Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Monthly EM&A Report April 2019

Client	:	Drainage Services Department	
Project	:	Contract No. CM 14/2016	
		Environmental Team for Operational	
		Environmental Monitoring and Audit for Siu	
		Ho Wan Sewage Treatment Works	
Report No.:	:	0041/17/ED/0442C	

Prepared by:	Andy K. H. Choi
i iopuiou by.	

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/19-0011

24 May 2019

Drainage Services Department

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Dear Sir,

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (APRIL 2019)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for April 2019 (Report No.: 0041/17/ED/0442C) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 23 May 2019 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/ri/ck/sc

By Post and E-mail

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 18
5.	CHINESE WHITE DOLPHIN MONITORING	. 25
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 26
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 27
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 28
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 29
10.	FUTURE KEY ISSUES	
11.	CONCLUSION	. 31

FIGURE

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
Figure 3	Location of the Tide Gauge

Figure 4 Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix E	Results and Graphical Presentation of Water Quality Monitoring
Appendix F	Predicted Tidal Data of Ma Wan Marine Traffic Station
Appendix G	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix H	Benthic Survey Report
Appendix I	Photos of Grab Samplers
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0442C

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Twenty-first Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 April 2019 to 30 April 2019 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 9 April 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Report No.: 0041/17/ED/0442C

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current H_2S measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Page 3

Report No.: 0041/17/ED/0442C

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact Persons and Telephone Numbers of Key P	Personnel
--	-----------

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 5

Report No.: 0041/17/ED/0442C

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0442C

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 6

Table 2.2 Categories of Odour Intensity			
Odour Level	Odour Intensity	Classification Criteria	
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described	
1	Slight	Identifiable odour, barely noticeable	
2	Noticeable	Identifiable odour, noticeable	
3	Strong	Identifiable odour, strong	
4	Extreme	Severe odour	

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H_2S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

	Duration	Frequency		
H ₂ S concentration monitoring Odour patrol	15 minutes	¹ Weekly basis for 6 months during the initial operation stage		
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring		

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 7

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

2.5.1 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in Table 2.4.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 8

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any compliant or noncompliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 9

Report No.: 0041/17/ED/0442C

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

Table 3.1	Location of Water Quality Monitoring
-----------	--------------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monite	oring Parameters
In-situ Measurement	Laboratory Analysis
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)
Temperature (degree Celsius)	5-day BOD (mg/l)
pH value	Suspended Solids (mg/l)
Water depth (m)	Ammonia as N (mg/l)
Salinity (ppt)	Nitrate as N (mg/l)
Turbidity (NTU)	Nitrite as N (mg/l)
Current Speed (m/s)	Total inorganic nitrogen (mg/l)
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)

Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 11

Table 3.4 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer / Model	Serial Number			
Water Quality	Aqua TROLL 600 Multiparameter Sonde	584601			
Monitoring Device		525120			
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906			

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

E-mail : matlab@fugro.com

Website : www.fugro.com

TUGRO

Report No.: 0041/17/ED/0442C

Tuen Mun, N.T.,

Hong Kong.

Page 12

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 9 April 2019. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

_	I able	3.6	Summary of In-situ Monitoring Results (Mid-ebb)								
	Monitoring Station	Water Depth (m)	g Depth oxygen (m) (mg/L)		Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)	
	А	17	S 1 7.65		7.65	25.56	8.29	24.40	6.4	0.26	181.4

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0442C

Monitoring Station	Water Depth		nplin epth	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current speed	Current velocity
Station	(m)	(m)	epin	(mg/L)	Celsius)		(ppt)	(1110)	(m/s)	(degree
	()	(,		((magnetic)
		S	1	7.73	25.41	8.25	24.51	6.3	0.25	177.2
		M	8.5	7.63	25.14	8.19	24.64	6.4	0.23	152.5
		M	8.5	7.44	24.79	8.15	25.06	6.8	0.21	137.4
		В	16	6.78	24.00	8.09	29.16	2.2	0.58	122.4
		В	16	6.62	23.87	8.10	29.14	2.5	0.49	127.8
		S	1	7.38	24.92	8.29	24.86	3.5	0.22	196.8
		S	1	7.43	24.88	8.27	24.86	3.9	0.23	198.0
-		M	7	7.14	24.37	8.15	27.15	6.1	0.59	248.9
В	14	M	7	6.95	24.23	8.16	27.19	7.4	0.51	232.3
		В	13	6.61	23.76	8.09	29.07	4.1	0.82	259.7
		В	13	6.55	23.80	8.08	29.11	3.1	0.71	244.4
		S	1	7.33	25.05	8.15	24.59	2.9	0.17	139.8
		S	1	7.36	24.96	8.15	24.65	3.3	0.23	148.2
-		M	6	7.16	24.59	8.12	25.94	3.2	0.13	174.1
С	12	M	6	7.10	24.54	8.12	25.93	3.2	0.11	169.2
		В	11	6.98	24.39	8.10	26.28	3.7	0.10	244.8
		B	11	6.97	24.38	8.10	26.21	4.0	0.12	231.2
		S	1	7.17	24.84	8.16	25.32	4.4	0.65	143.5
		S	1	7.11	24.74	8.16	25.87	4.0	0.43	134.7
		M	6.5	6.89	24.40	8.11	26.24	3.6	0.38	173.2
D	13	M	6.5	6.87	24.39	8.12	26.21	3.5	0.45	164.9
		B	12	6.84	24.31	8.13	26.23	3.4	0.29	210.4
		B	12	6.86	24.30	8.13	26.29	3.3	0.34	194.7
		S	1	6.93	25.37	9.09	25.69	2.3	0.27	193.8
	16	S	1	7.03	25.14	8.84	25.78	2.3	0.12	187.4
		M	8	7.11	24.86	8.59	25.92	2.4	0.16	91.1
E		M	8	7.10	24.80	8.54	25.96	2.1	0.20	125.8
		B	15	7.03	24.54	8.39	26.48	3.3	0.20	138.6
		B	15	7.03	24.53	8.38	26.44	3.4	0.28	126.4
		S	1	7.20	24.96	8.32	25.82	2.1	0.74	124.0
		S	1	7.20	24.94	8.30	25.83	2.1	0.79	111.0
		M	11.5	7.07	24.66	8.22	26.28	2.3	0.42	142.1
F	23	M	11.5	7.00	24.60	8.22	26.44	2.3	0.49	118.1
		B	22	6.86	24.48	8.19	26.68	2.5	0.67	99.8
		B	22	6.82	24.44	8.19	26.72	2.5	0.58	100.5
		S	1	7.33	24.88	8.70	26.67	0.8	0.20	184.0
		S	1	7.41	24.91	8.60	26.42	1.0	0.15	166.2
		M	11	7.22	24.42	8.38	27.57	1.1	0.24	218.2
G	22	M	11	7.18	24.40	8.35	27.62	1.3	0.24	220.5
		B	21	6.98	24.24	8.29	27.91	2.9	0.20	209.6
		B	21	6.96	24.24	8.28	27.94	2.5	0.27	203.0
		S	1	7.37	24.85	8.50	27.10	1.2	0.57	173.0
		S	1	7.26	24.65	8.49	27.10	1.2	0.57	166.1
		M	9.5	7.20	24.49	8.40	27.58	1.4	0.54	128.4
Н	19	M	9.5	7.18	24.49	8.37	27.60	1.4	0.64	123.2
		B	18	6.98	24.34	8.30	27.00	2.5	0.67	123.2
		B	18	6.99	24.34	8.29	27.91	2.0	0.07	127.0
			10	0.33	27.21	0.23	21.01	2.0	0.70	123.2

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Report No.: 0041/17/ED/0442C

Monitoring Station	Water Depth	Sam Dep	pling th	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current speed	Current velocity
	(m)	(m)		(mg/L)	Čelsius)				(m/s)	(degree magnetic)
		S	1	6.78	23.86	7.94	24.33	5.4	0.11	249.3
		S	1	6.76	23.82	7.95	24.32	5.3	0.13	243.5
		М	7.5	6.53	23.72	7.96	26.32	4.2	0.13	193.2
A	15	M	7.5	6.55	23.75	7.94	26.51	4.3	0.15	189.7
		В	14	6.48	23.21	7.89	28.62	2.3	0.29	204.3
		B	14	6.46	23.22	7.90	28.66	2.3	0.21	217.3
		S	1	6.69	23.79	7.93	25.21	2.4	0.19	244.6
		S	1	6.72	23.82	7.94	25.23	2.4	0.16	249.7
_		M	7	6.54	23.54	7.95	26.67	2.4	0.24	254.3
В	14	M	7	6.54	23.56	7.95	26.60	2.5	0.29	268.3
		B	13	6.43	23.17	7.91	28.89	2.7	0.25	234.9
		B	13	6.45	23.18	7.92	28.92	2.6	0.23	237.1
		S	1	6.96	24.08	7.95	25.34	2.0	0.18	154.3
		S	1	6.95	24.10	7.96	25.37	2.0	0.15	158.2
		M	6	6.84	23.73	7.95	25.43	2.3	0.13	163.7
С	12	M	6	6.82	23.69	7.95	25.46	2.3	0.21	164.2
		B	11	6.66	23.52	7.95	25.97	2.8	0.20	204.3
		B	11	6.63	23.52	7.95	25.97	3.0	0.17	198.8
		S	1	6.92	23.74	7.96	25.98	1.9	0.15	173.2
		S	1	6.92	23.74	7.90	25.27	1.9	0.22	145.7
	14	M	7							
D			7	6.78	23.62	7.95	25.34	2.3	0.31	222.4
		M		6.79	23.67	7.94	25.38	2.3	0.35	197.3
		B	13	6.57	23.44	7.95	26.17	3.1	0.26	172.7
		B	13	6.59	23.45	7.94	26.13	3.2	0.13	186.4
		S	1	6.72	23.76	7.95	26.29	1.3	0.15	273.4
		S	1	6.70	23.73	7.96	26.31	1.2	0.23	267.5
Е	14	M	7	6.68	23.67	7.95	27.30	1.4	0.19	255.9
		M	7	6.71	23.65	7.94	27.34	1.4	0.20	256.0
		В	13	6.50	23.35	7.96	28.93	2.8	0.24	214.3
		В	13	6.46	23.31	7.94	28.92	2.8	0.34	218.5
		S	1	6.84	23.87	7.96	25.92	1.4	0.36	154.5
		S	1	6.81	23.86	7.90	25.91	1.4	0.17	153.7
F	18	М	9	6.69	23.61	7.96	27.33	1.3	0.16	109.3
-		M	9	6.71	23.58	7.94	27.30	1.3	0.14	108.4
		В	17	6.46	23.27	7.96	29.14	3.0	0.14	117.5
		В	17	6.41	23.25	7.94	29.10	3.0	0.15	119.3
		S	1	6.97	24.05	7.94	24.69	1.4	0.17	90.3
		S	1	6.97	24.07	7.93	24.67	1.4	0.15	107.3
G	13	М	6.5	6.72	23.72	7.94	26.12	1.5	0.17	249.2
-		M	6.5	6.74	23.73	7.95	26.23	1.5	0.13	281.6
		В	12	6.65	23.57	7.94	27.20	2.2	0.14	108.3
		В	12	6.65	23.57	7.95	27.20	2.2	0.18	104.8
		S	1	6.93	24.03	7.90	24.83	1.6	0.36	273.3
		S	1	6.90	24.06	7.88	24.79	1.5	0.38	288.2
н	19	М	9.5	6.80	25.70	7.93	25.70	1.8	0.42	190.8
	10	М	9.5	6.78	25.66	7.89	25.66	1.6	0.45	228.3
		В	18	6.60	26.88	7.94	26.88	1.9	0.34	138.9
		В	18	6.57	26.80	7.90	26.80	1.8	0.33	149.2

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 15

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix E**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)											
Monitoring	Water	Sam	npling	TSS	NH ₃	NO_2^{-1}	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		(U)	(mg/L)	(mg/L)	(mg/L)	× 0 /	· · · · · · · · · · · · · · · · · · ·		、 υ ,
		Ś	1	3.6	0.057	0.042	0.694	0.793	8	0.03	1.8
		S	1	3.6	0.054	0.041	0.772	0.868	13	0.04	3.3
•	47	М	8.5	3.9	0.066	0.042	0.741	0.849	ND	0.03	2.0
A	17	Μ	8.5	4.1	0.059	0.040	0.697	0.796	1	0.03	1.3
		В	16	4.4	0.044	0.040	0.742	0.826	14	0.04	3.3
		В	16	4.1	0.050	0.042	0.705	0.797	10	0.03	2.0
		S	1	6.0	0.071	0.040	0.691	0.801	9	0.03	2.0
		S	1	6.0	0.071	0.042	0.684	0.797	11	0.03	2.1
		М	7	6.5	0.066	0.039	0.696	0.800	49	0.03	2.0
В	14	М	7	6.7	0.071	0.04	0.64	0.751	62	0.03	1.4
	В	13	7.6	0.085	0.032	0.576	0.693	24	0.03	1.6	
		В	13	7.9	0.069	0.041	0.708	0.818	26	0.03	1.9
		S	1	3.3	0.071	0.040	0.687	0.798	6	0.03	2.4
		S	1	3.3	0.064	0.040	0.687	0.792	1	0.03	2.3
0	40	М	6	4.2	0.059	0.042	0.672	0.773	6	0.03	2.1
С	12	М	6	4.4	0.061	0.038	0.678	0.777	5	0.03	2.0
		В	11	4.8	0.069	0.039	0.617	0.726	24	0.02	1.7
		В	11	4.6	0.075	0.039	0.610	0.725	32	0.03	2.3
		S	1	3.1	0.075	0.045	0.716	0.836	ND	0.03	2.1
		S	1	3.4	0.069	0.043	0.723	0.834	ND	0.03	1.8
_	40	М	6.5	3.4	0.091	0.038	0.625	0.755	10	0.03	1.8
D	13	М	6.5	3.6	0.076	0.036	0.608	0.720	16	0.02	<1.0
		В	12	3.7	0.078	0.040	0.609	0.728	20	0.02	1.1
		В	12	3.9	0.073	0.038	0.608	0.720	23	0.02	1.1
		S	1	2.2	0.090	0.038	0.596	0.723	3	0.03	2.0
		S	1	2.3	0.080	0.036	0.598	0.713	3	0.03	1.9
	40	М	8	2.2	0.070	0.038	0.601	0.709	3	0.02	1.4
E	16	М	8	2.4	0.072	0.034	0.597	0.704	ND	0.03	1.7
		В	15	2.8	0.065	0.037	0.623	0.725	3	0.03	1.2
		В	15	3.0	0.065	0.038	0.627	0.730	1	0.03	1.4
		S	1	2.6	0.084	0.037	0.614	0.735	ND	0.03	1.8
		S	1	2.7	0.085	0.036	0.609	0.730	ND	0.03	1.7
-	00	М	11.5	2.9	0.090	0.037	0.602	0.729	1	0.02	1.5
F	23	М	11.5	2.7	0.081	0.034	0.611	0.726	3	0.03	1.6
		В	22	3.0	0.080	0.037	0.605	0.722	ND	0.03	1.5
		В	22	2.9	0.079	0.039	0.610	0.728	2	0.02	1.7
		S	1	1.7	0.070	0.034	0.578	0.682	ND	0.02	2.0
		S	1	1.9	0.073	0.038	0.569	0.680	ND	0.03	1.9
		М	11	3.1	0.066	0.032	0.579	0.678	1	0.02	1.6
G	22	М	11	2.7	0.067	0.038	0.566	0.671	1	0.02	1.9
		В	21	4.4	0.077	0.038	0.571	0.686	ND	0.03	2.4
		В	21	4.1	0.070	0.029	0.583	0.682	ND	0.03	1.7
		S	1	2.9	0.064	0.039	0.566	0.669	ND	0.03	3.4
н	19	S	1	3.1	0.070	0.033	0.571	0.674	ND	0.04	2.9
-	-	M	9.5	3.8	0.062	0.038	0.568	0.668	ND	0.03	2.2
J	1										

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0442C

Monitoring Station	Water Depth (m)	Sampling Depth (m)		TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ ⁻ as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
		М	9.5	3.9	0.061	0.031	0.578	0.669	1	0.03	2.4
		В	18	4.6	0.072	0.036	0.533	0.641	ND	0.03	1.5
		В	18	4.9	0.070	0.037	0.538	0.646	ND	0.03	1.8

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

	Water	Com		Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)											
Ctation		Sampling		TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅				
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)				
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)								
		S	1	2.8	0.113	0.038	0.592	0.744	ND	0.02	1.8				
		S	1	2.6	0.111	0.036	0.602	0.749	ND	0.03	1.8				
^	15	Μ	7.5	4.3	0.096	0.032	0.580	0.708	ND	0.03	1.2				
A	15	Μ	7.5	4.2	0.098	0.036	0.552	0.686	ND	0.04	1.3				
		В	14	5.3	0.100	0.040	0.587	0.727	ND	0.03	1.2				
		В	14	5.0	0.100	0.034	0.600	0.734	ND	0.03	1.3				
		S	1	2.8	0.087	0.034	0.560	0.681	ND	0.03	1.5				
		S	1	3.1	0.100	0.040	0.572	0.713	ND	0.02	1.3				
Р	1.1	Μ	7	3.1	0.076	0.029	0.570	0.675	ND	0.02	1.4				
В	14	Μ	7	2.9	0.09	0.04	0.594	0.725	ND	0.03	1.3				
		В	13	4.0	0.080	0.030	0.567	0.677	ND	0.03	1.1				
		В	13	3.8	0.094	0.038	0.600	0.733	ND	0.03	1.3				
		S	1	2.6	0.104	0.037	0.592	0.733	1	0.03	1.3				
		S	1	2.6	0.099	0.032	0.612	0.743	ND	0.03	1.2				
С	10	Μ	6	2.7	0.103	0.034	0.604	0.742	1	0.03	1.2				
C	12	Μ	6	2.8	0.112	0.039	0.547	0.698	3	0.03	1.2				
		В	11	3.1	0.104	0.042	0.592	0.738	2	0.03	1.3				
		В	11	2.9	0.102	0.032	0.608	0.741	ND	0.03	1.3				
		S	1	3.0	0.100	0.041	0.587	0.728	ND	0.03	1.1				
		S	1	2.6	0.106	0.035	0.572	0.713	ND	0.03	1.8				
	14	Μ	7	3.3	0.105	0.036	0.597	0.739	ND	0.03	1.2				
D		Μ	7	2.8	0.108	0.034	0.617	0.759	ND	0.03	1.8				
		В	13	3.2	0.107	0.036	0.610	0.752	ND	0.03	1.1				
		В	13	3.4	0.110	0.039	0.606	0.754	ND	0.03	1.4				
		S	1	2.2	0.112	0.036	0.568	0.716	4	0.03	1.3				
		S	1	2.3	0.119	0.046	0.579	0.745	7	0.03	2.1				
E	14	Μ	7	2.9	0.101	0.042	0.560	0.703	4	0.03	1.4				
	14	Μ	7	2.7	0.109	0.036	0.620	0.766	8	0.03	2.0				
		В	13	4.0	0.128	0.041	0.618	0.787	ND	0.03	2.6				
		В	13	3.7	0.108	0.048	0.593	0.749	ND	0.03	1.5				
		S	1	3.1	0.116	0.046	0.642	0.804	16	0.03	1.7				
		S	1	2.9	0.117	0.037	0.659	0.813	17	0.04	1.5				
F	10	Μ	9	3.1	0.116	0.041	0.654	0.811	6	0.03	1.6				
Г	18	Μ	9	3.3	0.119	0.040	0.642	0.802	2	0.03	1.7				
		В	17	3.4	0.114	0.046	0.643	0.802	ND	0.03	2.0				
		В	17	3.3	0.095	0.038	0.658	0.791	2	0.03	1.3				
		S	1	3.7	0.235	0.042	0.664	0.941	3	0.04	4.4				
		S	1	3.5	0.214	0.045	0.660	0.919	1	0.04	4.3				
6	13	М	6.5	3.6	0.103	0.041	0.662	0.806	3	0.04	3.6				
G	13	М	6.5	3.8	0.102	0.037	0.666	0.804	6	0.04	2.9				
		В	12	3.9	0.104	0.035	0.660	0.799	3	0.03	2.0				
		В	12	4.1	0.105	0.039	0.650	0.794	1	0.04	2.5				

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 1	7
--------	---

Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Depth		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	2.8	0.151	0.042	0.661	0.854	1	0.03	3.5
		S	1	3.1	0.147	0.046	0.658	0.851	4	0.04	3.4
н	19	М	9.5	3.4	0.132	0.044	0.667	0.843	11	0.04	3.4
	19	М	9.5	3.3	0.140	0.039	0.697	0.876	24	0.04	4.1
		В	18	3.9	0.156	0.047	0.703	0.906	4	0.04	4.0
		В	18	4.3	0.165	0.045	0.661	0.870	ND	0.04	3.6

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. The predicted tidal data is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10	Weather condition	of water of	quality	[,] monitoring

Date	Ai	r Temperat	ure	Mean	Total
	Maximum	Maximum Mean M		Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
9 April 2019	28.9	26.6	25.5	81	0.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 18

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Su
--

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2	Parameters for Sediment Quality Monitoring and Benthic Survey
	r aramotoro ror obamione quanty morneornig and Bonemo barroy

Monitoring Par	ameters
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)
Distribution) (%)	
Total organic carbon* (%)	Chromium (µg/L)
pH value	Copper (µg/L)
Ammonia as N (mg-N/kg)	Lead (µg/L)
Total nitrogen (mg-N/kg)	Mercury ((µg/L)
Total phosphorus (mg-N/kg)	Nickel (µg/L)
Cadmium (mg/kg)	Zinc (µg/L)
Chromium (mg/kg)	Arsenic (µg/L)
Copper (mg/kg)	Silver (µg/L)
Lead (mg/kg)	
Mercury (mg/kg)	
Nickel (mg/kg)	
Zinc (mg/kg)	
Arsenic (mg/kg)]
Silver (mg/kg)	

Page 19

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 20

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 21

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 9 April 2019. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 22

Report No.: 0041/17/ED/0442C

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

				,		1		1			_		
Monitoring	g pH	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	N	Р	(mg/k	(mg	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)									
A	6.9	4.5	950	476	0.11	34.0	25.5	44.2	0.13	19.8	87.8	14.8	0.23
В	7.6	9.9	1220	513	<0.10	36.1	32.4	43.4	0.25	22.0	106	11.3	0.33
С	7.7	11.9	1290	595	0.10	39.0	32.8	47.3	0.12	23.8	112	11.2	0.31
D	7.7	4.4	480	259	<0.10	19.2	15.1	25.0	0.06	11.8	53.3	6.0	0.14
E	7.9	8.5	1450	594	<0.10	40.5	36.7	47.7	0.12	24.9	117	10.2	0.36
F	7.8	10.6	1490	594	<0.10	43.1	38.8	48.6	0.13	26.6	121	11.6	0.36
G	7.9	5.8	1080	522	0.12	39.7	60.6	45.1	0.19	23.8	109	11.0	0.34
Н	7.7	6.2	970	478	0.11	40.0	52.1	48.9	0.17	23.8	153	12.3	0.46

Table 4.5Summary of laboratory analysis results for benthic survey

Monitoring Station	Total organic	inic Grain size profile (%)				Description
Station	carbon (%)	Gravel	Sand	Sand Silt Clay		
А	0.58	15	39	28	18	Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments
В	1.00	1	16	54	29	Dark grey, slight gravelly, slightly sandy SILT/CLAY with shell fragments
С	0.93	0	3	68	29	Dark grey, slightly sandy SILT/CLAY with shell fragments
D	0.79	0	17	53	30	Dark grey, slightly sandy SILT/CLAY with shell fragments
E	0.99	0	6	61	33	Dark grey, slightly sandy SILT/CLAY with shell fragments
F	1.04	0	3	61	36	Dark grey, slightly sandy SILT/CLAY
G	0.92	1	12	55	32	Dark grey, slight gravelly, slightly sandy SILT/CLAY with shell fragments
Н	0.90	6	18	47	29	Dark grey, slight gravelly, slightly sandy SILT/CLAY with shell fragments

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

 Table 4.6
 Weather condition of water quality monitoring

	lioning				
Date	Ai	r Temperat	Mean	Total	
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
1				(%)	
9 April 2019	28.9	26.6	25.5	81	0.0

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 23

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	85	12.35	33	2.92	0.83
В	38	14.19	19	2.74	0.93
С	24	0.15	11	2.20	0.92
D	31	16.86	17	2.65	0.93
E	40	38.39	20	2.66	0.89
F	30	19.37	15	2.56	0.95
G	47	6.77	18	2.52	0.87
Н	65	11.16	25	3.00	0.93
TOTAL	360	119.27			

Table 4.7Summary of benthic survey data on 9 April 2019

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 360 macrobenthic organisms were recorded from the eight monitoring stations during the April 2019 monitoring period. Results of the present monitoring period remained to be lower compared to the baseline data [March 2004 (dry season) and August 2004 (wet season)]. Increasing abundance, however, was observed since December 2018, which can be attributed to calmer weather conditions during these monitoring periods. Previous results also showed that decreasing trend in the abundance was observed during wet season monitoring periods. However, this observed seasonal difference is not statistically significant (F = 1.26, F crit = 2.09, p-value = 0.28, $\alpha = 0.05$).

Similar to the previous monitoring periods, however, a more apparent variation (F = 2.84, F crit = 2.16, p-value = 0.01, α = 0.05 across monitoring stations was observed. The lowest abundance with 24 individuals (ind.) was recorded in the impact Station C and the highest (85 ind.) in the reference Station A. As previously reported, macrobenthic abundance showed correlation with particle size distribution. Relatively higher abundances were recorded in stations with moderately sorted sediments such as Stations A (85 ind.) and H (65 ind.) while lower abundances in stations with well-sorted sediments Stations C (24 ind.) and F (30 ind.). Well-sorted sediments can only provide a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at stations with relatively homogenous grain size distribution.

ii) Biomass

The total wet biomass from eight monitoring stations during the present monitoring period is 119.27g, which is lower compared to the biomass recorded during the previous monitoring period (227.02g). The decrease in total wet biomass might be attributed to the decrease in the number of larger bivalves and increase in the number of smaller annelids. The highest total biomass observed in Station E (38.39g) and the lowest biomass in Station C (0.15g). The relatively higher biomass observed in Station E is contributed by the higher biomass of the bivalve species (*Paphia undulata*). The average biomass (8.51g) of the impact Stations (C and D) was lower compared to the average biomass (17.04g) of the reference stations.

Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0442C

Hong Kong.

iii) Taxonomic Composition

A total of six phyla comprised of 42 families and 58 taxa was identified during the April 2019 monitoring period. With the continuous increase in the number of annelid species and abundance, annelids remained to dominate benthic assemblages comprising 70.28% of the identified population. The current benthic assemblage is observed to be similar with the baseline population, which was dominated by polychaetes, particularly of the capitellids. Capitellids are typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

The most dominant species (abundance >10) was the Polychaeta, *Paraprionospio sp.*, with the abundance of 20 ind. and *Capitella capitata* with the abundance of 11 ind. in Station A. In addition, *C. capitata*, with the abundance of 13 ind. was recorded Station G.

Highest number of genera was recorded in Station A (33) and the lowest in Station C (11). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

iv) Diversity

Benthic diversity index (H') and eveness index (J) ranged from 2.20-2.65 and 0.92 – 0.93 in impact Stations, and 2.52-3.00 and 0.83-0.95 among the reference stations as shown in Appendix A, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Apparent increase in diversity and evenness indices was observed compared with the baseline data.

The detailed benthic survey results are provided in **Appendix H**.

 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 25

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 10 July 2018, "*Monitoring of Marine Mammals in Hong Kong Waters (2017-18)*", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD's webpage.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 26

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 27

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix J.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0442C

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 28

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 9 April 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Page 29

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 30

Report No.: 0041/17/ED/0442C

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H₂S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H₂S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

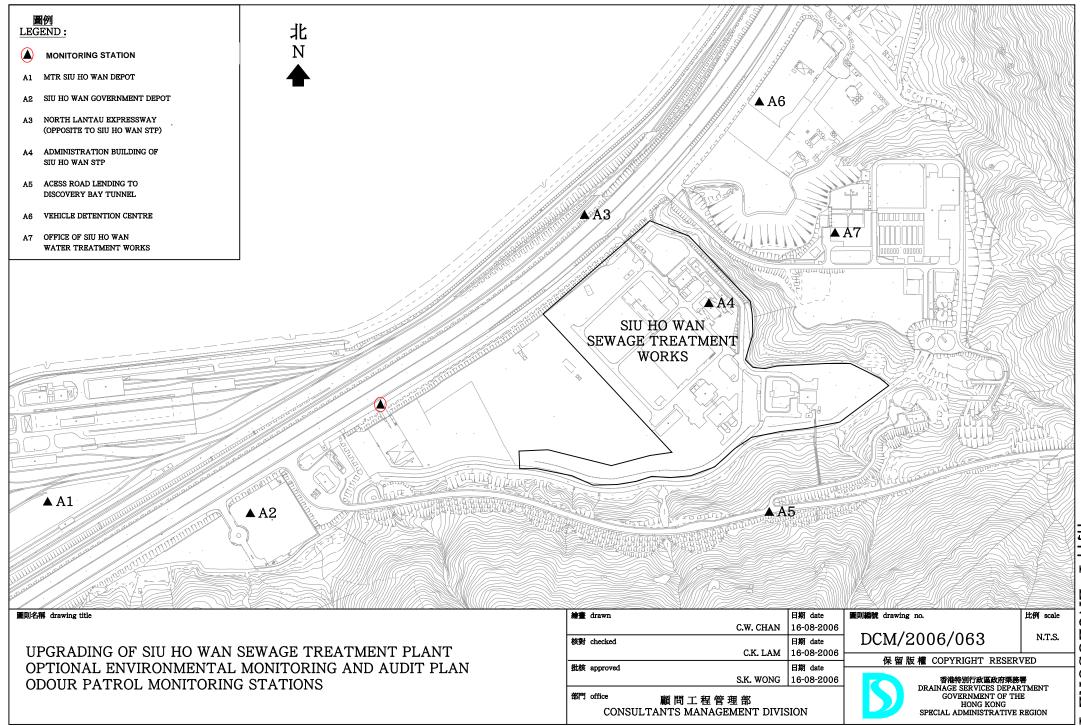
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 31

Report No.: 0041/17/ED/0442C

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H2S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 9 April 2019 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 10 July 2018, "*Monitoring of Marine Mammals in Hong Kong Waters (2017-18)*" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in July 2018. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2018-19) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

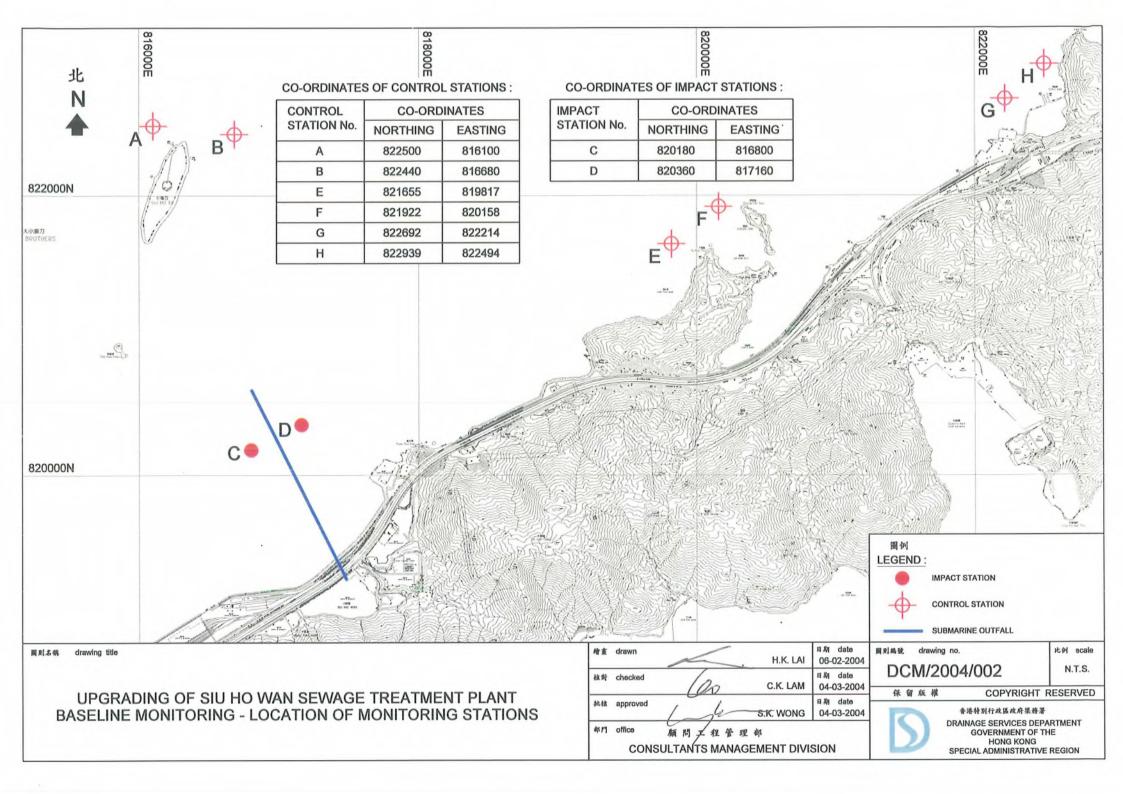
Report No.: 0041/17/ED/0442C

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Figure 4

Location of Survey Areas of Chinese White Dolphins

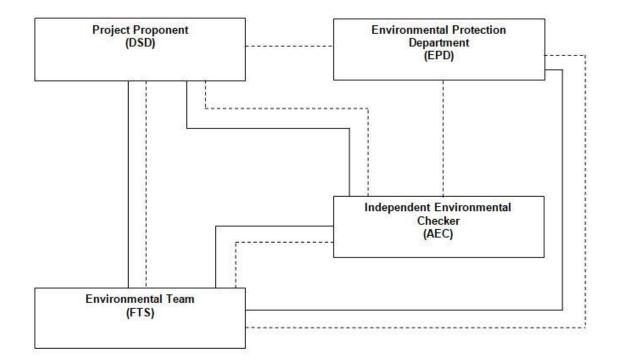
Ninepins Sai Kung Po Toi Lamma Northeast Lantau Southeast Lantau B TMCLKL IKLR03 NCLKI **3RS** <u>z</u> <u>Ej</u> work zon Southwest Lantau Deep Bay Northwest Lantau HKLR09 West Lantau

Figure 4. Ten Line-Transect Survey Areas within the Study Area for the 2017-18 Monitoring Study

Source: Monitoring of Marine Mammals in Hong Kong Waters (2017-18), AFCD

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,			
5 Lok Yi Street, Tai Lam,			
Tuen Mun, N.T.,			
Hong Kong.			

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 April	2	3	4	5	6
7	8	9 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (08:25) Mid-Ebb (14:58)	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,			
5 Lok Yi Street, Tai Lam,			
Tuen Mun, N.T.,			
Hong Kong.			

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
			1 May	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30	31		

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

	ACTION				
EVENT	ET	IEC	*Operator		
Action Level					
One complaint received for specific odour event	 Check Operator's working methods; Discuss with Operator on required remedial actions 	 Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; Amend operation methods if appropriate 		
Limit Level					
More than	1. Investigated the causes of	1. Discuss amongst ET	1. Indentify/ confirm		
one complaint	complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control	and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures	source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals		

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA190690

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	•	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 525120
Test required		Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA190690/1
Date of calibration		29/03/2019
Next calibration date	:	28/06/2019
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No. : 142626WA190690

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)					
Theoretical	Theoretical Measured Deviation				
9.18	9.17	-0.01			
6.86	6.85	-0.01			

B. Salinity calibration

Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.04	+0.04	± 0.5		
20	20.09	+0.09	± 1.0		
30	29.86	-0.14	± 1.5		
40	39.73	-0.27	± 2.0		

C. Dissolved Oxygen calibration

Trial Na	Dissolved oxygen	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.33	7.32		
2	7.32	7.31		
3	7.33	7.33		
Average	7.33	7.32		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

Date

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

DI

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA190690

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C	
25.09	25.13	

E. Turbidity calibration

Turbidity, N.T.U.					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.07	+0.07	± 0.4		
8	8.09	+0.09	± 0.6		
40	39.76	-0.24	± 3.0		
80	79.54	-0.46	± 4.0		

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

3 0, Date

** End of Report **

Note : This report refers only to the sample(s) tested.

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA190690(1)

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 584601
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA190690/2
Date of calibration	•	29/03/2019
Next calibration date	·	28/06/2019
Test method used	•	In-house comparison method

Note : This report refers only to the sample(s) tested.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA190690(1)

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)										
Theoretical	Theoretical Measured									
9.18	9.18	± 0.00								
6.86	6.86	± 0.00								

B. Salinity calibration

	Salinity, ppt										
Theoretical	Measured	Deviation	Maximum acceptable Deviation								
10	10.04	+0.04	± 0.5								
20	20.07	+0.07	± 1.0								
30	29.88	-0.12	± 1.5								
40	39.72	-0.28	± 2.0								

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen content, mg/L								
Trial No.	By calibrated D.O. meter	By D.O. meter							
1	7.34	7.33							
2	7.33	7.31							
3	7.35	7.34							
Average	7.34	7.33							

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

Date

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA190690(1)

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.10	25.15

E. Turbidity calibration

Turbidity, N.T.U.										
Theoretical	Measured	Deviation	Maximum acceptable Deviation							
4	4.07	+0.07	± 0.4							
8	8.08	+0.08	± 0.6							
40	39.79	-0.21	± 3.0							
80	79.54	-0.46	± 4.0							

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

Date ** End of Report **

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

PASS
PASS
DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

									In-situ Measurement Laboratory Analysis																
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	$ BOD_5 (mq/l)$
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	S	1	1	8.29	24.40	25.56	110.9	7.65	6.4	0.26	181.4	3.6	0.057	0.042	0.694	0.793	8	0.03	1.8
A	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	S	1	2	8.25	24.51	25.41	111.8	7.73	6.3	0.25	177.2	3.6	0.054	0.041	0.772	0.868	13	0.04	3.3
	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	М	8.5	1	8.19	24.64	25.14	110.1	7.63	6.4	0.23	152.5	3.9	0.066	0.042	0.741	0.849	ND	0.03	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	М	8.5	4	8.15	25.06	24.79	106.7	7.44	6.8	0.21	137.4	4.1	0.059	0.040	0.697	0.796	1	0.03	1.3
	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	В	16		8.09	29.16	24.00	95.8	6.78	2.2	0.58	122.4	4.4	0.044	0.040	0.742	0.826	14	0.04	3.3
	9/4/2019	Mid-Ebb	Fine	Moderate	16:25	17	B	16		8.10	29.14	23.87	93.4	6.62	2.5	0.49	127.8	4.1	0.050	0.042	0.705	0.797	10	0.03	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate		14	S	1	1	8.29	24.86	24.92	106.0	7.38	3.5	0.22	196.8	6.0	0.071	0.040	0.691	0.801	9	0.03	2.0
	9/4/2019 9/4/2019	Mid-Ebb Mid-Ebb	Fine	Moderate Moderate	16:10 16:10	14 14	S M	1	2	8.27 8.15	24.86 27.15	24.88 24.37	106.7	7.43	3.9 6.1	0.23	198.0 248.9	6.0 6.5	0.071	0.042 0.039	0.684	0.797	11 49	0.03	2.1
	9/4/2019	Mid-Ebb	Fine Fine	Moderate	16:10	14	M	7	2	8.15	27.15	24.37	101.6 98.7	6.95	6.1 7.4	0.59	248.9	6.5 6.7	0.066	0.039	0.696	0.800	<u>49</u> 62	0.03	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate	16:10	14	B	13	2	8.16	29.07	24.23	98.7 93.3	6.61	4.1	0.51	232.3	6.7 7.6	0.071	0.04	0.64	0.693	24	0.03	1.4
	9/4/2019	Mid-Ebb	Fine	Moderate		14	B	13	2	8.09	29.07	23.80	92.3	6.55	31	0.82	244.4	7.0	0.069	0.032	0.578	0.818	24	0.03	1.0
	9/4/2019	Mid-Ebb	Fine	Moderate		12	S	1	1	8 15	24.59	25.05	105.6	7.33	2.9	0.17	139.8	3.3	0.071	0.040	0.687	0.798	6	0.03	2.4
	9/4/2019	Mid-Ebb	Fine			12	Š	1	2	8 15	24.65	24.96	105.9	7.36	3.3	0.23	148.2	3.3	0.064	0.040	0.687	0.792	1	0.03	2.3
	9/4/2019	Mid-Ebb	Fine	Moderate	15:52	12	M	6	1	8 1 2	25.94	24.59	102.3	7.16	32	0.13	174.1	4.2	0.059	0.042	0.672	0.773	6	0.03	21
	9/4/2019	Mid-Ebb	Fine	Moderate	15:52	12	M	6	2	8.12	25.93	24.54	101.4	7.10	3.2	0.11	169.2	4.4	0.061	0.038	0.678	0.777	5	0.03	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate	15:52	12	B	11	1	8.10	26.28	24.39	99.4	6.98	3.7	0.10	244.8	4.8	0.069	0.039	0.617	0.726	24	0.02	1.7
С	9/4/2019	Mid-Ebb	Fine	Moderate	15:52	12	В	11	2	8.10	26.21	24.38	99.3	6.97	4.0	0.12	231.2	4.6	0.075	0.039	0.610	0.725	32	0.03	2.3
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	S	1	1	8.16	25.32	24.84	103.0	7.17	4.4	0.65	143.5	3.1	0.075	0.045	0.716	0.836	ND	0.03	2.1
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	S	1	2	8.16	25.87	24.74	101.8	7.11	4.0	0.43	134.7	3.4	0.069	0.043	0.723	0.834	ND	0.03	1.8
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	M	6.5	1	8.11	26.24	24.40	98.9	6.89	3.6	0.38	173.2	3.4	0.091	0.038	0.625	0.755	10	0.03	1.8
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	M	6.5	-	8.12	26.21	24.39	98.2	6.87	3.5	0.45	164.9	3.6	0.076	0.036	0.608	0.720	16	0.02	<1.0
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	В	12	1	8.13	26.23	24.31	97.2	6.84	3.4	0.29	210.4	3.7	0.078	0.040	0.609	0.728	20	0.02	1.1
	9/4/2019	Mid-Ebb	Fine	Moderate	15:39	13	В	12		8.13	26.29	24.30	97.6	6.86	3.3	0.34	194.7	3.9	0.073	0.038	0.608	0.720	23	0.02	1.1
	9/4/2019	Mid-Ebb	Fine			16	S	1		9.09	25.69	25.37	100.3	6.93	2.3	0.27	193.8	2.2	0.090	0.038	0.596	0.723	3	0.03	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate	15:10	16	M	1 8	2	8.84	25.78	25.14	101.4	7.03	2.3	0.12	187.4	2.3	0.080	0.036	0.598	0.713	3	0.03	1.9
	9/4/2019 9/4/2019	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	15:10	16 16	M	8	1	8.59	25.92 25.96	24.86 24.80	102.0 101.8	7.11	2.4	0.16	91.1 125.8	2.2	0.070	0.038	0.601	0.709	ND 3	0.02	1.4
	9/4/2019	Mid-Ebb	Fine	Moderate		16	B	8 15	1	8.39	25.96	24.80	101.8	7.03	3.3	0.20	125.8	2.4	0.072	0.034	0.623	0.704		0.03	1.7
	9/4/2019	Mid-Ebb	Fine	Moderate		16	B	15	2	838	26.40	24.54	100.3	7.03	3.3	0.21	126.4	3.0	0.065	0.037	0.623	0.725	1	0.03	1.4
	9/4/2019	Mid-Ebb	Fine	Moderate		23	S	1	-	8.32	25.82	24.96	100.4	7.20	2.1	0.74	124.0	2.6	0.084	0.037	0.614	0.735	ND	0.03	1.4
	9/4/2019	Mid-Ebb	Fine			23	S	1	2	8.30	25.83	24.94	103.4	7.20	2.1	0.79	111.0	2.7	0.085	0.036	0.609	0.730	ND	0.03	1.7
	9/4/2019	Mid-Ebb	Fine	Moderate	14:59	23	M	11.5	1	8.22	26.28	24.66	101.2	7.07	2.3	0.42	142.1	2.9	0.090	0.037	0.602	0.729	1	0.02	1.5
	9/4/2019	Mid-Ebb	Fine	Moderate		23	М	11.5	2	8.22	26.44	24.60	100.1	7.00	2.3	0.49	118.1	2.7	0.081	0.034	0.611	0.726	3	0.03	1.6
	9/4/2019	Mid-Ebb	Fine	Moderate		23	В	22		8.19	26.68	24.48	97.9	6.86	2.5	0.67	99.8	3.0	0.080	0.037	0.605	0.722	ND	0.03	1.5
	9/4/2019	Mid-Ebb	Fine		14:59	23	В	22	-	8.19	26.72	24.44	97.2	6.82	2.5	0.58	100.5	2.9	0.079	0.039	0.610	0.728	2	0.02	1.7
	9/4/2019	Mid-Ebb	Fine	Moderate	14:32	22	S	1	1	8.70	26.67	24.88	105.2	7.33	0.8	0.20	184.0	1.7	0.070	0.034	0.578	0.682	ND	0.02	2.0
	9/4/2019	Mid-Ebb	Fine	Moderate	14:32		S	1	2	8.60	26.42	24.91	106.5	7.41	1.0	0.15	166.2	1.9	0.073	0.038	0.569	0.680	ND	0.03	1.9
	9/4/2019	Mid-Ebb	Fine	Moderate	14:32	22	M	11	1	8.38	27.57	24.42	102.9	7.22	1.1	0.24	218.2	3.1	0.066	0.032	0.579	0.678	1	0.02	1.6
	9/4/2019	Mid-Ebb	Fine	Moderate	14:32	22	M	11	2	8.35	27.62	24.40	102.3	7.18	1.3	0.28	220.5	2.7	0.067	0.038	0.566	0.671	1	0.02	1.9
	9/4/2019	Mid-Ebb	Fine	Moderate	14:32	22 22	B	21 21	2	8.29	27.91	24.24	99.2	6.98	2.9 2.5	0.27	209.6	4.4	0.077	0.038	0.571	0.686	ND	0.03	2.4
	9/4/2019 9/4/2019	Mid-Ebb Mid-Ebb	Fine Fine			19	B S	21		8.28	27.94	24.21 24.85	98.8 105.8	6.96 7.37	2.5	0.33	211.5 173.0	4.1	0.070	0.029	0.583	0.682	ND ND	0.03	1./
	9/4/2019	Mid-Ebb	Fine			19	S	1		8.50	27.10	24.85	105.8	7.37	1.2	0.57	173.0	2.9	0.064	0.039	0.566	0.669	ND ND	0.03	2.9
	9/4/2019 9/4/2019	Mid-Ebb	Fine			19	M	9.5	~	8.49	27.58	24.65	103.9	7.26	1.3	0.55	166.1	3.1	0.070	0.033	0.568	0.674	ND ND	0.04	2.9
	9/4/2019	Mid-Ebb	Fine	Moderate	14:23	19	M	9.5	2	8 37	27.60	24.49	102.9	7.18	1.4	0.64	120.4	3.9	0.062	0.030	0.568	0.669	1	0.03	2.4
	9/4/2019	Mid-Ebb	Fine	Moderate	14.23	19	B	9.5 18	1	8.30	27.00	24.47	99.4	6.98	2.5	0.67	123.2	4.6	0.072	0.036	0.533	0.641	ND	0.03	1.5
	9/4/2019	Mid-Ebb	Fine	Moderate	14.23	19	B	18	2	8 29	27.87	24.34	99.4	6.99	2.0	0.76	129.2	4.0	0.072	0.037	0.538	0.646	ND	0.03	1.5

Note: 1. ND: Not Detected

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	9/4/2019	Mid-Flood	Fine	Moderate	7:22	15	S	1	1	7.94	24.33	23.86	98.3	6.78	5.4	0.11	249.3	2.8	0.113	0.038	0.592	0.744	ND	0.02	1.8
A	9/4/2019	Mid-Flood	Fine	Moderate	7:22	15	S	1	2	7.95	24.32	23.82	97.7	6.76	5.3	0.13	243.5	2.6	0.111	0.036	0.602	0.749	ND	0.03	1.8
A	9/4/2019	Mid-Flood	Fine	Moderate	7:22	15	М	7.5	1	7.96	26.32	23.72	94.2	6.53	4.2	0.13	193.2	4.3	0.096	0.032	0.580	0.708	ND	0.03	1.2
A	9/4/2019	Mid-Flood	Fine			15	M	7.5	2	7.94	26.51	23.75	93.9	6.55	4.3	0.15	189.7	4.2	0.098	0.036	0.552	0.686	ND	0.04	1.3
A	9/4/2019	Mid-Flood	Fine	Moderate	7:22	15	В	14	1	7.89	28.62	23.21	91.6	6.48	2.3	0.29	204.3	5.3	0.100	0.040	0.587	0.727	ND	0.03	1.2
A	9/4/2019	Mid-Flood	Fine	Moderate	7:22	15	B	14	2	7.90	28.66	23.22	91.2	6.46	2.3	0.21	217.3	5.0	0.100	0.034	0.600	0.734	ND	0.03	1.3
В	9/4/2019	Mid-Flood	Fine	Moderate	7:38	14	S	1		7.93	25.21	23.79	96.1	6.69	2.4	0.19	244.6	2.8	0.087	0.034	0.560	0.681	ND	0.03	1.5
B	9/4/2019 9/4/2019	Mid-Flood Mid-Flood	Fine	Moderate Moderate	7:38 7:38	14 14	S M	1	2	7.94	25.23	23.82 23.54	96.5 93.1	6.72 6.54	2.4 2.4	0.16	249.7	3.1 3.1	0.100	0.040	0.572	0.713	ND ND	0.02	1.3 1.4
B	9/4/2019	Mid-Flood	Fine Fine	Moderate	7:38	14	M	7	2	7.95	26.67 26.60	23.54	93.1 92.8	6.54 6.54	2.4	0.24	254.3 268.3	2.9	0.076	0.029	0.570	0.675	ND ND	0.02	1.4
B	9/4/2019	Mid-Flood	Fine	Moderate	7:38	14	B	13	1	7.95	28.89	23.30	92.8	6.43	2.7	0.25	234.9	4.0	0.080	0.04	0.567	0.677	ND	0.03	1.1
B	9/4/2019	Mid-Flood	Fine	Moderate		14	B	13	2	7.92	28.92	23.17	90.8	6.45	2.6	0.23	237.1	3.8	0.080	0.038	0.600	0.733	ND	0.03	1.3
Ċ	9/4/2019	Mid-Flood	Fine	Moderate		12	Š	1	1	7.95	25.34	24.08	100.3	6.96	2.1	0.18	154.3	2.6	0.104	0.037	0.592	0.733	1	0.03	1.3
Č	9/4/2019	Mid-Flood	Fine			12	Š	1	2	7.96	25.37	24.10	100.0	6.95	2.0	0.15	158.2	2.6	0.099	0.032	0.612	0.743	ND	0.03	1.2
C	9/4/2019	Mid-Flood	Fine	Moderate		12	М	6	1	7.95	25.43	23.73	97.7	6.84	2.3	0.21	163.7	2.7	0.103	0.034	0.604	0.742	1	0.03	1.2
C	9/4/2019	Mid-Flood	Fine	Moderate	7:55	12	M	6	2	7.95	25.46	23.69	97.4	6.82	2.3	0.26	164.2	2.8	0.112	0.039	0.547	0.698	3	0.03	1.2
С	9/4/2019	Mid-Flood	Fine	Moderate	7:55	12	В	11	1	7.95	25.97	23.52	94.8	6.66	2.8	0.17	204.3	3.1	0.104	0.042	0.592	0.738	2	0.03	1.3
С	9/4/2019	Mid-Flood	Fine	Moderate	7:55	12	В	11	2	7.96	25.98	23.52	94.4	6.63	3.0	0.15	198.8	2.9	0.102	0.032	0.608	0.741	ND	0.03	1.3
D	9/4/2019	Mid-Flood	Fine	Moderate	8:03	14	S	1	1	7.96	25.27	23.74	99.4	6.92	1.9	0.22	173.2	3.0	0.100	0.041	0.587	0.728	ND	0.03	1.1
D	9/4/2019	Mid-Flood	Fine	Moderate	8:03	14	S	1	2	7.95	25.24	23.74	99.2	6.93	1.9	0.28	145.7	2.6	0.106	0.035	0.572	0.713	ND	0.03	1.8
D	9/4/2019	Mid-Flood	Fine	Moderate	8:03	14	M	7	1	7.95	25.34	23.62	97.3	6.78	2.3	0.31	222.4	3.3	0.105	0.036	0.597	0.739	ND	0.03	1.2
D	9/4/2019	Mid-Flood	Fine	Moderate	8:03	14	M	(2	7.94	25.38	23.67	97.1	6.79	2.3	0.35	197.3	2.8	0.108	0.034	0.617	0.759	ND	0.03	1.8
D	<u>9/4/2019</u> 9/4/2019	Mid-Flood	Fine	Moderate	8:03 8:03	14 14	B	13 13	1	7.95	26.17 26.13	23.44 23.45	93.4 93.7	6.57 6.59	3.1 3.2	0.26	172.7	3.2 3.4	0.107	0.036	0.610	0.752	ND ND	0.03	1.1
	9/4/2019	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate		14	B S	13	1	7.94	26.13	23.45	93.7	6.72	<u> </u>	0.13	186.4 273.4	2.2	0.110	0.039	0.606	0.754	4 ND	0.03	1.4
	9/4/2019	Mid-Flood	Fine	Moderate	8.19	14	3 9	1		7.95	26.29	23.78	97.3	6.70	1.3	0.15	267.5	2.2	0.112	0.036	0.566	0.745	4	0.03	2.1
	9/4/2019	Mid-Flood	Fine	Moderate	8:19	14	M	7	1	7.90	27.30	23.67	95.8	6.68	1.4	0.19	255.9	2.9	0.101	0.040	0.560	0.745	4	0.03	1.4
F	9/4/2019	Mid-Flood	Fine	Moderate	8.19	14	M	7	2	7.95	27.34	23.65	96.2	6.71	1.4	0.20	256.0	2.7	0.109	0.042	0.620	0.766	8	0.03	2.0
F	9/4/2019	Mid-Flood	Fine	Moderate		14	B	13	1	7.96	28.93	23.35	92.8	6.50	2.8	0.24	214.3	4.0	0.128	0.041	0.618	0.787	ND	0.03	2.6
Ē	9/4/2019	Mid-Flood	Fine			14	B	13	2	7.94	28.92	23.31	92.2	6.46	2.8	0.34	218.5	3.7	0.108	0.048	0.593	0.749	ND	0.03	1.5
F	9/4/2019	Mid-Flood	Fine	Moderate		18	S	1	_	7.96	25.92	23.87	98.3	6.84	1.4	0.36	154.5	3.1	0.116	0.046	0.642	0.804	16	0.03	1.7
F	9/4/2019	Mid-Flood	Fine	Moderate		18	S	1	2	7.90	25.91	23.86	97.8	6.81	1.4	0.17	153.7	2.9	0.117	0.037	0.659	0.813	17	0.04	1.5
F	9/4/2019	Mid-Flood	Fine	Moderate	8:31	18	M	9	1	7.96	27.33	23.61	95.8	6.69	1.3	0.16	109.3	3.1	0.116	0.041	0.654	0.811	6	0.03	1.6
F F	9/4/2019	Mid-Flood	Fine	Moderate	8:31	18	M	9	2	7.94	27.30	23.58	95.9	6.71	1.3	0.14	108.4	3.3	0.119	0.040	0.642	0.802	2	0.03	1.7
F F	9/4/2019	Mid-Flood	Fine	Moderate		18	B	17	1	7.96	29.14	23.27	92.2	6.46	3.0	0.14	117.5	3.4	0.114	0.046	0.643	0.802	ND	0.03	2.0
F G	9/4/2019 9/4/2019	Mid-Flood	Fine	Moderate	8:31	18	B	17	2	7.94	29.10	23.25 24.05	91.4 100.1	6.41 6.97	3.0	0.15	<u>119.3</u> 90.3	3.3 3.7	0.095	0.038	0.658	0.791	2	0.03	1.3
G	<u>9/4/2019</u> 9/4/2019	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	8:48 8:48	13 13	S	1	1	7.94	24.69 24.67	24.05	100.1	6.97 6.97	1.4	0.17	90.3	3.7	0.235	0.042	0.664	0.941	3	0.04	4.4
G	9/4/2019	Mid-Flood	Fine	Moderate	8:48	13	M	6.5	2	7.93	26.12	24.07	95.8	6.72	1.4	0.15	249.2	3.5	0.214	0.045	0.662	0.806	3	0.04	4.3
G	9/4/2019	Mid-Flood	Fine	Moderate	8:48	13	M	6.5	2	7.94	26.23	23.72	96.0	6.74	1.5	0.17	281.6	3.8	0.103	0.041	0.666	0.800	6	0.04	2.9
G	9/4/2019	Mid-Flood	Fine	Moderate	8:48	13	B	12	1	7.95	27 20	23.57	94.5	6.65	2.2	0.13	108.3	3.9	0.102	0.037	0.660	0.804	3	0.04	2.9
G	9/4/2019	Mid-Flood	Fine			13	B	12	2	7.95	27.20	23.57	94.4	6.65	2.2	0.14	104.8	4.1	0.104	0.039	0.650	0.794	1	0.04	2.5
H	9/4/2019	Mid-Flood	Fine			19	S	1	1	7.90	24.83	24.03	99.5	6.93	1.6	0.36	273.3	2.8	0.151	0.042	0.661	0.854	1	0.03	3.5
H	9/4/2019	Mid-Flood	Fine	Moderate	9:01	19	S	1	2	7.88	24.79	24.06	98.7	6.90	1.5	0.38	288.2	3.1	0.147	0.046	0.658	0.851	4	0.04	3.4
Н	9/4/2019	Mid-Flood	Fine	Moderate	9:01	19	М	9.5		7.93	25.70	25.70	97.0	6.80	1.8	0.42	190.8	3.4	0.132	0.044	0.667	0.843	11	0.04	3.4
Н	9/4/2019	Mid-Flood	Fine	Moderate	9:01	19	М	9.5	2	7.89	25.66	25.66	96.6	6.78	1.6	0.45	228.3	3.3	0.140	0.039	0.697	0.876	24	0.04	4.1
H	9/4/2019	Mid-Flood	Fine	Moderate	9:01	19	В	18	1	7.94	26.88	26.88	93.9	6.60	1.9	0.34	138.9	3.9	0.156	0.047	0.703	0.906	4	0.04	4.0
Н	9/4/2019	Mid-Flood	Fine	Moderate	9:01	19	В	18	2	7.90	26.80	26.80	93.4	6.57	1.8	0.33	149.2	4.3	0.165	0.045	0.661	0.870	ND	0.04	3.6

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFIC	CATE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 28
Contact Address	: MR CYRUS LAI : ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	⊧ HK1914873
E-mail Telephone Facsimile	: c.lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	 richard.fung@alsglobal.com +852 2610 1044 +852 2610 2021 		
Project	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TE FOR SIU HO WAN SEWAGE TREATMENT PLANT	EAM FOR OPERATIONAL	ENVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 09-Apr-2019
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 26-Apr-2019
C-O-C number	:			No. of samples received	: 96
Site	:			No. of samples analysed	: 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position Signatories Authorised results for Richard from Fung Lim Chee, Richard General Manager Inorganics Ng Sin Kou, May Assistant Laboratory Manager Microbiology_ENV

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 09-Apr-2019 to 26-Apr-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1914873

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sample(s) arrived in the laboratory at 17:45 Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Carbonaceous Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	nt sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
	Clie	ent samplin	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-001	HK1914873-002	HK1914873-003	HK1914873-004	HK1914873-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.6	3.9	4.1	4.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.057	0.054	0.066	0.059	0.044
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.042	0.041	0.042	0.040	0.040
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.694	0.772	0.741	0.697	0.742
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.793	0.868	0.849	0.796	0.826
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.03	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	3.3	2.0	1.3	3.3
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	8	13	NOT DETECTED	1	14

Page Number : 4 of 28 Client : FUGRO TECH

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-006	HK1914873-007	HK1914873-008	HK1914873-009	HK1914873-010
EA/ED: Physical and Aggregate Properties							•	•
EA025: Suspended Solids (SS)		0.5	mg/L	4.1	6.0	6.0	6.5	6.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.050	0.071	0.071	0.066	0.071
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.042	0.040	0.042	0.039	0.040
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.705	0.691	0.684	0.696	0.640
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.797	0.801	0.797	0.800	0.751
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	2.0	2.1	2.0	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	10	9	11	49	62

Page Number 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-011	HK1914873-012	HK1914873-013	HK1914873-014	HK1914873-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.6	7.9	3.3	3.3	4.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.085	0.069	0.071	0.064	0.059
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.032	0.041	0.040	0.040	0.042
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.576	0.708	0.687	0.687	0.672
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.693	0.818	0.798	0.792	0.773
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.9	2.4	2.3	2.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	24	26	6	1	6

Page Number : 6 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-016	HK1914873-017	HK1914873-018	HK1914873-019	HK1914873-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.8	4.6	3.1	3.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.061	0.069	0.075	0.075	0.069
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.038	0.039	0.039	0.045	0.043
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.678	0.617	0.610	0.716	0.723
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.777	0.726	0.725	0.836	0.834
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.02	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.01	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	1.7	2.3	2.1	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	5	24	32	NOT DETECTED	NOT DETECTED

Page Number 2 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-021	HK1914873-022	HK1914873-023	HK1914873-024	HK1914873-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.6	3.7	3.9	2.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.091	0.076	0.078	0.073	0.090
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.038	0.036	0.040	0.038	0.038
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.625	0.608	0.609	0.608	0.596
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.755	0.720	0.728	0.720	0.723
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.02	0.02	0.02	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	<1.0	1.1	1.1	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	10	16	20	23	3

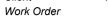
Page Number 2 8 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-026	HK1914873-027	HK1914873-028	HK1914873-029	HK1914873-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.2	2.4	2.8	3.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.080	0.070	0.072	0.065	0.065
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.036	0.038	0.034	0.037	0.038
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.598	0.601	0.597	0.623	0.627
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.713	0.709	0.704	0.725	0.730
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.02	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.9	1.4	1.7	1.2	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	3	3	NOT DETECTED	3	1

Page Number 2 9 of 28

Client FUGRO TECHNICAL SERVICES LIMITED


Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-031	HK1914873-032	HK1914873-033	HK1914873-034	HK1914873-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.7	2.9	2.7	3.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.084	0.085	0.090	0.081	0.080
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.037	0.036	0.037	0.034	0.037
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.614	0.609	0.602	0.611	0.605
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.735	0.730	0.729	0.726	0.722
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.02	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	1.7	1.5	1.6	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	1	3	NOT DETECTED

Page Number : 10 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914873

Sub-Matrix: WATER		Clie	nt sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Cli	ent samplir	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-036	HK1914873-037	HK1914873-038	HK1914873-039	HK1914873-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.9	1.7	1.9	3.1	2.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.079	0.070	0.073	0.066	0.067
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.039	0.034	0.038	0.032	0.038
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.610	0.578	0.569	0.579	0.566
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.728	0.682	0.680	0.678	0.671
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.03	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.7	2.0	1.9	1.6	1.9
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	NOT DETECTED	NOT DETECTED	1	1

Page Number 11 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

HK1914873

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
	Client sampling date / time			09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-041	HK1914873-042	HK1914873-043	HK1914873-044	HK1914873-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.1	2.9	3.1	3.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.077	0.070	0.064	0.070	0.062
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.038	0.029	0.039	0.033	0.038
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.571	0.583	0.566	0.571	0.568
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.686	0.682	0.669	0.674	0.668
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.04	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	<0.01	0.01	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.4	1.7	3.4	2.9	2.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number : 12 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-046	HK1914873-047	HK1914873-048	HK1914873-049	HK1914873-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.9	4.6	4.9	2.8	2.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.061	0.072	0.070	0.113	0.111
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.031	0.036	0.037	0.038	0.036
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.578	0.533	0.538	0.592	0.602
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.669	0.641	0.646	0.744	0.749
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.02	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.4	1.5	1.8	1.8	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED

Page Number 13 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order

HK1914873

Sub-Matrix: WATER		Clie	ent sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Client sampling date / time			09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-051	HK1914873-052	HK1914873-053	HK1914873-054	HK1914873-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.2	5.3	5.0	2.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.096	0.098	0.100	0.100	0.087
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.032	0.036	0.040	0.034	0.034
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.580	0.552	0.587	0.600	0.560
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.708	0.686	0.727	0.734	0.681
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	1.3	1.2	1.3	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number : 14 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup	
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	
Compound	CAS Number	LOR	Unit	HK1914873-056	HK1914873-057	HK1914873-058	HK1914873-059	HK1914873-060	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.1	2.9	4.0	3.8	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.100	0.076	0.090	0.080	0.094	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.040	0.029	0.040	0.030	0.038	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.572	0.570	0.594	0.567	0.600	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.713	0.675	0.725	0.677	0.733	
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.03	0.03	0.03	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.03	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.4	1.3	1.1	1.3	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100mL	NOT DETECTED					

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914873

_

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F		
	Client sampling date / time			09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019		
Compound	CAS Number	LOR	Unit	HK1914873-061	HK1914873-062	HK1914873-063	HK1914873-064	HK1914873-065		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.6	2.7	2.8	3.1		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.099	0.103	0.112	0.104		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.037	0.032	0.034	0.039	0.042		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.592	0.612	0.604	0.547	0.592		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.733	0.743	0.742	0.698	0.738		
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.2	1.2	1.2	1.3		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	1	NOT DETECTED	1	3	2		

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914873

Sub-Matrix: WATER	Client sample ID			C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup		
	Client		ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019		
Compound	CAS Number	LOR	Unit	HK1914873-066	HK1914873-067	HK1914873-068	HK1914873-069	HK1914873-070		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	2.9	3.0	2.6	3.3	2.8		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.102	0.100	0.106	0.105	0.108		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.032	0.041	0.035	0.036	0.034		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.608	0.587	0.572	0.597	0.617		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.741	0.728	0.713	0.739	0.759		
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.02	0.03	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.1	1.8	1.2	1.8		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	NOT DETECTED						

Page Number : 17 of 28 Client : FUGRO TECHNICA

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914873

Sub-Matrix: WATER	Client sample ID			D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F		
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019		
Compound	CAS Number	LOR	Unit	HK1914873-071	HK1914873-072	HK1914873-073	HK1914873-074	HK1914873-075		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.4	2.2	2.3	2.9		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.107	0.110	0.112	0.119	0.101		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.036	0.039	0.036	0.046	0.042		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.610	0.606	0.568	0.579	0.560		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.752	0.754	0.716	0.745	0.703		
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.01	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.4	1.3	2.1	1.4		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	4	7	4		

Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914873

_

Sub-Matrix: WATER	Client sample ID			E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup		
	Client sampling date / time			09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019		
Compound	CAS Number	LOR	Unit	HK1914873-076	HK1914873-077	HK1914873-078	HK1914873-079	HK1914873-080		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	2.7	4.0	3.7	3.1	2.9		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.109	0.128	0.108	0.116	0.117		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.036	0.041	0.048	0.046	0.037		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.620	0.618	0.593	0.642	0.659		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.766	0.787	0.749	0.804	0.813		
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.04		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.01	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	2.6	1.5	1.7	1.5		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	8	NOT DETECTED	NOT DETECTED	16	17		

Page Number : 19 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

The form								
Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Cli	ent sampli	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-081	HK1914873-082	HK1914873-083	HK1914873-084	HK1914873-085
EA/ED: Physical and Aggregate Properties	3							
EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.3	3.4	3.3	3.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.116	0.119	0.114	0.095	0.235
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.041	0.040	0.046	0.038	0.042
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.654	0.642	0.643	0.658	0.664
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.811	0.802	0.802	0.791	0.941
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.03	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.7	2.0	1.3	4.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	6	2	NOT DETECTED	2	3

Page Number 20 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

HK1914873

Sub-Matrix: WATER	Client sample ID			G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-086	HK1914873-087	HK1914873-088	HK1914873-089	HK1914873-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.6	3.8	3.9	4.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.214	0.103	0.102	0.104	0.105
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.045	0.041	0.037	0.035	0.039
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.660	0.662	0.666	0.660	0.650
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.919	0.806	0.804	0.799	0.794
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.02	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	4.3	3.6	2.9	2.0	2.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	3	6	3	1

Page Number 21 of 28 Client FUGRO TECHNIC

ient : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914873

Sub-Matrix: WATER		Client sample ID		H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
	Cli	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914873-091	HK1914873-092	HK1914873-093	HK1914873-094	HK1914873-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.8	3.1	3.4	3.3	3.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.151	0.147	0.132	0.140	0.156
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.042	0.046	0.044	0.039	0.047
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.661	0.658	0.667	0.697	0.703
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.854	0.851	0.843	0.876	0.906
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	3.5	3.4	3.4	4.1	4.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	4	11	24	4

Page Number 22 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914873

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup						
	Client sampling date / time			09-Apr-2019						
Compound	CAS Number	LOR	Unit	HK1914873-096						
EA/ED: Physical and Aggregate Properties	EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	4.3						
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.165						
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.045						
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.661						
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.870						
EK067P: Total Phosphorus as P		0.01	mg/L	0.04						
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01						
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	3.6						
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	NOT DETECTED						

Laboratory Duplicate (DUP) Report

Matrix: WATER				1	Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2288525)						
HK1914873-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.9	5.98
HK1914873-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	7.6	7.7	0.00
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2288526)						
HK1914873-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.0	12.4
HK1914873-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	3.0	12.4
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2288527)						
HK1914873-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.1	6.45
HK1914873-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.0	5.99
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2288528)						
HK1914873-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.8	9.17
HK1914873-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.1	3.98
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2288529)						
HK1914873-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.4	11.5
HK1914873-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.6	4.61
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288485)						
HK1914873-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.043	0.043	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288488)						
HK1914873-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.038	0.030	25.4
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288490)						
HK1914873-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.038	0.040	4.82
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288492)						
HK1914873-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.037	0.043	16.3
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288494)						
HK1914873-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.045	0.038	16.9
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288559)						
HK1914873-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288560)						
HK1914873-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2288561)						
HK1914873-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00

 Page Number
 :
 24 of 28

 Client
 :
 FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK1914873

latrix: WATER	atom Client sample ID Method: Compound atom PD Provide Compound atom PD EXample ID Method: Compound atom EXample ID EX067P: Total Phosphorus - Filtered Cinorganic Nonmetallic Parameters (QC Lot: 2288563) 2014873-050 A/S/F/Dup EK067P: Total Phosphorus as P Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-050 A/S/F/Dup EK067P: Total Phosphorus as P Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-050 A/S/F/Dup EK067P: Total Phosphorus - Filtered Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-070 D/M/F/Dup EK067P: Total Phosphorus as P Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-070 D/M/F/Dup EK067P: Total Phosphorus - Filtered Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-090 G/B/F/Dup EK067P: Total Phosphorus - Filtered Cinorganic Nonmetallic Parameters (QC Lot: 2288564) 2014873-090 G/B/F/Dup EK067P: Total Phosphorus - Filtered Cinorganic Nonmetallic Parameters		Laboratory Duplicate (DUP) Report							
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288562)			1					
HK1914873-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288563)								
HK1914873-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot:	2288564)								
HK1914873-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288565)								
HK1914873-070	D/M/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288566)								
HK1914873-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288567)								
HK1914873-090	G/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot:	2288568)								
HK1914873-090	G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.01	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot:	2288793)								
HK1914873-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.069	0.066	4.28		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288794)								
HK1914873-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.067	0.069	2.88		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288795)								
HK1914873-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.094	0.093	0.00		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288796)								
HK1914873-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.117	0.120	2.56		
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: :	2288797)								
HK1914873-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.165	0.167	1.45		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report								
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control		
											Limit		
EA/ED: Physical and Aggregate Properties (QC Lo	ot: 2288525)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	99.0		85	115				
EA/ED: Physical and Aggregate Properties (QC Lo	EA/ED: Physical and Aggregate Properties (QC Lot: 2288526)												

Page Number 25 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914873

Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Con	IO2 85 115 IO1 85 115 IO2 85 115 IO1 85 115 IO2 85 115 IO1 85 115 IO1 85 115 IO3 90 104	Spike Duplicate (I	(DCS) Report		
			Spike	Spike R	ecovery (%)	Recove	əry Limits(%)	RP	D (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Image: Control Limit Control Image: Contro Image: C
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2288526) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2288527)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	101		85	115		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2288528)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2288529)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	99.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288485)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	111		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288488)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	102		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288490)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	101		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288492)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	109		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288494)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	114		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288559)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288560)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.5		90	104		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288561)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.3		90	104		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2288562)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.5		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2288563)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.2		90	104		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2288564)				'						
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.1		85	115		

Page Number 26 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914873

Matrix: WATER			Method Blank (MB) Report		Laboratory Contr	ol Spike (LCS) and Labo	ratory Control S	olke Duplicate (L	DCS) Report	D (%) Control Limit 			
			1		Spike	Spike Re	со vөгу (%)	Recove	ry Limits(%)	RPI	7 (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control			
											Limit			
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288565)													
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	100		90	104					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288566)													
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.2		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288567)													
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.2		90	104					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288568)													
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.1		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288793)													
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	114		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288794)													
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	111		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288795)													
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	101		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288796)													
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	102		85	115					
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 2288797)													
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	102		85	115					
EP: Aggregate Organics (QC Lot: 2289740)														
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	101		81	115					
EP: Aggregate Organics (QC Lot: 2289741)														
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	99.4		81	115					
EP: Aggregate Organics (QC Lot: 2289742)														
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		81	115					
EP: Aggregate Organics (QC Lot: 2289743)														
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		81	115					
EP: Aggregate Organics (QC Lot: 2289744)	· · · · · · · · · · · · · · · · · · ·													
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.3		81	115					

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER					Matrix Spl	ike (MS) and Matri	x Spike Duplic	ate (MSD) Re	aport	
				Spike	Spike Re	өсо vөгу (%)	Recovery	<i>Limits</i> (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288485)								
HK1914873-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288488)		'						
HK1914873-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288490)	·			1				
HK1914873-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	106		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC Lot: 22	288492)								
HK1914873-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	107		75	125		
ED/EK: Inorganie	c Nonmetallic Parameters (QC Lot: 22	288494)								
HK1914873-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	102		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288559)								
HK1914873-010	B/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	94.0		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288560)								
HK1914873-010	B/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	95.8		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288561)								
HK1914873-030	E/B/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.4		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288562)								
HK1914873-030	E/B/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	100		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288563)								
HK1914873-050	A/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.0		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288564)								
HK1914873-050	A/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	101		75	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 22	288565)								

Page Number : 28 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914873

ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2288796)

ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2288797)

HK1914873-080 F/S/F/Dup

HK1914873-096 H/B/F/Dup

Control Limit

25

25

RPD (%)

Value

Matrix: WATER			Matrix Spl	ate (MSD) R	eport				
				Spike	Spike Re	эсоvөгу (%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	Method: Compound CAS Number		MS	MSD	Low	High	Va
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot:	2288565) - Continued							
HK1914873-070	D/M/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.3		75	125	
ED/EK: Inorganie	c Nonmetallic Parameters (QC Lot: :	2288566)							
HK1914873-070	D/M/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	98.0		75	125	
ED/EK: Inorganie	c Nonmetallic Parameters (QC Lot:	2288567)							
HK1914873-090	G/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	95.2		75	125	
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot:	2288568)							
HK1914873-090	G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	100		75	125	
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot:	2288793)							
HK1914873-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	88.8		75	125	
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: :	2288794)							
HK1914873-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	89.2		75	125	
ED/EK: Inorgania	c Nonmetallic Parameters (QC Lot: :	2288795)	· · · · ·		·		·		
HK1914873-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	90.2		75	125	

EK055A: Ammonia as N

EK055A: Ammonia as N

7664-41-7

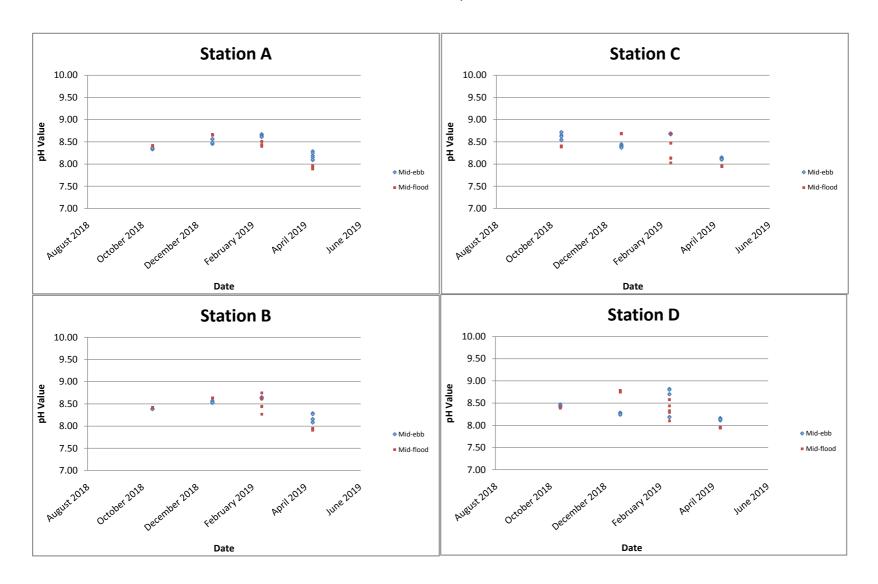
7664-41-7

0.5 mg/L

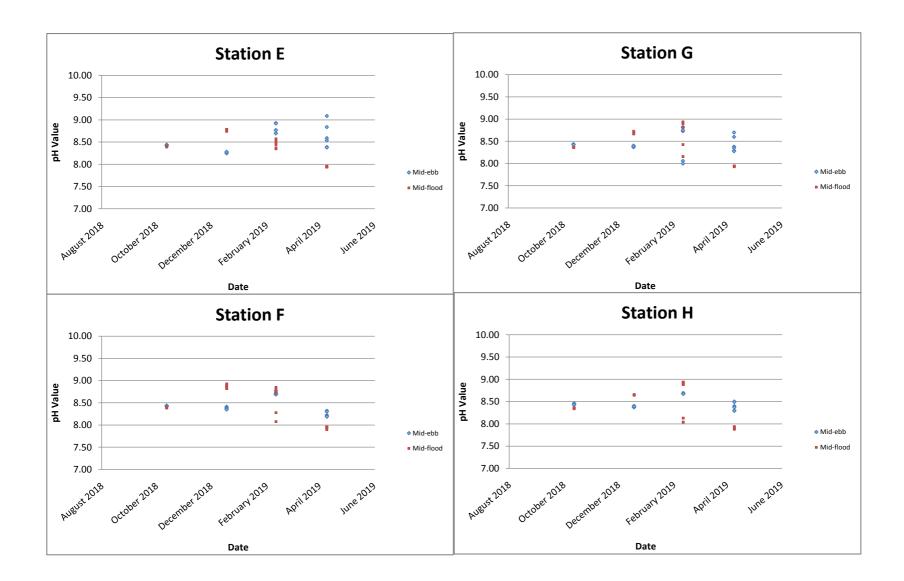
0.5 mg/L

88.6

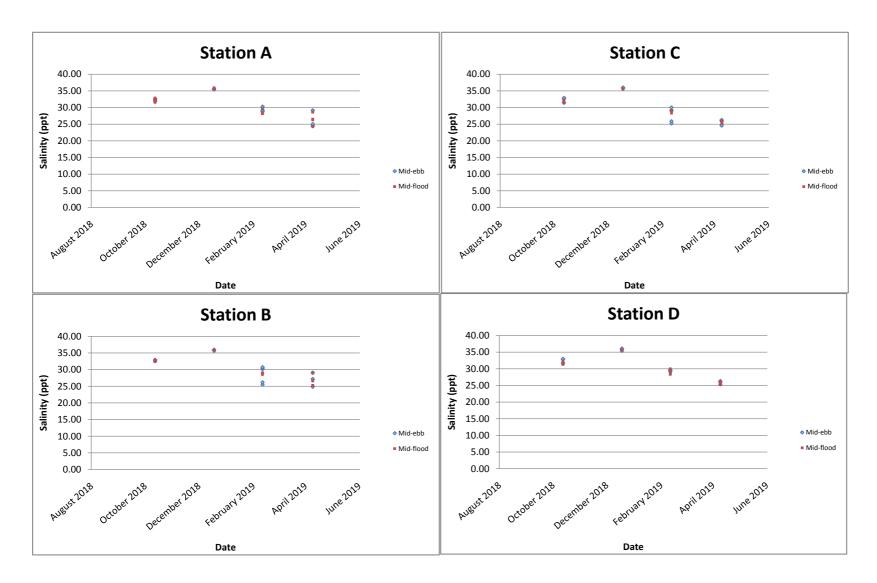
89.2

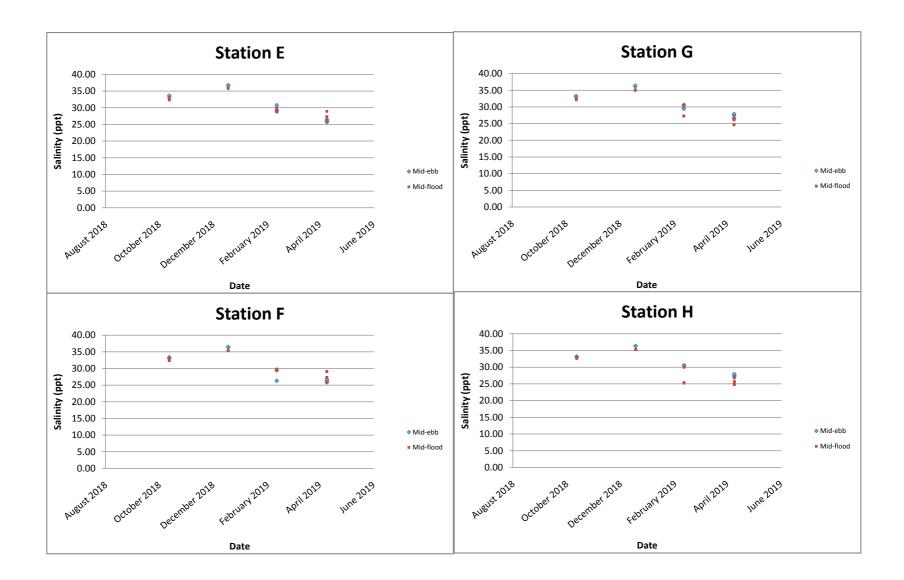

75

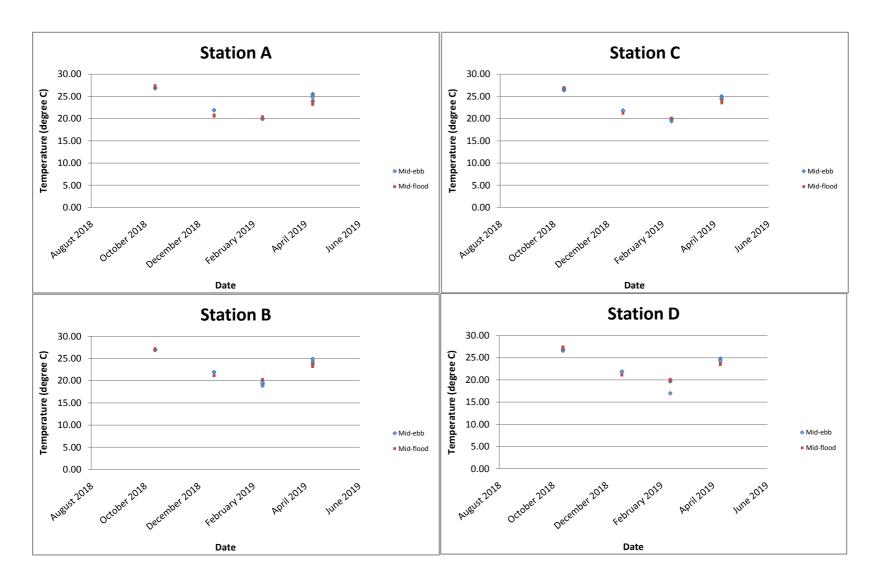
75


125

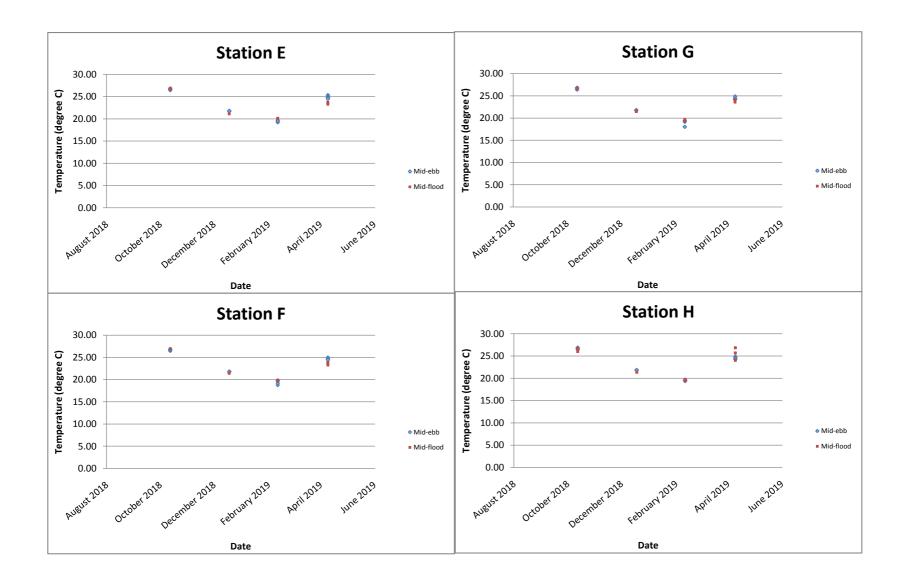
125


pH value

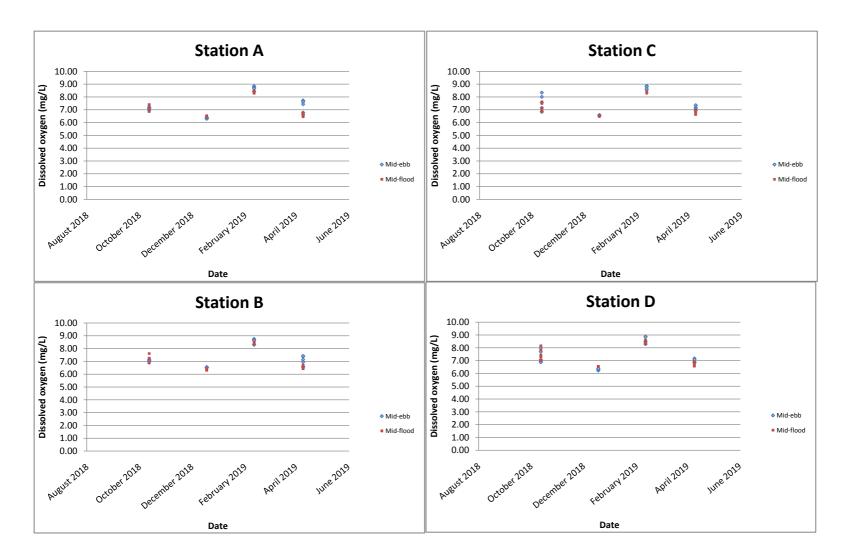

pH value

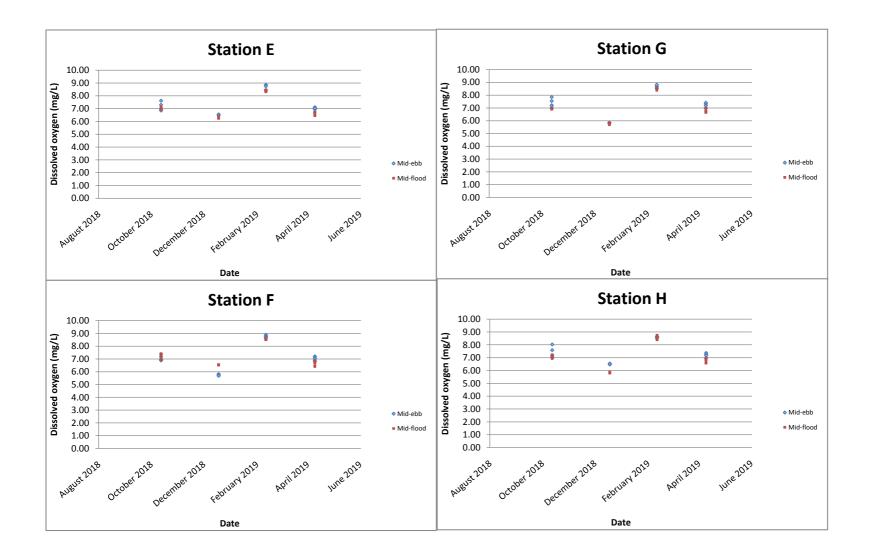


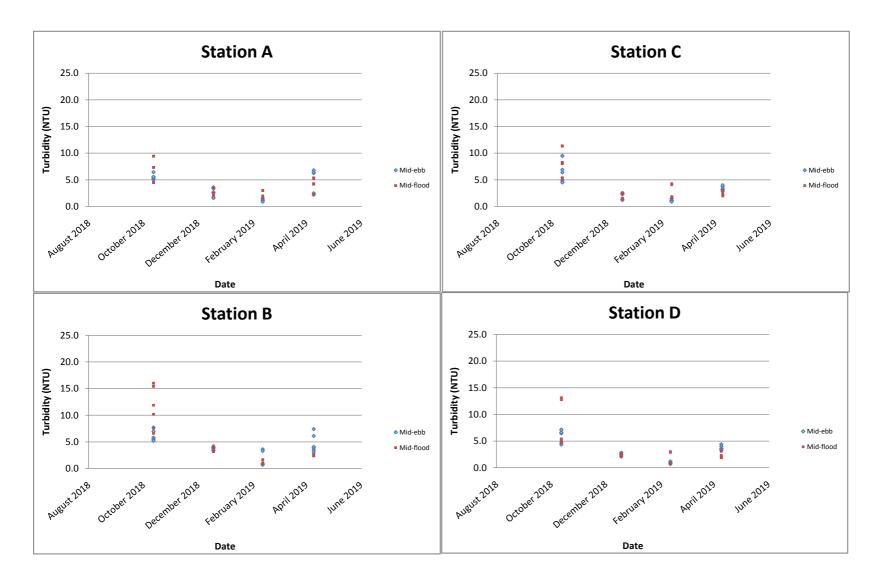
Salinity (ppt)

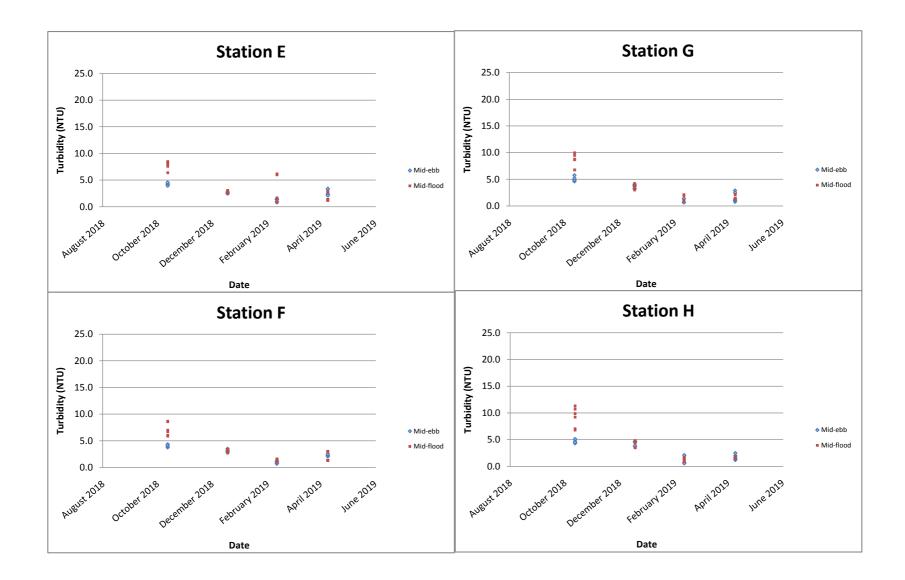


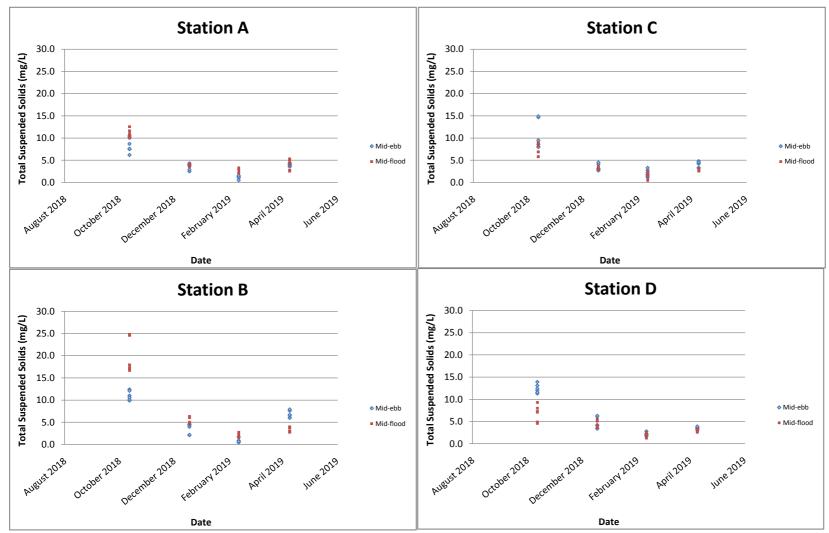
Salinity (ppt)



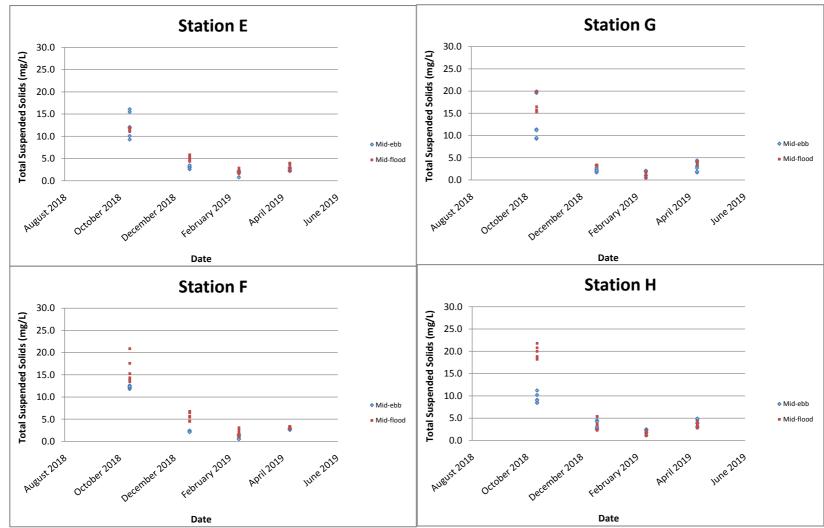

Temperature (degree C)


Dissolved oxygen (mg/L)

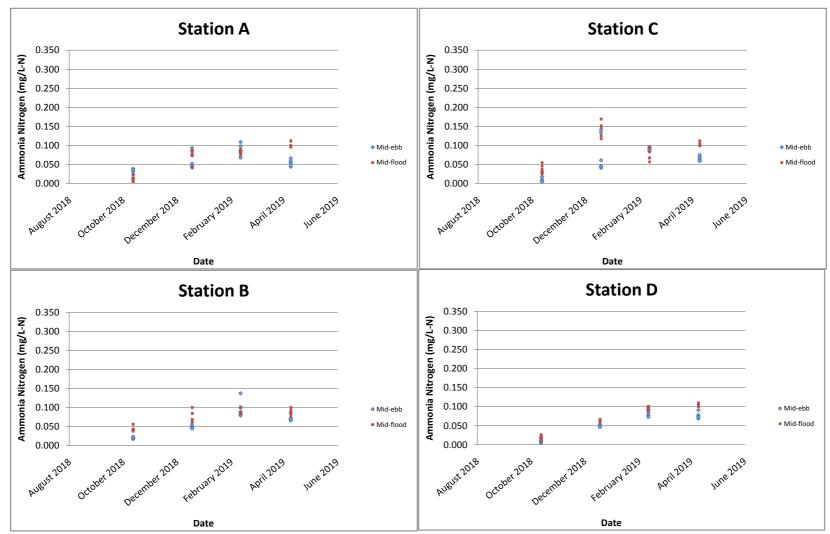

Dissolved oxygen (mg/L)

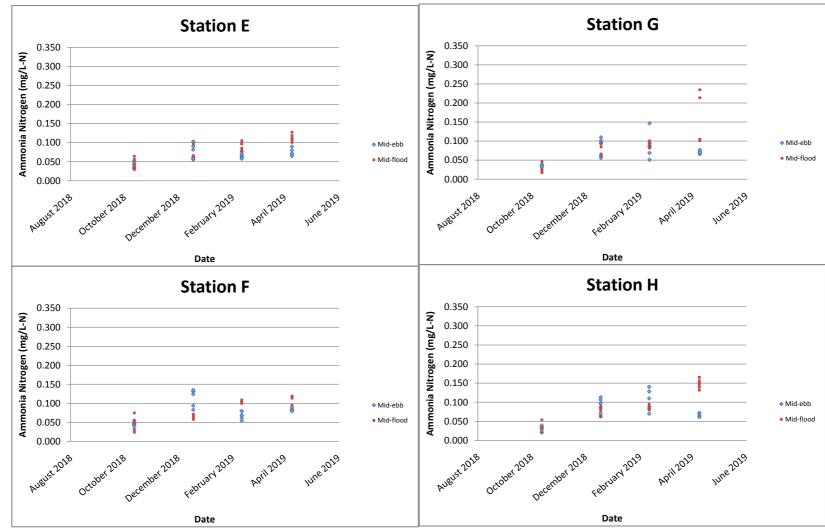


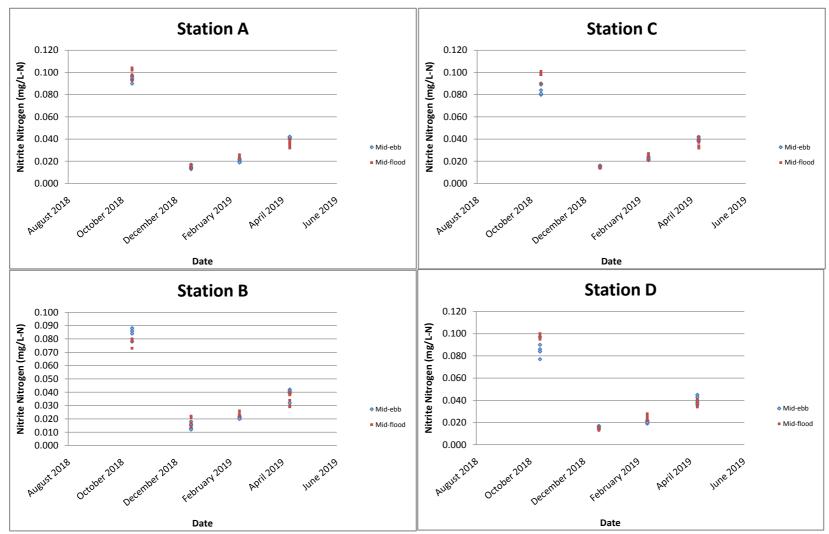
Turbidity (NTU)



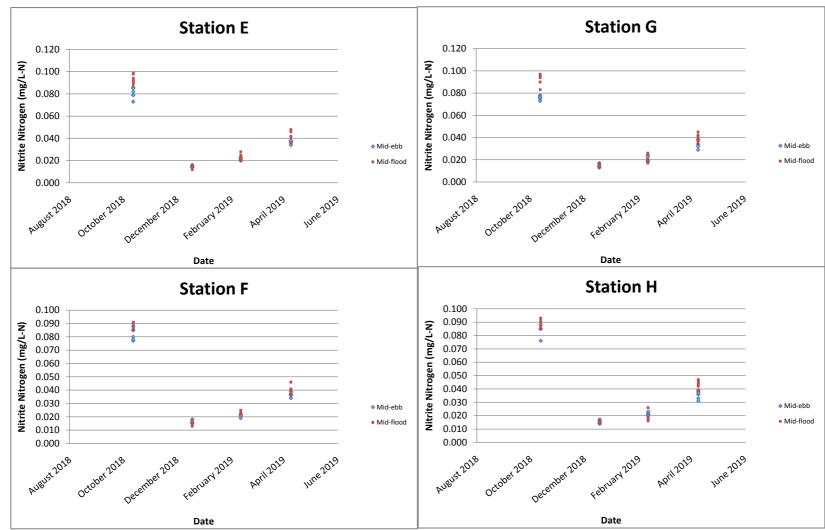
Turbidity (NTU)



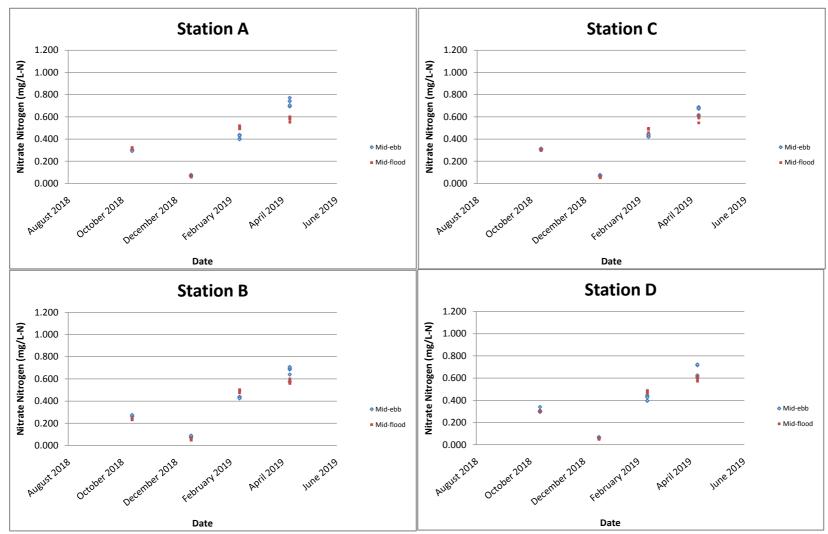

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

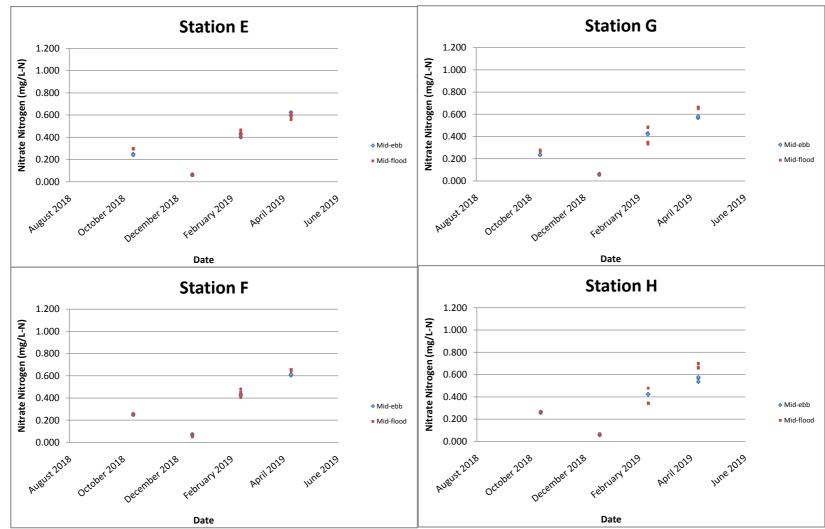


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

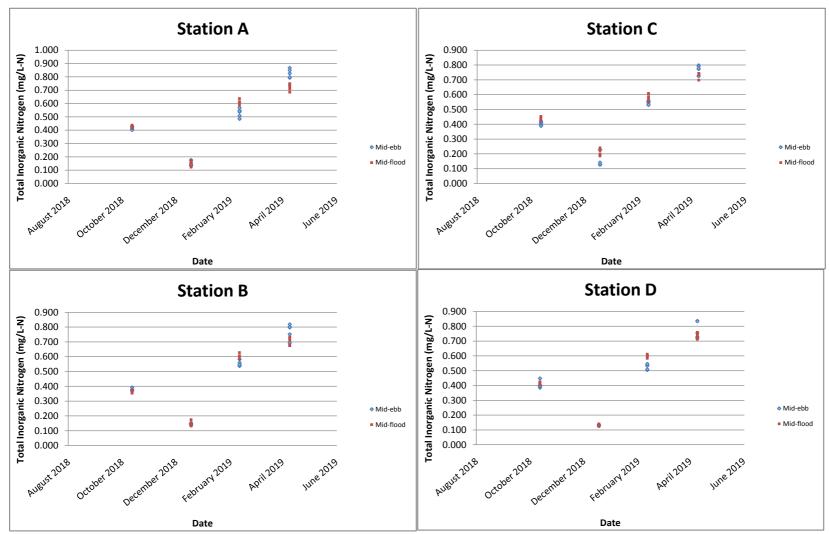


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

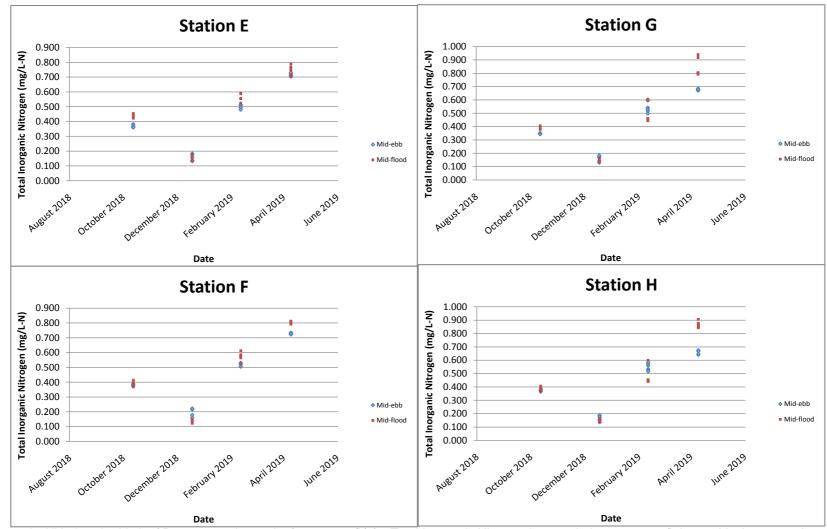
Nitrite Nitrogen (mg/L-N)



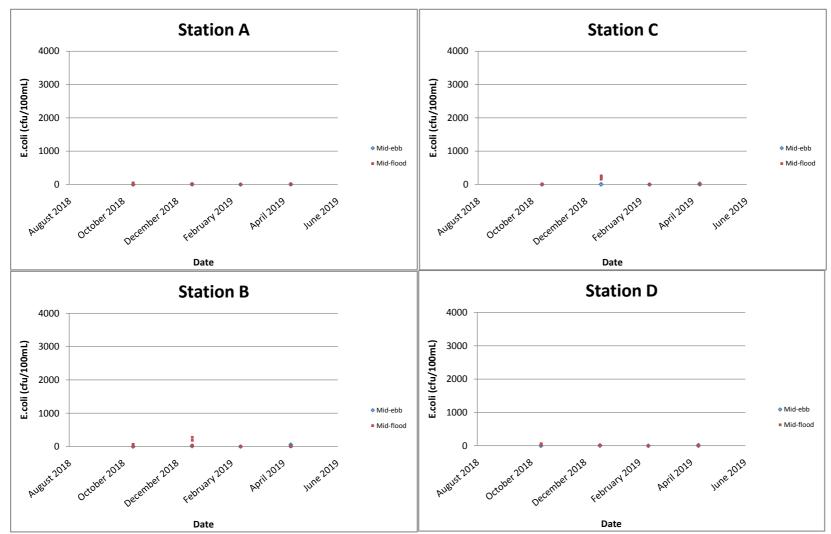
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.



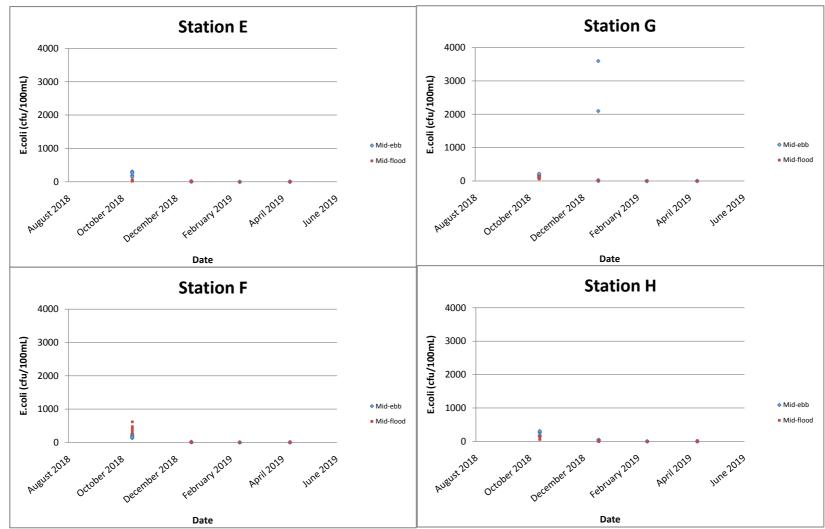
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Nitrate Nitrogen (mg/L-N)

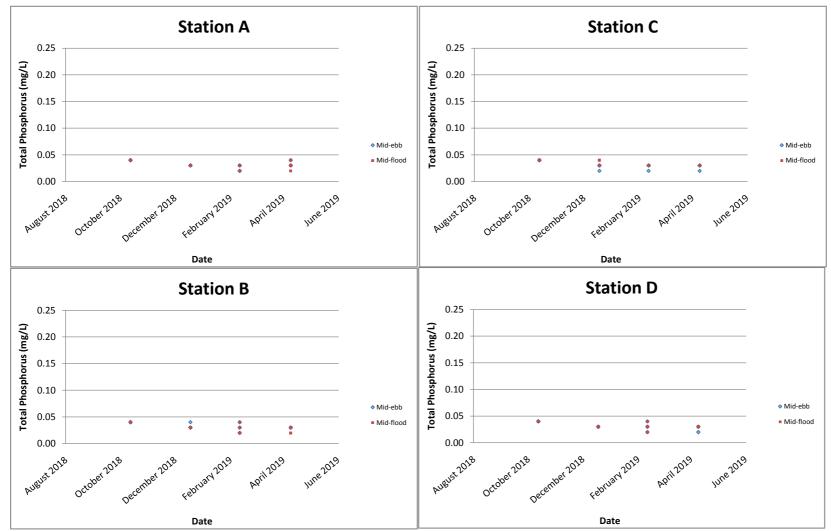
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.



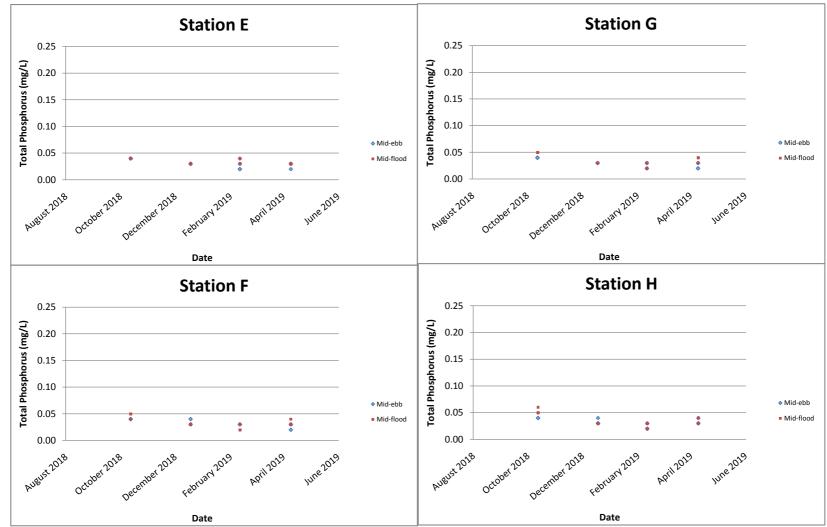
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.

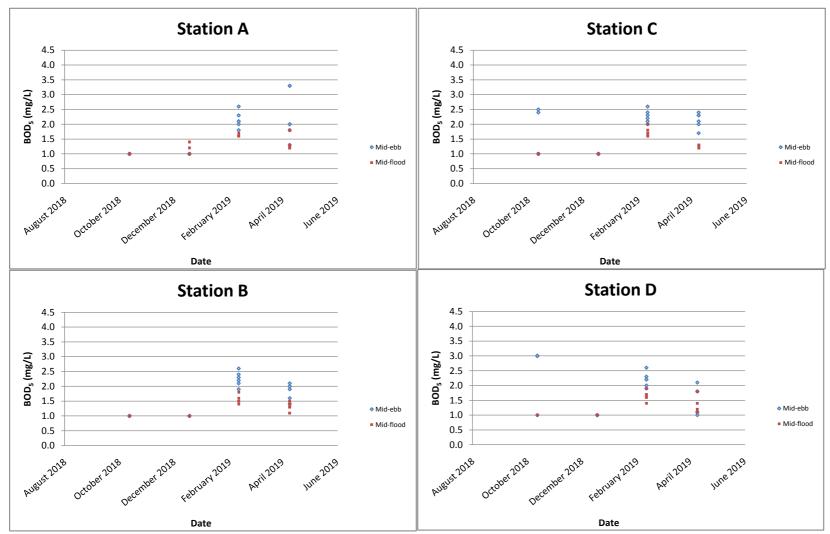
E.coli (cfu/100mL)



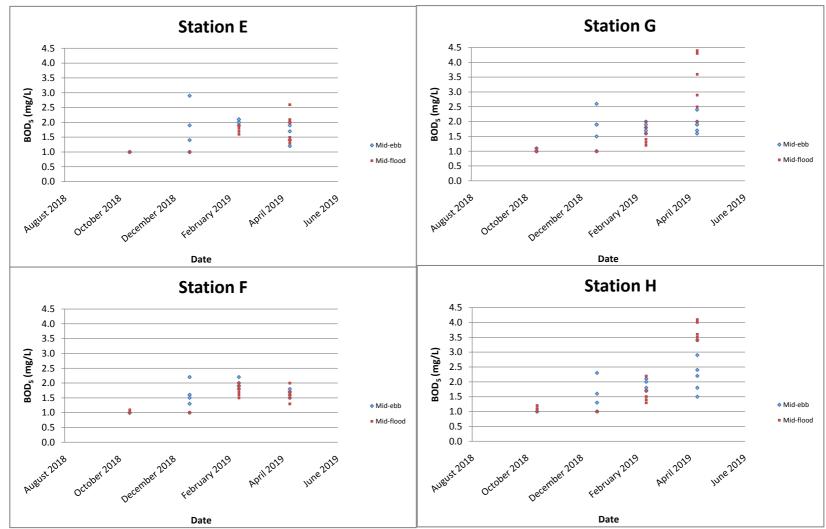
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 0 CFU/100mL in graphical presentation.


E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 0 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

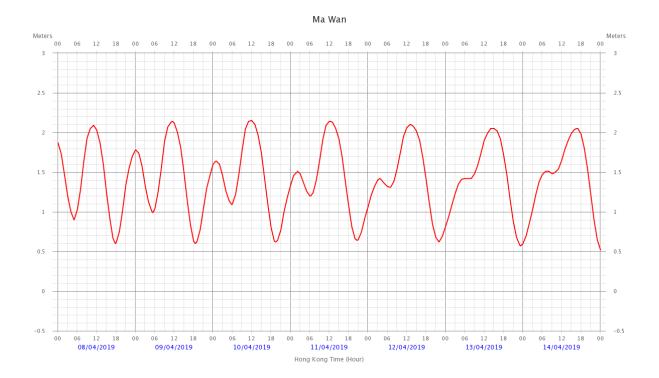
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix F

Predicted Tidal Data of Ma Wan Marine Traffic Station

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.


FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring						
Monitoring Location	Location Date	Weather	Sea Condition	ndition	pН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	9/4/2019	Cloudy	Moderate	12:40	6.9	4.5	950	476	0.11	34.0	25.5	44.2	0.13	19.8	87.8	14.8	0.23
В	9/4/2019	Cloudy	Moderate	12:17	7.6	9.9	1220	513	<0.10	36.1	32.4	43.4	0.25	22.0	106	11.3	0.33
С	9/4/2019	Cloudy	Moderate	11:56	7.7	11.9	1290	595	0.10	39.0	32.8	47.3	0.12	23.8	112	11.2	0.31
D	9/4/2019	Cloudy	Moderate	11:36	7.7	4.4	480	259	<0.10	19.2	15.1	25.0	0.06	11.8	53.3	6.0	0.14
E	9/4/2019	Cloudy	Moderate	11:05	7.9	8.5	1450	594	<0.10	40.5	36.7	47.7	0.12	24.9	117	10.2	0.36
F	9/4/2019	Cloudy	Moderate	10:48	7.8	10.6	1490	594	<0.10	43.1	38.8	48.6	0.13	26.6	121	11.6	0.36
G	9/4/2019	Cloudy	Moderate	10:22	7.9	5.8	1080	522	0.12	39.7	60.6	45.1	0.19	23.8	109	11.0	0.34
Н	9/4/2019	Cloudy	Moderate	10:00	7.7	6.2	970	478	0.11	40.0	52.1	48.9	0.17	23.8	153	12.3	0.46

		Weather			Benthic Survey								
Monitoring Location	Date		Sea Condition		Total Organic Carbon (%)	Particle Size Distrbution							
Location			Condition			Gravel (%)	Sand (%)	Silt (%)	Clay (%)				
Α	9/4/2019	Cloudy	Moderate	12:40	0.58	15	39	28	18				
В	9/4/2019	Cloudy	Moderate	12:17	1.00	1	16	54	29				
С	9/4/2019	Cloudy	Moderate	11:56	0.93	0	3	68	29				
D	9/4/2019	Cloudy	Moderate	11:36	0.79	0	17	53	30				
E	9/4/2019	Cloudy	Moderate	11:05	0.99	0	6	61	33				
F	9/4/2019	Cloudy	Moderate	10:48	1.04	0	3	61	36				
G	9/4/2019	Cloudy	Moderate	10:22	0.92	1	12	55	32				
Н	9/4/2019	Cloudy	Moderate	10:00	0.90	6	18	47	29				

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

		CERTIFIC	CATE OF ANALYSIS		
Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	፡ 1 of 13
Contact Address	 MR CYRUS LAI ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG 	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	: HK1914877
E-mail Telephone Facsimile	: c.lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	 richard.fung@alsglobal.com +852 2610 1044 +852 2610 2021 		
Project	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TE FOR SIU HO WAN SEWAGE TREATMENT PLANT	EAM FOR OPERATIONAL	ENVIRONMENTAL MONITORING AND AUDIT	Date Samples Received	: 09-Apr-2019
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 26-Apr-2019
C-O-C number	:			No. of samples received	: 24
Site	:			No. of samples analysed	: 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Ki hand Jamy.			
Fung Lim Chee, Richard	General Manager	Inorganica	
	General Manager	Inorganics	
Kichard Jong.			
Fung Lim Chee, Richard	General Manager	Metals_ENV	

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 09-Apr-2019 to 26-Apr-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1914877

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

pH determined and reported on a 1:5 soil / water extract.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

pH value is reported as at 25°C.

EK059A - Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Analytical Results

Sub-Matrix: SEDIMENT		Clie	nt sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplir	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914877-001	HK1914877-002	HK1914877-003	HK1914877-004	HK1914877-005
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	6.9	7.6	7.7	7.7	7.9
EA055: Moisture Content (dried @ 103°C)		0.1	%	51.6	54.8	62.4	36.0	59.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	4.5	9.9	11.9	4.4	8.5
EK062A: Total Nitrogen as N		10	mg/kg	950	1220	1290	480	1450
EK067A: Total Phosphorus as P		10	mg/kg	476	513	595	259	594
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	14.8	11.3	11.2	6.0	10.2
EG020: Cadmium	7440-43-9	0.10	mg/kg	0.11	<0.10	0.10	<0.10	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	34.0	36.1	39.0	19.2	40.5
EG020: Copper	7440-50-8	0.20	mg/kg	25.5	32.4	32.8	15.1	36.7
EG020: Lead	7439-92-1	0.20	mg/kg	44.2	43.4	47.3	25.0	47.7
EG020: Mercury	7439-97-6	0.05	mg/kg	0.13	0.25	0.12	0.06	0.12
EG020: Nickel	7440-02-0	0.20	mg/kg	19.8	22.0	23.8	11.8	24.9
EG020: Silver	7440-22-4	0.10	mg/kg	0.23	0.33	0.31	0.14	0.36
EG020: Zinc	7440-66-6	0.5	mg/kg	87.8	106	112	53.3	117

Page Number : 4 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

_

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914877-006	HK1914877-007	HK1914877-008	HK1914877-009	HK1914877-010
EA/ED: Physical and Aggregate Properties								
EA002: pH Value		0.1	pH Unit	7.8	7.9	7.7		
EA055: Moisture Content (dried @ 103°C)		0.1	%	63.6	54.4	56.5	42.4	55.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055: Ammonia as N	7664-41-7	0.5	mg/kg	10.6	5.8	6.2		
EK062A: Total Nitrogen as N		10	mg/kg	1490	1080	970		
EK067A: Total Phosphorus as P		10	mg/kg	594	522	478		
EG: Metals and Major Cations					-	-		
EG020: Arsenic	7440-38-2	0.5	mg/kg	11.6	11.0	12.3		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.12	0.11		
EG020: Chromium	7440-47-3	0.5	mg/kg	43.1	39.7	40.0		
EG020: Copper	7440-50-8	0.20	mg/kg	38.8	60.6	52.1		
EG020: Lead	7439-92-1	0.20	mg/kg	48.6	45.1	48.9		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.13	0.19	0.17		
EG020: Nickel	7440-02-0	0.20	mg/kg	26.6	23.8	23.8		
EG020: Silver	7440-22-4	0.10	mg/kg	0.36	0.34	0.46		
EG020: Zinc	7440-66-6	0.5	mg/kg	121	109	153		
EP: Aggregate Organics					1	1	I	1
EP005: Total Organic Carbon		0.05	%				0.58	1.00

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914877

Sub-Matrix: SEDIMENT	-Matrix: SEDIMENT Client sample ID			C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Client sampling date / time			09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914877-011	HK1914877-012	HK1914877-013	HK1914877-014	HK1914877-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	62.3	56.7	57.4	59.0	58.1
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.93	0.79	0.99	1.04	0.92

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914877

Sub-Matrix: SEDIMENT	ub-Matrix: SEDIMENT Client sample ID								
	Client sampling date / time			09-Apr-2019					
Compound	CAS Number	LOR	Unit	HK1914877-016					
EA/ED: Physical and Aggregate Properties									
EA055: Moisture Content (dried @ 103°C)		0.1	%	56.3					
EP: Aggregate Organics									
EP005: Total Organic Carbon		0.05	%	0.90					

Page Number 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914877

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplir	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019	09-Apr-2019
Compound	CAS Number	LOR	Unit	HK1914877-017	HK1914877-018	HK1914877-019	HK1914877-020	HK1914877-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	<1	<1	<1	3	1
EG020: Copper	7440-50-8	1	µg/L	1	1	2	4	2
EG020: Lead	7439-92-1	1	µg/L	<1	<1	<1	3	<1
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	µg/L	2	2	2	4	2
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	10	<10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914877

Sub-Matrix: WATER		Clie	ent sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Clie	ent samplii	ng date / time	09-Apr-2019	09-Apr-2019	09-Apr-2019	
Compound	CAS Number	LOR	Unit	HK1914877-022	HK1914877-023	HK1914877-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	1	<1	<1	
EG020: Copper	7440-50-8	1	µg/L	2	2	1	
EG020: Lead	7439-92-1	1	µg/L	1	<1	<1	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	3	2	2	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	

Laboratory Duplicate (DUP) Report

/latrix: SOIL					Lado	oratory Duplicate (DUP) I	кероп	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and Ag	gregate Properties (QC Lot:	2293853)						
HK1914428-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.6	16.6	0.00
HK1914877-003	C/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	62.4	60.7	2.67
EA/ED: Physical and Ag	gregate Properties (QC Lot:	2293854)						
HK1914877-013	E/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	57.4	59.1	2.96
HK1914974-006	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	15.2	15.5	2.31
EA/ED: Physical and Ag	gregate Properties (QC Lot:	2293902)						
HK1914877-001	A/Sediment	EA002: pH Value		0.1	pH Unit	6.9	6.8	1.46
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot: :	2300113)						
HK1914877-001	A/Sediment	EK055: Ammonia as N	7664-41-7	1	mg/kg	4.5	4	0.00
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot: :	2300382)						
HK1914877-001	A/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	476	505	5.91
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot:	2312513)						
HK1914877-008	H/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	478	482	0.957
EG: Metals and Major C	ations (QC Lot: 2287767)							
HK1914877-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	0.11	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.25	0.27	6.31
		EG020: Copper	7440-50-8	0.05	mg/kg	32.4	32.4	0.0346
		EG020: Lead	7439-92-1	0.05	mg/kg	43.4	42.6	1.94
		EG020: Nickel	7440-02-0	0.05	mg/kg	22.0	22.0	0.318
		EG020: Silver	7440-22-4	0.05	mg/kg	0.33	0.32	4.73
		EG020: Arsenic	7440-38-2	0.5	mg/kg	11.3	11.1	1.80
		EG020: Chromium	7440-47-3	0.5	mg/kg	36.1	35.8	0.743
		EG020: Zinc	7440-66-6	0.5	mg/kg	106	104	1.42
EP: Aggregate Organics	(QC Lot: 2303565)							
HK1914428-002	Anonymous	EP005: Total Organic Carbon		0.05	%	0.31	0.35	12.2
HK1914877-015	G/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.92	0.85	8.53
latrix: WATER					Labo	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)

 Page Number
 : 10 of 13

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK1914877

Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)				
sample ID							Result					
EG: Metals and Major C	G: Metals and Major Cations - Total (QC Lot: 2302134) - Continued											
HK1914877-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00				
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.00				
		EG020: Chromium	7440-47-3	1	µg/L	<1	<1	0.00				
		EG020: Copper	7440-50-8	1	µg/L	1	1	0.00				
		EG020: Lead	7439-92-1	1	µg/L	<1	<1	0.00				
		EG020: Nickel	7440-02-0	1	µg/L	2	2	0.00				
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00				
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.00				
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.00				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Conti	rol Spike (LCS) and Lab	oratory Control S	pike Duplicate (D	OCS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2300113)										
EK055: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	98.1		85	119		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2300382)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	90.5		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2312513)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	90.6		85	115		
EG: Metals and Major Cations (QC Lot: 228	7767)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	98.6		85	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	95.2		85	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	101		85	115		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	103		85	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	100		87	115		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	98.4		85	115		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	101		85	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	99.6		85	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	106		85	115		

 Page Number
 : 11 of 13

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1914877

Matrix: SOIL			Method Blank (MB) Report		Laboratory Contr	rol Spike (LCS) and Lab	oratory Control S	pike Duplicate (DCS) Report	
			1		Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RPI	7 (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP: Aggregate Organics (QC Lot: 2303565)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	98.9		91	106		
Matrix: WATER			Method Blank (MB) Report		Laboratory Contr	rol Spike (LCS) and Labo	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike Re	covery (%)	Recove	ny Limits(%)	RPI) (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Total (QC Lot: 23021	34)										
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	88.3		85	110		
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	94.5		85	109		
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	99.2		86	111		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	95.4		90	111		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	98.4		89	111		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	92.0		85	115		
EG020: Nickel	7440-02-0	1	μg/L	<1	100 µg/L	94.5		87	110		
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	97.3		85	114		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	94.2		86	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL			-		Matrix Spil	ke (MS) and Matri	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	ic Nonmetallic Parameters (QC	C Lot: 2300382)								
HK1914877-001	A/Sediment	EK067A: Total Phosphorus as P		100 mg/kg	87.6		75	125		
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 2312513)								
HK1914877-008	H/Sediment	EK067A: Total Phosphorus as P		100 mg/kg	106		75	125		
EG: Metals and	Major Cations (QC Lot: 22877	67)								
-K1914877-001	A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	82.5		75	125		
		EG020: Cadmium	7440-43-9	5 mg/kg	97.2		75	125		
		EG020: Chromium	7440-47-3	5 mg/kg	83.2		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	78.1		75	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined		75	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	88.3		75	125		
		EG020: Nickel	7440-02-0	5 mg/kg	80.9		75	125		
		EG020: Silver	7440-22-4	5 mg/kg	98.3		75	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75	125		
EP: Aggregate (Organics (QC Lot: 2303565)		I					1		1
HK1914428-001		EP005: Total Organic Carbon		40 %	84.3		75	125		
Matrix: WATER					Matrix Spil	ke (MS) and Matri	ix Spike Duplic	ate (MSD) Re	port	
			-	Spike		covery (%)	Recovery		-) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
•	Majar Cationa Tatal (OC Lat	2202124)								Linim
	Major Cations - Total (QC Lot: A/Rinsate Blank	EG020: Arsenic	7440-38-2	100.00/	109		75	125		
11119140//-01/		EG020: Cadmium	7440-38-2	100 µg/L 100 µg/L	94.0		75	125		
		EG020: Chromium	7440-43-9	100 µg/L	94.0 86.7		75	125		
		EG020: Copper	7440-47-3	100 µg/L	98.0		75	125		
		EG020: Lead	7439-92-1	100 µg/L	87.0		75	125		
		EG020: Mercury	7439-97-6	2 µg/L	76.0		75	125		

Page Number : 13 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1914877

Matrix: WATER					Matrix Spl	ike (MS) and Matrix	x Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and	Major Cations - Total (QC Lot:	2302134) - Continued								
HK1914877-017	A/Rinsate Blank	EG020: Nickel	7440-02-0	100 µg/L	100		75	125		
		EG020: Silver	7440-22-4	100 µg/L	83.1		75	125		
			7440-66-6	100 µg/L	97.0		75	125		1

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	MR CYRUS LAI WORK ORDER	HK1914877
CLIENT	E FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	: ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, SUB-BATCH 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG DATE RECEIVED DATE OF ISSUE	: 1 : 9-APR-2019 : 26-APR-2019
PROJECT	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FORNO. OF SAMPLESOPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FORCLIENT ORDERSIU HO WAN SEWAGE TREATMENT PLANTSIU HO WAN SEWAGE TREATMENT PLANT	: 24 : 0041/17

General Comments

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- pH determined and reported on a 1:5 soil / water extract.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- pH value is reported as at 25°C.
- EK059A Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Kichard Formy

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK1914877

¹ 1 ² FUGRO TECHNICAL SERVICES LIMITED

CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1914877-001	A/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-002	B/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-003	C/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-004	D/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-005	E/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-006	F/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-007	G/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-008	H/Sediment	SEDIMENT	09-Apr-2019	
HK1914877-009	A/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-010	B/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-011	C/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-012	D/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-013	E/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-014	F/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-015	G/Benthic Survey	SEDIMENT	09-Apr-2019	J2999-272.44
HK1914877-016	H/Benthic Survey	SEDIMENT	09-Apr-2019	.12999-272.44
HK1914877-017	A/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-018	B/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-019	C/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-020	D/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-021	E/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-022	F/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-023	G/Rinsate Blank	WATER	09-Apr-2019	
HK1914877-024	H/Rinsate Blank	WATER	09-Apr-2019	

TEST CERTIFICATE
SUMMARY OF SOIL CLASSIFICATION TEST RESULT
GEOSPEC 3 : 2001

Report No: J2999-272.44

Works Order No. : 272

Job No. : J2999

Customer : ALS Technichem (HK) Pty Ltd

Project : _										C	Contract No.:					Date : 11/04/2019	
Sample ID	Sample	<u>e</u>		Δ Moisture Content		Test 6.1 Plastic F	TestTestTestFest6.16.16.16.2LiquidPlasticPlasticityLiquidity	Test 6.2 Liquidity	Passing]	Preparation Method		Particle Size Distribution	e Distri	butior		Description	Sample
No.	No.	Type I	Depth (m)	(%)	Limit (%)	Limit (%)	Index (%)	Index			# Test Method		Percentage Gravel Sand Silt (%) (%) (%)		Clay (%)		Origin
HK1914877-009	A/Benthic Survey	D									1,5,7	15	39	28	18 L	Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments	+,
HK1914877-010	B/Benthic Survey	Q									1,5,7	-	16	54	29 I S	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	+,
HK1914877-011	C/Benthic Survey	D									1,5,7	0	3	68	29 I v	Dark grey, slightly sandy SILT/CLAY with shell fragments	+
HK1914877-012	D/Benthic Survey	D									1,5,7	0	17	53	30 I	Dark grey, slightly sandy SILT/CLAY with shell fragments	**, '
HK 1914877-013	E/Benthic Survey	Q									1,5,7	0	9	61	33 I	Dark grey, slightly sandy SILT/CLAY with shell fragments	#,
Legend :	= #	Test Metl Test Meth	hod in acc hod in acc	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Contr Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3	GEOSPEC	: 3 : 2001 T	est 5.1 Moi sst 8.1 (1), 8	sture Conte 3.2 (2), 8.3	ent at 45°C (3), 8.4 (4),	ent at $45^{\circ}C \pm 5^{\circ}C$ (A), Test 5.2 Mo (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7)	st 5.2 Moist i), 8.7 (7).	ure Conte.	nt at 105	°C ± 5°(C(B),	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45° C (A), Test 5.2 Moisture Content at 105° C $\pm 5^{\circ}$ C (B), Test 5.3 Comparative Moisture Content $45/105^{\circ}$ C $\pm 5^{\circ}$ C (C) Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	
Symbols :	 Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample; 	nple; Sample; Sample;			P - M M M D Tq	P - Piston Sample; M - Mazier Sample; D - Small Disturbed '- Portable triple ti	 P. Piston Sample; M Mazier Sample; D Small Disturbed Sample; PT - Portable triple tube Sample; 	ile; mple;	N.P Non Plastic; A.R As Received; H.P Hand Picked; - Moisture Conter	N.P Non Plastic; A.R As Received; H.P Hand Picked; Moisture Content for A.L. Test.	A.L. Test.	A.D / O.D C W.S V	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;			Sampling History - Refer the Individual Test Report, Estimated Uncertainty - Refer the Individual Test Report. [‡] - Information provided by customer.	
Notes: Checked by :	IS - Insufficient Sample;	÷υς 1			Tf - T	o Follow o	Tf - To Follow on supplementary Report. Appro	ntary Repoi App	eport. Approved By :	3						Date : 25/04/2019	
	T K Lam		IKAS h	as accredite	ed this la	boratory	(Reg. No	. HOKL	AS 055)	Chung Hei Wing Principal Laboratory Officer under HOKLAS for spe	ing oratory Offic LAS for s	pecific	laborate	ory act	ivitie	Chung Hei Wing Principal Laboratory Officer HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the	
		HOKI	LAS dir	HOKLAS directory of accredited laboratories.	ccredited	laboratc		s report s	shall not T	Technology Centre	tree unless	with pr	ior writ	ten ap	prova	This report shall not be reproduced unless with prior written approval from this laboratory.	
C Gammon Construction Ltd	on Ltd							Tseung	Kwan O, N	Tscung Kwan O, N.T. Tel :26991980, Fax : 26917547	980, Fax : 2	6917547					
Form : GESS001 / Sep.	Form : GESS001 / Sept.14.18 / Issue 1 / Rev 4	1.															Page 1 of 2

TEST CERTIFICATE
SUMMARY OF SOIL CLASSIFICATION TEST RESULT
GEOSPEC 3 : 2001

•	4
-	2.4
-	-27
0.0	56
	23
,	
,	0
•	4
	Ĕ
	ď
	Ş
1	-

Works Order No. : 272

|--|

	Sample	Origin	++ '	*,	**,									Page 2 of 2
Date : 11/04/2019	Description		Dark grey, slightly sandy SILT/CLAY	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments			Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45° C ± 5 $^\circ$ C (A). Test 5.2 Moisture Content at 105° C ± 5° C (B). Test 5.3 Comparative Moisture Content $45/105^\circ$ C ± 5° C (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. [‡] - Information provided by customer.	Date : 25/04/2019		HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.		
	ion	tage Silt Clay (%) (%)	36	32	29			5°C (B),		a a		activit		
	stribut	Percentage Sand Silt (%) (%)	19	55	47	gar thread		05°C ±	ied; Dried; ieved;			ratory		
	ize Dis		3	12	18			itent at 1	A.D Air Dried; 0.D Oven Dried; W.S Wet Sieved;			ic labo	te, 7	
	Particle Size Distribution		0	-	6		-	ture Cor			icer	specifies s with 1	rial Esta 2691754	
Contract No.:	Par	# Test Method	1,5,7	1,5,7	1,5,7			5.2 Mois 8.7 (7).	.L. Test.		g tory Off	AS for 1 unless	e O Indust 80, Fax : :	
Contr	Preparation Method							ontent at 45°C ± 5°C (A), Test 5.2 Moi 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	N.P Non Plastic; A.R As Received; H.P Hand Picked; • - Moisture Content for A.L. Test.	2	Chung Hei Wing Principal Laboratory Officer	under HOKL be reproduced	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel. 26991980, Fax: 26917547	
	Test 6.2 Passing Liquidity 425µm	Test Sieve (%)						ent at 45°C (3), 8.4 (4)	N.P Non Plastic; A.R As Received; H.P Hand Picked; [•] - Moisture Conter	teport. Approved By :		AS 055) shall not l	T Wang Stree Kwan O, N	
	Test 6.2 Liquidity	Index						bisture Cont 8.2 (2), 8.3	ple; ample;	entary Repo Ap		lo. HOKI is report	21 Chun Tseung	
	TestTestTest6.16.16.1LiquidPlastic Plasticity	Index (%)						Test 5.1 Mc Test 8.1 (1),	 P. Piston Sample; M. Mazier Sample; D. Small Disturbed Sample; PT - Portable triple tube Sample; 	Tf - To Follow on supplementary Report. Appro		y (Reg. N ories. Th		
	Test 6.1 Plastic	Limit (%)						3:2001	 P - Piston Sample; M - Mazier Sample; D - Small Disturbed Portable triple ti 	o Follow		laborat		
		Limit (%)						GEOSPEC	Р- М - D - РТ -	T - T		ed this la		
	Δ Moisture Content	(%)						Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture C Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2),				has accredite		
		Depth (m)						ethod in a ethod in a				HKAS KLAS d		
	9	Type	D	Q	D			Test Me Test Me	ple; Sample; Sample;	10	æ	HOH		
	Sample	No.	F/Benthic Survey	G/Benthic Survey	H/Benthic Survey			Δ= #	 U - Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample; 	IS - Insufficient Sample;	TKLam		n Ltd	14 18 / Jesue 1 / Rev 4
Project : _	Sample ID	No.	HK1914877-014	HK1914877-015	HK1914877-016			Legend :	Symbols : 1	Notes: Checked by :			© Gammon Construction Ltd	Form : GFSS001 / Sent 14 18 / Issue 1 / Rev 4

			<i>c</i>					Report No	. :,	J2999-272.44	
	2999 A S Toobaiol	hem (HK) Pty L	Contract No.	ġ.			Work	s Order No.		272	
		nem (HK) Pty L	la							272	
roject -								le ID No.		HK1914877-009	
								ole No.		A/Benthic Survey	/
Date Received: 1	1/04/2019						Samp	ole Depth (m) :		
ested Date : 1	7/04/2019						Speci	imen Depth ((m) :		
							Samp	le Type		Small Disturbed	
Description : L	Dark grey, sli	ghtly gravelly, s	andy SILT/CLA	Y with she	ll fragments	5	Samp	le Origin	1	.‡	
ieve Method : N	Aethod A	^ 1	Jpon request	* Dele	te as approp	ariata		rmation prov	idad by a	rtomar	
			-							istomer	
IEVE ANALYS		ercent	*Expanded		Cumulative		IMENTATIO				
	P	assing	Uncertainty		cent Passing		ific Gravity (#				
Sieve Size		(01)	of the Percent		h Expanded					osphate, Sodium	carbonate
100.0	_	(%)	Passing (%)	Und	ertainty (%		pling History			·	
100.0 mn		00				Ine	presence of any	y visible orga	inic matter	in the soil : Non	e
75.0 mn		00	-				N	1 4-		0/ F'	
63.0 mn		00	•		-		Particle		anded	% Finer	Expande
50.0 mn		00					Diameter	Uncertain		than D	Uncertainty
37.5 mn		00			-			Particle I		K	% finer that
28.0 mn		00					(mm)	(m		(%)	(%)
20.0 mn		00					0.0721			46	
14.0 mm		00	-				0.0512			44	-
10.0 mn		00				_	0.0364			43	· -
6.30 mn		00	-		-		0.0261			39	-
5.00 mn		97	-			_	0.0186			37	-
3.35 mn		93 85	-		-		0.0098	-		29 22	-
2.00 mm		77	-					-		19	-
1.18 mn		67			(19)		0.0025			19	
600 μm 425 μm		64			-	CT IN	0.0015 IMARY :	-		10	-
425 μm 300 μm		61			-	SUN	Gravel (%)	0.12	15		
212 μm		57			-	_	Sand (%)		15 39		
150 μm		52		_			Salu (%) Silt (%)		28		
63 μm		46	-		-	_	Clay (%)		18		
0 μm		0			-		Clay (70)		10		
90 80 70 70 60 50 50 40 30											
	002 0	.006 0.01 (0.02 0.06	→ 0.1	0.2	0.6	1 2		5 10	20	60 100
[1		Particle Siz	e (mm)				· · · · ·	
	FINE	MEDIUM	COARSE	FINE	MED	NUM	COARSE	FINE	MEDIUM	COARSE	BLES
CLAY		SILT			S/	AND			GRAVEL		O m
						1				11 0	

© Gammon Construction Ltd

	J2999 ALS Techni	chem (HK)	Contract 2	No. :		Wart	s Order No.	: 272	
		chem (HK)	Pty Ltd					: 272 : HK1914877-010	
roject						•	le ID No.		
nto Descional	11/04/2010						le No.	: B/Benthic Survey	y
ate Received :							le Depth (m)	1	
ested Date :	17/04/2019						men Depth (m)	2 	
	D. 1	· · · ·					le Type	: Small Disturbed	
Description : 1		lightly grave	¹ Upon request		LAY with shell frag Delete as appropria		le Origin rmation provided by	15	
IEVE ANALY	SIS	Percent	*Expanded		[^] Cumulative	SEDIMENTATIO			
		Passing	Uncertaint		Percent Passing	Specific Gravity (#		.65 #	
Sieve Size			of the Perce	ent	with Expanded	Dispersant Details		phosphate, Sodium	carbonate
		(%)	Passing (%	ó)	Uncertainty (%)	Sampling History			
100.0 mi		100	*			The presence of any	visible organic ma	tter in the soil : Nor	ne
75.0 mi		100			-			1	
63.0 mi		100	-			Particle	*Expanded	% Finer	Expande
50.0 mi		100	-			Diameter	Uncertainty of the		Uncertainty
37.5 mi		100	*			4	Particle Diamete		% finer that
28.0 mi		100			•	(mm)	(mm)	(%)	(%)
20.0 mi		100	*		-	0.0686	-	79	-
14.0 mi		100	-			0.0487	-	78	-
10.0 mi		100	-		-	0.0350		72	-
6.30 mi 5.00 mi		100			*	0.0251	-	66	-
3.35 mi		100	-		-	0.0180	-	61 53	-
2.00 mi		99	-		-	0.0095	+	39	-
1.18 m		99	-		-	0.0049		39	-
600 μn		99	-			0.0023	-	26	-
425 µn		99	-		-	SUMMARY :		20	-
300 µn		98	-			Gravel (%)	: 1		
212 µn		98	-			Sand (%)	: 16		
		20							
		95	-			Silt (%)	: 54		
150 μn	n	95 83	-		-	Silt (%) Clay (%)	: 54		
150 μπ 63 μπ 0 μπ	n n Legend	95 83 0 tion Points >63,	um janored	0.063		Clay (%)	5 10		75
150 µл 63 µл 0 µл	n n Legend	83 0	um janored	0.063	- Sieve Size(mm	Clay (%)	: 29		75
150 µп 63 µп 0 µп 0 µп 90 90 80 70 70 60 80 70 70 40 30 20 10 0	n n Legend	83 0	JM COARSE		- Sieve Size(mm	Clay (%)	: 29	20 37.5 20 37.5 20 20 20 20	60 100
150 µm 63 µm 0 µm 90 90 80 70 60 80 70 80 80 70 80 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n	83 0 tion Points >63,	JM COARSE		Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5 20 37.5 20 1 20 1 20 UM COARSI EL	60 100
150 µm 63 µm 0 µm 90 90 80 70 60 80 70 80 80 70 80 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80		83 0 tion Points >63,	JM COARSE		Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5 20 37.5 20 20 UM COARSI EL	
150 µп 63 µп 0 µп 0 µп 90 90 80 70 60 50 50 40 30 20 10 0,001 0 ссач echnician	n n	83 0 tion Points >63,	JM COARSE		Sieve Size(mm 0.15 0.3	Clay (%)	5 10	20 37.5 20 37.5 20 1 20 1 20 UM COARSI EL	

© Gammon Construction Ltd

ate Received : 1 ested Date : 1 Description : I	1/04/2019										Order No e ID No.	:	272 HK19148 C/Benthi	877-011 c Survey		
escription . I	7/04/2019			AV with sh	all fro	amonta				Sample Specin Sample	e Depth (r 1en Depth	n) (m)	Small Di			
ieve Method : M		singhtiy sanuy		request			s appropria	ate		-	-	vided by cu				
IEVE ANALY		Percent		Expanded	-		ulative		ME	NTATION			istomer			
Sieve Size		Passing	Ui of t	ncertainty he Percent	Percent Passing with Expanded		Passing	Speci Dispe	fic G rsan	ravity (# if t Details :	f assumed Sodium l): 2.65 hexametaph		Sodium c	arbona	ite
		(%)	Pa	Passing (%)		Uncertainty (%)		Sampling History : As received The presence of any visible organic matter in the soil : None								
100.0 mr 75.0 mr		100 100		-			-	ine p	reser	ice of any	visible of	game matter	in the st	on . None	5	
63.0 mr		100		-			-		Par	ticle	^Ex	panded	% F	iner	^E	xpande
50.0 mr		100		-		5	-	1		neter		inty of the	that			ertainty
37.5 mr		100					-				Particle	Diameter	k			ner thar
28.0 mr		100		(A)			-			im)	()	nm)	(%			(%)
20.0 mr		100		(*)			.			707		-	9			
14.0 mr		100	_	*			*	-		502 359		-	9		-	-
10.0 mr 6.30 mr		100		-	-		-	-		359 257		-	8			-
5.00 mr		100	-		-+-					184		-	7			-
3.35 mr		100	1				-			097	-	-	6			-
2.00 mr		100				1	*			050		-	4			-
1.18 mr		100		0.00			•			025		-	3			-
600 μn		100		-			-	07 19 -		015		-	2	5		
425 μn		100		•			-	SUMMARY : Gravel (%)			0					
<u>300 μn</u> 212 μn		100 99		-			-	-		avel (%) nd (%)	:	3				
150 μn		99		-			-			t (%)		68				
63 μn		97			-		-			ay (%)	-	29				
0 μn		0						1								
	Legend o = Sedimen	tation Points >63,	µm ignored	0.06	3 6	Sie 0.15	eve Size(mm 0.3	0.6	1	.18 2	5	10	20	37.5	75	1
90					ĭ∏]			+++					_			
80			/													1
bassing 60				+ + #				+++				+++++				1
Pas																
eg 50																1
Dercenta		4						+++	Ш	-						4
Per																
30	K										+++					
20															10.00	
20																
10					+++			+++								-
														1		
0.001 0.	.002	0.006 0.01	0.02	0.06	5 O.	1 0.	.2	0.6	1	2		6 10	20	اللقصاد	60 ·	100
							article Size (r	mm)					· · · · · · · · · ·			
CLAY	FINE	MEDIL	лм с	OARSE	FI	INE	MEDIU	M	CO.	ARSE	FINE	MEDIUM		COARSE	COB	BLES
		SILT					SAN	D				GRAVEL				
								1					11	~		
echnician	Chris	Chan		Ch	necker	d By :	7	Ł			Apr	proved By :	V	1		
	211110		and a			lame : T								M 1		

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Customer :	J2999 ALS Techni	chem (HK) P	Contract N Pty Ltd	o. :		Wo	Report No.	:	272	
Project :		()					nple ID No.		HK1914877-012	
5							nple No.		D/Benthic Survey	
Date Received :	11/04/2019						nple Depth (m		Di Dentine Barve	,
Tested Date :							cimen Depth (in			
Coled Date .	17/04/2017						nple Type		Small Disturbed	
Description	Dork group a	lightly goody	CIT T/CLAV	hall for any	5221					
Description 1	Dark grey, s	lightly sandy	SILT/CLAY with s	shell tragme	nts		nple Origin	•		
ieve Method = 1	Method A		[•] Upon request	* Dele	ete as appropria	ate [‡] In	formation prov	vided by cu	stomer	
SIEVE ANALY	SIS	Percent	*Expanded	1 -0	Cumulative	SEDIMENTATI				
		Passing	Uncertainty		cent Passing	Specific Gravity			#	
			of the Percen		th Expanded	Dispersant Detail	s Sodium h	exametanh		carbonate
Sieve Size		(%)	Passing (%)		certainty (%)	Sampling History			ospilate, oodiain	caroonato
100.0 mi	m	100	- 1 usoning (70)	On	-	The presence of a			in the soil . Nor	A
75.0 mi		100					ing visible orga	ame matter	In the son . Not	
63.0 mi		100	-		-	Particle	- Eur	and ad	% Finer	Tunanda
50.0 mi		100	-	· · ·		Diameter	Uncertain	anded		Expande
37.5 mi		100	-			Diameter	Particle		than D	Uncertainty
28.0 m		100	-		*	- (mm)			K	% finer that
20.0 mi		100	-			(mm) 0.0677	· · · · · · · · · · · · · · · · · · ·	m)	(%)	(%)
14.0 mi		100			-				83	-
14.0 mi 10.0 mi	-	100	-			0.0482	-		81	
6.30 m		100							77	
5.00 mi		100	-		-	0.0248			71	
3.35 mi		100			-	0.0177	-		66	
2.00 mi		100			-	0.0094	-		56	•
1.18 mi		99	-		-	0.0048	-		44 34	*
600 μn		98								-
425 μn		98	-		-	0.0015			24	-
300 μn		98			-	SUMMARY :	~	0		
		97	-		-	Gravel (%		0		
212 µn					-	Sand (%)	:	17		
150 µm	n	02		_		C'14 /0/ \				
		93	-		-	Silt (%)	:	53		
63 μn Ο μn	n n Legend	93 83 0		063 0.	Sieve Size(mm) 15 0.3	Clay (%)	:	53 30 10	20 37.5	75
63 μn 0 μn	n n Legend	83 0	m ignored 0.	063 0.	- Sieve Size(mm	Clay (%)	:	30	20 37.5	75
63 µm 0 µm 0 µm 100 90 80 70 60 60 30 20 10 10 0		83 0	m ignored 0.		- Sieve Size(mm	Clay (%)	5		20 37.5	
63 µm 0 µm 0 µm 100 90 80 70 50 50 50 10 10 0		83 0	m ignored 0.		Sieve Size(mm, 15 0.3	Clay (%)	5			60 100
63 µm 0 µm 0 µm 100 90 80 70 70 60 50 80 70 70 80 70 70 80 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	n . Legend o = Sedimenta	83 0	m ignored 0.	26 0.1	Sieve Size(mm 15 0.3	Clay (%)	5	30 10	20	
63 µm 0 µm 0 µm 100 90 80 70 60 80 70 60 80 70 70 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n . Legend o = Sedimenta	83 0	m ignored 0.	26 0.1	Sieve Size(mm 15 0.3 0.3 0.2 Particle Size (rr MEDIUM	Clay (%)	5	30	20	60 100
63 µm 0 µm 0 µm 90 90 80 70 60 80 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n ILegend o = Sedimenta IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	83 0 iion Points >63,4 0 0 0 0 0 0 0 0 0 0 0 0 0	m ignored 0.	06 0.1 FINE	Sieve Size(mm 15 0.3	Clay (%)	5	30	20	60 100
63 µm 0 µm 0 µm 100 90 80 70 60 80 70 60 80 70 80 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n . Legend o = Sedimenta	83 0 iion Points >63,4 0 0 0 0 0 0 0 0 0 0 0 0 0	m ignored 0.	Decked By	Sieve Size(mm 15 0.3	Clay (%)	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 10 10 10 10 10 10 10 10 10 1	20	

© Gammon Construction Ltd

Job No. : .	J2999			Contra	ct No. :					Report No			2.44	
Customer : .	ALS Techn	ichem (HK) Pty Ltd	1					Wor	ks Order No.	:	272		
roject : .									Sam	ple ID No.		HK1914	877-013	
225										ple No.		E/Benthi		
Date Received :	11/04/2019									ple Depth (m)		2.2.		
'ested Date :										imen Depth (
calca Date .	1770-772017									ple Type		Small Di	sturbed	
Description :	Dark grey	elightly can	dy SII T	ICI AV I	ith chall	fragment	0			ple Type ple Origin		_‡	sturbeu	
Sieve Method :		Slightly Sali	-	pon reque		-	as appropria	ate		pre Origin ormation prov	•			
		-										istomer		
SIEVE ANALY	SIS	Percent	1	^Expan			mulative			ON ANALYS				
		Passing		Uncerta			nt Passing	1 1	2.	f if assumed)			Codium	auhanata
Sieve Size		(0/)		of the Per			Expanded			: Sodium he : As receive		ospnate,	Sodium c	arbonate
100.0 m		(%) 100		Passing	(%)	Unce	rtainty (%)			y visible orga		in the or	il · Non	
75.0 m		100		-			-	- The pre	sence of al	ly visible orga	inc matter	i in the st	JII. NOIR	5
		100		• • • • • • • • • • • • • • •		-			Particle	1 Euro	andod	% F	inor	* Eurondo
63.0 mi		100		-			-	_	iameter	Exp		1.	n D	[•] Expande Uncertainty
50.0 mi 37.5 mi		100		141			-	- ^D	lameter	Uncertair Particle I			ΛD ζ	% finer than
28.0 m		100		-			1	-	(and the second se	Contraction of the second second	- A.S.S.		
28.0 mi		100		-			-		(mm) 0.0682	(m		(% 9		(%)
14.0 m		100		-		+	-		0.0682	-			0	
14.0 m 10.0 m		100		-			-		0.0484	-			4	
6.30 m		100				-	-		0.0348	-			8	
5.00 m		100	_						0.0179				8 2	
3.35 m		100		-				-	0.00179			6		-
2.00 m		100					-	_	0.0094	-			0	-
1.18 m		100					-		0.0048			3		
600 µr		100					-		0.0015	-			.8	
425 µr		99	_			+	-		ARY :			2	.0	
300 µr		99			10.20		<u> </u>		Gravel (%	`	0			
212 µr		99		-	-	-	-		Sand (%)		6			
150 μr		99					12.0%							
150 μι	~ 1						-		Silt (%)		61			
63 ur	n			-			-		Silt (%) Clay (%)	1	61			
<u>63 µг</u> 0 µг ¹⁰⁰ т	n Legend	94 0 ation Points >6	53μm ignor	-	0.063	0.15	Sieve Size(mm		Silt (%) Clay (%) 1.18 2	5	10	20	37.5	75
0 μr	n Legend	94 0	33µm ignor	-	0.063		Sieve Size(mm	 »	Clay (%)		33	20	37.5	75
0 μr		94 0 ation Points >6		ed			Sieve Size(mr. 0.3		Clay (%)	5				
0 μr	n Legend	94 0		ed	0.063	0.15	Sieve Size(mr.	0.6	Clay (%)			20		75
0 μr 100 90 80 70 60 60 60 60 60 60 20 10 10 0 0 0		94 0 ation Points >6		ed		0.15	Sieve Size(mr. 0.3	0.6	Clay (%)	5				
0 μr		94 0 ation Points >6	1 0.	ed	0.06	0.15	Sieve Size(mr.) 0.6	Clay (%)	5				
0 μr 100 90 80 70 60 60 60 60 60 60 20 10 10 0 0 0	n	94 0 ation Points >6	1 0.0	ed	0.06	0.15	Sieve Size(mr. 0.3) 0.6	1.18 2 1.18 2 1 2 1 2					
0 μr	n	94 0 ation Points >6	1 0.0	ed	0.06	0.15	Sieve Size(mr. 0.3) 0.6	1.18 2 1.18 2 1 2 1 2		33			
0 μr	n	94 0 ation Points >6	1 0.0	ed	0.06	0.15 0.1 0.1 FINE	Sieve Size(mr. 0.3) 0.6	1.18 2 1.18 2 1 2 1 2	5	33	20	COARSE	

© Gammon Construction Ltd

	999	Contract No.	:		Report No. :	J2999-272.44	
Customer : AI Project : -	LS Technichem (HK) I	Pty Ltd				272 HK1914877-014	
				Sampl		F/Benthic Survey	
Date Received: 11.	/04/2019				e Depth (m)		
Tested Date : 17.	/04/2019				nen Depth (m)		
						Small Disturbed	
Description : Da	rk grey, slightly sandy	SILT/CLAY					
Sieve Method : Me		[•] Upon request	* Delete as appropri		mation provided by c		
SIEVE ANALYSI	S Percent	*Expanded	*Cumulative	SEDIMENTATION			
	Passing	Uncertainty	Percent Passing	Specific Gravity (# i	f assumed) : 2.65	5 #	
Sieve Size		of the Percent	with Expanded	Dispersant Details :	Sodium hexametaph	nosphate, Sodium	carbonate
	(%)	Passing (%)	Uncertainty (%)	Sampling History	As received		
100.0 mm	100	() + (4	The presence of any	visible organic matte	r in the soil : Nor	ne
75.0 mm	100	-					
63.0 mm	100	-	1.41	Particle	[•] Expanded	% Finer	Expande
50.0 mm	100	-		Diameter	Uncertainty of the	than D	Uncertainty
37.5 mm	100		-		Particle Diameter	K	% finer that
28.0 mm	100	•		(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0668		96	
14.0 mm	100	-	-	0.0474		95	-
10.0 mm 6.30 mm	100		•	0.0339	-	90	-
5.00 mm	100	-	-	0.0244		84	-
3.35 mm	100		-	0.0174	-	79	-
2.00 mm	100	-	-	0.0093	-	66	-
1.18 mm	100	-		0.0048	/)=	50	-
600 µm	99	-	-	0.0025	-	40	
425 μm	99			SUMMARY :	-	32	
300 µm	99		-	Gravel (%)	: 0		
212 µm	99		-	Sand (%)	3		
150 µm	99	-	-	Silt (%)	61		
63 µm	97	-	-	Clay (%)	: 36		
0 µm	0						
1.00	and a	1					
100	end Sedimentation Points >63,µ	n ignored 0.063	Sieve Size(mm 0.15 0.3) 0.6 1.18 2	5 10	20 37.5	75
0 =		n ignored 0.063			5 10	20 37.5	75
		n ignored 0.063			5 10	20 37.5	75
100 90		n ignored 0.063			5 10	20 37.5	75
90		n ignored 0.063			5 10	20 37.5	75
0 =		n ignored 0.063			5 10	20 37.5	75
0 = 100 90 80 70		n ignored 0.063			5 10	20 37.5	75
		n ignored 0.063			5 10	20 37.5	75
0 =		n ignored 0.063			5 10	20 37.5	75
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		n ignored 0.063			5 10	20 37.5	75
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		n ignored 0.063			5 10	20 37.5	75
00 90 80 70 60 50 50		n ignored 0.063			5 10	20 37.5	75
Deccentrade Parseing 90 90 90 90 90 90 90 90 90 90 90 90 90		n ignored 0.063					75
Deccentrade Passing 000 00 00 00 00 00 00 00 00 00 00 00 0		n ignored 0.063					75
0 = 000 000 000 000 000 000 000 000 000		n ignored 0.063					
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		n ignored 0.063					
0 = 100 90 80 70 60 60 30 20 10 10		n ignored 0.063					75
0 == 100 90 80 70 60 50 40 30 20	Sedimentation Points >63µ	n ignored 0.063					
0 == 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0	Sedimentation Points >63µ	0.063					
0 == 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0	Sedimentation Points >63µ	0.063	0.15 0.3	0.6 1.18 2	6 10	20	
0 == 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0	Sedimentation Points >63µr	0.063	0.15 0.3	0.6 1.18 2	6 10		
0 = 0 =	Sedimentation Points >63µ	0.063	0.15 0.3	0.6 1.18 2	6 10	20	
0 = 0 =	Sedimentation Points >63µr	0.083	0.15 0.3	0.6 1.18 2	6 10 FINE MEDIUM GRAVEL	20	
0 = 0 =	Sedimentation Points >63µr	0.083	0.15 0.3	0.6 1.18 2	Image: Constraint of the second se	20	

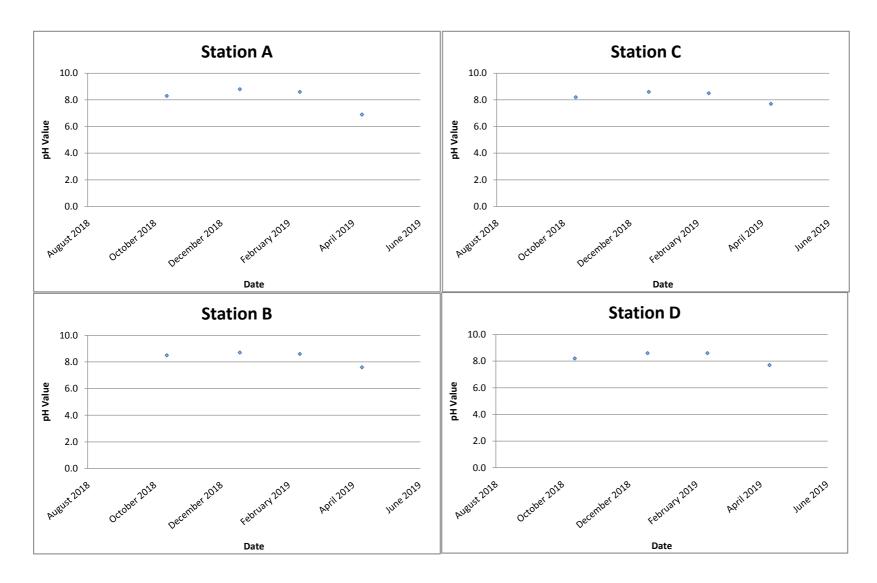
HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

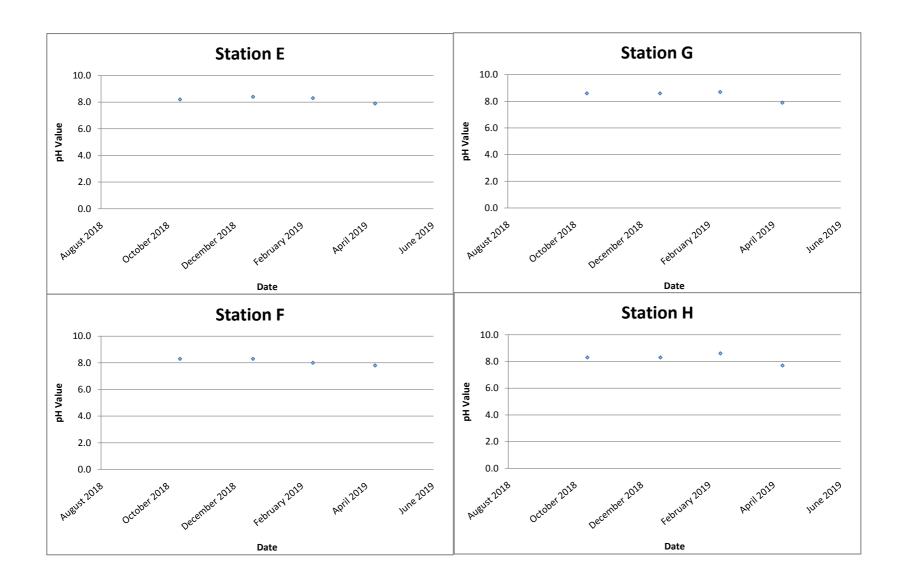
Job No Custor Projec	mer : A	2999 ALS Techn	ichem (HI	K) Pty Li	Contrac td	et No. :				Sar	Report No orks Order No. nple ID No. nple No.	: 2	J2999-272.44 272 HK1914877-015 G/Benthic Surve	
	Received: 1 Date : 1	7/04/2019		avelly, sl	lightly sand	v SILT/C	CLAY wit	th shell fra	zments	Sar Spe Sar	nple Depth (m ecimen Depth (nple Type nple Origin) : (m) :	Small Disturbed	,
	Method : N				Jpon reque			as appropri			formation prov			
	E ANALYS		Percent	1	^Expand			mulative			ION ANALYS			
	Sieve Size	515	Passing (%)		Uncertai of the Per Passing	nty cent	Percer with I	nt Passing Expanded tainty (%)	Speci	fic Gravity ersant Detail	(# if assumed)	: 2.65 exametapho	# osphate, Sodium	carbonate
	100.0 mn	1	100		1 uboing	(70)	oneer						in the soil : Nor	ne
	75.0 mn		100		-			-			, ,			
	63.0 mn	1	100					-		Particle	Exp	anded	% Finer	Expanded
	50.0 mn		100		-		1	-		Diameter	Uncertain		than D	Uncertainty
	37.5 mn		100					9 2 0				Diameter	К	% finer than
	28.0 mn		100		+				1	(mm)	(m	m)	(%)	(%)
	20.0 mn		100					(a)		0.0707	9		87	
	14.0 mn		100		-			100		0.0502			85	-
	10.0 mn		100					*		0.0358			81	-
	6.30 mn		100						8	0.0256	3		75	
	5.00 mn		100		-			-	-	0.0183			70	-
	3.35 mn		100		-					0.0096			58 47	-
	2.00 mn				-			-	-	0.0049			47	-
1.18 mm 600 µm			99	99 -				-	-	0.0025			28	
	600 μm 425 μm		98		-			-	SUM	MARY :			28	-
	300 μm		97		-			-		Gravel (%	(6) :	1		
	212 µm		96							Sand (%)		12		
	150 μm		94		-			*	-	Silt (%)		55		
	63 μm		87		-			-		Clay (%)		32		
	0 μm		0			-	-		-		205			
10		egend = Sediment	ation Points	>63µm ign	ored	0.063	0.15	Sieve Size(mr 0.3	n) 0.6	1.18	2 5	10	20 37.5	75
9	0		╋╋	-	+			+						
						1								
8	0							+ + +						
7								1.1.1						
				/										
e 6	0			/										
Passing				1										
8 5	0		LA		+ + + +			+++			+ $+$ $+$ $+$			
Percenta	0													
3														
2	0													
2														
1	0													
		002	0.006 0.		0.02	0.06		0.2	0.6	uu .	2 6		20	60 100
	0.001 0.0		0.008 0.	.01 (0.2 Particle Size (1		3 10	20	60 100
		FINE		DIUM	COARSE		FINE	MEDIU		COARSE	FINE	MEDIUM	COARSI	BLES COB-
	CLAY			ILT				SAN	D			GRAVEL		
	CLAY		S	1L I										
	CLAY		5	1L1					1				11	
		Chris		1		Check	ced By :	7	1		Appr	oved By ·	the	
	ician :	Chris 7/04/2019	Chan					T K Lam 24/04/2019	1				Chung Her Wing 24/04/2019	}

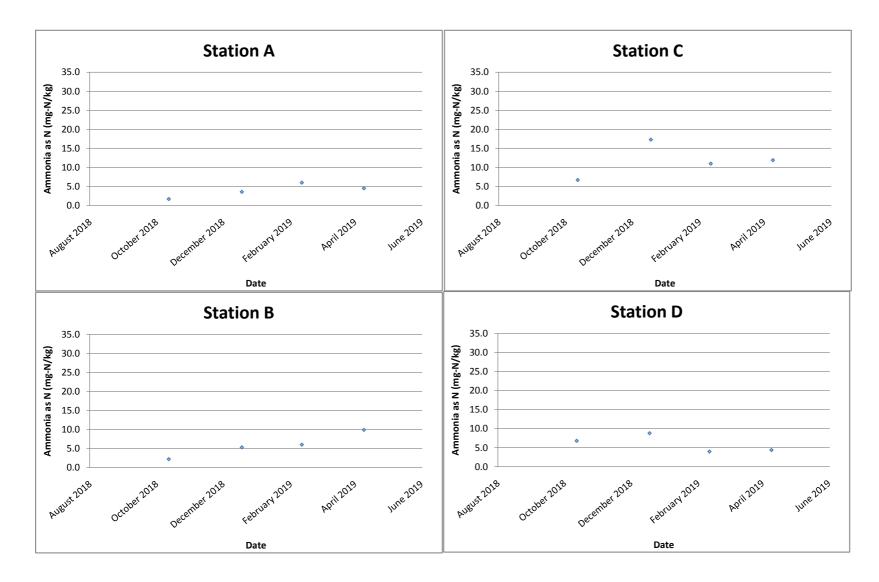
HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

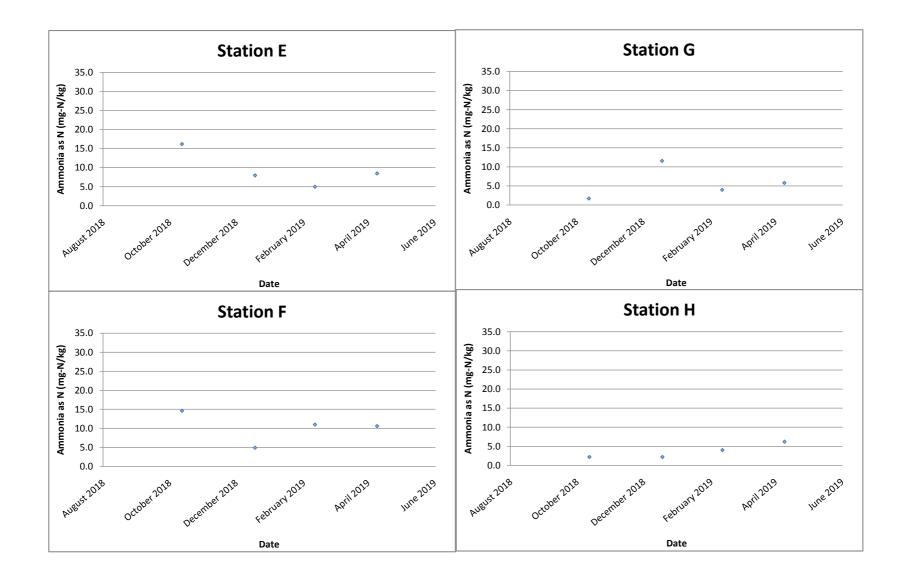
© Gammon Construction Ltd

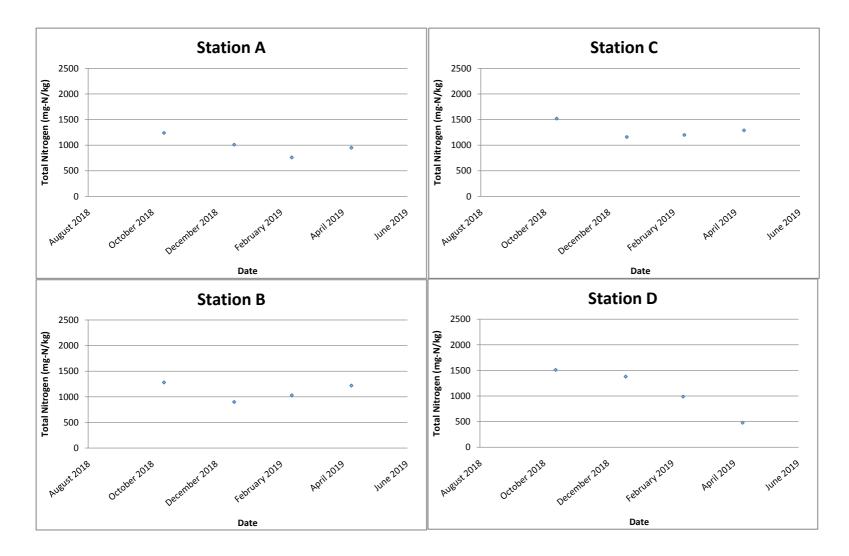


TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

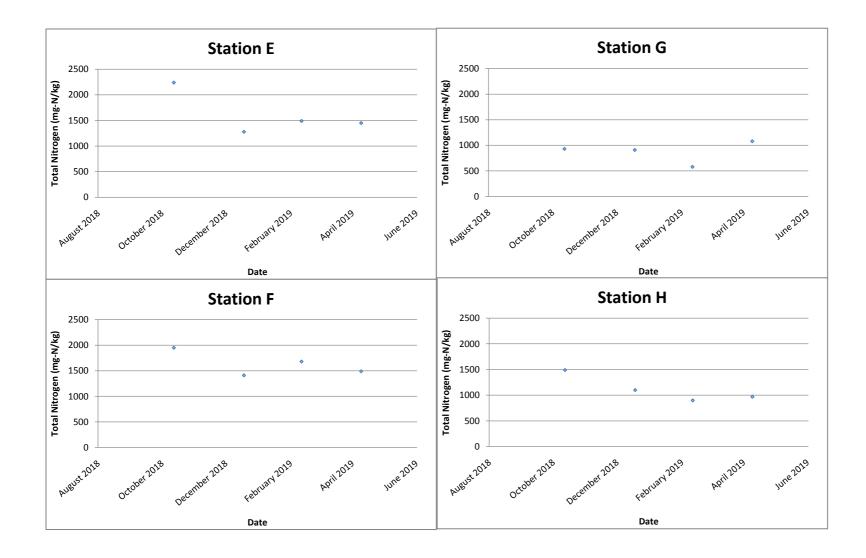

ob No. : J2	2999		Contract No. :					
Customer : A	LS Technic	hem (HK) Pty	y Ltd		Works	Order No. :	272	
roject : -					Sample	e ID No.	HK1914877-016	
oject					Sample		H/Benthic Survey	v
ate Received : 1	1/04/2019				-	e Depth (m)		
ested Date : 1						nen Depth (m)		
esteu Date	110412017				Sample		Small Disturbed	
intian · T	- 1- more of	till grovelly	-1'al-the candy SILT	/CLAY with shell fragr			_ [‡]	
		gnuy graven,				e origin		
ieve Method : M	Aethod A		[•] Upon request	* Delete as appropria		mation provided by c	ustomer	
SIEVE ANALYS	SIS P	Percent	*Expanded	*Cumulative	SEDIMENTATION			
		Passing	Uncertainty	Percent Passing	Specific Gravity (# if			
Sieve Size		1	of the Percent	with Expanded	Dispersant Details :		hosphate, Sodium	carbonate
		(%)	Passing (%)	Uncertainty (%)	Sampling History :			
100.0 mn		100	-	-	The presence of any	visible organic matte	er in the soil : Nor	ne
75.0 mn		100	-					
63.0 mn		100		-	Particle	Expanded	% Finer	Expanded
50.0 mn	n	100	•	-	Diameter	Uncertainty of the		Uncertainty of
37.5 mn		100				Particle Diameter	K	% finer than
28.0 mn	n	100		-	(mm)	(mm)	(%)	(%)
20.0 mn		100		-	0.0664	-	77	-
14.0 mn	n	100	-		0.0474	-	74	-
10.0 mn		100		-	0.0338	-	72	-
6.30 mn	n	100			0.0242		68	-
5.00 mn	n	99	-	-	0.0173	4	64	+
3.35 mn	n	97		-	0.0092	1	54	1000
2.00 mn		94		-	0.0048	-	42	+
1.18 mn		92	-	-	0.0024	-	33	-
600 µm		88		•	0.0014	-	25	+
425 µm	n	85	-	-	SUMMARY :			
300 µm	n	83	T.T.	•	Gravel (%)	: 6		
212 µm		81	(-)		Sand (%)	: 18		
						11725-14		
150 μm		79		-	Silt (%)	: 47		
150 μm 63 μm	n	76	*	-	Silt (%) Clay (%)	: 47 : 29		
150 μm 63 μm 0 μm	n n				-			
150 μm 63 μm 0 μm	n n Legend	76	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 μm 63 μm 0 μm	n n Legend	76 0		Sieve Size(mm	Clay (%)		20 37.5	75
150 μm 63 μm 0 μm	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µm 63 µm 0 µm	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 μm 63 μm 0 μm	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 μm 63 μm 0 μm [100 90 80	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	=	Sieve Size(mm	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	=	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70 70 60 50	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 µт 63 µт 0 µт 100 90 80 70	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 80 70 80 70 80 70 80 70 80 70 80 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	
150 µm 63 µm 0 µm 100 90 80 70 70 60 50 40	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75
150 μm 63 μm 0 μm 0 μm 100 90 80 70 50 50 30 20	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29		75
150 µm 63 µm 0 µm 100 90 80 70 70 70 80 80 70 70 70 70 70 80 80 70 70 80 80 70 70 80 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29		75
150 µm 63 µm 0 µm 100 90 80 70 60 60 80 70 60 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29		75
150 µm 63 µm 0 µm 90 90 80 70 70 80 70 80 70 80 70 70 80 70 70 80 70 80 70 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 80 70 70 80 70 70 70 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	: 29	20 37.5	75 75 75 70 70 70 70 70 70 70 70 70 70 70 70 70
150 µm 63 µm 0 µm 90 90 80 70 70 60 60 50 60 80 70 70 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 70 70 80 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)			
150 µm 63 µm 0 µm 90 90 80 70 70 80 70 80 70 80 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)		20	60 100
150 µm 63 µm 0 µm 90 90 80 70 70 80 70 80 70 80 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 70 80 70 70 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	5 10 5 10 6 10 FINE MEDIU	20 M COARS	60 100
150 µm 63 µm 0 µm 100 90 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 80 70 80 70 70 80 70 70 80 90 80 70 70 80 70 70 80 90 80 70 70 80 70 70 80 70 70 70 80 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)		20 M COARS	60 100
150 µm 63 µm 0 µm 90 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 90 80 70 80 70 80 90 80 90 80 70 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	5 10 5 10 6 10 FINE MEDIUL GRAVE	20 M COARS	60 100
150 µm 63 µm 0 µm 90 90 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 90 80 70 80 70 80 70 80 90 80 70 80 70 80 70 80 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70		76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	5 10 5 10 5 10 6 10 FINE MEDIUI GRAVE Approved By	20 M COARS	
150 µт 63 µт 0 µт 100 90 80 70 60 50 60 50 10 10 0,001 0.001 0.001 0.001	n Legend o = Sedimentati	76 0	n ignored 0.063	Sieve Size(mm 0.15 0.3	Clay (%)	5 10 5 10 5 10 6 10 FINE MEDIUI GRAVE Approved By Signatory	20 M COARS	

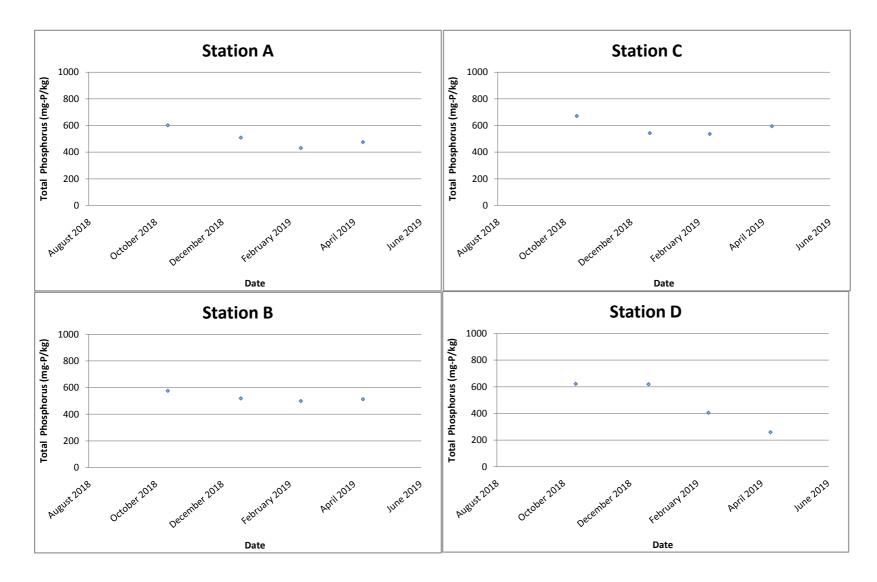

© Gammon Construction Ltd

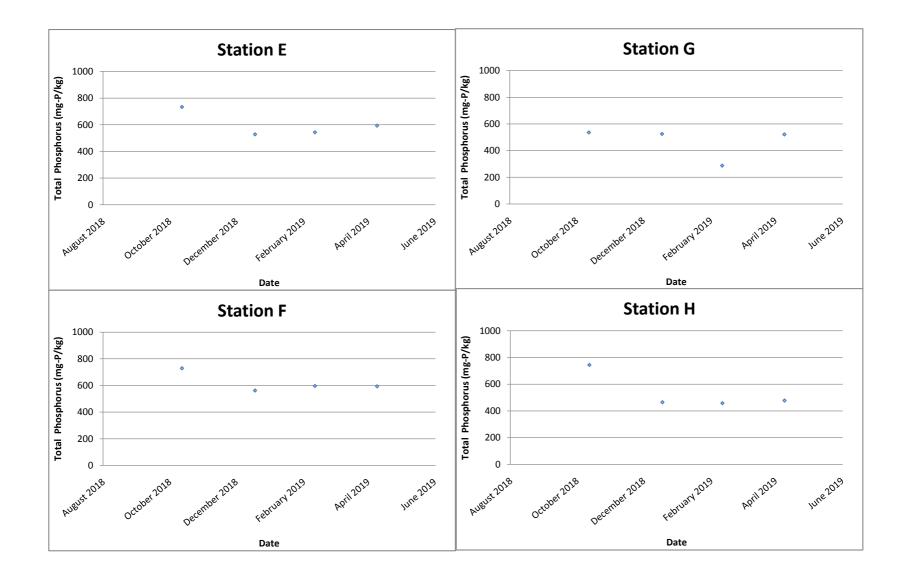

pH value

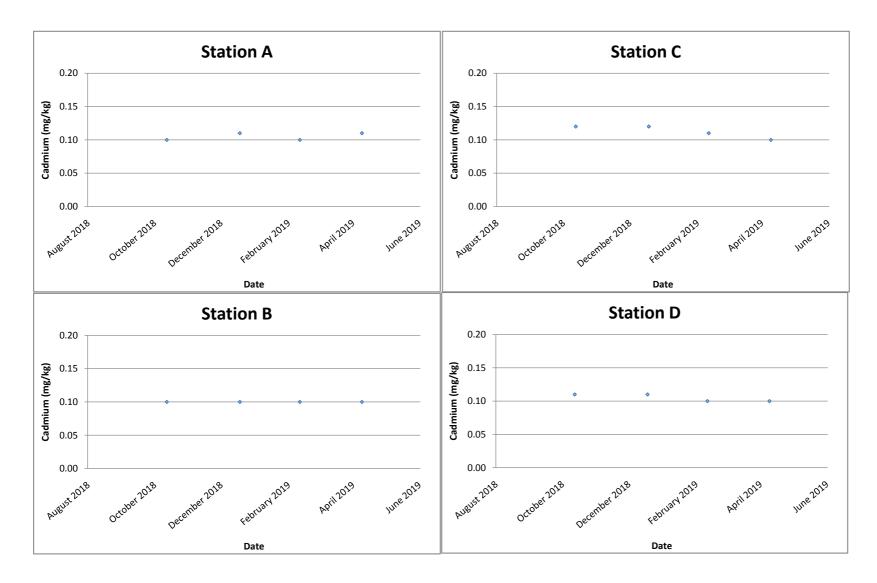


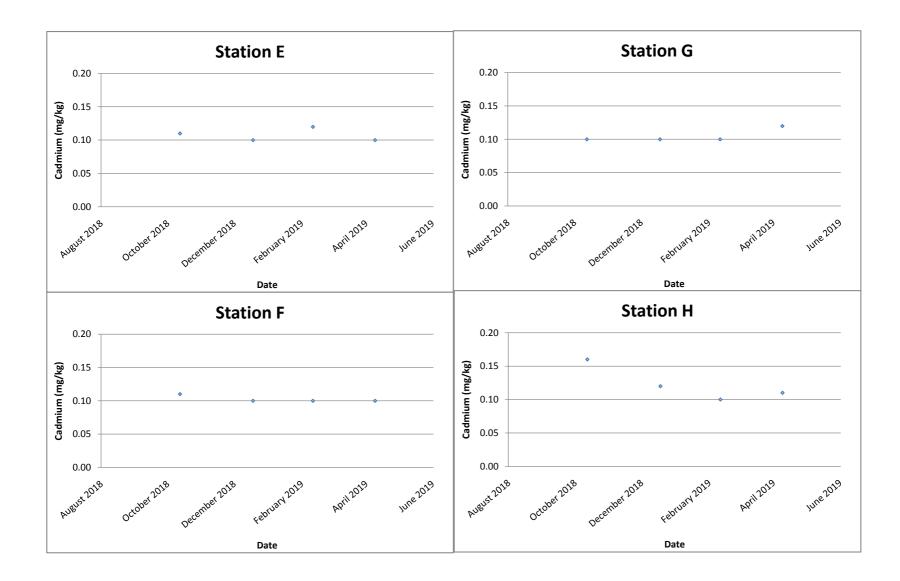
pH value

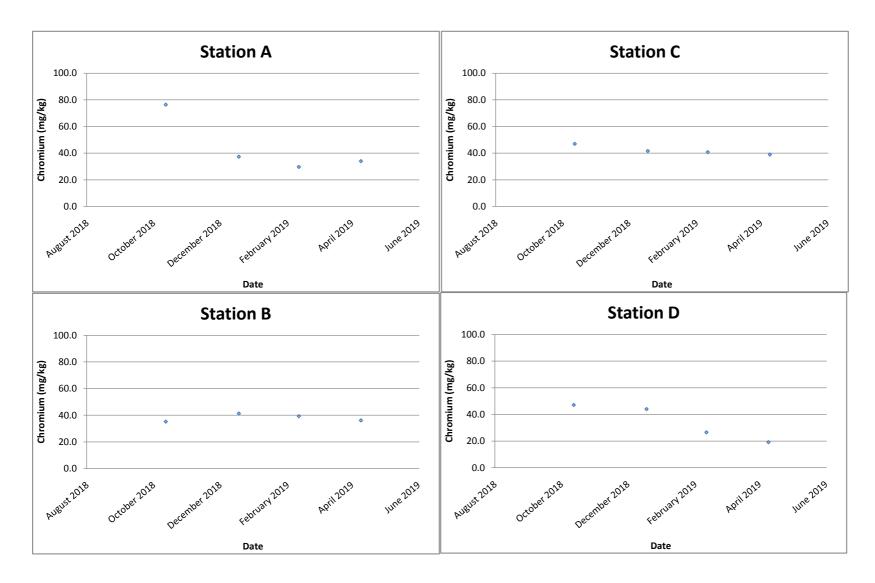


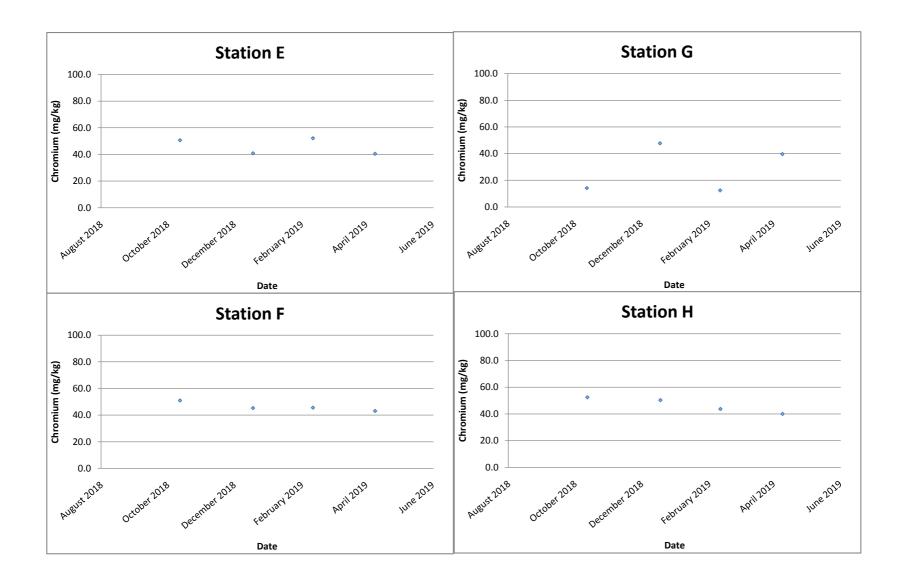


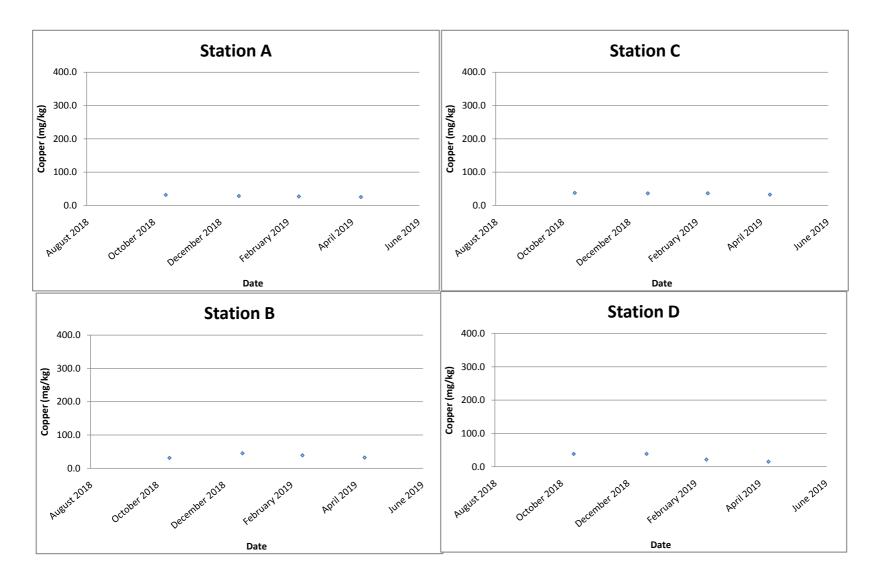


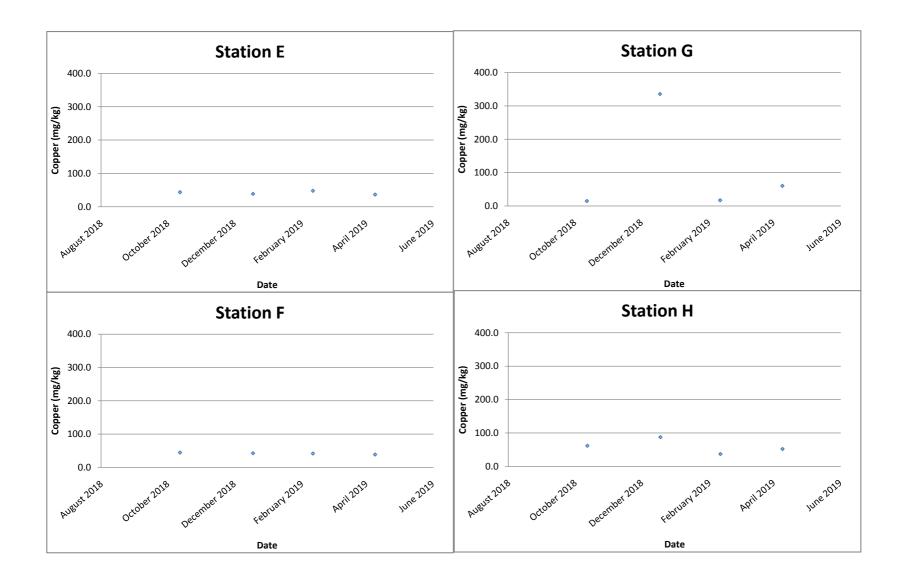

Total Nitrogen (mg-N/kg)

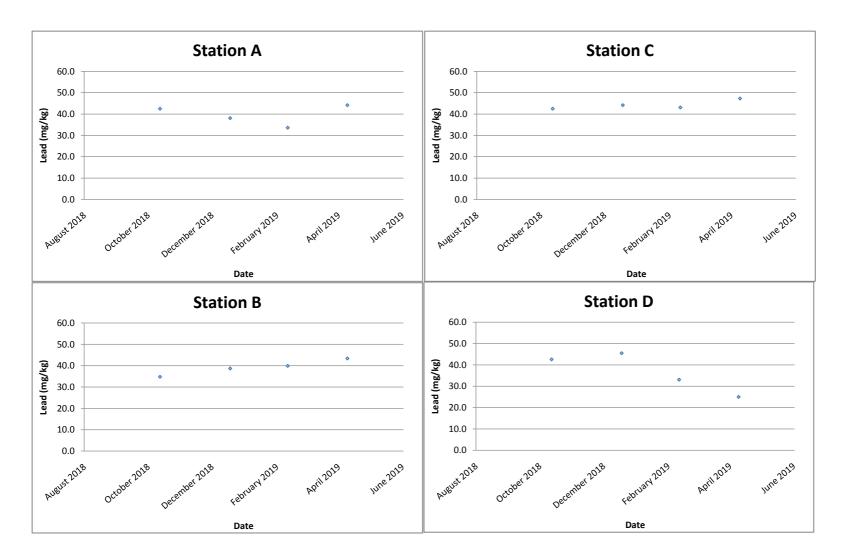


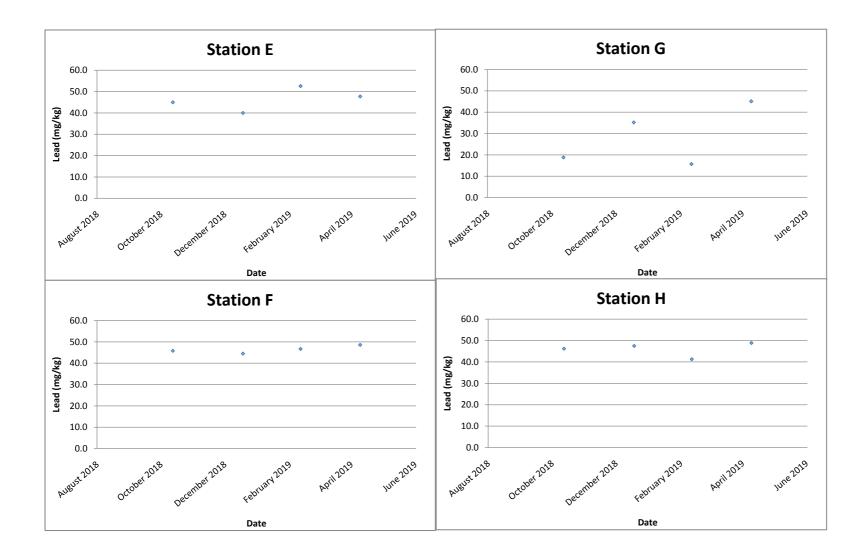

Cadmium (mg/kg)

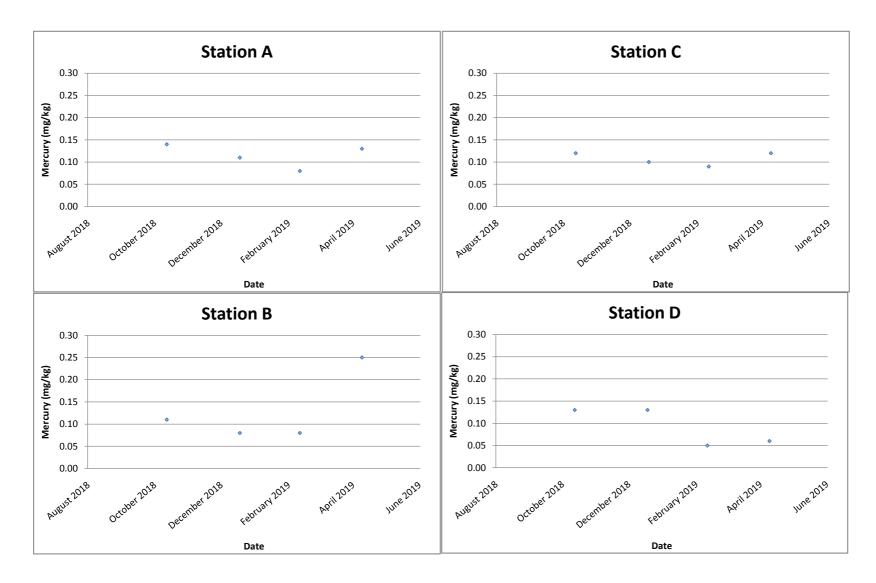

Cadmium (mg/kg)

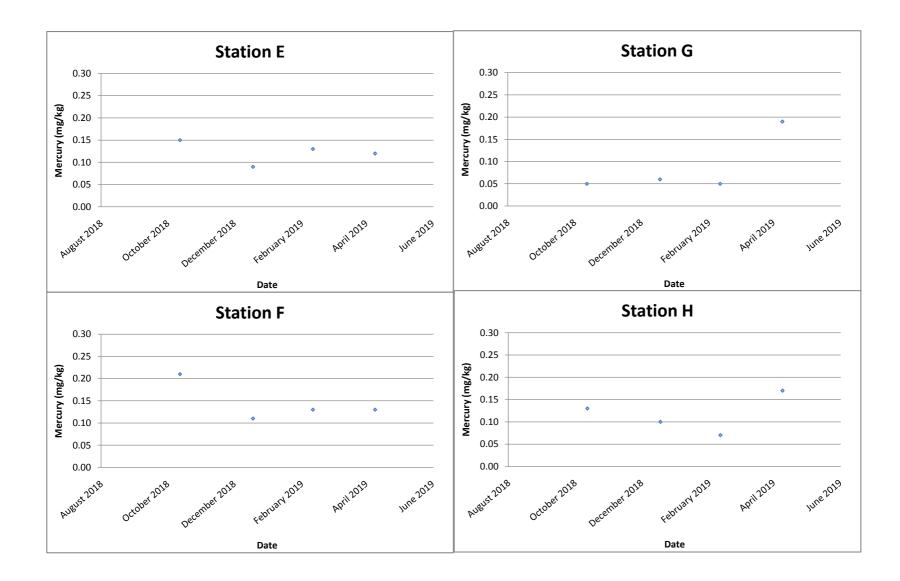

Chromium (mg/kg)

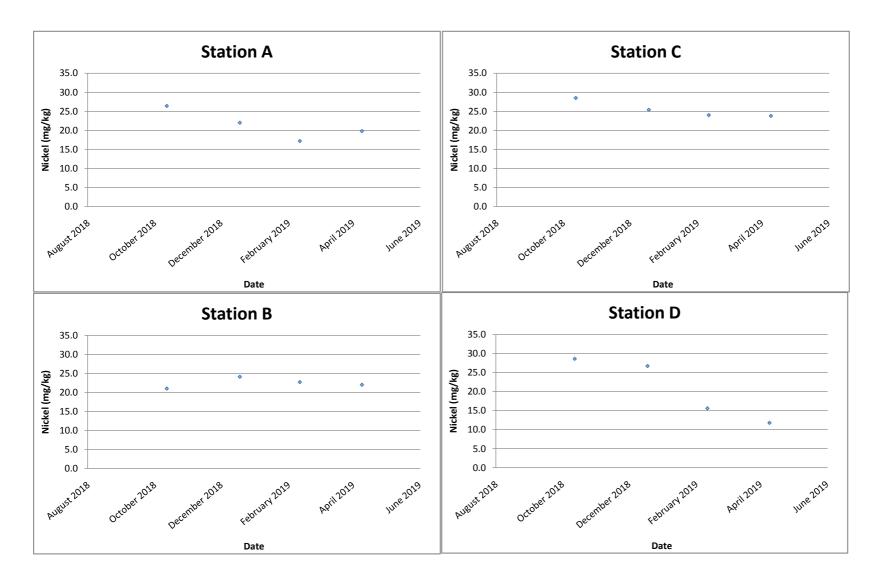

Chromium (mg/kg)

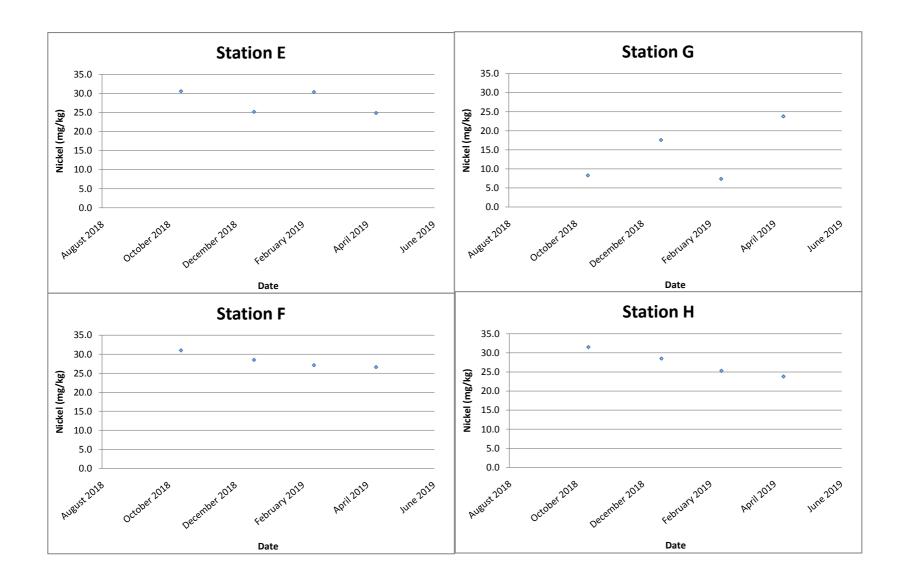

Copper (mg/kg)

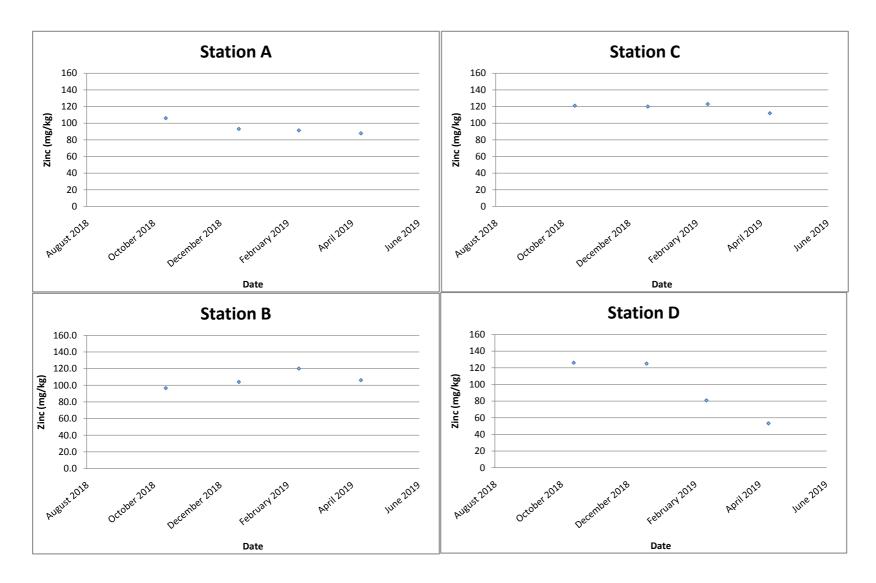

Copper (mg/kg)

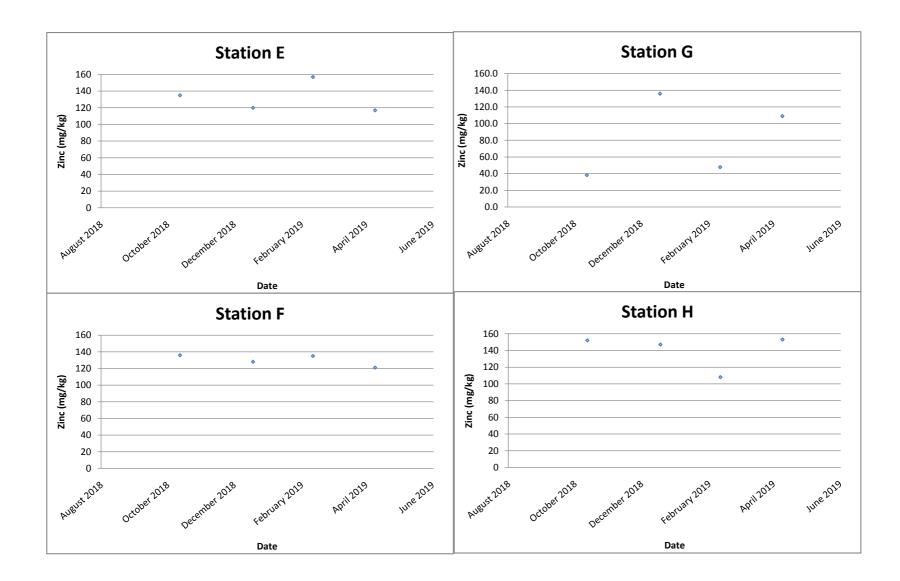

Lead (mg/kg)

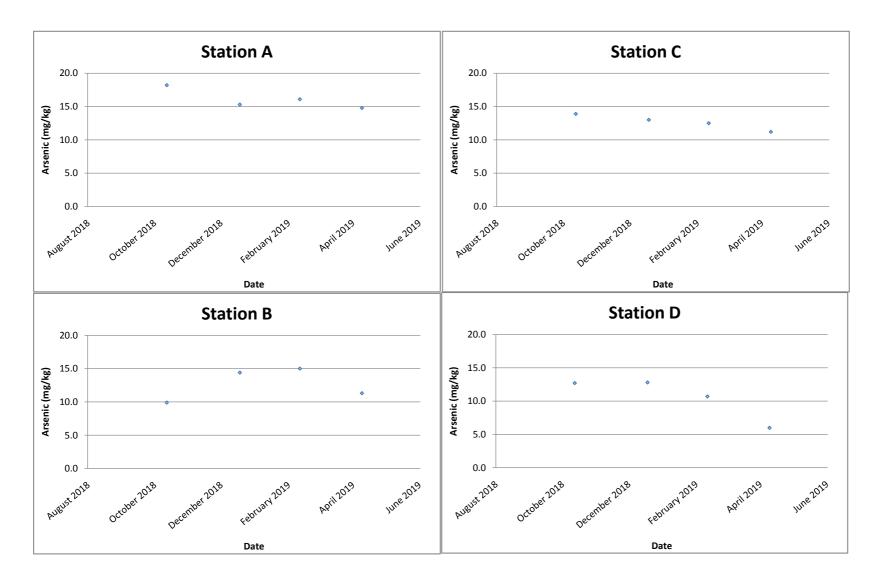

Lead (mg/kg)

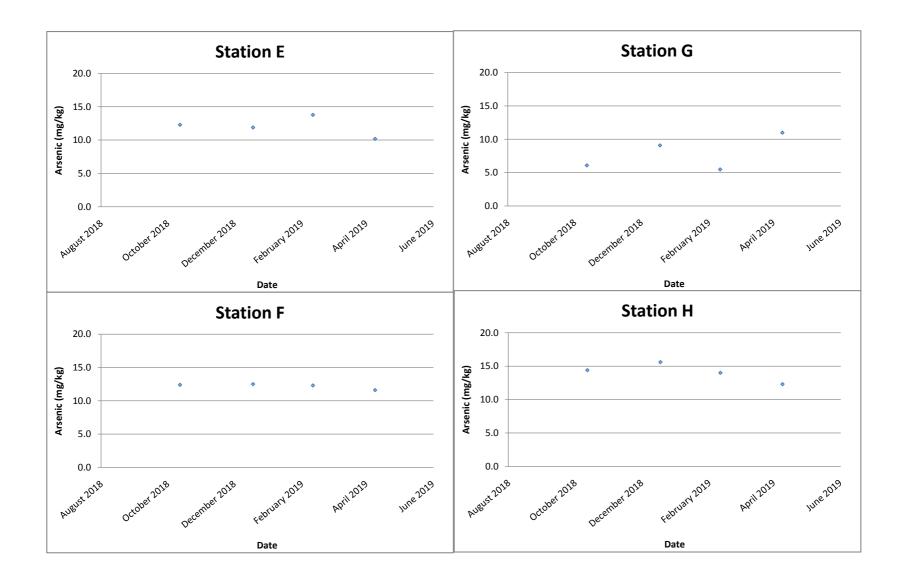

Mercury (mg/kg)

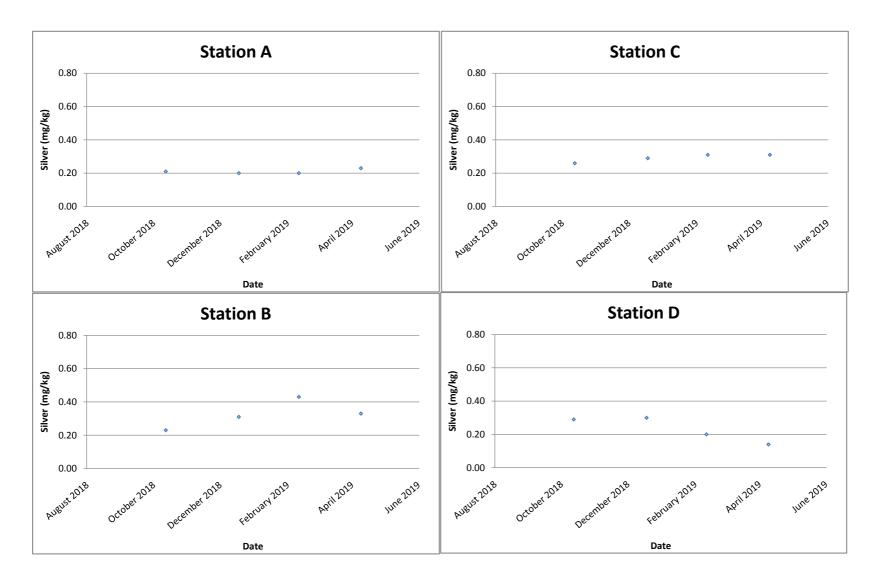

Mercury (mg/kg)

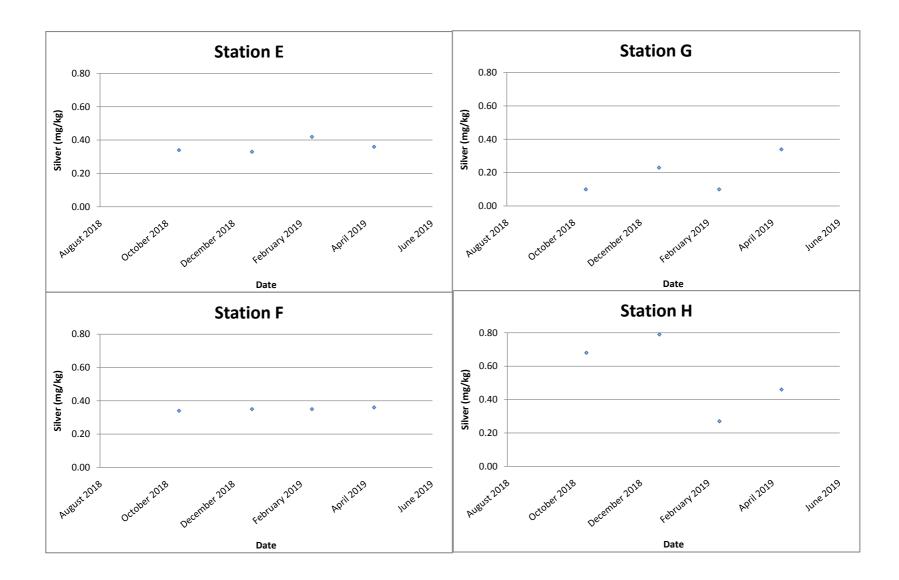

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix H

Benthic Survey Report

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Benthic Faunal Monitoring

Conducted in April 2019

Summary Report

Abundance

A total of 360 macrobenthic organisms were recorded from the eight monitoring stations during the April 2019 monitoring period. Figure 1 shows the abundance distribution across monitoring periods and stations. Results of the present monitoring period remained to be lower compared to the baseline data [March 2004 (dry season) and August 2004 (wet season)]. Increasing abundance, however, was observed since December 2018, which can be attributed to calmer weather conditions during these monitoring periods. Previous results also showed that decreasing trend in the abundance was observed during wet season monitoring periods. However, this observed seasonal difference is not statistically significant (F = 1.26, F crit = 2.09, p-value = 0.28, α = 0.05).

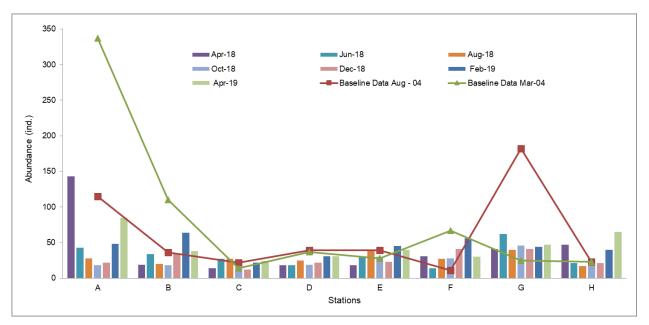


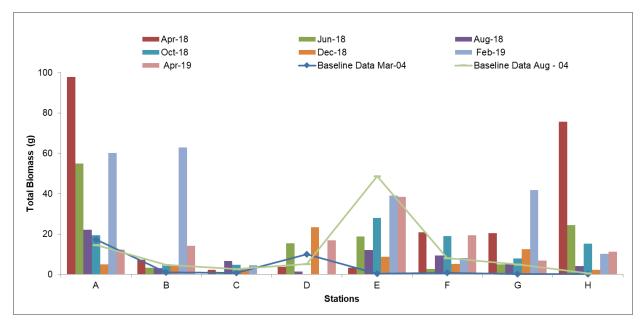
Figure 1. Total abundance (ind.) of benthic organisms collected in the eight monitoring stations, August 2004, April, June, August, October and December in 2018, and February & April in 2019

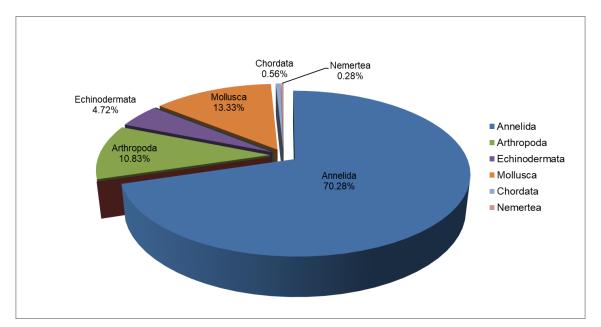
Similar to the previous monitoring periods, however, a more apparent variation (F = 2.84, F crit = 2.16, p-value = 0.01, α = 0.05 across monitoring stations was observed. The lowest abundance with 24 individuals (ind.) was recorded in the impact Station C and the highest (85 ind.) in the reference

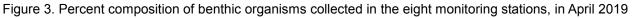
Station A. As previously reported, macrobenthic abundance showed correlation with particle size distribution. Relatively higher abundances were recorded in stations with moderately sorted sediments such as Stations A (85 ind.) and H (65 ind.) while lower abundances in stations with well-sorted sediments Stations C (24 ind.) and F (30 ind.). Well-sorted sediments can only provide a smaller range of grain sizes and of interstitial spaces limiting the niches for benthic organisms (Gray 1974); thus, the lower abundances at stations with relatively homogenous grain size distribution.

Biomass

The total wet biomass from eight monitoring stations during the present monitoring period is 119.27g, which is lower compared to the biomass recorded during the previous monitoring period (227.02g). The decrease in total wet biomass might be attributed to the decrease in the number of larger bivalves and increase in the number of smaller annelids. The highest total biomass observed in Station E (38.39g) and the lowest biomass in Station C (0.15g). The relatively higher biomass observed in Station E is contributed by the higher biomass of the bivalve species (*Paphia undulata*). The average biomass (8.51g) of the impact Stations (C and D) was lower compared to the average biomass (17.04g) of the reference stations.




Figure 2. Total biomass (g) of benthic organisms collected in the eight monitoring stations, August 2004, April, June August, October and December in 2018, and February & April in 2019


Taxonomic Composition

A total of six phyla comprised of 42 families and 58 taxa was identified during the April 2019 monitoring period. Figure 3 shows the percent composition of the benthic organisms identified. With the continuous increase in the number of annelid species and abundance, annelids remained to

dominate benthic assemblages comprising 70.28% of the identified population. The current benthic assemblage is observed to be similar with the baseline population, which was dominated by polychaetes, particularly of the capitellids. Capitellids are typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

The most dominant species (abundance >10) was the Polychaeta, *Paraprionospio sp.*, with the abundance of 20 ind. and *Capitella capitata* with the abundance of 11 ind. in Station A. In addition, *C. capitata*, with the abundance of 13 ind. was recorded Station G.

Highest number of genera was recorded in Station A (33) and the lowest in Station C (11). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

Diversity

Benthic diversity index (H) and eveness index (J) ranged from 2.20-2.65 and 0.92 – 0.93 in impact Stations, and 2.52-3.00 and 0.83-0.95 among the reference stations as shown in Appendix A, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Apparent increase in diversity and evenness indices was observed compared with the baseline data.

Data summaries are shown in Appendix A and representatives of taxa identified are in Appendix B.

References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Polltuion Bulletin, 40, 1100-1114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor

Morgh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: April 27, 2019

Appendix A: Data Summaries

Phylum	Class	Order	Family	Genus	Abundance Monitoring Stations								Total	%
					Α	В	С	D	Е	F	G	H		Composition
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	5	0	0	0	0	2	0	3	10	2.78
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	11	3	2	0	0	2	13	4	35	9.72
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0	0	0	1	2	2	1	2	8	2.22
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	7	2	5	0	3	3	3	5	28	7.78
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	5	2	1	2	2	0	2	4	18	5.00
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	2	2	0	2	8	3	2	1	20	5.56
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	0	0	1	1	0.28
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	1	1	0	0	0	0	0	0	2	0.56
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	1	2	0	0	1	0	1	0	5	1.39
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	1	0	0	1	0	1	1	0	4	1.11
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	1	0	0	0	0	0	0	1	2	0.56
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia	2	1	0	0	0	0	0	3	6	1.67
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	1	0	0	0	0	0	0	0	1	0.28
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	2	1	0	0	0	0	0	0	3	0.83
Annelida	Polychaeta	Phyllodocida	Acoetidae	c.f. Acoetes	0	1	0	0	0	0	0	0	1	0.28
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	1	0	0	0	1	0.28
Annelida	Polychaeta	-	Maldanidae	Maldanella	1	0	0	0	0	0	0	0	1	0.28
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	1	0	1	0	0	0	0	0	2	0.56
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	1	0	0	1	1	3	0.83
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys(N.	0	1	0	0	3	0	4	4	12	3.33
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys1	1	0	3	4	0	4	0	1	13	3.61
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys2	0	0	0	0	0	0	0	1	1	0.28
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0	0	0	0	0	0	0	1	1	0.28
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	1	0	0	1	0	0	0	2	0.56

Table 1. Composition, abundance, and percent Composition of benthic communities in the eight monitoring stations, April 2019

1687-SHW-R7-r-text report. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

								-	%					
Phylum	Class	Order	Family	Genus			N		Total	Composition				
					Α	В	С	D	Е	F	G	Н		Composition
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	4	0	1	0	0	4	0	9	2.50
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	20	0	2	0	1	0	1	5	29	8.06
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	3	0	0	1	1	1	1	6	13	3.61
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	1	3	0	0	1	0	2	1	8	2.22
Annelida	Polychaeta	Terebellida	Pectinariidae	Lagis	1	0	0	0	0	0	0	0	1	0.28
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	1	1	0	0	0	2	0.56
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	1	0	0	0	0	1	0	0	2	0.56
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	1	0	0	0	1	0	0	0	2	0.56
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T.	1	0	1	0	0	0	0	0	2	0.56
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	0	1	0	1	2	0	0	1	5	1.39
Annelida Total					70	25	15	15	28	19	36	45	253	70.28
Arthropoda	Crustacea	Decapoda	Majidae	Doclea	0	1	0	0	1	0	0	0	2	0.56
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	2	1	0	1	1	0	2	0	7	1.94
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1	0	0	0	0	0	0	0	1	0.28
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	3	0	5	2	1	0	0	4	15	4.17
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	3	0	0	5	6	14	3.89
Arthropoda Total					6	2	5	6	3	0	7	10	39	10.83
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	2	4	1	3	1	3	0	3	17	4.72
Echinodermata Total					2	4	1	3	1	3	0	3	17	4.72
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium	0	0	0	0	0	0	1	0	1	0.28
Mollusca	Bivalvia	Myoida	Corbulidae	Aloididae	0	0	0	0	0	1	0	0	1	0.28
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	1	0	0	0	0	0	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	1	0	0	0	0	0	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Psammobiidae	c.f. Soletellina chinensis	0	0	0	0	0	1	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	1	0	0	0	0	0	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Tellibidae	c.f. Angulus	0	0	0	1	0	0	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Veneridae	Placamen(P. isabellina)	1	0	0	0	0	0	0	0	1	0.28

1687-SHW-R7-r-text report. doc

				Genus	Abundance									%
Phylum	Class	Order	Family		Monitoring Stations									
					Α	В	С	D	Е	F	G	н		Composition
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	1	6	0	5	7	4	2	4	29	8.06
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	1	1	0	1	0	0	0	3	0.83
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	0	0	0	0	0	1	0	0	1	0.28
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	1	0	2	0	0	0	0	1	4	1.11
Mollusca	Gastropoda	Littorinimorpha	Calyptraeidae	Calyptraea	0	0	0	0	0	0	0	1	1	0.28
Mollusca	Gastropoda	Lottioidea	Lottiidae	Notoacmea	0	0	0	0	0	0	0	1	1	0.28
Mollusca	Scaphopoda	-	Dentaliidae	-	0	0	0	0	0	0	1	0	1	0.28
Mollusca Total					6	7	3	6	8	7	4	7	48	13.33
Chordata	Actinopterygii	Pleuronectiformes	Bothidae	Bothidae juvenile	1	0	0	0	0	0	0	0	1	0.28
Chordata	Actinopterygii	Anguilliformes	Ophichthidae	Pisodonophis	0	0	0	0	0	1	0	0	1	0.28
Chordata Total					1	0	0	0	0	1	0	0	2	0.56
Nemertea	Enopla	-	-	UNID 1	0	0	0	1	0	0	0	0	1	0.28
Nemertea Total					0	0	0	1	0	0	0	0	1	0.28
Grand Total					85	38	24	31	40	30	47	65	360	

Table 1. Biomass of benthic communities in the eight monitoring stations, April 2019

					Biomass (g)										
Phylum	Class	Order	Family	Genus	Monitoring Stations				1						
					Α	В	С	D	Е	F	G	Н			
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0.011	0	0	0	0	0.003	0	0.006			
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0.009	0.003	0.001	0	0	0.002	0.012	0.003			
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0	0	0	0.001	0.001	0.001	0.001	0.002			
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.008	0.002	0.006	0	0.002	0.001	0.007	0.006			
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0.006	0.004	0.001	0.002	0.001	0	0.003	0.005			
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0.005	0.004	0	0.009	0.017	0.008	0.004	0.005			
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	0	0	0.003			
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0.001	0.001	0	0	0	0	0	0			
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	0.003	0.003	0	0	0.003	0	0.001	0			
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis	0	0	0	0.001	0	0.001	0.001	0			
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0.003	0	0	0	0	0	0	0.001			
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia	0.003	0.001	0	0	0	0	0	0.005			
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0.001	0	0	0	0	0	0	0			
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0.004	0.002	0	0	0	0	0	0			
Annelida	Polychaeta	Phyllodocida	Acoetidae	c.f. Acoetes	0	1.618	0	0	0	0	0	0			
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0.001	0	0	0			
Annelida	Polychaeta	-	Maldanidae	Maldanella	0.002	0	0	0	0	0	0	0			
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0.004	0	0.003	0	0	0	0	0			
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0.003	0	0	0.009	0.011			
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys(N. polybranchia)	0	0.003	0	0	0.002	0	0.015	0.013			
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys1	0.002	0	0.005	0.006	0	0.009	0	0.002			
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys2	0	0	0	0	0	0	0	0.003			
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0	0	0	0	0	0	0	0.003			
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0.005	0	0	0.004	0	0	0			

1687-SHW-R7-r-text report. doc

								Bioma	ass (g)			
Phylum	Class	Order	Family	Genus				Monitorin	g Stations	3		
					Α	В	С	D	Е	F	G	н
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	0.005	0	0.002	0	0	0.01	0
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	0.022	0	0.004	0	0.002	0	0.001	0.006
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0.003	0	0	0.001	0.002	0.001	0.002	0.004
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0.022	0.004	0	0	0.011	0	0.005	0.002
Annelida	Polychaeta	Terebellida	Pectinariidae	Lagis	0.003	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	0.001	0.002	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0.004	0	0	0	0	0.001	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	0.002	0	0	0	1.785	0	0	0
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)	0.002	0	0.002	0	0	0	0	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	0	0.006	0	0.004	0.001	0	0	0.002
Annelida Total					0.12	1.661	0.022	0.03	1.834	0.027	0.071	0.082
Arthropoda	Crustacea	Decapoda	Majidae	Doclea	0	5.8	0	0	6.379	0	0	0
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.042	1.378	0	0.001	0.367	0	0.009	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1.855	0	0	0	0	0	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0.001	0	0.001	0,001	0.001	0	0	0.001
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0.001	0	0	0.001	0.002
Arthropoda Total					1.898	7.178	0.001	0.002	6.747	0	0.01	0.003
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	1.345	0.041	0.121	2.223	0.008	3.145	0	0.034
Echinodermata Total					1.345	0.041	0.121	2.223	0.008	3.145	0	0.034
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium	0	0	0	0	0	0	1.465	0
Mollusca	Bivalvia	Myoida	Corbulidae	Aloididae	0	0	0	0	0	0.906	0	0
Mollusca	Bivalvia	Ostreoida	Ostreidae	Talonostrea(T. talonata)	0.8	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	1.673	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Psammobiidae	c.f. Soletellina chinensis	0	0	0	0	0	1.955	0	0
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	1.019	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Tellibidae	c.f. Angulus	0	0	0	0.005	0	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Placamen(P. isabellina)	5.432	0	0	0	0	0	0	0

1687-SHW-R7-r-text report. doc

					Biomass (g)							
Phylum	Class	Order	Family	Genus	Monitoring Stations							
					Α	В	С	D	Е	F	G	н
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0.021	5.3	0	14.6	29.8	8.978	5.216	10.8
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0.012	0.004	0	0.005	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	0	0	0	0	0	2.365	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0.036	0	0.003	0	0	0	0	0.017
Mollusca	Gastropoda	Littorinimorpha	Calyptraeidae	Calyptraea	0	0	0	0	0	0	0	0.2
Mollusca	Gastropoda	Lottioidea	Lottiidae	Notoacmea	0	0	0	0	0	0	0	0.028
Mollusca	Scaphopoda	-	Dentaliidae	-	0	0	0	0	0	0	0.012	0
Mollusca Total					8.981	5.312	0.007	14.605	29.805	14.204	6.693	11.045
Chordata	Actinopterygii	Pleuronectiformes	Bothidae	Bothidae juvenile	0.013	0	0	0	0	0	0	0
Chordata	Actinopterygii	Annguilliformes	Ophichthidae	Pisodonophis	0	0	0	0	0	1.998	0	0
Chordata Total					0.013	0	0	0	0	1.998	0	0
Nemertea	Enopla	-	-	UNID 1	0	0	0	0.003	0	0	0	0
Nemertea Total					0	0	0	0.003	0	0	0	0
				Grand Total	12.3	14.19	0.15	16.86	38.39	19.37	6.77	11.16

Table 3. Summary of Benthic Survey Data, April 2019

Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	85	12.35	12.35 33		0.83
В	38	14.19	19	2.74	0.93
C*	24	0.15	11	2.20	0.92
D*	31	16.86	17	2.65	0.93
E	40	38.39	20	2.66	0.89
F	30	19.37	15	2.56	0.95
G	47	6.77	18	2.52	0.87
Н	65	11.16	25	3.00	0.93
TOTAL	360	119.27			

*Impact Sites

Table 4. Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)	
А	115	14.56	24	0.93	0.29	
В	36	4.76	14	0.89	0.34	
C*	22	2.66	13	0.80	0.31	
D*	39	5.07	11	0.62	0.26	
E	39	48.69	16	0.89	0.32	
F	11	8.07	9	0.68	0.31	
G	182	4.91	31	1.10	0.32	
Н	23	0.49	11	0.81	0.34	

*Impact Sites

Table 5. Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)	
А	337	17.39	38	0.78	0.21	
В	110	0.9	21	0.82	0.27	
C*	14	0.7	10	0.69	0.30	
D*	37	10.07	20	1.01	0.34	
E	28	0.44	11	0.76	0.32	
F	67	0.78	16	0.85	0.31	
G	25	0.09	9	0.64	0.29	
Н	23	0.15	11	0.44	0.18	

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19
Annelida	73.29	31.12	53.01	65.02	65.35	69.44	54.99	70.28
Sipuncula	0.21	0.30	0.80	0.45	0	0.93	0	0
Arthropoda	18.80	13.60	15.66	12.11	13.86	10.19	20.23	10.83
Echinodermata	3.63	15.11	4.82	5.38	2.97	2.78	3.42	4.72
Cnidaria	0.43	0.60	0.40	0	0	0.93	0.85	0
Mollusca	3.42	50.45	21.29	15.69	16.83	12.96	19.94	13.33
Chordata	0.21	2.11	0.80	0.45	0	0.93	0.28	0.56
Nemertea	0	0.30	3.22	0.90	0.99	1.85	0.28	0.28

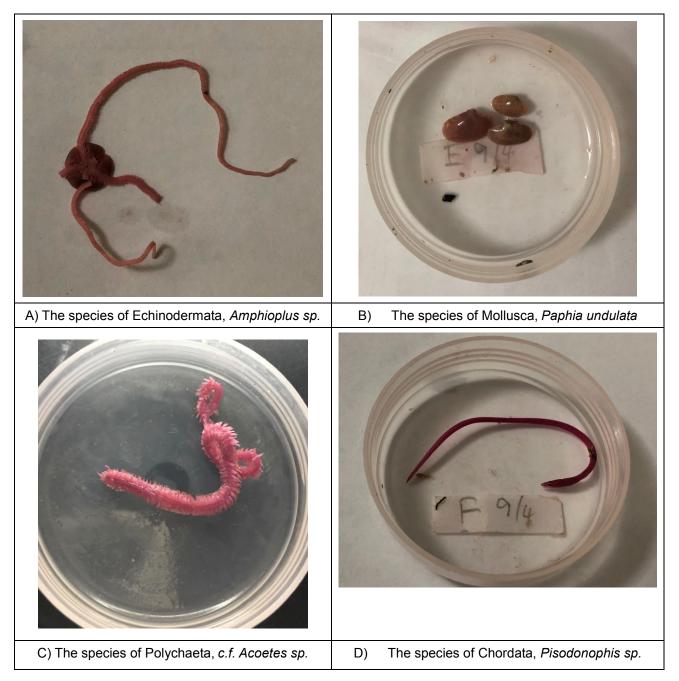

Table 5. Taxonomic Composition (%) of Benthic Survey, Baseline (August 2004), April, June, August, October and December 2018, and February & April in 2019

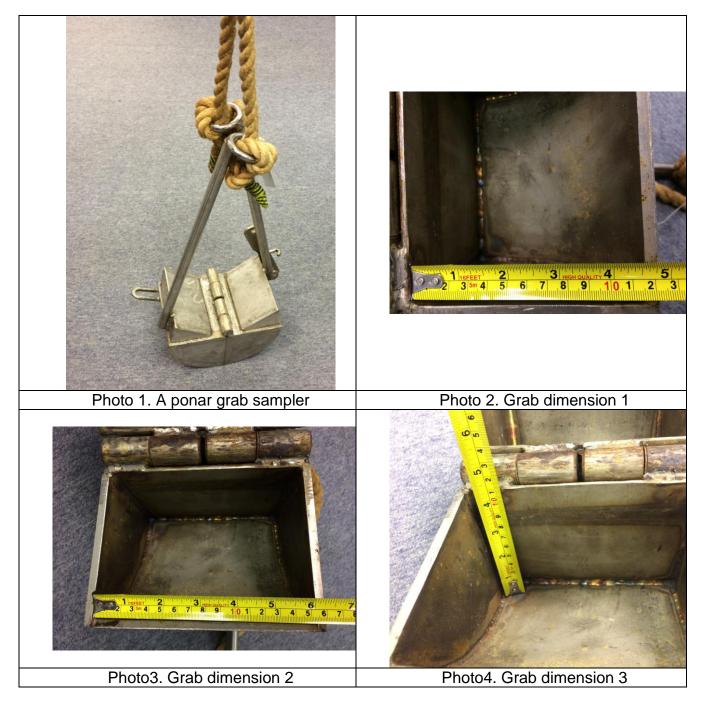
Table 6.Taxonomic Composition (abundance) of Benthic Survey, Baseline (August 2004)and April, June, August, October and December 2018, and February & April in 2019

Taxonomic Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19
Annelida	343	103	132	145	132	150	193	253
Sipuncula	1	1	2	1	0	2	0	0
Arthropoda	88	45	39	27	28	22	71	39
Echinodermata	17	5	12	12	6	6	12	17
Cnidaria	2	2	1	0	0	2	3	0
Mollusca	16	167	53	35	34	28	70	48
Chordata	1	7	2	1	0	2	1	2
Nemertea	-	1	8	2	2	4	1	1
Grand total	468	331	249	223	202	216	351	360

Appendix B: Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C


Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Q	uality			l	
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	r Quality	•			•
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	e Managei	nent			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0442C

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented