Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Monthly EM&A Report August 2019

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016
		Environmental Team for Operational
		Environmental Monitoring and Audit for Siu
		Ho Wan Sewage Treatment Works
Report No .:	:	0041/17/ED/0490C

Prepared by:	Andy K. H. Choi
i iopaioa by:	

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Allied Environmental Consultants Limited

Acousticians & Environmental Engineers

19/F., Kwan Chart Tower, 6 Tonnochy Road, Wan Chai, Hong Kong Tel.: (852) 2815 7028 Fax: (852) 2815 5399 Email: info@aechk.com

Our Ref: 1458/19-0025

18 September 2019

Drainage Services Department

Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Dear Sir,

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (AUGUST 2019)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for August 2019 (Report No.:0041/17/ED/0490C) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 18 September 2019 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/ri/ck/sc

C.C.

By Post and E-mail

Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 18
5.	CHINESE WHITE DOLPHIN MONITORING	. 25
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 26
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 27
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 28
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 29
10.	FUTURE KEY ISSUES	
11.	CONCLUSION	. 31

FIGURE

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
Figure 3	Location of the Tide Gauge

Figure 4 Location of Survey Areas of Chinese White Dolphins

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix E	Results and Graphical Presentation of Water Quality Monitoring
Appendix F	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix G	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix H	Benthic Survey Report
Appendix I	Annual Abundance of Chinese White Dolphins from 2001 - 2018
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0490C

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Twenty-fifth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 August 2019 to 31 August 2019 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 8 August 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 2

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current H_2S measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Page 3

Report No.: 0041/17/ED/0490C

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact reisons and relephone numbers of Ney reisonner	Table 1.1	Contact Persons and Telephone Numbers of Key Personnel
--	-----------	--

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 5

Report No.: 0041/17/ED/0490C

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 6

Report No.: 0041/17/ED/0490C

Table 2.2 Categories of Odour Intensity			
Odour Level	Odour Intensity	Classification Criteria	
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described	
1	Slight	Identifiable odour, barely noticeable	
2	Noticeable	Identifiable odour, noticeable	
3	Strong	Identifiable odour, strong	
4	Extreme	Severe odour	

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H_2S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0490C

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 7

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency
H ₂ S concentration monitoring Odour patrol	15 minutes	¹ Weekly basis for 6 months during the initial operation stage
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H_2S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

2.5.1 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in Table 2.4.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit	
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event	

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 8

wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H_2S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any compliant or noncompliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 9

Report No.: 0041/17/ED/0490C

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monitoring Parameters									
In-situ Measurement	Laboratory Analysis								
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)								
Temperature (degree Celsius)	5-day BOD (mg/l)								
pH value	Suspended Solids (mg/l)								
Water depth (m)	Ammonia as N (mg/l)								
Salinity (ppt)	Nitrate as N (mg/l)								
Turbidity (NTU)	Nitrite as N (mg/l)								
Current Speed (m/s)	Total inorganic nitrogen (mg/l)								
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)								

Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 11

Report No.: 0041/17/ED/0490C

Table 3.4 Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	490113
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Tuen Mun, N.T.,

Hong Kong.

Page 12

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 8 August 2019. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

I able 3	5.6	Summary of In-situ Monitoring Results (Mid-ebb)								
Station	Nater Depth (m)	Sam g De (m)	· .	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
A	17	S 1		5.89	28.61	8.09	22.80	3.1	0.18	201.2

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0490C

Monitoring Station	Water Depth	g D	nplin epth	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current speed	Current velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree magnetic)
		S	1	5.79	28.47	8.09	22.86	3.7	0.16	198.0
		Μ	8.5	5.54	28.40	8.09	22.98	2.9	0.35	179.5
		Μ	8.5	5.56	28.39	8.09	22.78	3.5	0.29	216.1
		В	16	5.10	28.37	8.09	22.86	3.1	0.26	267.8
		В	16	5.05	28.35	8.10	23.12	3.5	0.29	255.3
		S	1	5.38	28.72	7.63	22.55	3.9	0.18	251.1
		S	1	5.28	29.23	7.62	22.45	3.9	0.12	254.7
В	14	Μ	7	5.23	29.59	7.66	22.39	3.9	0.33	218.6
U	17	Μ	7	5.18	29.87	7.57	21.03	3.9	0.19	235.1
		В	13	5.10	30.15	7.51	20.61	4.0	0.26	205.2
		В	13	5.05	30.11	7.25	20.37	3.8	0.34	190.9
		S	1	5.65	27.21	7.40	23.24	3.6	0.22	210.2
		S	1	5.65	27.22	7.39	23.11	3.7	0.32	199.0
С	12	Μ	6	5.65	27.22	7.35	22.51	3.7	0.28	222.7
C	12	Μ	6	5.66	27.22	7.32	22.53	3.7	0.18	198.2
		В	11	5.50	27.36	7.46	22.60	3.7	0.26	221.1
		В	11	5.52	28.04	7.56	22.61	3.6	0.26	248.7
		S	1	4.89	27.79	7.62	19.61	4.0	0.31	93.4
		S	1	4.55	27.53	7.55	21.01	4.4	0.16	99.7
D	13	Μ	6.5	4.59	27.38	7.48	20.71	3.9	0.32	226.2
D	15	Μ	6.5	4.60	27.31	7.46	22.54	3.6	0.37	233.8
		В	12	4.63	27.25	7.44	22.63	3.6	0.08	211.7
		В	12	4.64	27.22	7.43	23.19	3.6	0.16	192.6
		S	1	4.89	27.88	7.69	23.14	7.0	0.10	215.3
		S	1	4.90	28.26	8.10	23.41	6.7	0.07	234.1
Е	16	Μ	8	4.89	28.26	8.10	23.92	6.3	0.20	240.8
E	10	Μ	8	4.92	28.27	8.10	23.75	6.3	0.16	248.0
		В	15	4.93	28.34	7.78	22.89	7.8	0.14	247.2
		В	15	4.95	28.24	7.74	21.09	7.1	0.14	251.2
		S	1	4.91	28.27	8.09	23.71	6.9	0.18	228.0
		S	1	4.92	28.27	8.09	23.72	6.4	0.23	237.4
F	23	Μ	11.5	4.91	28.29	8.10	23.26	6.3	0.49	185.1
Г	23	Μ	11.5	4.92	28.29	8.11	22.96	6.2	0.32	217.9
		В	22	4.93	28.15	7.83	23.15	4.1	0.33	230.6
		В	22	4.91	28.04	7.72	23.92	3.3	0.28	250.9
		S	1	4.96	27.74	8.42	23.40	3.3	0.41	194.1
		S	1	4.94	27.70	8.58	23.47	3.5	0.28	199.8
0	22	Μ	11	4.93	27.77	8.54	23.47	3.1	0.49	171.4
G	22	Μ	11	4.94	27.94	8.60	23.12	3.1	0.53	151.9
		В	21	4.93	28.02	8.62	23.46	3.2	0.17	191.6
		В	21	4.91	28.04	8.62	23.79	3.1	0.19	212.5
		S	1	5.26	28.27	8.03	23.47	6.4	0.22	141.2
		S	1	5.38	28.28	8.06	23.34	6.7	0.12	136.3
	10	Μ	9.5	5.37	28.26	8.08	23.80	6.9	0.16	268.2
Н	19	Μ	9.5	5.29	28.27	8.08	23.02	6.5	0.10	232.8
		В	18	5.35	28.28	8.08	23.51	9.0	0.24	261.6
		В	18	4.99	28.29	8.08	23.57	8.8	0.31	260.3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Report No.: 0041/17/ED/0490C

Table 3.7Summary of In-situ Monitoring Results (Mid-flood)

Table					phitoring Results			1	1	
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dep	th	oxygen	(degree	-	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)			, ,	(m/s)	(degree
	· · /	` '			,				()	magnetic)
		S	1	5.73	28.65	8.38	25.14	4.8	0.26	198.3
		S	1	5.71	28.90	8.33	22.94	4.6	0.27	197.2
		M	7.5	5.40	28.93	8.35	22.82	4.2	0.41	206.7
A	15	M	7.5	5.33	29.10	8.42	23.48	4.7	0.39	224.8
		B	14	5.15	29.24	8.42	21.48	4.6	0.68	134.0
		B	14	5.13	29.38	8.61	25.46	4.6	0.70	133.3
		S	14	5.94	29.20	7.86	21.71	4.0	0.70	174.0
		S	1	5.87	29.14			4.1	0.27	174.0
		M	7	5.87		8.04	22.38	4.1	0.30	185.3
В	14		7		29.16	7.86	22.33			
		M		5.75	28.97	8.00	22.50	4.8	0.35	192.3
		B	13	5.42	28.71	8.19	23.28	4.9	0.36	216.1
		B	13	5.42	28.71	8.19	23.28	4.9	0.28	228.3
		S	1	5.80	28.76	7.95	23.03	5.8	0.17	135.0
		S	1	5.76	29.08	7.95	22.24	5.9	0.20	107.9
С	12	М	6	5.84	29.09	7.96	22.36	5.6	0.22	159.2
Ū		М	6	5.97	29.22	7.97	22.45	5.7	0.27	152.8
		В	11	5.92	29.25	8.09	22.09	6.4	0.17	212.0
		В	11	5.95	29.27	8.04	22.21	6.5	0.23	219.4
		S	1	5.10	30.38	8.72	23.18	4.1	0.20	121.3
		S	1	5.11	28.89	8.55	23.19	4.2	0.24	153.1
D	14	М	7	5.35	28.79	8.60	23.17	5.1	0.21	135.5
D	14	М	7	5.34	28.86	8.54	22.90	5.0	0.17	141.1
		В	13	5.28	28.82	8.55	22.95	5.1	0.28	176.9
		В	13	5.16	28.75	8.54	23.01	5.2	0.28	191.3
		S	1	6.96	29.23	8.72	24.06	4.0	0.25	245.0
		S	1	6.96	29.86	8.55	24.39	4.4	0.15	233.7
-	4.4	М	7	6.01	30.06	8.60	22.79	4.8	0.30	114.7
E	14	М	7	5.98	30.02	8.54	23.76	4.8	0.21	151.9
		В	13	5.63	29.85	8.55	24.18	4.7	0.26	151.3
		В	13	5.68	29.98	8.72	24.75	4.5	0.22	157.8
		S	1	5.92	32.49	8.51	20.46	5.0	0.24	233.0
		S	1	5.90	29.78	8.58	19.65	5.2	0.20	252.1
_		M	9	5.88	29.58	8.42	21.87	4.5	0.24	153.2
F	18	M	9	5.81	29.06	8.32	22.94	4.7	0.30	183.0
		B	17	5.51	28.95	8.49	22.95	4.1	0.20	179.8
		B	17	5.38	29.11	8.63	22.50	4.1	0.25	191.2
		S	1	7.31	30.34	7.85	20.46	4.5	0.25	213.5
		S	1	7.27	30.76	7.94	19.65	4.7	0.23	206.0
		M	6.5	7.16	31.19	7.86	21.87	4.8	0.24	106.7
G	13	M	6.5	7.13	31.41	7.90	22.94	4.7	0.20	100.7
		B	12	7.13	31.69	7.90	22.94	5.1	0.29	209.6
		B	12	7.10	32.04	7.90	22.95	5.1	0.37	132.6
		Б S	1					4.0		210.8
		S	1	7.31	29.89	7.97	20.46		0.33	
				7.34	29.88	8.02	19.65	3.7	0.31	209.4
н	19	M	9.5	7.35	29.87	8.01	21.87	3.8	0.30	188.6
		M	9.5	7.35	29.88	8.12	22.94	3.1	0.30	231.2
		В	18	7.33	29.90	8.15	22.95	4.1	0.37	173.3
		В	18	7.37	30.01	8.15	22.50	3.5	0.35	167.5

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 15

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix E**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)											
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^{-1}	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)		· · · ·		
		Ś	1	8.8	<0.005	0.199	0.830	1.030	5	0.04	1.2
		S	1	8.4	<0.005	0.214	0.802	1.020	8	0.05	1.1
^	47	М	8.5	8.6	<0.005	0.188	0.801	0.989	8	0.05	1.6
A	17	М	8.5	8.2	< 0.005	0.215	0.775	0.990	12	0.05	2.0
		В	16	9.7	0.014	0.193	0.786	0.993	9	0.06	1.8
		В	16	10.2	<0.005	0.196	0.776	0.973	12	0.05	1.0
		S	1	8.6	0.017	0.192	0.798	1.010	1	0.05	1.8
		S	1	9.2	0.005	0.194	0.790	0.989	ND	0.06	1.4
В	14	М	7	10.0	0.006	0.189	0.803	0.998	10	0.06	1.8
В	14	М	7	9.4	0.008	0.186	0.81	1.000	15	0.05	1.6
		В	13	11.5	<0.005	0.183	0.813	0.996	7	0.06	1.6
		В	13	11.7	0.014	0.182	0.817	1.010	5	0.06	1.8
		S	1	7.6	<0.005	0.188	0.790	0.978	34	0.06	1.3
		S	1	7.1	<0.005	0.194	0.815	1.010	29	0.05	1.1
С	12	М	6	8.3	<0.005	0.221	0.793	1.010	59	0.05	<1.0
U	12	М	6	8.1	<0.005	0.182	0.794	0.976	54	0.06	1.1
		В	11	9.4	<0.005	0.182	0.789	0.971	30	0.06	1.1
		В	11	9.1	<0.005	0.180	0.798	0.978	22	0.06	<1.0
		S	1	12.0	<0.005	0.192	0.800	0.992	45	0.05	1.1
		S	1	12.8	<0.005	0.198	0.793	0.991	53	0.05	1.1
D	13	Μ	6.5	10.2	<0.005	0.194	0.802	0.996	29	0.05	<1.0
D	15	М	6.5	9.7	<0.005	0.193	0.810	1.000	34	0.05	<1.0
		В	12	8.9	<0.005	0.198	0.787	0.985	24	0.05	1.4
		В	12	8.5	<0.005	0.218	0.774	0.993	21	0.05	1.7
		S	1	8.0	<0.005	0.180	0.751	0.930	5	0.05	1.5
		S	1	7.6	<0.005	0.174	0.724	0.898	7	0.05	2.0
Е	16	М	8	8.5	<0.005	0.171	0.750	0.921	13	0.05	1.9
	10	М	8	8.9	<0.005	0.167	0.745	0.912	11	0.05	1.7
		В	15	9.8	<0.005	0.167	0.713	0.880	10	0.05	1.9
		В	15	10.6	<0.005	0.165	0.738	0.903	7	0.05	1.8
		S	1	9.2	<0.005	0.199	0.788	0.987	10	0.05	<1.0
		S	1	9.5	<0.005	0.220	0.762	0.982	14	0.05	<1.0
F	23	Μ	11.5	8.5	<0.005	0.185	0.801	0.986	11	0.05	<1.0
•	20	М	11.5	8.5	<0.005	0.165	0.744	0.909	16	0.05	<1.0
		В	22	8.1	0.024	0.219	0.773	1.020	12	0.05	2.7
		В	22	7.5	0.030	0.217	0.781	1.030	8	0.05	1.6
		S	1	8.8	<0.005	0.194	0.724	0.918	11	0.05	2.6
		S	1	8.1	<0.005	0.196	0.716	0.912	15	0.05	2.8
G	G 22	М	11	9.2	<0.005	0.216	0.723	0.940	13	0.05	2.0
6 22	~~	М	11	9.4	0.012	0.172	0.748	0.932	9	0.05	1.4
		В	21	9.9	0.018	0.224	0.772	1.010	12	0.05	2.0
		В	21	10.5	<0.005	0.216	0.776	0.993	19	0.05	1.6
		S	1	10.5	<0.005	0.214	0.712	0.926	1	0.05	1.5
Н	19	S	1	10.4	0.018	0.196	0.782	0.996	ND	0.05	<1.0
		М	9.5	9.2	0.055	0.217	0.731	1.000	14	0.05	1.8

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0490C

Monitoring Station	Water Depth (m)	Sam Dep (m)	npling th	TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ ⁻ as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
		Μ	9.5	9.3	0.062	0.190	0.718	0.970	9	0.05	2.3
		В	18	7.8	0.083	0.215	0.728	1.020	18	0.05	2.7
		В	18	8.1	0.094	0.190	0.724	1.010	12	0.05	2.8

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)											
Monitoring	Water		npling	TSS	NH ₃	NO_2^-	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	7.8	<0.005	0.168	0.748	0.915	ND	0.05	1.4
		S	1	7.4	<0.005	0.165	0.750	0.915	ND	0.05	1.4
А	15	Μ	7.5	8.1	<0.005	0.176	0.702	0.879	ND	0.05	1.0
~	15	Μ	7.5	8.3	<0.005	0.180	0.696	0.876	ND	1.73	<1.0
		В	14	8.2	<0.005	0.172	0.735	0.907	ND	0.05	1.4
		В	14	7.6	<0.005	0.175	0.700	0.875	ND	0.05	<1.0
		S	1	7.0	<0.005	0.170	0.751	0.921	ND	0.05	1.1
		S	1	7.7	<0.005	0.178	0.748	0.926	1	0.05	1.3
В	14	М	7	6.5	<0.005	0.183	0.750	0.934	3	0.05	1.6
D	17	М	7	6.2	<0.005	0.178	0.745	0.923	ND	0.05	1.2
		В	13	5.6	<0.005	0.176	0.755	0.931	1	0.05	2.4
		В	13	5.8	<0.005	0.160	0.810	0.970	2	0.05	2.4
		S	1	5.8	<0.005	0.173	0.835	1.010	2	0.04	1.6
		S	1	6.2	<0.005	0.172	0.828	1.000	3	0.05	1.5
С	12	М	6	6.8	<0.005	0.177	0.814	0.991	3	0.05	1.6
Ŭ	14	М	6	7.1	<0.005	0.171	0.822	0.993	5	0.05	1.4
		В	11	9.3	<0.005	0.177	0.790	0.967	2	0.05	1.5
		В	11	8.6	<0.005	0.178	0.798	0.976	1	0.05	1.6
		S	1	7.8	<0.005	0.178	0.821	0.999	2	0.05	2.4
		S	1	7.4	<0.005	0.177	0.808	0.985	3	0.05	2.6
D	14	М	7	9.5	<0.005	0.177	0.761	0.938	ND	0.05	2.0
2		М	7	9.8	<0.005	0.185	0.719	0.904	ND	0.05	1.1
		В	13	10.7	<0.005	0.178	0.783	0.961	1	0.05	2.3
		В	13	10.5	<0.005	0.176	0.809	0.985	2	0.05	1.9
		S	1	8.5	<0.005	0.182	0.779	0.961	8	0.05	1.2
		S	1	8.9	< 0.005	0.176	0.776	0.952	5	0.05	1.2
E	14	М	7	9.1	<0.005	0.182	0.762	0.944	2	0.05	1.5
		М	7	9.5	< 0.005	0.177	0.766	0.943	1	0.05	1.1
		В	13	9.9	< 0.005	0.180	0.770	0.949	2	0.05	1.0
		В	13	9.5	< 0.005	0.177	0.761	0.938	3	0.05	1.4
		S	1	14.8	< 0.005	0.175	0.778	0.953	ND	0.05	1.4
		S	1	14.7	< 0.005	0.179	0.734	0.913	1	0.05	1.3
F	18	М	9	12.8	< 0.005	0.181	0.808	0.989	2	0.05	1.5
		Μ	9	12.4	<0.005	0.174	0.718	0.893	1	0.05	<1.0
		В	17	10.1	< 0.005	0.180	0.793	0.974	1	0.05	2.1
		В	17	10.7	< 0.005	0.171	0.798	0.970	ND	0.05	1.8
		S	1	9.2	< 0.005	0.178	0.728	0.906	ND	0.05	<1.0
		S	1	9.1	< 0.005	0.179	0.728	0.908	ND	0.05	<1.0
G	13	М	6.5	8.5	<0.005	0.175	0.732	0.907	ND	0.05	1.4
	.0	М	6.5	8.5	<0.005	0.179	0.722	0.902	ND	0.05	1.1
		В	12	6.9	< 0.005	0.173	0.732	0.905	ND	0.05	1.2
		В	12	6.7	<0.005	0.177	0.731	0.908	ND	0.05	1.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page	17
------	----

Monitoring	Water	Sam	pling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Depth		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	8.3	<0.005	0.182	0.757	0.939	ND	0.05	1.7
		S	1	8.3	<0.005	0.180	0.767	0.947	947 1 0.05 1.6	1.6	
н	19	Μ	9.5	8.5	<0.005	0.191	0.740	0.931	ND	0.06	2.2
	19	Μ	9.5	8.6	<0.005	0.183	0.734	0.917	ND	0.06	2.7
		В	18	8.4	<0.005	0.186	0.764	0.950	ND 0.0 7 1 0.0 1 ND 0.0 7 ND 0.0 60 2 0.0	0.06	2.3
		В	18	8.5	0.011	0.175	0.742	0.928	1	0.05	1.6

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

 Table 3.10
 Weather condition of water quality monitoring

Date	Ai	r Temperat	ure	Mean	Total
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
8 August 2019	33.5	30.4	27.7	74	0.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 18

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Surv
--

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Monitoring Parameters								
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey							
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)							
Distribution) (%)								
Total organic carbon* (%)	Chromium (µg/L)							
pH value	Copper (µg/L)							
Ammonia as N (mg-N/kg)	Lead (µg/L)							
Total nitrogen (mg-N/kg)	Mercury ((µg/L)							
Total phosphorus (mg-N/kg)	Nickel (µg/L)							
Cadmium (mg/kg)	Zinc (µg/L)							
Chromium (mg/kg)	Arsenic (µg/L)							
Copper (mg/kg)	Silver (µg/L)							
Lead (mg/kg)								
Mercury (mg/kg)								
Nickel (mg/kg)								
Zinc (mg/kg)								
Arsenic (mg/kg)]							
Silver (mg/kg)								

Page 19

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 20

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 21

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 8 August 2019. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 22

Report No.: 0041/17/ED/0490C

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

	, 1. 1		5	,						<u> </u>	_		
Monitoring	pН	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/k	(mg	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)									
A	8.8	5	826	303	<0.10	30.3	25.9	35.4	0.14	17.8	88.0	13.9	0.23
В	8.6	8	1220	397	<0.10	42.0	38.5	44.6	0.20	25.1	117	15.5	0.44
С	8.5	14	1170	450	0.10	48.0	41.8	51.4	0.22	29.5	130	14.1	0.31
D	8.5	12	1180	477	<0.10	46.1	40.4	50.8	0.22	27.8	127	16.0	0.29
E	8.6	14	1510	487	<0.10	48.9	43.6	51.0	0.23	29.0	133	13.0	0.36
F	8.5	26	1880	593	<0.10	48.9	45.1	51.9	0.24	30.1	138	13.3	0.38
G	8.6	18	1540	497	0.11	48.4	49.2	54.7	0.25	29.8	137	13.1	0.39
Н	8.5	11	1180	439	0.10	46.0	43.6	46.0	0.18	27.8	113	14.8	0.29

Table 4.5Summary of laboratory analysis results for benthic survey

Monitoring Station	Total organic	Grai	n size pr	ofile (%	%)	Description
Station	carbon (%)	Gravel	Gravel Sand Silt		Clay	
А	0.63	13	43	21	23	Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments
В	0.86	0	33	36	31	Dark grey, slightly sandy SILT/CLAY with shell fragments
С	0.92	0	3	55	42	Dark grey, slightly sandy SILT/CLAY
D	0.93	0	4	56	40	Dark grey, slightly sandy SILT/CLAY with shell fragments
E	1.07	0	6	52	42	Dark grey, slightly sandy SILT/CLAY with shell fragments
F	1.19	1	4	55	40	Dark grey, slightly sandy SILT/CLAY with shell fragments
G	0.90	13	21	36	30	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
Н	0.90	0	1	53	40	Dark grey, slightly sandy SILT/CLAY with shell fragments

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

 Table 4.6
 Weather condition of water quality monitoring

Date	Ai	r Temperat	Mean	Total						
	Maximum Mean		Minimum	Relative	Rainfall					
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)					
				(%)						
8 August 2019	33.5	30.4	27.7	74	0.0					

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 23

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	30	13.00	18	2.62	0.91
В	27	12.44	15	2.43	0.90
С	13	0.03	8	1.99	0.96
D	22	5.97	13	2.28	0.89
E	58	32.37	21	2.76	0.91
F	43	21.34	15	2.42	0.89
G	27	29.50	14	2.48	0.94
Н	35	15.23	17	2.41	0.85
TOTAL	255	129.87			

Table 4.7Summary of benthic survey data on 8 August 2019

- 4.10.5 The benthic survey results are analyzed and presented as below:
 - i) Abundance

A total of 255 macrobenthic organisms was recorded from the eight monitoring stations during the August 2019 monitoring period. Compared to both dry (March 2004) and wet (August 2004) seasons baseline data, the present total abundance was relatively lower. This trend was observed since the start of the monitoring activities in April 2018. Generally, decreasing abundances were observed during wet season monitoring periods while increasing abundances during dry season monitoring periods. These variations in the abundances might be attributed to the natural response of the macrobenthic communities to seasonal changes. However, similar to the previous monitoring periods, these observed seasonal variation are not statistically significant (F-value = 1.38; F-crit = 2.10; P-value = 0.22; $\alpha = 0.05$).

Similar to the previous monitoring periods, a more apparent variation (F-value = 2.89; F-crit = 2.15; P-value = 0.01 ; α = 0.05) in the total abundances were observed. The lowest abundance with 13 individuals (ind.) was recorded in Station C and the highest (58 ind.) was recorded in Station E. Abundance distribution showed that the impact stations, Stations C and D, has relatively lower values compared to the reference stations, a similar trend was observed in the baseline data. Sediments in these stations remained to be well-sorted composed silt/clay substrate. However, during the present monitoring period, abundance-sediment size correlation was less apparent compared to other monitoring periods.

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 129.87g, which is higher compared to the previous monitoring period (94.27g) but remained higher compared to the baseline data. The highest total biomass was observed in Station E (32.37g) while the impact stations, Station C (0.03g) and Station D (5.97g) exhibited the lowest biomass. The relatively higher biomass observed in Station E was contributed by the relatively higher biomass of the molluscan species, *Paphia undulata*. Relatively higher biomass were also recorded in Stations F and G due to the presence of this species.

Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0490C

Tuen Mun, N.T.,

Hong Kong.

iii) Taxonomic Composition

A total of eight (8) phyla comprising of 34 families and 50 genera were identified. The macrobenthic assemblage is remained to be dominated by annelida (64.32%), molluscs (17.25%), and arthropods (9.80%). The dominant species (abundance \geq 10) were the polychaetes, *Poecilochaetus* sp. (10 ind.) and *Mediomastus* sp. (11 ind.) recorded in Stations E and Station H, respectively. Similar to the baseline data, the most dominant groups during the present monitoring period were the capitellids (21.57% of the population identified), typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

Highest number of genera was recorded in Station E (21) and the lowest in Station C (8). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

iv) Diversity

Benthic diversity index (*H*') and evenness index (*J*) ranged from 1.99 - 2.28 and 0.89 - 0.96 in impact stations, and 2.41 - 2.76 and 0.85 - 0.94 in the reference station. These suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Compared with the baseline survey result, apparent increase in diversity index and evenness index was observed.

The detailed benthic survey results are provided in **Appendix H**.

 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 25

Report No.: 0041/17/ED/0490C

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The increased amount of sewage discharged from Siu Ho Wan Sewage Treatment Works was identified as a potential issue of concern for CWDs. Referring to the latest AFCD's report, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)", 192 line-transect vessel surveys with a total survey effort of 6055.6km was conducted amongst 10 survey areas in Hong Kong from April 2018 to March 2019; the areas included NEL, Northwest Lantau (NWL), West Lantau (WL), Southwest Lantau (SWL), Southeast Lantau (SEL), Deep Bay (DB), Lamma (LM), Po Toi (PT), Ninepins (NP), and Sai Kung (SK). Additionally, under the Hong Kong-Zhuhai-Macao Bridge related EM&A, supplementary surveys with a total survey effort of 5,541.6 were conducted at NEL, NWL, WL and SWL, bringing the total survey effort to 11,597.2 km.
- 5.1.3 During the 12-month monitoring period from the AFCD monitoring surveys, 150 groups of 451 CWDs were sighted from April 2018 to March 2019. Also, additional sighting contributed from various HZMB-related EM&A surveys with a total of 296 groups of 928 dolphins were sighted altogether during the same 12-month periods. Among them, 247 were sighted during on-effort line-transect surveys, while the remaining numbers were made during off-effort search.
- 5.1.4 During the 2018-2019 monitoring period, 97% dolphin sightings were made at WL (184 sightings), NWL (65) and SWL (38). On the contrary, dolphins rarely occurred in the SEL and DB areas with only 4 sightings each. Despite the large survey effort conducted in the NEL survey area, no sightings were present from the combined data sets. Details of the CWDs abundances among 10 survey areas are presented in **Appendix I**.
- 5.1.5 The impact of increased effluent discharged from Siu Ho Wan outfall on CWDs is not mentioned in this report. However, as mentioned in the 2017 2018 AFCD study; there has been a dramatic decline in dolphin occurrence at NEL from 2012 where dolphins were still frequently spotted near Brothers Islands. Presently, there is a complete absence of dolphins in NEL waters continuing from 2018, as no dolphin was sighted there in the past four consecutive years during AFCD surveys.
- 5.1.6 Dolphin decline in NEL waters has been strongly linked to the construction works of HZMB and increase in high-speed ferry traffic to/from the Sky Pier as reported in previous monitoring periods. Unfortunately, there was still no sign of recovery even though the marine works for the HZMB was completed in 2017. The lack of recovery in dolphins usage in this once-important dolphin habitat could also be related to the persistent disturbance of construction works in the nearby massive reclamation project for the 3RS works, since 2016, and such disturbance will continue at least for several years which may continue to affect the potential recovery of dolphin usage in NEL waters. Continued systematic dolphin surveying in Lantau Island is necessary to further study this issue.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 26

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 27

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 28

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 8 August 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Page 29

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 30

Report No.: 0041/17/ED/0490C

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H₂S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H₂S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

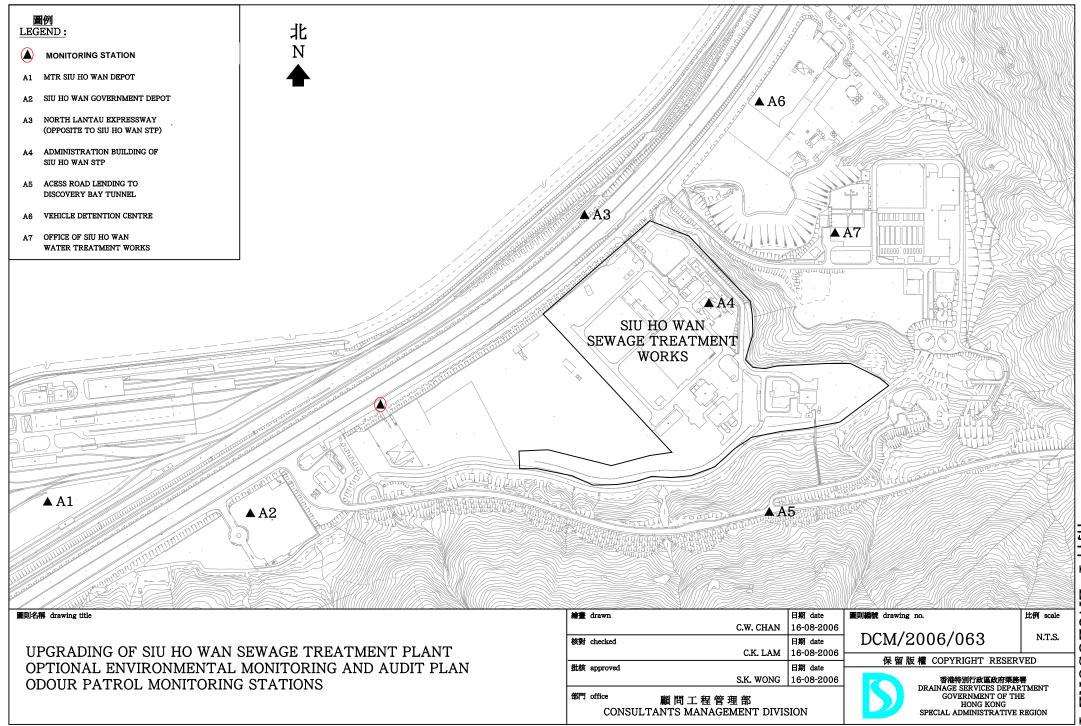
5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 31

Report No.: 0041/17/ED/0490C

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H₂S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 8 August 2019 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 1 August 2019, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)" in terms of the distribution and abundance of CWDs was reviewed. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2019-20) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

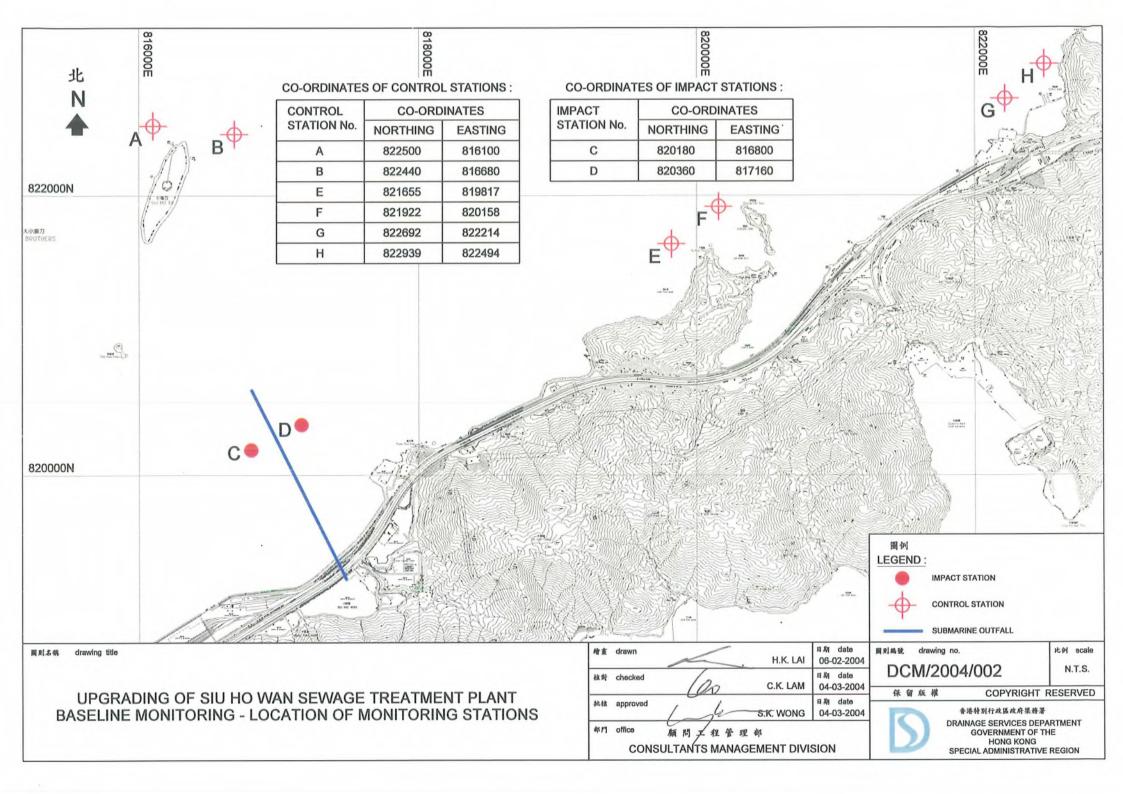
Report No.: 0041/17/ED/0490C

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

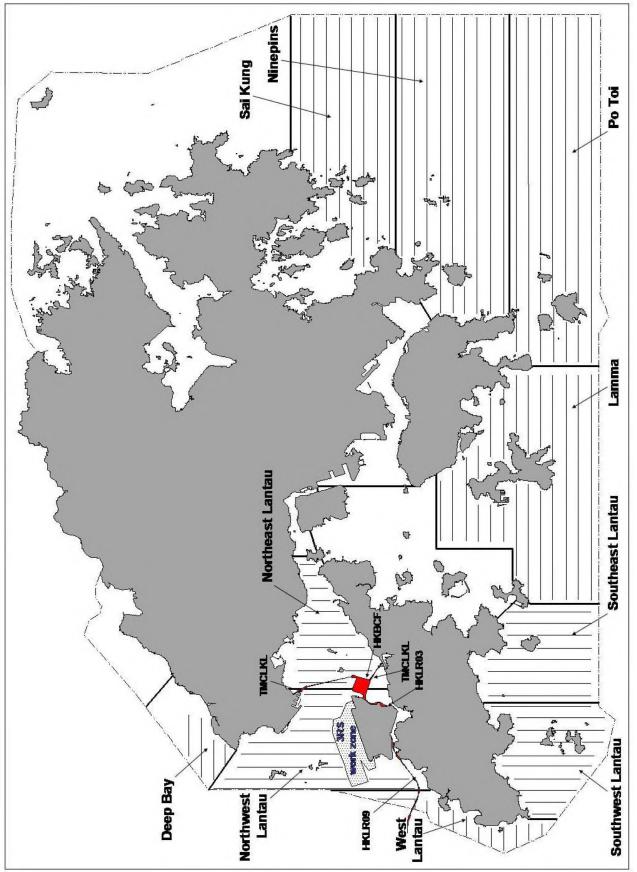
Report No.: 0041/17/ED/0490C

Figure 3

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

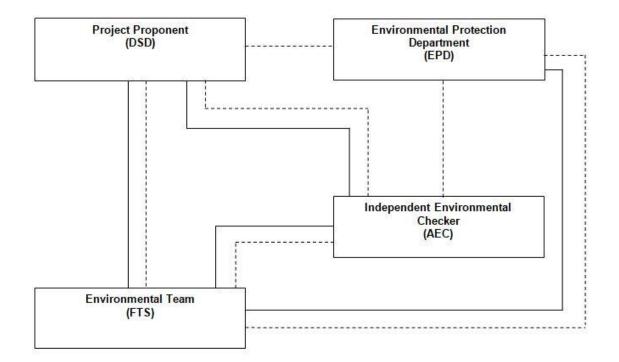
Figure 4

Location of Survey Areas of Chinese White Dolphins

Ten Line-Transect Survey Areas within the Study Area for the 2018-19 Monitoring Study

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,			
5 Lok Yi Street, Tai Lam,			
Tuen Mun, N.T.,			
Hong Kong.			

 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0490C

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
				1 August	2	3
4	5	6	7	8 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Ebb (06:41) Mid-Flood (13:01)	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

	ACTION					
EVENT	ET	IEC	*Operator			
Action Level						
One complaint received for specific odour event	 Check Operator's working methods; Discuss with Operator on required remedial actions 	 Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; Amend operation methods if appropriate 			
Limit Level	1					
More than	1. Investigated the causes of	1. Discuss amongst ET	1. Indentify/ confirm			
one complaint	complaint; 2. Check Operator's working methods; 3. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 5. Discuss with EPD and the Operator on the required remedial actions; 6. Submit proposals for remedial actions within 3 working days of notification; 7. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 8. Amend proposal if appropriate; 9. Resubmit proposal if problem still not under control	and the Operator on the potential remedial actions; 2. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 3. Supervise implementation of remedial measures	source with ET; 2. Confirm receipt of notification of failure in writing; 3. Inform ET, IEC and EPD; 4. Discuss with EPD and ET on the required remedial actions; 5. Ensure remedial actions properly implemented; 6. Take immediate action to avoid further exceedance; 7. Implement the agreed proposals			

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA191452(1)

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 490113
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA191452/2
Date of calibration	:	02/07/2019
Next calibration date	:	01/10/2019
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested.

Tel : +852 2450 8233 : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA191452(1)

Page 2 of 3

Results:

A. pH calibration

pH reading at 26°C for Q.C. solution(6.86) and at 26°C for Q.C. solution(9.18)					
Theoretical	Measured	Deviation			
9.18	9.18	0.00			
6.86	6.86	0.00			

B. Salinity calibration

	Salinity, ppt						
Theoretical	Measured	Deviation	Maximum acceptable Deviation				
10	10.05	+0.05	± 0.5				
20	20.07	+0.07	± 1.0				
30	29.87	-0.13	± 1.5				
40	39.76	-0.24	± 2.0				

C. Dissolved Oxygen calibration

	Dissolved oxygen	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.34	7.32		
2	7.36	7.33		
3	7.35	7.33		
Average	7.35	7.33		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 11/2/2019 Date

Note : This report refers only to the sample(s) tested.

This report shall not be reproduced except in full with prior written approval from the Company.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 142626WA191452(1)

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.70	25.72

E. Turbidity calibration

Turbidity, N.T.U.					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.07	+0.07	± 0.4		
8	8.09	+0.09	± 0.6		
40	39.77	-0.23	± 3.0		
80	79.54	-0.46	± 4.0		

Certified by Approved Signatory : HO Kin Man, John

Assistant General Manager - Laboratories

Date ** End of Report **

11 2019

Note : This report refers only to the sample(s) tested.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

PASS
PASS
DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	8/8/2019	Mid-Ebb	Fine	Moderate	6:13	17	S	1	1	8.09	22.80	28.61	82.5	5.89	3.1	0.18	201.2	8.8	< 0.005	0.199	0.830	1.030	5	0.04	1.2
Α	8/8/2019	Mid-Ebb	Fine	Moderate	6:13	17	S	1	2	8.09	22.86	28.47	81.5	5.79	3.7	0.16	198.0	8.4	<0.005	0.214	0.802	1.020	8	0.05	1.1
A	8/8/2019	Mid-Ebb	Fine	Moderate	6:13	17	М	8.5	1	8.09	22.98	28.40	78.8	5.54	2.9	0.35	179.5	8.6	< 0.005	0.188	0.801	0.989	8	0.05	1.6
A	8/8/2019	Mid-Ebb	Fine	Moderate	6:13	17	M	8.5	2	8.09	22.78	28.39	78.2	5.56	3.5	0.29	216.1	8.2	< 0.005	0.215	0.775	0.990	12	0.05	2.0
A	8/8/2019	Mid-Ebb	Fine	Moderate		17	В	16	1	8.09	22.86	28.37	74.8	5.10	3.1	0.26	267.8	9.7	0.014	0.193	0.786	0.993	9	0.06	1.8
A	8/8/2019	Mid-Ebb	Fine	Moderate	6:13	17	B	16	2	8.10	23.12	28.35	74.8	5.05	3.5	0.29	255.3	10.2	< 0.005	0.196	0.776	0.973	12	0.05	1.0
В	8/8/2019	Mid-Ebb	Fine	Moderate	6:21	14	S	1		7.63	22.55	28.72	76.9	5.38	3.9	0.18	251.1	8.6	0.017	0.192	0.798	1.010	1	0.05	1.8
B	8/8/2019 8/8/2019	Mid-Ebb Mid-Ebb	Fine	Moderate Moderate	6:21 6:21	14 14	S M	1	2	7.62	22.45 22.39	29.23 29.59	76.4 75.4	5.28 5.23	3.9 3.9	0.12	254.7	9.2 10.0	0.005	0.194	0.790	0.989	ND 10	0.06	1.4 1.8
B	8/8/2019 8/8/2019	Mid-Ebb	Fine Fine	Moderate	6:21	14	M	7	2	7.57	22.39	29.59	75.4	5.23	3.9	0.33	218.6 235.1	10.0 9.4	0.006	0.189	0.803	0.998	10	0.06	1.8
B	8/8/2019	Mid-Ebb	Fine	Moderate	6:21	14	B	13	1	7.51	20.61	29.87	74.2	5.10	4.0	0.19	205.2	<u>9.4</u> 11.5	<0.008	0.183	0.813	0.996	7	0.05	1.6
B	8/8/2019	Mid-Ebb	Fine	Moderate	6.21	14	B	13	2	7.25	20.01	30.13	74.5	5.05	3.8	0.34	190.9	11.5	0.014	0.182	0.817	1 010	5	0.00	1.8
Č	8/8/2019	Mid-Ebb	Fine			12	Š	1	1	7 40	23.24	27.21	77.7	5.65	3.6	0.22	210.2	7.6	< 0.005	0.188	0.790	0.978	34	0.06	1.3
Č	8/8/2019	Mid-Ebb	Fine	Moderate	6:39	12	Š	1	2	7.39	23.11	27.22	77.8	5.65	3.7	0.32	199.0	7.1	< 0.005	0.194	0.815	1.010	29	0.05	1.1
Ċ	8/8/2019	Mid-Ebb	Fine	Moderate	6:39	12	М	6	1	7.35	22.51	27.22	77.8	5.65	3.7	0.28	222.7	8.3	< 0.005	0.221	0.793	1.010	59	0.05	<1.0
Ċ	8/8/2019	Mid-Ebb	Fine	Moderate	6:39	12	M	6	2	7.32	22.53	27.22	77.9	5.66	3.7	0.18	198.2	8.1	< 0.005	0.182	0.794	0.976	54	0.06	1.1
С	8/8/2019	Mid-Ebb	Fine	Moderate	6:39	12	В	11	1	7.46	22.60	27.36	75.0	5.50	3.7	0.26	221.1	9.4	<0.005	0.182	0.789	0.971	30	0.06	1.1
С	8/8/2019	Mid-Ebb	Fine	Moderate	6:39	12	В	11	2	7.56	22.61	28.04	75.5	5.52	3.6	0.26	248.7	9.1	< 0.005	0.180	0.798	0.978	22	0.06	<1.0
D	8/8/2019	Mid-Ebb	Fine	Moderate	6:54	13	S	1	1	7.62	19.61	27.79	73.3	4.89	4.0	0.31	93.4	12.0	< 0.005	0.192	0.800	0.992	45	0.05	1.1
D	8/8/2019	Mid-Ebb	Fine	Moderate	6:54	13	S	1	2	7.55	21.01	27.53	72.1	4.55	4.4	0.16	99.7	12.8	<0.005	0.198	0.793	0.991	53	0.05	1.1
D	8/8/2019	Mid-Ebb	Fine	Moderate	6:54	13	M	6.5	1	7.48	20.71	27.38	71.3	4.59	3.9	0.32	226.2	10.2	<0.005	0.194	0.802	0.996	29	0.05	<1.0
D	8/8/2019	Mid-Ebb	Fine	Moderate	6:54	13	M	6.5	2	7.46	22.54	27.31	71.3	4.60	3.6	0.37	233.8	9.7	< 0.005	0.193	0.810	1.000	34	0.05	<1.0
D	8/8/2019	Mid-Ebb	Fine	Moderate	6:54 6:54	13 13	B	12	2	7.44	22.63 23.19	27.25	71.5	4.63	3.6 3.6	0.08	211.7 192.6	8.9 8.5	< 0.005	0.198	0.787	0.985	24 21	0.05	1.4 1.7
	8/8/2019 8/8/2019	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	6:54 7:09	13	B S	12	2	7.43	23.19	27.22	71.7 72.4	4.64	3.6	0.16	215.3	8.5 8.0	<0.005	0.218	0.774	0.993	21	0.05	1.7
<u> </u>	8/8/2019	Mid-Ebb	Fine	Moderate	7:09	16	3 9	1		7.69	23.14	27.00	72.5	4.89	6.7	0.10	234.1	<u>8.0</u> 7.6	< 0.005	0.160	0.724	0.898	7	0.05	2.0
F	8/8/2019	Mid-Ebb	Fine	Moderate	7:09	16	M	8	1	8 10	23.92	28.26	72.4	4.89	6.3	0.20	240.8	8.5	< 0.005	0.174	0.750	0.921	13	0.05	1.9
F	8/8/2019	Mid-Ebb	Fine	Moderate	7:09	16	M	8	2	8 10	23.32	28.27	72.7	4.92	6.3	0.16	248.0	8.9	<0.005	0.17	0.745	0.912	11	0.05	1.7
F	8/8/2019	Mid-Ebb	Fine	Moderate	7:09	16	B	15	1	7 78	22.89	28.34	72.9	4.93	7.8	0.14	247.2	9.8	< 0.005	0.167	0.713	0.880	10	0.05	1.9
Ē	8/8/2019	Mid-Ebb	Fine			16	B	15	2	7.74	21.09	28.24	73.3	4.95	7.1	0.14	251.2	10.6	< 0.005	0.165	0.738	0.903	7	0.05	1.8
F	8/8/2019	Mid-Ebb	Fine	Moderate		23	S	1		8.09	23.71	28.27	72.9	4.91	6.9	0.18	228.0	9.2	<0.005	0.199	0.788	0.987	10	0.05	<1.0
F	8/8/2019	Mid-Ebb	Fine	Moderate		23	S	1	2	8.09	23.72	28.27	73.0	4.92	6.4	0.23	237.4	9.5	<0.005	0.220	0.762	0.982	14	0.05	<1.0
F	8/8/2019	Mid-Ebb	Fine	Moderate	7:22	23	M	11.5	1	8.10	23.26	28.29	72.9	4.91	6.3	0.49	185.1	8.5	<0.005	0.185	0.801	0.986	11	0.05	<1.0
F F	8/8/2019	Mid-Ebb	Fine	Moderate	7:22	23	M	11.5	2	8.11	22.96	28.29	73.0	4.92	6.2	0.32	217.9	8.5	< 0.005	0.165	0.744	0.909	16	0.05	<1.0
F F	8/8/2019	Mid-Ebb	Fine	Moderate	7:22	23	B	22 22	1	7.83	23.15	28.15	73.0	4.93	4.1	0.33	230.6	8.1	0.024	0.219	0.773	1.020	12 8	0.05	2.7
G	8/8/2019 8/8/2019	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	7:22	23	S	22	1	8.42	23.92 23.40	28.04 27.74	72.6 73.8	4.91	3.3 3.3	0.28	250.9 194.1	7.5 8.8	<0.030	0.217	0.781	1.030 0.918	8	0.05	1.6 2.6
G	8/8/2019	Mid-Ebb	Fine	Moderate	7:39	22	S	1	2	8.42	23.40	27.74	73.8	4.96	3.3	0.41	194.1	8.8 8.1	<0.005	0.194	0.724	0.918	15	0.05	2.6
G	8/8/2019	Mid-Ebb	Fine	Moderate	7:39	22	M	11	1	8.54	23.47	27.77	73.1	4.94	3.1	0.49	171.4	9.1	< 0.005	0.196	0.718	0.912	13	0.05	2.0
G	8/8/2019	Mid-Ebb	Fine		7:39	22	M	11	2	8.60	23.12	27.94	73.2	4.94	3.1	0.53	151.9	9.4	0.012	0.172	0.748	0.932	9	0.05	1.4
G	8/8/2019	Mid-Ebb	Fine	Moderate	7:39	22	B	21	1	8.62	23.46	28.02	73.0	4.93	3.2	0.17	191.6	9.9	0.012	0.224	0.772	1.010	12	0.05	2.0
Ğ	8/8/2019	Mid-Ebb	Fine	Moderate	7:39	22	B	21	2	8.62	23.79	28.04	72.8	4.91	3.1	0.19	212.5	10.5	< 0.005	0.216	0.776	0.993	19	0.05	1.6
Н	8/8/2019	Mid-Ebb	Fine	Moderate	7:50	19	S	1	1	8.03	23.47	28.27	77.3	5.26	6.4	0.22	141.2	10.5	< 0.005	0.214	0.712	0.926	1	0.05	1.5
Н	8/8/2019	Mid-Ebb	Fine			19	S	1	4	8.06	23.34	28.28	78.9	5.38	6.7	0.12	136.3	10.4	0.018	0.196	0.782	0.996	ND	0.05	<1.0
Н	8/8/2019	Mid-Ebb	Fine	Moderate	7:50	19	М	9.5		8.08	23.80	28.26	78.2	5.37	6.9	0.16	268.2	9.2	0.055	0.217	0.731	1.000	14	0.05	1.8
Н	8/8/2019	Mid-Ebb	Fine	Moderate	7:50	19	M	9.5	2	8.08	23.02	28.27	77.6	5.29	6.5	0.10	232.8	9.3	0.062	0.190	0.718	0.970	9	0.05	2.3
Н	8/8/2019	Mid-Ebb	Fine	Moderate		19	В	18	1	8.08	23.51	28.28	78.6	5.35	9.0	0.24	261.6	7.8	0.083	0.215	0.728	1.020	18	0.05	2.7
Н	8/8/2019	Mid-Ebb	Fine	Moderate	7:50	19	В	18	2	8.08	23.57	28.29	74.0	4.99	8.8	0.31	260.3	8.1	0.094	0.190	0.724	1.010	12	0.05	2.8

Note: 1. ND: Not Detected

												li	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	$ BOD_5 (mq/l)$
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	8/8/2019	Mid-Flood	Fine	Moderate	12:37	15	S	1	1	8.38	25.14	28.65	86.3	5.73	4.8	0.26	198.3	7.8	< 0.005	0.168	0.748	0.915	ND	0.05	1.4
Α	8/8/2019	Mid-Flood	Fine	Moderate	12:37	15	S	1	2	8.33	22.94	28.90	85.9	5.71	4.6	0.27	197.2	7.4	< 0.005	0.165	0.750	0.915	ND	0.05	1.4
A	8/8/2019	Mid-Flood	Fine	Moderate	12:37	15	M	7.5	1	8.35	22.82	28.93	80.7	5.40	4.2	0.41	206.7	8.1	< 0.005	0.176	0.702	0.879	ND	0.05	1.0
A	8/8/2019	Mid-Flood	Fine			15	M	7.5	2	8.42	23.48	29.10	80.3	5.33	4.7	0.39	224.8	8.3	<0.005	0.180	0.696	0.876	ND	1.73	<1.0
A	8/8/2019	Mid-Flood	Fine	Moderate	12:37	15	В	14	1	8.42	21.48	29.24	77.3	5.15	4.6	0.68	134.0	8.2	<0.005	0.172	0.735	0.907	ND	0.05	1.4
Α	8/8/2019	Mid-Flood	Fine	Moderate	12:37	15	В	14	2	8.61	25.46	29.38	77.3	5.13	4.6	0.70	133.3	7.6	< 0.005	0.175	0.700	0.875	ND	0.05	<1.0
B	8/8/2019	Mid-Flood	Fine	Moderate	12:48	14	S	1	1	7.86	21.71	29.20	88.7	5.94	4.1	0.27	174.0	7.0	< 0.005	0.170	0.751	0.921	ND	0.05	1.1
B	8/8/2019 8/8/2019	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	12:48	14 14	S M	1		8.04 7.86	22.38 22.33	29.14 29.16	87.9 87.8	5.87 5.87	4.1 4.8	0.30	174.0 185.3	7.7 6.5	<0.005 <0.005	0.178	0.748	0.926	1	0.05	1.3 1.6
B	8/8/2019	Mid-Flood	Fine			14	M	7	2	7.80	22.50	29.16	87.8	5.75	4.8	0.25	185.3	6.2	<0.005	0.183	0.750	0.934	ND 3	0.05	1.0
B	8/8/2019	Mid-Flood	Fine	Moderate	12:48	14	B	13	1	8.19	23.28	28.71	80.8	5.42	4.0	0.35	216.1	5.6	<0.005	0.176	0.745	0.923	1	0.05	2.4
B	8/8/2019	Mid-Flood	Fine	Moderate		14	B	13	2	8 19	23.28	28.71	80.8	5.42	4.9	0.28	228.3	5.8	< 0.005	0.170	0.810	0.970	2	0.05	2.4
C C	8/8/2019	Mid-Flood	Fine			12	S	1	1	7.95	23.03	28.76	89.1	5.80	5.8	0.17	135.0	5.8	<0.005	0.173	0.835	1.010	2	0.04	1.6
Č	8/8/2019	Mid-Flood	Fine			12	Š	1	2	7.95	22.24	29.08	86.1	5.76	5.9	0.20	107.9	6.2	< 0.005	0.172	0.828	1.000	3	0.05	1.5
Č	8/8/2019	Mid-Flood	Fine	Moderate	13:06	12	M	6	1	7.96	22.36	29.09	87.2	5.84	5.6	0.22	159.2	6.8	< 0.005	0.177	0.814	0.991	3	0.05	1.6
Č	8/8/2019	Mid-Flood	Fine	Moderate	13:06	12	M	6	2	7.97	22.45	29.22	89.4	5.97	5.7	0.27	152.8	7.1	< 0.005	0.171	0.822	0.993	5	0.05	1.4
С	8/8/2019	Mid-Flood	Fine	Moderate	13:06	12	В	11	1	8.09	22.09	29.25	88.7	5.92	6.4	0.17	212.0	9.3	<0.005	0.177	0.790	0.967	2	0.05	1.5
С	8/8/2019	Mid-Flood	Fine	Moderate	13:06	12	В	11	2	8.04	22.21	29.27	89.1	5.95	6.5	0.23	219.4	8.6	< 0.005	0.178	0.798	0.976	1	0.05	1.6
D	8/8/2019	Mid-Flood	Fine	Moderate	13:25	14	S	1	1	8.72	23.18	30.38	76.3	5.10	4.1	0.20	121.3	7.8	< 0.005	0.178	0.821	0.999	2	0.05	2.4
D	8/8/2019	Mid-Flood	Fine	Moderate	13:25	14	S	1	2	8.55	23.19	28.89	76.4	5.11	4.2	0.24	153.1	7.4	<0.005	0.177	0.808	0.985	3	0.05	2.6
D	8/8/2019	Mid-Flood	Fine	Moderate		14	M	7	1	8.60	23.17	28.79	80.0	5.35	5.1	0.21	135.5	9.5	<0.005	0.177	0.761	0.938	ND	0.05	2.0
D	8/8/2019	Mid-Flood	Fine	Moderate		14	М	7	-	8.54	22.90	28.86	79.7	5.34	5.0	0.17	141.1	9.8	<0.005	0.185	0.719	0.904	ND	0.05	1.1
D	8/8/2019	Mid-Flood	Fine	Moderate		14	В	13	1	8.55	22.95	28.82	78.8	5.28	5.1	0.28	176.9	10.7	<0.005	0.178	0.783	0.961	1	0.05	2.3
D	8/8/2019	Mid-Flood	Fine	Moderate	13:25	14	В	13	-	8.54	23.01	28.75	78.2	5.16	5.2	0.28	191.3	10.5	< 0.005	0.176	0.809	0.985	2	0.05	1.9
<u> </u>	8/8/2019	Mid-Flood	Fine	modorato		14	S	1	1	8.72	24.06	29.23	92.1	6.96	4.0	0.25	245.0	8.5	< 0.005	0.182	0.779	0.961	8	0.05	1.2
E	8/8/2019	Mid-Flood	Fine	Moderate		14	S	1	2	8.55	24.39	29.86	92.4	6.96	4.4	0.15	233.7	8.9	< 0.005	0.176	0.776	0.952	5	0.05	1.2
<u> </u>	8/8/2019 8/8/2019	Mid-Flood Mid-Flood	Fine	Moderate		14 14	M	/	2	8.60	22.79 23.76	30.06 30.02	89.5 89.1	6.01 5.98	4.8 4.8	0.30	114.7 151.9	9.1 9.5	<0.005	0.182	0.762	0.944	2	0.05	1.5
	8/8/2019	Mid-Flood	Fine Fine	Moderate Moderate	13:36	14	B	13	2	8.54	23.76	29.85	89.1 86.4	5.63	4.8	0.21	151.9	9.5	<0.005	0.177	0.766	0.943	2	0.05	1.1
E	8/8/2019	Mid-Flood	Fine	Moderate		14	B	13	2	8.55	24.10	29.85	86.6	5.68	4.7	0.20	157.8	9.5	<0.005	0.180	0.770	0.949	3	0.05	1.4
F	8/8/2019	Mid-Flood	Fine			14	S	1	1	8.51	20.46	32.49	88.3	5.92	5.0	0.22	233.0	14.8	<0.005	0.175	0.778	0.953	ND	0.05	1.4
F	8/8/2019	Mid-Flood	Fine	Moderate	13:49	18	S	1	2	8.58	19.65	29.78	87.8	5.90	5.2	0.20	252.1	14.7	< 0.005	0.179	0.734	0.913	1	0.05	1.3
F	8/8/2019	Mid-Flood	Fine	Moderate	13:49	18	M	9	1	8.42	21.87	29.58	88.3	5.88	4.5	0.24	153.2	12.8	< 0.005	0.181	0.808	0.989	2	0.05	1.5
F	8/8/2019	Mid-Flood	Fine	Moderate		18	M	9	2	8.32	22.94	29.06	88.5	5.81	4.7	0.30	183.0	12.4	< 0.005	0.174	0.718	0.893	1	0.05	<1.0
F	8/8/2019	Mid-Flood	Fine		13:49	18	В	17	1	8.49	22.95	28.95	82.5	5.51	4.1	0.20	179.8	10.1	<0.005	0.180	0.793	0.974	1	0.05	2.1
F	8/8/2019	Mid-Flood	Fine		13:49	18	В	17	2	8.63	22.50	29.11	80.5	5.38	4.1	0.25	191.2	10.7	<0.005	0.171	0.798	0.970	ND	0.05	1.8
G	8/8/2019	Mid-Flood	Fine	Moderate	14:06	13	S	1	1	7.85	20.46	30.34	98.7	7.31	4.5	0.25	213.5	9.2	<0.005	0.178	0.728	0.906	ND	0.05	<1.0
G	8/8/2019	Mid-Flood	Fine	Moderate	14:06	13	S	1	2	7.94	19.65	30.76	98.9	7.27	4.7	0.24	206.0	9.1	< 0.005	0.179	0.728	0.908	ND	0.05	<1.0
G	8/8/2019	Mid-Flood	Fine	Moderate		13	M	6.5		7.86	21.87	31.19	98.1	7.16	4.8	0.28	106.7	8.5	< 0.005	0.175	0.732	0.907	ND	0.05	1.4
G	8/8/2019	Mid-Flood	Fine	Moderate		13	M	6.5 12	2	7.90	22.94	31.41	98.1	7.13	4.7	0.29	107.0	8.5	< 0.005	0.179	0.722	0.902	ND	0.05	1.1
G	8/8/2019	Mid-Flood	Fine		14:06 14:06	13 13	B	12		7.98	22.95 22.50	31.69 32.04	98.0 98.2	7.10	5.1 5.1	0.37	209.6 132.6	6.9 6.7	<0.005 <0.005	0.173	0.732	0.905	ND ND	0.05	1.2
G H	8/8/2019 8/8/2019	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate		13	B S	1		7.94	22.50	29.89	98.2 97.9	7.07	5.1 4.0	0.49	210.8	6.7 8.3	<0.005	0.177	0.731	0.908	ND ND	0.05	1.2
<u>н</u>	8/8/2019	Mid-Flood	Fine			19	<u> </u>	1	2	8.02	20.46	29.89	97.9	7.31	4.0	0.33	209.4	8.3	<0.005	0.182	0.757	0.939	1	0.05	1.7
<u>н</u> Н	8/8/2019	Mid-Flood	Fine			19	M	9.5	1	8.02	21.87	29.88	98.3 98.4	7.34	3.7	0.31	209.4	8.5	<0.005	0.180	0.767	0.947	ND	0.05	2.2
Н	8/8/2019	Mid-Flood	Fine	Moderate	14.20	19	M	9.5	2	8.12	22.94	29.87	98.4	7.35	3.0	0.30	231.2	8.6	<0.005	0.191	0.740	0.931	ND	0.06	2.2
H	8/8/2019	Mid-Flood	Fine	Moderate	14:20	19	B	18	1	8.15	22.95	29.90	98.2	7.33	4.1	0.37	173.3	8.4	<0.005	0.186	0.764	0.950	2	0.06	2.3
H	8/8/2019	Mid-Flood	Fine	Moderate	14.20	19	B	18	2	8 15	22.50	30.01	98.9	7.37	3.5	0.35	167.5	8.5	0.011	0.175	0.742	0.928	1	0.05	1.6

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS : FUGRO TECHNICAL SERVICES LIMITED : ALS Technichem (HK) Pty Ltd : 1 of 28 Client Laboratory Page : HK1933344 : MR CYRUS LAI : Richard Fung Work Order Contact Contact : ROOM 723 & 725, 7/F, BLOCK B, PROFIT : 11/F., Chung Shun Knitting Address Address **INDUSTRIAL BUILDING, 1-15 KWAI FONG** Centre, 1 - 3 Wing Yip Street, CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong : c.lai@fugro.com : richard.fung@alsglobal.com E-mail E-mail : +852 3565 4374 : +852 2610 1044 Telephone Telephone : +852 2610 2021 Facsimile : -----Facsimile : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR : 08-Aug-2019 Date Samples Received Project SIU HO WAN SEWAGE TREATMENT PLANT : 0041/17 Order : HKE/1654/2017_R1 : 22-Aug-2019 Quote Issue Date number number : 96 C-O-C No. of samples received number No. of samples analysed : 96 Site : -----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Kichard Jong .		
\mathcal{O}		
Fung Lim Chee, Richard	Managing Director	Inorganics
Az		
U Marine State		
Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 08-Aug-2019 to 22-Aug-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1933344

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.

Sample(s) arrived in the laboratory at 16:35. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	nt sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
	Cli	ent samplir	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-001	HK1933344-002	HK1933344-003	HK1933344-004	HK1933344-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.8	8.4	8.6	8.2	9.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	0.014
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.199	0.214	0.188	0.215	0.193
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.830	0.802	0.801	0.775	0.786
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.03	1.02	0.989	0.990	0.993
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.05	0.05	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.03	0.02	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	1.1	1.6	2.0	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	5	8	8	12	9

Page Number 2 4 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-006	HK1933344-007	HK1933344-008	HK1933344-009	HK1933344-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	10.2	8.6	9.2	10.0	9.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.017	0.005	0.006	0.008
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.196	0.192	0.194	0.189	0.186
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.776	0.798	0.790	0.803	0.810
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.973	1.01	0.989	0.998	1.00
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.06	0.06	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.02	0.02	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.0	1.8	1.4	1.8	1.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	1	NOT DETECTED	10	15

Page Number 2 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-011	HK1933344-012	HK1933344-013	HK1933344-014	HK1933344-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.5	11.7	7.6	7.1	8.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.014	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.183	0.182	0.188	0.194	0.221
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.813	0.817	0.790	0.815	0.793
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.996	1.01	0.978	1.01	1.01
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.06	0.06	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.04	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.8	1.3	1.1	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	7	5	34	29	59

Page Number : 6 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-016	HK1933344-017	HK1933344-018	HK1933344-019	HK1933344-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.1	9.4	9.1	12.0	12.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.182	0.182	0.180	0.192	0.198
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.794	0.789	0.798	0.800	0.793
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.976	0.971	0.978	0.992	0.991
EK067P: Total Phosphorus as P		0.01	mg/L	0.06	0.06	0.06	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.1	<1.0	1.1	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	54	30	22	45	53

Page Number 2 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-021	HK1933344-022	HK1933344-023	HK1933344-024	HK1933344-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	10.2	9.7	8.9	8.5	8.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.194	0.193	0.198	0.218	0.180
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.802	0.810	0.787	0.774	0.751
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.996	1.00	0.985	0.993	0.930
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.4	1.7	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	29	34	24	21	5

Page Number 28 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-026	HK1933344-027	HK1933344-028	HK1933344-029	HK1933344-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.6	8.5	8.9	9.8	10.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.174	0.171	0.167	0.167	0.165
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.724	0.750	0.745	0.713	0.738
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.898	0.921	0.912	0.880	0.903
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	1.9	1.7	1.9	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	7	13	11	10	7

Page Number 2 9 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Client sampling date / time			08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-031	HK1933344-032	HK1933344-033	HK1933344-034	HK1933344-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.2	9.5	8.5	8.5	8.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	0.024
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.199	0.220	0.185	0.165	0.219
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.788	0.762	0.801	0.744	0.773
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.987	0.982	0.986	0.909	1.02
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.03	0.03	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	2.7
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	10	14	11	16	12

Page Number : 10 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID Client sampling date / time			F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
				08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-036	HK1933344-037	HK1933344-038	HK1933344-039	HK1933344-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.5	8.8	8.1	9.2	9.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.030	<0.005	<0.005	<0.005	0.012
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.217	0.194	0.196	0.216	0.172
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.781	0.724	0.716	0.723	0.748
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.03	0.918	0.912	0.940	0.932
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	<0.01	<0.01	0.01	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	2.6	2.8	2.0	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	8	11	15	13	9

Page Number 11 of 28 Client FUGRO TECHN

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-041	HK1933344-042	HK1933344-043	HK1933344-044	HK1933344-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.9	10.5	10.5	10.4	9.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.018	<0.005	<0.005	0.018	0.055
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.224	0.216	0.214	0.196	0.217
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.772	0.776	0.712	0.782	0.731
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.01	0.993	0.926	0.996	1.00
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.01	0.03	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	1.6	1.5	<1.0	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	19	1	NOT DETECTED	14

Page Number : 12 of 28 Client : FUGRO TECHNICAL

Sub-Matrix: WATER		Clie	ent sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-046	HK1933344-047	HK1933344-048	HK1933344-049	HK1933344-050
EA/ED: Physical and Aggregate Properties							•	
EA025: Suspended Solids (SS)		0.5	mg/L	9.3	7.8	8.1	7.8	7.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.062	0.083	0.094	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.190	0.215	0.190	0.168	0.165
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.718	0.728	0.724	0.748	0.750
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.970	1.02	1.01	0.915	0.915
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.3	2.7	2.8	1.4	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	9	18	12	NOT DETECTED	NOT DETECTED

Page Number 13 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-051	HK1933344-052	HK1933344-053	HK1933344-054	HK1933344-055
EA/ED: Physical and Aggregate Properties			·					
EA025: Suspended Solids (SS)		0.5	mg/L	8.1	8.3	8.2	7.6	7.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.176	0.180	0.172	0.175	0.170
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.702	0.696	0.735	0.700	0.751
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.879	0.876	0.907	0.875	0.921
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	1.73	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.0	<1.0	1.4	<1.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number 14 of 28 Client FUGRO TECHNICA

ient : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-056	HK1933344-057	HK1933344-058	HK1933344-059	HK1933344-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.7	6.5	6.2	5.6	5.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.178	0.183	0.178	0.176	0.160
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.748	0.750	0.745	0.755	0.810
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.926	0.934	0.923	0.931	0.970
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.6	1.2	2.4	2.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	3	NOT DETECTED	1	2

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-061	HK1933344-062	HK1933344-063	HK1933344-064	HK1933344-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.2	6.8	7.1	9.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.173	0.172	0.177	0.171	0.177
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.835	0.828	0.814	0.822	0.790
EK063A: Inorganic Nitrogen as N		0.010	mg/L	1.01	1.00	0.991	0.993	0.967
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	1.5	1.6	1.4	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	3	3	5	2

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-066	HK1933344-067	HK1933344-068	HK1933344-069	HK1933344-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.6	7.8	7.4	9.5	9.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.178	0.178	0.177	0.177	0.185
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.798	0.821	0.808	0.761	0.719
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.976	0.999	0.985	0.938	0.904
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	2.4	2.6	2.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	2	3	NOT DETECTED	NOT DETECTED

Page Number : 17 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Cli	ient samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-071	HK1933344-072	HK1933344-073	HK1933344-074	HK1933344-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	10.7	10.5	8.5	8.9	9.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.178	0.176	0.182	0.176	0.182
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.783	0.809	0.779	0.776	0.762
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.961	0.985	0.961	0.952	0.944
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.3	1.9	1.2	1.2	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	2	8	5	2

Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-076	HK1933344-077	HK1933344-078	HK1933344-079	HK1933344-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.5	9.9	9.5	14.8	14.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.177	0.180	0.177	0.175	0.179
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.766	0.770	0.761	0.778	0.734
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.943	0.949	0.938	0.953	0.913
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.0	1.4	1.4	1.3
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	2	3	NOT DETECTED	1

Page Number 19 of 28 Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-081	HK1933344-082	HK1933344-083	HK1933344-084	HK1933344-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.8	12.4	10.1	10.7	9.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.181	0.174	0.180	0.171	0.178
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.808	0.718	0.793	0.798	0.728
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.989	0.893	0.974	0.970	0.906
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.5	<1.0	2.1	1.8	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	1	1	NOT DETECTED	NOT DETECTED

Page Number: 20 of 28Client: FUGRO TECHN

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-086	HK1933344-087	HK1933344-088	HK1933344-089	HK1933344-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.1	8.5	8.5	6.9	6.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.179	0.175	0.179	0.173	0.177
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.728	0.732	0.722	0.732	0.731
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.908	0.907	0.902	0.905	0.908
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.05	0.05	0.05
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.4	1.1	1.2	1.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number 21 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933344-091	HK1933344-092	HK1933344-093	HK1933344-094	HK1933344-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.3	8.3	8.5	8.6	8.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.182	0.180	0.191	0.183	0.186
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.757	0.767	0.740	0.734	0.764
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.939	0.947	0.931	0.917	0.950
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.06	0.06	0.06
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.03	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.7	1.6	2.2	2.7	2.3
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	1	NOT DETECTED	NOT DETECTED	2

Page Number: 22 of 28Client: FUGRO TECHN

ient FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup	 	
	Cli	ent samplii	ng date / time	08-Aug-2019	 	
Compound	CAS Number	LOR	Unit	HK1933344-096	 	
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	 	
ED/EK: Inorganic Nonmetallic Parameters						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.011	 	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.175	 	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.742	 	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.928	 	
EK067P: Total Phosphorus as P		0.01	mg/L	0.05	 	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	 	
EP: Aggregate Organics						
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.6	 	
EM: Microbiological Testing						
EM002: E. coli		1	CFU/100mL	1	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	oratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	2515073)						
HK1933344-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	8.8	8.7	1.15
HK1933344-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	11.5	12.0	3.84
EA/ED: Physical and A	ggregate Properties (QC Lot:	2515074)						
HK1933344-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	10.2	9.8	4.02
HK1933344-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	9.2	9.4	2.70
EA/ED: Physical and A	ggregate Properties (QC Lot:	2515075)						
HK1933344-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	9.9	10.2	3.47
HK1933344-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	8.1	7.9	2.18
EA/ED: Physical and A	ggregate Properties (QC Lot:	2515076)						
HK1933344-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	5.5	4.90
HK1933344-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	10.7	10.4	2.37
EA/ED: Physical and A	ggregate Properties (QC Lot:	2515077)						
HK1933344-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	12.8	12.4	3.58
HK1933344-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	8.3	8.1	3.05
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516188)						
HK1933344-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2516190)						
HK1933344-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516191)						
HK1933344-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516192)						
HK1933344-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	<0.005	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516356)						
HK1933344-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.198	0.200	0.804
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516358)						
HK1933344-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.172	0.165	4.15
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516360)						
HK1933344-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.160	0.165	2.77
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2516362)						
HK1933344-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.179	0.176	2.03

 Page Number
 :
 24 of 28

 Client
 :
 FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK1933344

Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)	
sample ID							Result		
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516364)							
HK1933344-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.177	0.180	1.73	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516820)							
HK1933344-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516821)							
HK1933344-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516822)							
HK1933344-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516823)							
HK1933344-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516824)							
HK1933344-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516825)							
HK1933344-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516826)							
HK1933344-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516827)							
HK1933344-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516828)							
HK1933344-090	G/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.05	0.05	0.00	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot: 2	516829)							
HK1933344-090	G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.00	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB)) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC Lot: 2515073)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot: 2515074)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.5		85	115		
EA/ED: Physical and Aggregate Properties (QC Lot: 2515075)										

 Page Number
 : 25 of 28

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER		Method Blank (MB) Report				DCS) Report					
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (C	C Lot: 2515075) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115		
EA/ED: Physical and Aggregate Properties(Q	C Lot: 2515076)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	108		85	115		
EA/ED: Physical and Aggregate Properties(Q	C Lot: 2515077)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.5		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516188)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	109		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516189)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	104		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516190)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	108		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516191)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	98.2		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516192)				· ·						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	109		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516356)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	102		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516358)				· · ·						
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	96.2		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516360)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	99.4		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516362)										1
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	104		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516364)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	98.8		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516820)		-								
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	94.0		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2516821)		_								
EK067P: Total Phosphorus as P	, 	0.01	mg/L	<0.01	0.5 mg/L	97.8		94	101		

 Page Number
 : 26 of 28

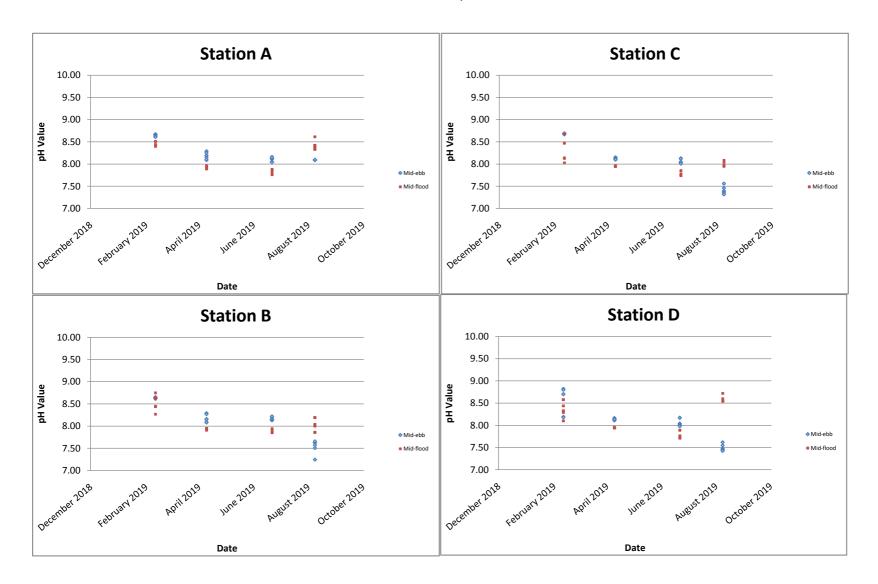
 Client
 : FUGRO TECHNICAL SERVICES LIMITED

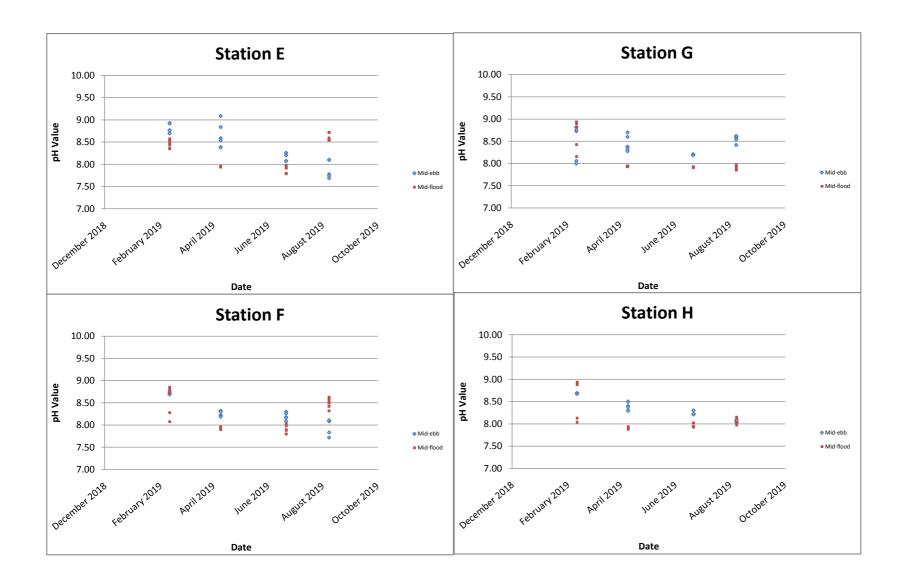
 Work Order
 : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Spike Re		Recove	ry Limits(%)	RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516822)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.2		94	101			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516823)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.3		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516824)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.8		94	101			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516825)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.6		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516826)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.0		94	101			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516827)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.0		85	115			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516828)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.3		94	101			
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2516829)											
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.9		85	115			
EP: Aggregate Organics (QC Lot: 2515206)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.4		81	115			
EP: Aggregate Organics (QC Lot: 2515207)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	106		81	115			
EP: Aggregate Organics (QC Lot: 2515208)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	94.8		81	115			
EP: Aggregate Organics (QC Lot: 2515209)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.9		81	115			
EP: Aggregate Organics (QC Lot: 2515210)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.9		81	115			

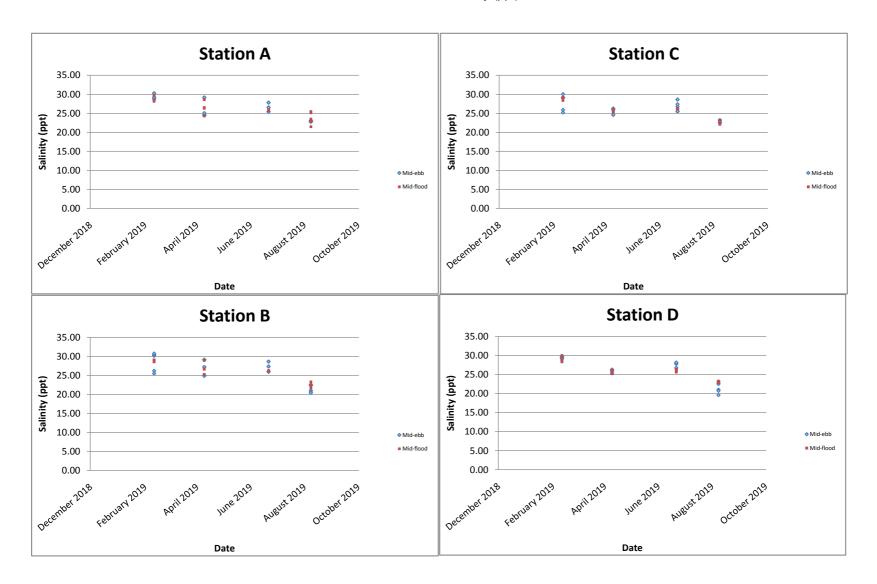
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

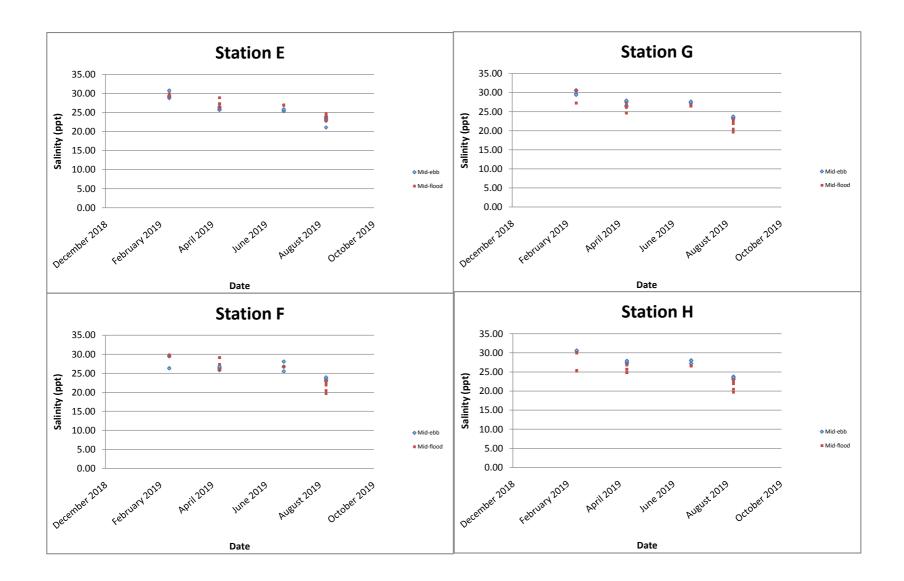
Matrix: WATER					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516188)									
HK1933344-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	94.5		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Qe	C Lot: 2516189)									
HK1933344-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	91.6		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516190)									
HK1933344-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	87.6		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516191)									
HK1933344-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	95.3		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516192)									
HK1933344-090	G/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	88.9		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516356)									
HK1933344-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	102		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516358)	'	I						1	
HK1933344-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	109		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516360)									
HK1933344-060		EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	113		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516362)		/							
HK1933344-080		EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	111		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516364)								1	
HK1933344-090	G/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75	125			
ED/EK: Inorgani	c Nonmetallic Parameters (Q	C Lot: 2516820)	I			1	1			1	
HK1933344-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	89.2		75	125		25	

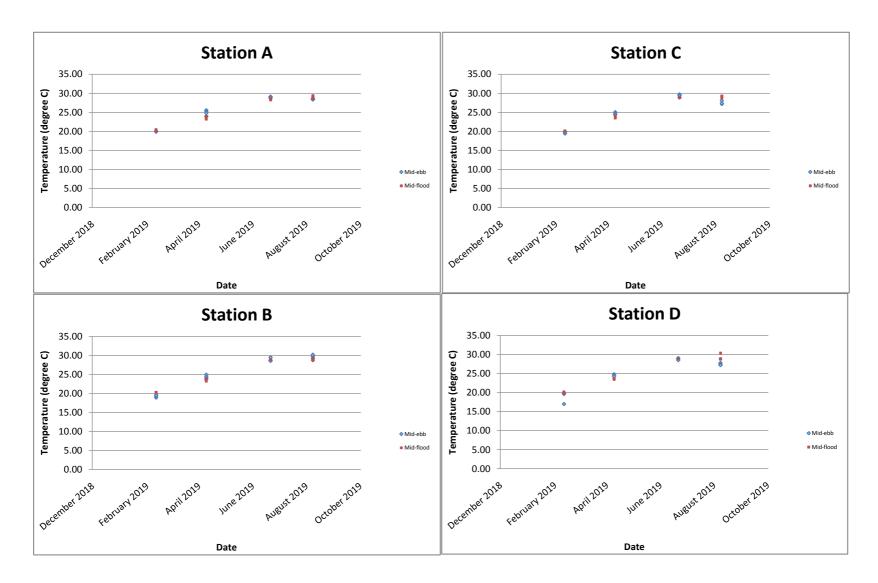

Page Number 28 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order

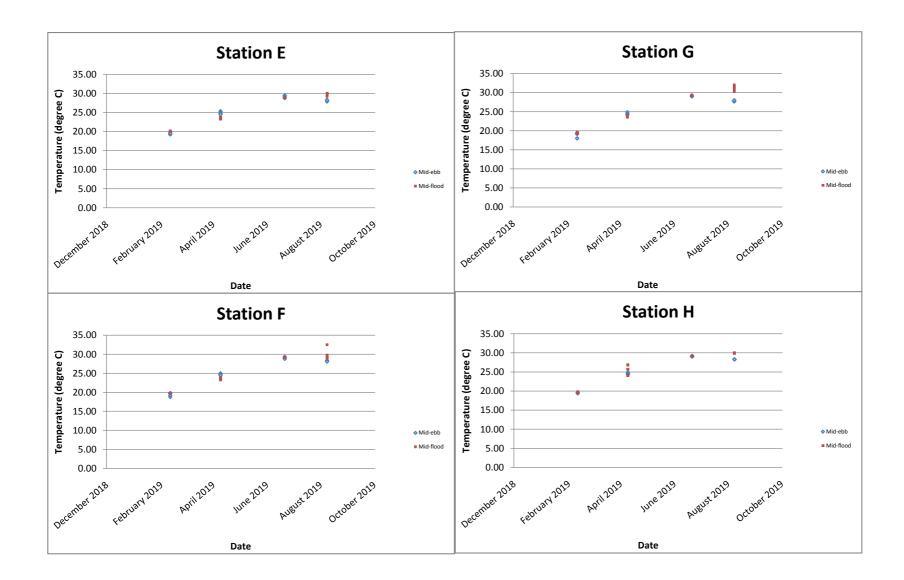

HK1933344

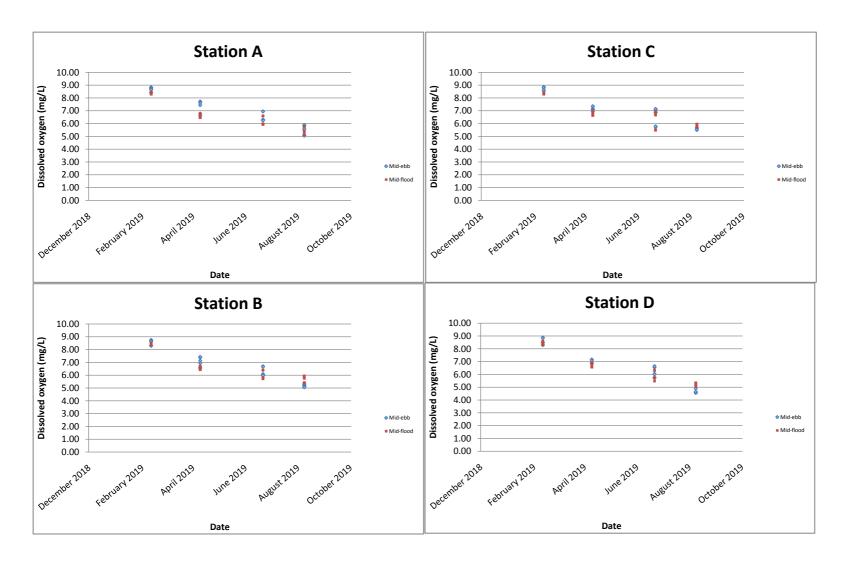
Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control	
sample ID										Limit	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 2516	821) - Continued									
HK1933344-02	0 D/S/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	92.5		75	125			
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	822)									
HK1933344-04	0 G/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	90.7		75	125			
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	823)									
HK1933344-04	0 G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	86.2		75	125		25	
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	824)									
HK1933344-06	0 B/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	90.3		75	125			
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 2516	825)									
HK1933344-06	0 B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	87.1		75	125		25	
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	826)									
HK1933344-08	0 F/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.1		75	125			
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	827)									
HK1933344-08	0 F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	90.5		75	125		25	
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	828)									
- HK1933344-09	0 G/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	87.8		75	125			
ED/EK: Inorgai	nic Nonmetallic Parameters (QC Lot: 2516	829)									
- HK1933344-09	0 G/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	89.7		75	125		25	

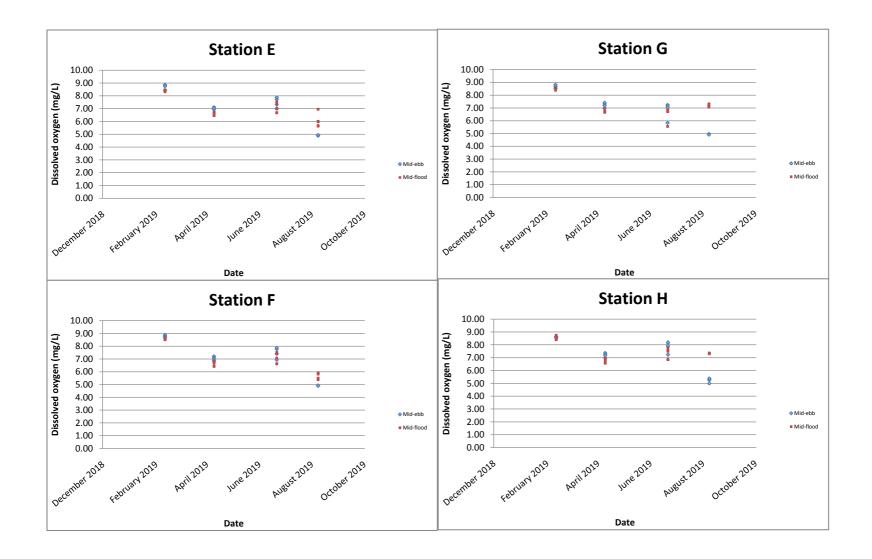

pH value

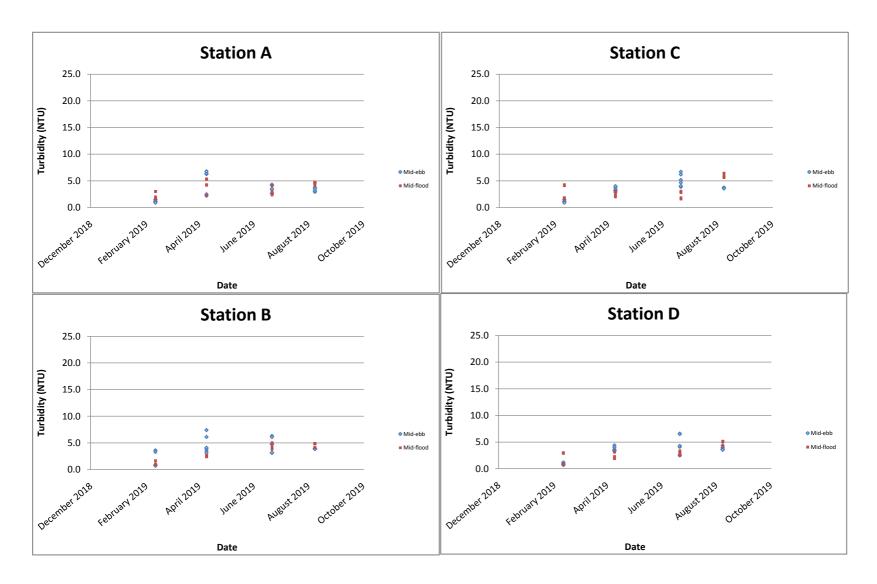

pH value

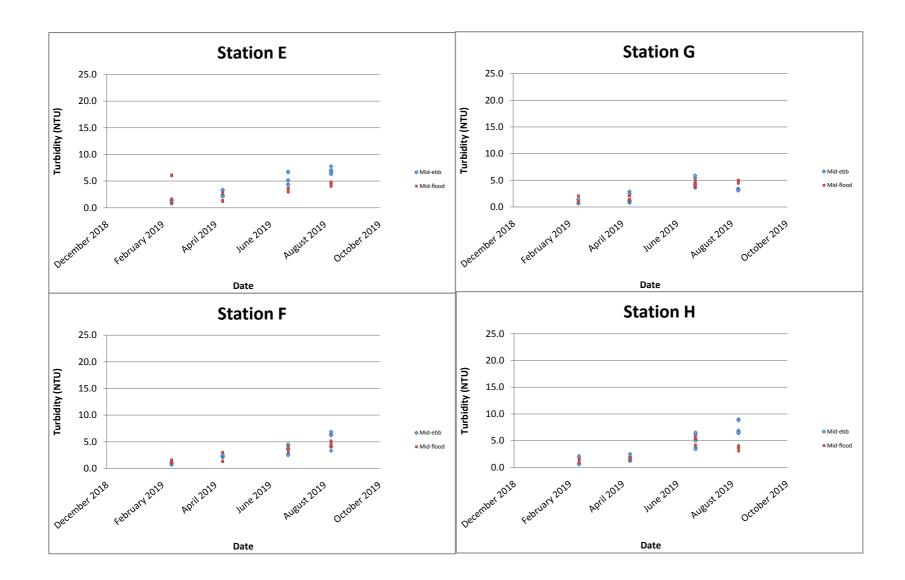

Salinity (ppt)

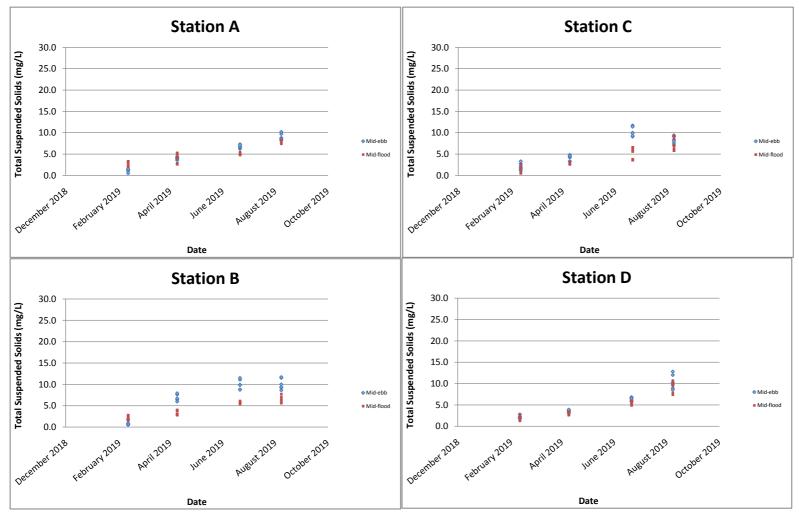

Salinity (ppt)


Temperature (degree C)

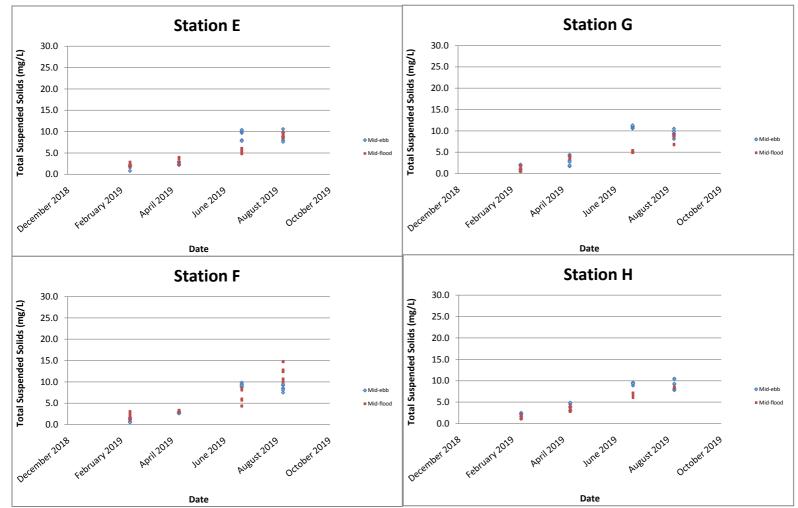

Temperature (degree C)


Dissolved oxygen (mg/L)

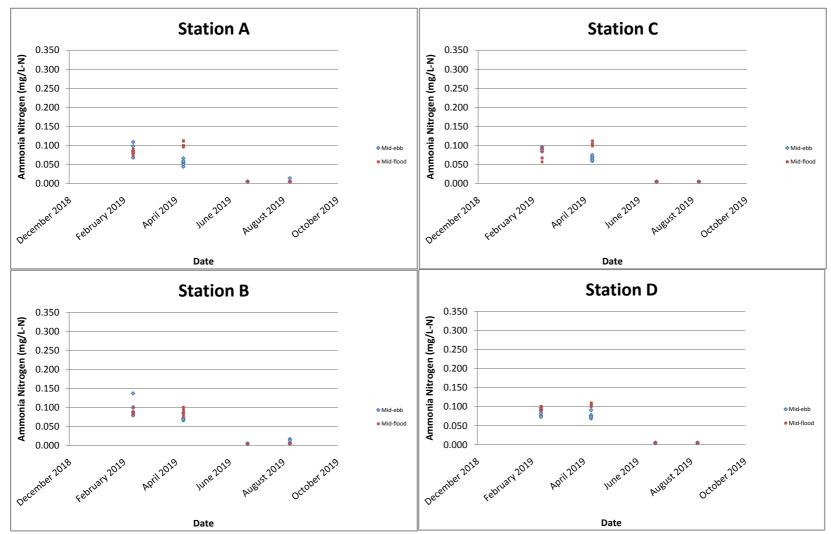

Dissolved oxygen (mg/L)

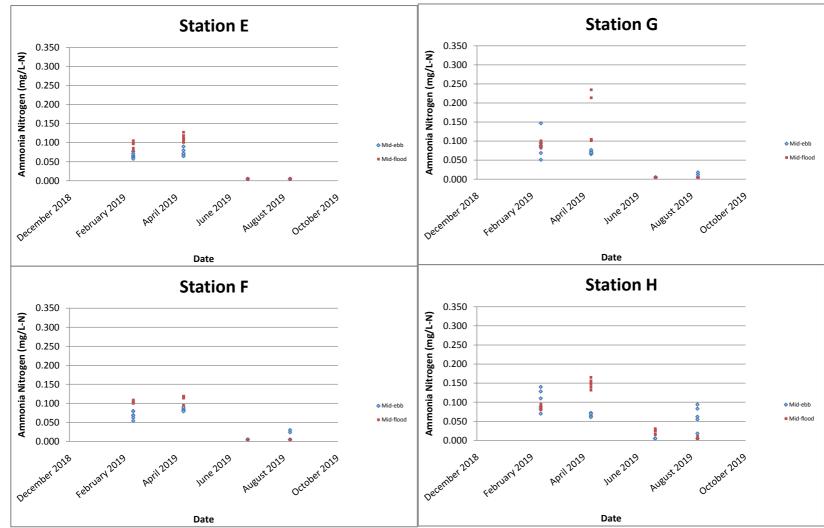


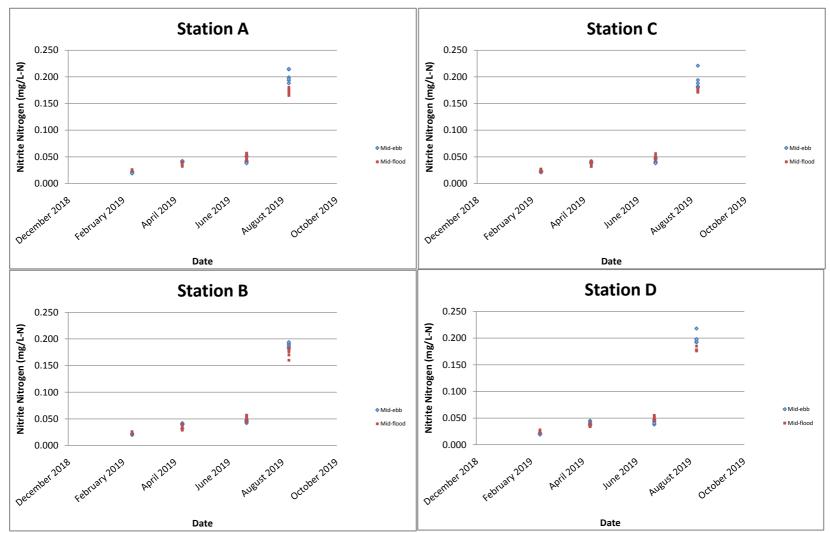
Turbidity (NTU)

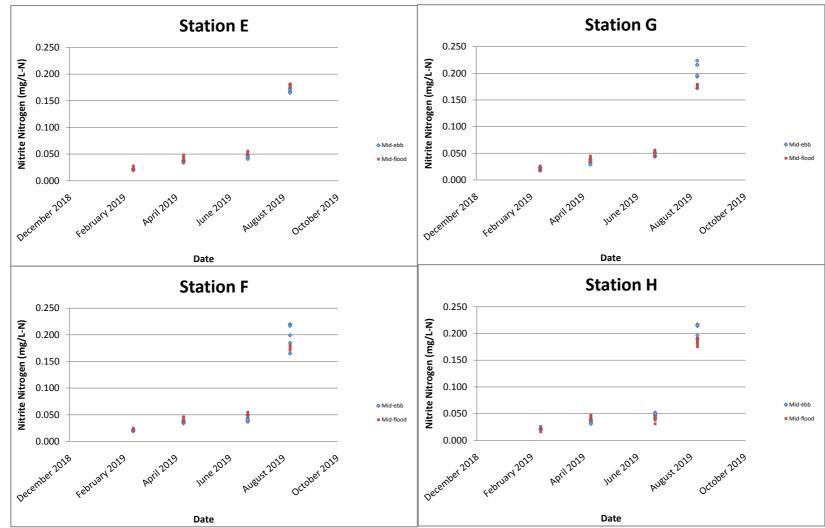


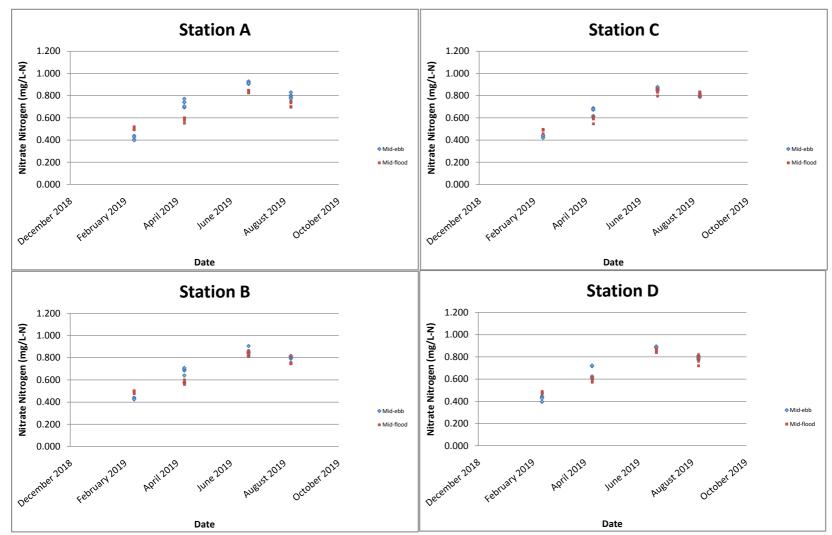
Turbidity (NTU)



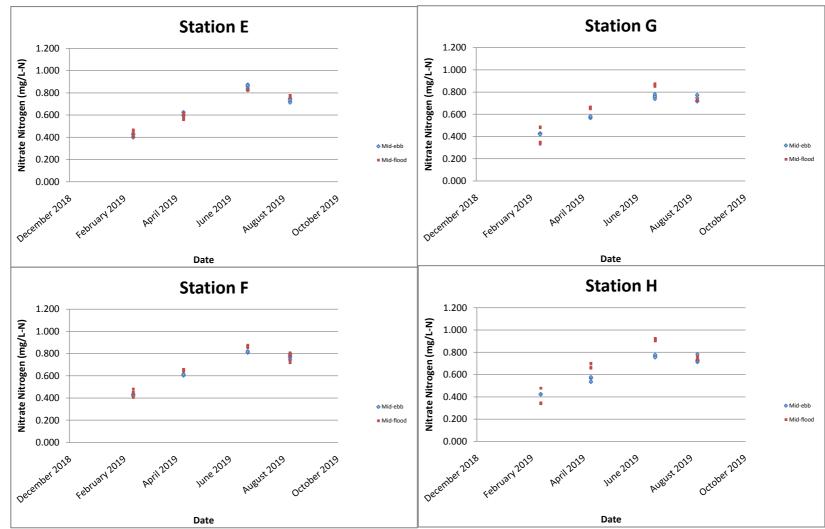

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

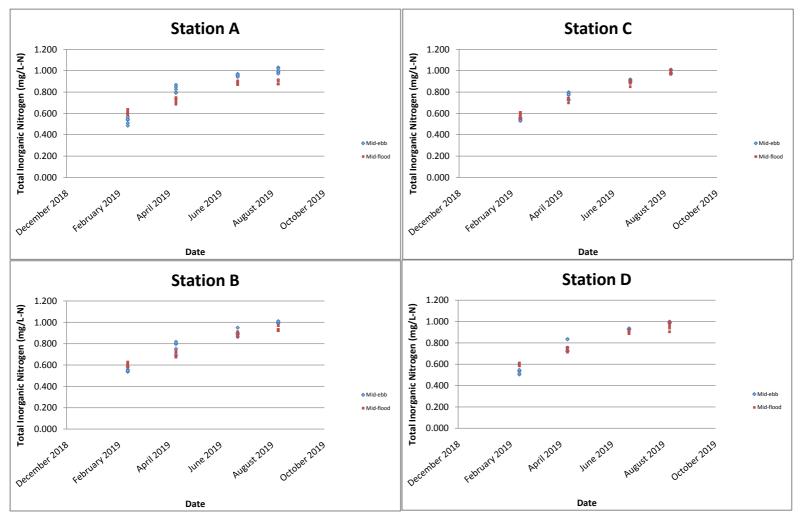

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

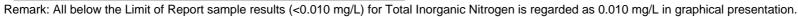

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

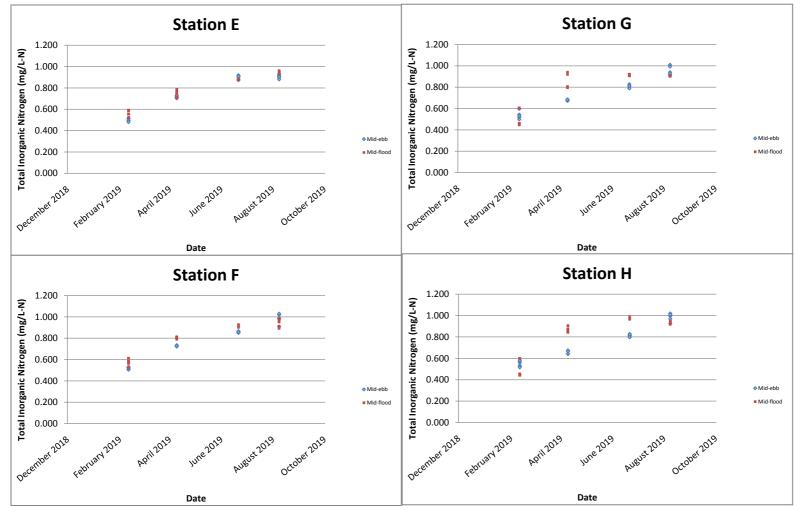
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

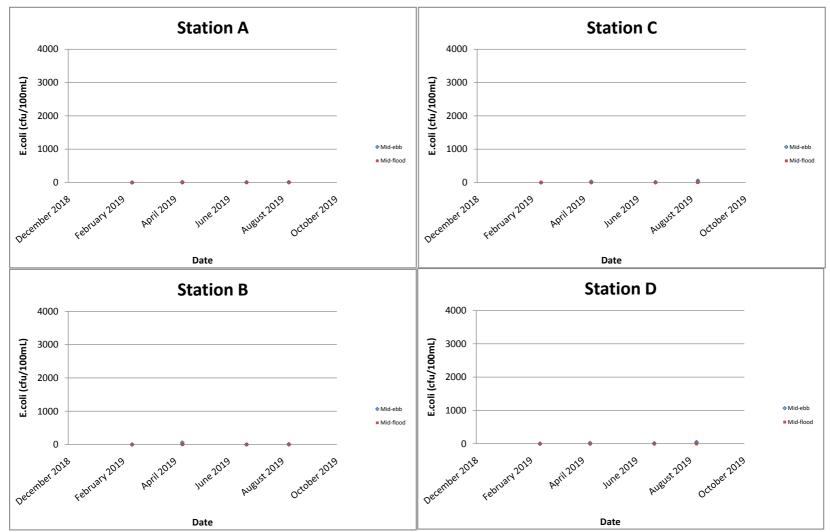


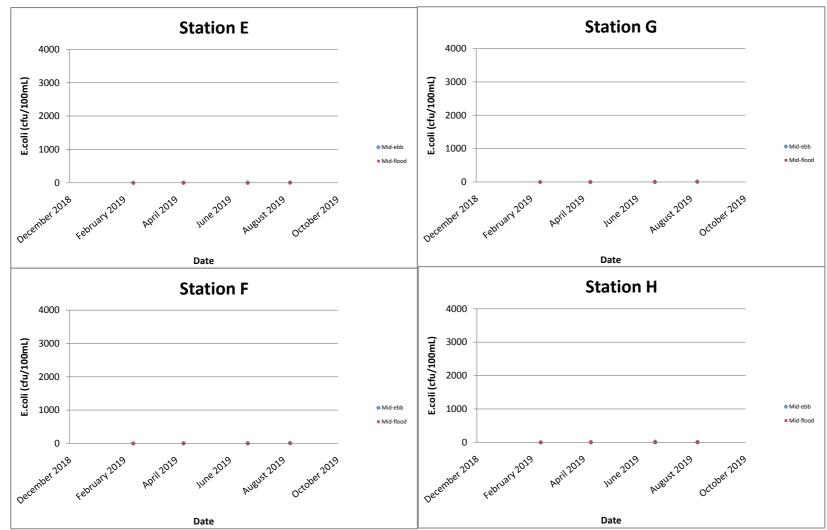
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.



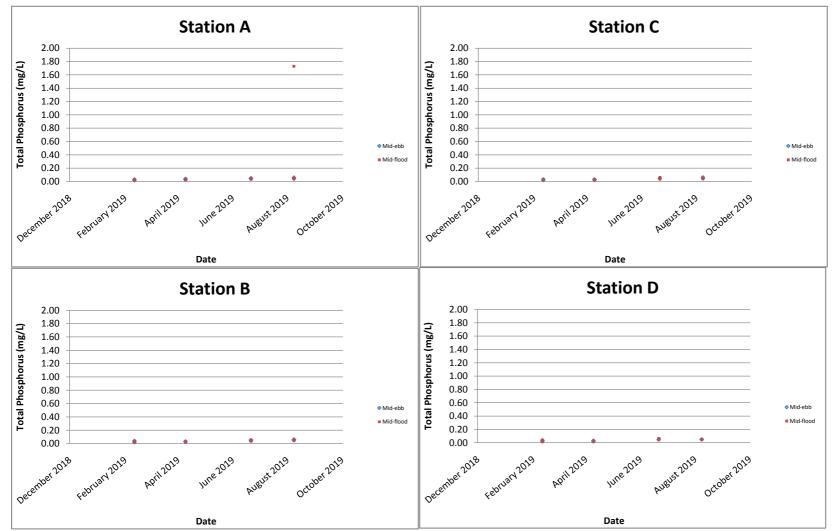

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Nitrate Nitrogen (mg/L-N)

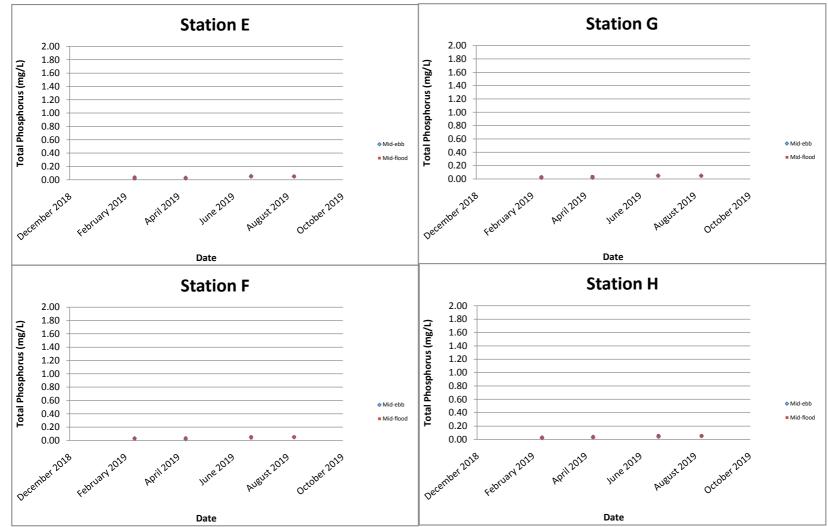

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.



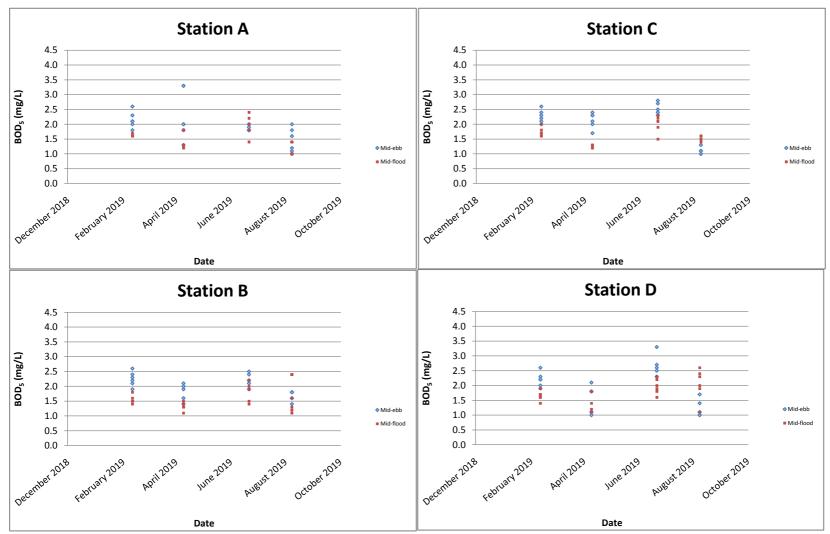
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.



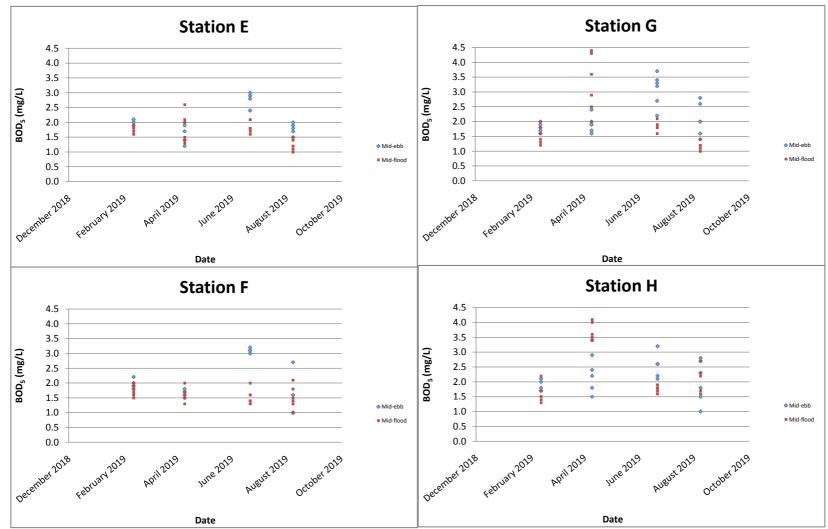
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 0 CFU/100mL in graphical presentation.


E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 0 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

FUGRO TECHNICAL SERVICES LIMITED

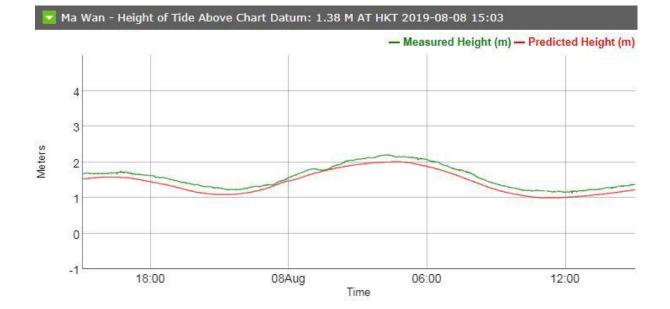
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix F

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring	I					
Monitoring Location	Date	Weather	Sea Condition		рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
А	8/8/2019	Sunny	Moderate	9:22	8.8	5	826	303	<0.10	30.3	25.9	35.4	0.14	17.8	88.0	13.9	0.23
В	8/8/2019	Sunny	Moderate	9:38	8.6	8	1220	397	<0.10	42.0	38.5	44.6	0.20	25.1	117	15.5	0.44
С	8/8/2019	Sunny	Moderate	10:00	8.5	14	1170	450	0.10	48.0	41.8	51.4	0.22	29.5	130	14.1	0.31
D	8/8/2019	Sunny	Moderate	10:12	8.5	12	1180	477	<0.10	46.1	40.4	50.8	0.22	27.8	127	16.0	0.29
E	8/8/2019	Sunny	Moderate	10:34	8.6	14	1510	487	<0.10	48.9	43.6	51.0	0.23	29.0	133	13.0	0.36
F	8/8/2019	Sunny	Moderate	10:47	8.5	26	1880	593	<0.10	48.9	45.1	51.9	0.24	30.1	138	13.3	0.38
G	8/8/2019	Sunny	Moderate	11:07	8.6	18	1540	497	0.11	48.4	49.2	54.7	0.25	29.8	137	13.1	0.39
Н	8/8/2019	Sunny	Moderate	11:21	8.5	11	1180	439	0.10	46.0	43.6	46.0	0.18	27.8	113	14.8	0.29

		Weather	Sea				Benthic Survey		
Monitoring Location	Date		Sea Condition	Time	Total Organic Carbon				
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
A	8/8/2019	Sunny	Moderate	9:22	0.63	13	43	21	23
В	8/8/2019	Sunny	Moderate	9:38	0.86	0	33	36	31
С	8/8/2019	Sunny	Moderate	10:00	0.92	0	3	55	42
D	8/8/2019	Sunny	Moderate	10:12	0.93	0	4	56	40
E	8/8/2019	Sunny	Moderate	10:34	1.07	0	6	52	42
F	8/8/2019	Sunny	Moderate	10:47	1.19	1	4	55	40
G	8/8/2019	Sunny	Moderate	11:07	0.90	13	21	36	30
Н	8/8/2019	Sunny	Moderate	11:21	0.90	0	1	53	40

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS : FUGRO TECHNICAL SERVICES LIMITED : ALS Technichem (HK) Pty Ltd : 1 of 13 Client Laboratory Page : HK1933349 : MR CYRUS LAI : Richard Fung Work Order Contact Contact : ROOM 723 & 725, 7/F, BLOCK B, PROFIT : 11/F., Chung Shun Knitting Address Address **INDUSTRIAL BUILDING, 1-15 KWAI FONG** Centre, 1 - 3 Wing Yip Street, CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong : c.lai@fugro.com : richard.fung@alsglobal.com E-mail E-mail : +852 3565 4374 : +852 2610 1044 Telephone Telephone : +852 2610 2021 Facsimile : -----Facsimile : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR : 08-Aug-2019 Date Samples Received Project SIU HO WAN SEWAGE TREATMENT PLANT : 0041/17 Order : HKE/1654/2017_R1 : 23-Aug-2019 Quote Issue Date number number C-O-C No. of samples received : 24 number No. of samples analysed : 24 Site : -----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

_

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 08-Aug-2019 to 22-Aug-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1933349

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

EA002SOIL - pH value is reported as at 25°C.

EK055S - Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCl solution extract.

EK059A - Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

EA002SOIL - Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.

EA002SOIL - Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Analytical Results

Sub-Matrix: SEDIMENT		Clie	nt sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplir	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933349-001	HK1933349-002	HK1933349-003	HK1933349-004	HK1933349-005
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.8	8.6	8.5	8.5	8.6
EA055: Moisture Content (dried @ 103°C)		0.1	%	43.0	53.9	61.5	60.8	60.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	5	8	14	12	14
EK062A: Total Nitrogen as N		10	mg/kg	826	1220	1170	1180	1510
EK067A: Total Phosphorus as P		10	mg/kg	303	397	450	477	487
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	13.9	15.5	14.1	16.0	13.0
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	0.10	<0.10	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	30.3	42.0	48.0	46.1	48.9
EG020: Copper	7440-50-8	0.20	mg/kg	25.9	38.5	41.8	40.4	43.6
EG020: Lead	7439-92-1	0.20	mg/kg	35.4	44.6	51.4	50.8	51.0
EG020: Mercury	7439-97-6	0.05	mg/kg	0.14	0.20	0.22	0.22	0.23
EG020: Nickel	7440-02-0	0.20	mg/kg	17.8	25.1	29.5	27.8	29.0
EG020: Silver	7440-22-4	0.10	mg/kg	0.23	0.44	0.31	0.29	0.36
EG020: Zinc	7440-66-6	0.5	mg/kg	88.0	117	130	127	133

Page Number : 4 of 13 Client : FUGRO TECHNI

ent : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1933349

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933349-006	HK1933349-007	HK1933349-008	HK1933349-009	HK1933349-010
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.5	8.6	8.5		
EA055: Moisture Content (dried @ 103°C)		0.1	%	62.6	56.1	55.4	43.2	55.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	26	18	11		
EK062A: Total Nitrogen as N		10	mg/kg	1880	1540	1180		
EK067A: Total Phosphorus as P		10	mg/kg	593	497	439		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	13.3	13.1	14.8		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.11	0.10		
EG020: Chromium	7440-47-3	0.5	mg/kg	48.9	48.4	46.0		
EG020: Copper	7440-50-8	0.20	mg/kg	45.1	49.2	43.6		
EG020: Lead	7439-92-1	0.20	mg/kg	51.9	54.7	46.0		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.24	0.25	0.18		
EG020: Nickel	7440-02-0	0.20	mg/kg	30.1	29.8	27.8		
EG020: Silver	7440-22-4	0.10	mg/kg	0.38	0.39	0.29		
EG020: Zinc	7440-66-6	0.5	mg/kg	138	137	113		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.63	0.86

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1933349

								-
Sub-Matrix: SEDIMENT		Clie	ent sample ID	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Clie	ent samplir	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933349-011	HK1933349-012	HK1933349-013	HK1933349-014	HK1933349-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	62.0	61.6	60.3	60.8	54.2
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.92	0.93	1.07	1.19	0.90

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1933349

Sub-Matrix: SEDIMENT		Clie	ent sample ID	H/Benthic Survey	 	
	Clie	ent samplir	ng date / time	08-Aug-2019	 	
Compound	CAS Number	LOR	Unit	HK1933349-016	 	
EA/ED: Physical and Aggregate Properties						·
EA055: Moisture Content (dried @ 103°C)		0.1	%	58.5	 	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.90	 	

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1933349

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019	08-Aug-2019
Compound	CAS Number	LOR	Unit	HK1933349-017	HK1933349-018	HK1933349-019	HK1933349-020	HK1933349-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	1	1	2	<1	<1
EG020: Copper	7440-50-8	1	µg/L	2	3	4	2	2
EG020: Lead	7439-92-1	1	µg/L	1	<1	2	<1	<1
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	µg/L	2	2	2	2	2
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	<10	<10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1933349

11(1000010							
Sub-Matrix: WATER		Clie	ent sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Cli	ent samplii	ng date / time	08-Aug-2019	08-Aug-2019	08-Aug-2019	
Compound	CAS Number	LOR	Unit	HK1933349-022	HK1933349-023	HK1933349-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	2	<1	<1	
EG020: Copper	7440-50-8	1	µg/L	4	2	2	
EG020: Lead	7439-92-1	1	µg/L	2	<1	<1	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	3	2	2	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and Ag	gregate Properties (QC Lot:	2519093)						
HK1933349-002	B/Sediment	EA002SOIL: pH Value		0.1	pH Unit	8.6	8.8	2.30
EA/ED: Physical and Ag	gregate Properties (QC Lot:	2519491)						
HK1933349-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	43.0	43.7	1.68
HK1933349-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	62.0	61.8	0.313
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 2	2519134)						
HK1933349-001	A/Sediment	EK055S: Ammonia as N	7664-41-7	1	mg/kg	5	5	0.00
ED/EK: Inorganic Nonm	etallic Parameters (QC Lot: 2	2523753)						
HK1933737-001	Anonymous	EK067A: Total Phosphorus as P		10	mg/kg	6260	6630	5.80
EG: Metals and Major C	ations (QC Lot: 2516103)							
HK1933349-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.20	0.20	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	38.5	38.1	1.08
		EG020: Lead	7439-92-1	0.05	mg/kg	44.6	44.5	0.273
		EG020: Nickel	7440-02-0	0.05	mg/kg	25.1	24.6	1.95
		EG020: Silver	7440-22-4	0.05	mg/kg	0.44	0.53	18.8
		EG020: Arsenic	7440-38-2	0.5	mg/kg	15.5	15.2	1.97
		EG020: Chromium	7440-47-3	0.5	mg/kg	42.0	40.4	3.72
		EG020: Zinc	7440-66-6	0.5	mg/kg	117	115	2.31
EP: Aggregate Organics	s (QC Lot: 2524166)							
HK1933349-010	B/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.86	0.86	0.00
HK1933870-002	Anonymous	EP005: Total Organic Carbon		0.05	%	1.74	1.89	8.19
Matrix: WATER					Labo	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major C	ations - Total (QC Lot: 2516	169)						
HK1933349-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	0.00
		EG020: Chromium	7440-47-3	1	μg/L	1	1	0.00
		EG020: Copper	7440-50-8	1	μg/L	3	3	0.00
		EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.00

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory	Client sample ID	Method: Compound Co		LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
EG: Metals and Major (Cations - Total (QC Lot: 2516169)	- Continued			1	1					
HK1933349-018	B/Rinsate Blank	EG020: Nickel	7440-02-0	1	µg/L	2	2	0.00			
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00			
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.00			
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Contra	ol Spike (LCS) and Lab	oratory Control S	pike Duplicate (D	CS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 2519134)										
EK055S: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	105		85	115		
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 2523753)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	89.9		84	95		
EG: Metals and Major Cations (QC Lot: 2516	103)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	103		85	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	110		85	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	102		85	115		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	106		85	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	106		87	115		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	101		85	115		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	101		85	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	109		85	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	104		85	115		
EP: Aggregate Organics (QC Lot: 2524166)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	97.2		90	106		
Matrix: WATER			Method Blank (MB)	Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control Sj	oike Duplicate (D	ICS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit

Page Number : 11 of 13 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK1933349

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	rol Spike (LCS) and Labo	ratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike Re	acovery (%)	Recove	ary Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Tota	al (QC Lot: 2516169) - Continue	ed									
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	99.0		85	110		
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	97.6		85	109		
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	98.4		86	111		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	102		90	111		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	101		89	111		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	105		85	115		
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	97.1		87	110		
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	97.5		85	114		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	94.2		86	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL			-		Matrix Spil	ke (MS) and Matri	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	соvөгу (%)	Recovery	Limits (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 2519134)								
HK1933349-002	B/Sediment	EK055S: Ammonia as N	7664-41-7	10 mg/kg	88.4		75	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	C Lot: 2523753)								
HK1933737-001	Anonymous	EK067A: Total Phosphorus as P		100 mg/kg	96.0		75	125		
EG: Metals and	Major Cations (QC Lot: 25161	03)								
-K1933349-001	A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	107		75	125		
		EG020: Cadmium	S7A: Total Phosphorus as P 100 mg/kg 96.0 75 125 20: Arsenic 7440-38-2 5 mg/kg 107 75 125 20: Cadmium 7440-43-9 5 mg/kg 109 75 125 20: Cadmium 7440-47-3 5 mg/kg 93.0 75 125 20: Chromium 7440-47-3 5 mg/kg 96.0 75 125 20: Copper 7440-50-8 5 mg/kg 96.0 75 125 20: Lead 7439-92-1 5 mg/kg 96.0 75 125 20: Nickel 7440-02-0 5 mg/kg 94.6 75 125 20: Silver 7440-66-6 5 mg/kg 106 75 125 20: Zinc 740-66-6 5 mg/kg 106 75							
		EG020: Chromium	7440-47-3	5 mg/kg	93.0		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	96.0		75	125		
		EG020: Lead	7439-92-1	5 mg/kg			75	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	94.6	75 125 75 125 75 125				
		EG020: Nickel	7440-02-0	5 mg/kg	99.8		75	125		
		EG020: Silver	7440-22-4	5 mg/kg	106		75	125		
		EG020: Zinc	7440-66-6	5 mg/kg			75	125		
EP: Aggregate C	Drganics (QC Lot: 2524166)		· · · · · ·							
	A/Benthic Survey	EP005: Total Organic Carbon		40 %	104		75	125		
Matrix: WATER					Matrix Spil	ke (MS) and Matri	ix Spike Duplic	ate (MSD) Re	port	
			-	Spike					-)(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	
EG: Metals and	Major Cations - Total (QC Lot:	2516169)								
	A/Rinsate Blank	EG020: Arsenic	7440-38-2	100 µg/L	99.8		75	125		
		EG020: Cadmium	7440-43-9	100 µg/L	96.9		75	125		
		EG020: Chromium	7440-47-3	100 µg/L	99.4		75	125		
		EG020: Copper	7440-50-8	100 µg/L	86.4		75	125		
		EG020: Lead	7439-92-1	100 µg/L	84.9		75	125		
		EG020: Mercury	7439-97-6	2 µg/L	89.0		75	125		

Page Number : 13 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1933349

_

Matrix: WATER					Matrix Spi	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	асоvелу (%)	Recovery	Limits (%)	RPL	0 (%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and	Major Cations - Total (QC Lot: 2516169)	- Continued								
HK1933349-017	A/Rinsate Blank	EG020: Nickel	7440-02-0	100 µg/L	87.8		75	125		
		EG020: Silver	7440-22-4	100 µg/L	96.5		75	125		
		EG020: Zinc	7440-66-6	100 µg/L	82.4		75	125		

ALS Technichem (HK)Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR CYRUS LAI	WORK ORDER HK1933349
CLIENT	FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	: ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	SUB-BATCH:1DATE RECEIVED:8-AUG-2019DATE OF ISSUE:22-AUG-2019
PROJECT	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT	NO. OF SAMPLES : 24 CLIENT ORDER 0041/17

General Comments

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- EA002SOIL pH value is reported as at 25°C.
- EK055S Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCl solution extract.
- EK059A Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- EA002SOIL Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.
- EA002SOIL Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Kichard Joney.	
Richard Fung	General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK1933349

· 1

FUGRO TECHNICAL SERVICES LIMITED

[:] CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1933349-001	A/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-002	B/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-003	C/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-004	D/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-005	E/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-006	F/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-007	G/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-008	H/Sediment	SEDIMENT	08-Aug-2019	
HK1933349-009	A/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-010	B/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-011	C/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-012	D/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-013	E/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-014	F/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-015	G/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-016	H/Benthic Survey	SEDIMENT	08-Aug-2019	J2999-272.48
HK1933349-017	A/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-018	B/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-019	C/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-020	D/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-021	E/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-022	F/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-023	G/Rinsate Blank	WATER	08-Aug-2019	
HK1933349-024	H/Rinsate Blank	WATER	08-Aug-2019	

TEST CERTIFICATE
SUMMARY OF SOIL CLASSIFICATION TEST RESULT
GEOSPEC 3 : 2001

Report No: J2999-272.48

Works Order No. : 272

Job No. : J2999

Ltd	
Pty	
(HK)	
Technichem	
ALS	
istomer :	

Project : _										Cor	Contract No.:					Date : 12/08/2019	
Sample ID	Sample	ple		Δ Moisture Content	Test 6.1 Liquid	TestTestTest6.16.16.16.16.111 <td>Test 6.1 lasticity I</td> <td>Test 6.2 Liquidity</td> <td></td> <td>Passing Preparation 425µm Method</td> <td></td> <td>Particle Size Distribution</td> <td>e Distr</td> <td>ibutio</td> <td>u</td> <td>Description</td> <td>Sample</td>	Test 6.1 lasticity I	Test 6.2 Liquidity		Passing Preparation 425µm Method		Particle Size Distribution	e Distr	ibutio	u	Description	Sample
No.	No.	Type	Depth (m)	(%)	Limit (%)	Limit (%)	Index (%)	Index	Test Sieve (%)		# Test Method	Gravel (%)	PercentageGravelSandSilt(%)(%)(%)	tage Silt (%)	Clay (%)		Origin
HK1933349-009	A/Benthic Survey	D									1,5,7	13	43	21	23	Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments	* ,
HK1933349-010	B/Benthic Survey	D				:					1,5,7	0	33	36	31	Dark grey, slightly sandy SILT/CLAY with shell fragments	* ,
HK1933349-011	C/Benthic Survey	D									1,5,7	0	б	55	42	Dark grey, slightly sandy SILT/CLAY	* ,
HK1933349-012	D/Benthic Survey	D									1,5,7	0	4	56	40	Dark grey, slightly sandy SILT/CLAY with shell fragments	*,
HK1933349-013	E/Benthic Survey	D									1,5,7	0	9	52	42	Dark grey, slightly sandy SILT/CLAY with shell fragments	* *,
HK1933349-014	F/Benthic Survey	D									1,5,7	1	4	55	40	Dark grey, slightly sandy SILT/CLAY with shell fragments	++,
HK1933349-015	G/Benthic Survey	D									1,5,7	13	21	36	30	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	* ,
HK1933349-016	H/Benthic Survey	Ω									1,5,7	0	2	53	40	Dark grey, slightly sandy SILT/CLAY with shell fragments	* ,
Legend :	ν = τ#	Test Met Test Met	hod in accor hod in accor	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content a Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3),	DSPEC 3 : DSPEC3 :	: 2001 Test 2001 Test {	5.1 Moistu 3.1 (1), 8.2	re Content (2), 8.3 (3),	at 45°C ± : , 8.4 (4), 8.	t 45°C ± 5°C (A), Test 5.2 Mo 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	6.2 Moisture (8.7 (7).	Content a	it 105°C	± 5°C	(B), Te	Test Method in accordance with GEOSPEC 3: 2001 Test 5.1 Moisture Content at 45° C $\pm 5^{\circ}$ C (A), Test 5.2 Moisture Content at 105° C $\pm 5^{\circ}$ C (B), Test 5.3 Comparative Moisture Content $45/105^{\circ}$ C $\pm 5^{\circ}$ C (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	
Symbols :	U - Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample;	umple; d Sample 31 Sample			P-1 M-1 D-5 D-5 T-1	 P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample; Portable triple tube Samp 	Piston Sample; Mazier Sample; Small Disturbed Sample; Portable triple tube Sample;	ıle; mple;	N.P No A.R As H.P Hai Aoisti	N.P Non Plastic; A.R As Received; H.P Hand Picked; • - Moisture Content for A.L. Test.	A.L. Test.	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;	vir Driec Ven Dri Vet Siev	ed;		Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. ‡ - Information provided by customer.	
Notes: Checked by :	IS - Insufficient Sample;	je;			Tf - T	Tf - To Follow on supplementary Report. Appre	ı supplemeı	ntary Repo App	eport. Approved By :	N	C				10	Date : 19/08/2019	
	T K Lam	am								Chung Hei Wing Principal Laboratory Officer	ing statory Office	ar					
			HKA HOKLAS	HKAS has accredited this laboratory (Reg. No. HOK HOKLAS directory of accredited laboratories. This report	lited this accredit	s laborato ed labora		. No. HOKI This report	KLAS 05 rt shall n	55) under HC	JKLAS founce	r specif ss with]	ic labc prior v	vritten	y activ	LAS 055) under HOKLAS for specific laboratory activities as listed in the shall not be reproduced unless with prior written approval from this laboratory.	
© Gammon Construction Ltd	tion Ltd							21 Chun Tseung	Wang Stree Kwan O, h	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Eax : 26917547.	ntre ın O Industrii 980, Fax : 26	al Estate, 917547					
Form : GESS001 / Se	Form : GESS001 / Sept. 14, 18 / Issue 1 / Rev 4	4															Page 1 of 1

-	FEST REPORT
]	DETERMINATION OF
I	PARTICLE SIZE DISTRIBUTION
(GEOSPEC 3 : 2001 Test Method 8.1 / 8.2 *, 8.5 / 8.6 * and 8.7
	Wet Sieve and Hydrometer Method)

/08/2019 /08/2019 ark grey, slightly gravell ethod A IS Percent Passing (%) 100 100 100 100 100 100 100 100 100 10	y, sandy SILT/CLAY *Upon request *Expanded Uncertainty of the Percent Passing (%) - - - - -	with shell fragments * Delete as appropri Cumulative Percent Passing with Expanded Uncertainty (%)	Special Samp Samp ate [†] Infor SEDIMENTATION Specific Gravity (# Dispersant Details : Sampling History The presence of any Particle	le Depth (m) men Depth (m) le Type : le Origin : mation provided by cu N ANALYSIS if assumed) : 2.65 Sodium hexametaph : As received visible organic matter	ustomer # osphate, Sodium	carbonate
ethod A IS Percent Passing (%) 100 100 100 100 100 100 100 1	*Upon request *Expanded Uncertainty of the Percent Passing (%)	* Delete as appropriative Cumulative Percent Passing with Expanded Uncertainty (%)	ate [†] Infor SEDIMENTATIO Specific Gravity (# Dispersant Details : Sampling History The presence of any Particle	mation provided by cu N ANALYSIS if assumed) : 2.65 Sodium hexametaph : As received visible organic matter	# osphate, Sodium	
IS Percent Passing (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	*Expanded Uncertainty of the Percent Passing (%)	*Cumulative Percent Passing with Expanded Uncertainty (%)	SEDIMENTATIO Specific Gravity (# Dispersant Details : Sampling History The presence of any Particle	N ANALYSIS if assumed): 2.65 Sodium hexametaph : As received visible organic matter	# osphate, Sodium	
Passing (%) 100 100 100 100 100 100 100 100 100 10	Uncertainty of the Percent Passing (%) - - - - -	Percent Passing with Expanded Uncertainty (%)	Specific Gravity (# Dispersant Details : Sampling History The presence of any Particle	if assumed) : 2.65 Sodium hexametaph : As received visible organic matter	osphate, Sodium	
100 100 100 100 100 100 100 100 100	*	-	The presence of any Particle	visible organic matter	in the soil : Non	9
100 100 100 100 100 100 100 100	-	-	Particle		In the soli. Non	
100 100 100 100 100 100	•	-				.0
100 100 100 100 100	*	-		*Expanded	% Finer	^Expande
100 100 100 100			Diameter	Uncertainty of the	than D	Uncertainty
100 100 100			Diameter	Particle Diameter	K	% finer than
100 100			- (mm)	(mm)	(%)	(%)
100		-	0.0730	-	45	(/0)
100	(i+)	-	0.0520		43	04
		-	0.0369	-	41	-
96		-	0.0263		39	-
			0.0187	-	37	-
92		-	0.0097	-	34	-
	-			-		
				-		
		-			21	-
				12		
		<u> </u>	Clay (70)	- 25		
= Sedimentation Points >63,µm	0.063		0.6 1.18 2	5 10	20 37.5	75
	─┼─┼─┼┼╢┼					
			++++++			
2 0.006 0.01	0.02 0.06	0.1 0.2	0.6 1 2	6 10	20	60 100
1		Particle Size (nm)			
FINE MEDIUM	COARSE	FINE MEDIU	M COARSE	FINE MEDIUM	COARSE	BLES BLES
SILT		SAN	D	GRAVEL		
		1	1		.1	
C M Vin	Cha	cked By:		Annewed D.	MA	
Смтр			<u> </u>		Chung Hei Wing	
	96 95 92 87 81 73 70 65 55 49 44 0 sedimentation Points >63,µr 2 0.006 0.01	96 - 92 - 87 - 73 - 70 - 65 - 55 - 49 - 44 - 0 - 2end 0.063 Sedimentation Points >63,4m ignored 0.063 0 - 2 0.006 0.01 0.02 0.06 FINE MEDIUM COARSE SILT	96 - - 95 - - 87 - - 73 - - 70 - - 65 - - 49 - - 44 - - 0 - 0.063 0.15 2 0.063 0.15 0.3 1 0 - - 2 0.06 0.1 0.2 2 0.06 0.1 0.2 2 0.006 0.1 0.2 Particle Size (r FINE MEDIUM COARSE 5 FINE MEDIUM COARSE 5 SILT SAN	96 - - 0.0263 95 - - 0.0187 92 - - 0.0097 87 - - 0.0049 81 - - 0.0025 73 - - 0.0015 70 - SUMMARY : Gravel (%) 55 - - - 44 - - - 0.063 0.15 0.3 0.6 1.18 2 0.063 0.15 0.3 0.6 1.18 2 0.06 0.1 0.2 0.6 1.18 2 1 1 1 1 1 1 1 2 0.06 0.1 0.2 0.6 1 2 2 0.06 0.1 0.2 0.6 1 2 2 0.06 0.1 0.2 0.6 1 2 2 0.06 <	96 - 0.0263 - 95 - 0.0187 - 92 - 0.0097 - 87 - 0.0025 - 73 - 0.0025 - 73 - - 0.0025 - 73 - - 0.0015 - 70 - - SUMMARY : 13 55 - - - Gravel (%) : 13 355 - - Sterve Size(nm) - Clay (%) : 23 0 - - 0.083 0.15 0.3 0.6 1.18 2 5 10 19 - - - 0.083 0.15 0.3 0.6 1.18 2 5 10 19 - - - - 0 - 1.18 2 5 10 10 - 0.65 1 2	96 - 0.0263 - 39 92 - 0.0187 - 37 92 - 0.0097 - 34 87 - 0.0049 - 30 81 - 0.0049 - 32 73 - 0.0015 - 21 70 - - SUMMARY : - 13 55 - - - Sand (%) : 13 49 - - Sit (%) : 21 Clay (%) : 23 - - - 96 - - - - - 97 - - - - - - 65 - - - - - - - 98 - - - - - - - - 10 0.063 0.15 0.6 1.18 2

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

	2999 LS Technichem (HK	Contract No	3. 2.		Work	Report No. s Order No.	: J2999-272.48 : 272	
Project - Date Received : 12 Tested Date : 12	2/08/2019	, , , , , , , , , , , , , , , , , , , ,			Samp Samp Samp Speci	le ID No.	HK 1933349-010 B/Benthic Surve	
Description : D	ark grey, slightly san	dy SILT/CLAY with sh	ell fragments			le Type le Origin	- [‡]	
Sieve Method : M	lethod A	[•] Upon request	* Delete as	appropriate		mation provided I	by customer	
SIEVE ANALYS	IS Percent	*Expanded	*Cum	ulative	SEDIMENTATIO			
Sieve Size	Passing (%)	Uncertainty of the Percent Passing (%)	Percent with Ex Uncerta	panded	Specific Gravity (# Dispersant Details : Sampling History	Sodium hexame	2.65 # taphosphate, Sodium	carbonate
100.0 mm	100						atter in the soil : Nor	ne
75.0 mm		-					A(7)	1
63.0 mm 50.0 mm		-			Particle Diameter	[•] Expanded Uncertainty of		*Expanded Uncertainty
37.5 mm					Diameter	Particle Diame		% finer than
28.0 mm	100	-	2	-2 - 1 - 1	(mm)	(mm)	(%)	(%)
20.0 mm					0.0688	64	68	
14.0 mm 10.0 mm		-	-		0.0491 0.0350	-	65	-
6.30 mm			-		0.0249	-	60	
5.00 mm	100				0.0177	-	57	-
3.35 mm		.*.	3		0.0093	. .	51	*
2.00 mm 1.18 mm				-	0.0048		44	
600 μm	98				0.0014	-	28	-
425 μm	96	-		és (SUMMARY :	· · · · · · · · · · · · · · · · · · ·		
300 µm	93	-			Gravel (%)	:	0	
212 μm 150 μm	87				Sand (%) Silt (%)		33 36	
63 μm	67	-	-		Clay (%)		31	
0 µm	0					390 N		
	egend = Sedimentation Points >6	3,µm ignored 0.04		ve Size(mm) 0.3	0.6 1.18 2	5 10	20 37.5	75
80								
70 60								
ag 50								
Percenta								
Per								
30						╾┼╾╂╌╂╌╂┾╂╂		
20								
10			┼┼┼┠──┊─┤					
。								
0.001 0.0	02 0.006 0.0	1 0.02 0.04		2 rticle Size (mm	0.6 1 2 n)	6 -	10 20	60 100
	FINE MED		FINE	MEDIUM	COARSE		DIUM COARSI	COB- BLES
CLAY -				SAND		GRA	VEL	
CLAY	SIL	T			I			
	SIL	T					- IL A	
CLAY -	SIL C M Yip		necked By : Name : T	L		Approved I	1 A	J

accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Job No. Customer	: J29 : AI	999 LS Techni	chem (HK) Pr		Jontra	t No.					Wo	orks Or	der No		: 272	,		
Project Date Receiv Tested Date	: - ved: 12	/08/2019										Sar Sar Sar Spe	nple II nple N nple D) No. o. epth (n Depth	1)	: HK : C/E	1933349 Benthic S all Distu	Survey	
Description	: Da	ark grey, s	lightly	sandy S								Sar	nple O	rigin		: -‡			
Sieve Metho					^Upon				te as app		e	‡ In	format	ion pro	vided by	custo	mer		
SIEVE AN	VALYSI		Percent Passing			Expano ncertai			Cumulativ cent Pass			ENTATI Gravity				.65 #			
Sieve			(%)	5	oft	the Per issing (cent	wit	h Expand certainty (ded (%)	Dispers: Samplin	ant Detail 1g History	ls: So / : As	dium h s receiv	exameta ed	phosp			
	0.0 mm 5.0 mm		100			-		-	-		The pre	sence of a	iny vis	ible org	anic ma	tter in	the soil	: None	
	3.0 mm		100			-		-	-		Р	article		*Ext	anded	1	% Fine	er	*Expai
).0 mm		100								D	iameter	L		nty of th	ie	than D		Uncertai
	7.5 mm		100			-			- 6 - 6				F		Diamete	r	K		% finer t
	8.0 mm		100			-			-			(mm)	_		ım)	_	(%)	-	(%)
	0.0 mm	-	100						-			0.0643	-		-		97		-
	1.0 mm		100					+				0.0459			-		94 91		-
	30 mm		100	- · ·		-			-			0.0235					87		-
	00 mm	111 - 33 -	100									0.0168	-		-		83		-
	35 mm		100			-			-		C	0.0089	-		-		76		-
	00 mm		100									0.0046			5.		61		
	18 mm		100			-		_				0.0024			-		46		
	00 μm 25 μm		100 99			-		-	-			0.0014 ARY :			*		36		
		-	99				-	-	-			Gravel (%	6)	:	0				
	300 µm					-		1	-			Sand (%)		:					
212 µm		99			-														
	12 μm 50 μm		99						(inc)		Silt (%) Clay (%)			: 55 : 42					
15									-					:			-		
15	50 μm 63 μm 0 μm	gend = Sedimenta	99 97 0	ts >63µm	ignored		0.063	0.	- Sieve Siz					5			20 3	57.5	75
15	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	57.5	75
100 90	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	97.5	75
15 6	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63,µm	ignored		0.063	0.	- Sieve Siz			Clay (%)			42		20 3	7.5	75
100	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70 40 40 40 30	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42			7.5	75
Percentage Passing 100 90 00 00 00 00 00 00 00 00	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42		20 3	7.5	75
100 90 80 70 40 40 30	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42			7.5	
100 90 80 70 80 70 80 70 70 80 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	50 μm 63 μm 0 μm		99 97 0	ts >63µm	ignored		0.063		- Sieve Siz			Clay (%)			42			7.5	
100 90 80 70 60 90 80 70 0 40 90 90 80 70 90 90 90 90 90 90 90 90 90 90 90 90 90	50 μm 63 μm 0 μm		99 97 0 ion Point						Sieve Siz	3	0.6	1.18 2	2	5		:			
100 100 100 100 100 100 100 100	50 μm 63 μm 0 μm		99 97 0 ion Point	ts >63µm	ignored		0.063	0.	Sieve Siz 15 0.	3	0.6	Clay (%)	2	5	42	:	20 3	7.5	
100 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	50 μm 63 μm 0 μm Lee 0 =		99 97 0 ion Point		0.02		0.06		Sieve Siz 15 0.	3		1.18 2	2	5			20		
100 90 80 70 80 70 80 80 70 80 70 80 80 70 80 70 80 70 80 80 70 70 80 80 70 70 80 70 70 80 80 70 70 80 80 70 80 80 70 80 70 80 80 70 80 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	50 μm 63 μm 0 μm	2 Sedimenta	99 97 0 ion Point	0.01	0.02		0.06	0.1	Sieve Siz 15 0.	3		1.18 2	2	5		: : : : : :	20	6	
100 90 80 70 50 50 60 60 60 70 70 50 60 70 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	50 μm 63 μm 0 μm Lee 0 =	2 Sedimenta	99 97 0 ion Point	0.01	0.02		0.06	0.1	Sieve Siz 15 0.	3 Size (mr		1.18 2	2	5	42	: : : : : :	20	6	
100 90 80 70 80 70 80 80 70 80 70 80 80 70 80 70 80 70 80 80 70 70 80 80 70 70 80 70 70 80 80 70 70 80 80 70 80 80 70 80 70 80 80 70 80 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	50 μm 63 μm 0 μm Lee 0 =	2 Sedimenta	99 97 0 ion Point	0.01	0.02		0.06	0.1	Sieve Siz 15 0.	3 Size (mr		1.18 2	2	FINE	42	: : : : : : : : : : : : : :		6 OARSE	
100 90 80 70 60 90 80 70 60 90 80 70 70 60 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 80 70 80 80 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	50 μm 63 μm 0 μm	Pine	99 97 0 ion Point	0.01	0.02		0.06	0.1	Sieve Siz 15 0.	3 Size (mm IEDIUM SAND		1.18 2	2	FINE	42	: 	20	e OARSE Wing	

© Gammon Construction Ltd

	10000									J2999-272.48	
	J2999	1 (1112) D. 1	Contract N	0. :							
		chem (HK) Pty I	Ltd				Works Or			272	
roject : -	5) 						Sample II			HK1933349-012	
	12/00/0010						Sample N			D/Benthic Survey	, ,
Date Received :							-	epth (m)			
ested Date :	12/08/2019							Depth (
							Sample T			Small Disturbed	
Description : 1	Dark grey, sl	lightly sandy SIL		shell frag	ments		Sample C		:		
Sieve Method : 1	Method A	^	Upon request	* I	Delete as appropria	ate [‡]	Informat	tion prov	ided by cu	istomer	
SIEVE ANALY	SIS	Percent	*Expanded		[^] Cumulative	SEDIMENTA	TION A	ANALYS	SIS		
	1	Passing	Uncertainty		Percent Passing	Specific Gravi					
Sieve Size			of the Percent		with Expanded					osphate, Sodium	carbonate
		(%)	Passing (%)		Uncertainty (%)	Sampling Hist					
100.0 mr		100	-		-	The presence of	of any vis	ible orga	nic matter	in the soil : Non	e
75.0 mr		100	-		-	Derivite	· · · ·	4.5		0/ 5	An 1
63.0 mi		100	-	_	-	Particle		Expa		% Finer	Expande
50.0 mr 37.5 mr		100				Diameter		Jncertain Particle L	-	than D	Uncertainty % finer than
28.0 mi		100	-		-	(mm)		mi (mi		K (%)	(%)
20.0 mi		100	-			0.0657		(111		95	(%)
14.0 mi		100	-		-	0.0469		-		92	
10.0 mi		100	-		-	0.0335				88	
6.30 mi		100	-		-	0.0239		-		84	-
5.00 mi		100	-			0.0171				81	· · · ·
3.35 mr		100			(A)	0.0090))	0.00	74	-
2.00 mi		100				0.0047		-		58	-
1.18 mr		100	-		-	0.0024				44	-
600 μn		100	-		-	0.0014				34	-
425 μn		100	-		-	SUMMARY		1200	0		
300 μn 212 μn		100 99	•		-	Gravel		÷	0		
	u		-		-	Sand (*		•	4		
	n	99 1				Cil+ /0/)	•			
150 µn		99	:			Silt (% Clay (?		:	56 40		
150 μn 63 μn 0 μn	n n Legend	99 96 0 ion Points >63,µm igr	nored		- Sieve Size(mm	Clay (9	%)		40		
150 μn 63 μn 0 μn	n n Legend	96 0	nored	063	-	Clay (9		: : 5		20 37.5	75
150 μn 63 μn 0 μn	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm [100 90	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 μm 63 μn 0 μn [n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm [100 90 80	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µn 63 µn 0 µn 100 90 80 70	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µn 63 µn 0 µn 100 90 80 70	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70 70 50 50	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70 60 50 40	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µm 0 µm 100 90 80 70 70 50 50	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 µm 63 µn 0 µn 100 90 80 70 70 60 60 40 30	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70 60 50 40	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	
150 µm 63 µm 0 µm 100 90 80 70 70 70 80 70 70 80 70 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 70 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40	20 37.5	75
150 μm 63 μm 0 μm 100 90 80 70 50 50 50 30 20	n n Legend	96 0	nored	063	- Sieve Size(mm	Clay (9	%)		40		75
150 µm 63 µm 0 µm 100 90 80 70 70 40 30 20 10 10 0		96 0			Sieve Size(mm 0.15 0.3	Clay (?	2	5			
150 µm 63 µm 0 µm 90 90 80 70 70 50 50 50 10 10 10 10 90 90 80 70 10 10 10 90 90 90 90 90 90 90 90 90 90 90 90 90		96 0		063	Sieve Size(mm 0.15 0.3	0.6 1.18	%)				75 75 70 70 70 70 70 70 70
150 µm 63 µm 0 µm 100 90 80 70 70 50 50 50 40 30 20 10 0		96 0	nored 0,	06 0.1	Sieve Size(mm 0.15 0.3	Clay (?	2	5		20	
150 µm 63 µm 0 µm 100 90 80 70 70 50 50 50 40 30 20 10 0		96 0			Sieve Size(mm 0.15 0.3	Clay (?	2	5	40		
150 µm 63 µm 0 µm 100 90 80 70 60 80 70 60 80 70 70 80 70 80 70 90 80 70 90 80 70 90 80 70 90 90 90 90 90 90 90 90 90 90 90 90 90		96 0	nored 0,	06 0.1	Sieve Size(mm 0.15 0.3	Clay (?	2	5		20	
150 µm 63 µm 0 µm 90 90 80 70 60 80 70 70 80 70 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n Legend o = Sedimental	96 0	nored 0,	06 0.1	Sieve Size(mm 0.15 0.3	Clay (?	2	5 	40	20	
150 µm 63 µm 0 µm 90 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 90 90 90 90 90 90 90 90 90 90 90 90 90		96 0	nored 0,	06 0.1	Sieve Size(mm 0.15 0.3	Clay (?	2	5 5 6 FINE	40	20	
150 µm 63 µm 0 µm 90 90 80 70 50 60 50 50 10 10 0,001 0.001 0.001 0.001 70 10 0 0,001 10 10 0 10 10 10 10 10 10 10 10 10 1	n Legend o = Sedimental	96 0	nored 0,	06 0.1 FIN	Sieve Size(mm 0.15 0.3	Clay (?	2	5 5 6 FINE	40	20	

© Gammon Construction Ltd

Job No. Custome Project		2999 LS Techi	nichem	ı (Hk	۲) Pty L		tract M	No. :						Samp	Report ks Order N ple ID No. ple No.	Jo.	: 2 : F	2999-27: 72 IK19333 E/Benthic	49-013		
Tested I	eceived: 1 Date : 1 tion : D		9	hu oo	ndu SII	TCLAX	/ with	shall	frage	oonto				Spec Samp	ple Depth imen Dep ple Type ple Origin	th (m)	S	mall Dis	turbed		
Descript	fethod : M			iy sai		Jpon red		SHCH			appro	ariate			ormation p						
		-			`			1	_		ulative		CDIM	ENTATIC			Uy cua	stomer			
	ANALYS eve Size		Perce Passi	ing		Unce of the	oandec rtainty Percer ng (%	y nt	P V	ercent vith E>	Passin pande inty (%	g S i D	pecific ispers	e Gravity (# ant Details g History	if assume Sodiun	ed) : n hexam	2.65 # etapho		Sodium c	arbonat	e
	100.0 mm		100				-	,			-			sence of an			natter	in the so	il : None	2	
	75.0 mm	L	100			- 8				33	53										
	63.0 mm		100				-				-			article		Expande		% Fi			panded
	50.0 mm		100				-				-0 		D	iameter		tainty of		than		Uncer	
	37.5 mm		100			5	-			-	÷.			(Partic	le Diam	eter	K		% fine	
	28.0 mm		100				-		-		•			(mm)).0664		(mm) -		<u>(%</u> 93		(<u>%)</u> -
	14.0 mm		100											0.0472		-		9			-
	10.0 mm		100				-		1					0.0337				88			-
	6.30 mm		100			-	-		1					0.0240				84			
10	5.00 mm	1	100							2				0.0172				80			
	3.35 mm		100			1	-				•2			0.0090	_	*		7:			•
1200	2.00 mm		100				-							0.0047	_	-		59			•
	1.18 mm		100 99		-+		+				-			0.0024				4:		_	-
	600 μm 425 μm		99			-	*		-		-	IS		ARY :		-			5		-
	300 µm		99				-							Gravel (%)) :		0				
	212 µm		99				*							Sand (%)	:		6				
	150 µm		98			1			1				\$	Silt (%)	:		52				
	63 μm 0 μm		94 0	-	6		*			3	÷3			Clay (%)	:		42				
400		egend = Sedimer	ntation P	oints >	>63µm igr	ored		0.063		Sie 0.15	eve Size 0.3		0.6	1.18 2		5	10	20	37.5	75	
100				Π				10	H^{-}	1		TT	\prod			ТПП					
90				Ht		17	1		11-	1											
80				Ш		\checkmark	\rightarrow		₩_								<u> </u>				
				IV														_			
70				111																	
Passing			\mathcal{A}	$\left \right + \left \right $			++					+-+-	++++			+++	-	_		+ ++++++++	
Pas										1									1		
og 20				HH																	
Percentaç 0		/		Ш					Ш.	1											
Per	/																				
30	+		++	╋╋╋		+ +	++					++	+++			┥┽┼┼		-			
20				ΠŤ																	
10				\square		<u></u>			11				\square			++++					1
0		002	0.006	3 0	.01	0.02	11	0.06	0.1	0.	2	0	.6	1 2		6	10	20	1 11 1	60 10	00
0				. 0.	01				0.1		rticle Si						10				
		FINE		ME	EDIUM	COA	RSE		FINE		ME	DIUM		COARSE	FINE	м	EDIUM	1	COARSE	4 K	2
	CLAY				ILT	1						AND					AVEL	1		COB-	3
			-				-	-					1		l			. 1			<u></u>
	L																	A B			
	·ł							~				1	/				D	11	\cap		_
Fechnic	cian :	СМ	A Yip					Chec	ked I		K Lan	1	_		A	pproved Signat		Chung H	ei Wing		

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

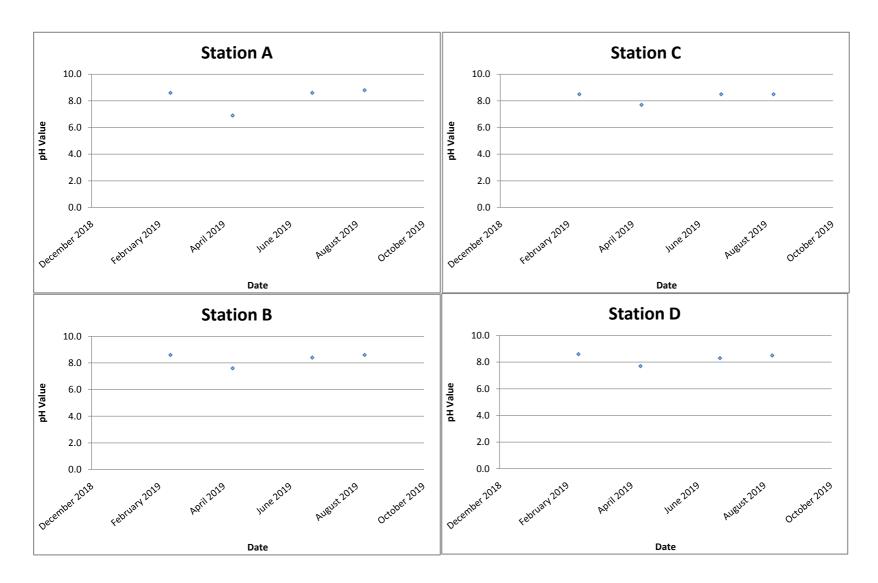
© Gammon Construction Ltd

Job No. 🛛 📜 .	J2999			Contract	No. :					Report No			.48	
Customer : .	ALS Techni	chem (F	HK) Pty L	td					Wor	ks Order No.	:	272		
roject :	-								Sam	ple ID No.	:	HK193334	9-014	
										ple No.	:	F/Benthic	Survey	
ate Received	12/08/2019									ple Depth (m)				
ested Date										cimen Depth (
colou paro	12/00/2017									ple Type		Small Dist	urbed	
escription :]	Dark grey	lightly s	III vhno	T/CLAV with	chell	Gamente				ple Origin			dioca	
		lighting 5												
ieve Method : 1	Method A	1		Upon request	~ ~	* Delete as ap	opropria	-		ormation prov		stomer		6
IEVE ANALY	SIS	Percent		*Expande	d	^Cumulat				ON ANALYS				
		Passing		Uncertain	ty	Percent Pas	0			# if assumed)				
Sieve Size				of the Perce		with Expan				: Sodium he		osphate, Se	odium c	arbonate
		(%)		Passing (%	6)	Uncertainty	y (%)			: As receive				
100.0 mi		100				(ar.)		The pre	sence of ar	ny visible orga	anic matter	in the soil	: None	;
75.0 mi		100		-		-								
63.0 mi		100						-	article		anded	% Fin		*Expa
50.0 mi		100		-				D	iameter	Uncertair	-	than	D	Uncerta
37.5 m		100		(m)		(1				Particle I	Diameter	K		% finer
28.0 mi		100		-					(mm)	(m:	m) 🛛	(%)		(%
20.0 mi		100				-		-).0644	24		95		
14.0 m		100		-		-).0460			92		8.
10.0 mi		100				-		_).0331			87		
6.30 mi		100		-					0.0236	-		84		
5.00 mi		100					_		0.0168			81		14
3.35 m		99				-			0.0089			73		19
2.00 mi		99		-		-).0046			59		
1.18 m		99 99							0.0024			44		
600 µn				-		-		100	0.0014			34		11
425 μn		99 98		(*)					ARY :		1			
300 μπ 212 μπ		98				-		-	Gravel (%)) :	1 4			
212 μn 150 μn									Sand (%)					
		U'7						1 6	Silt (0/)		10 Mar.			
		97						-	Silt (%)		55			
63 µn 0 µn	n n Legend	95 0	s >63/m inr				Size(mm)		Silt (%) Clay (%)	:	55 40			
63 µn 0 µn	n n	95 0	s >63,⊿m igr		0.063	- Sieve S	Size(mm) 0.3			5		20	37.5	75
63 µл 0 µл 100	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 μπ 0 μπ	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100 90	n n Legend	95 0	s>63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100 90	n n Legend	95 0	s>63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100 90 80 70	n n Legend	95 0	s>63, <i>i</i> m igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100 90 80 70	n n Legend	95 0	s>63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 μπ Ο μπ 100 90 80 70 70	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 100 90 80 70 70 50	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 100 90 80 70 70 50	n n Legend	95 0	s>63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µл 0 µл 100 90 80 70 70 50	n n Legend	95 0	s>63,m igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 100 90 80 70 60 60 40 40	n n Legend	95 0	s >63,m igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 100 90 80 70 50	n n Legend	95 0	s>63, m igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 μπ Ο μπ 0 μπ 100 90 80 70 70 70 60 60 60 60 80 70 70 70 70 70 70 70 70 70 70 70 70 70	n n Legend	95 0	s>63,4m igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 100 90 80 70 70 40 40	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40	20	37.5	75
63 µm 0 µm 0 µm 100 90 80 70 60 80 70 70 80 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	95 0	s >63,4m igr		0.063	- Sieve S			Clay (%)		40		37.5	75
63 µm 0 µm 0 µm 100 90 80 70 70 60 60 60 80 70 70 70 70 80 80 80 70 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	95 0	s >63,µm igr		0.063	- Sieve S			Clay (%)		40		37.5	75
63 μm 0 μm 0 μm 90 90 80 70 70 50 50 50 50 10 10 10 10 10 10 10 10 90 90 90 90 90 90 90 90 90 90 90 90 90		95 0				Sieve S 0.15			1.18 2					
63 µm 0 µm 0 µm 100 90 80 70 70 50 50 50 50 10 10 10 0	n n Legend	95 0			0.063	- Sieve S			Clay (%)			20		75
63 μm 0 μm 0 μm 90 90 80 70 70 50 50 50 50 10 10 10 10 10 10 10 10 90 90 90 90 90 90 90 90 90 90 90 90 90		95 0				Sieve S 0.15		0.6	1.18 2					
63 µm 0 µm 0 µm 100 90 80 70 60 80 70 70 80 70 80 70 80 70 80 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90		95 0				Sieve S 0.15		0.6	1.18 2			20		
63 μm 0 μm 0 μm 90 90 80 70 70 60 60 90 90 90 90 90 90 90 90 90 90 90 90 90	n h legend o = Sedimenta	95 0	0.01	0.02		Sieve 5 0.15	0.3	0.6	1.18 2			20		
63 μπ 0 μπ 0 μπ 90 90 80 70 60 80 70 60 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend o = Sedimenta	95 0	0.01	0.02	0.06	Sieve S 0.15	0.3	0.6	1.18 2	FINE	40	20		
63 µп 0 µп 100 90 80 70 60 80 70 60 80 70 60 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n h legend o = Sedimenta	95 0	0.01	0.02	0.06	Sieve S 0.15	0.3	0.6	1.18 2	5	40	20	COARSE	
63 µm 0 µm 0 µm 90 90 80 70 60 90 80 70 80 70 80 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90	n n Legend o = Sedimenta	95 0	0.01	0.02	0.06	Sieve S 0.15	0.3	0.6	1.18 2	5	40	20	COARSE	

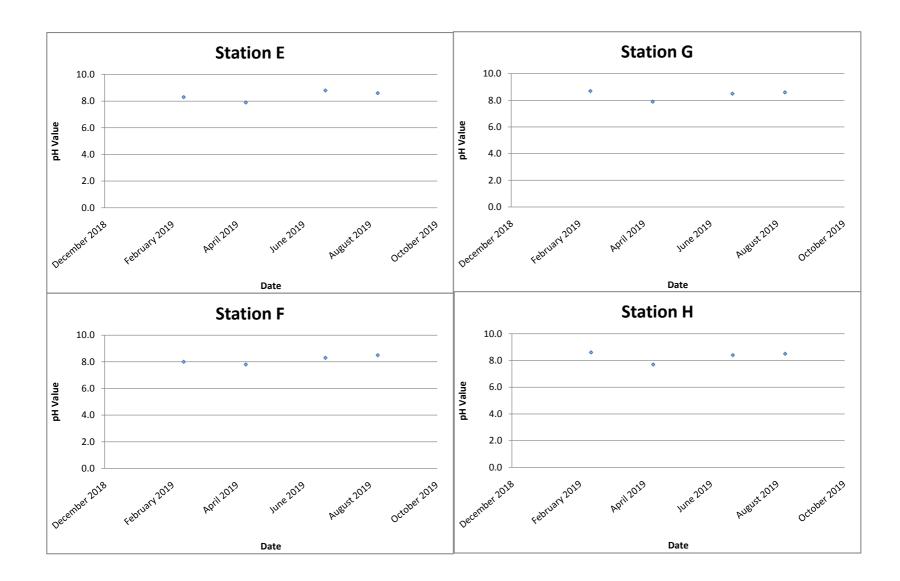
© Gammon Construction Ltd

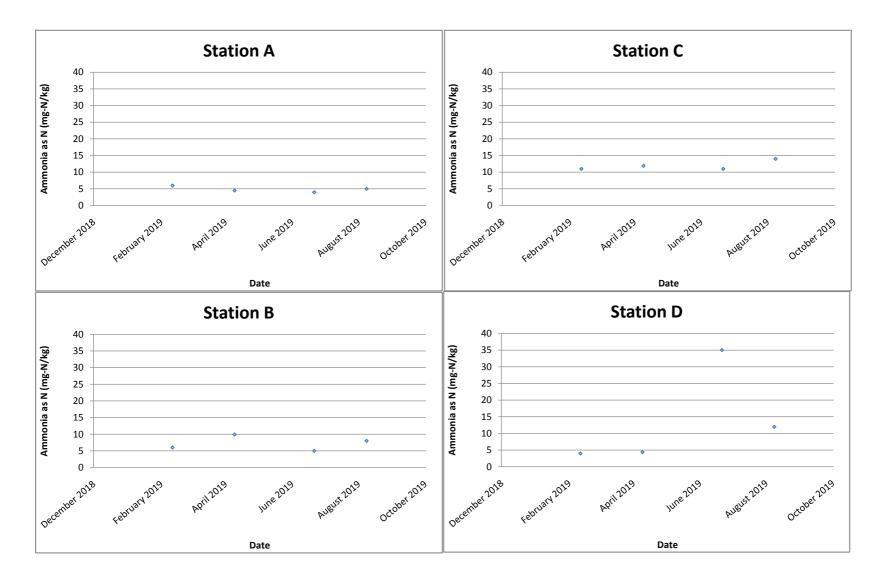
12999 ALS Technich	iem (HK) Pty Li	Contract No. : d		Sample	Order No. : e ID No. :	HK1933349-015	
12/08/2019 12/08/2019		·		Sampl Specin Sampl	e Depth (m) : nen Depth (m) : e Type :	Small Disturbed	
			-		e engin		
		· · ·					
Pa	assing	Uncertainty of the Percent	Percent Passing with Expanded	Specific Gravity (# i Dispersant Details :	f assumed) : 2.65 Sodium hexametaph		carbonate
		Passing (76)	Uncertainty (%)			in the soil : Non	e
		-	-				
	00	-	-	Particle	[•] Expanded	% Finer	Expande
				Diameter	Uncertainty of the	than D	Uncertainty
			1		Particle Diameter	K	% finer that
				(mm)	· · · ·		(%)
		-			-		*
		2123					-
							-
					-		-
				0.0047	-	43	-
n	83			0.0024	-	34	-
			-	0.0014	-	26	-
				SUMMARY :	7655 230		
		+					
			-	- Clay (%)	: 30		
Legend o = Sedimentatio	n Points >63µm igno	ored 0.063	Sieve Size(mm 0.15 0.3) 0.6 1.18 2	5 10	20 37.5	75
	<u> </u>			<u> </u>	╶╎╴╎╶╿┊┊┊╞╿┨		
		1					
	111						
	+++++	<u>↓</u> ↓ ↓ <mark>↓</mark> ↓ ↓					
r	┼┼┼┼				╶╎┊┊╎╎╎╢ ╼╸		
.002 0.	006 0.01 (0.02 0.06			б 10	20	60 100
FINE	MEDIUM	COARSE	FINE MEDIU	1	FINE MEDIUM	COARSE	BLES -
		· · · · ·	SAN	D	GRAVEL		B C
	SILT		QAN .				1 1
	SILT		SAN	1		1	······································
СМУ		Chec	ked By :	1	Approved By :	ILA	
	ALS Technich 12/08/2019 12/08/2019 Dark grey, slig Method A SIS Pe Pa n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1	ALS Technichem (HK) Pty Lt 12/08/2019 12/08/2019 Dark grey, slightly gravelly, sl Method A 'U SIS Percent Passing (%) n 100 n 100 n 100 n 100 n 100 n 100 n 100 n 99 n 95 n 94 n 91 n 87 n 83 n 79 n 75 n 75 n 75 n 75 n 75 n 73 n 71 n 66 n 0 Legend o = Sedimentation Points >63/m igno	ALS Technichem (HK) Pty Ltd 12/08/2019 Dark grey, slightly gravelly, slightly sandy SILT/ Method A Upon request SIS Percent Expanded Passing Uncertainty of the Percent (%) Passing (%) n 100 n 100 0 - n 99 n 95 - n 94 n 91 - n 87 - n 87 - n 66 - a 71 - a 71 - a 71 - a 0 0.063	ALS Technichem (HK) Pty Ltd 12/08/2019 12/08/2019 Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell frag Wethod A ¹ Upon request * Delete as appropria SIS Percent Expanded Currentinty Percent Passing Uncertainty 0 the Percent With Expanded Uncertainty (%) n 100	ALS Technichem (HK) Pty Ltd Works Sampl 12/08/2019 Specir Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Sampl Method A ¹ Upon request * Delete as appropriate ¹ Inform SIS Percent Tespanded Uncertainty Percent Passing of the Percent Passing with Expanded Uncertainty (%) n 100	ALS Technichem (HK) Pty Ltd Works Order No. : : Sample Do No. : : Sample Depth (m) : Sample Type Sample Type : : Sample Type : : Sample Origin : : Method A 'Upon request 'Delete as appropriate 'Information provided by cr SIS Percent 'Expanded Uncertainty (%) Passing (%) Uncertainty (%) SEDIMENTATION ANALYSIS Specific Gravity (% if assumed) : 2.65 min 100	ALS Technichem (HK) Pty Ltd Works Order No. :: 272 Sample Do. :: G/Benhils Survey (J208/2019) Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments Simple Type :: Sample Orgin :: s ⁻¹ "Information provided by customer "Information provided by cust

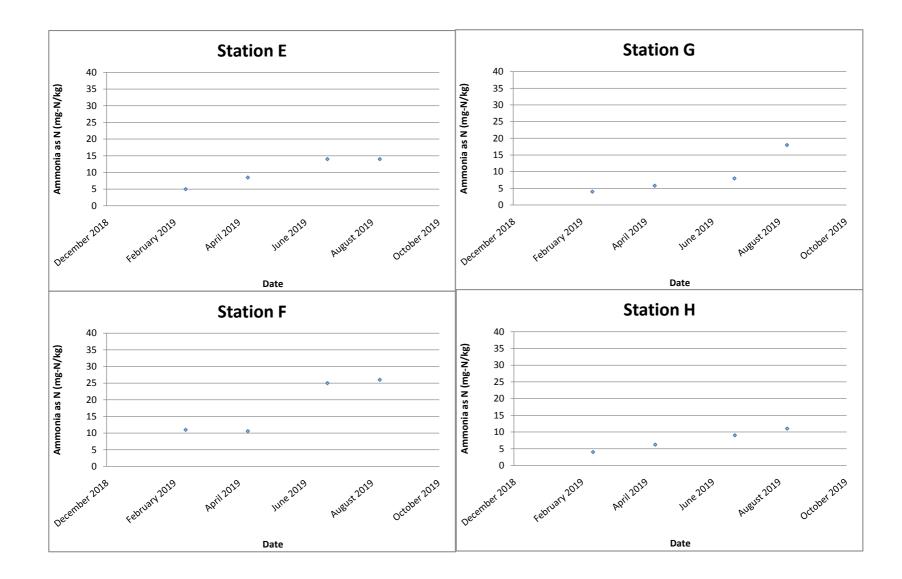
© Gammon Construction Ltd

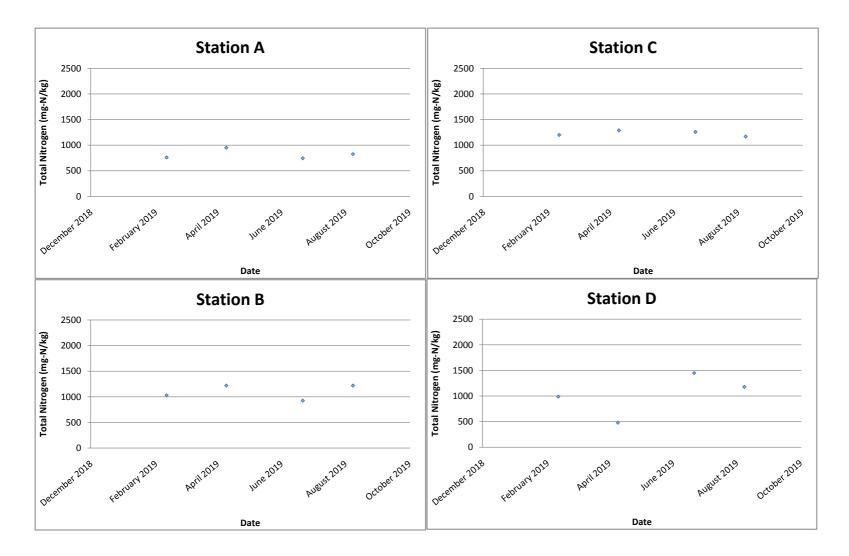

(Wet	t Sieve	and	Hydi	rome	eter N	leth	0d)													
Job No.	: J29	000			C	om two of	Ma							Re	port No	. :	J2999-27	72.48		
Custom		.S Techr	hichem	(HK) Pt		ontract	NO. :						117-	1.0	4. 51		070			
Project		Jo reem	nenem	(IIK) F	y Liu										der No.		272	240.014		
Troject	503.													nple II			HK1933			
Date Re	ceived: 12/	/08/2010	2											nple N			H/Benth	ic Survey	/	
	Date $: 12/$														epth (m					
I Colcu I	Jac . 12/	00/2015	,												Depth (
Descript	tion Do	ale anose	ما:					c						nple Ty			Small Di	sturbed		
•			singnitiy	sandy :	SILT/CL									nple O	-		_‡			
	lethod : Me				*Upon	request		* De	lete as	s approp	oriate		[‡] In:	format	ion prov	vided by ci	ustomer			
SIEVE	ANALYSI	S	Percer	nt	^F	xpande	d		^Cum	ulative	S	EDIM	IENTATI		_					
			Passin	g		certain		P	ercent	Passing			Gravity (5 #			
Sie	eve Size				oft	ne Perce	ent	W	vith Ex	xpanded	D	ispers	ant Detail	s: So	dium he	exametaph	osphate,	Sodium (carbonate	
			(%)		Pa	ssing (%	6)	U	ncerta	ainty (%) Sa	amplii	ng History	: As	receive	d				
	100.0 mm	_	100			-				-	TI	he pre	sence of a	ny visi	ble orga	nic matter	r in the so	oil : Non	e	
	75.0 mm	-	100			-				-										
	63.0 mm		100		_	-	_	-					Particle		*Expa		% F	iner	^Expa	inded
	50.0 mm		100			-		-		-		D	iameter			nty of the		n D	Uncerta	
	37.5 mm 28.0 mm	_	100					_		#14			1.00	P		Diameter		K	% finer	
	28.0 mm 20.0 mm		100			-	_			-	_		(mm)	_	(mi	m)		%)	(%	
	14.0 mm	-	100			•	-	-		-			0.0659	-				4	-	
	10.0 mm		100							-			0.0469 0.0334		-			2		
	6.30 mm		100			-		-					0.0334					9		
	5.00 mm	-	100				-	-					0.0239		-		8	5	-	
	3.35 mm		100			+		-		-			0.0090	-			- 0			
	2.00 mm		100							-	-		0.0047	_	-		5			
	1.18 mm		99			14		1	-	-			0.0024	- 3	-			4		
	600 µm		99							+			0.0014					4		
	425 µm		98			-				-	SI	UMM	ARY :	_						
	300 µm		97						13	-		(Gravel (%	6)	1	0				
	212 µm		97			-	_		22 16	÷ .			Sand (%)		:	7				
	150 μm	-	95			-			10	-			Silt (%)		:	53				
	63 μm 0 μm		93 0			-						(Clay (%)		:	40				
	υμπ	_	0				_					_					_			
	Leg		the Date						Sie	ve Size(n	am)									
	0-	Sedimenta	ation Poin	its ≥63µm	ignored		0.063		0.15	0.3	0.	6	1.18 2		5	10	20	37.5	75	
100 -		TT	TIII				TIT	I	TI		TT	TH	1		ТТ	TIT	-	TIT	тип	
90 -							-19-	+	T	-										
					/				1		\square									
80 -			+++		1			1	1											
				1					1				1							
70 -		-		4					1		+++		1		+++					
Ð																				
Passing 0			111					1	++			+++	1		+++	++++		+	+ ++++	
e 50 -		11		11																
Percentage		XT					111	1								+++				
ueo 40 -														-						
Per		IT	$ \Pi $	11								TH					1			
30 -		++	++++		_			11												
				11																
20 -			++++				-		++			+++	1	-	+++	++++		+		
10 -				11				11	+			+++				++++			+ + + + + +	
0																				
0.0	001 0.002	-	0.006	0.01	0.02		0.06	0.1	0.2		0.6		1 2		6	10	20	 e	100 100	
															0	10	25	0	50 100	
г							1		Part	ticle Size	(mm)	-								
		FINE		MEDIUM	co.	ARSE		FINE		MEDI	UM	0	OARSE	F	INE	MEDIUM		COARSE		
	CLAY -		-													IVIL DICIVI		COARGE	COB- BLES	
			-	SILT						SA	ND					GRAVEL				
											1					3	.1		<u> </u>	
Fechnicia	an -	СМ	Vin				Check	ced By	, .	5	1						IN	2		
			- 12	-		-	CHECK			K Lam	0		-			ved By : gnatory : 7	Chung	Wing		
Date	: 12/0	8/2019		_						/08/201	9				018		17/08/20			
IKAS L	as accredit	ed this	laboret	om (D-	No. No.	LIOVI	10.0	55)	de T	0101	0.0	a a se a							Sale and the	

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

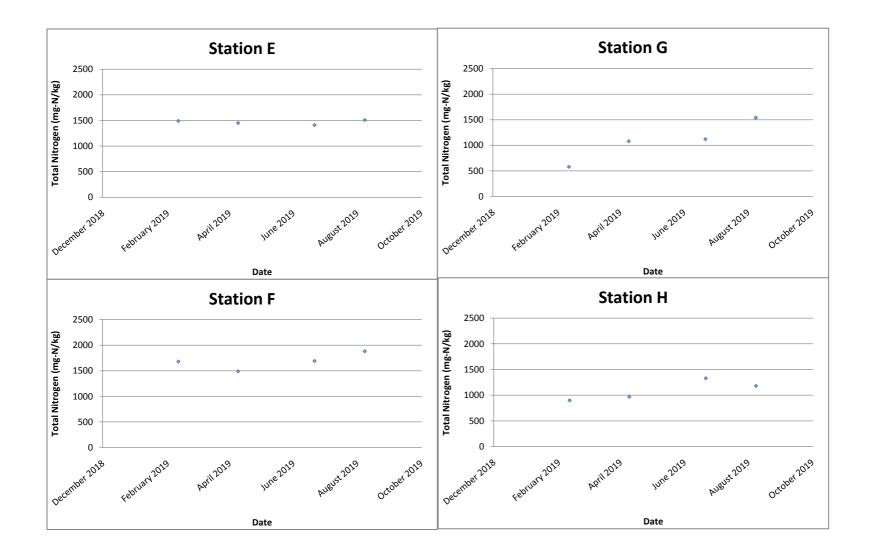

© Gammon Construction Ltd

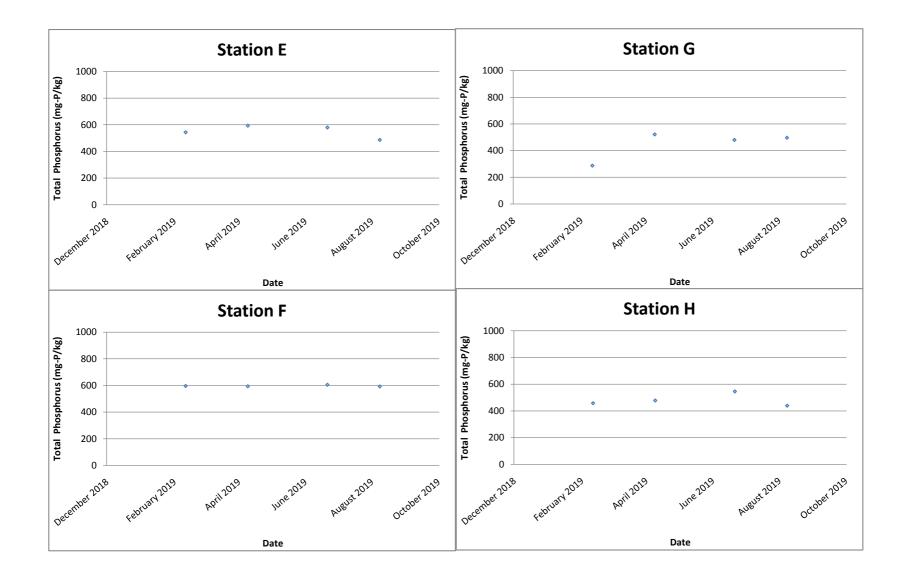

Form : GESR003.5 / Sept. 14. 18 / Issue 1 / Rev 3

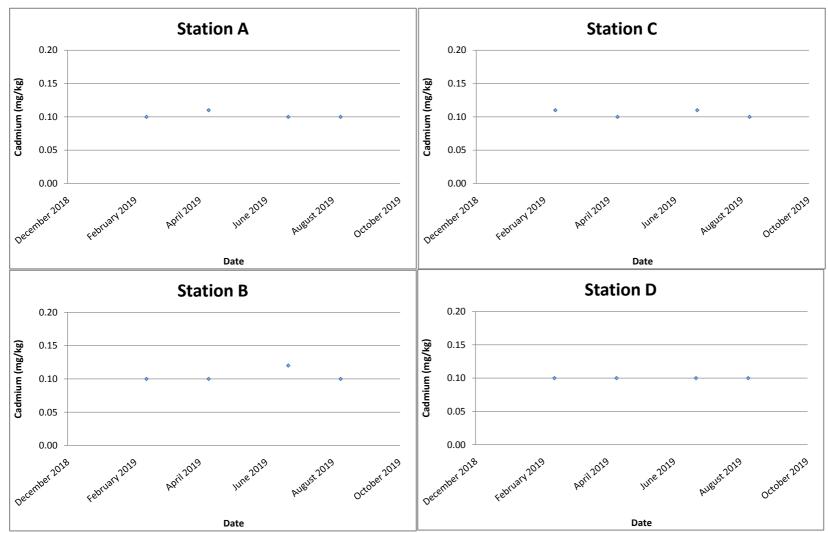

pH value

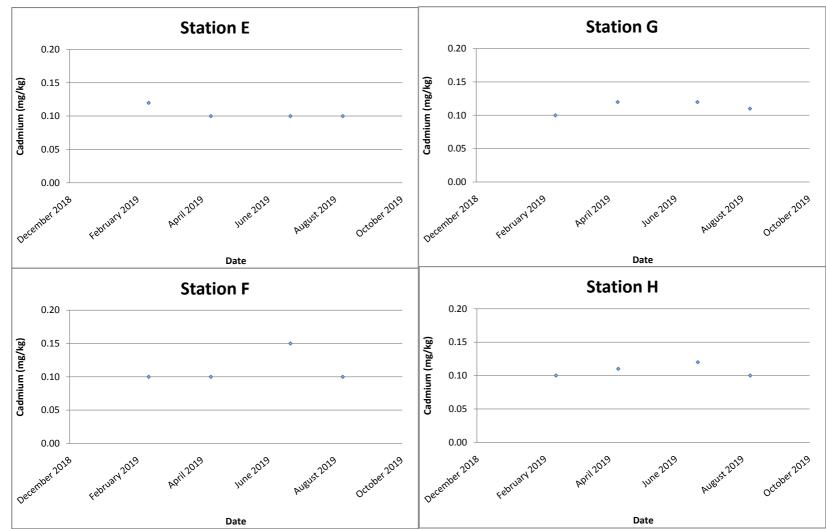


pH value

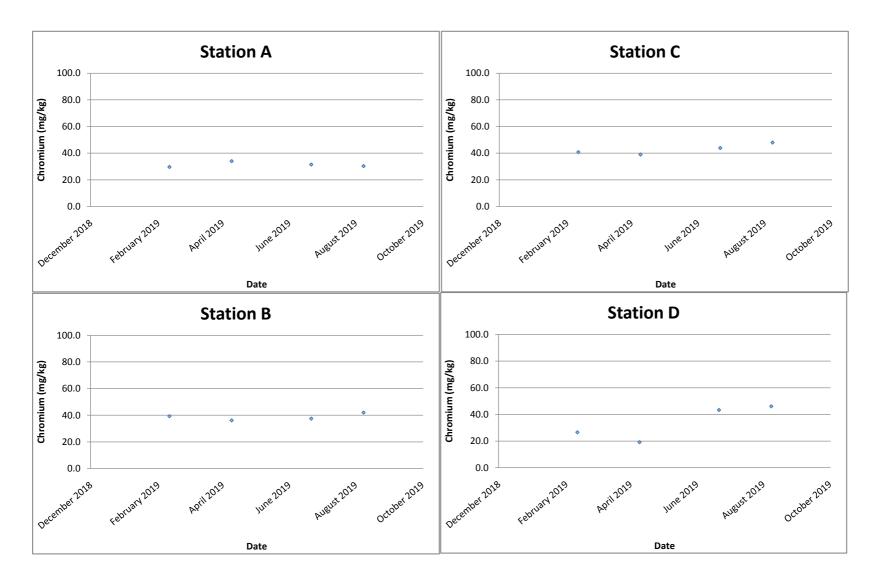




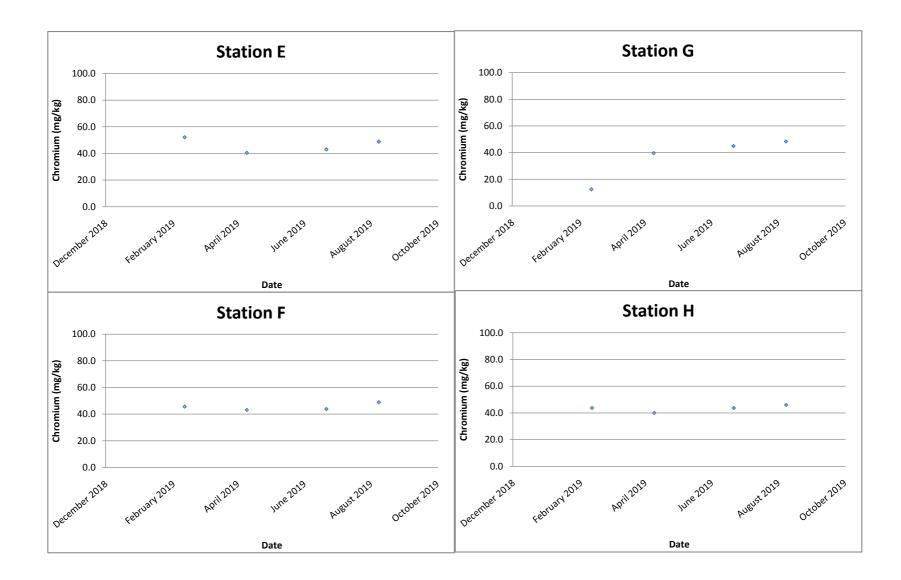

Total Nitrogen (mg-N/kg)



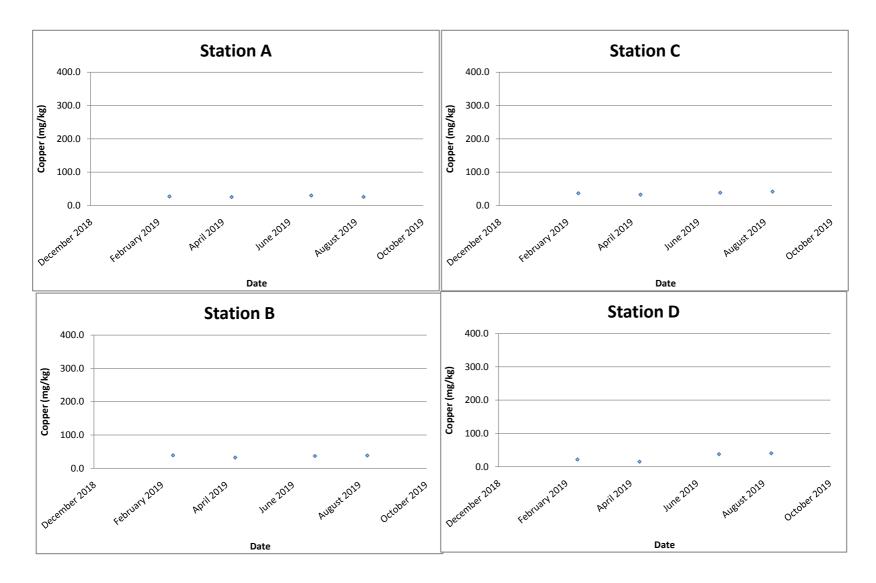
Cadmium (mg/kg)

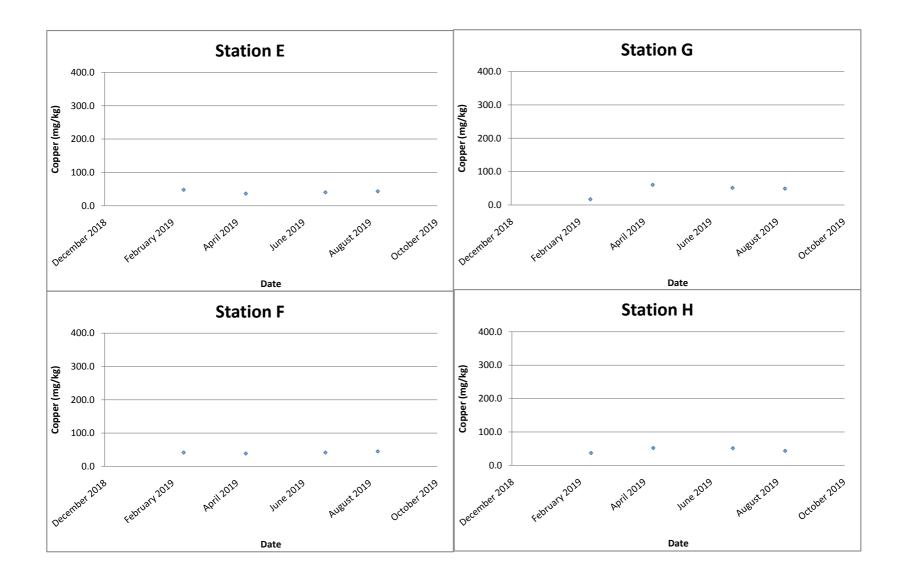

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

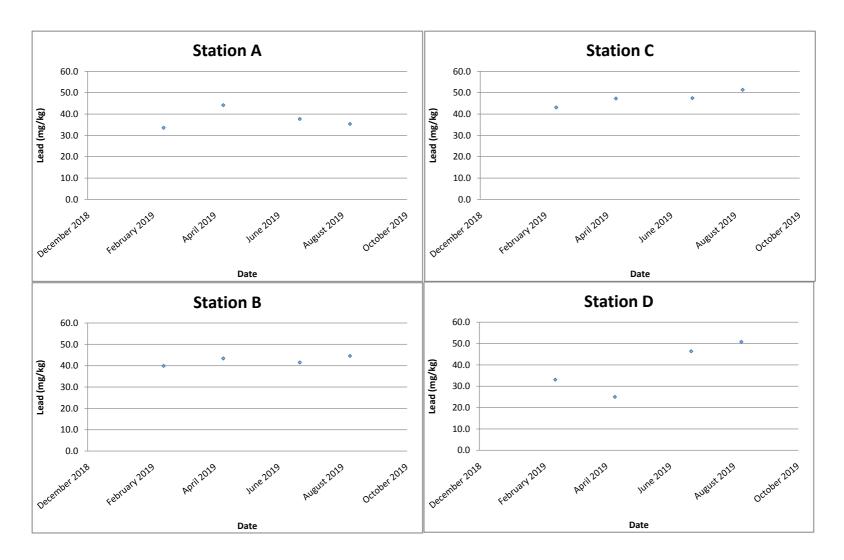
Cadmium (mg/kg)

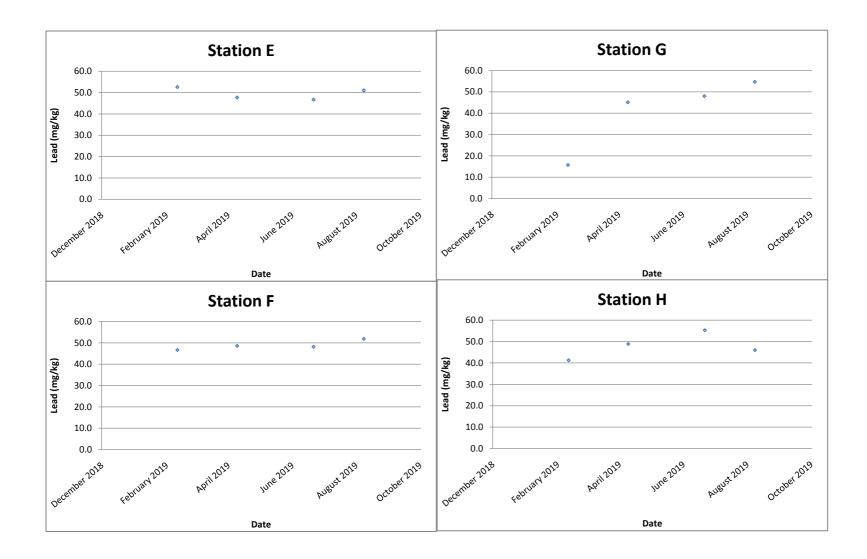


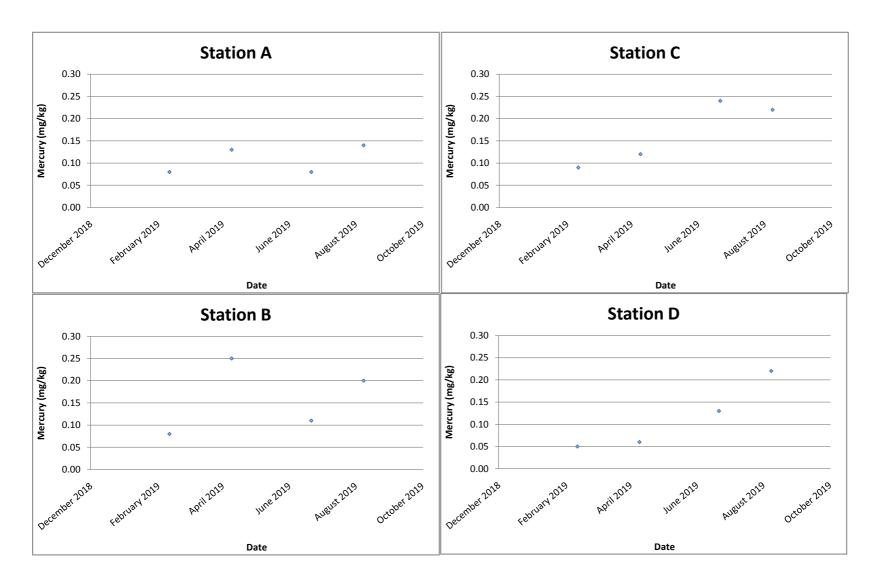
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

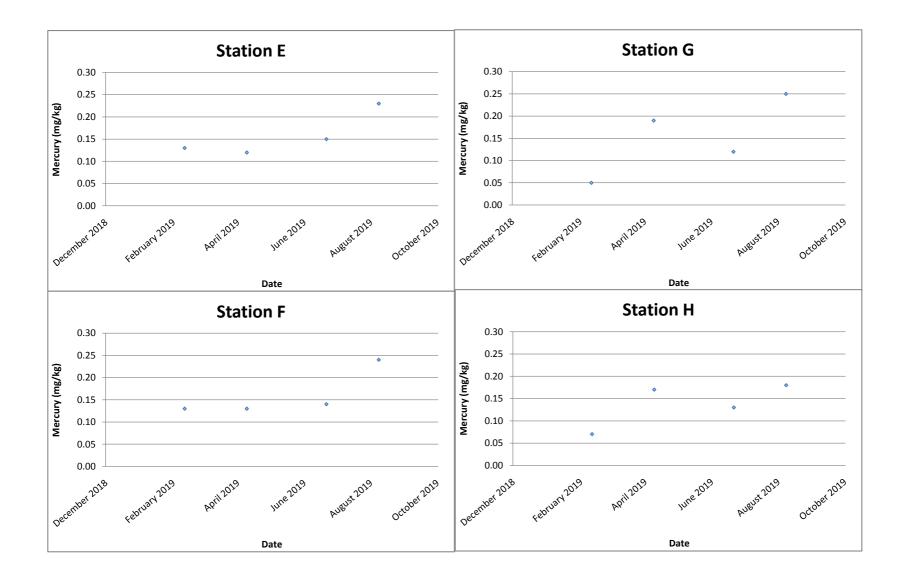

Chromium (mg/kg)

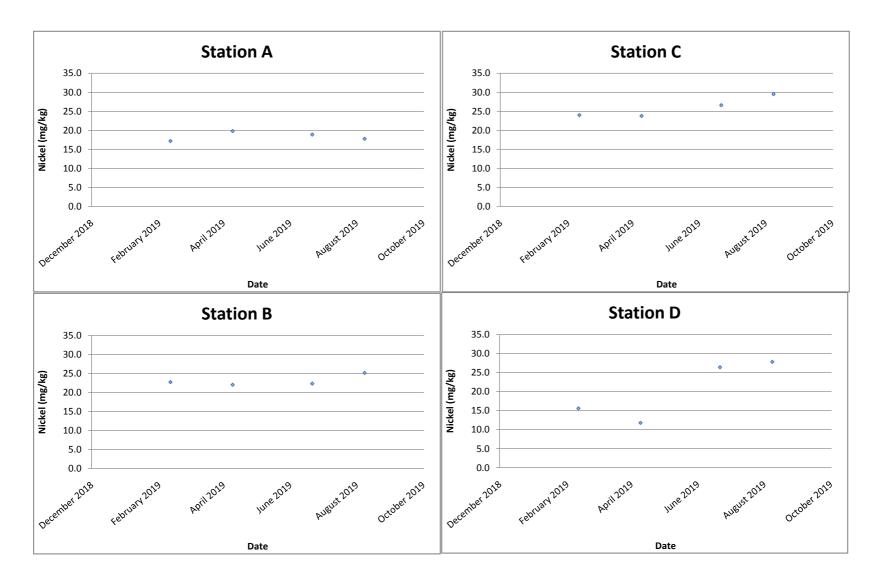

Chromium (mg/kg)

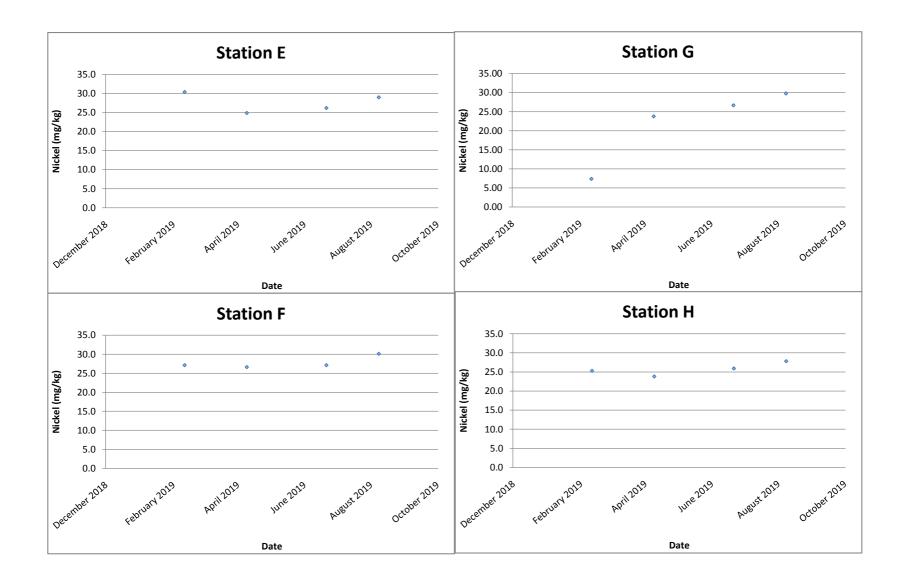

Copper (mg/kg)

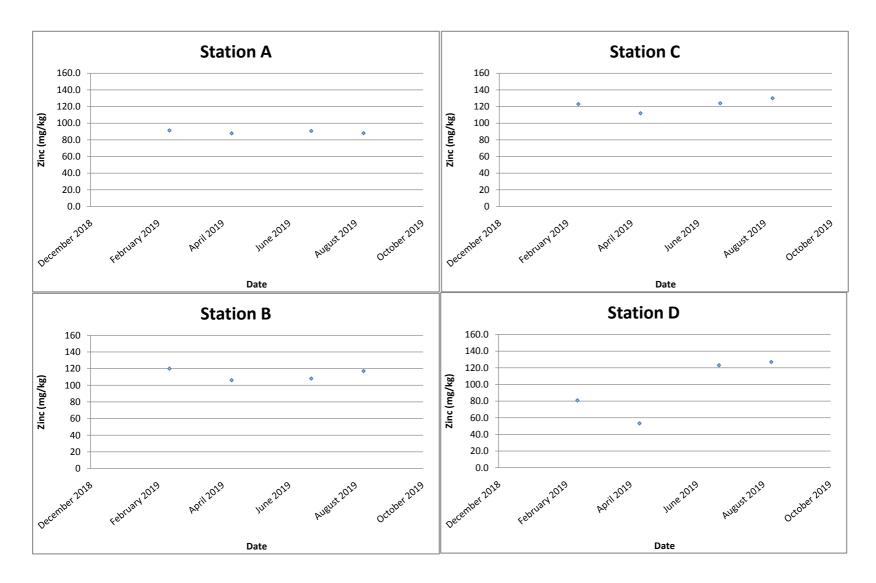

Copper (mg/kg)

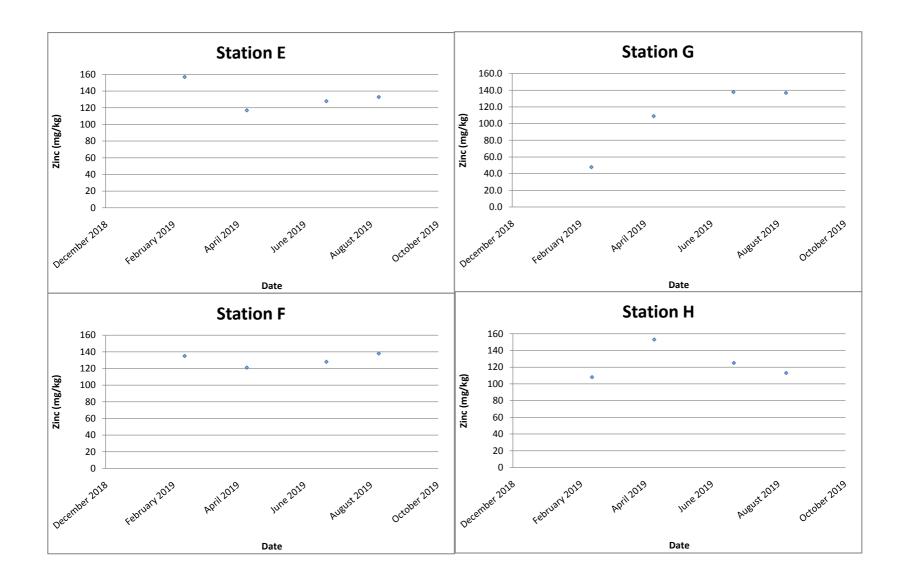

Lead (mg/kg)

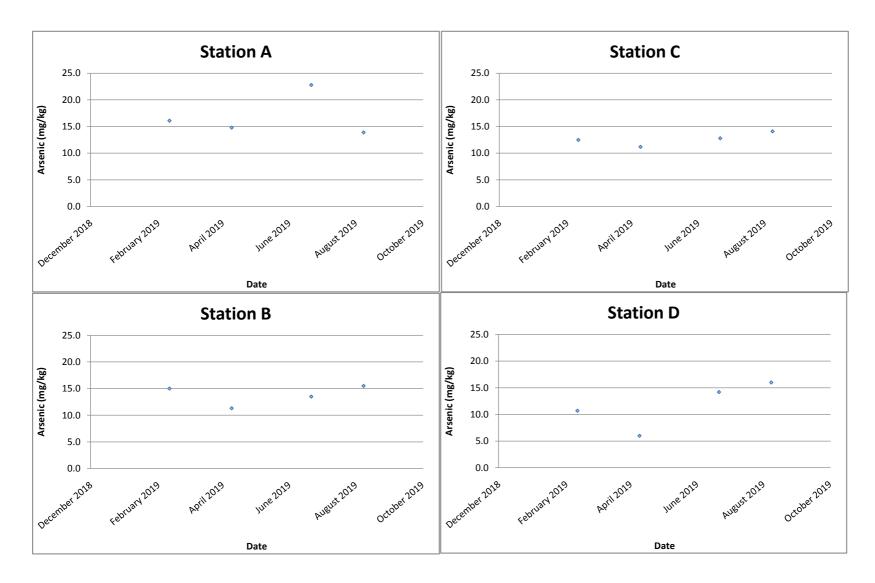

Lead (mg/kg)

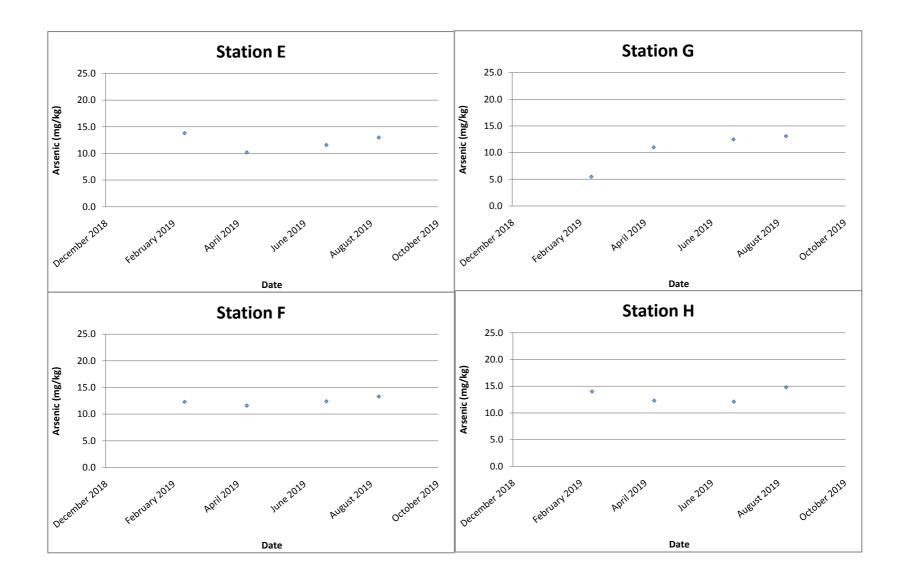

Mercury (mg/kg)

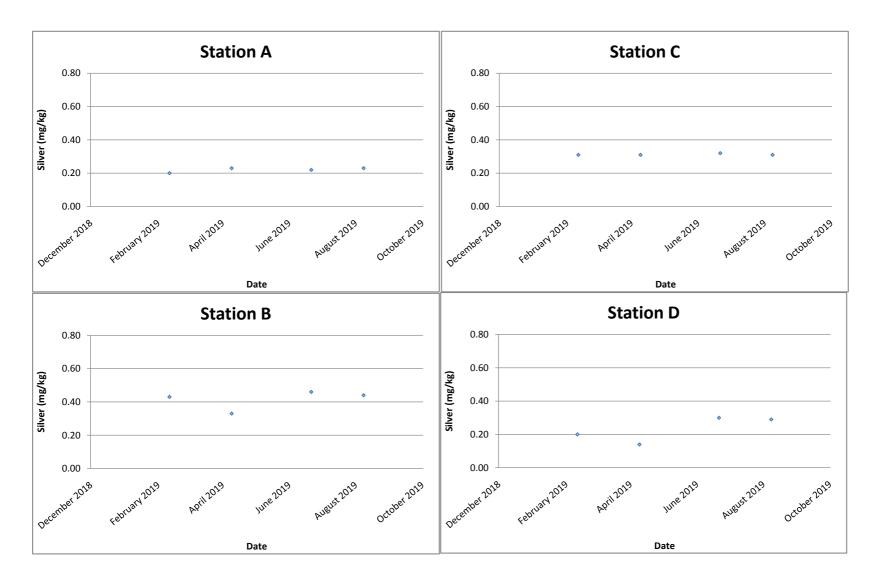

Mercury (mg/kg)

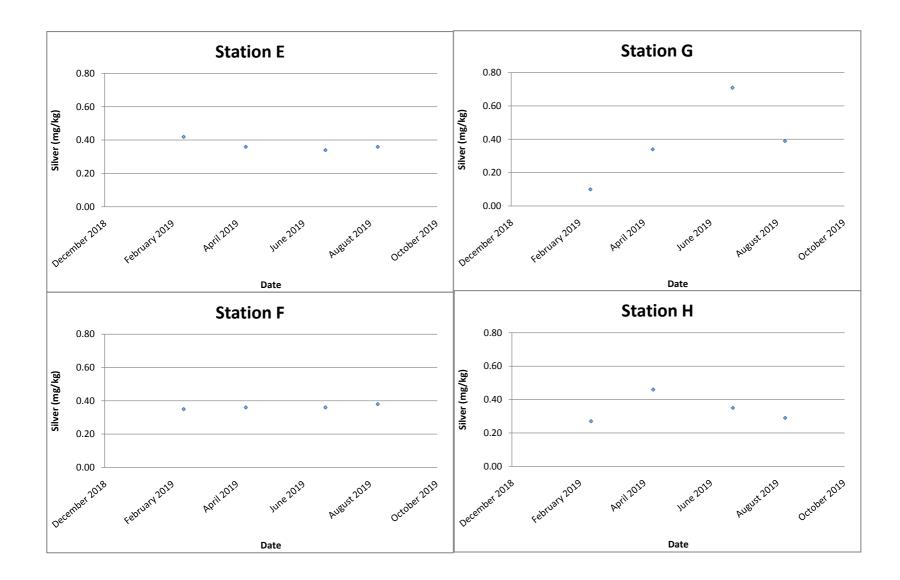

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix H

Benthic Survey Report

Benthic Faunal Monitoring

Conducted in August 2019

Summary Report

Abundance

A total of 255 macrobenthic organisms was recorded from the eight monitoring stations during the August 2019 monitoring period. Compared to both dry (March 2004) and wet (August 2004) seasons baseline data, the present total abundance was relatively lower. This trend was observed since the start of the monitoring activities in April 2018. The abundance distribution across monitoring periods is shown in Figure 1. Generally, decreasing abundances were observed during wet season monitoring periods while increasing abundances during dry season monitoring periods. These variations in the abundances might be attributed to the natural response of the macrobenthic communities to seasonal changes. However, similar to the previous monitoring periods, these observed seasonal variation are not statistically significant (F-value = 1.38; F-crit = 2.10; P-value = 0.22; $\alpha = 0.05$).

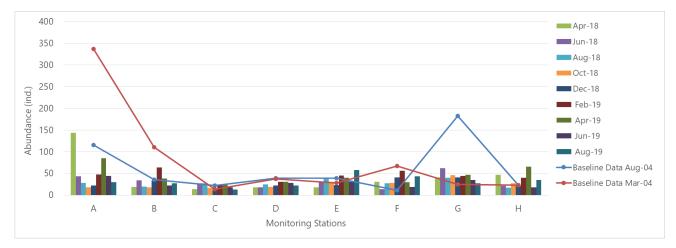


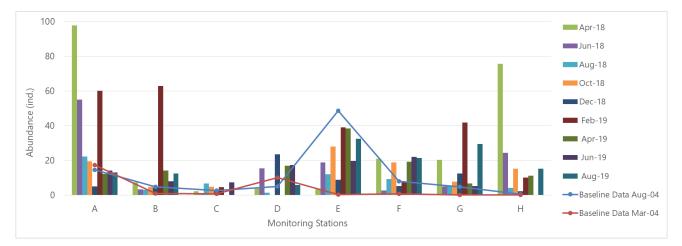
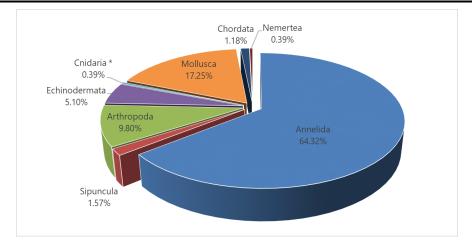
Figure 1. Total abundance (ind.) of benthic organisms collected in the eight monitoring stations

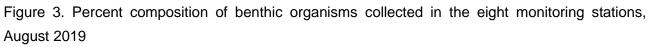
Similar to the previous monitoring periods, a more apparent variation (F-value = 2.89; F-crit = 2.15; P-value = 0.01; α = 0.05) in the total abundances were observed. The lowest abundance with 13 individuals (ind.) was recorded in Station C and the highest (58 ind.) was recorded in Station E. Abundance distribution showed that the impact stations, Stations C and D, has relatively lower values compared to the reference stations, a similar trend was observed in the baseline data. Sediments in these stations remained to be well-sorted composed silt/clay substrate. However,

during the present monitoring period, abundance-sediment size correlation was less apparent compared to other monitoring periods.

Biomass

The total wet biomass recorded in the eight monitoring stations was 129.87g, which is higher compared to the previous monitoring period (94.27g) but remained higher compared to the baseline data. The highest total biomass was observed in Station E (32.37g) while the impact stations, Station C (0.03g) and Station D (5.97g) exhibited the lowest biomass. The relatively higher biomass observed in Station E was contributed by the relatively higher biomass of the molluscan species, *Paphia undulata*. Relatively higher biomass were also recorded in Stations F and G due to the presence of this species. The total biomass distribution across monitoring periods and stations is shown in Figure 2.


Figure 2. Total biomass (g) of benthic organisms collected in the eight monitoring stations

Taxonomic Composition

A total of eight (8) phyla comprising of 34 families and 50 genera were identified. The macrobenthic assemblage is remained to be dominated by annelida (64.32%), molluscs (17.25 %), and arthropods (9.80%) as shown in Figure 3. The dominant species (abundance \geq 10) were the polychaetes, *Poecilochaetus* sp. (10 ind.) and *Mediomastus* sp. (11 ind.) recorded in Stations E and Station H, respectively. Similar to the baseline data, the most dominant groups during the present monitoring period were the capitellids (21.57% of the population identified), typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

Highest number of genera was recorded in Station E (21) and the lowest in Station C (8). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

Diversity

Benthic diversity index (H) and evenness index (J) ranged from 1.99 – 2.28 and 0.89 – 0.96 in impact stations, and 2.41 – 2.76 and 0.85 – 0.94 in the reference station. These suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Compared with the baseline survey result, apparent increase in diversity index and evenness index was observed.

Abundance and biomass of macrobenthic organisms are shown in Tables 1 and 2 and data summary for different sampling time was presented in Tables 3 to 7 of Appendix A. Representative photos of specimens were given in Appendix B.

References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 40, 1100-1114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera. Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant : China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor

Marsh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: August 27, 2019

Appendix A: Data Summaries

Table 1. Abundance of macrobenthic communities in the eight monitoring stations, August 2019

Dhuduum	Class	Orden	Formiller	0				SHW-B	enthic Stations			
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	1	1	1	1	1	0	0	0
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	0	0	3	2	0	0	0	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	0	2	0	5	1	1	5
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	2	1	0	2	2	2	2	2
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	2	0	1	1	3	4	4	11
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	0	0	0	2	0
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	0	1
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0	1	0	0	0	0	0	0
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	0	0	1
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	0	0	0	7	1	1	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	1	0	2	0	2	0	0	1
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0	0	0	0	1	0	0	0
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0	0	0	0	0	0	0	2
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0	7	1	0	0	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. lyrochaeta)	0	0	0	0	2	1	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys (N. polybranchia)	0	0	0	0	0	0	2	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0	1	2	1	4	0	0	0
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	1	0	0	0	1	1
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma	0	0	0	1	0	0	0	0
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	1	0	0	10	0	2	1

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Dhuduum	Class	Orden	Family	C anua				SHW-	Benthic Stations			
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	н
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	0	0	0	0	1	4	0	0
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	1	4	0	2	4	0	0	1
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	1	0	0	5	1	0	1
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	1	0	0	0	0	0	1	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	0	0	0	0	1	0	0	1
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides (T. stroemii)	1	0	0	0	0	0	2	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	1	1	0	0	0	0	0	2
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	2	2	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	1	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Dotillidae	llyoplax	2	2	0	0	0	0	1	1
Arthropoda	Crustacea	Decapoda	Macrophthalmidae	Cleistostoma	0	0	0	0	0	0	0	1
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	1	0	0	1	1	0	2	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	2	2	0	0	0	1	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	1	4	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0	1	0	0	0
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	1	0	0	0	0	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	8	1	0	1	1	1	1	0
Cnidaria	Anthozoa	Pennatulacea	-	sea pen	0	0	0	1	0	0	0	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	1	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Kellidae	Pseudopythina	0	0	0	1	0	6	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	0	0	0	6	6	5	2
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0	0	2	2	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Timoclea (T. scabra)	0	0	0	0	0	0	1	0
Mollusca	Bivalvia	Myoida	Corbulidae	Potamocorbula	0	0	0	0	4	8	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	1	0	0	0	0	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	Trypauchen(T. vagina)	0	0	0	1	0	1	0	0
Nemertea	Enopla	-	-	UNID 1	0	0	0	0	0	0	0	1

Table 2. Biomass macrobenthic communities in the eight monitoring stations, August 2019

								SHW-B	enthic Station	s		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	н
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0.007	0.004	0.003	0.002	0.026	0	0	0
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	0	0	0.011	0.007	0	0	0	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0	0	0.002	0	0.004	0.002	0.001	0.007
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.001	0.001	0	0.001	0	0.001	0.001	0.002
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.002	0	0.001	0.001	0.002	0.011	0.006	0.013
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	0	0	0	0.002	0
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	0	0.008
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0	2.898	0	0	0	0	0	0
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	0	0	0.004
Annelida	Polychaeta	Phyllodocida	Hesionidae	Hesione(H. intertexta)	0.003	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	0	0	0	0.024	0.001	0.002	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	0.002	0	0.002	0	0.003	0	0	0.001
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	0.003	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0	0	0	0	0.013	0	0	0
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0	0	0	0	0	0	0	0.002
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0	0.018	0.004	0	0	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0.000	0.005	0.006	0	0

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Distant	01	Orden	Family.	0				SHW-B	enthic Station	S		. <u> </u>
Phylum	Class	Order	Family	Genus	Α	В	с	D	E	F	G	н
				(A. lyrochaeta)								
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys (N. polybranchia)	0	0	0	0	0	0	0.004	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.000	0.001	0.003	0.001	0.005	0	0	0
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	0.002	0	0	0	0.009	0.021
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma	0	0	0	0.039	0	0	0	0
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0	0.003	0	0	0.048	0	0.011	0.002
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	0	0	0	0	0	0.002	0	0
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	0.005	0	0.003	0.003	0	0	0.001
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0.005	0	0	0.053	0.007	0.000	0.006
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	2.576	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0.005	0	0	0	0	0	0.002	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	0	0	0	0	0.007	0	0	0.908
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides (T. stroemii)	0.001	0	0	0	0	0	0.002	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	0.004	0.002	0	0	0	0	0	0.018
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0.002	0.008	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0.000	3.235	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Dotillidae	llyoplax	4.312	3.874	0	0	0	0	3.698	3.139
Arthropoda	Crustacea	Decapoda	Macrophthalmidae	Cleistostoma	0.000	0.000	0	0	0	0	0	3.882
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.002	0	0	0.003	0.133	0	1.056	0

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Dividuos	014.44	Orden	Familia	0				SHW-B	enthic Station	s		
Phylum	Class	Order	Family	Genus	Α	В	с	D	Е	F	G	н
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1.798	1.345	0	0	0	0.025	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	0	0.002	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0	0	0	0	0
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	1.005	0	0	0	0	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	4.225	0.036	0	1.068	0.018	0.013	0.075	0
Cnidaria	Anthozoa	Pennatulacea	-	sea pen	0	0	0	0.487	0	0	0	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	0.033	0	0	0.000	0.000	0.000	0.000	0
Mollusca	Bivalvia	Veneroida	Kellidae	Pseudopythina	0	0	0	4.300	0.000	6.500	0.000	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0.000	0.000	0	0.000	30.800	10.400	24.600	6.300
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0.000	0	0.000	0.205	0.011	0.000	0
Mollusca	Bivalvia	Veneroida	Veneridae	Timoclea (T. scabra)	0.000	0.000	0	0.000	0.000	0.000	0.031	0.000
Mollusca	Bivalvia	Myoida	Corbulidae	Potamocorbula	0.000	0.000	0	0.000	1.036	2.748	0.000	0.000
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	0.022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Chordata	Actinopterygii	Perciformes	Gobiidae	Trypauchen(T. vagina)	0.000	0.000	0.000	0.032	0.000	1.607	0.000	0.000
Nemertea	Enopla	-	-	UNID 1	0	0	0	0	0	0	0	0.918

Table 3. Summary of Benthic Survey Data, August 2019

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	30	13.00	18	2.62	0.91
В	27	12.44	15	2.43	0.90
C*	13	0.03	8	1.99	0.96
D*	22	5.97	13	2.28	0.89
E	58	32.37	21	2.76	0.91
F	43	21.34	15	2.42	0.89
G	27	29.50	14	2.48	0.94
Н	35	15.23	17	2.41	0.85
TOTAL	255	129.87			

Table 4. Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

Table 5. Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.30
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

*Impact Sites

Taxon	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19	Jun-19	Aug-19
Annelida	31.12	53.01	65.02	65.35	69.44	54.99	70.28	57.67	64.31
Sipuncula	0.30	0.80	0.45	0	0.93	0	0	0	1.57
Arthropoda	13.60	15.66	12.11	13.86	10.19	20.23	10.83	7.91	9.80
Echinodermata	15.11	4.82	5.38	2.97	2.78	3.42	4.72	4.65	5.10
Cnidaria	0.60	0.40	0	0	0.93	0.85	0	0.93	0.39
Mollusca	50.45	21.29	15.69	16.83	12.96	19.94	13.33	27.44	17.25
Chordata	2.11	0.80	0.45	0	0.93	0.28	0.56	0.93	1.18
Nemertea	0.30	3.22	0.90	0.99	1.85	0.28	0.28	0.47	0.39

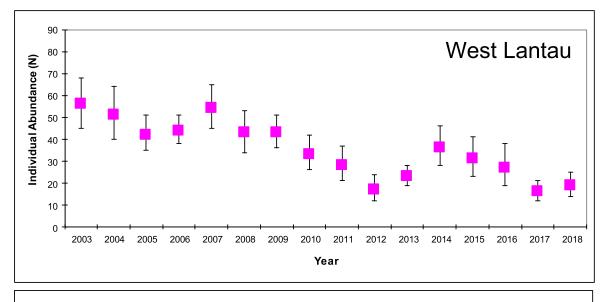

 Table 6.
 Taxonomic Composition (%) of Benthic Survey

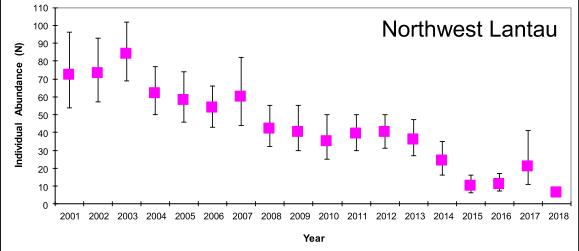
Table 7. Taxonomic Composition (abundance) of Benthic Survey

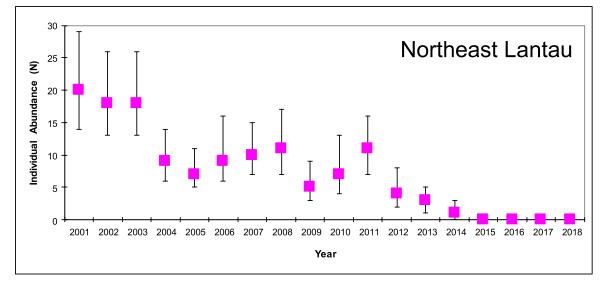
Taxon	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19	Jun-19	Aug-19
Annelida	103	132	145	132	150	193	253	124	164
Sipuncula	1	2	1	0	2	0	0	0	4
Arthropoda	45	39	27	28	22	71	39	17	25
Echinodermata	5	12	12	6	6	12	17	10	13
Cnidaria	2	1	0	0	2	3	0	2	1
Mollusca	167	53	35	34	28	70	48	59	44
Chordata	7	2	1	0	2	1	2	2	3
Nemertea	1	8	2	2	4	1	1	1	1
Grand total	331	249	223	202	216	351	360	215	255

Appendix B: Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com




Report No.: 0041/17/ED/0490C

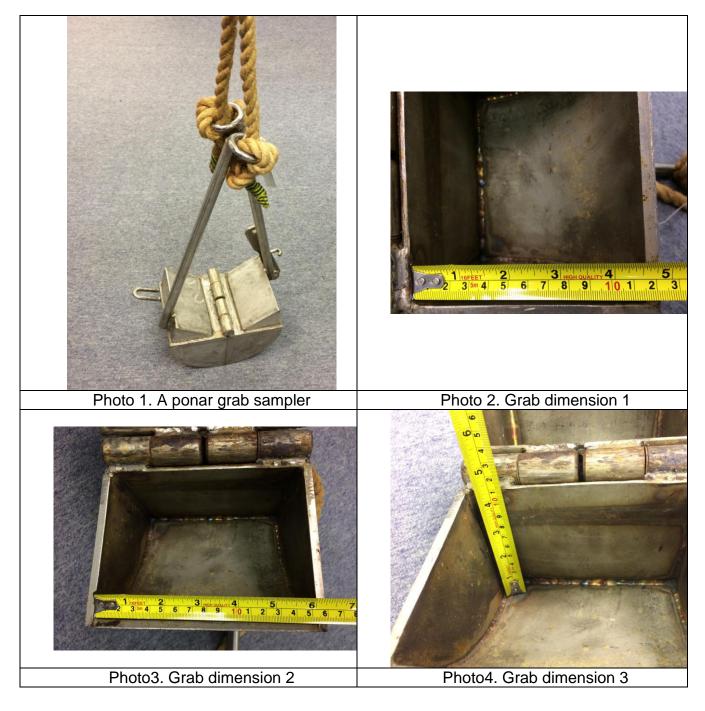
Appendix I

Annual Abundance of Chinese White Dolphins from 2001 - 2018

Temporal trends in annual abundance estimates of Chinese white dolphins in WL, NWL & NEL from 2001-18 (error bars: 95% confidence interval of abundance estimates)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C


Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

Appendix K

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•			
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
	Manage				
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0490C

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented