Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Monthly EM&A Report April 2020

- Client : Drainage Services Department Project : Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
- Report No.: : 0041/17/ED/0544A

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Our Ref. 1458/20-0090

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Drainage Services Department Projects and Development Branch Consultants Management Division 42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

By Post and E-mail

Dear Sir,

13 May 2020

RE: CONTRACT NO. CM 13/2016 INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (APRIL 2020)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for April 2020 (Report No.: 0041/17/ED/0544A) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 13 May 2020 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Ms. Joanne NG at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/jn/dt

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	20
5.	CHINESE WHITE DOLPHIN MONITORING	27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	31
10.	FUTURE KEY ISSUES	
11.	CONCLUSION	33

FIGURE

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Odour Patrol Points of Modified Odour Patrol
Figure 3	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Figure 4 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0544A

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Thirty-third Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 April 2020 to 30 April 2020 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 6, 17, 23 and 29 April 2020. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 6 April 2020. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Report No.: 0041/17/ED/0544A

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Page 3

Report No.: 0041/17/ED/0544A

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0544A

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Page 5

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2	Categories of Odour Intensity	y for Modified Odour Patrol Monitoring
-----------	-------------------------------	--

Odour	Odour	Classification Criteria
Level	Intensity	
0	Not detected	No odour perceived or an odour so weak that it cannot be easily characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 7

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in **Figure 1**.
- 2.4.2 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Odour	Description
Patrol Point	
OD1	Eastern Site Boundary
OD2	Southern Site Boundary
OD3	Western Site Boundary
OD4	Northern Site Boundary
OD5	Spur Road near Discovery Bay Tunnel Outlet
OD6	Cheung Tung Road near the Bus Depot
OD7	Cheung Tung Road near O·PARK1
OD8	Sham Shui Kok Dr near MTR Depot
OD9	Discovery Bay Tunnel Toll Plaza

Table 2.3	Odour Patrol Point

Note:

As access permission from the company of Discovery Bay Tunnel is under requisition progress, OD5 (Spur Road near Discovery Bay Tunnel Outlet) was not covered in odour patrol monitoring in the reporting period temporarily.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 8

odour event in 3 months / Odour

intensity of 3 or above is measured

from odour patrol

2.4.3 The odour patrol points of modified odour patrol is shown in **Figure 2**.

2.5 Monitoring Frequency and Duration

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.4** below.

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

Duration	Frequency			
	¹ Weekly basis for 6 months during the initial operation			
15 minutes	stage			
	⁴ Weekly basis			
³ 15 minutes	² First week of the odour patrol monitoring			
	15 minutes			

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.

2.5.2 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

Table 2.5 AC	tion and Limit Levels for Air Quality	/ Wonitoring
Parameter	Action	Limit
Odour Nuisance	One complaint received for specific	Two or more independent
	odour event / Odour intensity of 2	complaints received for specific

 Table 2.5
 Action and Limit Levels for Air Quality Monitoring

or above is measured from odour

patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. The odour patrol monitoring was carried out on 6, 17, 23 and 29 April 2020. As access permission from the company of Discovery Bay Tunnel is under requisition progress, OD5 (Spur Road near Discovery Bay Tunnel Outlet) was not covered in odour patrol monitoring in the reporting period temporarily.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Date	Location	Temperature (°C)	Relative Humidity (%)	Wind Direction	Wind Speed (m/s)
6 April 2020	OD1	18.0	77	E	0.4
	OD2			-	0.0
	OD3			-	0.0
	OD4			-	0.0
	OD6			E	2.1
	OD7			E	0.5
	OD8			NE	2.0
	OD9			NE	0.9
17 April 2020	OD1	25.4	67	N	0.1
	OD2			-	0.0
	OD3			N	0.8
	OD4			N	1.1
	OD6			N	0.9
	OD7			N	0.1
	OD8			N	0.2
	OD9			N	0.4
23 April 2020	OD1	20.2	87	-	0.0
	OD2			-	0.0
	OD3			-	0.0
	OD4			-	0.0
	OD6			-	0.0
	OD7			-	0.0
	OD8			NE	0.8

 Table 2.6
 Summary of Meteorological Data in Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 10

Report No.: 0041/17/ED/0544A

	OD9			-	0.0
29 April 2020	OD1	25.2	71	NE	0.7
	OD2			-	0.0
	OD3			NE	1.6
	OD4			NE	0.4
	OD6			NE	0.4
	OD7			NE	1.5
	OD8			NE	0.2
	OD9			NE	0.7

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

Monitoring Parameter
Odour Patrol [^] (Odour Level)
Range
0 - 0
0 - 0
0 - 0
0 - 0
0 - 0
0 - 0
0 - 0
0 - 0
-

Table 2.7 Summary of Air Quality Monitoring Result in Reporting Period

Remark:

^Odour Level: 0 – Not detected, 1 – Slight, 2 – Moderate, 3 – Strong, 4 – Extreme

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 11

Report No.: 0041/17/ED/0544A

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1	Location of Water Quality Monitoring
-----------	--------------------------------------

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2Parameters for Water Quality Monitoring

Monitoring Parameters									
In-situ Measurement	Laboratory Analysis								
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)								
Temperature (degree Celsius)	5-day BOD (mg/l)								
pH value	Suspended Solids (mg/l)								
Water depth (m)	Ammonia as N (mg/l)								
Salinity (ppt)	Nitrate as N (mg/l)								
Turbidity (NTU)	Nitrite as N (mg/l)								
Current Speed (m/s)	Total inorganic nitrogen (mg/l)								
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)								

Page 12

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3. Table 3.4** summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in **Appendix E**.

Parameter	Equipment	Model	Range	Equipment Accuracy
UXVAAA	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

 Table 3.3
 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0544A

Table 3.4Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	490113
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

E-mail : matlab@fugro.com

Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Tuen Mun, N.T.,

Hong Kong.

Page 14

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out was 6 April 2020. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix F.**

_	I able	3.6	Sun	ummary of In-situ Monitoring Results (Mid-ebb)							
	Monitoring Station	Water Depth (m)	Samplin g Depth (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
	А	17	S 1		6.87	20.91	7.38	30.60	3.9	0.36	289.3

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 15

Report No.: 0041/17/ED/0544A

Monitoring Station	Water Depth (m)		nplin epth	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree
	(11)	(11)		(IIIg/L)	Celsius)				(11/3)	magnetic)
		S	1	6.71	21.10	7.43	30.47	4.0	0.36	270.6
		M	8.5	6.40	21.33	7.57	30.86	5.4	0.27	308.1
		M	8.5	6.38	21.33	7.59	30.87	5.5	0.29	305.4
		В	16	6.32	21.34	7.64	31.27	8.1	0.29	297.4
		B	16	6.28	21.33	7.65	31.38	8.6	0.26	291.5
		S	1	6.87	21.05	7.71	30.52	3.8	0.11	108.3
		S	1	6.71	21.21	7.75	30.42	3.9	0.11	109.5
_		M	7	6.40	21.36	7.75	30.80	5.3	0.15	131.5
В	14	M	7	6.38	21.37	7.75	30.84	5.6	0.15	136.9
		В	13	6.32	21.36	7.75	31.23	7.4	0.08	122.6
		B	13	6.28	21.35	7.75	31.34	7.8	0.09	128.0
		S	1	6.68	21.21	7.78	29.75	4.2	0.09	158.4
		S	1	6.66	21.20	7.78	29.70	4.2	0.10	157.3
•	4.0	M	6	6.52	21.32	7.77	30.58	4.4	0.12	149.1
С	12	M	6	6.47	21.35	7.77	30.73	4.6	0.13	143.2
		В	11	6.43	21.36	7.77	31.04	5.3	0.17	117.4
		В	11	6.33	21.38	7.78	31.14	5.5	0.16	120.9
		S	1	6.56	21.38	7.78	29.70	4.7	0.21	219.4
	13	S	1	6.55	21.27	7.78	29.65	4.5	0.21	223.6
_		M	6.5	6.43	21.21	7.78	30.27	4.8	0.14	205.1
D		M	6.5	6.36	21.25	7.78	30.94	4.7	0.14	207.8
		В	12	6.30	21.34	7.79	31.05	5.2	0.25	192.5
		В	12	6.28	21.37	7.79	31.09	5.3	0.24	199.6
		S	1	6.95	20.63	7.81	31.26	4.9	0.08	189.2
		S	1	6.69	21.21	7.81	31.03	4.6	0.08	185.3
_		M	8	6.35	21.33	7.80	31.48	4.1	0.11	164.2
E	16	M	8	6.32	21.34	7.80	31.47	4.3	0.11	162.7
		В	15	6.26	21.34	7.80	31.51	4.7	0.07	145.3
		В	15	6.29	21.34	7.80	31.58	4.5	0.07	148.9
		S	1	6.26	20.94	7.81	31.22	3.9	0.08	64.6
		S	1	6.29	21.13	7.81	31.05	4.2	0.09	72.4
-	00	Μ	11.5	6.32	21.25	7.81	31.27	4.1	0.06	59.2
F	23	Μ	11.5	6.33	21.28	7.81	31.37	4.1	0.06	56.6
		В	22	6.28	21.34	7.81	31.49	4.4	0.11	83.4
		В	22	6.26	21.34	7.81	31.53	4.6	0.11	86.1
		S	1	6.70	21.34	7.79	31.08	5.7	0.11	90.2
		S	1	6.61	21.33	7.79	30.96	5.4	0.11	84.1
0	00	Μ	11	6.53	21.35	7.79	31.11	4.8	0.16	106.3
G	22	Μ	11	6.48	21.36	7.79	31.28	5.0	0.16	108.1
		В	21	6.32	21.36	7.79	31.44	7.2	0.16	80.6
		В	21	6.33	21.36	7.79	31.49	7.2	0.16	82.1
		S	1	6.32	21.34	7.79	31.21	5.1	0.20	110.2
		S	1	6.30	21.34	7.79	31.20	5.3	0.21	118.2
	40	Μ	9.5	6.37	21.33	7.80	31.40	5.1	0.22	129.3
Н	19	Μ	9.5	6.34	21.31	7.80	31.40	5.1	0.23	128.7
		В	18	6.29	21.35	7.80	31.49	9.7	0.22	131.5
		В	18	6.28	21.35	7.80	31.49	9.9	0.22	136.3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0544A

Table 3.7Summary of In-situ Monitoring Results (Mid-flood)

I able								-		
Monitoring	Water		pling	Dissolved	Temperature	рН	Salinity	Turbidity	Current	
Station	Depth	Dep	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
										magnetic)
		S	1	6.66	21.07	7.85	28.68	5.2	0.04	35.2
		S	1	6.68	21.06	7.85	28.68	5.1	0.04	36.4
А	15	М	7.5	6.65	21.12	7.85	29.14	5.5	0.06	59.1
~	10	М	7.5	6.57	21.17	7.85	29.29	5.6	0.05	57.0
		В	14	6.53	21.22	7.85	29.84	5.8	0.06	49.8
		В	14	6.49	21.22	7.85	29.88	5.8	0.06	44.4
		S	1	6.52	21.17	7.85	28.92	5.4	0.22	274.2
		S	1	6.59	21.15	7.85	28.90	5.3	0.22	277.5
В	14	М	7	6.62	21.15	7.85	28.93	5.5	0.22	206.8
D	14	М	7	6.61	21.17	7.85	29.02	5.4	0.25	207.7
		В	13	6.56	21.20	7.85	29.33	6.0	0.19	259.3
		В	13	6.53	21.22	7.85	29.61	6.0	0.18	253.0
		S	1	6.56	21.22	7.85	29.06	5.4	0.19	140.1
		S	1	6.59	21.19	7.85	28.90	5.2	0.18	126.4
С	12	М	6	6.62	21.16	7.85	28.96	5.3	0.12	138.7
U	12	М	6	6.61	21.14	7.85	29.05	5.7	0.13	135.1
		В	11	6.53	21.23	7.85	29.53	6.1	0.07	120.1
		В	11	6.52	21.22	7.85	29.64	5.8	0.08	146.4
		S	1	6.55	21.20	7.85	29.13	5.6	0.12	28.4
	14	S	1	6.57	21.18	7.85	29.00	5.6	0.13	29.1
D		М	7	6.61	21.15	7.85	28.97	5.8	0.10	50.6
D		Μ	7	6.61	21.16	7.85	29.03	5.9	0.11	47.2
		В	13	6.54	21.21	7.85	29.47	6.0	0.09	44.5
		В	13	6.51	21.22	7.85	29.73	6.1	0.09	42.6
		S	1	6.59	21.17	7.85	28.92	5.4	0.24	139.2
		S	1	6.61	21.15	7.85	28.88	5.2	0.23	133.6
Е	14	М	7	6.62	21.16	7.85	29.02	5.5	0.26	174.5
	14	М	7	6.61	21.15	7.85	29.07	5.6	0.26	175.2
		В	13	6.56	21.20	7.85	29.29	5.8	0.25	142.7
		В	13	6.54	21.21	7.85	29.43	5.8	0.24	140.9
		S	1	6.55	21.20	7.83	29.08	5.7	0.05	259.3
		S	1	6.59	21.17	7.83	28.91	5.4	0.06	247.3
F	18	М	9	6.63	21.14	7.84	28.96	5.4	0.07	286.1
Г	10	Μ	9	6.62	21.16	7.84	29.03	5.6	0.06	274.1
		В	17	6.54	21.22	7.84	29.51	6.2	0.10	290.0
		В	17	6.51	21.22	7.85	29.72	6.1	0.95	282.2
		S	1	6.60	21.17	7.80	28.93	5.5	0.18	309.1
		S	1	6.63	21.15	7.81	28.94	5.3	0.17	292.5
G	13	М	6.5	6.63	21.14	7.81	28.97	5.4	0.15	279.1
G	13	М	6.5	6.62	21.16	7.81	29.06	5.8	0.16	284.2
		В	12	6.55	21.21	7.82	29.51	6.6	0.19	290.6
		В	12	6.52	21.22	7.82	29.71	6.5	0.19	289.1
		S	1	6.70	21.07	7.74	28.89	5.2	0.06	193.5
		S	1	6.69	21.08	7.75	28.89	5.2	0.07	190.1
ы	10	М	9.5	6.67	21.11	7.76	29.02	5.5	0.09	168.4
Н	19	М	9.5	6.65	21.13	7.76	29.07	5.7	0.09	160.1
		В	18	6.53	21.22	7.78	29.74	6.1	0.08	177.9
		В	18	6.52	21.23	7.78	29.75	6.1	0.08	172.4

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 17

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix F**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)											
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^-	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		``` <i>`</i>	(mg/L)	(mg/L)	(mg/L)	``` <i>`</i>	· · · · · · · · · · · · · · · · · · ·	× 0 /	`` <i>`</i>
	· · ·	Ś	1	5.1	0.104	0.016	0.286	0.407	33	0.02	<1.0
		S	1	6.0	0.102	0.027	0.276	0.405	38	0.02	<1.0
_		M	8.5	5.3	0.101	0.016	0.297	0.413	32	0.02	<1.0
A	17	M	8.5	6.2	0.104	0.020	0.284	0.407	40	0.02	<1.0
		B	16	6.1	0.102	0.019	0.291	0.411	46	0.02	<1.0
		B	16	7.0	0.102	0.020	0.282	0.408	39	0.02	<1.0
		S	1	4.5	0.103	0.020	0.282	0.407	ND	0.02	<1.0
		s	1	5.4	0.100	0.022	0.286	0.412	ND	0.02	<1.0
		M	7	5.4	0.104	0.022	0.265	0.394	ND	0.02	<1.0
В	14	M	7	5.6	0.100	0.021	0.203	0.334	ND	0.02	<1.0
		B	13	5.9	0.102	0.020	0.273	0.404	ND	0.02	<1.0
		B	13	5.6	0.104	0.011	0.290	0.412	ND	0.02	<1.0
		ь S	13	4.2	0.104	0.013	0.297	0.413	ND	0.02	<1.0
		S	-								
		S M	1	4.7	0.095	0.022	0.350	0.467	ND	0.02	<1.0
С	12		6	5.6		0.025	0.343	0.458	ND	0.02	<1.0
		M	6	5.9	0.094	0.020	0.345	0.458	ND	0.02	<1.0
		В	11	5.0	0.095	0.022	0.335	0.452	ND	0.02	<1.0
		В	11	5.3	0.094	0.022	0.342	0.458	ND	0.02	<1.0
		S	1	6.4	0.094	0.016	0.333	0.443	ND	0.02	<1.0
	13	S	1	5.8	0.091	0.012	0.346	0.448	ND	0.02	<1.0
D		М	6.5	5.2	0.093	0.019	0.334	0.445	ND	0.02	<1.0
2		М	6.5	4.8	0.095	0.027	0.326	0.448	ND	0.02	<1.0
		В	12	5.1	0.096	0.031	0.335	0.463	ND	0.02	<1.0
		В	12	4.6	0.096	0.018	0.345	0.459	ND	0.02	<1.0
		S	1	4.6	0.104	0.023	0.262	0.389	17	0.02	<1.0
		S	1	3.9	0.102	0.016	0.290	0.408	14	0.02	<1.0
Е	16	М	8	3.7	0.102	0.017	0.281	0.399	14	0.02	<1.0
L	10	Μ	8	4.5	0.105	0.009	0.285	0.398	18	0.02	<1.0
		В	15	4.1	0.107	0.018	0.260	0.385	11	0.02	<1.0
		В	15	5.0	0.102	0.016	0.278	0.396	12	0.02	<1.0
		S	1	5.8	0.117	0.024	0.309	0.450	17	0.02	<1.0
		S	1	6.7	0.106	0.014	0.265	0.385	12	0.02	<1.0
	00	М	11.5	5.3	0.102	0.014	0.300	0.416	18	0.02	<1.0
F	23	Μ	11.5	6.2	0.106	0.022	0.256	0.385	11	0.02	<1.0
		В	22	5.1	0.106	0.018	0.254	0.378	14	0.02	<1.0
		В	22	6.1	0.106	0.032	0.235	0.373	9	0.02	<1.0
		S	1	5.4	0.106	0.021	0.255	0.382	5	0.02	<1.0
		S	1	5.4	0.108	0.013	0.258	0.379	6	0.02	<1.0
		M	11	6.6	0.108	0.011	0.249	0.368	6	0.02	<1.0
G	22	M	11	7.2	0.103	0.012	0.256	0.371	4	0.02	<1.0
		B	21	7.2	0.103	0.012	0.236	0.370	6	0.02	<1.0
		B	21	6.3	0.107	0.020	0.256	0.384	9	0.02	<1.0
		S	1	5.9	0.105	0.023	0.230	0.370	8	0.02	<1.0
Н	19	S	1	5.8	0.100	0.017	0.247	0.370	9	0.02	<1.0
	19	M	9.5	5.6	0.109	0.019	0.251	0.379	8	0.02	<1.0
	1	IVI	9.0	5.0	0.111	0.014	0.204	0.300	0	0.02	<1.0

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 18

Report No.: 0041/17/ED/0544A

Monitoring Station	Water Depth (m)	Sampling Depth (m)		TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ - as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
		Μ	9.5	5.0	0.108	0.022	0.242	0.372	5	0.02	<1.0
		В	18	6.0	0.108	0.017	0.246	0.372	8	0.02	<1.0
		В	18	6.0	0.110	0.028	0.228	0.366	11	0.02	<1.0

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

	able 3.9						esults (M	,			
Monitoring	Water		npling	TSS	NH ₃	NO_2^-	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	6.2	0.104	0.018	0.415	0.538	14	0.02	<1.0
		S	1	5.8	0.104	0.022	0.408	0.533	10	0.02	<1.0
А	15	М	7.5	5.7	0.108	0.028	0.397	0.534	5	0.02	<1.0
~	15	М	7.5	6.0	0.103	0.017	0.418	0.538	7	0.02	<1.0
		В	14	7.0	0.104	0.024	0.402	0.529	4	0.02	<1.0
		В	14	6.5	0.102	0.028	0.400	0.530	3	0.02	<1.0
		S	1	6.6	0.104	0.024	0.413	0.541	6	0.02	<1.0
		S	1	5.9	0.106	0.025	0.413	0.543	8	0.02	<1.0
В	14	М	7	5.1	0.104	0.017	0.408	0.530	10	0.02	<1.0
D	17	М	7	5.7	0.105	0.027	0.416	0.548	11	0.02	<1.0
		В	13	5.4	0.102	0.015	0.429	0.547	5	0.02	<1.0
		В	13	4.7	0.112	0.017	0.433	0.562	5	0.02	<1.0
		S	1	6.8	0.103	0.030	0.404	0.537	2	0.02	<1.0
		S	1	6.2	0.099	0.022	0.416	0.537	2	0.02	<1.0
С	12	М	6	7.2	0.102	0.019	0.415	0.536	3	0.02	<1.0
Ŭ	12	М	6	6.3	0.106	0.039	0.394	0.539	3	0.02	<1.0
		В	11	7.4	0.102	0.024	0.413	0.538	2	0.02	<1.0
		В	11	6.5	0.102	0.027	0.422	0.551	1	0.02	<1.0
		S	1	6.0	0.105	0.021	0.429	0.554	1	0.02	<1.0
		S	1	5.7	0.105	0.023	0.425	0.553	3	0.02	<1.0
D	14	М	7	6.2	0.105	0.024	0.420	0.549	4	0.02	<1.0
2	••	М	7	6.7	0.105	0.024	0.424	0.553	2	0.02	<1.0
		В	13	4.7	0.104	0.020	0.430	0.554	3	0.02	<1.0
		В	13	5.2	0.105	0.023	0.420	0.548	2	0.02	<1.0
		S	1	8.2	0.104	0.023	0.421	0.548	3	0.02	<1.0
		S	1	7.4	0.106	0.034	0.405	0.545	1	0.02	<1.0
E	14	М	7	6.6	0.107	0.017	0.417	0.541	1	0.02	<1.0
_		М	7	6.1	0.111	0.024	0.413	0.549	1	0.02	<1.0
		В	13	5.5	0.106	0.025	0.412	0.543	3	0.02	<1.0
		В	13	5.2	0.113	0.034	0.404	0.551	5	0.02	<1.0
		S	1	7.5	0.106	0.024	0.420	0.550	1	0.02	<1.0
		S	1	6.5	0.109	0.018	0.430	0.557	1	0.02	<1.0
F	18	М	9	5.8	0.106	0.022	0.422	0.551	2	0.02	<1.0
		Μ	9	6.1	0.111	0.036	0.406	0.554	1	0.02	<1.0
		В	17	5.7	0.102	0.026	0.422	0.550	ND	0.02	<1.0
		В	17	5.2	0.102	0.024	0.426	0.552	ND	0.02	<1.0
		S	1	6.8	0.103	0.024	0.420	0.547	1	0.02	<1.0
		S	1	5.9	0.105	0.023	0.421	0.549	3	0.02	<1.0
G	13	М	6.5	6.4	0.105	0.011	0.434	0.551	ND	0.02	<1.0
		M	6.5	6.7	0.108	0.021	0.421	0.550	ND	0.02	<1.0
		В	12	6.7	0.105	0.027	0.408	0.540	ND	0.02	<1.0
		В	12	6.2	0.103	0.015	0.424	0.541	ND	0.02	<1.0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page '	19
--------	----

Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	8.0	0.104	0.019	0.417	0.540	5	0.02	<1.0
		S	1	9.0	0.104	0.021	0.402	0.526	7	0.02	<1.0
н	19	Μ	9.5	8.0	0.104	0.025	0.398	0.527	13	0.02	<1.0
	19	Μ	9.5	8.3	0.104	0.014	0.414	0.532	17	0.02	<1.0
		В	18	7.1	0.104	0.018	0.417	0.538	8	0.02	<1.0
		В	18	6.4	0.104	0.019	0.413	0.535	12	0.02	<1.0

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

 Table 3.10
 Weather condition of water quality monitoring

Ai	r Temperat	ure	Mean	Total	
Maximum	Mean	Minimum	Relative	Rainfall	
(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)	
			(%)		
17.9	17.1	16.1	92	21.5	
	Maximum (deg. C)	Maximum Mean (deg. C) (deg. C)	(deg. C) (deg. C) (deg. C)	MaximumMeanMinimumRelative(deg. C)(deg. C)(deg. C)Humidity(%)	

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 20

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1	Location of Sediment Qualit	y Monitoring and Benthic Survey
-----------	-----------------------------	---------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Monitoring Paramet	ters			
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey			
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)			
Total organic carbon* (%)	Chromium (µg/L)			
pH value	Copper (µg/L)			
Ammonia as N (mg-N/kg)	Lead (µg/L)			
Total nitrogen (mg-N/kg)	Mercury ((µg/L)			
Total phosphorus (mg-N/kg)	Nickel (µg/L)			
Cadmium (mg/kg)	Zinc (µg/L)			
Chromium (mg/kg)	Arsenic (µg/L)			
Copper (mg/kg)	Silver (µg/L)			
Lead (mg/kg)				
Mercury (mg/kg)				
Nickel (mg/kg)				
Zinc (mg/kg)				
Arsenic (mg/kg)]			
Silver (mg/kg)]			

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Page 21

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 22

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits		
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%		
Total Organic Carbon	APHA 5310B	0.05%		
pH value	APHA 4500H: B	0.1 pH unit		
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg		
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg		
Total Phosphorus	APHA 4500P: B&H	10 mg/kg		
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg		
Chromium		0.5 mg/kg		
Copper		0.2 mg/kg		
Lead		0.2 mg/kg		
Mercury		0.05 mg/kg		
Nickel		0.2 mg/kg		
Zinc		0.5 mg/kg		
Arsenic		0.5 mg/kg		
Silver		0.1 mg/kg		

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 23

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 6 April 2020. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0544A

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

Table		Oummai	y 01 100	oratory t	anaiyoio	loound		ainnenn		ing			
Monitoring	рН	NH ₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/k	(mg	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	g)	/kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)									
А	8.2	3	911	504	<0.10	38.0	29.7	43.1	0.14	22.4	93.9	16.1	0.22
В	8.3	2	984	529	0.14	46.0	60.6	48.4	0.14	25.9	112	15.1	0.48
С	7.9	18	1410	658	<0.10	43.6	40.0	42.3	0.12	27.0	119	13.0	0.32
D	7.7	8	868	431	<0.10	32.0	27.6	32.8	0.09	19.6	89.0	9.8	0.23
E	8.1	5	1280	600	<0.10	43.2	41.5	42.2	0.16	26.2	122	11.7	0.34
F	8.1	8	1210	547	0.10	49.4	48.2	50.4	0.14	30.7	138	14.5	0.39
G	8.4	80	1200	507	<0.10	41.0	52.8	38.9	0.14	23.2	142	11.6	0.37
Н	8.2	6	1100	594	0.11	49.4	62.0	48.7	0.12	28.6	119	14.4	0.45

Table 4.5	Summary of	of laboratory	analysis	results for benthic survey
	Carrinary	or iaboratory	anaryoro	

Monitoring Station	Total organic	Grai	n size pr	ofile (%	%)	Description	
Station	carbon (%)	Gravel Sand		Silt	Clay		
A	0.68	3	41	32	24	Dark grey, sandy SILT/CLAY with shell fragments	
В	0.82	3	20	50	27	Dark grey, slightly sandy SILT/CLAY with shell fragments	
С	0.93	0	4	59	37	Dark grey, slightly sandy SILT/CLAY with shell fragments	
D	0.74	1	18	52	29	Dark grey, slightly sandy SILT/CLAY with shell fragments	
Е	0.88	0	13	53	34	Dark grey, slightly sandy SILT/CLAY with shell fragments	
F	0.94	0	7	58	35	Dark grey, slightly sandy SILT/CLAY with shell fragments	
G	0.54	29	25	23	23	Dark grey, slightly sandy, slightly gravelly SILT/CLAY with shell fragments	
Н	0.75	0	5	56	39	Dark grey, slightly sandy SILT/CLAY with shell fragments	

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix H**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

 Table 4.6
 Weather condition of water quality monitoring

Date	Air Temperature		Mean	Total	
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
6 April 2020	17.9	17.1	16.1	92	21.5

Source: Hong Kong Observatory

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 25

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring	Abundance	Total	Number of	Diversity (H')	Evenness (J)	
Station	(ind.)	Biomass (g)	Таха		=======================================	
А	46	13.649	19	2.471	0.839	
В	45	13.202	21	2.733	0.898	
С	37	12.997	18	2.705	0.936	
D	58	15.189	21	2.706	0.889	
E	45	5.571	19	2.487	0.845	
F	43	6.019	18	2.602	0.900	
G	54	13.117	29	3.085	0.916	
Н	60	4.567	22	2.618	0.847	
TOTAL	388	84.311				

Table 4.7Summary of benthic survey data on 6 April 2020

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 388 macrobenthic organisms recorded from the eight monitoring stations, which is lower than that reported in baseline survey. The decrease is predominantly caused by the lower abundance of annelids recorded in this survey. The lowest abundance with 37 individuals (ind.) recorded in Station C and the highest (60 ind.) recorded in Station S and D) has no obvious difference with that in the reference stations. The sediments of impact sites and reference sites are all mainly composed of silt/clay with shell fragments. There is no significant difference between the impact sites and the reference sites. This observation is indicative of a point-source disturbance, which will be verified with continued monitoring.

ii) Biomass

The total wet biomass from eight monitoring stations is comprised of 84.311g. The highest total biomass was observed in Station D (15.189g), while Station H (4.567g) exhibited the lowest biomass. The relatively higher biomass observed in Station D contributed to the relatively higher biomass of the mollusca species, *Paphia undulate*. The biomass at the impact stations were generally lower compared to those of the reference stations in the baseline data (August 2004).

iii) Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of eight phyla comprising of 38 families and 54 genera were identified. The benthic fauna composition is dominated by Annelida (56.44%), Arthropoda (28.87%) and Mollusca (11.60%). Compared to the baseline study (August 2004), the most dominant groups were the *Capitellidae* polychaetes and *Veneridae* Bivalvia, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). Based on the recorded abundance, the percentage of mollusca decreased during monitoring period.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 26

The dominant species (abundance > 10) were the Arthropoda, *Gammarus sp.1* and the Annelida *Paraprionospio*. Arthropoda, *Gammarus sp.1* with the abundance of 14 ind from Stations E and the abundance of 18 ind from Stations H in this survey. While Annelida *Paraprionospio* with the abundance of 15 ind from Station A. Compared to the baseline study (August 2004), the most dominant groups were the capitellid and cirratulid polychaetes, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

Highest number of genera was recorded in Station G (29) and relatively lower in Station C & Station F (18). Similar to abundance and biomass, little differences in number of taxa was observed at impact stations compared to the reference stations.

iv) Diversity

Benthic diversity index (H) and eveness index (J) ranged 2.705 – 2.706 and 0.889 – 0.936 in impact stations, and 2.471 – 3.085 and 0.839 – 0.916 among the reference stations as shown in data summary, which suggest that benthic faunal diversity is relatively richer at some of reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values in the impact stations and the reference stations, respectively. Compared with the baseline survey result, the diversity index and evenness index increased obviously.

The detailed benthic survey results are provided in Appendix I.

 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 27

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 1 August 2019, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2019. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2019-20) is uploaded to AFCD's webpage.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 28

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix L.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 30

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 6, 17, 23 and 29 April 2020. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 6 April 2020. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Page 31

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date		
Air	0	0	1		
Noise	0	0	0		
Water	0	0	0		
Waste	0	0	0		
Others	0	0	0		
Total	0	0	0		

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 32

Report No.: 0041/17/ED/0544A

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

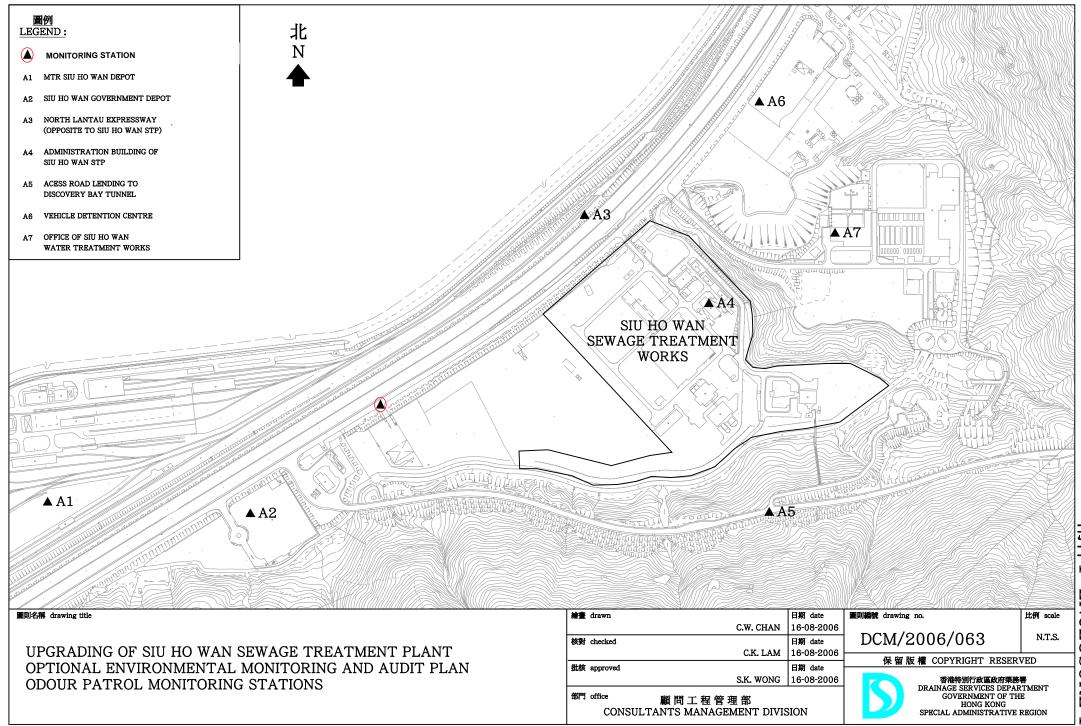
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 33

Report No.: 0041/17/ED/0544A

11. CONCLUSION

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 6, 17, 23 and 29 April 2020. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 6 April 2020 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 1 August 2019, "Monitoring of Marine Mammals in Hong Kong Waters (2018-19)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in August 2019. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2019-20) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

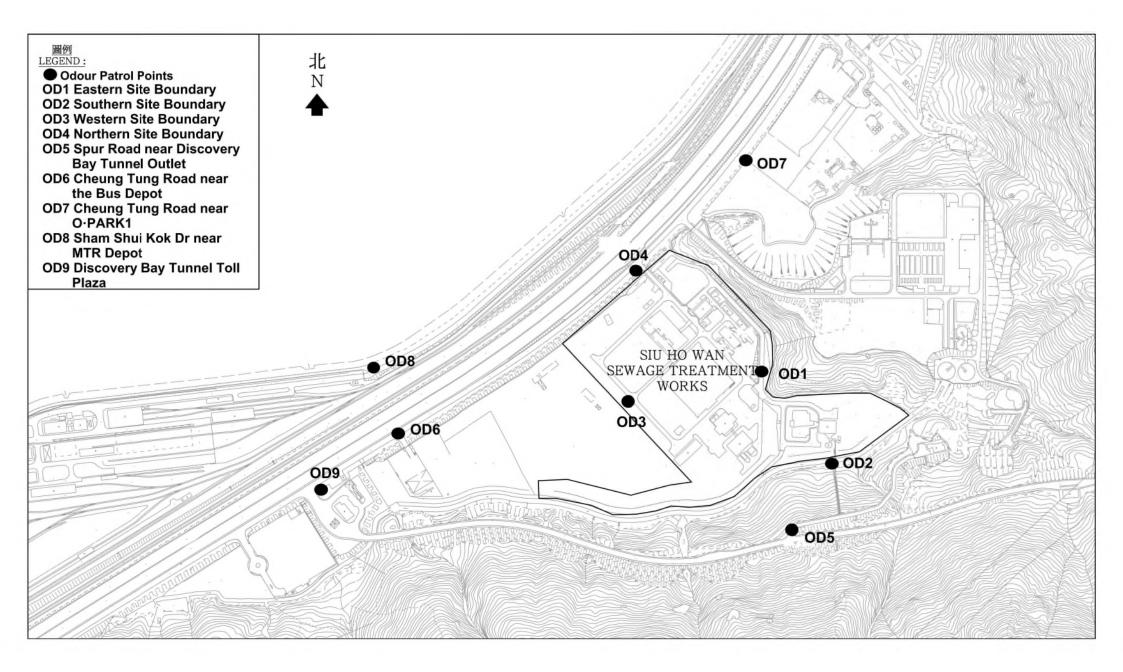
Report No.: 0041/17/ED/0544A

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

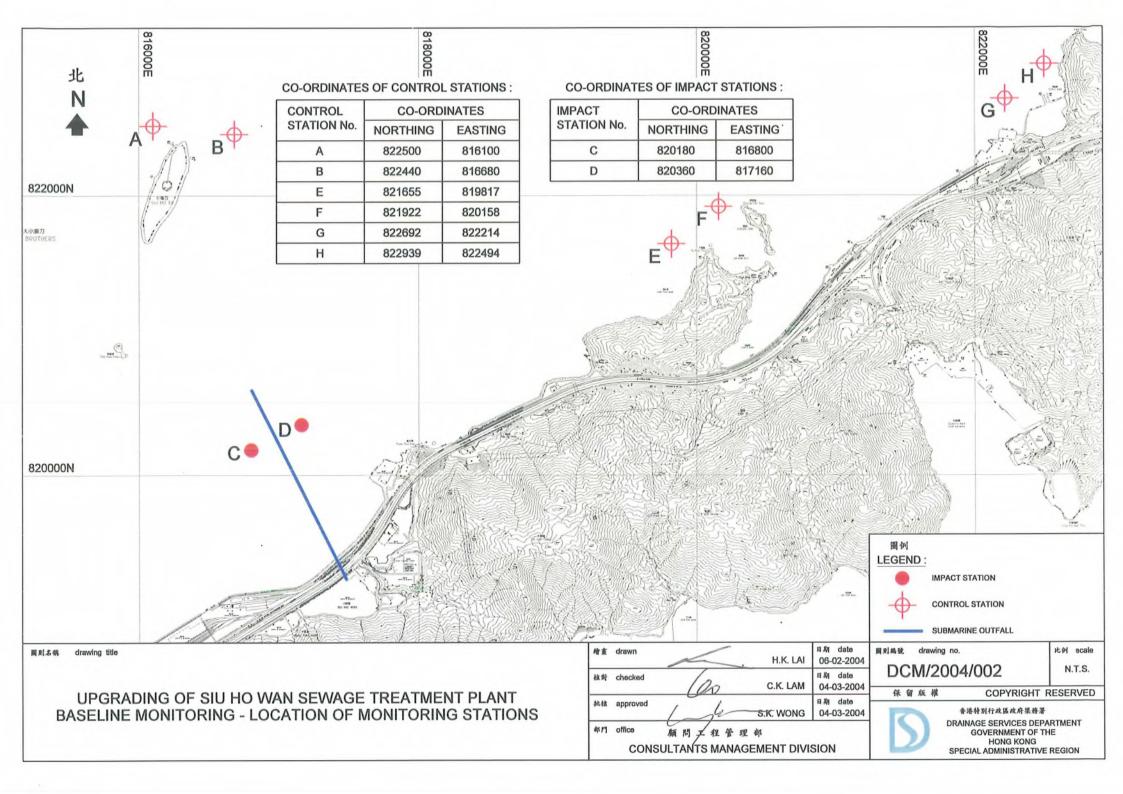

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Figure 2

Odour Patrol Points of Modified Odour Patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Figure 4

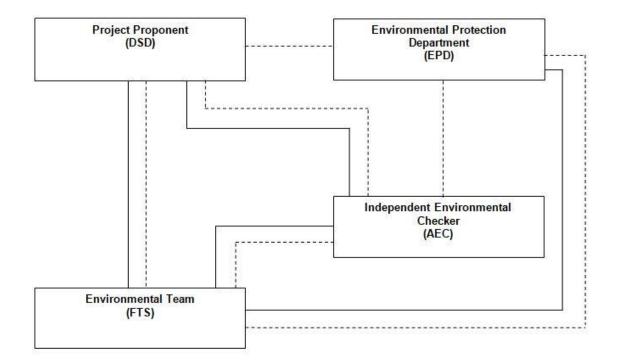
Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 April	2	3	4
5	6 Odour Patrol Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (11:28) Mid-Ebb (17:09)	7	8	9	10	11
12	13	14	15	16	17 Odour Patrol	18
19	20	21	22	23 Odour Patrol	24	25
26 Bemerke	27	28	29 Odour Patrol	30		

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Monitoring Schedule	e for the N	Next Reporting	Period
---------------------	-------------	----------------	--------

Sun	Mon	Tue	Wed	Thur	Fri	Sat
					1 May	2
3	4	5 Odour Patrol	6	7	8	9
10	11 Odour Patrol	12	13	14	15	16
17	18	19	20	21	22 Odour Patrol	23
24	25	26	27	28 Odour Patrol	29	30
31						

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

	ACTION				
EVENT	ET	IEC	*Operator		
Action Level					
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; and Discuss with Operator on required remedial actions. 	 Check odour patrol results submitted by ET; Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; and Amend operation methods if appropriate. 		
Limit Level					
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; Discuss with EPD and the 	 Check odour patrol results submitted by ET; Discuss amongst ET and the Operator on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Indentify/ confirm source with ET; Inform ET, IEC and EPD; Discuss with EPD and ET on the required remedial actions; Ensure remedial actions properly implemented; Take immediate action to avoid further exceedance; Implement the agreed proposals. 		

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

12. Amend proposal if appropriate; and 13. Resubmit proposal if problem still not under control.
--

* The operator who is the constructor responsible for the operation during the maintenance period.

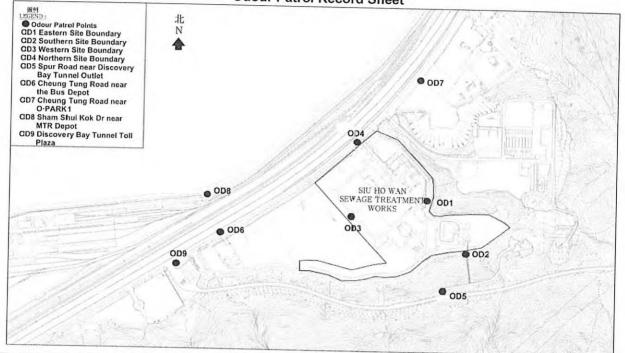
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix D

Results and Graphical Presentation of Air Quality Monitoring


FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B, Profit Industrial Building, Tel

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

(852)-24508238 Fax (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	6 Apr 2020 Weather Clou	why	Temperatu	re 30	(Hur	midity フラッ
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	09:54	Ē		11	
OD2	Southern Site Boundary	04:58	-	04	V	- /
OD3	Western Site Boundary	09:50			. 0	/
OD4	Northern Site Boundary	09:46	/	U Ö	0	- /
OD5	Spur Road near Discovery Bay Tunnel Outlet			0	0	/
OD6	Cheung Tung Road near the Bus Depot	09:24	T			/
OD7	Cheung Tung Road near O·PARK1	09:20	1		0	/
OD8	Sham Shui Kok Dr near MTR Depot	09:15	E NF	0.5	0	/
OD9	Discovery Bay Tunnel Toll Plaza			2.0	0	1
*Classif	fication Criteria:	09:21	NE	0.9	0	1

Not detected Slight Moderate

Strong Extreme : No odour perceived or an odour so weak that it cannot be easily characterised or described

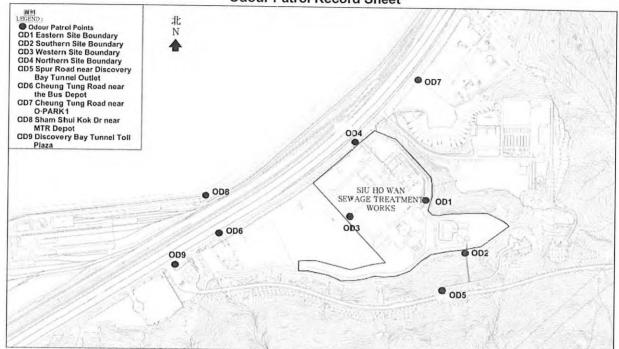
: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance : Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by: Name: FON/ KA CHUN Date: Apr 2020 6

Checked by: Name: 1-10 1-10 40 Date: 2020 0/7

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.


FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong

Tel : (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	6/4/2020 Weather Clov	idy	Temperatu	re (9	Hur	midity ファック
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	09:54	F	0.4	0	1
OD2	Southern Site Boundary	09:58	1	0	D	1
OD3	Western Site Boundary	09:50		0	D	
OD4	Northern Site Boundary	09:46		0	1	
OD5	Spur Road near Discovery Bay Tunnel Outlet	-	/	-		1
OD6	Cheung Tung Road near the Bus Depot	69:24	E	2.1	0	
OD7	Cheung Tung Road near O PARK1	09-26	F	0.5	0	- /
OD8		09-15	-	2.0	0	
OD9	Discovery Bay Tunnel Toll Plaza	09:21	NE	0.4	D	

ation Criteria: Not detected

Slight

Strong

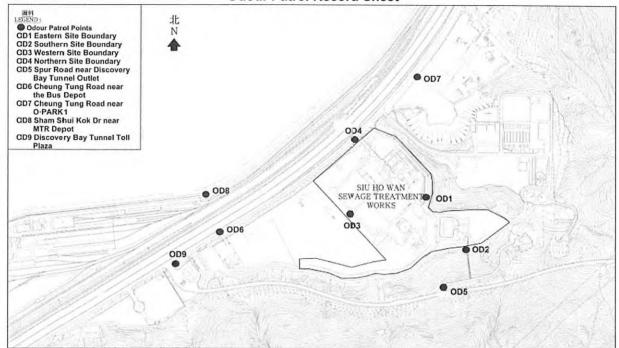
Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance Moderate identifiable odour, and moderate chance to have odour nuisance Moderate

Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level


Recorded by:	2p Tsz Har	Checked by:	M
Name: _	2p 762 Ha	Name:	CHUI KAM HO
Date: _	6/4/2020-	Date:	6 April 2020

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	17 Apr 2020 Weather Fr	ne	Temperatur	e 25.	4°C Hu	midity 67%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10:08	2	0.1	0	/
OD2	Southern Site Boundary	10:14	1	D	0	1
OD3	Western Site Boundary	10:04	N	0.8	0	/
OD4	Northern Site Boundary	10:00	N	[.]	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet	/	/		/	1
OD6	Cheung Tung Road near the Bus Depot	01:41	N	0.0	Ø	1
OD7	Cheung Tung Road near O·PARK1	09:45	N	0,1	0	1
OD8	Sham Shui Kok Dr near MTR Depot	09:30		0.2	0	1
OD9	Discovery Bay Tunnel Toll Plaza	09:34		0.4	0	/

*Classification Criteria:

Slight

Strong

Extreme

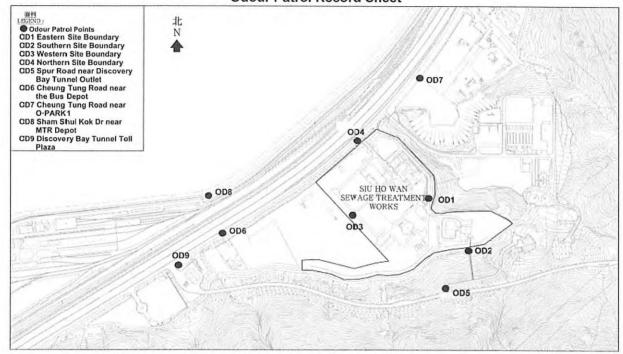
Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level


20 152 Hm 20 152 Hm 17/4/2020 Recorded by: Checked by: Name: Name: Ho (Ho AM Date: Date: 7 Apri 2020

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B, Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	171412020	Weather	Fine	Temperatur	re 25.4	C H	umidity	67%
ID	Location		Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour C	haracteristics
OD1	Eastern Site Boundar	10:08	N	0.1	D	1 1	1	
OD2	Southern Site Boundary			1	0	0		/
OD3	Western Site Boundary			N	0.8	0	1	/
OD4	Northern Site Bounda	ry	10.00	N	1.1	D		/
OD5	Spur Road near Disco	overy Bay Tunnel	Outlet /	/	/	1		/
OD6	Cheung Tung Road n	ear the Bus Depo	ot 04-41	2	0.9	0		/
OD7	Cheung Tung Road n	04.45		0.1	D	/	,	
OD8	Sham Shui Kok Dr near MTR Depot		09-30	2	0.2	D		/
OD9	Discovery Bay Tunnel Toll Plaza			N	0.4	0		1

*Classification Criteria:

Not detected

Slight

Strong

Extreme

Moderate

: No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

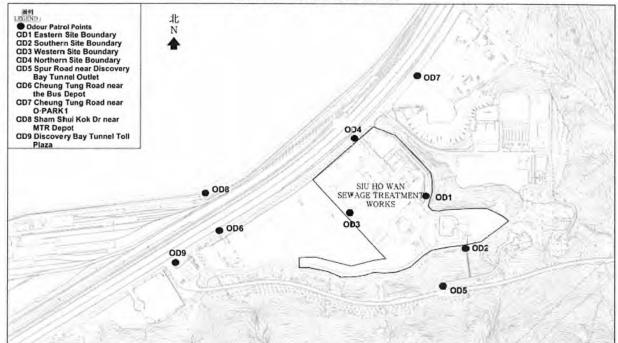
: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: C Name: _ CL hean Date: 17070

Checked by: Name: HU KAM Ho Date: April 2020

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.


Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 Tel Fax (852)-24508032 Email mcl@fugro.com.hk

1.

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	23/4/7.020 Weather Clou	idy	Temperatu	re 20.	2°C Hur	midity 87%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10:09	/	0	0	/
0.00		10-14	/	0	D	/
OD3			1	0	O	/
OD4	Northern Site Boundary	10:05	1	0	6	1
OD5	Spur Road near Discovery Bay Tunnel Outlet	/	1	/	/	/
OD6	Cheung Tung Road near the Bus Depot	9:43	/	0	0	/
OD7	7 Cheung Tung Road near O·PARK1		1	0	0	1
OD8	8 Sham Shui Kok Dr near MTR Depot		NE	0.8	Ð	1
OD9	Discovery Bay Tunnel Toll Plaza		1	0	D	/

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

Strong Extreme

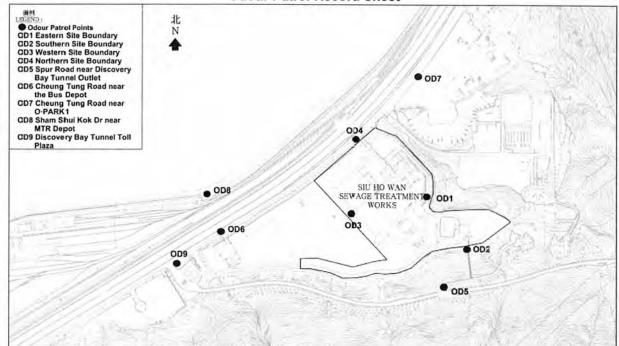
Slight

Moderate

Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by:	KAN Kenz TUNG	Checked by:	148
Name:	KAN KUZ TONG	Name:	CHUZ KAM HO
Date:	23/4/2020	Date:	23 April 2020

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.


Tel

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		23/4 /2020 Weather	Cloudy	Temperatu	re 20.	200 +	lumidity	87%
ID	Locat	ion	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	, Odour C	haracteristics
OD1	OD1 Eastern Site Boundary			/	D	0	/	
OD2	OD2 Southern Site Boundary			/	D	D	1	
OD3	Western Site Boundary			/	0	0	/	
OD4	North	ern Site Boundary	10.01	/	0	0	/	-
OD5	Spurl	Road near Discovery Bay Tunnel		1	1	1	/	
OD6	Cheur	ng Tung Road near the Bus Depo	t 9:43	/	0	0	/	
OD7	Cheung Tung Road near O·PARK1		9:44	1	0	D	1	
OD8	Sham Shui Kok Dr near MTR Depot		9-34	NE	0.8	0	1	
OD9	Discovery Bay Tunnel Toll Plaza			1	D	D	1	

*Classification Criteria:

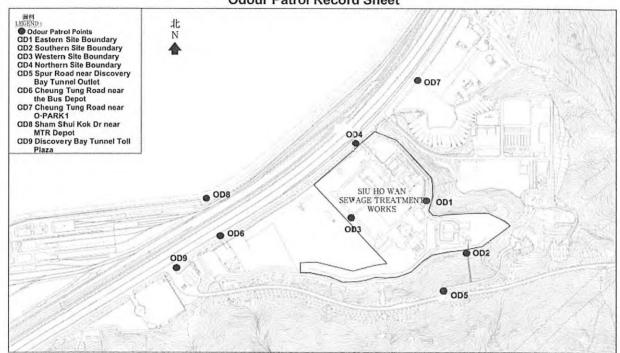
: No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance

Slight Moderate Strong Extreme

Not detected

Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level


Recorded by: Checked by: Name: HO 707 Name: ICAM CHOI Date: 22 Date: 2020 23 April n

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B, Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email :mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	2914/2020 Weather F-	ine	Temperatur	e 25.	2°C H	umidity	71%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour C	haracteristics
OD1	Eastern Site Boundary	10:26	NE	0.7	D	/	
OD2	Southern Site Boundary	10:30	/	0	D	/	/
OD3	Western Site Boundary		NE	1.6	D		/
OD4	Northern Site Boundary	10:17	NE	0.4	D		/
OD5	Spur Road near Discovery Bay Tunnel Outle	t /	/	/	/	/	
OD6	Cheung Tung Road near the Bus Depot	9:26	NE	0.4	D	/	
OD7	Cheung Tung Road near O PARK1		NE	1.5	0	/	
OD8	Sham Shui Kok Dr near MTR Depot		NE	0.2	0	/	
OD9	Discovery Bay Tunnel Toll Plaza	9:23	NE	0.7	0	1	/

*Classification Criteria:

Slight

Strong

Extreme

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance

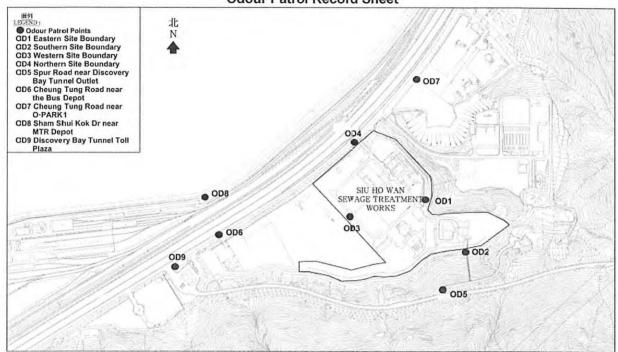
: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: WAN Name: WAN WAI Date: 29 2020

1 Checked by: CHULKAM Name: Ho Date: 29 Apri 2020

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.


FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

(852)-24508238 Tel (852)-24508032 Fax mcl@fugro.com.hk Email

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	29/4/2020 Weather F	ine	Temperatur	e 25.	2°C H	lumidity	71%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	, Odour Cł	aracteristics
OD1	Eastern Site Boundary	10:26	NE	0.7	D	/	
OD2	Southern Site Boundary	10:30	/	0	0	1	
OD3	Western Site Boundary		NE	1.6	0	1	
OD4	Northern Site Boundary	10:17	NE	0.4	D	/	
OD5	Spur Road near Discovery Bay Tunnel Outle		/	/	/	1	
OD6	Cheung Tung Road near the Bus Depot	9:26	NE	0.4	0	1	
OD7	Cheung Tung Road near O·PARK1		NE	1.5	D	1	
OD8	Sham Shui Kok Dr near MTR Depot		NE	0.2	б	1	
OD9	Discovery Bay Tunnel Toll Plaza	9:23	NE	0.7	0	1	

*Classification Criteria:

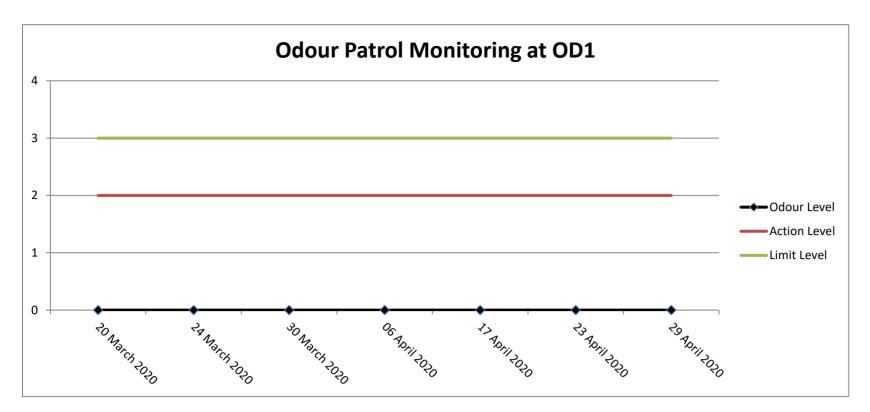
: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Slight Moderate Strong Extreme

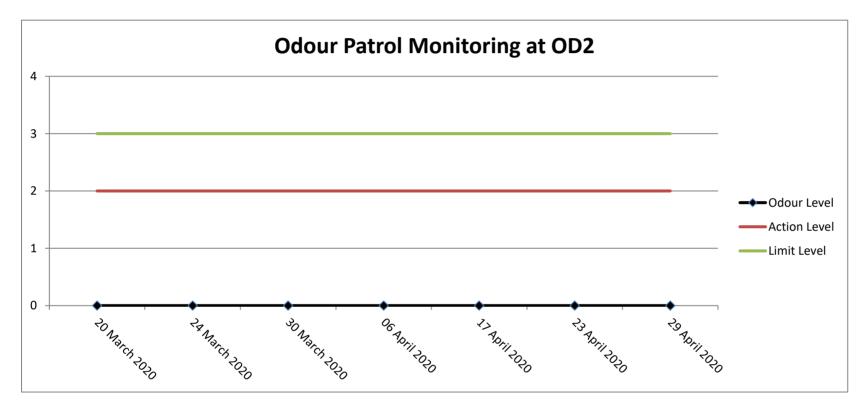
Not detected

Moderate identifiable odour, and moderate chance to have odour nuisance Strong identifiable, likely to have odour nuisance

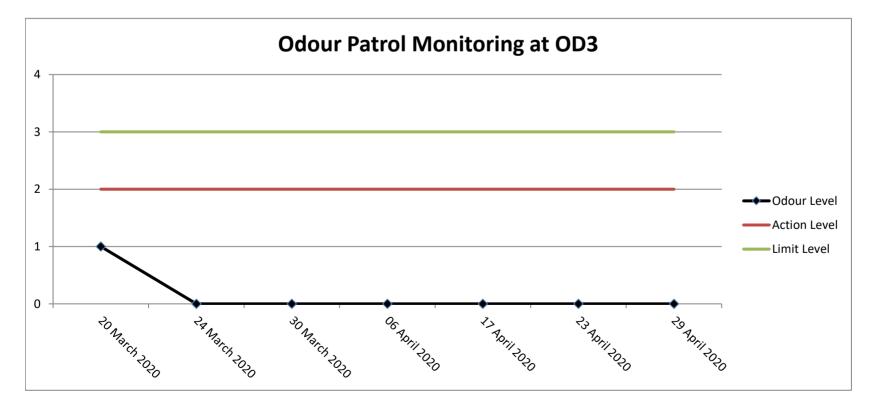

: Extreme severe odour, and unacceptable odour level

Recorded by: Name: Date:

AA Topl u7 29 4/2020


Checked by: Name: CHOI Ho Am K Date: 29 Apri 2020

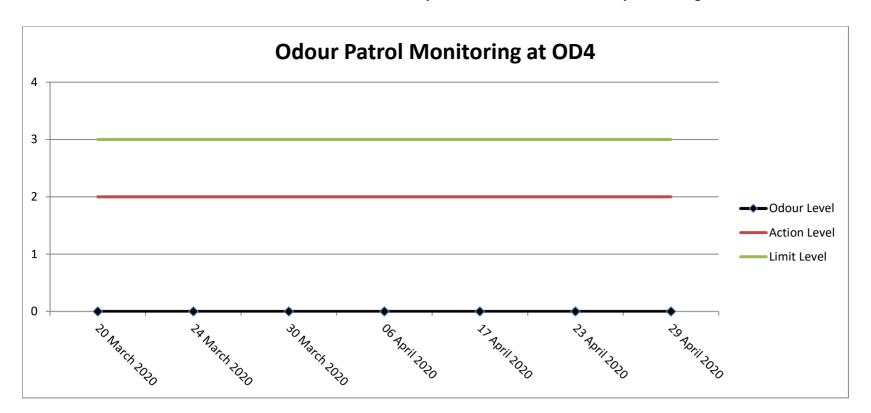
The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

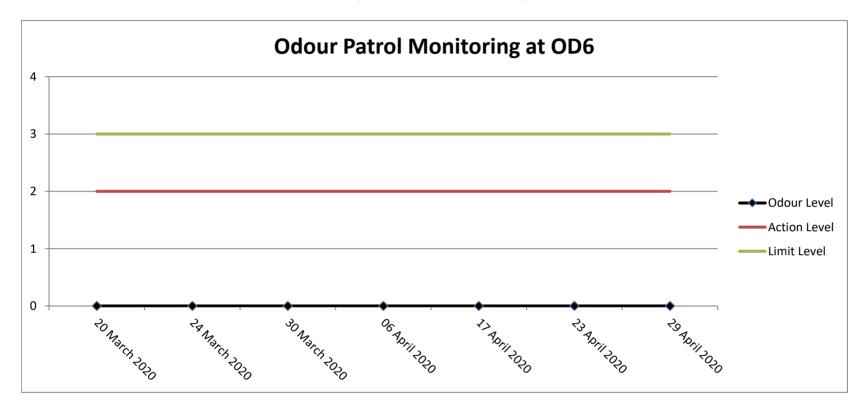
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

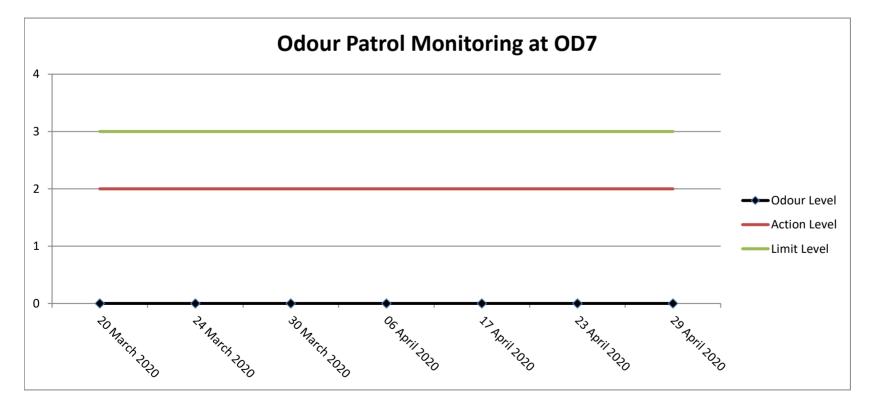


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

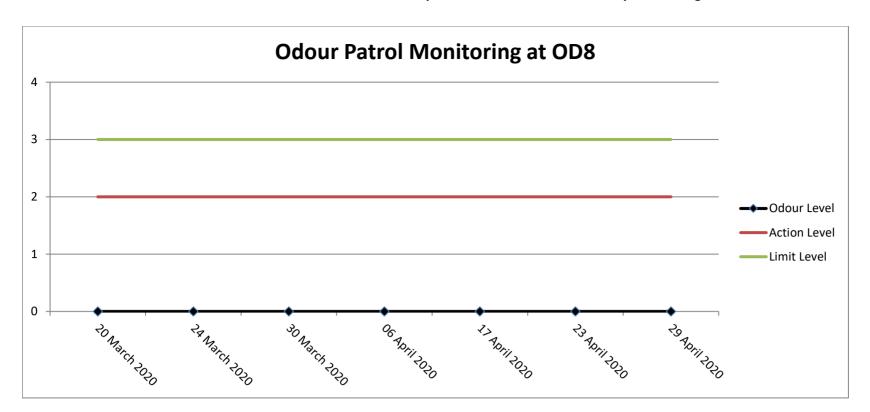
Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

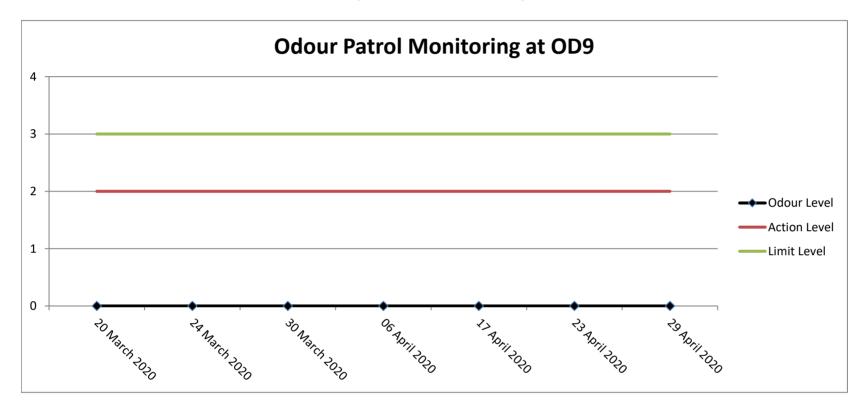
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme



Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Remark:

As access permission from the company of Discovery Bay Tunnel is under requisition progress, the odour patrol monitoring will not cover OD5 (Spur Road near Discovery Bay Tunnel Outlet) temporarily.

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA200529

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	MateriaLab Consultants Limited
Client's address	•	Rm. 723-726, 7/F, Profit Industrial Building, No. 1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 490113
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA200529/1
Date of calibration	•	23/03/2020
Next calibration date	:	22/06/2020
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested.

Report No.: 142626WA200529

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)						
Theoretical	Theoretical Measured					
9.18	9.17	-0.01				
6.86	6.87	+0.01				

B. Salinity calibration

	Salinity, ppt							
Theoretical	Measured	Deviation	Maximum acceptable Deviation					
10	10.03	+0.03	± 0.5					
20	20.05	+0.05	± 1.0					
30	29.82	-0.18	± 1.5					
40	39.88	-0.12	± 2.0					

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxyge	Dissolved oxygen content, mg/L				
Thai No.	By calibrated D.O. meter	By D.O. meter				
1	7.36	7.36				
2	7.37	7.36				
3	7.37	7.37				
Average	7.37	7.36				

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

Date

Note : This report refers only to the sample(s) tested.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Report No.: 142626WA200529

Page 3 of 3

Results :

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.01	25.04

E. Turbidity calibration

Turbidity, N.T.U.							
Theoretical	Measured	Deviation	Maximum acceptable Deviation				
0	-	-	± 0.5				
4	4.07	+0.08	± 0.6				
8	8.09	+0.09	± 0.8				
40	39.68	-0.32	± 3.0				
80	79.58	-0.42	± 4.0				

Certified by :

Approved Signatory : CHAN Hoi Yan, Winnie Assistant Manager

Date ** End of Report **

Note : This report refers only to the sample(s) tested.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

												l	n-situ Meas	ureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)		Nitrite Nitrogen (mg/L-N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	$ BOD_5 $
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A	6/4/2020	Mid-Ebb	Fine	Moderate	10:00	17	S	1	1	7.38	30.60	20.91	91.9	6.87	3.9	0.36	289.3	5.1	0.104	0.016	0.286	0.407	33	0.02	<1.0
A	6/4/2020	Mid-Ebb	Fine	Moderate	10:00	17	S	1	2	7.43	30.47	21.10	90.1	6.71	4.0	0.36	270.6	6.0	0.102	0.027	0.276	0.405	38	0.02	<1.0
A	6/4/2020	Mid-Ebb	Fine	Moderate	10:00	17	M	8.5	1	7.57	30.86	21.33	86.5	6.40	5.4	0.27	308.1	5.3	0.101	0.016	0.297	0.413	32	0.02	<1.0
A	6/4/2020	Mid-Ebb	Fine	Moderate	10:00	17 17	M B	8.5	2	7.59	30.87	21.33	86.3	6.38 6.32	5.5 8.1	0.29	305.4	6.2	0.104	0.020	0.284	0.407	40 46	0.02	<1.0
A	6/4/2020 6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	10:00	17	B	16 16	2	7.64	31.27 31.38	21.34 21.33	85.2 85.3	6.28	8.6	0.29	297.4 291.5	6.1 7.0	0.102	0.019	0.291 0.282	0.411	46 39	0.02	<1.0 <1.0
B	6/4/2020	Mid-Ebb	Fine	Moderate	10:12	14	S	1	1	7.03	30.52	21.05	91.7	6.87	3.8	0.20	108.3	4.5	0.103	0.020	0.282	0.407	ND	0.03	<1.0
B	6/4/2020	Mid-Ebb	Fine	Moderate	10:12	14	Š	1	2	7.75	30.42	21.21	90.9	6.71	3.9	0.11	109.5	5.4	0.104	0.022	0.286	0.412	ND	0.02	<1.0
В	6/4/2020	Mid-Ebb	Fine	Moderate	10:12	14	M	7	1	7.75	30.80	21.36	86.9	6.40	5.3	0.15	131.5	5.4	0.108	0.021	0.265	0.394	ND	0.02	<1.0
В	6/4/2020	Mid-Ebb	Fine	Moderate	10:12	14	М	7	2	7.75	30.84	21.37	86.4	6.38	5.6	0.15	136.9	5.6	0.102	0.028	0.273	0.404	ND	0.02	<1.0
В	6/4/2020	Mid-Ebb	Fine	Moderate	10:12		В	13	1	7.75	31.23	21.36	85.6	6.32	7.4	0.08	122.6	5.9	0.104	0.011	0.298	0.412	ND	0.02	<1.0
B	6/4/2020	Mid-Ebb	Fine	Moderate	10:12	14	B	13	2	7.75	31.34	21.35	85.2	6.28	7.8	0.09	128.0	5.6 4.2	0.104	0.013	0.297	0.413	ND	0.02	<1.0
<u> </u>	6/4/2020 6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	10:31	12	20	1	2	7.78	29.75	21.21 21.20	89.5 89.3	6.68 6.66	4.2	0.09	158.4 157.3	4.2	0.091	0.031	0.335	0.456	ND ND	0.02	<1.0 <1.0
C C	6/4/2020	Mid-Ebb	Fine	Moderate		12	M	6	1	7.77	30.58	21.32	87.9	6.52	4.4	0.10	149.1	5.6	0.090	0.022	0.343	0.458	ND	0.02	<1.0
č	6/4/2020	Mid-Ebb	Fine	Moderate	10:31	12	M	6	2	7.77	30.73	21.35	87.4	6.47	4.6	0.12	143.2	5.9	0.094	0.020	0.345	0.458	ND	0.02	<1.0
Č	6/4/2020	Mid-Ebb	Fine	Moderate	10:31	12	В	11	1	7.77	31.04	21.36	85.8	6.43	5.3	0.17	117.4	5.0	0.095	0.022	0.335	0.452	ND	0.02	<1.0
С	6/4/2020	Mid-Ebb	Fine	Moderate	10:31	12	В	11	2	7.78	31.14	21.38	85.3	6.33	5.5	0.16	120.9	5.3	0.094	0.022	0.342	0.458	ND	0.02	<1.0
D	6/4/2020	Mid-Ebb	Fine	Moderate	10:52	13	S	1	1	7.78	29.70	21.38	87.9	6.56	4.7	0.21	219.4	6.4	0.094	0.016	0.333	0.443	ND	0.02	<1.0
D	6/4/2020	Mid-Ebb	Fine	Moderate	10:52	13	S	1	2		29.65	21.27	88.1	6.55	4.5	0.21	223.6	5.8	0.091	0.012	0.346	0.448	ND	0.02	<1.0
	6/4/2020 6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	10:52	13 13	M	6.5 6.5	1	7.78	30.27 30.94	21.21 21.25	87.0 86.1	6.43 6.36	4.8	0.14	205.1 207.8	5.2 4.8	0.093	0.019	0.334 0.326	0.445	ND ND	0.02	<1.0 <1.0
D	6/4/2020	Mid-Ebb	Fine	Moderate	10:52	13	B	12	1	7.79	31.05	21.25	85.3	6.30	5.2	0.14	192.5	5.1	0.095	0.027	0.335	0.448	ND	0.02	<1.0
D	6/4/2020	Mid-Ebb	Fine	Moderate	10:52	13	B	12	2	7.79	31.09	21.37	85.1	6.28	5.3	0.24	199.6	4.6	0.096	0.018	0.345	0.459	ND	0.02	<1.0
E	6/4/2020	Mid-Ebb	Fine	Moderate	11:12	16	S	1	1	7.81	31.26	20.63	92.9	6.95	4.9	0.08	189.2	4.6	0.104	0.023	0.262	0.389	17	0.02	<1.0
E	6/4/2020	Mid-Ebb	Fine	Moderate	11:12	16	S	1	2	7.81	31.03	21.21	90.4	6.69	4.6	0.08	185.3	3.9	0.102	0.016	0.290	0.408	14	0.02	<1.0
E	6/4/2020	Mid-Ebb	Fine	Moderate	11:12	16	M	8	1	7.80	31.48	21.33	86.9	6.35	4.1	0.11	164.2	3.7	0.102	0.017	0.281	0.399	14	0.02	<1.0
E F	6/4/2020 6/4/2020	Mid-Ebb	Fine	Moderate	11:12		M B	8 15	2	7.80	31.47 31.51	21.34	86.1	6.32	4.3	0.11	162.7	4.5 4.1	0.105	0.009	0.285	0.398	18 11	0.02	<1.0
	6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	11:12	16 16	B	15	2	7.80	31.51	21.34 21.34	85.0 85.3	6.26 6.29	4.7	0.07	145.3 148.9	4.1 5.0	0.107	0.018	0.260	0.385 0.396	12	0.02	<1.0 <1.0
F	6/4/2020	Mid-Ebb	Fine	Moderate	11:29	23	S	1	1	7.81	31.22	20.94	85.3	6.26	3.9	0.07	64.6	5.8	0.117	0.024	0.309	0.450	17	0.02	<1.0
F	6/4/2020	Mid-Ebb	Fine	Moderate	11:29	23	Š	1	2	7.81	31.05	21.13	85.0	6.29	4.2	0.09	72.4	6.7	0.106	0.014	0.265	0.385	12	0.02	<1.0
F	6/4/2020	Mid-Ebb	Fine	Moderate	11:29	23	М	11.5	1	7.81	31.27	21.25	85.7	6.32	4.1	0.06	59.2	5.3	0.102	0.014	0.300	0.416	18	0.02	<1.0
F	6/4/2020	Mid-Ebb	Fine	Moderate	11:29	23	M	11.5	2	7.81	31.37	21.28	85.8	6.33	4.1	0.06	56.6	6.2	0.106	0.022	0.256	0.385	11	0.02	<1.0
F	6/4/2020 6/4/2020	Mid-Ebb	Fine	Moderate	11:29	23	B	22	1	7.81	31.49	21.34	85.2	6.28	4.4	0.11	83.4	5.1	0.106	0.018	0.254	0.378	14	0.02	<1.0
F G	6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	11:29	23 22	S B	22	2	7.81	31.53	21.34 21.34	85.0 90.0	6.26 6.70	4.6 5.7	0.11	86.1 90.2	6.1 5.4	0.106	0.032	0.235	0.373 0.382	9	0.02	<1.0 <1.0
G	6/4/2020	Mid-Ebb	Fine	Moderate	11:50	22	S	1	2	7.79	30.96	21.34	90.0 89.0	6.61	5.4	0.11	<u>90.2</u> 84.1	5.4 5.4	0.106	0.021	0.255	0.382	5 6	0.02	<1.0
Ğ	6/4/2020	Mid-Ebb	Fine	Moderate	11:50	22	м	11	1	7.79	31.11	21.35	88.2	6.53	4.8	0.16	106.3	6.6	0.108	0.013	0.249	0.368	6	0.02	<1.0
Ğ	6/4/2020	Mid-Ebb	Fine	Moderate	11:50	22	M	11	2	7.79	31.28	21.36	87.7	6.48	5.0	0.16	108.1	7.2	0.103	0.012	0.256	0.371	4	0.02	<1.0
Ğ	6/4/2020	Mid-Ebb	Fine	Moderate	11:50	22	В	21	1	7.79	31.44	21.36	85.8	6.32	7.2	0.16	80.6	7.2	0.107	0.026	0.236	0.370	6	0.02	<1.0
G	6/4/2020	Mid-Ebb	Fine	Moderate	11:50		B	21	2	7.79	31.49	21.36	85.9	6.33	7.2	0.16	82.1	6.3	0.105	0.023	0.256	0.384	9	0.02	<1.0
H	6/4/2020	Mid-Ebb	Fine	Moderate	12:13	19	S	1	1	7.79	31.21	21.34	85.6	6.32	5.1	0.20	110.2	5.9	0.106	0.017	0.247	0.370	8	0.02	<1.0
H	6/4/2020 6/4/2020	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	12:13	19 19	S M	1 9.5	1	7.79	31.20 31.40	21.34 21.33	85.3 86.3	6.30 6.37	5.3 5.1	0.21	118.2 129.3	5.8 5.6	0.109	0.019	0.251	0.379 0.380	9	0.02	<1.0 <1.0
H	6/4/2020	Mid-Ebb	Fine	Moderate	12.13	19	M	9.5	2	7.80	31.40	21.33	86.0	6.34	5.1	0.22	129.3	5.0	0.108	0.014	0.234	0.372	5	0.02	<1.0
H	6/4/2020	Mid-Ebb	Fine	Moderate	12:13	19	B	18	1	7.80	31.40	21.35	85.3	6.29	9.7	0.23	131.5	6.0	0.108	0.022	0.242	0.372	8	0.02	<1.0
Ĥ	6/4/2020		Fine	Moderate			B	18	2	7.80		21.35	85.2	6.28	9.9	0.22	136.3	6.0	0.110	0.028	0.228	0.366	11	0.02	<1.0

Note: 1. ND: Not Detected

												l.	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)		Nitrogen	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	(ma/l)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	6/4/2020	Mid-Flood	Fine	Moderate	18:31	15	S	1	1	7.85	28.68	21.07	88.5	6.66	5.2	0.04	35.2	6.2	0.104	0.018	0.415	0.538	14	0.02	<1.0
A	6/4/2020	Mid-Flood	Fine	Moderate	18:31	15	S	1	2	7.85	28.68	21.06	88.7	6.68	5.1	0.04	36.4	5.8	0.104	0.022	0.408	0.533	10	0.02	<1.0
A	6/4/2020	Mid-Flood	Fine	Moderate	18:31	15	M	7.5	1	7.85	29.14	21.12	88.6	6.65	5.5	0.06	59.1	5.7	0.108	0.028	0.397	0.534	5	0.02	<1.0
A	6/4/2020	Mid-Flood	Fine	Moderate	18:31	15	M	7.5	2	7.85	29.29	21.17	87.8	6.57	5.6	0.05	57.0	6.0	0.103	0.017	0.418	0.538	7	0.02	<1.0
A	6/4/2020	Mid-Flood	Fine	Moderate	18:31	15	В	14	1	7.85	29.84	21.22	87.4	6.53	5.8	0.06	49.8	7.0	0.104	0.024	0.402	0.529	4	0.02	<1.0
A B	6/4/2020 6/4/2020	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	18:31 18:20	15 14	B	14	2	7.85 7.85	29.88 28.92	21.22 21.17	87.0 87.8	6.49 6.52	<u>5.8</u> 5.4	0.06	44.4 274.2	6.5 6.6	0.102	0.028	0.400	0.530 0.541	3	0.02	<1.0 <1.0
B	6/4/2020	Mid-Flood	Fine	Moderate	18:20	14	S	1	2	7.85	28.92	21.17	88.0	6.59	5.3	0.22	277.5	5.9	0.104	0.024	0.413	0.541	8	0.02	<1.0
B	6/4/2020	Mid-Flood	Fine	Moderate	18:20	14	м	7	1	7.85	28.93	21.15	88.2	6.62	5.5	0.22	206.8	5.1	0.104	0.023	0.408	0.530	10	0.02	<1.0
B	6/4/2020	Mid-Flood	Fine	Moderate	18:20	14	M	7	2	7.85	29.02	21.17	88.1	6.61	5.4	0.25	207.7	5.7	0.105	0.027	0.416	0.548	11	0.02	<1.0
В	6/4/2020	Mid-Flood	Fine	Moderate	18:20	14	В	13	1	7.85	29.33	21.20	87.7	6.56	6.0	0.19	259.3	5.4	0.102	0.015	0.429	0.547	5	0.02	<1.0
В	6/4/2020	Mid-Flood	Fine	Moderate	18:20	14	В	13	2	7.85	29.61	21.22	87.4	6.53	6.0	0.18	253.0	4.7	0.112	0.017	0.433	0.562	5	0.02	<1.0
C	6/4/2020	Mid-Flood	Fine	Moderate	17:59	12	S	1	1	7.85	29.06	21.22	87.5	6.56	5.4	0.19	140.1	6.8	0.103	0.030	0.404	0.537	2	0.02	<1.0
<u>C</u>	6/4/2020	Mid-Flood		Moderate	17:59	12	S	1	2	7.85	28.90	21.19	87.8	6.59	5.2	0.18	126.4	6.2	0.099	0.022	0.416	0.537	2	0.02	<1.0
C	6/4/2020	Mid-Flood	Fine	Moderate	17:59	12	M	6	2	7.85	28.96	21.16	88.2	6.62	5.3	0.12	138.7	7.2	0.102	0.019	0.415	0.536	3	0.02	<1.0
C C	6/4/2020 6/4/2020	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	17:59	12 12	B	6 11	2	7.85	29.05 29.53	21.14 21.23	88.2 87.4	6.61 6.53	5.7 6.1	0.13	135.1 120.1	6.3 7.4	0.106	0.039	0.394 0.413	0.539	3	0.02	<1.0 <1.0
C C	6/4/2020	Mid-Flood		Moderate	17:59	12	B	11	2	7.85	29.53	21.23	87.3	6.52	5.8	0.07	146.4	6.5	0.102	0.024	0.413	0.550	 1	0.02	<1.0
Ď	6/4/2020	Mid-Flood		Moderate	17:44	14	S	1	1	7.85	29.13	21.22	87.5	6.55	5.6	0.08	28.4	6.0	0.102	0.021	0.422	0.554	1	0.02	<1.0
D		Mid-Flood		Moderate	17:44		Š	1	2	7.85	29.00	21.18	87.4	6.57	5.6	0.12	29.1	5.7	0.105	0.023	0.425	0.553	3	0.02	<1.0
D	6/4/2020	Mid-Flood	Fine	Moderate	17:44	14	М	7	1	7.85	28.97	21.15	88.1	6.61	5.8	0.10	50.6	6.2	0.105	0.024	0.420	0.549	4	0.02	<1.0
D	6/4/2020	Mid-Flood	Fine	Moderate	17:44		М	7	2	7.85	29.03	21.16	88.1	6.61	5.9	0.11	47.2	6.7	0.105	0.024	0.424	0.553	2	0.02	<1.0
D	6/4/2020	Mid-Flood	Fine	Moderate	17:44	14	В	13	1	7.85	29.47	21.21	87.5	6.54	6.0	0.09	44.5	4.7	0.104	0.020	0.430	0.554	3	0.02	<1.0
D	6/4/2020	Mid-Flood	Fine	Moderate	17:44	14	B	13	2	7.85	29.73	21.22	87.2	6.51	6.1	0.09	42.6	5.2	0.105	0.023	0.420	0.548	2	0.02	<1.0
E	6/4/2020	Mid-Flood	Fine	Moderate	17:20	14	S	1	1	7.85	28.92	21.17	87.8	6.59	5.4	0.24	139.2	8.2	0.104	0.023	0.421	0.548	3	0.02	<1.0
F	6/4/2020 6/4/2020	Mid-Flood Mid-Flood	Fine	Moderate Moderate	17:20	14 14	S M	1	2	7.85	28.88 29.02	21.15 21.16	88.2 88.2	6.61 6.62	5.2 5.5	0.23	133.6 174.5	6.6	0.106	0.034	0.405	0.545 0.541	1	0.02	<1.0 <1.0
F	6/4/2020	Mid-Flood	Fine Fine	Moderate	17:20	14	M	7	2	7.85	29.02	21.16	88.3	6.61	5.6	0.26	174.5	6.1	0.107	0.017	0.417	0.541	1	0.02	<1.0
F	6/4/2020	Mid-Flood	Fine	Moderate	17:20	14	B	13	1	7.85	29.29	21.15	87.7	6.56	5.8	0.25	142.7	5.5	0.106	0.024	0.413	0.543	3	0.02	<1.0
Ē	6/4/2020	Mid-Flood	Fine	Moderate	17:20	14	B	13	2	7.85	29.43	21.21	87.5	6.54	5.8	0.24	140.9	5.2	0.113	0.034	0.404	0.551	5	0.02	<1.0
F	6/4/2020	Mid-Flood	Fine	Moderate	17:01	18	S	1	1	7.83	29.08	21.20	87.5	6.55	5.7	0.05	259.3	7.5	0.106	0.024	0.420	0.550	1	0.02	<1.0
F	6/4/2020	Mid-Flood	Fine	Moderate	17:01	18	S	1	2	7.83	28.91	21.17	87.8	6.59	5.4	0.06	247.3	6.5	0.109	0.018	0.430	0.557	1	0.02	<1.0
F	6/4/2020	Mid-Flood	Fine	Moderate	17:01	18	M	9	1	7.84	28.96	21.14	88.3	6.63	5.4	0.07	286.1	5.8	0.106	0.022	0.422	0.551	2	0.02	<1.0
F	6/4/2020	Mid-Flood	Fine	Moderate	17:01	18 18	B	9 17	2	7.84	29.03 29.51	21.16 21.22	88.3 87.5	6.62 6.54	<u>5.6</u> 6.2	0.06	274.1	6.1 5.7	0.111	0.036	0.406	0.554	1 ND	0.02	<1.0 <1.0
F	6/4/2020 6/4/2020	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	17:01	18	B	17	2	7.84	29.51	21.22	87.5	6.54	6.2	0.10	290.0 282.2	5.7	0.102	0.026	0.422	0.550	ND ND	0.02	<1.0
G	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	S	1	1	7.80	28.93	21.22	87.9	6.60	5.5	0.95	309.1	6.8	0.102	0.024	0.420	0.552	1	0.02	<1.0
Ğ	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	š	1	2	7.81	28.94	21.17	88.3	6.63	5.3	0.17	292.5	5.9	0.105	0.023	0.421	0.549	3	0.02	<1.0
Ğ	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	м	6.5	1	7.81	28.97	21.14	88.4	6.63	5.4	0.15	279.1	6.4	0.105	0.011	0.434	0.551	ŇĎ	0.02	<1.0
G	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	М	6.5	2	7.81	29.06	21.16	88.3	6.62	5.8	0.16	284.2	6.7	0.108	0.021	0.421	0.550	ND	0.02	<1.0
G	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	В	12	1	7.82	29.51	21.21	87.6	6.55	6.6	0.19	290.6	6.7	0.105	0.027	0.408	0.540	ND	0.02	<1.0
G	6/4/2020	Mid-Flood	Fine	Moderate	16:39	13	B	12	2	7.82	29.71	21.22	87.4	6.52	6.5	0.19	289.1	6.2	0.103	0.015	0.424	0.541	ND	0.02	<1.0
H	6/4/2020	Mid-Flood	Fine	Moderate	16:23	19	S	1	1	7.74	28.89	21.07	89.1	6.70	5.2	0.06	193.5	8.0	0.104	0.019	0.417	0.540	5	0.02	<1.0
H	6/4/2020	Mid-Flood	Fine	Moderate	16:23	19	S M	1 9.5	2	7.75	28.89 29.02	21.08 21.11	89.0 88.8	6.69 6.67	5.2 5.5	0.07	190.1 168.4	9.0 8.0	0.104	0.021	0.402	0.526	7	0.02	<1.0 <1.0
H	6/4/2020 6/4/2020	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	16:23	19 19	M	9.5 9.5	2	7.76	29.02	21.11 21.13	88.8	6.65	5.5	0.09	168.4	8.0	0.104	0.025	0.398	0.527	13	0.02	<1.0
H		Mid-Flood		Moderate	16:23	19	B	9.5	1	1.10	29.07	21.13	87.5	6.53	6.1	0.09	177.9	7.1	0.104	0.014	0.414	0.532	8	0.02	<1.0
H		Mid-Flood		Moderate			B	18		7.78		21.22	87.4	6.52	6.1	0.08	172.4	6.4	0.104	0.010	0.413	0.535	12	0.02	<1.0

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 28
Contact Address	 MR CYRUS LAI ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG 	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	: HK2012472
E-mail Telephone Facsimile	: c.lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	 richard.fung@alsglobal.com +852 2610 1044 +852 2610 2021 		
Project	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERA SIU HO WAN SEWAGE TREATMENT PLANT	ATIONAL ENVIR	ONMENTAL MONITORING AND AUDIT FOR	Date Samples Received	: 06-Apr-2020
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 22-Apr-2020
C-O-C number	:			No. of samples received	: 96
Site	:			No. of samples analysed	: 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Ki Land Frong.			
Fung Lim Chee, Richard	Managing Director	Inorganics	
	Managing Diroctor	morganios	
Ale_			
Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV	
Agent Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV	

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 06-Apr-2020 to 22-Apr-2020.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2012472

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.

Microbiological sample(s) was/ were collected in 125mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 19:40.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
	Cli	ent samplir	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-001	HK2012472-002	HK2012472-003	HK2012472-004	HK2012472-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.1	6.0	5.3	6.2	6.1
D/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.102	0.101	0.104	0.102
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.016	0.027	0.016	0.020	0.019
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.286	0.276	0.297	0.284	0.291
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.407	0.405	0.413	0.407	0.411
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
P: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	33	38	32	40	46

Page Number : 4 of 28 Client : FUGRO TECHN

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-006	HK2012472-007	HK2012472-008	HK2012472-009	HK2012472-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.0	4.5	5.4	5.4	5.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.105	0.103	0.104	0.108	0.102
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.020	0.022	0.022	0.021	0.028
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.282	0.282	0.286	0.265	0.273
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.408	0.407	0.412	0.394	0.404
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	39	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED

Page Number 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-011	HK2012472-012	HK2012472-013	HK2012472-014	HK2012472-015
EA/ED: Physical and Aggregate Properties			·					
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.6	4.2	4.7	5.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.104	0.091	0.095	0.090
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.011	0.013	0.031	0.022	0.025
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.298	0.297	0.335	0.350	0.343
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.412	0.413	0.456	0.467	0.458
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number : 6 of 28 Client : FUGRO TECH

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-016	HK2012472-017	HK2012472-018	HK2012472-019	HK2012472-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.0	5.3	6.4	5.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.094	0.095	0.094	0.094	0.091
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.020	0.022	0.022	0.016	0.012
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.345	0.335	0.342	0.333	0.346
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.458	0.452	0.458	0.443	0.448
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

Page Number : 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-021	HK2012472-022	HK2012472-023	HK2012472-024	HK2012472-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.2	4.8	5.1	4.6	4.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.093	0.095	0.096	0.096	0.104
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.019	0.027	0.031	0.018	0.023
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.334	0.326	0.335	0.345	0.262
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.445	0.448	0.463	0.459	0.389
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED	17

Page Number 2 8 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-026	HK2012472-027	HK2012472-028	HK2012472-029	HK2012472-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.7	4.5	4.1	5.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.102	0.102	0.105	0.107	0.102
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.016	0.017	0.009	0.018	0.016
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.290	0.281	0.285	0.260	0.278
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.408	0.399	0.398	0.385	0.396
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	14	14	18	11	12

Page Number 2 9 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-031	HK2012472-032	HK2012472-033	HK2012472-034	HK2012472-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.7	5.3	6.2	5.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.117	0.106	0.102	0.106	0.106
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.024	0.014	0.014	0.022	0.018
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.309	0.265	0.300	0.256	0.254
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.450	0.385	0.416	0.385	0.378
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	17	12	18	11	14

Page Number : 10 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

Sub-Matrix: WATER		Clie	ent sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-036	HK2012472-037	HK2012472-038	HK2012472-039	HK2012472-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.1	5.4	5.4	6.6	7.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.106	0.106	0.108	0.108	0.103
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.032	0.021	0.013	0.011	0.012
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.235	0.255	0.258	0.249	0.256
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.373	0.382	0.379	0.368	0.371
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	9	5	6	6	4

Page Number : 11 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E		
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020		
Compound	CAS Number	LOR	Unit	HK2012472-041	HK2012472-042	HK2012472-043	HK2012472-044	HK2012472-045		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	7.2	6.3	5.9	5.8	5.6		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.107	0.105	0.106	0.109	0.111		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.026	0.023	0.017	0.019	0.014		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.236	0.256	0.247	0.251	0.254		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.370	0.384	0.370	0.379	0.380		
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	6	9	8	9	8		

Page Number : 12 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup		
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020		
Compound	CAS Number	LOR	Unit	HK2012472-046	HK2012472-047	HK2012472-048	HK2012472-049	HK2012472-050		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	5.0	6.0	6.0	6.2	5.8		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.108	0.108	0.110	0.104	0.104		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.022	0.017	0.028	0.018	0.022		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.242	0.246	0.228	0.415	0.408		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.372	0.372	0.366	0.538	0.533		
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	5	8	11	14	10		

Page Number : 13 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

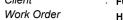
_

Sub-Matrix: WATER		Clie	nt sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F		
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020		
Compound	CAS Number	LOR	Unit	HK2012472-051	HK2012472-052	HK2012472-053	HK2012472-054	HK2012472-055		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	5.7	6.0	7.0	6.5	6.6		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.108	0.103	0.104	0.102	0.104		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.028	0.017	0.024	0.028	0.024		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.397	0.418	0.402	0.400	0.413		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.534	0.538	0.529	0.530	0.541		
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	5	7	4	3	6		

Page Number : 14 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER	Client sample ID			B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-056	HK2012472-057	HK2012472-058	HK2012472-059	HK2012472-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.1	5.7	5.4	4.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.106	0.104	0.105	0.102	0.112
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.025	0.017	0.027	0.015	0.017
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.413	0.408	0.416	0.429	0.433
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.543	0.530	0.548	0.547	0.562
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	8	10	11	5	5

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472


			1					
Sub-Matrix: WATER		Clie	ent sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
	Cli	ent samplir	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-061	HK2012472-062	HK2012472-063	HK2012472-064	HK2012472-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.2	7.2	6.3	7.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.103	0.099	0.102	0.106	0.102
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.030	0.022	0.019	0.039	0.024
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.404	0.416	0.415	0.394	0.413
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.537	0.537	0.536	0.539	0.538
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	2	3	3	2

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

Sub-Matrix: WATER	Client sample ID			C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup			
	Client sampling date / time		06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020				
Compound	CAS Number	LOR	Unit	HK2012472-066	HK2012472-067	HK2012472-068	HK2012472-069	HK2012472-070			
EA/ED: Physical and Aggregate Properties											
EA025: Suspended Solids (SS)		0.5	mg/L	6.5	6.0	5.7	6.2	6.7			
ED/EK: Inorganic Nonmetallic Parameters											
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.102	0.105	0.105	0.105	0.105			
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.027	0.021	0.023	0.024	0.024			
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.422	0.429	0.425	0.420	0.424			
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.551	0.554	0.553	0.549	0.553			
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02			
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02			
EP: Aggregate Organics											
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0			
EM: Microbiological Testing											
EM002: E. coli		1	CFU/100mL	1	1	3	4	2			

Page Number : 17 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

HK2012472

Sub-Matrix: WATER		Clie	ent sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-071	HK2012472-072	HK2012472-073	HK2012472-074	HK2012472-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.7	5.2	8.2	7.4	6.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.105	0.104	0.106	0.107
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.020	0.023	0.023	0.034	0.017
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.430	0.420	0.421	0.405	0.417
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.554	0.548	0.548	0.545	0.541
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	3	2	3	1	1

Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

Sub-Matrix: WATER	Client sample ID			E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup		
	Client sampling date / time		06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020			
Compound	CAS Number	LOR	Unit	HK2012472-076	HK2012472-077	HK2012472-078	HK2012472-079	HK2012472-080		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	6.1	5.5	5.2	7.5	6.5		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.111	0.106	0.113	0.106	0.109		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.024	0.025	0.034	0.024	0.018		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.413	0.412	0.404	0.420	0.430		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.549	0.543	0.551	0.550	0.557		
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	1	3	5	1	1		

Page Number : 19 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-081	HK2012472-082	HK2012472-083	HK2012472-084	HK2012472-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.1	5.7	5.2	6.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.106	0.111	0.102	0.102	0.103
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.022	0.036	0.026	0.024	0.024
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.422	0.406	0.422	0.426	0.420
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.551	0.554	0.550	0.552	0.547
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	1	NOT DETECTED	NOT DETECTED	1

Page Number 20 of 28 Client

FUGRO TECHNICAL SERVICES LIMITED

HK2012472

Sub-Matrix: WATER	Client sample ID			G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012472-086	HK2012472-087	HK2012472-088	HK2012472-089	HK2012472-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.9	6.4	6.7	6.7	6.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.105	0.105	0.108	0.105	0.103
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.023	0.011	0.021	0.027	0.015
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.421	0.434	0.421	0.408	0.424
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.549	0.551	0.550	0.540	0.541
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	3	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED

Page Number 21 of 28 Client FUGRO TECHNICA

ent : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F		
	Cli	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020		
Compound	CAS Number	LOR	Unit	HK2012472-091	HK2012472-092	HK2012472-093	HK2012472-094	HK2012472-095		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	8.0	9.0	8.0	8.3	7.1		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.104	0.104	0.104	0.104		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.019	0.021	0.025	0.014	0.018		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.417	0.402	0.398	0.414	0.417		
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.540	0.526	0.527	0.532	0.538		
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.02		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	5	7	13	17	8		

Page Number : 22 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER		Clie	ent sample ID	H/B/F/Dup						
	Client sampling date / time			06-Apr-2020						
Compound	CAS Number	LOR	Unit	HK2012472-096						
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	6.4						
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104						
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.019						
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.413						
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.535						
EK067P: Total Phosphorus as P		0.01	mg/L	0.02						
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02						
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0						
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100mL	12						

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2958537)						
HK2012472-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	5.1	5.1	0.00
HK2012472-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	6.6	11.2
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2958538)						
HK2012472-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	6.0	14.7
HK2012472-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	5.1	12.4
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2958539)						
HK2012472-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	7.2	7.0	2.80
HK2012472-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	6.6	13.9
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2958540)						
HK2012472-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.4	5.30
HK2012472-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	4.7	5.4	14.4
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2958541)						
HK2012472-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.4	9.05
HK2012472-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	8.0	8.8	10.4
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957994)						
HK2012472-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957995)						
HK2012472-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957996)						
HK2012472-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957997)						
HK2012472-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957998)						
HK2012472-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2957999)						
HK2012472-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2958000)						
HK2012472-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00
ED/EK: Inorganic Nonr	netallic Parameters (QC Lot:	2958001)						
HK2012472-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00

 Page Number
 : 24 of 28

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK2012472

Matrix: WATER			Laboratory Duplicate (DUP) Report								
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2958002)									
HK2012472-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2958003)									
HK2012472-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959125)									
HK2012472-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.091	0.098	7.54			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959126)									
HK2012472-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.103	0.110	6.49			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959127)									
HK2012472-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.112	0.107	4.57			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959128)									
HK2012472-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.109	0.109	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959129)	i i i								
HK2012472-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.104	0.112	7.85			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959553)									
HK2012472-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.012	0.013	9.13			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959555)									
HK2012472-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.012	0.011	12.1			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959557)									
HK2012472-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.017	0.016	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959559)									
HK2012472-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.018	0.019	0.00			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2959561)									
HK2012472-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.019	0.019	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report								
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties (C	QC Lot: 2958537)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.9	117			
EA/ED: Physical and Aggregate Properties (C	EA/ED: Physical and Aggregate Properties (QC Lot: 2958538)											

Page Number 25 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (ME	3) Report		(DCS) Report					
			1		Spike	Spike Re	ecovery (%)	Recove	ery Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (C	C Lot: 2958538) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	100		85.9	117		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2958539)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117		
EA/ED: Physical and Aggregate Properties(Q	C Lot: 2958540)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2958541)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117		
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 2957994)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.4		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2957995)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.6		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2957996)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.4		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2957997)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	99.0		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2957998)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.9		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2957999)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.5		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2958000)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.8		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2958001)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.9		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2958002)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.8		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2958003)				· · · · · · · · · · · · · · · · · · ·						
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	97.8		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (Q0	C Lot: 2959125)				· · · · · · · · · · · · · · · · · · ·						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	96.6		85.0	115		

Page Number 26 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

RPD (%)

Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Recovery Limits(%)

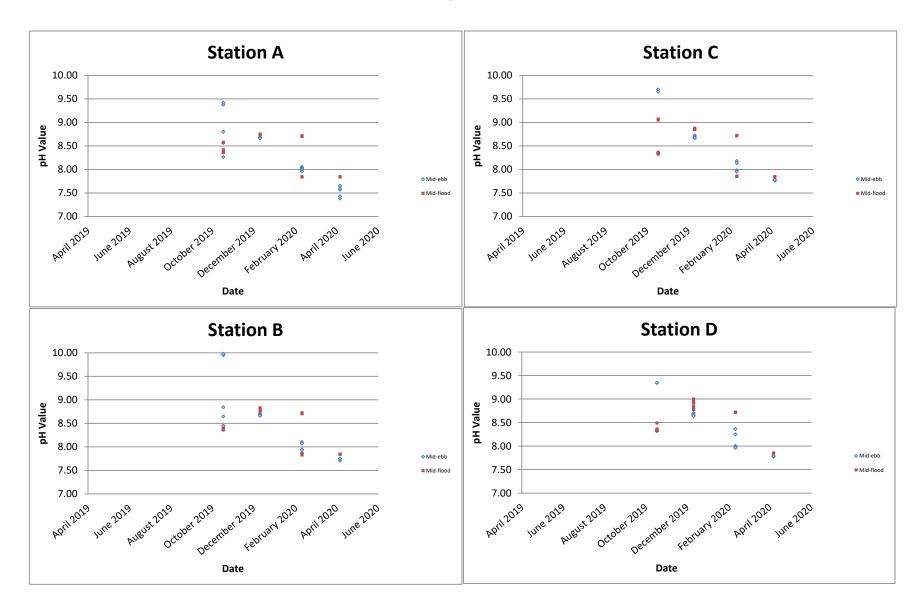
Spike Recovery (%)

Method Blank (MB) Report Matrix: WATER

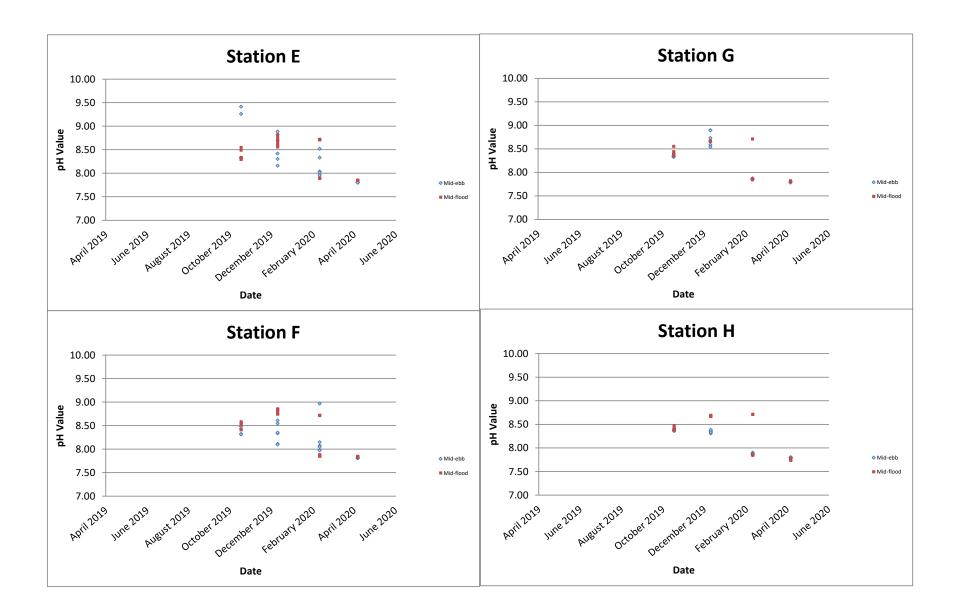
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959126)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	103		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959127)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	106		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959128)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	106		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959129)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	108		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959553)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	104		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959555)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	103		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959557)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	104		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959559)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	98.0		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	C Lot: 2959561)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	106		85.0	115		
EP: Aggregate Organics (QC Lot: 2960884)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.0		81.0	115		
EP: Aggregate Organics (QC Lot: 2960885)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.5		81.0	115		
EP: Aggregate Organics (QC Lot: 2960886)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.0		81.0	115		
EP: Aggregate Organics (QC Lot: 2960887)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	94.5		81.0	115		
EP: Aggregate Organics (QC Lot: 2960888)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	96.5		81.0	115		

Spike

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

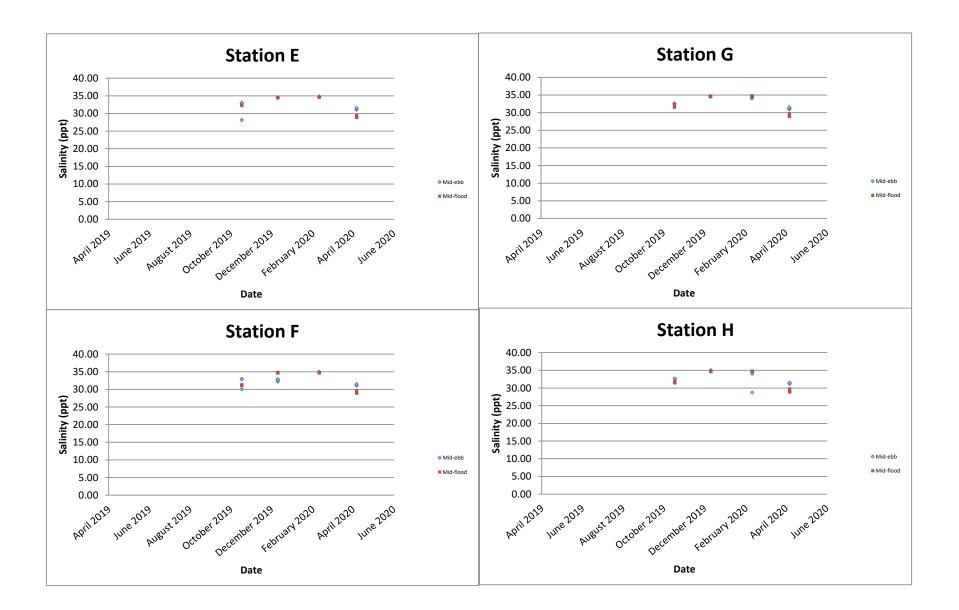

Matrix: WATER					port					
				Spike	Spike R	ecovery (%)	Recovery Limits (%)		RPD	(%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2957994)								
HK2012472-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	95.0		75.0	125		25
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2957995)								
HK2012472-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	97.1		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2957997)								
HK2012472-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	99.2		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2957998)								
HK2012472-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	96.4		75.0	125		25
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2957999)								
HK2012472-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	92.1		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2958000)								
HK2012472-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	95.4		75.0	125		25
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2958001)								
HK2012472-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	90.8		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2958002)								
HK2012472-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	96.8		75.0	125		25
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2958003)								
HK2012472-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	86.4		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2959125)								
HK2012472-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	107		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2959126)								
HK2012472-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	102		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2959127)								
HK2012472-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	98.8		75.0	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lo	t: 2959128)								
- HK2012472-080		EK055A: Ammonia as N	7664-41-7	0.5 mg/L	96.1		75.0	125		

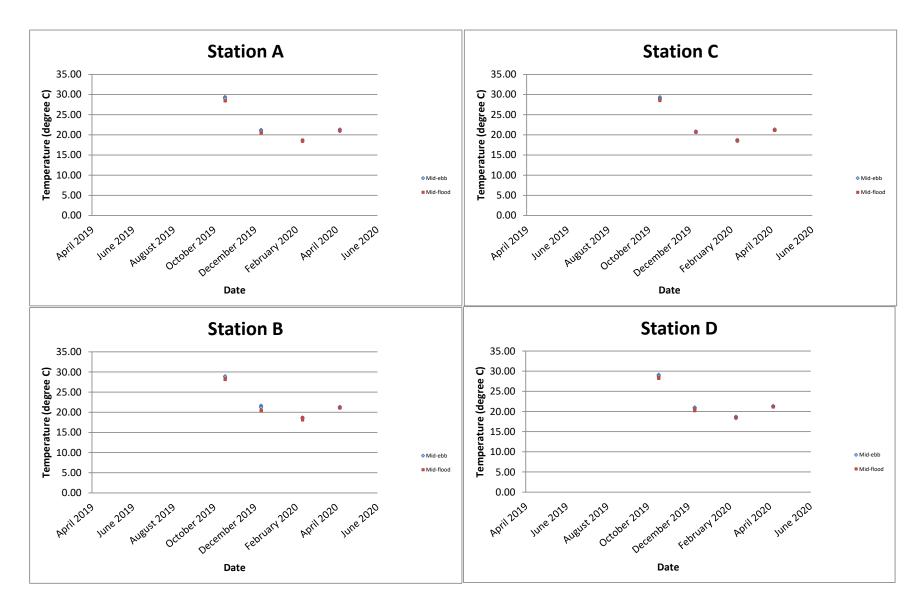
Page Number : 28 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012472

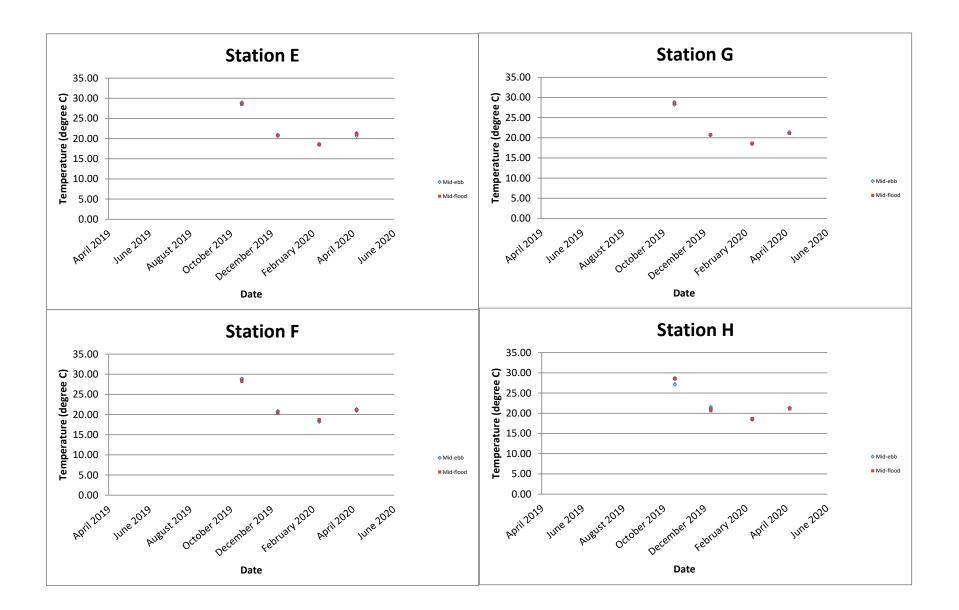


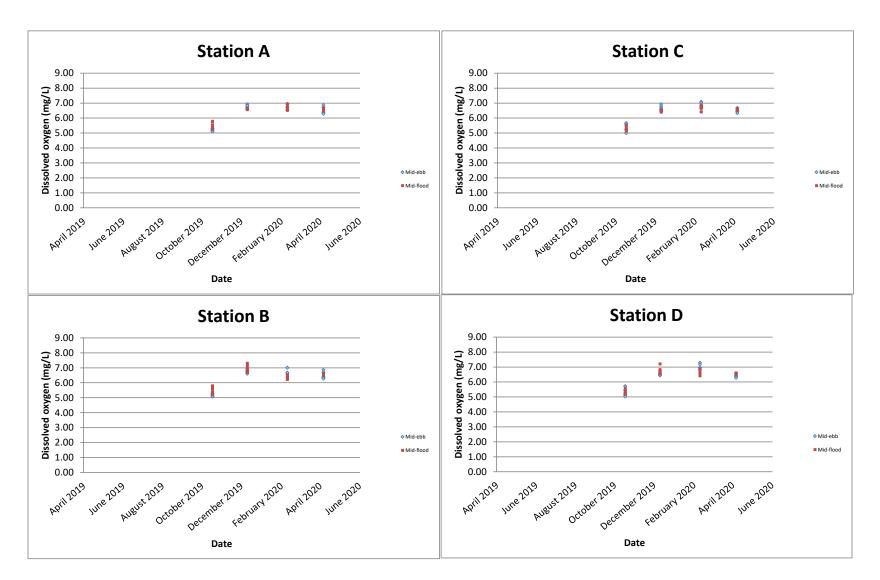
Matrix: WATER			[Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD	(%)	
Laboratory	Client sample ID	Method: Compound CAS Number		Concentration	MS	MSD	Low	High	Value	Control	
sample ID										Limit	
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	129) - Continued									
HK2012472-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	98.4		75.0	125			
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	553)									
HK2012472-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-	0.25 mg/L	106		75.0	125			
			0								
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	555)									
HK2012472-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-	0.25 mg/L	104		75.0	125			
			0								
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	557)									
HK2012472-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-	0.25 mg/L	105		75.0	125			
			0								
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	559)									
HK2012472-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-	0.25 mg/L	103		75.0	125			
			0								
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 2959	561)									
HK2012472-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-	0.25 mg/L	105		75.0	125			
			0								

pH value

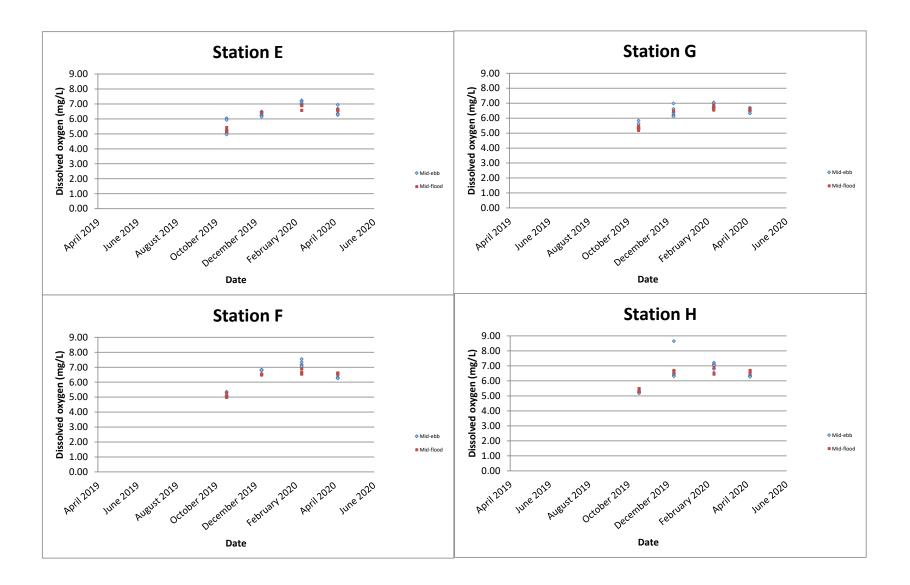

pH value


Salinity (ppt)

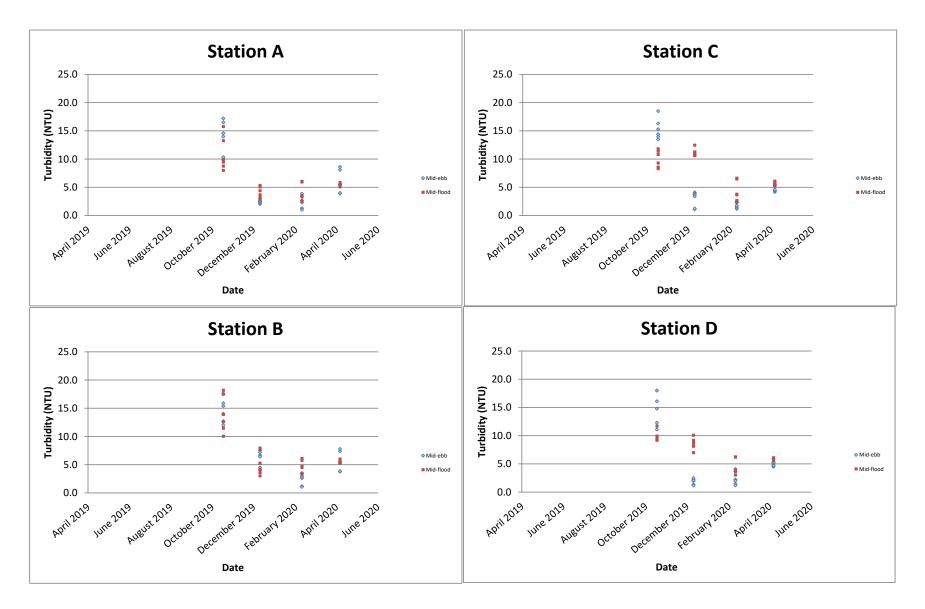

Salinity (ppt)

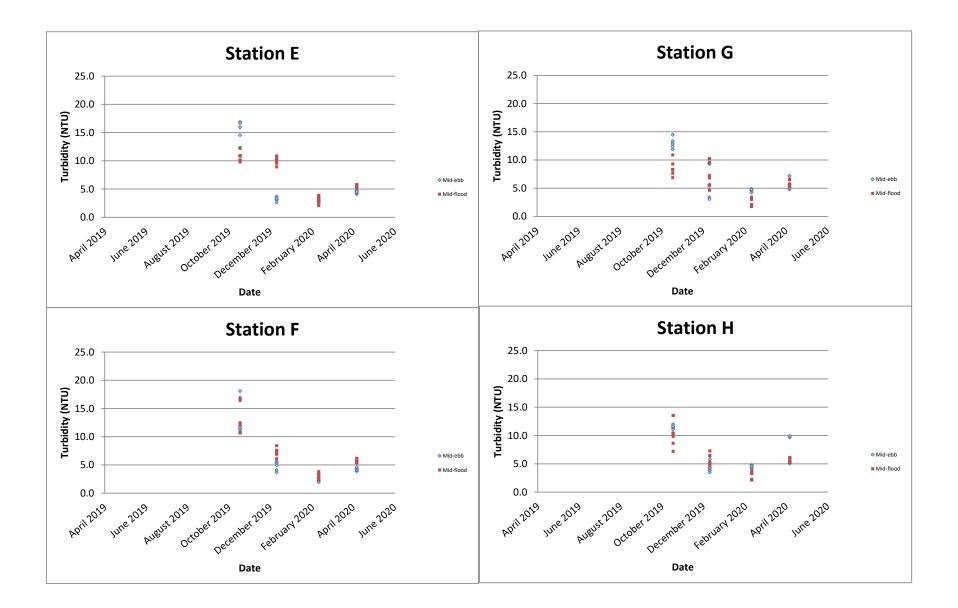


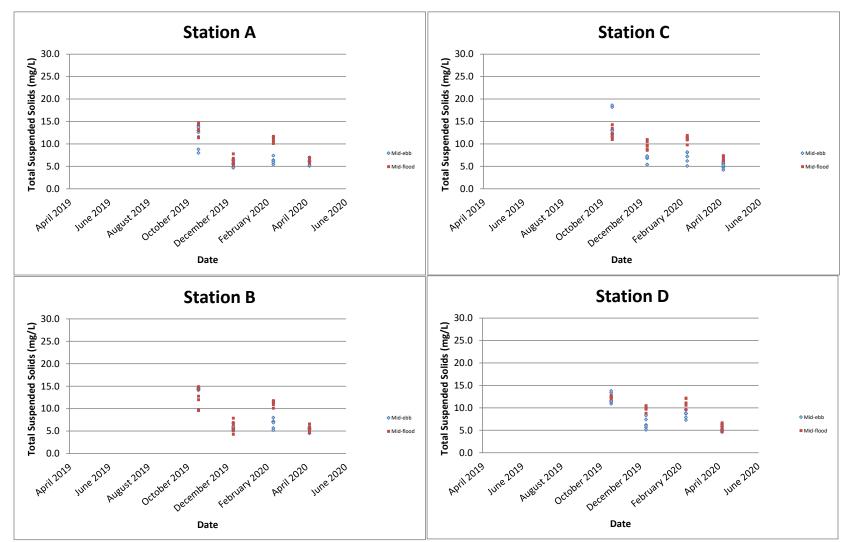
Temperature (degree C)



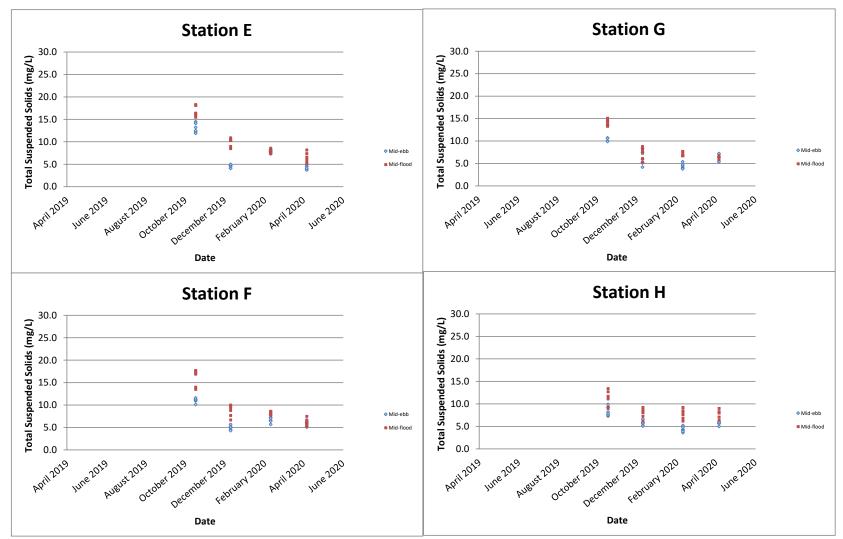
Temperature (degree C)



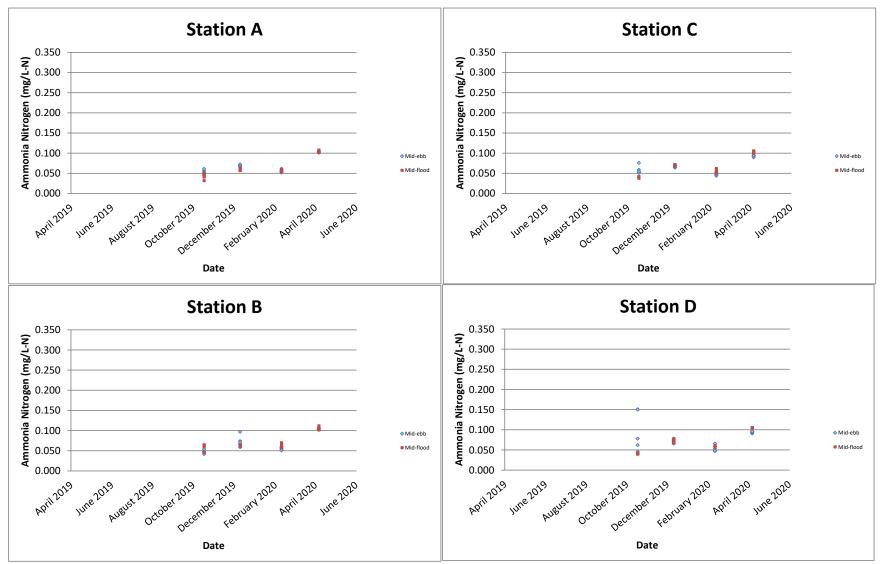

Dissolved oxygen (mg/L)

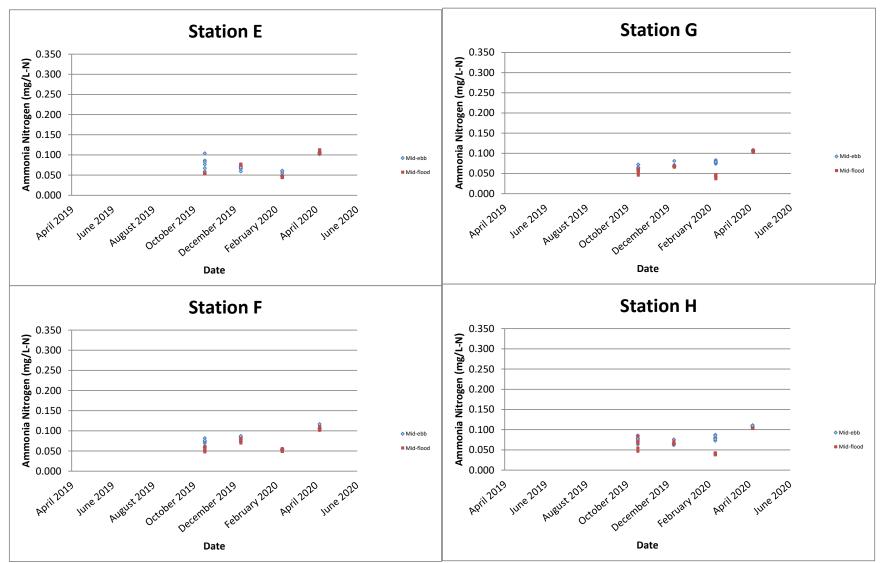


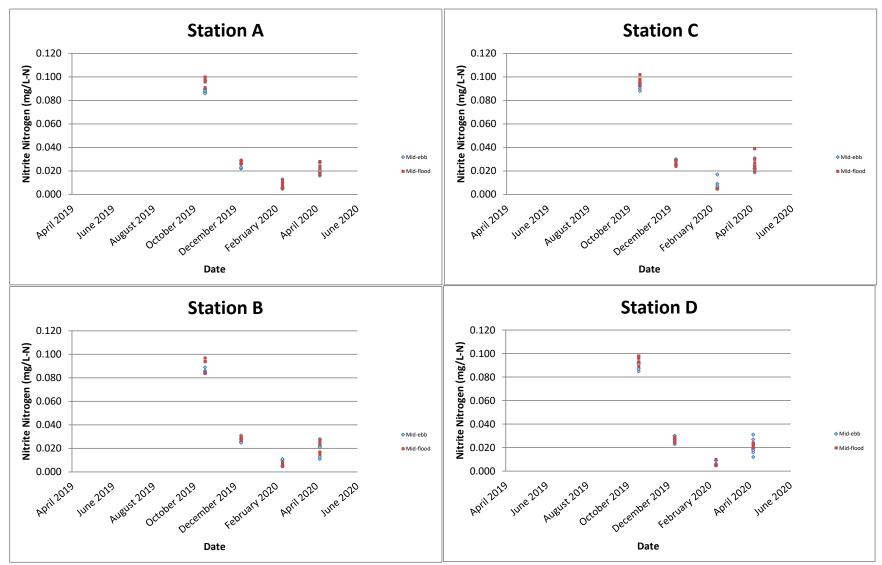
Turbidity (NTU)

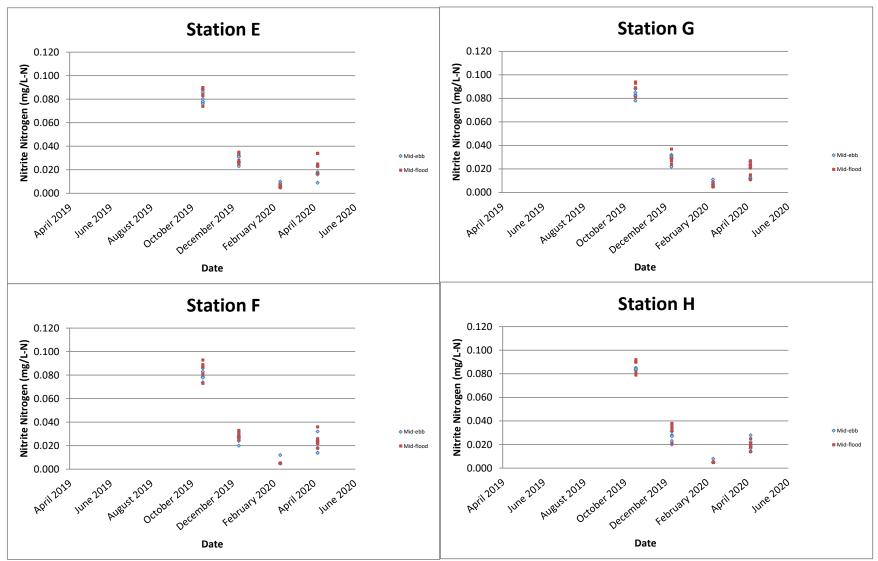


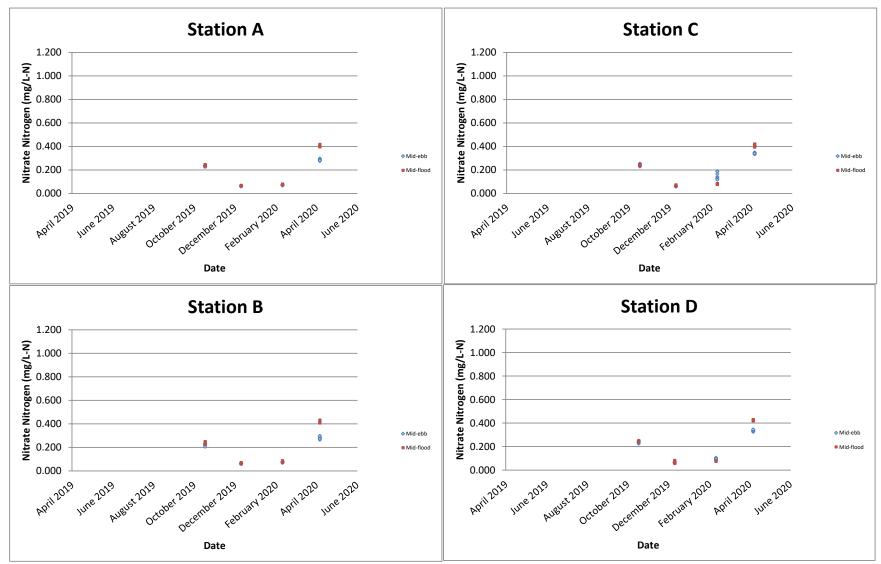
Turbidity (NTU)

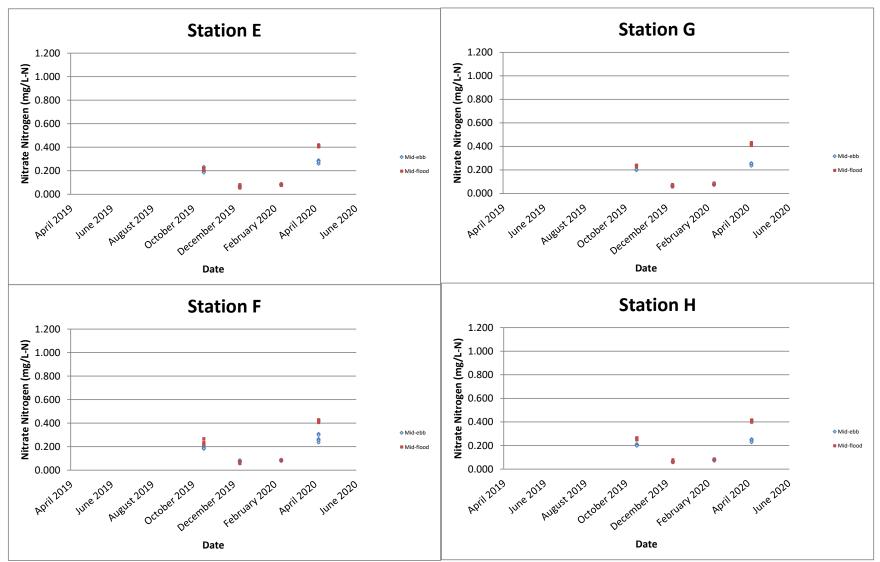


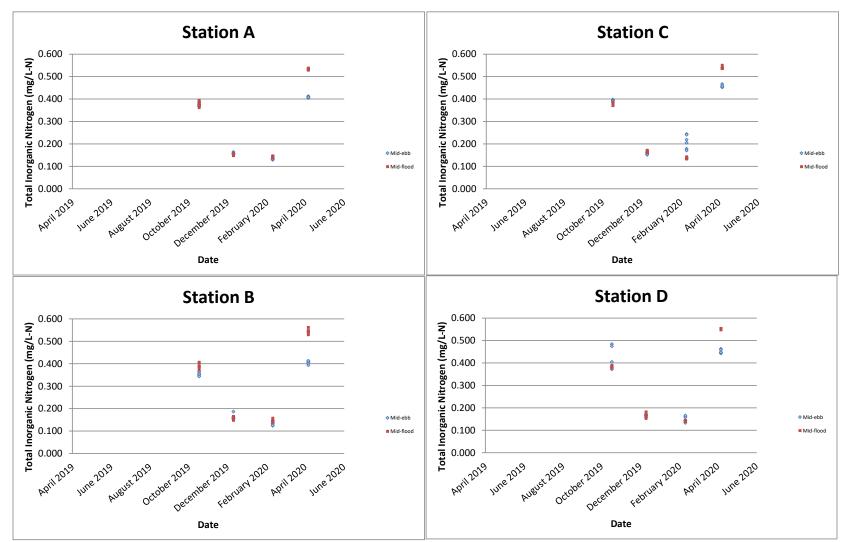

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

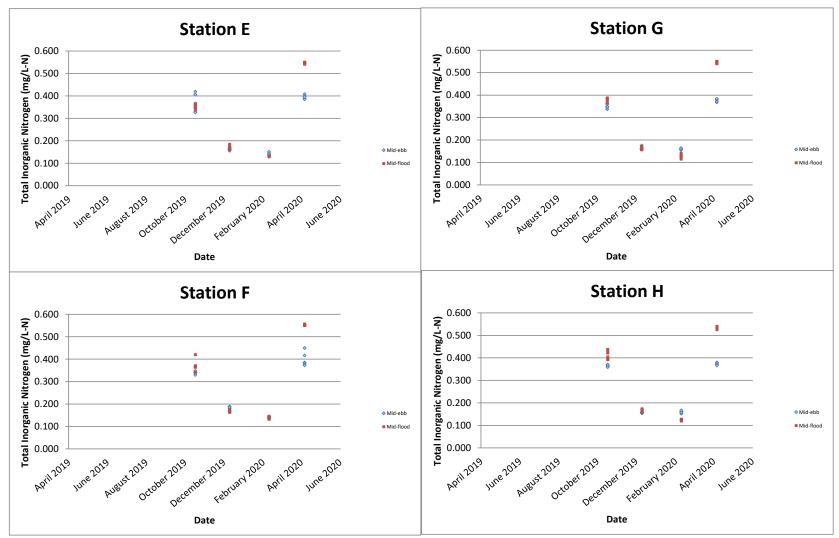

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

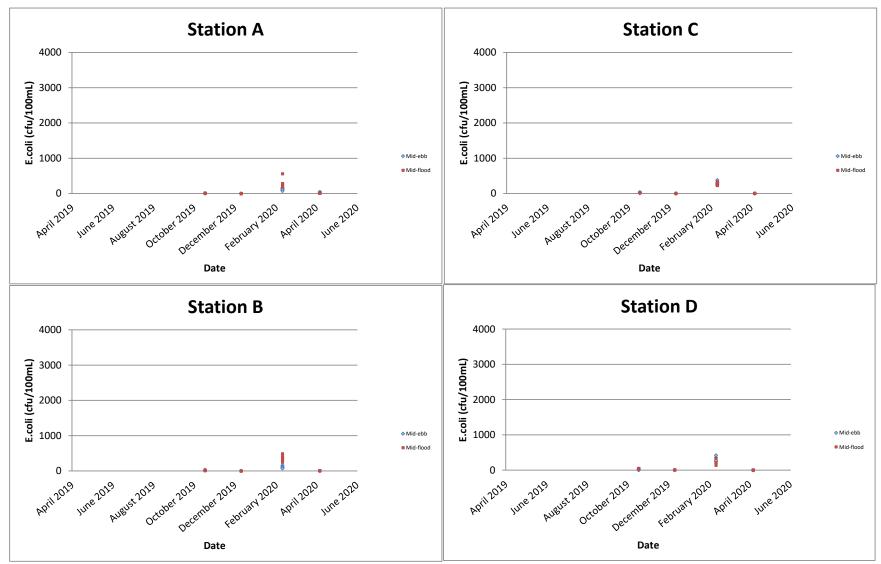

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

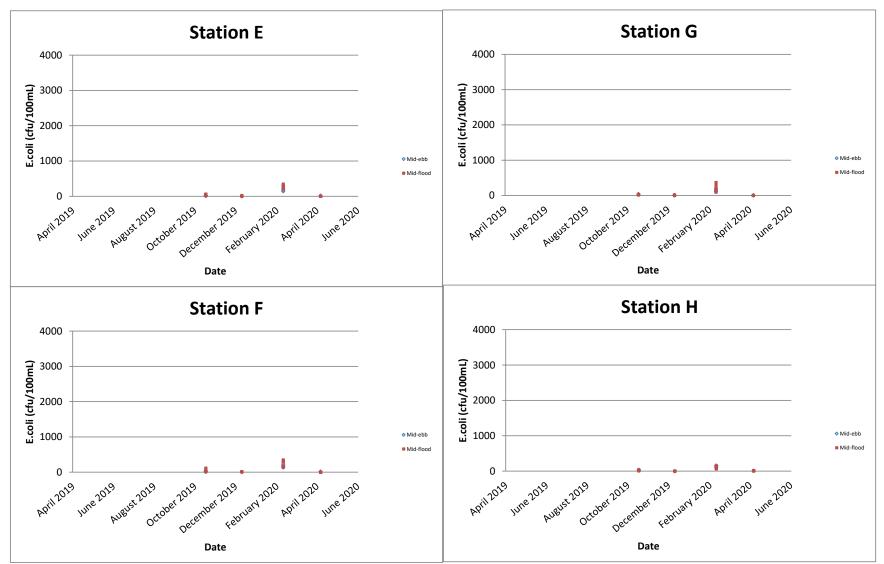

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

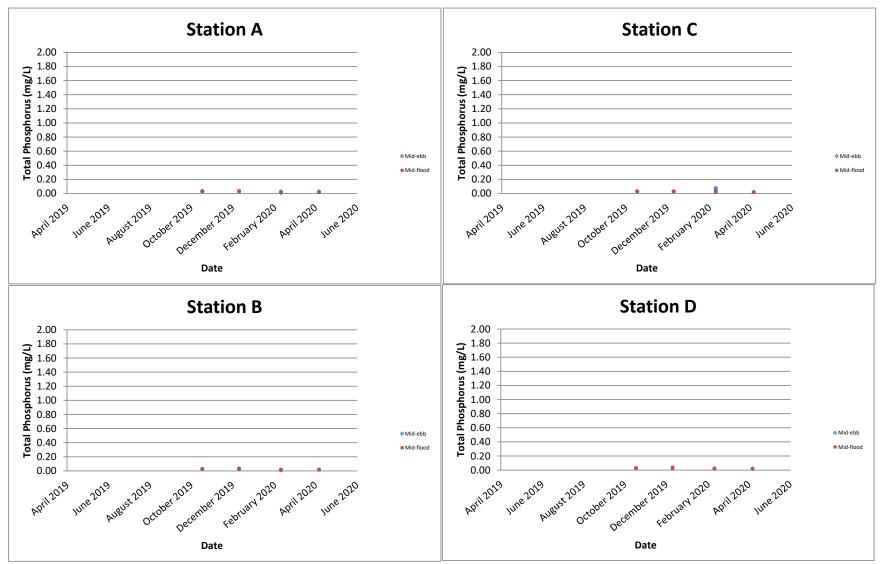
Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.



Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.

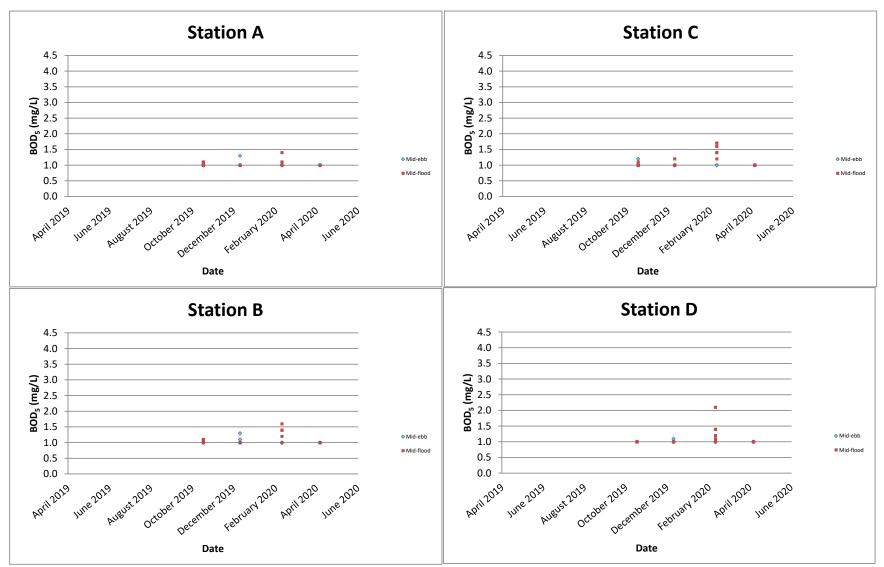
E.coli (cfu/100mL)



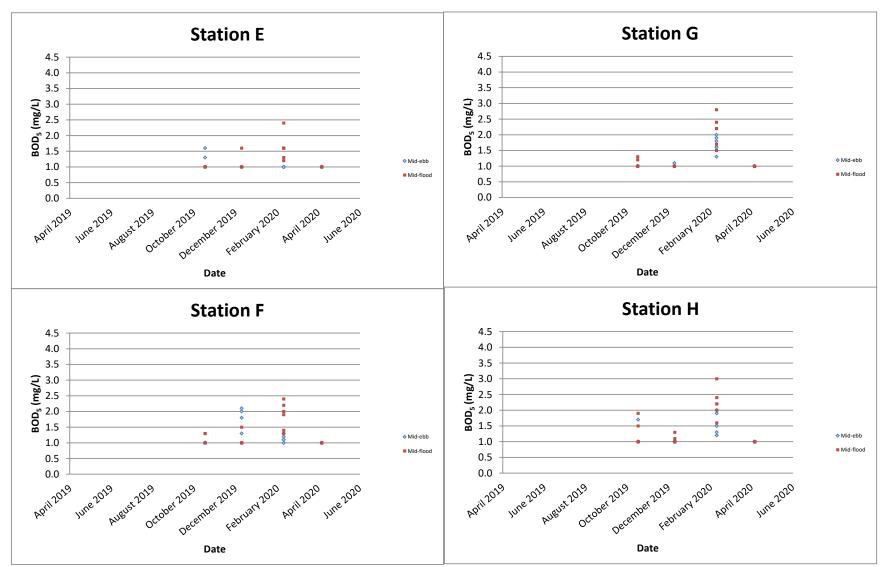
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.

E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

 $BOD_5 (mg/L)$

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

FUGRO TECHNICAL SERVICES LIMITED

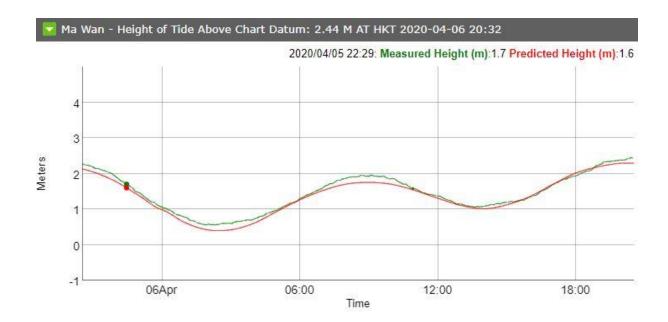
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix G

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

					Sediment Monitoring												
Monitoring Location	Date	Weather	Sea Condition	Time	pН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
А	6/4/2020	Fine	Moderate	13:39	8.2	3	911	504	<0.10	38.0	29.7	43.1	0.14	22.4	93.9	16.1	0.22
В	6/4/2020	Fine	Moderate	13:57	8.3	2	984	529	0.14	46.0	60.6	48.4	0.14	25.9	112	15.1	0.48
С	6/4/2020	Fine	Moderate	14:18	7.9	18	1410	658	<0.10	43.6	40.0	42.3	0.12	27.0	119	13.0	0.32
D	6/4/2020	Fine	Moderate	14:34	7.7	8	868	431	<0.10	32.0	27.6	32.8	0.09	19.6	89.0	9.8	0.23
E	6/4/2020	Fine	Moderate	14:57	8.1	5	1280	600	<0.10	43.2	41.5	42.2	0.16	26.2	122	11.7	0.34
F	6/4/2020	Fine	Moderate	15:13	8.1	8	1210	547	0.10	49.4	48.2	50.4	0.14	30.7	138	14.5	0.39
G	6/4/2020	Fine	Moderate	15:33	8.4	80	1200	507	<0.10	41.0	52.8	38.9	0.14	23.2	142	11.6	0.37
н	6/4/2020	Fine	Moderate	15:49	8.2	6	1100	594	0.11	49.4	62.0	48.7	0.12	28.6	119	14.4	0.45

							Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
А	6/4/2020	Fine	Moderate	13:39	0.68	3	41	32	24
В	6/4/2020	Fine	Moderate	13:57	0.82	3	20	50	27
С	6/4/2020	Fine	Moderate	14:18	0.93	0	4	59	37
D	6/4/2020	Fine	Moderate	14:34	0.74	1	18	52	29
E	6/4/2020	Fine	Moderate	14:57	0.88	0	13	53	34
F	6/4/2020	Fine	Moderate	15:13	0.94	0	7	58	35
G	6/4/2020	Fine	Moderate	15:33	0.54	29	25	23	23
н	6/4/2020	Fine	Moderate	15:49	0.75	0	5	56	39

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 13
Contact Address	 MR CYRUS LAI ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG 	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	: HK2012460
E-mail Telephone Facsimile	: c.lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	 richard.fung@alsglobal.com +852 2610 1044 +852 2610 2021 		
Project	: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERA SIU HO WAN SEWAGE TREATMENT PLANT	TIONAL ENVIR	CONMENTAL MONITORING AND AUDIT FOR	Date Samples Received	: 06-Apr-2020
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 22-Apr-2020
C-O-C number	:			No. of samples received	: 24
Site	:			No. of samples analysed	: 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Ki hard Fromy.			
Fung Lim Chee, Richard	Managing Director	Inorganics	
Richard Juny.	Managing Director	morganics	
K. Mand Jung .			
Fung Lim Chee, Richard	Managing Director	Metals_ENV	

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 06-Apr-2020 to 22-Apr-2020. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2012460

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

EA002SOIL - pH value is reported as at 25°C.

EK055S - Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCl solution extract.

EK059A - Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCI solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

EA002SOIL - Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.

EA002SOIL - Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Analytical Results

,			-		1	1		1
Sub-Matrix: SEDIMENT		Clie	ent sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012460-001	HK2012460-002	HK2012460-003	HK2012460-004	HK2012460-005
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.2	8.3	7.9	7.7	8.1
EA055: Moisture Content (dried @ 103°C)		0.1	%	48.2	54.5	61.7	47.6	58.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	3	2	18	8	5
EK062A: Total Nitrogen as N		10	mg/kg	911	984	1410	868	1280
EK067A: Total Phosphorus as P		10	mg/kg	504	529	658	431	600
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	16.1	15.1	13.0	9.8	11.7
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.14	<0.10	<0.10	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	38.0	46.0	43.6	32.0	43.2
EG020: Copper	7440-50-8	0.20	mg/kg	29.7	60.6	40.0	27.6	41.5
EG020: Lead	7439-92-1	0.20	mg/kg	43.1	48.4	42.3	32.8	42.2
EG020: Mercury	7439-97-6	0.05	mg/kg	0.14	0.14	0.12	0.09	0.16
EG020: Nickel	7440-02-0	0.20	mg/kg	22.4	25.9	27.0	19.6	26.2
EG020: Silver	7440-22-4	0.10	mg/kg	0.22	0.48	0.32	0.23	0.34
EG020: Zinc	7440-66-6	0.5	mg/kg	93.9	112	119	89.0	122

Page Number : 4 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

HK2012460

Work Order

Sub-Matrix: SEDIMENT		Clie	ent sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012460-006	HK2012460-007	HK2012460-008	HK2012460-009	HK2012460-010
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.1	8.4	8.2		
EA055: Moisture Content (dried @ 103°C)		0.1	%	60.2	54.6	56.3	45.8	52.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	8	80	6		
EK062A: Total Nitrogen as N		10	mg/kg	1210	1200	1100		
EK067A: Total Phosphorus as P		10	mg/kg	547	507	594		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	14.5	11.6	14.4		
EG020: Cadmium	7440-43-9	0.10	mg/kg	0.10	<0.10	0.11		
EG020: Chromium	7440-47-3	0.5	mg/kg	49.4	41.0	49.4		
EG020: Copper	7440-50-8	0.20	mg/kg	48.2	52.8	62.0		
EG020: Lead	7439-92-1	0.20	mg/kg	50.4	38.9	48.7		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.14	0.14	0.12		
EG020: Nickel	7440-02-0	0.20	mg/kg	30.7	23.2	28.6		
EG020: Silver	7440-22-4	0.10	mg/kg	0.39	0.37	0.45		
EG020: Zinc	7440-66-6	0.5	mg/kg	138	142	119		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.68	0.82

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012460

Sub-Matrix: SEDIMENT	atrix: SEDIMENT Client sample ID				D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012460-011	HK2012460-012	HK2012460-013	HK2012460-014	HK2012460-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	63.1	54.3	55.9	58.0	44.5
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.93	0.74	0.88	0.94	0.54

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012460

Sub-Matrix: SEDIMENT	b-Matrix: SEDIMENT Client sample ID								
	Client sampling date / time			06-Apr-2020					
Compound	CAS Number	LOR	Unit	HK2012460-016					
EA/ED: Physical and Aggregate Properties									
EA055: Moisture Content (dried @ 103°C)		0.1	%	54.2					
EP: Aggregate Organics									
EP005: Total Organic Carbon		0.05	%	0.75					

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2012460

Sub-Matrix: WATER		Clie	ent sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
	Clie	ent samplii	ng date / time	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020	06-Apr-2020
Compound	CAS Number	LOR	Unit	HK2012460-017	HK2012460-018	HK2012460-019	HK2012460-020	HK2012460-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	<10	<10	<10
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	μg/L	1	5	1	5	4
EG020: Copper	7440-50-8	1	μg/L	2	5	5	7	4
EG020: Lead	7439-92-1	1	µg/L	2	4	<1	4	3
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	µg/L	2	5	2	4	3
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	<10	20	<10	20	20

Page Number : 8 of 13 Client FUGRO TECHNICAL SERVICES LIMITED HK2012460

_

Sub-Matrix: WATER	Client sample ID			F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
	Client sampling date / time			06-Apr-2020	06-Apr-2020	06-Apr-2020	
Compound	CAS Number	LOR	Unit	HK2012460-022	HK2012460-023	HK2012460-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	μg/L	<10	<10	<10	
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	μg/L	3	6	2	
EG020: Copper	7440-50-8	1	μg/L	4	8	2	
EG020: Lead	7439-92-1	1	μg/L	2	5	1	
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	μg/L	3	7	2	
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	10	20	<10	

Laboratory Duplicate (DUP) Report

latrix: SOIL					Labo	ratory Duplicate (DUP) I	report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	: 2961313)						
HK2012083-012	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	15.8	16.2	2.15
HK2012225-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	18.1	18.7	3.72
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2961314)						
HK2012460-002	B/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	54.5	55.0	0.921
HK2012479-004	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.2	15.6	3.48
EA/ED: Physical and A	ggregate Properties (QC Lot:	: 2961321)						
HK2012460-001	A/Sediment	EA002SOIL: pH Value		0.1	pH Unit	8.2	8.2	0.00
EA/ED: Physical and A	ggregate Properties (QC Lot	: 2971456)						
HK2012460-009	A/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	45.8	46.8	2.17
HK2012774-002	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	24.1	23.3	3.55
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2961319)						
HK2012460-001	A/Sediment	EK055S: Ammonia as N	7664-41-7	1	mg/kg	3	3	0.00
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	2968407)						
HK2012460-001	A/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	504	612	19.4
EG: Metals and Major (Cations (QC Lot: 2958047)							
HK2012460-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	0.14	0.14	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.14	0.15	0.00
		EG020: Copper	7440-50-8	0.05	mg/kg	60.6	60.8	0.305
		EG020: Lead	7439-92-1	0.05	mg/kg	48.4	46.4	4.21
		EG020: Nickel	7440-02-0	0.05	mg/kg	25.9	26.6	2.61
		EG020: Silver	7440-22-4	0.05	mg/kg	0.48	0.49	0.00
		EG020: Arsenic	7440-38-2	0.5	mg/kg	15.1	14.8	1.96
		EG020: Chromium	7440-47-3	0.5	mg/kg	46.0	47.6	3.39
		EG020: Zinc	7440-66-6	0.5	mg/kg	112	113	1.02
EP: Aggregate Organic	s (QC Lot: 2980409)							
HK2012460-009	A/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.68	0.76	9.86
latrix: WATER				· · · · ·	Labo	pratory Duplicate (DUP) I	Report	
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	. ,

 Page Number
 : 10 of 13

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK2012460

Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)				
sample ID							Result					
EG: Metals and Major C	G: Metals and Major Cations - Total (QC Lot: 2958044) - Continued											
HK2012460-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00				
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.00				
		EG020: Arsenic	7440-38-2	1	µg/L	<10	<10	0.00				
		EG020: Chromium	7440-47-3	1	µg/L	5	6	0.00				
		EG020: Copper	7440-50-8	1	µg/L	5	4	0.00				
		EG020: Lead	7439-92-1	1	µg/L	4	4	0.00				
		EG020: Nickel	7440-02-0	1	µg/L	5	4	0.00				
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.00				
		EG020: Zinc	7440-66-6	10	µg/L	20	20	0.00				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report				Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit		
ED/EK: Inorganic Nonmetallic Parameters	(QC Lot: 2961319)												
EK055S: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	99.7		85.5	111				
ED/EK: Inorganic Nonmetallic Parameters	(QC Lot: 2968407)												
EK067A: Total Phosphorus as P		10	mg/kg	<10	695 mg/kg	88.0		82.7	97.7				
EG: Metals and Major Cations (QC Lot: 29	58047)												
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	99.5		85.0	110				
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	0.25 mg/kg	90.1		85.0	115				
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	101		85.0	115				
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	106		85.0	114				
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	90.1		87.0	115				
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	102		85.0	115				
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	99.6		85.0	115				
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	93.7		85.0	115				
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	106		85.0	115				
EP: Aggregate Organics (QC Lot: 2980409)												
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	96.6		89.8	107				

Page Number : 11 of 13 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012460

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Tota	al (QC Lot: 2958044)										
EG020: Arsenic	7440-38-2	1	µg/L	<1	50 µg/L	99.1		85.0	110		
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	5 µg/L	94.0		85.0	109		
EG020: Chromium	7440-47-3	1	µg/L	<1	50 µg/L	98.4		86.0	111		
EG020: Copper	7440-50-8	1	µg/L	<1	50 µg/L	104		90.0	111		
EG020: Lead	7439-92-1	1	µg/L	<1	50 µg/L	95.0		89.0	111		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	92.0		85.0	115		
EG020: Nickel	7440-02-0	1	µg/L	<1	50 µg/L	107		87.0	110		
EG020: Silver	7440-22-4	1	µg/L	<1	50 µg/L	104		85.0	114		
EG020: Zinc	7440-66-6	10	µg/L	<10	50 µg/L	109		86.0	114		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
Laboratory Client sample ID Method: Compound				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
		CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
ED/EK: Inorgani	c Nonmetallic Parameters (QC	CLot: 2961319)								
HK2012460-002	B/Sediment	EK055S: Ammonia as N	7664-41-7	10 mg/kg	91.5		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC	CLot: 2968407)								
HK2012460-001	A/Sediment	EK067A: Total Phosphorus as P		100 mg/kg	110		75.0	125		
EG: Metals and	Major Cations (QC Lot: 29580	47)								
HK2012460-001 A/Sediment	A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	98.0		75.0	125		
		EG020: Cadmium	7440-43-9	0.25 mg/kg	88.3		75.0	125		
		EG020: Chromium	7440-47-3	5 mg/kg	77.2		75.0	125		
		EG020: Copper	7440-50-8	5 mg/kg	79.6		75.0	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not Determined		75.0	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	90.4		75.0	125		
		EG020: Nickel	7440-02-0	5 mg/kg	81.6		75.0	125		
		EG020: Silver	7440-22-4	5 mg/kg	91.9		75.0	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75.0	125		
EP: Aggregate C	Drganics (QC Lot: 2980409)									
	A/Benthic Survey	EP005: Total Organic Carbon		40 %	96.5		75.0	125		
Matrix: WATER					Matrix Spik	e (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and	Major Cations - Total (QC Lot:	2958044)								
HK2012460-017 A/Rin	A/Rinsate Blank	EG020: Arsenic	7440-38-2	50 µg/L	98.0		75.0	125		
		EG020: Cadmium	7440-43-9	5 µg/L	93.8		75.0	125		
		EG020: Chromium	7440-47-3	50 µg/L	86.4		75.0	125		
		EG020: Copper	7440-50-8	50 µg/L	85.7		75.0	125		
		EG020: Lead	7439-92-1	50 µg/L	75.8		75.0	125		
		EG020: Mercury	7439-97-6	2 µg/L	82.6		75.0	125		

Page Number : 13 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2012460

Matrix: WATER					Matrix Spl	ike (MS) and Matrix	x Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPL	7(%)
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and	Major Cations - Total (QC Lot:	2958044) - Continued								
HK2012460-017	A/Rinsate Blank	EG020: Nickel	7440-02-0	50 µg/L	86.3		75.0	125		
		EG020: Silver	7440-22-4	50 µg/L	76.4		75.0	125		
		EG020: Zinc	7440-66-6	50 µg/L	85.3		75.0	125		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR CYRUS LAI	WORK ORDER HK2012460
CLIENT	: FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	ROOM 723 & 725, 7/F, BLOCK B, PROFIT	SUB-BATCH : 1 DATE RECEIVED : 6-APR-2020
	INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG	DATE OF ISSUE 20-APR-2020
PROJECT	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT	NO. OF SAMPLES : 24 CLIENT ORDER 0041/17
	PLANT	

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.
- Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.
- Sample information (Project name, Sample ID, Sampling date/time, etc., if any) is provided by client.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- EA002SOIL pH value is reported as at 25°C.
- EK055S Ammoniacal Nitrogen was determined and reported on a 1:5 soil / 1M KCI solution extract.
- EK059A Nitrate and Nitrite were determined and reported on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- EA002SOIL Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.
- EA002SOIL Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Kichard Jong.	
Richard Fung	Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2012460

¹ 1 ¹ FUGRO TECHNICAL SERVICES LIMITED

CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK2012460-001	A/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-002	B/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-003	C/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-004	D/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-005	E/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-006	F/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-007	G/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-008	H/Sediment	SEDIMENT	06-Apr-2020	
HK2012460-009	A/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-010	B/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-011	C/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-012	D/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-013	E/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-014	F/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-015	G/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-016	H/Benthic Survey	SEDIMENT	06-Apr-2020	J2999-272.70
HK2012460-017	A/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-018	B/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-019	C/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-020	D/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-021	E/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-022	F/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-023	G/Rinsate Blank	WATER	06-Apr-2020	
HK2012460-024	H/Rinsate Blank	WATER	06-Apr-2020	

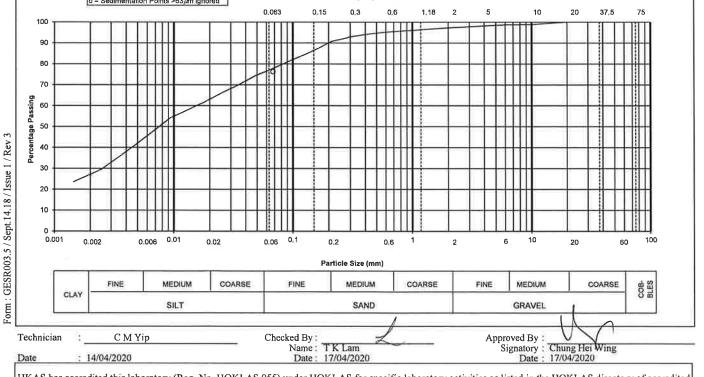
TEST CERTIFICATE
SUMMARY OF SOIL CLASSIFICATION TEST RESULT
GEOSPEC 3 : 2001

Report No : J2999-272.70

Works Order No. : 272

Customer :	Customer : ALS Technichem (HK) Pty Ltd	ı (HK) P	'ty Ltd						2	6	Job No. : J2999	12999				Works Order No. : 272		
Project :	, Î									Coi	Contract No.:					Date : 08/04/2020		
Sample ID	Sarr	Sample		Δ Moisture Content		Test 6.1 Plastic I	Test 6.1 Plasticity	TestTestTest6.16.16.2PassingLiquidPlastic Plasticity Liquidity	Passing 425µm	Passing Preparation 425µm Method		Particle Size Distribution	Distri	bution		Description	Sar	Sample
No.	No.	Type	Depth (m)	(%)	Limit (%)	Limit Limit (%) (%)	Index (%)	Index	Test Sieve (%)		# Test Method	_	Percentage Gravel Sand Silt Clay (%) (%) (%) (%)	tage Silt C (%) (Clay (%)		0	Origin
HK2012460-009	A/Benthic Survey	D									1.5.7		41		24 Da	Dark grey, sandy SILT/CLAY with shell fragments		++,
HK2012460-010	B/Benthic Survey	D									1.5.7	3	20	50 2	27 Da	Dark grey, slightly sandy SILT/CLAY with shell fragments	ments	++,
HK2012460-011	C/Benthic Survey	D									1,5,7	0	4	59 3	37 Da	Dark grey, slightly sandy SILT/CLAY with shell fragments	ments	++
HK2012460-012	D/Benthic Survey	D									1,5,7	1	18	52 2	29 Da	Dark grey, slightly sandy SILT/CLAY with shell fragments	ments	#,
HK2012460-013	E/Benthic Survey	D									1,5,7	0	13	53 3	34 Da	Dark grey, slightly sandy SILT/CLAY with shell fragments	ments	++
HK2012460-014	F/Benthic Survey	Q									1,5,7	0	7	58 3	35 Da	Dark grey, slightly sandy SILT/CLAY with shell fragments	ments	* ,
HK2012460-015		Q									1,5,7	29	25	23 2	23 Da wi	Dark grey, slightly sandy, slightly gravelly SILT/CLAY with shell fragments		+ ,
HK2012460-016	H/Benthic Survey	D									1.5.7	0	5	56 3	39 Da	Dark grey. slightly sandy SILT/CLAY with shell fragments	ments	++
Legend :		Test Meth Test Meth	hod in accor	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture C Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2)	OSPEC 3	2001 Test 2001 Test	t 5.1 Moisti 8.1 (1), 8.2	ure Content (2), 8.3 (3)	at 45°C ± 5), 8.4 (4), 8.	ontent at 45°C ± 5°C (A). Test 5.2 Moi 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	.2 Moisture (3.7 (7).	Content at	105°C±	E 5°C (B), Test	Test Method in accordance with GEOSPEC3 : 2001 Test 5.1 Moisture Content at 45° C (A). Test 5.2 Moisture Content at 105° C ± 5° C (B), Test 5.3 Comparative Moisture Content $45/105^{\circ}$ C ± 5° C (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).		
Symbols :	U - Undisturbed Sample, LB - Large Disturbed Sample, BLK - Block Sample; SPTL - SPT Split-Barrel Sample;	sample; ed Sample ; rel Sample	ж б		Р- М- D- РТ-	P - Piston Sample; M - Mazier Sample; D - Small Disturbed	 P. Piston Sample; M. Mazier Sample; D. Small Disturbed Sample; Portable triple tube Sample; 	ple; ample;	N.P Non Plastic; A.R As Received H.P Hand Picked [*] - Moisture Conte	N.P Non Plastic; A.R As Received; H.P Hand Picked; • - Moisture Content for A.L. Test.	A.L. Test.	A.D A O.D O W.S W	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;	ې ټې ټې		Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. ‡ - Information provided by customer,	eport; eport. istomer	
Notes:	IS - Insufficient Sample.	:aldi			Tf - T	o Follow o	n suppleme	Tf - To Follow on supplementary Report.	۲,		Ż	\langle						
Checked by :	TK	TKLam						Apj	Approved By		Chung Hei Wing Ouality Manager	Wing		1		Date : 17/04/2020		
		Ē	HKAS OKLAS	HKAS has accredited this laboratory (Reg. No. HOKLAS directory of accredited laboratories. This	ited this accredite	laborato.	ry (Reg. tories. T		LAS 055 t shall no	() under HO	KLAS for iced unless	specific with pr	: labora	atory a itten aj	ctivitie	HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the report shall not be reproduced unless with prior written approval from this laboratory.		
© Gammon Construction Ltd	tion Ltd							21 Chun Tseung	T Wang Stree Kwan O, N	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	atre an O Industri 980, Fax : 26	al Estate, 917547						
Form : GESS001 / Se	Form : GESS001 / Sept.14.18 / Issue 1 / Rev 4	v 4															Page	Page 1 of 1

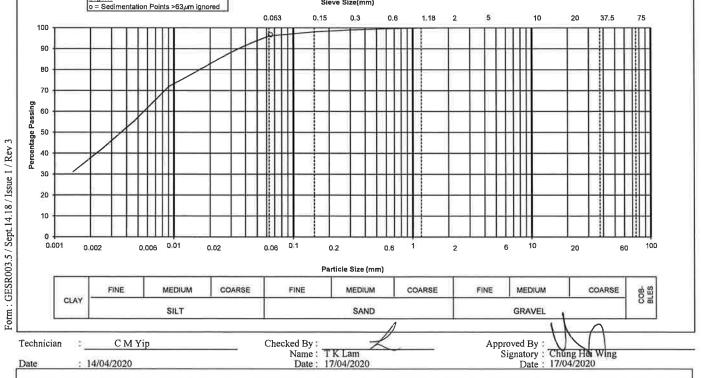
				Report No.	J2999-272.70
Job No.	; J2999	Contract No.			
Customer	ALS Technichem (HK) Pty Lt	d		Works Order No.	: 272
Project	2. .			Sample ID No.	: HK2012460-009
				Sample No.	A/Benthic Survey
Date Received	1: 08/04/2020			Sample Depth (m)	:
Tested Date	: 14/04/2020			Specimen Depth (m)	->
				Sample Type	: Small Disturbed
Description	Dark grey, sandy SILT/CLAY	with shell fragment	S	Sample Origin	121- [‡]
Sieve Method	: Method A	Jpon request	* Delete as appropriate	[‡] Information provided by	customer


SIEVE ANALYSIS *Expanded *Cumulative SEDIMENTATION ANALYSIS Percent Percent Passing Specific Gravity (# if assumed) : 2.65 # Passing Uncertainty of the Percent with Expanded Dispersant Details : Sodium hexametaphosphate, Sodium carbonate Sieve Size (%) Passing (%) Uncertainty (%) Sampling History : As received 100.0 mm 100 The presence of any visible organic matter in the soil : None 75.0 mm 100 63.0 mm 100 Particle % Finer Expanded Expanded -. 50.0 mm 100 Diameter Uncertainty of the than D Uncertainty of -37.5 mm Particle Diameter % finer than D 100 -Κ 28.0 mm 100 2 (mm) (mm) (%) (%) 20.0 mm 100 0.0718 56 -14.0 mm 100 0.0510 54 -10.0 mm 99 0.0364 51 6.30 mm 99 0.0259 48 5.00 mm 99 47 0.0184 3.35 mm 98 0.0096 43 2.00 mm 97 0.0049 34 1.18 mm 95 0.0025 27 600 µm 92 0.0015 21 425 µm 89 SUMMARY : 300 µm 84 Gravel (%) 3 : 212 µm 73 Sand (%) 41 : 150 µm 63 Silt (%) : 32 63 µm 56 Clay (%) 24 : 0 µm 0 Legend o = Sedimentation Points >63µm ignored Sieve Size(mm) 0.063 0.15 0.3 0,6 2 5 10 20 37.5 1.18 75 100 90 80 70 Percentage Passing 60 50 Form : GESR003.5 / Sept.14.18 / Issue 1 / Rev 3 40 30 20 10 0 0.001 0.006 0.01 0.06 0.1 10 100 0.002 6 0.02 0.2 2 60 06 20 Particle Size (mm) FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE COB-CLAY SILT SAND GRAVEL Technician C M Yip Checked By : Approved By Name : TK Lam Signatory : Chung Hei Wing 17/04/2020 Date : 14/04/2020 Date: 17/04/2020 Date

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

(et siere a		eter Miethou)		10	Report No.	J2999-272.70	
Job No. J2999)	Contract No.			Report No.	J2999-212.10	
	, Technichem (HK) Pi			Works	Order No.	272	
	rechinichenii (FIK) F	ty Lid					
Project						HK2012460-010	
				Sample		B/Benthic Survey	
Date Received : 08/04	/2020			Sample	Depth (m) :		
Tested Date : 14/04	/2020			Specim	en Depth (m) :		
				Sample	: Type :	Small Disturbed	
Description : Dark	grey, slightly sandy	SILT/CLAY with shell f	fragments	Sample	Origin :	_ *	
Sieve Method : Meth	od A	¹ Upon request	* Delete as appropria	te [‡] Inform	nation provided by cu	istomer	
SIEVE ANALYSIS	Percent	*Expanded	[^] Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if		5 #	
	B	of the Percent	with Expanded	Dispersant Details :			arbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History :	As received	oopnato, oourani e	
100.0 mm	100	T ubbing (70)		The presence of any v		in the soil : None	
75.0 mm	100				iciole of Ballie Matter	in the ton	
63.0 mm	100	12		Particle	Expanded	% Finer	Expanded
50.0 mm	100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100			-	Particle Diameter	K	% finer than D
28.0 mm	100	16		(mm)	(mm)	(%)	(%)
20.0 mm	100			0,0680		76	
14.0 mm	99	(e)		0.0483		74	-
10.0 mm	99		÷	0.0346	548	70	2
6.30 mm	99			0.0248		66	•
5.00 mm	98			0.0177	20	62	-
3.35 mm	98	-		0.0093	347	54	(a):
2.00 mm	97		22	0.0048	S23	41	
1.18 mm	96			0.0025	٠	30	-
600 µm	95			0.0015	(#)	24	-
425 µm	94	•		SUMMARY :			
300 µm	93			Gravel (%)	: 3		
212 µm	91			Sand (%)	: 20		
150 µm	87		14 C	Silt (%)	; 50		
63 µm	77		24	Clay (%)	: 27		
	0						



HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

(wet sieve al	iu ilyurome	ter Methou)			Report No.	J2999-272.70	
Job No. ; J2999		Contract No. :					
Customer : ALS 7	Fechnichem (HK) Ptv	v Ltd		Works	Order No.	: 272	
Project :-	()	,				: HK2012460-011	
Troject				Sample		: C/Benthic Survey	I
Date Received : 08/04	/2020				e Depth (m)	. C/Dennine Survej	1
					• • • •	•	
Tested Date : 14/04	/2020				nen Depth (m)	; . 0. 11 D' + 1 - 1	
				Sample		: Small Disturbed	
Description : Dark	grey, slightly sandy S	SILT/CLAY with shell fr	agments	Sample	e Origin	: -‡	
Sieve Method : Metho	od A	¹ Upon request	* Delete as appropria	te [‡] Inforr	mation provided by c	customer	
SIEVE ANALYSIS	Percent	*Expanded	^{Cumulative}	SEDIMENTATION			
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if		55 #	
Sieve Size		of the Percent	with Expanded	Dispersant Details :		hosphate, Sodium	carbonate
	(%)	Passing (%)	Uncertainty (%)	Sampling History :			
100.0 mm	100	•		The presence of any	visible organic matte	er in the soil : None	•
75.0 mm	100						
63.0 mm	100		10 M	Particle	Expanded	% Finer	[*] Expanded
50.0 mm	100	*		Diameter	Uncertainty of the		Uncertainty of
37.5 mm	100	•	¥		Particle Diameter	K	% finer than D
28.0 mm	100	5		(mm)	(mm)	(%)	(%)
20.0 mm	100	*		0.0648	1000	97	
14.0 mm	100	2	· · · · · · · · · · · · · · · · · · ·	0.0464		93	
10.0 mm	100			0.0331		89	
6.30 mm	100			0.0237) et al.	85	
5.00 mm	100	•		0.0170	100 (N	81	
3.35 mm	100		•	0.0090		72	
2.00 mm	100		5	0.0047	1.00	56	
1.18 mm	100	· · ·	•	0.0024	0.001	42	•
600 μm	100	¥		0.0014	/B	31	•
425 µm	99	-		SUMMARY :			
300 µm	99		•	Gravel (%)	: 0		
212 µm	99	÷	-	Sand (%)	: 4		
150 μm	98	•		Silt (%)	: 59		
	96	-	-	Clay (%)	: 37		
63 μm 0 μm	0						

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

	12999	iy di onic	Contract No. :			Report No. :	J2999-272.70	
	ALS Techni	chem (HK) Pty			Sampl	e ID No. :	272 HK2012460-012	
Date Received : (Tested Date : 1	08/04/2020 14/04/2020				Specir	e Depth (m) : nen Depth (m) : e Type :	Small Disturbed	
-		lightly sandy S	ILT/CLAY with shell	-			_‡	
Sieve Method : 1			[•] Upon request	* Delete as appropria		mation provided by c	ustomer	
SIEVE ANALY		Percent Passing	*Expanded Uncertainty of the Percent	[^] Cumulative Percent Passing with Expanded	SEDIMENTATION Specific Gravity (# if Dispersant Details :	fassumed): 2.6		arbonate
Sieve Size		(%)	Passing (%)	Uncertainty (%)	Sampling History :	As received		
100.0 mr		100		2 2 2	The presence of any	visible organic matter	in the soil : None	
75.0 mi 63.0 mi		100 100		300 100	Particle	Expanded	% Finer	Expanded
50,0 m		100			Diameter	Uncertainty of the	than D	Uncertainty of
37.5 m		100				Particle Diameter	K	% finer than D
28,0 mi	n	100		(4)	(mm)	(mm)	(%)	(%)
20,0 mi		100	-	0.52	0.0678	~	79	
14.0 mr		100	•	(*)	0.0482		77	-
10.0 mi		100	•		0.0345	•	73	
6.30 mi 5.00 mi		100			0.0247	<u> </u>	69 66	
3.35 mi		100			0.0093		56	
2.00 mi		99	-	14	0.0048	12	44	241
1.18 m	n	98	7.	182	0.0025		33	120
600 µn		97	•	2.00	0.0014	-	25	(e);
425 μn		96		16F	SUMMARY :			
300 µn		95		1.5	Gravel (%)	: 1		
212 μn 150 μn		92 88		5 7 5 3 2 5	Sand (%) Silt (%)	18 52		
63 μn		81		-	Clay (%)	: 52 : 29		
0 μn		0				3 47		
1	Legend		<u></u>					
	p = Sedimenta	ition Points >63µm	n ignored 0.06	Sieve Size(mm 3 0,15 0,3	0.6 1,18 2	5 10	20 37,5	75
100	TT							TIT
90								
80								
70								
- ig 60					╋╋			
8 8 9 50								
ntage Passing								
5 40	+] 			╅┥┥┥┫┊╴╴┥╴	_ 		
90 40								
30								
20								
10		++++++			┽┽┼┼╢╋┊╸╴┼╸			
o ———								
0.004	.002	0.006 0.01	0.02 0.06	0.1 0.2	0.6 1 2	6 10	20	60 100
				Particle Size (r	nm)			
	FINE	MEDIUM	I COARSE	FINE MEDIU	M COARSE	FINE MEDIUM		BLES BL
CLAY		SILT		SAN	D	GRAVE		
				57 (1)	/	0.010	1	
				1.15	1	· · · · ·	1A A	
Technician :_	СМ	тір	Che	cked By : Name : TK Lam	\sim	Approved By	Chung Het Wing	
Date :	14/04/2020			Date : 17/04/2020		Date	: 17/04/2020	

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

77

72

64

50

38

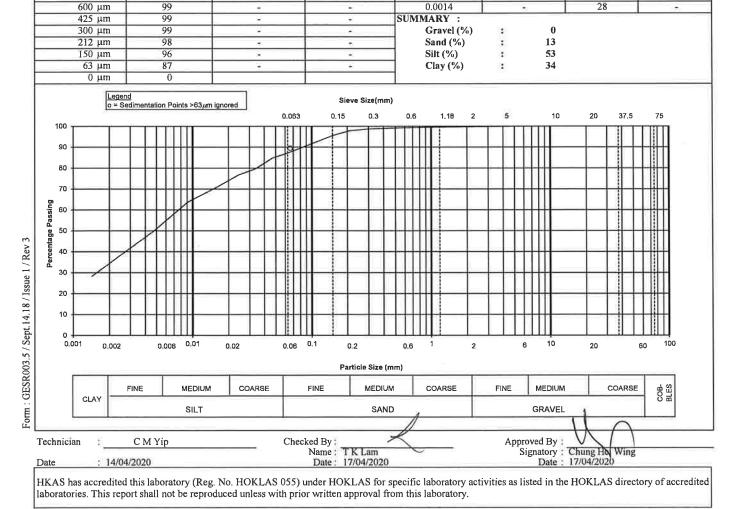
28

.

.

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

(10000 000 000		
					Report No.	J2999-272.70		
Job No. 👘 J2999)	Contract No.						
Customer : ALS	Technichem (HK) Pi	ty Ltd		Work	s Order No. :	272		
Project : -				Samp	le ID No. :	HK2012460-013		
2 0.920°				Samp	le No. :	E/Benthic Survey	,	
Date Received : 08/04	/2020			Samo	le Depth (m) :	-		
Tested Date : 14/04					men Depth (m) :			
105000 Duto . 11/01	12020					Small Disturbed		
Description Dark	arey slightly candy	SILT/CLAY with shell	fragments	•	21	_‡		
			-		it on Bin			
Sieve Method : Method	od A	[•] Upon request	 Delete as appropria 	te + Info	rmation provided by c	istomer		
SIEVE ANALYSIS	Percent	[•] Expanded	^Cumulative	SEDIMENTATIO	N ANALYSIS			
	Passing	Uncertainty	Percent Passing	Specific Gravity (#	f assumed) : 2.6	5 #		
Sieve Size		of the Percent	with Expanded	Dispersant Details :	Sodium hexametapl	osphate, Sodium	carbonate	
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History	: As received			
100.0 mm	100		-	The presence of any visible organic matter in the soil : None				
75.0 mm	100	*						
63,0 mm	100		(#:	Particle	Expanded	% Finer	*Expanded	
50.0 mm	100		1	Diameter	Uncertainty of the	than D	Uncertainty of	
37.5 mm	100	5			Particle Diameter	K	% finer than D	
28.0 mm	100	-	14 A	(mm)	(mm)	(%)	(%)	
20.0 mm	100	-		0.0661	160	90	<u>= = = = = = = = = = = = = = = = = = = </u>	
14.0 mm	100			0.0474	14	85	12/	
10.0 mm	100	×	*	0.0340	((+)	80	18 C	


0.0243

0.0174

0.0092

0.0047

0.0024

© Gammon Construction Ltd

6.30 mm

5.00 mm

3.35 mm

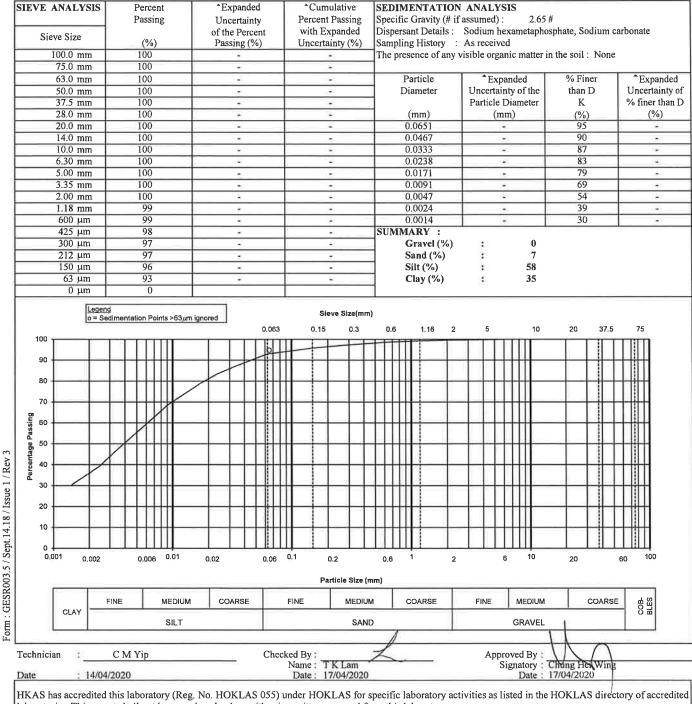
2.00 mm

1.18 mm

100

100

100


100

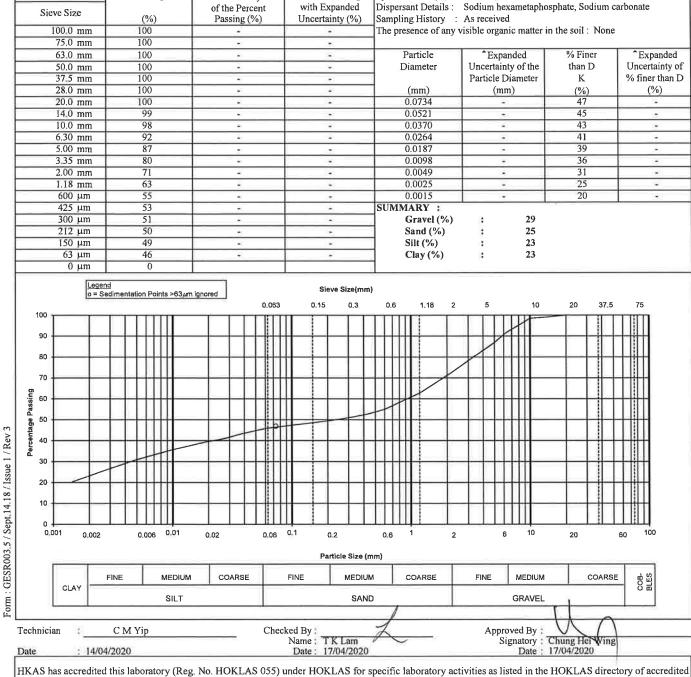
100

99

I among the second seco		1		
Sieve Method : Method	A ¹ Upon request	* Delete as appropriate	[‡] Information provided b	y customer
Description 1 Dark gre	y, slightly sandy SILT/CLAY with shell fr	ragments	Sample Origin	2 -1
			Sample Type	: Small Disturbed
Tested Date : 14/04/20	20		Specimen Depth (m)	1
Date Received : 08/04/20	20		Sample Depth (m)	:
			Sample No.	: F/Benthic Survey
Project : -			Sample ID No.	: HK2012460-014
Customer 🕴 ALS Tec	hnichem (HK) Pty Ltd		Works Order No.	: 272
Job No. 📑 J2999	Contract No.			
			Report No.	J2999-272.70

laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

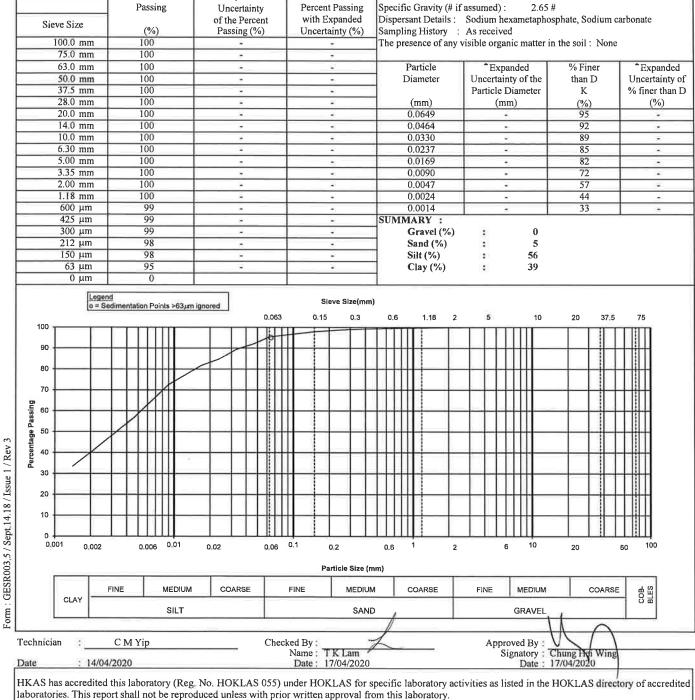


10000 000 000

. . .

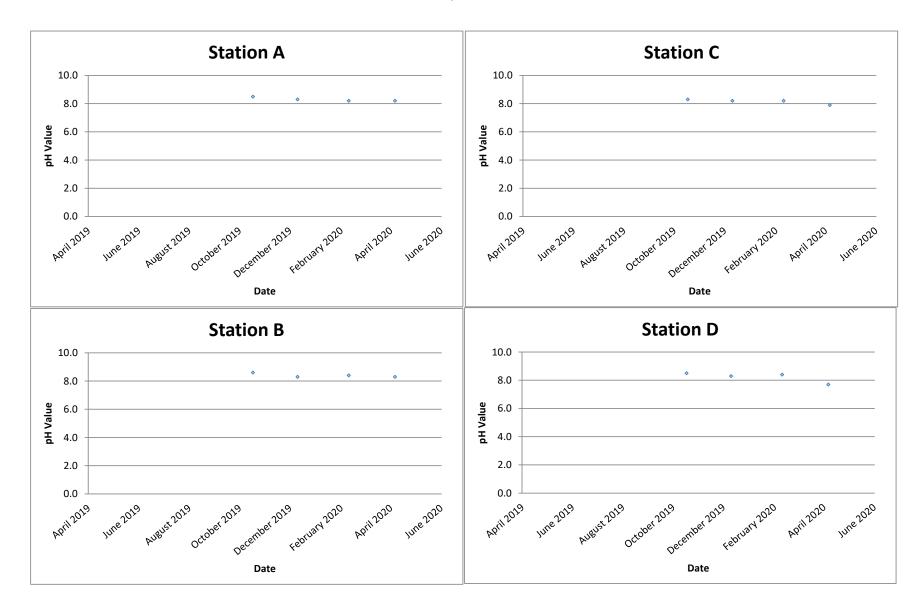
TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

				Report No.	J2999-272.70			
Job No.	J2999	Contract No. 📱						
Customer	ALS Technichem (HK) Pt	y Ltd	Works Order No.	: 272				
Project	-			Sample ID No.	: HK2012460-015			
				Sample No.	: G/Benthic Survey			
Date Received :	08/04/2020	Sample Depth (m)	:					
Tested Date :	14/04/2020			Specimen Depth (m)	:			
				Sample Type	: Small Disturbed			
Description 🕴 Dark grey, slightly sandy, slightly gravelly SILT/CLAY with shell fragments Sample Origin : - [‡]								
Sieve Method :	Method A	* Delete as appropriate		e [‡] Information provided	[‡] Information provided by customer			
SIEVE ANAL	YSIS Percent	*Expanded	[^] Cumulative	SEDIMENTATION ANALYSIS				
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if assumed) :	2.65 #			

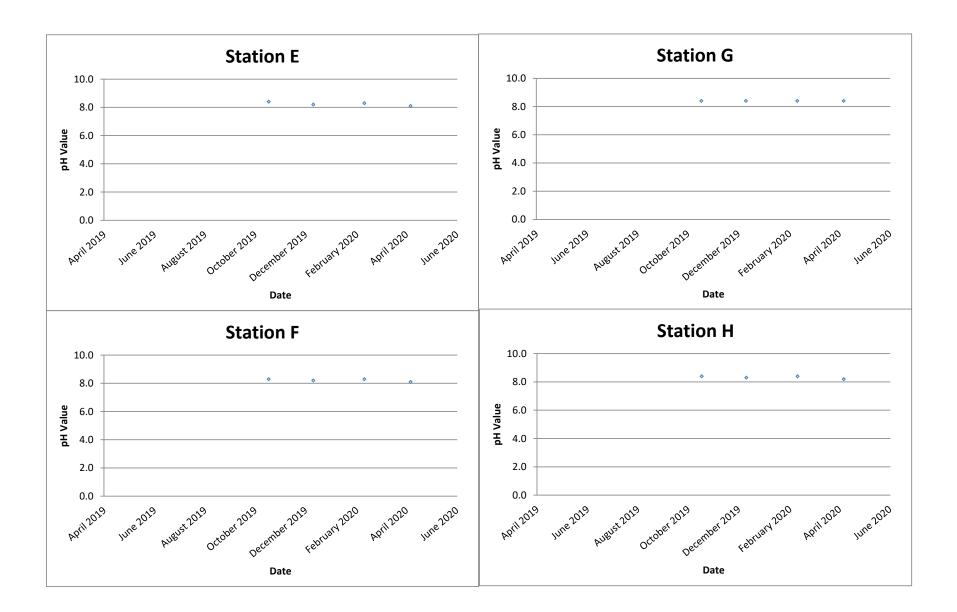


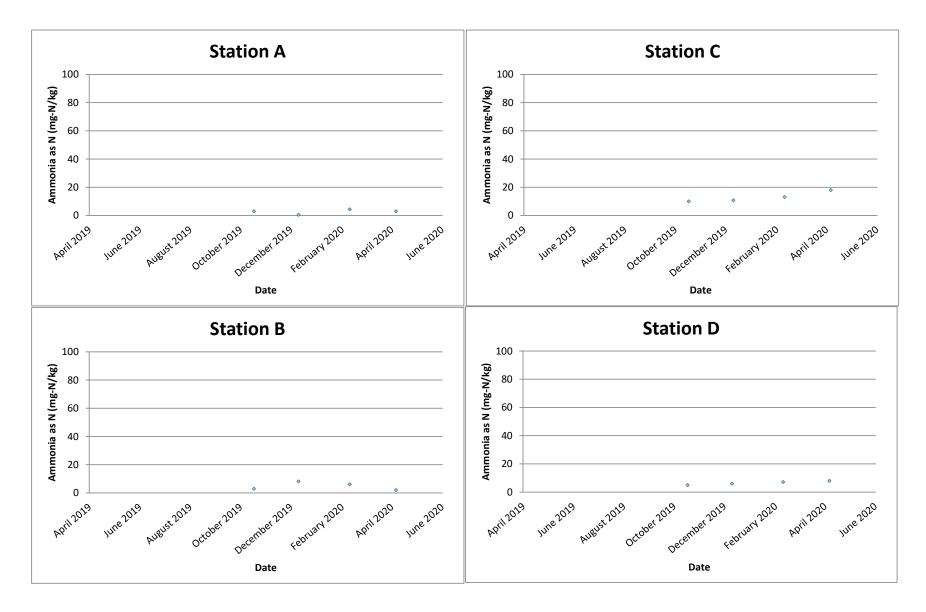
laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

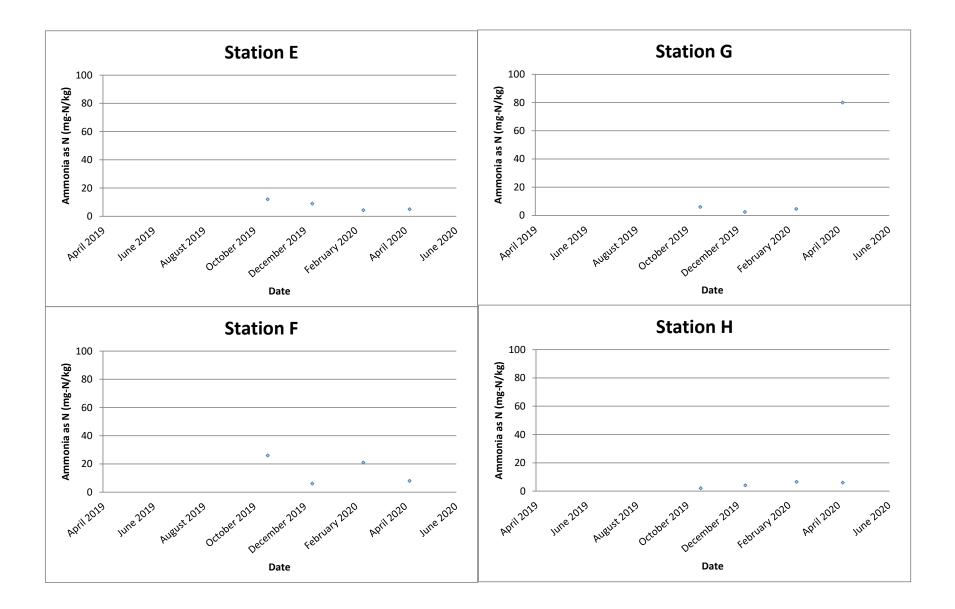
© Gammon Construction Ltd

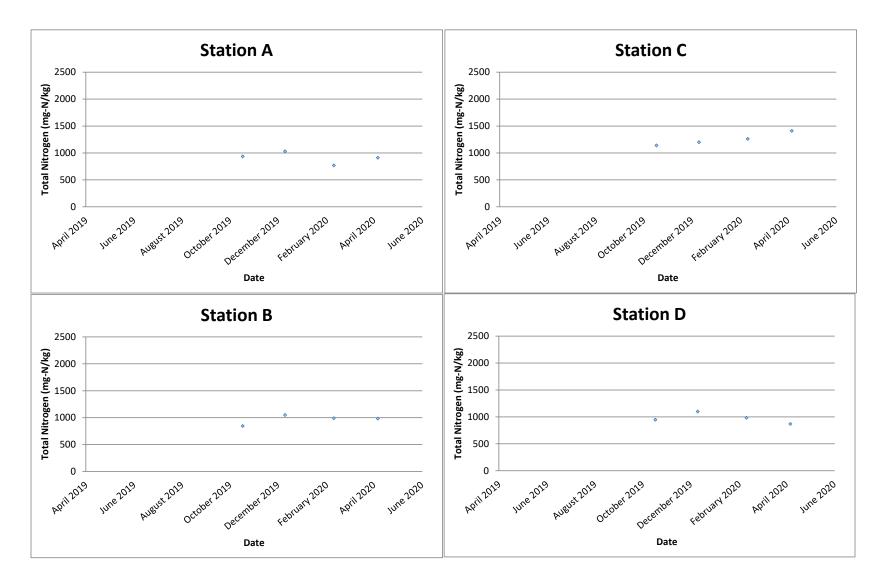


					Report No.	J2999-272 70		
Job No.	: J2999		Contract No.					
Customer	: ALS T	echnichem (HK) Pty	Ltd		Works Order No.	: 272		
Project					Sample ID No.	: HK2012460-016		
					Sample No.	: H/Benthic Survey		
Date Received	I: 08/04/	2020	Sample Depth (m)					
Tested Date	: 14/04/	2020			Specimen Depth (m)	19		
					Sample Type	Small Disturbed		
Description : Dark grey, slightly sandy SILT/CLAY with shell fragments Sample Origin : - [‡]								
Sieve Method	: Metho	d A	[^] Upon request	* Delete as appropriat	e [‡] Information provided b	by customer		
SIEVE ANA	LYSIS	Percent	*Expanded	[^] Cumulative	SEDIMENTATION ANALYSIS			

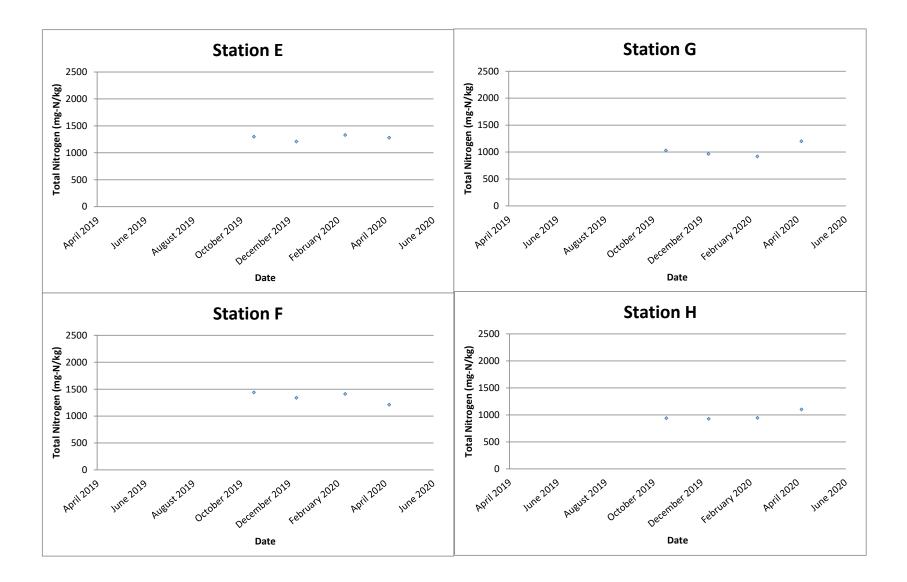


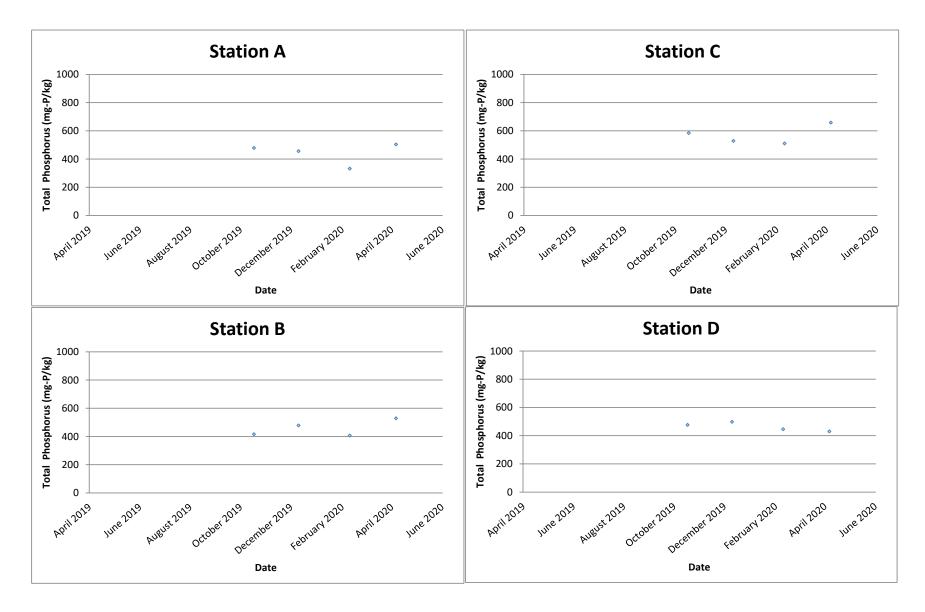

© Gammon Construction Ltd

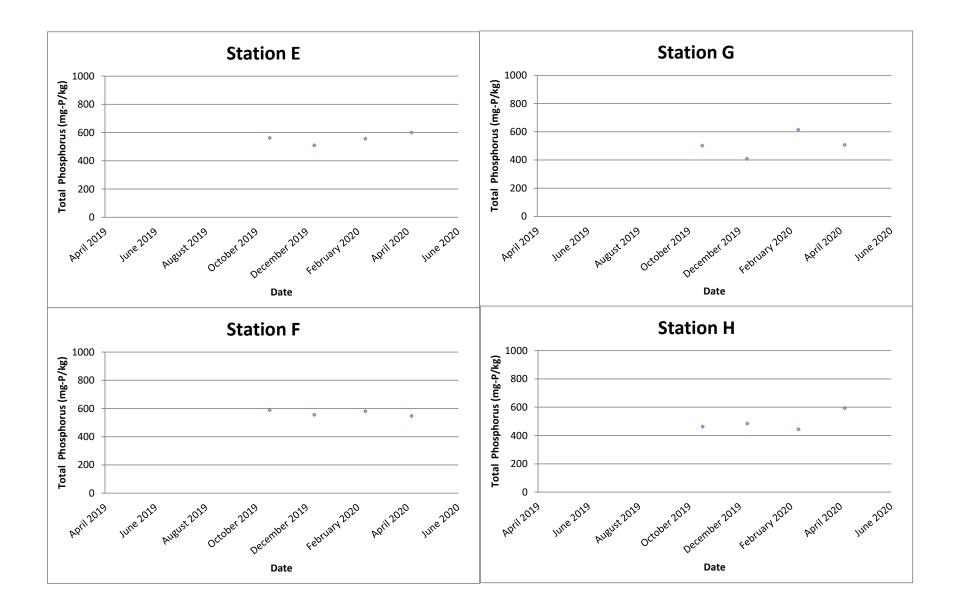

pH value

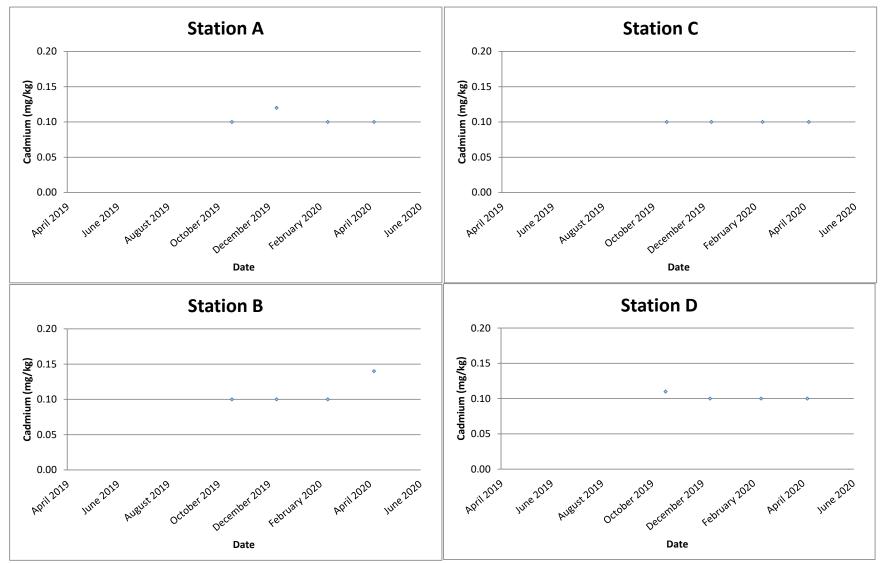


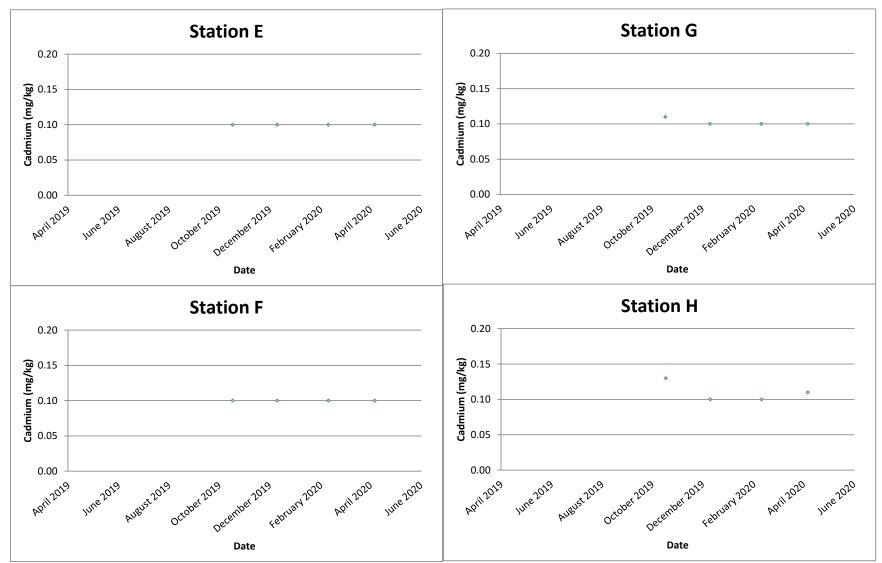
pH value



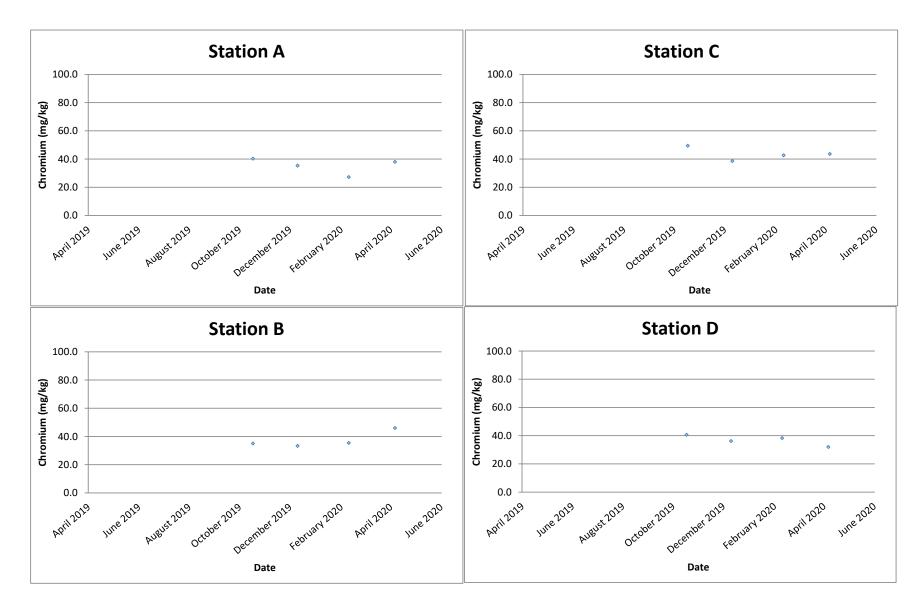




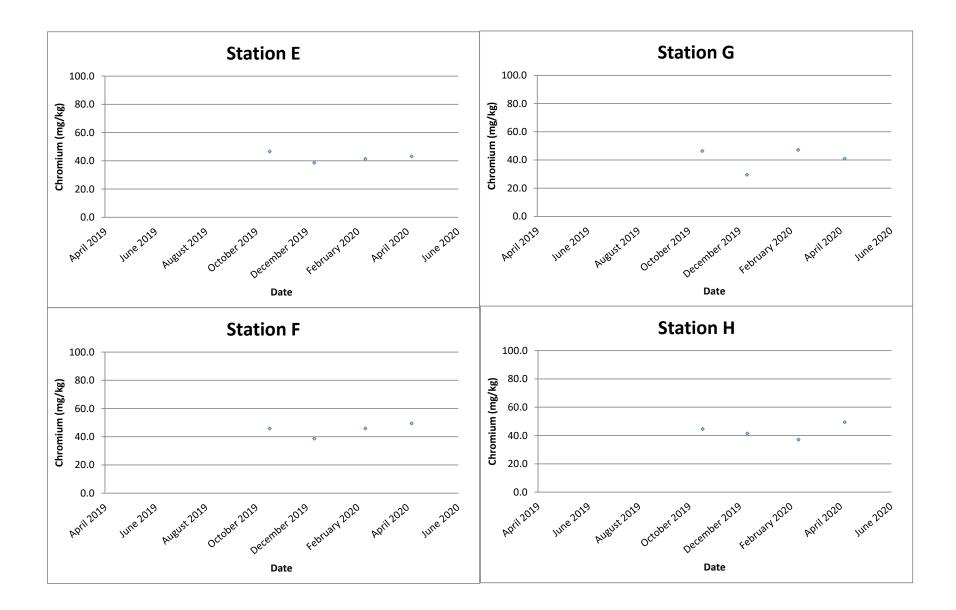

Total Nitrogen (mg-N/kg)



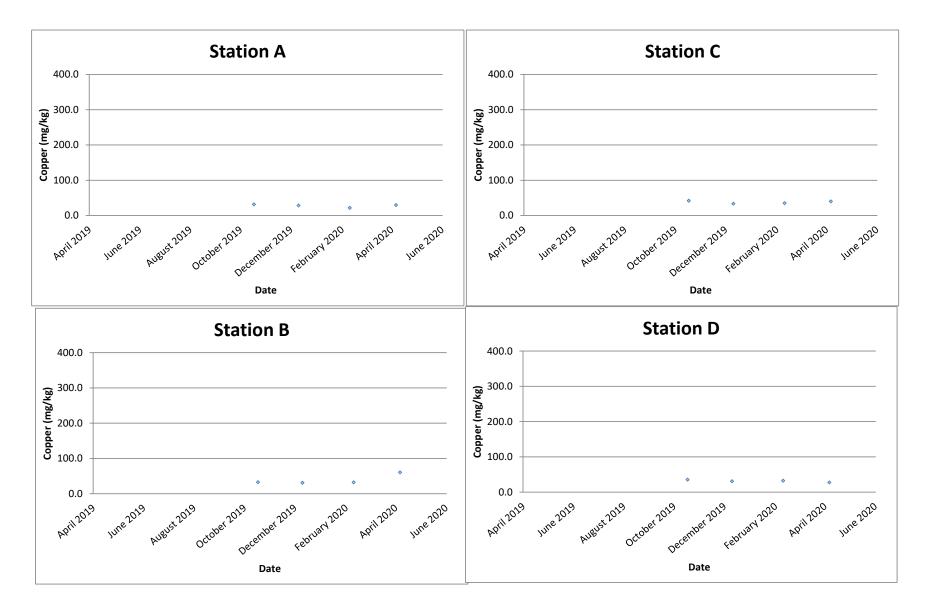
Cadmium (mg/kg)

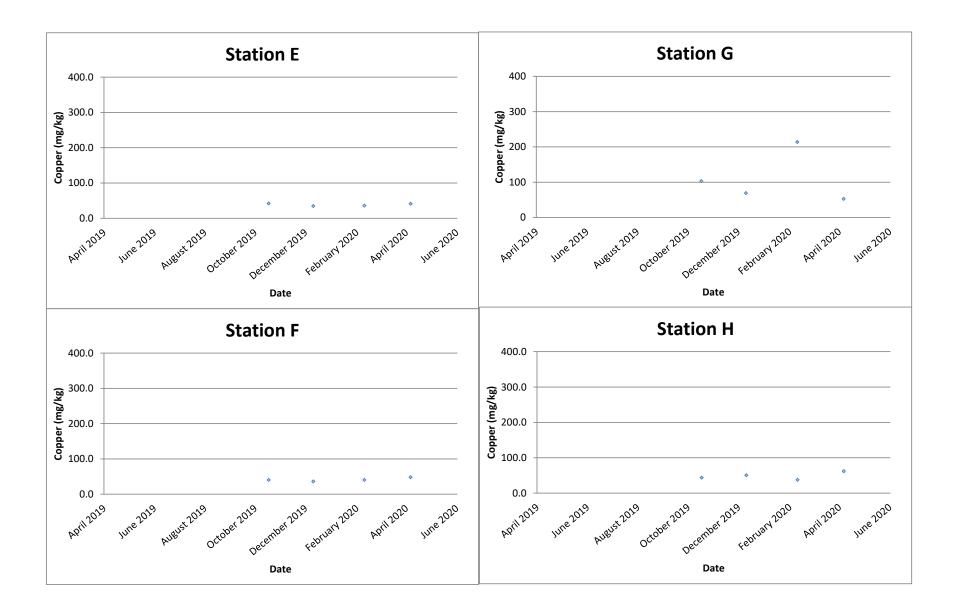

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

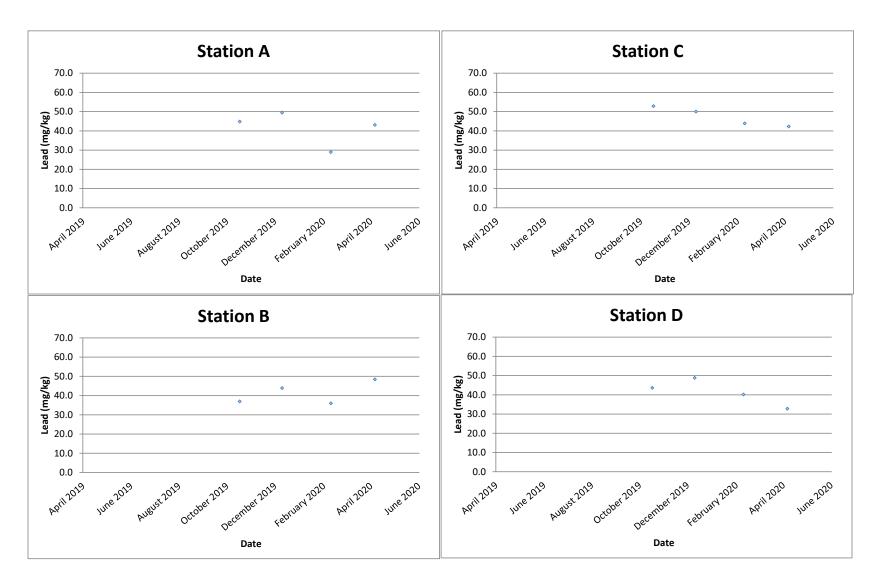
Cadmium (mg/kg)

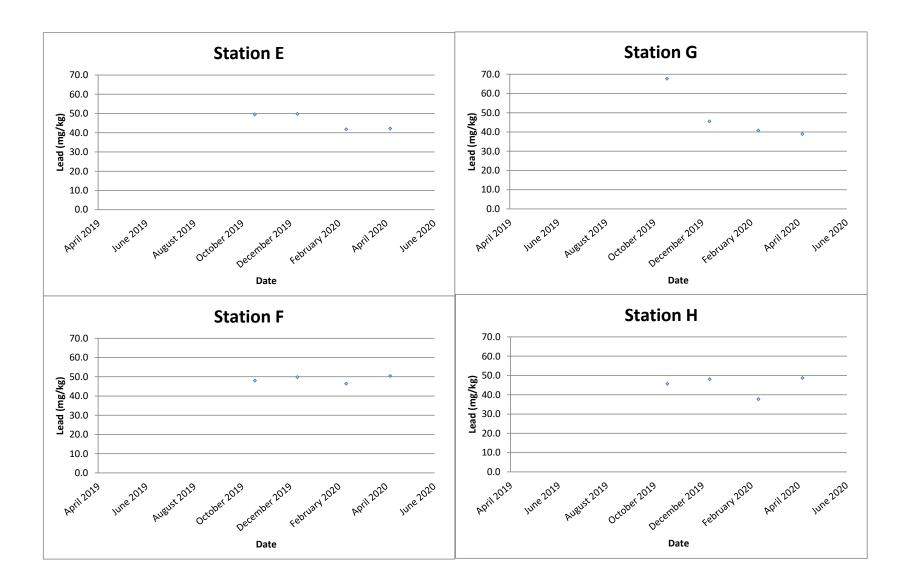


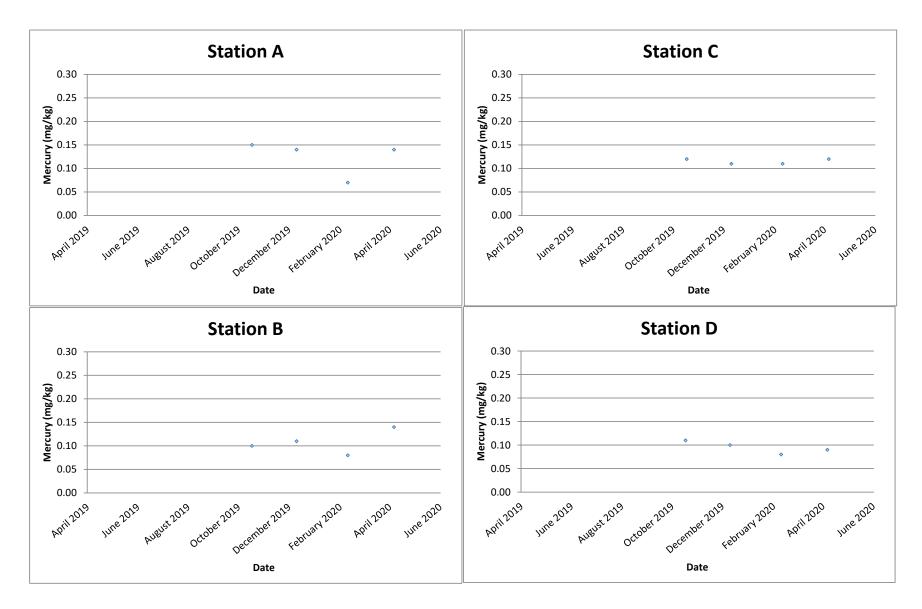
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

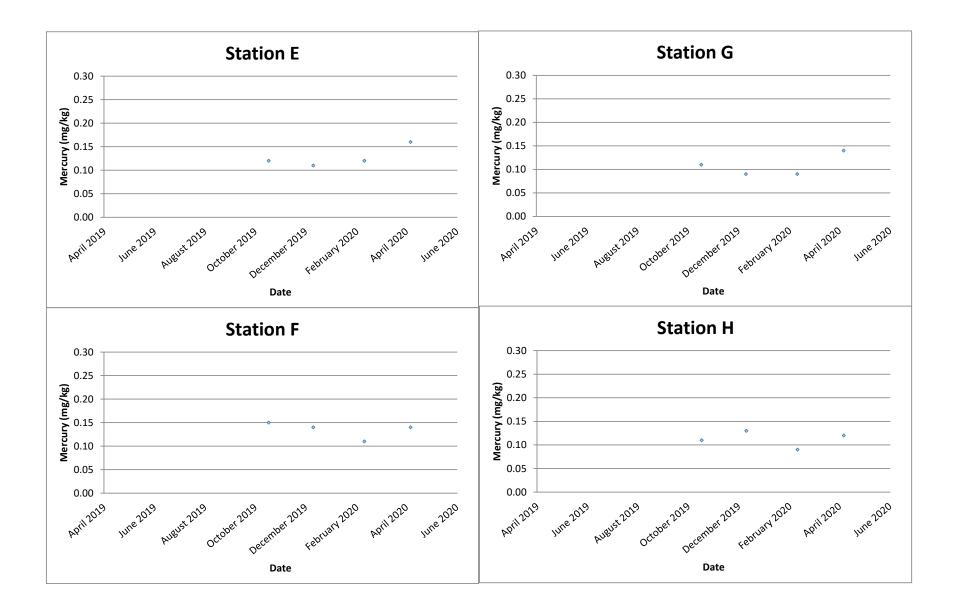

Chromium (mg/kg)

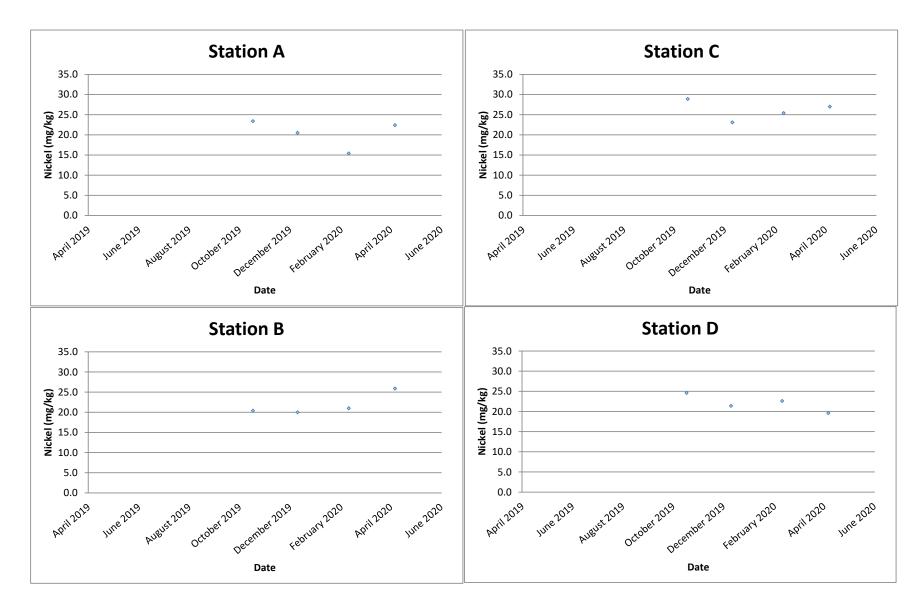

Chromium (mg/kg)

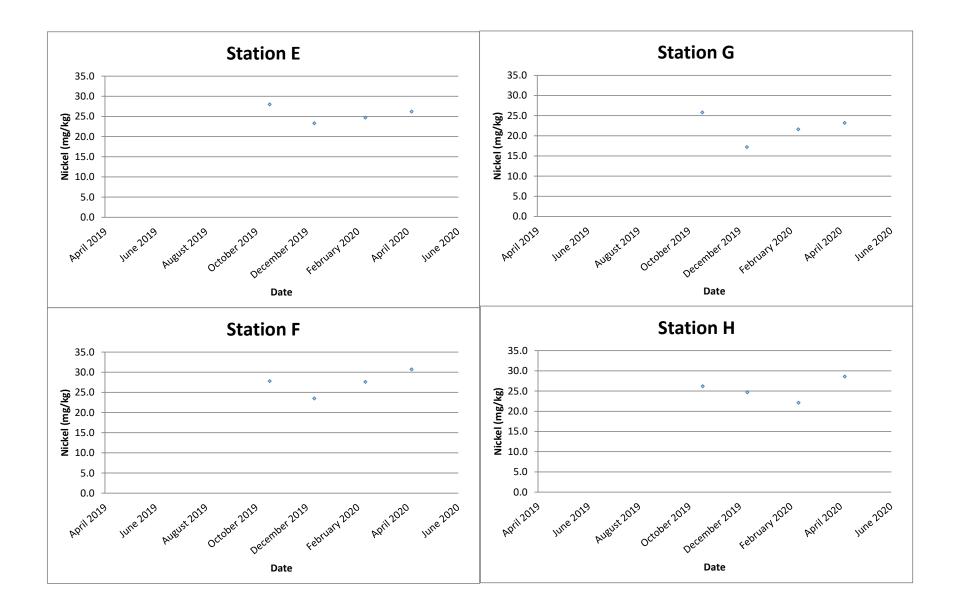

Copper (mg/kg)

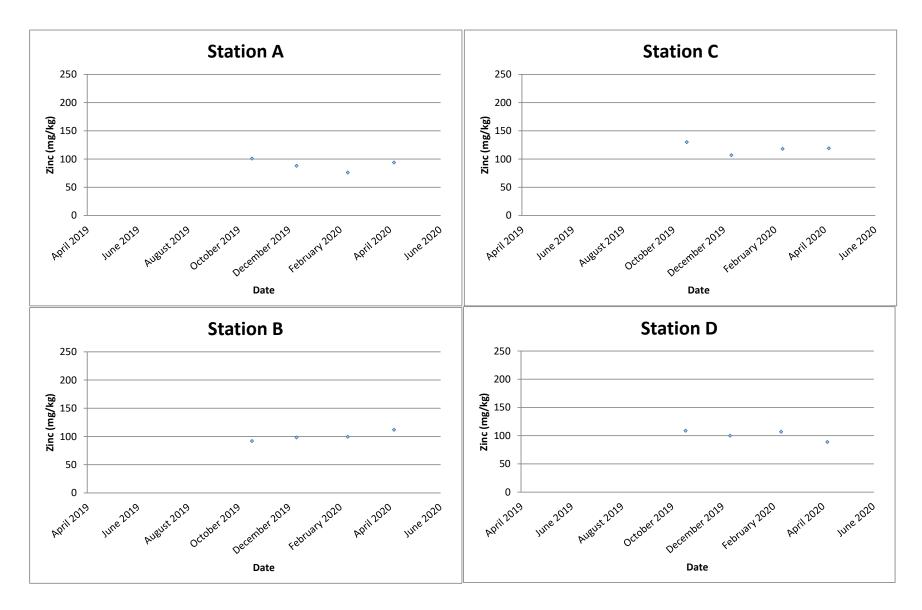

Copper (mg/kg)

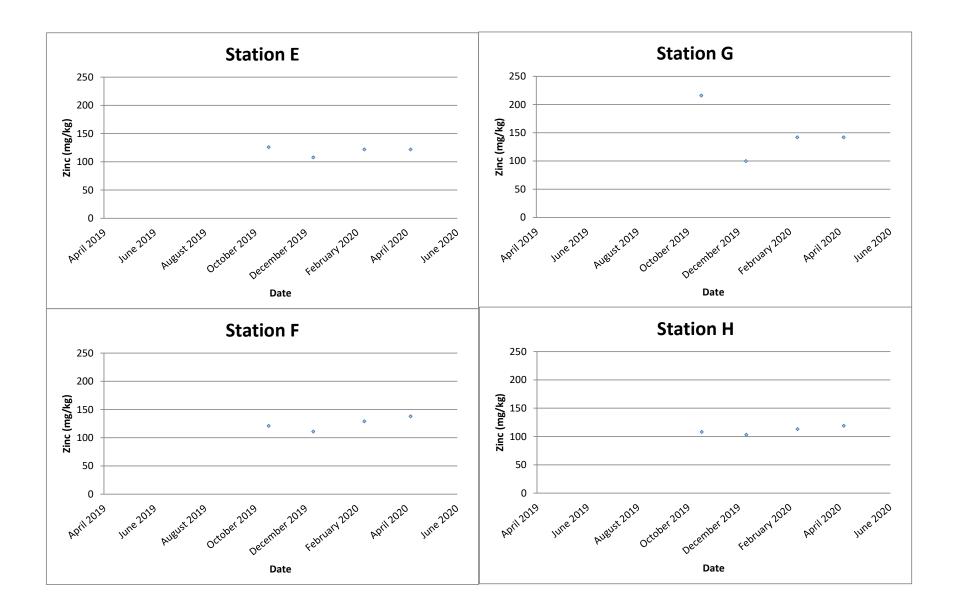

Lead (mg/kg)

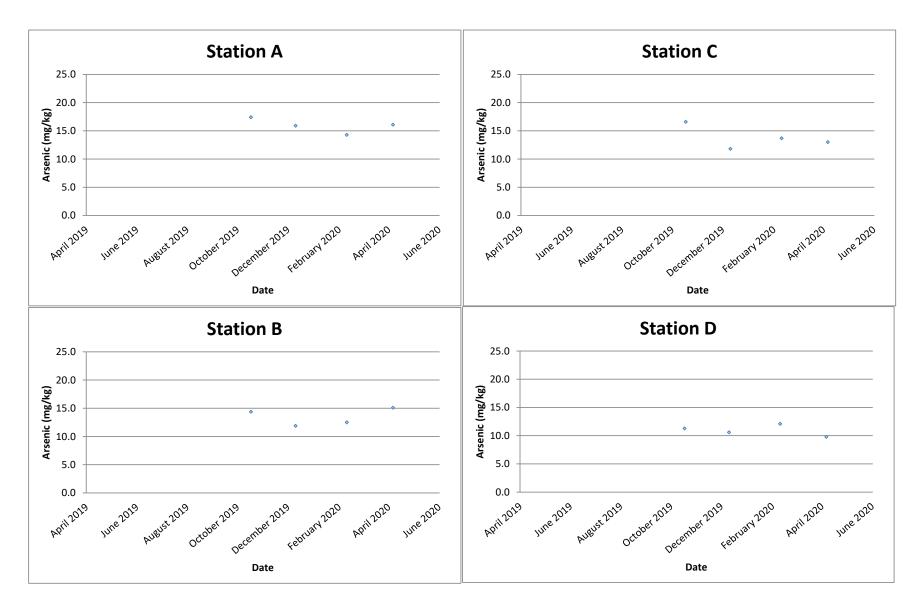

Lead (mg/kg)

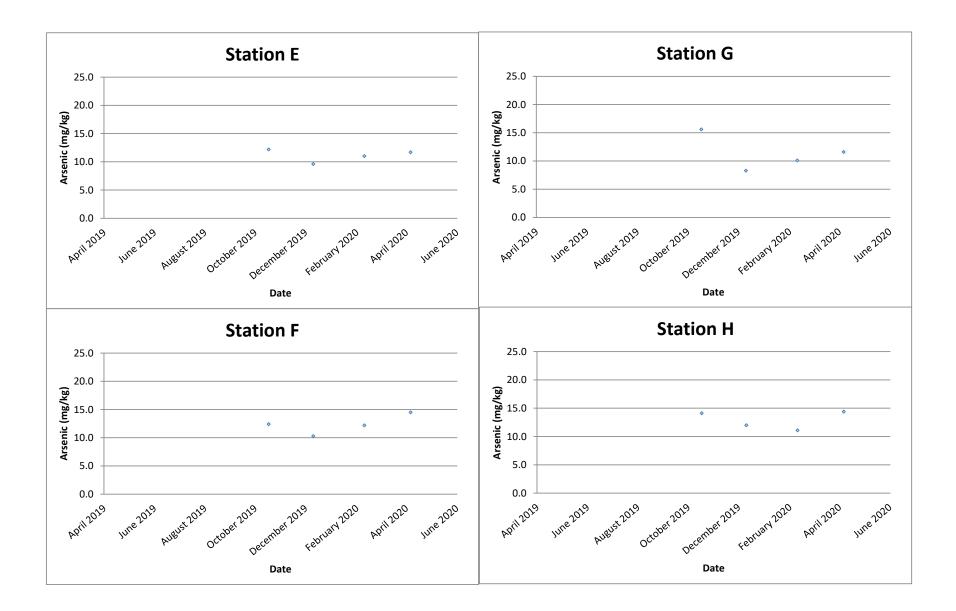

Mercury (mg/kg)

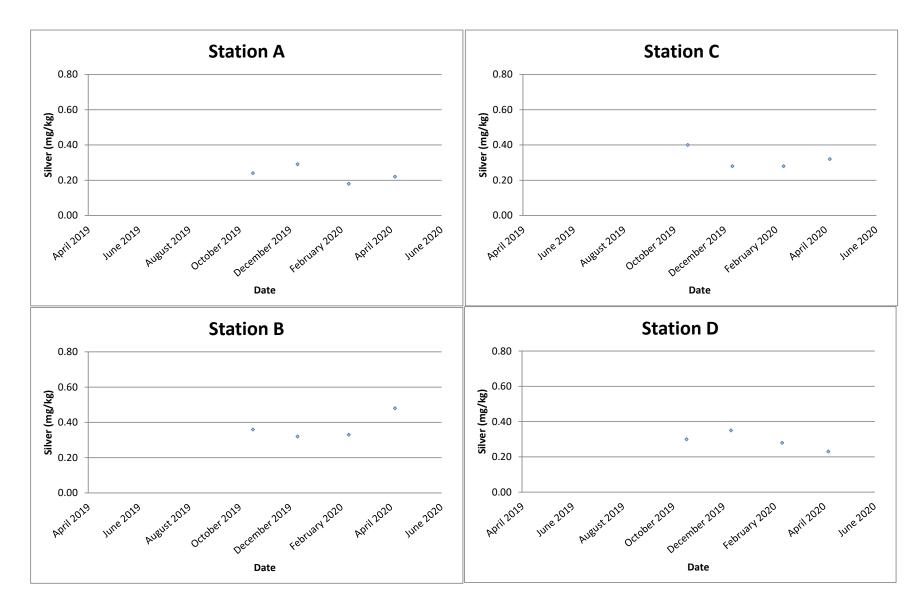

Mercury (mg/kg)

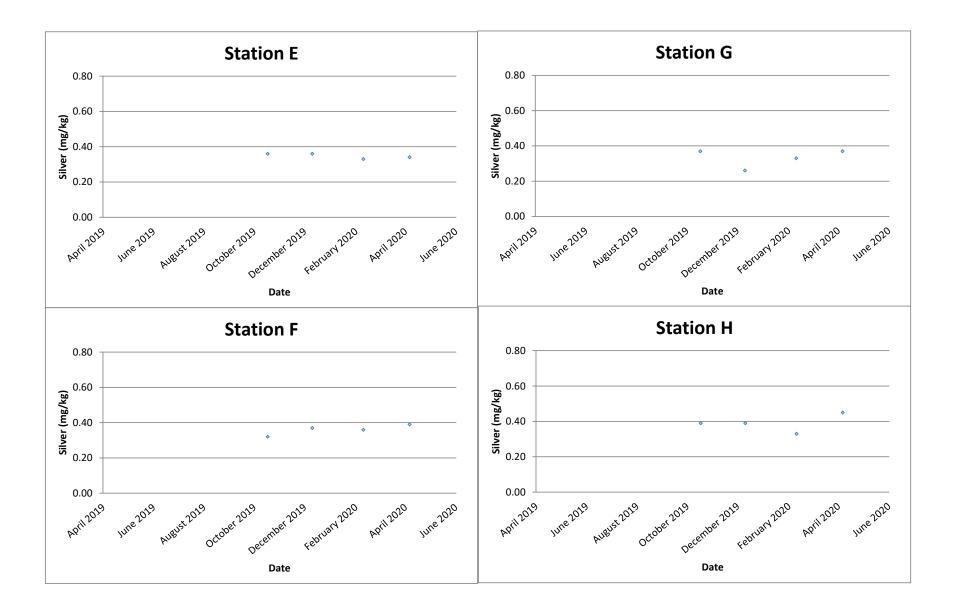

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix I

Benthic Survey Report

Benthic Faunal Monitoring

Conducted in April 2020

Summary Report

Abundance

A total of 388 macrobenthic organisms recorded from the eight monitoring stations, which is lower than that reported in baseline survey. The decrease is predominantly caused by the lower abundance of annelids recorded in this survey. The lowest abundance with 37 individuals (ind.) recorded in Station C and the highest (60 ind.) recorded in Station H. The results showed that the abundance in impact stations (Stations C and D) has no obvious difference with that in the reference stations (Figure 1). The sediments of impact sites and reference sites are all mainly composed of silt/clay with shell fragments. There is no significant difference between the impact sites and the reference sites. This observation is indicative of a point-source disturbance, which will be verified with continued monitoring.

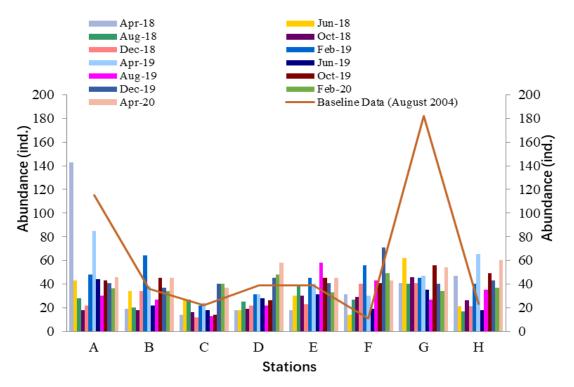


Figure 1. Total abundance (ind.) of benthic organisms collected in the eight monitoring stations, August 2004, April to December in 2018, February to December in 2019 and February & April in 2020

Biomass

The total wet biomass from eight monitoring stations is comprised of 84.311g. The highest total biomass was observed in Station D (15.189g), while Station H (4.567g) exhibited the lowest biomass. The relatively higher biomass observed in Station D contributed to the relatively higher biomass of the mollusca species, *Paphia undulate*. The biomass at the impact stations were generally lower compared to those of the reference stations in the baseline data (August 2004). The data of all surveys are shown in Figure 2.

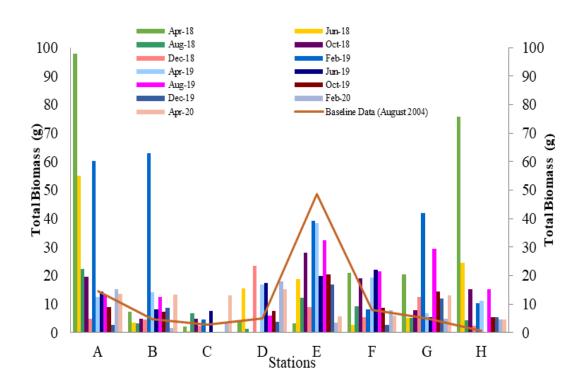


Figure 2. Total biomass (g) of benthic organisms collected in the eight monitoring stations, August 2004, April to December in 2018, February to December in 2019 and February & April in 2020

Taxonomic Composition

Specimens were identified to family, genus and species level or to the lowest practicable taxon as possible. Fauchald (1977), Huang Z.G. (1994), Rouse & Pleijel (2001), and Xu et al. (2008) were used as the reference for taxonomic or species identification and nomenclature. A total of eight phyla comprising of 38 families and 54 genera were identified. The benthic fauna composition is dominated by Annelida (56.44%), Arthropoda (28.87%) and Mollusca (11.60%)(Figure 3). Compared to the baseline study (August 2004), the most dominant groups were the *Capitellidae* polychaetes and *Veneridae* Bivalvia, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000). Based on the recorded abundance, the percentage of mollusca decreased during monitoring period.

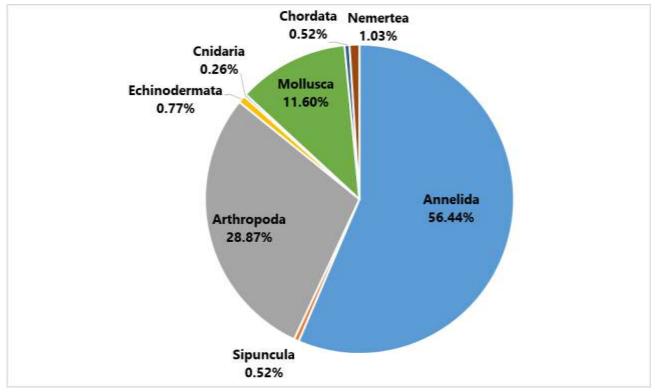


Figure 3. Percent composition of benthic organisms collected in the eight monitoring stations, in April 2020

The dominant species (abundance > 10) were the Arthropoda, *Gammarus sp.1* and the Annelida *Paraprionospio*. Arthropoda, *Gammarus sp.1* with the abundance of 14 ind from Stations E and the abundance of 18 ind from Stations H in this survey. While Annelida *Paraprionospio* with the abundance of 15 ind from Station A. Compared to the baseline study (August 2004), the most dominant groups were the capitellid and cirratulid polychaetes, typical of unbalanced and organically enriched habitats (Pearson and Rosenberg 1978; Borja et al. 2000).

Highest number of genera was recorded in Station G (29) and relatively lower in Station C & Station F (18). Similar to abundance and biomass, little differences in number of taxa was observed at impact stations compared to the reference stations.

Macrobenithic data of numerial abundance and biomass is given in Table 1 and data summary for different sampling time was presented in Tables 2 to 5. Representivitve photos of specimens were given in the last page of this benthic survey report.

1687-SHW-R13-April-report-202004. doc

Diversity

Benthic diversity index (*H*) and eveness index (*J*) ranged 2.705 - 2.706 and 0.889 - 0.936 in impact stations, and 2.471 - 3.085 and 0.839 - 0.916 among the reference stations as shown in data summary, which suggest that benthic faunal diversity is relatively richer at some of reference stations than those at impact stations. However, overall diversity in the eight monitoring stations was within the range of typical values in the impact stations and the reference stations, respectively. Compared with the baseline survey result, the diversity index and evenness index increased obviously.

References:

Borja, A., Franco, J. and Perez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Polltuion Bulletin, 40, 1100-1114.

Fauchald K. (1977) The Polychaete Worms Definitions And Keys To Orders, Families And Genera.

Natural History Museum of Los Angeles County. Science Series 28: 1 – 190.

Huang Z.G. (1994). Marine Species and Their Distributions in China's Seas. China Ocean Press, Beijing.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Rouse G. W. & Pleijel F. (2001) Polychaetes. Oxford University Press. United Kingdom.

Xu F. S. & Zhang S. P. (2008) An Illustrated Bivalvia Mollusca Fauna of China Seas. Science Press (China), Beijing.

Approved by Supervisor

Name of Consultant

: China Hong Kong Ecology Consultants Ltd.

Signature of Supervisor

Morsh

Name and Position of Supervisor: Dr. Mark Shea, Senior Ecology Consultant Date: April 27, 2020

Data Summaries

Table 1. Macrobenithic data of numerial abundance and biomass from eight sampling stations, Siu Ho Wan. (April 2020)

								SHW-Benthic	nic Stations				
Phylum	Class	Order	Family	Genus		А		В	с			D	
					Abd*	Mass (g)	Abd*	Mass (g)	Abd*	Mass (g)	Abd*	Mass (g)	
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	1	4.800	0	0	0	0	0	0	
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	4	0.042	1	т	1	0.001	2	0.003	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	1	0.001	2	0.002	0	0	2	0.002	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	3	0.003	0	0	5	0.003	5	0.003	
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	2	0.002	2	0.002	3	0.001	0	0	
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	1	0.001	0	0	2	0.004	2	0.002	
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	1	0.002	
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	0	0	9	0.033	2	0.007	5	0.013	
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	1	0.002	2	0.002	0	0	0	0	
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	1	0.003	0	0	
Annelida	Polychaeta	Nereidida	Nereidae	Neanthes	0	0	1	0.002	0	0	1	0.002	
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	3	0.004	0	0	0	0	1	0.001	
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	0	0	0	0	0	0	0	0	
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	0	0	1	0.002	

1687-SHW-R13-April-text report-202004. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0	1	0.003	0	0
				(A. dibranchis)								
				Aglaophamus								
Annelida	Polychaeta	Nereidida	Nephtyidae	(A. lyrochaeta)	0	0	0	0	0	0	1	0.078
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0	0	2	0.001	1	0.001	0	0
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0	0	1	0.002	0	0	0	0
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	0	0	0	0	0	0
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	4	0.017	0	0	0	0	1	0.001
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	15	0.025	3	0.006	0	0	2	0.002
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	0	0	0	0	2	0.001	0	0
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	1	0.004	2	0.005	4	0.016	3	0.008
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0	0	0	0	0	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella sp.1	0	0	0	0	1	0.004	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella sp.2	0	0	1	0.005	0	0	0	0
		-	-	Terebellides		2						0.000
Annelida	Polychaeta	Terebellida	Trichobranchidae	(T. stroemii)	0	0	0	0	0	0	1	0.009
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	1	0.002	0	0	1	0.004	1	0.002
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0	0	1	0.002	0	0	0	0
Arthropoda	Crustacea	Decapoda	Macrophthalmidae	Cleistostoma	0	0	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0	0	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	0	3	1.200	0	0	0	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	2	2.652	2	0.048	0	0	0	0

1687-SHW-R13-April-text report-202004. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Arthropoda	Crustacea	Decapoda	Porcellanidae	Petrolisthes	0	0	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis(C. variegata)	0	0	1	10.800	0	0	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	1	Т	7	0.001	4	0.001	9	0.002
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	0	0	0	0	2	т	5	0.001
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.3	0	0	0	0	0	0	0	0
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0	0	0	0	0	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	1	0.008	1	0.023	0	0	0	0
Cnidaria	Anthozoa	Pennatulacea	-	Sea pen	0	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	0	0	1	0.012	0	0	2	1.235
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	1	1.100	1	1.005	0	0	0	0
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	0	0	0	1	0.098
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	1	1.020	0	0	4	11.800	10	13.700
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0	0	1	0.215	0	0
Mallusas	Disabia		Mananidaa	Ruditapes		0.000	_					0
Mollusca	Bivalvia	Veneroida	Veneridae	(R. philippinarum)	2	2.600	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0	0	0	0	1	0.735	0	0
Mollusca	Gastropoda	Archaeogastropoda	Lottiidae	Nipponacmea	0	0	0	0	0	0	0	0
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius	0	0	0	0	1	0.198	0	0
Mollusca	Scaphopoda	-	Dentaliidae	-	0	0	1	0.036	0	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	1	1.366	1	0.015	0	0	0	0
Nemertina	Anopla	Heteronemertea	-	Cerebratulus sp.1	0	0	0	0	0	0	2	0.023

Note: Abd* means Abundance, T means biomass <0.001 g round to 0.001g

							SHW-Benthic Stations							
Phylum	Class	Order	Family	Genus		E		F		G		н		
					Abd*	Mass (g)	Abd*	Mass (g)	Abd*	Mass (g)	Abd*	Mass (g)		
Annelida	Polychaeta	Aciculata	Aphroditidae	c.f. Laetmonice	0	0	0	0	1	0.003	0	0		
Annelida	Polychaeta	Aciculata	Glyceridae	Glycera	2	0.004	1	0.002	2	0.004	4	0.006		
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella(C.capitata)	1	0.001	5	0.003	1	Т	1	0.002		
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	3	0.001	0	0	0	0	2	0.001		
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	1	Т	3	0.002	2	0.001	5	0.004		
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	2	0.001	1	0.002	7	0.008	0	0		
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce	0	0	0	0	0	0	0	0		
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice(E. indica)	5	0.006	0	0	0	0	1	0.002		
Annelida	Polychaeta	Phyllodocimorpha	Goniadidae	Glycinde	1	0.001	4	0.004	0	0	0	0		
Annelida	Polychaeta	-	Cossuridae	Cossurella(C. aciculata)	0	0	0	0	1	0.002	0	0		
Annelida	Polychaeta	Nereidida	Nereidae	Neanthes	0	0	1	0.002	1	0.001	1	0.003		
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis1	0	0	0	0	1	0.001	1	0.002		
Annelida	Polychaeta	Phyllodocida	Nereidae	Nereis2	0	0	0	0	1	Т	0	0		
Annelida	Polychaeta	Phyllodocida	Polynoidae	Gattyana	0	0	0	0	1	0.001	0	0		
Annelida	Delveheete	Nereidida	Norbhidoo	Aglaophamus	0	0	0	0	0	0	0	0		
Annelida	Polychaeta	Nereidida	Nephtyidae	(A. dibranchis)	0	0	0	0	0	0	0	0		
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus	0	0	0	0	0	0	0	0		
Annenua	Fulychaeta		першушае	(A. lyrochaeta)	U	0	U	0	U	0	U	U		
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	1	0.001	3	0.002	0	0	3	0.004		

1687-SHW-R13-April-text report-202004. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0	0	0	0	0	0	0	0
Annelida	Polychaeta	Scolecida	Opheliidae	Ophelia	0	0	0	0	0	0	2	0.036
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	2	0.002	0	0	1	т	1	0.001
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio	1	т	3	0.002	8	0.003	2	т
Annelida	Polychaeta	Spionida	Spionidae	Prionospio	1	0.002	0	0	0	0	1	0.002
Annelida	Polychaeta	Sternaspida	Sternaspidae	Sternaspis(S. scutata)	0	0	0	0	1	0.002	1	0.003
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0	0	0	0	1	0.002	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Loimia(L.loimia)	0	0	1	0.011	1	0.002	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella sp.1	0	0	1	0.002	1	0.001	0	0
Annelida	Polychaeta	Terebellida	Terebellidae	Terebella sp.2	0	0	0	0	1	0.003	1	0.007
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides (T. stroemii)	0	0	0	0	1	0.001	0	0
Annelida	Oligochaeta	Lumbriculida	Lumbriculidae	Lumbriculus sp.1	1	0.002	0	0	0	0	0	0
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0	0	0	0	0	0	1	0.003
Arthropoda	Crustacea	Decapoda	Macrophthalmidae	Cleistostoma	0	0	0	0	2	4.535	0	0
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	1	1.011	0	0	0	0	2	3.468
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0	0	1	0.018	2	2.096	0	0
Arthropoda	Crustacea	Decapoda	Pilumnidae	Typhlocarcinus	1	0.835	0	0	0	0	0	0
Arthropoda	Crustacea	Decapoda	Porcellanidae	Petrolisthes	0	0	1	1.362	0	0	0	0
Arthropoda	Crustacea	Decapoda	Portunidae	Charybdis(C. variegata)	0	0	0	0	0	0	0	0
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.1	14	0.002	9	0.002	0	0	18	0.003
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.2	4	0.001	3	0.001	4	0.001	5	0.001

1687-SHW-R13-April-text report-202004. doc

Contract No. CM 14/2016: Environmental Team for Operational Environment Monitoring and Audit for Siu Ho Wan Sewage Treatment Plant

Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus sp.3	0	0	1	Т	2	0.001	3	0.001
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0	0	0	0	3	1.100	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0	0	0	0	0	0	1	0.008
Cnidaria	Anthozoa	Pennatulacea	-	Sea pen	0	0	0	0	1	0.005	0	0
Mollusca	Bivalvia	Veneroida	Dreissenidae	Mytilopsis	1	1.100	0	0	0	0	2	0.085
Mollusca	Bivalvia	Veneroida	Solenidae	Solen	0	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Augulus	0	0	0	0	2	0.713	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	2	2.600	3	2.500	1	0.158	2	0.925
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea	0	0	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes	0	0	1	2.100	2	1.900	0	0
Monusca	Divalvia	veneroida	venenuae	(R. philippinarum)	0	0		2.100	2	1.900	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Bivalve juvenile	0	0	0	0	0	0	0	0
Mollusca	Gastropoda	Archaeogastropoda	Lottiidae	Nipponacmea	0	0	0	0	1	0.273	0	0
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius	0	0	0	0	1	2.300	0	0
Mollusca	Scaphopoda	-	Dentaliidae	-	0	0	0	0	0	0	0	0
Chordata	Actinopterygii	Perciformes	Gobiidae	UNID Goby	0	0	0	0	0	0	0	0
Nemertina	Anopla	Heteronemertea	-	Cerebratulus sp.1	1	0.001	1	0.004	0	0	0	0

Note: Abd* means Abundance, T means biomass <0.001 g round to 0.001g

Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
A	46	13.649	19	2.471	0.839
В	45	13.202	21	2.733	0.898
C*	37	12.997	18	2.705	0.936
D*	58	15.189	21	2.706	0.889
E	45	5.571	19	2.487	0.845
F	43	6.019	18	2.602	0.900
G	54	13.117	29	3.085	0.916
Н	60	4.567	22	2.618	0.847
TOTAL	388	84.311			

Table 2. Summary of Benthic Survey Data, April 2020

*Impact Sites

Table 3. Summary of Benthic Survey Baseline Data, August 2004

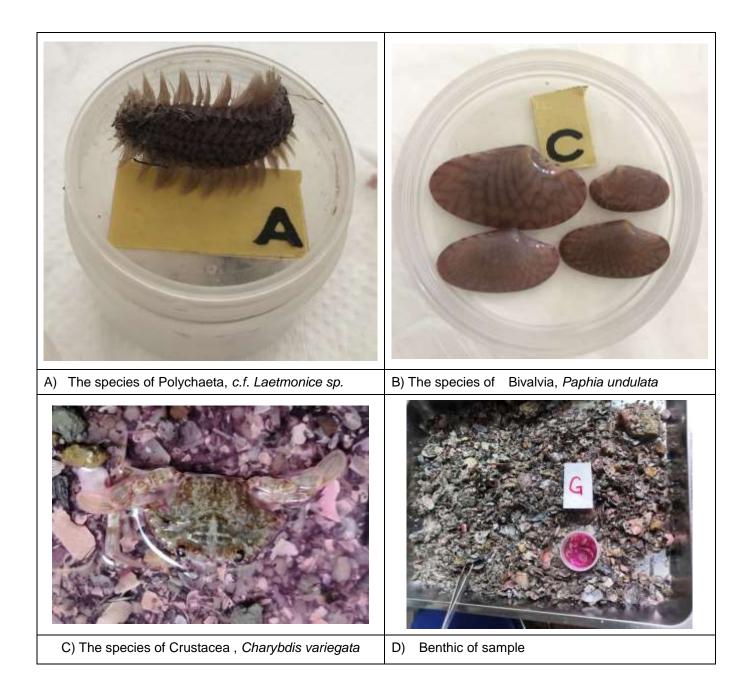
Stations	Abundance	Total Biomass	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

*Impact Sites

Table 4. Taxonomic Composition (%) of Benthic Survey, Baseline (August 2004), April toDecember in 2018, February to December in 2019 and February & April in 2020

Taxonomic								
Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19
Annelida	73.29	31.12	53.01	65.02	65.35	69.44	54.99	70.28
Sipuncula	0.21	0.30	0.80	0.45	0	0.93	0	0
Arthropoda	18.80	13.60	15.66	12.11	13.86	10.19	20.23	10.83
Echinodermata	3.63	15.11	4.82	5.38	2.97	2.78	3.42	4.72
Cnidaria	0.43	0.60	0.40	0	0	0.93	0.85	0
Mollusca	3.42	50.45	21.29	15.69	16.83	12.96	19.94	13.33
Chordata	0.21	2.11	0.80	0.45	0	0.93	0.28	0.56
Nemertea	0	0.30	3.21	0.90	0.99	1.85	0.28	0.28

Taxonomic						
Composition	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20
Annelida	57.67	64.31	66.14	59.78	60.77	56.44
Sipuncula	0	1.57	1.25	0	1.29	0.52
Arthropoda	7.91	9.80	19.75	14.53	13.83	28.87
Echinodermata	4.65	5.10	3.13	1.68	1.61	0.77
Cnidaria	0.93	0.39	0	0.84	0.32	0.26
Mollusca	27.44	17.25	8.15	22.35	19.94	11.60
Chordata	0.93	1.18	0.94	0	0.32	0.52
Nemertea	0.47	0.39	0.63	0.84	1.93	1.03


Table 5. Taxonomic Composition (abundance) of Benthic Survey, Baseline (August 2004)and April to December in 2018, February to December in 2019 and February & April in 2020

Taxonomic								
Composition	Aug-04	Apr-18	Jun-18	Aug-18	Oct-18	Dec-18	Feb-19	Apr-19
Annelida	343	103	132	145	132	150	193	253
Sipuncula	1	1	2	1	0	2	0	0
Arthropoda	88	45	39	27	28	22	71	39
Echinodermata	17	5	12	12	6	6	12	17
Cnidaria	2	2	1	0	0	2	3	0
Mollusca	16	167	53	35	34	28	70	48
Chordata	1	7	2	1	0	2	1	2
Nemertea	-	1	8	2	2	4	1	1
Grand total	468	331	249	223	202	216	351	360

Taxonomic						
Composition	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20
Annelida	124	164	211	214	189	219
Sipuncula	0	4	4	0	4	2
Arthropoda	17	25	63	52	43	112
Echinodermata	10	13	10	6	5	3
Cnidaria	2	1	0	3	1	1
Mollusca	59	44	26	80	62	45
Chordata	2	3	3	0	1	2
Nemertea	1	1	2	3	6	4
Grand total	215	255	319	358	311	388

Representative Taxa Identified

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix K

Environmental Complaints Log

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	cause a malodour and was smelled as far as the	activity on 28 th November 2019. Due to the possibility of having unpleasant gases

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	uality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•			•
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
	e Managei				
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.		Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly.		Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0544A

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented