0.126  | 8           | 0.03    | <1.0             |
|            |       | S   | 1      | 2.6    | 0.061           | 0.014           | 0.060  | 0.134  | 9           | 0.03    | <1.0             |
|            |       | S   | 1      | 3.1    | 0.082           | 0.015           | 0.062  | 0.158  | 14          | 0.03    | <1.0             |
| Е          | 16    | М   | 8      | 3.0    | 0.056           | 0.016           | 0.064  | 0.137  | 8           | 0.03    | 1.4              |
| <u> </u>   | 10    | М   | 8      | 3.1    | 0.059           | 0.014           | 0.060  | 0.133  | 13          | 0.03    | <1.0             |
|            |       | В   | 15     | 3.1    | 0.103           | 0.015           | 0.066  | 0.184  | 12          | 0.03    | 2.9              |
|            |       | В   | 15     | 3.5    | 0.091           | 0.016           | 0.069  | 0.175  | 19          | 0.03    | 1.9              |
|            |       | S   | 1      | 2.4    | 0.083           | 0.015           | 0.064  | 0.162  | 10          | 0.03    | 1.6              |
|            |       | S   | 1      | 2.2    | 0.094           | 0.018           | 0.066  | 0.178  | 16          | 0.04    | 2.2              |
| F          | 22    | М   | 11.5   | 2.3    | 0.131           | 0.016           | 0.075  | 0.222  | 12          | 0.04    | 1.3              |
| F          | 23    | М   | 11.5   | 2.4    | 0.134           | 0.015           | 0.071  | 0.221  | 8           | 0.03    | <1.0             |
|            |       | В   | 22     | 2.4    | 0.124           | 0.015           | 0.076  | 0.216  | 13          | 0.03    | 1.6              |
|            |       | В   | 22     | 2.1    | 0.135           | 0.018           | 0.067  | 0.219  | 19          | 0.03    | 1.5              |
| 0          | 22    | S   | 1      | 1.9    | 0.056           | 0.014           | 0.061  | 0.131  | 27          | 0.03    | 1.9              |
| G          | 22    | S   | 1      | 1.7    | 0.061           | 0.016           | 0.066  | 0.143  | 15          | 0.03    | 1.5              |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 16

| Monitoring | Water | San | npling | TSS    | NH <sub>3</sub> | NO <sub>2</sub> | NO <sub>3</sub> | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------|-------|-----|--------|--------|-----------------|-----------------|-----------------|--------|-------------|---------|------------------|
| Station    | Depth | Dep | th     | (mg/L) | as N            | as N            | as N            | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|            | (m)   | (m) |        |        | (mg/L)          | (mg/L)          | (mg/L)          |        |             |         |                  |
|            |       | М   | 11     | 2.3    | 0.101           | 0.014           | 0.058           | 0.173  | 3600        | 0.03    | 1.9              |
|            |       | М   | 11     | 2.1    | 0.096           | 0.014           | 0.064           | 0.174  | 2100        | 0.03    | 2.6              |
|            |       | В   | 21     | 2.7    | 0.094           | 0.017           | 0.057           | 0.168  | 11          | 0.03    | <1.0             |
|            |       | В   | 21     | 3.3    | 0.110           | 0.013           | 0.062           | 0.185  | 6           | 0.03    | <1.0             |
|            |       | S   | 1      | 2.4    | 0.106           | 0.015           | 0.061           | 0.182  | 27          | 0.04    | 1.6              |
|            |       | S   | 1      | 2.5    | 0.113           | 0.014           | 0.061           | 0.188  | 43          | 0.03    | 1.0              |
| Н          | 19    | М   | 9.5    | 2.8    | 0.071           | 0.016           | 0.063           | 0.150  | 30          | 0.03    | <1.0             |
| П          | 19    | М   | 9.5    | 3.0    | 0.064           | 0.017           | 0.055           | 0.136  | 51          | 0.03    | 2.3              |
|            |       | В   | 18     | 4.5    | 0.097           | 0.014           | 0.063           | 0.175  | 32          | 0.03    | <1.0             |
|            |       | В   | 18     | 4.2    | 0.085           | 0.016           | 0.055           | 0.157  | 44          | 0.03    | 1.3              |

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

| Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring | Water | Sam | pling | TSS    | NH <sub>3</sub> | NO <sub>2</sub> | NO <sub>3</sub> | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----|-------|--------|-----------------|-----------------|-----------------|--------|-------------|---------|------------------|
| Mathematical Color   Mathema | Station    | Depth | Dep | th    | (mg/L) | as N            | as N            | as N            | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
| A      S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | (m)   | (m) |       | , ,    | (mg/L)          | (mg/L)          | (mg/L)          | , ,    |             |         | , ,              |
| A 15   M   7.5   3.5   0.085   0.014   0.073   0.172   3   0.03   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       | S   | 1     | 3.8    |                 |                 |                 | 0.124  | 1           | 0.03    | 1.4              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       | S   | 1     | 4.2    | 0.041           | 0.017           | 0.070           | 0.129  | ND          | 0.03    | <1.0             |
| B 14 4.0 0.082 0.015 0.066 0.162 1 0.03 <1.0 B 14 4.0 0.082 0.015 0.066 0.162 1 0.03 <1.0 B 14 4.7 0.062 0.014 0.057 0.133 25 0.03 <1.0 S 1 4.7 0.062 0.014 0.057 0.133 25 0.03 <1.0 M 7 4.9 0.068 0.017 0.051 0.135 36 0.03 <1.0 M 7 4.9 0.100 0.021 0.054 0.175 190 0.03 <1.0 M 7 5.0 0.084 0.022 0.049 0.155 280 0.03 <1.0 B 13 6.3 0.067 0.017 0.058 0.143 24 0.03 <1.0 B 13 6.1 0.066 0.014 0.066 0.147 17 0.03 <1.0 S 1 2.9 0.118 0.016 0.053 0.187 210 0.04 <1.0 S 1 2.9 0.118 0.016 0.053 0.187 220 0.04 <1.0 M 6 3.3 0.152 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.118 0.016 0.053 0.187 220 0.04 <1.0 B 11 3.7 0.126 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.6 0.018 0.015 0.055 0.187 190 0.04 <1.0 B 11 3.5 0.064 0.013 0.054 0.128 8 0.03 <1.0 B 13 5.5 0.066 0.014 0.066 0.137 7 0.03 <1.0 B 13 5.6 0.064 0.015 0.058 0.137 7 0.03 <1.0 B 13 5.5 0.066 0.014 0.056 0.187 5 0.03 <1.0 B 13 5.5 0.066 0.014 0.056 0.187 5 0.03 1.0 B 13 5.5 0.066 0.014 0.015 0.058 0.137 7 0.03 <1.0 B 13 5.5 0.066 0.014 0.056 0.187 5 0.03 1.0 B 13 5.5 0.066 0.014 0.056 0.187 5 0.03 1.0 B 13 5.5 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.5 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0 B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0                                                                                                                                                                                                                                                                                                               | _          | 15    | М   | 7.5   | 3.5    | 0.085           | 0.014           | 0.073           | 0.172  |             | 0.03    |                  |
| B 14 3.9 0.088 0.015 0.058 0.161 2 0.03 <1.0  S 1 4.7 0.062 0.014 0.057 0.133 25 0.03 <1.0  S 1 4.9 0.068 0.017 0.051 0.135 36 0.03 <1.0  M 7 4.9 0.100 0.021 0.054 0.175 190 0.03 <1.0  M 7 5.0 0.084 0.022 0.049 0.155 280 0.03 <1.0  B 13 6.3 0.067 0.017 0.058 0.143 24 0.03 <1.0  B 13 6.1 0.066 0.014 0.066 0.147 17 0.03 <1.0  S 1 2.9 0.118 0.016 0.053 0.187 210 0.04 <1.0  M 6 3.1 0.169 0.015 0.053 0.187 210 0.04 <1.0  M 6 3.1 0.169 0.015 0.057 0.241 260 0.03 <1.0  M 6 3.3 0.152 0.015 0.059 0.206 160 0.04 <1.0  B 11 3.7 0.126 0.015 0.059 0.206 160 0.04 <1.0  B 11 3.7 0.126 0.015 0.059 0.200 250 0.04 <1.0  S 1 3.9 0.067 0.015 0.059 0.200 250 0.04 <1.0  B 13 3.5.1 0.064 0.014 0.060 0.137 17 0.03 <1.0  M 7 4.2 0.060 0.014 0.060 0.137 17 0.03 <1.0  B 13 5.6 0.064 0.014 0.060 0.137 17 0.03 <1.0  B 13 5.6 0.064 0.015 0.059 0.200 120 0.04 <1.0  B 13 5.6 0.064 0.015 0.059 0.125 14 0.03 <1.0  B 13 5.5 0.064 0.016 0.050 0.130 12 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.173 5 0.03 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.173 5 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.173 5 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.173 5 0.03 <1.0  B 13 5.5 0.066 0.014 0.061 0.140 5 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.143 8 0.03 <1.0  B 13 5.5 0.066 0.014 0.061 0.143 8 0.03 <1.0  B 13 5.5 0.066 0.014 0.066 0.136 14 0.03 <1.0  B 13 5.5 0.066 0.014 0.066 0.136 14 0.03 <1.0  B 13 5.5 0.066 0.014 0.066 0.136 14 0.03 <1.0  S 1 4.6 0.066 0.017 0.065 0.148 1 0.03 <1.0  M 9 5.7 0.064 0.015 0.065 0.149 6 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A          | 15    |     | 7.5   |        |                 | 0.016           | 0.063           |        | 5           |         |                  |
| B  14    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |     |       |        | 0.082           | 0.015           | 0.066           | 0.162  |             | 0.03    |                  |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |     | 14    | 3.9    | 0.088           | 0.015           | 0.058           | 0.161  |             | 0.03    | <1.0             |
| B 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| C    No.   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R          | 11    |     |       |        |                 |                 |                 |        |             |         |                  |
| C         B         13         6.1         0.066         0.014         0.066         0.147         17         0.03         <1.0           C         8         1         3.0         0.146         0.014         0.064         0.223         260         0.04         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D          | 14    |     |       |        |                 |                 |                 |        |             |         |                  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |     |       | 6.3    | 0.067           | 0.017           | 0.058           |        |             | 0.03    |                  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |     | 13    |        |                 |                 |                 |        |             |         |                  |
| C         12         M         6         3.1         0.169         0.015         0.057         0.241         260         0.03         <1.0           M         6         3.3         0.152         0.015         0.059         0.226         160         0.04         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       | S   | 1     |        |                 |                 |                 |        |             |         |                  |
| Table   Tabl |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| Harmonian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C          | 12    |     | 6     | 3.1    | 0.169           | 0.015           | 0.057           | 0.241  | 260         | 0.03    | <1.0             |
| B 11 3.7 0.126 0.015 0.059 0.200 250 0.04 <1.0    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 12    |     |       |        |                 | 0.015           |                 |        |             | 0.04    |                  |
| Parison Pari |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| B 13 5.5 0.064 0.012 0.068 0.144 6 0.03 <1.0  M 7 5.3 0.066 0.014 0.050 0.137 17 0.03 <1.0  S 1 4.4 0.099 0.013 0.061 0.173 5 0.03 <1.0  M 7 5.3 0.066 0.014 0.060 0.137 7 0.03 <1.0  M 7 5.3 0.066 0.014 0.056 0.167 3 0.03 <1.0  M 7 5.3 0.066 0.014 0.015 0.068 0.144 6 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.140 5 0.03 <1.0  B 13 5.5 0.065 0.015 0.062 0.143 8 0.03 <1.0  B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0  S 1 4.5 0.061 0.016 0.050 0.130 12 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.140 5 0.03 <1.0  B 13 5.5 0.065 0.015 0.062 0.143 8 0.03 <1.0  S 1 4.5 0.061 0.016 0.051 0.128 2 0.03 <1.0  M 9 5.5 0.071 0.015 0.065 0.148 1 0.03 <1.0  M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |     |       |        | 0.126           |                 |                 |        |             |         |                  |
| B       14       M       7       3.7       0.063       0.014       0.060       0.137       17       0.03       <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| E    M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| E    M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D          | 1/    |     |       |        |                 |                 |                 |        |             |         |                  |
| E         13         5.6         0.064         0.016         0.050         0.130         12         0.03         <1.0           S         1         4.5         0.097         0.014         0.056         0.167         3         0.03         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 17    |     |       |        |                 |                 |                 |        |             |         |                  |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       | В   | 13    |        |                 |                 |                 |        |             |         |                  |
| E       14       M       7       5.1       0.064       0.012       0.068       0.144       6       0.03       <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       | S   |       |        |                 |                 |                 |        |             |         |                  |
| F 18 M 7 5.3 0.066 0.014 0.061 0.140 5 0.03 <1.0  B 13 5.5 0.065 0.015 0.062 0.143 8 0.03 <1.0  B 13 5.9 0.066 0.014 0.056 0.136 14 0.03 1.0  S 1 4.5 0.061 0.016 0.051 0.128 2 0.03 <1.0  S 1 4.6 0.066 0.017 0.065 0.148 1 0.03 <1.0  M 9 5.5 0.071 0.015 0.063 0.149 6 0.03 <1.0  M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| F 18 M 9 5.5 0.064 0.013 0.061 0.149 5 0.03 <1.0  M 7 5.3 0.066 0.014 0.061 0.140 5 0.03 <1.0  B 13 5.5 0.065 0.015 0.062 0.143 8 0.03 <1.0  S 1 4.5 0.066 0.014 0.056 0.136 14 0.03 1.0  S 1 4.6 0.066 0.017 0.065 0.148 1 0.03 <1.0  M 9 5.5 0.071 0.015 0.063 0.149 6 0.03 <1.0  M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | 11    |     |       |        |                 |                 |                 |        |             |         |                  |
| B     13     5.9     0.066     0.014     0.056     0.136     14     0.03     1.0       S     1     4.5     0.061     0.016     0.051     0.128     2     0.03     <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>   | 14    |     |       |        |                 |                 |                 |        |             |         |                  |
| F 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| F 18 S 1 4.6 0.066 0.017 0.065 0.148 1 0.03 <1.0 M 9 5.5 0.071 0.015 0.063 0.149 6 0.03 <1.0 M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| F 18 M 9 5.5 0.071 0.015 0.063 0.149 6 0.03 <1.0 M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
| M 9 5.7 0.064 0.013 0.061 0.139 9 0.03 <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F          | 18    |     |       |        |                 |                 |                 |        |             |         |                  |
| B   17   6.8   0.070   0.016   0.057   0.143   2   0.03   <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |       |     |       |        |                 |                 |                 |        |             |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       | В   | 17    | 6.8    | 0.070           | 0.016           | 0.057           | 0.143  | 2           | 0.03    | <1.0             |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 17

| Monitoring | Water | Sam | npling | TSS    | NH <sub>3</sub> | NO <sub>2</sub> | NO <sub>3</sub> | TIN    | E.coli      | Total P | BOD <sub>5</sub> |
|------------|-------|-----|--------|--------|-----------------|-----------------|-----------------|--------|-------------|---------|------------------|
| Station    | Depth | Dep | th     | (mg/L) | as N            | as N            | as N            | (mg/L) | (cfu/100mL) | (mg/L)  | (mg/L)           |
|            | (m)   | (m) |        |        | (mg/L)          | (mg/L)          | (mg/L)          |        |             |         |                  |
|            |       | В   | 17     | 6.5    | 0.058           | 0.013           | 0.051           | 0.122  | ND          | 0.03    | <1.0             |
|            |       | S   | 1      | 3.4    | 0.094           | 0.013           | 0.056           | 0.162  | 6           | 0.03    | <1.0             |
|            |       | S   | 1      | 3.1    | 0.085           | 0.015           | 0.055           | 0.155  | 4           | 0.03    | <1.0             |
| G          | 13    | М   | 6.5    | 3.4    | 0.064           | 0.015           | 0.056           | 0.135  | 7           | 0.03    | <1.0             |
| G          | 13    | М   | 6.5    | 3.3    | 0.066           | 0.016           | 0.060           | 0.142  | 11          | 0.03    | <1.0             |
|            |       | В   | 12     | 3.4    | 0.065           | 0.017           | 0.059           | 0.141  | 16          | 0.03    | <1.0             |
|            |       | В   | 12     | 3.4    | 0.063           | 0.014           | 0.062           | 0.139  | 27          | 0.03    | <1.0             |
|            |       | S   | 1      | 2.5    | 0.090           | 0.017           | 0.057           | 0.164  | 1           | 0.03    | <1.0             |
|            |       | S   | 1      | 2.3    | 0.086           | 0.015           | 0.058           | 0.159  | ND          | 0.03    | <1.0             |
| Н          | 19    | М   | 9.5    | 3.4    | 0.079           | 0.014           | 0.059           | 0.152  | 23          | 0.03    | <1.0             |
| П          | 19    | М   | 9.5    | 3.7    | 0.063           | 0.015           | 0.059           | 0.137  | 38          | 0.03    | <1.0             |
|            |       | В   | 18     | 5.4    | 0.062           | 0.015           | 0.062           | 0.139  | 5           | 0.03    | <1.0             |
|            |       | В   | 18     | 5.4    | 0.062           | 0.014           | 0.070           | 0.146  | 9           | 0.03    | <1.0             |

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10 Weather condition of water quality monitoring

|             |          |            | 90.00    |          |          |
|-------------|----------|------------|----------|----------|----------|
| Date        | Ai       | r Temperat | ure      | Mean     | Total    |
|             | Maximum  | Mean       | Minimum  | Relative | Rainfall |
|             | (deg. C) | (deg. C)   | (deg. C) | Humidity | (mm)     |
|             |          |            |          | (%)      |          |
| 18 December | 20.2     | 18.1       | 16.2     | 60       | 0.0      |
| 2018        |          |            |          |          |          |

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 18

## 4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

## 4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

|   | Sampling Location                  | Easting | Northing |
|---|------------------------------------|---------|----------|
| Α | The Brothers, Control Station      | 816 100 | 822 500  |
| В | The Brothers, Control Station      | 816 680 | 822 440  |
| С | Siu Ho Wan Outfall, Impact Station | 816 800 | 820 180  |
| D | Siu Ho Wan Outfall, Impact Station | 817 160 | 820 360  |
| Е | Cheung Sok, Control Station        | 819 817 | 821 655  |
| F | Cheung Sok, Control Station        | 820 158 | 821 922  |
| G | Tai Ching Chau, Control Station    | 822 214 | 822 692  |
| Н | Tai Ching Chau, Control Station    | 822 494 | 822 939  |

## 4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

| Monitoring Pa                           | rameters                         |
|-----------------------------------------|----------------------------------|
| Sediment Quality Monitoring             | Rinsate Blank for Benthic Survey |
| Grain size profile* (i.e. Particle Size | Cadmium (µg/L)                   |
| Distribution) (%)                       |                                  |
| Total organic carbon* (%)               | Chromium (µg/L)                  |
| pH value                                | Copper (µg/L)                    |
| Ammonia as N (mg-N/kg)                  | Lead (µg/L)                      |
| Total nitrogen (mg-N/kg)                | Mercury ((µg/L)                  |
| Total phosphorus (mg-N/kg)              | Nickel (µg/L)                    |
| Cadmium (mg/kg)                         | Zinc (µg/L)                      |
| Chromium (mg/kg)                        | Arsenic (µg/L)                   |
| Copper (mg/kg)                          | Silver (µg/L)                    |
| Lead (mg/kg)                            |                                  |
| Mercury (mg/kg)                         |                                  |
| Nickel (mg/kg)                          |                                  |
| Zinc (mg/kg)                            |                                  |
| Arsenic (mg/kg)                         |                                  |
| Silver (mg/kg)                          |                                  |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Page 19

\*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

## 4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

## 4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 20

## Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

## 4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

| - and the - and the action of the contract of | dodromone Anarysis methods and ite                                             | portung          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|--|--|
| Analysis Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method                                                                         | Reporting limits |  |  |
| Particle Size Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method) | 1%               |  |  |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APHA 5310B                                                                     | 0.05%            |  |  |
| pH value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APHA 4500H: B                                                                  | 0.1 pH unit      |  |  |
| Ammonia as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | APHA 4500 NH3: B&G                                                             | 0.5 mg/kg        |  |  |
| Total Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APHA 4500 Norg: D & APHA 4500 NO3: I                                           | 10 mg/kg         |  |  |
| Total Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APHA 4500P: B&H                                                                | 10 mg/kg         |  |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USEPA 6020A Digestion method: 3051A                                            | 0.1 mg/kg        |  |  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                | 0.5 mg/kg        |  |  |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 0.2 mg/kg        |  |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | 0.2 mg/kg        |  |  |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | 0.05 mg/kg       |  |  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 0.2 mg/kg        |  |  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | 0.5 mg/kg        |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | 0.5 mg/kg        |  |  |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                | 0.1 mg/kg        |  |  |

## 4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Page 21

- weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.
- 4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

## 4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

## 4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

## 4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

## 4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 18 December 2018. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G.** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 22

Table 4.4 Summary of laboratory analysis results for sediment monitoring

| Monitoring | рН    | NH <sub>3</sub> | Total | Total | Cď    | Cr   | Cu        | Pb   | Hg   | Ni   | Zn   | As   | Ag   |
|------------|-------|-----------------|-------|-------|-------|------|-----------|------|------|------|------|------|------|
| Station    | value | as N            | N     | Р     | (mg/k | (mg  | (mg       | (mg  | (mg/ | (mg  | (mg/ | (mg  | (mg  |
|            |       | (mg/L)          | (mg-  | (mg-  | g)    | /kg) | /kg)      | /kg) | kg)  | /kg) | kg)  | /kg) | /kg) |
|            |       |                 | N/kg) | P/kg) |       |      |           |      |      |      |      |      |      |
| Α          | 8.8   | 3.6             | 1010  | 509   | 0.11  | 37.4 | 28.3      | 38.1 | 0.11 | 22.0 | 93.1 | 15.3 | 0.20 |
| В          | 8.7   | 5.3             | 900   | 519   | 0.10  | 41.3 | 45.0      | 38.7 | 0.08 | 24.1 | 104  | 14.4 | 0.31 |
| С          | 8.6   | 17.3            | 1160  | 543   | 0.12  | 41.6 | 36.6      | 44.2 | 0.10 | 25.4 | 120  | 13.0 | 0.29 |
| D          | 8.6   | 8.8             | 1380  | 619   | 0.11  | 44.0 | 38.6      | 45.5 | 0.13 | 26.7 | 125  | 12.8 | 0.30 |
| Е          | 8.4   | 8.0             | 1280  | 529   | <0.10 | 40.9 | 38.9      | 40.0 | 0.09 | 25.2 | 120  | 11.9 | 0.33 |
| F          | 8.3   | 4.9             | 1410  | 562   | <0.10 | 45.3 | 42.6      | 44.5 | 0.11 | 28.5 | 128  | 12.5 | 0.35 |
| G          | 8.6   | 11.6            | 910   | 526   | <0.10 | 47.8 | 336.<br>0 | 35.2 | 0.06 | 17.6 | 136  | 9.1  | 0.23 |
| Н          | 8.3   | 2.2             | 1100  | 465   | 0.12  | 50.3 | 87.3      | 47.5 | 0.10 | 28.5 | 147  | 15.6 | 0.79 |

Table 4.5 Summary of laboratory analysis results for benthic survey

| Table 4.5 Sufficially of laboratory analysis results for bentific survey |                  |                        |      |      |      |                                                                             |  |  |
|--------------------------------------------------------------------------|------------------|------------------------|------|------|------|-----------------------------------------------------------------------------|--|--|
| Monitoring<br>Station                                                    | Total<br>organic | Grain size profile (%) |      |      |      | Description                                                                 |  |  |
| Station                                                                  | carbon (%)       | Gravel                 | Sand | Silt | Clay |                                                                             |  |  |
| А                                                                        | 0.83             | 5                      | 34   | 32   | 29   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments |  |  |
| В                                                                        | 0.72             | 2                      | 22   | 46   | 30   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY                      |  |  |
| С                                                                        | 0.84             | 0                      | 2    | 61   | 37   | Dark grey, slightly sandy SILT/CLAY                                         |  |  |
| D                                                                        | 0.72             | 0                      | 13   | 52   | 35   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |  |
| Е                                                                        | 0.86             | 0                      | 14   | 47   | 39   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |  |
| F                                                                        | 0.95             | 0                      | 1    | 55   | 44   | Dark grey, slightly sandy SILT/CLAY with shell fragments                    |  |  |
| G                                                                        | 0.79             | 1                      | 14   | 49   | 36   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments |  |  |
| Н                                                                        | 0.69             | 1                      | 10   | 52   | 37   | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments |  |  |

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Table 4.6 Weather condition of water quality monitoring

| Date                | Air Temperature |          |          | Mean     | Total    |
|---------------------|-----------------|----------|----------|----------|----------|
|                     | Maximum Mean    |          | Minimum  | Relative | Rainfall |
|                     | (deg. C)        | (deg. C) | (deg. C) | Humidity | (mm)     |
|                     |                 | , -      |          | (%)      |          |
| 18 December<br>2018 | 20.2            | 18.1     | 16.2     | 60       | 0.0      |

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 23

## 4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Table 4.7 Summary of benthic survey data on 18 December 2018

| Monitoring | Abundance | Total       | Number of | D: :( /LII)    | <b>-</b> (1) |
|------------|-----------|-------------|-----------|----------------|--------------|
| Station    | (ind.)    | Biomass (g) | Taxa      | Diversity (H') | Evenness (J) |
| Α          | 22        | 4.93        | 14        | 2.50           | 0.95         |
| В          | 34        | 4.43        | 19        | 2.59           | 0.88         |
| С          | 12        | 2.38        | 10        | 2.25           | 0.98         |
| D          | 22        | 23.42       | 14        | 2.45           | 0.93         |
| E          | 23        | 8.81        | 14        | 2.43           | 0.92         |
| F          | 41        | 5.27        | 20        | 2.72           | 0.91         |
| G          | 41        | 12.43       | 23        | 2.96           | 0.95         |
| Н          | 21        | 2.32        | 14        | 2.53           | 0.96         |
| TOTAL      | 216       | 63.99       | (49 N)    |                |              |

## 4.10.5 The benthic survey results are analyzed and presented as below:

## i) Abundance

A total of 216 macrobenthic organisms recorded from the eight monitoring stations, which is lower than those reported in earlier surveys (except Oct. 2018). The decrease is predominantly caused by the lower abundance of molluscs and arthropods recorded in this survey. The lowest abundance with 12 individuals (ind.) recorded in Station C and the highest (41 ind.) recorded in Station F and G. Abundance distribution showed that the impact stations, i.e. Stations C and D, has relatively lower abundances compared to the reference stations, a similar trend is observed in the baseline data (August 2004). The sediments of impact sites and reference sites are all mainly composed of silt/clay with shell fragments. There is no significant difference between the impact sites and the reference sites. Therefore, if the impact sites and reference sites have similar characteristic, their abundance recorded should be more or less the same. However, relatively lower abundance was recorded in impact stations. This observation may be indicative of a point-source disturbance, which will be verified with continued monitoring.

## ii) Biomass

The total wet biomass from eight monitoring stations is comprised of 63.991g, which is less than that in April, June and October, but similar to that recorded in August. The highest total biomass was observed in Station D (23.418g), while Station H (2.321g) exhibited the lowest biomass. The relatively higher biomass observed in Station D contributed to the relatively higher biomass of the mollusca species and Sipuncula. The average biomass (12.90g) of the impact stations was higher compared to the average biomass (6.36g) of the reference stations.

#### iii) Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of eight phyla comprising of 36 families and 49 genera were identified. The benthic fauna composition is dominated by Annelida (69.44%), Mollusca (12.96%), and Arthropoda (10.19%). Compared to the baseline study (August 2004), the most dominant groups were the capitellid and nephtyidae

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Page 24

polychaetes, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). Based on the recorded abundance, the percentage of mollusca generally decreased (except the slightly increase from August to October 2018) during monitoring period between April to December 2018.

Highest number of genera was recorded in Station G (23) and the lowest in Station C (10). Similar to abundance, relatively lower number of taxa was observed at impact stations compared to the reference stations.

## iv) Diversity

Benthic diversity index (H') and eveness index (J) ranged 2.254 – 2.449 and 0.9281 – 0.9788 in impact stations, and 2.427 – 2.964 and 0.8782 – 0.9597 among the reference stations, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values in the impact stations and the reference stations, respectively. Compared with the baseline survey result, the diversity index and evenness index increased obviously.

The detailed benthic survey results are provided in **Appendix H**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 25

## 5. CHINESE WHITE DOLPHIN MONITORING

## 5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 10 July 2018, "Monitoring of Marine Mammals in Hong Kong Waters (2017-18)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 26

# 6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

## 6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 27

## 7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
  - The influent of waste water shall be treated by CEPT with UV disinfection;
  - Trip-ticket system shall be implemented for sludge and sediment;
  - The acceptance criteria for Landfill disposal should be followed;
  - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 28

# 8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 18 December 2018. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 29

## 9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

**Table 9.1 Cumulative Statistics on Complaints** 

| Environmental<br>Parameters | Cumulative No.<br>Brought Forward | No. of Complaints<br>This Month | Cumulative Project-<br>to-Date |
|-----------------------------|-----------------------------------|---------------------------------|--------------------------------|
| Air                         | 0                                 | 0                               | 0                              |
| Noise                       | 0                                 | 0                               | 0                              |
| Water                       | 0                                 | 0                               | 0                              |
| Waste                       | 0                                 | 0                               | 0                              |
| Others                      | 0                                 | 0                               | 0                              |
| Total                       | 0                                 | 0                               | 0                              |

Table 9.2 Cumulative Statistics on Notification of Summons and Successful Prosecutions

| Environmental<br>Parameters | Cumulative No.<br>Brought Forward | No. of Notification of<br>Summons and<br>Prosecutions This<br>Month | Cumulative Project-<br>to-Date |
|-----------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------|
| Air                         | 0                                 | 0                                                                   | 0                              |
| Noise                       | 0                                 | 0                                                                   | 0                              |
| Water                       | 0                                 | 0                                                                   | 0                              |
| Waste                       | 0                                 | 0                                                                   | 0                              |
| Others                      | 0                                 | 0                                                                   | 0                              |
| Total                       | 0                                 | 0                                                                   | 0                              |

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 30

## 10. FUTURE KEY ISSUES

- 10.1.1 The key issues to be considered in the coming reporting month include:
  - i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
  - ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H<sub>2</sub>S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H<sub>2</sub>S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H<sub>2</sub>S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
  - iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

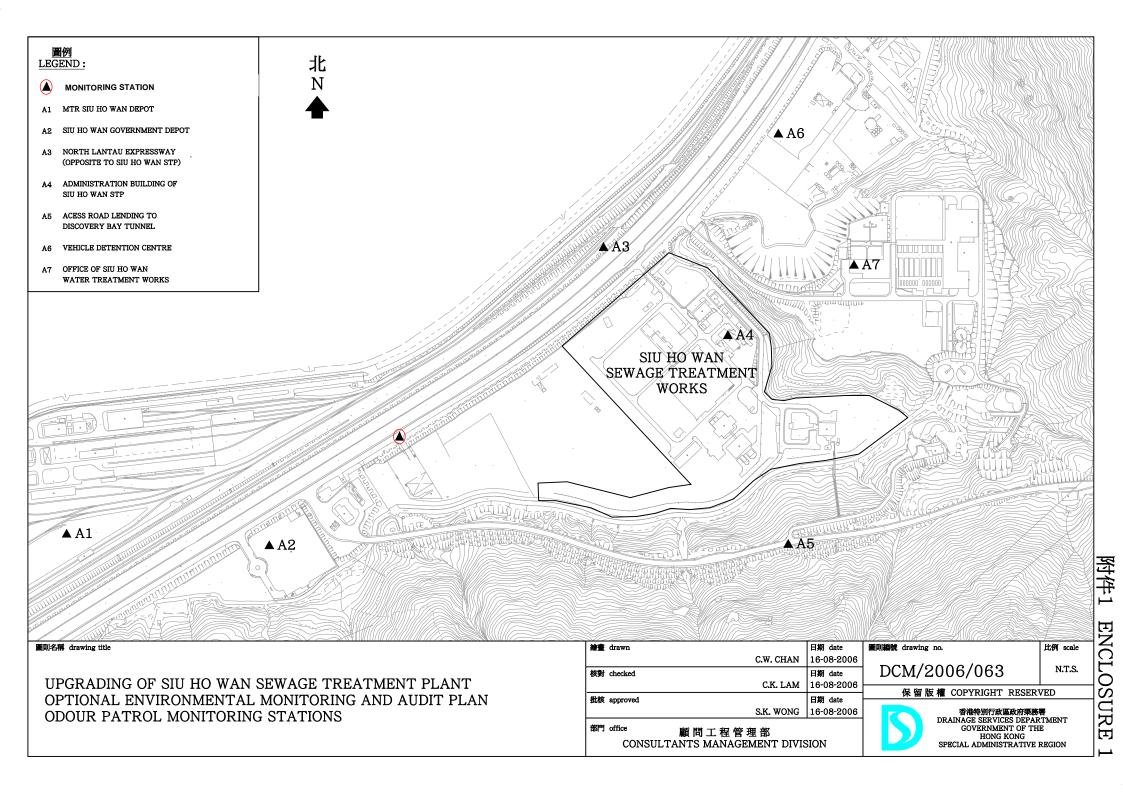
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B Page 31

## 11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H<sub>2</sub>S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m<sup>3</sup>). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H2S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H<sub>2</sub>S concentration (ppb) with the odour unit (OU/m<sup>3</sup>). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H<sub>2</sub>S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 18 December 2018 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 10 July 2018, "Monitoring of Marine Mammals in Hong Kong Waters (2017-18)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



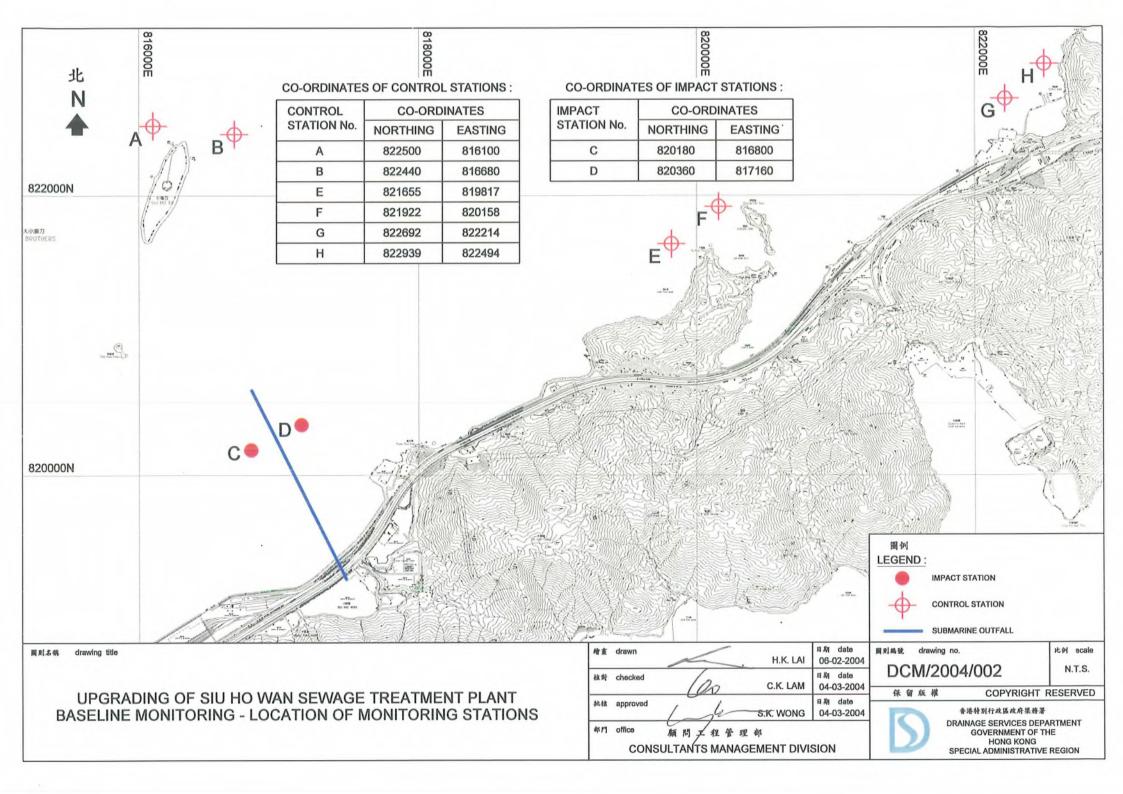
Report No.: 0041/17/ED/0398B

# Figure 1

Monitoring Stations of Air Sensitive Receivers



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey



Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



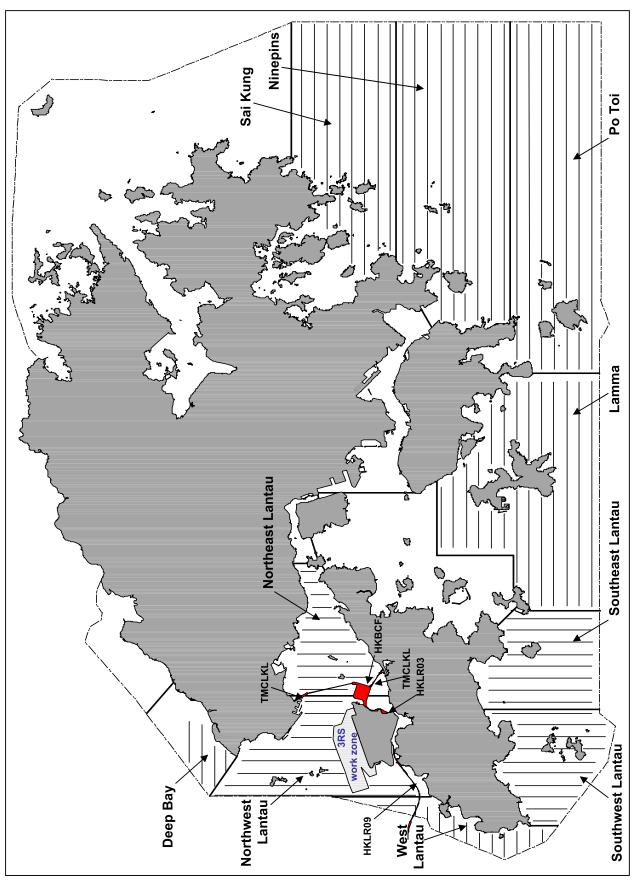


Location of the Tide Gauge

Source: Google Maps

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Figure 4

Location of Survey Areas of Chinese White Dolphins



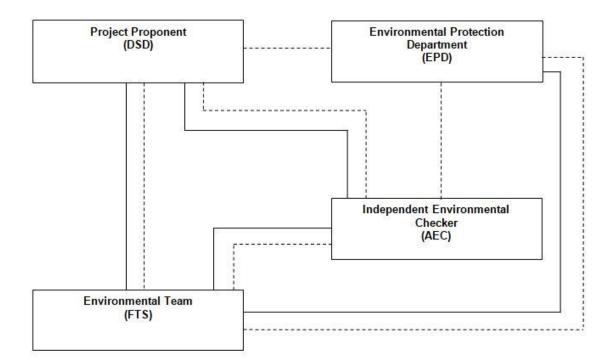
Source: Monitoring of Marine Mammals in Hong Kong Waters (2017-18), AFCD

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B


Appendix A

**Project Organization Chart** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B



Legend:

Line of Reporting

Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Monitoring Schedule for the Present Reporting Period

| Sun | Mon | Tue                                                                                                              | Wed | Thur | Fri | Sat |
|-----|-----|------------------------------------------------------------------------------------------------------------------|-----|------|-----|-----|
|     |     |                                                                                                                  |     |      |     | 1   |
| 2   | 3   | 4                                                                                                                | 5   | 6    | 7   | 8   |
| 9   | 10  | 11                                                                                                               | 12  | 13   | 14  | 15  |
| 16  | 17  | 18 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Ebb (08:26) Mid-Flood (15:10) | 19  | 20   | 21  | 22  |
| 23  | 24  | 25                                                                                                               | 26  | 27   | 28  | 29  |
| 30  | 31  |                                                                                                                  |     |      |     |     |

#### Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Monitoring Schedule for the Next Reporting Period

| Sun | Mon | Tue | Wed | Thur | Fri | Sat |  |
|-----|-----|-----|-----|------|-----|-----|--|
|     |     | 1   | 2   | 3    | 4   | 5   |  |
| 6   | 7   | 8   | 9   | 10   | 11  | 12  |  |
| 13  | 14  | 15  | 16  | 17   | 18  | 19  |  |
| 20  | 21  | 22  | 23  | 24   | 25  | 26  |  |
| 27  | 28  | 29  | 30  | 31   |     |     |  |
|     |     |     |     |      |     |     |  |

## Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

| EVENIT                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACTION                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EVENT                                           | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IEC                                                                                                                                                                                                                                                      | *Operator                                                                                                                                                                                                                                                                                                                        |
| Action Level                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |
| One complaint received for specific odour event | Check Operator's working methods;     Discuss with Operator on required remedial actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Discuss with ET and Operator on the possible remedial actions; 2. Advise the Operator on the effectiveness of the proposed remedial measures; 3 Supervise implementation of remedial measures                                                         | 1. Identify/ confirm source with ET; 2. Discuss with ET for remedial actions required; 3. Ensure remedial actions properly implemented 4. Rectify any unacceptable practice; 5. Amend operation methods if appropriate                                                                                                           |
| Limit Level                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                |
| More than one complaint                         | 1. Investigated the causes of complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control | 1. Discuss amongst ET and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures | 1. Indentify/ confirm source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals |

<sup>\*</sup> The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA181891(1)



Page 1 of 3

# Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client

Fugro Technical Services Limited (MCL)

Client's address

Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description

One Agua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 584601

Test required

Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID

WA181891/2

Date of calibration

28/09/2018

Next calibration date

27/12/2018

Test method used

In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA181891(1)

Page 2 of 3

Results:

## A. pH calibration

| pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18) |          |           |
|--------------------------------------------------------------------------------|----------|-----------|
| Theoretical                                                                    | Measured | Deviation |
| 9.18                                                                           | 9.21     | +0.03     |
| 6.86                                                                           | 6.88     | +0.02     |

# B. Salinity calibration

|             | Salinity, ppt |           |                                 |  |  |
|-------------|---------------|-----------|---------------------------------|--|--|
| Theoretical | Measured      | Deviation | Maximum acceptable<br>Deviation |  |  |
| 10          | 10.07         | +0.07     | ± 0.5                           |  |  |
| 20          | 20.06         | +0.06     | ± 1.0                           |  |  |
| 30          | 30.11         | +0.11     | ± 1.5                           |  |  |
| 40          | 39.91         | -0.09     | ± 2.0                           |  |  |

# C. Dissolved Oxygen calibration

| Trial Na  | Dissolved oxygen content, mg/L |               |  |
|-----------|--------------------------------|---------------|--|
| Trial No. | By calibrated D.O. meter       | By D.O. meter |  |
| 1         | 8.09                           | 8.08          |  |
| 2         | 8.14                           | 8.12          |  |
| 3         | 8.11                           | 8.09          |  |
| Average   | 8.11                           | 8.10          |  |

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories

Date

23/10/2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA181891(1)

Page 3 of 3

#### Results:

## D. Temperature calibration

| Thermometer reading, °C | Meter reading, °C |
|-------------------------|-------------------|
| 25.25                   | 25.30             |

# E. Turbidity calibration

|             | Turbidity, N.T.U. |           |                                 |  |  |
|-------------|-------------------|-----------|---------------------------------|--|--|
| Theoretical | Measured          | Deviation | Maximum acceptable<br>Deviation |  |  |
| 4           | 4.08              | +0.08     | ± 0.4                           |  |  |
| 8           | 8.08              | +0.08     | ± 0.6                           |  |  |
| 40          | 40.79             | +0.79     | ± 3.0                           |  |  |
| 80          | 80.98             | +0.98     | ± 4.0                           |  |  |

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories

Date

10/2018

\*\* End of Report \*\*

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.:

142626WA181891



Page 1 of 3

# Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

# Information Supplied by Client

Client

: Fugro Technical Services Limited (MCL)

Client's address

Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description

One Agua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 525120

Test required

Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID

WA181891/1

Date of calibration

28/09/2018

Next calibration date

27/12/2018

Test method used

In-house comparison method

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA181891

Page 2 of 3

Results:

## A. pH calibration

| pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18) |          |           |
|--------------------------------------------------------------------------------|----------|-----------|
| Theoretical                                                                    | Measured | Deviation |
| 9.18                                                                           | 9.22     | +0.04     |
| 6.86                                                                           | 6.86     | ±0.00     |

# B. Salinity calibration

| Salinity, ppt |          |           |                                 |  |
|---------------|----------|-----------|---------------------------------|--|
| Theoretical   | Measured | Deviation | Maximum acceptable<br>Deviation |  |
| 10            | 10.04    | +0.04     | ± 0.5                           |  |
| 20            | 20.06    | +0.06     | ± 1.0                           |  |
| 30            | 30.14    | +0.14     | ± 1.5                           |  |
| 40            | 39.96    | -0.04     | ± 2.0                           |  |

# C. Dissolved Oxygen calibration

| TilNe     | Dissolved oxygen content, mg/L |               |  |
|-----------|--------------------------------|---------------|--|
| Trial No. | By calibrated D.O. meter       | By D.O. meter |  |
| 1         | 8.10                           | 8.11          |  |
| 2         | 8.07                           | 8.06          |  |
| 3         | 8.09                           | 8.08          |  |
| Average   | 8.09                           | 8.08          |  |

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by

Approved Signatory: HO Kin Man, John

Assistant General Manager - Laboratories

Date

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com



Report No.: 142626WA181891

Page 3 of 3

## Results:

# D. Temperature calibration

| Thermometer reading, °C | Meter reading, °C |
|-------------------------|-------------------|
| 25.26                   | 25.31             |

# E. Turbidity calibration

|             | Turbidity, N.T.U.  Maximum acceptable |       |       |  |  |  |  |  |  |  |  |  |  |
|-------------|---------------------------------------|-------|-------|--|--|--|--|--|--|--|--|--|--|
| Theoretical | Theoretical Measured Deviation        |       |       |  |  |  |  |  |  |  |  |  |  |
| 4           | 4.07                                  | +0.07 | ± 0.4 |  |  |  |  |  |  |  |  |  |  |
| 8           | 8.05                                  | +0.05 | ± 0.6 |  |  |  |  |  |  |  |  |  |  |
| 40          | 40.76                                 | +0.76 | ± 3.0 |  |  |  |  |  |  |  |  |  |  |
| 80          | 80.96                                 | +0.96 | ± 4.0 |  |  |  |  |  |  |  |  |  |  |

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

23/10/2018

\*\* End of Report \*\*



9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

# Certificate of Calibration

# **TEST REPORT**

| Serial Number            | 5906       |  |  |  |  |  |
|--------------------------|------------|--|--|--|--|--|
| System Type              | M9         |  |  |  |  |  |
| System Orientation       | Down       |  |  |  |  |  |
| Compass Type             | Sontek     |  |  |  |  |  |
| Compass Offset (degrees) | N/A        |  |  |  |  |  |
| Communications Output    | RS232      |  |  |  |  |  |
| Recorder Size (GB)       | 14.9       |  |  |  |  |  |
| Firmware Version         | 4.02       |  |  |  |  |  |
| Date Tested              | 05/23/2017 |  |  |  |  |  |
|                          |            |  |  |  |  |  |

# **POWER TEST**

| Command Mode (W):    | 0.17 | Range: 0.00 - 0.30 |
|----------------------|------|--------------------|
| Sleep Mode (W):      | N/A  | Range: N/A         |
| Ping Mode - 18V (W): | 2.67 | Range: 1.50 – 3.50 |
| Power Check          |      | PASS               |

## **NOISE TEST**

| 95   |
|------|
| 96   |
| 95   |
| 101  |
| 93   |
| 95   |
| 91   |
| 100  |
| 88   |
| PASS |
|      |

#### VERIFICATION

| Velocity Check          | PASS |
|-------------------------|------|
| Transmit Output         | PASS |
| Sensitivity             | PASS |
| Temperature Sensor      | PASS |
| Compass Heading Check   | PASS |
| Compass Level Check     | PASS |
| Burn-in (24 hrs)        | PASS |
| Load Default Parameters | DONE |

## **OPTIONS**

| OT TIOTIS               | and the second s |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bottom Track            | Installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| SmartPulse HD TM        | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Stationary              | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| GPS Compass Integration | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| RiverSurveyor           | Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| HydroSurveyor           | Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

# Appendix E

Results and Graphical Presentation of Water Quality Monitoring

|                        |                          |                    |         |                      |              |                       |                     |                         |           |              |                   | ı                      | n-situ Meas             | sureme       | nt                 |                           |                                              |                                        |                |                                 | Laborato                        | ry Analysi                                 | S                     |                                                              |                            |
|------------------------|--------------------------|--------------------|---------|----------------------|--------------|-----------------------|---------------------|-------------------------|-----------|--------------|-------------------|------------------------|-------------------------|--------------|--------------------|---------------------------|----------------------------------------------|----------------------------------------|----------------|---------------------------------|---------------------------------|--------------------------------------------|-----------------------|--------------------------------------------------------------|----------------------------|
| Monitoring<br>Location | Date                     | Tide<br>Mode       | Weather | Sea<br>Condition     | Time         | Water<br>Depth<br>(m) | Monitoring<br>Level | Monitoring<br>Level (m) | Replicate | рН           | Salinity<br>(ppt) | Temperature (degree C) | DO<br>Saturation<br>(%) | DO<br>(mg/L) | Turbidity<br>(NTU) | Current<br>Speed<br>(m/s) | Current<br>Direction<br>(degree<br>magnetic) | Total<br>Suspended<br>Solids<br>(mg/L) |                | Nitrite<br>Nitrogen<br>(mg/L-N) | Nitrate<br>Nitrogen<br>(mg/L-N) | Total<br>Inorganic<br>Nitrogen<br>(mg/L-N) | E.coli<br>(cfu/100mL) | Total<br>phosphorus<br>(solube and<br>particulate)<br>(mg/L) | BOD <sub>5</sub><br>(mg/L) |
|                        |                          |                    |         |                      |              |                       |                     |                         |           | Value        |                   | Value                  | Value                   | Value        | Value              | Value                     | Value                                        | Value                                  | Value          | Value                           | Value                           | Value                                      | Value                 | Value                                                        | Value                      |
| Α                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 6:57         | 17                    | S                   | 1                       | _1_       | 8.45         | 35.65             | 21.88                  | 87.0                    | 6.33         | 1.7                | 0.16                      | 152.6                                        | 2.5                                    | 0.086          | 0.013                           | 0.075                           | 0.174                                      | 12                    | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 6:57         | 17                    | S                   | 1                       | 2         | 8.56         | 35.65             | 21.89                  | 87.0                    | 6.33         | 1.6                | 0.19                      | 254.2                                        | 2.9                                    | 0.093          | 0.017                           | 0.066                           | 0.176                                      | 21                    | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018<br>18/12/2018 | Mid-Ebb<br>Mid-Ebb | Sunny   | Moderate<br>Moderate | 6:57<br>6:57 | 17<br>17              | M<br>M              | 8.5<br>8.5              | 1         | 8.46<br>8.56 | 35.45<br>35.56    | 21.89                  | 86.8<br>86.7            | 6.31         | 2.6                | 0.33                      | 177.7<br>188.5                               | 3.9<br>4.3                             | 0.047          | 0.015<br>0.014                  | 0.070<br>0.078                  | 0.133<br>0.136                             | 10                    | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018<br>18/12/2018 | Mid-Ebb<br>Mid-Ebb | Sunny   | Moderate<br>Moderate | 6:57         | 17                    | M<br>B              | 8.5<br>16               | 1         |              | 35.56             | 21.90                  | 86.7<br>88.1            | 6.30         | 3.4                | 0.34                      | 188.5<br>209.7                               | 3.7                                    | 0.044          | 0.014                           | 0.078                           |                                            | 1                     | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 6:57         | 17                    | B                   | 16                      | 2         | 8.56         | 35.45             | 21.90                  | 88.0                    | 6.41         | 3.6                | 0.56                      | 203.2                                        | 4.1                                    | 0.075          | 0.015                           | 0.064                           |                                            | ND                    | 0.03                                                         | <1.0                       |
| B                      | 18/12/2018               | Mid-Ebb            | Sunny   |                      | 7:11         | 14                    | S                   | 1                       | 1         | 8.56         | 35.43             | 21.90                  | 89.4                    | 6.51         | 4.0                | 0.36                      | 109.1                                        | 2.1                                    | 0.052          | 0.014                           | 0.073                           | 0.141                                      | 8                     | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:11         | 14                    | S                   | 1                       | 2         | 8.53         | 35.91             | 21.93                  | 89.3                    | 6.50         | 4.1                | 0.22                      | 109.4                                        | 2.2                                    | 0.031          | 0.015                           | 0.087                           | 0.138                                      | 12                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:11         | 14                    | M                   | 7                       | 1         | 8.57         | 35.85             | 21.93                  | 90.0                    | 6.54         | 3.9                | 0.22                      | 206.4                                        | 4.0                                    | 0.048          | 0.015                           | 0.007                           |                                            | 18                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:11         | 14                    | M                   | 7                       | 2         | 8.53         | 35.82             | 21.94                  | 90.2                    | 6.56         | 3.8                | 0.23                      | 133.7                                        | 4.4                                    | 0.056          | 0.018                           | 0.079                           |                                            | 31                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             |              | 14                    | В                   | 13                      | 1         | 8.57         | 35.84             | 21.94                  | 89.9                    | 6.54         | 3.5                | 0.29                      | 207.0                                        | 4.5                                    | 0.045          | 0.013                           | 0.086                           |                                            | 17                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:11         | 14                    | В                   | 13                      | 2         | 8.53         | 35.98             | 21.98                  | 89.6                    | 6.52         | 3.3                | 0.25                      | 205.8                                        | 4.6                                    | 0.045          | 0.012                           | 0.090                           | 0.148                                      | 25                    | 0.03                                                         | <1.0                       |
| С                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:24         | 12                    | S                   | 1                       | 1         | 8.45         | 35.91             | 21.76                  | 90.1                    | 6.56         | 1.4                | 0.13                      | 186.4                                        | 2.7                                    | 0.134          | 0.016                           | 0.078                           | 0.229                                      | 5                     | 0.03                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:24         | 12                    | S                   | 1                       | 2         | 8.42         | 35.84             | 21.79                  | 90.2                    | 6.57         | 1.2                | 0.15                      | 227.3                                        | 2.9                                    | 0.141          | 0.015                           | 0.073                           | 0.229                                      |                       | 0.02                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:24         | 12                    | M                   | 6                       | 1         | 8.41         | 35.82             | 21.82                  | 90.2<br>90.5            | 6.57         | 2.4                | 0.13                      | 172.1                                        | 3.1                                    | 0.041          | 0.016                           | 0.069                           | 0.126                                      | 10                    | 0.03                                                         | <1.0                       |
| C                      | 18/12/2018<br>18/12/2018 | Mid-Ebb<br>Mid-Ebb | Sunny   | Moderate<br>Moderate |              | 12                    | M<br>B              | 11                      | 1         | 8.39         | 35.93<br>35.97    | 21.83<br>21.84         | 90.5<br>89.8            | 6.59<br>6.55 | 2.5                | 0.17                      | 166.7<br>212.3                               | 3.2<br>4.1                             | 0.046          | 0.014                           | 0.068                           | 0.129<br>0.128                             | 6 2                   | 0.03                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:24         | 12                    | B                   | 11                      | 2         | 8.38         | 35.97             | 21.84                  | 89.8<br>89.6            | 6.52         | 2.5                | 0.09                      | 212.3                                        | 4.5                                    | 0.045          | 0.016                           | 0.067                           | 0.128                                      | 3                     | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:38         | 13                    | S                   | 1                       | 1         | 8 29         | 35.35             | 21.03                  | 85.9                    | 6.24         | 2.4                | 0.12                      | 135.3                                        | 3.5                                    | 0.061          | 0.016                           | 0.065                           | 0.142                                      | 10                    | 0.03                                                         | <1.0                       |
| Ь                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:38         | 13                    | S                   | 1                       | 2         | 8.29         | 35.89             | 21.78                  | 85.8                    | 6.23         | 2.4                | 0.17                      | 109.6                                        | 3.5                                    | 0.047          | 0.014                           | 0.066                           | 0.127                                      | 16                    | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:38         | 13                    | M                   | 6.5                     | 1         | 8.27         | 35.87             | 21.86                  | 87.0                    | 6.32         | 2.5                | 0.16                      | 158.9                                        | 4.2                                    | 0.054          | 0.015                           | 0.067                           | 0.136                                      | 2                     | 0.03                                                         | <1.0                       |
| Ď                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:38         | 13                    | M                   | 6.5                     | 2         | 8.24         | 35.95             | 21.88                  | 86.9                    | 6.30         | 2.4                | 0.15                      | 152.4                                        | 4.1                                    | 0.048          | 0.017                           | 0.070                           | 0.135                                      | ND                    | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:38         | 13                    | В                   | 12                      | 1         | 8.27         | 36.08             | 21.87                  | 87.7                    | 6.38         | 2.8                | 0.19                      | 208.5                                        | 6.2                                    | 0.050          | 0.016                           | 0.063                           | 0.129                                      | 5                     | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:38         | 13                    | В                   | 12                      | 2         | 8.25         | 36.06             | 21.87                  | 87.1                    | 6.37         | 2.5                | 0.18                      | 215.1                                        | 6.3                                    | 0.047          | 0.016                           | 0.063                           |                                            | 8                     | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 7:51         | 16                    | S                   | 1                       | 1         | 8.25         | 36.65             | 21.74                  | 89.8                    | 6.53         | 2.8                | 0.19                      | 122.3                                        | 2.6                                    | 0.061          | 0.014                           | 0.060                           | 0.134                                      | 9                     | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:51         | 16                    | S                   | 1                       | 2         | 8.27         | 36.65             | 21.75                  | 89.7                    | 6.51         | 2.7                | 0.14                      | 152.5                                        | 3.1                                    | 0.082          | 0.015                           | 0.062                           | 0.158                                      | 14                    | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:51         | 16                    | M                   | 8                       | 1         | 8.25         | 36.75             | 21.79                  | 90.1                    | 6.55         | 2.6                | 0.20                      | 195.2                                        | 3.0                                    | 0.056          | 0.016                           | 0.064                           | 0.137                                      | 8                     | 0.03                                                         | 1.4                        |
| E                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:51         | 16                    | M                   | 8                       | 2         | 8.28         | 36.76             | 21.81                  | 90.0                    | 6.54         | 2.5                | 0.17                      | 195.0                                        | 3.1                                    | 0.059          | 0.014                           | 0.060                           | 0.133                                      | 13                    | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 7:51         | 16                    | В                   | 15                      | _1_       | 8.28         | 36.75             | 21.82                  | 89.6                    | 6.50         | 2.5                | 0.19                      | 203.2                                        | 3.1                                    | 0.103          | 0.015                           | 0.066                           | 0.184                                      | 12                    | 0.03                                                         | 2.9                        |
| E E                    | 18/12/2018               | Mid-Ebb<br>Mid-Ebb | Sunny   | Moderate             | 7:51         | 16<br>23              | B<br>S              | 15                      | 2         | 8.28<br>8.41 | 36.73             | 21.83<br>21.73         | 89.5<br>79.8            | 6.51<br>5.80 | 2.5<br>3.2         | 0.17                      | 220.3<br>135.0                               | 3.5<br>2.4                             | 0.091<br>0.083 | 0.016<br>0.015                  | 0.069<br>0.064                  | 0.175<br>0.162                             | 19<br>10              | 0.03                                                         | 1.9<br>1.6                 |
| F                      | 18/12/2018<br>18/12/2018 | Mid-Ebb            | Sunny   | Moderate<br>Moderate | 8:02<br>8:02 | 23                    | S                   | 1                       | 2         | 8.41         | 36.43             | 21.73                  | 79.8                    | 5.80         | 3.2                | 0.19                      | 134.2                                        | 2.4                                    | 0.083          | 0.015                           | 0.064                           | 0.162                                      | 16                    | 0.03                                                         | 2.2                        |
| F                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:02         | 23                    | M                   | 11.5                    | 1         | 8.38         | 36.43             | 21.78                  | 79.9                    | 5.80         | 3.5                | 0.17                      | 173.0                                        | 2.3                                    | 0.094          | 0.018                           | 0.000                           | 0.178                                      | 12                    | 0.04                                                         | 1.3                        |
| F                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:02         | 23                    | M                   | 11.5                    | 2         | 8.35         | 36.38             | 21.79                  | 79.5                    | 5.76         | 3.2                | 0.20                      | 172.2                                        | 2.4                                    | 0.134          | 0.015                           | 0.073                           |                                            | 8                     | 0.04                                                         | <1.0                       |
| F                      | 18/12/2018               | Mid-Fbb            | Sunny   | Moderate             | 8:02         | 23                    | B                   | 22                      | 1         | 8.36         | 36.47             | 21.81                  | 78.9                    | 5.70         | 3.1                | 0.15                      | 183.5                                        | 2.4                                    | 0.124          | 0.015                           | 0.076                           |                                            | 13                    | 0.03                                                         | 1.6                        |
| F                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:02         | 23                    | В                   | 22                      | 2         | 8.35         | 36.48             | 21.81                  | 78.7                    | 5.68         | 2.8                | 0.16                      | 189.6                                        | 2.1                                    | 0.135          | 0.018                           | 0.067                           | 0.219                                      | 19                    | 0.03                                                         | 1.5                        |
| G                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:13         | 22                    | S                   | 1                       | 1         | 8.38         | 36.19             | 21.75                  | 80.5                    | 5.84         | 3.3                | 0.14                      | 136.4                                        | 1.9                                    | 0.056          | 0.014                           | 0.061                           | 0.131                                      | 27                    | 0.03                                                         | 1.9                        |
| G                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:13         | 22                    | S                   | 1                       | 2         | 8.39         | 36.28             | 21.75                  | 80.6                    | 5.85         | 3.2                | 0.20                      | 141.4                                        | 1.7                                    | 0.061          | 0.016                           | 0.066                           | 0.143                                      | 15                    | 0.03                                                         | 1.5                        |
| G                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:13         | 22                    | M                   | 11                      | 1         | 8.40         | 36.25             | 21.78                  | 80.2                    | 5.82         | 3.9                | 0.21                      | 175.5                                        | 2.3                                    | 0.101          | 0.014                           | 0.058                           |                                            | 3600                  | 0.03                                                         | 1.9                        |
| G                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:13         | 22                    | M                   | 11                      | 2         | 8.38         | 36.25             | 21.80                  | 80.1                    | 5.81         | 3.7                | 0.24                      | 189.1                                        | 2.1                                    | 0.096          | 0.014                           | 0.064                           |                                            | 2100                  | 0.03                                                         | 2.6                        |
| G                      | 18/12/2018               | Mid-Ebb            | Sunnv   | Moderate             | 8:13         | 22                    | В                   | 21                      | 1         | 8.37         | 36.34             | 21.81                  | 80.6                    | 5.85         | 3.9                | 0.32                      | 240.1                                        | 2.7                                    | 0.094          | 0.017                           | 0.057                           |                                            | 11                    | 0.03                                                         | <1.0                       |
| G<br>H                 | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:13         | 22<br>19              | B<br>S              | 21                      | 2         | 8.39         | 36.44             | 21.80                  | 80.4<br>89.2            | 5.84         | 4.1                | 0.37                      | 229.2                                        | 3.3                                    | 0.110          | 0.013                           | 0.062<br>0.061                  | 0.185                                      | 6<br>27               | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               | Mid-Ebb<br>Mid-Ebb | Sunny   | Moderate<br>Moderate | 8:28<br>8:28 | 19                    | S                   | 1                       | 2         | 8.37         | 36.27             | 21.80                  | 89.2<br>89.0            | 6.49         | 3.7                | 0.23                      | 116.7<br>151.5                               | 2.4                                    | 0.106          | 0.015<br>0.014                  | 0.061                           |                                            | 43                    | 0.04                                                         | 1.6                        |
| H                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:28         | 19                    | M                   | 9.5                     | 1         | 8.40         | 36.30             | 21.81                  | 89.0                    | 6.54         | 4.6                | 0.20                      | 150.7                                        | 2.5                                    | 0.113          | 0.014                           | 0.061                           |                                            | 30                    | 0.03                                                         | <1.0                       |
| Н                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:28         | 19                    | M                   | 9.5                     | 2         | 8.40         | 36.37             | 21.82                  | 89.9                    | 6.54         | 4.6                | 0.19                      | 157.6                                        | 3.0                                    | 0.071          | 0.016                           |                                 | 0.130                                      | 51                    | 0.03                                                         | 2.3                        |
| H                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:28         | 19                    | B                   | 18                      | 1         | 8 37         | 36.37             | 21.03                  | 89.5                    | 6.50         | 4.5                | 0.21                      | 228.8                                        | 4.5                                    | 0.004          | 0.017                           | 0.055                           | 0.136                                      | 32                    | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               | Mid-Ebb            | Sunny   | Moderate             | 8:28         | 19                    | В                   | 18                      | 2         | 8.39         | 36.25             | 21.87                  | 89.4                    | 6.50         | 4.6                | 0.26                      | 246.9                                        | 4.2                                    | 0.085          | 0.014                           | 0.055                           | 0.173                                      | 44                    | 0.03                                                         | 1.3                        |
|                        |                          |                    |         |                      |              |                       |                     | ***                     |           |              |                   |                        | ****                    |              | ****               |                           |                                              |                                        |                |                                 |                                 |                                            |                       |                                                              |                            |

Note: 1. ND: Not Detected

|                        |                          |                        |                |                      |                |                       |                     |                         |           |              |                   | ı                         | n-situ Meas             | sureme       | nt                 |                           |                                              |                                        |                                 |                                 | Laborato       | ry Analysi                                 | S                     |                                                              |                            |
|------------------------|--------------------------|------------------------|----------------|----------------------|----------------|-----------------------|---------------------|-------------------------|-----------|--------------|-------------------|---------------------------|-------------------------|--------------|--------------------|---------------------------|----------------------------------------------|----------------------------------------|---------------------------------|---------------------------------|----------------|--------------------------------------------|-----------------------|--------------------------------------------------------------|----------------------------|
| Monitoring<br>Location | Date                     | Tide<br>Mode           | Weather        | Sea<br>Condition     | Time           | Water<br>Depth<br>(m) | Monitoring<br>Level | Monitoring<br>Level (m) | Replicate | рН           | Salinity<br>(ppt) | Temperature<br>(degree C) | DO<br>Saturation<br>(%) | DO<br>(mg/L) | Turbidity<br>(NTU) | Current<br>Speed<br>(m/s) | Current<br>Direction<br>(degree<br>magnetic) | Total<br>Suspended<br>Solids<br>(mg/L) | Ammonia<br>Nitrogen<br>(mg/L-N) | Nitrite<br>Nitrogen<br>(mg/L-N) |                | Total<br>Inorganic<br>Nitrogen<br>(mg/L-N) | E.coli<br>(cfu/100mL) | Total<br>phosphorus<br>(solube and<br>particulate)<br>(mg/L) | BOD <sub>5</sub><br>(mg/L) |
|                        |                          |                        |                |                      |                |                       |                     |                         |           | Value        | Value             | Value                     | Value                   | Value        | Value              | Value                     | Value                                        | Value                                  | Value                           | Value                           | Value          | Value                                      | Value                 | Value                                                        | Value                      |
| A                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 16:35          | 15                    | S                   | 1                       | 1         | 8.66         | 35.93             | 20.53                     | 89.3                    | 6.50         | 2.1                | 0.23                      | 209.1                                        | 3.8                                    | 0.042                           | 0.014                           | 0.069          | 0.124                                      | 1                     | 0.03                                                         | 1.4                        |
| Α                      | 18/12/2018               | Mid-Flood              | Sunnv          |                      |                | 15                    | S                   | 11                      | 2         | 8.66         | 35.79             | 20.67                     | 89.2                    | 6.48         | 2.0                | 0.21                      | 204.0                                        | 4.2                                    | 0.041                           | 0.017                           | 0.070          | 0.129                                      | ND                    | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 15                    | M                   | 7.5                     | 2         | 8.66         | 35.80             | 20.74                     | 89.8                    | 6.53         | 2.5                | 0.45                      | 218.1                                        | 3.5                                    | 0.085                           | 0.014                           | 0.073          | 0.172                                      | 3                     | 0.03                                                         | <1.0                       |
| A                      | 18/12/2018<br>18/12/2018 | Mid-Flood<br>Mid-Flood | Sunny          | Moderate<br>Moderate | 16:35<br>16:35 | 15<br>15              | M<br>B              | 7.5<br>14               | 1         | 8.65<br>8.65 | 35.67<br>35.65    | 20.78                     | 89.6<br>89.8            | 6.50         | 2.4<br>3.4         | 0.42                      | 211.2<br>218.6                               | 3.9<br>4.0                             | 0.073                           | 0.016<br>0.015                  | 0.063          | 0.152<br>0.162                             | 5                     | 0.03                                                         | 1.2<br><1.0                |
| Α Α                    | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 15                    | B                   | 14                      | 2         | 8.65         | 35.68             | 20.82                     | 89.8                    | 6.54         | 3.5                | 0.49                      | 221.6                                        | 3.9                                    | 0.082                           | 0.015                           | 0.058          |                                            | 2                     | 0.03                                                         | <1.0                       |
| B                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | S                   | 14                      | 1         | 8.64         | 35.58             | 20.04                     | 87.2                    | 6.34         | 4.1                | 0.43                      | 238.3                                        | 3.9<br>4.7                             | 0.062                           | 0.013                           | 0.056          | 0.101                                      | 25                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | S                   | 1                       | 2         | 8.64         | 35.67             | 21.12                     | 87.0                    | 6.33         | 4.2                | 0.10                      | 239.2                                        | 4.9                                    | 0.068                           | 0.014                           | 0.057          | 0.135                                      | 36                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             | 16:28          | 14                    | M                   | 7                       | 1         | 8.64         | 35.68             | 21.13                     | 86.8                    | 6.31         | 4.1                | 0.31                      | 240.0                                        | 4.9                                    | 0.100                           | 0.021                           | 0.054          | 0.175                                      | 190                   | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 16:28          | 14                    | M                   | 7                       | 2         | 8.64         | 35.65             | 21.13                     | 86.9                    | 6.32         | 4.0                | 0.32                      | 252.6                                        | 5.0                                    | 0.084                           | 0.022                           | 0.049          | 0.155                                      | 280                   | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 16:28          | 14                    | В                   | 13                      | _1        | 8.64         | 35.68             | 21.13                     | 88.0                    | 6.41         | 3.5                | 0.26                      | 245.5                                        | 6.3                                    | 0.067                           | 0.017                           | 0.058          |                                            | 24                    | 0.03                                                         | <1.0                       |
| В                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 14                    | В                   | 13                      | 2         | 8.63         | 35.67             | 21.14                     | 88.3                    | 6.44         | 3.2                | 0.26                      | 262.8                                        | 6.1                                    | 0.066                           | 0.014                           | 0.066          | 0.147                                      | 17                    | 0.03                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 12                    | S                   | 1                       | _1_       | 8.69         | 35.61             | 21.16                     | 89.2                    | 6.49         | 1.4                | 0.12                      | 211.7                                        | 3.0                                    | 0.146                           | 0.014                           | 0.064          | 0.223                                      | 260                   | 0.04                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 12                    | S                   | 1                       | 2         | 8.69         | 35.61             | 21.16                     | 89.2                    | 6.48         | 1.6                | 0.13                      | 239.2                                        | 2.9                                    | 0.118                           | 0.016                           | 0.053          | 0.187                                      | 210                   | 0.04                                                         | <1.0                       |
| C                      | 18/12/2018<br>18/12/2018 | Mid-Flood              | Sunnv          | Moderate<br>Moderate | 16:12<br>16:12 | 12                    | M<br>M              | 6                       | 2         | 8.69         | 35.59<br>35.62    | 21.16<br>21.16            | 90.1<br>90.1            | 6.55<br>6.55 | 2.5                | 0.17                      | 203.7                                        | 3.1                                    | 0.169                           | 0.015                           | 0.057          |                                            | 260                   | 0.03                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Flood<br>Mid-Flood | Sunny          |                      |                | 12                    | B B                 | 11                      | 1         | 8.69         | 35.62             | 21.16                     | 90.1<br>89.8            | 6.55         | 2.4                | 0.17                      | 185.8<br>225.3                               | 3.3                                    | 0.152<br>0.118                  | 0.015                           | 0.059          | 0.226<br>0.187                             | 160<br>190            | 0.04                                                         | <1.0                       |
| C                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 12                    | B                   | 11                      | 2         | 8.68         | 35.66             | 21.17                     | 89.8<br>89.7            | 6.52         | 2.6                | 0.37                      | 241.1                                        | 3.b<br>3.7                             | 0.118                           | 0.015                           | 0.055          | 0.187                                      | 250                   | 0.04                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | S                   | 1                       | 1         | 8.79         | 35.67             | 21.17                     | 89.7                    | 6.54         | 2.4                | 0.41                      | 188.9                                        | 3.7                                    | 0.126                           | 0.015                           | 0.059          | 0.200                                      | 11                    | 0.04                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             | 15:57          | 14                    | S                   | 1                       | 2         | 8.78         | 35.66             | 21.12                     | 89.9                    | 6.54         | 2.1                | 0.16                      | 172.5                                        | 3.6                                    | 0.067                           | 0.013                           | 0.054          |                                            | 8                     | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | M                   | 7                       | 1         | 8.77         | 35.65             | 21.13                     | 90.1                    | 6.55         | 2.8                | 0.36                      | 227.8                                        | 3.7                                    | 0.063                           | 0.013                           | 0.034          | 0.128                                      | 17                    | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunny          |                      |                | 14                    | M                   | 7                       | 2         | 8.76         | 35.67             | 21.14                     | 89.8                    | 6.53         | 2.6                | 0.32                      | 229.2                                        | 4.2                                    | 0.060                           | 0.014                           | 0.051          |                                            | 14                    | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | В                   | 13                      | 1         | 8.75         | 35.65             | 21.14                     | 90.0                    | 6.54         | 2.7                | 0.56                      | 205.3                                        | 5.1                                    | 0.064                           | 0.015                           | 0.058          |                                            | 7                     | 0.03                                                         | <1.0                       |
| D                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 15:57          | 14                    | В                   | 13                      | 2         | 8.75         | 35.65             | 21.14                     | 90.0                    | 6.54         | 2.8                | 0.62                      | 208.2                                        | 5.6                                    | 0.064                           | 0.016                           | 0.050          | 0.130                                      | 12                    | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 14                    | S                   | 1                       | 1         | 8.79         | 35.92             | 21.13                     | 86.2                    | 6.26         | 2.6                | 0.17                      | 193.0                                        | 4.5                                    | 0.097                           | 0.014                           | 0.056          |                                            | 3                     | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 14                    | S                   | 1                       | 2         | 8.78         | 35.95             | 21.14                     | 86.0                    | 6.25         | 2.6                | 0.17                      | 200.2                                        | 4.4                                    | 0.099                           | 0.013                           | 0.061          |                                            | 5                     | 0.03                                                         | 1.0                        |
| E                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 14                    | M                   | 7                       | _1        |              | 35.91             | 21.15                     | 86.5                    | 6.29         | 3.0                | 0.40                      | 216.5                                        | 5.1                                    | 0.064                           | 0.012                           | 0.068          |                                            | 6                     | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 14                    | M                   | 7                       | 2         | 8.76         | 35.89             | 21.17                     | 86.5                    | 6.28         | 3.1                | 0.40                      | 207.1                                        | 5.3                                    | 0.066                           | 0.014                           | 0.061          |                                            | 5                     | 0.03                                                         | <1.0                       |
| E                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 14                    | В                   | 13                      | _1_       | 8.75         | 35.83             | 21.18                     | 88.2                    | 6.41         | 2.5                | 0.37                      | 235.8                                        | 5.5                                    | 0.065                           | 0.015                           | 0.062          |                                            |                       | 0.03                                                         | <1.0                       |
| <u>E</u>               | 18/12/2018<br>18/12/2018 | Mid-Flood<br>Mid-Flood | Sunny<br>Sunny | Moderate<br>Moderate | 15:34<br>15:24 | 14                    | B<br>S              | 13                      | 2         | 8.75         | 35.88             | 21.19<br>21.48            | 88.2<br>89.5            | 6.41         | 2.6<br>3.3         | 0.37                      | 235.8<br>226.7                               | 5.9<br>4.5                             | 0.066<br>0.061                  | 0.014<br>0.016                  | 0.056<br>0.051 |                                            | 14                    | 0.03                                                         | 1.0<br><1.0                |
| F                      | 18/12/2018               | Mid-Flood              | Sunny          |                      |                | 18                    | S                   | 1                       | 2         | 8.93         |                   | 21.48                     | 89.5<br>89.5            | 6.52         | 3.3                | 0.13                      | 238.6                                        | 4.6                                    | 0.061                           | 0.016                           |                | 0.128                                      | 1                     | 0.03                                                         | <1.0                       |
| F                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             | 15:24          | 18                    | M                   | q                       | 1         | 8.87         | 35.36             | 21.45                     | 90.0                    | 6.55         | 3.4                | 0.14                      | 231.1                                        | 5.5                                    | 0.066                           | 0.017                           | 0.063          | 0.140                                      | 6                     | 0.03                                                         | <1.0                       |
| F                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                |                       | M                   | 9                       | 2         | 8.85         | 35.37             | 21.44                     | 90.0                    | 6.54         | 3.3                | 0.23                      | 231.5                                        | 5.7                                    | 0.064                           | 0.013                           | 0.061          |                                            | 9                     | 0.03                                                         | <1.0                       |
| F                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 18                    | В                   | 17                      | 1         | 8.83         | 35.41             | 21.42                     | 90.0                    | 6.55         | 3.0                | 0.25                      | 224.3                                        | 6.8                                    | 0.070                           | 0.016                           | 0.057          |                                            | 2                     | 0.03                                                         | <1.0                       |
| F                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 15:24          | 18                    | В                   | 17                      | 2         | 8.82         | 35.41             | 21.40                     | 89.6                    | 6.53         | 2.7                | 0.29                      | 238.6                                        | 6.5                                    | 0.058                           | 0.013                           | 0.051          |                                            | ND                    | 0.03                                                         | <1.0                       |
| Ğ                      | 18/12/2018               | Mid-Flood              | Sunnv          |                      |                | 13                    | S                   | 1                       | 1         |              | 35.02             | 21.60                     | 79.7                    | 5.79         | 3.2                | 0.23                      | 120.9                                        | 3.4                                    | 0.094                           | 0.013                           | 0.056          | 0.162                                      | 6                     | 0.03                                                         | <1.0                       |
| G                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             | 15:11          | 13                    | S                   | 1                       | 2         | 8.71         | 35.01             | 21.57                     | 79.9                    | 5.81         | 3.0                | 0.24                      | 115.5                                        | 3.1                                    | 0.085                           | 0.015                           | 0.055          | 0.155                                      | 4                     | 0.03                                                         | <1.0                       |
| G                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 13                    | M                   | 6.5                     | 1         | 8.70         | 35.06             | 21.56                     | 79.6                    | 5.78         | 3.5                | 0.33                      | 186.3                                        | 3.4                                    | 0.064                           | 0.015                           | 0.056          | 0.135                                      | 7                     | 0.03                                                         | <1.0                       |
| G                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 13                    | M                   | 6.5                     | 2         | 8.69         | 35.20             | 21.51                     | 79.5                    | 5.77         | 3.8                | 0.37                      | 193.3                                        | 3.3                                    | 0.066                           | 0.016                           | 0.060          | 0.142                                      | 11                    | 0.03                                                         | <1.0                       |
| G                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 13                    | В                   | 12                      | 1         |              | 35.20             | 21.50                     | 79.0                    | 5.72         | 4.1                | 0.38                      | 176.3                                        | 3.4                                    | 0.065                           | 0.017                           |                |                                            | 16                    | 0.03                                                         | <1.0                       |
| G                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 13<br>19              | В                   | 12                      | 2         | 8.67         | 35.21             | 21.47                     | 78.7<br>80.5            | 5.68         | 4.2<br>3.5         | 0.38                      | 178.4                                        | 3.4<br>2.5                             | 0.063                           | 0.014                           | 0.062<br>0.057 | 0.139                                      | 27                    | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018<br>18/12/2018 | Mid-Flood<br>Mid-Flood | Sunny          | Moderate<br>Moderate | 15:05<br>15:05 | 19                    | S                   | 1                       | 1         | 8.65<br>8.65 | 35.22<br>35.24    | 21.43                     | 80.5<br>80.5            | 5.84<br>5.84 | 3.5                | 0.23                      | 157.0<br>175.2                               | 2.5                                    | 0.090                           | 0.017                           | 0.057          | 0.164<br>0.159                             | ND                    | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               | Mid-Flood<br>Mid-Flood | Sunny          | Moderate<br>Moderate | 15:05          | 19                    | M                   | 9.5                     | 1         | 8.65         | 35.24             | 21.41                     | 80.5<br>80.2            | 5.84         | 4.8                | 0.22                      | 175.2                                        | 3.4                                    | 0.086                           | 0.015                           | 0.058          |                                            | 23                    | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               | Mid-Flood              | Sunnv          | Moderate             |                | 19                    | M                   | 9.5                     | 2         | 8.65         | 35.21             | 21.39                     | 80.2                    | 5.82         | 4.8<br>4.6         | 0.34                      | 138.1                                        | 3.4                                    | 0.079                           | 0.014                           | 0.059          |                                            | 38                    | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               | Mid-Flood              | Sunny          | Moderate             |                | 19                    | B                   | 18                      | 1         | 8.65         | 35.24             | 21.39                     | 81.1                    | 5.88         | 4.0                | 0.36                      | 152.9                                        | 5.4                                    | 0.063                           | 0.015                           | 0.059          | 0.137                                      | 5                     | 0.03                                                         | <1.0                       |
| H                      | 18/12/2018               |                        |                | Moderate             |                | 19                    | B                   | 18                      | 2         | 8 64         | 35.23             | 21.38                     | 81.2                    | 5.89         | 4.4                | 0.49                      | 155.3                                        | 5.4                                    | 0.062                           | 0.013                           | 0.062          | 0.139                                      | 9                     | 0.03                                                         | <1.0                       |
|                        |                          |                        | -2011111       |                      |                |                       |                     |                         |           |              |                   |                           |                         |              | 7.17               |                           |                                              |                                        |                                 |                                 |                |                                            |                       |                                                              |                            |

Note: 1. ND: Not Detected

# ALS Technichem (HK) Pty Ltd

# **ALS Laboratory Group**

**ANALYICAL CHEMISTRY & TESTING SERVICES** 



# CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 28

LIMITED

Contact : MR CYRUS LAI Contact : Richard Fung Work Order : HK1865396

Address : ROOM 723 & 725, 7/F, BLOCK B, PROFIT Address : 11/F., Chung Shun Knitting

INDUSTRIAL BUILDING, 1-15 KWAI FONG

Centre, 1 - 3 Wing Yip Street,

CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong

E-mail : c.lai@fugro.com : richard.fung@alsglobal.com

 Telephone
 : +852 3565 4374
 Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT Date Samples Received : 18-Dec-2018

FOR SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 Quote number : HKE/1654/2017\_R1 Issue Date : 04-Jan-2019

C-O-C number : --- No. of samples received : 96

Site : — No. of samples analysed : 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

5

Fung Lim Chee, Richard General Manager Inorganics

Ng Sin Kou, May Assistant Laboratory Manager Microbiology

Page Number : 2 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865396



## General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 18-Dec-2018 to 03-Jan-2019.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

#### Specific Comments for Work Order: HK1865396

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sample(s) arrived in the laboratory at 18:45. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Carbonaceous Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

3 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865396

# ALS

# Analytical Results

| Sub-Matrix: WATER                        |            | Clie         | ent sample ID  | A/S/E         | A/S/E/Dup     | A/M/E         | A/M/E/Dup     | A/B/E         |
|------------------------------------------|------------|--------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ient samplii | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR          | Unit           | HK1865396-001 | HK1865396-002 | HK1865396-003 | HK1865396-004 | HK1865396-005 |
| EA/ED: Physical and Aggregate Properties |            |              |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5          | mg/L           | 2.5           | 2.9           | 3.9           | 4.3           | 3.7           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |              |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005        | mg/L           | 0.086         | 0.093         | 0.047         | 0.044         | 0.075         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005        | mg/L           | 0.013         | 0.017         | 0.015         | 0.014         | 0.015         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005        | mg/L           | 0.075         | 0.066         | 0.070         | 0.078         | 0.064         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010        | mg/L           | 0.174         | 0.176         | 0.133         | 0.136         | 0.154         |
| EK067P: Total Phosphorus as P            |            | 0.01         | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01         | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |              |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0          | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |              |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1            | CFU/100mL      | 12            | 21            | 10            | 7             | 1             |
|                                          |            |              |                |               |               |               |               |               |

4 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | A/B/E/Dup     | B/S/E         | B/S/E/Dup     | В/М/Е         | B/M/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-006 | HK1865396-007 | HK1865396-008 | HK1865396-009 | HK1865396-010 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.1           | 2.1           | 2.2           | 4.0           | 4.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.052         | 0.051         | 0.046         | 0.048         | 0.056         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.014         | 0.016         | 0.015         | 0.016         | 0.018         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.075         | 0.069         | 0.087         | 0.077         | 0.079         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.141         | 0.136         | 0.148         | 0.141         | 0.152         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.04          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | NOT DETECTED  | 8             | 12            | 18            | 31            |

5 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | B/B/E         | B/B/E/Dup     | C/S/E         | C/S/E/Dup     | C/M/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-011 | HK1865396-012 | HK1865396-013 | HK1865396-014 | HK1865396-015 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.5           | 4.6           | 2.7           | 2.9           | 3.1           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.045         | 0.045         | 0.134         | 0.141         | 0.041         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.013         | 0.012         | 0.016         | 0.015         | 0.016         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.086         | 0.090         | 0.078         | 0.073         | 0.069         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.143         | 0.148         | 0.229         | 0.229         | 0.126         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.02          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.03          | 0.02          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 17            | 25            | 5             | 8             | 10            |

6 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | C/M/E/Dup     | C/B/E         | C/B/E/Dup     | D/S/E         | D/S/E/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-016 | HK1865396-017 | HK1865396-018 | HK1865396-019 | HK1865396-020 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.2           | 4.1           | 4.5           | 3.5           | 3.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.046         | 0.045         | 0.061         | 0.047         | 0.047         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.014         | 0.016         | 0.016         | 0.014         | 0.016         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.068         | 0.067         | 0.065         | 0.066         | 0.066         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.129         | 0.128         | 0.142         | 0.127         | 0.130         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 6             | 2             | 3             | 10            | 16            |

. 7 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | D/M/E         | D/M/E/Dup     | D/B/E         | D/B/E/Dup     | E/S/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-021 | HK1865396-022 | HK1865396-023 | HK1865396-024 | HK1865396-025 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.2           | 4.1           | 6.2           | 6.3           | 2.6           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.054         | 0.048         | 0.050         | 0.047         | 0.061         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.015         | 0.017         | 0.016         | 0.016         | 0.014         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.067         | 0.070         | 0.063         | 0.063         | 0.060         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.136         | 0.135         | 0.129         | 0.126         | 0.134         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 2             | NOT DETECTED  | 5             | 8             | 9             |

: 8 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        | Client sample ID |             |                | E/S/E/Dup     | E/M/E         | E/M/E/Dup     | E/B/E         | E/B/E/Dup     |
|------------------------------------------|------------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli              | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number       | LOR         | Unit           | HK1865396-026 | HK1865396-027 | HK1865396-028 | HK1865396-029 | HK1865396-030 |
| EA/ED: Physical and Aggregate Properties |                  |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |                  | 0.5         | mg/L           | 3.1           | 3.0           | 3.1           | 3.1           | 3.5           |
| ED/EK: Inorganic Nonmetallic Parameters  |                  |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7        | 0.005       | mg/L           | 0.082         | 0.056         | 0.059         | 0.103         | 0.091         |
| EK057A: Nitrite as N                     | 14797-65-0       | 0.005       | mg/L           | 0.015         | 0.016         | 0.014         | 0.015         | 0.016         |
| EK058A: Nitrate as N                     | 14797-55-8       | 0.005       | mg/L           | 0.062         | 0.064         | 0.060         | 0.066         | 0.069         |
| EK063A: Inorganic Nitrogen as N          |                  | 0.010       | mg/L           | 0.158         | 0.137         | 0.133         | 0.184         | 0.175         |
| EK067P: Total Phosphorus as P            |                  | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |                  | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |                  |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |                  | 1.0         | mg/L           | <1.0          | 1.4           | <1.0          | 2.9           | 1.9           |
| EM: Microbiological Testing              |                  |             |                |               |               |               |               |               |
| EM002: E. coli                           |                  | 1           | CFU/100mL      | 14            | 8             | 13            | 12            | 19            |

9 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | F/S/E         | F/S/E/Dup     | F/M/E         | F/M/E/Dup     | F/B/E         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-031 | HK1865396-032 | HK1865396-033 | HK1865396-034 | HK1865396-035 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 2.4           | 2.2           | 2.3           | 2.4           | 2.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.083         | 0.094         | 0.131         | 0.134         | 0.124         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.015         | 0.018         | 0.016         | 0.015         | 0.015         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.064         | 0.066         | 0.075         | 0.071         | 0.076         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.162         | 0.178         | 0.222         | 0.221         | 0.216         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.04          | 0.04          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 1.6           | 2.2           | 1.3           | <1.0          | 1.6           |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 10            | 16            | 12            | 8             | 13            |

: 10 of 28

HK1865396

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Sub-Matrix: WATER                        | Client sample ID            |       |           | F/B/E/Dup     | G/S/E         | G/S/E/Dup     | G/M/E         | G/M/E/Dup     |
|------------------------------------------|-----------------------------|-------|-----------|---------------|---------------|---------------|---------------|---------------|
|                                          | Client sampling date / time |       |           |               | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number                  | LOR   | Unit      | HK1865396-036 | HK1865396-037 | HK1865396-038 | HK1865396-039 | HK1865396-040 |
| EA/ED: Physical and Aggregate Properties |                             |       |           |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |                             | 0.5   | mg/L      | 2.1           | 1.9           | 1.7           | 2.3           | 2.1           |
| ED/EK: Inorganic Nonmetallic Parameters  |                             |       |           |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7                   | 0.005 | mg/L      | 0.135         | 0.056         | 0.061         | 0.101         | 0.096         |
| EK057A: Nitrite as N                     | 14797-65-0                  | 0.005 | mg/L      | 0.018         | 0.014         | 0.016         | 0.014         | 0.014         |
| EK058A: Nitrate as N                     | 14797-55-8                  | 0.005 | mg/L      | 0.067         | 0.061         | 0.066         | 0.058         | 0.064         |
| EK063A: Inorganic Nitrogen as N          |                             | 0.010 | mg/L      | 0.219         | 0.131         | 0.143         | 0.173         | 0.174         |
| EK067P: Total Phosphorus as P            |                             | 0.01  | mg/L      | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |                             | 0.01  | mg/L      | 0.02          | 0.02          | 0.03          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |                             |       |           |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |                             | 1.0   | mg/L      | 1.5           | 1.9           | 1.5           | 1.9           | 2.6           |
| EM: Microbiological Testing              |                             |       |           |               |               |               |               |               |
| EM002: E. coli                           |                             | 1     | CFU/100mL | 19            | 27            | 15            | 3600          | 2100          |

: 11 of 28

HK1865396

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | G/B/E         | G/B/E/Dup     | H/S/E         | H/S/E/Dup     | H/M/E         |  |  |  |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|--|--|--|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |  |  |  |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-041 | HK1865396-042 | HK1865396-043 | HK1865396-044 | HK1865396-045 |  |  |  |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |  |  |  |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 2.7           | 3.3           | 2.4           | 2.5           | 2.8           |  |  |  |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |  |  |  |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.094         | 0.110         | 0.106         | 0.113         | 0.071         |  |  |  |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.017         | 0.013         | 0.015         | 0.014         | 0.016         |  |  |  |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.057         | 0.062         | 0.061         | 0.061         | 0.063         |  |  |  |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.168         | 0.185         | 0.182         | 0.188         | 0.150         |  |  |  |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.04          | 0.03          | 0.03          |  |  |  |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.02          | 0.03          | 0.02          |  |  |  |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |  |  |  |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | 1.6           | 1.0           | <1.0          |  |  |  |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |  |  |  |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 11            | 6             | 27            | 43            | 30            |  |  |  |

: 12 of 28

HK1865396

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/M/E/Dup     | H/B/E         | H/B/E/Dup     | A/S/F         | A/S/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-046 | HK1865396-047 | HK1865396-048 | HK1865396-049 | HK1865396-050 |
| EA/ED: Physical and Aggregate Properties |            | ·           |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.0           | 4.5           | 4.2           | 3.8           | 4.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.064         | 0.097         | 0.085         | 0.042         | 0.041         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.017         | 0.014         | 0.016         | 0.014         | 0.017         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.055         | 0.063         | 0.055         | 0.069         | 0.070         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.136         | 0.175         | 0.157         | 0.124         | 0.129         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | 2.3           | <1.0          | 1.3           | 1.4           | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 51            | 32            | 44            | 1             | NOT DETECTED  |

: 13 of 28

HK1865396

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Sub-Matrix: WATER                        |            | Clie        | nt sample ID   | A/M/F         | A/M/F/Dup     | A/B/F         | A/B/F/Dup     | B/S/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-051 | HK1865396-052 | HK1865396-053 | HK1865396-054 | HK1865396-055 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.5           | 3.9           | 4.0           | 3.9           | 4.7           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.085         | 0.073         | 0.082         | 0.088         | 0.062         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.014         | 0.016         | 0.015         | 0.015         | 0.014         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.073         | 0.063         | 0.066         | 0.058         | 0.057         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.172         | 0.152         | 0.162         | 0.161         | 0.133         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | 1.2           | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 3             | 5             | 1             | 2             | 25            |

: 14 of 28

HK1865396

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

ALS

| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | B/S/F/Dup     | B/M/F         | B/M/F/Dup     | B/B/F         | B/B/F/Dup     |  |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|--|
|                                          | Cli        | ent samplii | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |  |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-056 | HK1865396-057 | HK1865396-058 | HK1865396-059 | HK1865396-060 |  |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |  |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 4.9           | 4.9           | 5.0           | 6.3           | 6.1           |  |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |  |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.068         | 0.100         | 0.084         | 0.067         | 0.066         |  |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.017         | 0.021         | 0.022         | 0.017         | 0.014         |  |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.051         | 0.054         | 0.049         | 0.058         | 0.066         |  |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.135         | 0.175         | 0.155         | 0.143         | 0.147         |  |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |  |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.02          | 0.02          | 0.03          |  |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |  |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |  |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |  |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 36            | 190           | 280           | 24            | 17            |  |

: 15 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        | Client sample ID |             |                | C/S/F         | C/S/F/Dup     | C/M/F         | C/M/F/Dup     | C/B/F         |  |  |
|------------------------------------------|------------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|--|--|
|                                          | Cli              | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |  |  |
| Compound                                 | CAS Number       | LOR         | Unit           | HK1865396-061 | HK1865396-062 | HK1865396-063 | HK1865396-064 | HK1865396-065 |  |  |
| EA/ED: Physical and Aggregate Properties |                  |             |                |               |               |               |               |               |  |  |
| EA025: Suspended Solids (SS)             |                  | 0.5         | mg/L           | 3.0           | 2.9           | 3.1           | 3.3           | 3.6           |  |  |
| ED/EK: Inorganic Nonmetallic Parameters  |                  |             |                |               |               |               |               |               |  |  |
| EK055A: Ammonia as N                     | 7664-41-7        | 0.005       | mg/L           | 0.146         | 0.118         | 0.169         | 0.152         | 0.118         |  |  |
| EK057A: Nitrite as N                     | 14797-65-0       | 0.005       | mg/L           | 0.014         | 0.016         | 0.015         | 0.015         | 0.015         |  |  |
| EK058A: Nitrate as N                     | 14797-55-8       | 0.005       | mg/L           | 0.064         | 0.053         | 0.057         | 0.059         | 0.055         |  |  |
| EK063A: Inorganic Nitrogen as N          |                  | 0.010       | mg/L           | 0.223         | 0.187         | 0.241         | 0.226         | 0.187         |  |  |
| EK067P: Total Phosphorus as P            |                  | 0.01        | mg/L           | 0.04          | 0.04          | 0.03          | 0.04          | 0.04          |  |  |
| EK067P: Total Phosphorus - Filtered      |                  | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |  |  |
| EP: Aggregate Organics                   |                  |             |                |               |               |               |               |               |  |  |
| EP030: Biochemical Oxygen Demand         |                  | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |  |  |
| EM: Microbiological Testing              |                  |             |                |               |               |               |               |               |  |  |
| EM002: E. coli                           |                  | 1           | CFU/100mL      | 260           | 210           | 260           | 160           | 190           |  |  |

: 16 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | C/B/F/Dup     | D/S/F         | D/S/F/Dup     | D/M/F         | D/M/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-066 | HK1865396-067 | HK1865396-068 | HK1865396-069 | HK1865396-070 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.7           | 3.9           | 3.6           | 3.7           | 4.2           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.126         | 0.067         | 0.061         | 0.063         | 0.060         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.015         | 0.015         | 0.013         | 0.014         | 0.014         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.059         | 0.058         | 0.054         | 0.060         | 0.051         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.200         | 0.140         | 0.128         | 0.137         | 0.125         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.04          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.03          | 0.02          | 0.02          | 0.02          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 250           | 11            | 8             | 17            | 14            |

: 17 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | D/B/F         | D/B/F/Dup     | E/S/F         | E/S/F/Dup     | E/M/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-071 | HK1865396-072 | HK1865396-073 | HK1865396-074 | HK1865396-075 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.1           | 5.6           | 4.5           | 4.4           | 5.1           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.064         | 0.064         | 0.097         | 0.099         | 0.064         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.015         | 0.016         | 0.014         | 0.013         | 0.012         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.058         | 0.050         | 0.056         | 0.061         | 0.068         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.137         | 0.130         | 0.167         | 0.173         | 0.144         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.03          | 0.03          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | 1.0           | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 7             | 12            | 3             | 5             | 6             |

Page Number Client

: 18 of 28

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | E/M/F/Dup     | E/B/F         | E/B/F/Dup     | F/S/F         | F/S/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-076 | HK1865396-077 | HK1865396-078 | HK1865396-079 | HK1865396-080 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.3           | 5.5           | 5.9           | 4.5           | 4.6           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.066         | 0.065         | 0.066         | 0.061         | 0.066         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.014         | 0.015         | 0.014         | 0.016         | 0.017         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.061         | 0.062         | 0.056         | 0.051         | 0.065         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.140         | 0.143         | 0.136         | 0.128         | 0.148         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.03          | 0.02          | 0.03          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | 1.0           | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 5             | 8             | 14            | 2             | 1             |

: 19 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        | Client sample ID |             |                | F/M/F         | F/M/F/Dup     | F/B/F         | F/B/F/Dup     | G/S/F         |  |  |
|------------------------------------------|------------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|--|--|
|                                          | Cli              | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |  |  |
| Compound                                 | CAS Number       | LOR         | Unit           | HK1865396-081 | HK1865396-082 | HK1865396-083 | HK1865396-084 | HK1865396-085 |  |  |
| EA/ED: Physical and Aggregate Properties |                  |             |                |               |               |               |               |               |  |  |
| EA025: Suspended Solids (SS)             |                  | 0.5         | mg/L           | 5.5           | 5.7           | 6.8           | 6.5           | 3.4           |  |  |
| ED/EK: Inorganic Nonmetallic Parameters  |                  |             |                |               |               |               |               |               |  |  |
| EK055A: Ammonia as N                     | 7664-41-7        | 0.005       | mg/L           | 0.071         | 0.064         | 0.070         | 0.058         | 0.094         |  |  |
| EK057A: Nitrite as N                     | 14797-65-0       | 0.005       | mg/L           | 0.015         | 0.013         | 0.016         | 0.013         | 0.013         |  |  |
| EK058A: Nitrate as N                     | 14797-55-8       | 0.005       | mg/L           | 0.063         | 0.061         | 0.057         | 0.051         | 0.056         |  |  |
| EK063A: Inorganic Nitrogen as N          |                  | 0.010       | mg/L           | 0.149         | 0.139         | 0.143         | 0.122         | 0.162         |  |  |
| EK067P: Total Phosphorus as P            |                  | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |  |  |
| EK067P: Total Phosphorus - Filtered      |                  | 0.01        | mg/L           | 0.03          | 0.02          | 0.02          | 0.02          | 0.02          |  |  |
| EP: Aggregate Organics                   |                  |             |                |               |               |               |               |               |  |  |
| EP030: Biochemical Oxygen Demand         |                  | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |  |  |
| EM: Microbiological Testing              |                  |             |                |               |               |               |               |               |  |  |
| EM002: E. coli                           |                  | 1           | CFU/100mL      | 6             | 9             | 2             | NOT DETECTED  | 6             |  |  |

: 20 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | G/S/F/Dup     | G/M/F         | G/M/F/Dup     | G/B/F         | G/B/F/Dup     |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplin | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-086 | HK1865396-087 | HK1865396-088 | HK1865396-089 | HK1865396-090 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 3.1           | 3.4           | 3.3           | 3.4           | 3.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.085         | 0.064         | 0.066         | 0.065         | 0.063         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.015         | 0.015         | 0.016         | 0.017         | 0.014         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.055         | 0.056         | 0.060         | 0.059         | 0.062         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.155         | 0.135         | 0.142         | 0.141         | 0.139         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.02          | 0.03          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 4             | 7             | 11            | 16            | 27            |

21 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/S/F         | H/S/F/Dup     | H/M/F         | H/M/F/Dup     | H/B/F         |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                          | Cli        | ent samplii | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-091 | HK1865396-092 | HK1865396-093 | HK1865396-094 | HK1865396-095 |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |               |               |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 2.5           | 2.3           | 3.4           | 3.7           | 5.4           |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |               |               |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.090         | 0.086         | 0.079         | 0.063         | 0.062         |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.017         | 0.015         | 0.014         | 0.015         | 0.015         |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.057         | 0.058         | 0.059         | 0.059         | 0.062         |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.164         | 0.159         | 0.152         | 0.137         | 0.139         |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          | 0.03          | 0.03          | 0.03          | 0.03          |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          | 0.02          | 0.03          | 0.03          | 0.02          |
| EP: Aggregate Organics                   |            |             |                |               |               |               |               |               |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          |
| EM: Microbiological Testing              |            |             |                |               |               |               |               |               |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 1             | NOT DETECTED  | 23            | 38            | 5             |

22 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                        |            | Clie        | ent sample ID  | H/B/F/Dup     |  |  |  |  |  |
|------------------------------------------|------------|-------------|----------------|---------------|--|--|--|--|--|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   |  |  |  |  |  |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865396-096 |  |  |  |  |  |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |  |  |  |  |  |
| EA025: Suspended Solids (SS)             |            | 0.5         | mg/L           | 5.4           |  |  |  |  |  |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |  |  |  |  |  |
| EK055A: Ammonia as N                     | 7664-41-7  | 0.005       | mg/L           | 0.062         |  |  |  |  |  |
| EK057A: Nitrite as N                     | 14797-65-0 | 0.005       | mg/L           | 0.014         |  |  |  |  |  |
| EK058A: Nitrate as N                     | 14797-55-8 | 0.005       | mg/L           | 0.070         |  |  |  |  |  |
| EK063A: Inorganic Nitrogen as N          |            | 0.010       | mg/L           | 0.146         |  |  |  |  |  |
| EK067P: Total Phosphorus as P            |            | 0.01        | mg/L           | 0.03          |  |  |  |  |  |
| EK067P: Total Phosphorus - Filtered      |            | 0.01        | mg/L           | 0.02          |  |  |  |  |  |
| EP: Aggregate Organics                   |            |             |                |               |  |  |  |  |  |
| EP030: Biochemical Oxygen Demand         |            | 1.0         | mg/L           | <1.0          |  |  |  |  |  |
| EM: Microbiological Testing              |            |             |                |               |  |  |  |  |  |
| EM002: E. coli                           |            | 1           | CFU/100mL      | 9             |  |  |  |  |  |

23 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865396

## ALS

## Laboratory Duplicate (DUP) Report

| Matrix: WATER          |                              |                              |            |       | Labo  | oratory Duplicate (DUP) | Report    |                |
|------------------------|------------------------------|------------------------------|------------|-------|-------|-------------------------|-----------|----------------|
| Laboratory             | Client sample ID             | Method: Compound             | CAS Number | LOR   | Unit  | Original Result         | Duplicate | <i>RPD</i> (%) |
| sample ID              |                              |                              |            |       |       |                         | Result    |                |
| EA/ED: Physical and A  | ggregate Properties (QC Lot: | 2105662)                     |            |       | I     |                         |           |                |
| HK1865396-001          | A/S/E                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 2.5                     | 2.8       | 10.3           |
| HK1865396-011          | B/B/E                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 4.5                     | 4.8       | 6.40           |
| EA/ED: Physical and A  | ggregate Properties (QC Lot: | 2105663)                     |            |       |       |                         |           |                |
| HK1865396-021          | D/M/E                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 4.2                     | 4.1       | 0.00           |
| HK1865396-031          | F/S/E                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 2.4                     | 2.6       | 9.60           |
| EA/ED: Physical and A  | gregate Properties (QC Lot:  | : 2105664)                   |            |       |       |                         |           |                |
| HK1865396-041          | G/B/E                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 2.7                     | 2.6       | 0.00           |
| HK1865396-051          | A/M/F                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 3.5                     | 3.6       | 3.97           |
| EA/ED: Physical and A  | gregate Properties (QC Lot:  | 2105665)                     |            |       |       |                         |           |                |
| HK1865396-061          | C/S/F                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 3.0                     | 3.3       | 7.87           |
| HK1865396-071          | D/B/F                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 5.1                     | 5.4       | 5.71           |
| EA/ED: Physical and Aç | gregate Properties (QC Lot:  | 2105666)                     |            |       |       |                         |           |                |
| HK1865396-081          | F/M/F                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 5.5                     | 5.9       | 7.02           |
| HK1865396-091          | H/S/F                        | EA025: Suspended Solids (SS) |            | 0.5   | mg/L  | 2.5                     | 2.2       | 12.0           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104210)                     | '          |       |       |                         |           |                |
| HK1865396-020          | D/S/E/Dup                    | EK055A: Ammonia as N         | 7664-41-7  | 0.005 | mg/L  | 0.047                   | 0.045     | 4.55           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104211)                     | ·          |       |       |                         |           |                |
| HK1865396-040          | G/M/E/Dup                    | EK055A: Ammonia as N         | 7664-41-7  | 0.005 | mg/L  | 0.096                   | 0.078     | 20.8           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104212)                     | ,          |       |       |                         |           |                |
| HK1865396-060          | B/B/F/Dup                    | EK055A: Ammonia as N         | 7664-41-7  | 0.005 | mg/L  | 0.066                   | 0.066     | 0.00           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104213)                     | ,          |       |       |                         |           |                |
| HK1865396-080          | F/S/F/Dup                    | EK055A: Ammonia as N         | 7664-41-7  | 0.005 | mg/L  | 0.066                   | 0.065     | 0.00           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104214)                     | ,          |       |       |                         |           |                |
| HK1865396-096          | H/B/F/Dup                    | EK055A: Ammonia as N         | 7664-41-7  | 0.005 | mg/L  | 0.062                   | 0.063     | 1.92           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104281)                     | ,          |       |       |                         |           |                |
| HK1865396-020          | D/S/E/Dup                    | EK057A: Nitrite as N         | 14797-65-0 | 0.005 | mg/L  | 0.016                   | 0.015     | 8.25           |
| ED/EK: Inorganic Nonm  | netallic Parameters (QC Lot: | 2104284)                     |            |       |       | ,                       |           |                |
| HK1865396-040          | G/M/E/Dup                    | EK057A: Nitrite as N         | 14797-65-0 | 0.005 | mg/L  | 0.014                   | 0.015     | 0.00           |
|                        | netallic Parameters (QC Lot: |                              |            |       | , , , |                         |           |                |
| HK1865396-060          | B/B/F/Dup                    | EK057A: Nitrite as N         | 14797-65-0 | 0.005 | mg/L  | 0.014                   | 0.016     | 13.6           |

24 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

HK1865396



| Matrix: WATER           |                              |                                     |            |       | Labo | ratory Duplicate (DUP) | Report              |         |
|-------------------------|------------------------------|-------------------------------------|------------|-------|------|------------------------|---------------------|---------|
| Laboratory<br>sample ID | Client sample ID             | Method: Compound                    | CAS Number | LOR   | Unit | Original Result        | Duplicate<br>Result | RPD (%) |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2104288)                            |            |       |      |                        |                     |         |
| HK1865396-080           | F/S/F/Dup                    | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L | 0.017                  | 0.016               | 6.69    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2104290)                            |            |       |      | -                      |                     |         |
| HK1865396-096           | H/B/F/Dup                    | EK057A: Nitrite as N                | 14797-65-0 | 0.005 | mg/L | 0.014                  | 0.014               | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105534)                            |            |       |      |                        |                     |         |
| HK1865396-020           | D/S/E/Dup                    | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L | 0.02                   | 0.02                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105535)                            |            |       |      |                        |                     |         |
| HK1865396-010           | B/M/E/Dup                    | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105536)                            |            |       |      |                        |                     |         |
| HK1865396-030           | E/B/E/Dup                    | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105537)                            |            |       |      |                        |                     |         |
| HK1865396-040           | G/M/E/Dup                    | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L | 0.02                   | 0.02                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105538)                            |            |       |      |                        |                     |         |
| HK1865396-050           | A/S/F/Dup                    | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105539)                            |            |       |      |                        |                     |         |
| HK1865396-060           | B/B/F/Dup                    | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105540)                            |            |       |      |                        |                     |         |
| HK1865396-070           | D/M/F/Dup                    | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105542)                            |            |       |      |                        |                     |         |
| HK1865396-080           | F/S/F/Dup                    | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L | 0.03                   | 0.02                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105544)                            |            |       |      |                        |                     |         |
| HK1865396-090           | G/B/F/Dup                    | EK067P: Total Phosphorus as P       |            | 0.01  | mg/L | 0.03                   | 0.03                | 0.00    |
| ED/EK: Inorganic Nonr   | netallic Parameters (QC Lot: | 2105546)                            |            |       |      |                        |                     |         |
| HK1865396-096           | H/B/F/Dup                    | EK067P: Total Phosphorus - Filtered |            | 0.01  | mg/L | 0.02                   | 0.02                | 0.00    |

## Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

| Matrix: WATER                            |                   | Method Blank (MB) Report |      |        | Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report |                    |     |                    |      |         |         |  |
|------------------------------------------|-------------------|--------------------------|------|--------|------------------------------------------------------------------------------------|--------------------|-----|--------------------|------|---------|---------|--|
|                                          |                   |                          |      |        | Spike                                                                              | Spike Recovery (%) |     | Recovery Limits(%) |      | RPD (%) |         |  |
| Method: Compound                         | CAS Number        | LOR                      | Unit | Result | Concentration                                                                      | LCS                | DCS | Low                | High | Value   | Control |  |
|                                          |                   |                          |      |        |                                                                                    |                    |     |                    |      |         | Limit   |  |
| EA/ED: Physical and Aggregate Properties | (QC Lot: 2105662) |                          |      |        |                                                                                    |                    |     |                    |      |         |         |  |
| EA025: Suspended Solids (SS)             |                   | 0.5                      | mg/L | <0.5   | 20 mg/L                                                                            | 98.5               |     | 85                 | 115  |         |         |  |
| EA/ED: Physical and Aggregate Properties | (QC Lot: 2105663) |                          |      |        |                                                                                    |                    |     |                    |      |         |         |  |

25 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED



| Matrix: WATER                                  |                    |         | Method Blank (ME | 3) Report |               | Laboratory Conti | rol Spike (LCS) and Labo | ratory Control S | Spike Duplicate (i | DCS) Report |         |
|------------------------------------------------|--------------------|---------|------------------|-----------|---------------|------------------|--------------------------|------------------|--------------------|-------------|---------|
|                                                |                    |         |                  | 1         | Spike         | Spike Re         | acovery (%)              | Recov            | ery Limits(%)      | RP          | D (%)   |
| Method: Compound                               | CAS Number         | LOR     | Unit             | Result    | Concentration | LCS              | DCS                      | Low              | High               | Value       | Control |
|                                                |                    |         |                  |           |               |                  |                          |                  |                    |             | Limit   |
| EA/ED: Physical and Aggregate Properties (QC L | .ot: 2105663) - Co | ntinued |                  |           |               |                  |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                   |                    | 0.5     | mg/L             | <0.5      | 20 mg/L       | 101              |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC L | .ot: 2105664)      |         |                  |           |               |                  |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                   |                    | 0.5     | mg/L             | <0.5      | 20 mg/L       | 102              |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC L | .ot: 2105665)      |         |                  |           |               |                  |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                   |                    | 0.5     | mg/L             | <0.5      | 20 mg/L       | 99.0             |                          | 85               | 115                |             |         |
| EA/ED: Physical and Aggregate Properties (QC L | .ot: 2105666)      |         |                  |           |               |                  |                          |                  |                    |             |         |
| EA025: Suspended Solids (SS)                   |                    | 0.5     | mg/L             | <0.5      | 20 mg/L       | 99.5             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104210)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK055A: Ammonia as N                           | 7664-41-7          | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 101              |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104211)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK055A: Ammonia as N                           | 7664-41-7          | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 97.4             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104212)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK055A: Ammonia as N                           | 7664-41-7          | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 97.4             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104213)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK055A: Ammonia as N                           | 7664-41-7          | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 104              |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104214)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK055A: Ammonia as N                           | 7664-41-7          | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 105              |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104281)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK057A: Nitrite as N                           | 14797-65-0         | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 95.2             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104284)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK057A: Nitrite as N                           | 14797-65-0         | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 91.4             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104286)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK057A: Nitrite as N                           | 14797-65-0         | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 88.8             |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104288)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK057A: Nitrite as N                           | 14797-65-0         | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 102              |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2104290)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK057A: Nitrite as N                           | 14797-65-0         | 0.005   | mg/L             | <0.005    | 0.05 mg/L     | 104              |                          | 85               | 115                |             |         |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo | ot: 2105534)       |         |                  |           |               |                  |                          |                  |                    |             |         |
| EK067P: Total Phosphorus - Filtered            |                    | 0.01    | mg/L             | <0.01     | 0.5 mg/L      | 99.5             |                          | 85               | 115                |             |         |

: 26 of 28

Client : FUG

FUGRO TECHNICAL SERVICES LIMITED



| Matrix: WATER                              |                 |                          | Method Blank (ME | 3) Report  | Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report |               |     |       |      |       |         |  |
|--------------------------------------------|-----------------|--------------------------|------------------|------------|------------------------------------------------------------------------------------|---------------|-----|-------|------|-------|---------|--|
|                                            |                 | Spike Spike Recovery (%) |                  | covery (%) | Recove                                                                             | ory Limits(%) | RP  | D (%) |      |       |         |  |
| Method: Compound                           | CAS Number      | LOR                      | Unit             | Result     | Concentration                                                                      | LCS           | DCS | Low   | High | Value | Control |  |
|                                            |                 |                          |                  |            |                                                                                    |               |     |       |      |       | Limit   |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105535) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus as P              |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 101           |     | 90    | 104  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105536) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus as P              |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 101           |     | 90    | 104  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105537) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus - Filtered        |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 99.1          |     | 85    | 115  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105538) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus as P              |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 99.6          |     | 90    | 104  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105539) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus - Filtered        |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 100           |     | 85    | 115  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105540) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus as P              |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 101           |     | 90    | 104  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105542) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus - Filtered        |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 100           |     | 85    | 115  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105544) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus as P              |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 99.6          |     | 90    | 104  |       |         |  |
| ED/EK: Inorganic Nonmetallic Parameters (C | C Lot: 2105546) |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EK067P: Total Phosphorus - Filtered        |                 | 0.01                     | mg/L             | <0.01      | 0.5 mg/L                                                                           | 99.6          |     | 85    | 115  |       |         |  |
| EP: Aggregate Organics (QC Lot: 2104538)   |                 |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EP030: Biochemical Oxygen Demand           |                 |                          | mg/L             |            | 198 mg/L                                                                           | 100           |     | 81    | 115  |       |         |  |
| EP: Aggregate Organics (QC Lot: 2104539)   |                 |                          |                  |            |                                                                                    |               |     |       |      |       |         |  |
| EP030: Biochemical Oxygen Demand           |                 |                          | mg/L             |            | 198 mg/L                                                                           | 108           |     | 81    | 115  |       |         |  |
| EP: Aggregate Organics (QC Lot: 2104540)   |                 |                          |                  | '          |                                                                                    |               | '   | '     |      |       |         |  |
| EP030: Biochemical Oxygen Demand           |                 |                          | mg/L             |            | 198 mg/L                                                                           | 90.8          |     | 81    | 115  |       |         |  |
| EP: Aggregate Organics (QC Lot: 2104541)   | ·               |                          |                  |            |                                                                                    |               |     | ·     |      |       |         |  |
| EP030: Biochemical Oxygen Demand           |                 |                          | mg/L             |            | 198 mg/L                                                                           | 99.8          |     | 81    | 115  |       |         |  |
| EP: Aggregate Organics (QC Lot: 2104542)   | '               |                          |                  |            | -                                                                                  |               |     |       |      |       |         |  |
| EP030: Biochemical Oxygen Demand           |                 |                          | mg/L             |            | 198 mg/L                                                                           | 103           |     | 81    | 115  |       |         |  |

: 27 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865396

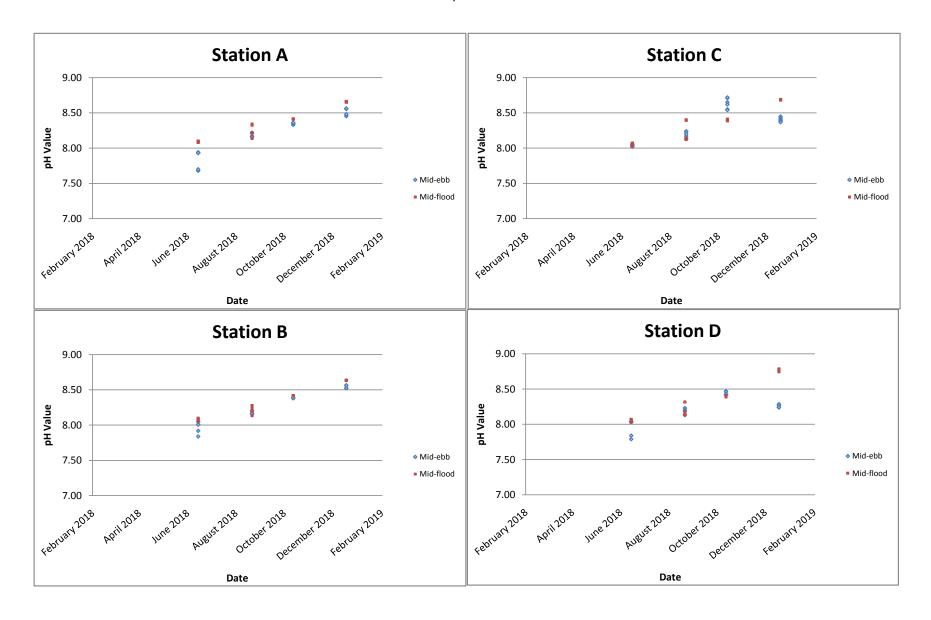


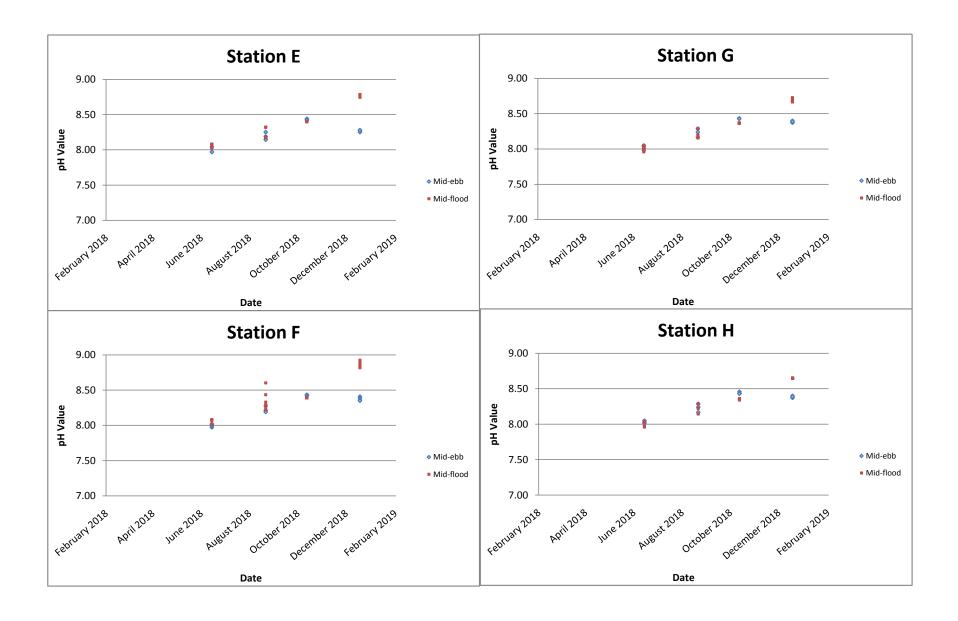
## Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

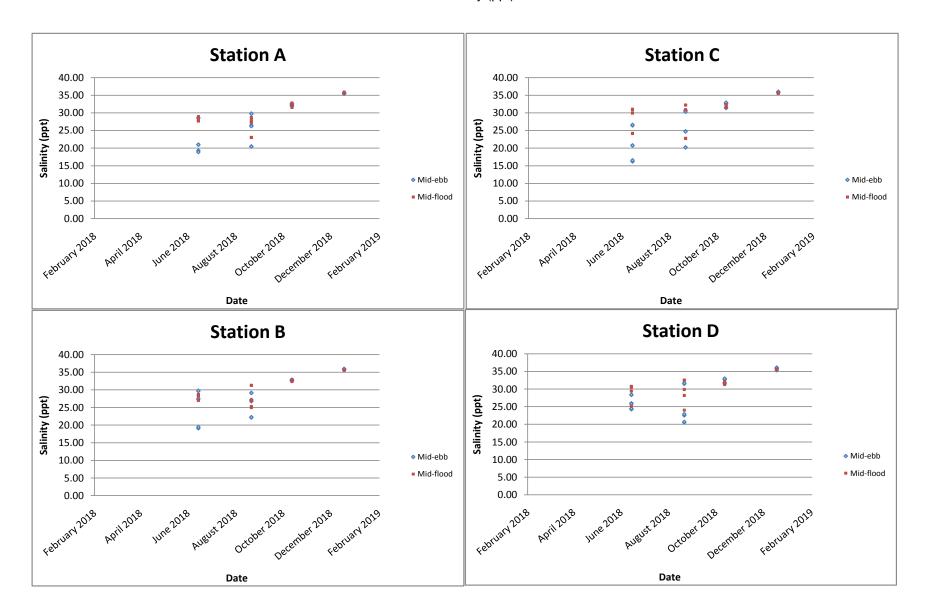
| Matrix: WATER           |                                       |                                     |                |               | Matrix Spi | ke (MS) and Matri | x Spike Duplic | ate (MSD) Re | port  | port             |  |
|-------------------------|---------------------------------------|-------------------------------------|----------------|---------------|------------|-------------------|----------------|--------------|-------|------------------|--|
|                         |                                       |                                     |                | Spike         | Spike Re   | ecovery (%)       | Recovery       | Limits (%)   | RPD   | ) (%)            |  |
| Laboratory<br>sample ID | Client sample ID                      | Method: Compound                    | CAS Number     | Concentration | MS         | MSD               | Low            | High         | Value | Control<br>Limit |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104  | 211)                                |                |               |            |                   |                |              |       |                  |  |
| HK1865396-040           | G/M/E/Dup                             | EK055A: Ammonia as N                | 7664-41-7      | 0.5 mg/L      | 94.0       |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104  | 213)                                |                |               |            |                   |                |              |       |                  |  |
| HK1865396-080           | F/S/F/Dup                             | EK055A: Ammonia as N                | 7664-41-7      | 0.5 mg/L      | 104        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104  | 214)                                |                |               |            |                   |                |              |       |                  |  |
| HK1865396-096           | H/B/F/Dup                             | EK055A: Ammonia as N                | 7664-41-7      | 0.5 mg/L      | 105        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104  | 281)                                |                |               |            |                   |                |              |       |                  |  |
| HK1865396-020           | D/S/E/Dup                             | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.25 mg/L     | 109        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104) | 284)                                |                | ·             |            |                   |                |              |       |                  |  |
| HK1865396-040           |                                       | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.25 mg/L     | 106        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104  | 286)                                | ,              |               |            |                   |                |              |       |                  |  |
| HK1865396-060           |                                       | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.25 mg/L     | 108        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104) | 288)                                |                |               |            |                   |                |              |       |                  |  |
| HK1865396-080           |                                       | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.25 mg/L     | 106        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2104) | 290)                                |                | <u>'</u>      |            |                   |                |              |       |                  |  |
| HK1865396-096           |                                       | EK057A: Nitrite as N                | 14797-65-<br>0 | 0.25 mg/L     | 106        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2105  | 534)                                | <u> </u>       |               |            |                   |                |              |       |                  |  |
| HK1865396-020           |                                       | EK067P: Total Phosphorus - Filtered |                | 0.5 mg/L      | 96.0       |                   | 75             | 125          |       | 25               |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2105  | 535)                                |                | '             |            |                   |                |              |       |                  |  |
| HK1865396-010           |                                       | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 88.9       |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2105  | 536)                                |                | '             |            |                   |                |              |       |                  |  |
| HK1865396-030           |                                       | EK067P: Total Phosphorus as P       |                | 0.5 mg/L      | 100        |                   | 75             | 125          |       |                  |  |
| ED/EK: Inorganio        | Nonmetallic Parameters (QC Lot: 2105  | 537)                                |                |               |            |                   |                |              |       |                  |  |

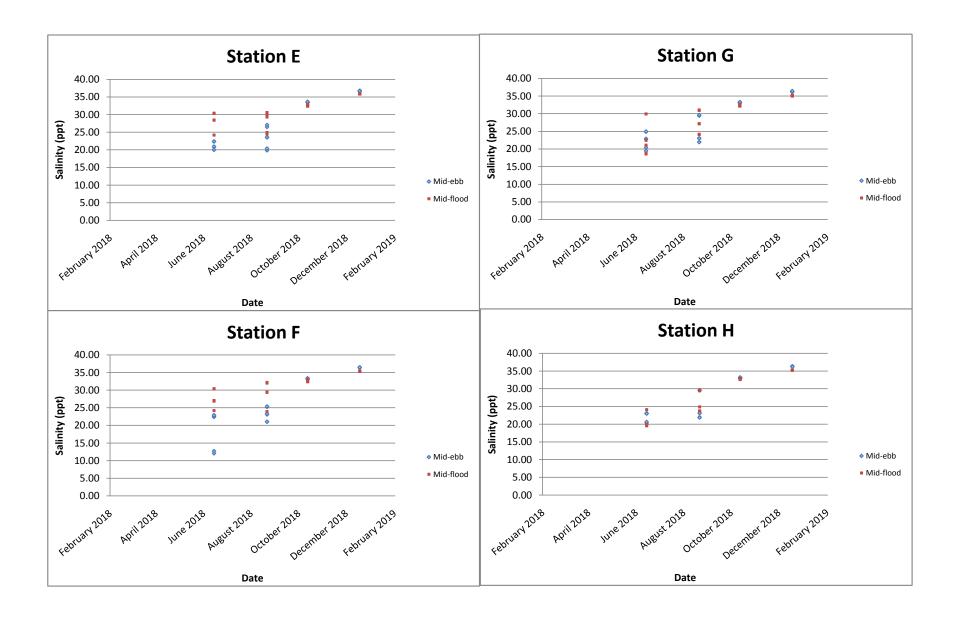
28 of 28

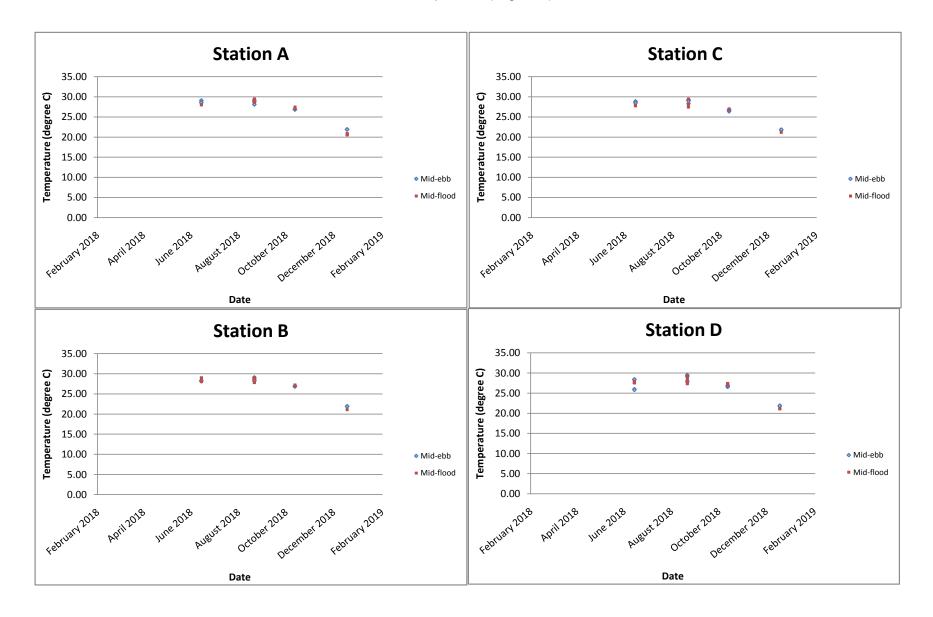
HK1865396

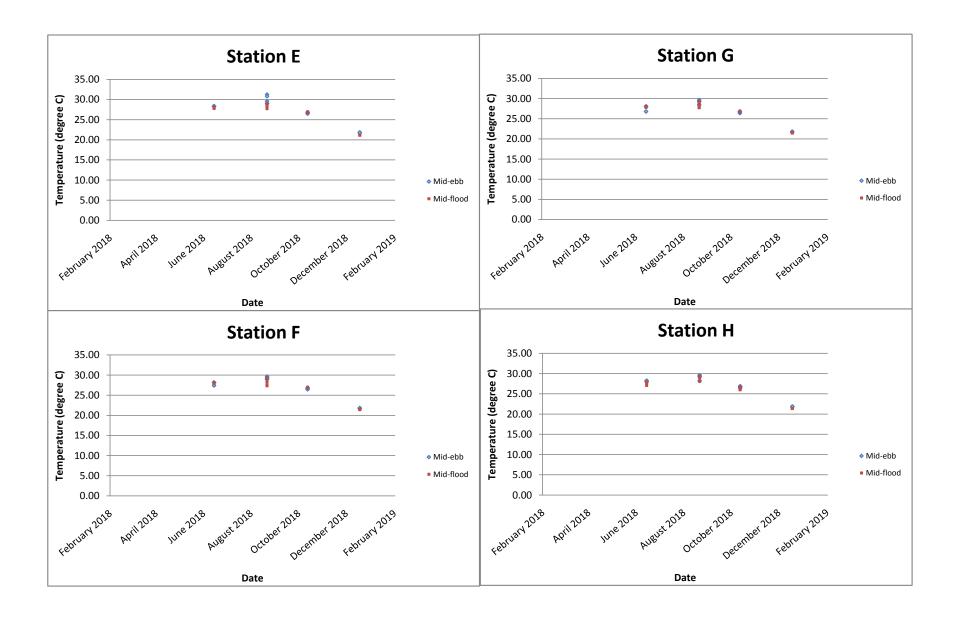

Client

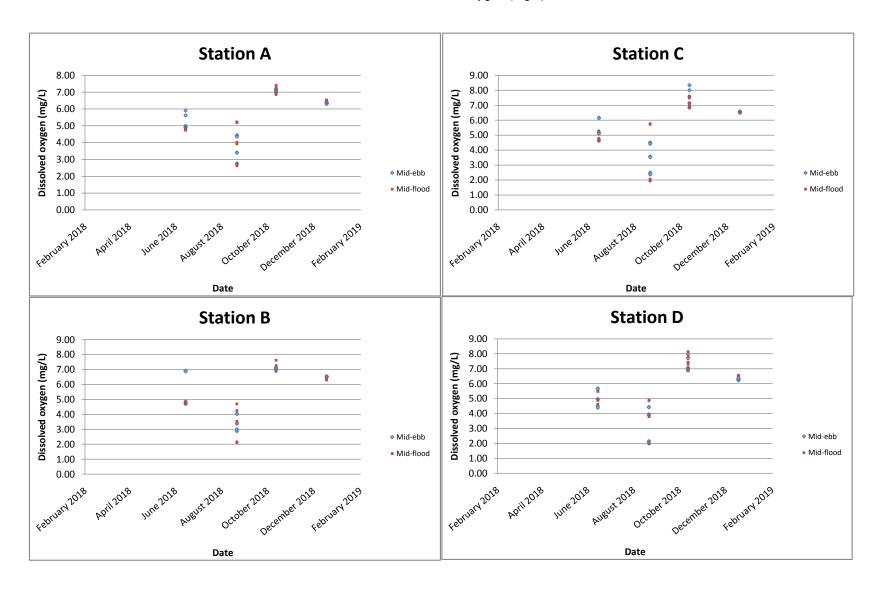

FUGRO TECHNICAL SERVICES LIMITED

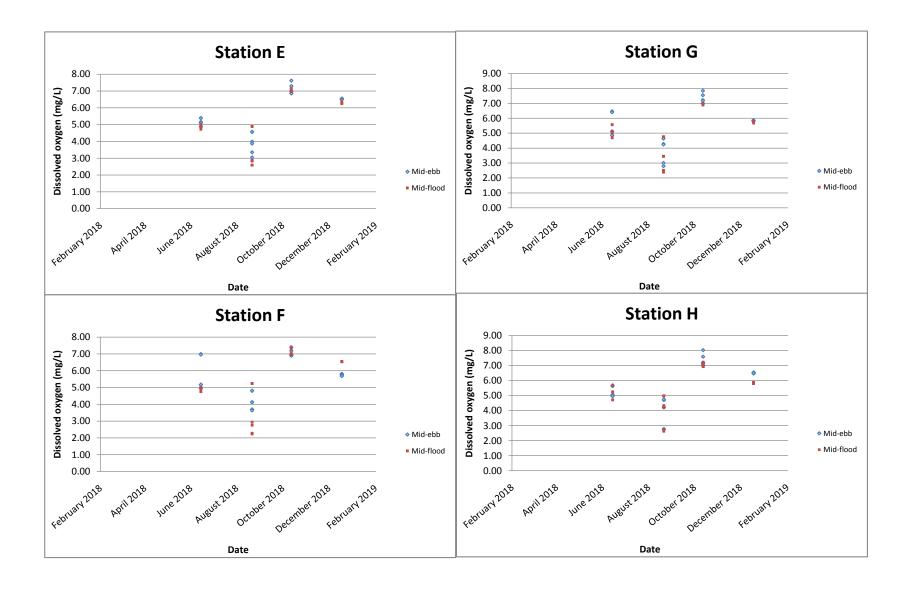

Work Order

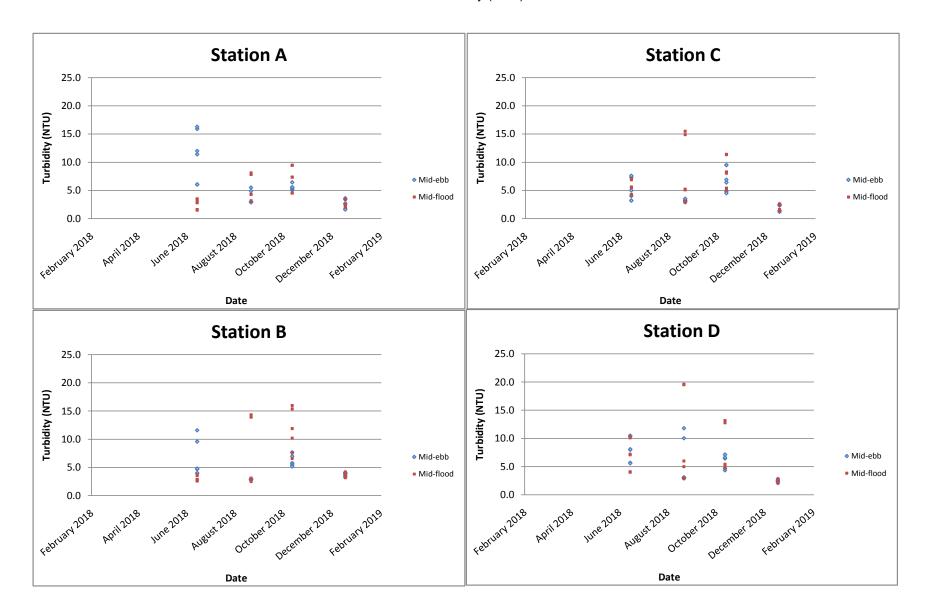

ALS

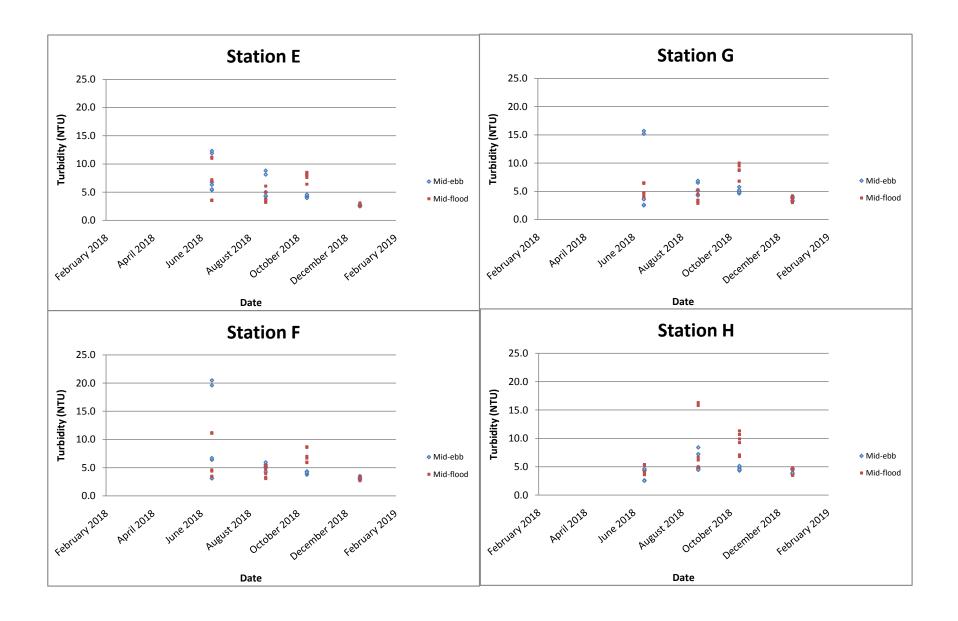

| Matrix: WATER   |                                         |                                     |            |               | Matrix Spi | ike (MS) and Matn | ix Spike Duplic     | ate (MSD) Re | eport . |         |
|-----------------|-----------------------------------------|-------------------------------------|------------|---------------|------------|-------------------|---------------------|--------------|---------|---------|
|                 |                                         |                                     |            | Spike         | Spike Re   | ecovery (%)       | Recovery Limits (%) |              | RPD (%) |         |
| Laboratory      | Client sample ID Method: Compound       |                                     | CAS Number | Concentration | MS         | MSD               | Low                 | High         | Value   | Control |
| sample ID       |                                         |                                     |            |               |            |                   |                     |              |         | Limit   |
| ED/EK: Inorgan  | ic Nonmetallic Parameters (QC Lot: 2105 | 537) - Continued                    |            |               |            |                   |                     |              |         |         |
| HK1865396-040   | G/M/E/Dup                               | EK067P: Total Phosphorus - Filtered |            | 0.5 mg/L      | 106        |                   | 75                  | 125          |         | 25      |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 538)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-050   | A/S/F/Dup                               | EK067P: Total Phosphorus as P       |            | 0.5 mg/L      | 94.0       |                   | 75                  | 125          |         |         |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 539)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-060   | B/B/F/Dup                               | EK067P: Total Phosphorus - Filtered |            | 0.5 mg/L      | 78.0       |                   | 75                  | 125          |         | 25      |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 540)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-070   | D/M/F/Dup                               | EK067P: Total Phosphorus as P       |            | 0.5 mg/L      | 89.9       |                   | 75                  | 125          |         |         |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 542)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-080   | F/S/F/Dup                               | EK067P: Total Phosphorus - Filtered |            | 0.5 mg/L      | 92.0       |                   | 75                  | 125          |         | 25      |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 544)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-090   | G/B/F/Dup                               | EK067P: Total Phosphorus as P       |            | 0.5 mg/L      | 80.5       |                   | 75                  | 125          |         |         |
| ED/EK: Inorgani | ic Nonmetallic Parameters (QC Lot: 2105 | 546)                                |            |               |            |                   |                     |              |         |         |
| HK1865396-096   | H/B/F/Dup                               | EK067P: Total Phosphorus - Filtered |            | 0.5 mg/L      | 106        |                   | 75                  | 125          |         | 25      |

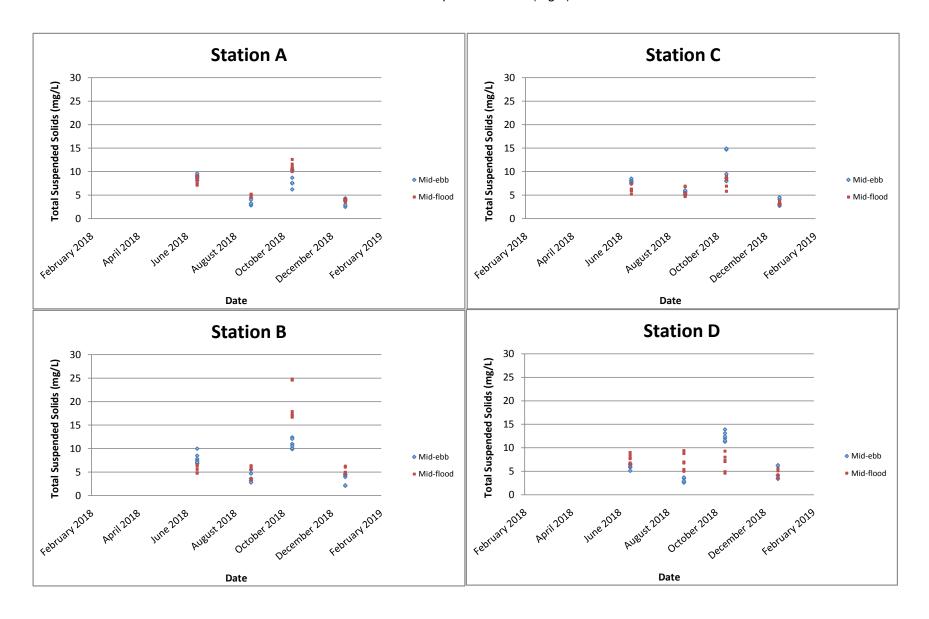


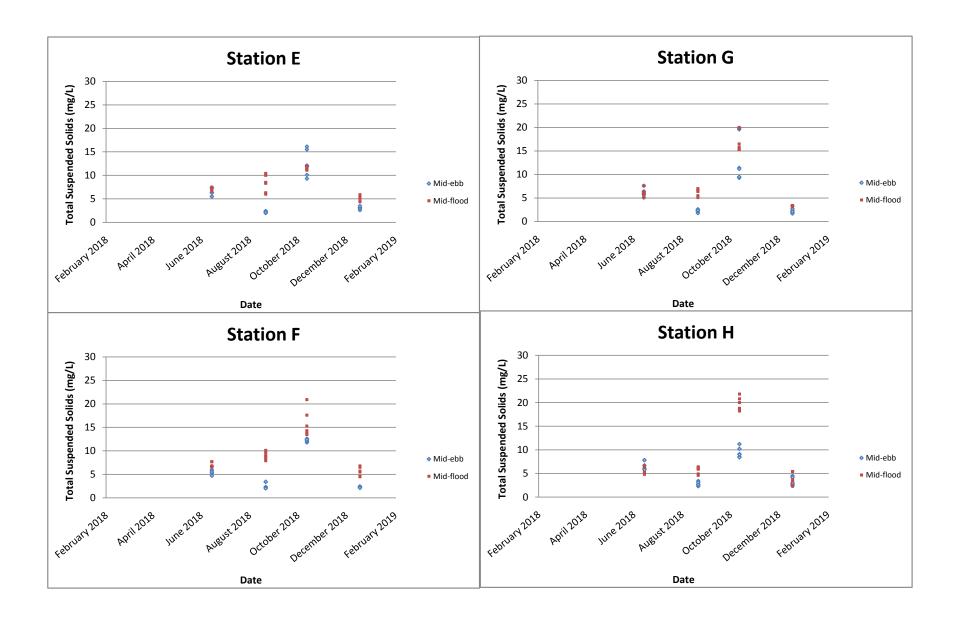



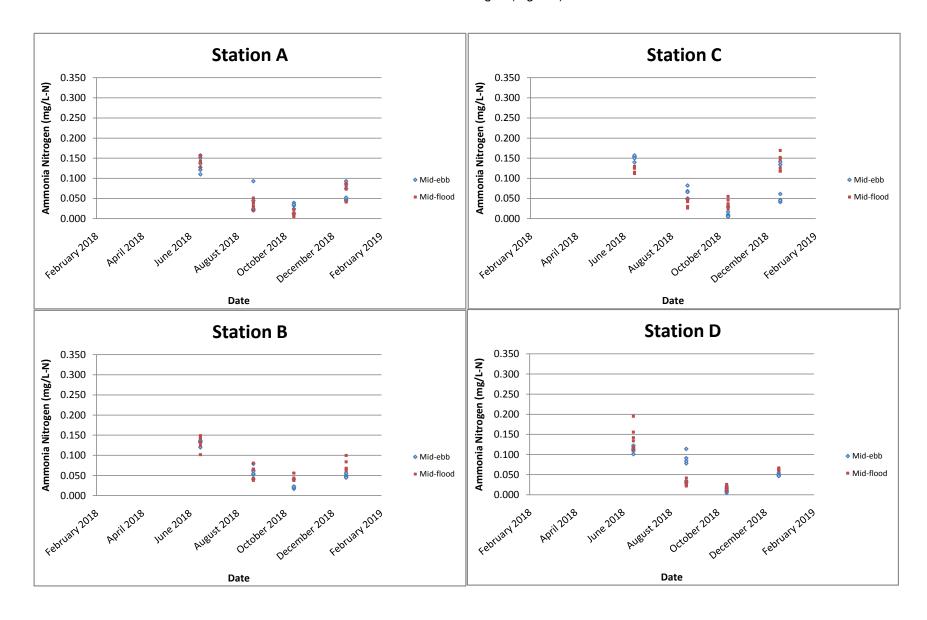



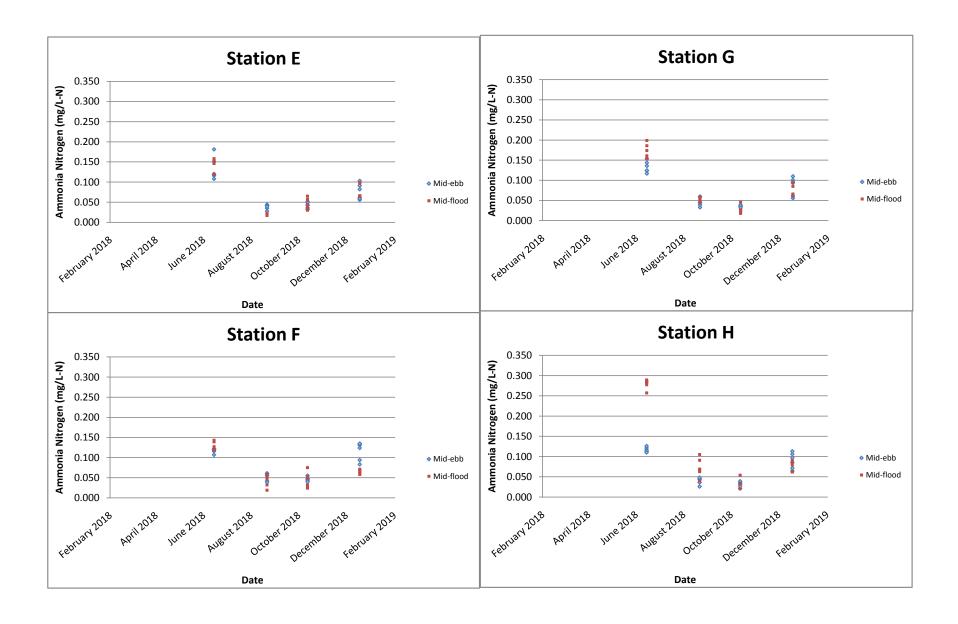



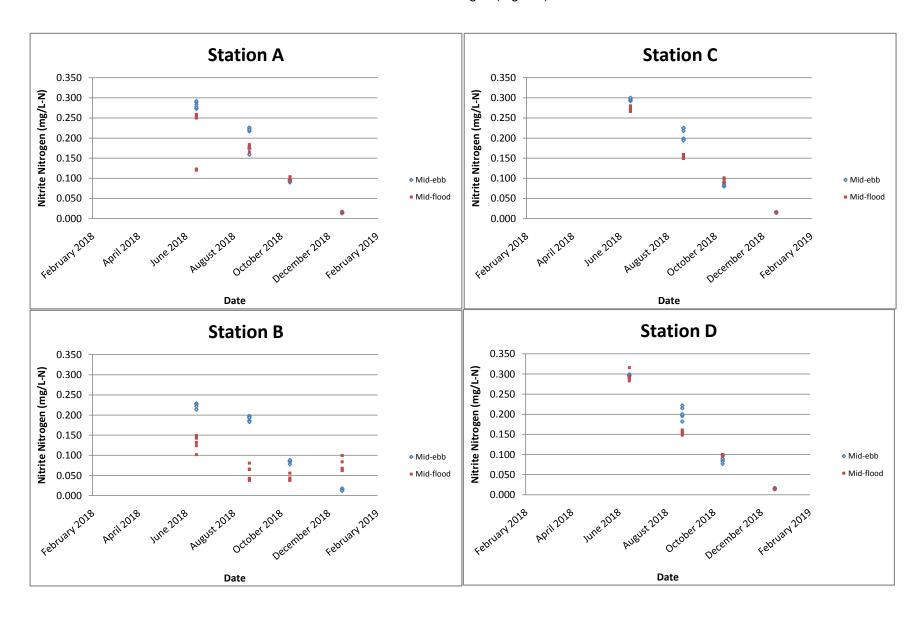



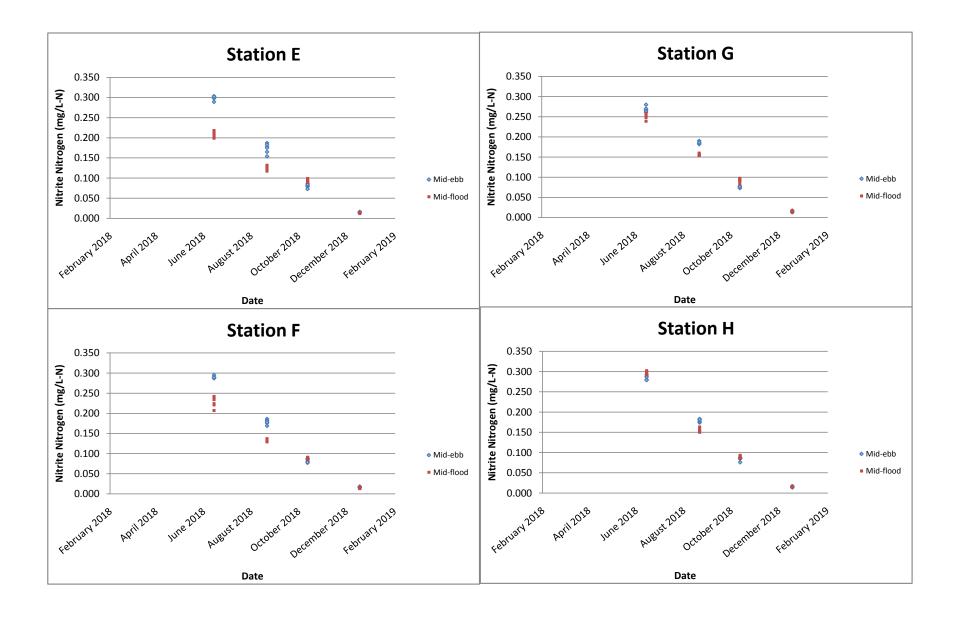



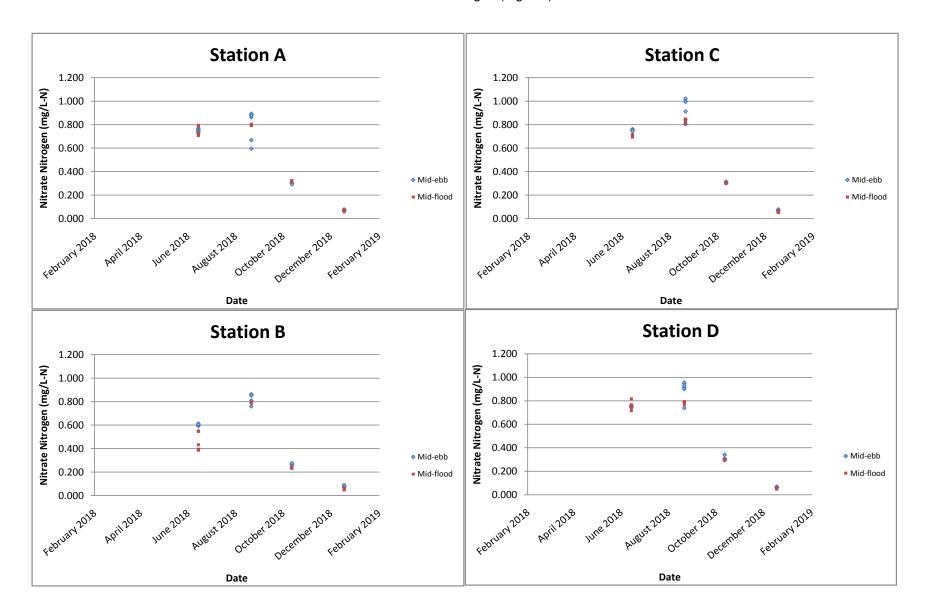



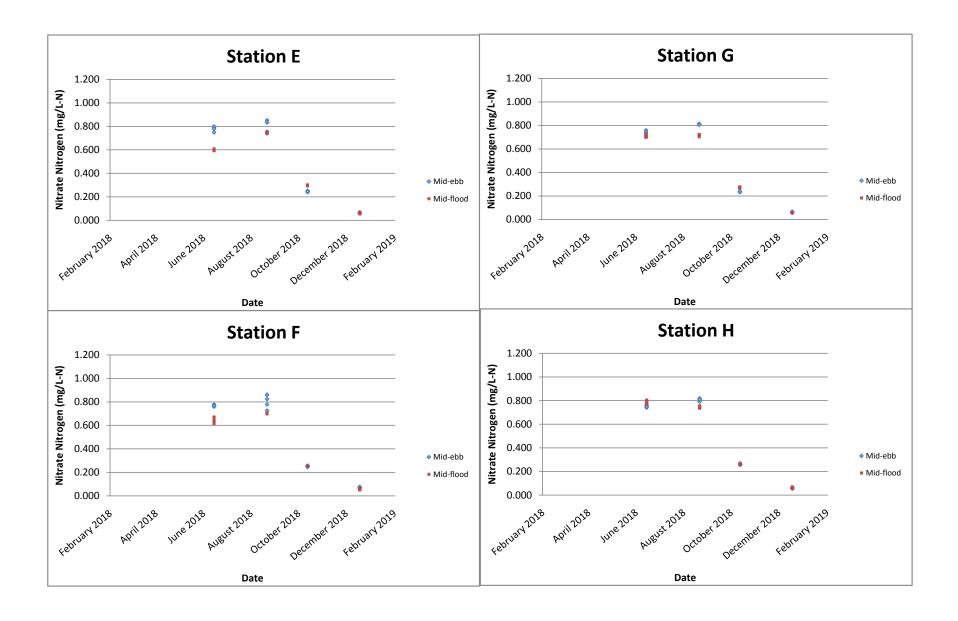



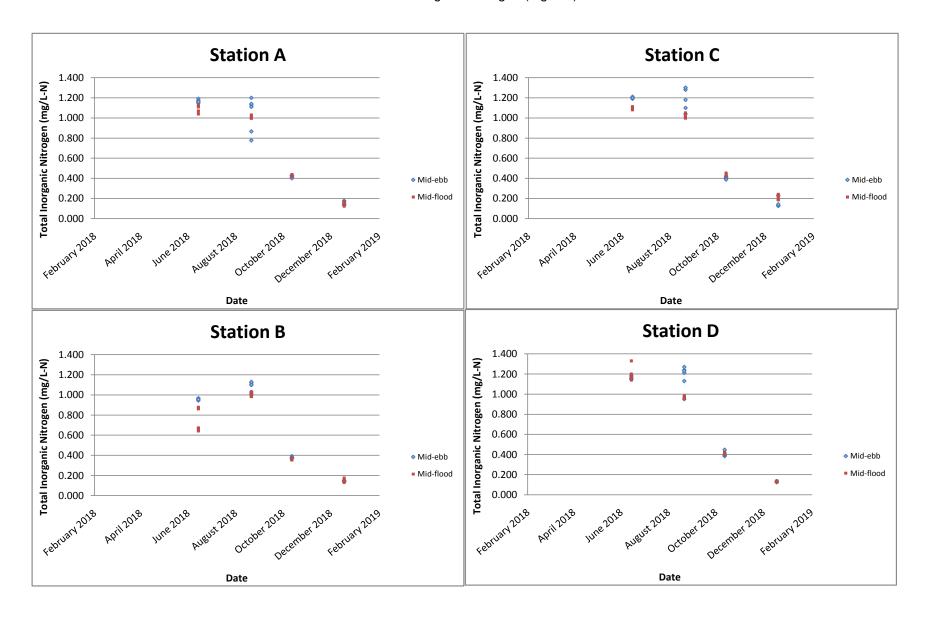



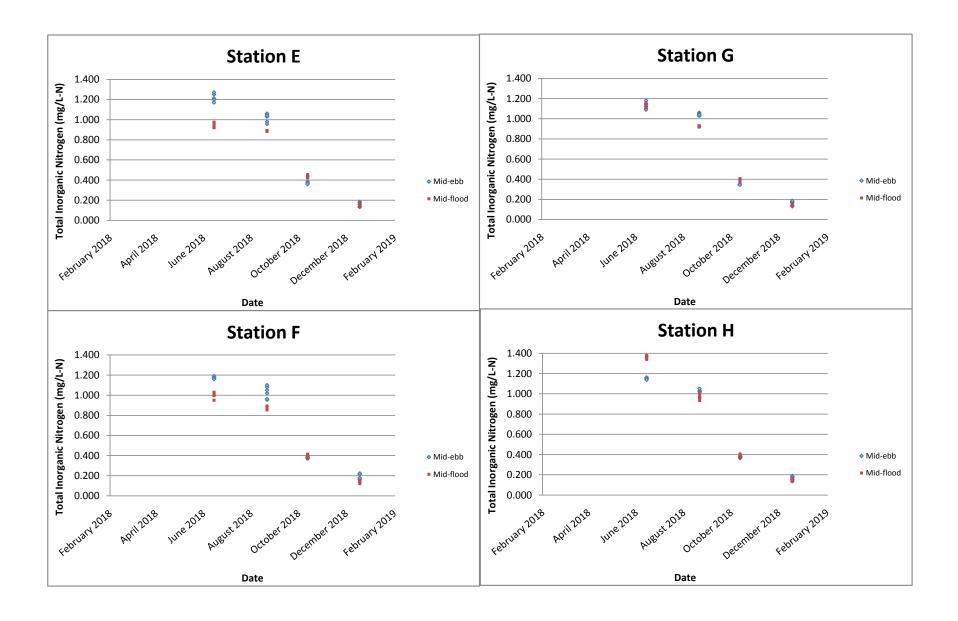



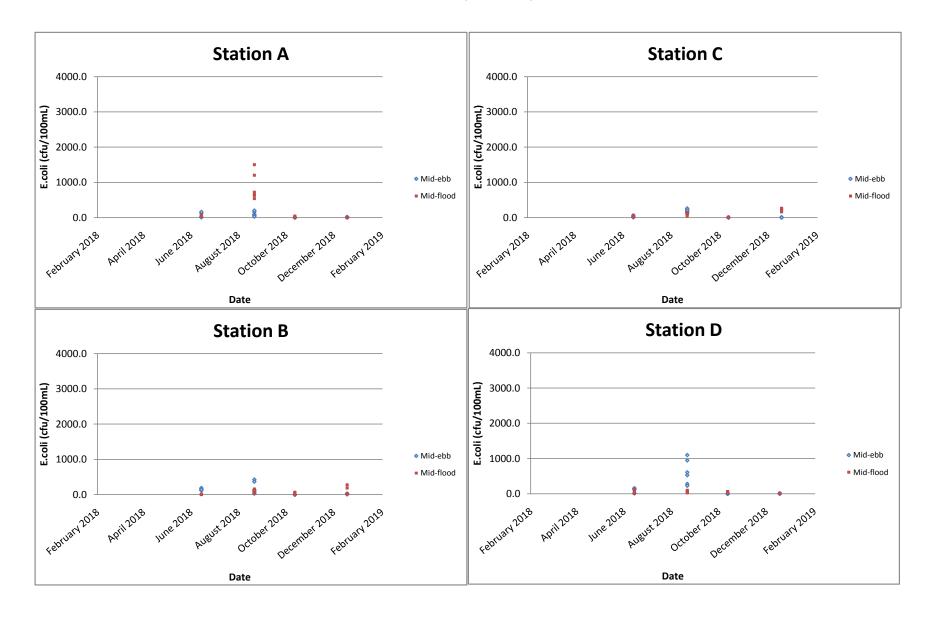



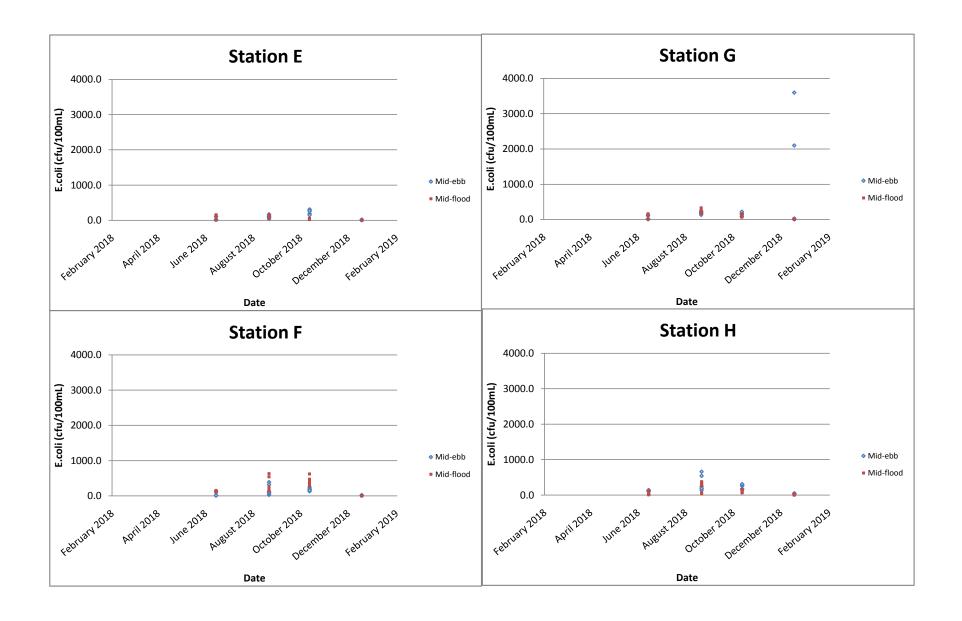



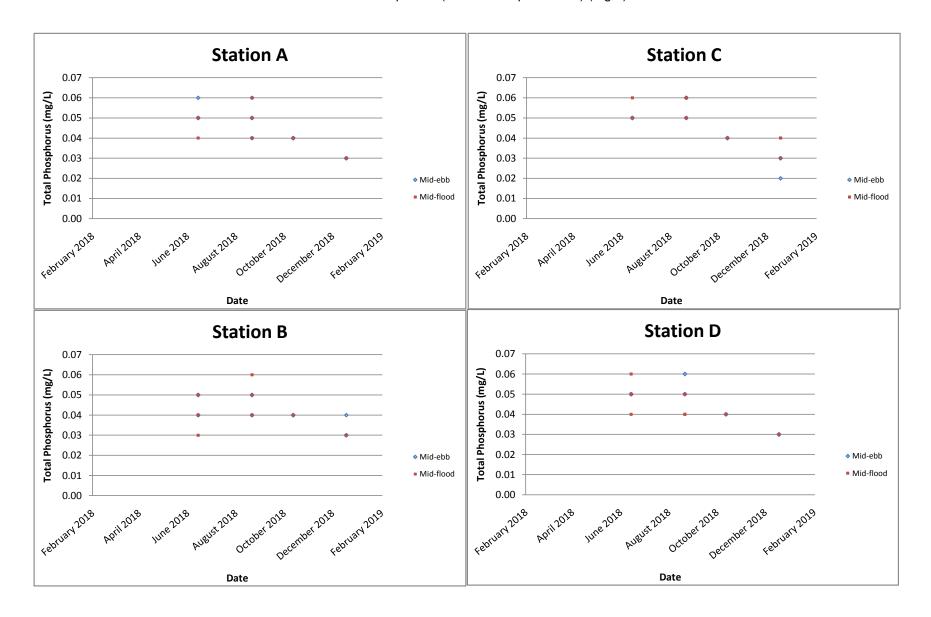



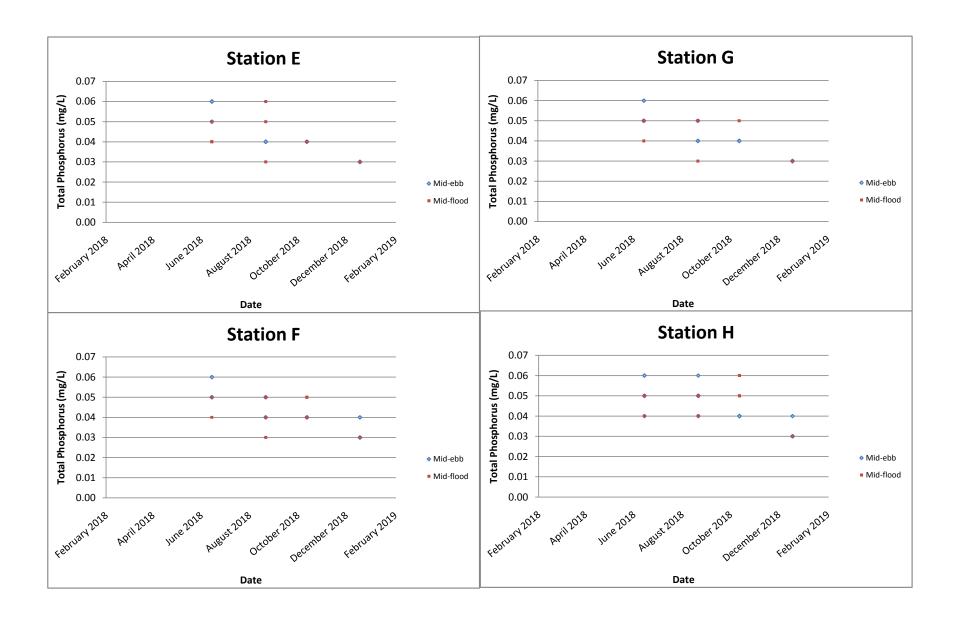



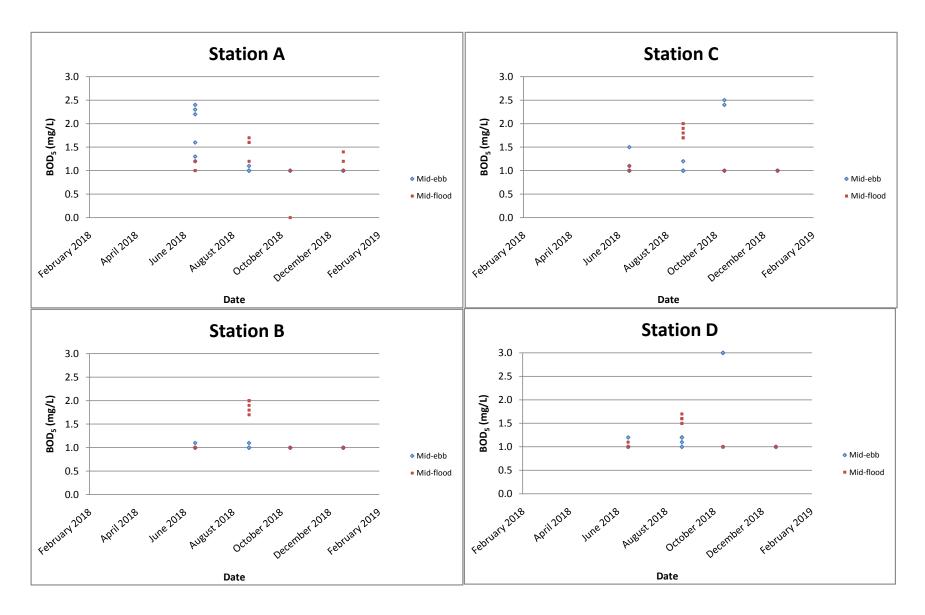



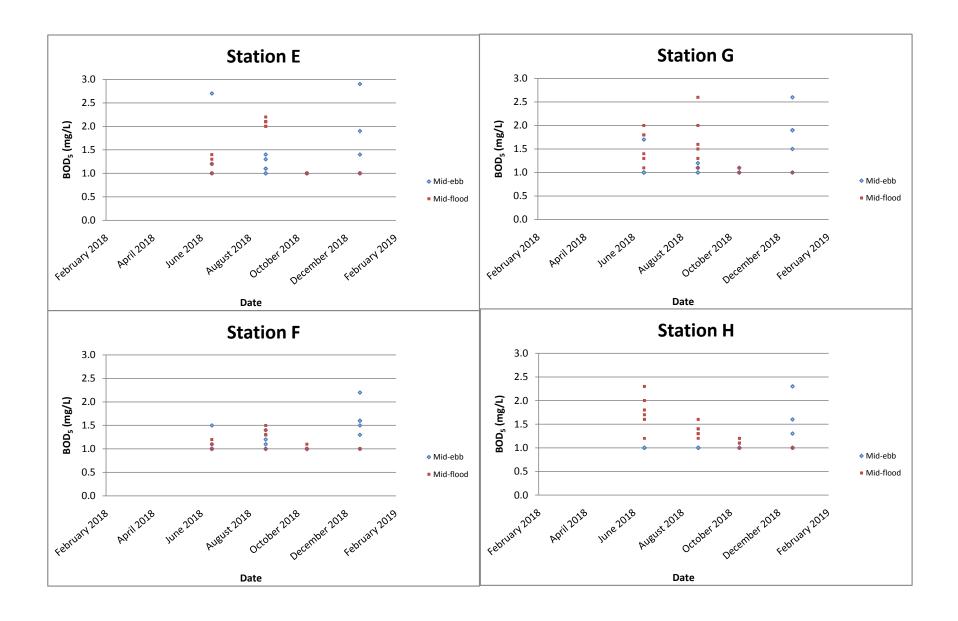














#### **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

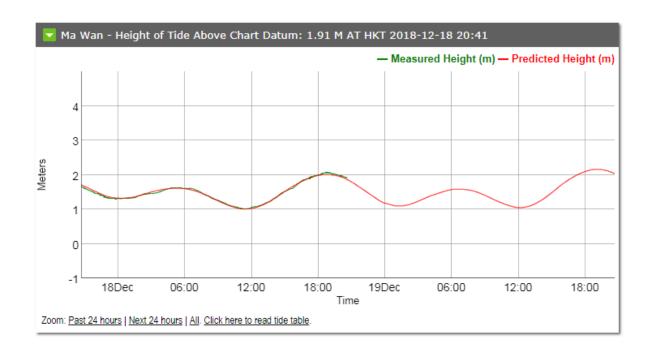
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

#### Appendix F

Tidal Data obtained from Ma Wan Marine Tradffic Station


#### **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B



#### **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

## Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

|                        |            |         |                  |       |     |                            |                             |                               |                    |                     | Sediment Monitoring | l               |                    |                   |                 |                    |                   |
|------------------------|------------|---------|------------------|-------|-----|----------------------------|-----------------------------|-------------------------------|--------------------|---------------------|---------------------|-----------------|--------------------|-------------------|-----------------|--------------------|-------------------|
| Monitoring<br>Location | Date       | Weather | Sea<br>Condition | Time  | рН  | Ammonia as N (mg-<br>N/kg) | Total Nitrogen<br>(mg-N/kg) | Total Phosphorus<br>(mg-P/kg) | Cadmium<br>(mg/kg) | Chromium<br>(mg/kg) | Copper<br>(mg/kg)   | Lead<br>(mg/kg) | Mercury<br>(mg/kg) | Nickel<br>(mg/kg) | Zinc<br>(mg/kg) | Arsenic<br>(mg/kg) | Silver<br>(mg/kg) |
| Α                      | 18/12/2018 | Sunny   | Moderate         | 10:00 | 8.8 | 3.6                        | 1010                        | 509                           | 0.11               | 37.4                | 28.3                | 38.1            | 0.11               | 22.0              | 93.1            | 15.3               | 0.20              |
| В                      | 18/12/2018 | Sunny   | Moderate         | 10:16 | 8.7 | 5.3                        | 900                         | 519                           | 0.10               | 41.3                | 45.0                | 38.7            | 0.08               | 24.1              | 104             | 14.4               | 0.31              |
| С                      | 18/12/2018 | Sunny   | Moderate         | 10:43 | 8.6 | 17.3                       | 1160                        | 543                           | 0.12               | 41.6                | 36.6                | 44.2            | 0.10               | 25.4              | 120             | 13.0               | 0.29              |
| D                      | 18/12/2018 | Sunny   | Moderate         | 10:58 | 8.6 | 8.8                        | 1380                        | 619                           | 0.11               | 44.0                | 38.6                | 45.5            | 0.13               | 26.7              | 125             | 12.8               | 0.30              |
| E                      | 18/12/2018 | Sunny   | Moderate         | 11:23 | 8.4 | 8.0                        | 1280                        | 529                           | <0.10              | 40.9                | 38.9                | 40.0            | 0.09               | 25.2              | 120             | 11.9               | 0.33              |
| F                      | 18/12/2018 | Sunny   | Moderate         | 11:37 | 8.3 | 4.9                        | 1410                        | 562                           | <0.10              | 45.3                | 42.6                | 44.5            | 0.11               | 28.5              | 128             | 12.5               | 0.35              |
| G                      | 18/12/2018 | Sunny   | Moderate         | 11:57 | 8.6 | 11.6                       | 910                         | 526                           | <0.10              | 47.8                | 336.0               | 35.2            | 0.06               | 17.6              | 136             | 9.1                | 0.23              |
| Н                      | 18/12/2018 | Sunny   | Moderate         | 12:10 | 8.3 | 2.2                        | 1100                        | 465                           | 0.12               | 50.3                | 87.3                | 47.5            | 0.10               | 28.5              | 147             | 15.6               | 0.79              |

|                        |            |         | 0                |       |                      |            | Benthic Survey |             |          |
|------------------------|------------|---------|------------------|-------|----------------------|------------|----------------|-------------|----------|
| Monitoring<br>Location | Date       | Weather | Sea<br>Condition | Time  | Total Organic Carbon |            | Particle Size  | Distrbution |          |
| Location               |            |         | Condition        |       | (%)                  | Gravel (%) | Sand (%)       | Silt (%)    | Clay (%) |
| Α                      | 18/12/2018 | Sunny   | Moderate         | 10:00 | 0.83                 | 5          | 34             | 32          | 29       |
| В                      | 18/12/2018 | Sunny   | Moderate         | 10:16 | 0.72                 | 2          | 22             | 46          | 30       |
| С                      | 18/12/2018 | Sunny   | Moderate         | 10:43 | 0.84                 | 0          | 2              | 61          | 37       |
| D                      | 18/12/2018 | Sunny   | Moderate         | 10:58 | 0.72                 | 0          | 13             | 52          | 35       |
| Е                      | 18/12/2018 | Sunny   | Moderate         | 11:23 | 0.86                 | 0          | 14             | 47          | 39       |
| F                      | 18/12/2018 | Sunny   | Moderate         | 11:37 | 0.95                 | 0          | 1              | 55          | 44       |
| G                      | 18/12/2018 | Sunny   | Moderate         | 11:57 | 0.79                 | 1          | 14             | 49          | 36       |
| Н                      | 18/12/2018 | Sunny   | Moderate         | 12:10 | 0.69                 | 1          | 10             | 52          | 37       |

# ALS Technichem (HK) Pty Ltd

#### **ALS Laboratory Group**

**ANALYICAL CHEMISTRY & TESTING SERVICES** 



#### CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 13

LIMITED

Contact : MR CYRUS LAI Contact : Richard Fung Work Order : HK1865402

Address : ROOM 723 & 725, 7/F, BLOCK B, PROFIT Address : 11/F., Chung Shun Knitting

INDUSTRIAL BUILDING, 1-15 KWAI FONG

Centre, 1 - 3 Wing Yip Street,

CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong

E-mail : c.lai@fugro.com : richard.fung@alsglobal.com

Telephone : +852 3565 4374 Telephone : +852 2610 1044
Facsimile : --- Facsimile : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT Date Samples Received : 18-Dec-2018

FOR SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 Quote number : HKE/1654/2017\_R1 Issue Date : 04-Jan-2019

C-O-C number : ---
No. of samples received : 24

Site : --- No. of samples analysed : 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Fung Lim Chee, Richard General Manager Metals

Page Number : 2 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865402



#### General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 18-Dec-2018 to 04-Jan-2019.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

#### Specific Comments for Work Order: HK1865402

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

pH determined and reported on a 1:5 soil / water extract.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

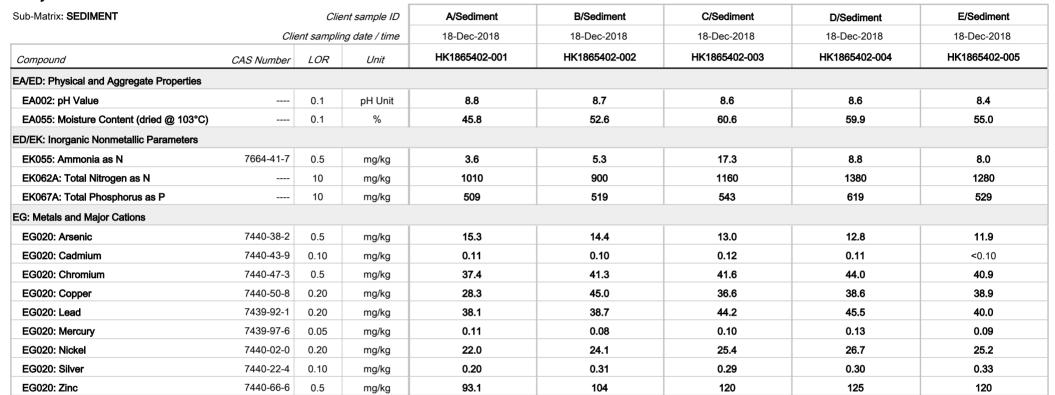
Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

pH value is reported as at 25°C.

Ammonia, Nitrite and Nitrate determined and reported on a 1:5 soil / 1M KCl solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.


3 of 13

Client

: FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865402

#### Analytical Results





: 4 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: <b>SEDIMENT</b>              |            | Clie        | ent sample ID  | F/Sediment    | G/Sediment    | H/Sediment    | A/Benthic Survey | B/Benthic Survey |
|------------------------------------------|------------|-------------|----------------|---------------|---------------|---------------|------------------|------------------|
|                                          | Cli        | ent samplir | ng date / time | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018   | 18-Dec-2018      | 18-Dec-2018      |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865402-006 | HK1865402-007 | HK1865402-008 | HK1865402-009    | HK1865402-010    |
| EA/ED: Physical and Aggregate Properties |            |             |                |               |               |               |                  |                  |
| EA002: pH Value                          |            | 0.1         | pH Unit        | 8.4           | 8.7           | 8.9           |                  |                  |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 59.4          | 39.9          | 56.6          | 46.2             | 51.1             |
| ED/EK: Inorganic Nonmetallic Parameters  |            |             |                |               |               |               |                  |                  |
| EK055: Ammonia as N                      | 7664-41-7  | 0.5         | mg/kg          | 4.9           | 11.6          | 2.2           |                  |                  |
| EK062A: Total Nitrogen as N              |            | 10          | mg/kg          | 1410          | 910           | 1100          |                  |                  |
| EK067A: Total Phosphorus as P            |            | 10          | mg/kg          | 562           | 526           | 465           |                  |                  |
| EG: Metals and Major Cations             |            |             |                |               |               |               |                  |                  |
| EG020: Arsenic                           | 7440-38-2  | 0.5         | mg/kg          | 12.5          | 9.1           | 15.6          |                  |                  |
| EG020: Cadmium                           | 7440-43-9  | 0.10        | mg/kg          | <0.10         | <0.10         | 0.12          |                  |                  |
| EG020: Chromium                          | 7440-47-3  | 0.5         | mg/kg          | 45.3          | 47.8          | 50.3          |                  |                  |
| EG020: Copper                            | 7440-50-8  | 0.20        | mg/kg          | 42.6          | 336           | 87.3          |                  |                  |
| EG020: Lead                              | 7439-92-1  | 0.20        | mg/kg          | 44.5          | 35.2          | 47.5          |                  |                  |
| EG020: Mercury                           | 7439-97-6  | 0.05        | mg/kg          | 0.11          | 0.06          | 0.10          |                  |                  |
| EG020: Nickel                            | 7440-02-0  | 0.20        | mg/kg          | 28.5          | 17.6          | 28.5          |                  |                  |
| EG020: Silver                            | 7440-22-4  | 0.10        | mg/kg          | 0.35          | 0.23          | 0.79          |                  |                  |
| EG020: Zinc                              | 7440-66-6  | 0.5         | mg/kg          | 128           | 136           | 147           |                  |                  |
| EP: Aggregate Organics                   |            |             |                |               |               |               |                  |                  |
| EP005: Total Organic Carbon              |            | 0.05        | %              |               |               |               | 0.83             | 0.72             |

5 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: <b>SEDIMENT</b>              |            | Clie        | ent sample ID  | C/Benthic Survey | D/Benthic Survey | E/Benthic Survey | F/Benthic Survey | G/Benthic Survey |
|------------------------------------------|------------|-------------|----------------|------------------|------------------|------------------|------------------|------------------|
|                                          | Clie       | ent samplir | ng date / time | 18-Dec-2018      | 18-Dec-2018      | 18-Dec-2018      | 18-Dec-2018      | 18-Dec-2018      |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865402-011    | HK1865402-012    | HK1865402-013    | HK1865402-014    | HK1865402-015    |
| EA/ED: Physical and Aggregate Properties |            |             |                |                  |                  |                  |                  |                  |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 61.2             | 53.0             | 54.1             | 61.7             | 55.3             |
| EP: Aggregate Organics                   |            |             |                |                  |                  |                  |                  |                  |
| EP005: Total Organic Carbon              |            | 0.05        | %              | 0.84             | 0.72             | 0.86             | 0.95             | 0.79             |

: 6 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: SEDIMENT                     |            | Clie        | ent sample ID  | H/Benthic Survey | <br> | <br> |
|------------------------------------------|------------|-------------|----------------|------------------|------|------|
|                                          | Cli        | ent samplii | ng date / time | 18-Dec-2018      | <br> | <br> |
| Compound                                 | CAS Number | LOR         | Unit           | HK1865402-016    | <br> | <br> |
| EA/ED: Physical and Aggregate Properties |            |             |                |                  |      |      |
| EA055: Moisture Content (dried @ 103°C)  |            | 0.1         | %              | 54.0             | <br> | <br> |
| EP: Aggregate Organics                   |            |             |                |                  |      |      |
| EP005: Total Organic Carbon              |            | 0.05        | %              | 0.69             | <br> | <br> |

. 7 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                    |            | Clie        | ent sample ID  | A/Rinsate Blank | B/Rinsate Blank | C/Rinsate Blank                                                                                                                                                                                                                                                                 | D/Rinsate Blank | E/Rinsate Blank |
|--------------------------------------|------------|-------------|----------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
|                                      | Clie       | ent samplii | ng date / time | 18-Dec-2018     | 18-Dec-2018     | 18-Dec-2018                                                                                                                                                                                                                                                                     | 18-Dec-2018     | 18-Dec-2018     |
| Compound                             | CAS Number | LOR         | Unit           | HK1865402-017   | HK1865402-018   | HK1865402-018         HK1865402-019         HK1865402-02           <10         <10         <10           <0.2         <0.2         <0.2           1         <1         <1           2         <1         <1           2         <1         <1           2         <1         <1 |                 | HK1865402-021   |
| EG: Metals and Major Cations - Total |            |             |                |                 |                 |                                                                                                                                                                                                                                                                                 |                 |                 |
| EG020: Arsenic                       | 7440-38-2  | 10          | μg/L           | <10             | <10             | <10                                                                                                                                                                                                                                                                             | <10             | <10             |
| EG020: Cadmium                       | 7440-43-9  | 0.2         | μg/L           | <0.2            | <0.2            | <0.2                                                                                                                                                                                                                                                                            | <0.2            | <0.2            |
| EG020: Chromium                      | 7440-47-3  | 1           | μg/L           | <1              | 1               | <1                                                                                                                                                                                                                                                                              | <1              | <1              |
| EG020: Copper                        | 7440-50-8  | 1           | μg/L           | 1               | 2               | <1                                                                                                                                                                                                                                                                              | <1              | <1              |
| EG020: Lead                          | 7439-92-1  | 1           | μg/L           | <1              | 2               | <1                                                                                                                                                                                                                                                                              | <1              | <1              |
| EG020: Mercury                       | 7439-97-6  | 0.5         | μg/L           | <0.5            | <0.5            | <0.5                                                                                                                                                                                                                                                                            | <0.5            | <0.5            |
| EG020: Nickel                        | 7440-02-0  | 1           | μg/L           | <1              | <1              | <1                                                                                                                                                                                                                                                                              | <1              | <1              |
| EG020: Silver                        | 7440-22-4  | 1           | μg/L           | <1              | <1              | <1                                                                                                                                                                                                                                                                              | <1              | <1              |
| EG020: Zinc                          | 7440-66-6  | 10          | μg/L           | <10             | <10             | <10                                                                                                                                                                                                                                                                             | <10             | <10             |

: 8 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED



| Sub-Matrix: WATER                    |            | Clie        | ent sample ID  | F/Rinsate Blank | G/Rinsate Blank | H/Rinsate Blank | <br> |
|--------------------------------------|------------|-------------|----------------|-----------------|-----------------|-----------------|------|
|                                      | Clie       | ent samplii | ng date / time | 18-Dec-2018     | 18-Dec-2018     | 18-Dec-2018     | <br> |
| Compound                             | CAS Number | LOR         | Unit           | HK1865402-022   | HK1865402-023   | HK1865402-024   | <br> |
| EG: Metals and Major Cations - Total |            |             |                |                 |                 |                 |      |
| EG020: Arsenic                       | 7440-38-2  | 10          | μg/L           | <10             | <10             | <10             | <br> |
| EG020: Cadmium                       | 7440-43-9  | 0.2         | μg/L           | <0.2            | <0.2            | <0.2            | <br> |
| EG020: Chromium                      | 7440-47-3  | 1           | μg/L           | <1              | <1              | 1               | <br> |
| EG020: Copper                        | 7440-50-8  | 1           | μg/L           | <1              | <1              | 1               | <br> |
| EG020: Lead                          | 7439-92-1  | 1           | μg/L           | <1              | <1              | <1              | <br> |
| EG020: Mercury                       | 7439-97-6  | 0.5         | μg/L           | <0.5            | <0.5            | <0.5            | <br> |
| EG020: Nickel                        | 7440-02-0  | 1           | μg/L           | <1              | <1              | <1              | <br> |
| EG020: Silver                        | 7440-22-4  | 1           | μg/L           | <1              | <1              | <1              | <br> |
| EG020: Zinc                          | 7440-66-6  | 10          | μg/L           | <10             | <10             | <10             | <br> |

: 9 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865402



# Laboratory Duplicate (DUP) Report

| Matrix: SOIL            |                               |                                         |            |      | Labo    | oratory Duplicate (DUP) | Report              |                |
|-------------------------|-------------------------------|-----------------------------------------|------------|------|---------|-------------------------|---------------------|----------------|
| Laboratory<br>sample ID | Client sample ID              | Method: Compound                        | CAS Number | LOR  | Unit    | Original Result         | Duplicate<br>Result | <i>RPD</i> (%) |
| EA/ED: Physical and A   | ggregate Properties (QC Lot   | : 2115337)                              |            |      |         |                         |                     |                |
| HK1864998-001           | Anonymous                     | EA055: Moisture Content (dried @ 103°C) |            | 0.1  | %       | 15.5                    | 15.4                | 0.00           |
| HK1865402-008           | H/Sediment                    | EA055: Moisture Content (dried @ 103°C) |            | 0.1  | %       | 56.6                    | 56.5                | 0.00           |
| EA/ED: Physical and A   | ggregate Properties (QC Lot   | : 2115959)                              |            |      |         |                         |                     |                |
| HK1865402-001           | A/Sediment                    | EA002: pH Value                         |            | 0.1  | pH Unit | 8.8                     | 8.9                 | 0.00           |
| ED/EK: Inorganic Nonn   | netallic Parameters (QC Lot:  | 2120436)                                |            |      |         |                         |                     |                |
| HK1865402-001           | A/Sediment                    | EK067A: Total Phosphorus as P           |            | 10   | mg/kg   | 509                     | 467                 | 8.70           |
| ED/EK: Inorganic Nonn   | netallic Parameters (QC Lot:  | 2122302)                                |            |      |         |                         |                     |                |
| HK1865402-001           | A/Sediment                    | EK055: Ammonia as N                     | 7664-41-7  | 1    | mg/kg   | 3.6                     | 4                   | 0.00           |
| EG: Metals and Major (  | Cations (QC Lot: 2102958)     |                                         |            |      |         |                         |                     |                |
| HK1865402-002           | B/Sediment                    | EG020: Cadmium                          | 7440-43-9  | 0.01 | mg/kg   | 0.10                    | 0.10                | 0.00           |
|                         |                               | EG020: Mercury                          | 7439-97-6  | 0.02 | mg/kg   | 0.08                    | 0.09                | 0.00           |
|                         |                               | EG020: Copper                           | 7440-50-8  | 0.05 | mg/kg   | 45.0                    | 43.7                | 2.87           |
|                         |                               | EG020: Lead                             | 7439-92-1  | 0.05 | mg/kg   | 38.7                    | 37.4                | 3.32           |
|                         |                               | EG020: Nickel                           | 7440-02-0  | 0.05 | mg/kg   | 24.1                    | 23.8                | 1.19           |
|                         |                               | EG020: Silver                           | 7440-22-4  | 0.05 | mg/kg   | 0.31                    | 0.28                | 9.29           |
|                         |                               | EG020: Arsenic                          | 7440-38-2  | 0.5  | mg/kg   | 14.4                    | 14.7                | 1.77           |
|                         |                               | EG020: Chromium                         | 7440-47-3  | 0.5  | mg/kg   | 41.3                    | 40.2                | 2.79           |
|                         |                               | EG020: Zinc                             | 7440-66-6  | 0.5  | mg/kg   | 104                     | 100                 | 3.22           |
| EP: Aggregate Organic   | s (QC Lot: 2108164)           |                                         |            |      |         |                         |                     |                |
| HK1865402-014           | F/Benthic Survey              | EP005: Total Organic Carbon             |            | 0.05 | %       | 0.95                    | 0.95                | 0.00           |
| Matrix: WATER           |                               |                                         |            |      | Labo    | oratory Duplicate (DUP) | Report              |                |
| Laboratory<br>sample ID | Client sample ID              | Method: Compound                        | CAS Number | LOR  | Unit    | Original Result         | Duplicate Result    | RPD (%)        |
| EG: Metals and Major (  | Cations - Total (QC Lot: 2102 | 2976)                                   |            |      |         |                         |                     |                |
| HK1865402-018           | B/Rinsate Blank               | EG020: Cadmium                          | 7440-43-9  | 0.2  | μg/L    | <0.2                    | <0.2                | 0.00           |
|                         |                               | EG020: Mercury                          | 7439-97-6  | 0.5  | μg/L    | <0.5                    | <0.5                | 0.00           |
|                         |                               | EG020: Chromium                         | 7440-47-3  | 1    | μg/L    | 1                       | 2                   | 0.00           |
|                         |                               | EG020: Copper                           | 7440-50-8  | 1    | μg/L    | 2                       | 2                   | 0.00           |
|                         |                               | EG020: Lead                             | 7439-92-1  | 1    | μg/L    | 2                       | 1                   | 0.00           |
|                         |                               | EG020: Nickel                           | 7440-02-0  | 1    | μg/L    | <1                      | <1                  | 0.00           |

: 10 of 13

Client : F

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865402



| Matrix: WATER          |                                  |                  | Laboratory Duplicate (DUP) Report |     |      |                 |                     |         |  |  |
|------------------------|----------------------------------|------------------|-----------------------------------|-----|------|-----------------|---------------------|---------|--|--|
| Laboratory sample ID   | Client sample ID                 | Method: Compound | CAS Number                        | LOR | Unit | Original Result | Duplicate<br>Result | RPD (%) |  |  |
| EG: Metals and Major C | ations - Total (QC Lot: 2102976) | - Continued      |                                   |     |      |                 |                     |         |  |  |
| HK1865402-018          | B/Rinsate Blank                  | EG020: Silver    | 7440-22-4                         | 1   | μg/L | <1              | <1                  | 0.00    |  |  |
|                        |                                  | EG020: Arsenic   | 7440-38-2                         | 10  | μg/L | <10             | <10                 | 0.00    |  |  |
|                        |                                  | EG020: Zinc      | 7440-66-6                         | 10  | μg/L | <10             | <10                 | 0.00    |  |  |

## Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

| Matrix: SOIL                                     |              |      | Method Blank (MB | 3) Report |               | Laboratory Cont | rol Spike (LCS) and Labor | atory Control S | pike Duplicate (l | DCS) Report |                  |
|--------------------------------------------------|--------------|------|------------------|-----------|---------------|-----------------|---------------------------|-----------------|-------------------|-------------|------------------|
|                                                  |              |      |                  |           | Spike         | Spike Re        | acovery (%)               | Recove          | ry Limits(%)      | RPL         | 7 (%)            |
| Method: Compound                                 | CAS Number   | LOR  | Unit             | Result    | Concentration | LCS             | DCS                       | Low             | High              | Value       | Control<br>Limit |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo   | ot: 2120436) |      | 1                |           |               |                 |                           |                 |                   |             |                  |
| EK067A: Total Phosphorus as P                    |              | 10   | mg/kg            | <10       | 695 mg/kg     | 90.6            |                           | 85              | 115               |             |                  |
| ED/EK: Inorganic Nonmetallic Parameters (QC Lo   | ot: 2122302) |      |                  |           |               |                 |                           |                 |                   |             |                  |
| EK055: Ammonia as N                              | 7664-41-7    | 1    | mg/kg            | <1        | 10 mg/kg      | 101             |                           | 85              | 119               |             |                  |
| EG: Metals and Major Cations (QC Lot: 2102958)   |              |      |                  |           |               |                 |                           |                 |                   |             |                  |
| EG020: Arsenic                                   | 7440-38-2    | 0.5  | mg/kg            | <0.5      | 5 mg/kg       | 91.1            |                           | 85              | 110               |             |                  |
| EG020: Cadmium                                   | 7440-43-9    | 0.01 | mg/kg            | <0.01     | 5 mg/kg       | 96.6            |                           | 85              | 115               |             |                  |
| EG020: Chromium                                  | 7440-47-3    | 0.5  | mg/kg            | <0.5      | 5 mg/kg       | 92.5            |                           | 85              | 115               |             |                  |
| EG020: Copper                                    | 7440-50-8    | 0.05 | mg/kg            | <0.05     | 5 mg/kg       | 98.3            |                           | 85              | 114               |             |                  |
| EG020: Lead                                      | 7439-92-1    | 0.05 | mg/kg            | <0.05     | 5 mg/kg       | 100             |                           | 87              | 115               |             |                  |
| EG020: Mercury                                   | 7439-97-6    | 0.02 | mg/kg            | <0.02     | 0.1 mg/kg     | 91.6            |                           | 85              | 115               |             |                  |
| EG020: Nickel                                    | 7440-02-0    | 0.05 | mg/kg            | <0.05     | 5 mg/kg       | 95.7            |                           | 85              | 115               |             |                  |
| EG020: Silver                                    | 7440-22-4    | 0.05 | mg/kg            | <0.05     | 5 mg/kg       | 100             |                           | 85              | 115               |             |                  |
| EG020: Zinc                                      | 7440-66-6    | 0.5  | mg/kg            | <0.5      | 5 mg/kg       | 104             |                           | 85              | 115               |             |                  |
| EP: Aggregate Organics (QC Lot: 2108164)         |              |      |                  |           |               |                 |                           |                 |                   |             |                  |
| EP005: Total Organic Carbon                      |              | 0.05 | %                | <0.05     | 40 %          | 103             |                           | 92              | 105               |             |                  |
| Matrix: WATER                                    |              |      | Method Blank (MB | 3) Report |               | Laboratory Cont | rol Spike (LCS) and Labor | atory Control S | pike Duplicate (i | DCS) Report |                  |
|                                                  |              |      |                  |           | Spike         | Spike Re        | acovery (%)               | Recove          | ry Limits(%)      | RPL         | 7 (%)            |
| Method: Compound                                 | CAS Number   | LOR  | Unit             | Result    | Concentration | LCS             | DCS                       | Low             | High              | Value       | Control          |
|                                                  |              |      |                  |           |               |                 |                           |                 |                   |             | Limit            |
| EG: Metals and Major Cations - Total (QC Lot: 21 | 02976)       |      |                  |           |               |                 |                           |                 |                   |             |                  |
| EG020: Arsenic                                   | 7440-38-2    | 10   | μg/L             | <10       | 100 μg/L      | 96.0            |                           | 85              | 110               |             |                  |

: 11 of 13

HK1865402

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Matrix: WATER                        |                                 | Method Blank (MB) Report |      |        | Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report |          |            |        |               |       |         |  |
|--------------------------------------|---------------------------------|--------------------------|------|--------|------------------------------------------------------------------------------------|----------|------------|--------|---------------|-------|---------|--|
|                                      |                                 |                          |      |        | Spike                                                                              | Spike Re | covery (%) | Recove | ory Limits(%) | RP    | D (%)   |  |
| Method: Compound                     | CAS Number                      | LOR                      | Unit | Result | Concentration                                                                      | LCS      | DCS        | Low    | High          | Value | Control |  |
|                                      |                                 |                          |      |        |                                                                                    |          |            |        |               |       | Limit   |  |
| EG: Metals and Major Cations - Total | al (QC Lot: 2102976) - Continue | ed                       |      |        |                                                                                    |          |            |        |               |       |         |  |
| EG020: Cadmium                       | 7440-43-9                       | 0.2                      | μg/L | <0.2   | 100 μg/L                                                                           | 93.1     |            | 85     | 109           |       |         |  |
| EG020: Chromium                      | 7440-47-3                       | 1                        | μg/L | <1     | 100 μg/L                                                                           | 99.2     |            | 86     | 111           |       |         |  |
| EG020: Copper                        | 7440-50-8                       | 1                        | μg/L | <1     | 100 μg/L                                                                           | 106      |            | 90     | 111           |       |         |  |
| EG020: Lead                          | 7439-92-1                       | 1                        | μg/L | <1     | 100 μg/L                                                                           | 103      |            | 89     | 111           |       |         |  |
| EG020: Mercury                       | 7439-97-6                       | 0.5                      | μg/L | <0.5   | 2 μg/L                                                                             | 86.6     |            | 85     | 115           |       |         |  |
| EG020: Nickel                        | 7440-02-0                       | 1                        | μg/L | <1     | 100 μg/L                                                                           | 102      |            | 87     | 110           |       |         |  |
| EG020: Silver                        | 7440-22-4                       | 1                        | μg/L | <1     | 100 μg/L                                                                           | 96.8     |            | 85     | 114           |       |         |  |
| EG020: Zinc                          | 7440-66-6                       | 10                       | μg/L | <10    | 100 μg/L                                                                           | 102      |            | 86     | 114           |       |         |  |

: 12 of 13

Client :

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1865402



#### Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

| Matrix: SOIL            |                                |                               |            |               | Matrix Spik         | e (MS) and Matri | x Spike Duplic | ate (MSD) Re | port  |                  |
|-------------------------|--------------------------------|-------------------------------|------------|---------------|---------------------|------------------|----------------|--------------|-------|------------------|
|                         |                                |                               |            | Spike         | Spike Red           | overy (%)        | Recovery       | Limits (%)   | RPL   | 7 (%)            |
| Laboratory<br>sample ID | Client sample ID               | Method: Compound              | CAS Number | Concentration | MS                  | MSD              | Low            | High         | Value | Control<br>Limit |
| ED/EK: Inorgani         | ic Nonmetallic Parameters (QC  | C Lot: 2120436)               |            |               |                     |                  |                |              |       |                  |
| HK1865402-001           | A/Sediment                     | EK067A: Total Phosphorus as P |            | 100 mg/kg     | 100                 |                  | 75             | 125          |       |                  |
| EG: Metals and          | Major Cations (QC Lot: 21029   | 958)                          |            |               |                     |                  |                |              |       |                  |
| HK1865402-001           | A/Sediment                     | EG020: Arsenic                | 7440-38-2  | 5 mg/kg       | 87.6                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Cadmium                | 7440-43-9  | 5 mg/kg       | 94.6                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Chromium               | 7440-47-3  | 5 mg/kg       | # Not<br>Determined |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Copper                 | 7440-50-8  | 5 mg/kg       | 78.5                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Lead                   | 7439-92-1  | 5 mg/kg       | # Not<br>Determined |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Mercury                | 7439-97-6  | 0.1 mg/kg     | 86.6                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Nickel                 | 7440-02-0  | 5 mg/kg       | 85.8                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Silver                 | 7440-22-4  | 5 mg/kg       | 94.6                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Zinc                   | 7440-66-6  | 5 mg/kg       | # Not<br>Determined |                  | 75             | 125          |       |                  |
| EP: Aggregate 0         | Organics (QC Lot: 2108164)     |                               |            |               |                     |                  |                |              |       |                  |
|                         | A/Benthic Survey               | EP005: Total Organic Carbon   |            | 40 %          | 102                 |                  | 75             | 125          |       |                  |
| Matrix: WATER           |                                |                               |            |               | Matrix Snik         | e (MS) and Matri | x Snike Dunlic | ate (MSD) Re | nort  |                  |
|                         |                                |                               | -          | Spike         | Spike Red           |                  | Recovery       |              |       | ) (%)            |
| Laboratory<br>sample ID | Client sample ID               | Method: Compound              | CAS Number | Concentration | MS                  | MSD              | Low            | High         | Value | Control<br>Limit |
| •                       | Major Cations - Total (QC Lot: | 2102976)                      | ı          |               |                     |                  |                |              |       |                  |
|                         | A/Rinsate Blank                | EG020: Arsenic                | 7440-38-2  | 100 μg/L      | 85.0                |                  | 75             | 125          |       |                  |
| 11(1000102 017          | 7 (Timodeo Blank               | EG020: Cadmium                | 7440-43-9  | 100 μg/L      | 83.5                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Chromium               | 7440-47-3  | 100 μg/L      | 86.7                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Copper                 | 7440-50-8  | 100 μg/L      | 83.8                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Lead                   | 7439-92-1  | 100 μg/L      | 80.0                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Mercury                | 7439-97-6  | 2 μg/L        | 92.8                |                  | 75             | 125          |       |                  |
|                         |                                | EG020: Nickel                 | 7440-02-0  | 100 μg/L      | 76.6                |                  | 75             | 125          |       |                  |

: 13 of 13

HK1865402

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order



| Matrix: WATER    |                                         |                  |            |               | Matrix Sp. | ike (MS) and Matrix | Spike Duplic | ate (MSD) Re | port  |         |
|------------------|-----------------------------------------|------------------|------------|---------------|------------|---------------------|--------------|--------------|-------|---------|
|                  |                                         |                  |            | Spike         | Spike Re   | ecovery (%)         | Recovery     | Limits (%)   | RPD   | 0 (%)   |
| Laboratory       | Client sample ID                        | Method: Compound | CAS Number | Concentration | MS         | MSD                 | Low          | High         | Value | Control |
| sample ID        |                                         |                  |            |               |            |                     |              |              |       | Limit   |
| EG: Metals and I | Major Cations - Total (QC Lot: 2102976) | - Continued      |            |               |            |                     |              |              |       |         |
| HK1865402-017    | A/Rinsate Blank                         | EG020: Silver    | 7440-22-4  | 100 μg/L      | 83.3       |                     | 75           | 125          |       |         |
|                  |                                         | EG020: Zinc      | 7440-66-6  | 100 μg/L      | 76.2       |                     | 75           | 125          |       |         |

## ALS Technichem (HK) Pty Ltd

### **ALS Laboratory Group**

**ANALYTICAL CHEMISTRY & TESTING SERVICES** 



#### **SUB-CONTRACTING REPORT**

CONTACT : MR CYRUS LAI WORK ORDER : HK1865402

CLIENT : FUGRO TECHNICAL SERVICES LIMITED

ADDRESS : ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, SUB-BATCH : 1

1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG

DATE RECEIVED : 18-DEC-2018

DATE OF ISSUE : 3-JAN-2019

PROJECT : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR NO. OF SAMPLES : 24

OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR CLIENT ORDER : 0041/17

SIU HO WAN SEWAGE TREATMENT PLANT

#### General Comments

Sample(s) were received in chilled condition.

- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- pH determined and reported on a 1:5 soil / water extract.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.
- Ammonia, Nitrite and Nitrate determined and reported on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

#### Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

WORK ORDER : HK1865402

SUB-BATCH : 1

CLIENT : FUGRO TECHNICAL SERVICES LIMITED

PROJECT : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL

ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE

TREATMENT PLANT



| ALS Lab       | Client's Sample ID | Sample   | Sample Date | External Lab Report No. |
|---------------|--------------------|----------|-------------|-------------------------|
| ID            |                    | Туре     |             |                         |
| HK1865402-001 | A/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-002 | B/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-003 | C/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-004 | D/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-005 | E/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-006 | F/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-007 | G/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-008 | H/Sediment         | SEDIMENT | 18-Dec-2018 |                         |
| HK1865402-009 | A/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-010 | B/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-011 | C/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-012 | D/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-013 | E/Benthic Survey   | SEDIMENT | 18-Dec-2018 | .12999-272.41           |
| HK1865402-014 | F/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-015 | G/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-016 | H/Benthic Survey   | SEDIMENT | 18-Dec-2018 | J2999-272.41            |
| HK1865402-017 | A/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-018 | B/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-019 | C/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-020 | D/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-021 | E/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-022 | F/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-023 | G/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |
| HK1865402-024 | H/Rinsate Blank    | WATER    | 18-Dec-2018 |                         |

# SUMMARY OF SOIL CLASSIFICATION TEST RESULT TEST CERTIFICATE GEOSPEC 3: 2001

Customer: J2999



Report No: J2999-272.41

Job No.: J2999

Works Order No.: 272

| Project                   | Project: ALS Technichem (HK) Pty Ltd                                                                              | n (HK)                              | Pty Ltd                        |                       |                        |                                                           |                                                                                                  |                                                                         |                              | ŭ                                                                                                                                                                                                                        | Contract No.:                                  |                            |                                                            |                    |             | Date: 21/12/2018                                                                                                                                                                                                                                                     |        |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|-----------------------|------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|------------------------------------------------------------|--------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Sample ID                 | Sample                                                                                                            | ple                                 |                                | A Moisture<br>Content |                        | Test<br>6.1<br>Plastic                                    | Test<br>6.1<br>Plasticity                                                                        | Test Test Fest Test 6.1 6.1 6.1 E.2 Liquid Plastic Plasticity Liquidity | Passing 1                    | Preparation                                                                                                                                                                                                              |                                                | Particle Size Distribution | ze Dist                                                    | ributic            | ű           | Description                                                                                                                                                                                                                                                          | Somula |
| Ž                         | ,                                                                                                                 | {                                   |                                |                       | Limit                  | Limit Limit                                               | Index                                                                                            | Index                                                                   |                              |                                                                                                                                                                                                                          | #                                              |                            | Perce                                                      | Percentage         |             |                                                                                                                                                                                                                                                                      | Origin |
| No.                       | No.                                                                                                               | Type                                | (m)                            | (%)                   | (%)                    | (%)                                                       | (%)                                                                                              |                                                                         | Sieve<br>(%)                 |                                                                                                                                                                                                                          | Test<br>Method                                 |                            | Gravel Sand Silt (%) (%)                                   | d Silt<br>(%)      | Clay<br>(%) |                                                                                                                                                                                                                                                                      | 0      |
| HK 1865402-009            | A/Benthic Survey                                                                                                  | D                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1,5,7                                          | 8                          | 34                                                         | 32                 | 29          | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments                                                                                                                                                                                          | #      |
| HK1865402-010             | B/Benthic Survey                                                                                                  | Ω                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1.5.7                                          | 2                          | 22                                                         | 46                 | 30          | Dark grey, slightly gravelly, slightly sandy SILT/CLAY                                                                                                                                                                                                               | ++     |
| HK1865402-011             | C/Benthic Survey                                                                                                  | Q                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1,5,7                                          | 0                          | 2                                                          | 19                 | 37          | Dark grey, slightly sandy SILT/CLAY                                                                                                                                                                                                                                  | #      |
| HK1865402-012             | D/Benthic Survey                                                                                                  | Q                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1.5,7                                          | 0                          | 13                                                         | 52                 | 35          | Dark grey, slightly sandy SILT/CLAY with shell fraements                                                                                                                                                                                                             | +-     |
| HK1865402-013             | E/Benthic Survey                                                                                                  | Ω                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1.5.7                                          | 0                          | 14                                                         | 47                 | 39          | Dark grey, slightly sandy SILT/CLAY with shell fragments                                                                                                                                                                                                             | +      |
| HK1865402-014             | F/Benthic Survey                                                                                                  | D                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1,5,7                                          | 0                          | -                                                          | 55                 | 44          | Dark grey, slightly sandy SILT/CLAY with shell fragments                                                                                                                                                                                                             | ***    |
| HK1865402-015             | G/Benthic Survey                                                                                                  | D                                   |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              |                                                                                                                                                                                                                          | 1,5,7                                          | _                          | 14                                                         | 49                 | 36          | Dark grey, slightly gravelly, slightly sandy SIL:I7CLAY                                                                                                                                                                                                              | #      |
| J.egend                   | A = #                                                                                                             | Test M<br>Test M                    | lethod in acc<br>fethod in acc | cordance with         | GEOSPEC                | 3 : 2001 T                                                | Fest 5   Ma<br>est 8   (1),                                                                      | 8 2 (2), 8 3                                                            | (3), 8 4 (4                  | Test Method in accordance with GEOSPEC 3 : 2001 Test 5   Moisture Content at 45°C+5°C(A), Test 5.2 Min Test Method in accordance with GEOSPEC3 : 2001 Test 8 1 (1), 8 2 (2), 8 3 (3), 8 4 (4), 8 5 (5), 8 6 (6), 8.7 (7) | est 5.2 Morsti<br>6), 8.7 (7)                  | ure Conte                  | nt at 10                                                   | 5,C+2,             | C(B),       | Test Method in accordance with GEOSPEC 3 : 2001 Test 8 1 (1), 8 2 (2), 8 3 (3), 8 4 (4), 8 5 (5), 8 6 (6), 8 7 (7)                                                                                                                                                   |        |
| Symbols:                  | U - Undisturbed Sample;<br>LB - Large Disturbed Sample,<br>BLK - Block Sample;<br>SPTL - SPT Split-Barrel Sample, | sample;<br>ed Samp<br>;<br>rel Samp | ole,<br>ple,                   |                       | P-1<br>M-1<br>D-3      | P - Piston Sample; M - Mazier Sample; D - Small Disturbed | P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample; - Portable triple tube Sample; | ple;<br>ample;                                                          | NP - NG<br>A.R As<br>HP - Ha | N.P Non Plastic; A.R As Received; H.P Hand Picked; - Moisture Content for A.L. Test                                                                                                                                      | ır A.L. Test                                   | AD                         | A D - Air Dried;<br>O D - Oven Dried;<br>W S - Wet Sieved, | d;<br>ied;<br>/ed, |             | Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report  7 - Information provided by customer                                                                                                                  |        |
| Notes:<br>Checked by      | IS - Insufficient Sample;                                                                                         | ıple;                               |                                |                       | Tr - Tr                | o Follow o                                                | n suppleme                                                                                       | Tf - To Follow on supplementary Report.                                 | ceport,                      | 3                                                                                                                                                                                                                        |                                                |                            |                                                            |                    |             |                                                                                                                                                                                                                                                                      |        |
|                           | T K Lam                                                                                                           | am                                  |                                |                       |                        |                                                           |                                                                                                  |                                                                         |                              | Chung Hei Wing<br>Principal Laborat                                                                                                                                                                                      | Chung Hei Wing<br>Principal Laboratory Officer | ja<br>ja                   |                                                            |                    |             | 02/01/2019                                                                                                                                                                                                                                                           |        |
|                           |                                                                                                                   | Ħ                                   | HKAS<br>JKLAS d                | has accredirectory of | ited this<br>accredite | laboratoi<br>d laborai                                    | ry (Reg. l<br>tories. Ti                                                                         | No. HOK<br>his report                                                   | LAS 05:<br>t shall no        | 5) under HC<br>of be reprodu                                                                                                                                                                                             | KLAS for<br>uced unless                        | s with p                   | c labor                                                    | ratory i           | activit     | HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. |        |
| © Gammon Construction Ltd | tion Ltd                                                                                                          |                                     |                                |                       |                        |                                                           |                                                                                                  | 21 Chun<br>Tseuma                                                       | Wang Stre                    | Technology Centre  21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O N.T. Tal. 3600 1000, Exc. 3601 7543                                                                                               | an O Industri.                                 | al Estate,                 |                                                            |                    |             |                                                                                                                                                                                                                                                                      |        |
| Form GPSC001 / Semi 14 19 | mt 14 18 / Justin 1 / Pont                                                                                        | ,                                   |                                |                       |                        |                                                           |                                                                                                  | Sim's i                                                                 | Nwall C, 1                   | 1 151 .2077                                                                                                                                                                                                              | 1980, Fax . 21                                 | 1401160                    |                                                            |                    |             |                                                                                                                                                                                                                                                                      |        |

© Gammon Construction Ltd Form - GESS001 / Sept 14 18 / Issue 1 / Rev 4

# SUMMARY OF SOIL CLASSIFICATION TEST RESULT TEST CERTIFICATE GEOSPEC 3: 2001



Report No: J2999-272.41

Date: 21/12/2018

| Works Order No. : 272 |
|-----------------------|
| Job No. : J2999       |
| 2999                  |
| Customer: J2          |

Contract No.:

Project: ALS Technichem (HK) Pty Ltd

| Sample ID    | Sample                                                                                                               | nple                                 |                         | A Moisture<br>Content                                                                                                                             |                        | Test<br>6.1<br>Plastic | Test Test Test Test 6.1 6.1 6.1 6.2 Liquid Plastic Plasticity Liquid Present Test                | Test<br>6.2           |                                        | Passing Preparation<br>425um Method                                                          |                               | Particle Size Distribution                           | Distr                              | ibution   |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                           | 3      |
|--------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|------------------------------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| No.          | No.                                                                                                                  | Тур                                  | Type Depth              |                                                                                                                                                   | Limit<br>(%)           | Limit Limit            | Index (%)                                                                                        | Index                 |                                        |                                                                                              | #<br>Test<br>Method           | -                                                    | Percentage<br>Sand Silt<br>(%) (%) |           | Clay<br>(%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the second                                                                                                                                                                                                                                                                                                         | Origin |
| K1865402-016 | 11K1865402-016 H/Benthie Survey                                                                                      | ۵                                    |                         |                                                                                                                                                   |                        |                        |                                                                                                  |                       |                                        |                                                                                              | 1,5,7                         |                                                      | 10                                 | 25        |             | Dark grey, slightly gravelly, with shell fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments                                                                                                                                                                                                                                           | 7      |
|              |                                                                                                                      |                                      |                         |                                                                                                                                                   |                        |                        |                                                                                                  |                       |                                        |                                                                                              |                               |                                                      |                                    |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |        |
|              |                                                                                                                      | 1                                    |                         |                                                                                                                                                   |                        |                        |                                                                                                  |                       |                                        |                                                                                              |                               |                                                      |                                    |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |        |
|              |                                                                                                                      |                                      |                         |                                                                                                                                                   |                        |                        |                                                                                                  |                       |                                        |                                                                                              |                               |                                                      |                                    |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |        |
| puster       | A #                                                                                                                  | Test                                 | Method in a             | Test Method in accordance with GEOSPEC 3 : 2001 Test 5 1 Moisture Cont. Test Method in accordance with GEOSPEC3 : 2001 Test 8 1 (1), 8.2 (2), 8.3 | GEOSPEC<br>GEOSPEC     | C 3 : 2001             | Test 5.1 Me<br>Test 8.1 (1),                                                                     | 8.2 (2), 8.3          | ent at 45°C<br>(3), 8.4 (4)            | ant at 45°C ± 5°C (A), Test 5 2 Mo<br>(3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7)                | 281.5.2 Moists<br>6), 8.7.(7) | re Conten                                            | t at 105                           | 2°2 ± 3°C | (B), T      | est 5.3 Comparative Moisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test Method in accordance with GEOSPEC 3 : 2001 Test 5 1 Moisture Content at 45°C ± 5°C (A), Test 2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45/105°C± 5°C (C)  Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.5 (6), 8.7 (7), |        |
| Symbols      | U - Undisturbed Sample;     LB - Large Disturbed Sample;     BLK - Block Sample;     SPTL - SPT Split-Barrel Sample; | Sample<br>bed Sar<br>e;<br>urrel Sau | nple;<br>mple;<br>mple; |                                                                                                                                                   | P.<br>M.<br>D.<br>PT.  |                        | P - Piston Sample, M - Mazier Sample, D - Small Disturbed Sample, - Portable triple tube Sample, | rple,<br>ample,       | N.P No<br>A.R As<br>H.P Hat<br>- Moist | N.P Non Plastic.<br>A.R As Rectived;<br>H.P Hand Picked;<br>- Moisture Content for A.L. Test | rAL Test                      | A.D Air Dried,<br>O.D Oven Dried,<br>W.S Wet Steved, | ir Dried<br>ven Drit<br>'et Sieve  | . y y     |             | Sampling History<br>Estimated Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampling History - Refer the Individual Test Report, Estimated Uncertainty - Refer the Individual Test Report.                                                                                                                                                                                                        | 925    |
| Notes        | IS - Insufficient Sample                                                                                             | mple,                                |                         |                                                                                                                                                   | 17.                    | ro Follow              | Tf To Follow on supplementary Report.                                                            | entary Repo           | ų.                                     |                                                                                              |                               |                                                      |                                    |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |        |
| Checked by   | TKLam                                                                                                                | Ma                                   |                         |                                                                                                                                                   |                        |                        |                                                                                                  | γb                    | Approved By                            | Chung Hei Wing<br>Principal Laboratory Officer                                               | 'ing<br>oratory Office        | 5                                                    |                                    |           |             | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02/01/2016                                                                                                                                                                                                                                                                                                            |        |
|              |                                                                                                                      | 7.5                                  | HOKLAS                  | HKAS has accredited this laboratory (Reg. No. HOK<br>HOKLAS directory of accredited laboratories. This report                                     | ited this<br>recredite | laborate<br>ed labor   | ory (Reg.                                                                                        | No. HOK<br>his report |                                        | () under HC                                                                                  | KLAS for                      | specific<br>s with pr                                | labora<br>ior wr                   | ntory av  | zivitic     | LAS 055) under HOKLAS for specific laboratory activities as listed in the table not be reproduced unless with prior written approval from this laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       |        |
|              |                                                                                                                      |                                      |                         |                                                                                                                                                   |                        |                        |                                                                                                  |                       |                                        | Technology Centre                                                                            | ntre                          |                                                      |                                    |           |             | A CONTRACT C |                                                                                                                                                                                                                                                                                                                       |        |

C Gammon Construction Ltd
Form GESS001 / Sept.14.18 / Issue 1 / Rev 4

21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel. 26991980, Fax. 26917547



GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Percent

J2999-272.41 Report No.

Contract No. Job No. ALS Technichem (HK) Pty Ltd Customer

272 Works Order No.

Project

Sample ID No

HK1865402-009

Sample No

\*Expanded

A/Benthic Survey Sample Depth (m)

Date Received: 21/12/2018

Specimen Depth (m)

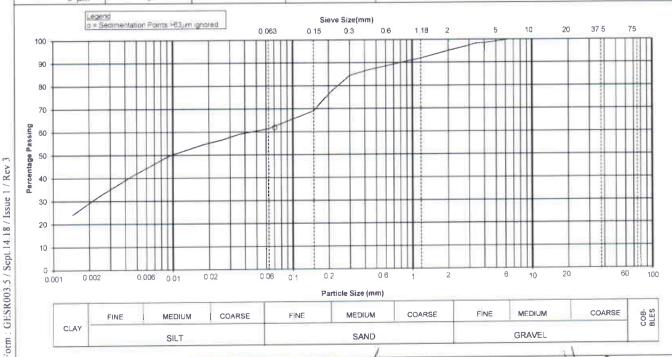
Small Disturbed

Tested Date : 21/12/2018

Sample Type

: Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

SIEVE ANALYSIS


Sample Origin

Sieve Method Method A \*Upon request \* Delete as appropriate \*Information provided by customer SEDIMENTATION ANALYSIS

\*Cumulative

2.65# Passing Uncertainty Percent Passing Specific Gravity (# if assumed) of the Percent with Expanded Dispersant Details: Sodium hexametaphosphate, Sodium carbonate Sieve Size Sampling History : As received Uncertainty (%) Passing (%) The presence of any visible organic matter in the soil: None 100,0 mm 75.0 mm Expanded Particle Expanded % Finer 63.0 mm Uncertainty of the than D Uncertainty of Diameter 100 50.0 mm Particle Diameter % finer than D K 37.5 mm 100 (mm) (%) 28.0 mm 100 (mm) 0.0707 20.0 mm 1.00 60 60 14.0 mm 0.0356 50 100 10.0 mm 0.0254 6.30 mm 100 0.0180 00 3.35 mm 0.0094 98 42 95 0.0048 2 00 mm 0.0025 37 1.18 mm 92 0.0014 600 µm 89 SUMMARY 87

Gravel (%) 5 300 µm 84 34 212 µm 78 Sand (%) 150 µm Silt (%) 32 69 29 Clay (%) 63 µm 61 0 µm



Approved By Checked By Technician Chris Chan Chung Hei 29/12/2018 Signatory Name Date: 29/12/2018 Date 21/12/2018

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory



GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Report No J2999-272 41

Job No Customer

Contract No.: ALS Technichem (HK) Pty Ltd

Works Order No. 272

Project

HK1865402-010 Sample ID No Sample No. B/Benthic Survey

Date Received : 21/12/2018

Sample Depth (m)

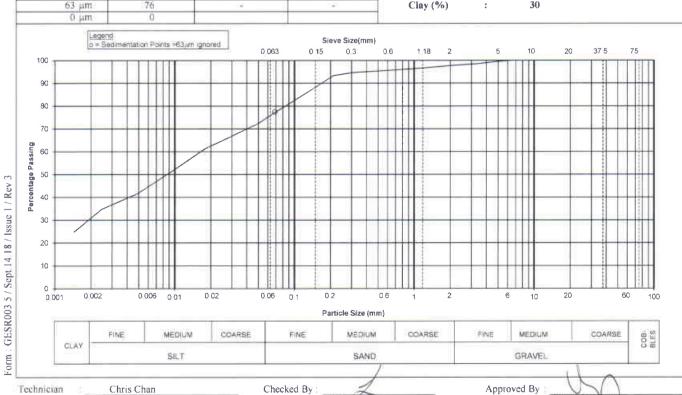
Tested Date : 21/12/2018

Specimen Depth (m)

Small Disturbed

Sample Type

Sieve Method Method A


Dark grey, slightly gravelly, slightly sandy SILT/CLAY

Sample Origin

‡ Information provided by customer

\*Upon request \* Delete as appropriate \*Expanded SIEVE ANALYSIS \*Cumulative SEDIMENTATION ANALYSIS Percent

| SILTE ANALISIS | Passing | Uncertainty                   | Percent Passing                  | Specific Gravity (#                      | f assumed): 2 65 #                  |                |                |
|----------------|---------|-------------------------------|----------------------------------|------------------------------------------|-------------------------------------|----------------|----------------|
| Sieve Size     | (%)     | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%) | Dispersant Details :<br>Sampling History | Sodium hexametapho<br>: As received | sphate, Sodium | a carbonate    |
| 100.0 mm       | 100     |                               | = (+) =                          | The presence of any                      | visible organic matter i            | in the soil No | ne             |
| 75.0 mm        | 100     |                               |                                  |                                          |                                     |                |                |
| 63.0 mm        | 100     |                               |                                  | Particle                                 | *Expanded                           | % Finer        | Expanded       |
| 50.0 mm        | 100     |                               |                                  | Diameter                                 | Uncertainty of the                  | than D         | Uncertainty of |
| 37.5 mm        | 100     | €#                            | 488                              | Sand Court                               | Particle Diameter                   | K              | % finer than D |
| 28.0 mm        | 001     | Q.                            | 395                              | (mm)                                     | (mm)                                | (%)            | (%)            |
| 20:0 mm        | 100     |                               | (*)                              | 0.0686                                   | *                                   | 77             |                |
| 14.0 mm        | 001     | *                             |                                  | 0.0492                                   | 8:                                  | 72             |                |
| 10.0 mm        | 100     |                               |                                  | 0.0351                                   |                                     | 69             |                |
| 6.30 mm        | 100     |                               |                                  | 0.0251                                   |                                     | 65             | 2              |
| 5.00 mm        | 100     | 2                             | - 120                            | 0.0179                                   | \$1                                 | 61             | §              |
| 3.35 mm        | 99      | 12                            | 146                              | 0.0095                                   |                                     | 51             | -              |
| 2.00 mm        | 98      |                               | 1941                             | 0.0048                                   | *                                   | 42             | +              |
| 1.18 mm        | 97      | 9                             | *                                | 0.0025                                   | *                                   | 35             | *.             |
| 600 µm         | 96      | 15                            | (6)                              | 0.0015                                   | 8                                   | 25             |                |
| 425 µm         | 95      |                               | *:                               | SUMMARY :                                |                                     |                |                |
| 300 µm         | 95      | -                             | 17                               | Gravel (%)                               | : 2                                 |                |                |
| 212 µm         | 93      | 2                             | 127                              | Sand (%)                                 | : 22                                |                |                |
| 150 µm         | 88      | S                             |                                  | Silt (%)                                 | : 46                                |                |                |
| 67 cm          | 76      | 1.2                           | 7.5                              | Clay (%)                                 | • 30                                |                |                |



HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

TKLiff

29/12/2018

Name

Date

Date

21/12/2018

Chung Hei Wing 29/12/2018

Signatory

Date



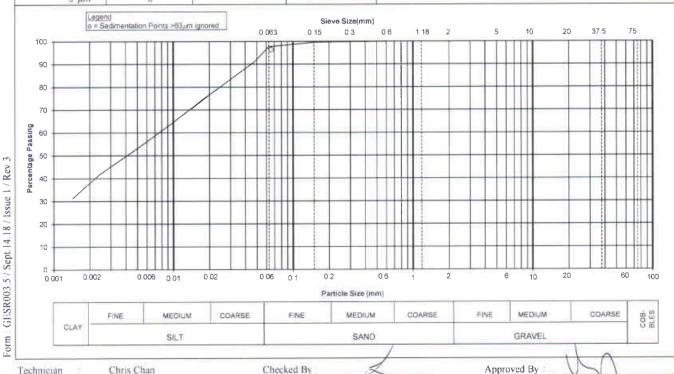
GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Job No.

Report No : J2999-272\_41 Contract No

Works Order No. ALS Technichem (HK) Pty Ltd Customer HK1865402-011 Sample ID No. Project


Sample No. C/Benthic Survey Sample Depth (m) Date Received: 21/12/2018

Specimen Depth (m) Tested Date 21/12/2018 Small Disturbed Sample Type

Sample Origin : Dark grey, slightly sandy SILT/CLAY <sup>‡</sup> Information provided by customer \*Upon request \* Delete as appropriate

Sieve Method : Method A

| SIEVE ANALYSIS | Percent<br>Passing | *Expanded<br>Uncertainty      | *Cumulative<br>Percent Passing   | SEDIMENTATION<br>Specific Gravity (# i | f assumed): 2 65 f                |                 |                |
|----------------|--------------------|-------------------------------|----------------------------------|----------------------------------------|-----------------------------------|-----------------|----------------|
| Sieve Size     | (%)                | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%) | Sampling History                       | Sodium hexametapho<br>As received |                 |                |
| 100.0 mm       | 100                |                               |                                  | The presence of any                    | visible organic matter:           | in the soil: No | ne             |
| 75.0 mm        | 100                | ¥                             | =                                |                                        |                                   | - Weld          |                |
| 63.0 mm        | 100                | 의                             |                                  | Particle                               | Expanded                          | % Finer         | Expanded       |
| 50.0 mm        | 100                |                               | 14                               | Diameter                               | Uncertainty of the                | than D          | Uncertainty of |
| 37.5 mm        | 100                | *                             |                                  | 23                                     | Particle Diameter                 | K               | % finer than D |
| 28.0 mm        | 100                |                               |                                  | (mm)                                   | (mm)                              | (%)             | (%)            |
| 20.0 mm        | 100                |                               |                                  | 0.0659                                 |                                   | 96              |                |
| 14.0 mm        | 100                |                               |                                  | 0.0473                                 | P.                                | 91              | ====           |
| 10.0 mm        | 100                | T.                            | = =                              | 0.0340                                 | 166                               | 85              | #              |
| 6.30 mm        | 100                | -                             | - 4                              | 0.0244                                 | E.                                | 80              | **             |
| 5.00 mm        | 100                | 8                             | - 2                              | 0.0175                                 |                                   | 74              |                |
| 3.35 mm        | 100                |                               | 141                              | 0.0093                                 | -                                 | 63              |                |
| 2.00 mm        | 100                | +                             |                                  | 0.0048                                 |                                   | 52              | -              |
| 1.18 mm        | 100                |                               |                                  | 0.0024                                 | -                                 | 42              | 2              |
| 600 µm         | 100                |                               |                                  | 0.0014                                 |                                   | 31              | - 2            |
| 425 µm         | 100                | 12                            | - 41                             | SUMMARY :                              |                                   |                 |                |
| 300 µm         | 100                | 2                             | 13.5                             | Gravel (%)                             | : 0                               |                 |                |
| 212 µm         | 100                | ý.                            | 197                              | Sand (%)                               | : 2                               |                 |                |
| 150 µm         | 100                | 3                             | (4)                              | Silt (%)                               | : 61                              |                 |                |
| 63 µm          | 98                 |                               | 2                                | Clay (%)                               | : 37                              |                 |                |
| 0 µm           | 0                  |                               |                                  | 1                                      |                                   |                 |                |



HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

29/12/2018

Checked By

Name

Date

Chris Chan

: 21/12/2018

Technician

Date

Chung Hei Wing 29/12/2018

Signatory



GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

J2999-272 41 Report No.

Contract No Job No. : ALS Technichem (HK) Pty Ltd Customer

Works Order No. . 272

Project

HK1865402-012 Sample ID No. Sample No. D/Benthic Survey

Sample Depth (m)

Date Received: 21/12/2018

Sieve Size

Specimen Depth (m) Small Disturbed

Tested Date : 21/12/2018

Sample Type

Dark grey, slightly sandy SILT/CLAY with shell fragments

(%6)

\* Delete as appropriate

Sample Origin <sup>1</sup> Information provided by customer

Sieve Method : Method A \*Upon request \*Cumulative SEDIMENTATION ANALYSIS \*Expanded SIEVE ANALYSIS Percent. Passing Uncertainty Percent Passing

of the Percent

Passing (%)

Specific Gravity (# if assumed)

Dispersant Details: Sodium hexametaphosphate, Sodium carbonate

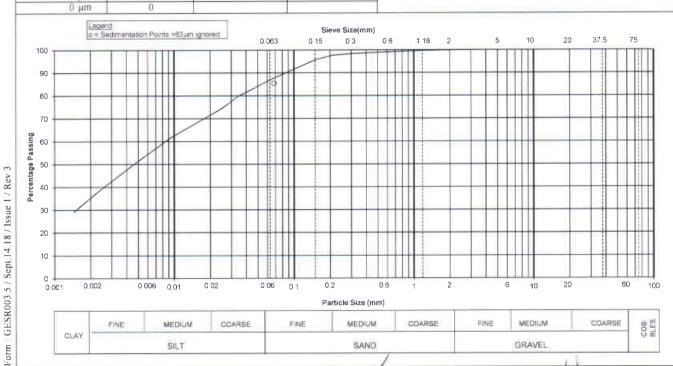
Approved By

Signatory

Chung Hel Wing

29/12/2018

Sampling History : As received


100.0 mm The presence of any visible organic matter in the soil None 100 75.0 mm

with Expanded

Uncertainty (%)

| 7.07.111.111 | 100  |   |    |            |                    |         |                |
|--------------|------|---|----|------------|--------------------|---------|----------------|
| 63.0 mm      | 100  |   |    | Particle   | *Expanded          | % Finer | Expanded       |
| 50.0 mm      | 100  | 9 | 9  | Diameter   | Uncertainty of the | than D  | Uncertainty of |
| 37.5 mm      | 100  | * | 19 | ]          | Particle Diameter  | K       | % finer than D |
| 28.0 mm      | 1.00 | 8 |    | (mm)       | (mm)               | (%)     | (%)            |
| 20.0 mm      | 100  |   | -  | 0.0681     |                    | 85      | 25             |
| 14.0 mm      | 100  | - |    | 0.0483     | 78                 | 84      | -              |
| 10.0 mm      | 100  | - |    | 0.0345     |                    | 80      | -              |
| 6 30 mm      | 100  |   | 4  | 0.0248     | 191                | 74      | e:             |
| 5.00 mm      | 100  | 皇 |    | 0.0177     | T. R.              | 70      | *              |
| 3.35 mm      | 100  | - |    | 0.0093     |                    | 62      | - 5            |
| 2.00 mm      | 100  | - |    | 0.0048     | F                  | 51      |                |
| 1.18 mm      | 100  | - |    | 0.0025     | -                  | 39      | -              |
| 600 μm       | 99   |   | -  | 0.0014     |                    | 29      | -              |
| 425 µm       | 99   |   |    | SUMMARY :  |                    |         | 1              |
| 300 µm       | 98   | 4 | 2  | Gravel (%) | : 0                |         |                |
|              | 7.0  |   |    | f = 0      | . 12               |         |                |

Sand (%) 212 µm 13 52 150 µm 96 Silt (%) 35 Clay (%) 63 µm



HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

TK Lam

29/12/2018

Checked By

Name

Date

Technician

Date

Chris Chan

21/12/2018



GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7 (Wet Sieve and Hydrometer Method)

Job No

J2999

Contract No. ...

Report No. : J2999-272 41

Customer

Works Order No.

272

Project

ALS Technichem (HK) Pty Ltd

Sample ID No.

HK1865402-013

Sample No.

E/Benthic Survey

Date Received 21/12/2018 Tested Date 21/12/2018

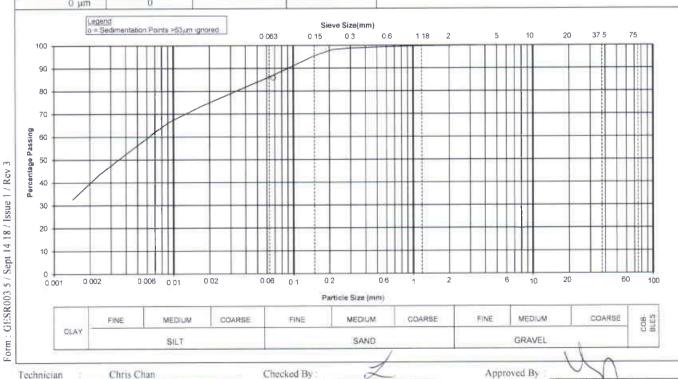
Sample Depth (m) Specimen Depth (m)

Small Disturbed

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Type

Sample Origin


Sieve Method : Method A

\*Upon request

\* Delete as appropriate

<sup>‡</sup> Information provided by customer

| SIEVE ANALYSIS | Percent<br>Passing | *Expanded<br>Uncertainty      | *Cumulative<br>Percent Passing   | SEDIMENTATION<br>Specific Gravity (# i | f assumed): 2 65 #     |                  |                |
|----------------|--------------------|-------------------------------|----------------------------------|----------------------------------------|------------------------|------------------|----------------|
| Sieve Size     | (%)                | of the Percent<br>Passing (%) | with Expanded<br>Uncertainty (%) | Sampling History                       |                        |                  |                |
| 100.0 mm       | 100                |                               | -                                | The presence of any                    | visible organic matter | in the soil   No | ne             |
| 75 0 mm        | 100                |                               | :-                               |                                        |                        |                  |                |
| 63.0 mm        | 100                | =                             |                                  | Particle                               | *Expanded              | % Finer          | *Expanded      |
| 50.0 mm        | 100                | -                             |                                  | Diameter                               | Uncertainty of the     | than D           | Uncertainty of |
| 37.5 mm        | 100                | -                             | -                                | 7                                      | Particle Diameter      | K                | % finer than D |
| 28.0 mm        | 100                |                               | -                                | (mm)                                   | (mm)                   | (%)              | (%)            |
| 20.0 mm        | 100                |                               |                                  | 0.0680                                 | i i i                  | 86               | 27             |
| 14.0 mm        | 100                |                               |                                  | 0.0484                                 | 56                     | 84               | + 1            |
| 10.0 mm        | 100                | -                             |                                  | 0.0345                                 | 180                    | 80               | *              |
| 6.30 mm        | 100                |                               | 340                              | 0.0246                                 | ( E.                   | 77               |                |
| 5.00 mm        | 100                | =                             |                                  | 0.0175                                 | I I I                  | 74               |                |
| 3.35 mm        | 100                |                               | 34.5                             | 0.0092                                 |                        | 66               |                |
| 2.00 mm        | 100                |                               |                                  | 0.0047                                 | -                      | 55               | 2              |
| 1 18 mm        | 100                |                               |                                  | 0.0024                                 |                        | 44               | 2              |
| 600 µm         | 99                 | 1                             | 37                               | 0.0014                                 | €                      | 33               | £              |
| 425 µm         | .99                | 2                             | 37                               | SUMMARY :                              |                        |                  |                |
| 300 µm         | 99                 | 9                             | (4)                              | Gravel (%)                             | : 0                    |                  |                |
| 212 µm         | 98                 |                               | (*)                              | Sand (%)                               | : 14                   |                  |                |
| 150 µm         | 95                 |                               | 58.5                             | Silt (%)                               | : 47                   |                  |                |
| 63 µm          | 86                 | -                             |                                  | Clay (%)                               | : 39                   |                  |                |
| 0 um           | 0                  |                               |                                  |                                        |                        |                  |                |



29/12/2018 HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

TK Lam

Name

Date

Date

21/12/2018

Chung Hei Wing 29/12/2018

Signatory



## **TEST REPORT DETERMINATION OF** PARTICLE SIZE DISTRIBUTION GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7 (Wet Sieve and Hydrometer Method)

Contract No.:

= J2999-272-41 Report No

. 272 Works Order No

HK1865402-014 Sample ID No. F/Benthic Survey

Sample No. Sample Depth (m)

Specimen Depth (m)

Sample Type Small Disturbed

55

Sample Origin

<sup>‡</sup> Information provided by customer

Date Received: 21/12/2018 Tested Date : 21/12/2018

ALS Technichem (HK) Pty Ltd

Percent

Job No

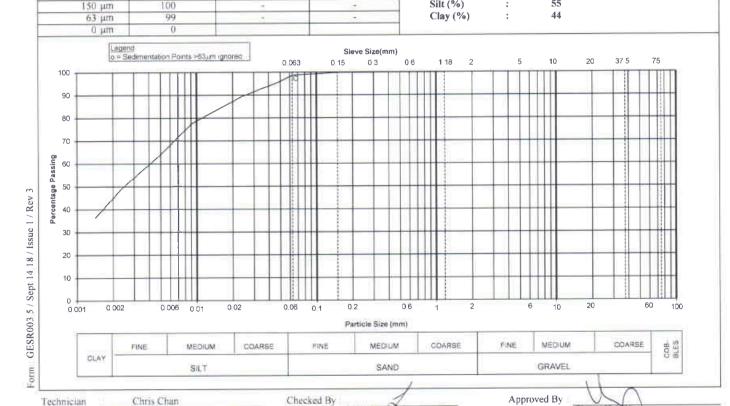
Project

Customer

Sieve Method : Method A

SIEVE ANALYSIS

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments \*Upon request


\*Expanded

\* Delete as appropriate \*Cumulative

SEDIMENTATION ANALYSIS

| Sieve Size | Passing | Uncertainty<br>of the Percent<br>Passing (%) | Percent Passing<br>with Expanded<br>Uncertainty (%) | Sampling History    | Sodium hexametapho<br>As received | sphate, Sodium |                |
|------------|---------|----------------------------------------------|-----------------------------------------------------|---------------------|-----------------------------------|----------------|----------------|
| 100.0 mm   | 100     | -                                            | -                                                   | The presence of any | visible organic matter            | in the soil No | ine            |
| 75.0 mm    | 100     | *                                            |                                                     |                     |                                   |                |                |
| 63.0 mm    | 100     |                                              | -                                                   | Particle            | *Expanded                         | % Finer        | Expanded       |
| 50.0 mm    | 100     |                                              | - 11                                                | Diameter            | Uncertainty of the                | than D         | Uncertainty of |
| 37.5 mm    | 100     |                                              |                                                     |                     | Particle Diameter                 | K              | % finer than D |
| 28 0 mm    | 100     | -                                            |                                                     | (mm)                | (mm)                              | (%)            | (%)            |
| 20.0 mm    | 100     |                                              |                                                     | 0.0672              | 3.5                               | 97             | +>             |
| 14.0 mm    | 100     | 2                                            |                                                     | 0.0477              | 167                               | 96             |                |
| 10.0 mm    | 100     | -                                            | 15                                                  | 0.0340              | (+)                               | 93             |                |
| 6.30 mm    | 100     |                                              |                                                     | 0.0242              |                                   | 90             |                |
| 5.00 mm    | 100     | - 8                                          |                                                     | 0.0173              |                                   | 85             |                |
| 3.35 mm    | 100     | -                                            |                                                     | 0.0091              |                                   | 78             |                |
| 2.00 mm    | 100     |                                              |                                                     | 0.0047              |                                   | 63             | ====           |
| 1.18 mm    | 100     | 3                                            |                                                     | 0.0024              |                                   | 50             | -              |
| 600 μm     | 100     | 1 1                                          |                                                     | 0.0014              | 8                                 | 36             | ÷:             |
| 425 µm     | 100     | 2                                            | 4                                                   | SUMMARY :           |                                   |                | -1             |
| 300 µm     | 100     | 3                                            |                                                     | Gravel (%)          | : 0                               |                |                |
| 212 µm     | 100     | 3                                            | 35                                                  | Sand (%)            | : 1                               |                |                |

Silt (%)



HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

TK Lam

29/12/2018

Name

Date

21/12/2018

Chung Hei Wing 29/12/2018

Signatory



GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

Contract No

J2999-272.41 Report No

ALS Technichem (HK) Pty Ltd Customer

272 Works Order No. Sample ID No.

Sample Type

0.0244

Project

10.0 mm

0 µm

Job No.

HK1865402-015 G/Benthic Survey Sample No.

Sample Depth (m) Date Received: 21/12/2018 Specimen Depth (m)

Tested Date : 21/12/2018

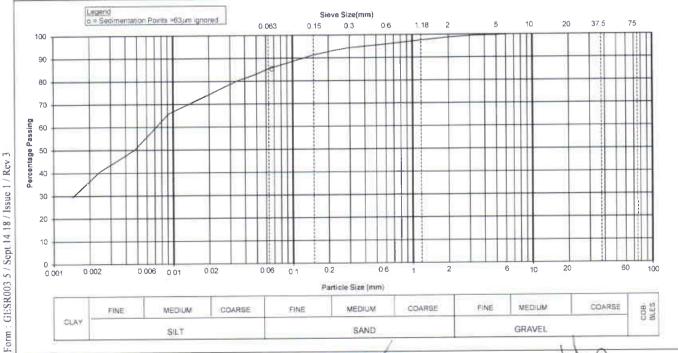
Small Disturbed

66

50

41

30


Description - Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sample Origin

\*Information provided by customer

| Sieve Method : Method | l A                | Opon request                               | * Delete as appropri                            | ate Inte           | of mation provided by cus              | torrier         |                |
|-----------------------|--------------------|--------------------------------------------|-------------------------------------------------|--------------------|----------------------------------------|-----------------|----------------|
| SIEVE ANALYSIS        | Percent<br>Passing | *Expanded<br>Uncertainty<br>of the Percent | *Cumulative<br>Percent Passing<br>with Expanded |                    | if assumed): 2 65 # Sodium hexametapho |                 | ı carbonate    |
| Sieve Size            | (%)                | Passing (%)                                | Uncertainty (%)                                 | Sampling History   |                                        | a 21 Ar         |                |
| 100.0 mm              | 100                |                                            | 8                                               | The presence of an | y visible organic matter               | in the soil: No | ine            |
| 75.0 mm               | 100                |                                            | -                                               |                    |                                        | Taracana Const  | 1 44 3 3 4 4   |
| 63.0 mm               | 100                | =                                          | *                                               | Particle           | *Expanded                              | % Finer         | *Expanded      |
| 50.0 mm               | 100                | ÷1                                         |                                                 | Diameter           | Uncertainty of the                     | than D          | Uncertainty of |
| 37.5 mm               | 100                | fi                                         | 7                                               |                    | Particle Diameter                      | K               | % finer than D |
| 28.0 mm               | 100                |                                            |                                                 | (mm)               | (mm)                                   | (4/0)           | (70)           |
| 20.0 mm               | 100                |                                            |                                                 | 0.0673             | -                                      | 85              | (*)            |
| 14.0 mm               | 100                |                                            | 2                                               | 0.0480             | 90                                     | 83              | (2.2)          |
| F 11.1 P. 10.00       |                    |                                            |                                                 | 7.7.7.4.7.         |                                        | 60              |                |

0.0174 5.00 mm 3:35 mm 0.0048 99 2.00 mm 0.0024 1.18 mm 98 0.0014 96 600 µm SUMMARY : 425 µm 95 Gravel (%) 300 µm 94 212 µm 93 Sand (%) 14 49 Silt (%) 91 150 µm

Clay (%) 36 85



21/12/2018 Date HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory

TK Lam

29/12/2018

Checked By

Name:

Date

Chris Chan

Technician

Approved By

Signatory

Chung Hel Wing 29/12/2018



# **TEST REPORT DETERMINATION OF**

## PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2\*, 8.5 / 8.6\* and 8.7

(Wet Sieve and Hydrometer Method)

± J2999 Job No.

Contract No

Percent

Passing

Customer : ALS Technichem (HK) Ptv Ltd Project

Date Received: 21/12/2018

Tested Date : 21/12/2018

Sieve Method: Method A

SIEVE ANALYSIS

Sieve Size

: Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments \*Upon request

\*Expanded

Uncertainty of the Percent

Cumulative

Percent Passing

with Expanded

\* Delete as appropriate

Sample Origin <sup>‡</sup>Information provided by customer

Report No.

Works Order No

Sample Depth (m)

Specimen Depth (m) Sample Type

Sample ID No.

Sample No

: 272

J2999-272.41

HK1865402-016

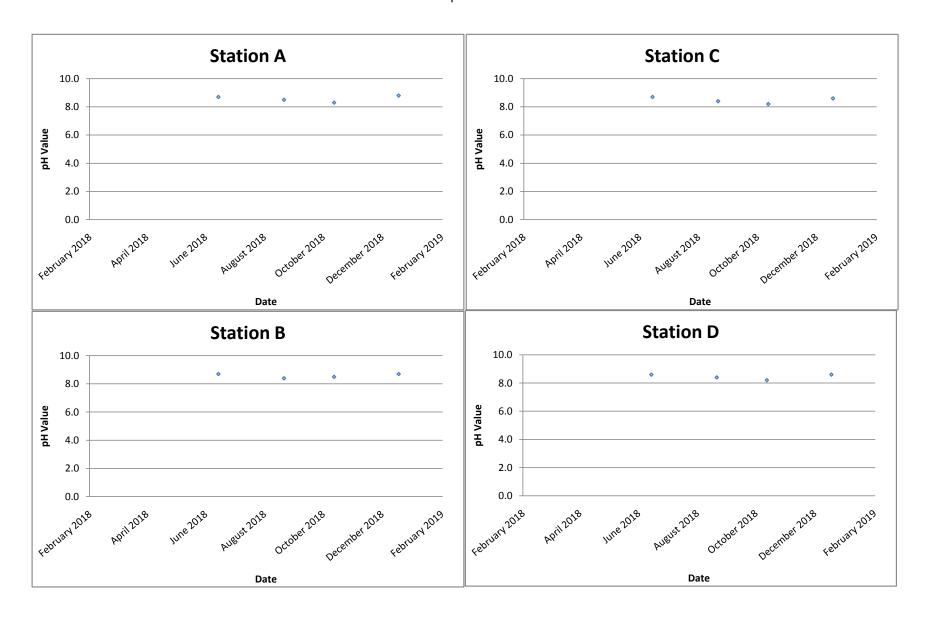
H/Benthic Survey

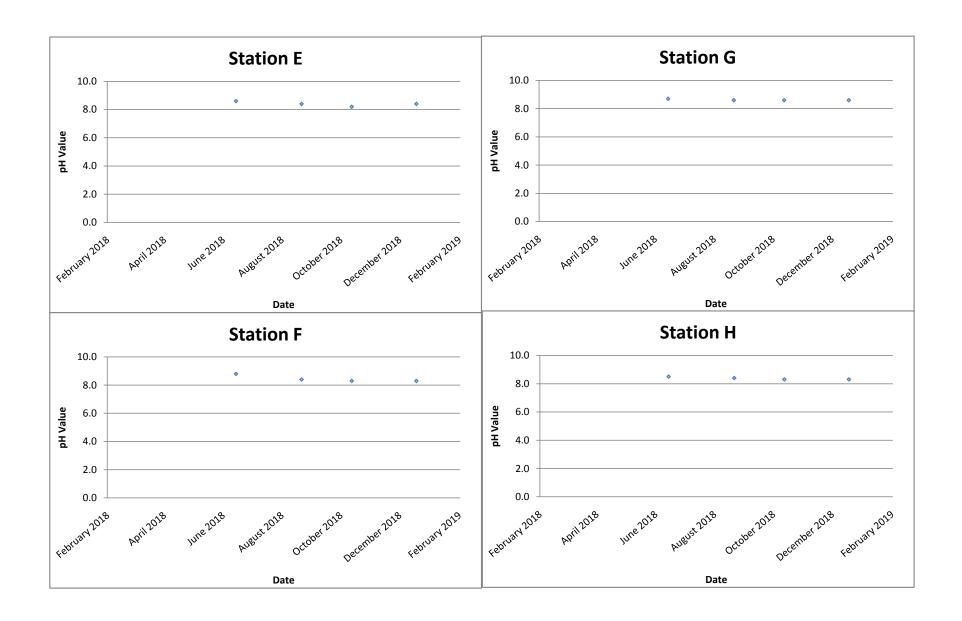
Small Disturbed

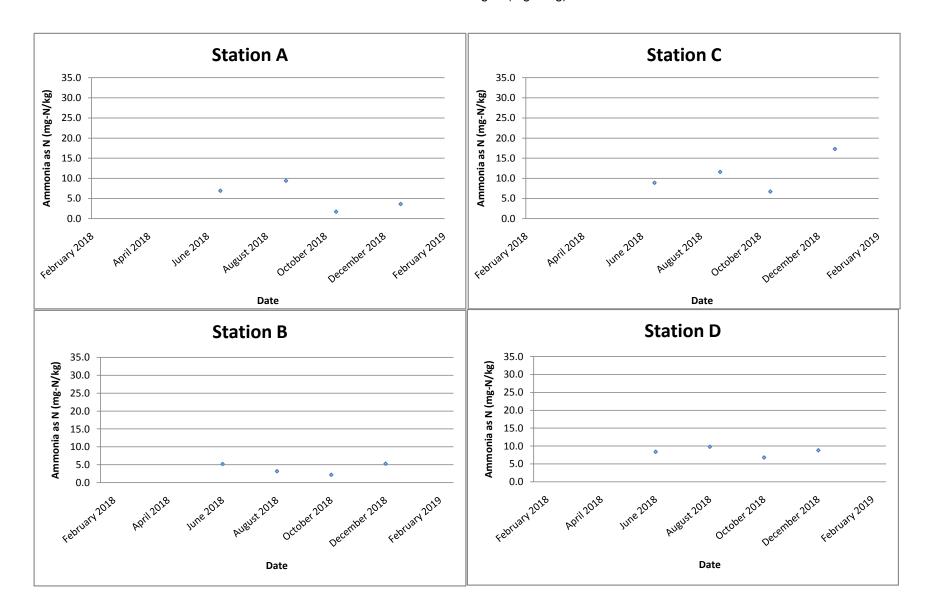
| SEDIMENTATION ANALYSIS                                                                     |
|--------------------------------------------------------------------------------------------|
| Specific Gravity (# if assumed): 2.65 #                                                    |
| Dispersant Details Sodium hexametaphosphate, Sodium carbonate Sampling History As received |
| The presence of any visible organic matter in the soil: None                               |
|                                                                                            |

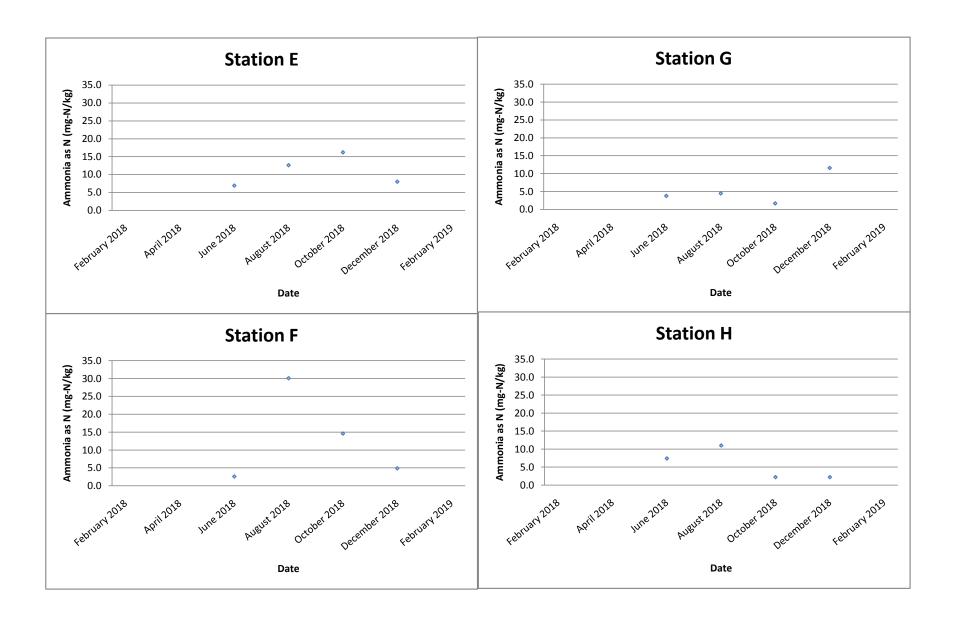
| Sieve Size | (%)     | Passing (%) | Uncertainty (%) | Sampling History   | As received              | spilate, couran  | i caroonate    |
|------------|---------|-------------|-----------------|--------------------|--------------------------|------------------|----------------|
| 100.0 mm   | 100     | -           |                 |                    | visible organic matter   | in the soil · No | ne             |
| 75.0 mm    | 100     |             |                 | The product of any | visitore or Barne marter | in the son . Ive | nic .          |
| 63.0 mm    | 100     | -           | 3               | Particle           | *Expanded                | % Finer          | *Expanded      |
| 50.0 mm    | 100     | €           | :=              | Diameter           | Uncertainty of the       | than D           | Uncertainty of |
| 37.5 mm    | 100     |             | -               |                    | Particle Diameter        | K                | % finer than D |
| 28.0 mm    | 100     |             |                 | (mm)               | (mm)                     | (%)              | (%)            |
| 20.0 mm    | 100     |             |                 | 0.0666             | *                        | 90               | (70)           |
| 14.0 mm    | 100     |             |                 | 0.0474             |                          | 88               |                |
| 10.0 mm    | 100     |             | 1               | 0.0337             |                          | 85               |                |
| 6.30 mm    | 100     | 91          | Si              | 0.0241             |                          | 82               |                |
| 5.00 mm    | 100     |             | -               | 0.0173             | 37                       | 77               | -              |
| 3.35 mm    | 100     | -           |                 | 0.0091             |                          | 69               | -              |
| 2.00 mm    | 99      |             |                 | 0.0047             |                          | 53               |                |
| 1.18 mm    | 98      | -           | -               | 0.0024             |                          | 42               |                |
| 600 µm     | 97      |             |                 | 0.0014             |                          | 31               | (00)           |
| 425 µm     | 96      |             | 2               | SUMMARY :          | -                        | .51              |                |
| 300 µm     | 95      |             |                 | Gravel (%)         |                          |                  |                |
| 212 µm     | 94      | -           |                 | Sand (%)           | : 10                     |                  |                |
|            | rought. |             |                 | J Sanu (70)        | . 10                     |                  |                |

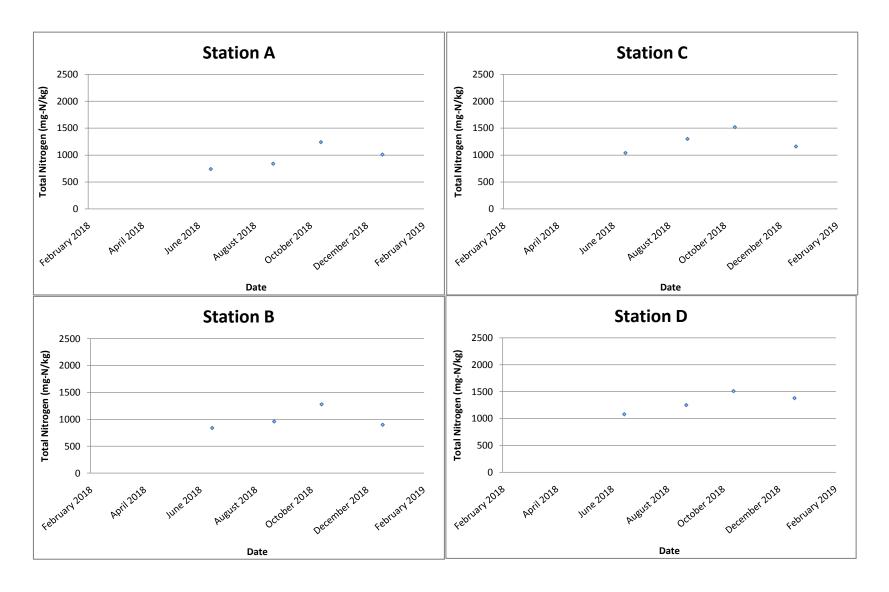
Sand (%) 10 150 μm Silt (%) 52 63 µm 89 Clay (%) 0 um

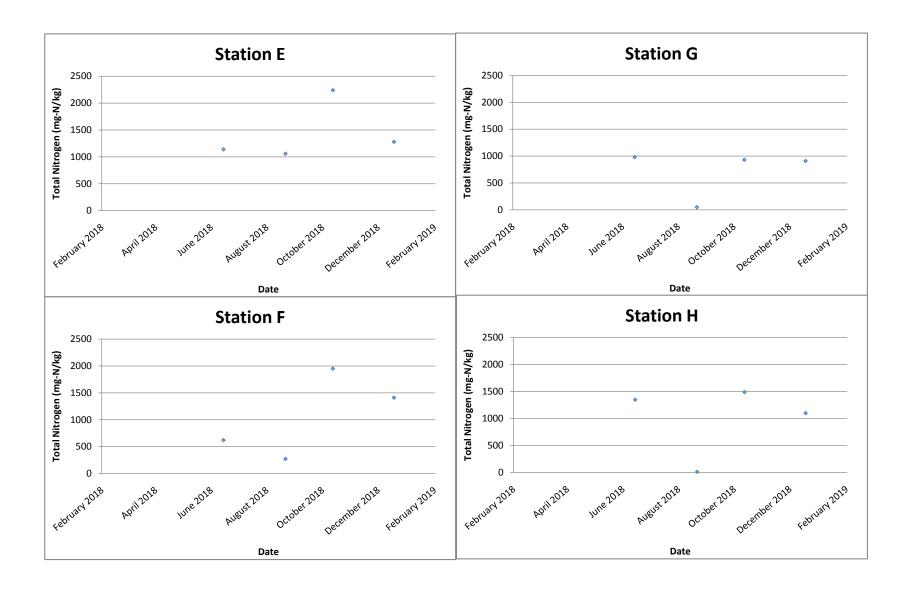


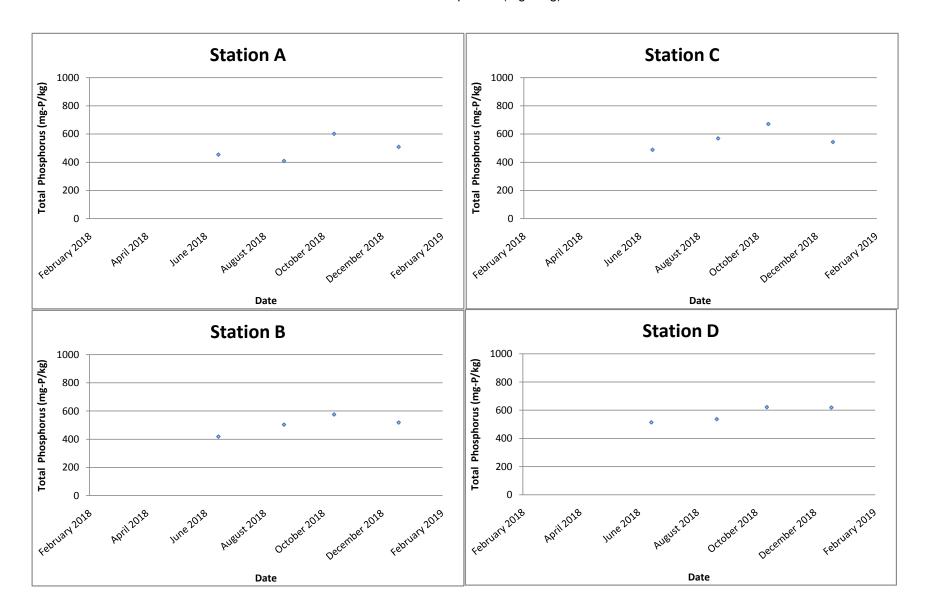


Technician Chris Chan Checked By Approved By Name T K Lam Signatory 21/12/2018 Date Date Date

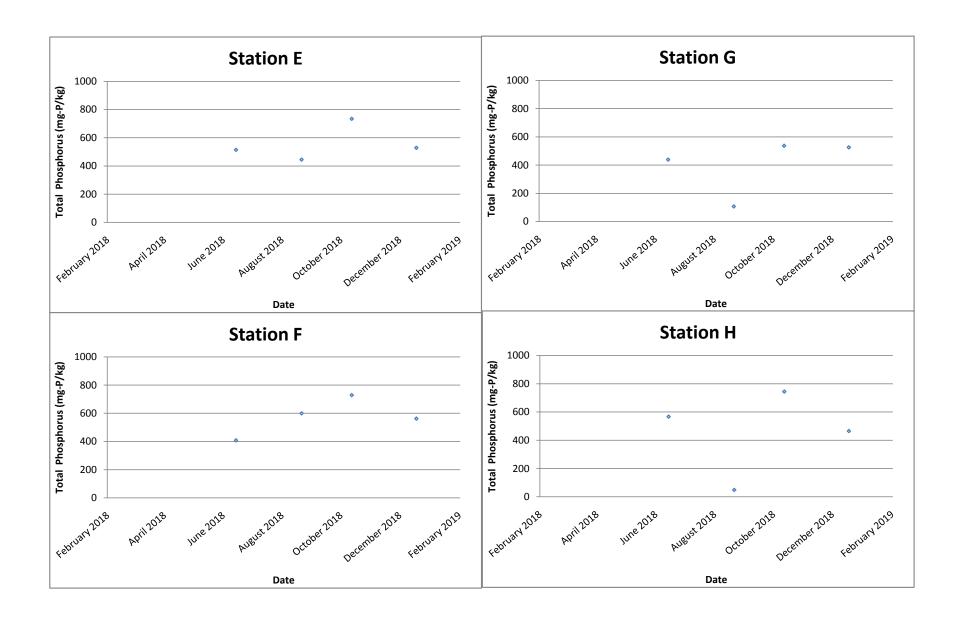

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory


Form: GESR003.5 / Sept 14.18 / Issue 1 / Rev 3

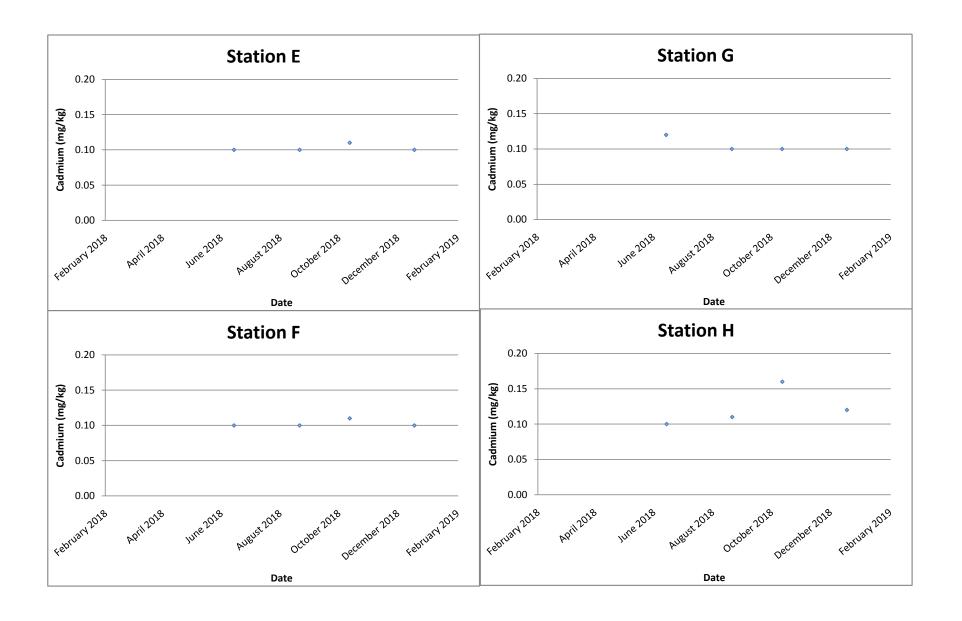

Chung Hei Wing

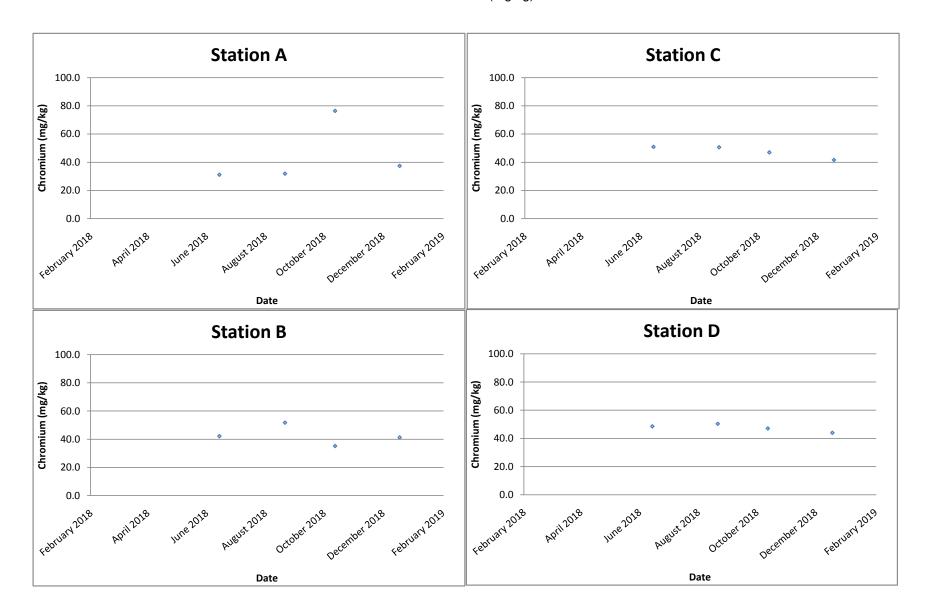


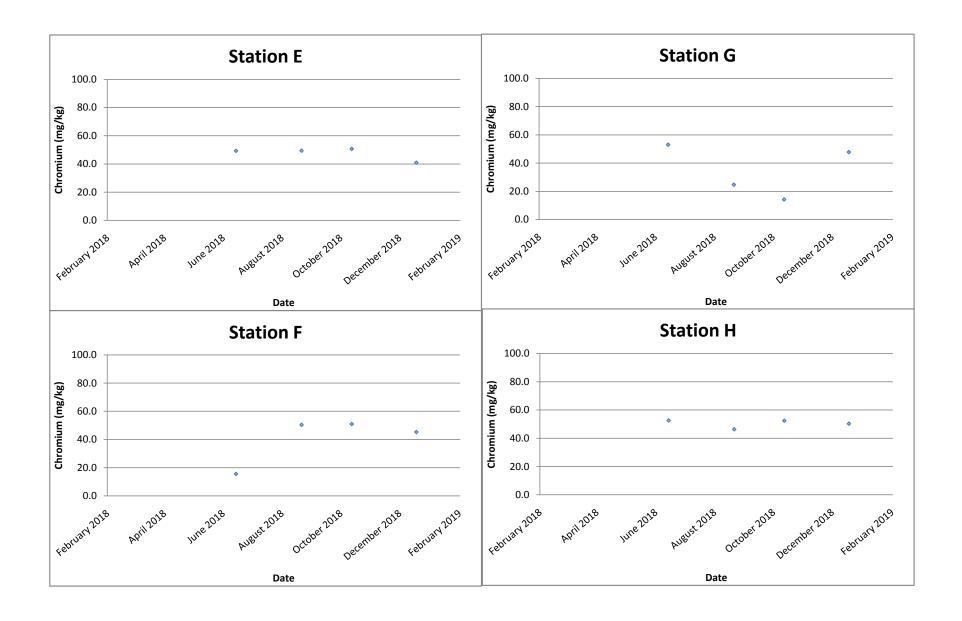



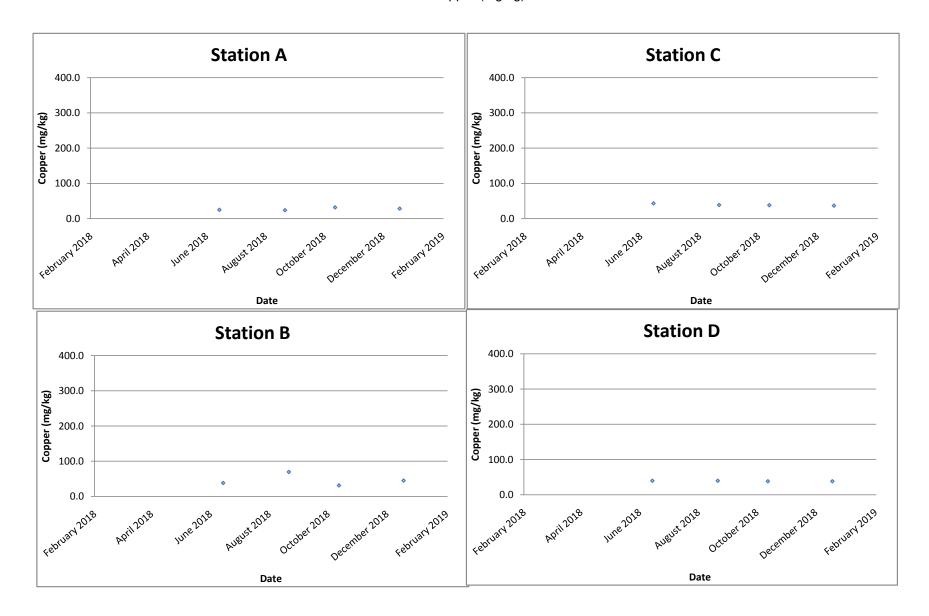



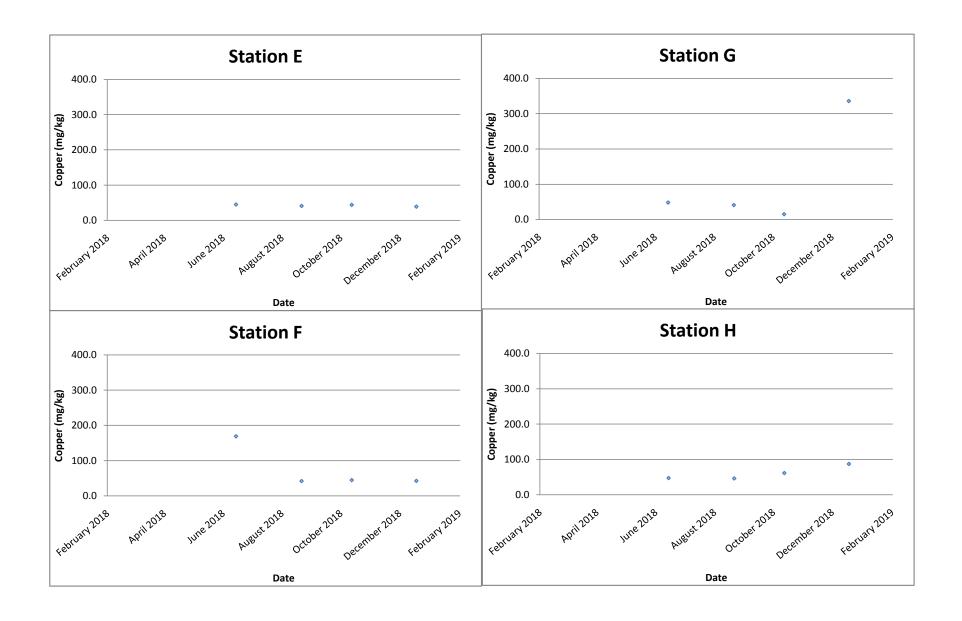


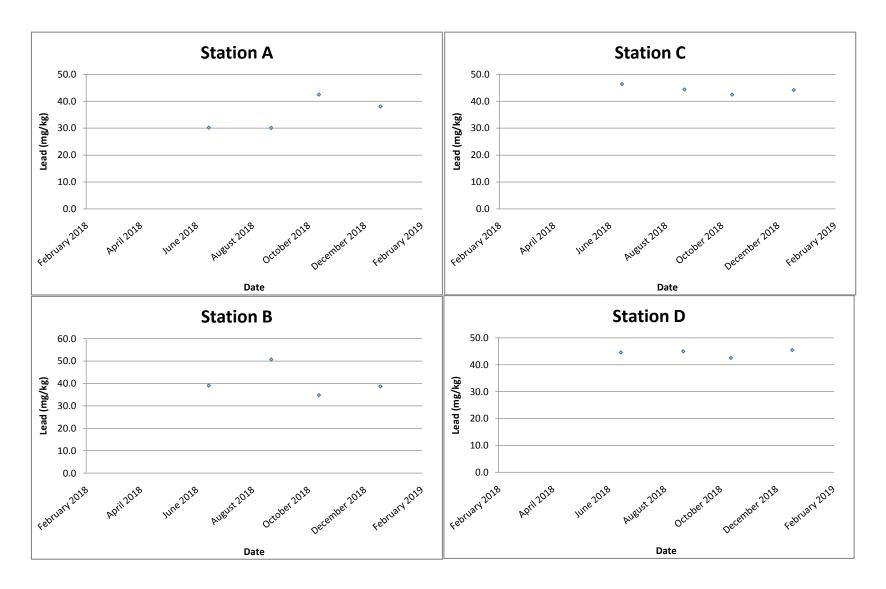



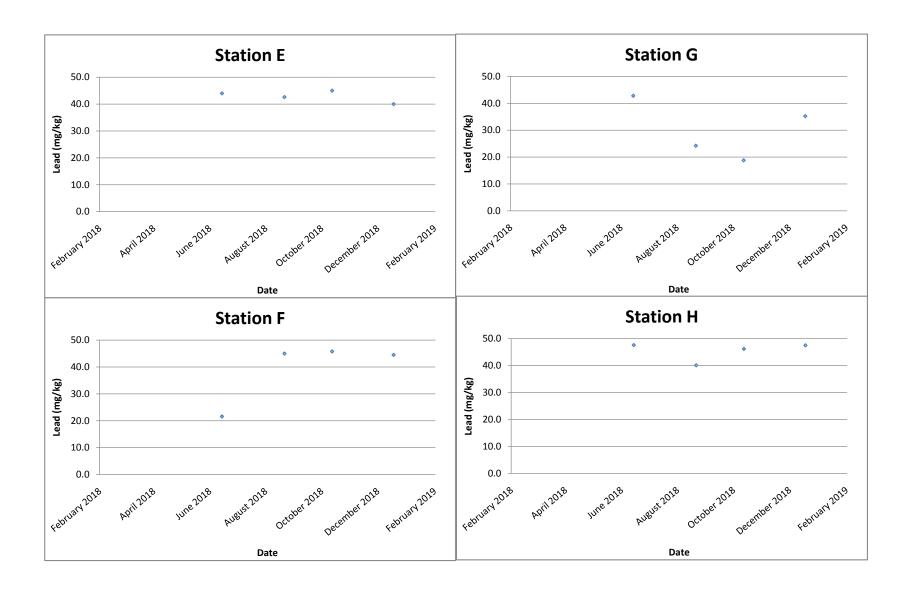



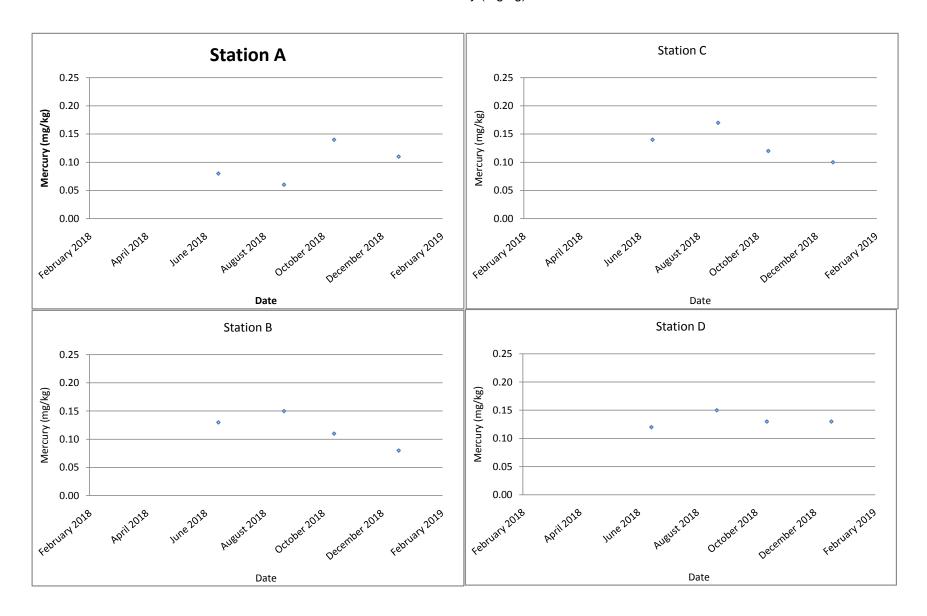



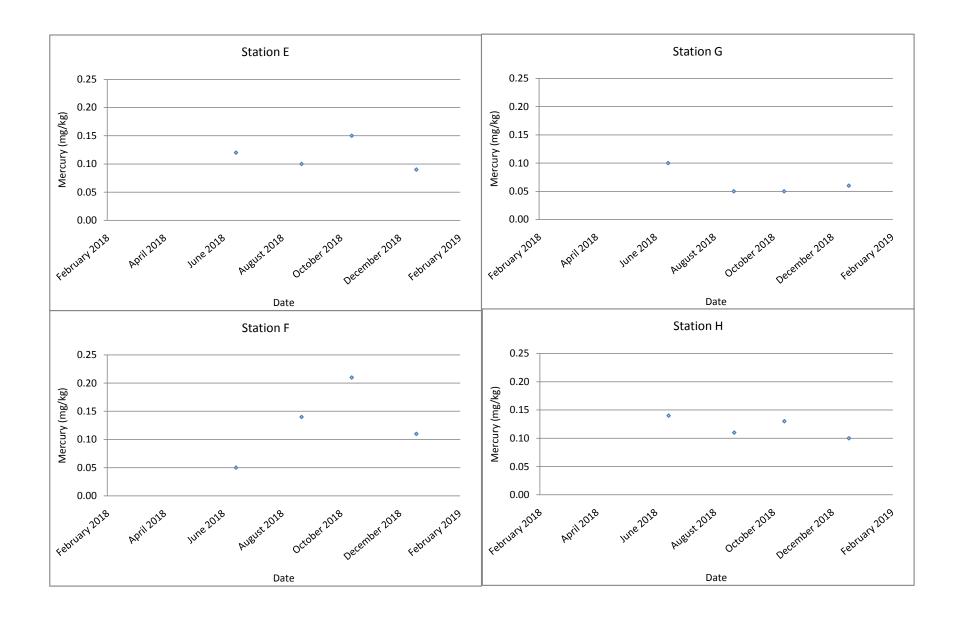



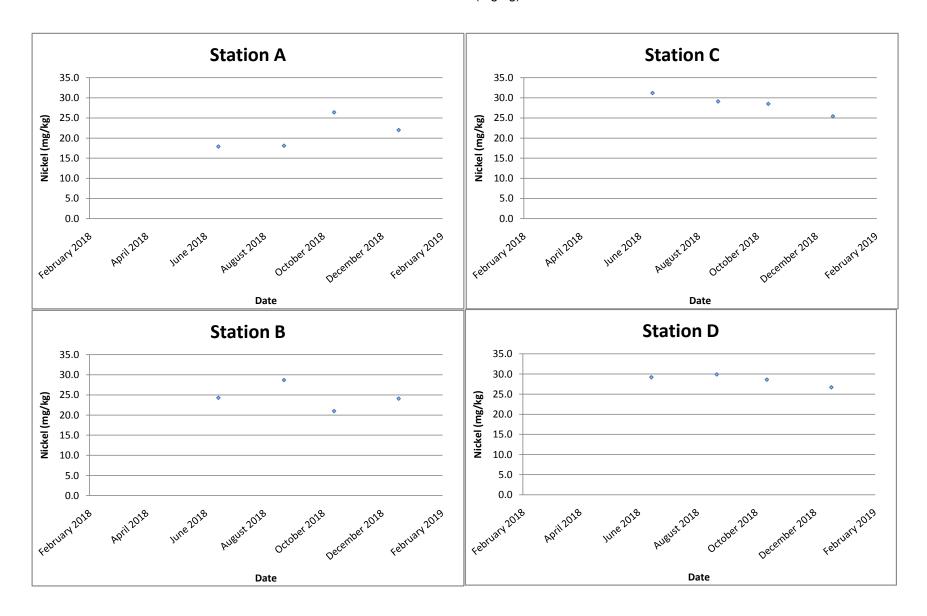



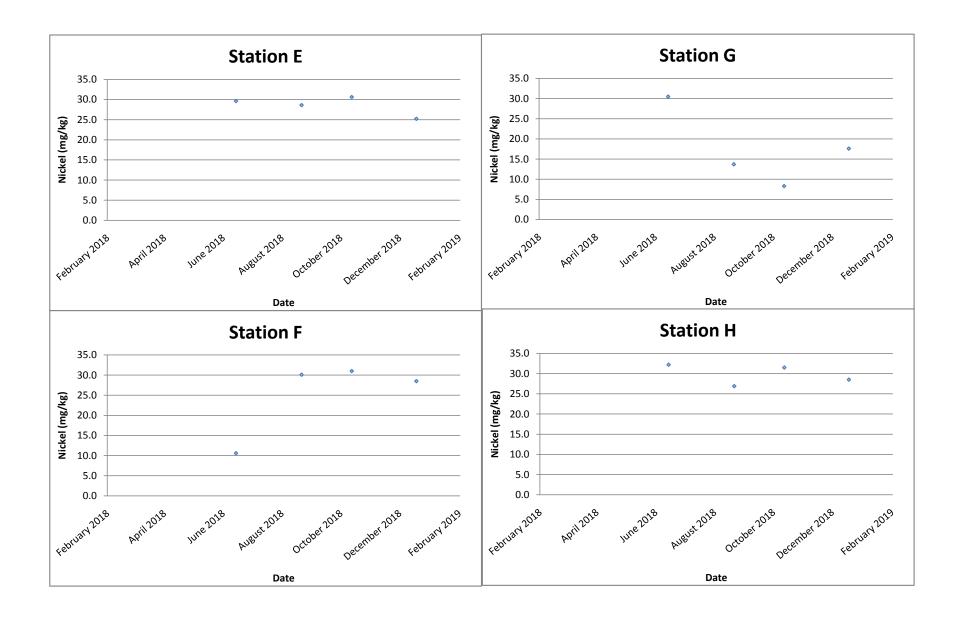



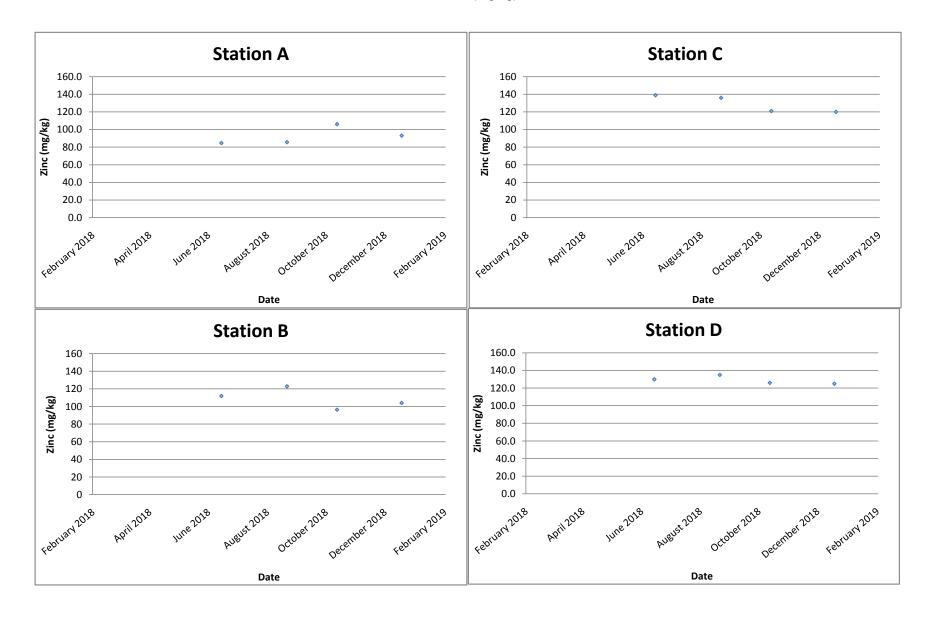



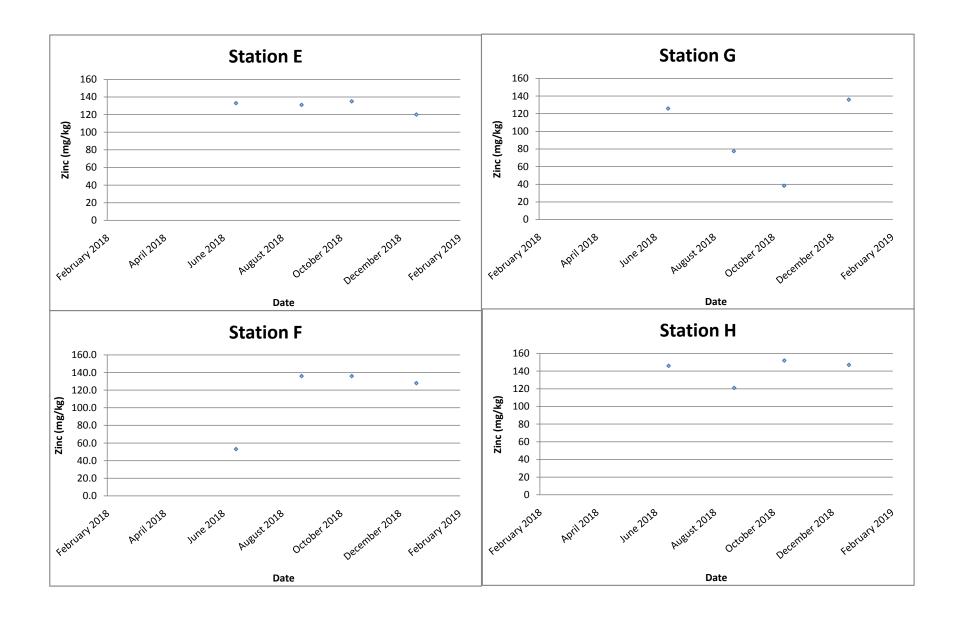



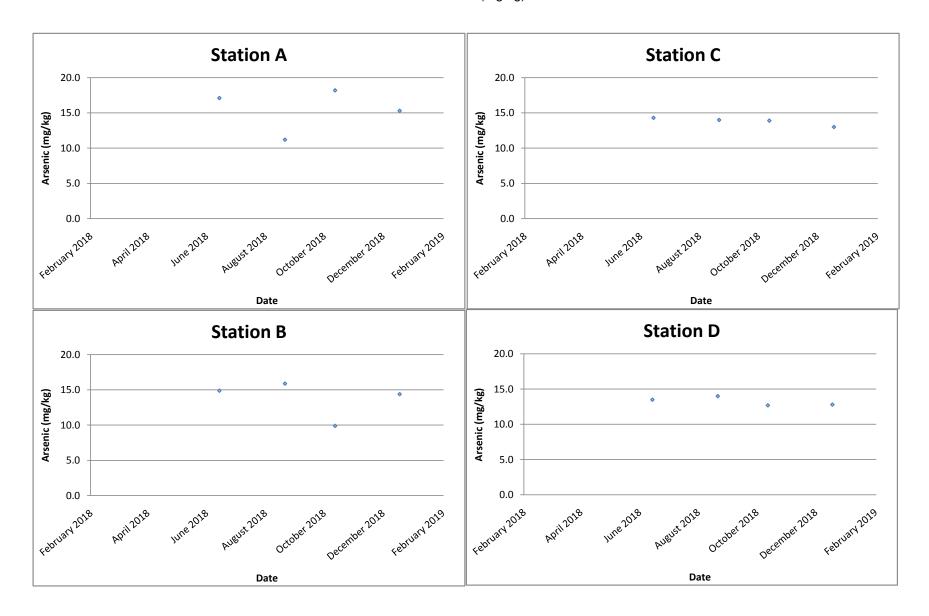



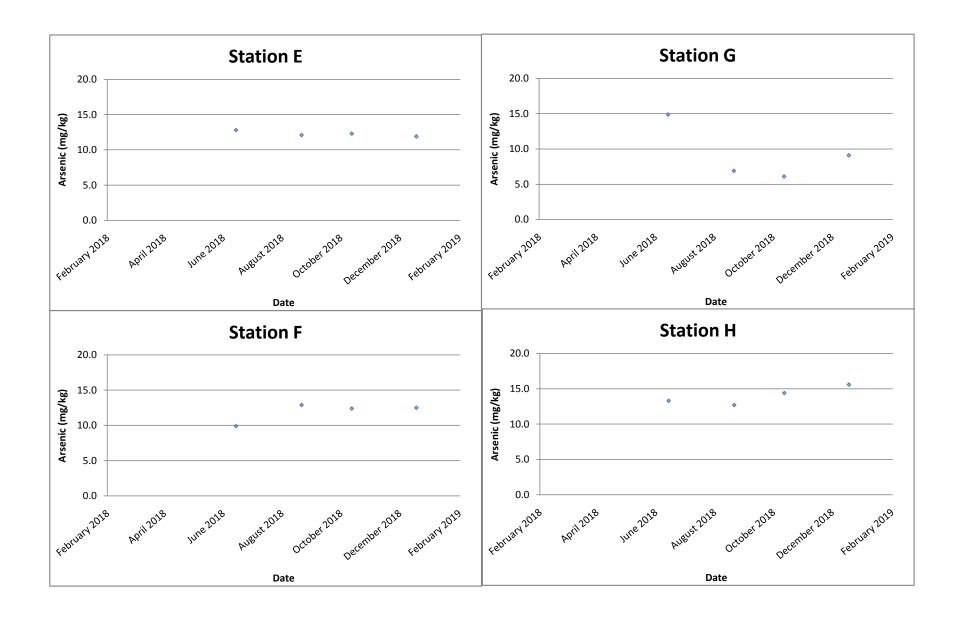



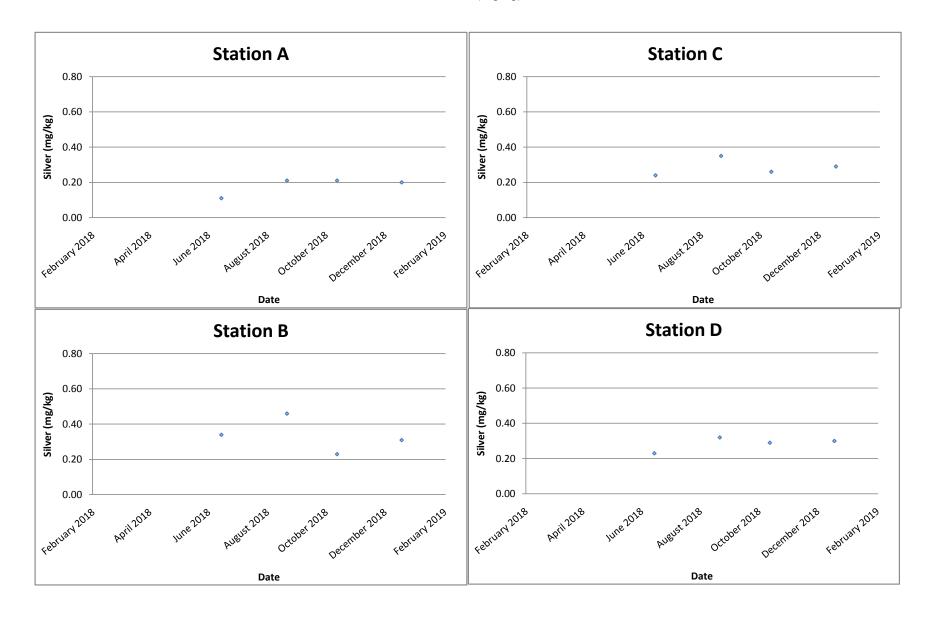



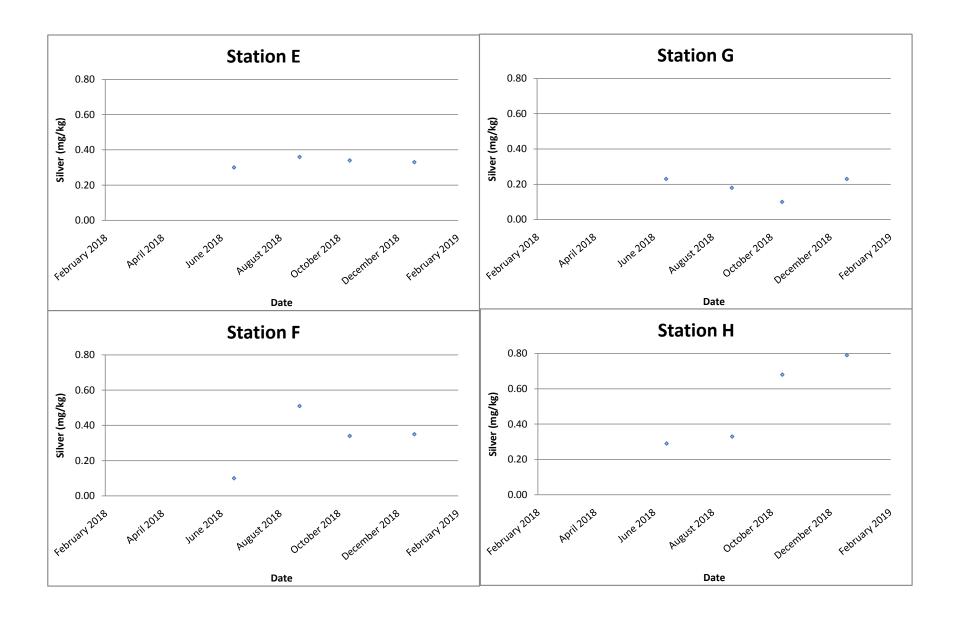














### **FUGRO TECHNICAL SERVICES LIMITED**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Appendix H

Benthic Survey Report



# **Benthic Faunal Monitoring**

## **Conducted in December 2018**

# **Summary Report**

#### Abundance

A total of 216 macrobenthic organisms recorded from the eight monitoring stations, which is lower than those reported in earlier surveys (except Oct. 2018). The decrease is predominantly caused by the lower abundance of molluscs and arthropods recorded in this survey. The lowest abundance with 12 individuals (ind.) recorded in Station C and the highest (41 ind.) recorded in Station F and G. Abundance distribution showed that the impact stations, i.e. Stations C and D, has relatively lower abundances compared to the reference stations, a similar trend is observed in the baseline data (August 2004) (Figure 1). The sediments of impact sites and reference sites are all mainly composed of silt/clay with shell fragments. There is no significant difference between the impact sites and the reference sites. Therefore, if the impact sites and reference sites have similar characteristic, their abundance recorded should be more or less the same. However, relatively lower abundance was recorded in impact stations. This observation may be indicative of a point-source disturbance, which will be verified with continued monitoring.

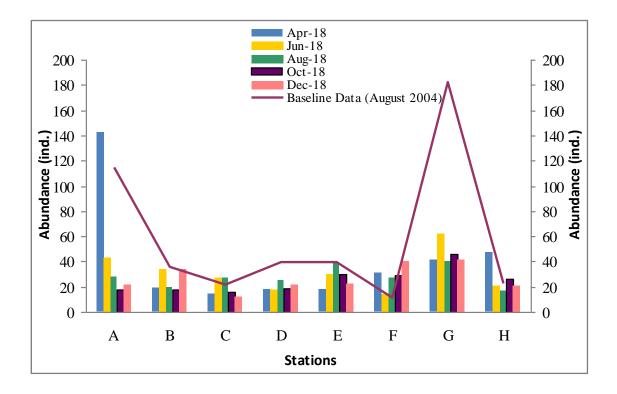





Figure 1. Total abundance (ind.) of benthic organisms collected in the eight monitoring stations, August 2004, April, June, August, October and December in 2018

#### **Biomass**

The total wet biomass from eight monitoring stations is comprised of 63.991g, which is less than that in April, June and October, but similar to that recorded in August. The highest total biomass was observed in Station D (23.418g), while Station H (2.321g) exhibited the lowest biomass. The relatively higher biomass observed in Station D contributed to the relatively higher biomass of the mollusca species and Sipuncula. The average biomass (12.90g) of the impact stations was higher compared to the average biomass (6.36g) of the reference stations. The data of all surveys are shown in Figure 2.

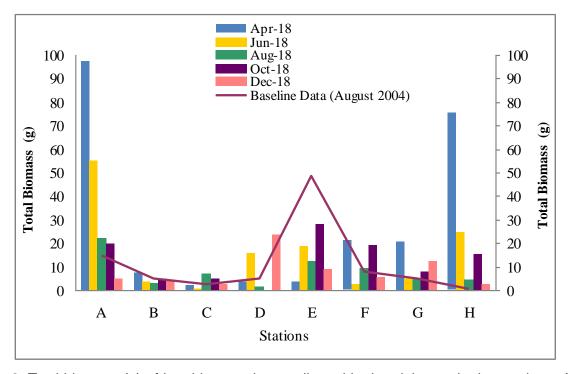



Figure 2. Total biomass (g) of benthic organisms collected in the eight monitoring stations, August 2004, April, June, August, October and December in 2018

#### **Taxonomic Composition**

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of eight phyla comprising of 36 families and 49 genera were identified. The benthic fauna composition is dominated by Annelida (69.44%), Mollusca (12.96%), and Arthropoda (10.19%) (Figure 3). Compared to the baseline study (August 2004), the most dominant groups were the capitellid and



nephtyidae polychaetes, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). Based on the recorded abundance in Table 4, Appenidix A, the percentage of mollusca generally decreased (except the slightly increase from August to October 2018) during monitoring period between April to December 2018.

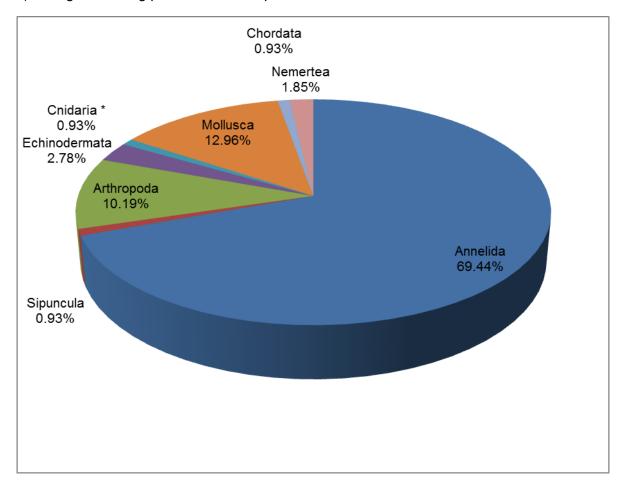



Figure 3. Percent composition of benthic organisms collected in the eight monitoring stations, December 2018

Highest number of genera was recorded in Station G (23) and the lowest in Station C (10). Similar to abundance, relatively lower number of taxa was observed at impact stations compared to the reference stations.

Macrobenithic data of numerial abundance and biomass is given in Table 1, Appenidix A and data summary for different sampling time was presented in Tables 2 to 5. Appenidix A. Representivtive photos of specimens were given in Appendix B.

### **Diversity**

Benthic diversity index (H) and eveness index (J) ranged 2.254 – 2.449 and 0.9281 – 0.9788 in



impact stations, and 2.427 - 2.964 and 0.8782 - 0.9597 among the reference stations as shown in Appendix A, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values in the impact stations and the reference stations, respectively. Compared with the baseline survey result, the diversity index and evenness index increased obviously.

#### References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Polltuion Bulletin, 40, 1100-1114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

### **Approved by Supervisor**

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor : Marsh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant

Date: January 6, 2019



# **Appendix A: Data Summaries**

# Table 1. Macrobenithic data of numerial abundance and biomass from eight sampling stations, Siu Ho Wan. (December 2018)

|          | Class      |              |                  | Genus                          | SHW-Benthic Stations |          |      |          |      |          |      |          |  |  |
|----------|------------|--------------|------------------|--------------------------------|----------------------|----------|------|----------|------|----------|------|----------|--|--|
| Phylum   |            | Order        | Family           |                                | Α                    |          | В    |          | С    |          |      | D        |  |  |
|          |            |              |                  |                                | Abd*                 | Mass (g) | Abd* | Mass (g) | Abd* | Mass (g) | Abd* | Mass (g) |  |  |
| Annelida | Polychaeta | Aciculata    | Glyceridae       | Glycera                        | 0                    | 0        | 1    | 0.001    | 1    | 0.002    | 0    | 0        |  |  |
| Annelida | Polychaeta | Capitellida  | Capitellidae     | Capitella(C.capitata)          | 0                    | 0        | 2    | 0.001    | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Capitellida  | Capitellidae     | Capitella                      | 1                    | 0.001    | 0    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Capitellida  | Capitellidae     | Mediomastus                    | 3                    | 0.005    | 0    | 0        | 0    | 0        | 1    | 0.003    |  |  |
| Annelida | Polychaeta | Capitellida  | Capitellidae     | Notomastus                     | 0                    | 0        | 0    | 0        | 1    | 0.001    | 1    | 0.001    |  |  |
| Annelida | Polychaeta | Eunicida     | Eunicidae        | Eunice(E. indica)              | 0                    | 0        | 1    | 0.001    | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | -            | Cossuridae       | Cossurella(C. aciculata)       | 0                    | 0        | 0    | 0        | 1    | 0.001    | 1    | 0.001    |  |  |
| Annelida | Polychaeta | Phyllodocida | Aphroditidae     | Laetmonice                     | 0                    | 0        | 0    | 0        | 0    | 0        | 1    | 0.100    |  |  |
| Annelida | Polychaeta | Phyllodocida | Hesionidae       | Hesione(H. intertexta)         | 1                    | 0.002    | 0    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Phyllodocida | Nereidae         | Nereis                         | 1                    | 0.001    | 1    | 0.001    | 0    | 0        | 1    | 0.001    |  |  |
| Annelida | Polychaeta | Phyllodocida | Paralacydoniidae | Paralacydonia<br>(P. paradoxa) | 4                    | 0.003    | 0    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Phyllodocida | Polynoidae       | Gattyana                       | 0                    | 0        | 0    | 0        | 1    | 0.001    | 0    | 0        |  |  |
| Annelida | Polychaeta |              | Maldanidae       | Maldanella                     | 0                    | 0        | 0    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Nereidida    | Nephtyidae       | Aglaophamus<br>(A. dibranchis) | 0                    | 0        | 0    | 0        | 0    | 0        | 0    | 0        |  |  |

1687-SHW-R5-December-text report. doc 1/29/2019 5

### Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant



| 1             |              |                 |                  |                                | ı |       | ı | 1     | 1 |       |   |        |
|---------------|--------------|-----------------|------------------|--------------------------------|---|-------|---|-------|---|-------|---|--------|
| Annelida      | Polychaeta   | Nereidida       | Nephtyidae       | Aglaophamus<br>(A. lyrochaeta) | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Nereidida       | Nephtyidae       | Nephtys(N. polybranchia)       | 0 | 0     | 9 | 0.011 | 2 | 0.002 | 5 | 0.005  |
| Annelida      | Polychaeta   | Nereidida       | Nephtyidae       | Nephtys                        | 0 | 0     | 1 | 0.003 | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Scolecida       | Opheliidae       | Ophelia                        | 0 | 0     | 1 | 0.008 | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Spionida        | Poecilochaetidae | Poecilochaetus                 | 1 | 0.003 | 0 | 0     | 1 | 0.002 | 3 | 0.007  |
| Annelida      | Polychaeta   | Spionida        | Spionidae        | Paraprionospio                 | 0 | 0     | 2 | 0.002 | 0 | 0     | 1 | 0.002  |
| Annelida      | Polychaeta   | Spionida        | Spionidae        | Prionospio                     | 1 | 0.001 | 1 | 0.001 | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Sternaspida     | Sternaspidae     | Sternaspis(S. scutata)         | 0 | 0     | 1 | 0.003 | 0 | 0     | 1 | 0.003  |
| Annelida      | Polychaeta   | Terebellida     | Pectiinariidae   | Pectinaria(Lagis)              | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Terebellida     | Terebellidae     | Amaeana                        | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Terebellida     | Terebellidae     | Loimia(L.loimia)               | 0 | 0     | 1 | 0.015 | 0 | 0     | 0 | 0      |
| Annelida      | Polychaeta   | Terebellida     | Trichobranchidae | Terebellides(T. stroemii)      | 2 | 0.003 | 0 | 0     | 0 | 0     | 0 | 0      |
| Annelida      | Oligochaeta  | Lumbriculida    | Lumbriculidae    | Lumbriculus sp.1               | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Annelida      | Oligochaeta  | Lumbriculida    | Lumbriculidae    | Lumbriculus sp.2               | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Sipuncula     | Sipunculidea | Sipunculiformes | Sipunculidae     | Sipunculus                     | 0 | 0     | 0 | 0     | 0 | 0     | 2 | 10.700 |
| Arthropoda    | Crustacea    | Cumacea         | Diastylidae      | c.f. Diastylis                 | 1 | 0.018 | 1 | 0.043 | 0 | 0     | 0 | 0      |
| Arthropoda    | Crustacea    | Decapoda        | Penaeidae        | Shrimp juvenile                | 1 | 0.035 | 0 | 0     | 0 | 0     | 0 | 0      |
| Arthropoda    | Crustacea    | Decapoda        | Pilumnidae       | Typhlocarcinus                 | 0 | 0     | 1 | 0.062 | 0 | 0     | 0 | 0      |
| Arthropoda    | Crustacea    | Decapoda        | Portunidae       | Charybdis                      | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Arthropoda    | Malacostraca | Amphipoda       | Gammaridae       | Gammarus sp.1                  | 0 | 0     | 5 | 0.001 | 2 | 0.001 | 0 | 0      |
| Arthropoda    | Malacostraca | Amphipoda       | Gammaridae       | Gammarus sp.2                  | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0      |
| Echinodermata | -            | -               | -                | UNID sp.                       | 0 | 0     | 0 | 0     | 0 | 0     | 1 | 2.518  |



| Echinodermata | Ophiuroidea    | Ophiurida    | Amphiuridae   | Amphioplus                   | 2 | 0.029 | 0 | 0     | 0 | 0     | 1 | 1.577 |
|---------------|----------------|--------------|---------------|------------------------------|---|-------|---|-------|---|-------|---|-------|
| Cnidaria      | Anthozoa       | Pennatulacea | Virgulariidae | Seapen (c.f. Virgularia)     | 0 | 0     | 0 | 0     | 1 | 2.345 | 0 | 0     |
| Mollusca      | Bivalvia       | Veneroida    | Psammobiidae  | c.f. Soletellina chinensis   | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca      | Bivalvia       | Veneroida    | Tellinidae    | c.f. Augulus                 | 0 | 0     | 0 | 0     | 1 | 0.011 | 0 | 0     |
| Mollusca      | Bivalvia       | Veneroida    | Veneridae     | Paphia (P. undulata)         | 0 | 0     | 0 | 0     | 0 | 0     | 2 | 4.800 |
| Mollusca      | Bivalvia       | Veneroida    | Veneridae     | c.f. Phylloda foliacea       | 0 | 0     | 1 | 0.010 | 1 | 0.018 | 1 | 3.700 |
| Mollusca      | Bivalvia       | Veneroida    | Veneridae     | Ruditapes (R. philippinarum) | 2 | 4.800 | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca      | Bivalvia       | Veneroida    | Veneridae     | Bivalve juvenile             | 0 | 0     | 1 | 1.211 | 0 | 0     | 0 | 0     |
| Mollusca      | Gastropoda     | Buccinoidea  | Nassariidae   | Nassarius(N. succinctus)     | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca      | Scaphopoda     | -            | Dentaliidae   | -                            | 1 | 0.023 | 2 | 0.012 | 0 | 0     | 0 | 0     |
| Chordata      | Actinopterygii | Perciformes  | Taenioididae  | Trypauchen(T. vagina)        | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Chordata      | Actinopterygii | Perciformes  | Gobiidae      | UNID goby                    | 0 | 0     | 1 | 3.045 | 0 | 0     | 0 | 0     |
| Nemertea      | Enopla         | =            | -             | UNID 1                       | 1 | 0.002 | 1 | 0.003 | 0 | 0     | 0 | 0     |

Note: Abd\* means Abundance, T means biomass <0.001 g round to 0.001g

1687-SHW-R5-December-text report. doc 1/29/2019 7



|          |            |                |                  |                          |      |          | SHW-Benthic Stations |          |      |          |      |          |  |  |
|----------|------------|----------------|------------------|--------------------------|------|----------|----------------------|----------|------|----------|------|----------|--|--|
| Phylum   | Class      | Order          | Family           | Genus                    | E    |          | F                    |          | G    |          |      | н        |  |  |
|          |            |                |                  |                          | Abd* | Mass (g) | Abd*                 | Mass (g) | Abd* | Mass (g) | Abd* | Mass (g) |  |  |
| Annelida | Polychaeta | Aciculata      | Glyceridae       | Glycera                  | 0    | 0        | 5                    | 0.002    | 2    | 0.001    | 0    | 0        |  |  |
| Annelida | Polychaeta | Capitellida    | Capitellidae     | Capitella(C.capitata)    | 0    | 0        | 1                    | Т        | 4    | 0.002    | 2    | 0.001    |  |  |
| Annelida | Polychaeta | Capitellida    | Capitellidae     | Capitella                | 1    | Т        | 1                    | Т        | 2    | 0.001    | 1    | Т        |  |  |
| Annelida | Polychaeta | Capitellida    | Capitellidae     | Mediomastus              | 1    | 0.001    | 3                    | 0.004    | 5    | 0.021    | 2    | 0.004    |  |  |
| Annelida | Polychaeta | Capitellida    | Capitellidae     | Notomastus               | 0    | 0        | 1                    | Т        | 2    | 0.001    | 0    | 0        |  |  |
| Annelida | Polychaeta | Eunicida       | Eunicidae        | Eunice(E. indica)        | 0    | 0        | 0                    | 0        | 1    | 0.005    | 1    | 0.001    |  |  |
| Annelida | Polychaeta | -              | Cossuridae       | Cossurella(C. aciculata) | 0    | 0        | 0                    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Phyllodocida   | Aphroditidae     | Laetmonice               | 0    | 0        | 0                    | 0        | 1    | 0.213    | 0    | 0        |  |  |
| Annelida | Polychaeta | Phyllodocida   | Hesionidae       | Hesione(H. intertexta)   | 0    | 0        | 0                    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | Phyllodocida   | Nereidae         | Nereis                   | 0    | 0        | 0                    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annelida | D 1 1 1    | Phyllodocida   | Paralacydoniidae | Paralacydonia            | 0    | 0        | 0                    | 0        | 0    | 0        | 0    | 0        |  |  |
| Annellaa | Polychaeta | Priyilodocida  | Paralacydoniidae | (P. paradoxa)            | U    | U        | O                    |          | 0    | U        | U    | U        |  |  |
| Annelida | Polychaeta | Phyllodocida   | Polynoidae       | Gattyana                 | 0    | 0        | 1                    | 0.002    | 0    | 0        | 0    | 0        |  |  |
| Annelida | Polychaeta | -              | Maldanidae       | Maldanella               | 0    | 0        | 1                    | Т        | 0    | 0        | 0    | 0        |  |  |
| Annelida | Dolyahaata | Nereidida      | Nophtvidae       | Aglaophamus              | 0    | 0        | 0                    | 0        |      | 0.003    | 1    | 0.001    |  |  |
| Annenda  | Polychaeta | aeta Nereidida | Nephtyidae       | (A. dibranchis)          |      | U        | U                    | U        | 2    | 0.003    | I    |          |  |  |
| Annelida | Polychaeta | Nereidida      | Nephtyidae       | Aglaophamus              | 0    | 0        | 0                    | 0        | 0    | 0        | 1    | 0.002    |  |  |
| Annenda  | гопуспаета | inereiulua     | перпушае         | (A. lyrochaeta)          | U    | U        | O                    | U        | U    | U        | ı    | 0.002    |  |  |

#### Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant



| Annelida      | Polychaeta   | Nereidida       | Nephtyidae       | Nephtys(N. polybranchia)  | 0 | 0     | 0 | 0     | 4 | 0.006 | 2 | 0.002 |
|---------------|--------------|-----------------|------------------|---------------------------|---|-------|---|-------|---|-------|---|-------|
| Annelida      | Polychaeta   | Nereidida       | Nephtyidae       | Nephtys                   | 6 | 0.007 | 3 | 0.002 | 0 | 0     | 0 | 0     |
| Annelida      | Polychaeta   | Scolecida       | Opheliidae       | Ophelia                   | 0 | 0     | 1 | 0.002 | 2 | 0.003 | 0 | 0     |
| Annelida      | Polychaeta   | Spionida        | Poecilochaetidae | Poecilochaetus            | 0 | 0     | 6 | 0.015 | 0 | 0     | 0 | 0     |
| Annelida      | Polychaeta   | Spionida        | Spionidae        | Paraprionospio            | 2 | 0.002 | 1 | 0.001 | 1 | 0.001 | 0 | 0     |
| Annelida      | Polychaeta   | Spionida        | Spionidae        | Prionospio                | 0 | 0     | 6 | 0.003 | 1 | 0.001 | 3 | 0.002 |
| Annelida      | Polychaeta   | Sternaspida     | Sternaspidae     | Sternaspis(S. scutata)    | 2 | 0.003 | 0 | 0     | 3 | 0.015 | 1 | 0.002 |
| Annelida      | Polychaeta   | Terebellida     | Pectiinariidae   | Pectinaria(Lagis)         | 0 | 0     | 0 | 0     | 1 | 0.007 | 0 | 0     |
| Annelida      | Polychaeta   | Terebellida     | Terebellidae     | Amaeana                   | 0 | 0     | 1 | Т     | 0 | 0     | 0 | 0     |
| Annelida      | Polychaeta   | Terebellida     | Terebellidae     | Loimia(L.loimia)          | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Annelida      | Polychaeta   | Terebellida     | Trichobranchidae | Terebellides(T. stroemii) | 0 | 0     | 0 | 0     | 1 | 0.002 | 0 | 0     |
| Annelida      | Oligochaeta  | Lumbriculida    | Lumbriculidae    | Lumbriculus sp.1          | 0 | 0     | 0 | 0     | 2 | 0.001 | 1 | Т     |
| Annelida      | Oligochaeta  | Lumbriculida    | Lumbriculidae    | Lumbriculus sp.2          | 0 | 0     | 1 | 0.006 | 0 | 0     | 0 | 0     |
| Sipuncula     | Sipunculidea | Sipunculiformes | Sipunculidae     | Sipunculus                | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Arthropoda    | Crustacea    | Cumacea         | Diastylidae      | c.f. Diastylis            | 0 | 0     | 1 | 0.037 | 0 | 0     | 0 | 0     |
| Arthropoda    | Crustacea    | Decapoda        | Penaeidae        | Shrimp juvenile           | 1 | 0.025 | 0 | 0     | 0 | 0     | 0 | 0     |
| Arthropoda    | Crustacea    | Decapoda        | Pilumnidae       | Typhlocarcinus            | 0 | 0     | 1 | 0.038 | 0 | 0     | 0 | 0     |
| Arthropoda    | Crustacea    | Decapoda        | Portunidae       | Charybdis                 | 0 | 0     | 0 | 0     | 1 | 1.562 | 0 | 0     |
| Arthropoda    | Malacostraca | Amphipoda       | Gammaridae       | Gammarus sp.1             | 0 | 0     | 0 | 0     | 1 | Т     | 3 | 0.001 |
| Arthropoda    | Malacostraca | Amphipoda       | Gammaridae       | Gammarus sp.2             | 2 | 0.001 | 0 | 0     | 0 | 0     | 1 | Т     |
| Echinodermata | =            | -               | -                | UNID sp.                  | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Echinodermata | Ophiuroidea  | Ophiurida       | Amphiuridae      | Amphioplus                | 1 | 1.028 | 0 | 0     | 1 | 0.005 | 0 | 0     |



| Cnidaria | Anthozoa       | Pennatulacea | Virgulariidae | Seapen (c.f. Virgularia)     | 0 | 0     | 0 | 0     | 0 | 0     | 1 | 0.002 |
|----------|----------------|--------------|---------------|------------------------------|---|-------|---|-------|---|-------|---|-------|
| Mollusca | Bivalvia       | Veneroida    | Psammobiidae  | c.f. Soletellina chinensis   | 1 | 1.500 | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca | Bivalvia       | Veneroida    | Tellinidae    | c.f. Augulus                 | 0 | 0     | 1 | 0.015 | 0 | 0     | 0 | 0     |
| Mollusca | Bivalvia       | Veneroida    | Veneridae     | Paphia (P. undulata)         | 2 | 4.400 | 2 | 3.400 | 1 | 1.700 | 0 | 0     |
| Mollusca | Bivalvia       | Veneroida    | Veneridae     | c.f. Phylloda foliacea       | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca | Bivalvia       | Veneroida    | Veneridae     | Ruditapes (R. philippinarum) | 0 | 0     | 3 | 1.732 | 1 | 5.100 | 1 | 2.300 |
| Mollusca | Bivalvia       | Veneroida    | Veneridae     | Bivalve juvenile             | 1 | 0.021 | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca | Gastropoda     | Buccinoidea  | Nassariidae   | Nassarius(N. succinctus)     | 1 | 1.800 | 0 | 0     | 0 | 0     | 0 | 0     |
| Mollusca | Scaphopoda     | -            | Dentaliidae   | -                            | 1 | 0.017 | 0 | 0     | 1 | 0.031 | 0 | 0     |
| Chordata | Actinopterygii | Perciformes  | Taenioididae  | Trypauchen(T. vagina)        | 0 | 0     | 0 | 0     | 1 | 3.750 | 0 | 0     |
| Chordata | Actinopterygii | Perciformes  | Gobiidae      | UNID goby                    | 0 | 0     | 0 | 0     | 0 | 0     | 0 | 0     |
| Nemertea | Enopla         | -            | -             | UNID 1                       | 1 | 0.004 | 1 | 0.002 | 0 | 0     | 0 | 0     |

Note: Abd\* means Abundance, T means biomass <0.001 g round to 0.001g

1687-SHW-R5-December-text report. doc 1/29/2019 10



Table 2. Summary of Benthic Survey Data, December 2018

| Station | Abundance (ind.) | Total Biomass (g) | Number of Taxa | Diversity (H') | Evenness (J) |
|---------|------------------|-------------------|----------------|----------------|--------------|
| Α       | 22               | 4.93              | 14             | 2.50           | 0.95         |
| В       | 34               | 4.43              | 19             | 2.59           | 0.88         |
| C*      | 12               | 2.38              | 10             | 2.25           | 0.98         |
| D*      | 22               | 23.42             | 14             | 2.45           | 0.93         |
| Е       | 23               | 8.81              | 14             | 2.43           | 0.92         |
| F       | 41               | 5.27              | 20             | 2.72           | 0.91         |
| G       | 41               | 12.43             | 23             | 2.96           | 0.95         |
| Н       | 21               | 2.32              | 14             | 2.53           | 0.96         |
| TOTAL   | 216              | 63.99             | 49             |                |              |

<sup>\*</sup>Impact Sites

Table 3. Summary of Benthic Survey Baseline Data, August 2004

| Stations | Abundance | Total Biomass | Number of Taxa | Diversity (H') | Evenness (J) |
|----------|-----------|---------------|----------------|----------------|--------------|
| Α        | 115       | 14.56         | 24             | 0.93           | 0.29         |
| В        | 36        | 4.76          | 14             | 0.89           | 0.34         |
| C*       | 22        | 2.66          | 13             | 0.80           | 0.31         |
| D*       | 39        | 5.07          | 11             | 0.62           | 0.26         |
| Е        | 39        | 48.69         | 16             | 0.89           | 0.32         |
| F        | 11        | 8.07          | 9              | 0.68           | 0.31         |
| G        | 182       | 4.91          | 31             | 1.10           | 0.32         |
| Н        | 23        | 0.49          | 11             | 0.81           | 0.34         |

<sup>\*</sup>Impact Sites



**Table 4.** Taxonomic Composition (%) of Benthic Survey, Baseline (August 2004), April, June, August, October and December 2018

| Taxonomic Composition | Aug-04 | Apr-18 | Jun-18 | Aug-18 | Oct-18 | Dec-18 |
|-----------------------|--------|--------|--------|--------|--------|--------|
| Annelida              | 73.29  | 31.12  | 53.01  | 65.02  | 65.35  | 69.44  |
| Sipuncula             | 0.21   | 0.30   | 0.80   | 0.45   | 0      | 0.93   |
| Arthropoda            | 18.80  | 13.60  | 15.66  | 12.11  | 13.86  | 10.19  |
| Echinodermata         | 3.63   | 15.11  | 4.82   | 5.38   | 2.97   | 2.78   |
| Cnidaria              | 0.43   | 0.60   | 0.40   | 0      | 0      | 0.93   |
| Mollusca              | 3.42   | 50.45  | 21.29  | 15.69  | 16.83  | 12.96  |
| Chordata              | 0.21   | 2.11   | 0.80   | 0.45   | 0      | 0.93   |
| Nemertea              | 0      | 0.30   | 3.22   | 0.90   | 0.99   | 1.85   |

**Table 5.** Taxonomic Composition (abundance) of Benthic Survey, Baseline (August 2004) and April, June, August, October and December 2018

| Taxonomic Composition | Aug-04 | Apr-18 | Jun-18 | Aug-18 | Oct-18 | Dec-18 |
|-----------------------|--------|--------|--------|--------|--------|--------|
| Annelida              | 343    | 103    | 132    | 145    | 132    | 150    |
| Sipuncula             | 1      | 1      | 2      | 1      | 0      | 2      |
| Arthropoda            | 88     | 45     | 39     | 27     | 28     | 22     |
| Echinodermata         | 17     | 5      | 12     | 12     | 6      | 6      |
| Cnidaria              | 2      | 2      | 1      | 0      | 0      | 2      |
| Mollusca              | 16     | 167    | 53     | 35     | 34     | 28     |
| Chordata              | 1      | 7      | 2      | 1      | 0      | 2      |
| Nemertea              | -      | 1      | 8      | 2      | 2      | 4      |
| Grand total           | 468    | 331    | 249    | 223    | 202    | 216    |



# Appendix B: Representative Taxa Identified





A) Benthic sampling and processing.

B) The species of Polychaeta, Laetmonice sp.



C) The species of Polychaeta,  $\it Sternaspis scutata$ 



D) The bivalve, c.f. Phylloda foliacea

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B





Photo 1. A ponar grab sampler



Photo3. Grab dimension 2

Photo 2. Grab dimension 1



Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B



Photo 1. A modified Van Veen grab sampler



Photo 2. Grab dimension 1



Photo3. Grab dimension 2

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com



Report No.: 0041/17/ED/0398B

### Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                 | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| Air Qu     | uality      |             |                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                          |
| NA         | 4.5         | NA          | Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.                                                                                                                                                                                                                                                           | SHWSTW                   | Implemented              |
| 3.4        | 4.5         | NA          | Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.                                                                                                                                                                                                                                                              | SHWSTW                   | Implemented              |
| 3.4        | 4.5         | NA          | Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented                                                                                                                                                                                             | SHWSTW                   | Implemented              |
| Water      | Quality     |             |                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                          |
| 3.3        | NA          | 4.01        | To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage                                                                                                                                                                  | SHWSTW                   | Implemented              |
| Waste      | Manager     | nent        | -                                                                                                                                                                                                                                                                                                                                                                                                 | •                        | •                        |
| 3.6        | NA          | NA          | Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers                                                                                                                                                                                                                                                                    | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.                                                                                                                                                                                                                                | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.                                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |
| NA         | NA          | 5.02        | The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.                                                                                                                                                                                                                                                        | SHWSTW                   | Implemented              |
| NA         | NA          | 5.03        | The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.04        | The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents. | SHWSTW                   | Implemented              |
| NA         | NA          | 5.05        | Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.                                                                                                                                                                                            | SHWSTW                   | Implemented              |
| NA         | NA          | 5.06        | In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.                                                                                                                                                                                                                                                                               | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Temporary storage aareas should be identify and provided for the temporary storage of general                                                                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                      | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
|            |             |             | refuse to facilitate collection                                                                                                                                                                                                                                                                                                                                                                                        |                          |                          |
| NA         | NA          | 5.07        | Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately                                                                                                                                                                                                                                                                                                               | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Sufficient dustbins should be provided for domestic waste if required.                                                                                                                                                                                                                                                                                                                                                 | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.                                                                                                                                                                                                                                                                                         | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste                                                                                                                                                                                                                                                     | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.                                                                                                                                                                                                                    | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.                                                                                                                                                                                                                                                                              | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | The burning of refuse on-site is prohibited by law and shall not be undertaken                                                                                                                                                                                                                                                                                                                                         | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Toilet wastewater shall be transported to the STW for treatment                                                                                                                                                                                                                                                                                                                                                        | SHWSTW                   | Implemented              |
| NA         | NA          | 5.07        | Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.                                                                                                                                                                                                                                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.08        | All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.                                                                                                                                                                   | SHWSTW                   | Implemented              |
| NA         | NA          | 5.09        | To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.                                                                                                                                                 | SHWSTW                   | Implemented              |
| NA         | NA          | 5.10        | Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.                                                                                                                                                                                                                                                                                                | SHWSTW                   | Implemented              |
| NA         | NA          | 5.11        | The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly. | SHWSTW                   | Implemented              |
| NA         | NA          | 5.12        | Weekly tidying should be performed weekly within the site.                                                                                                                                                                                                                                                                                                                                                             | SHWSTW                   | Implemented              |
| NA         | NA          | 5.13        | The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.                                                                                         | SHWSTW                   | Implemented              |

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No.: 0041/17/ED/0398B

| EP<br>Ref. | EIA<br>Ref. | WMP<br>Ref. | Environmental Protection Measures                                                         | Location of the measures | Implementation<br>Status |
|------------|-------------|-------------|-------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| NA         | NA          | 5.14        | All wastes generated through the operational phase will be manages in accordance with the | SHWSTW                   | Implemented              |
|            |             |             | protocols set out in the WMP Section 5.14.                                                |                          |                          |