Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Monthly EM&A Report February 2021

Client : Drainage Services Department

Project : Contract No. CM 14/2016

Environmental Team for Operational

Environmental Monitoring and Audit for Siu

Ho Wan Sewage Treatment Works

Report No.: : 0041/17/ED/0620

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung

Environmental Team Leader Fugro Technical Services Limited

Drainage Services Department
Projects and Development Branch
Consultants Management Division
42/F, Revenue Tower,
5 Gloucester Road
Wan Chai, Hong Kong

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028

www.asecg.com

F: +852 2815 5399

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

10 March 2021 By Post and E-mail

Dear Sir,

RE: CONTRACT NO. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW)

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (FEBRUARY 2021)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for February 2021 (Report No.: 0041/17/ED/0620) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 9 March 2021 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Ms. Joanne NG at 2815 7028.

Yours faithfully,

For and on behalf of

Allied Environmental Consultants Ltd.

Grace M. H. KWOK

Independent Environmental Checker

GK/jn/cy

c.c. Fugro Technical Service (ET Leader)
AECOM

Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	20
5.	CHINESE WHITE DOLPHIN MONITORING	27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	31
10.	FUTURE KEY ISSUES	32
11.	CONCLUSION	33

FIGURE

Figure 1 Monitorin	g Stations of A	ir Sensitive Receivers
--------------------	-----------------	------------------------

Figure 2 Odour Patrol Points of Modified Odour Patrol

Figure 3 Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and

Benthic Survey

Figure 4 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 1

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Forty-third Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 February 2021 to 28 February 2021 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 3, 9, 19 and 25 February 2021. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 4 February 2021. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 2

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 3

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 Project Description

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 Project Organization

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Table 1.1 Contact I ersons and Telephone Numbers of Rey I ersonner				
Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 5

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H₂S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H₂S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H₂S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H₂S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipmen	uipment Manufacturer Serial Number		Sensor Number	
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D	

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected:
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2 Categories of Odour Intensity for Modified Odour Patrol Monitoring

Odour Level	Odour Intensity	Classification Criteria
0	Not detected	No odour perceived or an odour so weak that it cannot be easily characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 7

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in **Figure 1**.
- 2.4.2 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Table 2.3 Odour Patrol Point

Odour	Description
Patrol Point	
OD1	Eastern Site Boundary
OD2	Southern Site Boundary
OD3	Western Site Boundary
OD4	Northern Site Boundary
OD5	Spur Road near Discovery Bay Tunnel Outlet
OD6	Cheung Tung Road near the Bus Depot
OD7	Cheung Tung Road near O⋅PARK1
OD8	Sham Shui Kok Dr near MTR Depot
OD9	Discovery Bay Tunnel Toll Plaza

Note:

As access permission from the company of Discovery Bay Tunnel is under requisition progress, OD5 (Spur Road near Discovery Bay Tunnel Outlet) was not covered in odour patrol monitoring in the reporting period temporarily.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 8

2.4.3 The odour patrol points of modified odour patrol is shown in **Figure 2**.

2.5 Monitoring Frequency and Duration

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.4** below.

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency
H ₂ S concentration		¹ Weekly basis for 6 months during the initial operation
monitoring	15 minutes	stage
Odour patrol		⁴ Weekly basis
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring

Remark:

- 1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.
- 2) In case the relationship between H_2S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
- 3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
- 4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.
- 2.5.2 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour Nuisance	One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	complaints received for specific

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. The odour patrol monitoring was carried out on 3, 9, 19 and 25 February 2021. As access permission from the company of Discovery Bay Tunnel is under requisition progress, OD5 (Spur Road near Discovery Bay Tunnel Outlet) was not covered in odour patrol monitoring in the reporting period temporarily.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Table 2.6 Summary of Meteorological Data in Reporting Period

Date	Location	Temperature	Relative	Wind	Wind
		(°C)	Humidity (%)	Direction	Speed
					(m/s)
3 February 2021	OD1	21.7	46	NE	1.6
	OD2			NE	0.4
	OD3			NE	4.0
	OD4			NE	2.5
	OD6			NE	1.2
	OD7			NE	0.8
	OD8			NE	1.3
	OD9			NE	0.4
9 February 2021	OD1	18.4	73	S	1.5
	OD2			E	0.4
	OD3			SE	1.4
	OD4			NE	1.2
	OD6			Е	1.2
	OD7			E	0.9
	OD8			NE	0.4
	OD9			E	0.2
19 February 2021	OD1	19.5	48	NW	0.2
	OD2			NW	0.3
	OD3			N	0.2
	OD4			N	0.3
	OD6			N	0.7
	OD7			N	0.5
	OD8			NW	0.4

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 10

	OD9			NW	0.8
25 February 2021	OD1	19.1	91	NW	0.3
	OD2			N	0.2
	OD3			N	0.4
	OD4			N	0.6
	OD6			N	0.8
	OD7			N	0.7
	OD8			NW	0.2
	OD9			N	0.9

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

Table 2.7 Summary of Air Quality Monitoring Result in Reporting Period

	Monitoring Parameter
Monitoring Location	Odour Patrol [^] (Odour Level)
	Range
OD1	0 - 0
OD2	0 - 1
OD3	0 - 0
OD4	0 - 0
OD6	0 - 0
OD7	0 - 0
OD8	0 - 0
OD9	0 - 0

Remark:

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

[^]Odour Level: 0 – Not detected, 1 – Slight, 2 – Moderate, 3 – Strong, 4 – Extreme

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 11

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1 Location of Water Quality Monitoring

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monitoring Parameters									
In-situ Measurement	Laboratory Analysis								
Dissolved oxygen (mg/L)	E. coli (cfu/100ml)								
Temperature (degree Celsius)	5-day BOD (mg/l)								
pH value	Suspended Solids (mg/l)								
Water depth (m)	Ammonia as N (mg/l)								
Salinity (ppt)	Nitrate as N (mg/l)								
Turbidity (NTU)	Nitrite as N (mg/l)								
Current Speed (m/s)	Total inorganic nitrogen (mg/l)								
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)								

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 12

3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.

3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in Table 3.3. Table 3.4 summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in Appendix E.

Table 3.3 Water Quality Monitoring and Sampling Equipment

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	1) YSI 6920V2-2-M Sonde 2) Aqua TROLL 600 Multiparameter Sonde	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 13

Table 3.4 Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	525120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 14

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out was 4 February 2021. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix F.**

Table 3.6 Summary of In-situ Monitoring Results (Mid-ebb)

Monitoring Station	Water Depth (m)	_	, , ,		Temperature (degree Celsius)	pН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
Α	17	S 1		8.60	18.55	8.02	29.50	3.2	0.04	47.1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Page 15

Monitoring Station	Water Depth		nplin epth	Dissolved oxygen	Temperature (degree	рН	Salinity (ppt)	Turbidity (NTU)	Current speed	Current velocity
	(m)	(m)	•	(mg/L)	Celsius)		,		(m/s)	(degree magnetic)
		S	1	8.50	18.52	8.03	29.53	3.1	0.03	45.4
		М	8.5	8.64	18.54	8.02	29.53	2.1	0.02	86.1
		М	8.5	8.61	18.52	8.03	29.56	2.2	0.02	89.9
		В	16	8.45	18.44	8.01	29.63	2.4	0.02	56.1
		В	16	8.53	18.42	8.01	29.61	2.6	0.03	54.6
		S	1	8.25	18.72	8.00	29.38	4.3	0.31	58.2
		S	1	8.36	18.71	8.02	29.35	4.1	0.30	60.7
В	1.1	М	7	8.56	18.53	8.03	29.50	2.1	0.09	41.9
В	14	М	7	8.59	18.54	8.04	29.60	2.2	0.10	44.1
		В	13	8.42	18.42	8.00	29.77	4.3	0.12	82.5
		В	13	8.49	18.43	8.01	29.69	4.1	0.14	86.7
		S	1	8.56	18.63	8.04	29.25	1.2	0.10	349.7
		S	1	8.91	18.61	8.06	29.28	1.3	0.09	356.1
0	40	М	6	8.55	18.53	8.02	29.36	1.4	0.16	326.8
С	12	М	6	8.59	18.50	8.10	29.41	1.3	0.17	319.7
		В	11	8.47	18.52	8.04	29.41	1.6	0.11	19.1
		В	11	8.53	18.59	8.09	29.31	1.8	0.10	17.6
		S	1	8.28	18.70	8.00	29.18	2.1	0.04	288.1
		S	1	8.30	18.60	8.03	29.21	2.3	0.03	279.2
_	4.0	M	6.5	8.61	18.55	8.03	29.30	2.8	0.07	313.3
D	13	M	6.5	8.63	18.57	8.04	29.33	2.9	0.06	319.8
		В	12	8.50	18.49	8.04	29.43	1.2	0.03	358.6
		В	12	8.53	18.51	8.04	29.48	1.3	0.03	345.2
		S	1	8.61	18.53	8.01	29.47	1.0	0.01	49.2
		S	1	8.68	18.56	8.02	29.44	1.1	0.02	47.1
		M	8	8.62	18.43	8.02	29.55	1.2	0.02	76.5
E	16	M	8	8.66	18.45	8.02	29.56	1.3	0.04	71.5
		В	15	8.50	18.44	8.03	29.56	1.0	0.02	65.3
		В	15	8.56	18.45	8.04	29.55	1.1	0.04	69.1
		S	1	7.98	18.67	7.92	29.36	1.5	0.03	306.5
		S	1	7.82	18.61	7.93	29.35	1.6	0.04	301.4
		M	11.5	8.58	18.44	7.96	29.54	2.9	0.06	291.6
F	23	M	11.5	8.59	18.44	7.95	29.56	2.7	0.04	282.3
		В	22	8.54	18.40	8.00	29.58	1.2	0.03	314.6
		В	22	8.45	18.41	8.01	29.51	1.3	0.03	319.8
		S	1	8.79	18.38	7.87	29.41	1.2	0.05	309.2
		S	1	8.92	18.39	7.88	29.44	1.3	0.04	317.1
		M	11	9.59	18.39	7.96	29.48	1.8	3.00	282.5
G	22	M	11	9.60	18.41	7.91	29.49	2.0	0.04	28.5
		В	21	9.52	18.38	8.00	29.55	1.2	0.05	298.7
		В	21	9.56	18.39	8.01	29.56	1.3	0.03	292.6
		S	1	8.46	18.49	8.21	28.41	1.3	0.07	301.1
		S	1	8.48	18.50	8.21	28.41	1.4	0.10	295.8
		M	9.5	8.44	18.48	8.21	28.45	1.4	0.17	326.5
Н	19	M	9.5	8.46	18.49	8.21	28.45	1.8	0.14	329.4
Н	19	В	18	8.34	18.44	8.19	28.54	1.0	0.16	311.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 16

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Monitoring	Water		-		Tomporeture		Salinity	Turbidity	Current	Current
Monitoring			pling	Dissolved	Temperature	рН	_	Turbidity	Current	Current
Station	Depth	Dep	ın	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
		_	T							magnetic)
		S	1	8.62	18.55	8.03	29.50	1.8	0.02	75.2
		S	1	8.51	18.51	8.02	29.56	1.9	0.05	79.8
Α	15	М	7.5	8.55	18.55	8.03	29.49	2.0	0.06	56.2
, ,	10	М	7.5	8.51	18.53	8.01	29.51	2.3	0.08	53.3
		В	14	8.37	18.44	8.02	29.79	3.0	0.04	83.3
		В	14	8.42	18.46	8.02	29.81	3.3	0.03	85.4
		S	1	8.53	18.82	7.92	29.33	1.3	0.05	21.4
		S	1	8.46	18.81	7.93	29.30	1.5	0.06	19.2
В	14	М	7	8.55	18.52	8.02	29.48	1.4	0.04	343.3
Ь	14	М	7	8.48	18.51	8.03	29.44	1.6	0.06	353.1
		В	13	8.53	18.45	8.06	29.76	3.3	0.02	263.8
		В	13	8.43	18.46	8.06	29.77	3.9	0.01	251.2
		S	1	8.52	18.61	8.05	29.26	1.6	0.06	316.2
		S	1	8.59	18.69	8.09	29.28	1.5	0.08	322.5
C	12	M	6	8.57	18.57	8.06	29.31	1.5	0.09	281.7
С	12	M	6	8.51	18.51	8.05	29.30	1.3	0.11	276.6
		В	11	8.45	18.50	8.05	29.39	1.8	0.63	301.8
		В	11	8.41	18.51	8.01	29.21	2.0	0.78	303.9
		S	1	8.53	18.65	8.01	29.18	5.1	0.09	319.9
		S	1	8.51	18.64	8.03	29.14	5.3	0.10	322.8
Б	4.4	М	7	8.64	18.55	8.02	29.29	1.3	0.05	291.7
D	14	М	7	8.60	18.51	8.01	29.33	1.2	0.04	286.5
		В	13	8.44	18.48	8.03	29.43	1.2	0.06	276.5
		В	13	8.41	18.42	8.01	29.41	1.3	0.07	275.8
		S	1	8.62	18.53	8.00	29.48	1.1	0.02	291.7
		S	1	8.56	18.51	8.02	29.45	1.2	0.03	286.5
_	4.4	М	7	8.55	18.44	8.00	29.55	1.5	0.01	2769.6
Е	14	М	7	8.48	18.42	8.03	29.51	1.4	0.05	275.8
		В	13	8.52	18.44	8.01	29.56	1.2	0.06	302.5
		В	13	8.50	18.40	8.02	29.53	1.1	0.09	311.6
		S	1	8.47	18.55	7.91	29.42	1.7	0.03	301.6
		S	1	8.40	18.55	7.90	29.41	1.6	0.02	309.7
_		M	9	8.60	18.43	8.00	29.54	1.9	0.04	263.8
F	18	M	9	8.66	18.49	8.02	29.51	2.1	0.04	275.6
		В	17	8.59	18.41	7.99	29.58	1.4	0.02	298.8
		В	17	8.51	18.44	7.96	29.55	1.5	0.05	291.7
		S	1	8.61	18.37	7.88	29.49	1.7	0.01	285.4
		S	1	8.68	18.39	7.89	29.51	1.8	0.05	299.7
_		M	6.5	8.58	18.00	7.96	29.48	1.7	0.07	273.5
G	13	M	6.5	8.49	18.44	7.94	29.49	1.8	0.07	273.3
		В	12	8.49	18.38	7.97	29.49	1.2	0.02	262.4
		В	12	8.51	18.39	7.96	29.53	1.1	0.03	265.3
		S	1	8.28	18.65	8.11	28.30	1.4	0.07	316.5
		S	1	8.43	18.53	8.17	28.35	1.3	0.19	311.9
		M								
Н	19		9.5	8.40	18.48	8.18	28.52	1.3	0.18	326.8
	19	M	9.5	8.38	18.47	8.18	28.50	1.4	0.20	331.1
		В	18	8.36	18.45	8.19	28.53	1.6	0.21	332.8
		В	18	8.36	18.44	8.19	28.55	1.5	0.20	325.7

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 17

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix F**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ -	NO ₃	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		(···· y , –)	(mg/L)	(mg/L)	(mg/L)	(g, _)	(0.0% 1001112)	(g, =)	(g, _)
	()	S	1	2.1	0.050	0.009	0.222	0.281	2	0.01	1.5
		S	1	2.4	0.049	0.011	0.222	0.282	2	0.01	1.7
	4-	M	8.5	2.8	0.051	0.013	0.223	0.287	ND	<0.01	1.3
Α	17	М	8.5	2.8	0.054	0.015	0.222	0.291	1	<0.01	1.8
		В	16	3.6	0.092	< 0.005	0.242	0.333	3	0.01	1.5
		В	16	3.5	0.085	0.006	0.229	0.320	2	<0.01	1.3
		S	1	2.8	0.040	0.012	0.222	0.274	1	0.01	1.7
		S	1	2.6	0.049	< 0.005	0.231	0.280	2	0.01	1.8
Ь	4.4	М	7	3.7	0.049	0.013	0.224	0.285	2	<0.01	2.1
В	14	М	7	3.6	0.04	0.018	0.214	0.272	4	<0.01	1.9
		В	13	4.7	0.078	0.010	0.224	0.312	2	<0.01	1.8
		В	13	4.8	0.099	0.012	0.219	0.331	ND	<0.01	1.5
		S	1	3.8	0.072	0.011	0.231	0.314	1	<0.01	2.1
		S	1	4.0	0.057	0.017	0.225	0.300	2	0.01	2.5
С	12	М	6	5.1	0.055	0.017	0.220	0.292	1	<0.01	2.2
	12	М	6	4.8	0.053	0.014	0.224	0.292	ND	<0.01	1.9
		В	11	6.2	0.063	0.016	0.227	0.306	ND	0.01	2.0
		В	11	6.6	0.079	0.010	0.227	0.316	ND	<0.01	2.2
		S	1	3.6	0.058	0.010	0.228	0.296	ND	<0.01	1.6
		S	1	3.2	0.054	0.013	0.223	0.289	1	<0.01	1.8
D	13	М	6.5	3.9	0.063	0.017	0.229	0.310	ND	0.02	2.2
	13	М	6.5	4.2	0.048	0.013	0.223	0.284	ND	<0.01	2.1
		В	12	5.6	0.054	0.009	0.239	0.302	2	<0.01	2.4
		В	12	5.6	0.055	0.016	0.225	0.296	1	<0.01	2.0
		S	1	4.4	0.054	0.016	0.241	0.311	ND	0.03	2.1
		S	1	4.6	0.052	0.011	0.244	0.308	ND	0.02	1.7
E	16	М	8	4.8	0.044	0.017	0.233	0.294	ND	<0.01	1.5
_	10	М	8	5.1	0.053	0.006	0.244	0.303	ND	<0.01	1.3
		В	15	5.8	0.073	0.013	0.239	0.326	ND	<0.01	1.9
		В	15	5.6	0.092	0.014	0.242	0.348	ND	0.02	2.0
		S	1	3.0	0.128	0.018	0.234	0.381	1	0.02	2.4
		S	1	2.7	0.130	0.010	0.245	0.385	ND	0.04	2.5
F	23	М	11.5	3.4	0.072	0.012	0.239	0.323	1	0.03	2.6
•	20	М	11.5	3.7	0.065	0.018	0.238	0.321	3	0.03	2.5
		В	22	4.8	0.056	0.008	0.254	0.319	2	0.04	2.4
		В	22	4.8	0.070	0.012	0.248	0.330	3	0.03	2.5
		S	1	2.8	0.114	0.016	0.258	0.387	ND	0.05	2.0
		S	1	3.0	0.123	0.017	0.258	0.398	2	0.03	1.9
G	22	М	11	4.1	0.066	0.016	0.259	0.342	2	0.03	2.2
		М	11	3.9	0.051	0.009	0.266	0.326	2	0.04	2.0
		В	21	4.4	0.146	0.007	0.270	0.422	1	0.03	2.0
		В	21	4.8	0.133	<0.005	0.272	0.405	ND	0.03	2.0
		S	1	4.2	0.204	<0.005	0.268	0.472	1	0.04	2.2
Н	19	S	1	4.5	0.115	<0.005	0.288	0.403	ND	0.03	2.4
		М	9.5	5.0	0.220	<0.005	0.271	0.491	ND	0.03	2.6

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 18

Monitoring Station	Water Depth (m)	Sam Dep (m)	npling th	TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ - as N (mg/L)	NO ₃ - as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
		M	9.5	4.6	0.241	<0.005	0.271	0.512	1	0.03	2.1
		В	18	5.7	0.052	< 0.005	0.294	0.347	1	0.03	2.4
		В	18	6.0	0.060	0.006	0.297	0.362	ND	0.02	1.9

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

Monitoring	Water		pling	TSS	NH ₃	NO ₂ -	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		,	(mg/L)	(mg/L)	(mg/L)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	`	, ,
		S	1	5.4	0.056	0.006	0.251	0.313	2	<0.01	2.1
		S	1	5.7	0.064	0.009	0.242	0.315	3	<0.01	1.8
۸	4.5	М	7.5	4.6	0.054	0.007	0.256	0.317	1	<0.01	2.1
Α	15	М	7.5	4.9	0.056	<0.005	0.255	0.311	2	0.02	1.8
		В	14	3.8	0.098	0.008	0.248	0.354	1	0.02	1.9
		В	14	3.5	0.104	0.010	0.242	0.356	3	0.01	2.2
		S	1	3.6	0.058	<0.005	0.253	0.311	2	<0.01	1.7
		S	1	3.6	0.054	<0.005	0.259	0.312	1	<0.01	1.4
В	14	М	7	4.3	0.097	0.010	0.248	0.356	3	0.01	1.9
Ь	14	М	7	4.1	0.073	0.01	0.234	0.318	3	0.02	2.2
		В	13	4.9	0.059	0.007	0.232	0.297	2	<0.01	2.0
		В	13	4.7	0.052	0.012	0.231	0.295	4	<0.01	1.4
		S	1	3.4	0.053	<0.005	0.240	0.293	ND	<0.01	1.3
		S	1	3.4	0.041	0.014	0.226	0.282	1	<0.01	1.3
С	12	М	6	4.6	0.044	<0.005	0.245	0.289	ND	<0.01	1.9
O	12	М	6	4.9	0.054	0.010	0.241	0.304	ND	0.01	2.1
		В	11	5.4	0.064	0.008	0.233	0.305	ND	<0.01	1.2
		В	11	5.2	0.052	0.010	0.229	0.290	1	<0.01	1.5
		S	1	5.7	0.048	0.006	0.238	0.292	ND	<0.01	1.8
	14	S	1	5.4	0.038	0.010	0.236	0.283	1	0.02	1.4
D		М	7	4.5	0.057	<0.005	0.237	0.294	ND	<0.01	1.8
		М	7	4.2	0.061	0.008	0.232	0.302	ND	<0.01	1.4
		В	13	3.5	0.092	0.007	0.238	0.337	1	<0.01	1.2
		В	13	3.8	0.119	<0.005	0.248	0.367	1	<0.01	1.0
		S	1	4.8	0.050	<0.005	0.260	0.310	1	0.02	1.6
		S	1	4.5	0.048	0.006	0.258	0.312	ND	0.02	1.2
Е	14	M	7	5.8	0.118	<0.005	0.283	0.402	ND ND	0.02	1.7
		M	7	5.6	0.113	0.006	0.262	0.381	ND 1	0.02	1.2
		В	13	6.4	0.118	<0.005	0.279	0.397	1	0.02	1.2
		В	13	6.0	0.112	0.010	0.280	0.402	1	0.02	1.3
		S	1	4.5	0.110	0.008	0.252	0.370	2	0.02	1.9
		M	9	4.2 3.2	0.097 0.102	<0.005 0.016	0.261 0.240	0.358 0.359	1 1	0.02 0.02	2.2
F	18	M	9	3.4	0.102	<0.005	0.240	0.339	1	0.02	1.4 1.6
		В	17	2.2			0.262		ND		1.0
		В	17	2.4	0.166 0.105	0.008 <0.005	0.250	0.424 0.364	1 1	<0.01 0.02	1.3
		S	17	3.5	0.103	0.006	0.239	0.382	ND	0.02	1.6
		S	1	3.2	0.080	<0.005	0.296	0.353	3	0.02	1.3
		M	6.5	4.4	0.074	<0.005	0.279	0.333	ND	0.02	1.3
G	13	M	6.5	4.4	0.121	0.009	0.322	0.444	1	0.02	1.6
		В	12	5.7	0.124	<0.005	0.312	0.444	1	0.03	1.9
		В	12	6.0	0.100	0.006	0.317	0.417	1	0.04	2.1
		ם	12	0.0	0.110	0.000	0.311	0.433	<u> </u>	0.02	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 19

Monitoring	Water	Sampling		TSS	NH ₃	NO ₂ -	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	6.0	0.193	0.007	0.269	0.469	ND	0.01	1.9
		S	1	5.6	0.091	0.005	0.286	0.382	1	<0.01	1.3
Н	19	М	9.5	4.4	0.458	0.005	0.273	0.736	1	0.02	2.5
"	19	М	9.5	4.0	0.388	0.006	0.264	0.657	ND	0.03	2.0
		В	18	3.0	0.122	< 0.005	0.303	0.424	ND	<0.01	1.4
		В	18	2.5	0.106	0.007	0.318	0.431	2	<0.01	1.4

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10 Weather condition of water quality monitoring

1 45.0 01.10	anioi comani	and contamen or water quanty mornionng						
Date	Air Temperature			Mean	Total			
	Maximum	Mean Minimum		Relative	Rainfall			
	(deg. C)	(deg. C)	(deg. C)	Humidity (%)	(mm)			
				(/0)				
4 February 2021	23.8	19.4	16.8	68	0.0			

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 20

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Table 4.2 Farameters for Sediment Quality Monitoring and Benthic Survey							
Monitoring Parameters							
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey						
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)						
Total organic carbon* (%)	Chromium (µg/L)						
pH value	Copper (µg/L)						
Ammonia as N (mg-N/kg)	Lead (µg/L)						
Total nitrogen (mg-N/kg)	Mercury ((µg/L)						
Total phosphorus (mg-N/kg)	Nickel (µg/L)						
Cadmium (mg/kg)	Zinc (µg/L)						
Chromium (mg/kg)	Arsenic (µg/L)						
Copper (mg/kg)	Silver (µg/L)						
Lead (mg/kg)							
Mercury (mg/kg)							
Nickel (mg/kg)							
Zinc (mg/kg)							
Arsenic (mg/kg)							
Silver (mg/kg)							

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 21

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 22

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

Table 4.5 Laboratory Me	doubline in Analysis Methods and Ne	perting Limits
Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Page 23

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 4 February 2021. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H.**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 24

Table 4.4 Summary of laboratory analysis results for sediment monitoring

Monitoring Station	pH value	NH ₃ as N (mg/L)	Total N (mg- N/kg)	Total P (mg- P/kg)	Cd (mg/ kg)	Cr (mg/ kg)	Cu (mg /kg)	Pb (mg /kg)	Hg (mg/k g)	Ni (mg /kg)	Zn (mg /kg)	As (mg /kg)	Ag (mg/k g)
Α	8.4	1.2	760	406	<0.10	31.9	25.8	39.6	0.12	18.6	77.3	14.9	0.18
В	8.4	6.0	850	484	<0.10	32.4	30.8	38.6	0.11	18.8	86.1	11.8	0.32
С	8.2	10.7	1070	545	<0.10	42.3	34.7	42.2	0.11	24.5	104	11.7	0.27
D	8.4	6.4	1020	466	0.10	32.5	29.4	36.5	0.11	19.6	84.0	9.6	0.23
Е	8.2	10.7	1450	601	<0.10	39.9	37.9	45.2	0.12	23.9	104	11.2	0.32
F	8.1	27.6	1360	622	<0.10	35.8	36.0	42.3	0.11	21.7	95.8	11.4	0.33
G	8.4	4.1	1000	474	0.13	38.8	94.0	83.4	0.11	21.2	228	11.1	0.33
Н	8.3	3.5	1120	517	<0.10	41.4	101	49.4	0.12	23.4	117	12.0	0.66

Table 4.5 Summary of laboratory analysis results for benthic survey

Table 4.5 Sufficially of laboratory analysis results for bentific survey									
Monitoring Station	Total organic	Grain size profile (%)				Description			
Station	carbon (%)	Gravel	Sand	Silt	Clay				
А	0.77	15	41	22	22	Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments			
В	0.85	1	26	42	31	Dark grey, slightly sandy SILT/CLAY with shell fragments			
С	0.93	0	6	52	42	Dark grey, slightly sandy SILT/CLAY with shell fragments			
D	0.81	1	19	47	33	Dark grey, slightly sandy SILT/CLAY with shell fragments			
E	1.05	0	9	53	38	Dark grey, slightly sandy SILT/CLAY with shell fragments			
F	1.10	0	3	54	43	Dark grey, SILT/CLAY with shell fragments			
G	0.84	3	21	43	33	Dark grey, slightly sandy SILT/CLAY with shell fragments			
Н	0.88	1	10	49	40	Dark grey, slightly sandy SILT/CLAY with shell fragments			

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix H**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Table 4.6 Weather condition of water quality monitoring

rable he included contained of trater quality mornioning							
Date	Air Temperature			Mean	Total		
	Maximum	ım Mean Minimum		Relative	Rainfall		
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)		
				(%)			
4 February 2021	23.8	19.4	16.8	68	0.0		

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 25

4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Table 4.7 Summary of benthic survey data on 4 February 2021

Monitoring	Abundance	Total	Number of		
Station	(ind.)	Biomass (g)	Taxa	Diversity (H')	Evenness (J)
A	248	3.34	12	1.25	0.50
В	134	1.89	15	1.45	0.53
С	46	22.98	11	2.08	0.87
D	54	26.64	12	1.91	0.77
E	161	1.68	13	0.99	0.39
F	177	1.32	7	0.61	0.31
G	145	3.72	9	0.96	0.44
Н	33	1.59	10	1.67	0.72
TOTAL	998	63.16			

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 998 macrobenthic organisms was recorded from the eight monitoring stations during February 2021 monitoring period. Current result showed higher total abundance as compared to both dry (March 2004) and wet (August 2004) seasons baseline data. The increase in total abundance was due to the increase in abundance of the arthropod Gammarus with respect to the previous monitoring period (December 2020). Members of this genus generally favour high dissolved oxygen levels (DO) and low temperature of the water column for survival (Zadereev et. al, 2010). The current monitoring period (winter season) was recorded with high DO levels that ranged from 8.37 mg/L to 9.33 mg/L; and low water temperatures that only ranged from 18.33°C to 18.60°C. These, in addition to the possible absence or decreased abundance of their fish and decapod predators, could be the reason for the Gammarus' high abundance this period (Nelson et al, 1979a).

A significant seasonal variation of the macrobenthic abundances was noted during the current monitoring period (F-value = 3.48; F-crit = 1.66; P-value = 0.00001).

The lowest abundance of 33 individuals (ind.) was recorded at Station H while the highest (248 ind.) was noted at Station A, both as reference stations. Current abundances in the impact stations C and D also increased relative to December 2020 monitoring results. The rest of the remaining stations were also observed with increased abundances. Similar with the previous monitoring periods, differences in the total abundance across the monitoring stations were still statistically significant (F-value = 2.97; F-crit = 2.07; P-value = 0.01).

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 63.16 g with the highest biomass at the impact sites Station D (26.64g) and Station C (22.98g). Among the different genera noted in these two stations, the polychaete Naineris (20.41g) at Station D and the sea cucumber Acaudina (22.6g) at Station C, contributed to the current high recorded biomass.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Page 26

Meanwhile, it was in the reference Station F that the lowest (1.32g) biomass was observed. Low biomass values were also noted in Stations H (1.59g) and E (1.68g). However, relative to the December 2020 period, an overall increased biomass was noted during the current monitoring period.

iii) Taxonomic Composition

A total of seven comprising of 30 families and 34 genera were identified. The macrobenthic assemblage was noted with a shift in the dominating group from the annelids of last December 2020 to arthropods (70%) during the current survey. Currently, the annelids were already noted with lesser dominance (23%) such that the monitoring stations could have experienced lessen organic enrichment (Pearson and Rosenberg, 1978) as evident by the low percentage of the total organics (as low as 0.77%) during the period.

There was no dominant genera (member species > 10) recorded during the current monitoring activity.

iv) Diversity

Benthic diversity index (H') ranged from 1.91 to 2.08 in the impact stations while its values ranged from 0.61 to 1.67 among the different reference stations. Impact stations had relatively higher diversity values as compared to reference stations.

Meanwhile, in terms of evenness index (J) values, reference Station F had the lowest value (0.31) and followed by another reference Station E (0.39). Current results showed that both the impact Stations C and D were able to maintain high evenness index relative to the December 2020 results. Current results indicated an overall increase in diversity and evenness values from the baseline survey condition.

The detailed benthic survey results are provided in **Appendix I**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 27

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 21 July 2020, "Monitoring of Marine Mammals in Hong Kong Waters (2019-20)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in July 2020. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2020-21) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 28

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 30

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 3, 9, 19 and 25 February 2021. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 4 February 2021. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 31

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Table 9.1 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	1
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.2 Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 32

10. FUTURE KEY ISSUES

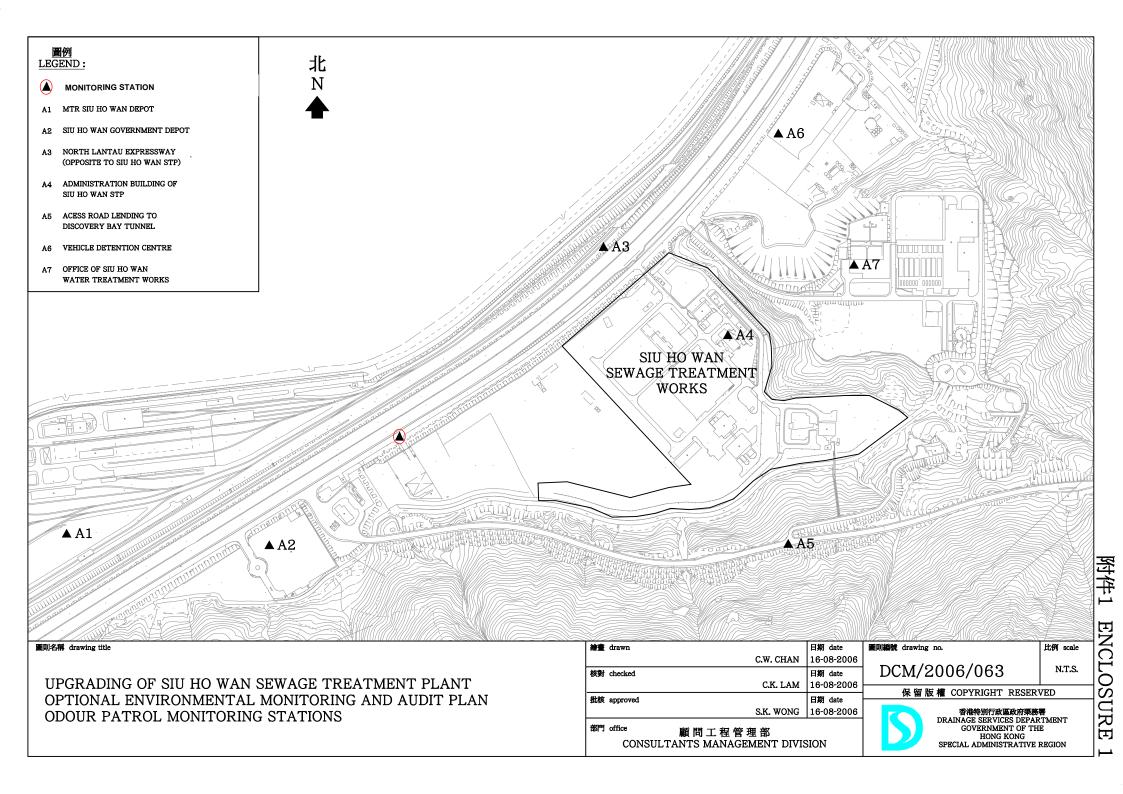
- 10.1.1 The key issues to be considered in the coming reporting month include:
 - i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
 - ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620 Page 33

11. CONCLUSION

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 3, 9, 19 and 25 February 2021. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 4 February 2021 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 21 July 2020, "Monitoring of Marine Mammals in Hong Kong Waters (2019-20)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in July 2020. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2020-21) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions*. *All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.

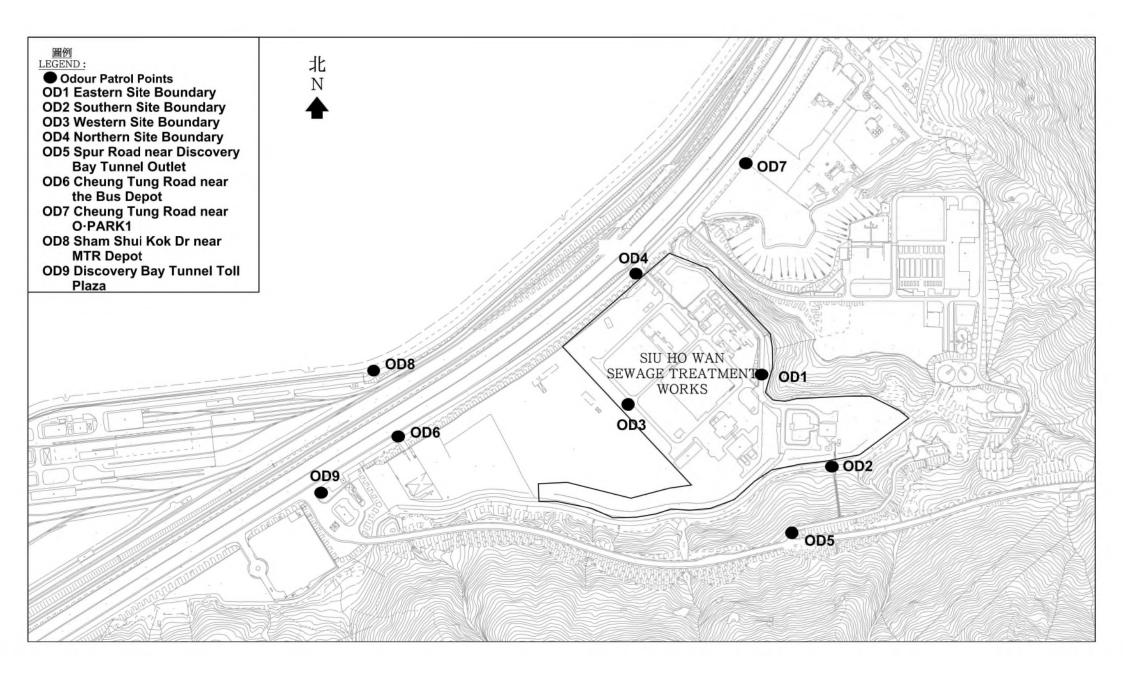

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Figure 1

Monitoring Stations of Air Sensitive Receivers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

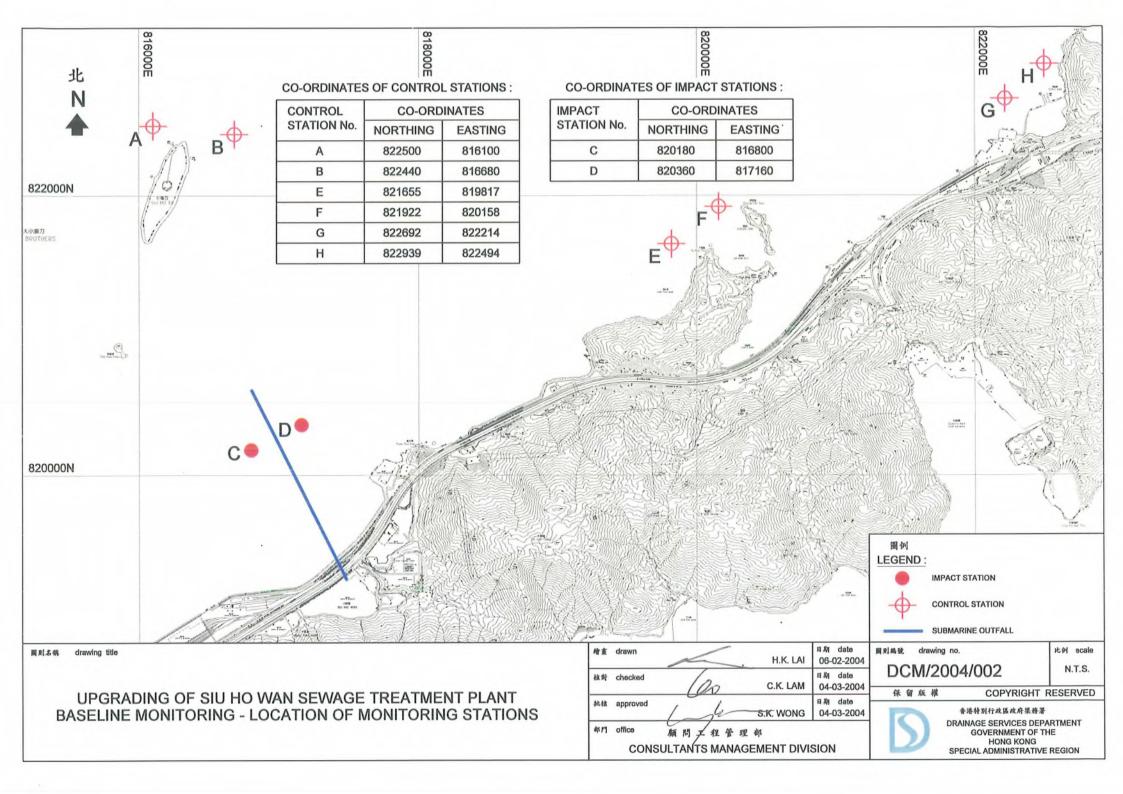

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Figure 2

Odour Patrol Points of Modified Odour Patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

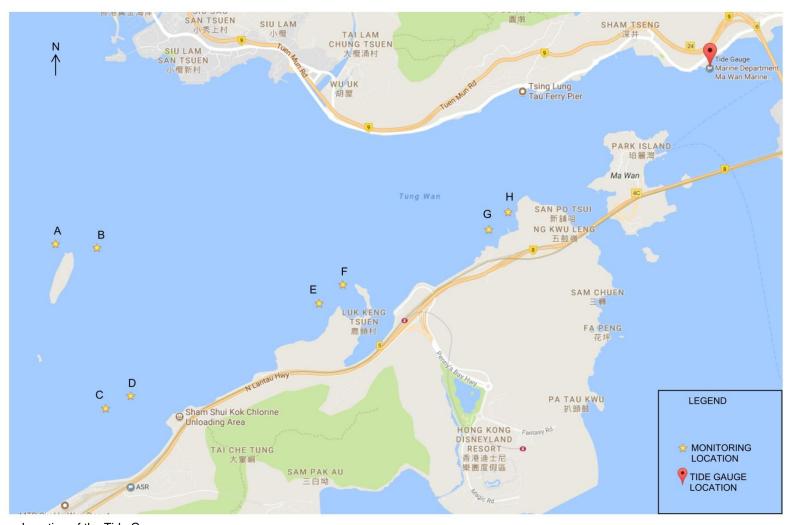

Report No.: 0041/17/ED/0620

Figure 4

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Location of the Tide Gauge

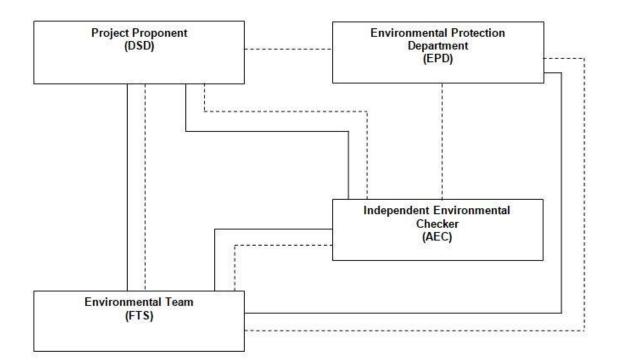
Source: Google Maps

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Tel Fax E-mail: matlab@fugro.com
Website: www.fugro.com

Report No.: 0041/17/ED/0620


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Legend:

Line of Reporting

Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 February	2	3 Odour Patrol	4 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (11:37) Mid-Ebb (17:58)	5	6
7	8	9 Odour Patrol	10	11	12	13
14	15	16	17	18	19 Odour Patrol	20
21	22	23	24	25 Odour Patrol	26	27
28						

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 March	2	3 Odour Patrol	4	5	6
7	8	9 Odour Patrol	10	11	12	13
14	15 Odour Patrol	16	17	18	19	20
21	22	23	24	25	26 Odour Patrol	27
28	29	30	31			

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

		ACTION	
EVENT	ET	IEC	*Operator
Action Level			,
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	1. Identify source/reason of exceedance or odour complaints; 2. Notify the IEC and Operator of exceedance; 3. Repeat odour patrol to confirm finding; 4. If exceedance continues, notify the IEC and Operator; 5. Carry out investigation to identify the source/reason of exceedance or complaints; 6. Check Operator's working methods; and 7. Discuss with Operator on required remedial actions.	1. Check odour patrol results submitted by ET; 2. Discuss with ET and Operator on the possible remedial actions; 3. Advise the Operator on the effectiveness of the proposed remedial measures; 4. Supervise implementation of remedial measures.	1. Notify the ET and IEC when receipt of odour complaint; 2. Confirm receipt of notification of exceedance in writing; 3. Identify/ confirm source with ET; 4. Discuss with ET for remedial actions required; 5. Ensure remedial actions required implemented 6. Rectify any unacceptable practice; and 7. Amend operation methods if appropriate.
Limit Level			
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	1. Identify source/reason of exceedance or odour complaints; 2. Notify the IEC and Operator of exceedance; 3. Repeat odour patrol to confirm finding; 4. If exceedance continues, notify the IEC and Operator; 5. Carry out investigation to identify the source/reason of exceedance or complaints; 6. Check Operator's working methods; 7. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 8. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 9. Discuss with EPD and the	1. Check odour patrol results submitted by ET; 2. Discuss amongst ET and the Operator on the potential remedial actions; 3. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 4. Supervise implementation of remedial measures.	1. Notify the ET and IEC when receipt of odour complaint; 2. Confirm receipt of notification of exceedance in writing; 3. Indentify/ confirm source with ET; 4. Inform ET, IEC and EPD; 5. Discuss with EPD and ET on the required remedial actions; 6. Ensure remedial actions properly implemented; 7. Take immediate action to avoid further exceedance; 8. Implement the agreed proposals.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Operator on the required	
remedial actions;	
10. Submit proposals for	
remedial actions within 3	
working days of notification;	
11. Assess effectiveness of	
Operator's remedial actions	
and keep EPD informed of	
the results;	
12. Amend proposal if	
appropriate; and	
13. Resubmit proposal if	
problem still not under	
control.	
* The operator who is the constructor responsible for the c	poration during the maintenance period

^{*} The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

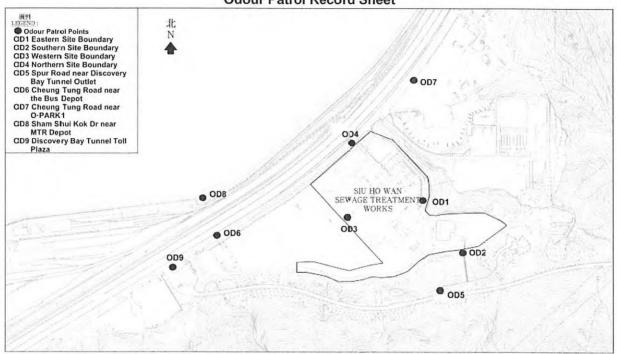
Report No.: 0041/17/ED/0620

Appendix D

Results and Graphical Presentation of Air Quality Monitoring

Tel

: (852)-24508238


Room 723 - 726, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Fax

(852)-24508032 Hong Kong. Email mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

ろ / 2 / 2 v 2 Weather Fiv	12	Temperatur	re 21,	}°(Hun	nidity 46%
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	10:47	NE	1.6	0	
Southern Site Boundary	10.50	NE	0.4	1	Effluent
Western Site Boundary	10:46	NE	4	0	
Northern Site Boundary	10:43	NE	2.5	D	/
Spur Road near Discovery Bay Tunnel Outlet	/			/	
Cheung Tung Road near the Bus Depot	10:31	NE	1.2	0	/
Cheung Tung Road near O·PARK1	10:33		0.8	b	/
Sham Shui Kok Dr near MTR Depot	10.23		1.3	0	/
Discovery Bay Tunnel Toll Plaza	10:20		0.4	0	
	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot Time 10-41 10-45 10-45 10-43 Sham Shui Kok Dr near MTR Depot Time	Location Time Wind Direction Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot Wind Wind Direction Wind Direction Vio	Location Time Wind Direction Wind Speed (m/s) Eastern Site Boundary Southern Site Boundary Western Site Boundary Western Site Boundary Northern Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O-PARK1 Sham Shui Kok Dr near MTR Depot Wind Speed (m/s) Violation Violation	Location Time Wind Direction Wind Speed (m/s) Eastern Site Boundary Eastern Site Boundary Western Site Boundary Western Site Boundary Western Site Boundary Northern Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O-PARK1 Sham Shui Kok Dr near MTR Depot Vind Speed (m/s) Odour intensity Odour intensity

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Slight identifiable odour, and slight chance to have odour nuisance

Moderate Moderate identifiable odour, and moderate chance to have odour nuisance

Strong Strong identifiable, likely to have odour nuisance Extreme : Extreme severe odour, and unacceptable odour level

Recorded by:

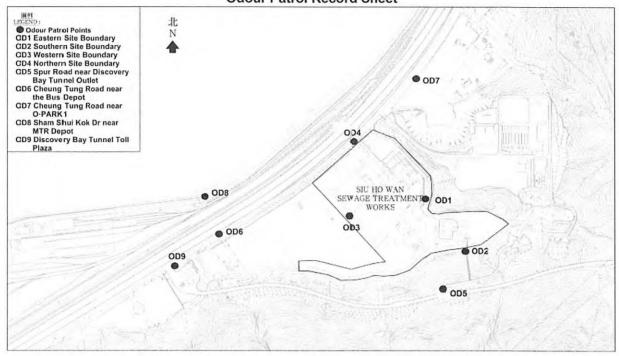
Name:

Date:

Checked by:

Name:

Date:


HOI KAM 2021 Februar

Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	3/2/2021 Weather Fiv	ne	Temperatur	e 21.7	(Hun	nidity 46%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10.47	NE	1.6	0	
OD2	Southern Site Boundary	10.50	NE	0.4	0	/
OD3	Western Site Boundary	10.46	NE	4	0	/
OD4	Northern Site Boundary	10:43	NE	2.5	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet	1	/		/	/
OD6	Cheung Tung Road near the Bus Depot	10:31	NE	1.2	0	/
OD7	Cheung Tung Road near O·PARK1	10:33	NE	0.8	0	
OD8	Sham Shui Kok Dr near MTR Depot	10.23	NE	1.3	0	/
OD9	Discovery Bay Tunnel Toll Plaza	10:20	NE	0.4	TO	/

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight : Slight identifiable odour, and slight chance to have odour nuisance

Chan

Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance

Strong : Strong identifiable, likely to have odour nuisance
Extreme : Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

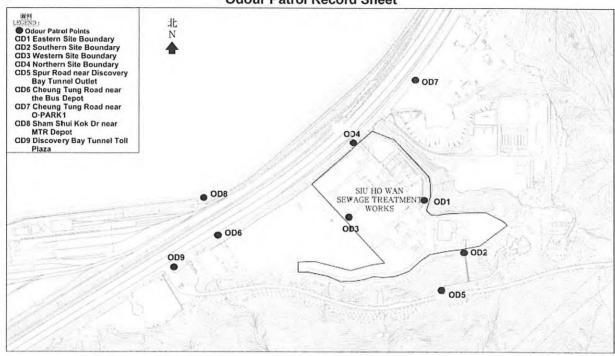
Date:

Checked by:

Name:

Doto:

CHOI KAM HO 3 February 2021


Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Tel Fax Email : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	9/2/2021 Weather Clou	dy	Temperatui	re 6.	4°(Hur	midity 73%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10:58	S	1.5	D	
OD2	Southern Site Boundary	11:02	E	0.4	0	
OD3	Western Site Boundary	10.53	SE	1.4	0	
OD4	Northern Site Boundary	10:49	NE	1.2	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet	/		/	/	/
OD6	Cheung Tung Road near the Bus Depot	10.37	6	1.2	b	/
OD7	Cheung Tung Road near O·PARK1	10.40	TE	0.9	0	/
OD8	Sham Shui Kok Dr near MTR Depot	10.29	NE	0.4	0	
OD9	Discovery Bay Tunnel Toll Plaza	10:35	E	0.2	D	/

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

Strong Extreme

Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

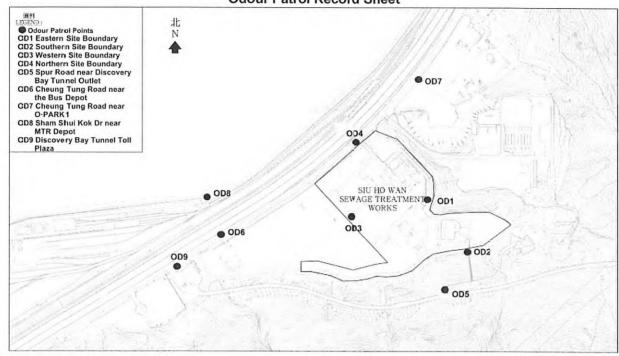
Date:

9/20

Checked by:

Name:

CHUZ


Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel (852)-24508238 Fax (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	9/2/2021	Weather	Clou	dy	Temperatur	e /8.4	+°C Hur	midity	73%
ID	Location			Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Ch	naracteristics
OD1	Eastern Site Boundary	,		10:58	S	1.5	0	-	
OD2	Southern Site Boundar	ry		11:07	E	0.4	0		/
OD3	Western Site Boundary	у		10:53	SE	1.4	0		/
OD4	Northern Site Boundar	У		10:49	NE	1-2	Ö		/
OD5	Spur Road near Disco	very Bay Tunn	el Outlet	/			/		
OD6	Cheung Tung Road ne	ear the Bus Dep	pot	10,37	E	1.2	0		
OD7	Cheung Tung Road ne	ear O·PARK1		10:40	E	0.9	0		/
OD8	Sham Shui Kok Dr nea	ar MTR Depot		10:29	NE	0.4	o o		/
OD9	Discovery Bay Tunnel	Toll Plaza		10:35	E	0.2	D		/

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight

: Slight identifiable odour, and slight chance to have odour nuisance

Moderate Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance : Strong identifiable, likely to have odour nuisance

Extreme

: Extreme severe odour, and unacceptable odour level

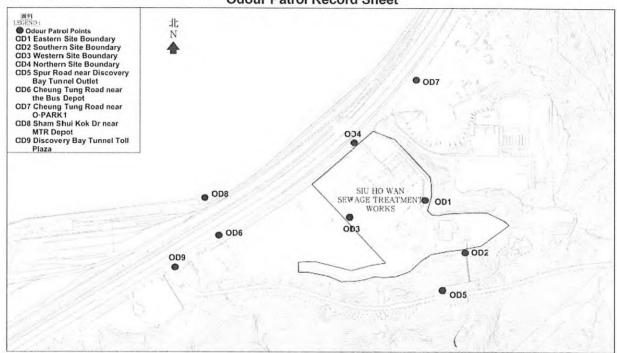
Recorded by: $\frac{\text{Woo}}{\text{Name:}} \frac{\text{Woo} \text{ Kq. Ho}}{\text{Oate:}} \frac{\text{Nooley Mooney}}{9/2/2021}$

Checked by: _

Name: CHOI

Date: 9

Tehruary 2021


The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Tal Fax Hong Kong. Email : mcl@fugro.com.hl

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	19/2/21 Weather Suy	ny	Temperatur	e 14.5	Hun	nidity 48%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1040	NW	0.2	0	
OD2	Southern Site Boundary	1042	NW	0,3	0	/
OD3	Western Site Boundary	1038	N	0.2	0	/
OD4	Northern Site Boundary	1035	N	0.3	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet	/			/	/
OD6	Cheung Tung Road near the Bus Depot	1076	N	0.7	O	/
OD7	Cheung Tung Road near O·PARK1	1027	N	015	0	/
OD8	Sham Shui Kok Dr near MTR Depot	1018	NW	0.4	0	/
OD9	Discovery Bay Tunnel Toll Plaza	1024	NW	0.8	0	

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance Slight

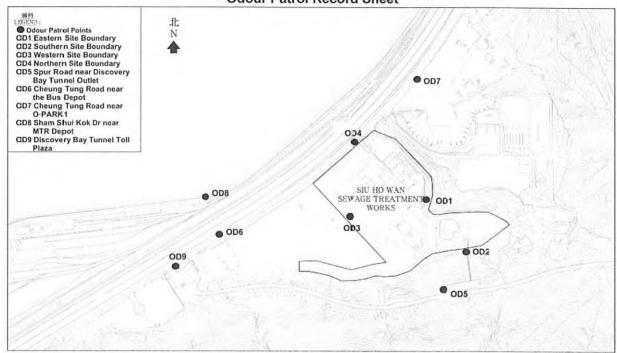
Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance

Strong : Strong identifiable, likely to have odour nuisance Extreme : Extreme severe odour, and unacceptable odour level

Checked by:

Name:

Date:


KAM Ho CHJI Februar 2021

Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Tel : (852)-24508238 : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	19 (2 (2021 Weather Su	uny	Temperatur	re 19.5	OL HU	umidity	480%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour C	naracteristics
OD1	Eastern Site Boundary	10:40	NW	0,7	0		/
OD2	Southern Site Boundary	10:42	NW	0.3	0		
OD3	Western Site Boundary	10:34	N	0.1	0		/
OD4	Northern Site Boundary	10.35	N	0.3	0		_
OD5	Spur Road near Discovery Bay Tunnel Outle	t /		/	/	- /	
OD6	Cheung Tung Road near the Bus Depot	10.26	N	0.7	0		/
OD7	Cheung Tung Road near O·PARK1	10.27	N	0.5	ō.		/
OD8	Sham Shui Kok Dr near MTR Depot	10.18	NW	0.4	0	/	
OD9	Discovery Bay Tunnel Toll Plaza	10:24	NW	0.8	0		/

*Classification Criteria:

: No odour perceived or an odour so weak that it cannot be easily characterised or described Not detected

Slight : Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance Moderate

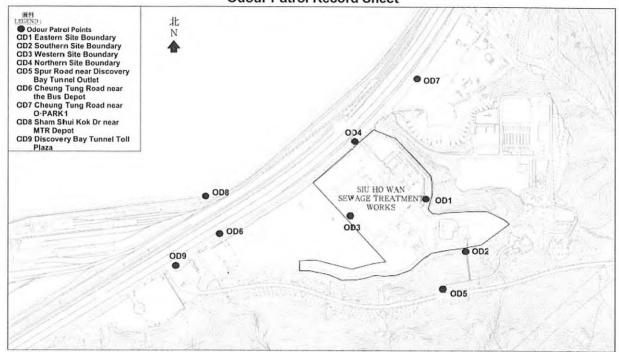
: Strong identifiable, likely to have odour nuisance Strong : Extreme severe odour, and unacceptable odour level Extreme

Recorded by: W Name:

Date:

Checked by:

Name: _


MAN Ho CHOI Februar iq 2021

Room 723 - 726, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	25/2/21 Weather Close	dy	Temperatu	re /9	1 0 Hun	nidity 9/9/5
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1038	NW	0.3	0	
OD2	Southern Site Boundary	10 40	N	0.2	0	
OD3	Western Site Boundary	1036	N	0.4	0	1
OD4	Northern Site Boundary	1033	N	0:6	0	
OD5	Spur Road near Discovery Bay Tunnel Outlet	/		/	/	
OD6	Cheung Tung Road near the Bus Depot	1020	N	0.8	0	/
OD7	Cheung Tung Road near O·PARK1	1022	N	0.7	0	/
OD8	Sham Shui Kok Dr near MTR Depot	1013	NW	0.2	0	/
OD9	Discovery Bay Tunnel Toll Plaza	1018	//	0.9	0	/

*Classification Criteria:

: No odour perceived or an odour so weak that it cannot be easily characterised or described Not detected

Slight

: Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance Moderate

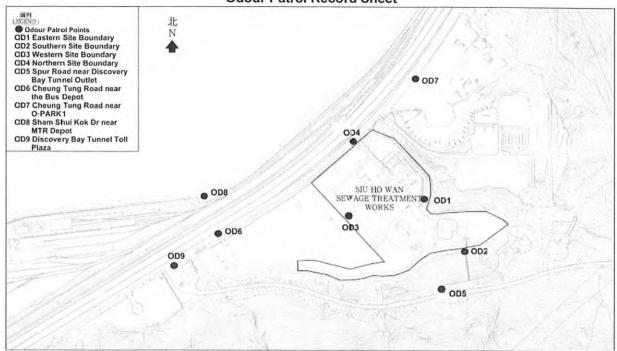
Strong : Strong identifiable, likely to have odour nuisance Extreme : Extreme severe odour, and unacceptable odour level

Recorded by: Name: Now Ka Ho Date: $25/2/20^{-1}$

Checked by: _

Name: _

CHOI KAM 25 February 2021


Room 723 - 726, 7/F, Block B.

1-15 Kwai Fung Crescent, Kwai Fong,

Profit Industrial Building, Tel : (852)-24508238 Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	25/eb 2021 Weather (100	DY	Temperatur	e 19,1	OC Hu	midity 9/%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1038	NW	0.3	0	
OD2	Southern Site Boundary	1040	N	0,2	D	
OD3	Western Site Boundary	1036	N	0.4	0	
OD4	Northern Site Boundary	1033	N	0,6	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet		/	/	/	/
OD6	Cheung Tung Road near the Bus Depot	1020	N	0.8	0	
OD7	Cheung Tung Road near O·PARK1	1022	N	7.6	0	/
OD8	Sham Shui Kok Dr near MTR Depot	1013	MW	0.2	0	/
OD9	Discovery Bay Tunnel Toll Plaza	1018	14	0.9	0	

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Slight identifiable odour, and slight chance to have odour nuisance

Moderate Moderate identifiable odour, and moderate chance to have odour nuisance

Strong Strong identifiable, likely to have odour nuisance Extreme : Extreme severe odour, and unacceptable odour level

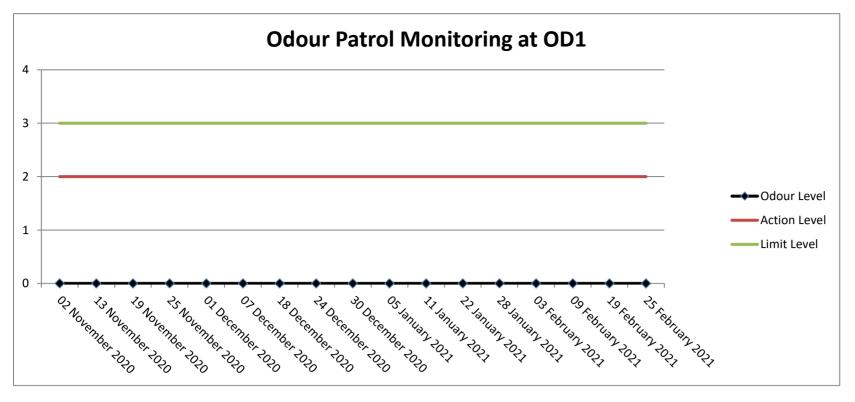
Recorded by:

Name: FONGKA

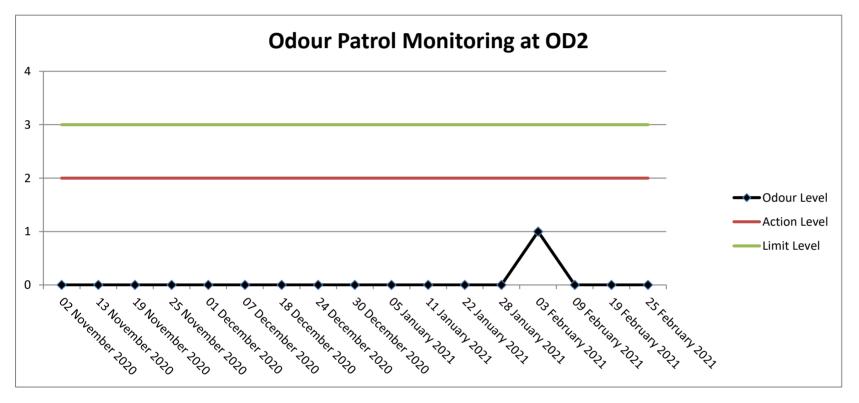
Date: 25 Feb 20

Checked by:

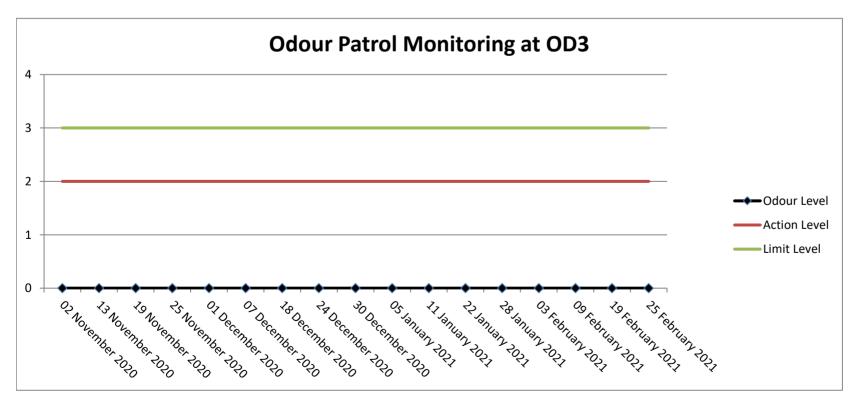
Name:


CHOL Date:

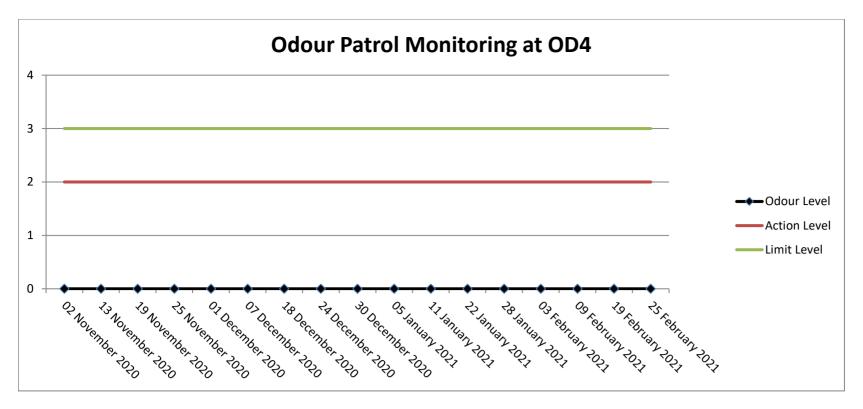
Februar


KAM

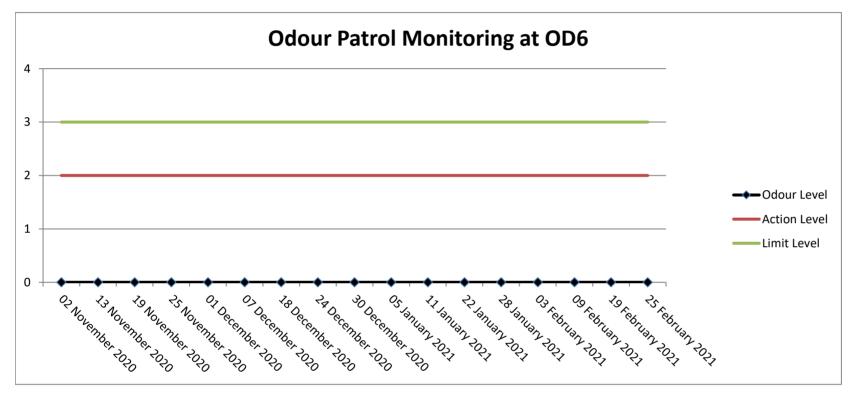
110


202

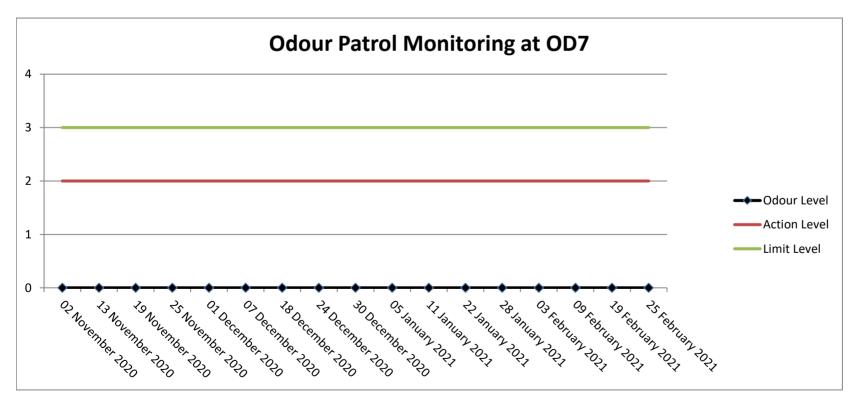
Note: Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme



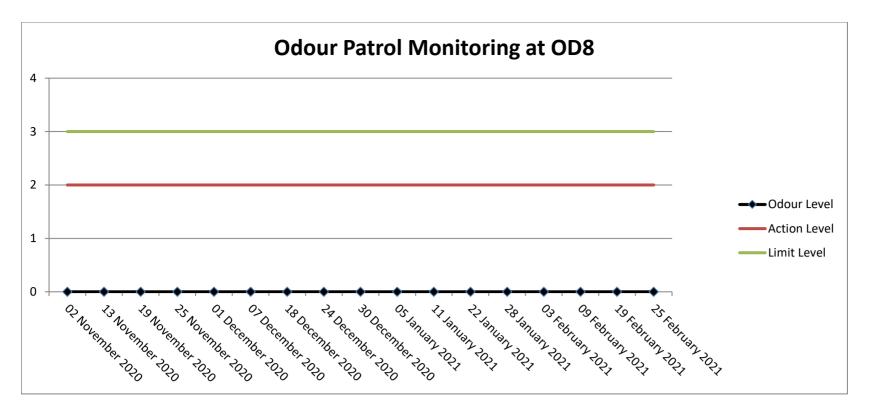
Note: Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

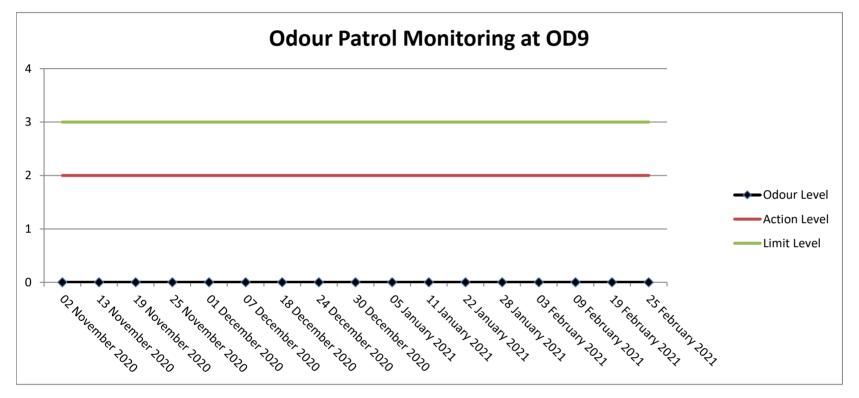
Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Remark:

As access permission from the company of Discovery Bay Tunnel is under requisition progress, the odour patrol monitoring will not cover OD5 (Spur Road near Discovery Bay Tunnel Outlet) temporarily.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.:

142626WA210061

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client

: Fugro Technical Services Limited (MCL)

Client's address

Rm. 723-726, 7/F, Profit Industrial Building, No. 1-15,

Kwai Fung Crescent, Kwai Chung, N.T.

Sample description

One Aqua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 525120

Test required

Calibration of the Agua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID

WA210061/1

Date of calibration

14/12/2020

Next calibration date

13/03/2021

Test method used

In-house comparison method

Note: This report refers only to the sample(s) tested.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA210061

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for 0	Q.C. solution(6.86) and at 25°C	C for Q.C. solution(9.18)
Theoretical	Measured	Deviation
9.18	9.18	0.00
6.86	6.87	+0.01

B. Salinity calibration

Salinity, ppt			
Theoretical	Measured	Deviation	Maximum acceptable Deviation
10	10.05	+0.05	± 0.5
20	20.08	+0.08	± 1.0
30	29.85	-0.15	± 1.5
40	39.74	-0.26	± 2.0

C. Dissolved Oxygen calibration

	Dissolved oxygen	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.38	7.37		
2	7.37	7.37		
3	7.37	7.38		
Average	7.37	7.37		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

8/1/2021

Note: This report refers only to the sample(s) tested.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA210061

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
23.89	23.94

E. Turbidity calibration

	Turbidity, N.T.U.			
Theoretical	Measured	Deviation	Maximum acceptable Deviation	
0	-	-	± 0.5	
4	4.07	+0.07	± 0.6	
8	8.09	+0.09	± 0.8	
40	39.71	-0.29	± 3.0	
80	79.57	-0.43	± 4.0	

Certified by:

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

** End of Report **

Note: This report refers only to the sample(s) tested.

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

5906	
M9	
Down	
Sontek	
N/A	
RS232	
14.9	- SANGE S
4.02	
05/23/2017	
	M9 Down Sontek N/A RS232 14.9 4.02

POWER TEST

Command Mode (W):	0.17	Range: 0.00 - 0.30
Sleep Mode (W):	N/A	Range: N/A
Ping Mode - 18V (W):	2.67	Range: 1.50 – 3.50
Power Check		PASS

NOISE TEST

95
96
95
101
93
95
91
100
88
PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

												I	n-situ Meas	sureme											
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	4/2/2021	Mid-Ebb	Fine	Moderate	16:30	17	S	1	1	8.02	29.50	18.55	109.0	8.60	3.2	0.04	47.1	2.1	0.050	0.009	0.222	0.281	2	0.01	1.5
Α	4/2/2021	Mid-Ebb	Fine	Moderate	16:30	17	S	1	2	8.03	29.53	18.52	108.7	8.50	3.1	0.03	45.4	2.4	0.049	0.011	0.222	0.282	2	0.01	1.7
Α	4/2/2021	Mid-Ebb	Fine	Moderate	16:30	17	M	8.5	1	8.02	29.53	18.54	108.7	8.64	2.1	0.02	86.1	2.8	0.051	0.013	0.223	0.287	ND	< 0.01	1.3
A	4/2/2021	Mid-Ebb	Fine	Moderate	16:30	17	M	8.5	2	8.03	29.56	18.52	107.2	8.61	2.2	0.02	89.9	2.8	0.054	0.015	0.222	0.291	1	<0.01	1.8
A	4/2/2021	Mid-Ebb	Fine	Moderate		17	В	16	1_	8.01	29.63	18.44	106.4	8.45	2.4	0.02	56.1	3.6	0.092	< 0.005	0.242	0.333	3	0.01	1.5
A B	4/2/2021 4/2/2021	Mid-Ebb	Fine	Moderate	16:30	17 14	B	16	2	8.00	29.61	18.42 18.72	107.8 104.8	8.53	2.6 4.3	0.03	54.6	3.5 2.8	0.085	0.006	0.229 0.222	0.320 0.274	2	<0.01 0.01	1.3
B	4/2/2021	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	16:46	14	S	1	2	8.00	29.38	18.72	104.8	8.25 8.36	4.3	0.31	58.2 60.7	2.8	0.040	< 0.012	0.222	0.274	2	0.01	1.7
В	4/2/2021	Mid-Ebb	Fine	Moderate	16:46	14	M	7	1	8.03	29.50	18.53	103.9	8.56	2.1	0.09	41.9	3.7	0.049	0.013	0.224	0.285	2	<0.01	2.1
B	4/2/2021	Mid-Ebb	Fine	Moderate		14	M	7	2	8.04	29.60	18.54	109.7	8.59	2.2	0.10	44.1	3.6	0.043	0.018	0.214	0.272	4	<0.01	1.9
В	4/2/2021	Mid-Ebb	Fine	Moderate	16:46	14	B	13	1	8.00	29.77	18.42	106.5	8.42	4.3	0.12	82.5	4.7	0.078	0.010	0.224	0.312	2	<0.01	1.8
В	4/2/2021	Mid-Ebb	Fine	Moderate	16:46	14	В	13	2	8.01	29.69	18.43	107.8	8.49	4.1	0.14	86.7	4.8	0.099	0.012	0.219	0.331	ND	<0.01	1.5
С	4/2/2021	Mid-Ebb	Fine	Moderate	17:06	12	S	1	1	8.04	29.25	18.63	108.7	8.56	1.2	0.10	349.7	3.8	0.072	0.011	0.231	0.314	1	< 0.01	2.1
С	4/2/2021	Mid-Ebb	Fine	Moderate	17:06	12	S	1	2	8.06	29.28	18.61	110.5	8.91	1.3	0.09	356.1	4.0	0.057	0.017	0.225	0.300	2	0.01	2.5
С	4/2/2021	Mid-Ebb	Fine	Moderate	17:06	12	M	6	1	8.02	29.36	18.53	108.5	8.55	1.4	0.16	326.8	5.1	0.055	0.017	0.220	0.292	1	< 0.01	2.2
С	4/2/2021	Mid-Ebb	Fine	Moderate	17:06	12	M	6	2	8.10		18.50	109.8	8.59	1.3	0.17	319.7	4.8	0.053	0.014	0.224	0.292	ND	< 0.01	1.9
С	4/2/2021	Mid-Ebb	Fine	Moderate		12	В	11	1	8.04	0	18.52	106.8	8.47	1.6	0.11	19.1	6.2	0.063	0.016	0.227	0.306	ND	0.01	2.0
C	4/2/2021	Mid-Ebb	Fine			12	В	11	2	8.09	29.31	18.59	108.7	8.53	1.8	0.10	17.6	6.6	0.079	0.010	0.227	0.316	ND	< 0.01	2.2
D	4/2/2021	Mid-Ebb	Fine			13	S	1	1_	8.00	29.18	18.70	102.3	8.28	2.1	0.04	288.1	3.6	0.058	0.010	0.228	0.296	ND	<0.01	1.6
D D	4/2/2021	Mid-Ebb	Fine	Moderate	17:22	13	S	1	2	8.03	29.21	18.60	103.6	8.30	2.3	0.03	279.2	3.2	0.054	0.013	0.223	0.289	1	<0.01	1.8 2.2
P P	4/2/2021 4/2/2021	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	17:22	13 13	M M	6.5 6.5	2	8.03	29.30	18.55 18.57	108.9 109.2	8.61 8.63	2.8	0.07	313.3 319.8	3.9 4.2	0.063 0.048	0.017	0.229	0.310 0.284	ND ND	0.02 <0.01	2.2
h D	4/2/2021	Mid-Ebb	Fine	Moderate		13	IVI B	12	1	8.04	29.33	18.49	109.2	8.50	1.2	0.06	358.6	5.6	0.048	0.013	0.239	0.302	ND 2	<0.01	2.1
D	4/2/2021	Mid-Ebb	Fine	Moderate		13	B	12	2	8.04	29.48	18.51	107.8	8.53	1.3	0.03	345.2	5.6	0.055	0.009	0.239	0.302	1	<0.01	2.4
F	4/2/2021	Mid-Ebb	Fine			16	S	1	1	8.04	29.47	18.53	107.8	8.61	1.0	0.03	49.2	4.4	0.054	0.016	0.241	0.230	ND	0.03	2.1
F	4/2/2021	Mid-Ebb	Fine	Moderate		16	Š	1	2	8.02		18.56	109.3	8.68	1.1	0.02	47.1	4.6	0.052	0.010	0.244	0.308	ND	0.03	1.7
F	4/2/2021	Mid-Ebb	Fine	Moderate	17:41	16	M	8	1	8.02	29.55	18.43	109.0	8.62	1.2	0.02	76.5	4.8	0.044	0.017	0.233	0.294	ND	< 0.01	1.5
Ē	4/2/2021	Mid-Ebb	Fine	Moderate		16	M	8	2	8.02	29.56	18.45	109.7	8.66	1.3	0.04	71.5	5.1	0.053	0.006	0.244	0.303	ND	< 0.01	1.3
Е	4/2/2021	Mid-Ebb	Fine	Moderate		16	В	15	1	8.03	29.56	18.44	107.5	8.50	1.0	0.02	65.3	5.8	0.073	0.013	0.239	0.326	ND	< 0.01	1.9
E	4/2/2021	Mid-Ebb	Fine	Moderate	17:41	16	В	15	2	8.04	29.55	18.45	108.1	8.56	1.1	0.04	69.1	5.6	0.092	0.014	0.242	0.348	ND	0.02	2.0
F	4/2/2021	Mid-Ebb	Fine	Moderate	17:56	23	S	1	1	7.92	29.36	18.67	101.5	7.98	1.5	0.03	306.5	3.0	0.128	0.018	0.234	0.381	1	0.02	2.4
<u> </u>	4/2/2021	Mid-Ebb	Fine	Moderate		23	S	11	_2_	7.93	29.35	18.61	101.4	7.82	1.6	0.04	301.4	2.7	0.130	0.010	0.245	0.385	ND	0.04	2.5
F	4/2/2021	Mid-Ebb	Fine			23	M	11.5	1	7.96	29.54	18.44	108.5	8.58	2.9	0.06	291.6	3.4	0.072	0.012	0.239	0.323	1 3	0.03	2.6
	4/2/2021 4/2/2021	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate		23 23	M B	11.5 22	2	7.95 8.00	29.56	18.44 18.40	108.8 108.3	8.59 8.54	2.7 1.2	0.04	282.3 314.6	3.7 4.8	0.065 0.056	0.018	0.238 0.254	0.321 0.319	3	0.03	2.5
F	4/2/2021	Mid-Ebb	Fine	Moderate	17:56		B	22	2	8.00		18.40	108.3	8.45	1.3	0.03	314.6	4.8	0.056	0.008	0.254	0.319	3	0.04	2.5
G	4/2/2021	Mid-Ebb	Fine	Moderate	18:14	22	S	1	1	7.87	29.41	18.38	107.1	8.79	1.2	0.05	309.2	2.8	0.070	0.012	0.258	0.387	ND	0.05	2.0
Ğ	4/2/2021	Mid-Ebb	Fine	Moderate	18:14	22	Š	1 1	2	7.88	29.44	18.39	104.9	8.92	1.3	0.03	317.1	3.0	0.114	0.017	0.258	0.398	2	0.03	1.9
Ğ	4/2/2021	Mid-Ebb	Fine			22	М	11	1	7.96	29.48	18.39	108.1	9.59	1.8	3.00	282.5	4.1	0.066	0.016	0.259	0.342	2	0.03	2.2
Ğ	4/2/2021	Mid-Ebb	Fine	Moderate	18:14	22	M	11	2	7.91	29.49	18.41	108.9	9.60	2.0	0.04	28.5	3.9	0.051	0.009	0.266	0.326	2	0.04	2.0
Ğ	4/2/2021	Mid-Ebb	Fine	Moderate	18:14	22	В	21	1	8.00	29.55	18.38	107.5	9.52	1.2	0.05	298.7	4.4	0.146	0.007	0.270	0.422	1	0.03	2.0
G	4/2/2021	Mid-Ebb	Fine	Moderate		22	В	21	2	8.01	29.56	18.39	107.9	9.56	1.3	0.07	292.6	4.8	0.133	< 0.005	0.272	0.405	ND	0.03	2.0
Н	4/2/2021	Mid-Ebb	Fine			19	S	1	1	8.21	28.41	18.49	106.8	8.46	1.3	0.16	301.1	4.2	0.204	< 0.005	0.268	0.472	1	0.04	2.2
Н	4/2/2021	Mid-Ebb	Fine	Moderate	18:29	19	S	1	2	8.21	28.41	18.50	106.9	8.48	1.4	0.17	295.8	4.5	0.115	< 0.005	0.288	0.403	ND	0.03	2.4
Н	4/2/2021	Mid-Ebb	Fine	Moderate	18:29	19	M	9.5	1	8.21		18.48	106.7	8.44	1.9	0.14	326.5	5.0	0.220	< 0.005	0.271	0.491	ND	0.03	2.6
H	4/2/2021	Mid-Ebb	Fine	Moderate	18:29	19	M	9.5	2	8.21	28.45	18.49	106.9	8.46	1.8	0.18	329.4	4.6	0.241	< 0.005	0.271	0.512	1	0.03	2.1
H	4/2/2021	Mid-Ebb	Fine	Moderate	18:29	19	В	18	1	8.19	28.54	18.44	105.4	8.34	1.2	0.20	311.2	5.7	0.052	<0.005	0.294	0.347	1	0.03	2.4
Н	4/2/2021	Mid-Ebb	Fine	Moderate	18:29	19	В	18	2	8.20	28.50	18.45	105.6	8.35	1.1	0.21	314.3	6.0	0.060	0.006	0.297	0.362	ND	0.02	1.9

Note: 1. ND: Not Detected

A 4/2 A 4/2 A 4/2 A 4/2 A 4/2 A 4/2 B 4/2 B 4/2 B 4/2 B 4/2 B 4/2 C 4/2 C 4/2	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood	Fine Fine Fine Fine Fine Fine Fine Fine	Sea Condition Moderate Moderate Moderate Moderate Moderate Moderate Moderate	Time 12:09 12:09 12:09 12:09 12:09	15 15	Level S	Monitoring Level (m)	Replicate	pH Value	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidity (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L-N)		Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	(mg/L)
A 4/22 A 4/21 A 4/21 A 4/22 B 4/22 B 4/22 B 4/22 B 4/22 C 4/22 C 4/22	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood	Fine Fine Fine Fine Fine Fine Fine	Moderate Moderate Moderate Moderate Moderate	12:09 12:09 12:09 12:09	15 15	Š	1	1		Value	Value	Value												
A 4/22 A 4/21 A 4/21 A 4/22 B 4/22 B 4/22 B 4/22 B 4/22 C 4/22 C 4/22	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood	Fine Fine Fine Fine Fine Fine Fine	Moderate Moderate Moderate Moderate Moderate	12:09 12:09 12:09 12:09	15 15	Š	1	1	0.00			Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A 4/2/ A 4/2/ A 4/2/ B 4/2/ B 4/2/ B 4/2/ B 4/2/ C 4/2/ C 4/2/	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood	Fine Fine Fine Fine Fine	Moderate Moderate Moderate Moderate	12:09 12:09 12:09	15		- 1			29.50	18.55	109.4	8.62	1.8	0.02	75.2	5.4	0.056	0.006	0.251	0.313	2	< 0.01	2.1
A 4/2/ A 4/2/ A 4/2/ B 4/2/ B 4/2/ B 4/2/ B 4/2/ B 4/2/ C 4/2/ C 4/2/	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood	Fine Fine Fine Fine	Moderate Moderate Moderate	12:09 12:09				2	8.02	29.56	18.51	108.7	8.51	1.9	0.05	79.8	5.7	0.064	0.009	0.242	0.315	3	< 0.01	1.8
A 4/22 A 4/22 B 4/22 B 4/22 B 4/22 B 4/22 B 4/22 C 4/22 C 4/22	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood	Fine Fine Fine	Moderate Moderate	12:09	15	M	7.5	1	8.03	29.49	18.55	108.3	8.55	2.0	0.06	56.2	4.6	0.054	0.007	0.256	0.317	1	< 0.01	2.1
A 4/2/ B 4/2/ B 4/2/ B 4/2/ B 4/2/ B 4/2/ C 4/2/ C 4/2/	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood Mid-Flood Mid-Flood	Fine Fine	Moderate			M	7.5	2	8.01	29.51	18.53	107.1	8.51	2.3	0.08	53.3	4.9	0.056	< 0.005	0.255	0.311	2	0.02	1.8
B 4/22 B 4/22 B 4/22 B 4/22 B 4/22 C 4/22 C 4/22	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood Mid-Flood	Fine				В	14	1	8.02	29.79	18.44	106.9	8.37	3.0	0.04	83.3	3.8	0.098	0.008	0.248	0.354	1	0.02	1.9
B 4/21 B 4/22 B 4/22 B 4/22 B 4/22 C 4/21 C 4/21	/2/2021 /2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood Mid-Flood			12:09		В	14	2	8.02 7.92	29.81	18.46	107.9	8.42	3.3	0.03	85.4	3.5	0.104	0.010 <0.005	0.242	0.356 0.311	3	0.01 <0.01	2.2 1.7
B 4/2/ B 4/2/ B 4/2/ B 4/2/ C 4/2/ C 4/2/	/2/2021 /2/2021 /2/2021 /2/2021	Mid-Flood		Moderate	11:53 11:53	14	3	1	2	7.92	20.00	18.82 18.81	94.1 95.1	8.53 8.46	1.3 1.5	0.05	21.4 19.2	3.6 3.6	0.058	<0.005	0.253 0.259	0.311	1	<0.01	1.7
B 4/2) B 4/2) B 4/2) C 4/2) C 4/2)	/2/2021 /2/2021 /2/2021		Fine	Moderate	11:53	14	M	7	1	8.02	29.48	18.52	108.2	8.55	1.5	0.06	343.3	4.3	0.054	0.010	0.259	0.312	3	0.01	1.4
B 4/2/ B 4/2/ C 4/2/ C 4/2/	/2/2021 /2/2021		Fine	Moderate	11:53	14	M	7	2	8.03	29.44	18.51	107.1	8.48	1.6	0.04	353.1	4.3	0.097	0.010	0.234	0.338	3	0.01	2.2
B 4/2/ C 4/2/ C 4/2/	/2/2021	Mid-Flood	Fine	Moderate	11:53		B	13	1	8.06	29.76	18.45	107.9	8.53	3.3	0.00	263.8	4.9	0.059	0.007	0.232	0.297	2	<0.02	2.0
C 4/2/ C 4/2/		Mid-Flood	Fine	Moderate	11:53	14	B	13	2	8.06	29.77	18.46	105.4	8.43	3.9	0.01	251.2	4.7	0.052	0.012	0.231	0.295	4	<0.01	1.4
		Mid-Flood	Fine	Moderate	11:33	12	Š	1	1	8.05	29.26	18.61	107.8	8.52	1.6	0.06	316.2	3.4	0.053	< 0.005	0.240	0.293	ND	< 0.01	1.3
C 4/0		Mid-Flood	Fine	Moderate	11:33	12	Š	1	2	8.09	29.28	18.69	108.7	8.59	1.5	0.08	322.5	3.4	0.041	0.014	0.226	0.282	1	< 0.01	1.3
1 6 1 4/2	/2/2021	Mid-Flood	Fine	Moderate	11:33	12	M	6	1	8.06	29.31	18.57	108.7	8.57	1.5	0.09	281.7	4.6	0.044	< 0.005	0.245	0.289	ND	< 0.01	1.9
C 4/2/	/2/2021	Mid-Flood	Fine	Moderate	11:33	12	M	6	2	8.05	29.30	18.51	107.9	8.51	1.3	0.11	276.6	4.9	0.054	0.010	0.241	0.304	ND	0.01	2.1
C 4/2/	/2/2021	Mid-Flood	Fine	Moderate	11:33	12	В	11	1	8.05	29.39	18.50	106.8	8.45	1.8	0.63	301.8	5.4	0.064	0.008	0.233	0.305	ND	< 0.01	1.2
C 4/2/	/2/2021	Mid-Flood	Fine	Moderate	11:33	12	В	11	2	8.01	29.21	18.51	105.6	8.41	2.0	0.78	303.9	5.2	0.052	0.010	0.229	0.290	1	< 0.01	1.5
		Mid-Flood	Fine	Moderate	11:17		S	1	1	8.01		18.65	108.0	8.53	5.1	0.09	319.9	5.7	0.048	0.006	0.238	0.292	ND	< 0.01	1.8
		Mid-Flood	Fine	Moderate	11:17		S	1	2	8.03	29.14	18.64	107.1	8.51	5.3	0.10	322.8	5.4	0.038	0.010	0.236	0.283	1	0.02	1.4
		Mid-Flood	Fine	Moderate	11:17		M	7	1	8.02		18.55	109.3	8.64	1.3	0.05	291.7	4.5	0.057	< 0.005	0.237	0.294	ND	<0.01	1.8
		Mid-Flood	Fine	Moderate	11:17		M	7	2	8.01	29.33	18.51	108.3	8.60	1.2	0.04	286.5	4.2	0.061	0.008	0.232	0.302	ND	< 0.01	1.4
		Mid-Flood	Fine	Moderate	11:17	14	В	13	_1_	8.03	29.43	18.48	107.3	8.44	1.2	0.06	276.5	3.5	0.092	0.007	0.238	0.337	1	<0.01	1.2
		Mid-Flood	Fine	Moderate	11:17		В	13	2	8.01	29.41	18.42	106.8	8.41	1.3	0.07	275.8	3.8	0.119	< 0.005	0.248	0.367	1	<0.01	1.0
		Mid-Flood	Fine	Moderate Moderate	10:56 10:56		S	1	2	8.00	29.48	18.53 18.51	109.1 107.1	8.62 8.56	1.1 1.2	0.02	291.7 286.5	4.8 4.5	0.050	<0.005 0.006	0.260 0.258	0.310 0.312	1 ND	0.02	1.6 1.2
L 7/2/		Mid-Flood Mid-Flood	Fine	Moderate			M	7	4	8.02	29.45					0.03	2769.6			< 0.006		0.402	ND ND	0.02	
		Mid-Flood	Fine Fine	Moderate	10:56 10:56	14	M	7	2	8.03	29.55	18.44 18.42	108.1 107.4	8.55 8.48	1.5 1.4	0.01	275.8	5.8 5.6	0.118 0.113	0.006	0.283 0.262	0.402	ND ND	0.02	1.7
		Mid-Flood	Fine	Moderate	10:56		B	13	1	8.01	29.56	18.44	107.4	8.52	1.2	0.05	302.5	6.4	0.113	< 0.005	0.202	0.397	1	0.02	1.2
		Mid-Flood	Fine	Moderate	10:56		В	13	2	8.02	29.53	18.40	107.2	8.50	1.1	0.00	311.6	6.0	0.112	0.010	0.280	0.402	1	0.02	1.3
		Mid-Flood	Fine	Moderate	10:41		Š	1	1	7.91	29.42	18.55	105.8	8.47	1.7	0.03	301.6	4.5	0.112	0.008	0.252	0.370	2	0.02	1.9
		Mid-Flood	Fine	Moderate	10:41		Š	1	2	7.90	29.41	18.55	104.3	8.40	1.6	0.02	309.7	4.2	0.097	< 0.005	0.261	0.358	1	0.02	2.2
F 4/2/	/2/2021	Mid-Flood	Fine	Moderate	10:41	18	M	9	1	8.00	29.54	18.43	108.7	8.60	1.9	0.04	263.8	3.2	0.102	0.016	0.240	0.359	1	0.02	1.4
	/2/2021	Mid-Flood	Fine	Moderate	10:41	18	M	9	2	8.02	29.51	18.49	109.5	8.66	2.1	0.04	275.6	3.4	0.117	< 0.005	0.262	0.378	1	0.04	1.6
		Mid-Flood	Fine	Moderate	10:41		В	17	1	7.99	29.58	18.41	109.4	8.59	1.4	0.02	298.8	2.2	0.166	0.008	0.250	0.424	ND	< 0.01	1.2
		Mid-Flood	Fine	Moderate	10:41		В	17	2	7.96		18.44	108.1	8.51	1.5	0.05	291.7	2.4	0.105	< 0.005	0.259	0.364	1	0.02	1.3
		Mid-Flood	Fine	Moderate	10:22	13	S	1	1	7.88	29.49	18.37	108.8	8.61	1.7	0.01	285.4	3.5	0.080	0.006	0.296	0.382	ND	0.02	1.6
		Mid-Flood	Fine	Moderate	10:22		S	1	2	7.89	29.51	18.39	109.8	8.68	1.8	0.05	299.7	3.2	0.074	< 0.005	0.279	0.353	3	0.02	1.3
		Mid-Flood	Fine	Moderate	10:22		M	6.5	1	7.96		18.00	108.5	8.58	1.7	0.07	273.5	4.4	0.121	<0.005	0.322	0.443	ND	0.02	1.3
		Mid-Flood	Fine	Moderate	10:22		M B	6.5	1	7.94		18.44	107.1	8.49	1.8	0.02	272.1	4.8	0.124	0.009	0.312 0.317	0.444 0.417	1	0.03	1.6
		Mid-Flood	Fine	Moderate Moderate	10:22		B	12 12	2	7.97		18.38	108.4	8.49	1.2	0.05	262.4	5.7 6.0		< 0.005		0.417	1	0.04 0.02	1.9
		Mid-Flood Mid-Flood	Fine Fine	Moderate	10:22	13	P C	12	1	7.96 8.11	29.53	18.39 18.65	108.9 103.8	8.51 8.28	1.1	0.07	265.3 316.5	6.0	0.116 0.193	0.006	0.311	0.433	ND	0.02	2.1 1.9
		Mid-Flood	Fine	Moderate	10:08	19	3	1	2	8.11	28.35	18.55	103.8	8.43	1.4	0.19	316.5	5.6	0.193	0.007	0.269	0.469	1 ND	<0.01	1.9
		Mid-Flood	Fine	Moderate	10:08		M	9.5	1	8.18	28.52	18.48	106.0	8.40	1.3	0.17	326.8	4.4	0.458	0.005	0.273	0.362	1	0.02	2.5
		Mid-Flood	Fine	Moderate	10:08	19	M	9.5	2	8.18	28.50	18.47	106.2	8.38	1.4	0.10	331.1	4.0	0.438	0.003	0.264	0.750	ND	0.02	2.0
		Mid-Flood	Fine	Moderate	10:08	19	B	18	1	8 19	28.53	18.45	105.8	8.36	1.6	0.21	332.8	3.0	0.388	< 0.005	0.303	0.424	ND	<0.03	1.4
		Mid-Flood	Fine	Moderate	10:08		В	18	2	8.19		18.44	105.6	8.36	1.5	0.20	325.7	2.5	0.106	0.007	0.318	0.431	110	<0.01	1.4

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Address

CERTIFICATE OF ANALYSIS

: FUGRO TECHNICAL SERVICES LIMITED : 1 of 28 : ALS Technichem (HK) Pty Ltd Client Laboratory Page

: MR CYRUS LAI : HK2104349 : Richard Fung Work Order Contact Contact

: ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Address

1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG Yip Street, Kwai Chung, N.T., Hong Kong

: c.lai@fugro.com : richard.fung@alsglobal.com E-mail E-mail

: +852 3565 4374 : +852 2610 1044 Telephone Telephone : +852 2610 2021 Facsimile

: CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR **Date Samples Received** : 04-Feb-2021 Project

SIU HO WAN SEWAGE TREATMENT PLANT

: 0041/17 : HKE/1654/2017_R1 : 22-Feb-2021 Order number Quote Issue Date

number

: 96 No. of samples received C-O-C number : ----

Facsimile

: 96 No. of samples analysed Site

This report may not be reproduced except with prior written approval from the testing laboratory. This document has been signed by those names that appear on this report and are the authorised signatories.

> Signatories Position Authorised results for

Fung Lim Chee, Richard Managing Director Inorganics

Ng Sin Kou, May Laboratory Manager Microbiology_ENV Page Number : 2 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104349

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 04-Feb-2021 to 22-Feb-2021.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2104349

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Microbiological sample(s) was/ were collected in 125mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 19:30.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EP030 - The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below 2mg/L and the decimal value of the results were for reference only.

EK067P - Total Phosphorus - Filtered is not HOKLAS accredited.

Page Number : 3 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104349

ALS

Analytical Results

Sub-Matrix: WATER			Sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-001	HK2104349-002	HK2104349-003	HK2104349-004	HK2104349-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.1	2.4	2.8	2.8	3.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.050	0.049	0.051	0.054	0.092
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.009	0.011	0.013	0.015	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.222	0.222	0.223	0.222	0.242
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.281	0.282	0.287	0.291	0.333
EK067P: Total Phosphorus as P		0.01	mg/L	0.01	0.01	<0.01	<0.01	0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.5	1.7	1.3	1.8	1.5
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	2	NOT DETECTED	1	3

4 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-006	HK2104349-007	HK2104349-008	HK2104349-009	HK2104349-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.5	2.8	2.6	3.7	3.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.085	0.040	0.049	0.049	0.040
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.006	0.012	<0.005	0.013	0.018
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.229	0.222	0.231	0.224	0.214
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.320	0.274	0.280	0.285	0.272
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.01	0.01	<0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.7	1.8	2.1	1.9
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	1	2	2	4

5 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-011	HK2104349-012	HK2104349-013	HK2104349-014	HK2104349-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.7	4.8	3.8	4.0	5.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.078	0.099	0.072	0.057	0.055
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.010	0.012	0.011	0.017	0.017
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.224	0.219	0.231	0.225	0.220
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.312	0.331	0.314	0.300	0.292
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	<0.01	0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.8	1.5	2.1	2.5	2.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	2	NOT DETECTED	1	2	1

6 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-016	HK2104349-017	HK2104349-018	HK2104349-019	HK2104349-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.8	6.2	6.6	3.6	3.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.053	0.063	0.079	0.058	0.054
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.014	0.016	0.010	0.010	0.013
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.224	0.227	0.227	0.228	0.223
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.292	0.306	0.316	0.296	0.289
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.01	<0.01	<0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.9	2.0	2.2	1.6	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	NOT DETECTED	NOT DETECTED	1

7 of 28

Client Work Order FUGRO TECHNICAL SERVICES LIMITED

ler HK2104349

Sub-Matrix: WATER			Sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-021	HK2104349-022	HK2104349-023	HK2104349-024	HK2104349-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.9	4.2	5.6	5.6	4.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.063	0.048	0.054	0.055	0.054
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.017	0.013	0.009	0.016	0.016
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.229	0.223	0.239	0.225	0.241
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.310	0.284	0.302	0.296	0.311
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	<0.01	<0.01	<0.01	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.2	2.1	2.4	2.0	2.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	NOT DETECTED	2	1	NOT DETECTED

8 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-026	HK2104349-027	HK2104349-028	HK2104349-029	HK2104349-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.8	5.1	5.8	5.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.052	0.044	0.053	0.073	0.092
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.011	0.017	0.006	0.013	0.014
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.244	0.233	0.244	0.239	0.242
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.308	0.294	0.303	0.326	0.348
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	<0.01	<0.01	<0.01	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.7	1.5	1.3	1.9	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED				

. 9 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-031	HK2104349-032	HK2104349-033	HK2104349-034	HK2104349-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.7	3.4	3.7	4.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.128	0.130	0.072	0.065	0.056
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.018	0.010	0.012	0.018	0.008
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.234	0.245	0.239	0.238	0.254
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.381	0.385	0.323	0.321	0.319
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.04	0.03	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.02	0.02	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.4	2.5	2.6	2.5	2.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	NOT DETECTED	1	3	2

: 10 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-036	HK2104349-037	HK2104349-038	HK2104349-039	HK2104349-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.8	2.8	3.0	4.1	3.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.070	0.114	0.123	0.066	0.051
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.012	0.016	0.017	0.016	0.009
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.248	0.258	0.258	0.259	0.266
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.330	0.387	0.398	0.342	0.326
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.05	0.03	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.04	0.03	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.5	2.0	1.9	2.2	2.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	3	NOT DETECTED	2	2	2

: 11 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-041	HK2104349-042	HK2104349-043	HK2104349-044	HK2104349-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.8	4.2	4.5	5.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.146	0.133	0.204	0.115	0.220
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007	<0.005	<0.005	<0.005	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.270	0.272	0.268	0.288	0.271
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.422	0.405	0.472	0.403	0.491
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.04	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.03	0.02	0.02	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.0	2.0	2.2	2.4	2.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	NOT DETECTED	1	NOT DETECTED	NOT DETECTED

: 12 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

HK2104349

Sub-Matrix: WATER			Sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-046	HK2104349-047	HK2104349-048	HK2104349-049	HK2104349-050
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	5.7	6.0	5.4	5.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.241	0.052	0.060	0.056	0.064
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	<0.005	0.006	0.006	0.009
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.271	0.294	0.297	0.251	0.242
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.512	0.347	0.362	0.313	0.315
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.02	<0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.1	2.4	1.9	2.1	1.8
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	1	NOT DETECTED	2	3

: 13 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-051	HK2104349-052	HK2104349-053	HK2104349-054	HK2104349-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.9	3.8	3.5	3.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.056	0.098	0.104	0.058
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007	<0.005	0.008	0.010	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.256	0.255	0.248	0.242	0.253
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.317	0.311	0.354	0.356	0.311
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.02	0.02	0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	2.1	1.8	1.9	2.2	1.7
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	2	1	3	2

: 14 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-056	HK2104349-057	HK2104349-058	HK2104349-059	HK2104349-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.6	4.3	4.1	4.9	4.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.097	0.073	0.059	0.052
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.010	0.010	0.007	0.012
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.259	0.248	0.234	0.232	0.231
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.312	0.356	0.318	0.297	0.295
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.01	0.02	<0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.4	1.9	2.2	2.0	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	3	3	2	4

: 15 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-061	HK2104349-062	HK2104349-063	HK2104349-064	HK2104349-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.4	4.6	4.9	5.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.053	0.041	0.044	0.054	0.064
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.014	<0.005	0.010	0.008
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.240	0.226	0.245	0.241	0.233
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.293	0.282	0.289	0.304	0.305
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	<0.01	0.01	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.3	1.9	2.1	1.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	1	NOT DETECTED	NOT DETECTED	NOT DETECTED

: 16 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104349

ALS

Sub-Matrix: WATER			Sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup	
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	
Compound	CAS Number	LOR	Unit	HK2104349-066	HK2104349-067	HK2104349-068	HK2104349-069	HK2104349-070	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	5.2	5.7	5.4	4.5	4.2	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.052	0.048	0.038	0.057	0.061	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.010	0.006	0.010	<0.005	0.008	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.229	0.238	0.236	0.237	0.232	
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.290	0.292	0.283	0.294	0.302	
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.5	1.8	1.4	1.8	1.4	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100mL	1	NOT DETECTED	1	NOT DETECTED	NOT DETECTED	

: 17 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-071	HK2104349-072	HK2104349-073	HK2104349-074	HK2104349-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.8	4.8	4.5	5.8
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.092	0.119	0.050	0.048	0.118
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007	<0.005	<0.005	0.006	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.238	0.248	0.260	0.258	0.283
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.337	0.367	0.310	0.312	0.402
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	1.0	1.6	1.2	1.7
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	1	1	NOT DETECTED	NOT DETECTED

: 18 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-076	HK2104349-077	HK2104349-078	HK2104349-079	HK2104349-080
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	5.6	6.4	6.0	4.5	4.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.113	0.118	0.112	0.110	0.097
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.006	<0.005	0.010	0.008	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.262	0.279	0.280	0.252	0.261
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.381	0.397	0.402	0.370	0.358
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	0.02	0.02	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.2	1.2	1.3	1.9	2.2
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	1	1	2	1

: 19 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-081	HK2104349-082	HK2104349-083	HK2104349-084	HK2104349-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.4	2.2	2.4	3.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.102	0.117	0.166	0.105	0.080
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.016	<0.005	0.008	<0.005	0.006
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.240	0.262	0.250	0.259	0.296
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.359	0.378	0.424	0.364	0.382
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.04	<0.01	0.02	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.02	<0.01	0.01	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.4	1.6	1.2	1.3	1.6
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	1	1	NOT DETECTED	1	NOT DETECTED

: 20 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-086	HK2104349-087	HK2104349-088	HK2104349-089	HK2104349-090
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	3.2	4.4	4.8	5.7	6.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.074	0.121	0.124	0.100	0.116
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	<0.005	0.009	<0.005	0.006
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.279	0.322	0.312	0.317	0.311
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.353	0.443	0.444	0.417	0.433
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.03	0.04	0.02
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	<0.01	0.01	0.01	0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.3	1.6	1.9	2.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	3	NOT DETECTED	1	1	1

21 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
		Samplin	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104349-091	HK2104349-092	HK2104349-093	HK2104349-094	HK2104349-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	6.0	5.6	4.4	4.0	3.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.193	0.091	0.458	0.388	0.122
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007	0.005	0.005	0.006	<0.005
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.269	0.286	0.273	0.264	0.303
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.469	0.382	0.736	0.657	0.424
EK067P: Total Phosphorus as P		0.01	mg/L	0.01	<0.01	0.02	0.03	<0.01
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.01	<0.01	0.02	<0.01	<0.01
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.9	1.3	2.5	2.0	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100mL	NOT DETECTED	1	1	NOT DETECTED	NOT DETECTED

22 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	H/B/F/Dup					
		Samplir	ng date / time	04-Feb-2021					
Compound	CAS Number	LOR	Unit	HK2104349-096					
EA/ED: Physical and Aggregate Properties	EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	2.5					
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.106					
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007					
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.318					
EK063A: Inorganic Nitrogen as N		0.010	mg/L	0.431					
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01					
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01					
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.4					
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100mL	2					

23 of 28

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104349

Laboratory Duplicate (DUP) Report

latrix: WATER					Laboratory Duplicate (DUP) Report LOR Unit Original Result Duplicate Result				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	•	<i>RPD</i> (%)	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496601)							
HK2104349-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.054	0.046	16.0	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496602)							
HK2104349-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.051	0.047	7.94	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496603)							
HK2104349-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.052	0.043	20.4	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496604)							
IK2104349-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.097	0.092	5.54	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496605)							
HK2104349-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.106	0.118	10.2	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496871)							
IK2104349-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.013	0.012	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496873)							
HK2104349-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.009	0.006	38.9	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496875)							
HK2104349-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.012	<0.005	78.8	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496877)							
HK2104349-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.012	81.0	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3496879)							
HK2104349-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.007	0.041	144	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3499758)							
IK2104349-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	: 3499759)							
HK2104349-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3499760)							
HK2104349-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	: 3499761)							
IK2104349-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	: 3499762)					ı		
HK2104349-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.00	
D/EK: Inorganic Nonr	netallic Parameters (QC Lot	t: 3499763)							

24 of 28

Client

Work Order

FUGRO TECHNICAL SERVICES LIMITED HK2104349

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot:	3499763) - Continued									
HK2104349-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00			
ED/EK: Inorganic Nonme	tallic Parameters (QC Lot:	3499764)									
HK2104349-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	<0.01	0.00			
ED/EK: Inorganic Nonme	tallic Parameters (QC Lot:	3499765)									
HK2104349-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.00			
ED/EK: Inorganic Nonme	ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 3499767)										
HK2104349-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report				Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RP	D (%)		
Method: Compound	CAS Number	LOR	LOR Unit	Result		LCS	DCS	Low	High	Value	Control		
											Limit		
EA/ED: Physical and Aggregate Properties (QC Lot: 3496671)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117				
EA/ED: Physical and Aggregate Properties (QC Lot: 3496672)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85.9	117				
EA/ED: Physical and Aggregate Properties (QC Lot: 3496673)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117				
EA/ED: Physical and Aggregate Properties (QC Lot: 3496674)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.9	117				
EA/ED: Physical and Aggregate Properties (QC Lot: 3496675)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	98.0		85.9	117				
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 3496601)												
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.5 mg/L	99.2		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 3496602)												
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.5 mg/L	99.6		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 3496603)												
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.5 mg/L	98.4		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (0	QC Lot: 3496604)												
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.5 mg/L	100		85.0	115				

25 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) R					DCS) Report	
			I	I	Splke	Spike Re	ecovery (%)	Recove	ery Limits(%)	RPL	7 (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3496605)		I	I			T				
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.5 mg/L	100		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 3496871)		1	T							
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	92.8		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3496873)		1								
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	106		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 3496875)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	99.4		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot	: 3496877)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	101		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3496879)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	101		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499758)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.9		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499759)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.8		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499760)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.8		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499761)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.1		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499762)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.3		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499763)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	94.5		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499764)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	97.6		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499765)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	94.5		93.6	102		
ED/EK: Inorganic Nonmetallic Parameters (QC Lot:	: 3499766)										
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.9		85.0	115		

Page Number : 26 of 28

Client : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Red	covery (%)	Recove	ery Limits(%)	RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
ED/EK: Inorganic Nonmetallic Parameters (QC Lo	ot: 3499767)											
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	95.4		93.6	102			
EP: Aggregate Organics (QC Lot: 3497765)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.6		81.0	115			
EP: Aggregate Organics (QC Lot: 3497766)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.8		81.0	115			
EP: Aggregate Organics (QC Lot: 3497767)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	96.1		81.0	115			
EP: Aggregate Organics (QC Lot: 3497768)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	100		81.0	115			
EP: Aggregate Organics (QC Lot: 3497769)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	101		81.0	115			

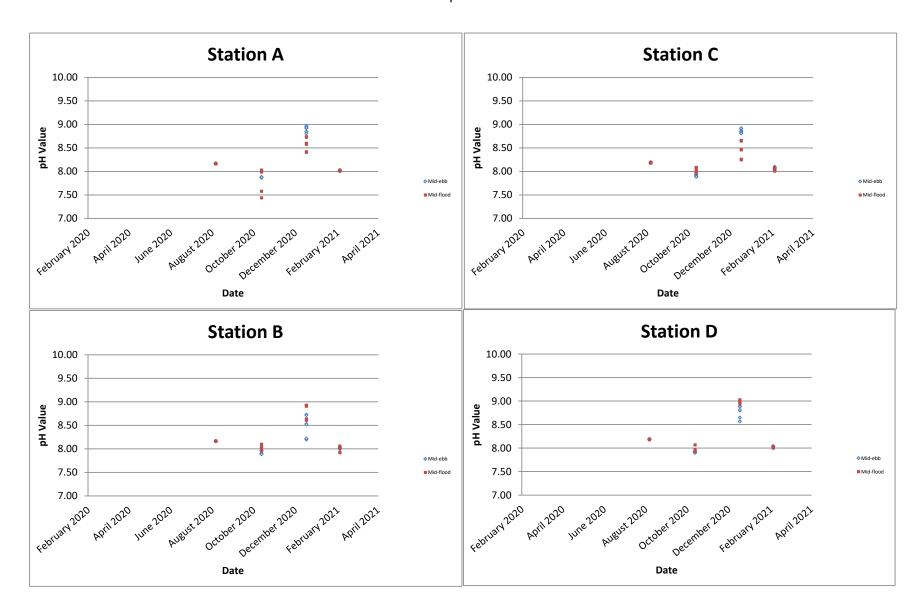
: 27 of 28

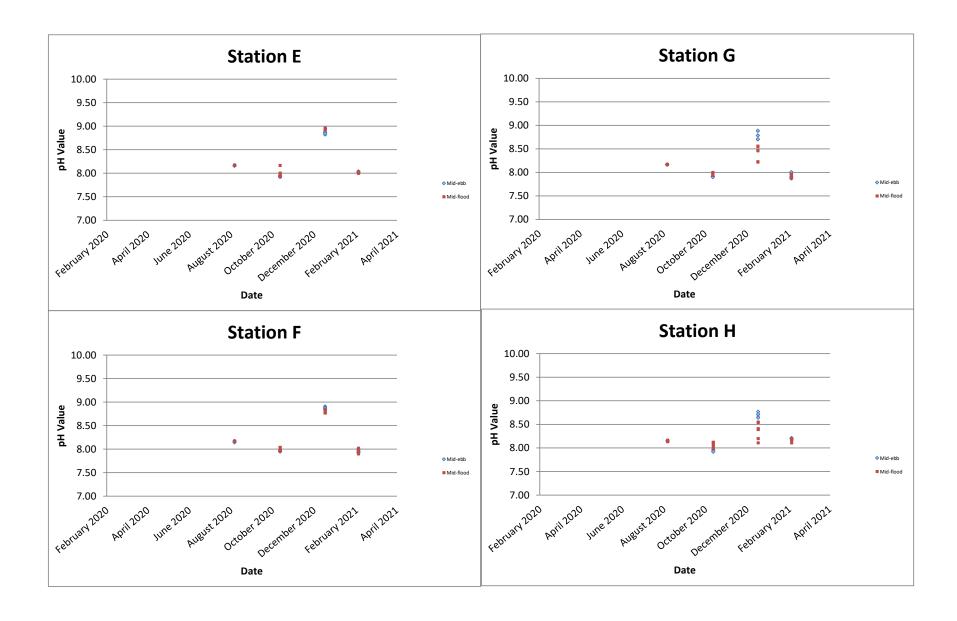
Client : FUGRO TECHNICAL SERVICES LIMITED

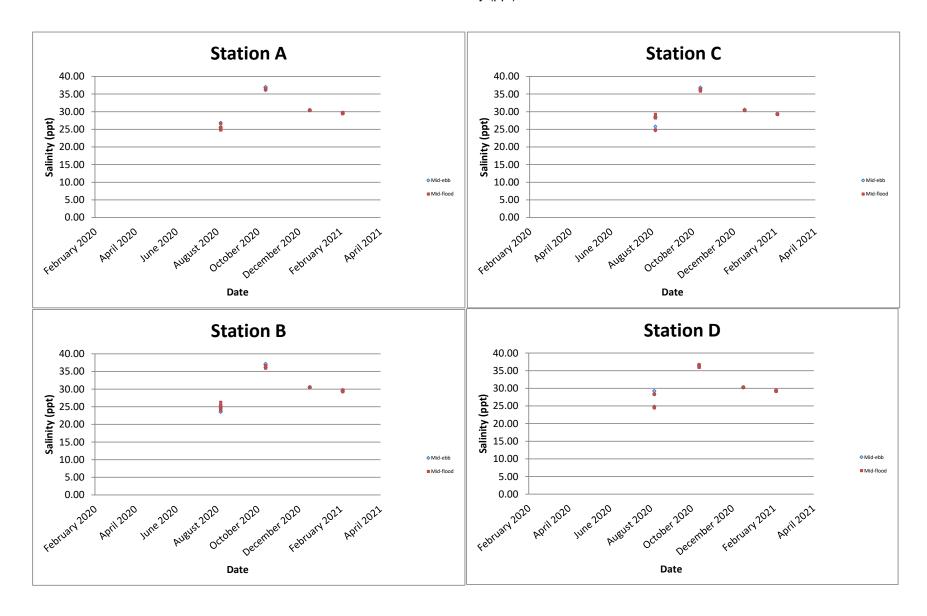
Work Order HK2104349

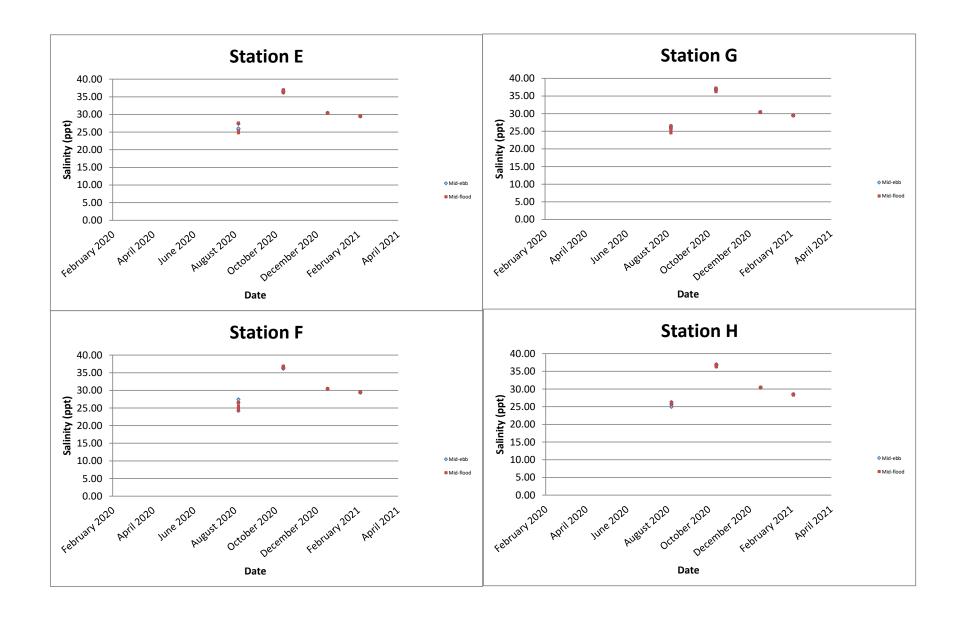
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

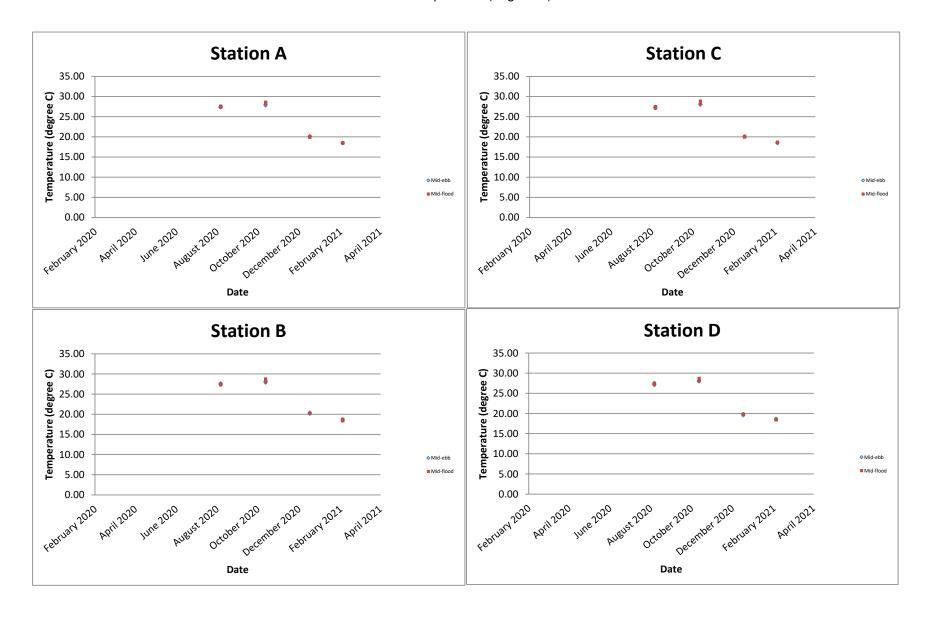
Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report									
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit		
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	9601)										
HK2104349-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	92.9		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6602)										
HK2104349-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	109		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6603)										
HK2104349-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	95.4		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6604)										
HK2104349-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	96.2		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6605)										
HK2104349-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	94.6		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	8871)										
HK2104349-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	102		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	8873)					'					
HK2104349-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	96.3		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6875)				'	'					
HK2104349-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	99.5		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6877)										
HK2104349-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3496	6879)				1	'					
HK2104349-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75.0	125				
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3499	0758)										
HK2104349-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	77.5		75.0	125		25		
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 3499	0759)										

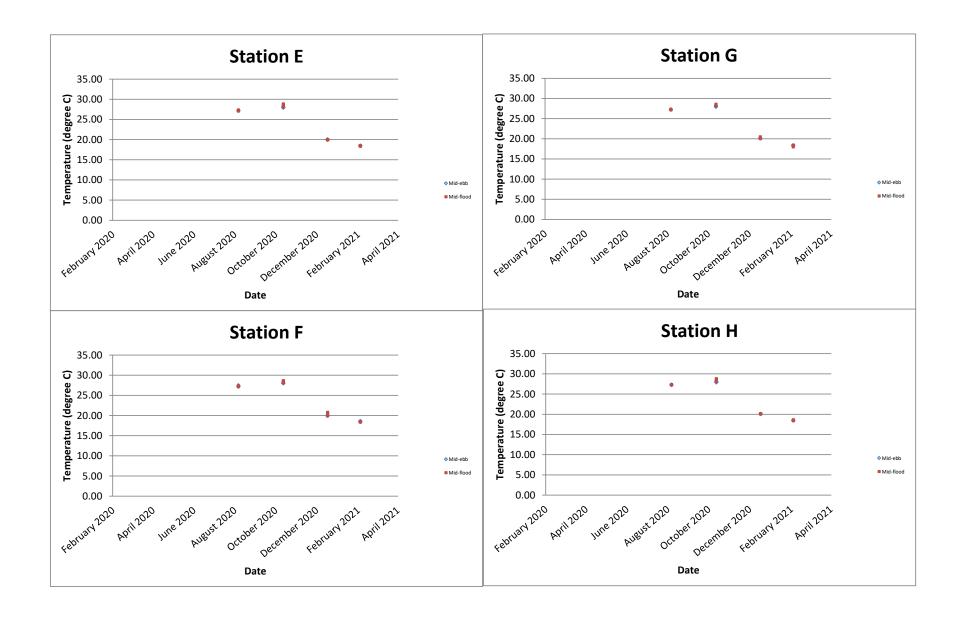

: 28 of 28

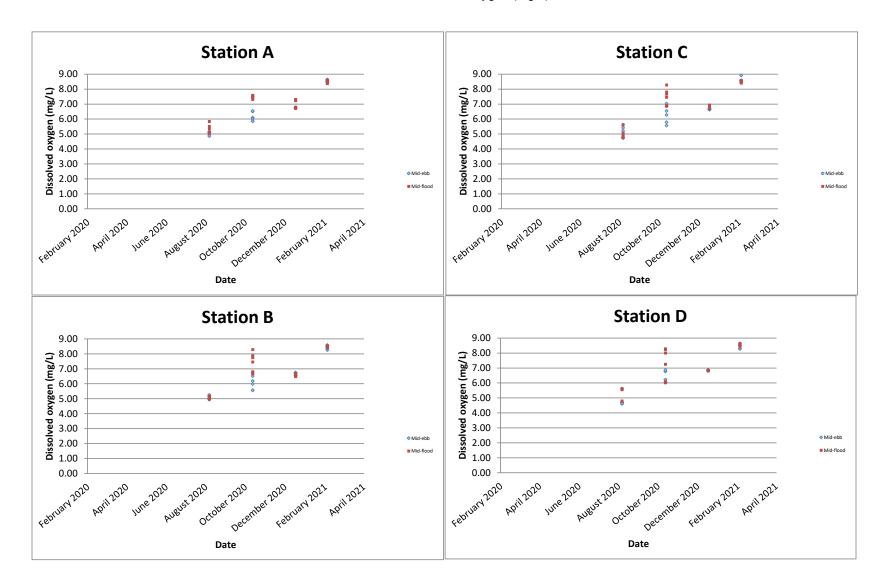

Client

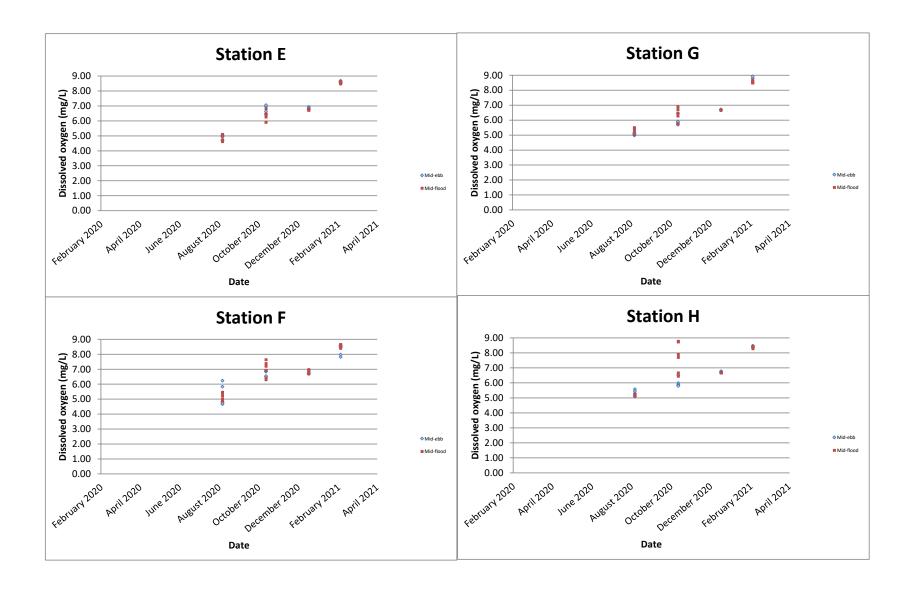

FUGRO TECHNICAL SERVICES LIMITED

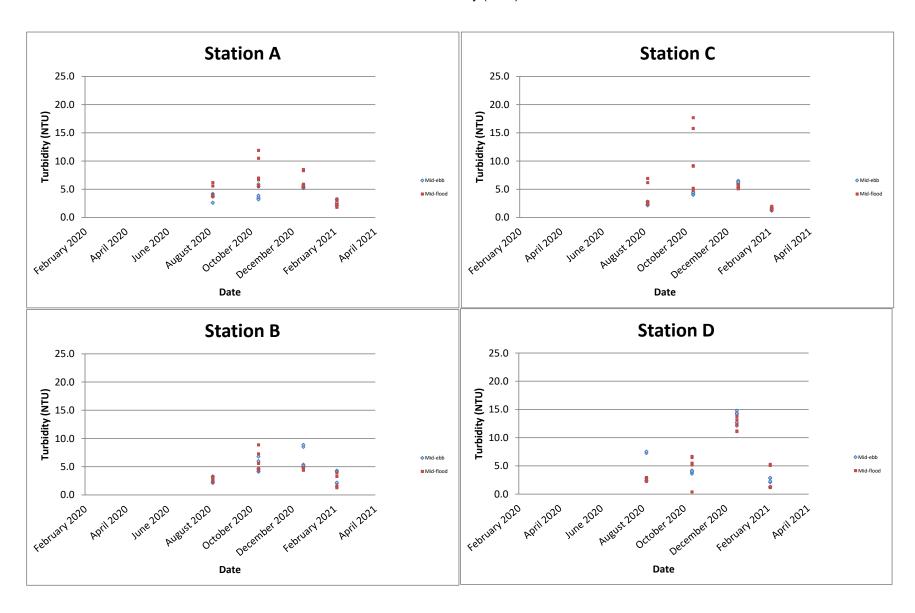


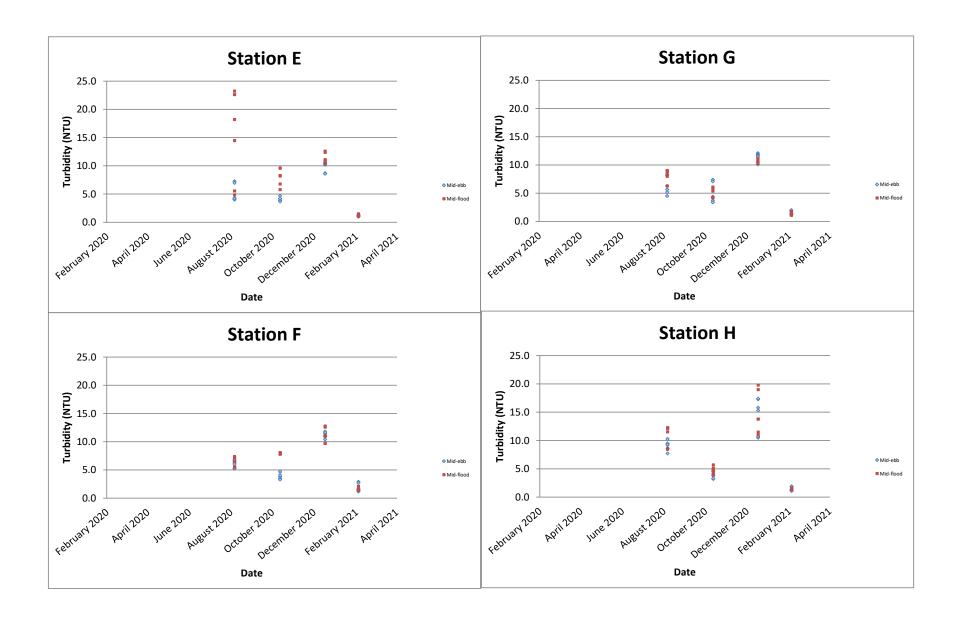

Matrix: WATER		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD	(%)
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
ED/EK: Inorgan	nic Nonmetallic Parameters (QC	C Lot: 3499759) - Continued								
HK2104349-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	88.2		75.0	125		
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499760)								
HK2104349-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	94.7		75.0	125		25
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499761)								
HK2104349-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	87.3		75.0	125		
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499762)								
HK2104349-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	95.8		75.0	125		25
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499763)								
HK2104349-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	90.7		75.0	125		
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499764)								
HK2104349-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	81.0		75.0	125		25
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499765)								
HK2104349-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	99.7		75.0	125		
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499766)								
HK2104349-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	109		75.0	125		25
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3499767)								
HK2104349-096	B H/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	97.4		75.0	125		

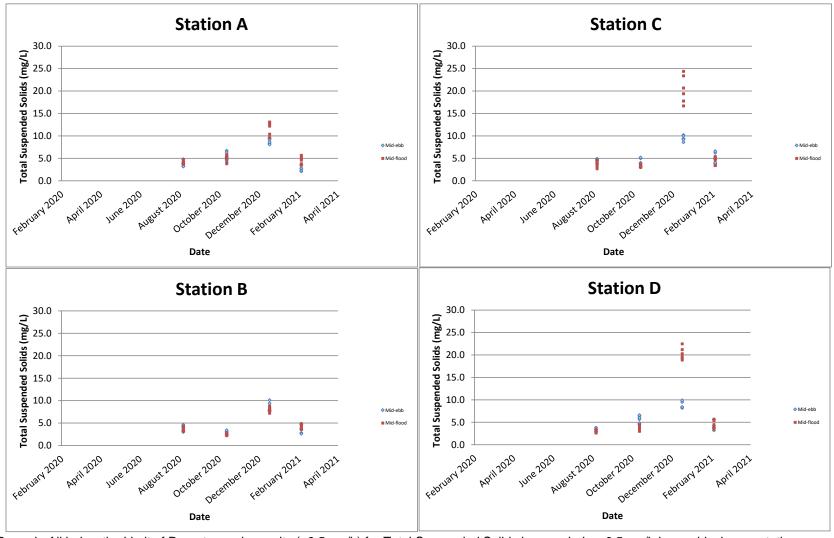


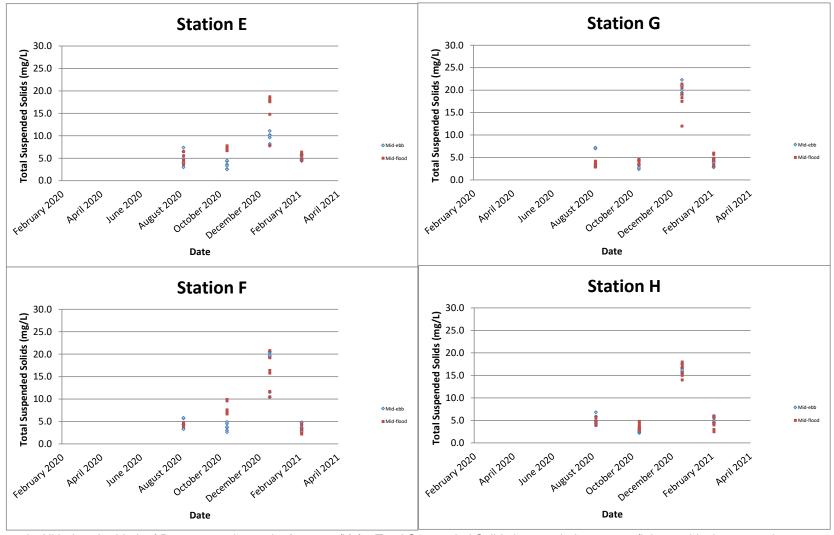


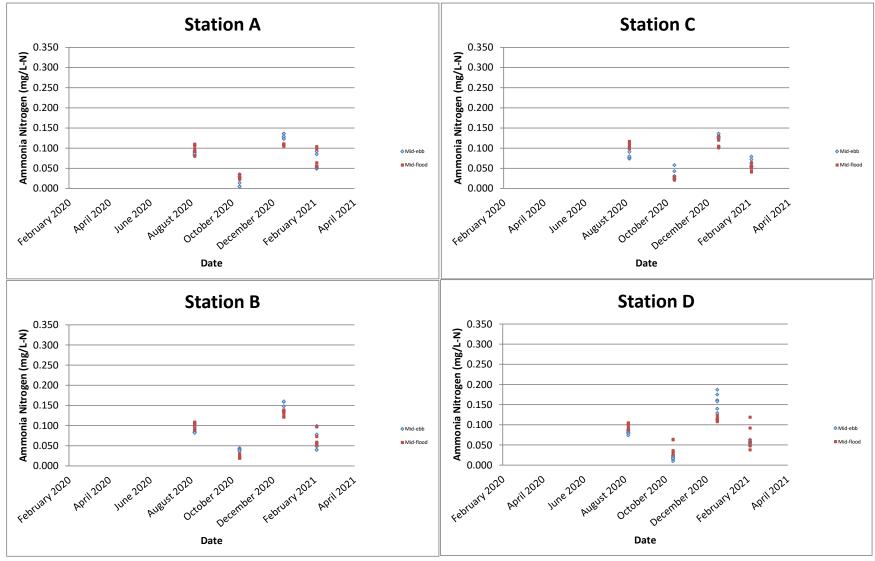


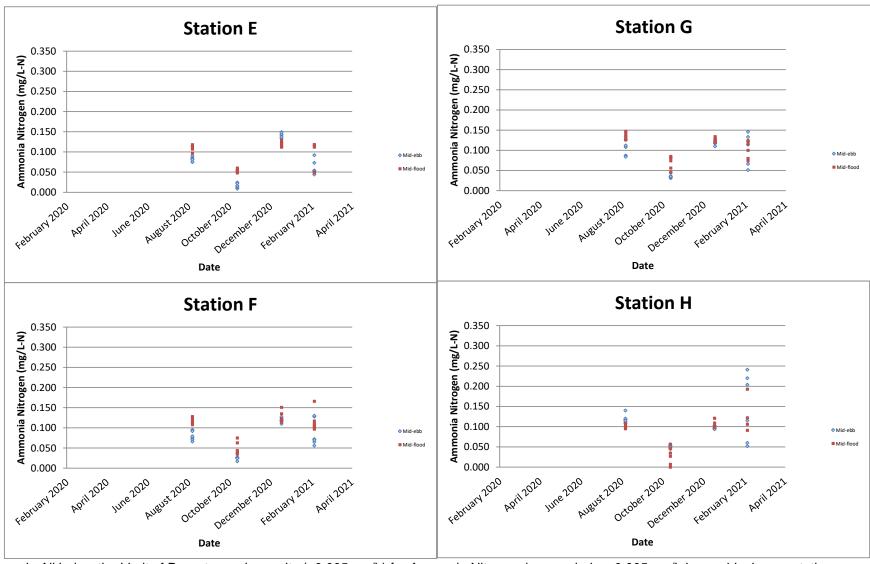


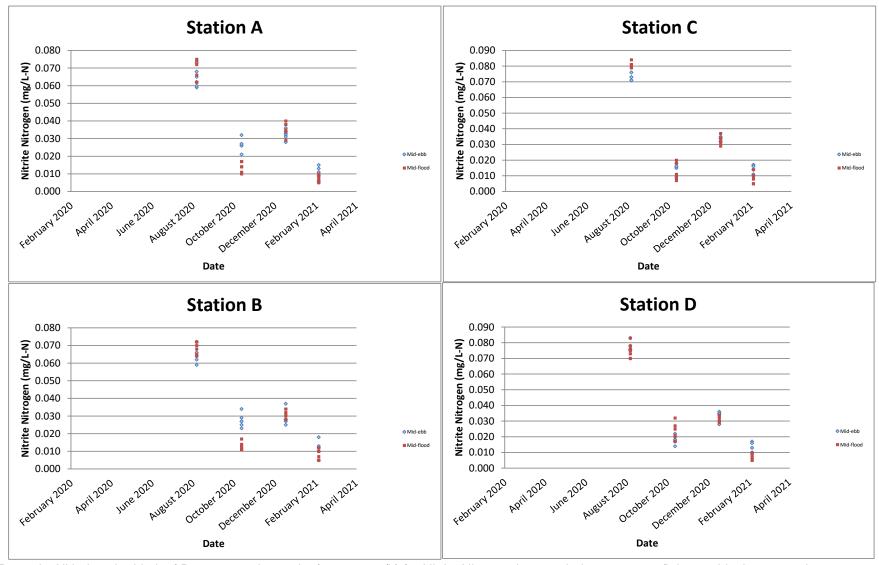


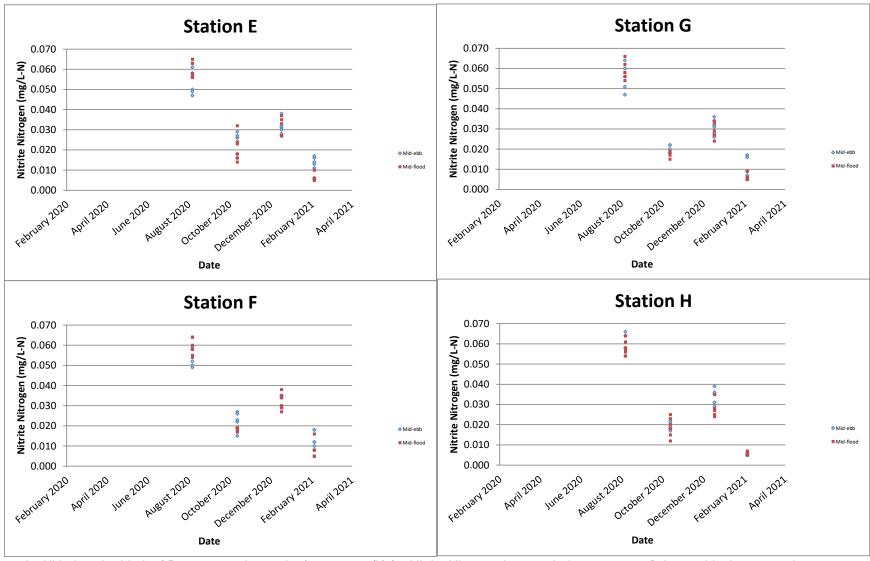


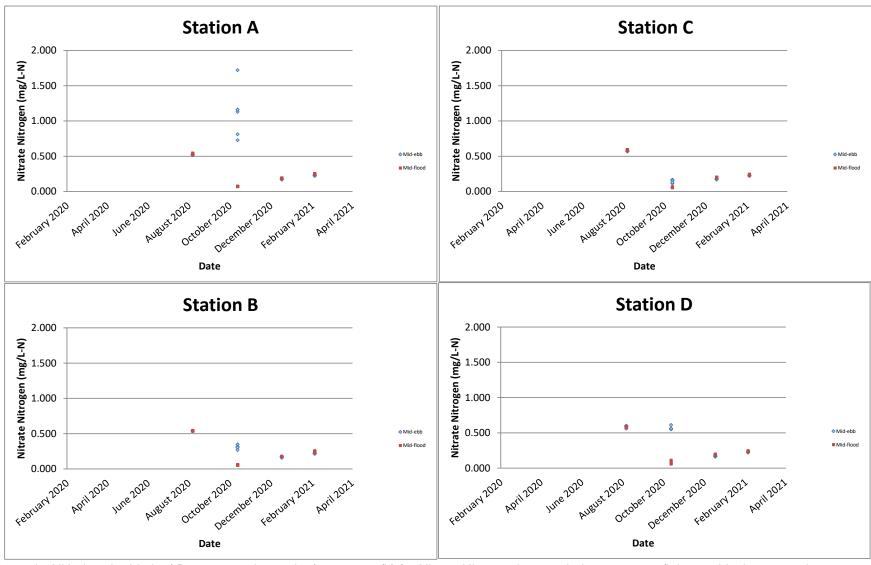


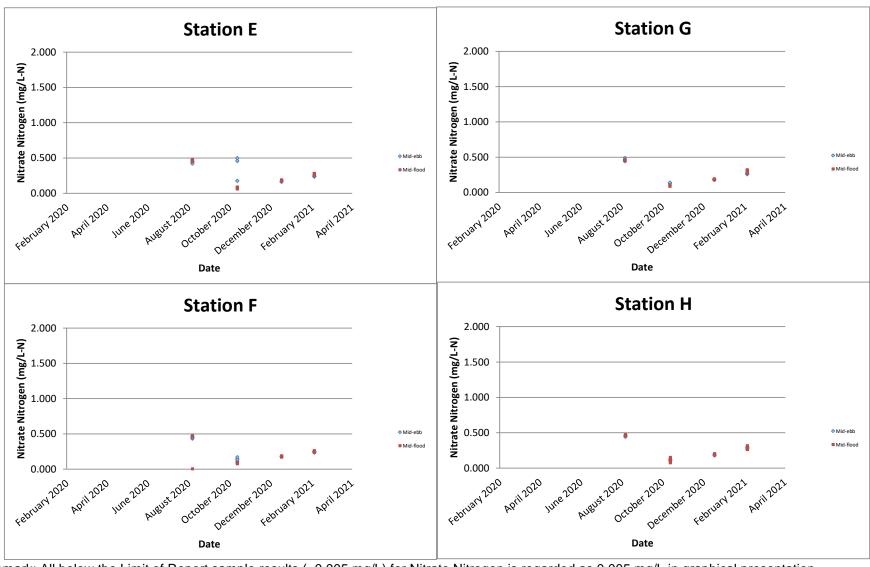


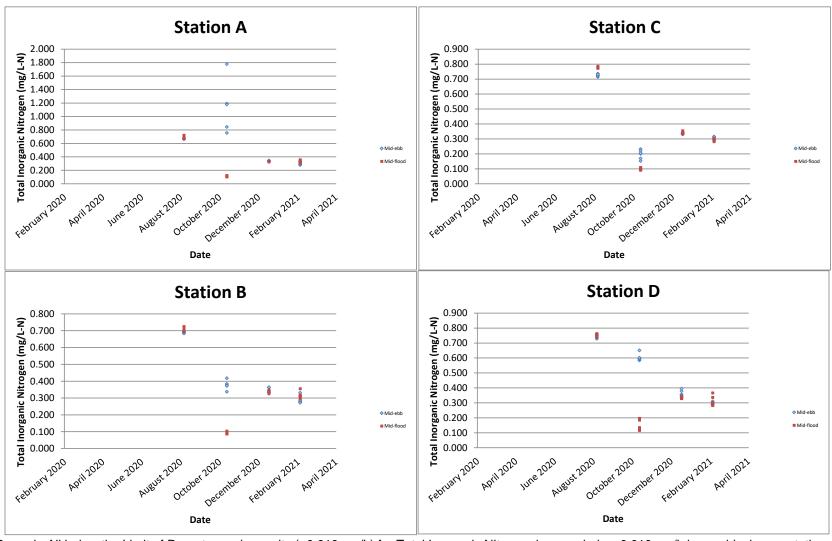

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

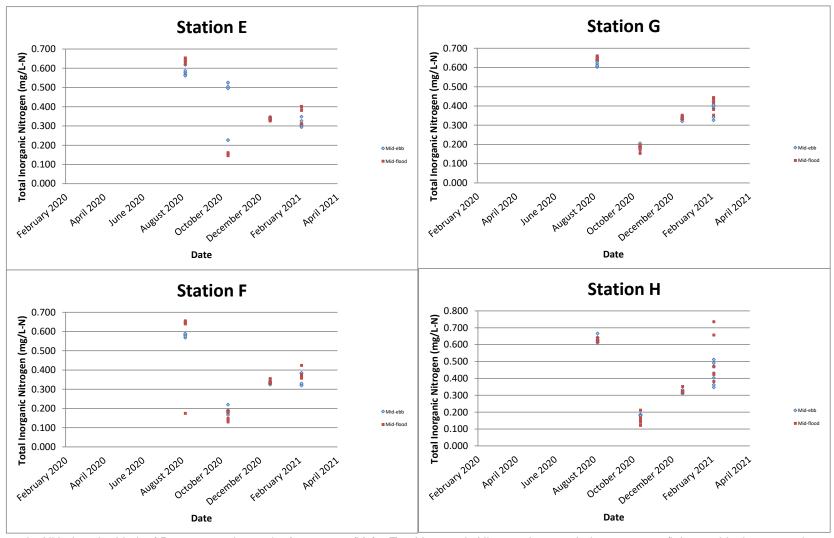

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

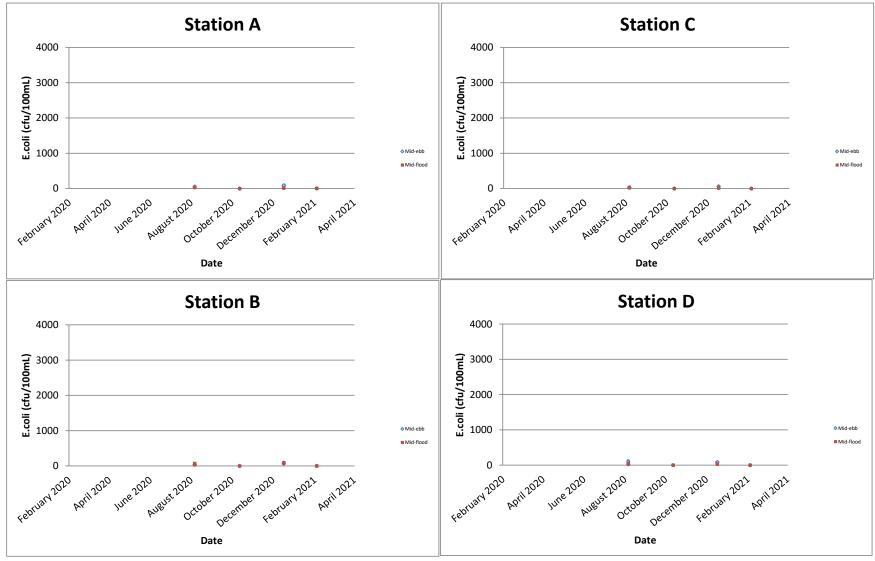

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

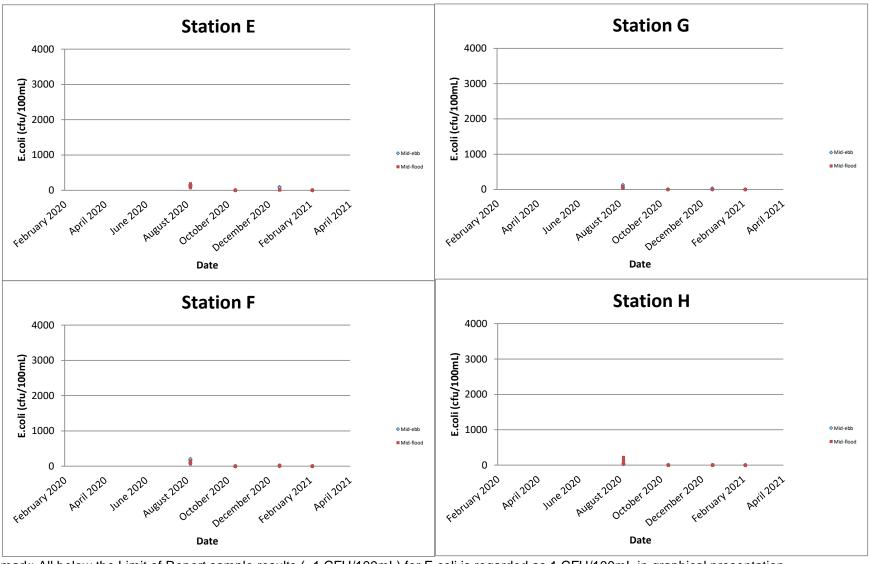

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

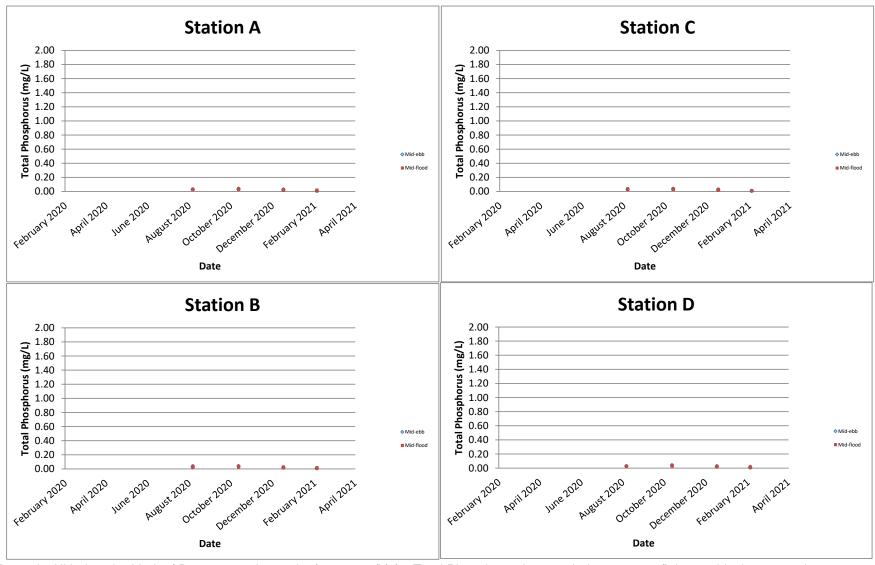

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

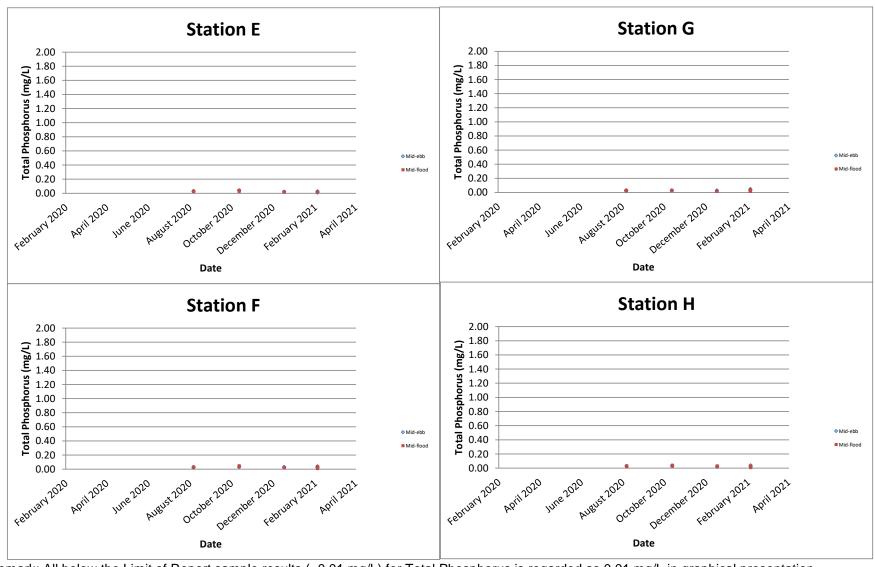

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

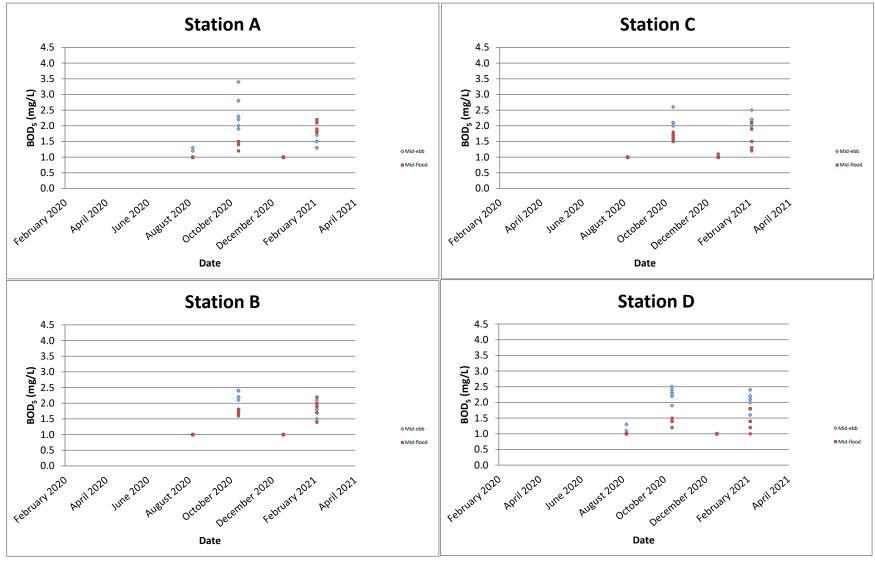

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

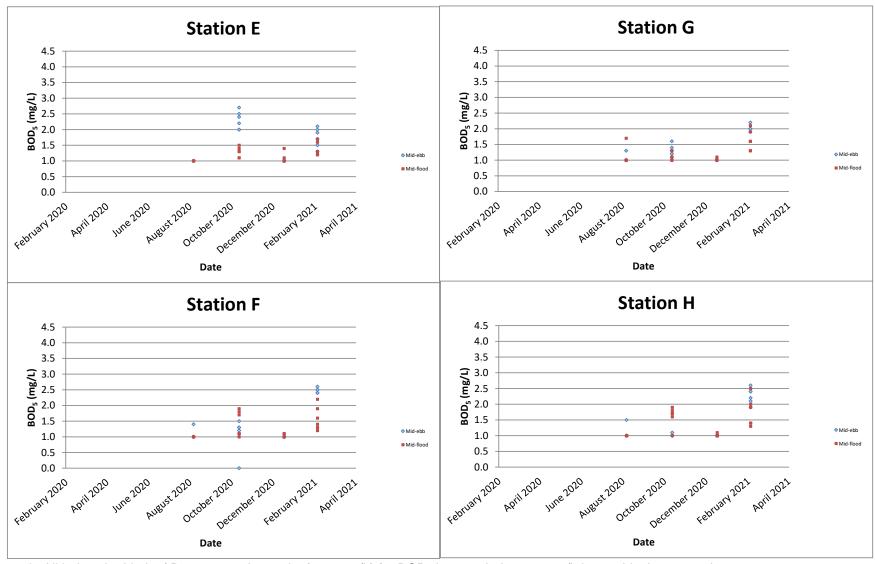

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

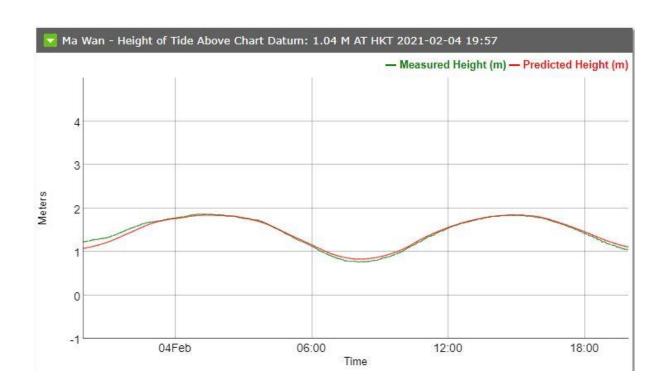
FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix G


Tidal Data obtained from Ma Wan Marine Traffic Station

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

											Sediment Monitoring						
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
Α	4/2/2021	Fine	Moderate	14:40	8.4	1.2	760	406	<0.10	31.9	25.8	39.6	0.12	18.6	77.3	14.9	0.18
В	4/2/2021	Fine	Moderate	14:30	8.4	6.0	850	484	<0.10	32.4	30.8	38.6	0.11	18.8	86.1	11.8	0.32
С	4/2/2021	Fine	Moderate	14:12	8.2	10.7	1070	545	<0.10	42.3	34.7	42.2	0.11	24.5	104	11.7	0.27
D	4/2/2021	Fine	Moderate	14:00	8.4	6.4	1020	466	0.10	32.5	29.4	36.5	0.11	19.6	84.0	9.6	0.23
E	4/2/2021	Fine	Moderate	13:41	8.2	10.7	1450	601	<0.10	39.9	37.9	45.2	0.12	23.9	104	11.2	0.32
F	4/2/2021	Fine	Moderate	13:30	8.1	27.6	1360	622	<0.10	35.8	36.0	42.3	0.11	21.7	95.8	11.4	0.33
G	4/2/2021	Fine	Moderate	13:07	8.4	4.1	1000	474	0.13	38.8	94.0	83.4	0.11	21.2	228	11.1	0.33
Н	4/2/2021	Fine	Moderate	12:50	8.3	3.5	1120	517	<0.10	41.4	101	49.4	0.12	23.4	117	12.0	0.66

			0				Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
A	4/2/2021	Fine	Moderate	14:40	0.77	15	41	22	22
В	4/2/2021	Fine	Moderate	14:30	0.85	1	26	42	31
С	4/2/2021	Fine	Moderate	14:12	0.93	0	6	52	42
D	4/2/2021	Fine	Moderate	14:00	0.81	1	19	47	33
E	4/2/2021	Fine	Moderate	13:41	1.05	0	9	53	38
F	4/2/2021	Fine	Moderate	13:30	1.10	0	3	54	43
G	4/2/2021	Fine	Moderate	13:07	0.84	3	21	43	33
Н	4/2/2021	Fine	Moderate	12:50	0.88	1	10	49	40

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Address

CERTIFICATE OF ANALYSIS

Client : FUGRO TECHNICAL SERVICES LIMITED Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 13

Contact : MR CYRUS LAI Contact : Richard Fung Work Order : HK2104354

ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG

Yip Street, Kwai Chung, N.T., Hong Kong

E-mail : c.lai@fugro.com : richard.fung@alsglobal.com

Telephone : +852 3565 4374 Telephone : +852 2610 1044
Facsimile : --- : +852 2610 2021

Project : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR Date Samples Received : 04-Feb-2021

SIU HO WAN SEWAGE TREATMENT PLANT

Order number : 0041/17 : HKE/1654/2017_R1 : Issue Date : 22-Feb-2021

number

C-O-C number : —— No. of samples received : 24

Site : — No. of samples analysed : 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Inorganics

Fung Lim Chee, Richard Managing Director

Fung Lim Chee, Richard Managing Director Metals_ENV

Page Number : 2 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 04-Feb-2021 to 22-Feb-2021.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2104354

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

Due to matrix interference, sample(s) required dilution prior to metals analysis, LOR has been adjusted accordingly.

Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.

EA002SOIL - pH value is reported as at 25°C.

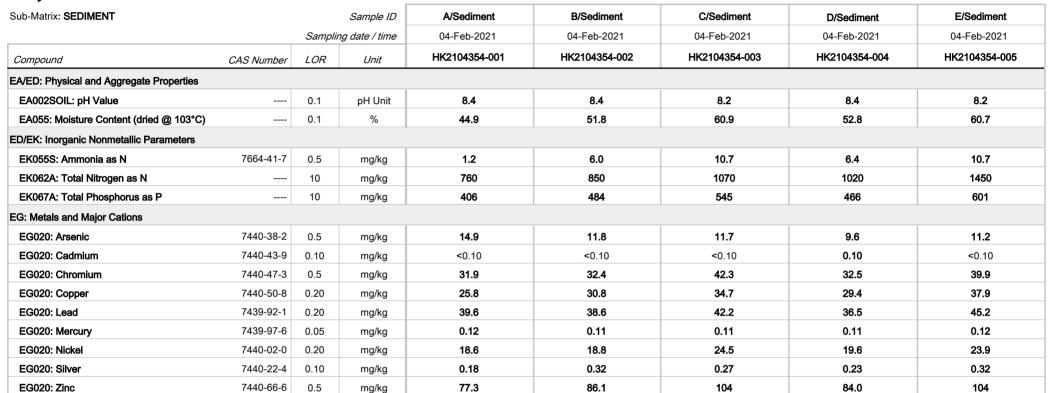
EK055S - Ammoniacal Nitrogen was determined on a 1:5 soil / 1M KCl solution extract.

EK059A - Nitrate and Nitrite were determined on a 1:5 soil / 1M KCl solution extract.

Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.

EA002SOIL - Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.

EA002SOIL - Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.


EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

3 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

Analytical Results

∴ 4 of 13

Client : FUGR

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT			Sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
		Samplir	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104354-006	HK2104354-007	HK2104354-008	HK2104354-009	HK2104354-010
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.1	8.4	8.3		
EA055: Moisture Content (dried @ 103°C)		0.1	%	61.2	57.2	58.0	47.9	53.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	27.6	4.1	3.5		
EK062A: Total Nitrogen as N		10	mg/kg	1360	1000	1120		
EK067A: Total Phosphorus as P		10	mg/kg	622	474	517		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	11.4	11.1	12.0		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	0.13	<0.10		
EG020: Chromium	7440-47-3	0.5	mg/kg	35.8	38.8	41.4		
EG020: Copper	7440-50-8	0.20	mg/kg	36.0	94.0	101		
EG020: Lead	7439-92-1	0.20	mg/kg	42.3	83.4	49.4		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.11	0.11	0.12		
EG020: Nickel	7440-02-0	0.20	mg/kg	21.7	21.2	23.4		
EG020: Silver	7440-22-4	0.10	mg/kg	0.33	0.33	0.66		
EG020: Zinc	7440-66-6	0.5	mg/kg	95.8	228	117		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				0.77	0.85

Page Number : 5 of 13
Client : FUGRO

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT			Sample ID	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104354-011	HK2104354-012	HK2104354-013	HK2104354-014	HK2104354-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	56.5	53.9	61.9	63.8	55.3
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.93	0.81	1.05	1.10	0.84

: 6 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: SEDIMENT			Sample ID	H/Benthic Survey	 	
		Samplii	ng date / time	04-Feb-2021	 	
Compound	CAS Number	LOR	Unit	HK2104354-016	 	
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	56.4	 	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	0.88	 	

7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021	04-Feb-2021
Compound	CAS Number	LOR	Unit	HK2104354-017	HK2104354-018	HK2104354-019	HK2104354-020	HK2104354-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	10	μg/L	<100	<100	<100	<100	<100
EG020: Cadmium	7440-43-9	0.2	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
EG020: Chromium	7440-47-3	1	μg/L	<10	<10	<10	<10	<10
EG020: Copper	7440-50-8	1	μg/L	<10	<10	<10	<10	<10
EG020: Lead	7439-92-1	1	μg/L	<10	<10	<10	<10	<10
EG020: Mercury	7439-97-6	0.5	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0
EG020: Nickel	7440-02-0	1	μg/L	<10	<10	<10	<10	<10
EG020: Silver	7440-22-4	1	μg/L	<10	<10	<10	<10	<10
EG020: Zinc	7440-66-6	10	μg/L	<100	<100	<100	<100	<100

: 8 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
		Samplii	ng date / time	04-Feb-2021	04-Feb-2021	04-Feb-2021	
Compound	CAS Number	LOR	Unit	HK2104354-022	HK2104354-023	HK2104354-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	10	μg/L	<100	<100	<100	
EG020: Cadmium	7440-43-9	0.2	μg/L	<2.0	<2.0	<2.0	
EG020: Chromium	7440-47-3	1	μg/L	<10	<10	<10	
EG020: Copper	7440-50-8	1	μg/L	<10	<10	<10	
EG020: Lead	7439-92-1	1	μg/L	<10	<10	<10	
EG020: Mercury	7439-97-6	0.5	μg/L	<5.0	<5.0	<5.0	
EG020: Nickel	7440-02-0	1	μg/L	<10	<10	<10	
EG020: Silver	7440-22-4	1	μg/L	<10	<10	<10	
EG020: Zinc	7440-66-6	10	μg/L	<100	<100	<100	

9 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	oratory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
A/ED: Physical and A	ggregate Properties (QC Lot: 3	3496687)						
HK2104354-009	A/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	47.9	48.6	1.56
HK2104354-011	C/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	56.5	56.4	0.00
EA/ED: Physical and A	ggregate Properties (QC Lot: 3	3496713)						
HK2104354-001	A/Sediment	EA002SOIL: pH Value		0.1	pH Unit	8.4	8.5	0.00
D/EK: Inorganic Nonm	netallic Parameters (QC Lot: 3	513482)						
HK2104354-001	A/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	406	484	17.5
G: Metals and Major C	Cations (QC Lot: 3496805)							
HK2104354-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.00
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.11	0.12	12.7
		EG020: Copper	7440-50-8	0.05	mg/kg	30.8	31.2	1.21
		EG020: Lead	7439-92-1	0.05	mg/kg	38.6	38.7	0.352
		EG020: Nickel	7440-02-0	0.05	mg/kg	18.8	18.9	0.749
		EG020: Silver	7440-22-4	0.05	mg/kg	0.32	0.34	6.58
		EG020: Arsenic	7440-38-2	0.5	mg/kg	11.8	11.7	0.00
		EG020: Chromium	7440-47-3	0.5	mg/kg	32.4	32.6	0.828
		EG020: Zinc	7440-66-6	0.5	mg/kg	86.1	87.6	1.79
P: Aggregate Organic	s (QC Lot: 3514182)							
HK2104354-009	A/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.77	0.77	0.00
atrix: WATER					Labo	oratory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
G: Metals and Major C	Cations - Total (QC Lot: 34966	51)						
HK2104354-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	μg/L	<2.0	<2.0	0.00
		EG020: Mercury	7439-97-6	0.5	μg/L	<5.0	<5.0	0.00
		EG020: Arsenic	7440-38-2	1	μg/L	<100	<100	0.00
		EG020: Chromium	7440-47-3	1	μg/L	<10	<10	0.00
		EG020: Copper	7440-50-8	1	μg/L	<10	<10	0.00
		EG020: Lead	7439-92-1	1	μg/L	<10	<10	0.00
		EG020: Nickel	7440-02-0	1	μg/L	<10	<10	0.00
		EG020: Silver	7440-22-4	1	μg/L	<10	<10	0.00

: 10 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

Matrix: WATER					Labora	atory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major Cat	ions - Total (QC Lot: 3496651) -	Continued						
HK2104354-018	B/Rinsate Blank	EG020: Zinc	7440-66-6	10	μg/L	<100	<100	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (ME	3) Report		Laboratory Con	trol Spike (LCS) and Lab	oratory Control Sp	oike Duplicate (L	OCS) Report	
					Spike	Spike R	ecovery (%)	Recover	ry Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
ED/EK: Inorganic Nonmetallic Parameters	(QC Lot: 3496708)										
EK055S: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	100		85.8	109		
ED/EK: Inorganic Nonmetallic Parameters	(QC Lot: 3513482)										
EK067A: Total Phosphorus as P		10	mg/kg	<10	512 mg/kg	90.2		85.0	115		
EG: Metals and Major Cations (QC Lot: 34	196805)										
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	92.9		85.0	110		
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	0.25 mg/kg	92.0		85.0	115		
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	92.7		85.0	115		
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	94.9		85.0	114		
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	95.8		87.0	115		
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	100		85.0	115		
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	92.7		85.0	115		
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	96.5		85.0	115		
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	86.2		85.0	115		
EP: Aggregate Organics (QC Lot: 351418	2)										
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	97.3		89.8	107		
Matrix: WATER			Method Blank (ME	3) Report		Laboratory Con	trol Spike (LCS) and Lab	oratory Control Sp	oike Duplicate (L	DCS) Report	
					Spike	Spike R	ecovery (%)	Recover	y Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Total (QC	Lot: 3496651)										
EG020: Arsenic	7440-38-2	1	μg/L	<1	50 μg/L	99.9		85.0	110		
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	5 μg/L	101		85.0	109		
EG020: Chromium	7440-47-3	1	μg/L	<1	50 μg/L	101		86.0	111		

: 11 of 13

HK2104354

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order

Matrix: WATER			Method Blank (MB)) Report		Laboratory Contro	ol Spike (LCS) and Labo	ratory Control S	olke Duplicate (l	DCS) Report	
					Spike	Spike Red	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EG: Metals and Major Cations - Total ((QC Lot: 3496651) - Continue	d									
EG020: Copper	7440-50-8	1	μg/L	<1	50 μg/L	103		90.0	111		
EG020: Lead	7439-92-1	1	μg/L	<1	50 μg/L	101		89.0	111		
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	2 μg/L	108		85.0	115		
EG020: Nickel	7440-02-0	1	μg/L	<1	50 μg/L	101		87.0	110		
EG020: Silver	7440-22-4	1	μg/L	<1	50 μg/L	90.2		85.0	114		
EG020: Zinc	7440-66-6	10	μg/L	<10	50 μg/L	98.7		86.0	114		

: 12 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spik	ke (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPL	D (%)
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
ED/EK: Inorgan	ic Nonmetallic Parameters (QC	C Lot: 3513482)								
HK2104354-001	A/Sediment	EK067A: Total Phosphorus as P		123 mg/kg	98.4		75.0	125		
EG: Metals and	Major Cations (QC Lot: 34968	05)								
HK2104354-001		EG020: Arsenic	7440-38-2	5 mg/kg	81.6		75.0	125		
		EG020: Cadmium	7440-43-9	0.25 mg/kg	89.6		75.0	125		
		EG020: Chromium	7440-47-3	5 mg/kg	82.8		75.0	125		
		EG020: Copper	7440-50-8	5 mg/kg	84.9		75.0	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not		75.0	125		
					Determined					
		EG020: Mercury	7439-97-6	0.1 mg/kg	90.9		75.0	125		
		EG020: Nickel	7440-02-0	5 mg/kg	84.7		75.0	125		
		EG020: Silver	7440-22-4	5 mg/kg	93.7		75.0	125		
		EG020: Zinc	7440-66-6	5 mg/kg	# Not		75.0	125		
					Determined					
EP: Aggregate	Organics (QC Lot: 3514182)									
HK2104354-009	A/Benthic Survey	EP005: Total Organic Carbon		0.77489 %	93.0		75.0	125		
Matrix: WATER					Matrix Spik	ce (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike		covery (%)		Limits (%)		D (%)
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and	Major Cations - Total (QC Lot:	3496651)								
	A/Rinsate Blank	EG020: Arsenic	7440-38-2	50 μg/L	110		75.0	125		
		EG020: Cadmium	7440-43-9	5 μg/L	78.5		75.0	125		
		EG020: Chromium	7440-47-3	50 μg/L	95.4		75.0	125		
		EG020: Copper	7440-50-8	50 μg/L	100		75.0	125		
		EG020: Lead	7439-92-1	50 μg/L	86.8		75.0	125		
		EG020: Mercury	7439-97-6	2 μg/L	81.0		75.0	125		
										T
		EG020: Nickel	7440-02-0	50 μg/L	99.2		75.0	125		

Page Number

: 13 of 13

Client

FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2104354

Matrix: WATER					Matrix Spi	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and I	Major Cations - Total (QC Lot: 3496651)	- Continued								
HK2104354-017	A/Rinsate Blank	EG020: Zinc	7440-66-6	50 μg/L	95.4		75.0	125		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR CYRUS LAI WORK ORDER : HK2104354

CLIENT : **FUGRO TECHNICAL SERVICES LIMITED**ADDRESS : ROOM 723 & 725, 7/F, BLOCK B, PROFIT SUB-BATCH : 1

INDUSTRIAL BUILDING, 1-15 KWAI FONG

DATE RECEIVED : 4-FEB-2021

CRESCENT, KWAI FONG, HONG KONG

DATE OF ISSUE : 17-FEB-2021

PROJECT : CONTRACT NO. CM 14/2016 NO. OF SAMPLES : 24

ENVIRONMENTAL TEAM FOR OPERATIONAL CLIENT ORDER 0041/17
ENVIRONMENTAL MONITORING AND AUDIT

FOR SIU HO WAN SEWAGE TREATMENT

PLANT

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- Sample digested by In-house method E-3005 prior to the determination of total metals. The In-house method is developed based on USEPA method 3005.
- EA002SOIL pH value is reported as at 25°C.
- EK055S Ammoniacal Nitrogen was determined on a 1:5 soil / 1M KCl solution extract.
- EK059A Nitrate and Nitrite were determined on a 1:5 soil / 1M KCl solution extract.
- Sample(s) as received, digested by In-house method E-3051A prior to the determination of metals. The In-house method is developed based on USEPA method 3051A.
- EA002SOIL Soil sample(s) analysed on as air-dry weight basis. pH value determined and reported on a 1:5 soil / water extract.
- EA002SOIL Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

WORK ORDER : HK2104354

SUB-BATCH : 1

CLIENT : FUGRO TECHNICAL SERVICES LIMITED

PROJECT : CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL

ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE

TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK2104354-001	A/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-002	B/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-003	C/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-004	D/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-005	E/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-006	F/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-007	G/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-008	H/Sediment	SEDIMENT	04-Feb-2021	
HK2104354-009	A/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-010	B/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-011	C/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-012	D/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-013	E/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-014	F/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-015	G/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-016	H/Benthic Survey	SEDIMENT	04-Feb-2021	J2999-365.2
HK2104354-017	A/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-018	B/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-019	C/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-020	D/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-021	E/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-022	F/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-023	G/Rinsate Blank	WATER	04-Feb-2021	
HK2104354-024	H/Rinsate Blank	WATER	04-Feb-2021	

TEST CERTIFICATE SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3: 2001

Report No: J2999-365.2

Customer: ALS Technichem (HK) Pty Ltd	Job No. : J2999	Works Order No. : 365
Project : -	Contract No.:	Date: 05/02/2021

Sample D Sample A Motisture G1 6.1 6.1 Feeting Preparation Particle Size Distribution No. Type Content Liquid Prassic Pressing Preparation Particle Size Distribution Action Feeting Preparation Particle Size																		
No. Type Depth Can C	Sample ID	San	nple			Test 6.1 Liquid P	Test 6.1 lastic P	Test 6.1 lasticity I	Test 6.2 iquidity		Preparation Method		icle Siz	e Distr	ributio	п	Description	Sample
No. Type Depth Cos C						Limit 1		Index	Index	Test		#		Percei	ntage			Origin
1,5,7 15 15 22 Dark grey, slightly gravelly, standy SLLT/CLAY with shell fragments and standy SLLT/CLAY	No.	No.	Type		(%)		(%)	(%)		Sieve (%)		Test Method	_	Sand (%)	Silt (%)			
15,7 1 26 42 31 Dark grov, slightly sandy SILT/CLAY with shell fragments	HK2104354-009											1,5,7	15	41	22		Dark grey, slightly gravelly, sandy SILT/CLAY	**,
nthic Survey D inchitic Survey S inchitic Survey D inchitic Survey D inchitic Survey S inchitic Survey																	with shell fragments	
nthic Survey D	HK2104354-010	_	_									1,5,7	1	26	42		Dark grey, slightly sandy SILT/CLAY with shell fragments	+-
nthic Survey D	HK2104354-011		_									1,5,7	0	9	52		Dark grey, slightly sandy SILT/CLAY with shell fragments	++,
nthic Survey D	HK2104354-012											1,5,7	1	19	47		Dark grey, slightly sandy SILT/CLAY with shell fragments	+ -
1,5,7 3 21 43 33 Dark grey, SILT/CLAY with shell fragments and before the sample: 1,5,7 3 21 43 33 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and before the sample: 1,5,7 1 10 49 40 Dark grey, slightly sandy SILT/CLAY with shell fragments and s	HK2104354-013		_									1,5,7	0	6	53		Dark grey, slightly sandy SILT/CLAY with shell fragments	+ -
nnthic Survey D A = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 Moisture Content at 45°C±5°C (A). Test 3.2 Moisture Content at 105°C±5°C (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (A). Test 3.2 Moisture Content at 105°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 Moisture Content at 45°C±5°C (A). Test 3.2 Moisture Content at 105°C±5°C (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (A). Test 3.2 Moisture Content at 105°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (3), 8.6 (6), 8.7 (7). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (3), 8.6 (6), 8.7 (7). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.1 (I), 8.2 (B). Test 3.3 Comparative Moisture Content at 45°C±5°C (C). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.2 (I), 8.4 (I), 8.2 (I). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.2 (I), 8.2 (I). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.2 (I), 8.2 (I). # = Test Method in accordance with GEOSPEC 3: 2001 Test 3.	HK2104354-014		_									1,5,7	0	3	54		Dark grey, SILT/CLAY with shell fragments	++,
mithic Survey D and the body in accordance with GEOSPEC3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A), Test 5.2 Moisture Content at 45°C ± 5°C (B), Test 5.2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) because Interest Method in accordance with GEOSPEC3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (B), Test 5.2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.4 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (C) content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B) content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45°C	HK2104354-015											1,5,7	3	21	43		Dark grey, slightly sandy SILT/CLAY with shell fragments	+,
A = Test Method in accordance with GEOSPEC 3: 2001 Test \$1 Moisture Content at 45°C ± 5°C (A), Test \$2 Moisture Content at 105°C ± 5°C (B), Test \$3.0 moisture Content 45/105°C ± 5°C (C) ## Test Method in accordance with GEOSPEC 3: 2001 Test \$1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (6), 8.7 (7). Undisturbed Sample: P - Piston Sample: P - Pisto	HK2104354-016		_									1,5,7	1	10	49		Dark grey, slightly sandy SILT/CLAY with shell fragments	+-
A = Test Method in accordance with GEOSPEC 3: 2001 Test S.1 Moisture Content at 45°C ± 5°C (A), Test S.2 Moisture Content at 105°C ± 5°C (B), Test S.2 Conparative Moisture Content 45/105°C± 5°C (C) # = Test Method in accordance with GEOSPEC 3: 2001 Test S.1 Moisture Content at 45°C ± 5°C (A), Test S.2 Conparative Moisture Content at 105°C ± 5°C (B), Test S.2 Conparative Moisture Content 45/105°C± 5°C (C) # = Test Method in accordance with GEOSPEC 3: 2001 Test S.1 (I), 8.2 (2), 8.5 (5), 8.6 (6), 8.7 (7). # A R. As Received: # D - Small Disturbed Sample: # P - Piston																		
Undisturbed Sample; Block Sample Sample; Block Sample Sample; Block Sample Sample; Block Sample Sample Sample; Block Sample Samp	Legend:	= #	Test N Test N	fethod in acco	rdance with GEC)SPEC 3: 2	001 Test 001 Test 8	5.1 Moistur	2), 8.3 (3),	at 45°C±	5°C (A), Test 5.	2 Moisture 7 (7).	Content a	rt 105°C	± 5°C ((B), Te	st 5.3 Comparative Moisture Content 45/105°C± 5°C (C)	
TK Lam TK Lam Approved By: Chung Hei Wing Ouality Manager HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax: 26917347	Symbols:	U - Undisturbed Sı LB - Large Disturbe BLK - Block Sample; SPTL - SPT Split-Barr	sample; ed Samp ; rel Sam	ple; ple;		P - Pi M - M D - Sr PT - Pc	lston Sam fazier San mall Distu ortable tri	ple; nple; urbed Sampl ple tube Sar	e; nple;	N.P No A.R As H.P Has	n Plastic; Received; nd Picked; ure Content for	A.L. Test.	A.D J O.D C W.S V	Air Dried Oven Dr Wet Siev	d; ied; ved;		Sampling History - Refer the Individual Test Report: Estimated Uncertainty - Refer the Individual Test Report. † - Information provided by custome	H
TK Lam Chung Hei Wing Chung Hei Wing Ouality Manager HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :269917847	Notes:	IS - Insufficient Sam	iple;			Tf - To	Follow or	ı supplemen	ıtary Repor	ť								
HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory. Technology Centre 21 Chum Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	Checked by:			TKLan					App	roved By :		ig Hei Wing	-					
Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547				HKAS HOKLAS d	has accredited rectory of acc	d this labe credited la	pratory	DD.	HOKL report sl	AS 055) hall not b	under HOKL	AS for sp. 1 unless w	secific 1	aborat vr writi	ory ac	tivitie	s as listed in the from this laboratory.	
	© Gammon Construct	ion Ltd							21 Chun Tseung	Wang Stre Kwan O, h	Fechnology Cen et, Tseung Kwa J.T. Tel :269919	n O Industri 780, Fax : 20	ial Estate, 5917547					
	Form: GESS001 / Sep	ot.14.18 / Issue 1 / Rev	4															Page 1 of 1

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

Job No.

: J2999

Contract No. :

Report No.

: J2999-365.2

Customer

Works Order No.

: 365

Project

: ALS Technichem (HK) Pty Ltd

Sample ID No.

: HK2104354-009

Sample No. Sample Depth (m) : A/Benthic Survey

Date Received: 05/02/2021

Specimen Depth (m)

Tested Date : 05/02/2021

: Small Disturbed

Description : Dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments

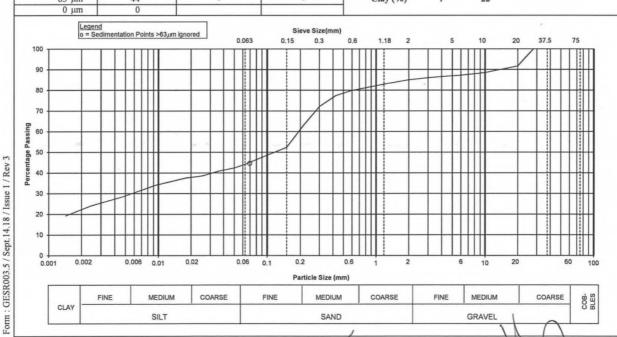
Sample Type Sample Origin

Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer


SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION ANALYSIS
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if assumed): 2.65 #
Sieve Size		of the Percent	A CONTRACTOR OF THE PARTY OF TH	Dispersant Details: Sodium hexametaphosphate, Sodium carbonate
Dieve Dize	(0/)	Darring (0/1)	I Incortainty (9/1)	Campling Lietony : Ac received

Approved By

Signatory : Chung Her Wing Date : 17/02/2021

Uncertainty (%) 100.0 mm 100 The presence of any visible organic matter in the soil: None 75.0 mm 100 % Finer 63.0 mm 100 Particle *Expanded Expanded Uncertainty of Uncertainty of the 50.0 mm 100 Diameter than D 37.5 mm Particle Diameter K % finer than D 28.0 mm (mm) (%) 100 (mm) 0.0697 20.0 mm 92 45 90 0.0498 42 14.0 mm 41 88 0.0354 10.0 mm 38 6.30 mm 87 5.00 mm 87 0.0179 38 3.35 mm 86 0.0094 34 2.00 mm 85 0.0048 29 1.18 mm 83 0.0024 24 600 µm 80 0.0014 19

SUMMARY : 425 μm 77 72 300 µm Gravel (%) 15 63 41 212 µm Sand (%) : 52 22 Silt (%) 150 um 22 44 Clay (%) 63 µm

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

T K Lam 17/02/2021

Checked By:

Name:

C M Yip

: 05/02/2021

Technician

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

Job No.

: J2999

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

Report No.

Project

Sample ID No.

: HK2104354-010

Sample No.

B/Benthic Survey

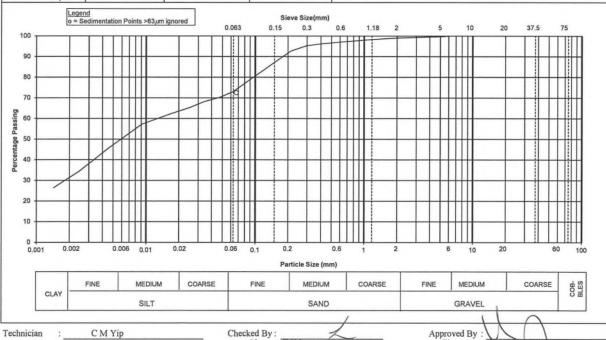
Date Received: 05/02/2021

Sample Depth (m) Specimen Depth (m)

Tested Date : 05/02/2021

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Type Sample Origin Small Disturbed


Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer

SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if	assumed): 2.65	#	
Sieve Size	_	of the Percent	with Expanded		Sodium hexametapho	sphate, Sodium	carbonate
	(%)	Passing (%)	Uncertainty (%)	Sampling History :			
100.0 mm	100	-	-	The presence of any	visible organic matter i	in the soil: Non	e
75.0 mm	100	-	-				
63.0 mm	100		-	Particle	*Expanded	% Finer	Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-	-	1	Particle Diameter	K	% finer than I
28.0 mm	100		-	(mm)	(mm)	(%)	(%)
20.0 mm	100		-	0.0671	-	73	
14.0 mm	100		-	0.0478	-	70	-
10.0 mm	100	-	-	0.0340	-	68	-
6.30 mm	100	-	-	0.0243	-	65	-
5.00 mm	100		-	0.0173	-	62	
3,35 mm	99		-	0.0091	-	57	-
2.00 mm	99		-	0.0047	-	46	-
1.18 mm	98		-	0.0024	-	34	-
600 µm	97	-	-	0.0014	-	26	-
425 μm	96		-	SUMMARY:			•
300 μm	95	-	-	Gravel (%)	: 1		
212 µm	93	-	-	Sand (%)	: 26		
150 μm	87	-	-	Silt (%)	: 42		
63 μm	73	-	-	Clay (%)	: 31		
0 μm	0						

T K Lam 17/02/2021

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited

Date

laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

@ Gammon Construction Ltd

: 05/02/2021

Form : GESR003.5 / Sept.14.18 / Issue 1 / Rev 3

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Signatory

Page 1 of 1

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

: J2999

Report No.

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 365

Project

Sample ID No. Sample No.

: HK2104354-011

Sample Depth (m)

: C/Benthic Survey

Date Received: 05/02/2021 Tested Date : 05/02/2021

150 μm

63 µm

94

Specimen Depth (m)

Sample Type Sample Origin Small Disturbed

Sieve Method: Method A

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

*Upon request

* Delete as appropriate

[‡]Information provided by customer


Silt (%)

52

42

SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# if		65 #	
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Dispersant Details : Sampling History :	Sodium hexametap As received	phosphate, Sodium c	arbonate
100.0 mm	100	-	-	The presence of any	visible organic matte	er in the soil : None	
75.0 mm	100						
62 O mm	100			Particle	*Eupandad	% Einer	*Evn

100.0 mm	100	-	-	The presence of any	visible organic matter is	n the soil: Non	e
75.0 mm	100		-				
63.0 mm	100	-	-	Particle	Expanded	% Finer	*Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than D
28.0 mm	100		-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0634	-	94	-
14.0 mm	100	-	-	0.0453	-	91	-
10.0 mm	100		-	0.0322	-	89	-
6.30 mm	100		-	0.0230	-	86	-
5.00 mm	100	-	-	0.0165	-	82	-
3.35 mm	100	-		0.0087	-	74	-
2.00 mm	100		-	0.0046	-	59	-
1.18 mm	100	-		0.0024	-	46	-
600 µm	100	-	-	0.0014	-	35	-
425 μm	100	-		SUMMARY:			
300 μm	99		-	Gravel (%)	: 0		
212 µm	99	-		Sand (%)	: 6		

C M Yip

Checked By

T K Lam 17/02/2021 Date

Approved By Signatory Date

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

93

Job No.

: J2999

Report No.

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 365

Project

Sample ID No. Sample No.

: HK2104354-012

Date Received: 05/02/2021

Sample Depth (m)

: D/Benthic Survey

Tested Date : 05/02/2021

Specimen Depth (m)

Sample Type

Sand (%)

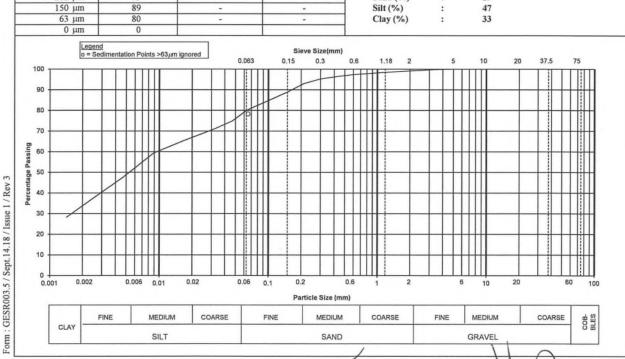
: Small Disturbed

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Origin

Sieve Method: Method A SIEVE ANALYSIS

212 µm


*Upon request

* Delete as appropriate *Cumulative

[‡] Information provided by customer SEDIMENTATION ANALYSIS

19

SIEVE ANALYSIS	Percent Passing	*Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION Specific Gravity (# if		#	
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)		Sodium hexametaphos	sphate, Sodium	carbonate
100.0 mm	100	-	-	The presence of any	visible organic matter in	the soil: Non	e
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	Expanded	% Finer	Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-			Particle Diameter	K	% finer than I
28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0653	-	78	-
14.0 mm	100		-	0.0468	-	75	-
10.0 mm	100	-	-	0.0335	-	71	-
6.30 mm	100	-		0.0239	-	68	-
5.00 mm	100	-	-	0.0171	-	65	-
3.35 mm	100	-	-	0.0090	-	59	-
2.00 mm	99	-	-	0.0047	-	47	-
1.18 mm	98	-		0.0024	-	37	-
600 µm	97			0.0014	-	28	-
425 μm	96	-		SUMMARY:			
300 µm	95		-	Gravel (%)	: 1		

Technician

C M Yip

T K Lam 17/02/2021 Name Date

Approved By Signatory Date

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

Percent

: J2999 Job No.

Contract No.:

Report No.

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 365

Project

Sample ID No.

: HK2104354-013

Sample No.

: E/Benthic Survey

Date Received: 05/02/2021 Tested Date : 05/02/2021

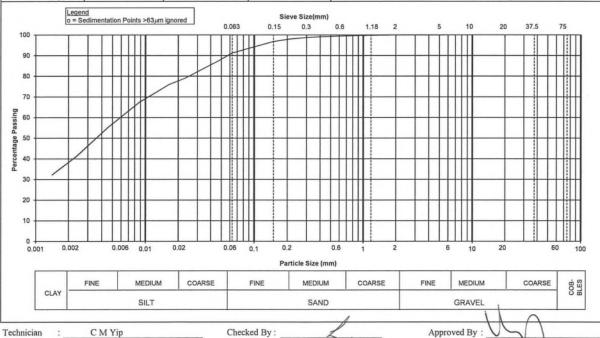
Sample Depth (m) Specimen Depth (m)

Sample Type

: Small Disturbed

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Origin


Sieve Method: Method A SIEVE ANALVSIS

*Upon request *Evnanded * Delete as appropriate

[‡] Information provided by customer

*Cumulative SEDIMENTATION ANALYSIS

SIEVE ANALYSIS	Percent	Expanded	Cumulative	SEDIMENTATION	ANALISIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if	assumed): 2.65	#	
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)	Sampling History :			
100.0 mm	100	-	-	The presence of any	visible organic matter in	the soil: Non	e
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	*Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-	-	7	Particle Diameter	K	% finer than D
28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0625	-	91	-
14.0 mm	100		-	0.0449	-	87	-
10.0 mm	100		-	0.0322	-	83	-
6.30 mm	100		-	0.0231	-	79	-
5.00 mm	100	-	-	0.0165	-	76	-
3.35 mm	100	-	-	0.0088	-	67	-
2.00 mm	100	-	-	0.0046	-	55	-
1.18 mm	100		-	0.0024	-	41	
600 µm	99		-	0.0014	-	32	-
425 µm	99	-	-	SUMMARY:			
300 µm	99		-	Gravel (%)	: 0		
212 µm	98	-	-	Sand (%)	: 9		
150 μm	97	-	-	Silt (%)	: 53		
63 μm	91	-	-	Clay (%)	: 38		
0 μm	0						

T K Lam

17/02/2021 HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited

Name: Date:

laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

@ Gammon Construction Ltd

Form: GESR003.5 / Sept.14.18 / Issue 1 / Rev 3

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Signatory: Chung He Win Date: 17/02/2021

PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

Job No.

: J2999

Report No.

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 365

Project

Sample ID No.

: HK2104354-014

Sample No.

F/Benthic Survey

Date Received: 05/02/2021

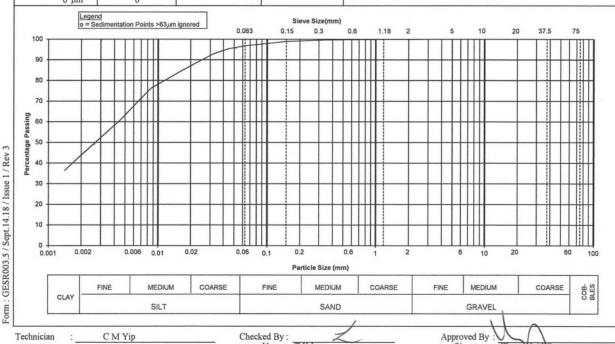
Sample Depth (m) Specimen Depth (m)

Tested Date : 05/02/2021

Small Disturbed

Description : Dark grey, SILT/CLAY with shell fragments

Sample Type Sample Origin


Sieve Method: Method A

*Upon request

* Delete as appropriate

[‡] Information provided by customer

SIEVE ANALYSIS	Percent	*Expanded	^Cumulative	SEDIMENTATION	N ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if	(assumed): 2.65	#	
Sieve Size		of the Percent	with Expanded	Dispersant Details:	Sodium hexametaphos	sphate, Sodium	carbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History :	As received		
100,0 mm	100	-	-	The presence of any	visible organic matter in	the soil: Non	e
75.0 mm	100		-				
63.0 mm	100	-	-	Particle	Expanded	% Finer	Expanded
50.0 mm	100		-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-	-	1	Particle Diameter	K	% finer than D
28.0 mm	100		-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0621	-	97	-
14.0 mm	100		-	0.0442	-	95	-
10.0 mm	100		-	0.0316	-	93	-
6.30 mm	100	-	-	0.0226	-	89	-
5.00 mm	100	-	-	0.0162	-	84	-
3.35 mm	100		-	0.0086	-	76	-
2.00 mm	100	-	-	0.0045	-	61	-
1.18 mm	100	-	-	0.0024	-	47	-
600 µm	100		-	0.0014	-	36	-
425 μm	100	-	-	SUMMARY:			
300 μm	100	-		Gravel (%)	: 0		
212 µm	99	-	-	Sand (%)	: 3		
150 μm	99	-	-	Silt (%)	: 54		
63 μm	97		-	Clay (%)	: 43		
0 um	0						

T K Lam 17/02/2021

laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited

@ Gammon Construction Ltd

Signatory Date

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION

GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7

(Wet Sieve and Hydrometer Method)

: ALS Technichem (HK) Ptv Ltd

Customer Project

: J2999

Report No. : J2999-365.2

Works Order No.

: 365

Sample ID No. Sample No.

: HK2104354-015 : G/Benthic Survey

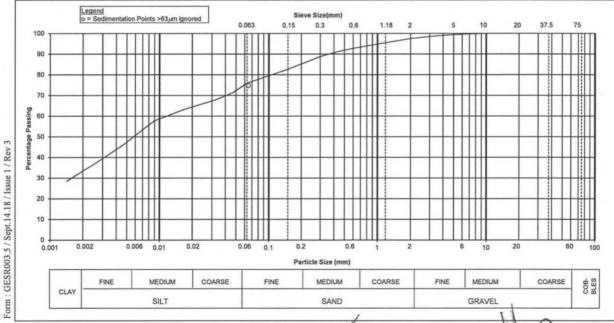
Sample Depth (m)

Specimen Depth (m)

Sample Type

Small Disturbed

Tested Date : 05/02/2021 Description : Dark grey, slightly sandy SILT/CLAY with shell fragments Sieve Method: Method A


Date Received: 05/02/2021

*Upon request

* Delete as appropriate

Sample Origin [‡] Information provided by customer

SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if	assumed): 2.65	#	
C' C'		of the Percent	with Expanded	Dispersant Details:	Sodium hexametaphos	sphate, Sodium	carbonate
Sieve Size	(%)	Passing (%)	Uncertainty (%)	Sampling History :	As received		
100.0 mm	100	-	-	The presence of any	visible organic matter in	n the soil: Non	e
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	*Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-	-		Particle Diameter	K	% finer than D
28.0 mm	100	-	-	(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0649	-	75	-
14.0 mm	100	-	-	0.0465	-	71	-
10.0 mm	100	-	-	0.0333	-	68	-
6.30 mm	100	-	-	0.0238	-	66	-
5.00 mm	99	-	-	0.0170	-	63	-
3.35 mm	99	-	-	0.0089	-	58	-
2.00 mm	97	-	-	0.0046	-	46	-
1.18 mm	95		-	0.0024	-	36	-
600 µm	93	-	-	0.0014	-	28	-
425 µm	91		-	SUMMARY:			
300 μm	89	-	-	Gravel (%)	: 3		
212 µm	86	-	-	Sand (%)	: 21		
150 μm	83	-	-	Silt (%)	: 43		
63 μm	76	-	-	Clay (%)	: 33		
0 μm	0						

Technician

C M Yip

Checked By :

Date

T K Lam 17/02/2021

Approved By Signatory Date Chung Hei 17/02/202

: 05/02/2021

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

TEST REPORT **DETERMINATION OF** PARTICLE SIZE DISTRIBUTION GEOSPEC 3: 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

Job No.

: J2999

Contract No. :

Report No.

: J2999-365.2

Customer

: ALS Technichem (HK) Pty Ltd

Works Order No.

: 365

Project

Sample ID No. Sample No.

: HK2104354-016

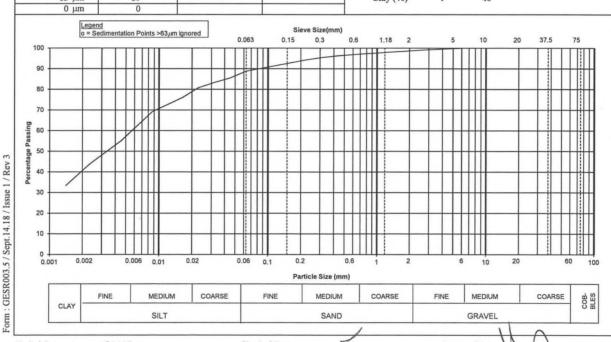
Date Received: 05/02/2021

Sample Depth (m)

: H/Benthic Survey

Sample Type

Tested Date : 05/02/2021


Specimen Depth (m)

: Small Disturbed

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

Sample Origin

Sieve Method: Method A		*Upon request	* Delete as appropriate † Information provided by customer				
SIEVE ANALYSIS	Percent Passing	^Expanded Uncertainty	*Cumulative Percent Passing	SEDIMENTATION ANALYSIS Specific Gravity (# if assumed): 2.65 # Dispersant Details: Sodium hexametaphosphate, Sodium carbonate Sampling History: As received The presence of any visible organic matter in the soil: None			
Sieve Size	(%)	of the Percent Passing (%)	with Expanded Uncertainty (%)				
100.0 mm	100	-	-				
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	*Expanded
50.0 mm	100	-		Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100				Particle Diameter	K	% finer than I
28.0 mm	100			(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0627	-	89	-
14.0 mm	100	-	-	0.0449	-	85	-
10.0 mm	100	-	-	0.0320	-	83	-
6.30 mm	100	-	-	0.0229	-	81	-
5.00 mm	100			0.0165	-	76	-
3.35 mm	99		-	0.0087	-	69	
2.00 mm	99	-		0.0046	-	55	-
1.18 mm	98	-		0.0024	-	44	-
600 µm	97	-		0.0014	-	33	-
425 μm	96	-	-	SUMMARY :			
300 µm	95		-	Gravel (%)	: 1		
212 µm	94		-	Sand (%)	: 10		
150 μm	93	-	-	Silt (%)	: 49		
63 µm	89	-		Clay (%)	: 40		

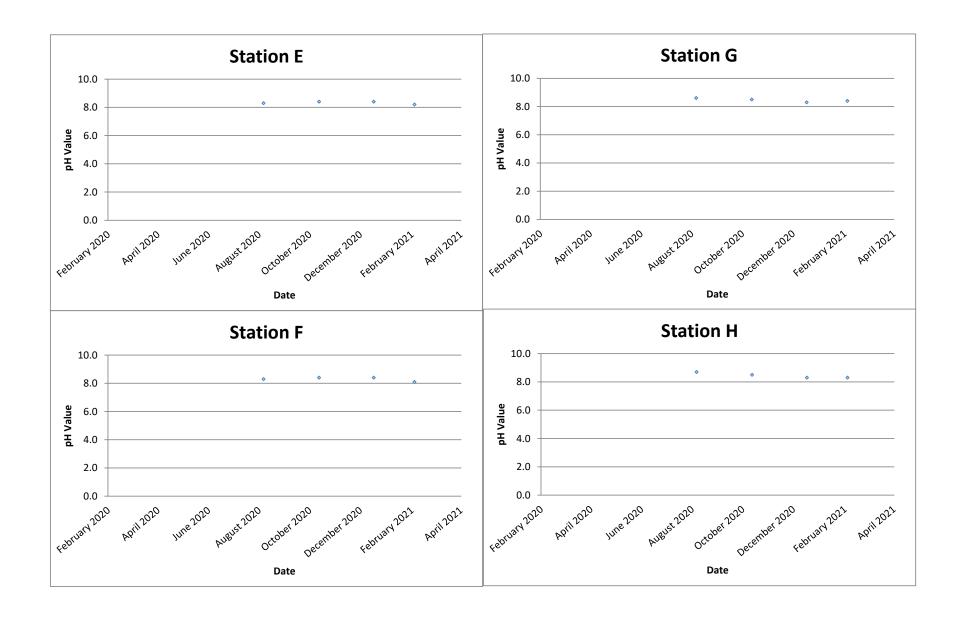
Technician

C M Yip

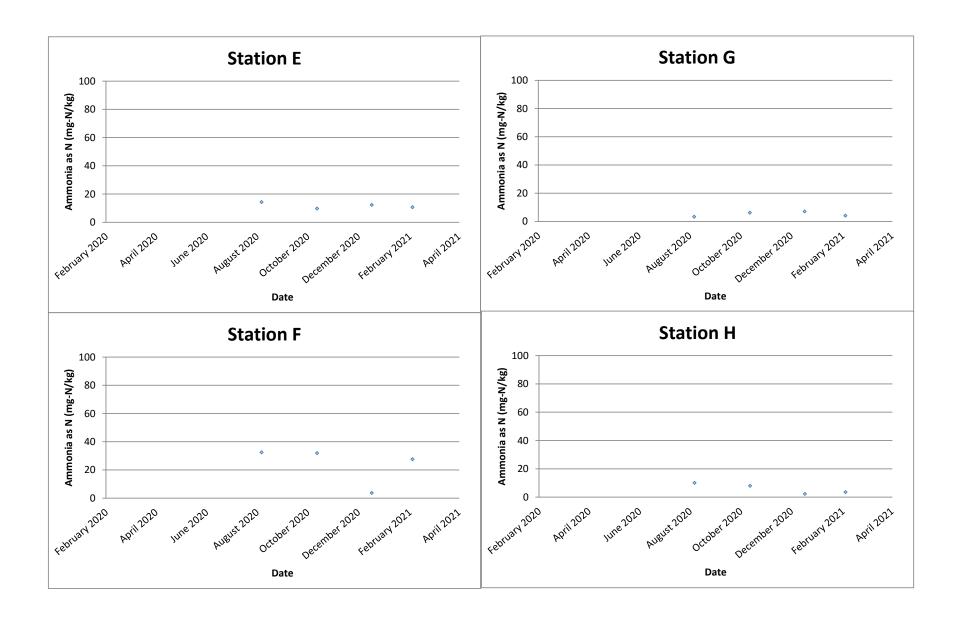
: 05/02/2021

Checked By:

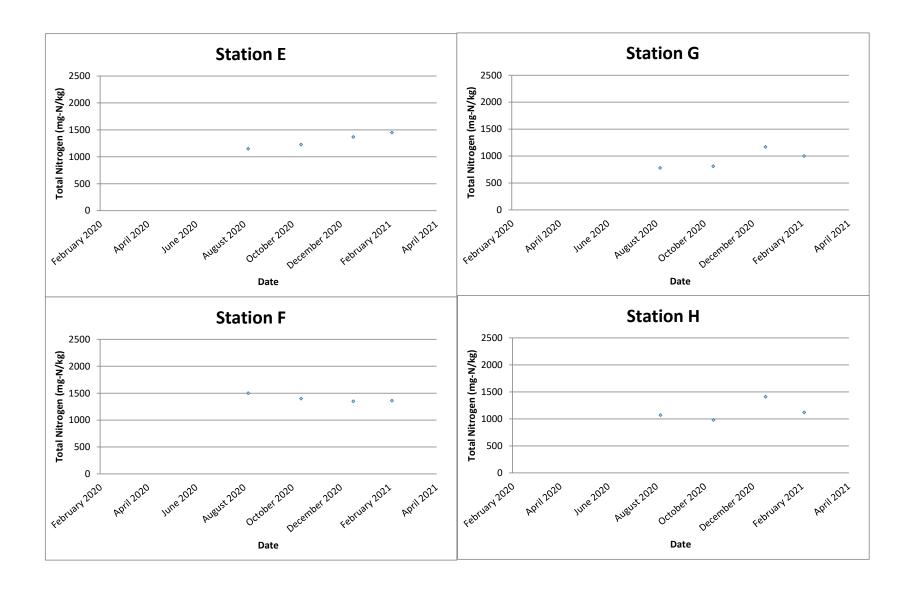

Name : TK Lam Approved By Signatory

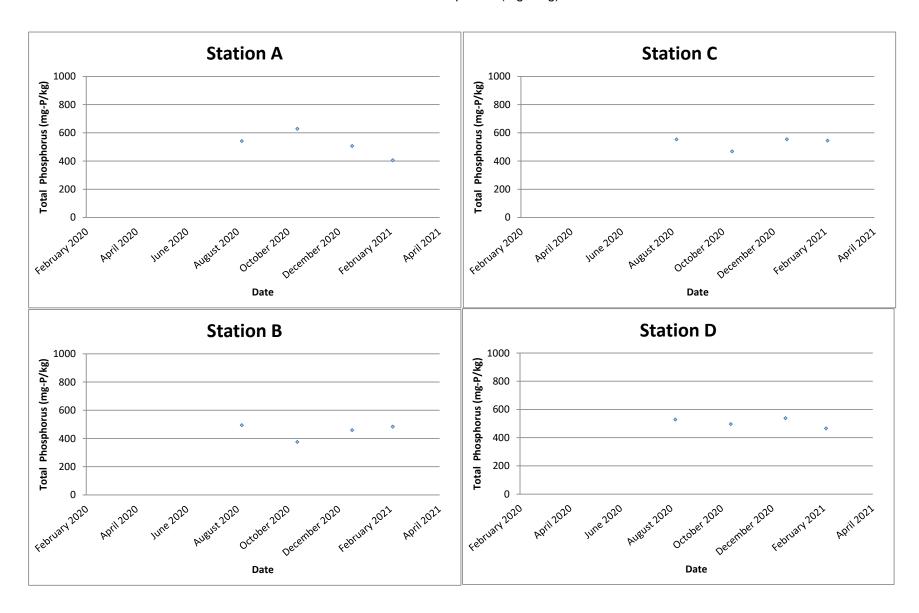

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

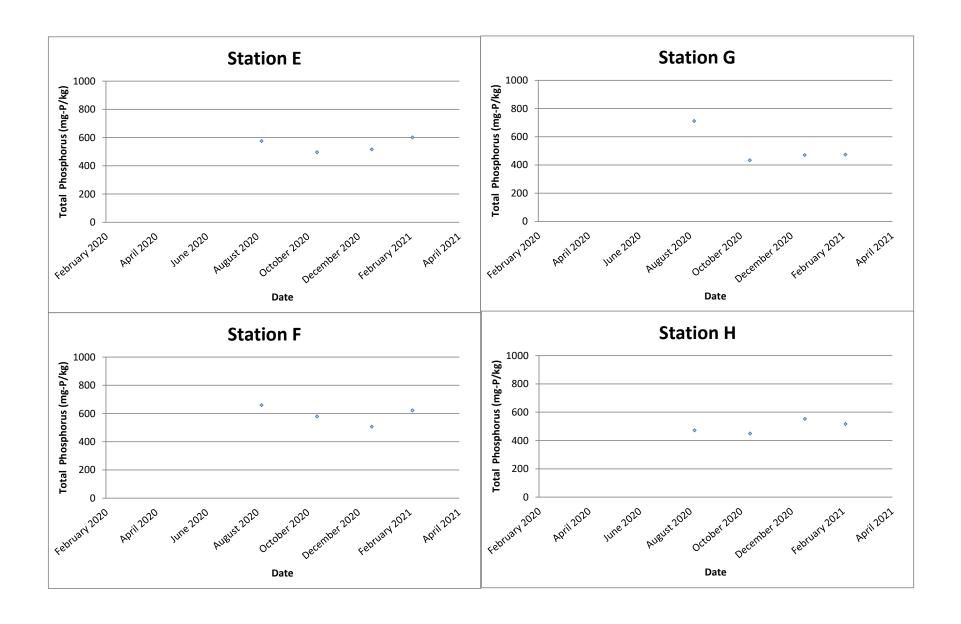

© Gammon Construction Ltd

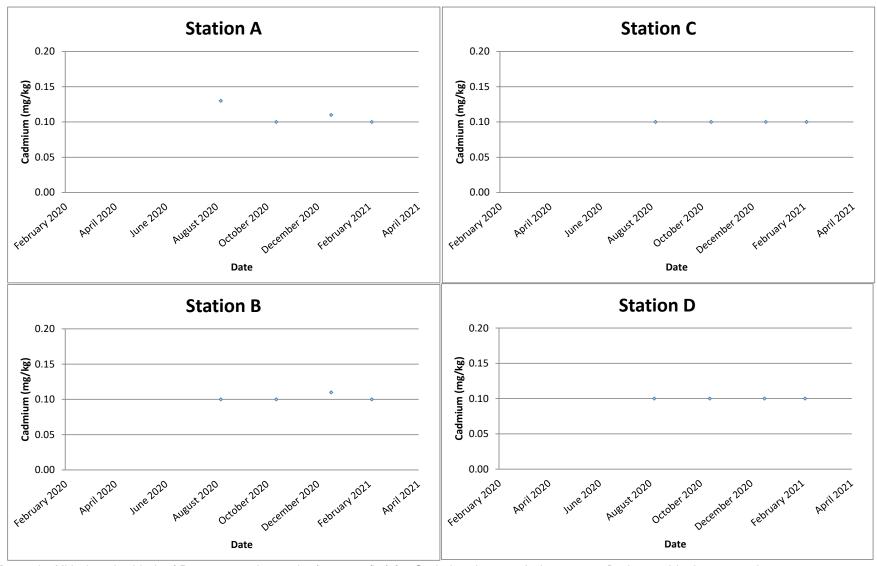

Technology Centre

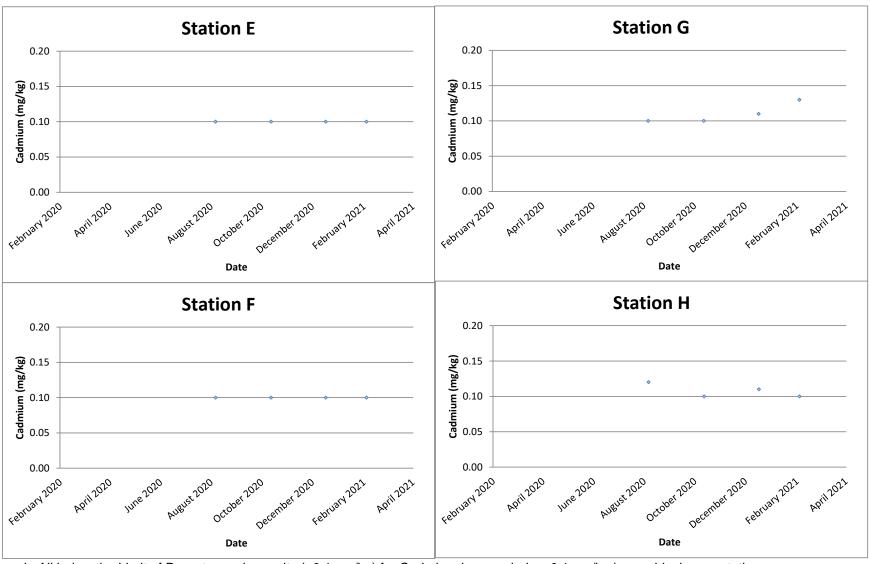
21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel: 26991980, Fax: 26917547

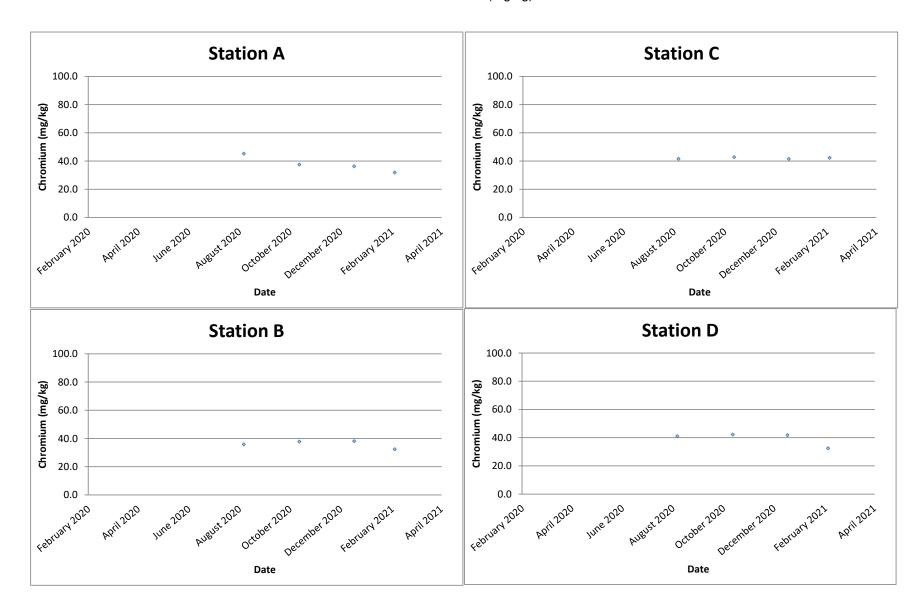


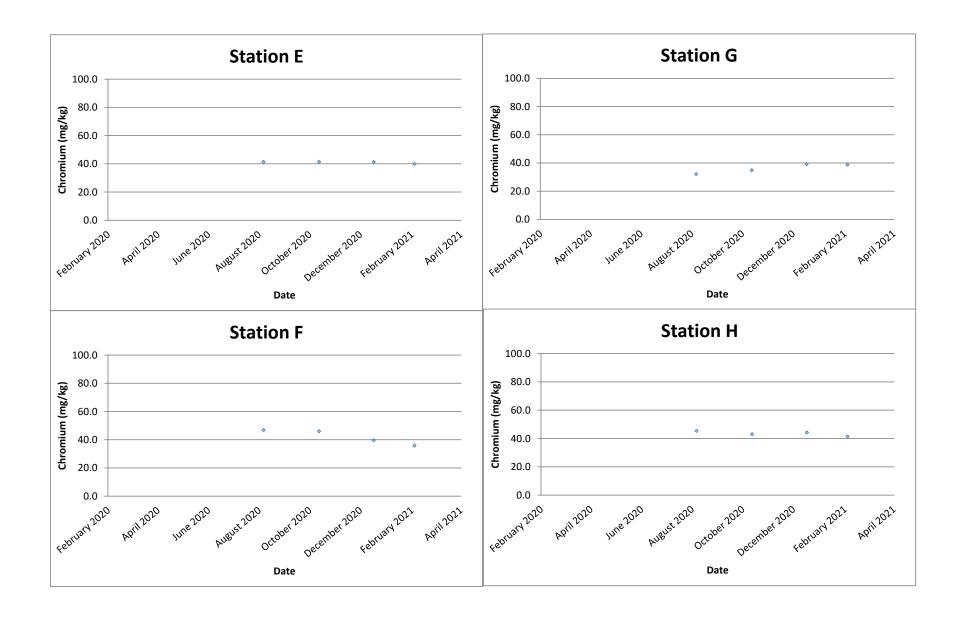


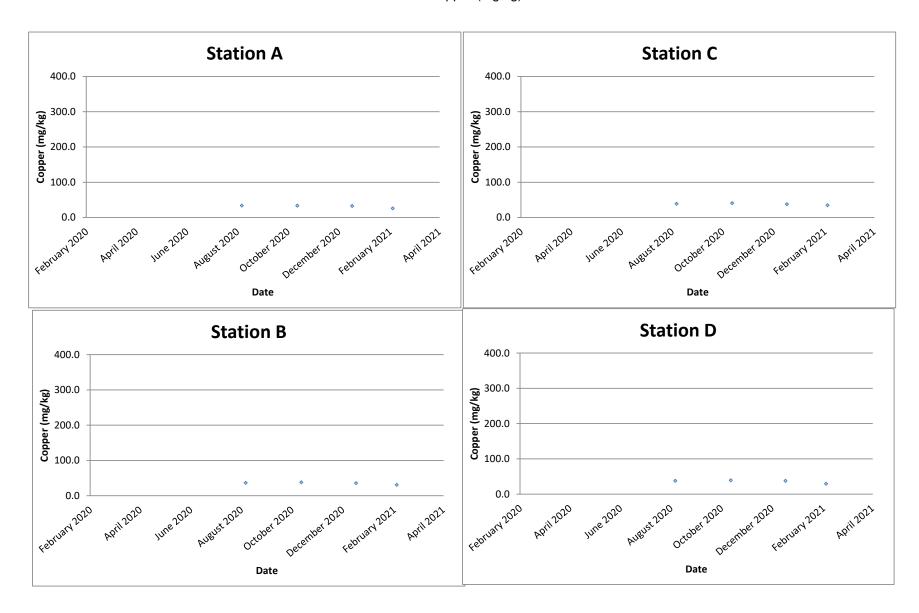


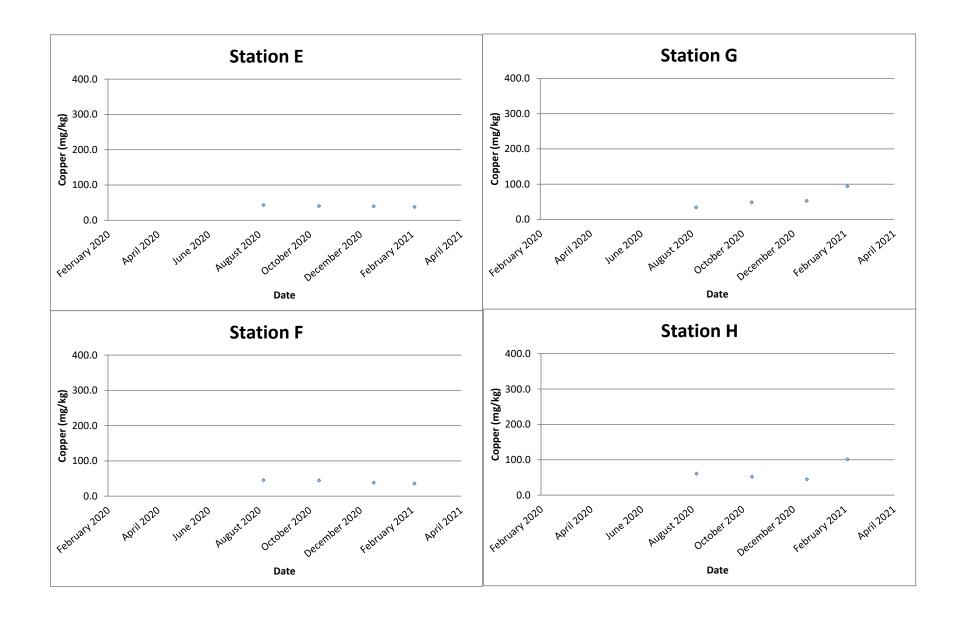


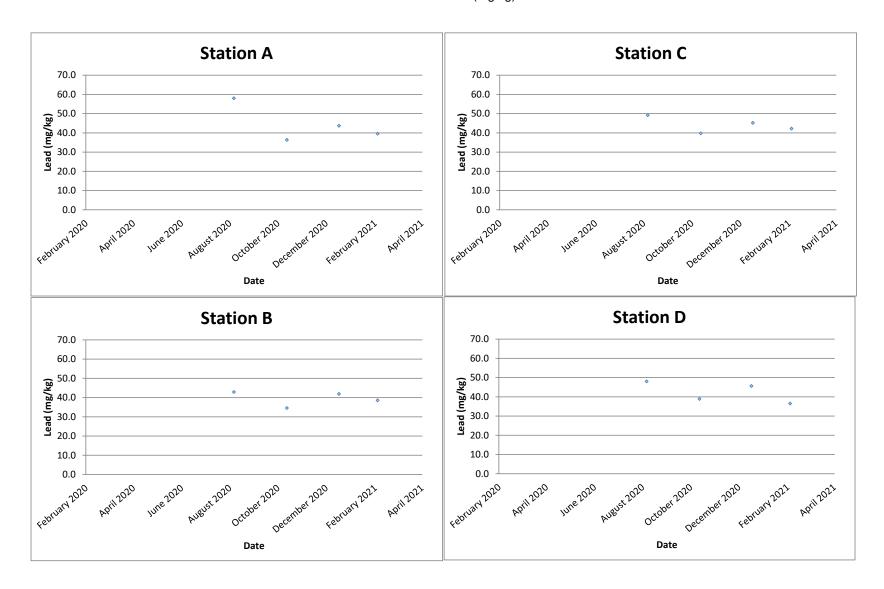


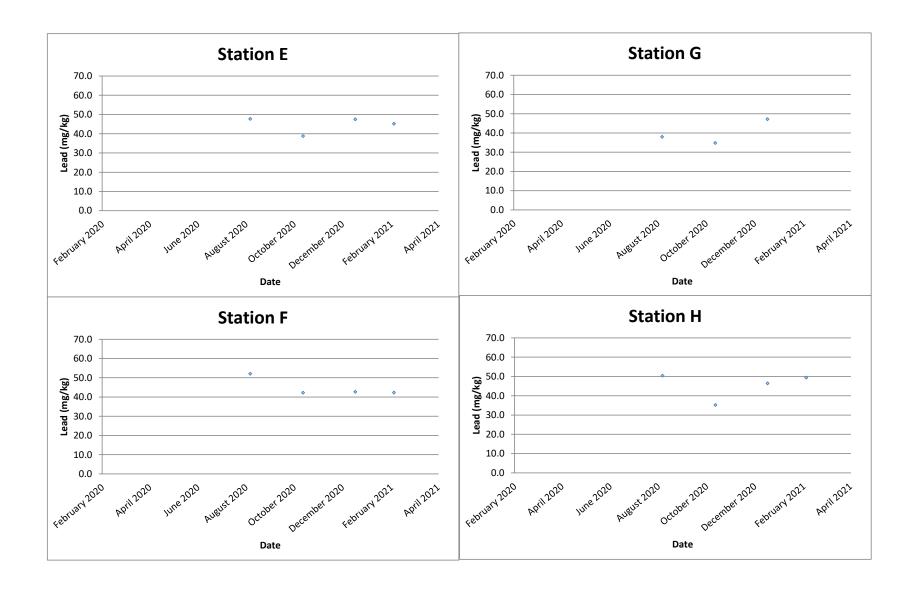


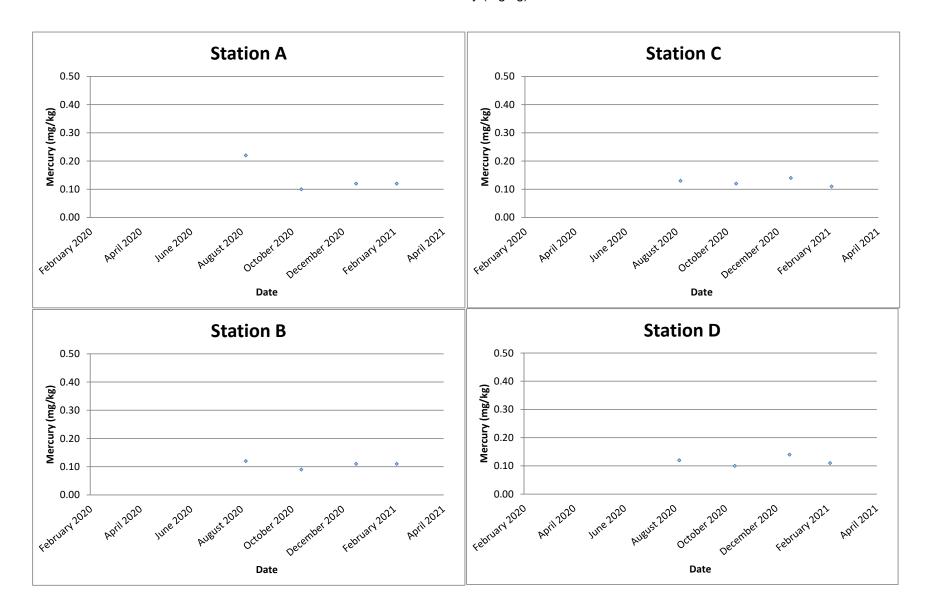


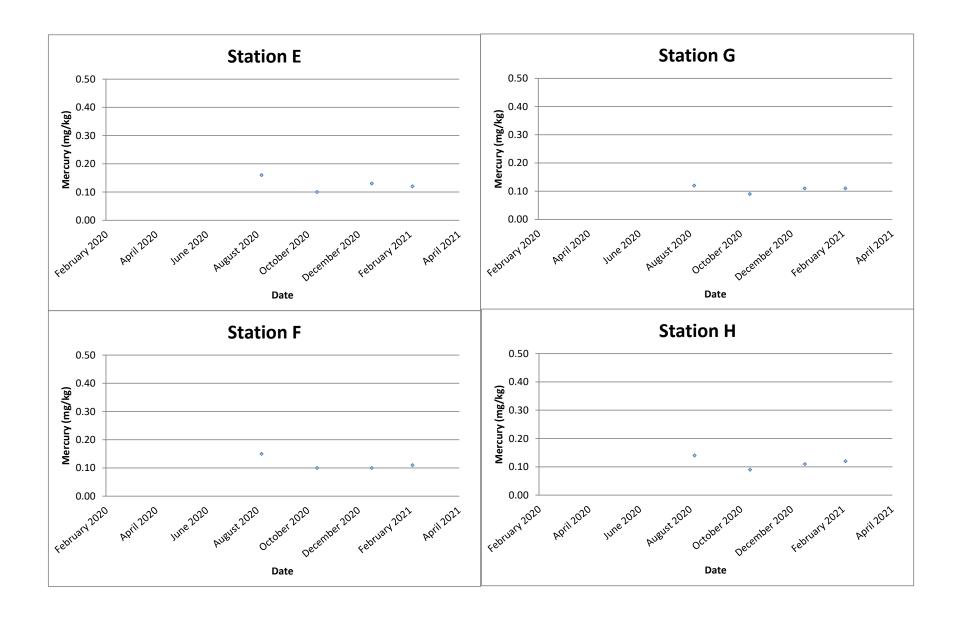

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

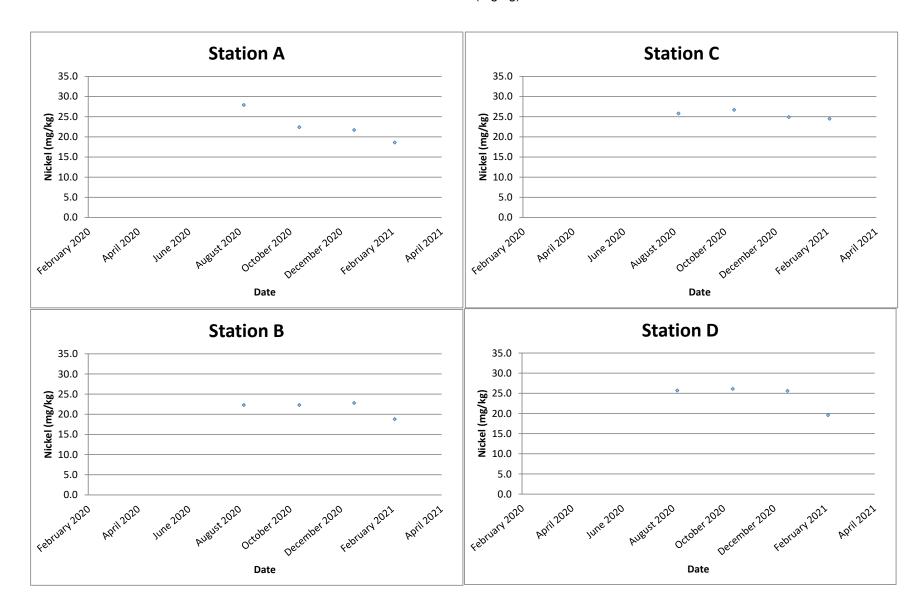


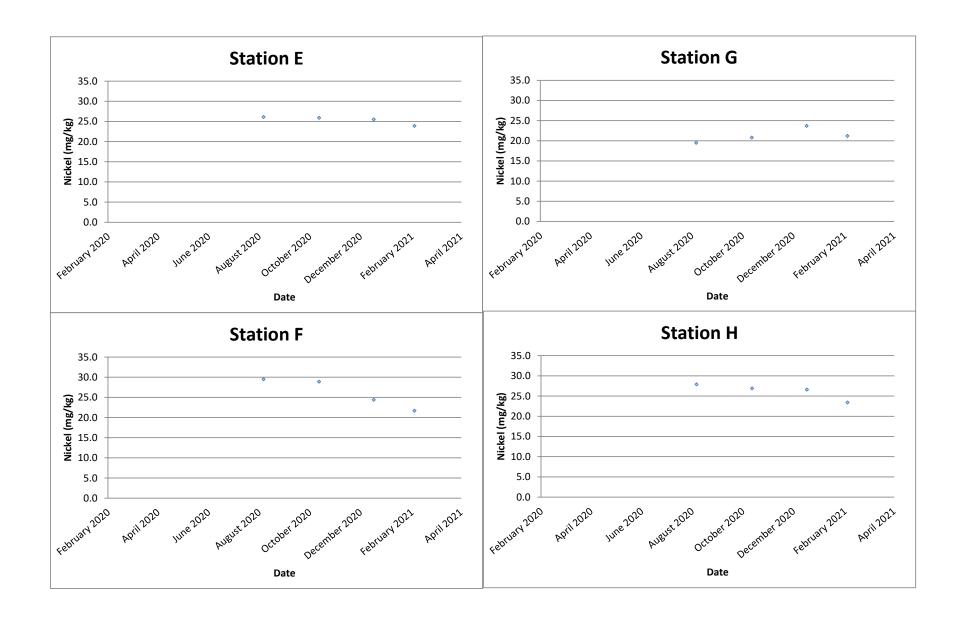

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

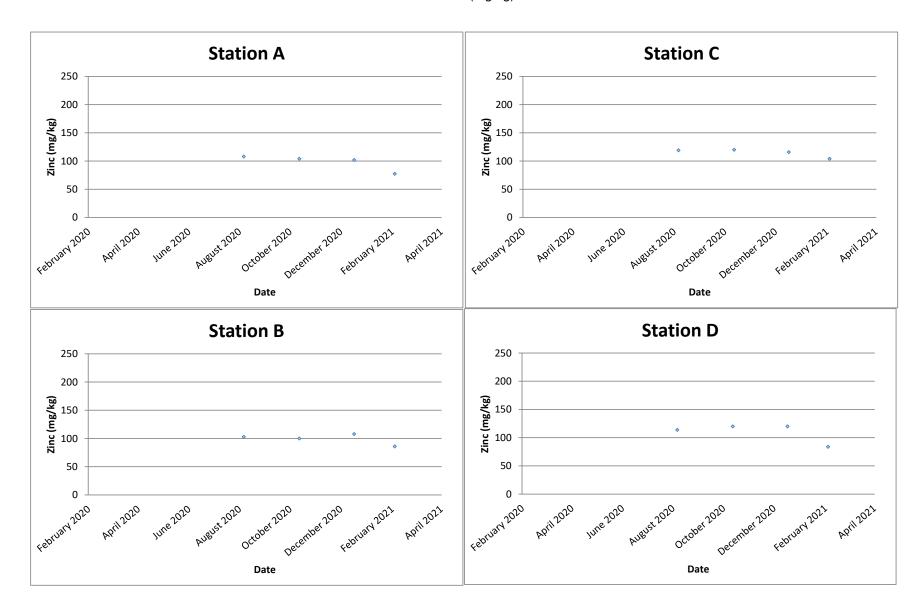


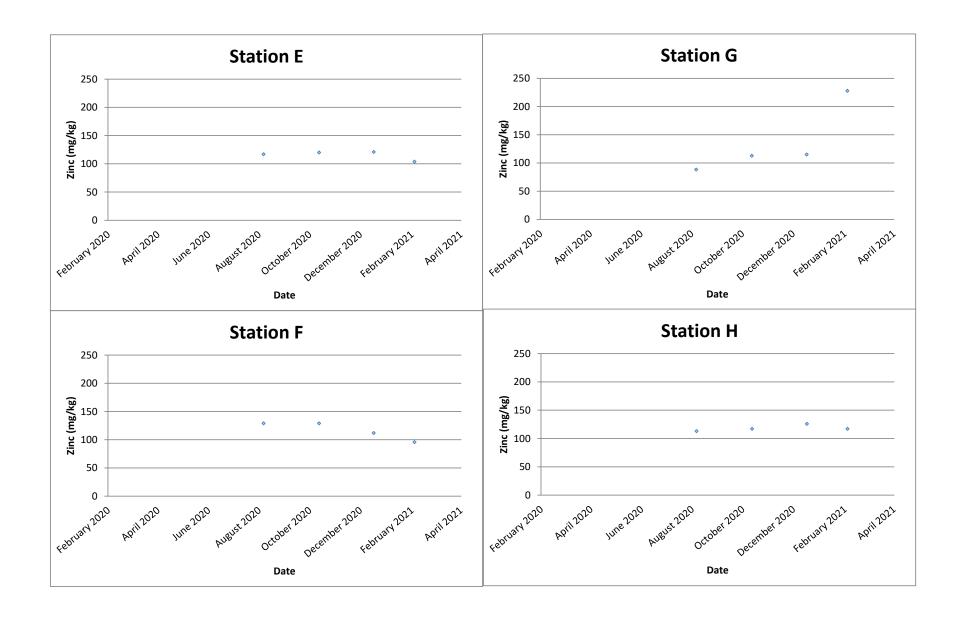


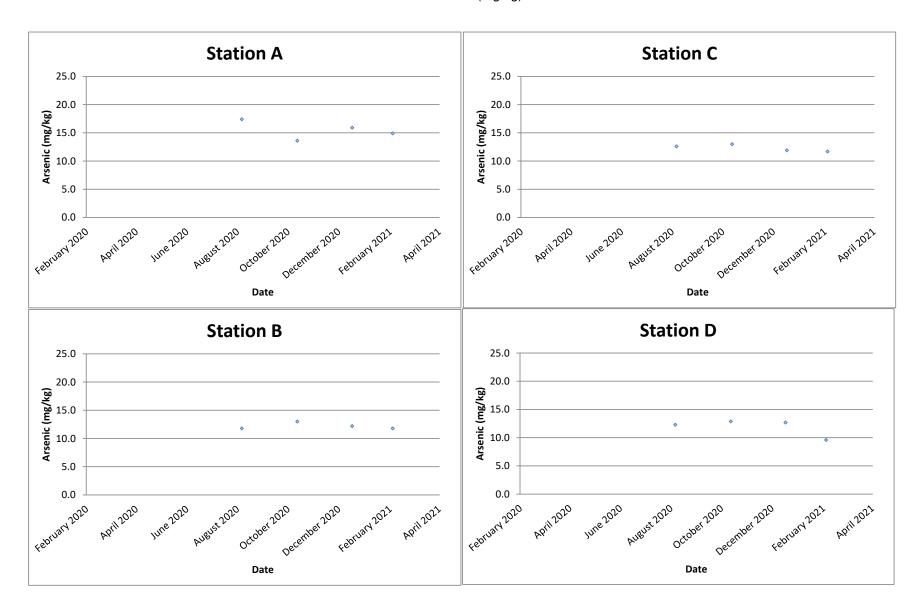


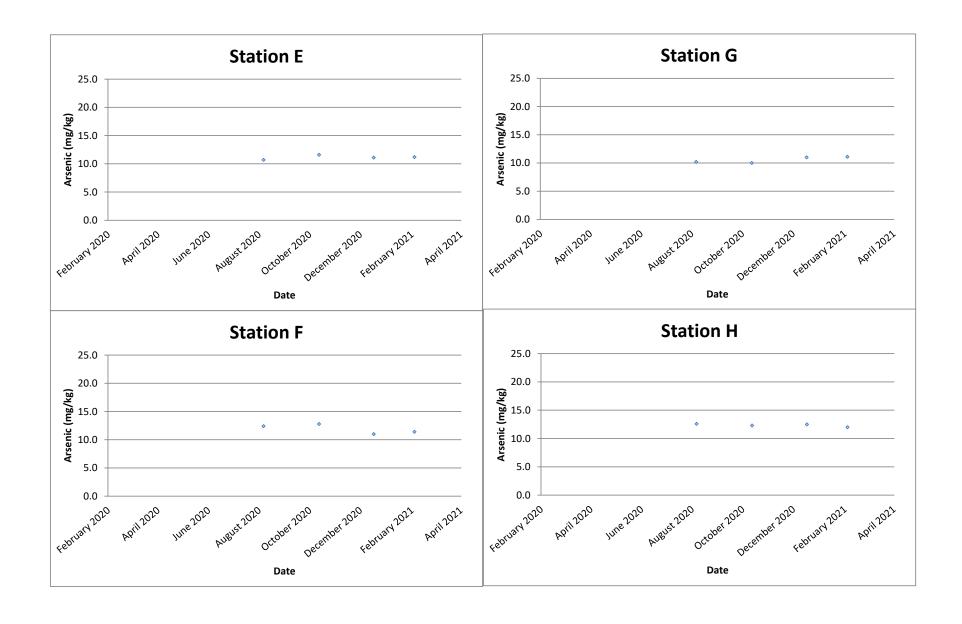


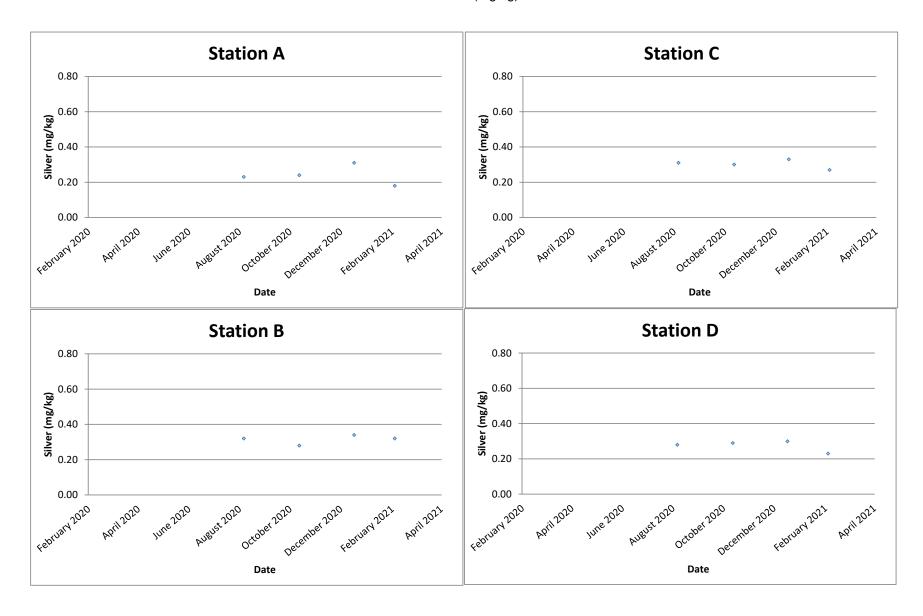


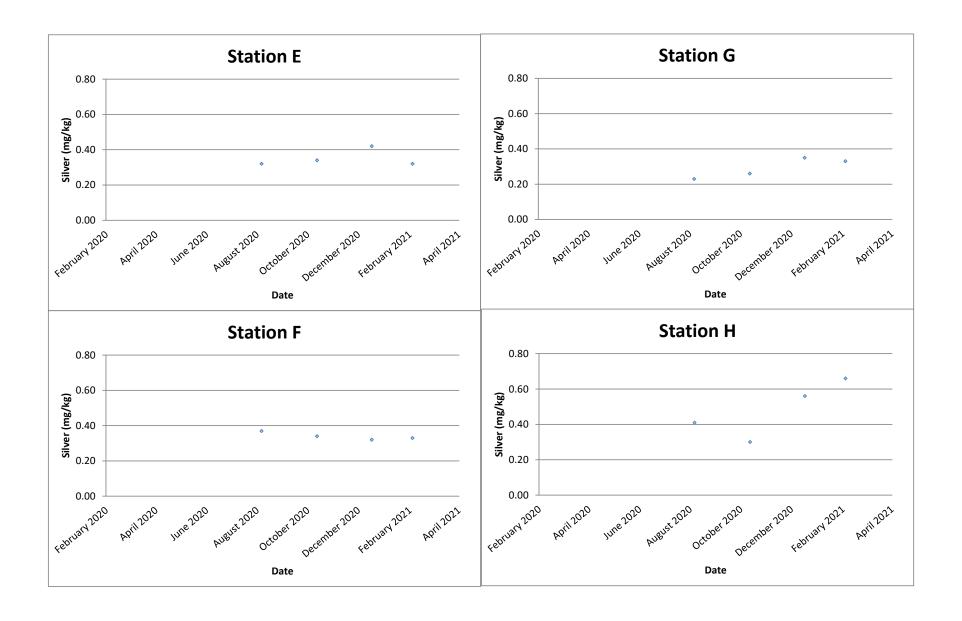












Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix I

Benthic Survey Report

Benthic Survey Report (February 2021)

Abundance

A total of 998 macrobenthic organisms was recorded from the eight monitoring stations during February 2021 monitoring period. Current result showed higher total abundance as compared to both dry (March 2004) and wet (August 2004) seasons baseline data (Figure 1). The increase in total abundance was due to the increase in abundance of the arthropod *Gammarus* with respect to the previous monitoring period (December 2020). Members of this genus generally favour high dissolved oxygen levels (DO) and low temperature of the water column for survival (Zadereev et. al, 2010). The current monitoring period (winter season) was recorded with high DO levels that ranged from 8.37 mg/L to 9.33 mg/L; and low water temperatures that only ranged from 18.33°C to 18.60°C. These, in addition to the possible absence or decreased abundance of their fish and decapod predators, could be the reason for the *Gammarus*' high abundance this period (Nelson et al, 1979a).

A significant seasonal variation of the macrobenthic abundances was noted during the current monitoring period (F-value = 3.48; F-crit = 1.66; P-value = 0.00001).

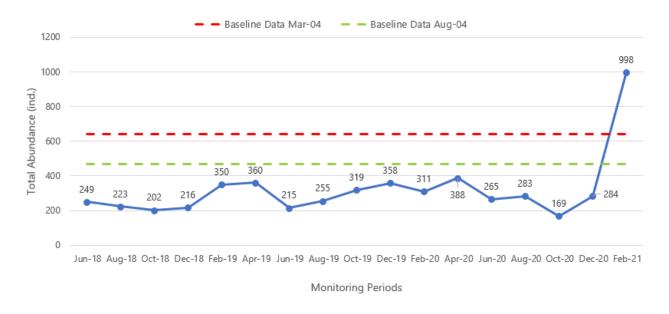


Figure 1. Total abundance (ind.) of benthic organisms across monitoring periods

The lowest abundance of 33 individuals (ind.) was recorded at Station H while the highest (248 ind.) was noted at Station A (**Figure 2**), both as reference stations. Current abundances in the impact stations C and D also increased relative to December 2020 monitoring results. The rest of the remaining stations were also observed with increased abundances. Similar with the previous monitoring periods, differences in the total abundance across the monitoring stations were still statistically significant (F-value = 2.97; F-crit = 2.07; P-value = 0.01).

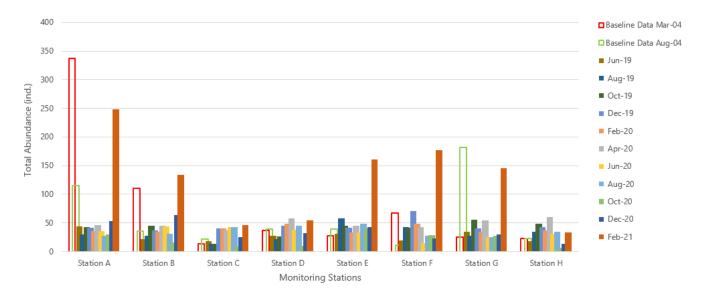


Figure 2. Total abundance (ind.) of benthic organisms across monitoring stations

Biomass

The total wet biomass recorded in the eight monitoring stations was 63.16 g with the highest biomass at the impact sites Station D (26.64g) and Station C (22.98g). Among the different genera noted in these two stations, the polychaete *Naineris* (20.41g) at Station D and the sea cucumber *Acaudina* (22.6g) at Station C, contributed to the current high recorded biomass.

Meanwhile, it was in the reference Station F that the lowest (1.32g) biomass was observed. Low biomass values were also noted in Stations H (1.59g) and E (1.68g). However, relative to the December 2020 period, an overall increased biomass was noted during the current monitoring period. The data of all surveys are shown in **Figure 3**.

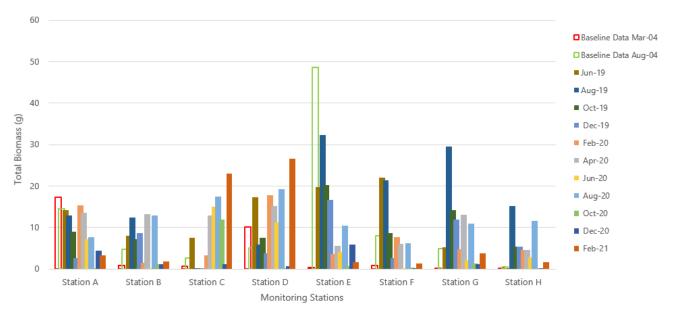


Figure 3. Total biomass (g) of benthic organisms

Taxonomic Composition

A total of seven comprising of 30 families and 34 genera were identified. The macrobenthic assemblage was noted with a shift in the dominating group from the annelids of last December 2020 to arthropods (70%) during the current survey. Currently, the annelids were already noted with lesser dominance (23%) such that the monitoring stations could have experienced lessen organic enrichment (Pearson and Rosenberg, 1978) as evident by the low percentage of the total organics (as low as 0.77%) during the period.

There was no dominant genera (member species > 10) recorded during the current monitoring activity.

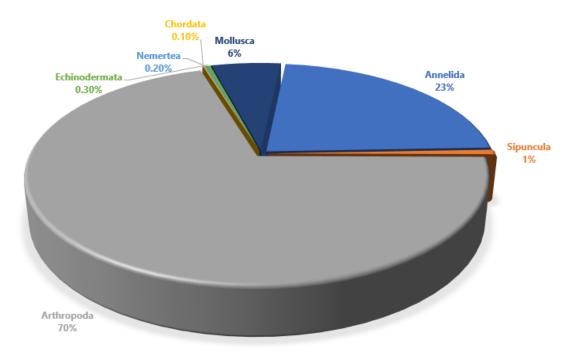


Figure 4. Percent composition of benthic organisms

Diversity

Benthic diversity index (H) ranged from 1.91 to 2.08 in the impact stations while its values ranged from 0.61 to 1.67 among the different reference stations. Impact stations had relatively higher diversity values as compared to reference stations.

Meanwhile, in terms of evenness index (*J*) values, reference Station F had the lowest value (0.31) and followed by another reference Station E (0.39). Current results showed that both the impact Stations C and D were able to maintain high evenness index relative to the December 2020 results. Current results indicated an overall increase in diversity and evenness values from the baseline survey condition.

Abundance and biomass of macrobenthic organisms are shown in **Tables 1** and **2**, respectively. Data summary for different monitoring periods are presented in **Tables 3** to **7**. Representative photos of specimen and assemblages are shown in the last pages of this benthic survey report.

References:

Nelson, W.G. 1979a. Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. Journal of Experimental Marine Biology and Ecology 38: 225-245.

Pearson, T. and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review, 16, 229-311.

Zadereev, E.S, A. P. Tolomeyev, A. V. Drobotov, A. Y. Emeliyanova and M. V. Gubanov. 2010. The vertical distribution and abundance of *Gammarus lacustris* in the pelagic zone of the meromictic lakes Shira and Shunet (Khakassia, Russia). Aquat Ecol. 44:531–539

Data Summaries

Table 1. Abundance of macrobenthic communities in the eight monitoring stations, February 2021

DI I			- "				SH	W-Ben	thic Sta	ations		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	Н
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma					1			
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	24	4	9	21	4	3	10	5
Annelida	Polychaeta		Maldanidae	Maldanella	1							
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	22	15	7	7	7	17	4	2
Annelida	Polychaeta	Aciculata	Nereidae	Nereis	1			3		4		
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								2
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia paradoxa	6							
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio			5		3			
Annelida	Polychaeta	Terebellida	Pectinariidae	Pectinaria (Lagis)		3						
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Phyllodoce		6	3		5	1	1	
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	10	4			4			
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra			2					
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris				1				
Arthropoda	Crustacea	Cumacea	Diastylidae	c.f. Diastylis					1			
Arthropoda	Crustacea	Decapoda	Epialtidae	Doclea							1	
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	166	86	11	10	127	150	110	17
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax				2				
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	10			1				1
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile				1				1

District	Clara	01	Familia	C - 1111			SH	W-Ben	thic Sta	ations		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	Н
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	3							
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus		1						1
Chordata	Actinopterygii	Gobiiformes		Goby					1			
Echinodermata	Holothuroidea	Molpadiida	Caudinidae	Acaudina			1					
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus			1		1			
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Meretrix (M. lusoria)		2			4		4	1
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea				4				
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium		1						1
Mollusca	Scaphopoda	Dentaliida	Dentaliidae	-		1						
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius			1					
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)		1	1	1	2		2	
Mollusca	Bivalvia	Venerida	Veneridae	Placamen isabellina		1						
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. variegatus)	3						1	
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus		6				1	12	2
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula		2		1				
Mollusca	Bivalvia	Venerida	Veneridae	Timoclea scabra				2		1		
Nemertea	Anopla	Heteronemertea	Lineidae	Cerebratulus	1				1			
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	1	1	5					
Notes: Empty cells	denote that the individ	dual is not recorded in t	the station		1	1	1	ı	<u>I</u>	I	1	1

Table 2. Biomass (g) of macrobenthic communities in the eight monitoring stations, February 2021

DI I							SI	HW-Bentl	nic Station	S		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	Н
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma					0.008			
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.050	0.120	0.035	0.056	0.010	0.002	0.368	0.026
Annelida	Polychaeta		Maldanidae	Maldanella	0.005							
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.280	0.122	0.027	0.015	0.042	0.899	0.038	0.063
Annelida	Polychaeta	Aciculata	Nereidae	Nereis	2.405			0.134		0.150		
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								0.017
Annelida	Polychaeta	Phyllodocida	Paralacydoniidae	Paralacydonia paradoxa	0.011							
Annelida	Polychaeta	Spionida	Spionidae	Paraprionospio			0.003		0.014			
Annelida	Polychaeta	Terebellida	Pectinariidae	Pectinaria (Lagis)		0.035						
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Phyllodoce		0.031	0.021		0.020	0.028	0.085	
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus	0.030	0.035			0.004			
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra			0.016					
Annelida	Polychaeta	Scolecida	Orbiniidae	Naineris				20.410				
Arthropoda	Crustacea	Cumacea	Diastylidae	c.f. Diastylis					0.0001			
Arthropoda	Crustacea	Decapoda	Epialtidae	Doclea							1.215	
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus		0.065	0.005	0.006	0.101	0.115	0.113	0.016
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax				0.596				
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus	0.081			0.0001				0.0001
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile								
Arthropoda	Maxillopoda	Sessilia	Balanidae	Balanus	0.016							
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus		0.543						1.345
Chordata	Actinopterygii	Gobiiformes		Goby					0.176			
Echinodermata	Holothuroidea	Molpadiida	Caudinidae	Acaudina			22.600					

Dlandana	Clara.	0	Familia	C			SI	HW-Benth	nic Station	S		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	Н
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus			0.061		0.027			
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Meretrix (M. lusoria)		0.038			0.581		0.437	0.014
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea				0.356				
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium		0.045						0.016
Mollusca	Scaphopoda	Dentaliida	Dentaliidae	-		0.002						
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius			0.166					
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)		0.022	0.022	2.511	0.690		0.104	
Mollusca	Bivalvia	Venerida	Veneridae	Placamen isabellina		0.347						
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. variegatus)	0.363						0.960	
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus		0.371				0.027	0.398	0.094
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula		0.086		2.511				
Mollusca	Bivalvia	Venerida	Veneridae	Timoclea scabra				0.043		0.096		
Nemertea	Anopla	Heteronemertea	Lineidae	Cerebratulus	0.036				0.006			
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0.067	0.025	0.025					

Notes: Empty cells denote that the individual is not recorded in the station

Table 3. Summary of Benthic Survey Data, February 2021

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	248	3.34	12	1.25	0.50
В	134	1.89	15	1.45	0.53
C*	46	22.98	11	2.08	0.87
D*	54	26.64	12	1.91	0.77
Е	161	1.68	13	0.99	0.39
F	177	1.32	7	0.61	0.31
G	145	3.72	9	0.96	0.44
Н	33	1.59	10	1.67	0.72
TOTAL	998	63.16			

^{*}impact sites

Table 4. Summary of Benthic Survey Baseline Data, August 2004

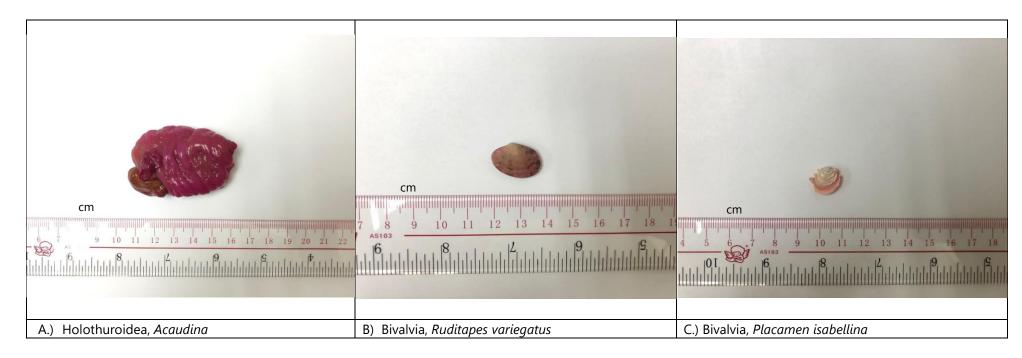
Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

^{*}impact sites

Table 5. Summary of Benthic Survey Baseline Data, March 2004

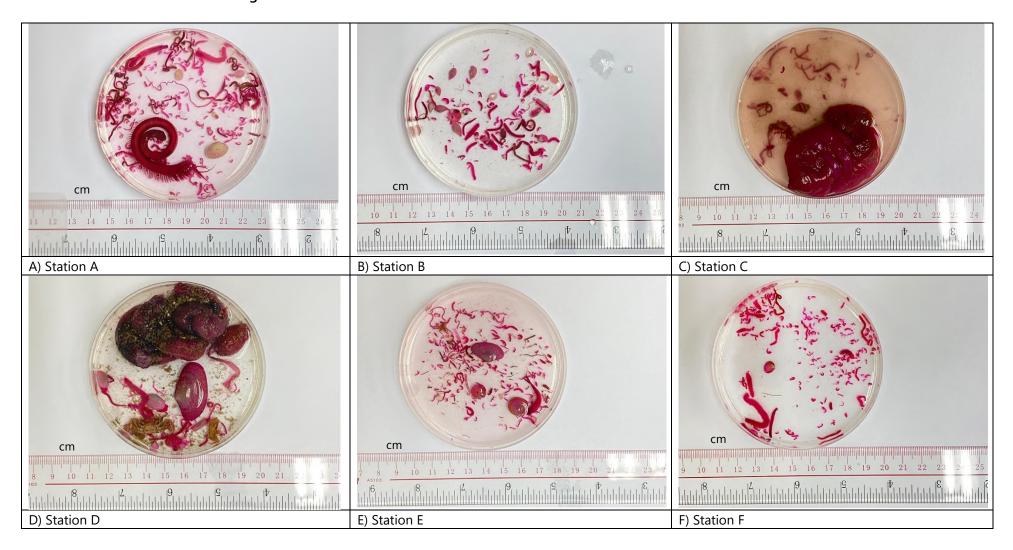
Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.30
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

^{*}impact sites

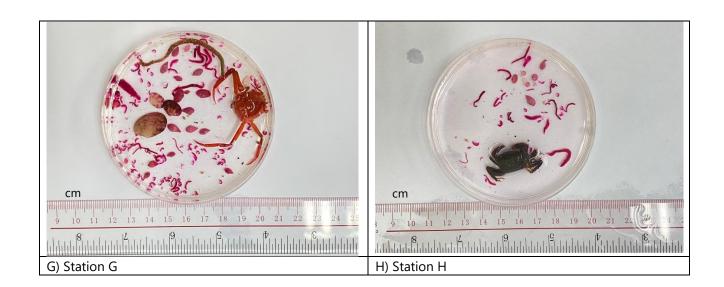

Table 6. Taxonomic Composition (%) of Benthic Survey

% Composition	Mar-04	Aug-04	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20	Feb-21
Annelida	80.19	73.29	54.99	70.28	0.47	64.31	66.14	59.78	60.77	56.44	69.06	63.25	51.48	50.35	22.75
Sipuncula	0.78	0.21	0.00	0.00	0.00	1.57	1.25	0.00	1.29	0.52	1.13	0.35	1.78	1.06	0.70
Arthropoda	11.23	18.80	20.23	10.83	4.65	9.80	19.75	14.53	13.83	28.87	8.30	13.43	18.93	20.77	70.14
Echinodermata	0.62	3.63	3.42	4.72	0.47	5.10	3.13	1.68	1.61	0.77	2.26	3.53	2.96	2.82	0.30
Cnidaria	1.72	0.43	0.85	0.00	1.86	0.39	0.00	0.84	0.32	0.26	0.75	0.00	1.18	0.00	0.00
Mollusca	5.46	3.42	19.94	13.33	0.47	17.25	8.15	22.35	19.94	11.60	15.85	15.90	18.93	24.65	5.81
Chordata	0.00	0.21	0.28	0.56	0.47	1.18	0.94	0.00	0.32	0.52	1.13	1.41	0.00	0.35	0.10
Nemertea	0.00	0.00	0.28	0.28	98.60	0.39	0.63	0.84	1.93	1.03	1.51	2.12	4.73	0.00	0.20

Table 7. Taxonomic Composition (abundance) of Benthic Survey


Abundance	Mar-04	Aug-04	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20	Feb-21
Annelida	514	343	193	253	124	164	211	214	189	219	183	179	87	143	227
Sipuncula	5	1	0	0	0	4	4	0	4	2	3	1	3	3	7
Arthropoda	72	88	71	39	17	25	63	52	43	112	22	38	32	59	700
Echinodermata	4	17	12	17	10	13	10	6	5	3	6	10	5	8	3
Cnidaria	11	2	3	0	2	1	0	3	1	1	2	0	2	0	0
Mollusca	35	16	70	48	59	44	26	80	62	45	42	45	32	70	58
Chordata	0	1	1	2	2	3	3	0	1	2	3	4	0	1	1
Nemertea	0	0	1	1	1	1	2	3	6	4	4	6	8	0	2

Photos of Representative Taxa Identified



Photos of Macrobenthic Assemblages

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Photo 1. A ponar grab sampler

Photo3. Grab dimension 2

Photo 2. Grab dimension 1

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

Photo 1. A modified Van Veen grab sampler

Photo 2. Grab dimension 1

Photo3. Grab dimension 2

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix K

Environmental Complaints Log

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	complained that SHWSTW cause a malodour and was smelled as far as the	As advised by DSD, the operation of Siu Ho Wan Sewage Treatment Works was properly functioned and there was no special activity on 28th November 2019. Due to the possibility of having unpleasant gases or odours emitted from these non-DSD premises cannot be precluded, the complaint is considered as non-project related.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0620

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu		11011			
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•			-
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	e Manager	ment			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0620

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the	SHWSTW	Implemented
			protocols set out in the WMP Section 5.14.		