Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Monthly EM&A Report October 2019

:	Drainage Services Department
:	Contract No. CM 14/2016
	Environmental Team for Operational
	Environmental Monitoring and Audit for Siu
	Ho Wan Sewage Treatment Works
:	0041/17/ED/0501B
	:

Prepared by:	Andy K. H. Choi
i iopuiou by.	

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Our Ref. 1458/19-0028

42/F. Revenue Tower.

Wan Chai, Hong Kong

5 Gloucester Road

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Drainage Services Department

Projects and Development Branch

Consultants Management Division

28 November 2019

By Post and E-mail

Dear Sir,

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (OCTOBER 2019)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for October 2019 (Report No.:0041/17/ED/0501B) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 27 November 2019 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Notwithstanding, please be reminded that the ET shall strictly follow Condition 4.3 of the EP to submit monthly EM&A report within two weeks after the completion of each reporting period and the report shall be certified by the Independent Environmental Checker (IEC) before depositing with the Environmental Protection Department.

Should you have any queries, please feel free to contact the undersigned, or our Mr. Rodney IP at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/ri/ck/sc

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 18
5.	CHINESE WHITE DOLPHIN MONITORING	. 25
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 26
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 27
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 28
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 29
10.	FUTURE KEY ISSUES	
11.	CONCLUSION	. 31

FIGURE

- Figure 1 Monitoring Stations of Air Sensitive Receivers
- Figure 2 Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
- Figure 3 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix E	Results and Graphical Presentation of Water Quality Monitoring
Appendix F	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix G	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix H	Benthic Survey Report
Appendix I	Photos of Grab Samplers
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0501B

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Twenty-seventh Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 October 2019 to 31 October 2019 (the "reporting period").

Breaches of Action and Limit Levels

Air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporarily suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASRs) were recorded and no non-compliance of odour monitoring at ASRs were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 17 October 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 2

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

Due to inadequacy of representative data collected between August 2017 and May 2018, current H_2S measurement and olfactometry analysis were considered as unsuitable methods to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study is approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

Page 3

Report No.: 0041/17/ED/0501B

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact Persons and Telephone Numbers of Key	y Personnel
--	-------------

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0501B

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Odour Patrol Monitoring

- 2.2.1 Odour patrol monitoring was carried out in accordance with the European Standard method: BS EN13725, to ensure the odour sensitivities of all patrol members are within 20-80 ppb/V. Environmental conditions were record as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected

The perceived intensity is classified into 5 categories as shown in **Table 2.2** below.

Page 5

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 6

Report No.: 0041/17/ED/0501B

Table 2.2 Categories of Odour Intensity		
Odour Level	Odour Intensity	Classification Criteria
0	Not detected	No odour perceives or an odour so weak that it cannot be readily characterised or described
1	Slight	Identifiable odour, barely noticeable
2	Noticeable	Identifiable odour, noticeable
3	Strong	Identifiable odour, strong
4	Extreme	Severe odour

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

2.4.1 H₂S concentration monitoring, odour patrol monitoring and odour sampling were carried out at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant. The location of ASR is shown in **Figure 1**.

2.5 Monitoring Frequency and Duration

The durations and frequencies of H_2S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.3** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 7

Table 2.3 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency	
H ₂ S concentration monitoring	15 minutes	¹ Weekly basis for 6 months during the initial operation	
Odour patrol		stage	
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring	

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H_2S concentration (ppb) with the odour unit (OU/m3) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

2.5.1 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 Action and limit levels for air quality monitoring are presented in Table 2.4.

Table 2.4 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour	One complaint received for specific odour event	Two or more independent complaints receive for specific odour event

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 Air quality monitoring (i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period.
- 2.8.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 8

wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H_2S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H_2S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H_2S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASRs are not the appropriate locations for the correlation study as the change of both odour level and H_2S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.

- 2.8.3 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.4 Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or noncompliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 2.8.5 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 9

Report No.: 0041/17/ED/0501B

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 2**.

Table 3.1 Location of Water Quality Monitoring

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monitoring Parameters		
In-situ Measurement	Laboratory Analysis	
Dissolved oxygen (mg/L)	E. coli (cfu/100ml)	
Temperature (degree Celsius)	5-day BOD (mg/l)	
pH value	Suspended Solids (mg/l)	
Water depth (m)	Ammonia as N (mg/l)	
Salinity (ppt)	Nitrate as N (mg/l)	
Turbidity (NTU)	Nitrite as N (mg/l)	
Current Speed (m/s)	Total inorganic nitrogen (mg/l)	
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)	

Page 10

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 11

Report No.: 0041/17/ED/0501B

Table 3.4Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	490113
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Tuen Mun, N.T.,

Hong Kong.

Page 12

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out on 17 October 2019. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix E.**

I able	3.6	Summary of In-situ Monitoring Results (Mid-ebb)									
Monitoring Station	Water Depth (m)	San g De (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)	
А	17	S	1	5.32	29.41	9.38	31.66	9.9	0.13	191.6	

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0501B

Monitoring Station	Water Depth	g D	nplin epth	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current speed	Current velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree magnetic)
		S	1	5.31	29.38	9.42	31.65	10.3	0.15	230.6
		Μ	8.5	5.24	29.23	8.80	31.77	16.5	0.26	195.5
		Μ	8.5	5.16	29.14	8.57	31.76	14.0	0.25	198.0
		В	16	5.12	29.10	8.57	31.82	14.6	0.43	236.8
		В	16	5.09	29.05	8.26	31.89	17.2	0.44	236.1
		S	1	5.24	28.94	9.95	31.76	12.7	0.15	151.8
		S	1	5.32	28.96	9.98	31.78	12.0	0.15	144.1
В	14	Μ	7	5.24	28.88	8.85	32.30	15.4	0.30	224.2
В	14	Μ	7	5.13	28.87	8.65	32.49	17.6	0.29	202.8
		В	13	5.08	28.85	8.45	32.56	15.9	0.28	235.5
		В	13	5.07	28.87	8.45	32.58	14.0	0.26	230.7
		S	1	5.66	29.33	9.70	32.05	13.5	0.10	174.2
		S	1	5.67	29.32	9.66	32.08	14.0	0.11	191.0
С	12	Μ	6	5.57	29.27	8.36	31.40	14.4	0.16	208.6
C	12	Μ	6	5.25	29.02	8.35	32.24	15.3	0.17	208.0
		В	11	5.01	28.91	8.34	32.63	18.5	0.27	238.2
		В	11	5.00	28.92	8.34	32.55	16.3	0.26	241.6
		S	1	5.72	29.13	9.34	31.73	12.3	0.21	160.7
		S	1	5.71	29.13	9.35	31.92	11.1	0.21	157.6
D	13	Μ	6.5	5.46	28.89	8.33	32.18	16.1	0.23	178.3
	15	Μ	6.5	5.19	28.84	8.32	32.34	18.0	0.21	173.5
		В	12	5.08	28.80	8.32	32.52	14.8	0.31	231.6
		В	12	5.03	28.78	8.32	32.74	18.0	0.32	228.9
		S	1	6.05	28.91	9.26	28.18	12.2	0.17	166.8
		S	1	5.93	29.02	9.41	28.08	10.9	0.16	171.1
Е	16	Μ	8	5.21	28.69	8.33	32.79	14.6	0.21	221.1
E	10	Μ	8	5.08	28.65	8.32	32.93	16.9	0.15	215.2
		В	15	4.98	28.65	8.32	32.98	16.7	0.18	226.7
		В	15	4.96	28.65	8.32	33.06	15.9	0.16	225.9
		S	1	5.32	28.91	8.43	30.06	10.9	0.22	158.3
		S	1	5.37	28.90	8.48	30.07	11.4	0.20	155.8
F	23	Μ	11.5	5.10	28.83	8.32	32.86	11.9	0.24	188.0
Г	23	Μ	11.5	5.08	28.82	8.32	32.91	11.5	0.29	190.0
		В	22	5.05	28.81	8.32	32.91	18.1	0.18	186.3
		В	22	5.05	28.81	8.32	32.78	16.9	0.18	189.8
		S	1	5.27	28.84	8.34	32.50	14.5	0.19	185.3
		S	1	5.25	28.84	8.34	32.51	13.3	0.21	192.4
G	22	Μ	11	5.83	28.41	8.33	32.58	12.9	0.27	221.1
G	22	Μ	11	5.63	28.38	8.33	32.60	11.9	0.24	230.0
		В	21	5.40	28.30	8.36	32.58	12.8	0.37	250.9
		В	21	5.30	28.22	8.35	32.49	12.4	0.37	244.3
		S	1	5.29	27.21	8.41	32.62	11.4	0.19	174.2
		S	1	5.26	27.17	8.39	32.59	11.1	0.19	184.6
U	10	Μ	9.5	5.28	28.48	8.38	32.60	11.5	0.19	180.1
Н	19	Μ	9.5	5.23	28.63	8.37	32.65	12.0	0.20	187.9
		В	18	5.19	28.67	8.36	32.62	10.3	0.33	225.4
		В	18	5.18	28.73	8.36	32.61	11.6	0.32	225.8

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Report No.: 0041/17/ED/0501B

Table 3.7Summary of In-situ Monitoring Results (Mid-flood)

Table					phitoring Results	```		1	1	
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dept	th	oxygen	(degree	-	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Čelsius)			, , , , , , , , , , , , , , , , , , ,	(m/s)	(degree
	()	(,		((magnetic)
		S	1	5.79	28.43	8.58	31.69	8.8	0.26	211.0
		S	1	5.77	28.49	8.42	31.85	8.0	0.19	204.8
		M	7.5	5.55	28.52	8.38	32.00	9.9	0.10	192.7
A	15	M	7.5	5.40	28.52	8.37	32.28	9.5	0.27	190.4
		B	14	5.34	28.55	8.36	32.20	15.8	0.31	197.3
		B	14	5.26	28.55	8.36	31.96	13.3	0.29	202.6
		S	14	5.79	28.14	8.40	29.72	10.1	0.29	202.0
		S	1	5.79						
		M	7		28.23	8.39	29.78	11.5	0.24	243.9
В	14			5.59	28.32	8.38	31.87	12.6	0.30	209.9
		M	7	5.41	28.36	8.37	32.35	13.9	0.29	213.7
		В	13	5.30	28.43	8.37	32.43	17.5	0.19	195.4
		В	13	5.21	28.45	8.36	32.46	18.2	0.24	219.9
		S	1	5.50	28.54	9.05	31.58	8.6	0.18	210.7
		S	1	5.50	28.53	9.08	31.54	8.3	0.11	237.2
С	12	М	6	5.31	28.55	8.36	31.67	11.4	0.27	219.7
Ŭ	12	М	6	5.24	28.60	8.34	32.17	11.8	0.21	212.8
		В	11	5.16	28.60	8.33	32.19	9.3	0.22	192.4
		В	11	5.14	28.63	8.33	32.31	10.8	0.20	208.7
		S	1	5.58	28.20	8.49	31.76	9.6	0.21	199.8
		S	1	5.39	28.31	8.37	31.64	9.3	0.14	197.8
D	14	М	7	5.32	28.39	8.36	31.79	11.7	0.47	220.4
D	14	Μ	7	5.28	28.42	8.35	32.30	9.9	0.43	220.6
		В	13	5.21	28.43	8.34	32.28	9.2	0.32	202.8
		В	13	5.18	28.50	8.34	32.25	9.9	0.32	209.5
		S	1	5.43	28.52	8.49	32.23	12.3	0.20	204.5
		S	1	5.28	28.57	8.33	32.38	10.9	0.17	198.6
_		М	7	5.22	28.59	8.34	32.36	9.8	0.23	194.0
E	14	М	7	5.18	28.62	8.30	32.38	10.9	0.24	189.5
		В	13	5.16	28.62	8.30	32.40	10.1	0.20	204.7
		В	13	5.17	28.63	8.55	32.32	10.2	0.24	221.7
		S	1	5.29	28.45	8.41	31.32	10.7	0.24	221.6
		S	1	5.09	28.46	8.58	31.22	10.8	0.23	223.8
_		M	9	5.10	28.46	8.56	31.18	16.4	0.21	209.3
F	18	M	9	4.99	28.46	8.56	31.27	16.7	0.22	222.1
		B	17	4.99	28.24	8.53	31.12	12.1	0.31	223.0
		B	17	4.99	28.28	8.51	31.25	12.5	0.31	222.7
		S	1	5.46	28.61	8.56	31.57	7.7	0.14	162.2
		S	1	5.47	28.61	8.45	31.61	6.9	0.14	175.1
		M	6.5	5.45	28.62	8.40	31.58	8.3	0.15	156.2
G	13	M	6.5	5.34	28.59	8.38	31.81	8.3	0.18	150.2
		B	12	5.30	28.59	8.37	31.88	9.3	0.18	219.0
		B	12	5.18	28.65	8.36		9.3	0.21	219.0
		Б S	1				32.28			
			-	5.48	28.58	8.47	31.58	8.7	0.19	205.5
		S	1	5.47	28.57	8.45	31.41	7.2	0.17	203.2
Н	19	M	9.5	5.49	28.58	8.42	31.61	9.9	0.22	169.0
	-	M	9.5	5.36	28.57	8.40	31.85	10.4	0.20	174.8
		В	18	5.31	28.57	8.38	31.86	13.6	0.33	174.2
		В	18	5.28	28.60	8.37	32.03	13.6	0.39	170.4

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 15

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix E**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)											
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^{-1}	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		(U)	(mg/L)	(mg/L)	(mg/L)	``` ,	· · · · · · · · · · · · · · · · · · ·	× 0 /	νο ,
	~ /	Ś	1	8.8	0.058	0.090	0.237	0.385	2	0.03	<1.0
		S	1	8.0	0.046	0.089	0.239	0.373	1	0.03	<1.0
		M	8.5	12.6	0.053	0.087	0.227	0.367	2	0.04	<1.0
A	17	M	8.5	13.0	0.061	0.088	0.230	0.378	ND	0.03	<1.0
		В	16	14.1	0.053	0.088	0.232	0.374	8	0.03	<1.0
		В	16	13.7	0.049	0.086	0.234	0.368	12	0.03	<1.0
		S	1	14.1	0.047	0.086	0.232	0.365	7	0.03	<1.0
		S	1	14.4	0.054	0.085	0.217	0.356	10	0.03	<1.0
_		M	7	14.5	0.042	0.089	0.233	0.364	21	0.03	<1.0
В	14	M	7	14.3	0.048	0.084	0.217	0.35	34	0.03	<1.0
		В	13	14.6	0.048	0.085	0.222	0.354	14	0.03	<1.0
		B	13	14.8	0.054	0.084	0.206	0.344	23	0.03	<1.0
		S	1	11.7	0.059	0.090	0.236	0.386	9	0.03	1.2
		s	1	12.3	0.076	0.088	0.230	0.394	11	0.03	<1.0
		M	6	13.1	0.052	0.093	0.252	0.398	37	0.03	<1.0
C	12	M	6	12.9	0.051	0.092	0.252	0.395	32	0.03	<1.0
		B	11	18.2	0.055	0.095	0.248	0.397	18	0.03	<1.0
		B	11	18.6	0.054	0.092	0.246	0.392	23	0.03	<1.0
		S	1	10.9	0.062	0.085	0.225	0.372	9	0.03	<1.0
		s	1	11.3	0.078	0.087	0.239	0.405	6	0.03	<1.0
		M	6.5	11.6	0.046	0.092	0.250	0.387	2	0.03	<1.0
D	13	M	6.5	11.5	0.041	0.092	0.248	0.381	4	0.03	<1.0
		B	12	13.4	0.151	0.092	0.240	0.484	43	0.03	<1.0
		B	12	13.8	0.150	0.091	0.234	0.475	41	0.03	<1.0
		S	1	12.2	0.104	0.088	0.228	0.419	7	0.03	1.6
		S	1	13.2	0.086	0.086	0.234	0.406	11	0.03	<1.0
_		M	8	11.9	0.082	0.077	0.190	0.349	25	0.03	<1.0
E	16	M	8	12.5	0.076	0.080	0.202	0.358	21	0.03	1.3
		B	15	14.5	0.059	0.078	0.191	0.329	26	0.03	<1.0
		B	15	14.1	0.067	0.076	0.184	0.327	23	0.03	<1.0
		S	1	10.9	0.060	0.083	0.199	0.342	8	0.03	<1.0
		S	1	10.1	0.059	0.086	0.195	0.339	6	0.03	<1.0
_		M	11.5	11.3	0.082	0.074	0.185	0.341	26	0.03	<1.0
F	23	M	11.5	11.1	0.070	0.079	0.182	0.330	20	0.03	<1.0
		B	22	11.2	0.073	0.078	0.197	0.348	44	0.03	<1.0
		B	22	11.6	0.076	0.078	0.185	0.339	37	0.03	<1.0
		S	1	10.7	0.062	0.083	0.203	0.348	26	0.03	<1.0
		S	1	10.7	0.002	0.082	0.205	0.360	33	0.03	<1.0
		M	11	9.9	0.060	0.002	0.198	0.337	37	0.02	<1.0
G	22	M	11	10.6	0.000	0.078	0.202	0.362	31	0.02	<1.0
		B	21	14.4	0.072	0.082	0.202	0.345	40	0.03	<1.0
		B	21	13.6	0.065	0.082	0.199	0.345	40	0.03	<1.0
		S	1	7.3	0.004	0.083	0.200	0.348	11	0.03	<1.0
Н	19	S	1	7.5	0.078	0.083	0.208	0.370	13	0.03	<1.0
	19	M	9.5	8.2	0.084	0.084	0.212	0.368	13	0.02	<1.0
		IVI	9.0	0.2	0.075	0.004	0.209	0.300	14	0.02	<1.U

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0501B

Monitoring Station	Water Depth (m)	Sarr Dep (m)	npling th	TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ ⁻ as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD₅ (mg/L)
		М	9.5	7.8	0.070	0.084	0.209	0.363	11	0.03	<1.0
		В	18	9.2	0.086	0.085	0.200	0.370	41	0.03	<1.0
		В	18	9.9	0.078	0.084	0.198	0.360	32	0.03	1.7

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BOD ₅ (mg/L) 1.0 1.1 1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0 1.0 1.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0 1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0 1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<1.0
$C 12 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.1
B 13 14.9 0.064 0.084 0.225 0.373 25 0.03 C 1 11.4 0.042 0.102 0.237 0.381 28 0.03 S 1 11.0 0.039 0.098 0.237 0.381 28 0.03 S 1 11.0 0.039 0.098 0.234 0.371 24 0.03 M 6 12.3 0.040 0.097 0.250 0.387 30 0.03 M 6 12.1 0.038 0.096 0.251 0.385 32 0.03 B 11 14.3 0.041 0.094 0.242 0.378 28 0.03 B 11 13.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 S 1 12.0 0.043 0.096 <	<1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<1.0
C 12 M 6 12.3 0.040 0.097 0.250 0.387 30 0.03 M 6 12.1 0.038 0.096 0.251 0.385 32 0.03 B 11 14.3 0.041 0.094 0.242 0.378 28 0.03 B 11 13.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 M 7 12.6 0.043 0.096 0.244 0.383 31 0.03	<1.0
M 6 12.1 0.038 0.096 0.251 0.385 32 0.03 B 11 14.3 0.041 0.094 0.242 0.378 28 0.03 B 11 13.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 M 7 12.6 0.040 0.089 0.251 0.383 31 0.03	<1.0
M 6 12.1 0.038 0.096 0.251 0.385 32 0.03 B 11 14.3 0.041 0.094 0.242 0.378 28 0.03 B 11 13.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 M 7 12.6 0.040 0.0980 0.251 0.383 31 0.03	<1.0
B 11 13.5 0.042 0.093 0.241 0.376 24 0.03 S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 S 1 12.0 0.043 0.096 0.244 0.383 31 0.03 M 7 12.6 0.040 0.089 0.251 0.380 42 0.03	<1.0
S 1 12.5 0.042 0.093 0.242 0.378 33 0.03 S 1 12.0 0.043 0.096 0.244 0.383 31 0.03 M 7 12.6 0.040 0.089 0.251 0.280 42 0.03	1.1
S 1 12.0 0.043 0.096 0.244 0.383 31 0.03 M 7 12.6 0.040 0.089 0.251 0.380 42 0.03	<1.0
M 7 126 0.040 0.080 0.251 0.280 42 0.02	<1.0
	<1.0
	<1.0
M 7 12.8 0.041 0.098 0.249 0.389 49 0.03	<1.0
B 13 12.4 0.040 0.098 0.250 0.389 47 0.03	<1.0
B 13 12.3 0.041 0.093 0.248 0.382 39 0.03	<1.0
S 1 15.5 0.054 0.089 0.205 0.347 19 0.03	<1.0
<u>S 1 15.8 0.054 0.083 0.209 0.346 23 0.03</u>	<1.0
E 14 M 7 16.4 0.054 0.084 0.223 0.360 60 0.03	<1.0
M 7 16.2 0.054 0.074 0.212 0.339 54 0.03	<1.0
B 13 18.3 0.055 0.089 0.222 0.366 64 0.03	<1.0
B 13 18.1 0.055 0.090 0.219 0.364 59 0.03	<1.0
S 1 13.5 0.051 0.088 0.226 0.366 31 0.03	<1.0
S 1 14.0 0.054 0.093 0.218 0.365 33 0.03	<1.0
F 18 M 9 16.9 0.048 0.073 0.220 0.342 18 0.03 M 9 17.1 0.056 0.087 0.220 0.342 18 0.03	1.3
M 9 17.1 0.056 0.087 0.220 0.364 12 0.03	<1.0
B 17 17.7 0.050 0.081 0.240 0.371 120 0.04	<1.0
B 17 17.6 0.062 0.089 0.269 0.420 92 0.03 S 1 13.3 0.057 0.089 0.240 0.387 18 0.03 S 1 13.5 0.061 0.089 0.238 0.388 12 0.03	1.3
<u>S 1 13.3 0.057 0.089 0.240 0.387 18 0.03</u>	1.2
	1.3
G 13 M 6.5 14.1 0.046 0.093 0.237 0.375 30 0.03	
101 0.5 13.6 0.052 0.069 0.241 0.362 36 0.03	<1.0
B 12 15.1 0.058 0.081 0.228 0.367 23 0.03	<1.0
B 12 14.6 0.057 0.094 0.232 0.383 24 0.03	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page	17
------	----

Monitoring	Water	Sam	pling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Depth		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	9.0	0.083	0.092	0.263	0.438	34	0.03	1.9
		S	1	9.3	0.084	0.090	0.249	0.422	30	0.03	<1.0
н	19	Μ	9.5	11.7	0.047	0.081	0.264	0.392	36	0.04	<1.0
	19	Μ	9.5	11.1	0.055	0.079	0.262	0.395	39	0.03	<1.0
		В	18	13.4	0.067	0.091	0.247	0.405	17	0.03	<1.0
		В	18	12.7	0.071	0.090	0.267	0.428	11	0.03	1.5

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix F**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10Weather condition of water quality monitoring

Date	Ai	r Temperat	ure	Mean	Total
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
17 October 2019	29.7	26.2	23.9	70	0.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 18

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 2**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Su
--

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Monitoring Parameters						
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey					
Grain size profile* (i.e. Particle Size	Cadmium (µg/L)					
Distribution) (%)						
Total organic carbon* (%)	Chromium (µg/L)					
pH value	Copper (µg/L)					
Ammonia as N (mg-N/kg)	Lead (µg/L)					
Total nitrogen (mg-N/kg)	Mercury ((µg/L)					
Total phosphorus (mg-N/kg)	Nickel (µg/L)					
Cadmium (mg/kg)	Zinc (µg/L)					
Chromium (mg/kg)	Arsenic (µg/L)					
Copper (mg/kg)	Silver (µg/L)					
Lead (mg/kg)						
Mercury (mg/kg)]					
Nickel (mg/kg)						
Zinc (mg/kg)						
Arsenic (mg/kg)]					
Silver (mg/kg)						

Page 19

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 3**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix I**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix I**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 20

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 21

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 17 October 2019. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix G**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 22

Report No.: 0041/17/ED/0501B

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

Tuble	-		5	,	,								
Monitoring	рН	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/k	(mg	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)									
A	8.5	3	936	479	<0.10	40.3	31.5	44.8	0.15	23.4	101	17.4	0.24
В	8.6	3	846	417	<0.10	35.1	32.8	37.0	0.10	20.4	92.1	14.4	0.36
С	8.3	10	1140	585	<0.10	49.4	41.8	52.9	0.12	28.9	130	16.6	0.40
D	8.5	5	947	477	0.11	40.7	35.4	43.6	0.11	24.6	109	11.3	0.30
E	8.4	12	1300	562	<0.10	46.6	42.0	49.5	0.12	28.0	126	12.2	0.36
F	8.3	26	1440	589	<0.10	45.8	40.5	48.0	0.15	27.8	121	12.4	0.32
G	8.4	6	1030	502	0.11	46.4	103	67.7	0.11	25.8	216	15.6	0.37
Н	8.4	2	941	463	0.13	44.6	43.7	45.7	0.11	26.2	108	14.1	0.39

Table 4.5Summary of laboratory analysis results for benthic survey

Monitoring Station		Grain size profile (%)			%)	Description
Station	carbon (%)	Gravel	Sand	Silt	Clay	
А	0.95	3	27	37	33	Dark grey, slightly sandy SILT/CLAY with shell fragments
В	0.65	6	25	41	28	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
С	0.90	0	3	58	39	Dark grey, slightly sandy SILT/CLAY with shell fragments
D	0.86	0	15	53	32	Dark grey, slightly sandy SILT/CLAY with shell fragments
E	1.11	0	6	56	38	Dark grey, slightly sandy SILT/CLAY with shell fragments
F	1.18	0	4	55	41	Dark grey, slightly sandy SILT/CLAY with shell fragments
G	0.87	10	17	44	29	Dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
Н	0.85	3	10	54	33	Dark grey, slightly sandy SILT/CLAY with shell fragments

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix G**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

10010 110 110	Table ne Weather contaition of Water quality monitoring							
Date	Ai	r Temperat	ure	Mean	Total			
	Maximum	Mean Minimum		Relative	Rainfall			
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)			
				(%)				
17 October 2019	29.7	26.2	23.9	70	0.0			
• • • • • • • • • • • • • • • • • • •	<u></u>							

 Table 4.6
 Weather condition of water quality monitoring

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 23

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	43	9.04	21	2.93	0.96
В	45	7.25	22	2.84	0.92
С	14	0.07	9	2.11	0.96
D	26	7.62	13	2.26	0.88
E	45	20.33	24	2.97	0.94
F	41	8.66	19	2.76	0.94
G	56	14.28	24	2.79	0.88
Н	49	5.41	22	2.97	0.96
TOTAL	319	72.67			

Table 4.7Summary of benthic survey data on 17 October 2019

- 4.10.5 The benthic survey results are analyzed and presented as below:
 - i) Abundance

A total of 319 macrobenthic organisms were recorded from the eight monitoring stations during the October 2019 monitoring period. Compared to both dry (March 2004) and wet (August 2004) seasons baseline data, the current total abundance remained to be relatively lower. This trend has been observed since the commencement of the monitoring activities in April 2018. As previously reported, generally, decreasing abundances were observed during wet season monitoring periods while increasing abundances during dry monitoring periods. These variations might be attributed to the natural response of macrobenthic communities to seasonal changes. However, similar to previous monitoring periods, these observed seasonal variation are not statistically significant (F-value = 1.32. F-crit = 1.90, P-value = 0.22).

Similar to the previous monitoring periods, statistically significant (F-value = 3.10, Fcrit = 2.11, P-value = 0.006) in total abundances across monitoring stations was observed. The lowest abundances were recorded in the impact stations, Station C and Station D, with 14 ind. and 26 ind., respectively. The highest abundance (56 ind.) was recorded in Station G. Abundance distribution showed that the impact stations have relatively lower abundances compared to the reference stations, a similar trend observed in the baseline data. Sediments in these stations remained to be wellsorted composed silt/clay substrate. During the present monitoring period, stations with moderately sorted sediments have generally higher abundances compared to stations with well-sorted sedments. The abundance-sediment size correlation was more apparent compared to the previous two monitoring periods.

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 72.67g, which is lower compared to the previous monitoring period (129.87g). The current biomass is higher compared to the wet season but lower compared to the dry season baseline data. The highest total biomass was recorded in Station E (20.33 g) while the lowest was in the impact station Station C (0.072g), same observation with the previous monitoring period. The higher biomass observed in Station E was contributed by the relatively larger molluscan species, *Paphia undulata*.

FUGRO TECHNICAL SERVICES LIMITED Fuaro Development Centre. : +852 2450 8233 Tel : +852 2450 6138 Fax

5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

iii) Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of seven phyla comprising of 33 families and 49 taxa were identified. The benthic fauna composition is dominated by annelids (66.14%), arthropods (19.75%), and molluscs (8.15%). Same as the baseline study, the most dominant group for the October 2019 monitoring period was the polychaetes Capitellidae. The most dominant species (abundance \geq 10) was the polychaete, Capitella sp., with the abundance of 11 ind. in Station G. Capitellids are typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

Highest number of genera was recorded in Station E (24) and Station G (24) and the lowest in was in the impact station Station C (9). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

iv) Diversitv

> Diversity index (H) and Evenness index (J) ranged from 2.11 - 2.26 and 0.88 - 0.96in impact stations, and 2.76 - 2.97 and 0.88 - 0.96 among the reference stations, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Compared with the baseline survey result, the diversity index and evenness index increased.

The detailed benthic survey results are provided in **Appendix H**.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 25

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 1 August 2019, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2019. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2019-20) is uploaded to AFCD's webpage.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 26

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix J**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 27

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix J.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0501B

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 28

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Air quality monitoring (i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis), was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 17 October 2019. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Page 29

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions
	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 30

Report No.: 0041/17/ED/0501B

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. Due to inadequacy of representative data collected between August 2017 and May 2018, current H₂S measurement and olfactometry analysis were considered as unsuitable method to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m3). In order to assess whether SHWSTW is the major H₂S source to ASRs, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR are not appropriate locations for the correlation study as the change of both odour level and H₂S concentrations at ASRs were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval.
- iii. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.

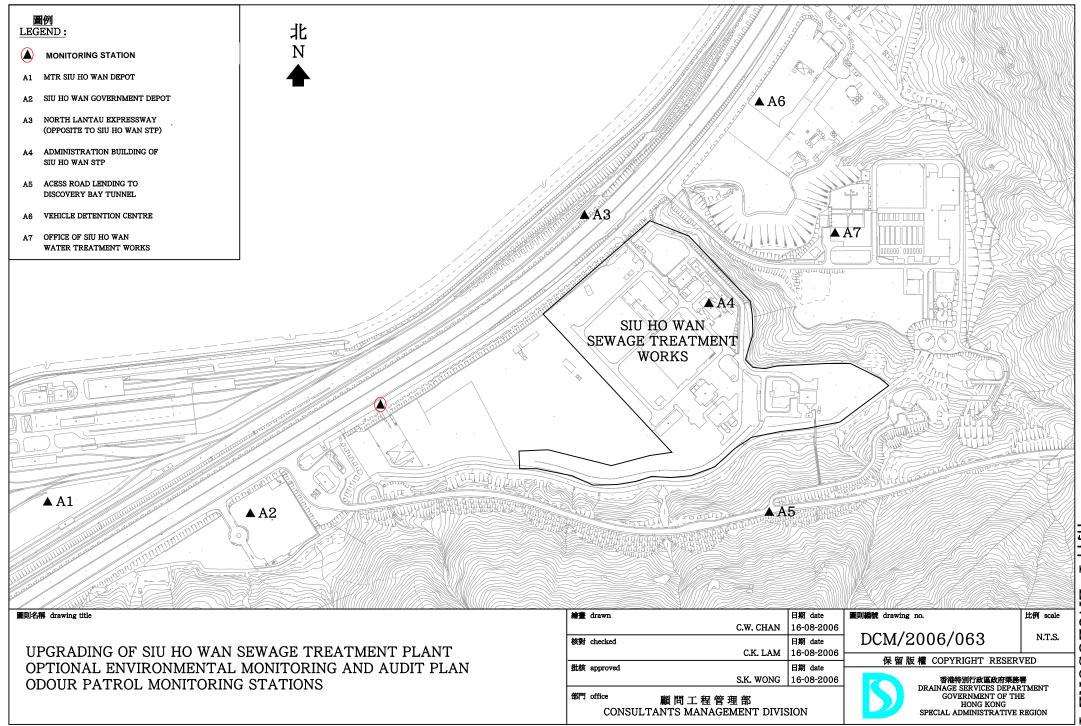
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 31

Report No.: 0041/17/ED/0501B

11. CONCLUSION

- 11.1.1 Air quality monitoring i.e. H₂S concentration monitoring, odour patrol monitoring and olfactometry analysis, was temporary suspended and no monitoring was carried out in the reporting period. No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Due to non-ideal wind direction or domination of non-target smell during the measurements conducted between August 2017 and May 2018, inadequacy of representative data was result between August 2017 and May 2018. Current H₂S measurement and olfactometry analysis was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). In order to assess whether SHWSTW is the major H₂S source to ASR, three additional air quality monitoring events were conducted on February 2018. The data showed that site boundary of SHWSTW and the location of ASR is not appropriate for the correlation study as the change of both odour level and H₂S concentrations at ASR were not sensitive to that at site boundary of SHWSTW. Alternative methods shall be proposed and submitted for EPD's approval. Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspended until alternative methods of correlation study was approved by EPD. The temporary suspension was approved by EPD's memo dated 14 May 2018.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 17 October 2019 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 1 August 2019, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in August 2019. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2019-20) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

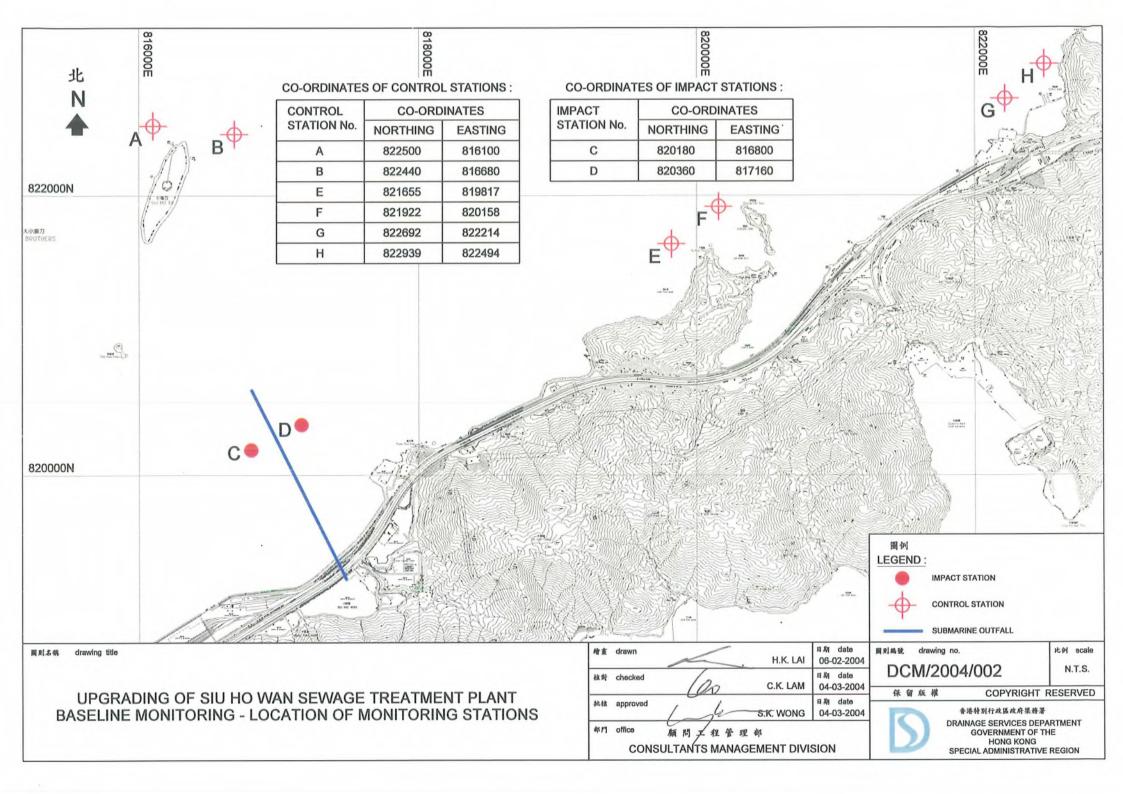
Report No.: 0041/17/ED/0501B

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Figure 2

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Figure 3

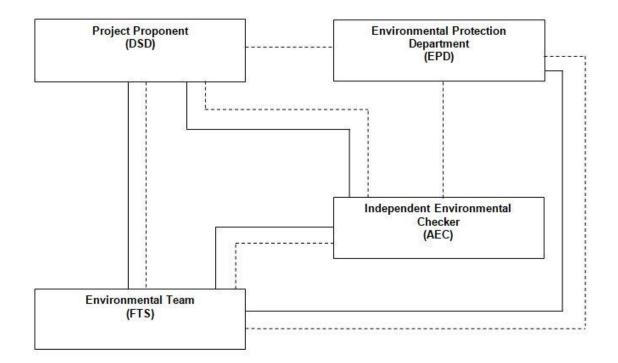
Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1 October	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (08:40) Mid-Ebb (14:25)	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,			
5 Lok Yi Street, Tai Lam,			
Tuen Mun, N.T.,			
Hong Kong.			

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
					1 November	2	
3	4	5	6	7	8	9	
10			4.0		45		
10	11	12	13	14	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

ACTION				
ET	IEC	*Operator		
 Check Operator's working methods; Discuss with Operator on required remedial actions 	 Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures 	 Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; Amend operation methods if appropriate 		
I	1	1		
 Investigated the causes of complaint; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; Discuss with EPD and the Operator on the required remedial actions; Submit proposals for remedial actions within 3 working days of notification; Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; Amend proposal if appropriate; Resubmit proposal if 	 Discuss amongst ET and the Operator on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; Supervise implementation of remedial measures 	 Indentify/ confirm source with ET; Confirm receipt of notification of failure in writing; Inform ET, IEC and EPD; Discuss with EPD and ET on the required remedial actions; Ensure remedial actions properly implemented; Take immediate action to avoid further exceedance; Implement the agreed proposals 		
	 Check Operator's working methods; Discuss with Operator on required remedial actions Investigated remedial actions Investigated the causes of complaint; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; Discuss with EPD and the Operator on the required remedial actions; Submit proposals for remedial actions within 3 working days of notification; Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; Amend proposal if appropriate; 	ETIEC1. Check Operator's working methods; 2. Discuss with Operator on required remedial actions1. Discuss with ET and Operator on the possible remedial actions; 2. Advise the Operator on the effectiveness of the proposed remedial measures; 3 Supervise implementation of remedial measures1. Investigated the causes of complaint; 2. Check Operator's working procedures to determine possible mitigation to be implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions; 6. Submit proposals for remedial actions; 6. Submit proposals for remedial actions; 6. Submit proposal for remedial actions; 6. Submit proposal if appropriate; 9. Resubmit proposal if problem still not under1. Discuss amongst ET and the Operator on the potential remedial actions; 2. Review the proposed remedial actions; 3. Supervise implemented; 4. Arrange meeting with ET and EPD to discuss the remedial actions; 6. Submit proposal if appropriate; 9. Resubmit proposal if problem still not under1. Discuss with ET and the Operator accordingly; 3. Supervise implementation of remedial actions and keep EPD informed of the results; b. Resubmit proposal if appropriate;		

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix D

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Report No. : 142626WA192143

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	:	Rm. 723 - 726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	•	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 490113
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA192143/1
Date of calibration	:	25/09/2019
Next calibration date	:	24/12/2019
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested.

ļ

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 142626WA192143

Page 2 of 3

Results :

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)					
Theoretical	Theoretical Measured Deviation				
9.18	9.18	0.00			
6.86	6.85	-0.01			

B. Salinity calibration

Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.04	+0.04	± 0.5		
20	20.07	+0.07	± 1.0		
30	29.76	-0.24	± 1.5		
40	39.81	-0.19	± 2.0		

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen	Dissolved oxygen content, mg/L		
Thai no,	By calibrated D.O. meter	By D.O. meter		
1	7.32	7.32		
2	7.33	7.34		
3	7.33	7.33		
Average	7.33	7.33		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by : Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 4 110/2019 Date

Note : This report refers only to the sample(s) tested.

Report No. : 142626WA192143

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C	
25.17	25.21	

E. Turbidity calibration

Turbidity, N.T.U.					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.07	+0.07	± 0.4		
8	8.09	+0.09	± 0.6		
40	39.69	-0.31	± 3.0		
80	79.55	-0.45	± 4.0		

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager -- Laboratories 4 10/2019 Date

** End of Report **

Note : This report refers only to the sample(s) tested.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

PASS
PASS
DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix E

Results and Graphical Presentation of Water Quality Monitoring

												I	n-situ Meas	ureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	$ BOD_5 (mq/l)$
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	17/10/2019	Mid-Ebb	Fine	Moderate	12:59	17	S	1	1	9.38	31.66	29.41	84.1	5.32	9.9	0.13	191.6	8.8	0.058	0.090	0.237	0.385	2	0.03	<1.0
A	17/10/2019	Mid-Ebb	Fine	Moderate	12:59	17	S	1	2	9.42	31.65	29.38	84.0	5.31	10.3	0.15	230.6	8.0	0.046	0.089	0.239	0.373	1	0.03	<1.0
A	17/10/2019	Mid-Ebb	Fine	Moderate	12:59	17	М	8.5	1	8.80	31.77	29.23	82.6	5.24	16.5	0.26	195.5	12.6	0.053	0.087	0.227	0.367	2	0.04	<1.0
A	17/10/2019	Mid-Ebb	Fine		12:59	17	М	8.5	2	8.57	31.76	29.14	81.3	5.16	14.0	0.25	198.0	13.0	0.061	0.088	0.230	0.378	ND	0.03	<1.0
A	17/10/2019	Mid-Ebb	Fine	Moderate	12:59	17	В	16	1	8.57	31.82	29.10	80.6	5.12	14.6	0.43	236.8	14.1	0.053	0.088	0.232	0.374	8	0.03	<1.0
A	17/10/2019	Mid-Ebb	Fine	Moderate	12:59	17	В	16	2	8.26	31.89	29.05	80.2	5.09	17.2	0.44	236.1	13.7	0.049	0.086	0.234	0.368	12	0.03	<1.0
B	17/10/2019	Mid-Ebb	Fine	Moderate	13:10	14	S	1	1	9.95	31.76	28.94	82.3	5.24	12.7	0.15	151.8	14.1	0.047	0.086	0.232	0.365	7	0.03	<1.0
B	17/10/2019	Mid-Ebb	Fine		13:10 13:10	14 14	S M	1	2	9.98 8.85	31.78	28.96 28.88	83.6	5.32 5.24	12.0	0.15	144.1	14.4	0.054	0.085	0.217	0.356	10	0.03	<1.0
B	17/10/2019 17/10/2019	Mid-Ebb	Fine	Moderate Moderate		14	M	1	2	8.65	32.30 32.49	28.88	82.4 80.8		15.4 17.6	0.30	224.2 202.8	14.5 14.3	0.042	0.089	0.233	0.364	21 34	0.03	<1.0
B	17/10/2019	Mid-Ebb Mid-Ebb	Fine Fine			14	B	13	4	8.05	32.49	28.87	80.8	5.13 5.08	17.6	0.29	202.8	14.3	0.048	0.084	0.217	0.354	<u> </u>	0.03	<1.0
B	17/10/2019	Mid-Ebb	Fine	Moderate		14	B	13	2	8 45	32.56	28.87	79.9	5.06	15.9	0.26	230.7	14.8	0.046	0.085	0.222	0.344	23	0.03	<1.0
C C	17/10/2019	Mid-Ebb	Fine		13:26	12	р с	1	1	9.70	32.05	29.33	89.6	5.66	13.5	0.10	174.2	11.7	0.054	0.090	0.236	0.344	9	0.03	1.2
C	17/10/2019	Mid-Ebb	Fine	Moderate	13.26	12	S	1	2	9.66	32.03	29.32	89.7	5.67	14.0	0.11	191.0	12.3	0.035	0.088	0.230	0.394	11	0.03	<1.0
Č	17/10/2019	Mid-Ebb	Fine	Moderate	13:26	12	M	6	1	8.36	31.40	29.27	87.9	5.57	14.4	0.16	208.6	13.1	0.052	0.093	0.252	0.398	37	0.03	<1.0
Č	17/10/2019	Mid-Ebb	Fine	Moderate	13:26	12	M	6	2	8.35	32.24	29.02	82.7	5.25	15.3	0.17	208.0	12.9	0.051	0.092	0.252	0.395	32	0.03	<1.0
Č	17/10/2019	Mid-Ebb	Fine	Moderate	13:26	12	B	11	1	8.34	32.63	28.91	79.0	5.01	18.5	0.27	238.2	18.2	0.055	0.095	0.248	0.397	18	0.03	<1.0
С	17/10/2019	Mid-Ebb	Fine	Moderate	13:26	12	В	11	2	8.34	32.55	28.92	78.8	5.00	16.3	0.26	241.6	18.6	0.054	0.092	0.246	0.392	23	0.03	<1.0
D	17/10/2019	Mid-Ebb	Fine	Moderate	13:36	13	S	1	1	9.34	31.73	29.13	90.1	5.72	12.3	0.21	160.7	10.9	0.062	0.085	0.225	0.372	9	0.03	<1.0
D	17/10/2019	Mid-Ebb	Fine			13	S	1	2	9.35	31.92	29.13	90.0	5.71	11.1	0.21	157.6	11.3	0.078	0.087	0.239	0.405	6	0.03	<1.0
D	17/10/2019	Mid-Ebb	Fine	Moderate	13:36	13	M	6.5	1	8.33	32.18	28.89	86.0	5.46	16.1	0.23	178.3	11.6	0.046	0.092	0.250	0.387	2	0.03	<1.0
D	17/10/2019	Mid-Ebb	Fine	Moderate		13	M	6.5	2	8.32	32.34	28.84	81.7	5.19	18.0	0.21	173.5	11.5	0.041	0.092	0.248	0.381	4	0.03	<1.0
D	17/10/2019	Mid-Ebb	Fine	Moderate	13:36	13	В	12	1	8.32	32.52	28.80	79.9	5.08	14.8	0.31	231.6	13.4	0.151	0.092	0.240	0.484	43	0.03	<1.0
<u> </u>	17/10/2019	Mid-Ebb	Fine		13:36 13:54	13	B	12	- 2	8.32	32.74	28.78	79.2	5.03	18.0	0.32	228.9	13.8	0.150	0.091	0.234	0.475	41	0.03	<1.0
<u> </u>	17/10/2019	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	13:54	16 16	5 9	1	1	9.26 9.41	28.18 28.08	28.91 29.02	93.1 91.4	6.05 5.93	12.2 10.9	0.17	166.8 171.1	12.2 13.2	0.104	0.088	0.228	0.419	11	0.03	1.6 <1.0
	17/10/2019	Mid-Ebb	Fine	Moderate	13:54	16	M	8	4	8.33	32 79	29.02	91.4 81.9	5.93	14.6	0.16	221.1	13.2	0.082	0.066	0.234	0.349	25	0.03	<1.0
<u> </u>	17/10/2019	Mid-Ebb	Fine	Moderate	13:54	16	M	8	2	<u>0.33</u> 8.32	32.79	28.65	79.9	5.08	14.6	0.21	215.2	12.5	0.062	0.077	0.202	0.358	25	0.03	1.3
F	17/10/2019	Mid-Ebb	Fine	Moderate		16	B	15	1	8.32	32.93	28.65	78.4	4.98	16.7	0.18	226.7	14.5	0.059	0.078	0.191	0.329	26	0.03	<1.0
Ē	17/10/2019	Mid-Ebb	Fine			16	B	15	2	8.32	33.06	28.65	78.2	4.96	15.9	0.16	225.9	14.1	0.067	0.076	0.184	0.327	23	0.03	<1.0
F	17/10/2019	Mid-Ebb	Fine		14:05	23	S	1	1	8.43	30.06	28.91	82.8	5.32	10.9	0.22	158.3	10.9	0.060	0.083	0.199	0.342	8	0.03	<1.0
F	17/10/2019	Mid-Ebb	Fine	Moderate	14:05	23	S	1	2	8.48	30.07	28.90	82.5	5.37	11.4	0.20	155.8	10.1	0.059	0.086	0.195	0.339	6	0.03	<1.0
F	17/10/2019	Mid-Ebb	Fine	Moderate	14:05	23	М	11.5	1	8.32	32.86	28.83	80.5	5.10	11.9	0.24	188.0	11.3	0.082	0.074	0.185	0.341	26	0.03	<1.0
<u> </u>	17/10/2019	Mid-Ebb	Fine	Moderate	14:05	23	M	11.5	2	8.32	32.91	28.82	80.2	5.08	11.5	0.29	190.0	11.1	0.070	0.079	0.182	0.330	20	0.03	<1.0
F	17/10/2019	Mid-Ebb	Fine	Moderate		23	В	22		8.32	32.91	28.81	79.7	5.05	18.1	0.18	186.3	11.2	0.073	0.078	0.197	0.348	44	0.03	<1.0
F	17/10/2019	Mid-Ebb	Fine	Moderate	14:05	23	B	22	2	8.32	32.78	28.81	79.6	5.05	16.9	0.18	189.8	11.6	0.076	0.078	0.185	0.339	37	0.03	<1.0
G	17/10/2019	Mid-Ebb	Fine	Moderate		22	S	1	1	8.34	32.50	28.84 28.84	82.9 82.6	5.27 5.25	14.5 13.3	0.19	185.3 192.4	10.7 10.0	0.062	0.083	0.203	0.348	26 33	0.03	<1.0
G	17/10/2019	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	14:18 14:18	22	M	1	2	8.34	32.51 32.58	<u>28.84</u> 28.41	82.6 89.9	5.83	13.3	0.21	<u>192.4</u> 221.1	10.0 9.9	0.072	0.082	0.205	0.360	33	0.02	<1.0
G	17/10/2019	Mid-Ebb	Fine	Moderate	14:18	22	M	11	2	8.33	32.58	28.38	89.9	5.63	12.9	0.27	230.0	9.9	0.060	0.078	0.198	0.337	31	0.02	<1.0
G	17/10/2019	Mid-Ebb	Fine	Moderate	14:18	22	B	21	1	8.36	32.58	28.30	84.8	5.40	12.8	0.24	250.0	14.4	0.072	0.082	0.202	0.345	40	0.03	<1.0
G	17/10/2019	Mid-Ebb	Fine			22	B	21	2	8.35	32.49	28.22	83.4	5.30	12.4	0.37	244.3	13.6	0.064	0.085	0.200	0.348	40	0.03	<1.0
H	17/10/2019	Mid-Ebb	Fine	Moderate	14:29	19	S	1	1	8.41	32.62	27.21	83.2	5.29	11.4	0.19	174.2	7.3	0.078	0.083	0.208	0.370	11	0.03	<1.0
H	17/10/2019	Mid-Ebb	Fine	Moderate	14:29	19	S	1	2	8.39	32.59	27.17	82.7	5.26	11.1	0.19	184.6	7.5	0.064	0.084	0.212	0.359	13	0.02	<1.0
H	17/10/2019	Mid-Ebb	Fine	Moderate	14:29	19	M	9.5	1	8.38	32.60	28.48	83.1	5.28	11.5	0.19	180.1	8.2	0.075	0.084	0.209	0.368	14	0.02	<1.0
H	17/10/2019	Mid-Ebb	Fine	Moderate	14:29	19	M	9.5	2	8.37	32.65	28.63	82.4	5.23	12.0	0.20	187.9	7.8	0.070	0.084	0.209	0.363	11	0.03	<1.0
Н	17/10/2019	Mid-Ebb	Fine	Moderate		19	В	18	1	8.36	32.62	28.67	81.8	5.19	10.3	0.33	225.4	9.2	0.086	0.085	0.200	0.370	41	0.03	<1.0
н	17/10/2019	Mid-Ebb	Fine	Moderate	14:29	19	В	18	2	8.36	32.61	28.73	81.6	5.18	11.6	0.32	225.8	9.9	0.078	0.084	0.198	0.360	32	0.03	1.7

Note: 1. ND: Not Detected

												li	n-situ Meas	sureme	nt				Laboratory Analysis						
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	17/10/2019	Mid-Flood	Fine	Moderate	8:37	15	S	1	1	8.58	31.69	28.43	89.7	5.79	8.8	0.26	211.0	11.4	0.041	0.096	0.243	0.380	7	0.03	1.0
А		Mid-Flood	Fine	Moderate	8:37	15	S	1	2	8.42	31.85	28.49	88.2	5.77	8.0	0.19	204.8	11.6	0.051	0.096	0.246	0.394	9	0.03	1.0
A	17/10/2019	Mid-Flood	Fine	Moderate	8:37	15	M	7.5	1	8.38	32.00	28.52	86.5	5.55	9.9	0.27	192.7	13.1	0.032	0.100	0.239	0.372	8	0.03	1.1
A	17/10/2019		Fine	Moderate	8:37	15	M	7.5	2	8.37	32.28	28.52	84.3	5.40	9.5	0.28	190.4	13.2	0.042	0.098	0.247	0.388	4	0.03	1.0
A		Mid-Flood	Fine	Moderate	8:37	15	В	14	1	8.36	32.21	28.55	83.4	5.34	15.8	0.31	197.3	14.7	0.048	0.096	0.244	0.388	7	0.03	1.1
A	17/10/2019		Fine	Moderate	8:37	15	В	14	2	8.36	31.96	28.55	82.3	5.26	13.3	0.29	202.6	14.3	0.042	0.091	0.228	0.362	6	0.03	1.1
B		Mid-Flood	Fine	Moderate	8:45	14	S	1	1	8.40	29.72	28.14	88.8	5.79	10.1	0.22	232.2	9.6	0.046	0.094	0.248	0.388	16	0.03	1.1
B	17/10/2019	Mid-Flood Mid-Flood	Fine	Moderate Moderate	8:45	14 14	S M	1	2	8.39 8.38	29.78	28.23 28.32	87.7	5.71	11.5 12.6	0.24	243.9	9.8 12.8	0.060	0.097	0.244	0.402	12 27	0.03	<1.0
B	17/10/2019		Fine Fine		8:45 8:45	14	M	7	2	8.38	31.87 32.35	28.32	87.0 84.4	5.59 5.41	12.6	0.30	209.9 213.7	12.8	0.045	0.094	0.248	0.388	27	0.03	1.1
B		Mid-Flood	Fine	Moderate	8:45	14	B	13	1	0.3/ 8 37	32.35	28.30	84.4 82.8	5.30	13.9	0.29	195.4	14.3	0.065	0.094	0.249	0.385	29	0.03	1.1
B	17/10/2019		Fine	Moderate		14	B	13	2	8.36	32.43	28.45	81.4	5.21	18.2	0.19	219.9	14.3	0.064	0.084	0.237	0.373	20	0.03	<1.0
	17/10/2019		Fine			12	S	1	1	9.05	31.58	28.54	85.7	5.50	8.6	0.18	210.7	11.4	0.042	0.102	0.223	0.381	28	0.03	<1.0
Č	17/10/2019		Fine	Moderate		12	Š	1	2	9.08	31.54	28.53	85.7	5.50	8.3	0.11	237.2	11.0	0.039	0.098	0.234	0.371	24	0.03	<1.0
Č		Mid-Flood	Fine	Moderate	8:53	12	M	6	1	8.36	31.67	28.55	83.2	5.31	11.4	0.27	219.7	12.3	0.040	0.097	0.250	0.387	30	0.03	<1.0
č	17/10/2019		Fine	Moderate		12	M	6	2	8.34	32.17	28.60	82.1	5.24	11.8	0.21	212.8	12.1	0.038	0.096	0.251	0.385	32	0.03	<1.0
Ċ	17/10/2019	Mid-Flood	Fine	Moderate	8:53	12	В	11	1	8.33	32.19	28.60	80.9	5.16	9.3	0.22	192.4	14.3	0.041	0.094	0.242	0.378	28	0.03	1.1
С	17/10/2019	Mid-Flood	Fine	Moderate	8:53	12	В	11	2	8.33	32.31	28.63	80.6	5.14	10.8	0.20	208.7	13.5	0.042	0.093	0.241	0.376	24	0.03	<1.0
D	17/10/2019	Mid-Flood	Fine	Moderate	9:02	14	S	1	1	8.49	31.76	28.20	86.9	5.58	9.6	0.21	199.8	12.5	0.042	0.093	0.242	0.378	33	0.03	<1.0
D	17/10/2019	Mid-Flood	Fine	Moderate	9:02	14	S	1	2	8.37	31.64	28.31	84.3	5.39	9.3	0.14	197.8	12.0	0.043	0.096	0.244	0.383	31	0.03	<1.0
D	17/10/2019		Fine			14	М	7	1	8.36	31.79	28.39	83.1	5.32	11.7	0.47	220.4	12.6	0.040	0.089	0.251	0.380	42	0.03	<1.0
	17/10/2019		Fine	Moderate		14	M	7	-	8.35	32.30	28.42	82.5	5.28	9.9	0.43	220.6	12.8	0.041	0.098	0.249	0.389	49	0.03	<1.0
D	17/10/2019		Fine	Moderate		14	В	13	1	8.34	32.28	28.43	81.6	5.21	9.2	0.32	202.8	12.4	0.040	0.098	0.250	0.389	47	0.03	<1.0
D		Mid-Flood	Fine	Moderate	9:02	14	В	13	-	8.34	32.25	28.50	81.1	5.18	9.9	0.32	209.5	12.3	0.041	0.093	0.248	0.382	39	0.03	<1.0
<u> </u>	17/10/2019		Fine	Moderate		14	S	1	1	8.49	32.23	28.52	84.9	5.43	12.3	0.20	204.5	15.5	0.054	0.089	0.205	0.347	19	0.03	<1.0
E	17/10/2019		Fine	Moderate	9:11	14	S	1	2	8.33	32.38	28.57	82.7	5.28	10.9	0.17	198.6	15.8	0.054	0.083	0.209	0.346	23	0.03	<1.0
E F		Mid-Flood	Fine	Moderate	9:11 9:11	14	M		1	8.34	32.36	28.59 28.62	81.8 81.2	5.22 5.18	9.8 10.9	0.23	194.0 189.5	16.4	0.054	0.084	0.223	0.360	60 54	0.03	<1.0
		Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	9:11	14 14	B	13	2	8.30	32.38	28.62	81.2	5.18	10.9	0.24	204.7	16.2 18.3	0.054	0.074	0.212	0.339	54 64	0.03	<1.0
Ē	17/10/2019		Fine			14	B	13	2	8 55	32.40	28.62	81.0	5.10	10.1	0.20	204.7	18.1	0.055	0.089	0.222	0.364	59	0.03	<1.0
F	17/10/2019		Fine	Moderate	9:27	14	S	1	~	8.41	31.32	28.45	82.6	5.29	10.2	0.24	221.7	13.5	0.055	0.090	0.219	0.364	31	0.03	<1.0
F		Mid-Flood	Fine	Moderate	9:27	18	S	1	2	8.58	31.22	28.46	80.8	5.09	10.8	0.23	223.8	14.0	0.054	0.093	0.218	0.365	33	0.03	<1.0
F	11/10/2010	Mid-Flood	Fine	Moderate	9:27	18	M	9	1	8.56	31.18	28.46	80.6	5.10	16.4	0.20	209.3	16.9	0.048	0.073	0.220	0.342	18	0.03	1.3
F	17/10/2019		Fine	Moderate	9:27	18	M	9	2	8.56	31.27	28.46	79.5	4.99	16.7	0.22	222.1	17.1	0.056	0.087	0.220	0.364	12	0.03	<1.0
F	17/10/2019		Fine	Moderate	9:27	18	В	17	1	8.53	31.12	28.24	79.3	4.99	12.1	0.31	223.0	17.7	0.050	0.081	0.240	0.371	120	0.04	<1.0
F	17/10/2019	Mid-Flood	Fine	Moderate	9:27	18	В	17	2	8.51	31.25	28.28	79.5	4.99	12.5	0.31	222.7	17.6	0.062	0.089	0.269	0.420	92	0.03	1.3
G		Mid-Flood	Fine	Moderate	9:37	13	S	1	1	8.56	31.57	28.61	85.2	5.46	7.7	0.14	162.2	13.3	0.057	0.089	0.240	0.387	18	0.03	1.2
G	17/10/2019	Mid-Flood	Fine	Moderate	9:37	13	S	1	2	8.45	31.61	28.61	85.4	5.47	6.9	0.15	175.1	13.5	0.061	0.089	0.238	0.388	12	0.03	1.3
G	17/10/2019		Fine	Moderate		13	M	6.5		8.40	31.58	28.62	85.1	5.45	8.3	0.16	156.2	14.1	0.046	0.093	0.237	0.375	30	0.03	<1.0
		Mid-Flood	Fine			13	M	6.5		8.38	31.81	28.59	83.3	5.34	8.3	0.18	159.3	13.6	0.052	0.089	0.241	0.382	38	0.03	<1.0
G	17/10/2019		Fine		9:37 9:37	13	B	12 12	_	8.37	31.88 32.28	28.59	82.8	5.30	9.3	0.21	219.0	15.1	0.058	0.081	0.228	0.367	23	0.03	<1.0
G H	17/10/2019 17/10/2019	Mid-Flood	Fine Fine	Moderate Moderate		13 19	B S	12	4	8.36	32.28	28.65 28.58	81.2 85.5	5.18 5.48	10.9 8.7	0.20	210.4 205.5	14.6 9.0	0.057	0.094	0.232	0.383	24 34	0.03	<1.0 1.9
н	17/10/2019		Fine	Moderate	9:44	19	S	1	2	8.47	31.58	28.58	85.5 85.4	5.48	8.7	0.19	205.5	9.0	0.083	0.092	0.263	0.438	34 30	0.03	1.9
н	17/10/2019		Fine	Moderate	9:44	19	M	9.5	1	8.45	31.41	28.57	85.4 85.7	5.49	9.9	0.17	169.0	9.3	0.084	0.090	0.249	0.422	30	0.03	<1.0
н		Mid-Flood	Fine	Moderate	9.44	19	M	9.5	2	8.40	31.85	28.57	83.7	5.36	9.9	0.22	174.8	11.7	0.047	0.079	0.264	0.392	39	0.04	<1.0
Н		Mid-Flood	Fine	Moderate	9:44	19	B	18	1	8.38	31.86	28.57	83.0	5.31	13.6	0.20	174.0	13.4	0.067	0.079	0.202	0.405	17	0.03	<1.0
Н		Mid-Flood	Fine	Moderate	9:44	19	B	18	2	8.37	32.03	28.60	82.6	5.28	13.6	0.39	170.4	12.7	0.007	0.090	0.247	0.403	11	0.03	1.5

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS : FUGRO TECHNICAL SERVICES LIMITED : ALS Technichem (HK) Pty Ltd : 1 of 28 Client Laboratory Page : HK1944686 : MR CYRUS LAI : Richard Fung Work Order Contact Contact : ROOM 723 & 725, 7/F, BLOCK B, PROFIT : 11/F., Chung Shun Knitting : 1 Address Address Amendment **INDUSTRIAL BUILDING, 1-15 KWAI FONG** Centre, 1 - 3 Wing Yip Street, CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong E-mail : c.lai@fugro.com : richard.fung@alsglobal.com E-mail : +852 3565 4374 : +852 2610 1044 Telephone Telephone : +852 2610 2021 Facsimile : -----Facsimile : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR : 17-Oct-2019 Date Samples Received Project SIU HO WAN SEWAGE TREATMENT PLANT : 0041/17 Order : HKE/1654/2017_R1 : 20-Nov-2019 Quote Issue Date number number : 96 C-O-C No. of samples received number No. of samples analysed : 96 Site : -----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Ki Jand Jung.		
0		
Fung Lim Chee, Richard	Managing Director	Inorganics
14-		
0 B		
Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 17-Oct-2019 to 28-Oct-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1944686

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.

Sample(s) arrived in the laboratory at 18:45. Microbiological sample(s), in 125mL plastic bottle labelled sterile, with addition of sodium thiosulfate solution.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

This is an amendment of the Certificate of Analysis.

The sample receipt date has been amended.

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
					-		•	
	Cli	ent samplir	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-001	HK1944686-002	HK1944686-003	HK1944686-004	HK1944686-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.8	8.0	12.6	13.0	14.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.058	0.046	0.053	0.061	0.053
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.089	0.087	0.088	0.088
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.237	0.239	0.227	0.230	0.232
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.385	0.373	0.367	0.378	0.374
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.04	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	1	2	NOT DETECTED	8

Page Number : 4 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-006	HK1944686-007	HK1944686-008	HK1944686-009	HK1944686-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.7	14.1	14.4	14.5	14.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.049	0.047	0.054	0.042	0.048
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.086	0.086	0.085	0.089	0.084
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.234	0.232	0.217	0.233	0.217
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.368	0.365	0.356	0.364	0.350
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	7	10	21	34

Page Number 2 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Cli	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-011	HK1944686-012	HK1944686-013	HK1944686-014	HK1944686-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	14.6	14.8	11.7	12.3	13.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.048	0.054	0.059	0.076	0.052
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.085	0.084	0.090	0.088	0.093
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.222	0.206	0.236	0.230	0.252
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.354	0.344	0.386	0.394	0.398
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.2	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	14	23	9	11	37

Page Number : 6 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-016	HK1944686-017	HK1944686-018	HK1944686-019	HK1944686-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.9	18.2	18.6	10.9	11.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.051	0.055	0.054	0.062	0.078
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.095	0.092	0.085	0.087
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.252	0.248	0.246	0.225	0.239
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.395	0.397	0.392	0.372	0.405
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	32	18	23	9	6

Page Number 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Cli	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-021	HK1944686-022	HK1944686-023	HK1944686-024	HK1944686-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.6	11.5	13.4	13.8	12.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.046	0.041	0.151	0.150	0.104
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.092	0.092	0.091	0.088
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.250	0.248	0.240	0.234	0.228
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.387	0.381	0.484	0.475	0.419
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	4	43	41	7

Page Number 28 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-026	HK1944686-027	HK1944686-028	HK1944686-029	HK1944686-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.2	11.9	12.5	14.5	14.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.086	0.082	0.076	0.059	0.067
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.086	0.077	0.080	0.078	0.076
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.234	0.190	0.202	0.191	0.184
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.406	0.349	0.358	0.329	0.327
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.3	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	11	25	21	26	23

Page Number 2 9 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-031	HK1944686-032	HK1944686-033	HK1944686-034	HK1944686-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	10.9	10.1	11.3	11.1	11.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.060	0.059	0.082	0.070	0.073
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.083	0.086	0.074	0.079	0.078
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.199	0.195	0.185	0.182	0.197
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.342	0.339	0.341	0.330	0.348
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	8	6	26	20	44

Page Number 10 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order

HK1944686, Amendment 1

Sub-Matrix: WATER	Client sample ID			F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Client sampling date / time			17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-036	HK1944686-037	HK1944686-038	HK1944686-039	HK1944686-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.6	10.7	10.0	9.9	10.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.076	0.062	0.072	0.060	0.072
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.078	0.083	0.082	0.078	0.088
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.185	0.203	0.205	0.198	0.202
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.339	0.348	0.360	0.337	0.362
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.02	0.02	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	37	26	33	37	31

Page Number : 11 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-041	HK1944686-042	HK1944686-043	HK1944686-044	HK1944686-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	14.4	13.6	7.3	7.5	8.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.065	0.064	0.078	0.064	0.075
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.082	0.085	0.083	0.084	0.084
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.199	0.200	0.208	0.212	0.209
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.345	0.348	0.370	0.359	0.368
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	40	41	11	13	14

Page Number : 12 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-046	HK1944686-047	HK1944686-048	HK1944686-049	HK1944686-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.8	9.2	9.9	11.4	11.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.070	0.086	0.078	0.041	0.051
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.084	0.085	0.084	0.096	0.096
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.209	0.200	0.198	0.243	0.246
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.363	0.370	0.360	0.380	0.394
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	1.7	1.0	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	11	41	32	7	9

Page Number 13 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-051	HK1944686-052	HK1944686-053	HK1944686-054	HK1944686-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.1	13.2	14.7	14.3	9.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.032	0.042	0.048	0.042	0.046
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.100	0.098	0.096	0.091	0.094
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.239	0.247	0.244	0.228	0.248
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.372	0.388	0.388	0.362	0.388
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.01	0.01	0.01	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.0	1.1	1.1	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	8	4	7	6	16

Page Number : 14 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-056	HK1944686-057	HK1944686-058	HK1944686-059	HK1944686-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.8	12.8	12.0	14.3	14.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.060	0.045	0.065	0.064	0.064
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.097	0.094	0.094	0.084	0.084
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.244	0.248	0.249	0.237	0.225
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.402	0.388	0.407	0.385	0.373
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.1	<1.0	1.1	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	27	29	20	25

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Cli	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-061	HK1944686-062	HK1944686-063	HK1944686-064	HK1944686-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	11.4	11.0	12.3	12.1	14.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.042	0.039	0.040	0.038	0.041
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.102	0.098	0.097	0.096	0.094
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.237	0.234	0.250	0.251	0.242
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.381	0.371	0.387	0.385	0.378
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	28	24	30	32	28

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944686, Amendment 1

Sub-Matrix: WATER		Clie	ent sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-066	HK1944686-067	HK1944686-068	HK1944686-069	HK1944686-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.5	12.5	12.0	12.6	12.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.042	0.042	0.043	0.040	0.041
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.093	0.093	0.096	0.089	0.098
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.241	0.242	0.244	0.251	0.249
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.376	0.378	0.383	0.380	0.389
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	24	33	31	42	49

Page Number : 17 of 28

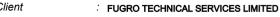
Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944686, Amendment 1

Sub-Matrix: WATER		Clie	ent sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-071	HK1944686-072	HK1944686-073	HK1944686-074	HK1944686-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.4	12.3	15.5	15.8	16.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.040	0.041	0.054	0.054	0.054
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.098	0.093	0.089	0.083	0.084
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.250	0.248	0.205	0.209	0.223
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.389	0.382	0.347	0.346	0.360
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	47	39	19	23	60

Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-076	HK1944686-077	HK1944686-078	HK1944686-079	HK1944686-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	16.2	18.3	18.1	13.5	14.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.055	0.055	0.051	0.054
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.074	0.089	0.090	0.088	0.093
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.212	0.222	0.219	0.226	0.218
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.339	0.366	0.364	0.366	0.365
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.01	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	54	64	59	31	33


Page Number : 19 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Clie	ent samplir	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-081	HK1944686-082	HK1944686-083	HK1944686-084	HK1944686-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	16.9	17.1	17.7	17.6	13.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.048	0.056	0.050	0.062	0.057
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.073	0.087	0.081	0.089	0.089
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.220	0.220	0.240	0.269	0.240
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.342	0.364	0.371	0.420	0.387
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.04	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.02	0.01	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	<1.0	<1.0	1.3	1.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	18	12	120	92	18

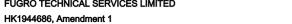
Page Number : 20 of 28 Client : FUGRO TECHNICAL

Work Order HK1944686, Amendment 1

Sub-Matrix: WATER		Clie	ent sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
	Cli	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-086	HK1944686-087	HK1944686-088	HK1944686-089	HK1944686-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.5	14.1	13.6	15.1	14.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.061	0.046	0.052	0.058	0.057
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.089	0.093	0.089	0.081	0.094
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.238	0.237	0.241	0.228	0.232
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.388	0.375	0.382	0.367	0.383
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.02	0.02	0.01	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	12	30	38	23	24

Page Number 21 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED


Work Order HK1944686, Amendment 1

Sub-Matrix: WATER		Clie	ent sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944686-091	HK1944686-092	HK1944686-093	HK1944686-094	HK1944686-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	9.3	11.7	11.1	13.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.083	0.084	0.047	0.055	0.067
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.090	0.081	0.079	0.091
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.263	0.249	0.264	0.262	0.247
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.438	0.422	0.392	0.395	0.405
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.04	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.02	0.02	0.01	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.9	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	34	30	36	39	17

Page Number 22 of 28

Client FUGRO TECHNICAL SERVICES LIMITED Work Order

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup	 	
	Cli	ent samplii	ng date / time	17-Oct-2019	 	
Compound	CAS Number	LOR	Unit	HK1944686-096	 	
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)		0.5	mg/L	12.7	 	
ED/EK: Inorganic Nonmetallic Parameters						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.071	 	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	 	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.267	 	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.428	 	
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	 	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	 	
EP: Aggregate Organics						
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.5	 	
EM: Microbiological Testing						
EM002: E. coli		1	CFU/100mL	11	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER	l l			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2651004)									
HK1944686-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	8.8	8.6	2.60			
HK1944686-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	14.6	14.8	1.53			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2651005)									
HK1944686-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	11.6	11.3	2.40			
HK1944686-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	10.9	10.6	2.09			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2651006)									
HK1944686-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	14.4	14.1	2.27			
HK1944686-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	13.1	13.4	2.08			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2651007)									
HK1944686-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	11.4	11.9	4.28			
HK1944686-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	12.4	12.0	3.49			
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2651008)									
HK1944686-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	16.9	16.5	2.24			
HK1944686-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	9.0	9.5	4.59			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650634)									
HK1944686-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.078	0.081	3.47			
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2650635)									
HK1944686-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.072	0.069	5.09			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650636)									
HK1944686-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.064	0.071	10.2			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650637)									
HK1944686-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.051	6.65			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650638)									
HK1944686-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.071	0.076	5.87			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650647)									
HK1944686-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.087	0.086	1.50			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650649)									
HK1944686-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.088	0.087	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2650651)									
HK1944686-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.084	0.084	0.00			

Page Number : 24 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944686, Amendment 1

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)	
sample ID							Result		
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650653)							
HK1944686-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.093	0.089	4.62	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650655)							
HK1944686-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.093	3.62	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650662)							
HK1944686-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650663)							
HK1944686-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650664)							
HK1944686-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650665)							
HK1944686-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650666)							
HK1944686-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650667)							
HK1944686-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650668)							
HK1944686-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20	650669)							
HK1944686-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	
ED/EK: Inorganic Nonm	netallic Parameters (QC Lot: 20								
HK1944686-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.00	
	netallic Parameters (QC Lot: 20	•			5				
HK1944686-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report								
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control		
											Limit		
EA/ED: Physical and Aggregate Properties (C	C Lot: 2651004)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	113		85.0	115				
EA/ED: Physical and Aggregate Properties (C	C Lot: 2651005)												
EAVED. Fillysical and Aggregate Properties (C	(C LUL 2001000)												

Page Number 25 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944686, Amendment 1

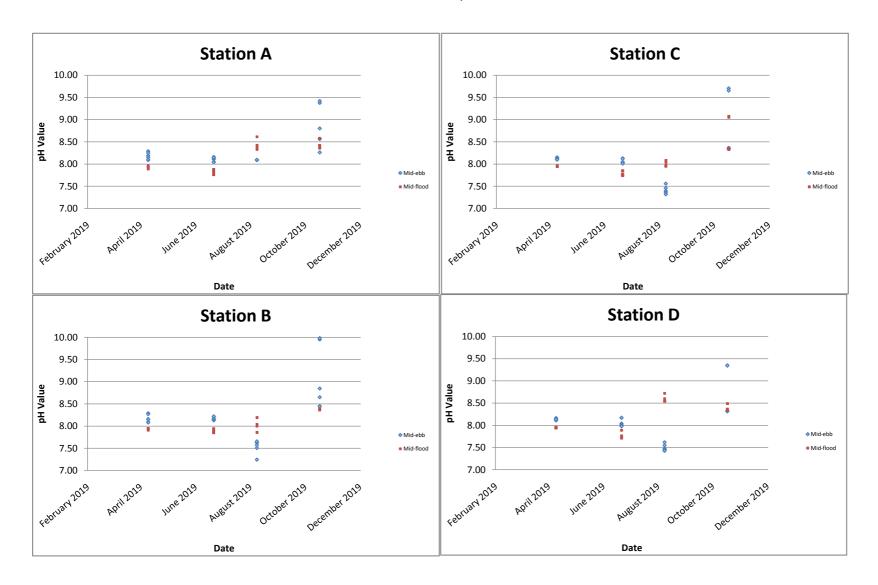
Matrix: WATER			Method Blank (Mi	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
			1		Spike	Spike Re	асоvегу (%)	Recove	ory Limits(%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2651005) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.0	115		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2651006)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	92.0		85.0	115		
EA/ED: Physical and Aggregate Properties(Q	C Lot: 2651007)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	107		85.0	115		
EA/ED: Physical and Aggregate Properties(Q	C Lot: 2651008)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	97.0		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650634)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	104		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650635)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	105		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650636)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	108		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650637)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	106		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650638)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	108		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650647)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	105		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650649)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	104		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650651)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	103		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650653)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	102		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650655)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	104		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2650662)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.2		85.0	115		

Page Number 26 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

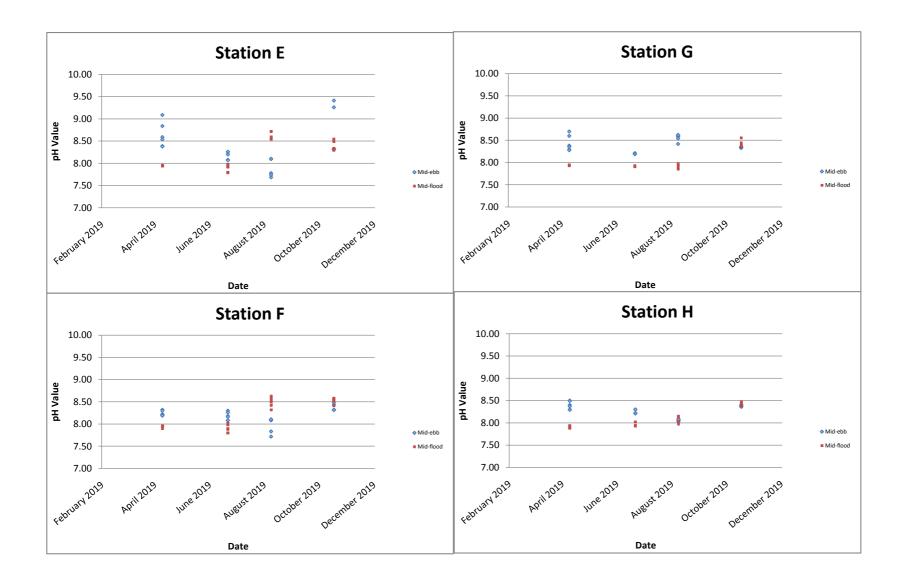
Work Order HK1944686, Amendment 1

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Contro	ol Spike (LCS) and Labo	oratory Control S	pike Duplicate (I	DCS) Report	
				I	Spike	Spike Rei	covery (%)	Recove	ary Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650663)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.8		94.2	101		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650664)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.3		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650665)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.3		94.2	101		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650666)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.0		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650667)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.0		94.2	101		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650668)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	99.0		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650669)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.7		94.2	101		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650670)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	98.2		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2650671)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	100		94.2	101		
EP: Aggregate Organics (QC Lot: 2651747)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		81.0	115		
EP: Aggregate Organics (QC Lot: 2651748)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	102		81.0	115		
EP: Aggregate Organics (QC Lot: 2651749)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	108		81.0	115		
EP: Aggregate Organics (QC Lot: 2651750)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	105		81.0	115		
EP: Aggregate Organics (QC Lot: 2651751)	'										
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	109		81.0	115		

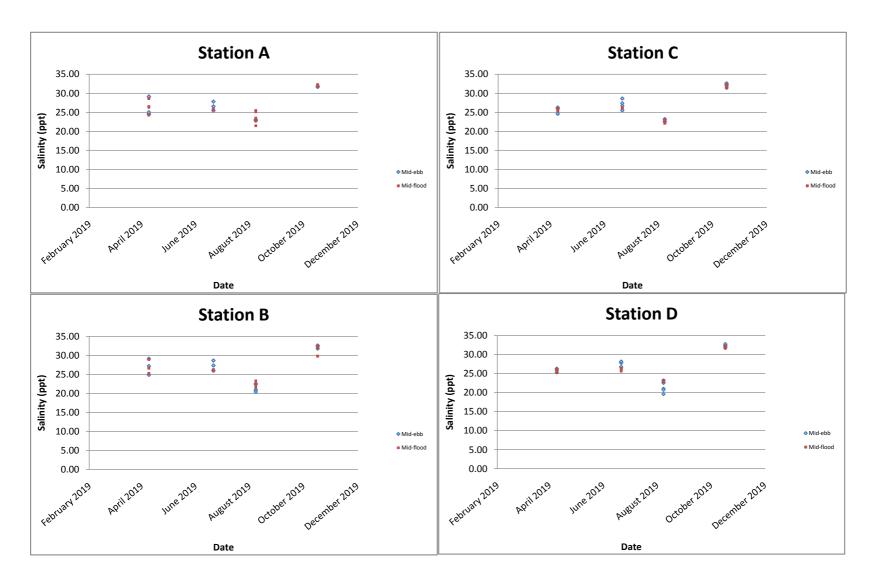
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

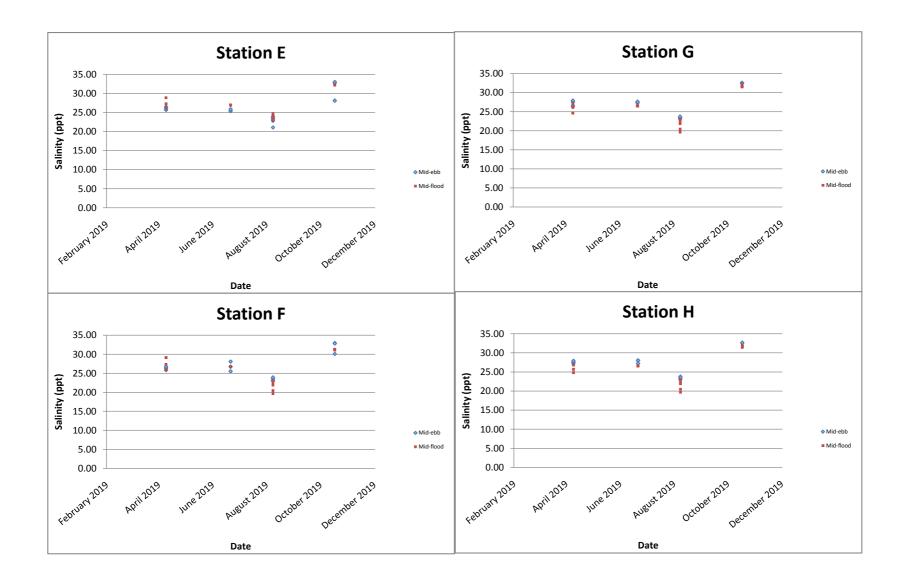

Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike Concentration	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit	
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650634)									
HK1944686-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	106		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650635)									
HK1944686-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.25 mg/L	91.6		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650636)									
HK1944686-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	100		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650637)									
HK1944686-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	93.5		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650638)									
HK1944686-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	94.1		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650647)									
HK1944686-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	109		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650649)	·								
HK1944686-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	100		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650651)	· · · · · · · · · · · · · · · · · · ·			·					
HK1944686-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	114		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650653)				·					
HK1944686-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	105		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650655)	I			1				1	
HK1944686-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	89.9		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lo	ot: 2650662)	·								
HK1944686-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	90.0		75.0	125		25	

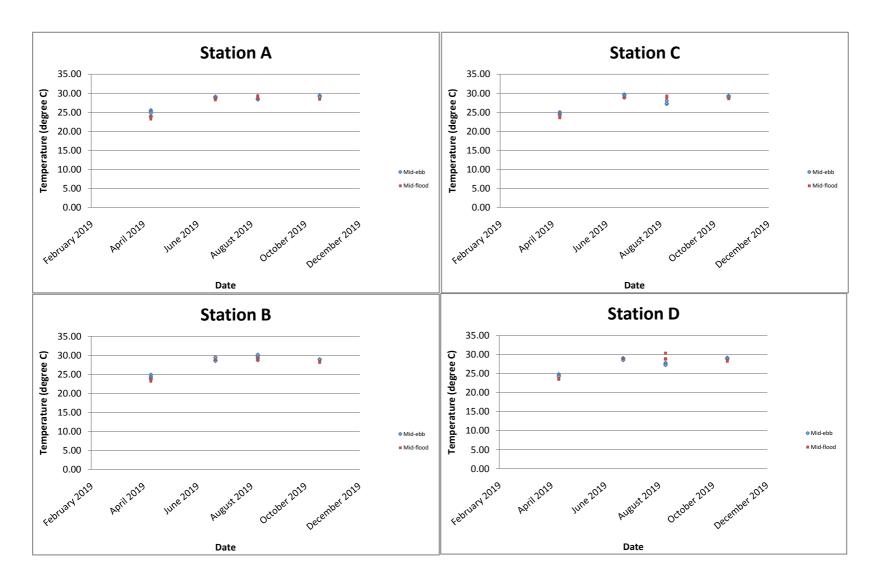
Page Number : 28 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944686, Amendment 1

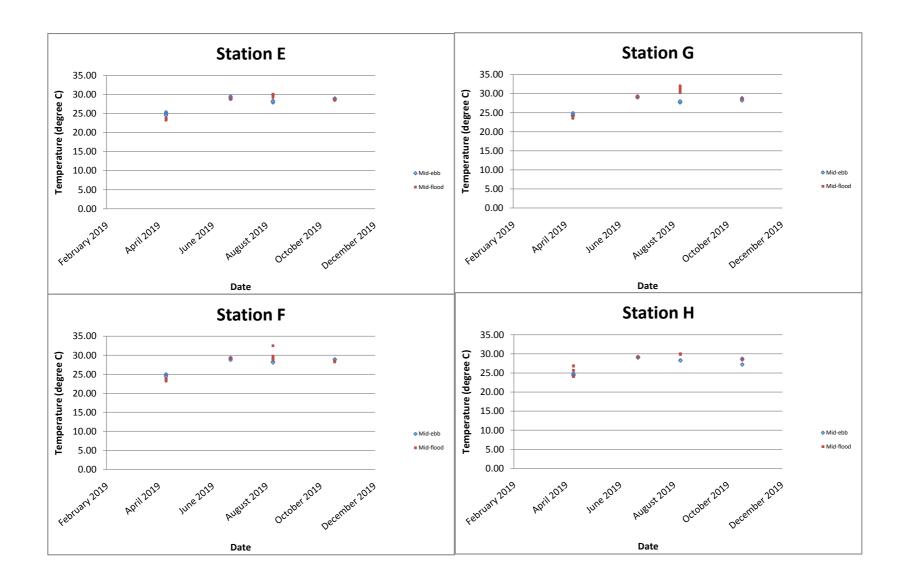


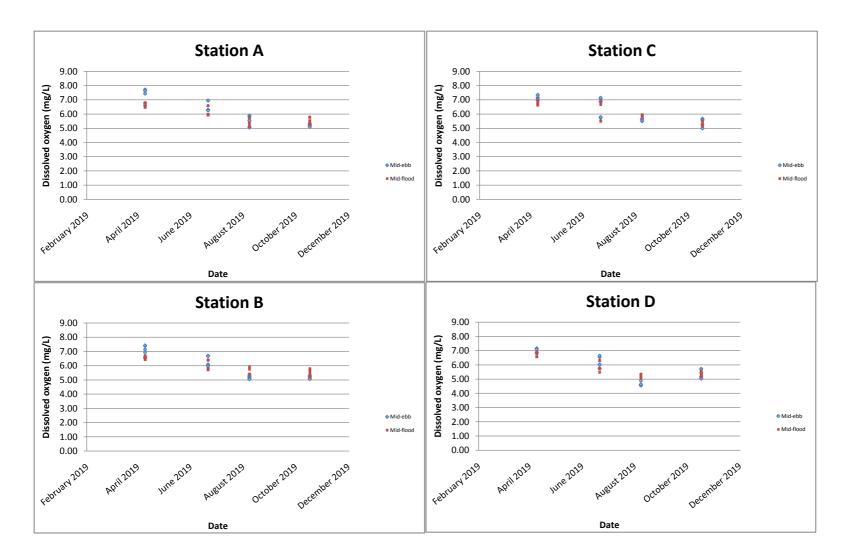
Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Laboratory sample ID	Client sample ID	Method: Compound CAS N	Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	663) - Continued								
HK1944686-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.6		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	664)								
HK1944686-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	91.5		75.0	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	665)								
HK1944686-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.1		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	666)								
HK1944686-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	90.7		75.0	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	667)								
HK1944686-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.7		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	668)								
HK1944686-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	91.8		75.0	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	669)								
HK1944686-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	92.5		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	670)								
	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	90.5		75.0	125		25
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2650	671)								
- HK1944686-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	92.0		75.0	125		

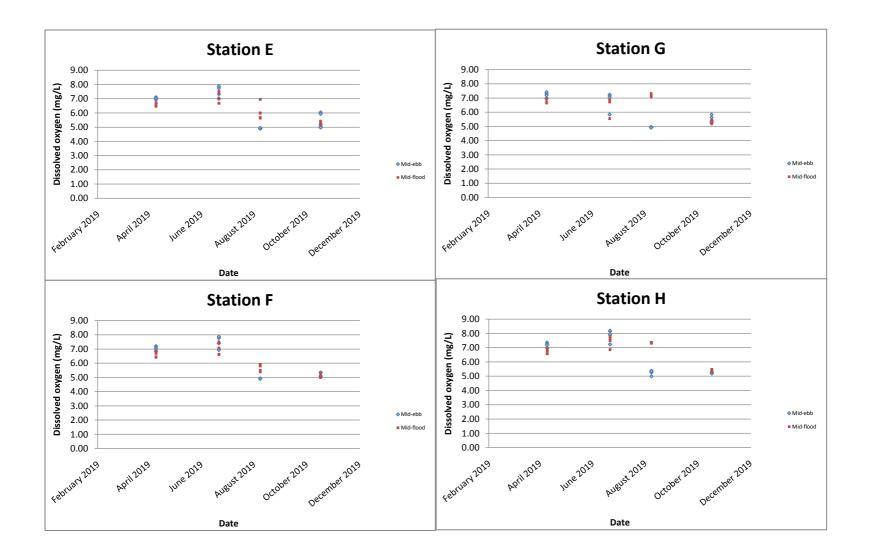

pH value

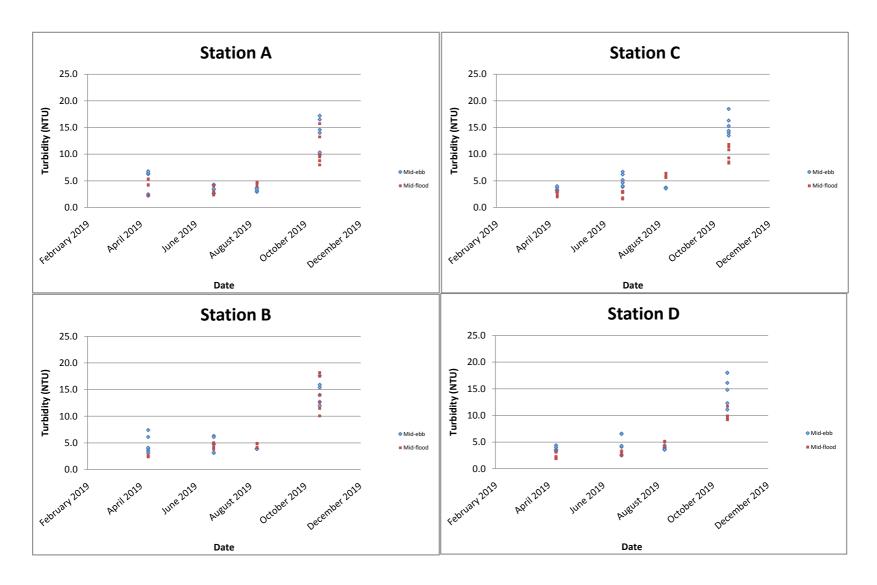

pH value

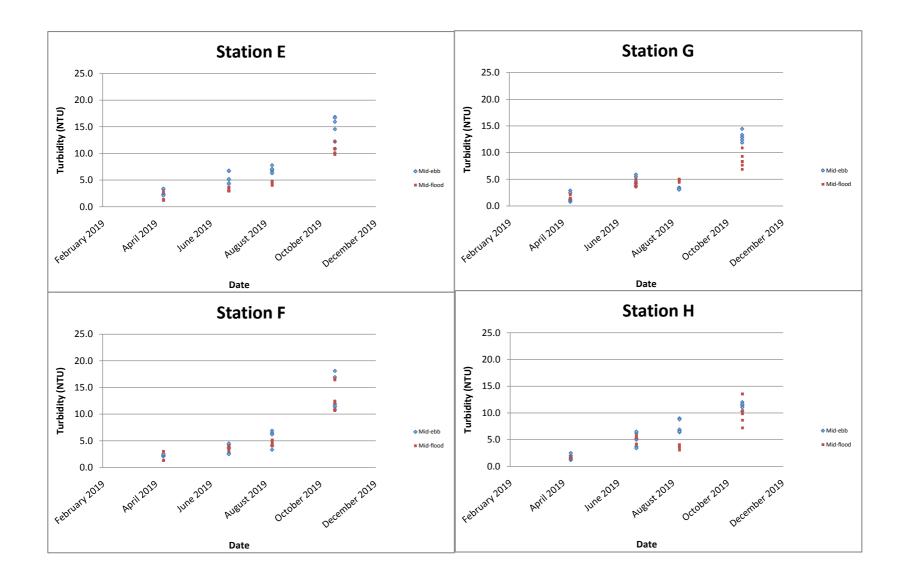

Salinity (ppt)

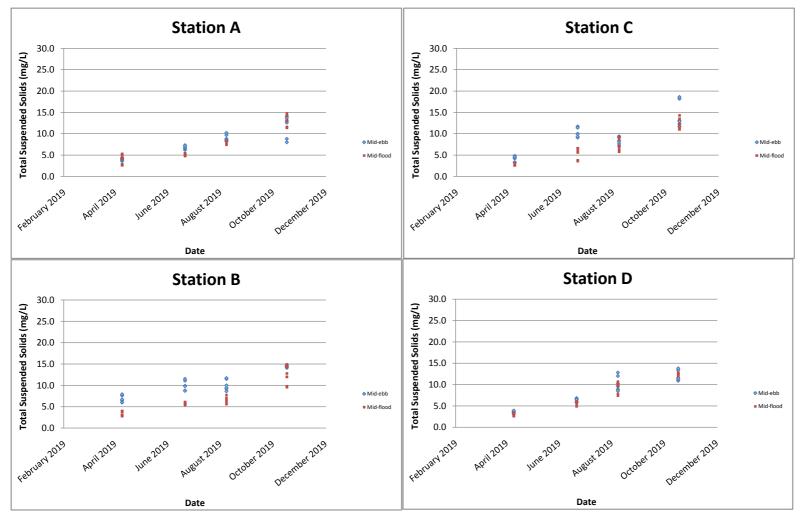

Salinity (ppt)


Temperature (degree C)

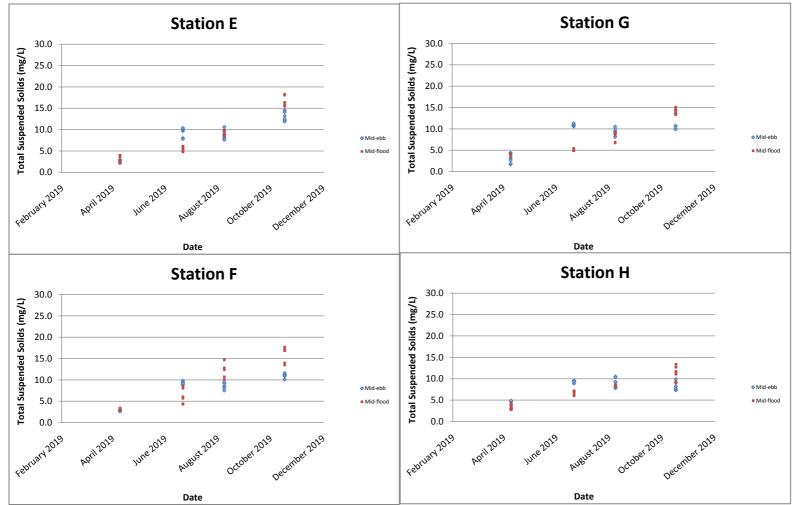

Temperature (degree C)


Dissolved oxygen (mg/L)

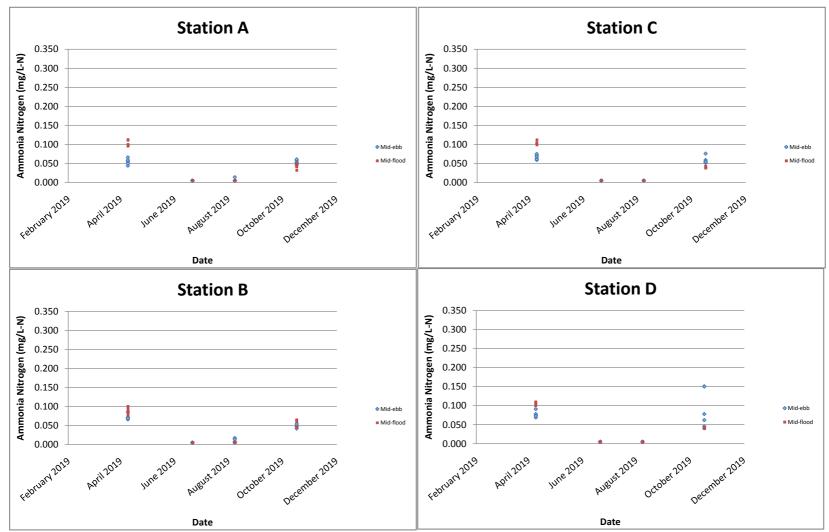

Dissolved oxygen (mg/L)

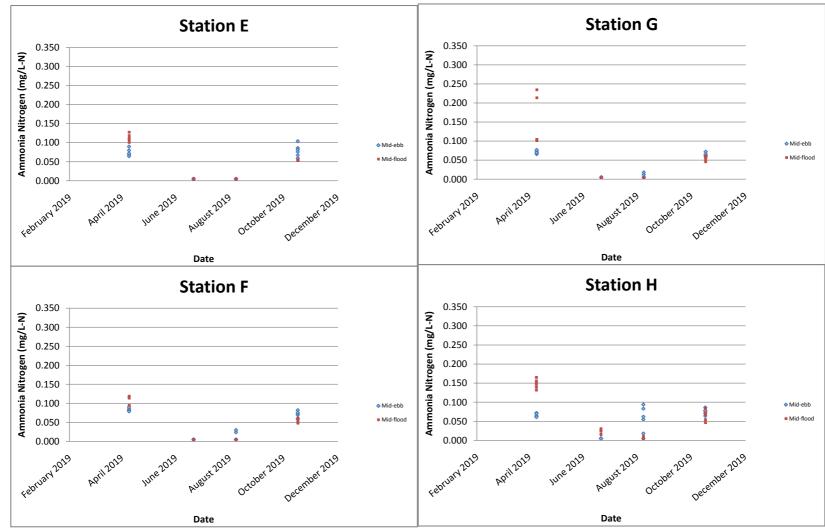


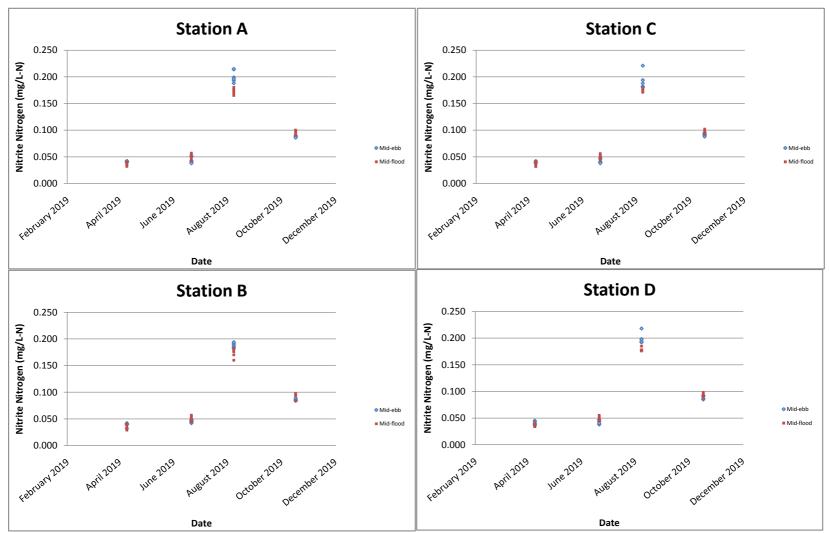
Turbidity (NTU)



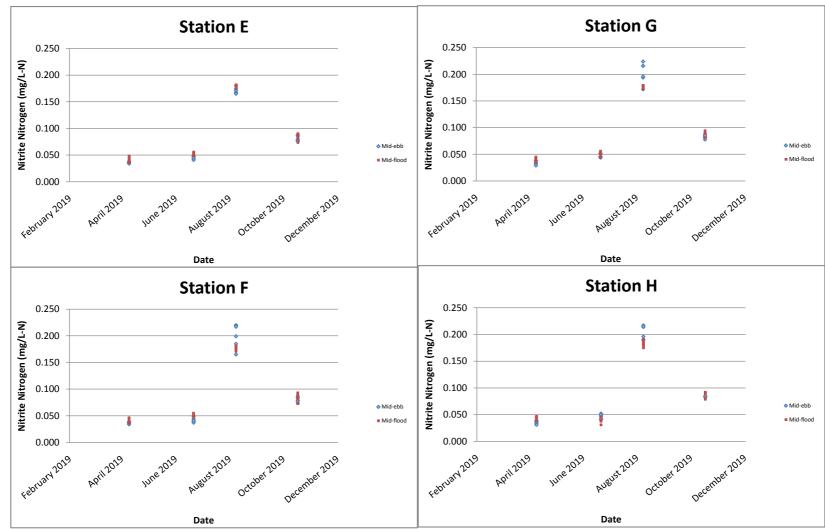
Turbidity (NTU)



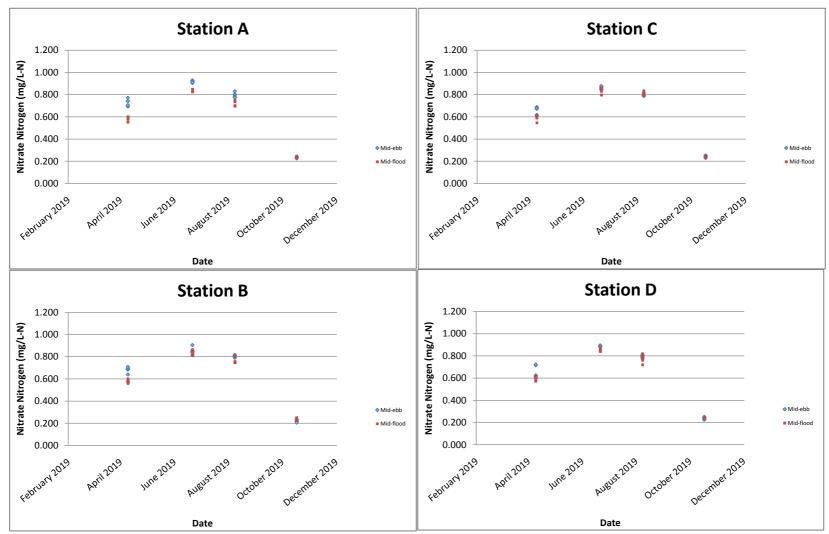

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

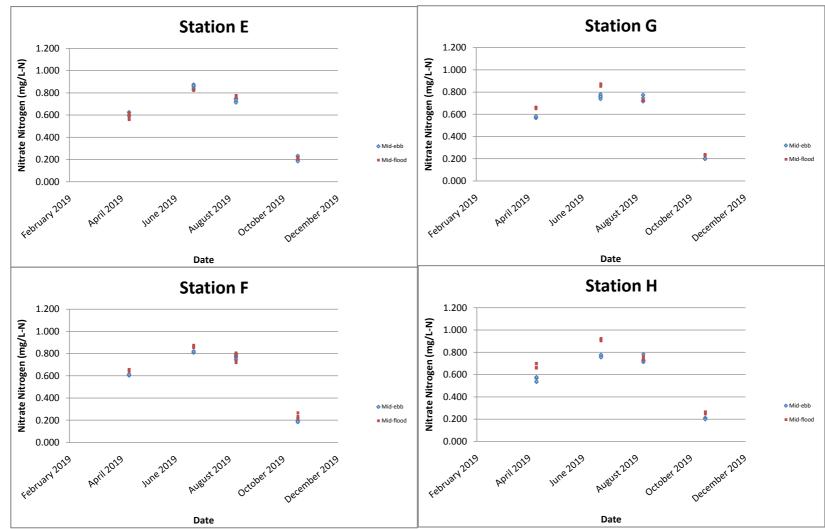


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

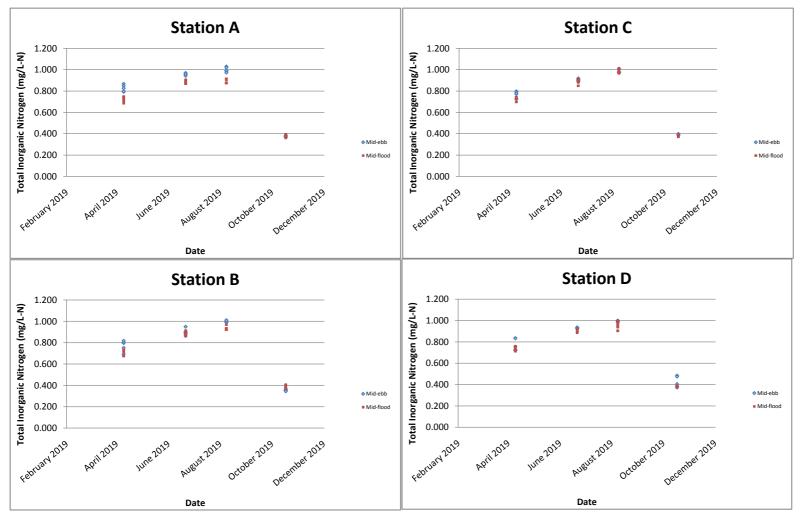


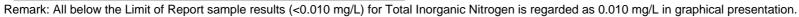
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

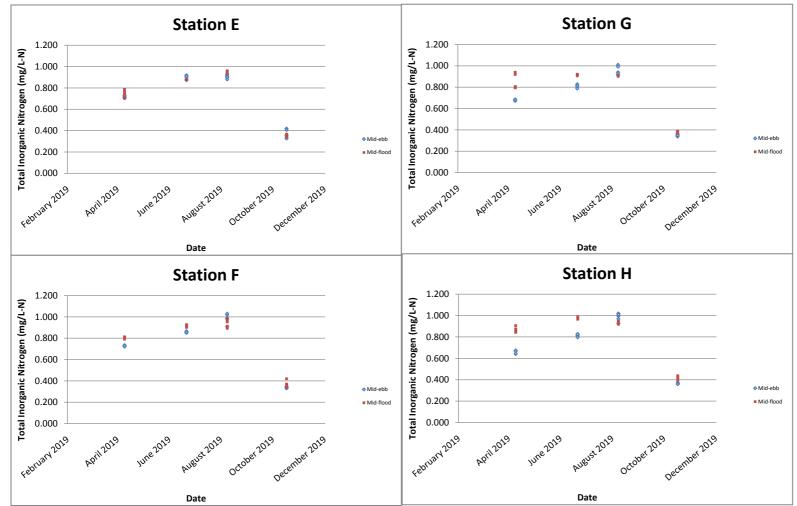
Nitrite Nitrogen (mg/L-N)



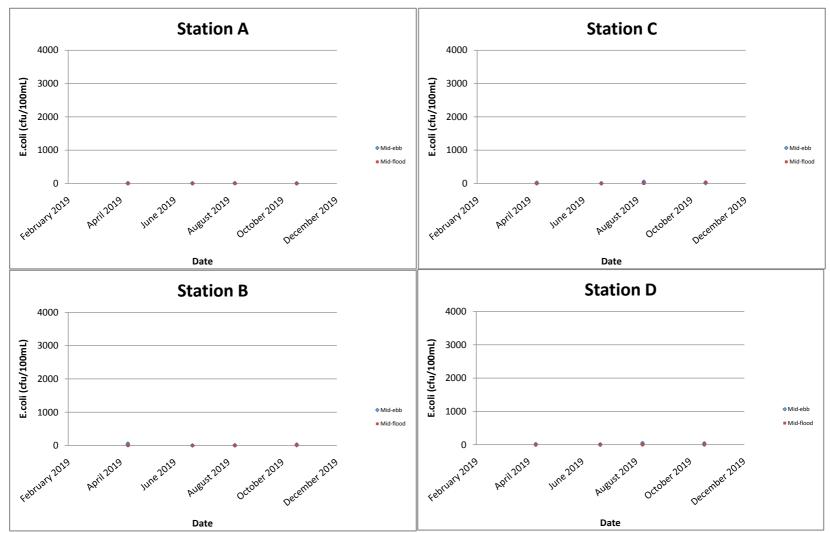
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

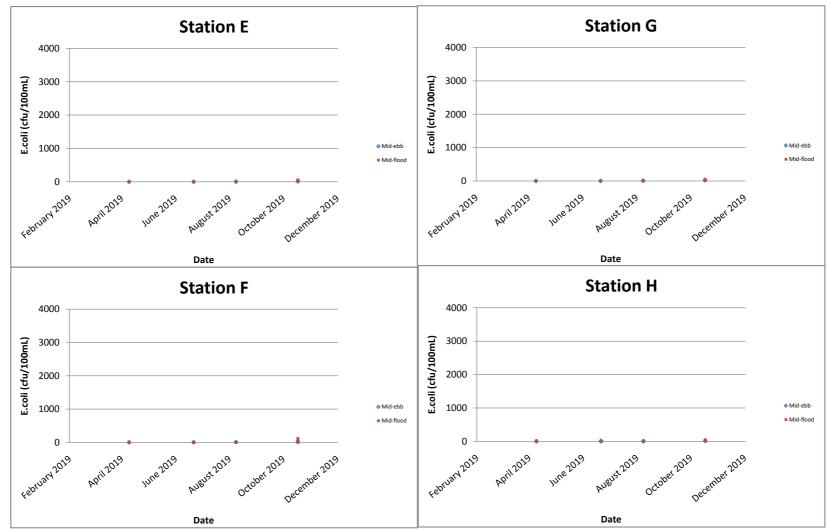



Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

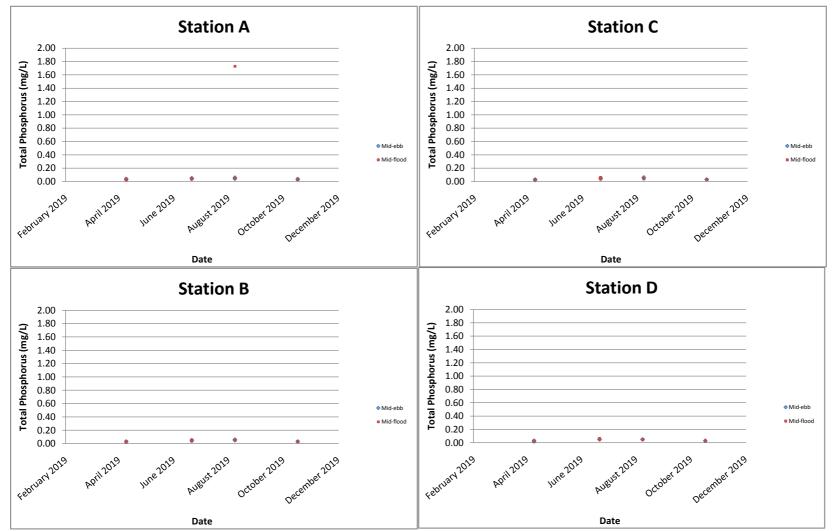

Nitrate Nitrogen (mg/L-N)

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

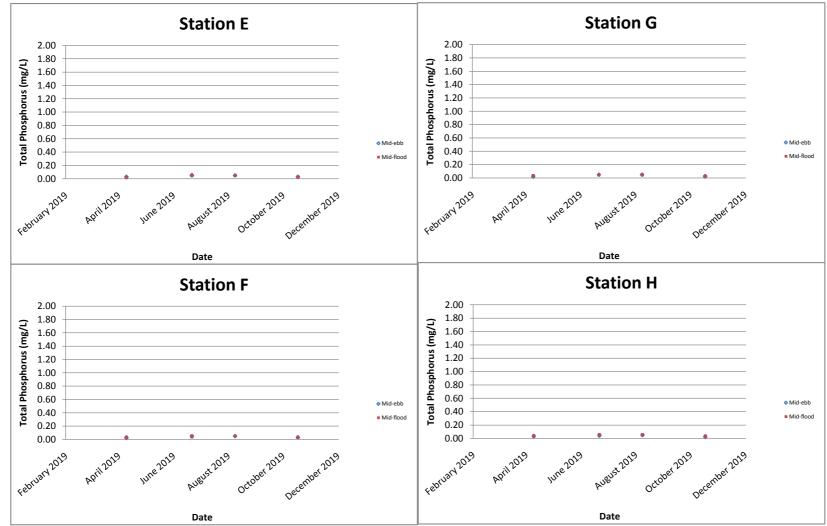



Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.

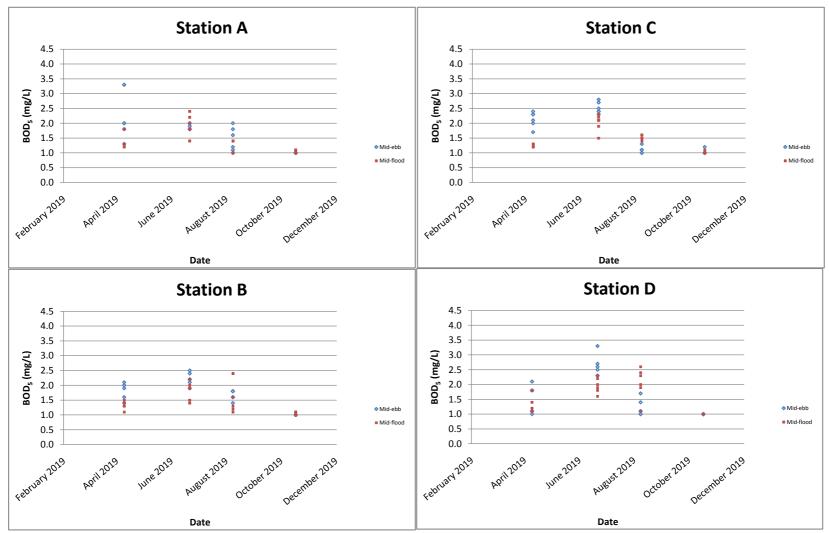
E.coli (cfu/100mL)



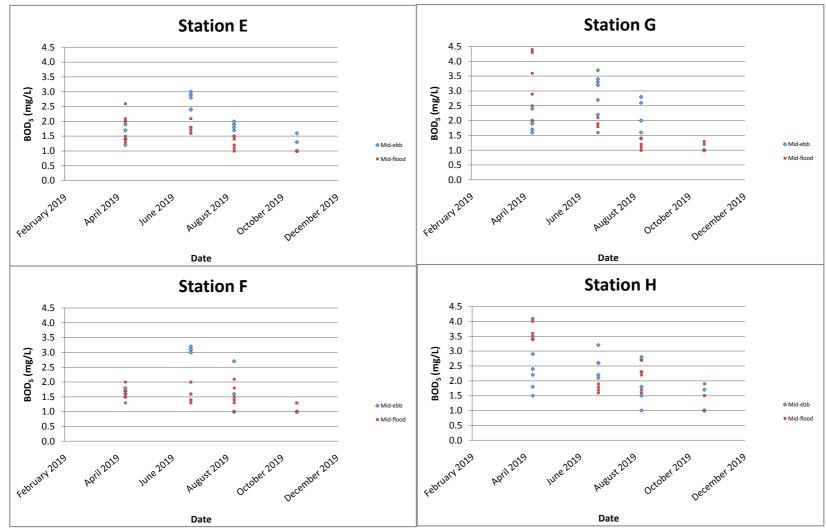
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

FUGRO TECHNICAL SERVICES LIMITED

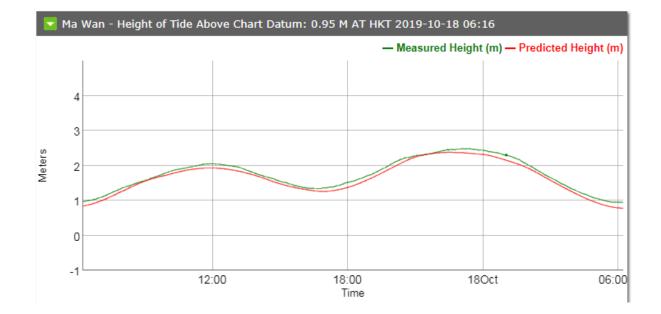
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix F

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix G

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

						Sediment Monitoring											
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	17/10/2019	Sunny	Moderate	15:23	8.5	3	936	479	<0.10	40.3	31.5	44.8	0.15	23.4	101	17.4	0.24
В	17/10/2019	Sunny	Moderate	15:41	8.6	3	846	417	<0.10	35.1	32.8	37.0	0.10	20.4	92.1	14.4	0.36
С	17/10/2019	Sunny	Moderate	16:03	8.3	10	1140	585	<0.10	49.4	41.8	52.9	0.12	28.9	130	16.6	0.40
D	17/10/2019	Sunny	Moderate	16:11	8.5	5	947	477	0.11	40.7	35.4	43.6	0.11	24.6	109	11.3	0.30
E	17/10/2019	Sunny	Moderate	16:32	8.4	12	1300	562	<0.10	46.6	42.0	49.5	0.12	28.0	126	12.2	0.36
F	17/10/2019	Sunny	Moderate	16:44	8.3	26	1440	589	<0.10	45.8	40.5	48.0	0.15	27.8	121	12.4	0.32
G	17/10/2019	Sunny	Moderate	17:04	8.4	6	1030	502	0.11	46.4	103	67.7	0.11	25.8	216	15.6	0.37
н	17/10/2019	Sunny	Moderate	17:27	8.4	2	941	463	0.13	44.6	43.7	45.7	0.11	26.2	108	14.1	0.39

							Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
A	17/10/2019	Sunny	Moderate	15:23	0.95	3	27	37	33
В	17/10/2019	Sunny	Moderate	15:41	0.65	6	25	41	28
С	17/10/2019	Sunny	Moderate	16:03	0.90	0	3	58	39
D	17/10/2019	Sunny	Moderate	16:11	0.86	0	15	53	32
E	17/10/2019	Sunny	Moderate	16:32	1.11	0	6	56	38
F	17/10/2019	Sunny	Moderate	16:44	1.18	0	4	55	41
G	17/10/2019	Sunny	Moderate	17:04	0.87	10	17	44	29
Н	17/10/2019	Sunny	Moderate	17:27	0.85	3	10	54	33

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS : FUGRO TECHNICAL SERVICES LIMITED : ALS Technichem (HK) Pty Ltd : 1 of 13 Client Laboratory Page : HK1944691 : MR CYRUS LAI : Richard Fung Work Order Contact Contact : ROOM 723 & 725, 7/F, BLOCK B, PROFIT : 11/F., Chung Shun Knitting Address Address **INDUSTRIAL BUILDING, 1-15 KWAI FONG** Centre, 1 - 3 Wing Yip Street, CRESCENT, KWAI FONG, HONG KONG Kwai Chung, N.T., Hong Kong E-mail : c.lai@fugro.com : richard.fung@alsglobal.com E-mail : +852 3565 4374 : +852 2610 1044 Telephone Telephone : +852 2610 2021 Facsimile : -----Facsimile : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR : 17-Oct-2019 Date Samples Received Project SIU HO WAN SEWAGE TREATMENT PLANT : 0041/17 Order : HKE/1654/2017_R1 : 31-Oct-2019 Quote Issue Date number number : 24 C-O-C No. of samples received number No. of samples analysed : 24 Site : -----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position	Authorised results for	
Managing Director	Inorganics	
Managing Director	Metals_ENV	
	Managing Director	Managing Director Inorganics

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 17-Oct-2019 to 30-Oct-2019. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1944691

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

EA002SOIL - pH value is reported as at 25°C.

EK055S - Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCl solution extract.

EK059A - Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

EA002SOIL - Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.

EA002SOIL - Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Analytical Results

Sub-Matrix: SEDIMENT		Clie	ent sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944691-001	HK1944691-002	HK1944691-003	HK1944691-004	HK1944691-005
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.5	8.6	8.3	8.5	8.4
EA055: Moisture Content (dried @ 103°C)		0.1	%	55.1	50.6	62.0	54.5	57.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	3	3	10	5	12
EK062A: Total Nitrogen as N		10	mg/kg	936	846	1140	947	1300
EK067A: Total Phosphorus as P		10	mg/kg	479	417	585	477	562
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	17.4	14.4	16.6	11.3	12.2
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	<0.10	0.11	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	40.3	35.1	49.4	40.7	46.6
EG020: Copper	7440-50-8	0.20	mg/kg	31.5	32.8	41.8	35.4	42.0
EG020: Lead	7439-92-1	0.20	mg/kg	44.8	37.0	52.9	43.6	49.5
EG020: Mercury	7439-97-6	0.05	mg/kg	0.15	0.10	0.12	0.11	0.12
EG020: Nickel	7440-02-0	0.20	mg/kg	23.4	20.4	28.9	24.6	28.0
EG020: Silver	7440-22-4	0.10	mg/kg	0.24	0.36	0.40	0.30	0.36
EG020: Zinc	7440-66-6	0.5	mg/kg	101	92.1	130	109	126

Page Number : 4 of 13 Client : FUGRO TECHNIC

ent : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944691

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944691-006	HK1944691-007	HK1944691-008	HK1944691-009	HK1944691-010
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.3	8.4	8.4		
EA055: Moisture Content (dried @ 103°C)		0.1	%	63.2	56.8	55.5	51.8	49.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	26	6	2		
EK062A: Total Nitrogen as N		10	mg/kg	1440	1030	941		
EK067A: Total Phosphorus as P		10	mg/kg	589	502	463		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	12.4	15.6	14.1		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.11	0.13		
EG020: Chromium	7440-47-3	0.5	mg/kg	45.8	46.4	44.6		
EG020: Copper	7440-50-8	0.20	mg/kg	40.5	103	43.7		
EG020: Lead	7439-92-1	0.20	mg/kg	48.0	67.7	45.7		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.15	0.11	0.11		
EG020: Nickel	7440-02-0	0.20	mg/kg	27.8	25.8	26.2		
EG020: Silver	7440-22-4	0.10	mg/kg	0.32	0.37	0.39		
EG020: Zinc	7440-66-6	0.5	mg/kg	121	216	108		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.95	0.65

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944691

								-
Sub-Matrix: SEDIMENT		Clie	ent sample ID	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Clie	ent samplir	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944691-011	HK1944691-012	HK1944691-013	HK1944691-014	HK1944691-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	60.8	51.1	57.7	62.8	49.2
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.90	0.86	1.11	1.18	0.87

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944691

Sub-Matrix: SEDIMENT		Clie	ent sample ID	H/Benthic Survey	 	
	Client sampling date / time				 	
Compound	CAS Number	LOR	Unit	HK1944691-016	 	
EA/ED: Physical and Aggregate Properties					•	
EA055: Moisture Content (dried @ 103°C)		0.1	%	57.5	 	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.85	 	

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944691

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplir	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019	17-Oct-2019
Compound	CAS Number	LOR	Unit	HK1944691-017	HK1944691-018	HK1944691-019	HK1944691-020	HK1944691-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	1	<1	<1	6	2
EG020: Copper	7440-50-8	1	µg/L	2	1	1	6	2
EG020: Lead	7439-92-1	1	µg/L	<1	2	<1	5	1
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	µg/L	1	1	1	4	2
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	20	<10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK1944691

1111011001							
Sub-Matrix: WATER		Clie	ent sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Cli	ent samplii	ng date / time	17-Oct-2019	17-Oct-2019	17-Oct-2019	
Compound	CAS Number	LOR	Unit	HK1944691-022	HK1944691-023	HK1944691-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	3	2	2	
EG020: Copper	7440-50-8	1	µg/L	3	2	3	
EG020: Lead	7439-92-1	1	µg/L	3	<1	2	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	3	2	2	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	<10	<10	<10	

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	2653701)						
HK1944691-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	55.1	54.0	2.06
HK1944691-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	60.8	61.1	0.586
EA/ED: Physical and A	ggregate Properties (QC Lot:	2653731)						
HK1944691-004	D/Sediment	EA002SOIL: pH Value		0.1	pH Unit	8.5	8.4	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot: 2	2653725)						
HK1944691-002	B/Sediment	EK055S: Ammonia as N	7664-41-7	1	mg/kg	3	3	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot: 2	2667650)						
HK1944691-008	H/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	463	467	0.966
EG: Metals and Major C	Cations (QC Lot: 2653188)							
HK1944691-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.10	0.10	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	32.8	34.0	3.69
		EG020: Lead	7439-92-1	0.05	mg/kg	37.0	36.4	1.67
		EG020: Nickel	7440-02-0	0.05	mg/kg	20.4	20.9	2.09
		EG020: Silver	7440-22-4	0.05	mg/kg	0.36	0.37	3.44
		EG020: Arsenic	7440-38-2	0.5	mg/kg	14.4	13.1	9.68
		EG020: Chromium	7440-47-3	0.5	mg/kg	35.1	35.4	0.822
		EG020: Zinc	7440-66-6	0.5	mg/kg	92.1	94.7	2.80
EP: Aggregate Organic	s (QC Lot: 2654293)							
HK1944608-001	Anonymous	EP005: Total Organic Carbon		0.05	%	0.05	<0.05	0.00
HK1944691-013	E/Benthic Survey	EP005: Total Organic Carbon		0.05	%	1.11	1.17	5.02
Matrix: WATER			i		l ahi	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
	Cations - Total (QC Lot: 2653)	232)						
HK1944691-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	0.00
		EG020: Chromium	7440-47-3	1	µg/L	<1	1	0.00
		EG020: Copper	7440-50-8	1	µg/L	1	1	0.00
		EG020: Lead	7439-92-1	1	µg/L	2	<1	0.00

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
EG: Metals and Major C	Cations - Total (QC Lot: 2653232)	- Continued				1					
HK1944691-018	B/Rinsate Blank	EG020: Nickel	7440-02-0	1	μg/L	1	1	0.00			
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00			
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.00			
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control S	pike Duplicate (D	CS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 2653725)										
EK055S: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	105		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Qe	C Lot: 2667650)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	90.8		83.6	95.2		
EG: Metals and Major Cations (QC Lot: 2653	188)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	102		85.0	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	5 mg/kg	98.4		85.0	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	102		85.0	115		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	103		85.0	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	98.8		87.0	115		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	102		85.0	115		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	101		85.0	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	100		85.0	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	106		85.0	115		
EP: Aggregate Organics (QC Lot: 2654293)											
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	101		90.4	106		
Matrix: WATER			Method Blank (MB)	Report		Laboratory Contr	ol Spike (LCS) and Lab	oratory Control S	oike Duplicate (D	ICS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit

Page Number : 11 of 13 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944691

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Conti	ol Spike (LCS) and Labor	ratory Control S	pike Duplicate ((DCS) Report	
					Spike	Spike Re	covery (%)	Recove	ny Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Tota	al (QC Lot: 2653232) - Continue	ed									
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	96.5		85.0	110		
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	96.3		85.0	109		
EG020: Chromium	7440-47-3	1	µg/L	<1	100 µg/L	101		86.0	111		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	102		90.0	111		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	99.0		89.0	111		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	94.2		85.0	115		
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	100		87.0	110		
EG020: Silver	7440-22-4	1	µg/L	<1	100 µg/L	93.0		85.0	114		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	97.1		86.0	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spik	te (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Rei	covery (%)	Recovery	<i>Limits</i> (%)	RPL) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	ic Nonmetallic Parameters (QC	C Lot: 2653725)								
HK1944691-002	B/Sediment	EK055S: Ammonia as N	7664-41-7	10 mg/kg	99.9		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC	C Lot: 2667650)								
HK1944691-008	H/Sediment	EK067A: Total Phosphorus as P		100 mg/kg	87.0		75.0	125		
EG: Metals and	Major Cations (QC Lot: 26531	88)								
-IK1944691-001	A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	98.2		75.0	125		
		EG020: Cadmium	7440-43-9	5 mg/kg	98.3		75.0	125		
		EG020: Chromium	7440-47-3	5 mg/kg	92.4		75.0	125		
		EG020: Copper	7440-50-8	5 mg/kg	84.2		75.0	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined		75.0	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	94.3		75.0	125		
		EG020: Nickel	7440-02-0	5 mg/kg	92.1		75.0	125		
		EG020: Silver	7440-22-4	5 mg/kg	98.6		75.0	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75.0	125		
EP: Aggregate (Organics (QC Lot: 2654293)		· · · · · ·							
HK1944608-001		EP005: Total Organic Carbon		40 %	102		75.0	125		
Matrix: WATER			[Matrix Spik	e (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike		covery (%)	-	Limits (%)	-) (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	Major Cations - Total (QC Lot:	2653232)								
HK1944691-017	A/Rinsate Blank	EG020: Arsenic	7440-38-2	100 µg/L	98.0		75.0	125		
		EG020: Cadmium	7440-43-9	100 µg/L	93.7		75.0	125		
		EG020: Chromium	7440-47-3	100 µg/L	104		75.0	125		
		EG020: Copper	7440-50-8	100 µg/L	87.8		75.0	125		
		EG020: Lead	7439-92-1	100 µg/L	83.0		75.0	125		
		EG020: Mercury	7439-97-6	2 µg/L	81.1		75.0	125		

Page Number : 13 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK1944691

Matrix: WATER					Matrix Sp.	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Ri	ecovery (%)	Recovery	Limits (%)	RPC	7(%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and	Major Cations - Total (QC Lot:	2653232) - Continued								
HK1944691-017	A/Rinsate Blank	EG020: Nickel	7440-02-0	100 µg/L	89.5		75.0	125		
		EG020: Silver	7440-22-4	100 µg/L	92.3		75.0	125		
		EG020: Zinc	7440-66-6	100 µg/L	78.6		75.0	125		

ALS Technichem (HK)Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR CYRUS LAI	WORK ORDER HK1944691
CLIENT	: FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	: ROOM 723 & 725, 7/F, BLOCK B, PROFIT	SUB-BATCH : 1
	INDUSTRIAL BUILDING, 1-15 KWAI FONG	DATE RECEIVED : 17-OCT-2019
	CRESCENT, KWAI FONG, HONG KONG	DATE OF ISSUE : 30-OCT-2019
PROJECT	CONTRACT NO. CM 14/2016	NO. OF SAMPLES : 24
	ENVIRONMENTAL TEAM FOR OPERATIONAL	CLIENT ORDER 0041/17
	ENVIRONMENTAL MONITORING AND AUDIT	
	FOR SIU HO WAN SEWAGE TREATMENT	
	PLANT	

General Comments

- Sample(s) were received in chilled condition.
- Water sample(s) analysed and reported on as received basis.
- Sediment sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.
- Sample information (Project name, Sample ID, Sampling date/ time) is provided by client.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- EA002SOIL pH value is reported as at 25°C.
- EK055S Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCl solution extract.
- EK059A Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- EA002SOIL Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.
- EA002SOIL Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Richard Jong .	
Richard Fung	General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

: HK1944691

¹ 1 ² FUGRO TECHNICAL SERVICES LIMITED ALS

CLIENT PROJECT

CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1944691-001	A/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-002	B/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-003	C/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-004	D/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-005	E/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-006	F/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-007	G/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-008	H/Sediment	SEDIMENT	17-Oct-2019	
HK1944691-009	A/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-010	B/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-011	C/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-012	D/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-013	E/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-014	F/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-015	G/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-016	H/Benthic Survey	SEDIMENT	17-Oct-2019	J2999-272.54
HK1944691-017	A/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-018	B/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-019	C/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-020	D/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-021	E/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-022	F/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-023	G/Rinsate Blank	WATER	17-Oct-2019	
HK1944691-024	H/Rinsate Blank	WATER	17-Oct-2019	

TEST CERTIFICATE
SUMMARY OF SOIL CLASSIFICATION TEST RESULT
GEOSPEC 3 : 2001

Report No: J2999-272.54

Sample Origin Page 1 of ** ++, ++, ++<u>.</u> ++. •• ++, ++ Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.7 (7). Test 5.2 Moisture Content at $105^{\circ}C \pm 5^{\circ}C$ (B), Test 5.3 Comparative Moisture Content 45/105^{\circ}C \pm 5^{\circ}C (C) Test Method in accordance with GEOSPEC 3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7). Estimated Uncertainty - Refer the Individual Test Report. $^{\mp}$ - Information provided by customer. Dark grey, slightly sandy SILT/CLAY with shell fragments - Refer the Individual Test Report; Dark grey, slightly gravelly, slightly sandy SILT/CLAY Dark grey, slightly gravelly, slightly sandy SILT/CLAY 30/10/2019 Date: 21/10/2019 Description Works Order No. : 272 HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Date : Sampling History HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the with shell fragments with shell fragments Gravel Sand Silt Clay (%) 32 33 28 39 38 41 29 Particle Size Distribution (%) Percentage 53 55 44 37 41 28 56 O.D. - Oven Dried; W.S. - Wet Sieved; A.D. - Air Dried; (%) 15 27 25 17 9 3 4 Job No. : J2999 (%) 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547 10 9 0 0 C 0 Principal Laboratory Officer Contract No.: Method Test 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 1,5,7 H.P. - Hand Picked; - Moisture Content for A.L. Test. # Chung Hei Wing **Fechnology Centre** Passing Preparation Method A.R. - As Received; 5 N.P. - Non Plastic; Approved By : 425µm Sieve Test (%) Tf - To Follow on supplementary Report. Liquid Plastic Plasticity Liquidity Index **Fest** 6.2 PT - Portable triple tube Sample; D - Small Disturbed Sample; Index **Cest** (%) 6.1 M - Mazier Sample; P - Piston Sample; Limit Limit (%) **Γest** 6.1 Test 6.1 (%) **A** Moisture Content (%) (m) Customer : ALS Technichem (HK) Pty Ltd SPTL - SPT Split-Barrel Sample; U - Undisturbed Sample;LB - Large Disturbed Sample; Type Sample Ω Q Ω Q Ω Q Q TKLam IS - Insufficient Sample Form : GESS001 / Sept. 14. 18 / Issue 1 / Rev 4 BLK - Block Sample; C/Benthic Survey HK1944691-012 D/Benthic Survey HK1944691-015 G/Benthic Survey HK1944691-016 H/Benthic Survey HK1944691-010 B/Benthic Survey E/Benthic Survey F/Benthic Survey A/Benthic Survey || ## No. ∥ V O Gammon Construction Ltd Project : -HK1944691-011 HK1944691-013 HK1944691-009 HK1944691-014 Sample ID No. Checked by Symbols : Legend Notes:

	: J2999	inhom (III) Dent	Contract N	0. :		11/2-1-2	Order No	: 272		
		ichem (HK) Pty L	.td				Order No.			
roject :	-						e ID No.		1944691-009	
						Sample		: A/B	Senthic Survey	
ate Received :							e Depth (m)	1		
ested Date :	: 22/10/2019						nen Depth (m)	-		
	~ .						е Туре	: Sma	all Disturbed	
escription :	Dark grey,	slightly sandy SIL		shell frag	gments		e Origin			
eve Method :	Method A	-1	Upon request	*]	Delete as appropria	ate [‡] Inform	mation provided	by custor	mer	
IEVE ANAL	YSIS	Percent	[^] Expanded		^Cumulative	SEDIMENTATION				
		Passing	Uncertainty		Percent Passing	Specific Gravity (# i		2.65 #		
Sieve Size	e		of the Percen		with Expanded	Dispersant Details :		etaphospl	hate, Sodium c	arbonate
		(%)	Passing (%)		Uncertainty (%)	Sampling History				
100.0 r 75.0 r		100 100		-	-	The presence of any	visible organic m	latter in	the soll : None	
63.0 r		100				Particle	[•] Expanded		% Finer	*Expanded
50.0 r		100	-		1	Diameter	Uncertainty of		than D	Uncertainty
37.5 r		100	-	-		Diameter	Particle Diame		K	% finer than
28.0 r		100	2		-	(mm)	(mm)		(%)	(%)
20.0 r		100	-		-	0.0683	-		71	*
14.0 r		100	-			0.0488	-		68	C44
10.0 r		100	•		-	0.0347	-		66	
6.30 r		98			20	0.0247	(6 2 5)		63	
5.00 r		98	-		•	0.0176	-		61	-
3.35 r		98 97	-		-	0.0092 0.0047			56 47	
2.00 r 1.18 r		97			-	0.0047	-		36	
600 μ		93				0.0024			30	
425		92				SUMMARY :			50	
300		89	÷			Gravel (%)	:	3		
212	um	83	-			Sand (%)	:	27		
~.~ ,										
150 (μm	76	100		-	Silt (%)		37		
150 j 63 j	μm μm μm Legend	76 70 0 ation Points >63µm igr	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150 j 63 j	μm μm μm Legend	70 0	-	.063	-	Clay (%)		33	20 37.5	75
150 63 0 100 90	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150 j 63 j 0 j	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70 70 60 50	μm μm μm Legend	70 0	-	.063	- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70 70 60 50	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70 70 60 50	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70 70 60 50	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	75
150) 63) 0) 100 90 80 70 50 50 40 30	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	
150) 63) 0) 100 90 80 70 60 60 60 40 60 60 60 60 60 60 60 60 60 6	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	
150) 63) 0) 100 90 80 70 60 70 60 70 40 30 30 100	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	
150) 63) 0) 100 90 80 70 60 50 50 30 20	μm μm μm Legend	70 0	-		- - Sieve Size(mm	Clay (%)		33	20 37.5	
150) 63) 0) 100 90 90 80 70 60 70 40 30 20 10 10 0)	μm μm μm Legend o = Sediment	70 0				Clay (%)		0 :: 0 ::		
150) 63) 0) 100 90 80 70 60 50 20 10 10 10 10 100 100 100 10	μm μm μm Legend	70 0				Clay (%)		0 :: 0 ::		75
150) 63) 0) 100 90 80 70 60 70 60 30 20 10 10 10 10 10 10 10 1	μm μm μm <u>Legend</u> <u>o = Sediment</u> 0.002	70 0 ation Points >63,4m igr	0.	0.06 0.1		Clay (%)			20	30 100
150) 63) 0) 100 90 90 90 90 90 90 90	μm μm μm μm Legend o = Sediment 0 = Sediment 0 = 0.002 FINE	70 0				Clay (%)		0 :: 0 ::		
150) 63) 0) 100 90 80 70 60 60 60 20 10 0 0.001	μm μm μm μm Legend o = Sediment 0 = Sediment 0 = 0.002 FINE	70 0 ation Points >63,4m igr	0.	0.06 0.1		Clay (%)			20	30 100
150) 63) 0) 100 90 80 70 60 50 50 50 20 10 0 0.001	μm μm μm μm Legend o = Sediment 0 = Sediment 0 = 0.002 FINE	70 0 ation Points >63,µm igr	0.	0.06 0.1		Clay (%)		33 0 :: 10 10	20	30 100
150) 63) 0) 100 90 80 70 60 60 50 40 30 20 10 0,001 CLAY	µт µт µт <u>Legend</u> <u>o</u> = Sediment <u>o</u> = S	70 0 ation Points >63,µm igr	0.02 0	.06 0.1		Clay (%)	5 1	33 0 :: 10 10 By :		30 100
150) 63) 0) 100 90 80 70 60 70 60 70 60 70 20 10 0 0.001 CLAY echnician	µт µт µт <u>Legend</u> <u>o</u> = Sediment <u>o</u> = S	70 0 ation Points >63,µm igr 1 0 0.006 0.01 MEDIUM SILT Yip	0.02 0	.06 0.1		Clay (%)	5 1	33 0 :: 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	30 100

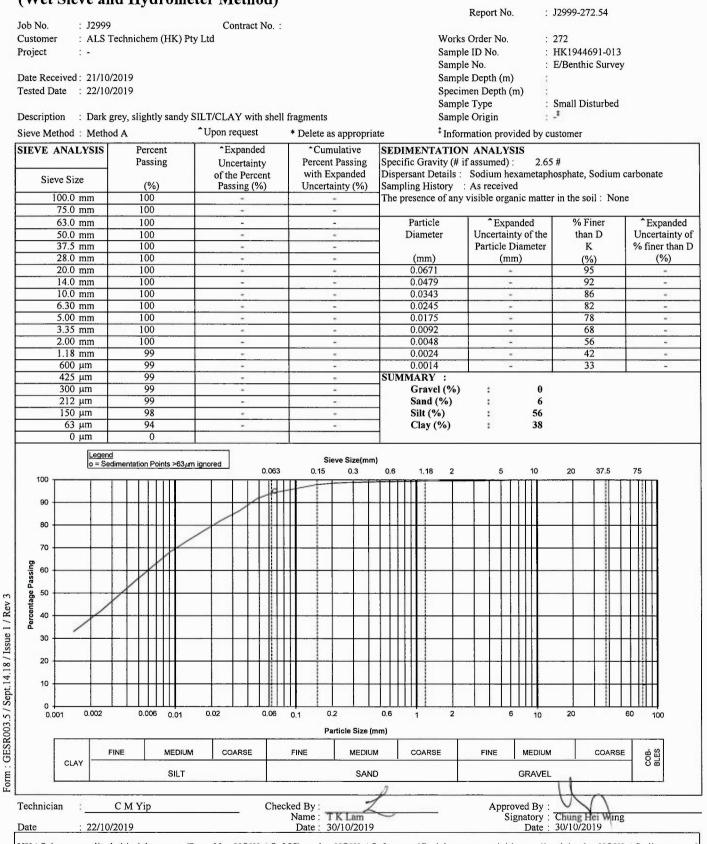
© Gammon Construction Ltd

1.1.1	7999		Contract No). :						
ob No. : J2		(IIV) Dty I +	d			Work	Order No.		272	
	LS Techniche	em (HK) Pty Lt	a				le ID No.		HK1944691-010	
roject ; -						Samp			B/Benthic Survey	
	1/10/0010								D/Dentific Survey	
ate Received: 21							le Depth (m)			
ested Date : 22	2/10/2019						men Depth (1			
							le Type		Small Disturbed	
escription : D			lightly sandy SI Jpon request		Y with shell fragi elete as appropria		le Origin mation provi	ided by cu		
IEVE ANALYS	IS Per	rcent	*Expanded		*Cumulative	SEDIMENTATIO				
LEVE ANALIS		ssing	Uncertainty	p	Percent Passing	Specific Gravity (#			#	
		Joing	of the Percent	1	with Expanded	Dispersant Details :	Sodium he	xametaph		carbonate
Sieve Size	(%)	Passing (%)		Incertainty (%)	Sampling History				
100.0 mm			-		-	The presence of any			in the soil : Non	e
75.0 mm			-							
63.0 mm					-	Particle	^Expa	nded	% Finer	Expanded
50.0 mm			-		-	Diameter	Uncertain		than D	Uncertainty
37.5 mm							Particle D	-	K	% finer than
28.0 mm						(mm)	(mr		(%)	(%)
					-	0.0700	(iiii	,	70	(70)
20.0 mm			-			0.0700	-		67	-
14.0 mm		99			-	0.0356			63	-
10.0 mm		9			-		-		59	-
6.30 mm					-	0.0254	-		57	
5.00 mm		08	-		-0	0.0181	-			-
3.35 mm		06	-		-	0.0095	-		52	
2.00 mm		94				0.0049	(4		41	-
1.18 mm		2				0.0025			31	-
600 µm		90	-		-	0.0015	82	9 	25	-
425 μm		39	-		-	SUMMARY :				
		38	-		-	Gravel (%)	:	6		
300 µm										
212 µm	8	36			-	Sand (%)	:	25		
212 μm 150 μm	8	36 32			-	Silt (%)	:	41		
212 µm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36								
212 μm 150 μm 63 μm 0 μm	egend	36 32 59 0	- -		200	Silt (%) Clay (%)	:	41 28		
212 μm 150 μm 63 μm 0 μm	egend	36 32 59	- -	063	•	Silt (%) Clay (%)	:	41	20 37.5	75
212 µm 150 µm 63 µm 0 µm <u></u> 100	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 μm 150 μm 63 μm 0 μm	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm <u>[0</u> 100 90	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm <u></u> 100	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm <u>[0</u> 100 90	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 100 90 80 70	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 100 90 80 70	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 50 50	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 50 50	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 70 50 50	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 70 50 50	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 50 50 50 40	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	
212 μm 150 μm 63 μm 0 μm 0 μm 100 90 80 70 70 50 40	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 60 50 50 40 30 20	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28		75
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 70 60 40 30	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28		
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 90 80 70 70 60 90 80 70 70 100 90 80 70 100 100 100 90 80 70 100 100 100 100 100 100 100	egend	36 32 59 0	- -	063	- - Sieve Size(mm	Silt (%) Clay (%)	:	41 28	20 37.5	
212 μm 150 μm 63 μm 0 μm 100 90 80 70 60 70 60 70 60 70 80 70 60 70 100 90 100 90 100 100 100 100 0	egend = Sedimentation	36 32 59 0 1 Points >63,µm ignu			- - Sieve Size(mm	Silt (%) Clay (%)	:		20 37.5	
212 μm 150 μm 63 μm 0 μm 100 90 80 70 60 70 80 70 80 70 80 70 80 70 100 90 80 70 100 20 10 0	egend = Sedimentation	36 32 59 0 1 Points >63,µm ignu				Silt (%) Clay (%)	5			
212 μm 150 μm 63 μm 0 μm 100 90 80 70 60 70 60 70 60 70 80 70 80 70 60 70 100 90 100 100 100 100 0	egend = Sedimentation	36 32 59 0 1 Points >63,µm ignu				Silt (%) Clay (%)	5		20	
212 μm 150 μm 63 μm 0 μm 0 μm 100 90 80 70 60 70 60 70 40 30 20 10 100 0 μm	egend = Sedimentation	366 32 59 0 a Points >63 µm igne a Points >63 µm igne a Difference a Points > 0 a Poin	ored 0,1	06 0.1		Silt (%) Clay (%)			20 COARSE	
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 60 80 70 60 90 80 70 60 90 80 70 60 90 80 70 100 90 80 70 100 90 80 70 100 90 80 70 100 90 80 70 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100	egend = Sedimentation	36 32 59 0 Points >63,µm ignutrication in the second s	ored 0,1	06 0.1		Silt (%) Clay (%)		41 28	20 COARSE	
212 µm 150 µm 63 µm 0 µm 100 90 80 70 100 90 80 70 60 70 60 90 80 70 100 90 80 70 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100	.egend > Sedimentation	36 32 39 0 a) Points >63µm igne a) Points >63µm igne a) Doce 0 a) Doce 0.01 a) MEDIUM SILT	ored 0.0	06 0,1	Sieve Size(mm 0.15 0.3	Silt (%) Clay (%)	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	41 28	20 COARSE	
212 µm 150 µm 63 µm 0 µm 100 90 80 70 60 90 80 70 60 90 80 70 100 90 80 70 100 90 80 70 0 100 0 0 0 0 0 0 0 0 0 0 0 0	egend = Sedimentation	36 32 39 0 a) Points >63µm igne a) Points >63µm igne a) Doce 0 a) Doce 0.01 a) MEDIUM SILT	ored 0.0	06 0.1	Sieve Size(mm 0.15 0.3	Silt (%) Clay (%)	5 5 6 FINE	41 28	20 COARSE	
212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 100 90 80 70 100 90 80 70 100 90 80 70 100 100 90 80 70 100 100 100 100 100 100 100	.egend > Sedimentation	36 32 39 0 a) Points >63µm igne a) Points >63µm igne a) Doce 0 a) Doce 0.01 a) MEDIUM SILT	ored 0.0	06 0.1 Fine Checked J	Sieve Size(mm 0.15 0.3	Silt (%) Clay (%)	5 5 6 FINE	41 28	20 COARSE	

© Gammon Construction Ltd

ob No. : J2	000	Contract No.			Report No. :	J2999-272.54	
	999 LS Technichem (HK)	Contract No.	•	Works	Order No. :	272	
	LS Technichem (HK)	Pty Ltd					
roject : -						HK1944691-011	
				Sample		C/Benthic Surve	У
Date Received: 21	/10/2019			Sample	e Depth (m) :		
ested Date 22	2/10/2019			Specin	nen Depth (m)		
				Sample	e Type :	Small Disturbed	
Description : D	ark grey, slightly sand	iy SILT/CLAY with she	Il fragments		e Origin	<u>_</u> ‡	
		[*] Upon request					
sieve Method : M	ethod A	Opon request	* Delete as appropria	ate *Inform	mation provided by cu	istomer	
SIEVE ANALYS	IS Percent	*Expanded	*Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# in	fassumed): 2.65	#	
0	-	of the Percent	with Expanded	Dispersant Details :	Sodium hexametaph	osphate, Sodium	carbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History :	As received		
100.0 mm	100		-	The presence of any	visible organic matter	r in the soil : No	ne
75.0 mm	100	-	-				
63.0 mm	100	-		Particle	[*] Expanded	% Finer	[•] Expanded
50.0 mm			-	Diameter	Uncertainty of the	than D	Uncertainty
37.5 mm			-		Particle Diameter	K	% finer than
28.0 mm		-	-	(mm)	(mm)	(%)	(%)
20.0 mm			-	0.0655	-	97	-
14.0 mm		20		0.0467	-	94	
14.0 mm		-		0.0334	-	90	-
6.30 mm			-	0.0239		85	-
5.00 mm		-	-	0.0239	-	80	-
3.35 mm		-	-	0.0091		71	-
2.00 mm		-		0.0047		56	-
1.18 mm				0.0024	-	43	-
600 μm	100			0.0014		34	
425 μm	100	-	-	SUMMARY :	1		
	100						
300 µm	100	-	-	Gravel (%)	: 0 : 3		
212 µm				Sand (%)			
150 μm	99		-	Silt (%)	: 58		
63 µm	97			Clay (%)	: 39		
0 μm	0						
	egend = Sedimentation Points >6	3µm ignored 0.06	Sieve Size(mm 3 0.15 0.3	n) 0.6 1.18 2	5 10	20 37.5	75
90							
80							
00							
70							
g							
E							
- 60				1.			
Lissed							
age Pass	_//////						
40 Jercent							
te							
40 Jeccentral 40							
40 Jercent							
40 30 20							
40 Jeccentral 40							
40 30 20							
40 30 20 10			0.1 0.2		6 10	20	60 100
40 30 20 10 0	02 0.006 0.0	1 0.02 0.06	0.1 0.2 Particle Size (6 10	20	60 100
40 30 20 10 0			Particle Size (mm)			
40 30 20 10 0	02 0.006 0.0 FINE MED			mm)	6 10		
		IUM COARSE	Particle Size (mm) M COARSE			
	FINE MED	IUM COARSE	Particle Size (FINE MEDIU	mm) M COARSE	FINE MEDIUM		
40 30 20 10 0.001 0.0 CLAY	FINE MED	IUM COARSE	Particle Size (FINE MEDIU SAN	mm) M COARSE	FINE MEDIUM GRAVEL		
	FINE MED	IUM COARSE	Particle Size (FINE MEDIU	mm) M COARSE	FINE MEDIUM GRAVEL Approved By :		BLES BLES

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.


© Gammon Construction Ltd

			Contract No	0. :						
	2999 ALS Technic	ham (TTV) Den T	* 1			Work	Order Ma			
		hem (HK) Pty I	.td				s Order No.		272	
Project : -							le ID No.		HK1944691-012	
							le No.		D/Benthic Survey	y
Date Received : 2							le Depth (m)			
Tested Date : 2	22/10/2019					Speci	men Depth (m) :		
						Samp	le Type		Small Disturbed	
Description : I	Dark grey, sli		T/CLAY with s	hell frag	ments	Samp	le Origin	: -	,	
Sieve Method : 1	Method A	•	Upon request	* D	Delete as appropria	ate [‡] Infor	mation prov	ided by cus	stomer	
SIEVE ANALY		ercent	*Expanded		^Cumulative	SEDIMENTATIO				
	P	assing	Uncertainty		Percent Passing	Specific Gravity (#				
Sieve Size		(0.1)	of the Percent		with Expanded	Dispersant Details :			osphate, Sodium	carbonate
		(%)	Passing (%)	_	Uncertainty (%)	Sampling History				
100.0 mr		100			-	The presence of any	visible orga	inic matter	in the soli : Nor	he
75.0 mi		100	-	_	(H)				0/ 77	1 4- 1
63.0 mi		100	-		-	Particle	Expa		% Finer	Expanded
50.0 mi		100				Diameter	Uncertain	-	than D	Uncertainty
37.5 mi		100	-				Particle I	and the second	K	% finer than
28.0 mi		100	-		141	(mm)	(m)	m)	(%)	(%)
20.0 mi		100	((+))		(1 4 1)	0.0687		6	84	
14.0 mi		100	0.0			0.0489	10	80	81	-
10.0 mr		100	(0.0350	1	5.6 	77	-
6.30 mi		100	1.57.5		(ST):	0.0250	-	Second -	72	*
5.00 mi		100	-		-	0.0179	19	8	67	· + ·
3.35 mi	n	100				0.0094	1.5	13	60	
2.00 m	n	100				0.0048	1	8	48	
1.18 mr	n	99			-	0.0025		0	36	-
600 µn		98	245		244	0.0014	-	S	28	-
425 µn	n	98				SUMMARY :				
								0		
		97	-		120	Gravel (%)	:	U		
300 µn	n		-		-	Gravel (%) Sand (%)		0 15		
300 μn 212 μn	n n	97				Sand (%)	:	15		
300 μn 212 μn 150 μn	n n n	97 93	-			Sand (%) Silt (%)	:			
300 µл 212 µл 150 µл 63 µл 0 µл	n n n n n n n n n n n n n n n n n n n	97	- -	063	-	Sand (%) Silt (%) Clay (%)	:	15 53	20 37.5	75
300 µл 212 µл 150 µл 63 µл 0 µл 100 90 80 70 60 80 70 70 60 40	n n n n n n n n n n n n n n n n n n n	97 93 85 0	- -	063	- - Sieve Size(mm	Sand (%) Silt (%) Clay (%)	:	15 53 32	20 37.5	
300 µл 212 µл 150 µл 63 µл 0 µл 90 90 80 70 70 50 50	n n n n n n n n n n n n n n n n n n n	97 93 85 0	- -	063	- - Sieve Size(mm	Sand (%) Silt (%) Clay (%)	:	15 53 32	20 37.5	
300 µл 212 µл 150 µл 63 µл 0 µл 100 90 80 70 70 70 80 70 70	n n n n n n n n n n n n n n n n n n n	97 93 85 0	- -	063	- - Sieve Size(mm	Sand (%) Silt (%) Clay (%)	:	15 53 32		
300 µл 212 µл 150 µл 63 µл 0 µл 90 90 80 70 70 80 70 70 80 70 70 40 30 20	n n n n n n n n n n n n n n n n n n n	97 93 85 0	- -	063	- - Sieve Size(mm	Sand (%) Silt (%) Clay (%)	:	15 53 32		
300 µm 212 µm 150 µm 63 µm 0 µm 0 µm 100 90 80 70 60 60 50 40 30 20 10	n n n n n n n n n n n n n n n n n n n	97 93 85 0	- -		- - Sieve Size(mm	Sand (%) Silt (%) Clay (%)	:	15 53 32		
300 µл 212 µл 150 µл 63 µл 0 µл 100 90 90 80 70 50 50 50 10 20 10 0	n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Sand (%) Silt (%) Clay (%)	:		20 37.5	
300 µл 212 µл 150 µл 63 µл 0 µл 100 90 80 70 70 60 80 70 60 80 70 40 30 20 10 0	n n n Legend o = Sedimentati	97 93 85 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Sand (%) Silt (%) Clay (%)	5			
300 µn 212 µn 150 µn 63 µn 0 µn 90 90 80 70 50 50 50 50 40 30 20 10 0	n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Sand (%) Silt (%) Clay (%)	5			
300 µn 212 µn 150 µn 63 µn 0 µn 90 90 80 70 50 50 50 50 40 30 20 10 0	n n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		06 0.1		Sand (%) Silt (%) Clay (%)		15 53 32	20	
300 µn 212 µn 150 µn 63 µn 0 µn 0 µn 100 90 80 70 50 50 50 50 50 10 20 10 0 0,001 0	n n n n Legend o = Sedimentati	97 93 85 0 200 Points >63,4m ig 200 Points >63,4m i		06 0.1		Sand (%) Silt (%) Clay (%)			20	
300 µn 212 µn 150 µn 63 µn 0 µn 100 90 80 70 50 50 50 50 10 20 10 0 0.001 0 CLAY	n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Sand (%) Silt (%) Clay (%)	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15 53 32 10	20	
300 µn 212 µn 150 µn 63 µn 0 µn 100 90 80 70 50 50 50 50 10 20 10 0 0.001 0 CLAY	n n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Sand (%) Silt (%) Clay (%)	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 53 32 10 10 10 10 10 10 10 10 10 10 10 10 10	20 COARSI	
300 µn 212 µn 150 µn 63 µn 0 µn 100 90 80 70 50 50 50 10 20 10 0 0.001 0 CLAY Technician	n n n Legend o = Sedimentati	97 93 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1 FIN	Sieve Size(mm 0.15 0.3	Sand (%) Silt (%) Clay (%) 0.6 1.18 2 0.6 1.18 2 0.6 1 2 nm) M COARSE	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 53 32 10 10 10 10 10 10 10 10 10 10 10 10 10	20	

© Gammon Construction Ltd

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

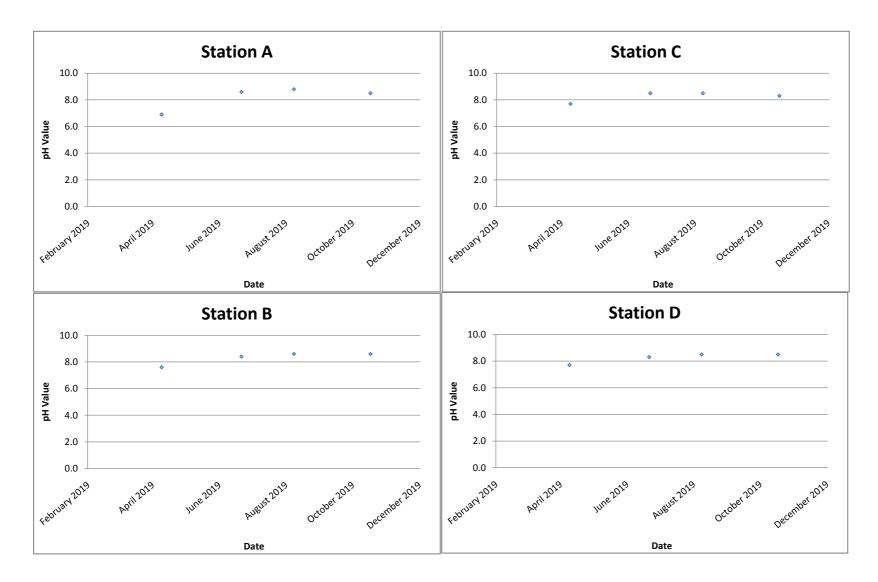
	J2999	1 (1112) De	Contract N	0. :			*** 1	0 I N		270		
		chem (HK) Pty	Ltd					Order No.		272		
roject :	-							e ID No.		HK1944691-		
2012) - 101							Sample			F/Benthic Su	urvey	
Date Received :								e Depth (m)				
'ested Date :	22/10/2019							nen Depth (r				
							Sample			Small Distur	bed	
Description :	Dark grey, s	ightly sandy S	ILT/CLAY with s	shell frag	gments		Sample	e Origin	: -	+		
sieve Method :	Method A		[•] Upon request	*]	Delete as appropr	ate	[‡] Inform	nation provi	ided by cu	stomer		
SIEVE ANALY		Percent	*Expanded	1	*Cumulative		ENTATION			u		
		Passing	Uncertainty		Percent Passing with Expanded		Gravity (# if				1	housts
Sieve Size		(%)	of the Percen				nt Details : g History :			osphate, Sod	num car	bonate
100.0 m		100	Passing (%)		Uncertainty (%)		ence of any			in the soil :	None	
75.0 m		100	-			The pres	ence of any	visible organ	ine matter	in the son .	NONC	
63.0 m		100				Da	rticle	Expa	nded	% Finer	r [*Expanded
50.0 m		100				_	ameter	Uncertaint		than D		Uncertainty
37.5 m		100	-		-		ameter	Particle D		K		% finer than
28.0 m		100				- (mm)	(mn				(%)
20.0 m		100			-		0666	(mm		<u>(%)</u> 95		
20.0 m 14.0 m		100			-		0472	-		93		-
14.0 m 10.0 m		100			-		0472			94		
		100			-		0337			91 87		*
6.30 m 5.00 m		100	-							87		676
3.35 m		100			-		0173			<u>82</u> 71		
		100	•		-		0092	-		58		-
2.00 m 1.18 m		100			-	-	0047	-		45		
		100			-	_				45		-
600 μι 425 μι		100	-		-1	SUMMA	0014	-		30		-
<u>423</u> μι 300 μι			-					25	0			
	Im						ravel (%)	•	0 4			
		99					and (0/)					
212 µi	ım	99	-		-	S	and (%)	:				
212 μι 150 μι	ım ım	99 98			-	Si Si	ilt (%)	-	55			
212 µi	um um um Legend	99	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 μι 150 μι 63 μι	um um um Legend	99 98 96 0	- - -	.063	-	n)	ilt (%)	-	55	20 37	7.5	75
212 µл 150 µл 63 µл 0 µл	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µ 150 µ 63 µ 0 µ 100 90	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	.5	
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -	063	- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	.5	
212 µл 150 µл 63 µл 0 µл 100 90 80 70 80 80 40 40	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	2.5	75
212 µ 150 µ 63 µ 0 µ 100 90 80 70	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	75
212 µл 150 µл 63 µл 0 µл 100 90 90 80 70 70 40 30	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37		75
212 µл 150 µл 63 µл 0 µл 100 90 80 70 40 40	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41	20 37	7.5	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 80 70 60 60 60 30 20	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41			
212 µл 150 µл 63 µл 0 µл 100 90 80 70 80 70 40 30	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41		.5	
212 µп 150 µп 63 µп 0 µп 0 µп 100 90 80 70 60 80 70 60 30 20 10	um um um Legend	99 98 96 0	- - -		- - Sieve Size(m)	n)	ilt (%) lay (%)		55 41		.5	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 80 70 50 50 50 40 20 10 0		99 98 96 0	ignored 0.			n)	1.18 2 1.18 2			20 37	60	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 80 70 70 40 30 20 10 0 µ		99 98 96 0	ignored 0.			S: Si C 0.6	1.18 2 1.18 2	5				
212 µп 150 µп 63 µп 0 µп 100 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 <td< td=""><td>um</td><td>99 98 96 0 ion Points >63,m</td><td>ignored 0,</td><td>.06 0,1</td><td></td><td>S: Si C</td><td>1.18 2 1.18 2</td><td>5</td><td></td><td>20</td><td>60</td><td></td></td<>	um	99 98 96 0 ion Points >63,m	ignored 0,	.06 0,1		S: Si C	1.18 2 1.18 2	5		20	60	
212 µп 150 µп 63 µп 0 µп 100 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 <td< td=""><td>um</td><td>99 98 96 0</td><td>ignored 0.</td><td></td><td></td><td>S: Si C</td><td>1.18 2 1.18 2</td><td>5</td><td></td><td>20</td><td></td><td></td></td<>	um	99 98 96 0	ignored 0.			S: Si C	1.18 2 1.18 2	5		20		
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 90 80 70 60 60 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 0 90 90 80 70 0 100 100 90 80 70 100 100 100 100 100 100 100	um	99 98 96 0 ion Points >63,m	ignored 0,	.06 0,1		S: Si C 0.6 0.6 mm) M C	1.18 2 1.18 2	5		20	60	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 80 70 60 50 50 20 10 0,001 0	um	99 98 96 0 ion Points >63µm	ignored 0,	.06 0,1	- Sieve Size(m) 0.15 0.3 - - - - 0.15 0.3 - - - - 0.15 0.3 - - - -	S: Si C 0.6 0.6 mm) M C	1.18 2 1.18 2	5	55 41	20	60	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 90 80 70 60 60 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 70 0 80 0 90 90 80 70 0 100 100 90 80 70 100 100 100 100 100 100 100	um	99 98 96 0 ion Points >63µm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ignored 0,	.06 0,1	Sieve Size(mr 0.15 0.3	S: Si C 0.6 0.6 mm) M C	1.18 2 1.18 2	5	55 41	20	60	
212 µ 150 µ 63 µ 0 µ 0 µ 100 90 80 70 50 50 40 20 10 0,001 0 CLAY echnician	um	99 98 96 0 ion Points >63µm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ignored 0,	.06 0,1	Sieve Size(mr 0.15 0.3	S: Si C 0.6 0.6 mm) M C	1.18 2 1.18 2	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	55 41	20	60 DARSE	

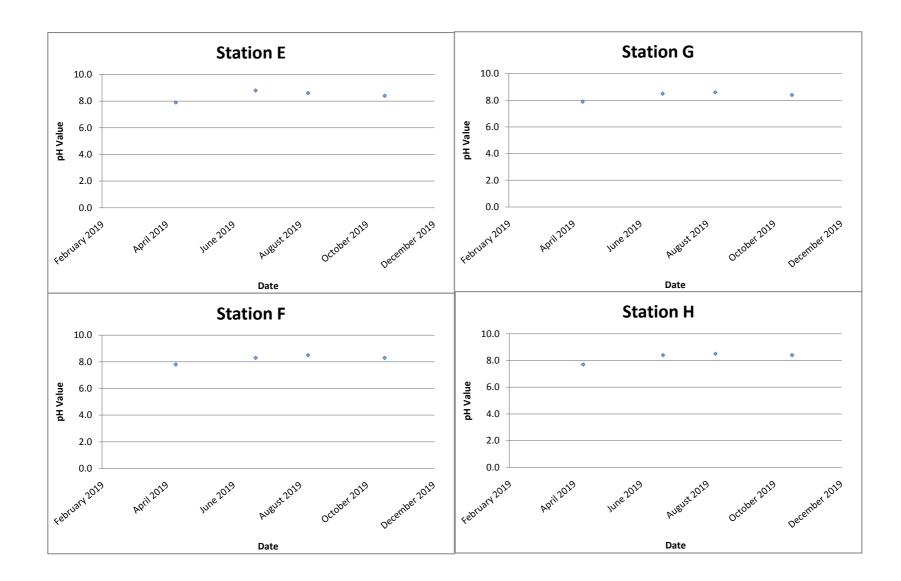
© Gammon Construction Ltd

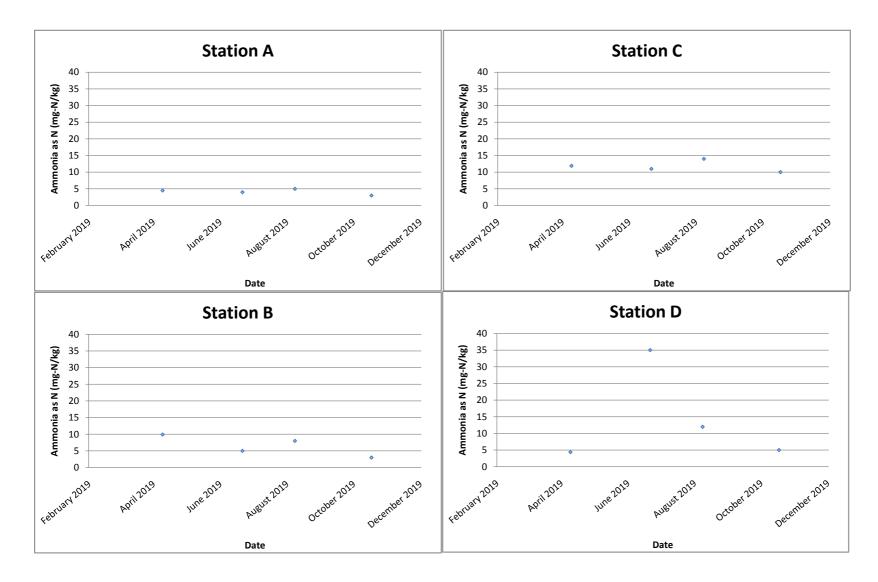
										Report No.	• •		72.54	
ob No.	: J2999			Contract 1	No. :					0.1.11		070		
ustomer		Technichem (H	IK) Pty Li	a						Order No.		272	601 015	
oject	: -									ID No.			691-015	
	-								Sample		÷	G/Benth	ic Survey	
	eived: 21/10									e Depth (m)	-			
sted Da	ate : 22/10	0/2019								nen Depth (m				
									Sample			Small Di	sturbed	
escriptio		grey, slightly g	-	lightly sandy : Jpon request			-			e Origin	:			
	ethod : Meth					* Delete as ^Cumu				nation provid		istomer		
EVE A	ANALYSIS	Percent Passing		*Expanded Uncertaint		Percent			IENTATION c Gravity (# if		2.65	#		
		1 aboning		of the Perce		with Ex			ant Details :				Sodium o	carbonate
Siev	ve Size	(%)		Passing (%		Uncertai			ng History :					
1	100.0 mm	100			<i>´</i>	-		The pre	esence of any	visible organi	c matter	in the se	oil : Non	e
	75.0 mm	100) 	1	00040020000000000000000000000000000000	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
	63.0 mm	100		-		-		1	Particle	*Expan	ded	% F	Finer	^Expand
	50.0 mm	100		1949 (Maria)		52	8		Diameter	Uncertainty	of the	tha	n D	Uncertain
0.00	37.5 mm	100		-				7		Particle Dia	ameter	l	ĸ	% finer th
	28.0 mm	100		-			2		(mm)	(mm)			%)	(%)
	20.0 mm	100							0.0693	+			2	
	14.0 mm	100		-					0.0492	-			/1	-
	10.0 mm	98		199			6		0.0350	+			58	-
	6.30 mm	95		-					0.0250	-			55	-
	5.00 mm	94		-					0.0178	-			52	-
	3.35 mm	92		-					0.0094	-			53	-
	2.00 mm	90							0.0048	-	-		13	-
	1.18 mm	89					-		0.0025				33	
	600 μm	86							0.0014 IARY :	-			25	
	425 μm 300 μm	84 83		-			-		Gravel (%)		10			
		83		-				_	Sand (%)		10			
									Sanu (70)		17			
	212 μm							-	Silt (%)	÷.	44			
	150 µm	79		10			-	_	Silt (%) Clav (%)	:	44 29			
			-		0			_	Silt (%) Clay (%)		44 29			
100 -	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0.063		-	-				20	37.5	75
100	150 μm 63 μm 0 μm	79 73 0	>63,µm ign	- -	0.063	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
100 90	150 μm 63 μm 0 μm	79 73 0		- -	0.063	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 -	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0.063	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
	150 μm 63 μm 0 μm	79 73 0	s>63µm ign	- -	0.063	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 - 80 -	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0.063	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 - 80 - 70 -	150 μm 63 μm 0 μm	79 73 0	>63,µm ign	- -		Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 - 80 - 70 -	150 μm 63 μm 0 μm	79 73 0	>63µm ign	- -		Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 - 80 - 70 -	150 μm 63 μm 0 μm	79 73 0	s>63µm ign	- -		Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90 - 80 - 70 -	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
10 - 00 - 00 - 00 - 00 - 00 - 00 - 00	150 μm 63 μm 0 μm	79 73 0	>63/m ign	- -		Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
106 Passing - 09 - 02 - 02 - 02	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
Percentage Passing - 09 - 09 - 09 - 05 - 06 - 06 - 06	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
106 Passing - 06 - 07 - 02 - 02	150 μm 63 μm 0 μm	79 73 0	s >63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
- 09 - 03 - 00 - 00 - 00 - 00 - 00 - 00 - 00	150 μm 63 μm 0 μm	79 73 0	3 >63,µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
Percentrage Passing - 06 - 09 - 09 - 06 - 06 - 08	150 μm 63 μm 0 μm	79 73 0	s>63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
90	150 μm 63 μm 0 μm	79 73 0	s>63µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	75
- 09 - 03 - 00 - 00 - 00 - 00 - 00 - 00 - 00	150 μm 63 μm 0 μm	79 73 0	>63,µm ign	- -	0	Sie	- - eve Size(mm		Clay (%)	•	29	20	37.5	
- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	150 μm 63 μm 0 μm Leger σ = St	79 73 0 edimentation Points				Sie 0.15	ve Size(mr 0.3		1.18 2	5				
90 - 80 - 70 - 70 - 50 - 50 - 40 - 30 - 20 - 20 - 10 -	150 μm 63 μm 0 μm Leger σ = St	79 73 0 edimentation Points				Sie	ve Size(mr 0.3		Clay (%)	•	29	20		
90 - 80 - 70 - 60 - 60 - 60 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	150 μm 63 μm 0 μm Leger σ = St	79 73 0 edimentation Points				Sie 0.15	ve Size(mr 0.3	0.6	1.18 2	5				
90 - 80 - 70 - 60 - 60 - 60 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	150 μm 63 μm 0 μm Leger σ = St	79 73 0 edimentation Points	0.01			Sie 0.15	vve Size(mm 0.3	0.6 0.6 0.6 mm)	1.18 2	5		20		60 100
90 - 80 - 70 - 60 - 60 - 60 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	150 μm 63 μm 0 μm Leger o = St 0	79 73 0 edimentation Points				Sie 0.15	ve Size(mm 0.3	0.6 0.6 0.6 mm)	1.18 2	5		20		60 100
90 - 80 - 70 - 60 - 60 - 60 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	150 μm 63 μm 0 μm Leger σ = St	79 73 0 edimentation Points	0.01			Sie 0.15	vve Size(mm 0.3	0.6 0.6 0.6 0.6 mm)	1.18 2	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		20		
90 - 80 - 70 - 60 - 60 - 60 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	150 μm 63 μm 0 μm Leger o = St 0	79 73 0 edimentation Points	0.01			Sie 0.15	ve Size(mm 0.3	0.6 0.6 0.6 0.6 mm)	1.18 2	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		20		60 100
90 - 80 - 70 - 70 - 60 - 80 - 40 - 20 - 20 - 20 - 10 - 0 - 0 - 0 -	150 μm 63 μm 0 μm Leger o = St o	79 73 0 rd edimentation Points 0.006 FINE N	0.01		0.06	Sie 0.15	ve Size(mm 0.3	0.6 0.6 0.6 0.6 mm)	1.18 2	5	29	20		60 100
90 - 80 - 70 - 60 - 60 - 60 - 40 - 40 - 20 - 20 - 20 - 10 - 20 -	150 μm 63 μm 0 μm Leger o = St o	79 73 0 edimentation Points	0.01		0.06	Sie 0.15	ve Size(mm 0.3	0.6 0.6 0.6 0.6 mm)	1.18 2	5 5 6 FINE	29	20	COARSE	
90 - 80 - 70 - 60 - 40 - 20 - 20 - 10 - 0 - 0 -	150 μm 63 μm 0 μm Leger o = St o	79 73 0 nd edimentation Points 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.01		0.06	Sie 0.15	ve Size(mm 0.3	0.6 0.6 0.6 0.6 mm) M	1.18 2	5 5 6 FINE	29	20	COARSE	

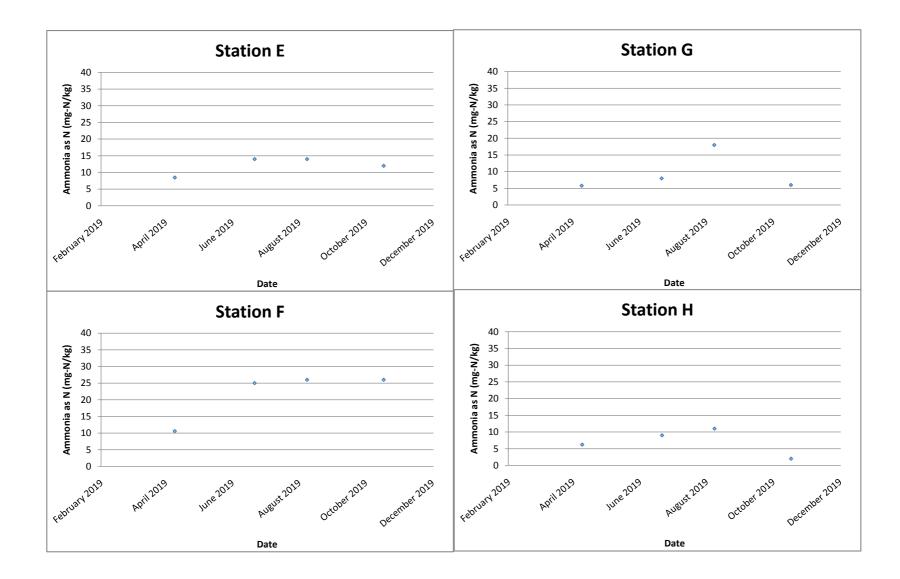
© Gammon Construction Ltd

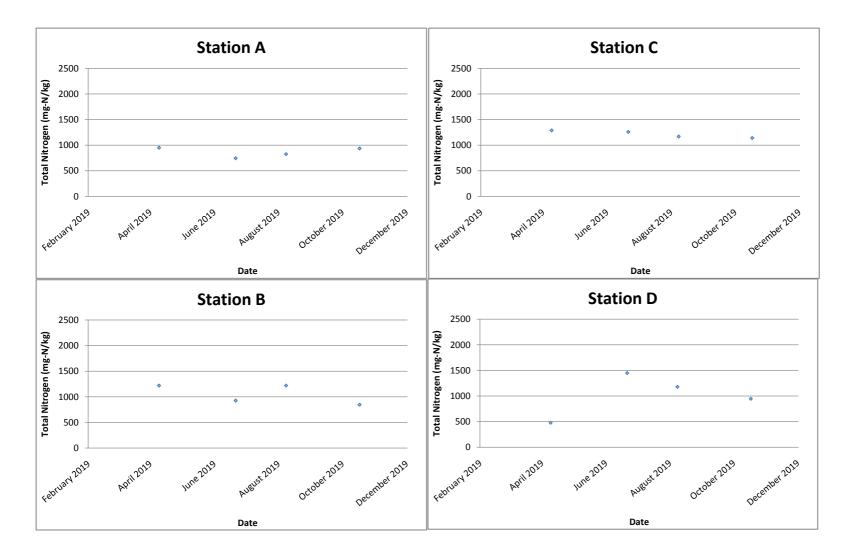
110


c

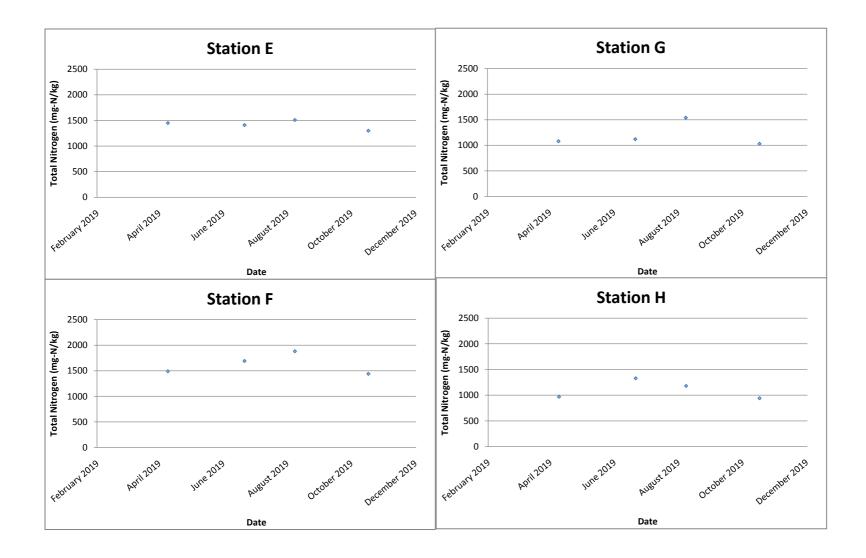

	J2999 ALS Technic	ham (UV) Dty I	Contract No	0. :		Works	Order No.	: 2	77	
		hem (HK) Pty L	,10							
Project : -	-						e ID No.		IK1944691-016	
						Sampl			I/Benthic Survey	
Date Received : 2							e Depth (m)			
Tested Date : 2	22/10/2019						men Depth (1			
e 100 - 55	23.23			0.000			е Туре		mall Disturbed	
Description : 1 Sieve Method : 1			T/CLAY with s. Upon request		gments Delete as appropria		e Origin mation prov	: - [‡] ided by cus		
SIEVE ANALY	ISIS F	ercent	*Expanded	1	*Cumulative	SEDIMENTATION	ANALYS	IS		
		assing	Uncertainty		Percent Passing	Specific Gravity (# i			4	
a: a:		5	of the Percent		with Expanded	Dispersant Details :				carbonate
Sieve Size		(%)	Passing (%)		Uncertainty (%)	Sampling History				
100.0 mi	m	100	(42) (42)		-	The presence of any	visible orga	nic matter i	in the soil : Non	e
75.0 mi	m	100	((#::							
63.0 mi	m	100		122	-	Particle	Expa	nded	% Finer	*Expanded
50.0 mi		100	-		-	Diameter	Uncertain		than D	Uncertainty
37.5 mi		100					Particle D	Diameter	K	% finer than
28.0 mi		100	+	3	-	(mm)	(mr	n)	(%)	(%)
20.0 mi		100	-			0.0670	-		87	
14.0 mi		100	-		-	0.0480			83	-
10.0 mi		100	-		-	0.0343	-		80	. +
6.30 mi		99	-		-	0.0244			76	-
5.00 mi		99	-		-8	0.0175	-		72	
3.35 mi		98 97	-			0.0092	-		<u>64</u> 49	
2.00 mi		97	-		•	0.0048	-		37	
1.18 mi 600 μn		97	-		-	0.0023	-		29	-
425 μn		96	-	_	-	SUMMARY :			29	
<u>425 μη</u> 300 μη		93		_	-	Gravel (%)		3		
		93			-	Sand (%)	1	10		
						Sana (70)	50			
212 μn 150 μn						Silt (%)	1	54		
150 μn	n	91		-	-	Silt (%)	:	54 33		
150 μπ 63 μπ 0 μπ	n n Legend		nored		= Sieve Size(mm	Clay (%)		33	20 27.5	75
150 µл 63 µл 0 µл 100 90	n n Legend	91 87 0	nored 0.	063	-	Clay (%)	100		20 37.5	75
150 µл 63 µл 0 µл 100	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µп 63 µп 0 µг 0 µг 90 80	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µл 63 µл 0 µл 100 90 80 70	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µл 63 µл 0 µл 100 90 80 70	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µл 63 µл 0 µл 100 90 80 70	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µл 63 µл 0 µл 100 90 80 70	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)		33	20 37.5	75
150 µп 63 µп 0 µп 0 µп 100 90 80 70 60 60 60 50 50	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	75
150 µп 63 µп 0 µп 100 90 80 70 60 50 50	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33		75
150 µп 63 µп 0 µп 0 µп 100 90 80 70 70 50 50 50 40	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	75
150 µп 63 µп 0 µп 100 90 80 70 60 50 50	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	75
150 µп 63 µп 0 µп 0 µп 100 90 80 70 60 60 60 60 80 70 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	75
150 µл 63 µл 0 µл 0 µл 100 90 80 70 70 70 80 70 70 40	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	75
150 µп 63 µп 0 µг 0 µг 90 90 80 70 70 60 60 60 80 70 70 40 30 20	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33		75
150 µп 63 µп 0 µг 0 µг 100 90 80 70 70 50 60 50 30	n n Legend	91 87 0	nored 0.	FITT	= Sieve Size(mm	Clay (%)	I.	33	20 37.5	
150 µп 63 µп 0 µп 0 µп 90 90 80 70 70 60 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80		91 87 0 on Points >63,4m igr			Sieve Size(mm 0.15 0.3	Clay (%)				
150 µп 63 µп 0 µп 0 µп 90 90 80 70 70 60 60 80 70 70 40 30 20 10 0		91 87 0 on Points >63,4m igr		FITT	Sieve Size(mm 0.15 0.3	Clay (%)	I.		20 37.5	
150 µп 63 µп 0 µп 0 µп 90 90 80 70 70 60 60 30 20 10 0		91 87 0 on Points >63,4m igr			Sieve Size(mm 0.15 0.3	Clay (%)				
150 µп 63 µп 0 µп 0 µп 90 90 80 70 60 50 50 50 40 30 20 10 0		91 87 0 on Points >63,4m igr			Sieve Size(mm 0.15 0.3	Clay (%)				
150 µп 63 µп 0 µп 0 µп 90 90 80 70 60 50 50 50 40 30 20 10 0		91 87 0 on Points >63,4m igr	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Clay (%)		33	20	
150 µп 63 µп 0 µп 0 µп 100 90 80 70 80 70 80 70 80 70 80 70 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 90 80 70 90 80 70 90 80 70 90 80 90 80 90 80 90 90 80 80 90 80 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80		91 87 0 on Points >63,4m igr 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Clay (%)		33	20	
150 µп 63 µп 0 µп 100 90 80 70 70 80 70 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend o = Sedimentati	91 87 0 on Points >63,4m ign 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Clay (%)	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	33	20	
150 µп 63 µп 0 µп 0 µп 100 90 80 70 70 80 70 80 70 80 70 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 90 80 70 90 90 80 70 70 90 90 80 70 70 90 90 80 70 90 90 80 70 90 90 80 90 90 80 90 90 80 90 90 80 90 90 80 90 90 80 90 90 90 80 90 90 90 80 90 90 80 90 90 90 80 90 90 90 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90		91 87 0 on Points >63,4m ign 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Clay (%)	5 5 6 FINE	33	20	
150 µп 63 µп 0 µп 0 µп 90 90 80 70 60 60 80 70 60 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	n n Legend o = Sedimentati	91 87 0 on Points >63,4m ign 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.	06 0.1	Sieve Size(mm 0.15 0.3	Clay (%)	5 5 6 FINE	33 10 10 10 10 MEDIUM GRAVEL pyed By : gnatory : 7	20	

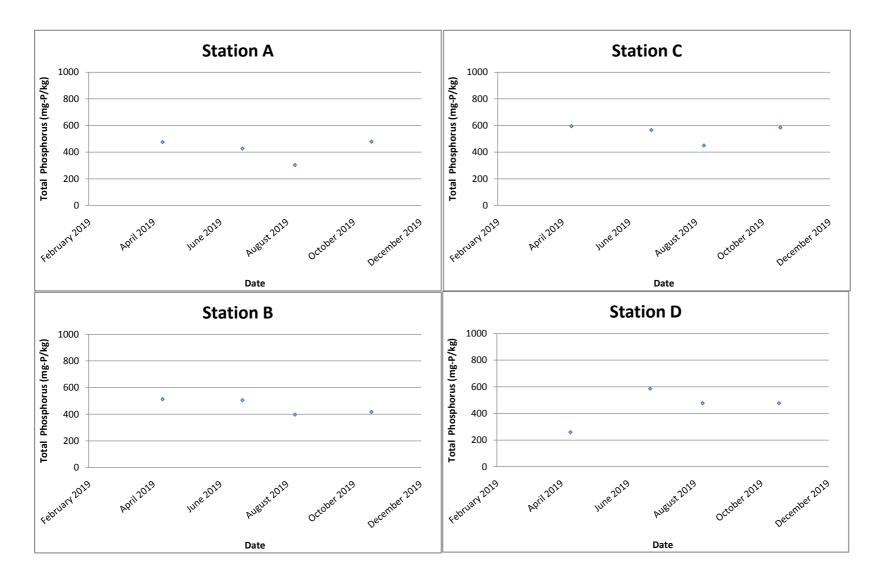

© Gammon Construction Ltd

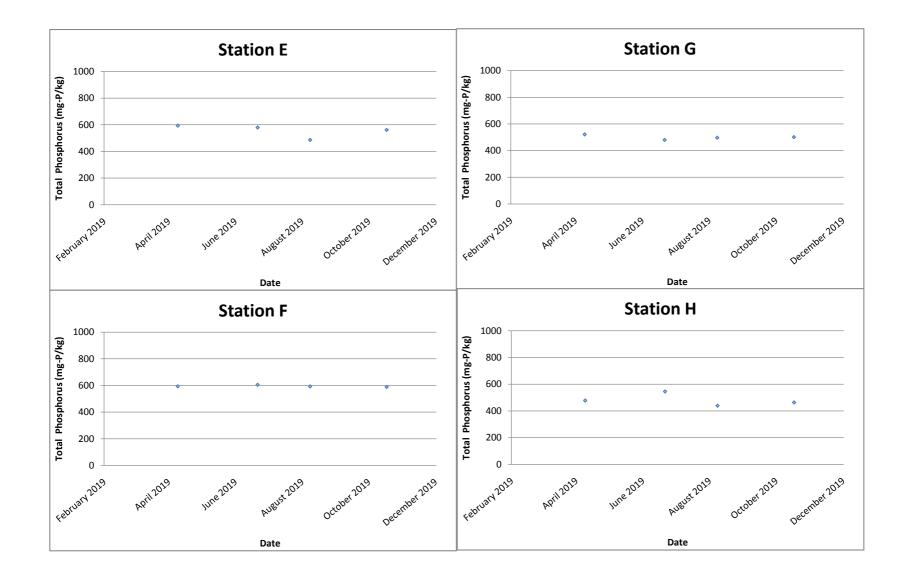

pH value

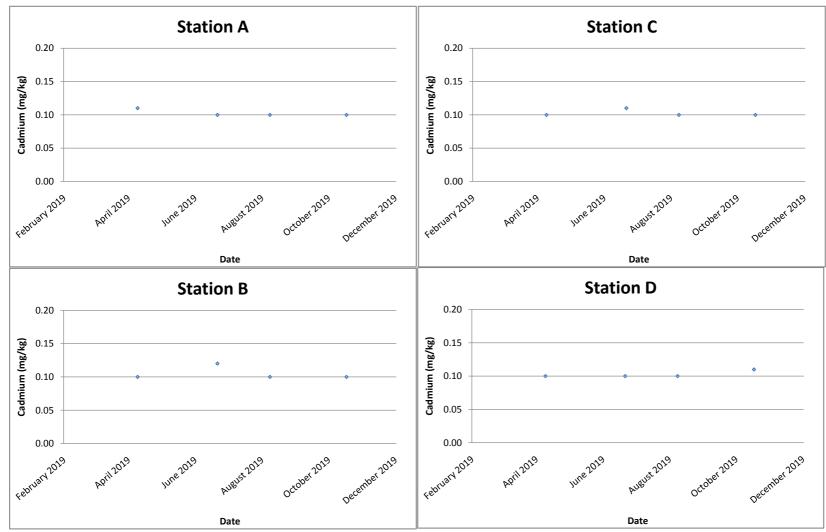


pH value

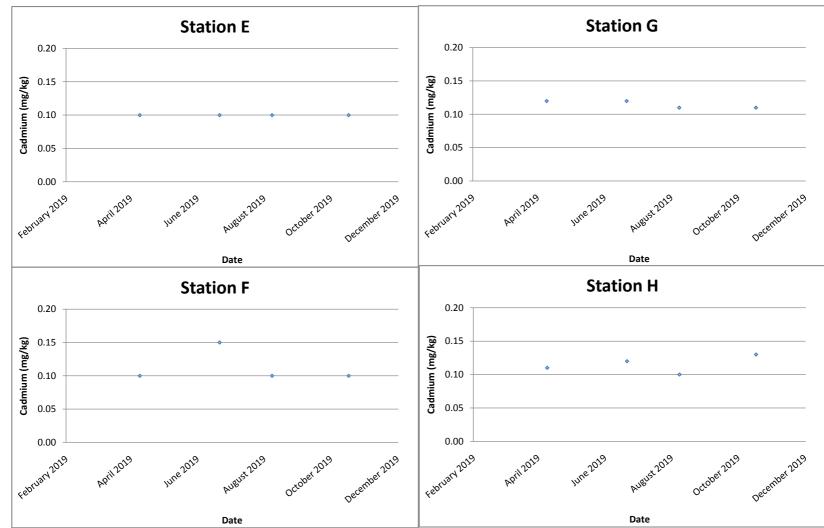


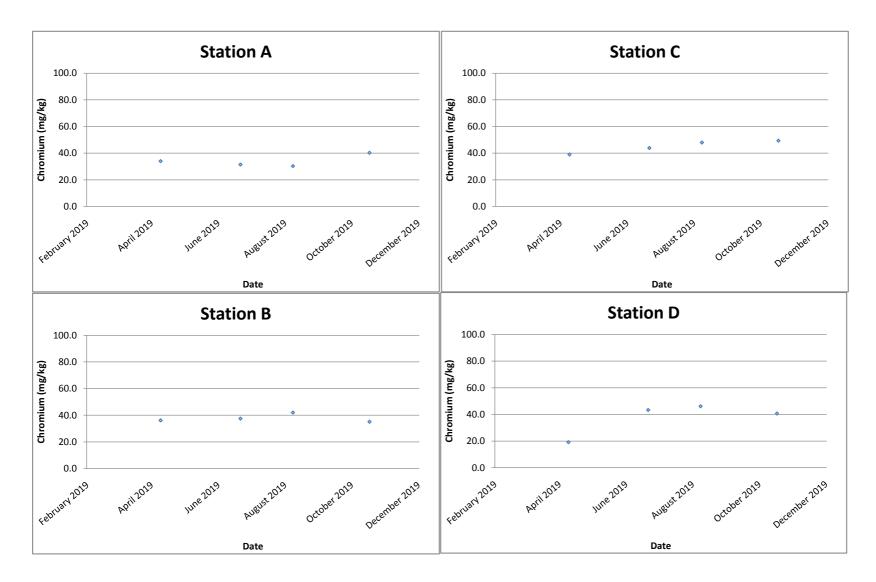




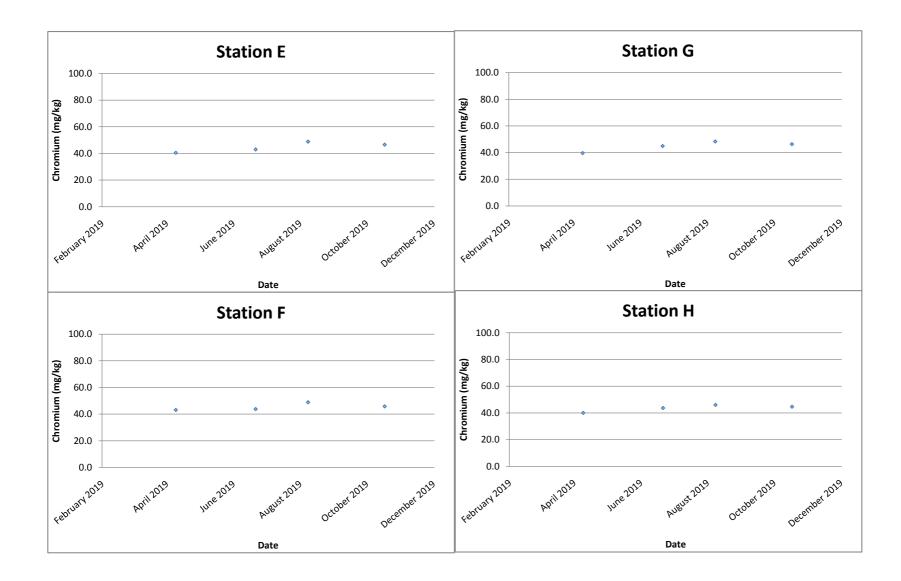


Total Nitrogen (mg-N/kg)

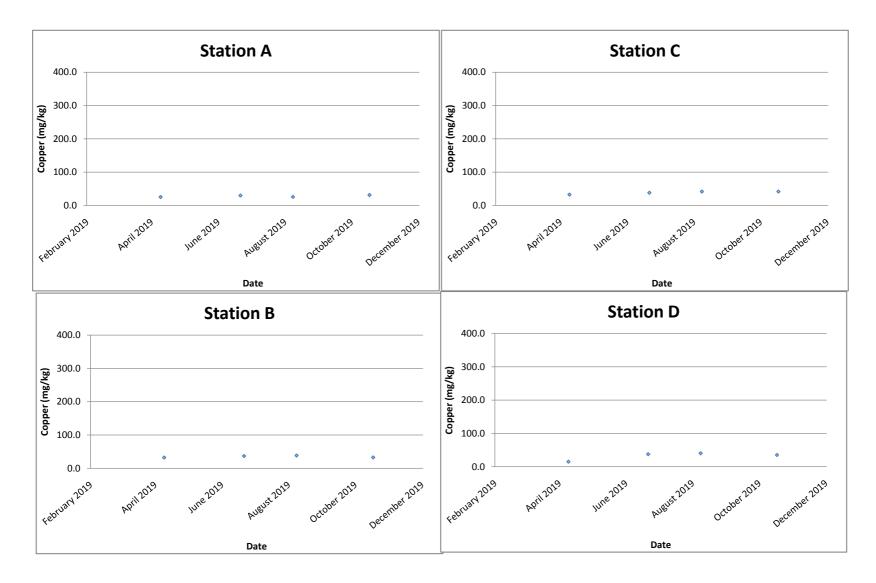


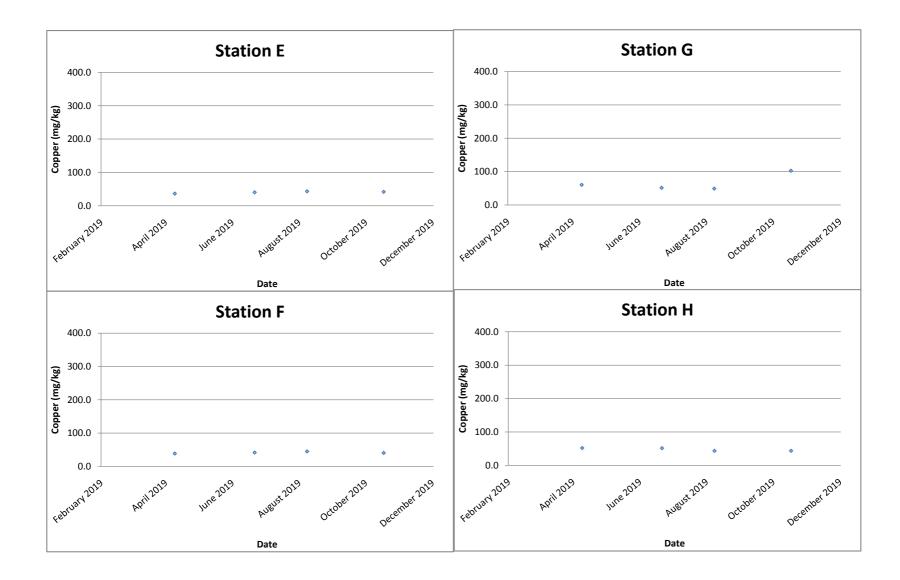

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

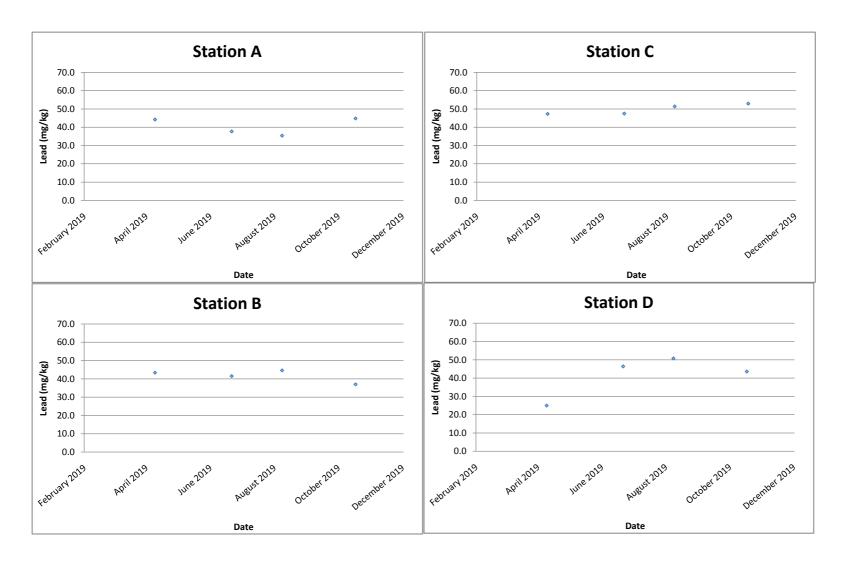
Cadmium (mg/kg)

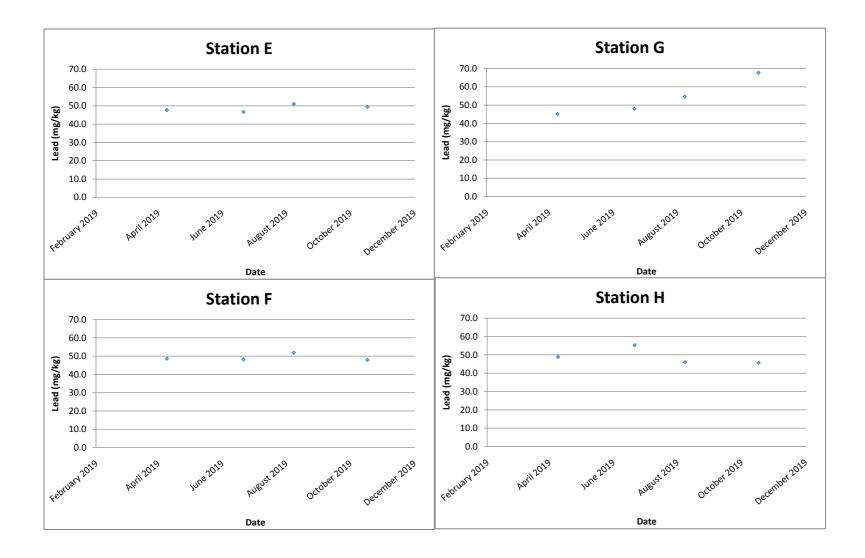


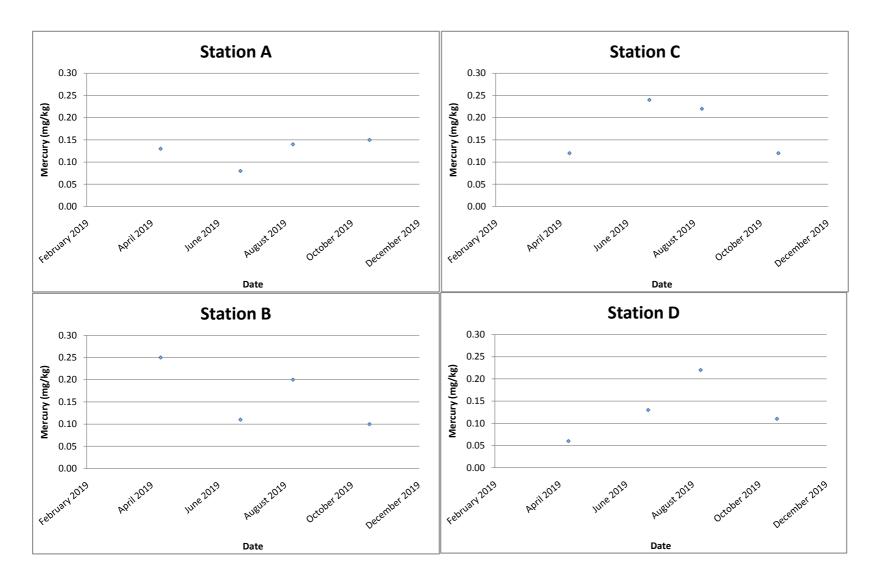
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

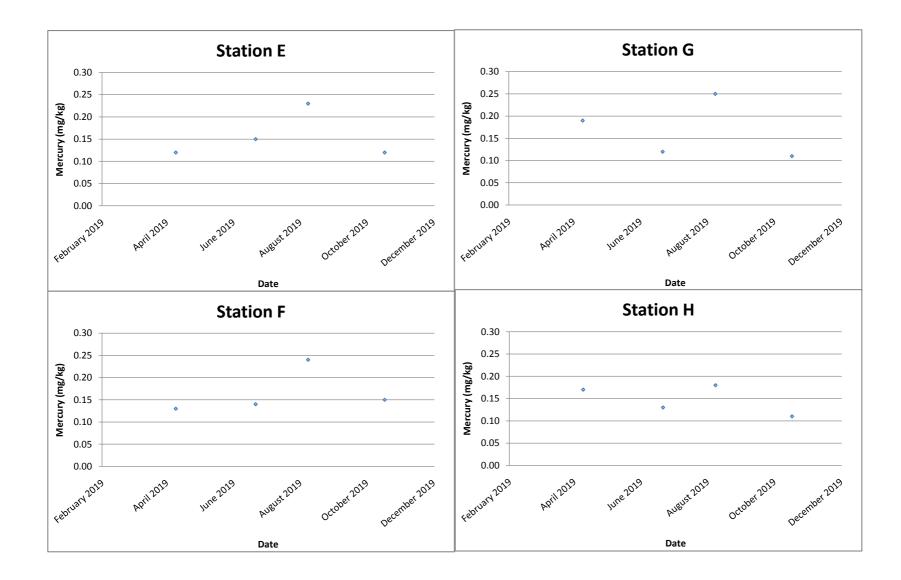

Chromium (mg/kg)

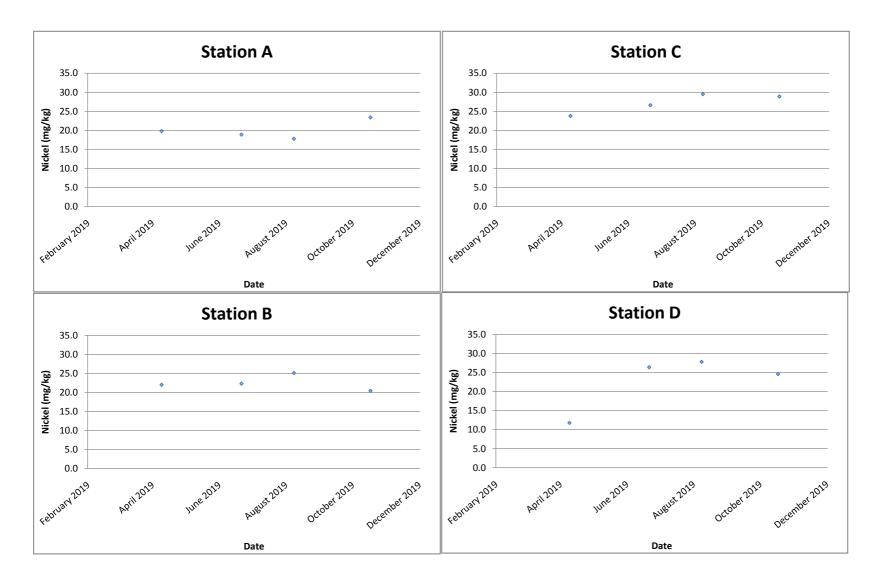

Chromium (mg/kg)

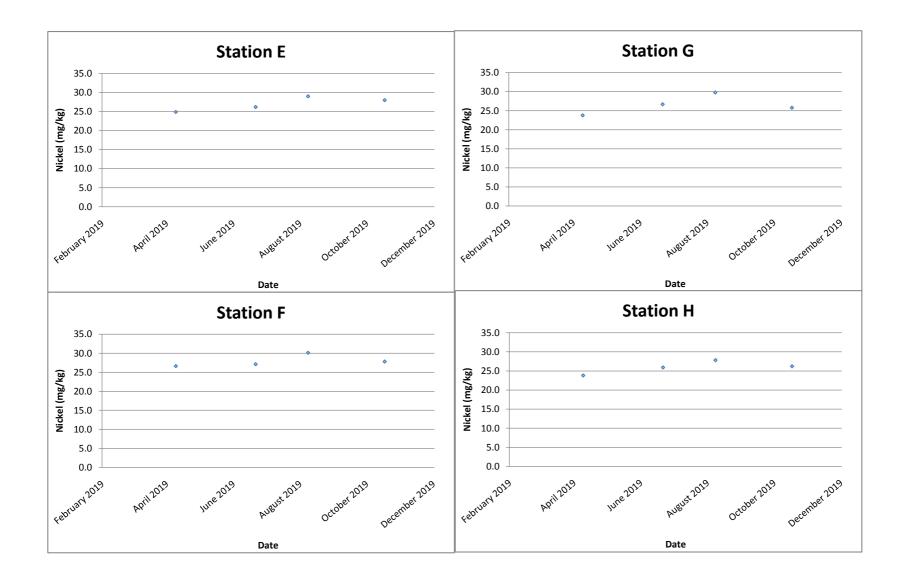

Copper (mg/kg)

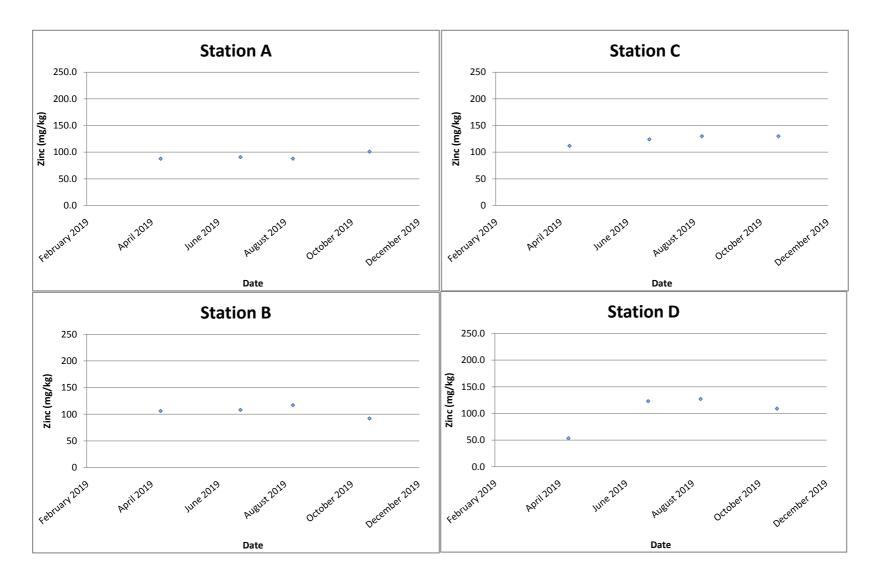

Copper (mg/kg)

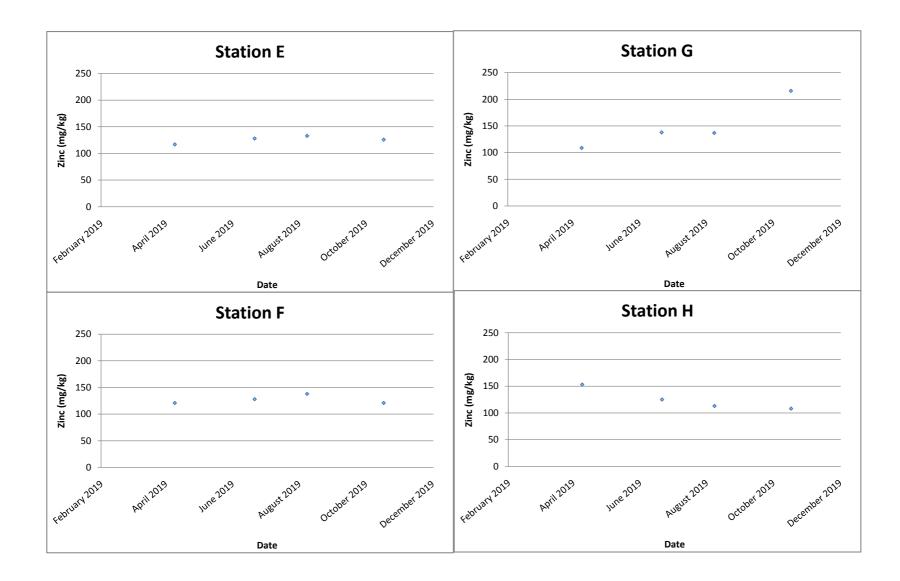

Lead (mg/kg)

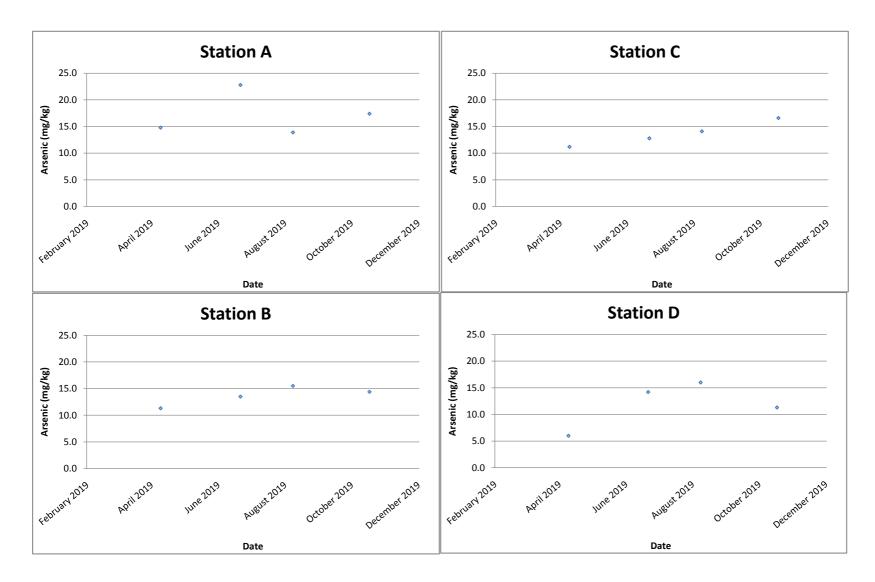

Lead (mg/kg)

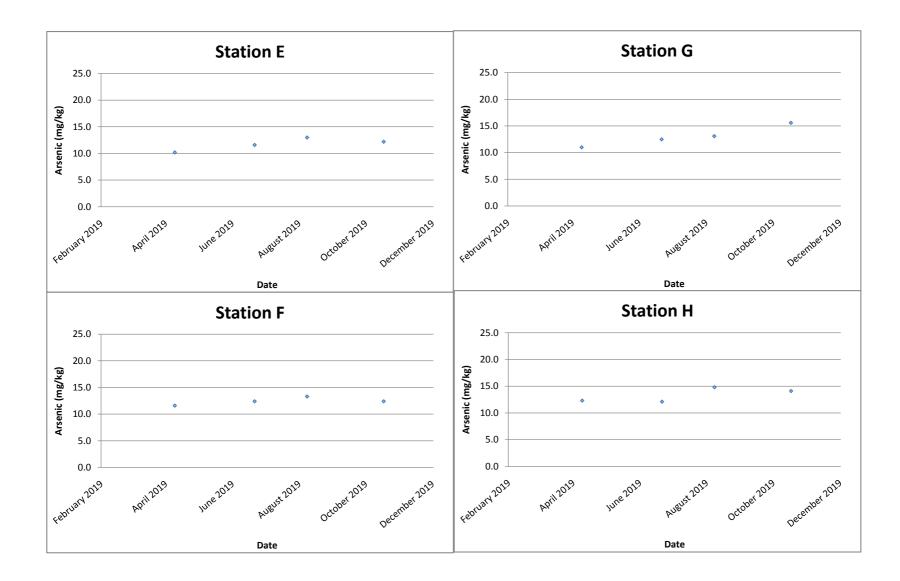

Mercury (mg/kg)

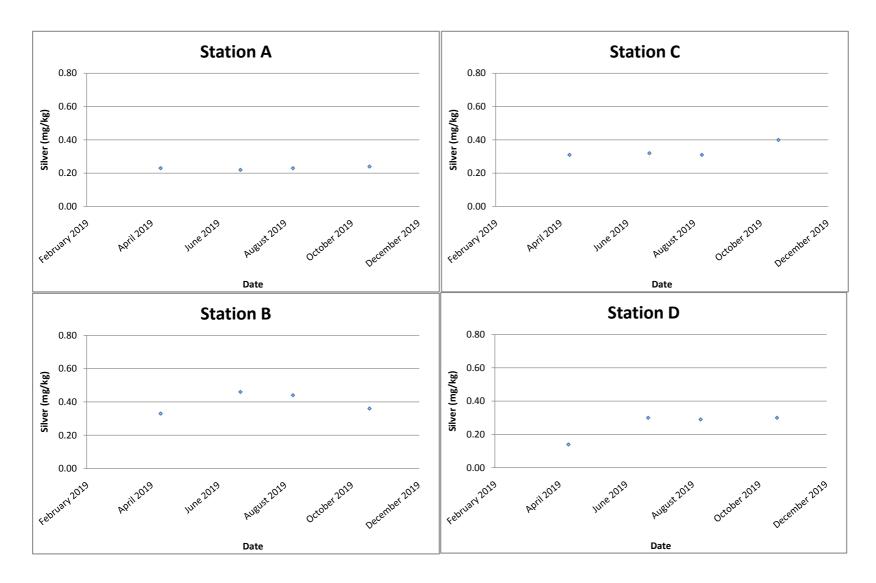

Mercury (mg/kg)

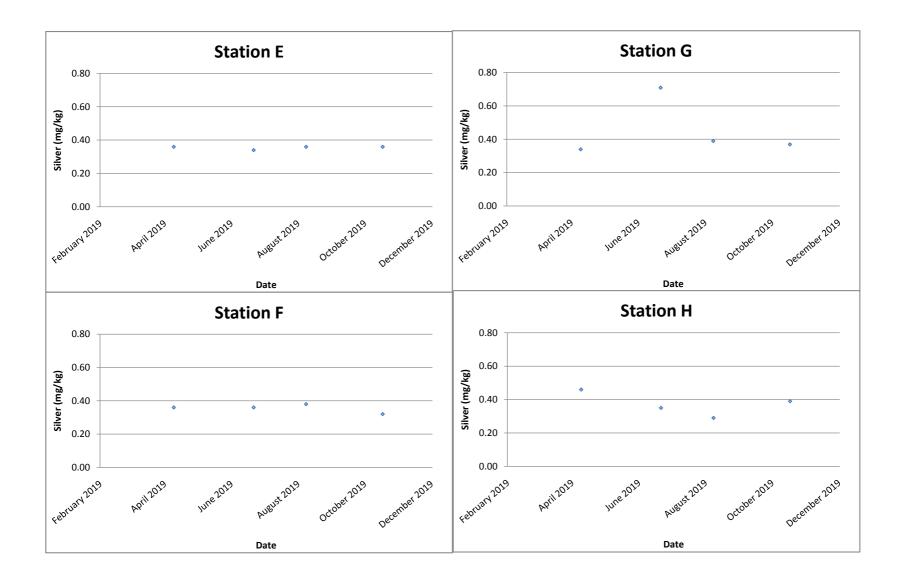

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix H

Benthic Survey Report

Benthic Faunal Monitoring

Conducted in October 2019

Summary Report

Abundance

A total of 319 macrobenthic organisms were recorded from the eight monitoring stations during the October 2019 monitoring period. Compared to both dry (March 2004) and wet (August 2004) seasons baseline data, the current total abundance remained to be relatively lower. This trend has been observed since the commencement of the monitoring activities in April 2018. The abundance distribution across monitoring periods is shown in Figure 1. As previously reported, generally, decreasing abundances were observed during wet season monitoring periods while increasing abundances during dry monitoring periods. These variations might be attributed to the natural response of macrobenthic communities to seasonal changes. However, similar to previous monitoring periods, these observed seasonal variation are not statistically significant (F-value = 1.32. F-crit = 1.90, P-value = 0.22).

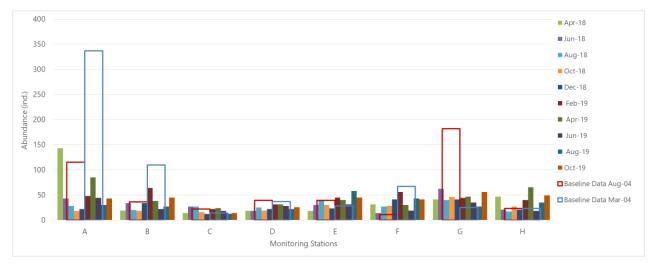


Figure 1. Total abundance (ind.) of benthic

Similar to the previous monitoring periods, statistically significant (F-value = 3.10, F-crit = 2.11, P-value = 0.006) in total abundances across monitoring stations was observed. The lowest abundances were recorded in the impact stations, Station C and Station D, with 14 ind. and 26 ind., respectively. The highest abundance (56 ind.) was recorded in Station G. Abundance distribution showed that the impact stations have relatively lower abundances compared to the reference stations, a similar trend observed in the baseline data. Sediments in these stations remained to be well-sorted composed silt/clay substrate. During the present monitoring period, stations with

moderately sorted sediments have generally higher abundances compared to stations with well-sorted sedments. The abundance-sediment size correlation was more apparent compared to the previous two monitoring periods.

Biomass

The total wet biomass recorded in the eight monitoring stations was 72.67 g, which is lower compared to the previous monitoring period (129.87 g). The current biomass is higher compared to the wet season but lower compared to the dry season baseline data. The highest total biomass was recorded in Station E (20.33 g) while the lowest was in the impact station Station C (0.072g), same observation with the previous monitoring period. The higher biomass observed in Station E was contributed by the relatively larger molluscan species, *Paphia undulata*. The total biomass distribution across monitoring periods and stations is shown in Figure 2.

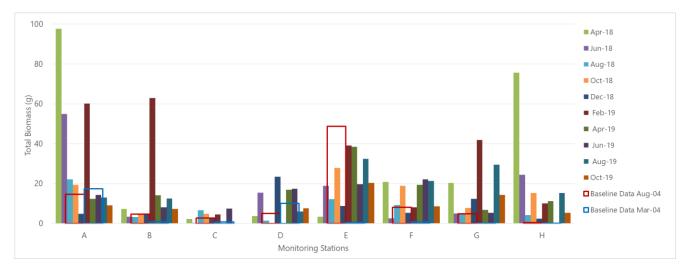


Figure 2. Total biomass (g) of benthic organisms

Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of seven phyla comprising of 33 families and 49 taxa were identified. The benthic fauna composition is dominated by annelids (66.14%), arthropods (19.75%), and molluscs (8.15%)(Figure 3). Same as the baseline study, the most dominant group for the October 2019 monitoring period was the polychaetes Capitellidae. The most dominant species (abundance \geq 10) was the polychaete, *Capitella* sp., with the abundance of 11 ind. in Station G. Capitellids are typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

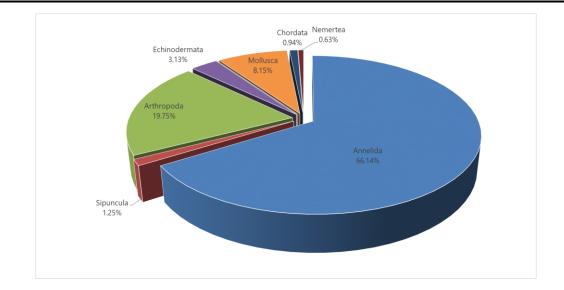


Figure 3. Percent composition of benthic organisms

Highest number of genera was recorded in Station E (24) and Station G (24) and the lowest in was in the impact station Station C (9). Similar to abundance and biomass, relatively lower number of taxa was observed at impact stations compared to the reference stations.

Abundance and biomass of macrobenthic organisms are shown in Tables 1 and 2 and data summary for different monitoring periods are presented in Tables 3 to 7 of Appendix A. Representative photos of specimen are shown in Appendix B.

Diversity

Diversity index (*H*') and Evenness index (*J*) ranged from 2.11 - 2.26 and 0.88 - 0.96 in impact stations, and 2.76 - 2.97 and 0.88 - 0.96 among the reference stations as shown in Appendix A, which suggest that benthic faunal diversity is relatively higher at reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values recorded in the previous monitoring periods. Compared with the baseline survey result, the diversity index and evenness index increased.

References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft0bottom benthos within European estuarine and coastal environments. Marine Polltuion Bulletin, 40, 110001114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 2290311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant

: China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor

Marsh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: October 30, 2019

Data Summaries

Table 1. Abundance of macrobenthic communities in the eight monitoring stations, October 2019

Phylum	Class	Order	Family	Genus			SHW	/-Benthic	Stations			
					А	В	С	D	Е	F	G	н
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	3	0	0	1	1	0	2	1
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	0	0	1	0	0	0	0	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	3	2	2	1	2	5	1	5
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	3	2	2	1	5	0	11	2
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	2	1	1	0	6	0	2	3
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	1	0	2	0	0	0	1	2
Annelida	Polychaeta	Errantia	Phyllodocidae	Polyoclontes	0	0	0	1	0	0	0	0
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0	0	0	3	1	0	0	1
Annelida	Polychaeta	Eunicida	Eunicidae	Marphysa	0	0	0	0	0	0	5	0
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	1	1	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	2	1	0	0	1	2	1	4
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	0	0	0	0	0	1	0	0
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	1	0	0	1
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	2	7	3	0	0	0	0	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0	0	1	1	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys1	0	0	0	0	1	2	1	0
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys2	3	4	0	8	1	3	0	4
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	2	1	0	0	1	0	1	2
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	2	0	0	1	3	0	8	1
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	1	1	0	0	1	6	3	3
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	5	0	0	1	2	1	1
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	2	0	2	0	0	0	2

1687-SHW-R10-201910-text report. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Phylum	Class	Order	Family	Genus			SHW	-Benthic	Stations	6		
					Α	В	С	D	Е	F	G	н
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	1	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	2	0	0	0	0	0	1	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	0	0	0	0	0	0	1	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	0	0	0	1	1	1	0	3
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0	1	0	0	0	0	1	2
Arthropoda	Crustacea	Cumacea	Diastylidae	c.f. Diastylis	1	1	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	1	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	2	2	0	2	3	4	5	3
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	5	2	0	1	2	2	2	1
Arthropoda	Crustacea	Decapoda	Porcellanidae	c.f. Porcellanella picta	0	0	0	0	0	0	2	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	3	2	1	2
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	5	1	0	2	0	2	3
Arthropoda	Malacostraca	Stomatopoda	Squillidae	Mantis shrimp	0	0	0	0	0	1	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	3	1	1	0	2	2	1	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	0	0	0	3	0	1	0	0
Mollusca	Bivalvia	Veneroida	Kellidae	Pseudopythina	0	0	0	0	0	3	0	0
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	0	1	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Tellibidae	c.f. Angulus	0	1	0	0	1	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	2	0	0	3	1	0	2
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	1	0	0	1	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	2	0	0	0	0	0	0	1
Mollusca	Scaphopoda	-	Dentaliidae	-	1	1	0	1	0	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	0	0	0	0	1	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	Trypauchen(T. vagina)	0	0	0	0	1	0	1	0
Nemertea	Enopla	-	-	UNID 1	0	1	0	0	1	0	0	0

Table 2. Biomass of macrobenthic communities in the eight monitoring stations, October 2019

Phylum	Class	Order	Family	Genus		SHW-Benthic Stations								
Phylam	Class	Order	ганну	Genus	Α	В	С	D	Е	F	G	н		
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	0.006	0	0	0.001	0.002	0	0.042	0.015		
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	0	0	0.027	0	0	0	0	0		
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	0.002	0.001	0.003	0.001	0.001	0.003	0.001	0.003		
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.003	0.001	0.002	0.001	0.003	0	0.022	0.001		
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.002	0.002	0.001	0	0.003	0	0.003	0.002		
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0.001	0	0.002	0	0	0	0.002	0.002		
Annelida	Polychaeta	Errantia	Phyllodocidae	Polyoclontes	0	0	0	0.007	0	0	0	0		
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0	0	0	0.005	0.003	0	0	0.002		
Annelida	Polychaeta	Eunicida	Eunicidae	Marphysa	0	0	0	0	0	0	0.031	0		
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	0	0.001	0.001	0		
Annelida	Polychaeta	Phyllodocida	Nereidae	Neanthes	0.002	0	0	0	0	0	0	0		
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	0.002	0.001	0	0	0.002	0.002	0.001	0.005		
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	0	0	0	0	0	0.001	0	0		
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0.003	0	0	0	0	0	0	0		
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	0	0	0	0	0.002	0	0	0.001		
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)	0.004	0.013	0.005	0	0	0	0	0		
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0	0	0.002	0.005	0		
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys1	0	0	0	0	0.004	0.003	0.002	0		
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys2	0.004	0.004	0	0.011	0.002	0.005	0	0.005		
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0.008	0.003	0	0	0.002	0	0.002	0.026		
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0.003	0	0	0.002	0.012	0	0.048	0.004		
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	0.001	0.001	0	0	0.001	0.004	0.001	0.003		
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	0.003	0	0	0.001	0.001	0.001	0.001		
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0.007	0	0.008	0	0	0	0.006		
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0.001	0	0	0	0	0	0	0		

1687-SHW-R10-201910-text report. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0.015	0	0	0	0	0	1.628	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella	0	0	0	0	0	0	0.017	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	0	0	0	0.002	0.002	0.002	0	0.009
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0	0.002	0	0	0	0	0.001	0.003
Arthropoda	Crustacea	Cumacea	Diastylidae	c.f. Diastylis	0.016	0.011	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	2.855	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.007	0.021	0	0.018	0.133	0.069	0.041	0.023
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1.285	3.216	0	1.035	0.978	0.963	2.765	0.013
Arthropoda	Crustacea	Decapoda	Porcellanidae	c.f. Porcellanella picta	0	0	0	0	0	0	0.055	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	0	0	0	0	0.001	0.001	0.001	0.001
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0.002	0.001	0	0.001	0	0.001	0.001
Arthropoda	Malacostraca	Stomatopoda	Squillidae	Mantis shrimp	0	0	0	0	0	1.498	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	1.557	0.764	0.008	0	2.025	3.154	0.011	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	0	0	0	6.500	0	0.031	0	0
Mollusca	Bivalvia	Veneroida	Kellidae	Pseudopythina	0	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	0	0.018	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Tellibidae	c.f. Angulus	0	0.010	0	0	3.200	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	0.300	0	0	13.900	2.900	0	4.200
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0.024	0	0	0.020	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	5.200	0	0	0	0	0	0	1.087
Mollusca	Scaphopoda	-	Dentaliidae	-	0.923	0.008	0	0.025	0	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	0	0	0	0	0.015	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	Trypauchen(T. vagina)	0	0	0	0	0.037	0	9.600	0
Nemertea	Enopla	-	-	UNID 1	0	0.003	0	0	0.004	0	0	0

Table 3	Table 3. Summary of Benthic Survey Data, October 2019											
Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)							
А	43	9.04	21	2.93	0.96							
В	45	7.25	22	2.84	0.92							
C*	14	0.07	9	2.11	0.96							
D*	26	7.62	13	2.26	0.88							
E	45	20.33	24	2.97	0.94							
F	41	8.66	19	2.76	0.94							
G	56	14.28	24	2.79	0.88							
Н	49	5.41	22	2.97	0.96							
TOTAL	319	72.67	49									

*Impact Sites

Table 4. Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
Е	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

*Impact Sites

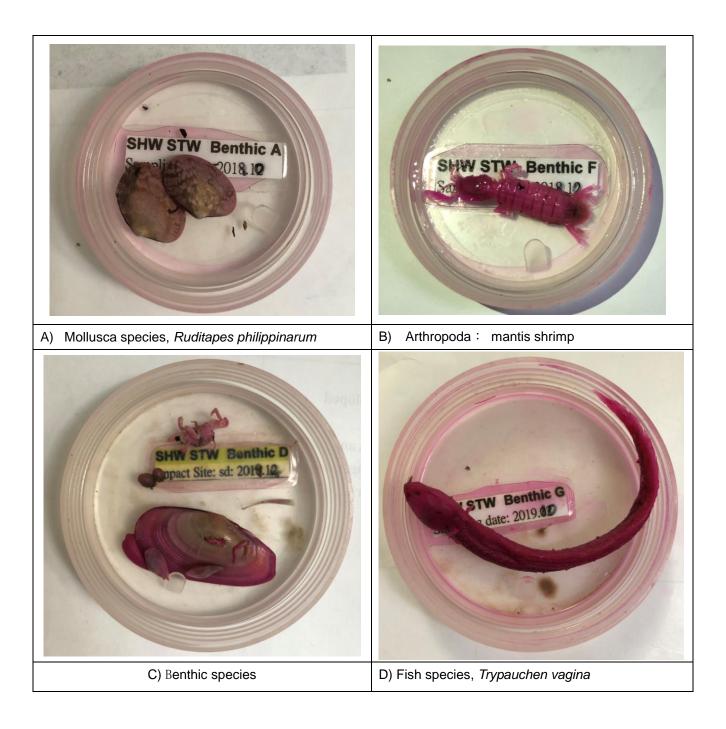
Table 5. Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)
А	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.30
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

*Impact Sites

Taxon	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19
Annelida	31.12	53.01	65.02	65.35	69.44	54.99	70.28	57.67	64.31	66.14
Sipuncula	0.30	0.80	0.45	0	0.93	0	0	0	1.57	1.25
Arthropoda	13.60	15.66	12.11	13.86	10.19	20.23	10.83	7.91	9.80	19.75
Echinodermata	15.11	4.82	5.38	2.97	2.78	3.42	4.72	4.65	5.10	3.13
Cnidaria	0.60	0.40	0	0	0.93	0.85	0	0.93	0.39	0
Mollusca	50.45	21.29	15.69	16.83	12.96	19.94	13.33	27.44	17.25	8.15
Chordata	2.11	0.80	0.45	0	0.93	0.28	0.56	0.93	1.18	0.94
Nemertea	0.30	3.22	0.90	0.99	1.85	0.28	0.28	0.47	0.39	0.63

Table 6. Taxonomic Composition (%) of Benthic Survey


Table 7. Taxonomic Composition (abundance) of Benthic Survey

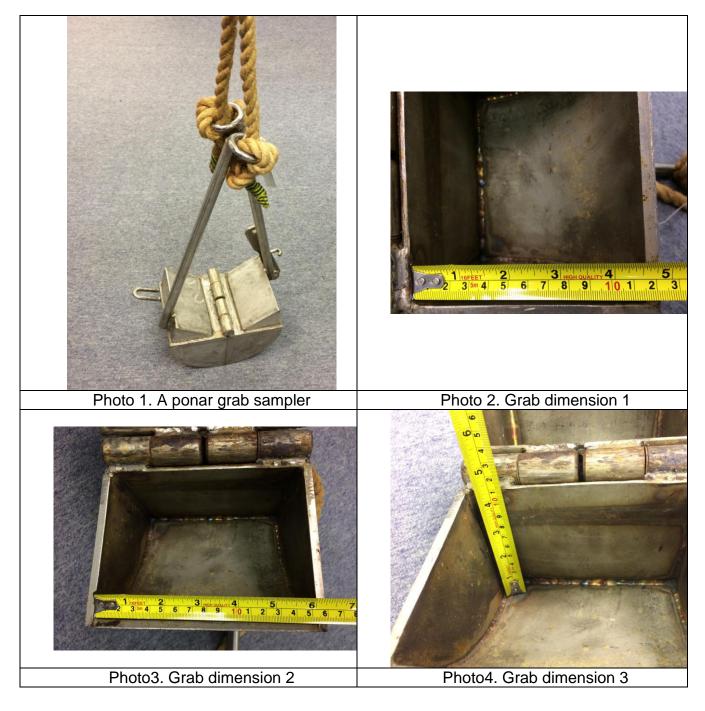
Taxon	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19
Annelida	103	132	145	132	150	193	253	124	164	211
Sipuncula	1	2	1	0	2	0	0	0	4	4
Arthropoda	45	39	27	28	22	71	39	17	25	63
Echinodermata	5	12	12	6	6	12	17	10	13	10
Cnidaria	2	1	0	0	2	3	0	2	1	0
Mollusca	167	53	35	34	28	70	48	59	44	26
Chordata	7	2	1	0	2	1	2	2	3	3
Nemertea	1	8	2	2	4	1	1	1	1	2

1687-SHW-R10-October-text report. doc

Photos of Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B


Appendix I

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•			
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
	Manage				
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0501B

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented