Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Monthly EM&A Report October 2021

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Report No.:	:	0041/17/ED/0646A

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Our Ref. 1458/21-0056

42/F, Revenue Tower,

Wan Chai, Hong Kong

5 Gloucester Road

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Drainage Services Department

Projects and Development Branch

Consultants Management Division

13 November 2021

By Post and E-mail

Dear Sir,

RE: CONTRACT NO. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (OCTOBER 2021)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for October 2021 (Report No.: 0041/17/ED/0646A) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 13 November 2021 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Ms. Joanne NG at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/jn/cl

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 20
5.	CHINESE WHITE DOLPHIN MONITORING	. 27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 31
10.	FUTURE KEY ISSUES	. 32
11.	CONCLUSION	. 33

FIGURE

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Odour Patrol Points of Modified Odour Patrol
Figure 3	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
_	

Figure 4 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0646A

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Fifty-first Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 October 2021 to 31 October 2021 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 8, 15, 19 and 25 October 2021. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 22 October 2021. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0646A

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Page 3

Report No.: 0041/17/ED/0646A

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0646A

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H_2S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H_2S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H_2S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H_2S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment Manufacturer		Serial	Sensor
/ Model		Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Page 5

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2	Categories of Odour Inte	ensity for Modified	Odour Patrol Monitoring
-----------	--------------------------	---------------------	-------------------------

Odour	Odour	Classification Criteria
Level	Intensity	
0	Not detected	No odour perceived or an odour so weak that it cannot be easily characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 7

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in **Figure 1**.
- 2.4.2 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Odour Detroi Deint	Description
Patrol Point	
OD1	Eastern Site Boundary
OD2	Southern Site Boundary
OD3	Western Site Boundary
OD4	Northern Site Boundary
OD5	Spur Road near Discovery Bay Tunnel Outlet
OD6	Cheung Tung Road near the Bus Depot
OD7	Cheung Tung Road near O·PARK1
OD8	Sham Shui Kok Dr near MTR Depot
OD9	Discovery Bay Tunnel Toll Plaza

Table 2.3 Odour Patrol Point

2.4.3 The odour patrol points of modified odour patrol is shown in **Figure 2**.

2.5 Monitoring Frequency and Duration

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.4** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 8

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency
H ₂ S concentration		¹ Weekly basis for 6 months during the initial operation
monitoring	15 minutes	stage
Odour patrol		^{4,5} Weekly basis
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.
4) As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near 1997).

4) As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.

2.5.2 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

	and Linne Levels for All Quality	/ wormoning
Parameter	Action	Limit
Odour Nuisance	One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	complaints received for specific

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. Due to No. 8 NorthEast Gale Or Storm Signal is enforced on 13 October 2021, the odour patrol was rescheduled to 15 October 2021. The odour patrol monitoring was carried out on 8, 15, 19 and 25 October 2021. As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Table 2.6 Summary of Meteorological Data in Reporting Period						
Date	Location	Temperature	Relative	Wind	Wind	
		(°C)	Humidity (%)	Direction	Speed	
					(m/s)	
8 October 2021	OD1	25.5	93	NW	0.2	
	OD2			-	0.0	
	OD3			NW	0.2	
	OD4			-	0.0	
	OD6			-	0.0	
	OD7			NW	0.2	
	OD8			NE	0.2	
	OD9			-	0.0	
15 October 2021	OD1	25.6	74	-	0.0	
	OD2			-	0.0	
	OD3			-	0.0	
	OD4			-	0.0	
	OD6			-	0.0	
	OD7			-	0.0	
	OD8			-	0.0	
	OD9			-	0.0	
19 October 2021	OD1	28.0	62	E	0.4	
	OD2			-	0.0	
	OD3			-	0.0	
	OD4			E	0.9	
	OD6			E	0.6	
	OD7			E	0.8	

Table 2.6 Summary of Meteorological Data in Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 10

Report No.: 0041/17/ED/0646A

	OD8			E	0.9
	OD9			E	0.4
25 October 2021	OD1	28.0	55	N	0.8
	OD2			-	0.0
	OD3			N	1.3
	OD4			-	0.0
	OD5			-	0.0
	OD6			N	1.6
	OD7			N	0.8
	OD8			N	0.4
	OD9			N	1.0

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

	Monitoring Parameter
Monitoring Location	Odour Patrol [^] (Odour Level)
	Range
OD1	0 - 0
OD2	0 - 0
OD3	0 - 0
OD4	0 - 0
OD5	0
OD6	0 - 0
OD7	0 - 0
OD8	0 - 0
OD9	0 - 0

Table 2.7 Summary of Air Quality Monitoring Result in Reporting Period

Remark:

^Odour Level: 0 – Not detected, 1 – Slight, 2 – Moderate, 3 – Strong, 4 – Extreme

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 11

Report No.: 0041/17/ED/0646A

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1	Location of Water Quality Monitoring
-----------	--------------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2Parameters for Water Quality Monitoring

Monitoring Parameters										
In-situ Measurement	Laboratory Analysis									
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)									
Temperature (degree Celsius)	5-day BOD (mg/l)									
pH value	Suspended Solids (mg/l)									
Water depth (m)	Ammonia as N (mg/l)									
Salinity (ppt)	Nitrate as N (mg/l)									
Turbidity (NTU)	Nitrite as N (mg/l)									
Current Speed (m/s)	Total inorganic nitrogen (mg/l)									
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)									

Page 12

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3. Table 3.4** summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in **Appendix E**.

Parameter	Equipment	Model	Range	Equipment Accuracy
()XV/den	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0646A

Table 3.4 Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	515120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 5210B	1 mg/L
Total Suspended Solid	APHA 2540D	0.5 mg/L
Ammonia as N	APHA 4500 NH3: G	0.005 mg/L
Nitrate as N	APHA 4500 NO3: I	0.005 mg/L
Nitrite as N	APHA 4500 NO2 B&H	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L
Total phosphorus (soluble and particulate)	APHA 4500 P: J	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

E-mail : matlab@fugro.com

Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Tuen Mun, N.T.,

Hong Kong.

Page 14

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out was 22 October 2021. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix F.**

_	l able	3.6	Sun	nmary	of In-situ Mc	onitoring Results	s (iviid-	edd)			
	Monitoring Station	Water Depth (m)	Samplin Dissolved g Depth oxygen (m) (mg/L)		,0	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
	А	17	17 S 1		5.77	26.93	8.71	34.10	3.8	0.13	54.6

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 15

Report No.: 0041/17/ED/0646A

Monitoring Station	Water Depth (m)		nplin epth	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		S	1	5.74	26.94	8.72	34.20	3.6	0.18	55.8
		M	8.5	5.59	26.17	8.71	34.38	4.2	0.12	72.9
		M	8.5	5.52	26.18	8.77	34.39	4.3	0.12	73.4
		B	16	5.36	26.01	8.64	34.57	4.8	0.28	76.7
		B	16	5.34	26.04	8.63	34.63	4.9	0.29	76.8
		S	1	5.89	27.92	8.59	33.12	4.1	0.14	134.5
		S	1	5.88	27.43	8.58	33.29	4.3	0.13	122.7
_		M	7	5.79	27.41	8.72	33.56	4.4	0.21	103.4
В	14	M	7	5.74	27.13	8.73	33.57	4.6	0.22	104.1
		B	13	5.62	27.06	8.59	33.88	4.9	0.17	89.2
		B	13	5.63	27.04	8.53	33.89	5.1	0.19	89.3
		S	1	6.08	27.23	8.68	32.87	7.8	0.13	248.5
		S	1	6.01	27.22	8.64	32.88	7.6	0.14	244.7
		M	6	5.74	26.94	8.59	33.11	8.9	0.10	192.6
С	12	M	6	5.77	26.93	8.57	33.21	8.4	0.26	197.8
		B	11	5.69	26.81	8.66	34.52	10.1	0.12	174.5
		B	11	5.68	26.83	8.62	34.56	10.1	0.12	177.6
		S	1	5.73	28.13	8.13	34.28	8.1	0.06	19.1
		S	1	5.71	28.14	8.14	34.19	8.6	0.00	20.3
		M	6.5	5.49	27.29	8.23	34.44	9.2	0.18	38.4
D	13	M	6.5	5.53	27.22	8.24	34.57	9.9	0.18	38.7
		B	12	5.41	27.03	8.06	34.86	10.1	0.19	9.8
		B	12	5.48	27.03	8.00	34.89	10.1	0.37	9.6
		S	1	5.94	26.44	8.66	33.83	4.6	0.37	82.6
		S	1	5.94	26.44	8.64	33.44	4.0	0.12	81.4
	16	M	8	5.81	26.03	8.21	33.92	5.1	0.14	124.5
E		M	8	5.84	26.04	8.22	33.92	5.2	0.32	124.5
		B	0 15	5.66	25.18		34.17			224.5
		B	15	5.62	25.18	8.24 8.23		5.0	0.19	224.5
							34.18	5.1		
		S	1	5.94	26.86	8.67	33.73	4.7	0.08	74.5
		S	1	5.96	26.88	8.66	33.71	4.9	0.06	77.2
F	23	M	11.5	5.87	25.71	8.61	33.92	5.6	0.18	19.1
		M	11.5	5.74	25.72	8.62	33.94	5.8	0.14	19.8
		B	22	5.62	25.11	8.64	34.18	5.2	0.09	34.6
		B	22	5.66	25.14	8.63	34.11	5.4	0.06	34.4
		S S	1	5.62	26.94	8.71	33.76	5.5	0.21	78.9
			1	5.60	26.95	8.73	33.77	5.8	0.22	81.4
G	22	M	11	5.49	26.44	8.54	34.05	5.1	0.16	100.5
		M	11	5.51	26.48	8.55	34.08	5.2	0.18	101.7
		B	21	5.27	26.17	8.49	34.21	5.9	0.30	86.1
		B	21	5.29	26.19	8.46	34.29	5.8	0.34	86.7
		S	1	5.88	26.15	8.62	33.63	4.2	0.50	214.6
		S	1	5.87	27.12	8.64	33.64	4.4	0.80	211.7
Н	19	M	9.5	5.71	27.14	8.61	33.97	5.3	0.12	276.5
	-	M	9.5	5.73	27.13	8.63	33.98	5.9	0.18	277.8
		B	18	5.64	27.08	8.59	34.21	5.6	0.19	108.4
		В	18	5.63	27.04	8.58	34.22	5.8	0.21	109.1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0646A

Table 3.7Summary of In-situ Monitoring Results (Mid-flood)

	93.7							-		0
Monitoring	Water		pling	Dissolved	Temperature	рΗ	Salinity	Turbidity	Current	
Station	Depth	Dep	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
										magnetic)
		S	1	5.72	26.87	8.73	34.06	3.2	2.26	89.1
		S	1	5.75	26.88	8.74	34.07	3.3	0.29	88.4
А	15	М	7.5	5.54	26.95	8.72	35.19	3.5	0.34	72.5
	10	М	7.5	5.52	26.94	8.71	35.18	3.8	0.38	74.6
		В	14	5.29	26.44	8.76	35.46	4.1	0.26	92.7
		В	14	5.24	26.42	8.74	35.49	4.3	0.28	92.8
		S	1	6.24	27.02	8.73	33.98	3.4	0.17	24.5
		S	1	6.21	27.01	8.74	33.99	3.6	0.16	26.7
В	14	М	7	6.06	26.90	8.66	34.11	4.1	0.32	41.0
В	14	М	7	6.05	26.98	8.61	34.12	4.2	0.34	42.5
		В	13	5.86	26.84	8.64	34.39	4.6	0.16	19.7
		В	13	5.84	26.81	8.66	34.38	4.5	0.19	19.2
		S	1	6.07	27.81	8.68	33.91	12.8	0.08	173.4
		S	1	6.11	27.83	8.66	33.87	12.9	0.07	177.2
С	12	М	6	5.94	27.46	8.59	34.56	13.2	0.14	89.3
U	12	М	6	5.95	27.42	8.58	34.55	13.8	0.17	90.4
		В	11	5.81	27.01	8.57	35.11	13.1	0.09	107.1
		В	11	5.83	27.02	8.54	35.06	13.4	0.09	108.4
		S	1	5.97	26.90	8.68	32.92	9.7	0.21	12.5
	14	S	1	5.98	26.94	8.68	32.79	9.6	0.24	12.6
D		М	7	6.23	26.96	8.57	32.94	9.6	0.10	18.7
D		М	7	6.27	26.94	8.58	32.99	9.4	0.18	18.9
		В	13	6.40	26.11	8.59	33.18	10.7	0.27	30.1
		В	13	6.44	26.12	8.54	33.14	10.6	0.29	31.1
		S	1	5.87	27.00	8.66	33.84	4.0	0.06	314.6
		S	1	5.86	27.02	8.64	33.89	4.1	0.09	311.9
Е	14	М	7	5.71	26.84	8.39	34.36	4.3	0.18	207.8
E	14	М	7	5.72	26.82	8.37	34.37	4.2	0.17	204.1
		В	13	5.63	26.44	8.31	34.91	5.0	0.05	312.9
		В	13	5.64	26.41	8.32	34.92	5.1	0.04	314.5
		S	1	6.11	27.03	8.66	33.80	4.2	0.14	94.6
		S	1	6.04	27.04	8.61	33.81	4.4	0.16	94.7
F	18	М	9	5.93	26.81	8.64	34.24	4.6	0.21	78.2
Г	10	Μ	9	5.91	26.82	8.69	34.25	4.9	0.23	77.9
		В	17	5.84	26.70	8.67	34.29	5.5	0.15	106.4
		В	17	5.86	26.64	8.62	34.48	5.8	0.18	107.1
		S	1	6.07	26.96	8.64	32.91	3.7	0.09	96.1
		S	1	6.06	26.94	8.66	32.98	3.8	0.09	98.4
G	10	М	6.5	5.83	26.18	8.62	33.46	4.0	0.24	123.7
G	13	М	6.5	5.84	26.11	8.63	33.48	4.1	0.28	122.4
		В	12	5.77	25.97	8.61	34.07	5.2	0.27	79.7
		В	12	5.73	25.94	8.61	34.06	5.4	0.26	79.4
		S	1	6.40	27.03	8.63	33.83	3.1	0.12	62.6
		S	1	6.37	27.08	8.64	33.84	3.2	0.14	64.5
Н	10	М	9.5	6.14	26.90	8.62	33.94	3.0	0.08	78.9
	19	М	9.5	6.13	26.91	8.63	33.99	3.2	0.07	78.6
		В	18	5.92	26.54	8.62	33.72	3.3	0.09	103.4
		В	18	5.97	26.55	8.62	33.74	3.5	0.09	106.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 17

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix F**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)											
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^-	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		() /	(mg/L)	(mg/L)	(mg/L)		· · · · · · · · · · · · · · · · · · ·	() /	
	/	Ś	1	9.6	0.037	0.093	0.109	0.239	1400	0.03	1.1
		S	1	10.6	0.038	0.089	0.114	0.240	1100	0.04	1.0
		M	8.5	8.5	0.036	0.088	0.115	0.240	1300	0.04	1.3
A	17	M	8.5	9.4	0.039	0.090	0.114	0.243	1800	0.04	1.1
		B	16	8.1	0.032	0.090	0.108	0.229	1400	0.03	<1.0
		B	16	7.0	0.035	0.092	0.108	0.235	1100	0.04	<1.0
		S	1	7.0	0.031	0.090	0.106	0.227	1600	0.03	<1.0
		S	1	6.3	0.037	0.092	0.113	0.242	1400	0.04	<1.0
		M	7	7.6	0.033	0.092	0.103	0.228	950	0.03	<1.0
В	14	M	7	8.4	0.033	0.090	0.113	0.236	860	0.04	<1.0
		B	13	9.6	0.037	0.092	0.116	0.245	1200	0.03	<1.0
		B	13	10.0	0.033	0.091	0.119	0.243	1100	0.00	<1.0
		S	10	9.0	0.030	0.092	0.110	0.243	1100	0.04	<1.0
		S	1	9.8	0.040	0.032	0.100	0.236	1300	0.03	<1.0
		M	6	8.7	0.030	0.003	0.100	0.238	1600	0.03	<1.0
С	12	M	6	8.4	0.043	0.089	0.108	0.240	1200	0.04	<1.0
		B	11	8.4	0.056	0.088	0.100	0.240	1900	0.04	<1.0
		B	11	7.7	0.039	0.086	0.116	0.242	1200	0.04	<1.0
		S	1	8.5	0.039	0.000	0.112	0.242	1800	0.04	<1.0
		S	1	7.7	0.035	0.092	0.112	0.242	1700	0.04	<1.0
		M	6.5	8.5	0.033	0.092	0.123	0.233	2000	0.04	<1.0
D	13	M	6.5	9.4	0.041	0.086	0.114	0.245	1400	0.04	<1.0
		B	12	8.7	0.040	0.000	0.115	0.248	1600	0.03	<1.0
		B	12	9.8	0.040	0.092	0.113	0.240	1100	0.03	<1.0
		S	1	7.7	0.034	0.094	0.117	0.242	1500	0.03	<1.0
		S	1	7.1	0.039	0.090	0.120	0.240	1700	0.03	<1.0
		M	8	7.9	0.039	0.091	0.120	0.243	1800	0.04	<1.0
E	16	M	8	8.3	0.033	0.095	0.117	0.247	2000	0.04	<1.0
		B	15	8.5	0.037	0.035	0.113	0.247	1600	0.04	<1.0
		B	15	8.2	0.033	0.000	0.123	0.247	1900	0.04	<1.0
		S	1	9.3	0.043	0.090	0.117	0.230	1500	0.03	<1.0
		S	1	10.1	0.022	0.093	0.113	0.230	1200	0.03	<1.0
		M	11.5	7.6	0.035	0.092	0.121	0.248	1600	0.03	<1.0
F	23	M	11.5	8.1	0.030	0.094	0.113	0.243	1400	0.03	<1.0
		B	22	6.7	0.032	0.090	0.119	0.241	1100	0.04	<1.0
		B	22	7.3	0.033	0.095	0.117	0.239	1600	0.03	<1.0
		Б S	1	15.4	0.034	0.091	0.117	0.242	1500	0.04	<1.0
		S	1	15.4	0.063	0.099	0.138	0.300	1200	0.04	<1.0
		M	11	14.2	0.054	0.101	0.139	0.294	1200	0.04	<1.0
G	22	M	11	14.0	0.029	0.099		0.267	1400	0.04	
		B					0.150	1			<1.0
		B	21	7.0	0.038	0.089	0.118	0.245	1100	0.03	<1.0
		В S	21	15.0	0.029	0.094	0.131	0.254	1500	0.04	<1.0
ы	10		1	8.0	0.046	0.090	0.120	0.256	1300	0.04	<1.0
Н	19	S	1	7.7	0.027	0.106	0.126	0.259	1700	0.04	<1.0
		М	9.5	10.6	0.040	0.090	0.107	0.237	1200	0.03	<1.0

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 18

Report No.: 0041/17/ED/0646A

Monitoring Station	Water Depth (m)	Sam Dep (m)	npling th	TSS (mg/L)	NH₃ as N (mg/L)	NO ₂ - as N (mg/L)	NO ₃ ⁻ as N (mg/L)	TIN (mg/L)	E.coli (cfu/100mL)	Total P (mg/L)	BOD ₅ (mg/L)
		М	9.5	7.4	0.041	0.086	0.107	0.235	1600	0.03	<1.0
		В	18	6.5	0.031	0.101	0.126	0.258	1200	0.04	<1.0
		В	18	13.6	0.029	0.099	0.133	0.261	1800	0.04	<1.0

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

	able 3.9			ary of Lab		· · · ·	· · · ·	/			
Monitoring	Water		npling	TSS	NH ₃	NO_2^-	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	17.0	0.019	0.098	0.148	0.265	1100	0.04	<1.0
		S	1	16.4	0.018	0.097	0.146	0.262	1300	0.04	<1.0
А	15	М	7.5	14.6	0.016	0.097	0.138	0.251	1500	0.04	<1.0
~	15	М	7.5	15.5	0.018	0.098	0.143	0.259	1200	0.04	<1.0
		В	14	15.2	0.018	0.092	0.146	0.256	1100	0.04	<1.0
		В	14	14.4	0.016	0.097	0.139	0.253	1200	0.04	<1.0
		S	1	17.4	0.021	0.093	0.154	0.268	1200	0.04	<1.0
		S	1	13.0	0.022	0.098	0.152	0.272	1500	0.04	<1.0
В	14	М	7	14.3	0.020	0.097	0.144	0.261	2300	0.04	1.2
D	14	М	7	15.4	0.021	0.094	0.143	0.257	1700	0.04	<1.0
		В	13	16.5	0.038	0.097	0.150	0.285	1200	0.04	<1.0
		В	13	15.0	0.022	0.088	0.150	0.261	1100	0.04	1.1
		S	1	14.6	0.029	0.099	0.147	0.274	1600	0.04	1.5
		S	1	15.3	0.019	0.092	0.150	0.262	1400	0.04	<1.0
С	12	М	6	15.4	0.021	0.096	0.155	0.272	900	0.04	1.2
U	12	Μ	6	14.5	0.019	0.087	0.153	0.259	820	0.04	1.1
		В	11	13.1	0.019	0.094	0.163	0.275	1200	0.04	<1.0
		В	11	14.0	0.021	0.094	0.155	0.270	1400	0.04	1.0
		S	1	13.8	0.032	0.090	0.146	0.268	1500	0.04	2.0
		S	1	13.4	0.031	0.095	0.140	0.266	1300	0.04	1.6
D	14	М	7	13.5	0.026	0.090	0.148	0.265	800	0.04	1.7
D	1-7	Μ	7	12.9	0.024	0.096	0.143	0.264	910	0.04	1.7
		В	13	12.0	0.026	0.095	0.151	0.272	1300	0.04	1.7
		В	13	12.7	0.029	0.096	0.150	0.275	1400	0.04	1.7
		S	1	9.6	0.013	0.098	0.140	0.251	620	0.04	<1.0
		S	1	10.3	0.012	0.094	0.144	0.250	770	0.04	<1.0
Е	14	Μ	7	9.4	0.012	0.105	0.138	0.256	480	0.04	1.0
		Μ	7	10.1	0.012	0.098	0.139	0.248	580	0.04	<1.0
		В	13	8.2	0.016	0.090	0.148	0.254	600	0.04	1.1
		В	13	12.1	0.021	0.098	0.134	0.254	520	0.04	1.3
		S	1	8.2	0.013	0.096	0.160	0.268	450	0.04	1.3
		S	1	7.9	0.018	0.097	0.163	0.279	400	0.04	1.4
F	18	М	9	9.0	0.014	0.096	0.161	0.270	360	0.04	1.3
		М	9	8.2	0.014	0.107	0.149	0.269	290	0.04	1.2
		В	17	9.3	0.011	0.102	0.151	0.264	540	0.04	1.3
		В	17	9.7	0.011	0.104	0.152	0.268	680	0.04	1.2
		S	1	6.3	0.008	0.100	0.233	0.341	250	0.04	1.4
		S	1	7.2	0.007	0.100	0.222	0.329	330	0.04	1.4
G	13	Μ	6.5	7.5	0.009	0.099	0.228	0.337	190	0.04	1.5
	10	Μ	6.5	6.8	0.008	0.100	0.223	0.331	260	0.04	1.3
		В	12	7.9	0.008	0.103	0.206	0.316	380	0.04	1.3
		В	12	7.0	0.011	0.099	0.209	0.319	470	0.04	1.4

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page '	19
--------	----

Monitoring	Water	Sampling		TSS	NH₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Depth		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	8.6	0.007	0.096	0.157	0.260	150	0.04	<1.0
		S	1	9.5	0.014	0.096	0.185	0.296	180	0.04	<1.0
Н	19	М	9.5	8.4	0.008	0.102	0.149	0.259	160	0.04	<1.0
	19	Μ	9.5	9.2	0.016	0.102	0.152	0.269	120	0.04	<1.0
		В	18	7.5	0.010	0.100	0.182	0.293	150	0.04	<1.0
		В	18	7.3	0.015	0.102	0.159	0.276	160	0.04	<1.0

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Date	Ai	r Temperat	ure	Mean	Total	
	Maximum	Mean	Minimum	Relative	Rainfall	
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)	
				(%)		
22 October 2021	20.5	19.3	18.2	77	Trace	

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 20

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey
--

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Monitoring Parame				
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey			
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)			
Total organic carbon* (%)	Chromium (µg/L)			
pH value	Copper (µg/L)			
Ammonia as N (mg-N/kg)	Lead (µg/L)			
Total nitrogen (mg-N/kg)	Mercury ((µg/L)			
Total phosphorus (mg-N/kg)	Nickel (µg/L)			
Cadmium (mg/kg)	Zinc (µg/L)			
Chromium (mg/kg)	Arsenic (µg/L)			
Copper (mg/kg)	Silver (µg/L)			
Lead (mg/kg)				
Mercury (mg/kg)				
Nickel (mg/kg)				
Zinc (mg/kg)]			
Arsenic (mg/kg)]			
Silver (mg/kg)]			

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Page 21

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 22

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 ALS Technichem (HK) Pty Ltd (HOKLAS Reg. No. 066), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test method 8.1, 8.5 and 8,7 (Wet Sieve and Hydrometer Method)	1%
Total Organic Carbon	APHA 5310B	0.05%
pH value	APHA 4500H: B	0.1 pH unit
Ammonia as N	APHA 4500 NH3: B&G	0.5 mg/kg
Total Nitrogen	APHA 4500 Norg: D & APHA 4500 NO3: I	10 mg/kg
Total Phosphorus	APHA 4500P: B&H	10 mg/kg
Cadmium	USEPA 6020A Digestion method: 3051A	0.1 mg/kg
Chromium		0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and

Page 23

weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 22 October 2021. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H.**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0646A

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

Tuble		Ournina	J C							<u></u>			
Monitoring	рН	NH₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/	(mg/	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	kg)	kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)									
А	8.4	1.5	880	425	<0.10	25.8	24.4	33.1	0.10	14.5	75.7	14.9	0.18
В	8.4	1.4	1060	479	<0.10	32.0	35.4	39.3	0.14	19.4	101	12.9	0.31
С	8.2	7.1	1270	609	0.11	34.6	34.3	43.8	0.12	21.6	109	12.3	0.26
D	8.3	3.2	1100	483	<0.10	31.0	28.7	39.7	0.10	18.9	95.7	9.8	0.23
E	8.3	11.0	1350	533	<0.10	33.0	35.7	39.7	0.10	20.7	107	11.3	0.30
F	8.3	12.9	1590	599	<0.10	33.3	37.4	40.6	0.12	21.0	108	11.0	0.30
G	8.4	3.2	1220	564	<0.10	28.8	53.2	39.4	0.11	17.7	115	9.7	0.28
Н	8.4	2.6	1110	466	0.12	34.8	34.0	38.3	0.10	21.6	95.8	13.0	0.21

Table 4.5	Summary of	of laboratory	/ analysis	results for benthic survey
	Currintary C	or iaboratory	anaryoio	

Monitoring Station		Grain size profile (%)			%)	Description	
Station	carbon (%)	Gravel	Sand	Silt	Clay		
A	1.26	4	44	30	22	Dark grey, sandy SILT/CLAY with shell fragments	
В	0.74	0	19	51	30	Dark grey, slightly sandy SILT/CLAY with shell fragments	
С	0.96	0	8	57	35	Dark grey, slightly sandy SILT/CLAY with shell fragments	
D	0.95	0	7	58	35	Dark grey, slightly sandy SILT/CLAY with shell fragments	
Е	0.92	0	8	56	36	Dark grey, slightly sandy SILT/CLAY with shell fragments	
F	1.21	0	6	59	35	Dark grey, slightly sandy SILT/CLAY with shell fragments	
G	0.86	2	14	54	30	Dark grey, slightly sandy SILT/CLAY with shell fragments	
Н	1.01	1	11	55	33	Dark grey, slightly sandy SILT/CLAY with shell fragments	

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix H**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Date	Air Temperature			Mean	Total
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity (%)	(mm)
22 October 2021	20.5	19.3	18.2	77	Trace

 Table 4.6
 Weather condition of water quality monitoring

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 25

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

		/		1	[
Monitoring	Abundance	Total	Number of	Diversity (H')	Evenness (J)
Station	(ind.)	Biomass (g)	Таха		
A	68	1.09	15	2.36	0.87
В	43	0.89	15	2.55	0.94
С	61	0.87	15	2.41	0.89
D	19	0.20	6	1.74	0.97
E	24	0.25	8	1.91	0.92
F	29	0.53	13	2.41	0.94
G	32	2.59	12	2.38	0.96
Н	22	0.19	9	1.93	0.88
TOTAL	298	6.61			

Table 4.7 Summary of benthic survey data on 22 October 202	Table 4.7	Summary of benthic survey data on 22 October 2021
--	-----------	---

- 4.10.5 The benthic survey results are analyzed and presented as below:
 - i) Abundance

A total of 298 benthic organisms was recorded from the eight monitoring stations during October 2021 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data; and to August 2021 results. The current decrease in overall abundance may be attributed to the decrease in *Capitella* and *Nephtys* abundance which could have have been due to the concurrent decrease in total organic carbon of the sediments relative to August 2021 data. As shown in several studies, distribution of Capitella populations is restricted to organically enriched areas as a result of a physiological requirement for sediment with high levels of organic matter for their normal growth (Tutsumi, et al 1990). Same as previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.59; F-crit = 1.59; p-value = 2.40E-09; $\alpha = 0.05$).

In terms of spatial distribution, the lowest abundance of 19 ind. was recorded in the impact station, Station D, while the highest (68 ind.) was noted in the reference station, Station A. Total macrobenthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.00; F-crit = 2.06; P-value = 0.005; $\alpha = 0.05$).

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 6.61 g with the highest biomass recorded in the reference station, Station G (2.59 g) while the lowest biomass was observed in the reference station, Station H (0.19 g). Relative to the August 2021 period, a general decrease in biomass was observed during the current monitoring period. The decrease might be attributed to the parallel decrease in abundance of benthic organisms, i.e. capitellids and nephtyids.

Page 26

Report No.: 0041/17/ED/0646A

iii)

Taxonomic Composition A total of six phyla comprising of 25 families and about 30 genera were identified. During the current monitoring period, the annelids (64.43%) dominated the macrobenthic assemblage followed by the molluscs (11.74%), and arthropods (11.41%) while the group with the lowest dominance were the chordates (0.34%). Relative to August 2021 community assemblage, current results showed similar annelid-dominated community.

This shift in community assemblage with shift in season was also observed during the previous monitoring years.

iv) Diversity

Benthic diversity index (H') in the impact stations ranged from 1.74 to 2.41. In the reference stations, H' values ranged from 1.91 to 2.55. Impact stations remained to have relatively higher diversity values compared to reference stations. In terms of evenness index (J) values, current monitoring results showed that both the impact Stations C and D were able to maintain high evenness index. Current monitoring results indicated an overall increase in diversity and evenness values from the baseline survey condition.

The detailed benthic survey results are provided in **Appendix I**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 27

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 27 August 2021, "Monitoring of Marine Mammals in Hong Kong Waters (2020-21)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2021. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2021-22) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 28

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix L.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 30

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 8, 15, 19 and 25 October 2021. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 22 October 2021. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Page 31

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date			
Air	0	0	1			
Noise	0	0	0			
Water	0	0	0			
Waste	0	0	0			
Others	0	0	0			
Total	0	0	0			

Table 9.1 Cumulative Statistics on Complaints

Table 9.2	Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 32

Report No.: 0041/17/ED/0646A

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

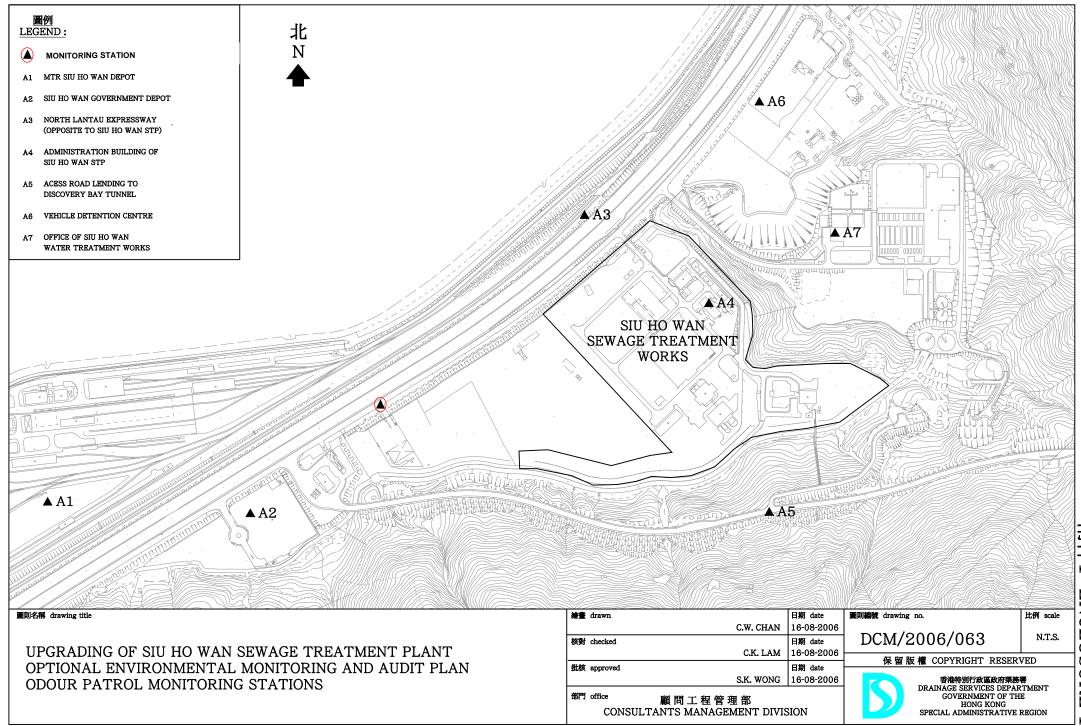
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 33

Report No.: 0041/17/ED/0646A

11. CONCLUSION

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 8, 15, 19 and 25 October 2021. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 22 October 2021 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 27 August 2021, "Monitoring of Marine Mammals in Hong Kong Waters (2020-21)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in August 2021. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2021-22) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

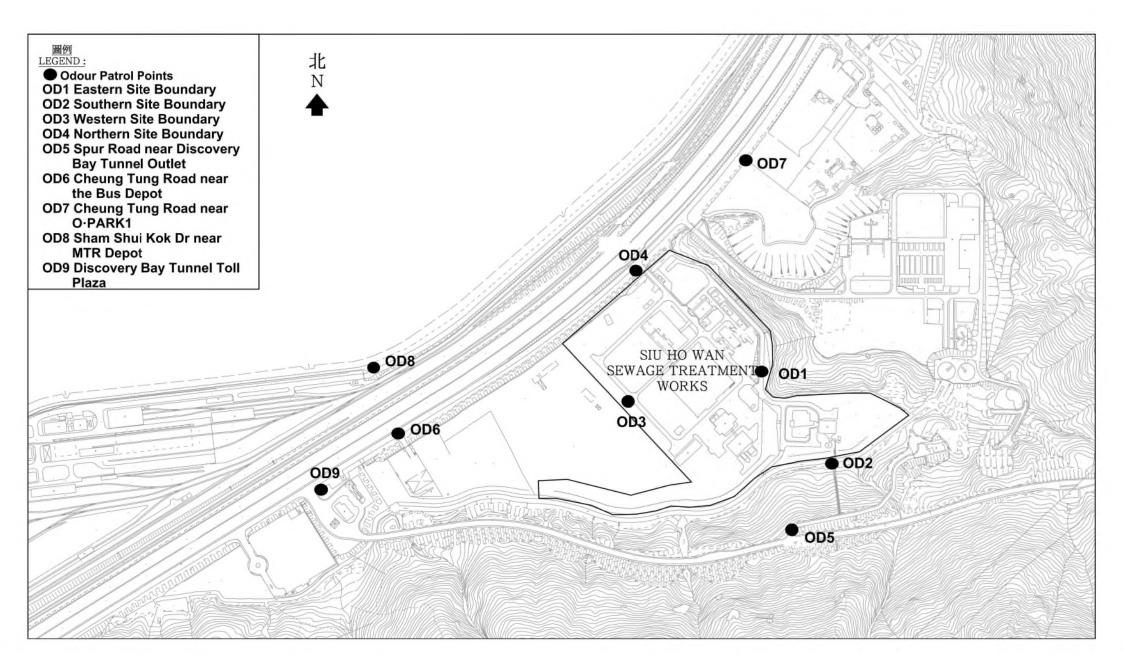
Report No.: 0041/17/ED/0646A

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

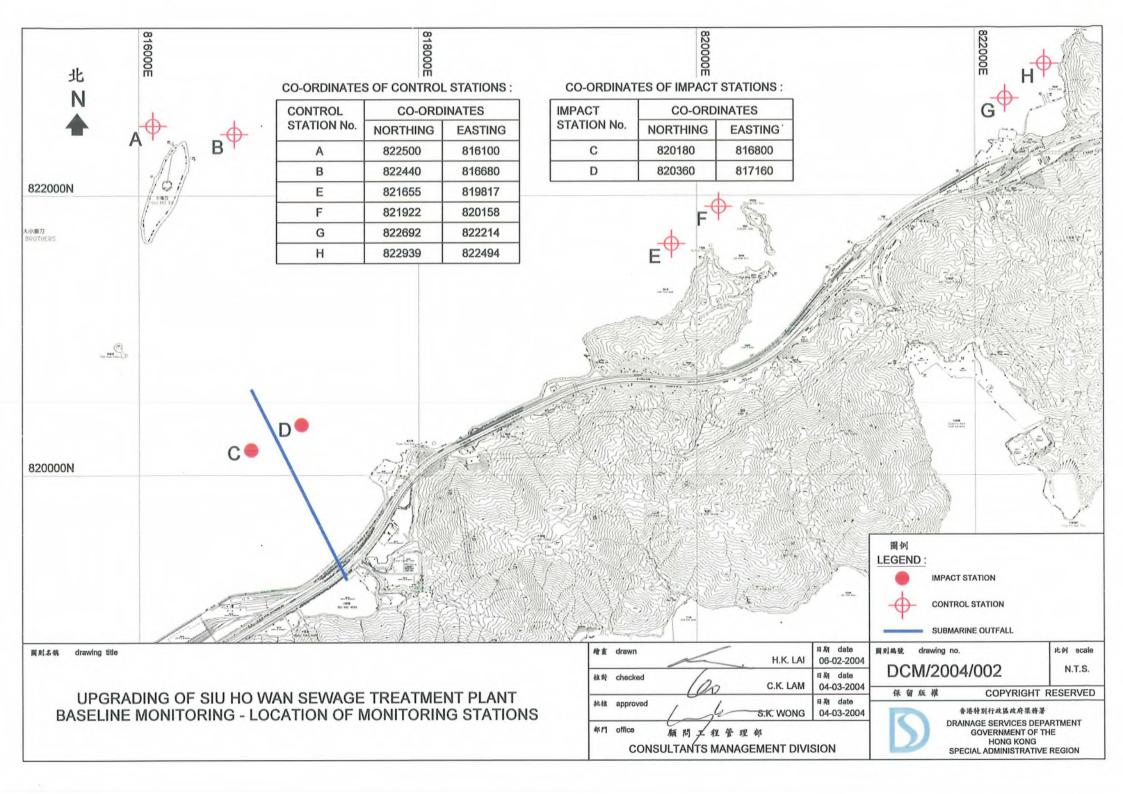

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Figure 2

Odour Patrol Points of Modified Odour Patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Figure 4

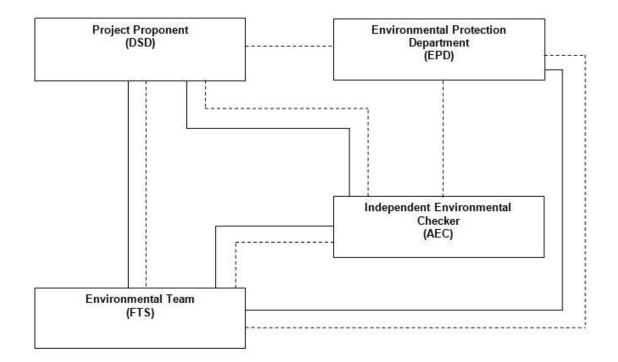
Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Monitoring Schedule for the Present F	Reporting Period
---------------------------------------	------------------

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
					1 October	2	
3	4	5	6	7	8 Odour Patrol	9	
10	11	12	13 Odour Patrol	14	15	16	
17	18	19 Odour Patrol	20	21	22 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (07:31) Mid-Ebb (13:22)	23	
24	25 Odour Patrol	26	27	28	29	30	
31							

Remarks

1. Due to No. 8 NorthEast Gale Or Storm Signal is enforced on 13 October 2021, the odour patrol was rescheduled to 15 October 2021.

Fugro Development Centre,	
5 Lok Yi Street, Tai Lam,	
Tuen Mun, N.T.,	
Hong Kong.	

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 November	2	3	4	5 Odour Patrol	6
7	8	9	10	11 Odour Patrol	12	13
14	15	16	17 Odour Patrol	18	19	20
21	22	23 Odour Patrol	24	25	26	27
28	29 Odour Patrol	30				

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

		ACTION				
EVENT	ET	IEC	*Operator			
Action Level						
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; and Discuss with Operator on required remedial actions. 	 Check odour patrol results submitted by ET; Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; and Amend operation methods if appropriate. 			
Limit Level						
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; Discuss with EPD and the 	 Check odour patrol results submitted by ET; Discuss amongst ET and the Operator on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Indentify/ confirm source with ET; Inform ET, IEC and EPD; Discuss with EPD and ET on the required remedial actions; Ensure remedial actions properly implemented; Take immediate action to avoid further exceedance; Implement the agreed proposals. 			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Operator on the required remedial actions; 10. Submit proposals for remedial actions within 3 working days of notification; 11. Assess effectiveness of Operator's remedial actions and keep EPD informed of the results; 12. Amend proposal if appropriate; and 13. Resubmit proposal if problem still not under control.	
---	--

* The operator who is the constructor responsible for the operation during the maintenance period.

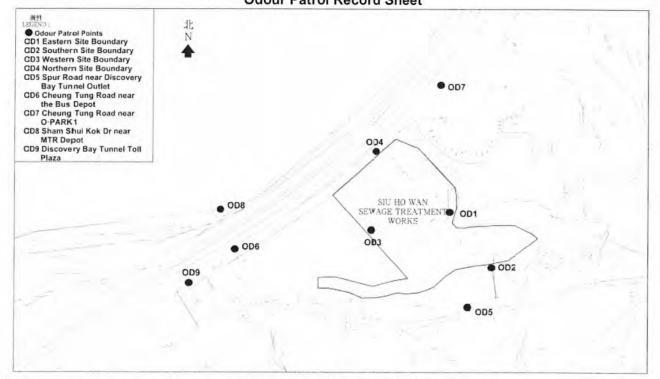
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix D

Results and Graphical Presentation of Air Quality Monitoring


Tel

Room 723 - 726,	7/F, Block B,
Profit Industrial B	uilding,
1-15 Kwai Fung C	crescent, Kwai Fong,
Hong Kong.	

(852)-24508238 (852)-24508032 Fax Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	&/10/2021 Weather Cloud	ty	Temperature	e 25.5	5°C IF	lumidity	93%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	, Odour C	haracteristics
OD1	Eastern Site Boundary	10:28	NW	0.3	0 /		-
OD2	Southern Site Boundary	10:32	/	D	0		/
OD3	Western Site Boundary	10:25	NN	0.2	0		
OD4	Northern Site Boundary	10:23	1	0	0	1	
OD5	Spur Road near Discovery Bay Tunnel Outlet	/	/	/	/		/
OD6	Cheung Tung Road near the Bus Depot	10:04	/	D	D		/
OD7	Cheung Tung Road near O·PARK1	10:11	NW	0.2	0		/
OD8	Sham Shui Kok Dr near MTR Depot	19:59	NE	0.2	C	1	
OD9	Discovery Bay Tunnel Toll Plaza		1	0	O O		/

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance

Slight Moderate Strong Extreme

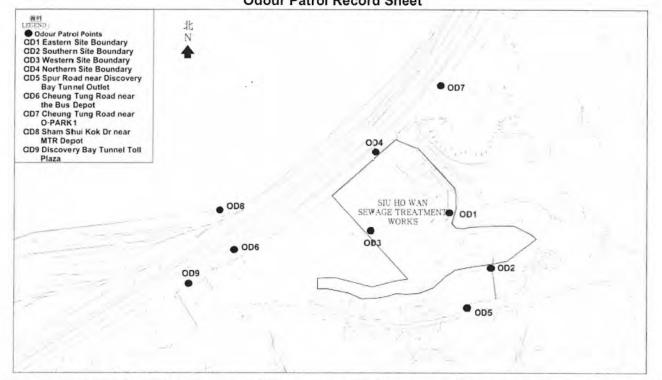
Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by:

led by. Name: Woo 400 10 No 10 12021

Checked by: Ho Name: (Hoi M & Oitober Date: 202

Tel


Fax

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong

: (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Email

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		§-10-21 Weather (1		Cloudy	Temperat	ure 25	.5°C	Humidity	93%							
ID	D Location		Location		Location		Location		Location		Time	Wind Direction	Wind Speed (m/s)	Odour	()dour	Characteristics
OD1	Eastern Site Boundary			10:25	s NW	0.3	0		1							
OD2	Southern Site Boundary			10:37	1 /	Ö	0		/							
OD3	Western Site Boundary			10-7:	5 Ivw	0.2	J	/								
OD4	Northern Site Boundary		10:2	3 1	O	0	101	1								
OD5	Spur Road near Discovery Bay Tunnel Outlet		el Outlet	/	/	/		/								
OD6	Cheung Tung Road near the Bus Depot			oot 10.08	1	0	0	1.1	/							
OD7	Cheung Tung Road near O·PARK1		10:1	NW	0.2	0		/								
OD8	Sham Shui Kok Dr near MTR Depot		9:50	NE	0.2	6		1								
OD9	Discovery Bay Tunnel Toll Plaza			10.04	+ /	O	0		/							

Classification Criteria

Not detected Slight

Moderate

Strong

Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

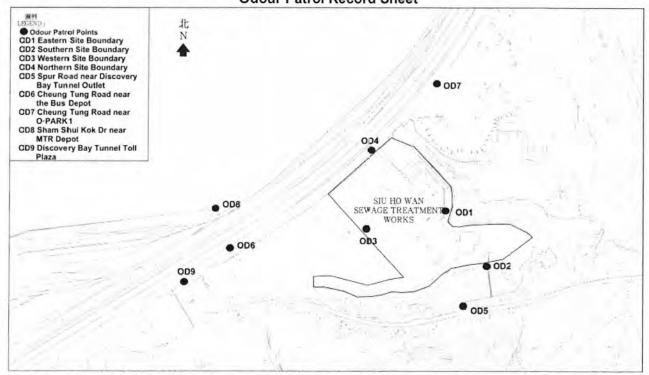
: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name: Cher Ching h Date:


Checked by: Name: CHOI KAm Ho Date: P Detaber 2021

Room 723 - 726, 7/F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	15 /10/2021 Weather Clo	nily	Temperatu	re 25.1	5°C Hu	midity 74 %
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1040	/	Ð	Ð	/
OD2	Southern Site Boundary	1042	/	O	0	/
OD3	Western Site Boundary	10:38	/	O	0	1
OD4	Northern Site Boundary	10:36	1	0	C	1
OD5	Spur Road near Discovery Bay Tunnel Outlet	/	/	/	/	/
OD6	Cheung Tung Road near the Bus Depot	10.23	1	0	0	1
OD7	Cheung Tung Road near O·PARK1	1025	/	0	0	1
OD8	Sham Shui Kok Dr near MTR Depot	1017	1	0	C	1
OD9	Discovery Bay Tunnel Toll Plaza	1022	/	O	C	/

*Classification Criteria:

Not detected Slight Moderate Strong Extreme : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

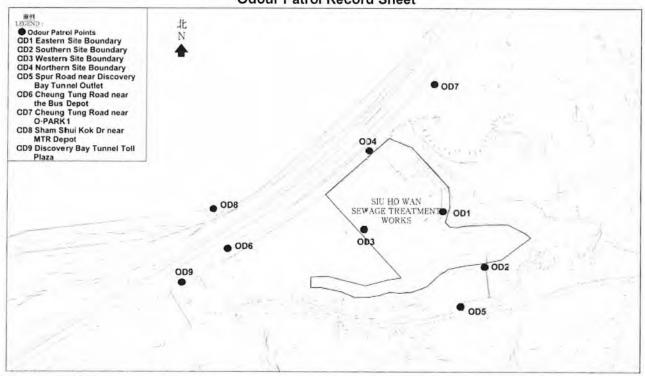
: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Sur him Tans Date: 5 1101 2021


Checked by: Name: CHOL KAM 40 Date: 15 October 202

ROOM 723 - 726, 7/F, BIOCK B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

Tel : (852)-24508238 Fax (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	15-10-21	Weather	Cloudy	Temperatu	re 25.	6°C 1	Humidity	74%
ID	Location		Time	Wind Direction	Wind Speed (m/s)	Odour intensit	y Odour C	Characteristics
OD1	Eastern Site Bounda	ry	10:40	/	U	D		/
OD2	Southern Site Bound	ary	10:42	/	0	0		/
OD3	Western Site Bounda	ary	10:38	/	0	0		/
OD4	Northern Site Bounda	ary	10-36	/	0	0		/
OD5	Spur Road near Disc	overy Bay Tunnel C	utlet	/	/	/		/
OD6	Cheung Tung Road r	near the Bus Depot	10:23	/	0	Ð		/
OD7	Cheung Tung Road r	near O·PARK1	10:25	/	0	0		/
OD8	Sham Shui Kok Dr ne	ear MTR Depot	10:17	/	0	0		/
OD9	Discovery Bay Tunne	el Toll Plaza	10:22	/	6	C		/
			11.4				/	

*Classification Criteria:

Not detected Slight Moderate Strong Extreme

No odour perceived or an odour so weak that it cannot be easily characterised or described

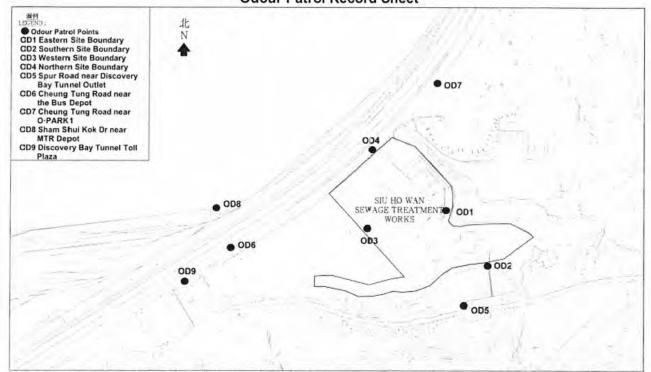
Slight identifiable odour, and slight chance to have odour nuisance Moderate identifiable odour, and moderate chance to have odour nuisance

Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by:

Name: chenny Chroy Date: 15 -10-21


Checked by: Name: CHOI VAW 1-10 Date: 15 October 202

Room /23 - /26, //F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

: (852)-24508238 : (852)-24508032 Tel Fax Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	19/10/2021 Weather Fin	e	Temperatu	re 29	C Hu	midity 62%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	11:43	E	0.4	0	/
OD2	Southern Site Boundary	11:46	/	0	0	/
OD3	Western Site Boundary	11:42	/	0	0	/
OD4	Northern Site Boundary	11:40	E	0.4	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet		/	1	/	/
OD6	Cheung Tung Road near the Bus Depot	11:25	Ē	0.6	0	1
OD7	Cheung Tung Road near O·PARK1	11:22	Ē	P.0	0	/
OD8	Sham Shui Kok Dr near MTR Depot	41:12	Ē	0.9	2	/
OD9	Discovery Bay Tunnel Toll Plaza	11:24	E	0.4	0	/

*Classification Criteria:

Not detected
Slight
Moderate
Strong
Extreme

No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

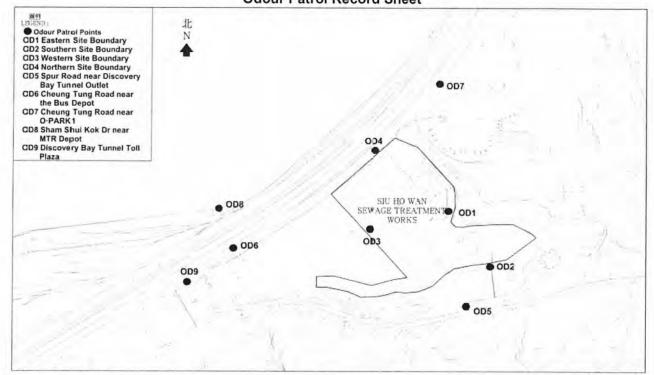
Moderate identifiable odour, and moderate chance to have odour nuisance

Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by:

Name: Chim Date: 19 1101


Checked by: Name: KAM CHU] Ho Date: 19 October 202

Room /23 - /26, //F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date		14- 10-2021 Weather	Fre	Temperatu	re 28	C Hu	umidity 62%
ID	Locati	on	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Easter	rn Site Boundary	(1:43	E	0.4	0	1
OD2	South	ern Site Boundary	11:46	/	D	0	/
OD3	Weste	ern Site Boundary	11:42	1	D	6	1
OD4	Northe	ern Site Boundary	11:40	E	0.9	Ð	1
OD5	Spur F	Road near Discovery Bay Tunnel		1	/	1	1
OD6	Cheur	ng Tung Road near the Bus Depo	t 11:25	F	0.6	0	1
OD7	Cheur	ng Tung Road near O·PARK1	11:22	E	0.8	D	/
OD8	Sham	Shui Kok Dr near MTR Depot	11:18	E	6.4	0	1
OD9	Discov	very Bay Tunnel Toll Plaza	11:24	E	0.4	G	1

*Classification Criteria:

Not detected	
Slight	
Moderate	
Strong	
Extreme	

: No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

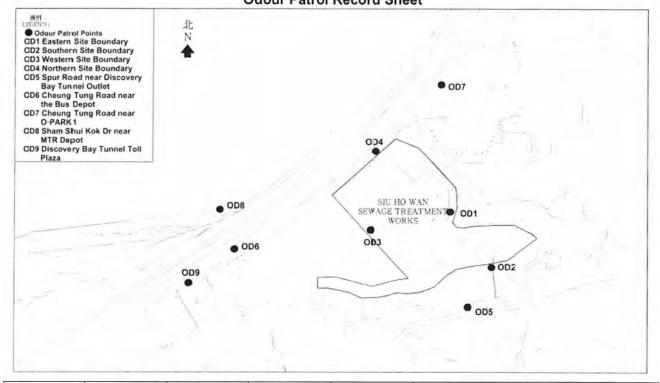
: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Lung form Date: 19 0 - 202

Checked by: Name: CHOIKAM Ho Date: 19 October 2021


Tel Fax

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong

: (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Email

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Location Eastern Site Boundary	Time	Wind Direction	Wind Speed (m/s)	o °C Odour intensi	()dour (Characteristics
	11.51					
Pouthorn Cita Doundon	10161	4	0.8	0	1	/
Southern Site Boundary	16:24	1	0	0		/
Western Site Boundary	16:17	N	1.3	0		/
Northern Site Boundary		1	õ	0		1
Spur Road near Discovery Bay Tunnel Outlet		1	.0	0		1
Cheung Tung Road near the Bus Depot	(6:04	N	1.6	D		1
Cheung Tung Road near O·PARK1	16:07	N		0	,	/
Sham Shui Kok Dr near MTR Depot	15:14	N	0.4	0		/
Discovery Bay Tunnel Toll Plaza	16:02	N		0		1
1 5 0 5 5 0	orthern Site Boundary pur Road near Discovery Bay Tunnel Outlet heung Tung Road near the Bus Depot heung Tung Road near O·PARK1 ham Shui Kok Dr near MTR Depot	Intern Site BoundaryIntern Site Boundarypur Road near Discovery Bay Tunnel Outlet15:48heung Tung Road near the Bus Depot(6:04heung Tung Road near O·PARK1(6:07ham Shui Kok Dr near MTR Depot15:14iscovery Bay Tunnel Toll Plaza16:02	Instruction Instruction Instruction Instruction pur Road near Discovery Bay Tunnel Outlet Instruction pur Road near Discovery Bay Tunnel Outlet Instruction heung Tung Road near the Bus Depot Instruction heung Tung Road near OPARK1 Instruction ham Shui Kok Dr near MTR Depot Instruction iscovery Bay Tunnel Toll Plaza Instruction	Image: State Boundary Image: State Boun	Image: State Boundary Image: State Boun	Intern Site Boundary Intern Site Boundary pur Road near Discovery Bay Tunnel Outlet Intern Site Boundary heung Tung Road near the Bus Depot Intern Site Boundary heung Tung Road near the Bus Depot Intern Site Boundary heung Tung Road near the Bus Depot Intern Site Boundary heung Tung Road near Or PARK1 Intern Site Boundary ham Shui Kok Dr near MTR Depot Intern Site Boundary Iscovery Bay Tunnel Toll Plaza Internet Site Boundary

Slight

Strong Extreme

Moderate

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

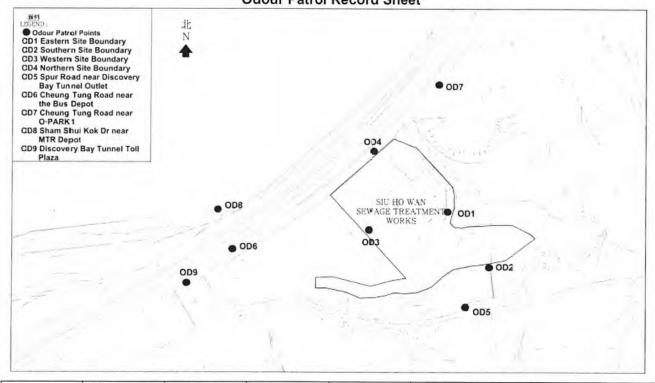
Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by: Name:

ESA KAN KUL Tunh Date: 25 - 10 -1

13 Checked by: KAM Ho Name: CHOI 25 October 2021 Date:


Tel

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hona Kona.

(852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

25 Oct 2021 Weather Find	Time	Wind Direction	Wind Speed	Odour	Odour Characteristics
Eastern Site Boundary	1.1.		(m/s)	intensity	
	16-21	N	0.2	0	1
OD2 Southern Site Boundary			0	O	1
Western Site Boundary	1617	N	13	0	1
Northern Site Boundary	1614	/	12	0	1
Spur Road near Discovery Bay Tunnel Outlet	1542	1	0	0	1
Cheung Tung Road near the Bus Depot	1604	N	1.6	0	/
Cheung Tung Road near O·PARK1	1607	N	0.9	0	/
Sham Shui Kok Dr near MTR Depot	1514	N	0.4	0	/
Discovery Bay Tunnel Toll Plaza	1602	N	1.0	0	/
	orthern Site Boundary pur Road near Discovery Bay Tunnel Outlet heung Tung Road near the Bus Depot heung Tung Road near O PARK1 ham Shui Kok Dr near MTR Depot	orthern Site Boundary にしいて pur Road near Discovery Bay Tunnel Outlet 1542 heung Tung Road near the Bus Depot にものう heung Tung Road near O・PARK1 につう ham Shui Kok Dr near MTR Depot にちいて iscovery Bay Tunnel Toll Plaza しものう	orthern Site Boundary 1611 orthern Site Boundary 1614 pur Road near Discovery Bay Tunnel Outlet 1544 heung Tung Road near the Bus Depot 1664 heung Tung Road near O·PARK1 16°1 ham Shui Kok Dr near MTR Depot 1514	orthern Site Boundary 1014 0 orthern Site Boundary 1014 0 pur Road near Discovery Bay Tunnel Outlet 1543 0 heung Tung Road near the Bus Depot 1664 1.1 heung Tung Road near O'PARK1 16°1 N 0.9 ham Shui Kok Dr near MTR Depot 1514 0 0.4	orthern Site Boundary ICT IC

Slight

Strong

Extreme

Moderate

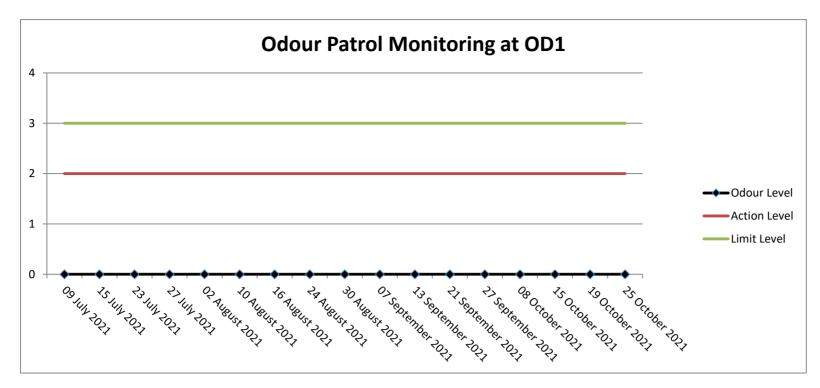
Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

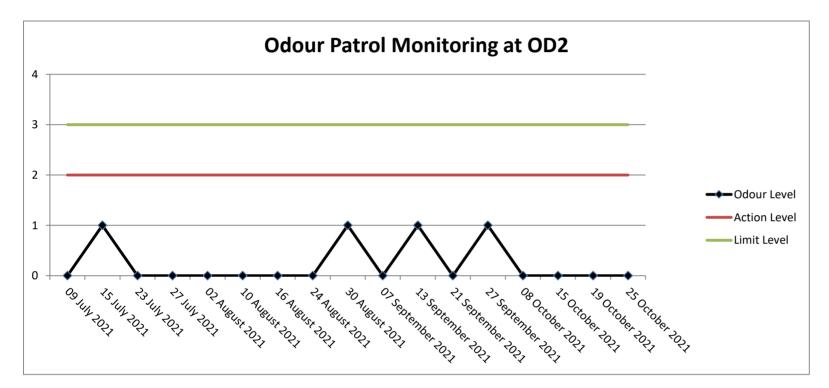
Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

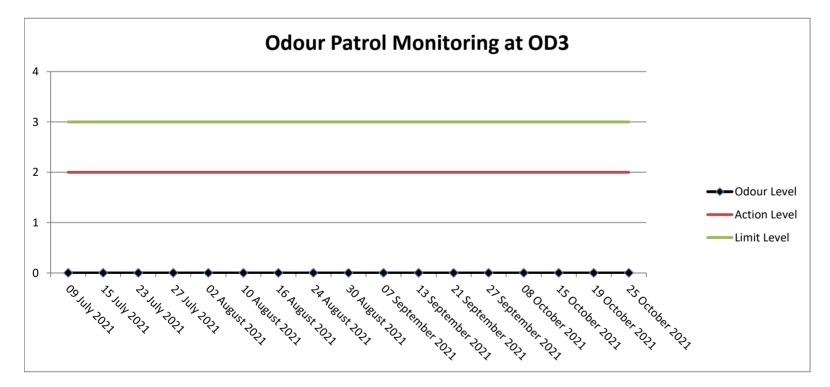

3 Recorded by: Name: FUN/ Date:

KACHUN 25 0/ 1021

Checked by: Name: KAM HUI 10 25 Date: 2021 October

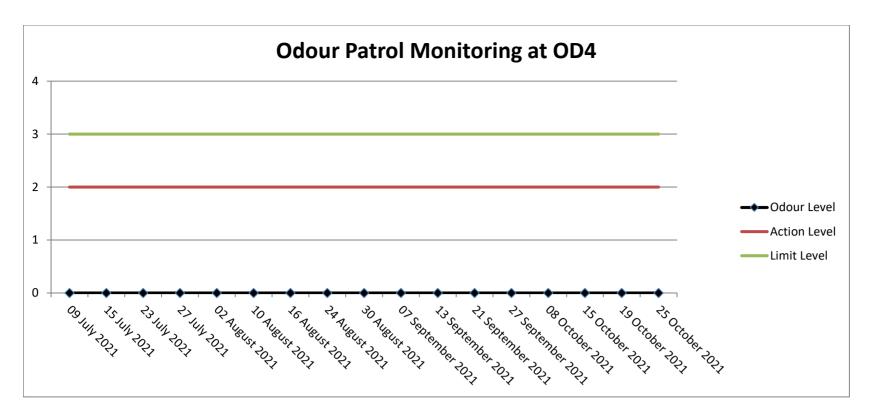

The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

A Fugro Group Company

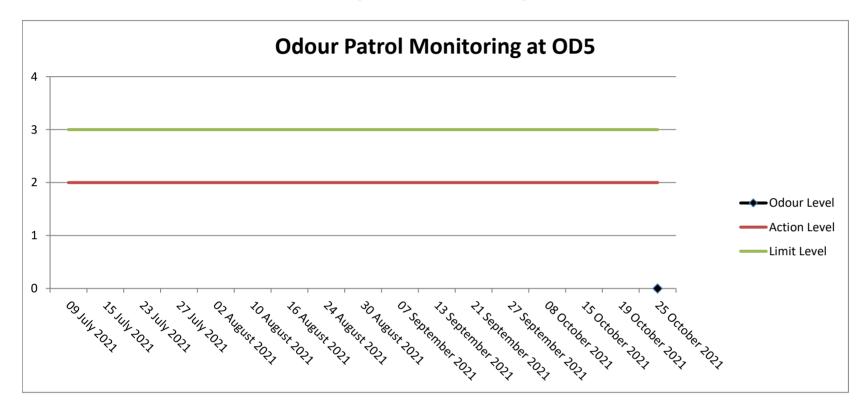

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

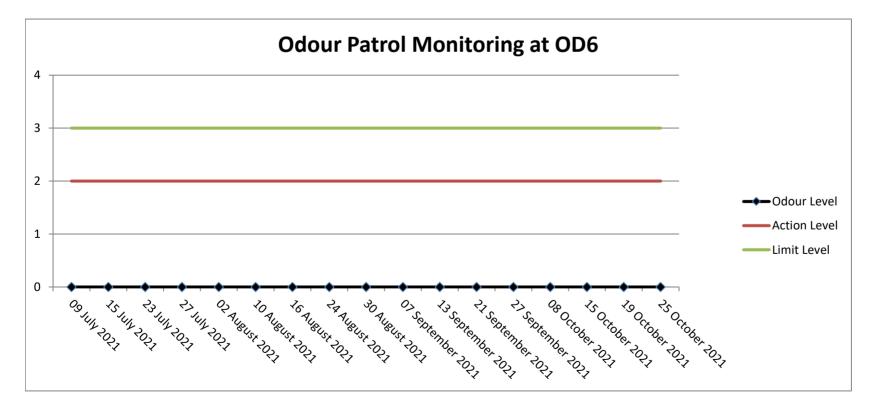
Note:


Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:


Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

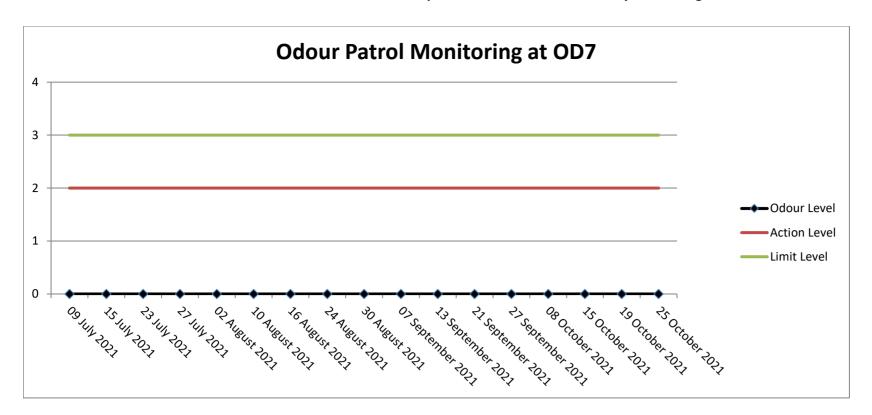
Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

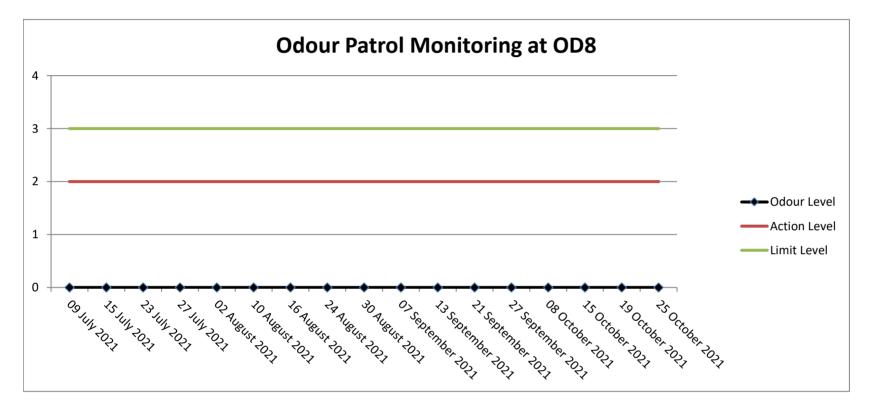
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

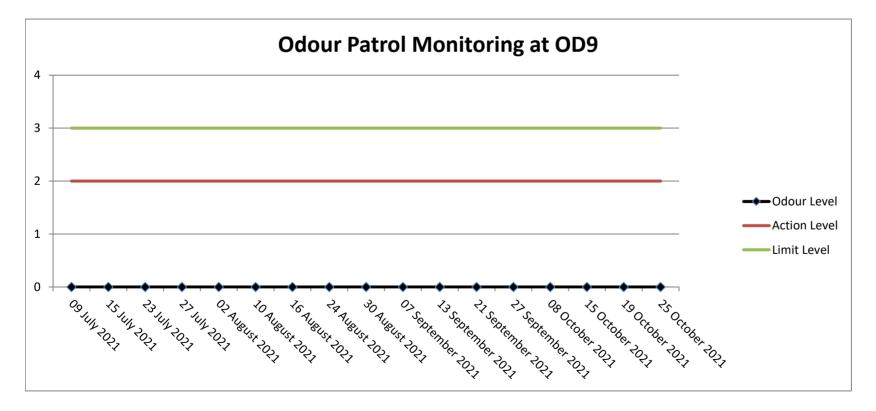


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA212355

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	:	13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 525120
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA212355/1
Date of calibration	:	11/10/2021
Next calibration date	:	10/01/2022
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

5 Lok Yi Street, Tai Lam

Report No. : 142626WA212355

Page 2 of 3

Tuen Mun, NT Hong Kong

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)				
Theoretical	Measured	Deviation		
9.18	9.18	0.00		
6.86	6.86	0.00		

B. Salinity calibration

	Salinity, ppt				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.03	+0.03	± 0.5		
20	20.05	+0.05	± 1.0		
30	29.87	-0.13	± 1.5		
40	39.74	+0.26	± 2.0		

C. Dissolved Oxygen calibration

	Dissolved oxygen content, mg/L		
Trial No.	By calibrated D.O. meter	By D.O. meter	
1	7.40	7.41	
2	7.40	7.41	
3	7.42	7.41	
Average	7.41	7.41	

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 9 ((Date ٠

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 142626WA212355

Page 3 of 3

Results :

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
24.91	24.89

E. Turbidity calibration

	Turbidity, N.T.U.				
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
4	4.08	+0.08	± 0.6		
8	8.09	+0.09	± 0.8		
40	39.72	-0.28	± 3.0		
80	79.57	-0.43	± 4.0		

Certified by-Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories 9/11/2021 Date

** End of Report **

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

Location Tide Mode Weather Condition Time Condition Function Condition Space Condition Condition </th <th></th> <th>I</th> <th>n-situ Meas</th> <th>sureme</th> <th>nt</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Laborato</th> <th>ry Analysi</th> <th>S</th> <th></th> <th></th>													I	n-situ Meas	sureme	nt						Laborato	ry Analysi	S										
A 221/0021 Moderam 1155 17 S 1 271 24.10 28.84 574 3.6 0.13 5.6.5 0.00 0.00 0.00 1 A 221/0221 M4EBb Fine Moderam 1155 17 A 52 32.4 86.4 574 3.6 10.8 5.6 10.8 0.00 0.00 11.0 0.04 1 A 221/0221 M4EBb Fine Moderam 11.55 17 M.4.0 12.8 12.7 12.8 12.7 12.8 14.0 0.030 0.040 11.4 0.243 12.9 12.8 14.0 0.030 0.040 10.18 0.242 14.00 0.030 1.04 0.033 0.040 11.4 0.243 12.9 0.24 14.0 0.22 14.00 0.033 0.040 11.4 0.24 14.0 0.22 14.00 0.034 1.4 0.24 1.4 0.033 0.02 10.18 <t< th=""><th>•</th><th>Date</th><th>Tide Mode</th><th>Weather</th><th></th><th>Time</th><th>Depth</th><th>•</th><th>•</th><th>Replicate</th><th>рН</th><th></th><th></th><th>Saturation</th><th></th><th></th><th>Speed</th><th>Direction (degree</th><th>Suspended Solids</th><th>Nitrogen</th><th>Nitrogen (mg/L-</th><th>Nitrogen</th><th>Inorganic Nitrogen</th><th></th><th>phosphorus (solube and particulate)</th><th>BOD</th></t<>	•	Date	Tide Mode	Weather		Time	Depth	•	•	Replicate	рН			Saturation			Speed	Direction (degree	Suspended Solids	Nitrogen	Nitrogen (mg/L-	Nitrogen	Inorganic Nitrogen		phosphorus (solube and particulate)	BOD								
A. 221/02/21 MdeEbb. Final. Moderates 1156 17 S 1 2 72 34/2 36/2 44/2 56/2 36/2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td><td>Value</td></th<>											Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value								
A 22/10/2021 MdeEbb Fine Moderate 1155 17 M 8.5 1 8.71 3.43 26.11 5.2 6.71 3.43 26.11 5.2 6.71 3.43 26.11 5.2 6.71 3.43 26.11 5.2 6.71 3.43 26.11 5.2 6.71 3.43 26.11 5.2 6.71 6.41 5.2 6.71 6.41 5.2 6.71 6.41 5.2 6.71 6.41 5.2 6.71 6.41 6.52 4.6 7.2 6.55 4.1 6.1 6.62 7.6 6.55 4.1 6.1 6.62 4.6 7.2 6.5 6.5 4.1 6.1 6.6 9.2 7.2 6.5 7.6 4.0 7.2 6.3 0.031 0.092 0.016 0.228 4.00 0.031 0.029 0.016 0.28 4.00 0.031 0.090 0.016 0.28 4.00 0.031 0.040 0.016 0.016	A	22/10/2021	Mid-Ebb	Fine	Moderate	11:55	17	S	1	1	8.71	34.10	26.93	86.4	5.77	3.8	0.13	54.6	9.6	0.037	0.093	0.109	0.239	1400	0.03	1.1								
A 22/12/221 Modelse b Frie Modelse term 155 17 M 8.5 2 77 34.39 26.10 56.1 0.54 72.4 0.52 1800 0.033 0.050 0.114 0.242 1800 0.034 1 A 22/10/2021 Minesbe Frie Moderate 1155 17 6 16 1 84.4 57.6 6.1 0.033 0.050 0.018 0.228 1000 0.033 1 B 22/10/2021 Minesbe Frie Moderate 12.01 1 <th1< th=""> 1 1 <th1< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.0</td></th1<></th1<>									1																	1.0								
A 22/10/2021 Moderbe Fine Moderate 1155 17 B 16 1 6.64 3.56 1.68 7.68 7.6 0.035 0.035 0.028 0.108 0.228 1400 0.034 <1 B 22/10/2021 Muderbb Fine Moderba 11.55 1 1 6.59 3.312 22/17 3.04 6.58 4.4 0.011 0.34 7.6 0.033 0.080 0.160 0.228 1900 0.04 6.8 4.4 0.011 0.34 7.6 0.033 0.080 0.113 0.228 9.60 0.033 0.080 0.113 0.228 9.60 0.033 0.080 0.113 0.228 9.60 0.033 0.080 0.113 0.228 9.60 0.033 0.080 0.013 0.028 0.013 0.028 0.013 0.028 0.013 0.028 0.013 0.028 0.018 0.028 0.014 0.043 0.043 0.04											0.1.1															1.3								
A 22102021 Muebb Fine Moderate 11:36 17 B 16 2 8:60 4:27 5:34 4:9 0:28 7:60 0:33 0:092 10:6 0:228 11:00 0:04 B 22/10/221 Muebb Fine Moderate 12:04 14 N 7 2 8:33 27:04 8:04 6:36 4:10 14 3:45 7:0 0:33 10:02 0:04 ci B 22/10/221 Muebb Fine Moderate 12:04 14 B 7 2 8:33 27:06 8:81 15:02 16:0 0:033 0:029 0:116 0:246 10:00 0:44 10:0 0:44 10:0 0:044 ci 0:033 0:029 0:116 0:246 10:0 0:44 10:0 0:044 10:0 0:044 10:0 0:044 10:0 0:044 10:0 0:04 10:0 0:04 10:0 0:04 10:0 0:02																										1.1 <1.0								
B 22/10/2021 Modebb Fine Moderate 1/2 and 1/4 S 1 1 8/2 27/32 90.6 5.89 4.1 0.14 132.5 7.0 0.031 0.092 0.116 0.022 1400 0.043 < <th> B 22/10/2021 Matcbb Fine Moderate 1/2 and 1</th>	B 22/10/2021 Matcbb Fine Moderate 1/2 and 1																										<1.0							
B 221/02/21 Md-Ebb Fine Moderate 12/24 14 N 1 2 8.88 4.3 0.13 12/27 6.3 0.037 0.082 0.113 0.242 1400 0.04 < <th><<th> B 221/02/21 Md-Ebb Fine Moderate 12/04 14 M 7 8.73 35.67 27.13 87.4 5.77 4.6 0.02 10.41 8.4 0.03 0.080 0.118 0.223 866.0 0.04 B 221/02/21 Md-Ebb Fine Moderate 12/2 14 8.4 0.88 27.7 6.08 7.8 0.14 2.48/5 0.8 0.030 0.082 0.116 0.233 10.00 0.033 0.013 0.238 10.00 0.033 0.201 0.040 0.082 0.116 0.233 10.00 0.033 0.201 0.021 0.014 0.238 10.00 0.033 0.201 0.021</th></th>	< <th> B 221/02/21 Md-Ebb Fine Moderate 12/04 14 M 7 8.73 35.67 27.13 87.4 5.77 4.6 0.02 10.41 8.4 0.03 0.080 0.118 0.223 866.0 0.04 B 221/02/21 Md-Ebb Fine Moderate 12/2 14 8.4 0.88 27.7 6.08 7.8 0.14 2.48/5 0.8 0.030 0.082 0.116 0.233 10.00 0.033 0.013 0.238 10.00 0.033 0.201 0.040 0.082 0.116 0.233 10.00 0.033 0.201 0.021 0.014 0.238 10.00 0.033 0.201 0.021</th>	B 221/02/21 Md-Ebb Fine Moderate 12/04 14 M 7 8.73 35.67 27.13 87.4 5.77 4.6 0.02 10.41 8.4 0.03 0.080 0.118 0.223 866.0 0.04 B 221/02/21 Md-Ebb Fine Moderate 12/2 14 8.4 0.88 27.7 6.08 7.8 0.14 2.48/5 0.8 0.030 0.082 0.116 0.233 10.00 0.033 0.013 0.238 10.00 0.033 0.201 0.040 0.082 0.116 0.233 10.00 0.033 0.201 0.021 0.014 0.238 10.00 0.033 0.201 0.021	1									-	0.00															<1.0						
B 22102021 Md-Ebb Fine Moderate 1224 326 27.41 87.6 57.9 4.4 0.21 103.4 7.6 0.033 0.032 0.013 2.22 9960 0.033 0.032 0.013 2.22 9960 0.033 0.032 0.013 0.228 9960 0.033 0.032 0.013 0.228 9960 0.033 0.032 0.013 0.224 100.003 c.4 B 22104021 Md-Ebb Free Moderate 12.2 8.63 3.83 27.2 8.61 5.62 4.9 0.17 8.82 3.6 0.033 0.032 0.016 0.224 100 0.035 c.4 0.035 <td></td> <td><1.0</td>																										<1.0								
B 221/02021 Md-Ebb Fine Moderate 12:04 14 B 7 2 8.73 3.57 27.13 87.4 5.74 4.6 0.22 104.1 84.4 0.033 0.090 0.113 0.226 860 0.048 < <th> B 2210/0201 Md-Ebb Fine Moderate 12:04 14 B 13 1 853 33.88 27:04 85.2 5.65 5.1 0.19 83.3 10.0 0.033 0.091 0.116 0.243 1100 0.044 C 2210/0201 Md-Ebb Fine Moderate 12:12 12 M 6 1 8591 33:11 26:84 88:1 5.77 84.4 0.041 0.087 0.116 0.228 100 0.044 0.087 0.110 0.238 100 0.044 0.087 0.041 0.086 0.116 0.224 100 0.044 0.041 0.044 0.044</th>	B 2210/0201 Md-Ebb Fine Moderate 12:04 14 B 13 1 853 33.88 27:04 85.2 5.65 5.1 0.19 83.3 10.0 0.033 0.091 0.116 0.243 1100 0.044 C 2210/0201 Md-Ebb Fine Moderate 12:12 12 M 6 1 8591 33:11 26:84 88:1 5.77 84.4 0.041 0.087 0.116 0.228 100 0.044 0.087 0.110 0.238 100 0.044 0.087 0.041 0.086 0.116 0.224 100 0.044 0.041 0.044 0.044									7																	<1.0							
B 22/10/2021 Mul-Ebb Fine Moderate 12:24 1 1 2 85.8 27.04 86.2 56.3 5.1 0.19 89.3 10.0 0.033 0.091 0.119 0.243 1100 0.044 cl C 22/10/2021 Mul-Ebb Fine Moderate 12:12 S 1 2 86.4 22:23 97.7 68.0 78.4 0.044 0.048 0.048 0.048 0.048 0.048 0.0108 0.238 1000 0.033 cf C 22/10/2021 Mul-Ebb Fine Moderate 12:12 1 6 2 85.21 28.83 35.7 8.4 0.048 0.048 0.048 0.048 0.044 cl 0.041 0.048 0.016 0.024 0.016 0.024 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	В	22/10/2021	Mid-Ebb		Moderate	12:04	14	М	7				27.13	87.4	5.74	4.6	0.22	104.1	8.4	0.033	0.090	0.113	0.236	860	0.04	<1.0								
C 22/10/2021 Mid-Ebb Fine Moderate 12:1 2 5 1 1 8.68 28:07 27:23 97.7 6.08 7.8 0.14 244.7 9.8 0.030 0.038 < <th><<th> C 221/02021 Mid-Ebb Fine Moderate 12:12 12 14 6.6 1 8.5 5.74 8.9 0.27 192.6 8.7 0.041 0.089 0.108 0.238 1600 0.044 C 221/02021 Mid-Ebb Fine Moderate 12:12 1 1 8.66 2.693 8.61 5.74 8.4 0.043 0.068 0.118 0.246 1200 0.04 C 221/02021 Miderate 12:12 1 1 8.63 3.52 2.588 10.10 0.12 17.4 0.76 0.38 0.038 0.038 0.048 0.118 0.246 100 0.03 4.3 0.040 0.114</th></th>	< <th> C 221/02021 Mid-Ebb Fine Moderate 12:12 12 14 6.6 1 8.5 5.74 8.9 0.27 192.6 8.7 0.041 0.089 0.108 0.238 1600 0.044 C 221/02021 Mid-Ebb Fine Moderate 12:12 1 1 8.66 2.693 8.61 5.74 8.4 0.043 0.068 0.118 0.246 1200 0.04 C 221/02021 Miderate 12:12 1 1 8.63 3.52 2.588 10.10 0.12 17.4 0.76 0.38 0.038 0.038 0.048 0.118 0.246 100 0.03 4.3 0.040 0.114</th>	C 221/02021 Mid-Ebb Fine Moderate 12:12 12 14 6.6 1 8.5 5.74 8.9 0.27 192.6 8.7 0.041 0.089 0.108 0.238 1600 0.044 C 221/02021 Mid-Ebb Fine Moderate 12:12 1 1 8.66 2.693 8.61 5.74 8.4 0.043 0.068 0.118 0.246 1200 0.04 C 221/02021 Miderate 12:12 1 1 8.63 3.52 2.588 10.10 0.12 17.4 0.76 0.38 0.038 0.038 0.048 0.118 0.246 100 0.03 4.3 0.040 0.114	5																									<1.0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																										<1.0								
$ \begin{array}{c} \hline C \\ \hline C \\ \hline C \\ C \\ C \\ C \\ C \\ C \\ C$									1																	<1.0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•								1	-																<1.0								
C 22/10/2021 Mid-Ebb Fine Moderate 12/12 12 B 11 1 8.66 34.52 28.61 36.4 6.69 10.1 0.12 174.5 8.4 0.036 0.018 0.017 0.220 0.04 < <th><<th><<th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 S 1 1 8.13 34.28 28.13 87.6 5.73 8.1 0.066 10.16 0.039 0.091 0.112 0.242 1200 0.04 <<th><<th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th></th></th></th></th></th>	< <th><<th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 S 1 1 8.13 34.28 28.13 87.6 5.73 8.1 0.066 10.16 0.039 0.091 0.112 0.242 1200 0.04 <<th><<th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th></th></th></th></th>	< <th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 S 1 1 8.13 34.28 28.13 87.6 5.73 8.1 0.066 10.16 0.039 0.091 0.112 0.242 1200 0.04 <<th><<th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th></th></th></th>	< <th> D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 S 1 1 8.13 34.28 28.13 87.6 5.73 8.1 0.066 10.16 0.039 0.091 0.112 0.242 1200 0.04 <<th><<th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th></th></th>	D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 S 1 1 8.13 34.28 28.13 87.6 5.73 8.1 0.066 10.16 0.039 0.091 0.112 0.242 1200 0.04 < <th><<th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th></th>	< <th><<th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th></th>	< <th><<th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th></th>	< <th> S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033</th>	S 0.019 0.012 0.222 130 S 1 1 8.86 3.64 9.2 0.18 8.4 0.091 0.014 0.014 0.024 2.023 0.004 0.014 0.024 100 0.033 0.036 0.018 0.011 0.024 0.024 100 0.034 0.014 0.038 0.041 0.038 0.041 0.038 0.041 0.038 0.031 0.031 0.031 0.011 0.242 10 0.033	<u> </u>																									<1.0 <1.0
C 22/10/2021 Mid-Ebb Fine Moderate 12:12 12 8 11 21 8.62 3.63 85.2 5.68 10.4 177.6 7.7 0.039 0.036 0.116 0.242 1200 0.04 < <th><<th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 S 1 2.813 87.6 5.73 8.1 0.061 0.116 0.242 0.004 <<td><<td>0.035 0.092 0.125 0.223 1700 0.044 <<td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td></td></td></th></th></th>	< <th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 S 1 2.813 87.6 5.73 8.1 0.061 0.116 0.242 0.004 <<td><<td>0.035 0.092 0.125 0.223 1700 0.044 <<td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td></td></td></th></th>	< <th> D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 S 1 2.813 87.6 5.73 8.1 0.061 0.116 0.242 0.004 <<td><<td>0.035 0.092 0.125 0.223 1700 0.044 <<td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td></td></td></th>	D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 S 1 2.813 87.6 5.73 8.1 0.061 0.116 0.242 0.004 < <td><<td>0.035 0.092 0.125 0.223 1700 0.044 <<td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td></td></td>	< <td>0.035 0.092 0.125 0.223 1700 0.044 <<td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td></td>	0.035 0.092 0.125 0.223 1700 0.044 < <td><<td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td></td>	< <td>0.04 <<td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td><td>č</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></td>	0.04 < <td>0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<</td> <td>č</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td><1.0</td>	0.014 0.024 0.014 0.024 0.023 0.12 0.2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2.824 3.456 270.33 8.2 5.41 10.1 0.31 8.8 7.044 0.041 0.036 0.032 0.118 0.245 1400 0.033 1 8.86 5.44 10.31 9.8 9.8 0.036 0.032 0.011 0.2424<	č								-	-																<1.0
D 22/10/2021 Mid-Ebb Fine Moderate 1/225 13 S 1 1 8.13 34.28 28.13 87.6 6.73 8.1 0.061 19.1 8.5 0.039 0.091 0.112 0.242 1800 0.044 < <th><<th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 1225 13 M 6.5 2 8.24 87.4 57.7 8.3 5.4 87.4 87.4 57.7 0.035 0.092 0.114 0.242 2000 0.04 1 0.65 1 8.4 5.7 2.8 0.18 38.7 9.4 0.041 0.094 0.114 0.242 1000 0.03 0.12 0.242 1000 0.03 0.12 0.242 100 0.03 0.12 0.242 1100 0.03 0.14 0.242 1100 0.03 0.12 12.4 100 0.03 0.114 <</th></th></th>	< <th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 1225 13 M 6.5 2 8.24 87.4 57.7 8.3 5.4 87.4 87.4 57.7 0.035 0.092 0.114 0.242 2000 0.04 1 0.65 1 8.4 5.7 2.8 0.18 38.7 9.4 0.041 0.094 0.114 0.242 1000 0.03 0.12 0.242 1000 0.03 0.12 0.242 100 0.03 0.12 0.242 1100 0.03 0.14 0.242 1100 0.03 0.12 12.4 100 0.03 0.114 <</th></th>	< <th> D 22/10/2021 Mid-Ebb Fine Moderate 1225 13 M 6.5 2 8.24 87.4 57.7 8.3 5.4 87.4 87.4 57.7 0.035 0.092 0.114 0.242 2000 0.04 1 0.65 1 8.4 5.7 2.8 0.18 38.7 9.4 0.041 0.094 0.114 0.242 1000 0.03 0.12 0.242 1000 0.03 0.12 0.242 100 0.03 0.12 0.242 1100 0.03 0.14 0.242 1100 0.03 0.12 12.4 100 0.03 0.114 <</th>	D 22/10/2021 Mid-Ebb Fine Moderate 1225 13 M 6.5 2 8.24 87.4 57.7 8.3 5.4 87.4 87.4 57.7 0.035 0.092 0.114 0.242 2000 0.04 1 0.65 1 8.4 5.7 2.8 0.18 38.7 9.4 0.041 0.094 0.114 0.242 1000 0.03 0.12 0.242 1000 0.03 0.12 0.242 100 0.03 0.12 0.242 1100 0.03 0.14 0.242 1100 0.03 0.12 12.4 100 0.03 0.114 <																										<1.0					
D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 1 8.23 3.44 9.7.2 8.5 5.7.1 8.6 0.07 20.3 7.7 0.035 0.032 0.12 0.233 1.14 0.249 2000 0.04 < <th><<th><<th><<th><<th><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<></th></th></th></th></th>	< <th><<th><<th><<th><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<></th></th></th></th>	< <th><<th><<th><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<></th></th></th>	< <th><<th><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<></th></th>	< <th><<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<></th>	< <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<>									1	-																<1.0			
D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 M 6.5 2 8.24 34.57 27.22 83.5 5.53 9.9 0.19 38.7 9.4 0.041 0.086 0.118 0.245 1400 0.03 <1 D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 B 12 2 8.07 34.89 27.04 82.6 5.48 10.8 0.37 9.6 9.8 0.036 0.092 0.117 0.242 1100 0.03 <1	D							Š	1	2	8.14															<1.0								
D 22/10/2021 Mid-Ebb Fine Moderate 12.25 13 B 12 1 8.6 3.2 5.41 10.1 0.31 0.38 8.7 0.040 0.092 0.116 0.248 1600 0.03 < <th><<th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12.22 1 8.6 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.8 6.4 3.8 3.4 5.9 4.8 1.4 7.1 0.039 0.091 0.117 0.249 1700 0.04 <<td><<td>2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010</td><td>D</td><td>22/10/2021</td><td>Mid-Ebb</td><td>Fine</td><td>Moderate</td><td>12:25</td><td>13</td><td>М</td><td>6.5</td><td>1</td><td>8.23</td><td>34.44</td><td>27.29</td><td>83.1</td><td>5.49</td><td>9.2</td><td>0.18</td><td>38.4</td><td>8.5</td><td>0.041</td><td>0.094</td><td>0.114</td><td>0.249</td><td>2000</td><td>0.04</td><td><1.0</td></td></th></th></th>	< <th><<th> D 22/10/2021 Mid-Ebb Fine Moderate 12.22 1 8.6 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.8 6.4 3.8 3.4 5.9 4.8 1.4 7.1 0.039 0.091 0.117 0.249 1700 0.04 <<td><<td>2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010</td><td>D</td><td>22/10/2021</td><td>Mid-Ebb</td><td>Fine</td><td>Moderate</td><td>12:25</td><td>13</td><td>М</td><td>6.5</td><td>1</td><td>8.23</td><td>34.44</td><td>27.29</td><td>83.1</td><td>5.49</td><td>9.2</td><td>0.18</td><td>38.4</td><td>8.5</td><td>0.041</td><td>0.094</td><td>0.114</td><td>0.249</td><td>2000</td><td>0.04</td><td><1.0</td></td></th></th>	< <th> D 22/10/2021 Mid-Ebb Fine Moderate 12.22 1 8.6 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.8 6.4 3.8 3.4 5.9 4.8 1.4 7.1 0.039 0.091 0.117 0.249 1700 0.04 <<td><<td>2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010</td><td>D</td><td>22/10/2021</td><td>Mid-Ebb</td><td>Fine</td><td>Moderate</td><td>12:25</td><td>13</td><td>М</td><td>6.5</td><td>1</td><td>8.23</td><td>34.44</td><td>27.29</td><td>83.1</td><td>5.49</td><td>9.2</td><td>0.18</td><td>38.4</td><td>8.5</td><td>0.041</td><td>0.094</td><td>0.114</td><td>0.249</td><td>2000</td><td>0.04</td><td><1.0</td></td></th>	D 22/10/2021 Mid-Ebb Fine Moderate 12.22 1 8.6 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.7 3.8 2.8 6.4 3.8 3.4 5.9 4.8 1.4 7.1 0.039 0.091 0.117 0.249 1700 0.04 < <td><<td>2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010</td><td>D</td><td>22/10/2021</td><td>Mid-Ebb</td><td>Fine</td><td>Moderate</td><td>12:25</td><td>13</td><td>М</td><td>6.5</td><td>1</td><td>8.23</td><td>34.44</td><td>27.29</td><td>83.1</td><td>5.49</td><td>9.2</td><td>0.18</td><td>38.4</td><td>8.5</td><td>0.041</td><td>0.094</td><td>0.114</td><td>0.249</td><td>2000</td><td>0.04</td><td><1.0</td></td>	< <td>2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010</td> <td>D</td> <td>22/10/2021</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Moderate</td> <td>12:25</td> <td>13</td> <td>М</td> <td>6.5</td> <td>1</td> <td>8.23</td> <td>34.44</td> <td>27.29</td> <td>83.1</td> <td>5.49</td> <td>9.2</td> <td>0.18</td> <td>38.4</td> <td>8.5</td> <td>0.041</td> <td>0.094</td> <td>0.114</td> <td>0.249</td> <td>2000</td> <td>0.04</td> <td><1.0</td>	2.7 2.2 1.8 0.31 12.2 6.7 3.0 0.021 0.017 0.249 1.010	D	22/10/2021	Mid-Ebb	Fine	Moderate	12:25	13	М	6.5	1	8.23	34.44	27.29	83.1	5.49	9.2	0.18	38.4	8.5	0.041	0.094	0.114	0.249	2000	0.04	<1.0			
D 22/10/2021 Mid-Ebb Fine Moderate 12:25 13 B 12:2 13:807 34:89 27:04 82:6 5:48 10:8 0.37 9:6 9:8 0.036 0.092 0.114 0.242 1100 0.03 <1 E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 S 1 18:66 33:33 26:44 88:4 5:96 4:8 0.14 81:4 7.1 0.039 0.090 0.120 0.249 1700 0.04 2:42 16 M 8 1 2:8:22 3:391 26:04 87:2 5:84 5:2 0.31 122:6 8:3 0.036 0.017 0.247 1800 0.04 2:42 10:2 110 0.247 1800 0.04 2:42 13:3 12:4 8:8 5:86 5:0 0.117 2:42:1 8:0 0.337 0.936 0.017 2:47 18:0	5																									<1.0								
E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 S 1 1 8.66 33.83 26.44 88.1 5.96 4.6 0.12 82.6 7.7 0.033 0.094 0.117 0.246 1500 0.003																										<1.0								
E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 S 1 2 8.64 33.44 26.47 88.4 5.96 4.8 0.14 81.4 7.1 0.039 0.090 0.120 0.249 1700 0.04 < <th><<th> E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 M 8 2 23.93 26.03 87.1 5.81 5.1 0.32 124.5 7.9 0.039 0.091 0.117 0.247 1600 0.04 <1</th></th>	< <th> E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 M 8 2 23.93 26.03 87.1 5.81 5.1 0.32 124.5 7.9 0.039 0.091 0.117 0.247 1600 0.04 <1</th>	E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 M 8 2 23.93 26.03 87.1 5.81 5.1 0.32 124.5 7.9 0.039 0.091 0.117 0.247 1600 0.04 <1	D																									<1.0						
E 2210/2021 Mid-Ebb Fine Moderate 12:42 16 M 8 1 8.21 33.92 26.03 87.1 5.81 5.1 0.32 124.5 7.9 0.039 0.091 0.117 0.247 1800 0.04 <1 E 221/0/2021 Mid-Ebb Fine Moderate 12:42 16 B 15 1 8.24 34.17 25.18 86.6 5.66 5.0 0.19 224.5 8.5 0.035 0.089 0.115 0.247 1600 0.04 <1	E								1																	<1.0								
E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 M 8 2 8:22 33:91 26:04 87:2 5:84 5:2 0.31 122:6 8:3 0.037 0.085 0.115 0.247 2000 0.04	E								1	-	0.01															<1.0 <1.0								
E 22/10/2021 Mid-Ebb Fine Moderate 12:42 16 B 15 1 8:24 34.17 25:18 86.8 5:66 5:0 0.19 224.5 8:5 0.035 0.089 0.123 0.247 1600 0.04																										<1.0								
E 22/10/2021 Mid-Ebb Fine Moderate 12:25 23 S 1 1 8.67 33.73 26.86 89.0 5.94 4.7 0.08 74.5 93.3 0.022 0.093 0.117 0.250 1500 0.03 <1 F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 S 1 1 8.67 33.73 26.86 89.0 5.96 4.7 0.08 77.2 10.1 0.033 0.042 0.093 0.115 0.248 1500 0.03 <1	F																									<1.0								
F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 S 1 2 8.66 33.71 26.88 89.1 5.96 4.9 0.06 77.2 10.1 0.035 0.092 0.121 0.248 1200 0.03 <1 F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 M 11.5 1 8.61 33.92 25.71 88.1 5.87 5.6 0.18 19.1 7.6 0.036 0.094 0.115 0.248 1600 0.03 <1	Ē										8.23															<1.0								
F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 M 11.5 1 8.61 33.92 25.71 88.1 5.87 5.6 0.18 19.1 7.6 0.036 0.094 0.115 0.245 1600 0.03 <1 F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 M 11.5 2 8.62 33.94 25.72 87.1 5.74 5.8 0.14 19.8 8.1 0.032 0.090 0.111 0.245 1400 0.04 <1	F	22/10/2021					23		1				26.86		5.94	4.7	0.08	74.5		0.022	0.093		0.230			<1.0								
F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 M 11.5 2 8.62 33.94 25.72 87.1 5.74 5.8 0.14 19.8 8.1 0.032 0.090 0.119 0.241 1400 0.04 <1 F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 B 22 1 8.64 34.18 25.11 86.2 5.62 5.2 0.09 34.6 6.7 0.033 0.095 0.111 0.2341 1400 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 1 8.71 33.77 26.95 84.6 5.60 5.8 0.22 14.4 14.2 0.063 0.099 0.138 0.300 1500 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 N 1 2.8:53 3.0:7 26.95 84.6 5.60 5.8 0.22 81.4 14.2 0.054 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></th<>									1																	<1.0								
F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 B 22 1 8.64 34.18 25.11 86.2 5.62 5.2 0.09 34.6 6.7 0.033 0.095 0.111 0.239 1100 0.03 <1 F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 B 22 2 8.63 34.11 25.14 86.1 5.66 5.4 0.06 34.4 7.3 0.034 0.091 0.117 0.242 1600 0.04 <1	F																									<1.0								
F 22/10/2021 Mid-Ebb Fine Moderate 12:55 23 B 22 2 8.63 34.11 25.14 86.1 5.66 5.4 0.06 34.4 7.3 0.034 0.091 0.117 0.242 1600 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 1 8.71 33.76 26.94 84.9 5.62 5.5 0.21 78.9 15.4 0.063 0.099 0.138 0.300 1500 0.04 <1	F																									<1.0								
G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 1 8.71 33.76 26.94 84.9 5.62 5.5 0.21 78.9 15.4 0.063 0.099 0.118 0.300 1500 0.004 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 1 8.71 33.76 26.94 84.9 5.62 5.5 0.21 78.9 15.4 0.063 0.099 0.118 0.300 1500 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 2 8.73 33.77 26.95 84.6 5.60 5.8 0.22 81.4 14.2 0.063 0.101 0.139 0.294 1200 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 2 8.55 34.08 26.48 83.2 5.51 5.2 0.18 101.7 14.0 0.029																										<1.0 <1.0								
G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 S 1 2 8.73 33.77 26.95 84.6 5.60 5.8 0.22 81.4 14.2 0.054 0.101 0.139 0.294 1200 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 1 8.54 34.05 26.44 83.1 5.49 5.1 0.16 100.5 14.8 0.029 0.101 0.137 0.267 1400 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 2 8.55 34.08 26.48 83.2 5.51 5.2 0.16 100.7 14.0 0.029 0.099 0.130 0.245 1100 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 2 8.46									1	-																<1.0								
G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 1 8.54 34.05 26.44 83.1 5.49 5.1 0.16 100.5 14.8 0.029 0.101 0.137 0.267 1400 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 1 8.54 34.05 26.44 83.1 5.49 5.1 0.16 100.5 14.8 0.029 0.101 0.137 0.267 1400 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 1 8.49 26.17 81.7 5.27 5.9 0.30 86.1 7.0 0.038 0.089 0.118 0.245 1100 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 2 8.46 34.29 26.19 81.8 5.29 5.8 0.34 86.7 15.0 0.029 0.0									1																	<1.0								
G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 M 11 2 8.55 34.08 26.48 83.2 5.51 5.2 0.18 101.7 14.0 0.029 0.099 0.150 0.278 1100 0.04 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 1 8.49 34.21 26.17 81.7 5.27 5.9 0.30 86.1 7.0 0.038 0.089 0.118 0.245 1100 0.03 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 2 8.46 34.29 26.19 81.8 5.29 5.8 0.34 86.7 15.0 0.029 0.094 0.131 0.254 1500 0.04 <1 H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 2 8.64									11	-																<1.0								
G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 1 8.49 34.21 26.17 81.7 5.27 5.9 0.30 86.1 7.0 0.038 0.089 0.118 0.245 1100 0.03 <1 G 22/10/2021 Mid-Ebb Fine Moderate 13:11 22 B 21 2 8.46 34.29 26.19 81.8 5.29 5.8 0.34 86.7 15.0 0.029 0.094 0.131 0.254 1500 0.04 <1 H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 2 8.64 33.63 26.15 88.6 5.88 4.2 0.50 214.6 8.0 0.046 0.090 0.126 0.256 1300 0.04 <1 H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 2 8.64 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>5.51</td><td></td><td></td><td></td><td>14.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.0</td></t<>										•					5.51				14.0							<1.0								
H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 1 8.62 33.63 26.15 88.6 5.88 4.2 0.50 214.6 8.0 0.046 0.090 0.120 0.256 1300 0.04 <1 H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 2 8.64 37.12 88.4 5.87 4.4 0.80 211.7 7.7 0.027 0.106 0.126 0.259 1700 0.04 <1	G	22/10/2021		Fine			22			1	8.49									0.038						<1.0								
H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 S 1 2 8.64 33.64 27.12 88.4 5.87 4.4 0.80 211.7 7.7 0.027 0.106 0.126 0.259 1700 0.04 <1 H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 M 9.5 1 8.61 33.97 27.14 86.4 5.71 5.3 0.12 276.5 10.6 0.040 0.090 0.107 0.237 1200 0.03 <1									21																	<1.0								
H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 M 9.5 1 8.61 33.97 27.14 86.4 5.71 5.3 0.12 276.5 10.6 0.040 0.090 0.107 0.237 1200 0.03 <1									1		0.02															<1.0								
										-																<1.0								
																										<1.0 <1.0								
H 22/10/2021 Mid-Ebb Fine Moderate 13:25 19 B 18 1 8.59 34.21 27.08 84.1 5.64 5.6 0.19 108.4 6.5 0.031 0.101 0.126 0.258 1200 0.04 <1										-	0.03															<1.0								
										•	8.58															<1.0								

Note: 1. ND: Not Detected

Monitoring Location Date Tide Mode Weather Sea Condition Time Water Depth (m) Monitoring Level Monitori	rite ogen g/L- N) (mg/L-N)	n Nitrogen	(cfu/100mL)	Total phosphorus (solube and particulate)	
	lue Value		/	(mg/L)	
A 22/10/2021 Mid-Elood Fine Moderate 08:15 15 S 1 1 1 873 34.06 26.87 861 572 32 226 80.1 17.0 0.010 0.0		Value	Value	Value	Value
	0.148	0.265	1100	0.04	<1.0
	0.146	0.262	1300	0.04	<1.0
	0.138	0.251	1500	0.04	<1.0
	0.143	0.259	1200	0.04	<1.0
	0.146	0.256	1100	0.04	<1.0
	097 0.139 093 0.154	0.253	1200	0.04	<1.0
	093 0.154 098 0.152	0.268	1200	0.04	<1.0
	0.152	0.272	2300	0.04	1.2
	0.143	0.257	1700	0.04	<1.0
	0.150	0.285	1200	0.04	<1.0
	0.150	0.261	1100	0.04	1.1
C 22/10/2021 Mid-Flood Fine Moderate 07:44 12 S 1 1 8.68 33.91 27.81 91.4 6.07 12.8 0.08 173.4 14.6 0.029 0.0	0.147	0.274	1600	0.04	1.5
	0.150	0.262	1400	0.04	<1.0
	0.155	0.272	900	0.04	1.2
	0.153	0.259	820	0.04	1.1
	0.163	0.275	1200	0.04	<1.0
	0.155	0.270	1400	0.04	1.0
	090 0.146	0.268	1500	0.04	2.0
	095 0.140 090 0.148	0.266	1300 800	0.04	1.6
	0.148	0.263	910	0.04	1.7
	0.143	0.204	1300	0.04	1.7
	0.150	0.275	1400	0.04	1.7
	0.140	0.251	620	0.04	<1.0
	0.144	0.250	770	0.04	<1.0
	105 0.138	0.256	480	0.04	1.0
	0.139	0.248	580	0.04	<1.0
	0.148	0.254	600	0.04	1.1
	0.134	0.254	520	0.04	1.3
	0.160	0.268	450	0.04	1.3
	097 0.163 096 0.161	0.279	400 360	0.04	1.4
	107 0.149	0.270	290	0.04	1.3
	107 0.143	0.264	540	0.04	1.2
	104 0.152	0.268	680	0.04	1.2
	100 0.233	0.341	250	0.04	1.4
	100 0.222	0.329	330	0.04	1.4
	0.228	0.337	190	0.04	1.5
	100 0.223	0.331	260	0.04	1.3
	103 0.206	0.316	380	0.04	1.3
	0.209	0.319	470	0.04	1.4
	0.157	0.260	150	0.04	<1.0
	096 0.185 102 0.149	0.296	180 160	0.04	<1.0
	102 0.149	0.259	120	0.04	<1.0
	102 0.132	0.209	150	0.04	<1.0
	102 0.159	0.235	160	0.04	<1.0

Note: 1. ND: Not Detected

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 28
Contact Address	 CYRUS LAI ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG 	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	: HK2142449
E-mail Telephone Facsimile	: C.Lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	: richard.fung@alsglobal.com : +852 2610 1044 : +852 2610 2021		
Project	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERA SIU HO WAN SEWAGE TREATMENT PLANT	TIONAL ENVIR	ONMENTAL MONITORING AND AUDIT FOR	Date Samples Received	: 22-Oct-2021
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 05-Nov-2021
C-O-C number	:			No. of samples received	: 96
Site	:			No. of samples analysed	: 96

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Ki Land Fromy.			
Fung Lim Chee, Richard	Managing Director	Inorganics	
	Managing Diroctor	morganios	
Ale_			
Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV	
Agen Ng Sin Kou, May	Laboratory Manager	Microbiology_ENV	

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 22-Oct-2021 to 05-Nov-2021.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2142449

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Microbiological sample(s) was/ were collected in 125mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 15:00.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

EK063A - Total Inorganic Nitrogen is the sum of the Total Oxidizable Nitrogen and Ammonical Nitrogen.

EK067P - Total Phosphorus - Filtered is not HOKLAS accredited.

EP030 - The accredited LOR of Biochemical Oxygen Demand is 2mg/L. Results reported below LOR and with decimal value are for reference only.

Analytical Results

•			l l		1	1		
Sub-Matrix: WATER			Sample ID	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-001	HK2142449-002	HK2142449-003	HK2142449-004	HK2142449-005
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.6	10.6	8.5	9.4	8.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.037	0.038	0.036	0.039	0.032
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.093	0.089	0.088	0.090	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.109	0.114	0.115	0.114	0.108
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.239	0.240	0.240	0.243	0.229
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.04	0.04	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.1	1.0	1.3	1.1	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1400	1100	1300	1800	1400

Page Number : 4 of 28 Client : FUGRO TECHNIC

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	A/B/E/Dup	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup
		Samplir	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-006	HK2142449-007	HK2142449-008	HK2142449-009	HK2142449-010
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.0	7.0	6.3	7.6	8.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.035	0.031	0.037	0.033	0.033
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.090	0.092	0.092	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.108	0.106	0.113	0.103	0.113
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.235	0.227	0.242	0.228	0.236
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.04	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1100	1600	1400	950	860

Page Number 2 5 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	B/B/E	B/B/E/Dup	C/S/E	C/S/E/Dup	C/M/E
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-011	HK2142449-012	HK2142449-013	HK2142449-014	HK2142449-015
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.6	10.0	9.0	9.8	8.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.037	0.033	0.040	0.038	0.041
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.091	0.092	0.089	0.087
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.116	0.119	0.106	0.108	0.110
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.245	0.243	0.238	0.236	0.238
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.03	0.03	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1200	1100	1100	1300	1600

Page Number : 6 of 28 Client : FUGRO TECHNIC

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	C/M/E/Dup	C/B/E	C/B/E/Dup	D/S/E	D/S/E/Dup
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-016	HK2142449-017	HK2142449-018	HK2142449-019	HK2142449-020
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.4	8.4	7.7	8.5	7.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.043	0.056	0.039	0.039	0.035
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.089	0.088	0.086	0.091	0.092
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.108	0.117	0.116	0.112	0.125
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.240	0.260	0.242	0.242	0.253
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1200	1900	1200	1800	1700

Page Number 2 7 of 28

Client FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup	E/S/E
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-021	HK2142449-022	HK2142449-023	HK2142449-024	HK2142449-025
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.5	9.4	8.7	9.8	7.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.041	0.041	0.040	0.036	0.034
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.094	0.086	0.092	0.092	0.094
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.114	0.118	0.115	0.114	0.117
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.249	0.245	0.248	0.242	0.246
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.03	0.03	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	2000	1400	1600	1100	1500

Page Number : 8 of 28 Client : FUGRO TECHI

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-026	HK2142449-027	HK2142449-028	HK2142449-029	HK2142449-030
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.1	7.9	8.3	8.5	8.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.039	0.039	0.037	0.035	0.043
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.090	0.091	0.095	0.089	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.120	0.117	0.115	0.123	0.117
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.249	0.247	0.247	0.247	0.250
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.02	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1700	1800	2000	1600	1900

Page Number: 9 of 28Client: FUGRO TECH

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-031	HK2142449-032	HK2142449-033	HK2142449-034	HK2142449-035
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.3	10.1	7.6	8.1	6.7
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.022	0.035	0.036	0.032	0.033
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.093	0.092	0.094	0.090	0.095
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.115	0.121	0.115	0.119	0.111
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.230	0.248	0.245	0.241	0.239
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	0.04	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1500	1200	1600	1400	1100

Page Number : 10 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/B/E/Dup	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-036	HK2142449-037	HK2142449-038	HK2142449-039	HK2142449-040
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.3	15.4	14.2	14.8	14.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.034	0.063	0.054	0.029	0.029
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.091	0.099	0.101	0.101	0.099
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.117	0.138	0.139	0.137	0.150
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.242	0.300	0.294	0.267	0.278
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.04	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1600	1500	1200	1400	1100

Page Number 11 of 28 Client FUGRO TECHNICAL

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	G/B/E	G/B/E/Dup	H/S/E	H/S/E/Dup	H/M/E
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-041	HK2142449-042	HK2142449-043	HK2142449-044	HK2142449-045
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	7.0	15.0	8.0	7.7	10.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.038	0.029	0.046	0.027	0.040
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.089	0.094	0.090	0.106	0.090
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.118	0.131	0.120	0.126	0.107
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.245	0.254	0.256	0.259	0.237
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.04	0.04	0.03
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1100	1500	1300	1700	1200

Page Number : 12 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	H/M/E/Dup	H/B/E	H/B/E/Dup	A/S/F	A/S/F/Dup	
	Sampling date / time			22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	
Compound	CAS Number	LOR	Unit	HK2142449-046	HK2142449-047	HK2142449-048	HK2142449-049	HK2142449-050	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	7.4	6.5	13.6	17.0	16.4	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.041	0.031	0.029	0.019	0.018	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.086	0.101	0.099	0.098	0.097	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.107	0.126	0.133	0.148	0.146	
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.235	0.258	0.261	0.265	0.262	
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.04	0.04	0.04	0.04	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100 mL	1600	1200	1800	1100	1300	

Page Number : 13 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup	B/S/F
	Sampling date / time			22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-051	HK2142449-052	HK2142449-053	HK2142449-054	HK2142449-055
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	14.6	15.5	15.2	14.4	17.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.016	0.018	0.018	0.016	0.021
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.097	0.098	0.092	0.097	0.093
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.138	0.143	0.146	0.139	0.154
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.251	0.259	0.256	0.253	0.268
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1500	1200	1100	1200	1200

Page Number : 14 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-056	HK2142449-057	HK2142449-058	HK2142449-059	HK2142449-060
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	13.0	14.3	15.4	16.5	15.0
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.022	0.020	0.021	0.038	0.022
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.098	0.097	0.094	0.097	0.088
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.152	0.144	0.143	0.150	0.150
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.272	0.261	0.257	0.285	0.261
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.03	0.03	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.2	<1.0	<1.0	1.1
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1500	2300	1700	1200	1100

Page Number : 15 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-061	HK2142449-062	HK2142449-063	HK2142449-064	HK2142449-065
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	14.6	15.3	15.4	14.5	13.1
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.029	0.019	0.021	0.019	0.019
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.099	0.092	0.096	0.087	0.094
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.147	0.150	0.155	0.153	0.163
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.274	0.262	0.272	0.259	0.275
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.5	<1.0	1.2	1.1	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1600	1400	900	820	1200

Page Number : 16 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	C/B/F/Dup	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-066	HK2142449-067	HK2142449-068	HK2142449-069	HK2142449-070
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	14.0	13.8	13.4	13.5	12.9
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.021	0.032	0.031	0.026	0.024
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.094	0.090	0.095	0.090	0.096
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.155	0.146	0.140	0.148	0.143
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.270	0.268	0.266	0.265	0.264
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.02	0.03	0.02	0.02
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.0	2.0	1.6	1.7	1.7
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1400	1500	1300	800	910

Page Number : 17 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

HK2142449

Work Order

Sub-Matrix: WATER			Sample ID	D/B/F	D/B/F/Dup	E/S/F	E/S/F/Dup	E/M/F
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-071	HK2142449-072	HK2142449-073	HK2142449-074	HK2142449-075
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	12.0	12.7	9.6	10.3	9.4
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.026	0.029	0.013	0.012	0.012
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.095	0.096	0.098	0.094	0.105
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.151	0.150	0.140	0.144	0.138
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.272	0.275	0.251	0.250	0.256
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.7	1.7	<1.0	<1.0	1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	1300	1400	620	770	480


Page Number : 18 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	E/M/F/Dup	E/B/F	E/B/F/Dup	F/S/F	F/S/F/Dup	
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	
Compound	CAS Number	LOR	Unit	HK2142449-076	HK2142449-077	HK2142449-078	HK2142449-079	HK2142449-080	
EA/ED: Physical and Aggregate Properties									
EA025: Suspended Solids (SS)		0.5	mg/L	10.1	8.2	12.1	8.2	7.9	
ED/EK: Inorganic Nonmetallic Parameters									
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.012	0.016	0.021	0.013	0.018	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.098	0.090	0.098	0.096	0.097	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.139	0.148	0.134	0.160	0.163	
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.248	0.254	0.254	0.268	0.279	
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03	
EP: Aggregate Organics									
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	1.1	1.3	1.3	1.4	
EM: Microbiological Testing									
EM002: E. coli		1	CFU/100 mL	580	600	520	450	400	

Page Number : 19 of 28 Client : FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup	G/S/F
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-081	HK2142449-082	HK2142449-083	HK2142449-084	HK2142449-085
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	9.0	8.2	9.3	9.7	6.3
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.014	0.014	0.011	0.011	0.008
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.096	0.107	0.102	0.104	0.100
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.161	0.149	0.151	0.152	0.233
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.270	0.269	0.264	0.268	0.341
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.3	1.2	1.3	1.2	1.4
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	360	290	540	680	250

Page Number 20 of 28 Client FUGRO TECHNICAL SERVICES LIMITED

HK2142449

Sub-Matrix: WATER			Sample ID	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup		
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021		
Compound	CAS Number	LOR	Unit	HK2142449-086	HK2142449-087	HK2142449-088	HK2142449-089	HK2142449-090		
EA/ED: Physical and Aggregate Properties										
EA025: Suspended Solids (SS)		0.5	mg/L	7.2	7.5	6.8	7.9	7.0		
ED/EK: Inorganic Nonmetallic Parameters										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.007	0.009	0.008	0.008	0.011		
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.100	0.099	0.100	0.103	0.099		
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.222	0.228	0.223	0.206	0.209		
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.329	0.337	0.331	0.316	0.319		
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04		
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03		
EP: Aggregate Organics										
EP030: Biochemical Oxygen Demand		1.0	mg/L	1.4	1.5	1.3	1.3	1.4		
EM: Microbiological Testing										
EM002: E. coli		1	CFU/100 mL	330	190	260	380	470		

Page Number 21 of 28 Client FUGRO TECHNIC

ent FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142449-091	HK2142449-092	HK2142449-093	HK2142449-094	HK2142449-095
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		0.5	mg/L	8.6	9.5	8.4	9.2	7.5
ED/EK: Inorganic Nonmetallic Parameters								
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.007	0.014	0.008	0.016	0.010
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.096	0.096	0.102	0.102	0.100
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.157	0.185	0.149	0.152	0.182
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.260	0.296	0.259	0.269	0.293
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	0.04	0.04
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.03	0.03	0.03
EP: Aggregate Organics								
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
EM: Microbiological Testing								
EM002: E. coli		1	CFU/100 mL	150	180	160	120	150

Page Number : 22 of 28 Client : FUGRO TECHNIC

FUGRO TECHNICAL SERVICES LIMITED

Sub-Matrix: WATER			Sample ID	H/B/F/Dup	 	
	Sampling date / time			22-Oct-2021	 	
Compound	CAS Number	LOR	Unit	HK2142449-096	 	
EA/ED: Physical and Aggregate Properties						
EA025: Suspended Solids (SS)		0.5	mg/L	7.3	 	
ED/EK: Inorganic Nonmetallic Parameters						
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.015	 	
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.102	 	
EK058A: Nitrate as N	14797-55-8	0.005	mg/L	0.159	 	
EK063A: Total Inorganic Nitrogen as N		0.010	mg/L	0.276	 	
EK067P: Total Phosphorus as P		0.01	mg/L	0.04	 	
EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	 	
EP: Aggregate Organics						
EP030: Biochemical Oxygen Demand		1.0	mg/L	<1.0	 	
EM: Microbiological Testing						
EM002: E. coli		1	CFU/100 mL	160	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC L	ot: 3972417)						
HK2142449-001	A/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	9.6	10.0	3.3
HK2142449-011	B/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	9.6	10.1	4.6
EA/ED: Physical and A	ggregate Properties (QC L	ot: 3972418)						
HK2142449-021	D/M/E	EA025: Suspended Solids (SS)		0.5	mg/L	8.5	8.0	6.1
HK2142449-031	F/S/E	EA025: Suspended Solids (SS)		0.5	mg/L	9.3	9.0	3.6
EA/ED: Physical and A	ggregate Properties (QC L	ot: 3972419)						
HK2142449-041	G/B/E	EA025: Suspended Solids (SS)		0.5	mg/L	7.0	7.3	3.5
HK2142449-051	A/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	14.6	14.0	4.7
EA/ED: Physical and A	ggregate Properties (QC L	ot: 3972420)						
HK2142449-061	C/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	14.6	15.0	2.9
HK2142449-071	D/B/F	EA025: Suspended Solids (SS)		0.5	mg/L	12.0	11.4	4.7
EA/ED: Physical and A	ggregate Properties (QC L	ot: 3972421)						
HK2142449-081	F/M/F	EA025: Suspended Solids (SS)		0.5	mg/L	9.0	9.6	5.9
HK2142449-091	H/S/F	EA025: Suspended Solids (SS)		0.5	mg/L	8.6	8.8	1.7
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972403)						
HK2142449-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.035	0.038	6.2
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972404)						
HK2142449-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.029	0.030	0.0
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972405)						
HK2142449-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.022	0.021	0.0
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972406)						
HK2142449-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.018	0.016	15.4
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972407)						
HK2142449-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.005	mg/L	0.015	0.017	8.2
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972498)						
HK2142449-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.092	0.088	4.4
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972500)						
HK2142449-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.099	0.096	3.1
ED/EK: Inorganic Nonr	netallic Parameters (QC Lo	ot: 3972502)						
HK2142449-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.088	0.100	12.4

 Page Number
 :
 24 of 28

 Client
 :
 FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 HK2142449

Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3972504)									
HK2142449-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.097	0.102	5.1			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3972506)									
HK2142449-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65-0	0.005	mg/L	0.102	0.102	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974685)									
HK2142449-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974686)									
HK2142449-020	D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974687)									
HK2142449-040	G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974688)									
HK2142449-040	G/M/E/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974689)									
HK2142449-060	B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.02	0.02	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974690)									
HK2142449-060	B/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974691)	· ·								
HK2142449-080	F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974692)									
HK2142449-080	F/S/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974693)									
HK2142449-096	H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.01	mg/L	0.03	0.03	0.0			
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	3974694)	1								
HK2142449-096	H/B/F/Dup	EK067P: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report									
			1	1	Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control		
											Limit		
EA/ED: Physical and Aggregate Properties (0	QC Lot: 3972417)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117				
EA/ED: Physical and Aggregate Properties (0	EA/ED: Physical and Aggregate Properties (QC Lot: 3972418)												

 Page Number
 : 25 of 28

 Client
 : FUGRO TECHNICAL SERVICES LIMITED

 Work Order
 : FUGRO TECHNICAL SERVICES LIMITED

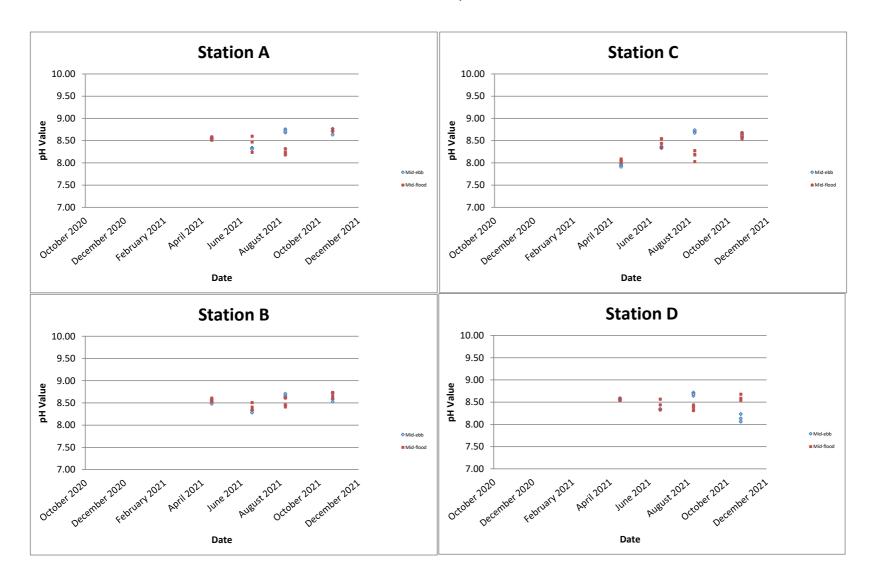
Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate					
					Spike	Spike Re	acovery (%)	Recove	ary Limits(%)	RP	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 3972418) - Co	ntinued									
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	110		85.9	117		
EA/ED: Physical and Aggregate Properties (QC	Lot: 3972419)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.9	117		
EA/ED: Physical and Aggregate Properties (QC	Lot: 3972420)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117		
EA/ED: Physical and Aggregate Properties (QC	Lot: 3972421)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972403)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	99.6		85.0	111		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972404)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	99.0		85.0	111		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972405)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	103		85.0	111		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972406)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	98.0		85.0	111		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972407)										
EK055A: Ammonia as N	7664-41-7	0.005	mg/L	<0.005	0.05 mg/L	96.6		85.0	111		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972498)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	115		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972500)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	105		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972502)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	101		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972504)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	85.4		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3972506)										
EK057A: Nitrite as N	14797-65-0	0.005	mg/L	<0.005	0.05 mg/L	102		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 3974685)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	95.6		92.1	102		

 Page Number
 : 26 of 28

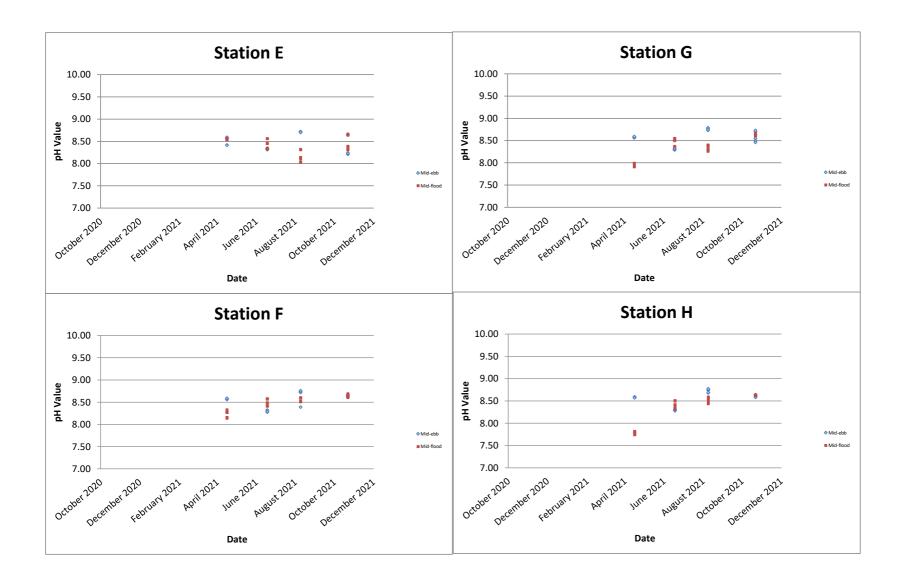
 Client
 : FUGRO TECHNICAL SERVICES LIMITED

Matrix: WATER	: WATER Method Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Dup							ratory Control S	olke Duplicate (L	te (DCS) Report			
			1		Spike	Spike Re	со vегу (%)	Recovery Limits(%)		RPI) (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control		
											Limit		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 3974686)												
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.7		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974687)												
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.7		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (QC	; Lot: 3974688)												
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.0		92.1	102				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974689)												
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.4		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974690)												
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	95.0		92.1	102				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974691)												
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	95.5		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974692)												
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.6		92.1	102				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974693)												
EK067P: Total Phosphorus - Filtered		0.01	mg/L	<0.01	0.5 mg/L	96.4		85.0	115				
ED/EK: Inorganic Nonmetallic Parameters (QC	: Lot: 3974694)												
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	96.3		92.1	102				
EP: Aggregate Organics (QC Lot: 3972623)													
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	100		81.0	115				
EP: Aggregate Organics (QC Lot: 3972624)													
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.3		81.0	115				
EP: Aggregate Organics (QC Lot: 3972625)													
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	101		81.0	115				
EP: Aggregate Organics (QC Lot: 3972626)													
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	106		81.0	115				
EP: Aggregate Organics (QC Lot: 3972627)	'												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		81.0	115				

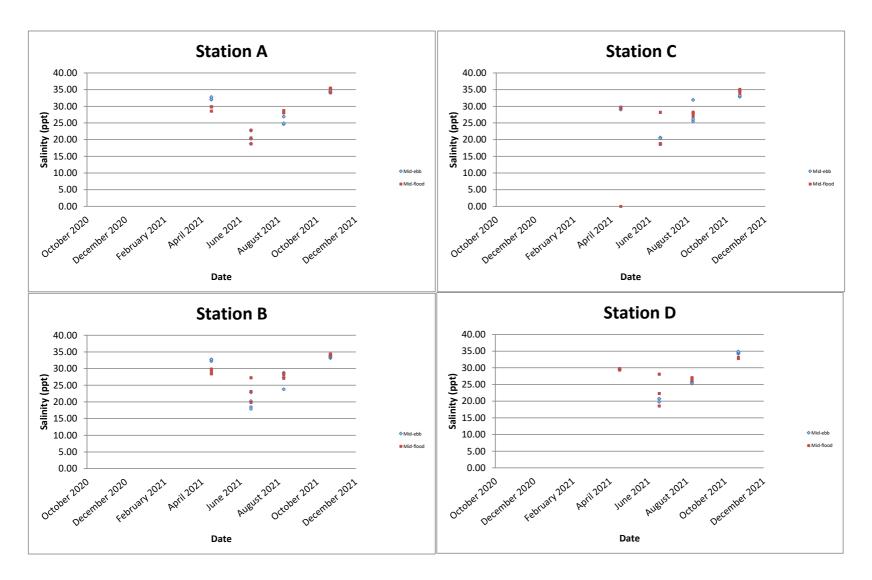
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

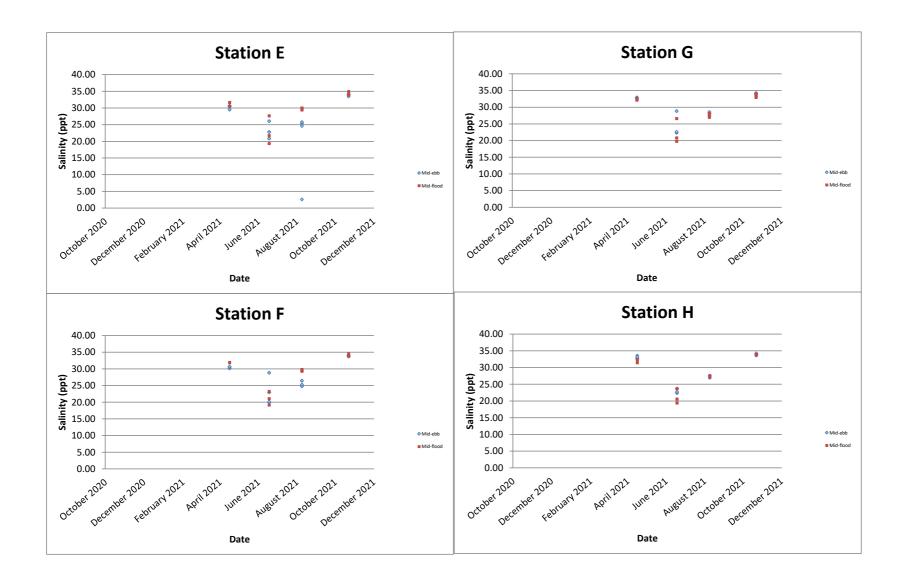

Matrix: WATER	ory DSample IDMethod: CompoundInorganicNonmetallic Parameters (QC Lot: 3972403)1449-020D/S/E/DupEK055A: Ammonia as NInorganicNonmetallic Parameters (QC Lot: 3972404)1449-040G/M/E/DupEK055A: Ammonia as NInorganicNonmetallic Parameters (QC Lot: 3972404)1449-040B/B/F/DupEK055A: Ammonia as N10organicNonmetallic Parameters (QC Lot: 3972404)1449-060B/B/F/DupEK055A: Ammonia as N10organicNonmetallic Parameters (QC Lot: 3972404)1449-080F/S/F/DupEK055A: Ammonia as N1449-080F/S/F/DupEK055A: Ammonia as N1449-080F/S/F/DupEK055A: Ammonia as N				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Re	ecovery (%)	Recovery Limits (%)		RPD) (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972403)										
HK2142449-020	D/S/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	101		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972404)										
HK2142449-040	G/M/E/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	96.8		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972405)										
HK2142449-060	B/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	91.9		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972406)										
HK2142449-080	F/S/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	97.1		75.0	125				
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 3972407)										
HK2142449-096	H/B/F/Dup	EK055A: Ammonia as N	7664-41-7	0.5 mg/L	95.2		75.0	125				
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 3972498)										
HK2142449-020	D/S/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972500)				-						
HK2142449-040	G/M/E/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972502)		· · · · · · · · · · · · · · · · · · ·		·						
HK2142449-060	B/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	106		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972504)				·						
HK2142449-080	F/S/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	106		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 3972506)	·							1		
HK2142449-096	H/B/F/Dup	EK057A: Nitrite as N	14797-65- 0	0.25 mg/L	104		75.0	125				
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 3974685)	I			1				1		
HK2142449-020	D/S/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	83.0		75.0	125				

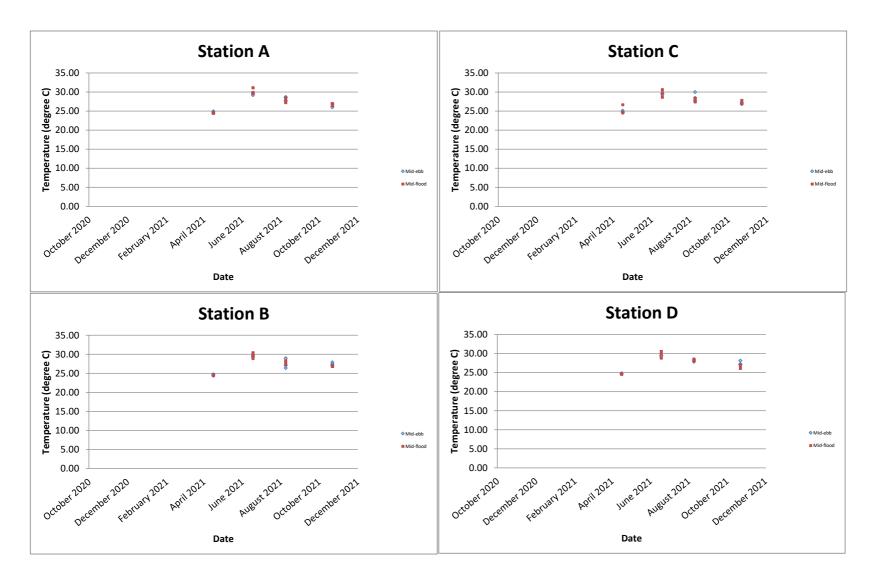
Page Number 28 of 28 Client FUGRO TECHNICAL SERVICES LIMITED Work Order HK2142449

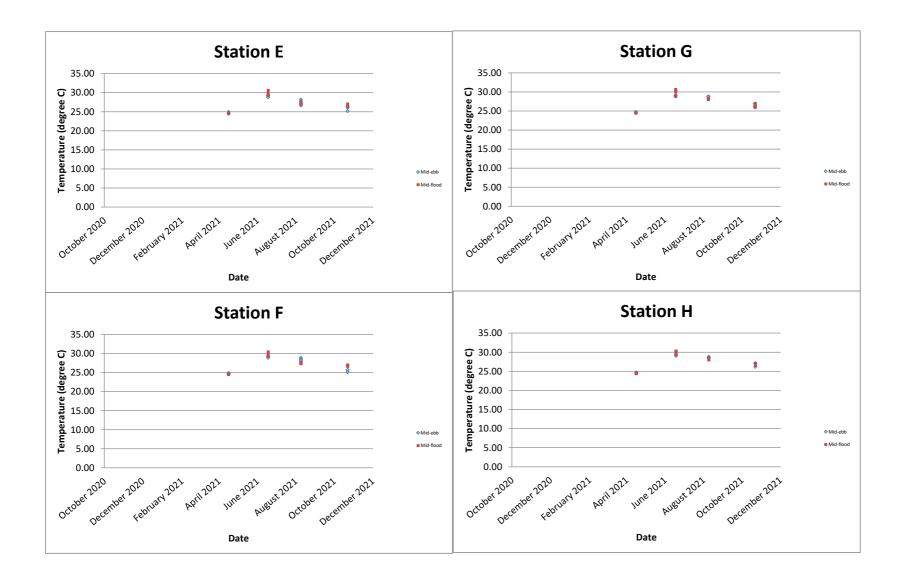


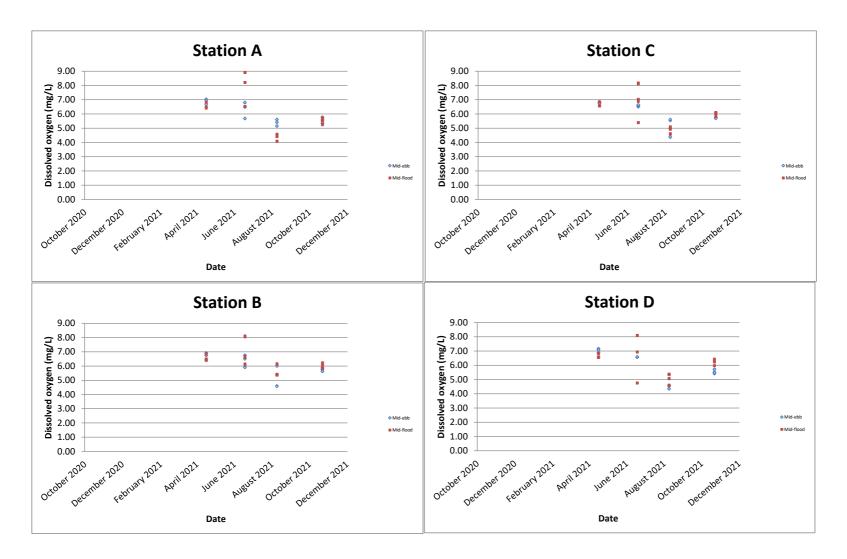
Matrix: WATER	R		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control	
sample ID										Limit	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	686) - Continued									
HK2142449-02	20 D/S/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	96.8		75.0	125		25	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	687)									
HK2142449-04	0 G/M/E/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	95.5		75.0	125		25	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	688)									
HK2142449-04	0 G/M/E/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.0		75.0	125			
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	689)									
HK2142449-06	0 B/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	98.2		75.0	125		25	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	690)									
HK2142449-06	0 B/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	94.9		75.0	125			
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	691)									
HK2142449-08	0 F/S/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	91.9		75.0	125		25	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	692)									
HK2142449-08	0 F/S/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	96.5		75.0	125			
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	693)									
HK2142449-09	06 H/B/F/Dup	EK067P: Total Phosphorus - Filtered		0.5 mg/L	101		75.0	125		25	
ED/EK: Inorga	nic Nonmetallic Parameters (QC Lot: 3974	694)									
- HK2142449-09	06 H/B/F/Dup	EK067P: Total Phosphorus as P		0.5 mg/L	91.3		75.0	125			

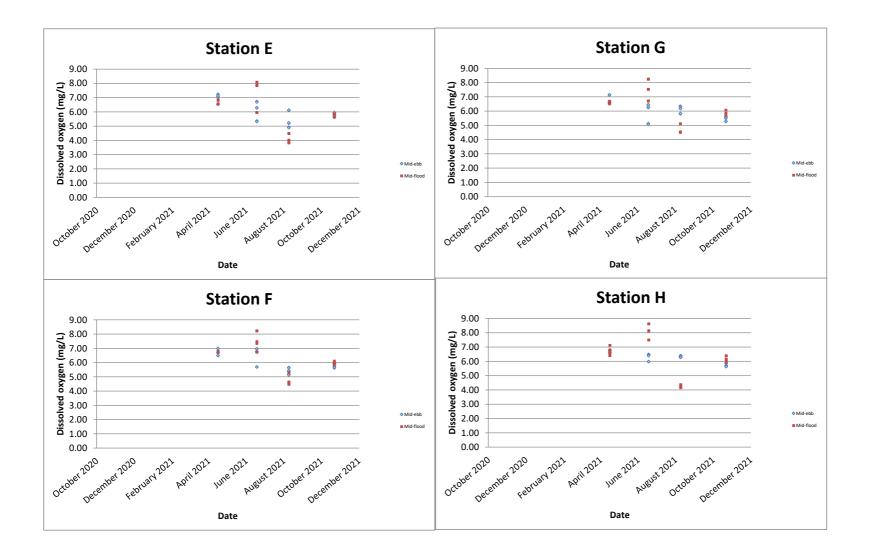

pH value

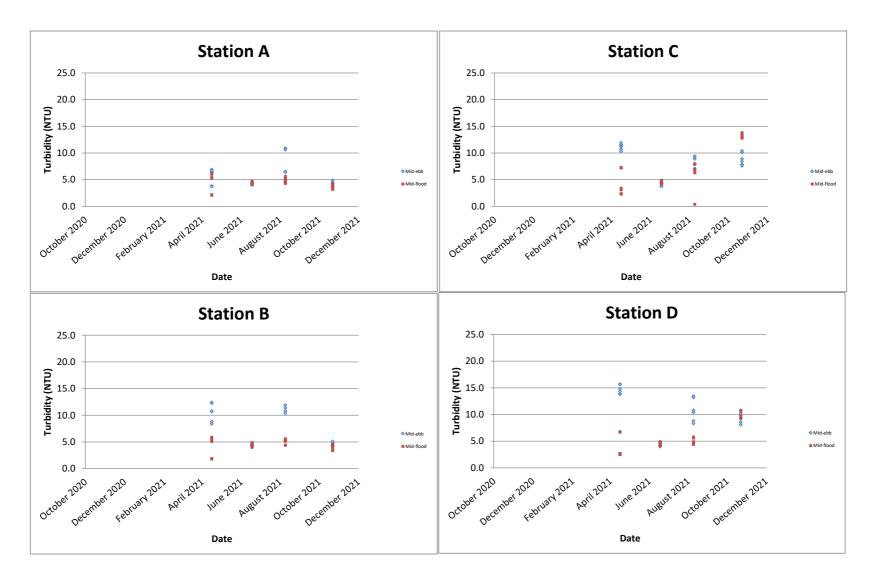

pH value

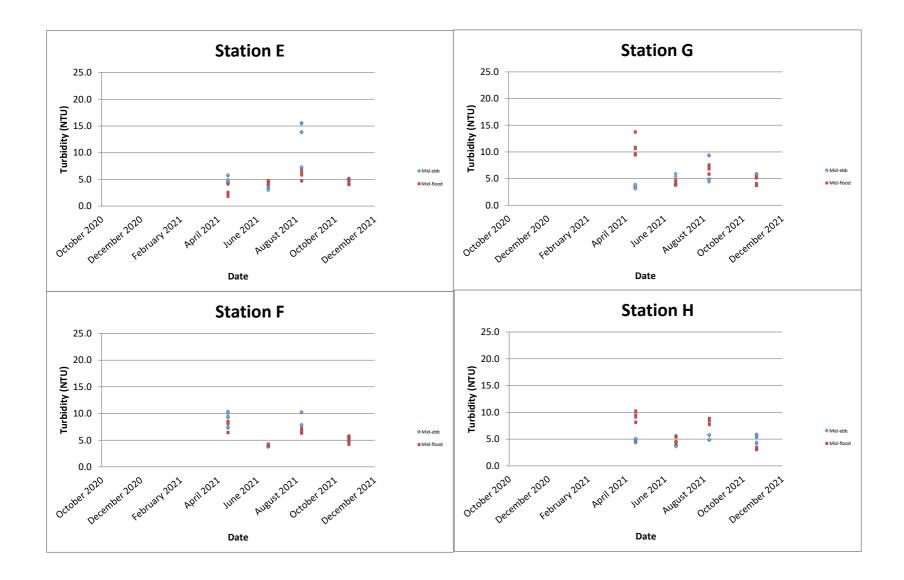

Salinity (ppt)

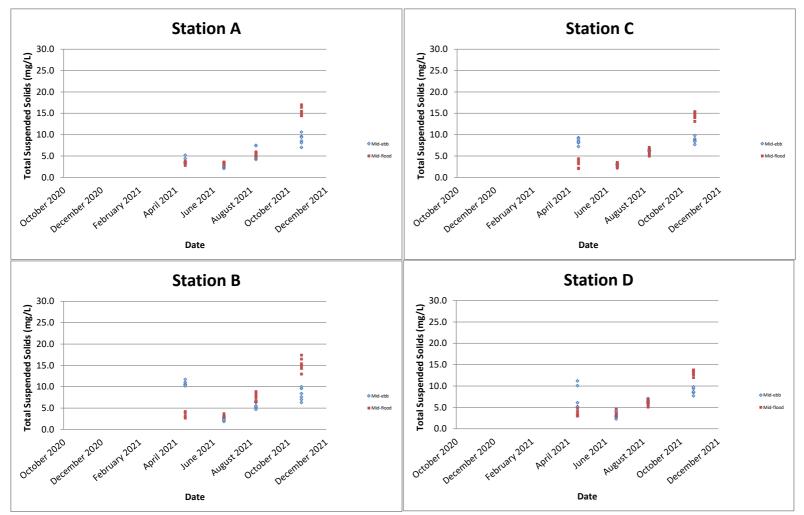

Salinity (ppt)


Temperature (degree C)

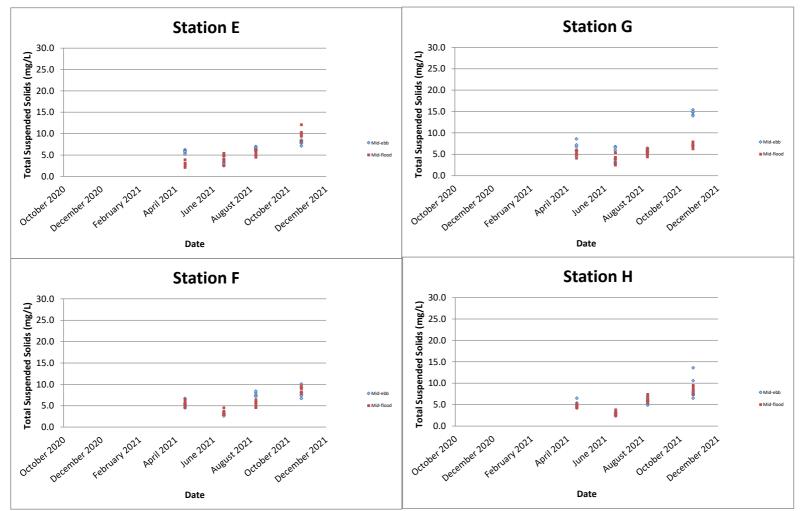

Temperature (degree C)


Dissolved oxygen (mg/L)

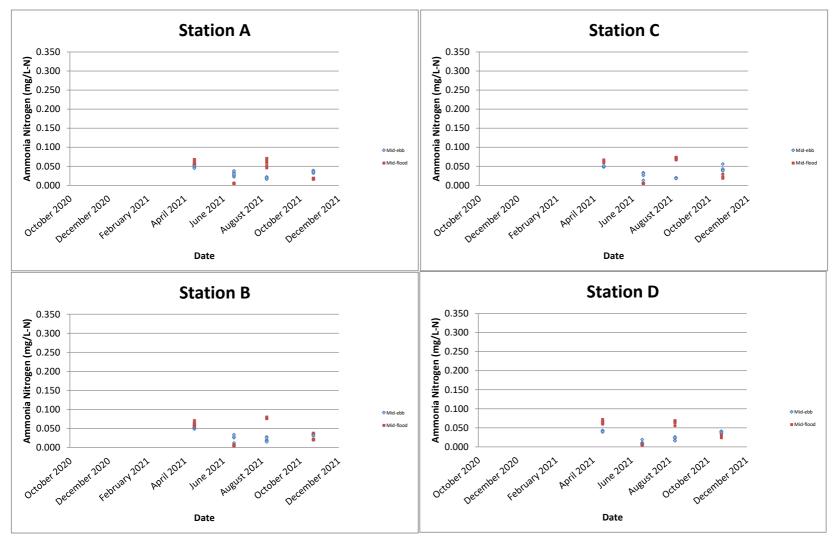

Dissolved oxygen (mg/L)

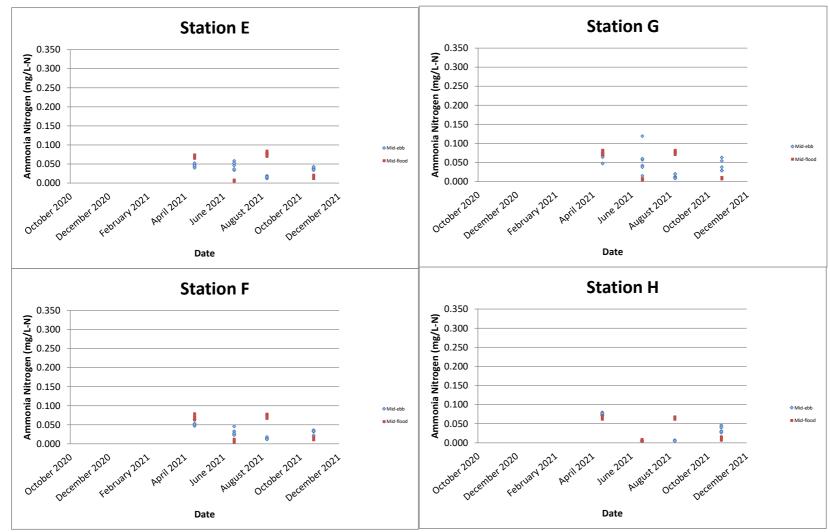


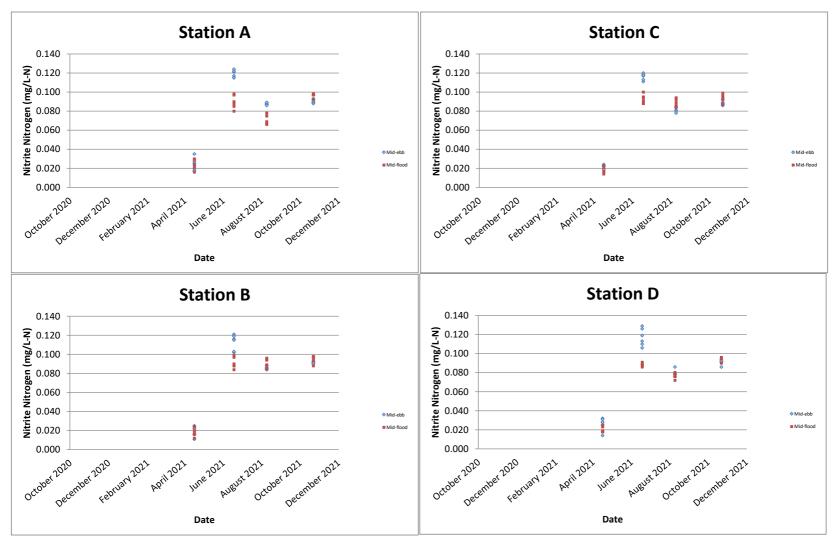
Turbidity (NTU)

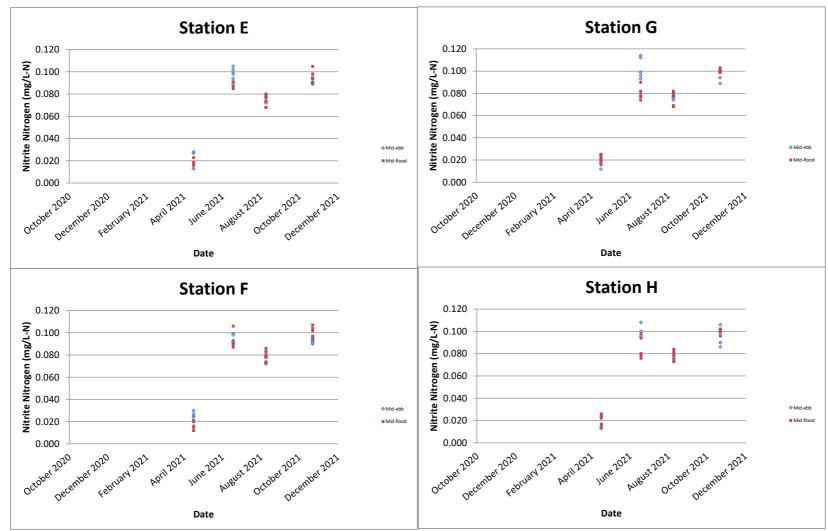


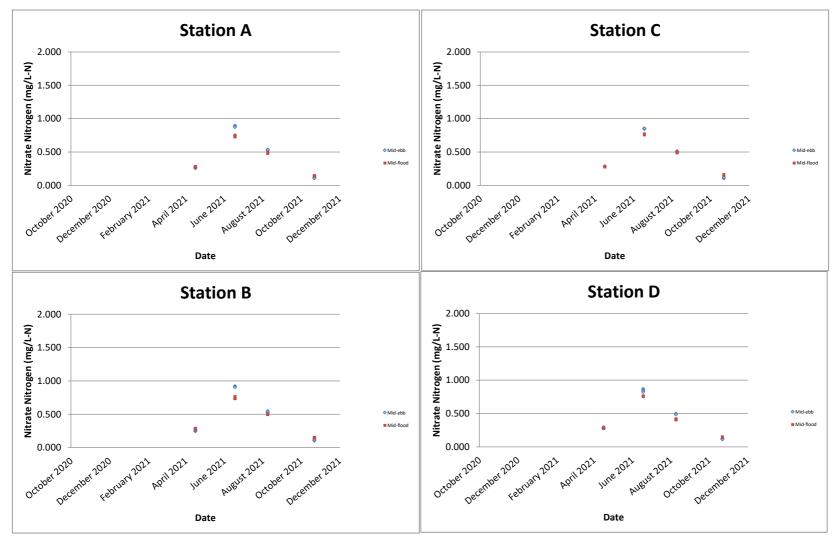
Turbidity (NTU)

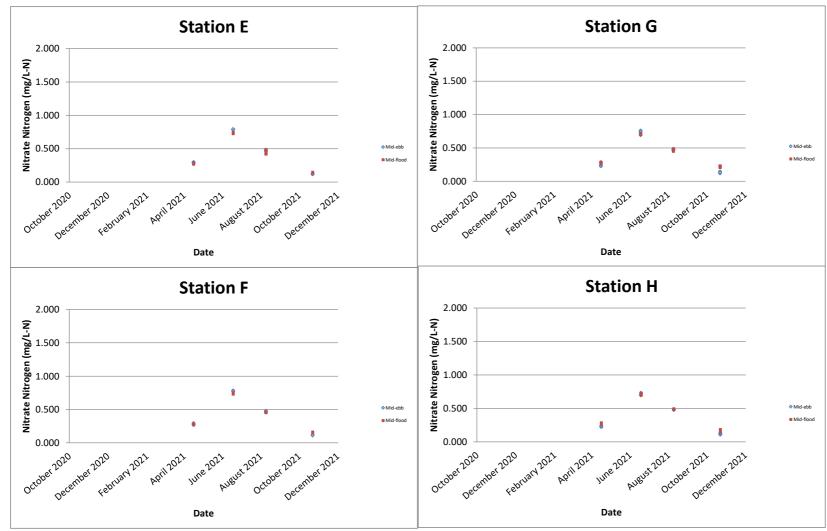


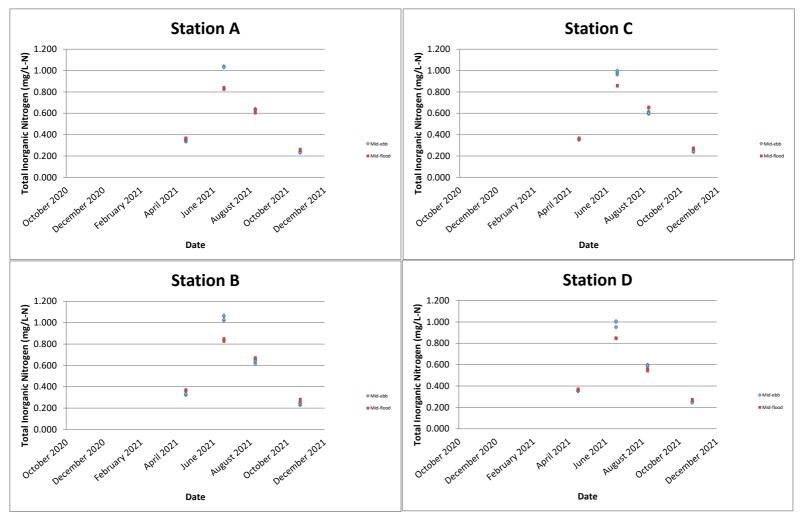

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

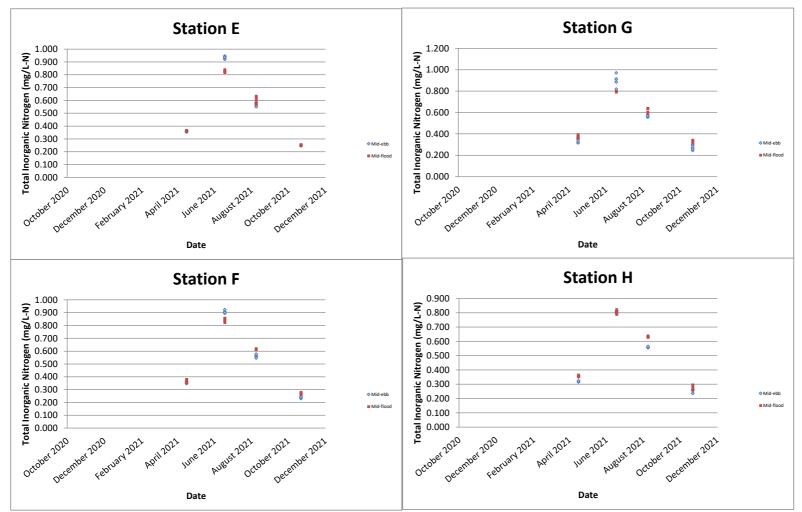

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

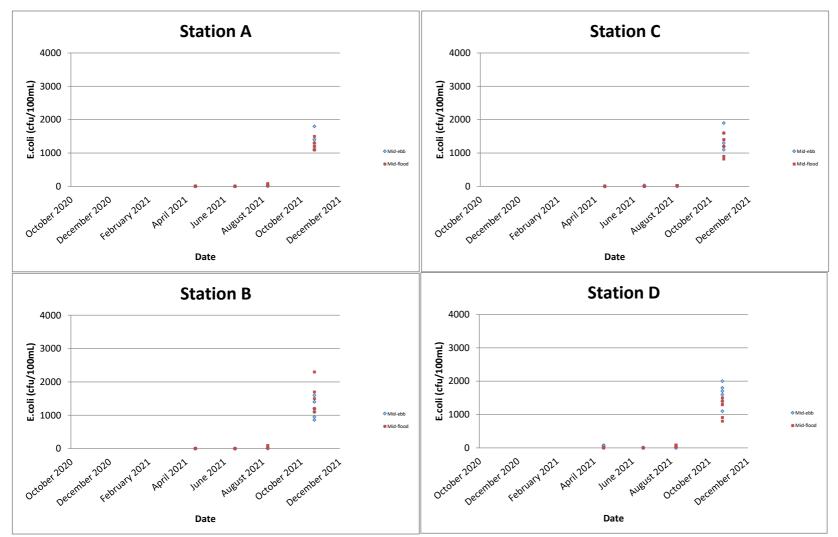

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

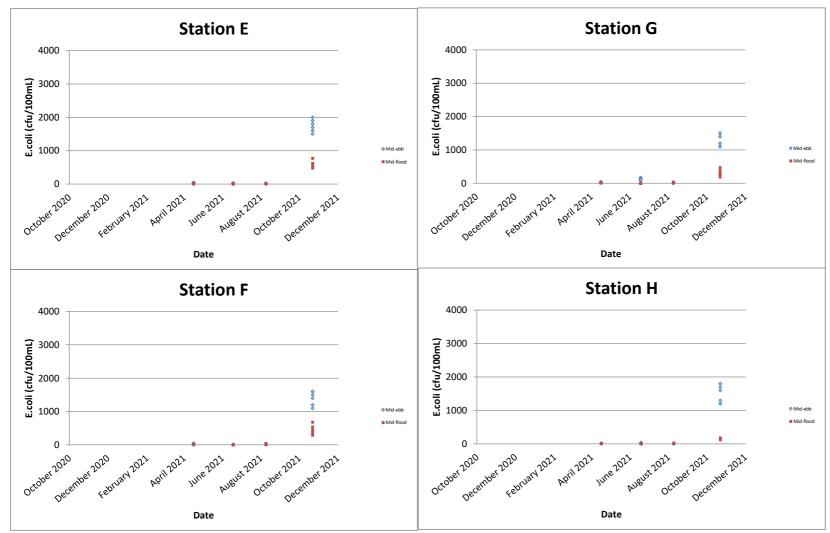

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

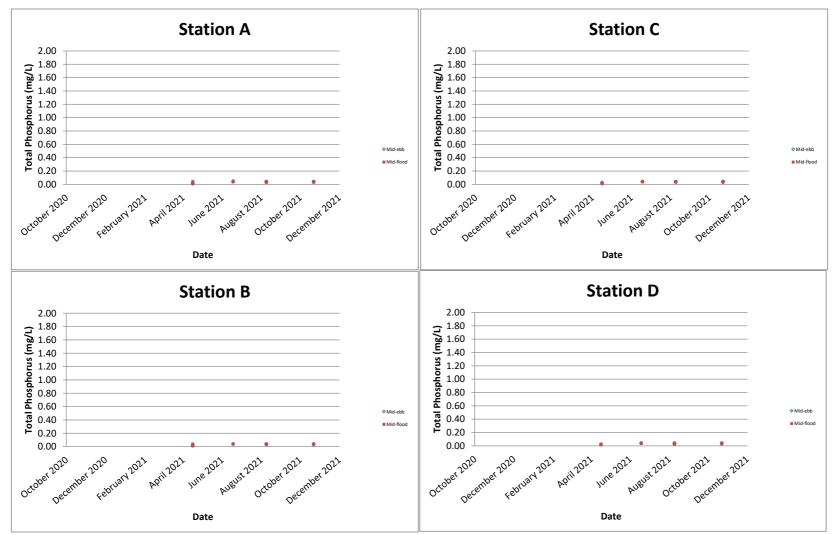

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

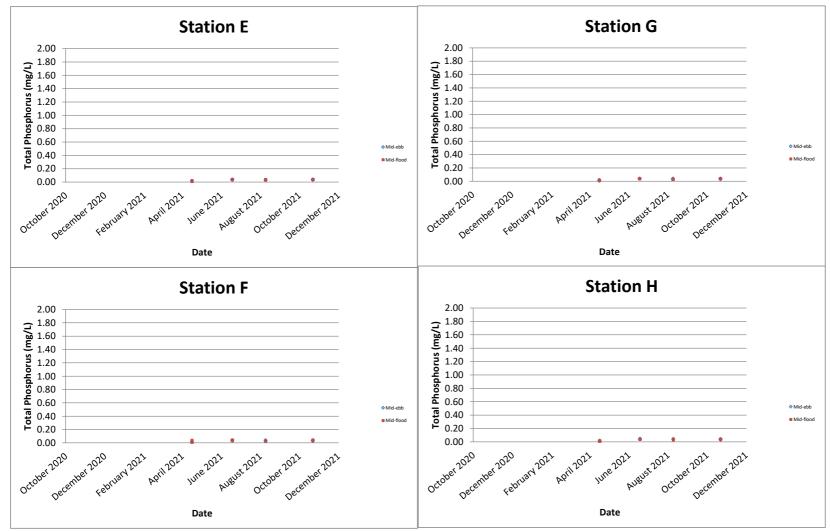
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.



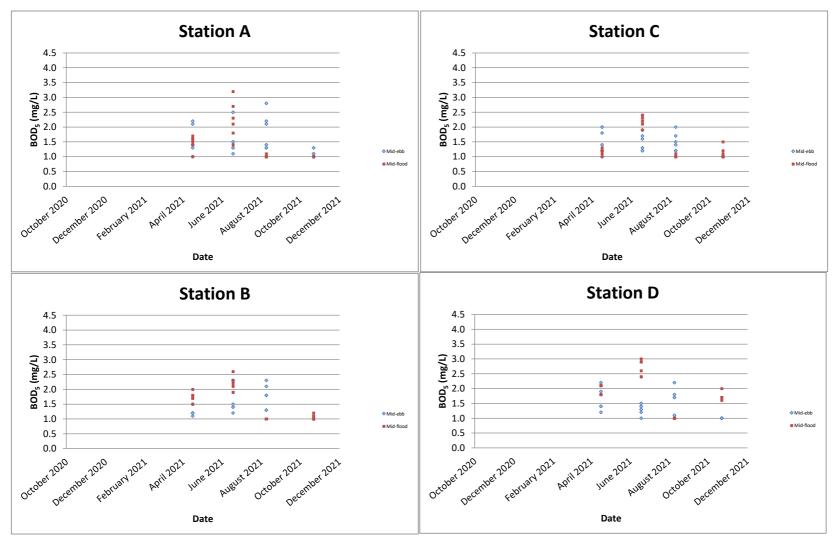
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.



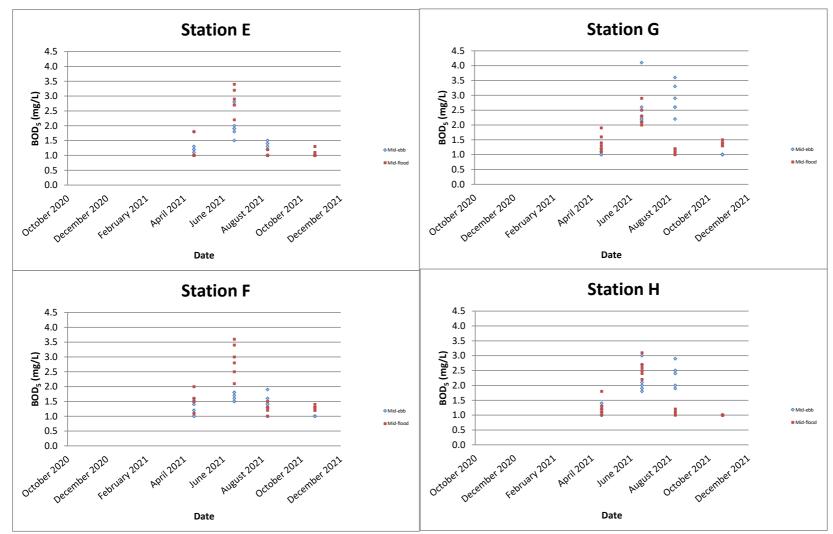
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

FUGRO TECHNICAL SERVICES LIMITED

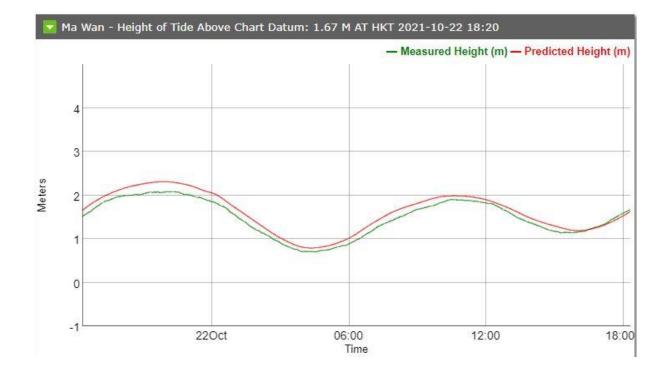
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix G

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring						
Monitoring Location Date	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	22/10/2021	Fine	Moderate	11:03	8.4	1.5	880	425	<0.10	25.8	24.4	33.1	0.10	14.5	75.7	14.9	0.18
В	22/10/2021	Fine	Moderate	10:50	8.4	1.4	1060	479	<0.10	32.0	35.4	39.3	0.14	19.4	101	12.9	0.31
С	22/10/2021	Fine	Moderate	10:31	8.2	7.1	1270	609	0.11	34.6	34.3	43.8	0.12	21.6	109	12.3	0.26
D	22/10/2021	Fine	Moderate	10:22	8.3	3.2	1100	483	<0.10	31.0	28.7	39.7	0.10	18.9	95.7	9.8	0.23
E	22/10/2021	Fine	Moderate	10:00	8.3	11.0	1350	533	<0.10	33.0	35.7	39.7	0.10	20.7	107	11.3	0.30
F	22/10/2021	Fine	Moderate	09:50	8.3	12.9	1590	599	<0.10	33.3	37.4	40.6	0.12	21.0	108	11.0	0.30
G	22/10/2021	Fine	Moderate	09:26	8.4	3.2	1220	564	<0.10	28.8	53.2	39.4	0.11	17.7	115	9.7	0.28
Н	22/10/2021	Fine	Moderate	09:13	8.4	2.6	1110	466	0.12	34.8	34.0	38.3	0.10	21.6	95.8	13.0	0.21

							Benthic Survey				
Monitoring Location	Date	Weather	Sea Condition		Total Organic Carbon		Particle Size Distrbution				
Location					(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)		
A	22/10/2021	Fine	Moderate	11:03	1.26	4	44	30	22		
В	22/10/2021	Fine	Moderate	10:50	0.74	0	19	51	30		
С	22/10/2021	Fine	Moderate	10:31	0.96	0	8	57	35		
D	22/10/2021	Fine	Moderate	10:22	0.95	0	7	58	35		
E	22/10/2021	Fine	Moderate	10:00	0.92	0	8	56	36		
F	22/10/2021	Fine	Moderate	09:50	1.21	0	6	59	35		
G	22/10/2021	Fine	Moderate	09:26	0.86	2	14	54	30		
Н	22/10/2021	Fine	Moderate	09:13	1.01	1	11	55	33		

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: FUGRO TECHNICAL SERVICES LIMITED	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 13
Contact Address	 CYRUS LAI ROOM 723 & 725, 7/F, BLOCK B, PROFIT INDUSTRIAL BUILDING, 1-15 KWAI FONG CRESCENT, KWAI FONG, HONG KONG 	Contact Address	 Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 	Work Order	: HK2142472
E-mail Telephone Facsimile	: C.Lai@fugro.com : +852 3565 4374 :	E-mail Telephone Facsimile	 richard.fung@alsglobal.com +852 2610 1044 +852 2610 2021 		
Project	CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERA SIU HO WAN SEWAGE TREATMENT PLANT	TIONAL ENVIR	ONMENTAL MONITORING AND AUDIT FOR	Date Samples Received	: 22-Oct-2021
Order number	: 0041/17	Quote number	: HKE/1654/2017_R1	Issue Date	: 05-Nov-2021
C-O-C number	:			No. of samples received	: 24
Site	:			No. of samples analysed	: 24

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Kiland Jung.			
Fung Lim Chee, Richard	Managing Director	Inorganics	
Richard Jung.			
Fung Lim Chee, Richard	Monoging Director	Metals_ENV	
Fully Lill Chee, Richard	Managing Director		

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 22-Oct-2021 to 05-Nov-2021.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2142472

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.

Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.

EA002SOIL - pH value is reported as at 25°C.

EK055S - Ammoniacal Nitrogen was determined on a 1:5 soil / 1M KCl solution extract.

EK059A - Nitrate and Nitrite were determined on a 1:5 soil / 1M KCl solution extract.

EA002SOIL - Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EK062A - Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.

EA002SOIL - Soil sample(s) analysed on as air-dry sample basis. pH value determined and reported on a 1:5 soil / water extract.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

Sample(s) as received, digested by in-house method E-3051A prior to the determination of metals. The in-house method is developed based on USEPA method 3051A.

Analytical Results

Sub-Matrix: SEDIMENT			Sample ID	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment
		Samplir	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142472-001	HK2142472-002	HK2142472-003	HK2142472-004	HK2142472-005
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.4	8.4	8.2	8.3	8.3
EA055: Moisture Content (dried @ 103°C)		0.1	%	46.1	54.3	60.7	56.9	61.6
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	1.5	1.4	7.1	3.2	11.0
EK062A: Total Nitrogen as N		10	mg/kg	880	1060	1270	1100	1350
EK067A: Total Phosphorus as P		10	mg/kg	425	479	609	483	533
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	14.9	12.9	12.3	9.8	11.3
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	0.11	<0.10	<0.10
EG020: Chromium	7440-47-3	0.5	mg/kg	25.8	32.0	34.6	31.0	33.0
EG020: Copper	7440-50-8	0.20	mg/kg	24.4	35.4	34.3	28.7	35.7
EG020: Lead	7439-92-1	0.20	mg/kg	33.1	39.3	43.8	39.7	39.7
EG020: Mercury	7439-97-6	0.05	mg/kg	0.10	0.14	0.12	0.10	0.10
EG020: Nickel	7440-02-0	0.20	mg/kg	14.5	19.4	21.6	18.9	20.7
EG020: Silver	7440-22-4	0.10	mg/kg	0.18	0.31	0.26	0.23	0.30
EG020: Zinc	7440-66-6	0.5	mg/kg	75.7	101	109	95.7	107

Page Number : 4 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

HK2142472

Work Order

_

Sub-Matrix: SEDIMENT			Sample ID	F/Sediment	G/Sediment	H/Sediment	A/Benthic Survey	B/Benthic Survey
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142472-006	HK2142472-007	HK2142472-008	HK2142472-009	HK2142472-010
EA/ED: Physical and Aggregate Properties								
EA002SOIL: pH Value		0.1	pH Unit	8.3	8.4	8.4		
EA055: Moisture Content (dried @ 103°C)		0.1	%	66.2	56.0	58.1	48.6	56.2
ED/EK: Inorganic Nonmetallic Parameters								
EK055S: Ammonia as N	7664-41-7	0.5	mg/kg	12.9	3.2	2.6		
EK062A: Total Nitrogen as N		10	mg/kg	1590	1220	1110		
EK067A: Total Phosphorus as P		10	mg/kg	599	564	466		
EG: Metals and Major Cations								
EG020: Arsenic	7440-38-2	0.5	mg/kg	11.0	9.7	13.0		
EG020: Cadmium	7440-43-9	0.10	mg/kg	<0.10	<0.10	0.12		
EG020: Chromium	7440-47-3	0.5	mg/kg	33.3	28.8	34.8		
EG020: Copper	7440-50-8	0.20	mg/kg	37.4	53.2	34.0		
EG020: Lead	7439-92-1	0.20	mg/kg	40.6	39.4	38.3		
EG020: Mercury	7439-97-6	0.05	mg/kg	0.12	0.11	0.10		
EG020: Nickel	7440-02-0	0.20	mg/kg	21.0	17.7	21.6		
EG020: Silver	7440-22-4	0.10	mg/kg	0.30	0.28	0.21		
EG020: Zinc	7440-66-6	0.5	mg/kg	108	115	95.8		
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%				1.26	0.74

Page Number : 5 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2142472

Sub-Matrix: SEDIMENT			Sample ID	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey
		Samplin	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142472-011	HK2142472-012	HK2142472-013	HK2142472-014	HK2142472-015
EA/ED: Physical and Aggregate Properties								
EA055: Moisture Content (dried @ 103°C)		0.1	%	55.8	59.7	59.4	64.0	56.5
EP: Aggregate Organics								
EP005: Total Organic Carbon		0.05	%	0.96	0.95	0.92	1.21	0.86

Page Number : 6 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED Work Order HK2142472

Sub-Matrix: SEDIMENT			Sample ID	H/Benthic Survey	 	
		Samplir	ng date / time	22-Oct-2021	 	
Compound	CAS Number	LOR	Unit	HK2142472-016	 	
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	54.9	 	
EP: Aggregate Organics						
EP005: Total Organic Carbon		0.05	%	1.01	 	

Page Number 2 7 of 13

Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2142472

Sub-Matrix: WATER			Sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank	E/Rinsate Blank
		Samplii	ng date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021	22-Oct-2021
Compound	CAS Number	LOR	Unit	HK2142472-017	HK2142472-018	HK2142472-019	HK2142472-020	HK2142472-021
EG: Metals and Major Cations - Total								
EG020: Arsenic	7440-38-2	1	µg/L	<1	<1	<1	<1	<1
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
EG020: Chromium	7440-47-3	1	µg/L	<1	<1	<1	<1	<1
EG020: Copper	7440-50-8	1	μg/L	2	3	2	3	2
EG020: Lead	7439-92-1	1	μg/L	<1	<1	<1	<1	<1
EG020: Mercury	7439-97-6	0.5	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EG020: Nickel	7440-02-0	1	μg/L	2	2	2	2	2
EG020: Silver	7440-22-4	1	μg/L	<1	<1	<1	<1	<1
EG020: Zinc	7440-66-6	10	µg/L	10	10	10	10	10

Page Number : 8 of 13 Client : FUGRO TECHNICAL SERVICES LIMITED

Work Order HK2142472

Sub-Matrix: WATER			Sample ID	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank	
		Samplin	g date / time	22-Oct-2021	22-Oct-2021	22-Oct-2021	
Compound	CAS Number	LOR	Unit	HK2142472-022	HK2142472-023	HK2142472-024	
EG: Metals and Major Cations - Total							
EG020: Arsenic	7440-38-2	1	µg/L	<1	<1	<1	
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	<0.2	
EG020: Chromium	7440-47-3	1	µg/L	<1	<1	<1	
EG020: Copper	7440-50-8	1	µg/L	2	2	2	
EG020: Lead	7439-92-1	1	µg/L	<1	<1	<1	
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	<0.5	
EG020: Nickel	7440-02-0	1	µg/L	2	2	2	
EG020: Silver	7440-22-4	1	µg/L	<1	<1	<1	
EG020: Zinc	7440-66-6	10	µg/L	20	20	20	

Laboratory Duplicate (DUP) Report

Matrix: SOIL					Labo	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and Ac	ggregate Properties (QC Lo	ot: 3976930)						
HK2142472-001	A/Sediment	EA055: Moisture Content (dried @ 103°C)		0.1	%	46.1	45.8	0.7
HK2142774-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	22.7	22.9	1.2
EA/ED: Physical and Ag	ggregate Properties (QC Lo	ot: 3976944)						
HK2142472-001	A/Sediment	EA002SOIL: pH Value		0.1	pH Unit	8.4	8.5	0.0
EA/ED: Physical and A	ggregate Properties (QC Lo	ot: 3984602)						
HK2142472-009	A/Benthic Survey	EA055: Moisture Content (dried @ 103°C)		0.1	%	48.6	48.4	0.2
HK2143232-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	13.5	13.7	1.5
ED/EK: Inorganic Nonrr	netallic Parameters (QC Lot	: 3985305)						
HK2142472-001	A/Sediment	EK067A: Total Phosphorus as P		10	mg/kg	425	449	5.5
EG: Metals and Major C	Cations (QC Lot: 3974244)							
HK2142472-002	B/Sediment	EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.10	<0.10	0.0
		EG020: Mercury	7439-97-6	0.02	mg/kg	0.14	0.11	22.4
		EG020: Copper	7440-50-8	0.05	mg/kg	35.4	33.8	4.5
		EG020: Lead	7439-92-1	0.05	mg/kg	39.3	38.4	2.4
		EG020: Nickel	7440-02-0	0.05	mg/kg	19.4	20.7	6.3
		EG020: Silver	7440-22-4	0.05	mg/kg	0.31	0.29	5.2
		EG020: Arsenic	7440-38-2	0.5	mg/kg	12.9	13.0	0.9
		EG020: Chromium	7440-47-3	0.5	mg/kg	32.0	34.5	7.7
		EG020: Zinc	7440-66-6	0.5	mg/kg	101	102	1.3
EP: Aggregate Organic	s (QC Lot: 3979588)							
HK2142472-011	C/Benthic Survey	EP005: Total Organic Carbon		0.05	%	0.96	0.92	4.7
/latrix: WATER					Labo	pratory Duplicate (DUP) I	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Major C	Cations - Total (QC Lot: 397	74289)						
HK2142472-018	B/Rinsate Blank	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.0
		EG020: Arsenic	7440-38-2	1	µg/L	<1	<1	0.0
		EG020: Chromium	7440-47-3	1	μg/L	<1	<1	0.0
		EG020: Copper	7440-50-8	1	μg/L	3	3	0.0

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)	
sample ID							Result		
EG: Metals and Major C	Cations - Total (QC Lot: 3974289)	- Continued							
HK2142472-018	B/Rinsate Blank	EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.0	
		EG020: Nickel	7440-02-0	1	µg/L	2	2	0.0	
		EG020: Silver	7440-22-4	1	µg/L	<1	<1	0.0	
		EG020: Zinc	7440-66-6	10	µg/L	10	10	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 3976942)											
EK055S: Ammonia as N	7664-41-7	1	mg/kg	<1	10 mg/kg	96.0		89.6	107			
ED/EK: Inorganic Nonmetallic Parameters (Q	C Lot: 3985305)											
EK067A: Total Phosphorus as P		10	mg/kg	<10	512 mg/kg	109		85.0	115			
EG: Metals and Major Cations (QC Lot: 3974	244)											
EG020: Arsenic	7440-38-2	0.5	mg/kg	<0.5	5 mg/kg	93.7		82.8	110			
EG020: Cadmium	7440-43-9	0.01	mg/kg	<0.01	0.5 mg/kg	90.8		78.7	110			
EG020: Chromium	7440-47-3	0.5	mg/kg	<0.5	5 mg/kg	89.8		84.3	111			
EG020: Copper	7440-50-8	0.05	mg/kg	<0.05	5 mg/kg	96.0		89.4	115			
EG020: Lead	7439-92-1	0.05	mg/kg	<0.05	5 mg/kg	92.7		87.8	112			
EG020: Mercury	7439-97-6	0.02	mg/kg	<0.02	0.1 mg/kg	96.0		76.8	115			
EG020: Nickel	7440-02-0	0.05	mg/kg	<0.05	5 mg/kg	93.6		86.8	111			
EG020: Silver	7440-22-4	0.05	mg/kg	<0.05	5 mg/kg	86.6		80.6	110			
EG020: Zinc	7440-66-6	0.5	mg/kg	<0.5	5 mg/kg	93.2		80.7	115			
EP: Aggregate Organics (QC Lot: 3979588)												
EP005: Total Organic Carbon		0.05	%	<0.05	40 %	101		93.1	109			
Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	

Page Number:11 of 13Client:FUGRO TECHNICAL SERVICES LIMITEDWork OrderHK2142472

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations - Tota	al (QC Lot: 3974289) - Continue	d									Linim	
EG020: Arsenic	7440-38-2	1	µg/L	<1	50 µg/L	98.2		85.0	110			
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	5 µg/L	104		85.0	109			
EG020: Chromium	7440-47-3	1	µg/L	<1	50 µg/L	99.5		86.0	111			
EG020: Copper	7440-50-8	1	µg/L	<1	50 µg/L	94.6		90.0	111			
EG020: Lead	7439-92-1	1	µg/L	<1	50 µg/L	97.0		89.0	111			
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	88.2		85.0	115			
EG020: Nickel	7440-02-0	1	µg/L	<1	50 µg/L	91.0		87.0	110			
EG020: Silver	7440-22-4	1	µg/L	<1	50 µg/L	87.6		85.0	114			
EG020: Zinc	7440-66-6	10	µg/L	<10	50 µg/L	99.8		86.0	114			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
ED/EK: Inorga	anic Nonmetallic Parameters (QC	: Lot: 3985305)									
HK2142472-00	01 A/Sediment	EK067A: Total Phosphorus as P		148 mg/kg	109		75.0	125			
EG: Metals ar	nd Major Cations (QC Lot: 39742	44)									
K2142472-001 A/Sediment	01 A/Sediment	EG020: Arsenic	7440-38-2	5 mg/kg	91.4		75.0	125			
		EG020: Cadmium	7440-43-9	0.5 mg/kg	94.0		75.0	125			
		EG020: Chromium	7440-47-3	5 mg/kg	91.5		75.0	125			
		EG020: Copper	7440-50-8	5 mg/kg	81.9		75.0	125			
		EG020: Lead	7439-92-1	5 mg/kg	99.2		75.0	125			
		EG020: Mercury	7439-97-6	0.1 mg/kg	94.5		75.0	125			
		EG020: Nickel	7440-02-0	5 mg/kg	97.6		75.0	125			
		EG020: Silver	7440-22-4	5 mg/kg	79.9		75.0	125			
		EG020: Zinc	7440-66-6	5 mg/kg	# Not Determined		75.0	125			
EP: Aggregate	e Organics (QC Lot: 3979588)		· · · · ·								
	10 B/Benthic Survey	EP005: Total Organic Carbon		0.758 %	106		75.0	125			
/latrix: WATE	B				Matrix Soil	ke (MS) and Matr	ix Snike Dunlic	ata (MSD) Ra	nort		
			-	-		• •		Limits (%)	RPD (%)		
aboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control	
sample ID										Limit	
	nd Major Cations - Total (QC Lot:			= - "				(05			
HK2142472-017 A/Rinsate Blank	17 A/Rinsate Blank	EG020: Arsenic	7440-38-2	50 µg/L	98.8		75.0	125			
		EG020: Cadmium	7440-43-9	5 µg/L	108		75.0	125			
		EG020: Chromium	7440-47-3	50 µg/L	99.1		75.0	125			
		EG020: Copper	7440-50-8	50 µg/L	91.1		75.0	125			
		EG020: Lead	7439-92-1	50 μg/L	93.9		75.0	125			
		EG020: Mercury EG020: Nickel	7439-97-6	2 µg/L	87.2		75.0	125			
		EG020: NICKEI EG020: Silver	7440-02-0 7440-22-4	50 µg/L	87.2 100		75.0 75.0	125 125			
				50 µg/L							
		EG020: Zinc	7440-66-6	50 µg/L	92.0		75.0	125			

Page Number	່ 13 of 13
Client	FUGRO TECHNICAL SERVICES LIMITED
Work Order	HK2142472

ALS Technichem (HK)Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: CYRUS LAI	WORK ORDER HK2142472
CLIENT	FUGRO TECHNICAL SERVICES LIMITED	
ADDRESS	: ROOM 723 & 725, 7/F, BLOCK B, PROFIT	SUB-BATCH : 1
	INDUSTRIAL BUILDING, 1-15 KWAI FONG	DATE RECEIVED : 22-OCT-2021 DATE OF ISSUE : 5-NOV-2021
	CRESCENT, KWAI FONG, HONG KONG	DATE OF 1550E . 5-NOV-2021
PROJECT	: CONTRACT NO. CM 14/2016	NO. OF SAMPLES : 24
	ENVIRONMENTAL TEAM FOR OPERATIONAL	CLIENT ORDER 0041/17
	ENVIRONMENTAL MONITORING AND AUDIT	
	FOR SIU HO WAN SEWAGE TREATMENT	
	PLANT	

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of soil/sediment sample(s) was / were reported on dry weight basis.
- Particle Size Distribution was subcontracted to and analysed by Gammon Construction Limited.
- EA002SOIL pH value is reported as at 25°C.
- EK055S Ammoniacal Nitrogen was determined on a 1:5 soil / 1M KCI solution extract.
- EK059A Nitrate and Nitrite were determined on a 1:5 soil / 1M KCl solution extract.
- EA002SOIL Calibration range of pH value is 4.0 10.0. Results exceeding this range is for reference only.
- EK062A Total Nitrogen is the sum of Total Oxidizable (NOx) and Total Kjeldahl Nitrogen.
- EA002SOIL Soil sample(s) analysed on as air-dry sample basis. pH value determined and reported on a 1:5 soil / water extract.
- Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.
- Sample(s) as received, digested by in-house method E-3051A prior to the determination of metals. The in-house method is developed based on USEPA method 3051A.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Kidard Jung.	
Richard Fung	Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER SUB-BATCH

: HK2142472

¹ 1 ¹ FUGRO TECHNICAL SERVICES LIMITED ALS

CLIENT PROJECT

 FUGRO TECHNICAL SERVICES LIMITED
 CONTRACT NO. CM 14/2016 ENVIRONMENTAL TEAM FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE

TREATMENT PLANT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK2142472-001	A/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-002	B/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-003	C/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-004	D/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-005	E/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-006	F/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-007	G/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-008	H/Sediment	SEDIMENT	22-Oct-2021	
HK2142472-009	A/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-010	B/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-011	C/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-012	D/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-013	E/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-014	F/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-015	G/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-016	H/Benthic Survey	SEDIMENT	22-Oct-2021	J2999-365.12
HK2142472-017	A/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-018	B/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-019	C/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-020	D/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-021	E/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-022	F/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-023	G/Rinsate Blank	WATER	22-Oct-2021	
HK2142472-024	H/Rinsate Blank	WATER	22-Oct-2021	

SUMMARY OF SOIL CLASSIFICATION TEST RESULT TEST CERTIFICATE GEOSPEC 3:2001

Gammon Report No: J2999-365.12

Customer .	Customer : ALS Technichem (HK) Pty Ltd	(HK) P	ty Ltd							1	Job No. : J2999	J2999			1	Works Order No. : 365	
Project : -										Con	Contract No.: -				1	Date : 25/10/2021	
Sample ID	San	Sample		Δ Moisture Content		Test 6.1 Plastic	Test 6.1 Plasticity	TestTestTest6.16.16.2PassingLiquidPlasticPlasticPlasticity425 µm	Passin y 425µn	Passing Preparation 425µm Method		Particle Size Distribution	Distri	bution		Description	Sample
No.	No.	Type	Depth (m)	(%)	Limit (%)	Limit Limit (%) (%)	Index (%)	Index	Test Sieve (%)	4.	# Test Method		Percentage Gravel Sand Silt (%) (%) (%)	Silt (%)	Clay (%)		Origin
HK2142472-009	A/Benthic Survey	LB									1,5,7	4	44	30	22 D	Dark grey, sandy SILT/CLAY with shell fraoments	** ,
HK2142472-010	B/Benthic Survey	LB	,								1,5,7	0	19	51	30 D	Dark grey, slightly sandy SILT/CLAY with shell fragments	*,
HK2142472-011	C/Benthic Survey	LB									1,5,7	0	∞	57	35 D	Dark grey, slightly sandy SILT/CLAY with shell fragments	*,
HK2142472-012	D/Benthic Survey	LB									1,5,7	0	7	58	35 D	Dark grey, slightly sandy SILT/CLAY with shell fragments	**,
HK2142472-013	E/Benthic Survey	LB									1,5,7	0	~	56	36 D	Dark grey, slightly sandy SILT/CLAY with shell fraements	**,
Legend :	Δ= #	Test Met Test Met	thod in accord	dance with GEO lance with GEO	SPEC 3 : SPEC3 : 2	2001 Tes	t 5.1 Moist 8.1 (1), 8.2	ure Content (2), 8.3 (3)	at 45°C ±), 8.4 (4), 8	Test Method in accordance with GEOSPEC 3 : 2001 Test S.1 Moisture Content at 45°C ± 5°C (A). Test 5.2 Moi Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	Moisture C	ontent at	105°C±	5°C (B	, Test	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at 45°C ± 5°C (A). Test 5.2 Moisture Content at 105°C ± 5°C (B), Test 5.3 Comparative Moisture Content 45/105°C ± 5°C (C). Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	
Symbols :	 U - Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT Split-Barrel Sample; 	umple; d Sample; el Sample	15		P - M - D - PT -	P - Piston Sample; M - Mazier Sample; D - Small Disturbed	 P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample; Portable triple tube Sample; 	uple; Sample;	N.P N A.R A H.P H	N.P Non Plastic; A.R As Received; H.P Hand Picked; • - Moisture Content for A.L. Test.	A.L. Test.	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;			Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. ‡ - Information provided by customer.	sport; sport. stomer.
Notes: Checked by :	IS - Insufficient Sample; Z T K Lau	iample; T K Lam			L- 1T	Co Follow	on supplen	Tf - To Follow on supplementary Report. Appro	eport. Approved By :		Chung Hei Wing					Date : 01/11/2021	
		ЮН	HKAS ha KLAS dire	HKAS has accredited this laboratory (Reg. HOKLAS directory of accredited laboratories.	this lab	oratory	00	HOKLA report sh	AS 055) t tall not b	No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the This report shall not be reproduced unless with prior written approval from this labora	vS for speculation with	h prior v	oratory	activ	ties a	. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the This report shall not be reproduced unless with prior written approval from this laboratory.	
© Gammon Construction Ltd	tion Ltd							21 Chu Tseun	n Wang Stu g Kwan O,	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	n O Industria 80, Fax : 26	ul Estate, 917547					
Earn · GESS001 / Se	Form : GESS001 / Sept.14.18 / Issue 1 / Rev 4	+															Dana Laf

TEST CERTIFICATE SUMMARY OF SOIL CLASSIFICATION TEST RESULT GEOSPEC 3 : 2001

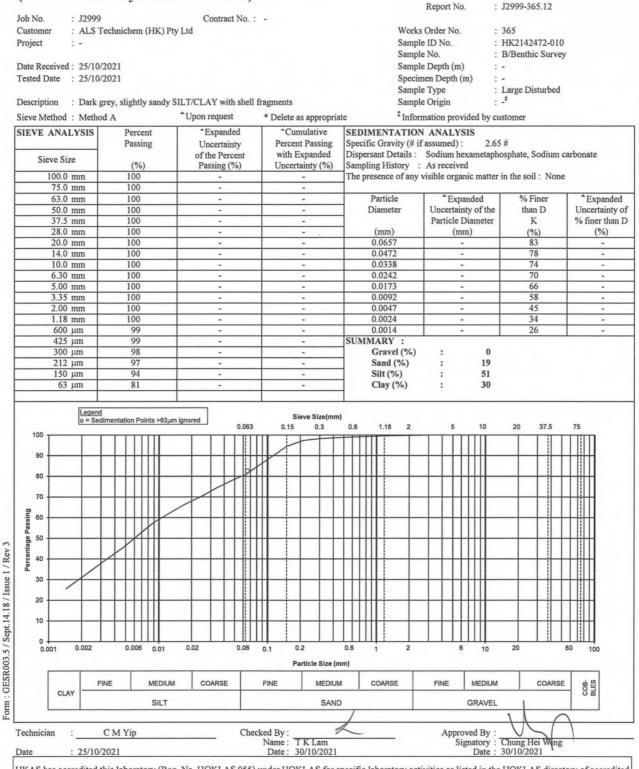
Gammon

Report No: J2999-365.12

Customer :	Customer : ALS Technichem (HK) Pty Ltd	(HK) P	ty Ltd							1	Job No. : J2999	J2999			1	Works Order No. : 365	
Project : -										Cont	Contract No.: -	,			I	Date : 25/10/2021	
Sample ID	Sar	Sample		Δ Moisture Content	Test 6.1 Liquid	Test 6.1 Plastic	TestTestTestTest6.16.16.16.2LiquidPlastic Plasticity Liquidity	Test 6.2 V Liquidit	Passing ty 425µm	ng Preparation m Method		Particle Size Distribution	Distrib	ution		Description	Sample
No.	No.	Type	Depth (m)		Limit (%)	Limit Limit (%) (%)	Index (%)	Index	Test Sieve (%)	- 0	# Test Method	Percentage Gravel Sand Silt (%) (%) (%)	Percentage Sand Silt (%) (%)	tage Silt C (%) ('	Clay (%)		Origin
HK2142472-014	F/Benthic Survey	ΓB	,								1,5,7	0	9	59 3	35 Di	Dark grey, slightly sandy SILT/CLAY with shell fragments	* ,
HK2142472-015	G/Benthic Survey	LB	,								1,5,7	2	14	54 3	30 Di sh	Dark grey, slightly sandy SILT/CLAY with shell fragments	*,
HK2142472-016	H/Benthic Survey	LB									1,5,7	1	Ξ	55 3	33 D.	Dark grey, slightly sandy SILT/CLAY with shell fragments	**,
																,	
-																	
Legend :	= #	Test Me Test Me	thod in accord thod in accord	dance with GEO. lance with GEO.	SPEC 3 : SPEC3 : 2	2001 Tes	t 5.1 Moista 8.1 (1), 8.2	rre Content (2), 8.3 (3)	t at 45°C ±), 8.4 (4), 8	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at $45^{\circ}C \pm 5^{\circ}C$ (A), Test 5.2 Moi Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	Moisture Co (7).	ontent at	05°C±	°C (B),	Test 5	Test Method in accordance with GEOSPEC 3 : 2001 Test 5.1 Moisture Content at $45^{\circ}C \pm 5^{\circ}C$ (A), Test 5.2 Moisture Content at $105^{\circ}C \pm 5^{\circ}C$ (B), Test 5.3 Comparative Moisture Content $45/105^{\circ}C \pm 5^{\circ}C$ (C) Test Method in accordance with GEOSPEC3 : 2001 Test 8.1 (1), 8.2 (2), 8.3 (3), 8.4 (4), 8.5 (5), 8.6 (6), 8.7 (7).	
Symbols :	 U - Undisturbed Sample; LB - Large Disturbed Sample; BLK - Block Sample; SPTL - SPT SpliteBarrel Sample; 	ample; ed Sample rel Sample			P- M- D- PT-	P - Piston Sample; M - Mazier Sample; D - Small Disturbed	 P - Piston Sample; M - Mazier Sample; D - Small Disturbed Sample; Portable triple tube Sample; 	aple; Sample;	N.P 7 A.R 1 H.P F	N.P Non Plastic; A.R As Received; H.P Hand Picked; • - Moisture Content for A.L. Test.	A.L. Test.	A.D Air Dried; O.D Oven Dried; W.S Wet Sieved;	r Dried; ven Dried et Sieveo	# #		Sampling History - Refer the Individual Test Report; Estimated Uncertainty - Refer the Individual Test Report. $^{\mp}$ - Information provided by customer.	t; t. aer.
Notes: Checked by :	IS - Insufficient Sample; T K Lar	sample; T K Lam		1	T - 1T	o Follow	Tf - To Follow on supplementary Report. Appro	aentary Rer Aı	eport. Approved By :		Chung Hei Wing Quality Manager					Date : 01/11/2021	
		OH	HKAS hé KLAS dire	HKAS has accredited this laboratory (Re HOKLAS directory of accredited laboratories.	this lab(edited la	oratory	00	HOKL/	AS 055) hall not b	HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the LAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this labor.	S for spec mless with	ific lab	vritten	activit	ies as al fro	No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the This report shall not be reproduced unless with prior written approval from this laboratory.	
C Gammon Construction Ltd	tion Ltd							21 Chu Tseun	n Wang St g Kwan O	Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547	tre n O Industria 180, Fax : 26	d Estate, 917547					
Form : GESS001 / Se	Form: GESS001 / Sept.14.18 / Issue 1 / Rev 4	4															Page 2 of 2

Report No.	: J2999-365.12
Works Order No.	: 365
Sample ID No.	: HK2142472-009
Sample No.	: A/Benthic Survey
Sample Depth (m)	: -
Specimen Depth (m)	: -
Sample Type	: Large Disturbed
Sample Origin	: -*
	Works Order No. Sample ID No. Sample No. Sample Depth (m) Specimen Depth (m) Sample Type

Description : Dark grey, sandy SILT/CLAY with shell fragments Math


leve Me	ethod : N	fethod A		Upon request	* Delete as appro	priate * Infor	mation provided by cus	tomer	
IEVE A	ANALYS	IS Pe	ercent	*Expanded	*Cumulative				
		Pa	ssing	Uncertainty	Percent Passin	g Specific Gravity (# if	f assumed) : 2.65 #	ŧ	
6 2	0.	_		of the Percent	with Expanded	d Dispersant Details :	Sodium hexametaphos	sphate, Sodium	carbonate
Sie	ve Size		(%)	Passing (%)	Uncertainty (%			•	
1	100.0 mm		00	-	-		visible organic matter in	the soil : Non	e
	75.0 mm	10	00	-	-	- · · ·			
	63.0 mm	10	00	-	-	Particle	Expanded	% Finer	*Expande
	50.0 mm		00	-	-	Diameter	Uncertainty of the	than D	Uncertainty
	37.5 mm		00	-			Particle Diameter	K	% finer than
	28.0 mm		00	-	-	(mm)	(mm)	(%)	(%)
	20.0 mm		00	-		0.0707	-	53	-
	14.0 mm		00	-	-	0.0503	-	51	-
	10.0 mm		00	-		0.0358	-	49	-
	6.30 mm		98	-		0.0255	-	47	-
	5.00 mm		98			0.0181	-	45	-
	3.35 mm		97	-		0.0095		40	-
	2.00 mm		96			0.0095	-	33	-
	1.18 mm		93	-		0.0048	-	25	
			89	-		0.0025		19	
	600 µm		89 87			SUMMARY :		19	-
	425 μm		87						
	300 µm		74	-		Gravel (%)	: 4		
	212 µm			-	-	Sand (%)	: 44		
	150 µm		62	-	-	Silt (%)	: 30		
	63 µm		52	-	-	Clay (%)	: 22		
- 07 - 06 - 06 - 07 - 06 - 07 - 00 - 00 - 00 - 00 - 00 - 00 - 00									
10							++++++++		
0 +	01 0.0		006 0.01	0.02 0.0	0.1 0.2	0.6 1 2	6 10	20	60 100
0.0	0.0		006 0.01 0	J.J. U.U	5 0.1 0.2 Particle Siz		6 10	20	60 100
Γ		FINE	MEDIUM	COARSE	FINE MED	DIUM COARSE	FINE MEDIUM	COARS	COB-BLES
	CLAY		SILT		S	AND	GRAVEL	. /	BLCC
L						1		1 7	
echnicia	an :	C M Yi	р	C	hecked By : Name : TK Lam	2	Approved By :	hung Hei Wing	

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Cammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Cammon Construction Ltd

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate,

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

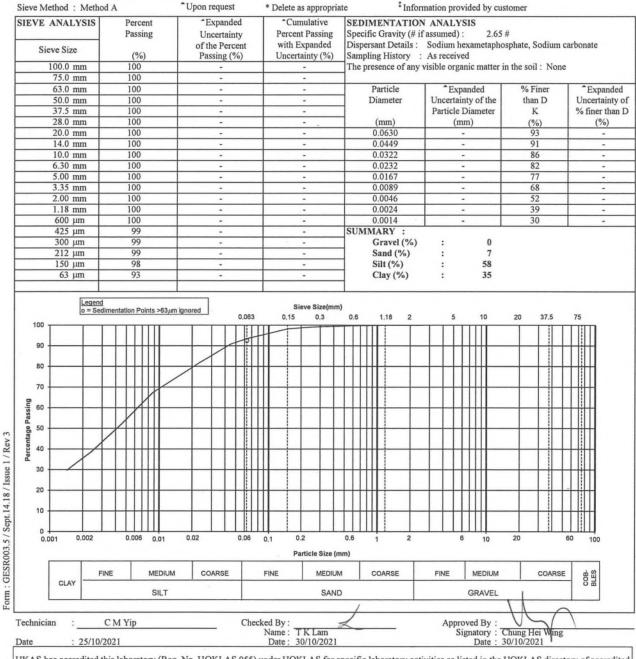
Custome Project			:hnichen	n (HK	() Pty Lto		ontract	No. :	•				Sa	mple	Order N ID No.	0.	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	365 HK2142			
Date Ree Fested E	ceived : 2 Date : 2	25/10/20											Sa	becim	No. Depth (en Depth Type		:	C/Benth - - Large Di			
Descript	tion : I	Dark gre	y, slight	ly sar	ndy SILT	/CLA	Y with	shell	fragmen	ats					Origin		: -				
Sieve M	lethod : M						equest				ppropriat	te	* I	nform	nation pr	ovideo	by cu	stomer			
	ANALY		Perc	rent	-	*E	xpande	d		Cumul		-	IENTAT				-				
	eve Size		Pass	sing		Une of th	certaint e Perce	ty ent	Pe	ercent P ith Expa	assing	Specifi Dispers	c Gravity ant Detai	(# if : ls :	assumed Sodium	l) : hexan	2.65 netapho		Sodium	carb	onate
	100.0 mm	n	(%			Pas	sing (%	0)		ncertain	ity (70)		ng Histor				natter	in the soi	il : Non	e	
	75.0 mm		100		_		-		1	-		1				Buine					
	63.0 mm		100)			-			-			Particle		*E	xpande	d	% F	iner	T	*Expande
	50.0 mm	n	100				-			-] I	Diameter		Uncert	ainty c	f the		n D		Uncertainty
	37.5 mm		100				-			-		-			Particl		neter		K	9	% finer than
	28.0 mm		100				-		-	-	-	-	(mm)		((mm)			<u>%)</u>	+	(%)
	20.0 mm 14.0 mm		100				-		-	-			0.0630	_		-			93 88	+	-
	14.0 mm	_	100				-		-	-			0.0455	-		-			34	+	
	6.30 mm		100				-		-	-		_	0.0233	-		-	-		30	+	-
	5.00 mm		100				-			-			0.0167			-			16		-
	3.35 mm		100				-			-			0.0089			-			i6		-
	2.00 mm		100				-			-			0.0046			-			53		-
	1.18 mn		100				-						0.0024			-			0	+	-
	600 μm 425 μm		99				-		-	-			0.0014 IARY :			-		2	29	_	-
	425 μm 300 μm		99				-		+				Gravel (:		0				
	212 µm		98				-			-			Sand (%		:		8				
	150 µm		97				-			-			Silt (%)		:		57				
	63 µm	1	92	1			-			•			Clay (%)	:		35				
100 90		o = Sedim	entation F	ioints >	>63µm igno	ared		0.063		0.15	e Size(mm) 0.3	0,6	1.18	2	5		10	20	37.5	7	5
Percentage Passing																					
70 60 50 40 30 20																					
Percentage Passing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
70 60 50 40 30 20																					
70 60 50 40 30 20 10	0.001 0.01	002	0.00	6 0,1	01 0	0.02		0.06	0.1	0.2		0.6	1	2		6	10	20		60	100
70 60 50 40 30 20 10	0.001 0.0	002	0.00	B 0.0	01 0			0.06	0.1		cle Size (m		1	2		6	10	20		60	100
70 60 50 40 30 20 10	001 0.0					-	APSE	0.06				m)		2	FINE	_		20		_	
70 60 50 40 30 20 10	0001 0.0	002				-	ARSE	0.06	0.1		cle Size (m	m)	1 COARSE	2	FINE	_	10 EDIUM	20	COARS	_	In the second seco
70 60 50 60 40 40 30 20 10				ME		-	ARSE	0.06				m)		2	FINE	м		20	COARS	_	
70 60 50 40 30 20 10				ME	DIUM	-	ARSE	0.06			MEDIUM	m)		2	FINE	м	EDIUM	20	COARS	_	
70 Duissed abstrong 40 30 20 10 0,	CLAY	FINE	E	ME	DIUM	-	ARSE		FINE	Partic	MEDIUM	m)		2		GR	EDIUM	20	COARS	_	
70 60 50 40 30 20 10	CLAY	FINE		ME	DIUM	-	ARSE		FINE	Partic	MEDIUM	m)		2		GF proved Signat	By :	20	lei Ving	E	

laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

C Gammon Construction Ltd

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate, Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Page 1 of 1


+

Sample Origin

TEST REPORT DETERMINATION OF PARTICLE SIZE DISTRIBUTION GEOSPEC 3 : 2001 Test Method 8.1 / 8.2*, 8.5 / 8.6* and 8.7 (Wet Sieve and Hydrometer Method)

			Report No.	; J2999-365.12	
Job No.	: J2999	Contract No. : -			
Customer	: ALS Technichem (HK) Pty Ltd		Works Order No.	: 365	
Project	2 -		Sample ID No.	: HK2142472-012	
			Sample No.	: D/Benthic Survey	
Date Receive	ed : 25/10/2021		Sample Depth (m)	: -	
Tested Date	: 25/10/2021		Specimen Depth (m)	: -	
			Sample Type	· Large Disturbed	

Description : Dark grey, slightly sandy SILT/CLAY with shell fragments

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

© Gammon Construction Ltd

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate,

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Page 1 of 1

SIEVE ANA	LYSIS Percent	^Expanded	*Cumulative SI	EDIMENTATION ANALYSIS	
Sieve Method	: Method A	¹ Upon request	* Delete as appropriate	[‡] Information provided b	by customer
Description	: Dark grey, slightly sand	y SILT/CLAY with shell	l fragments	Sample Origin	: J [‡]
				Sample Type	: Large Disturbed
Tested Date	: 25/10/2021			Specimen Depth (m)	:-
Date Received	1: 25/10/2021			Sample Depth (m)	: -
				Sample No.	: E/Benthic Survey
Project	:-			Sample ID No.	: HK2142472-013
Customer	: ALS Technichem (HK)	Pty Ltd		Works Order No.	: 365
Job No.	: J2999	Contract No.	: -		
				Report No.	: J2999-365.12

SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if			
Sieve Size		of the Percent	with Expanded		Sodium hexametapho	sphate, Sodium	carbonate
	(%)	Passing (%)	Uncertainty (%)	Sampling History :			
100.0 mm	100	-	-	The presence of any	visible organic matter in	n the soil : Non	8
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty
37.5 mm	100	-	-		Particle Diameter	K	% finer than
28.0 mm	100	-		(mm)	(mm)	(%)	(%)
20.0 mm	100	-	-	0.0633	-	92	-
14.0 mm	100	-	-	0.0450	-	90	-
10.0 mm	100	-	-	0.0324	-	85	-
6.30 mm	100	-	-	0.0232	-	82	-
5.00 mm	100	-	-	0.0167	-	77	-
3.35 mm	100	-	-	0.0089	-	68	-
2.00 mm	100	-	-	0.0046	-	53	-
1.18 mm	100	-		0.0024	-	40	-
600 µm	100	-	-	0.0014	-	30	-
425 µm	99	-	-	SUMMARY :			
300 µm	99	-		Gravel (%)	: 0		
212 µm	98	-		Sand (%)	: 8		
150 µm	97	-	-	Silt (%)	: 56		
63 µm	92	-	-	Clay (%)	: 36		
90	mentation Points >63/am	ignored 0.063	Sieve Size(mm 0.15 0.3	0.6 1.18 2	5 10	20 37.5	75
80							
Buiss 60	$+\mu$				++++++++++		

50 40 30 20 10 0.001 0.002 0.006 0.01 0.02 0.06 0.1 0.2 0.6 2 6 20 10 Particle Size (mm) FINE MEDIUM COARSE MEDIUM COARSE MEDIUM COARSE FINE FINE CLAY SILT SAND GRAVEL Checked By : Name : Date : C M Yip Approved By Technician T K Lam 30/10/2021 Chung Hei 30/10/2021 Signatory Wing 25/10/2021 Date Date

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

Cammon Construction Ltd

Percentage Pa:

Form : GESR003.5 / Sept.14.18 / Issue 1 / Rev 3

Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate,

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

60

100

COB-

			Report No.	: J2999-365.12	
Job No.	: J2999	Contract No. : -			
Customer	: ALS Technichem (HK) Pty L	td	Works Order No.	: 365	
Project	:-		Sample ID No.	: HK2142472-014	
			Sample No.	: F/Benthic Survey	
Date Receiv	ed: 25/10/2021		Sample Depth (m)	: -	
Tested Date	: 25/10/2021		Specimen Depth (m)	: -	
			Sample Type	: Large Disturbed	
Description	: Dark grey, slightly sandy SIL	T/CLAY with shell fragments	Sample Origin	: -*	

Sieve Method : Method A ^{*}Upon request * Delete as appropriate [‡] Information provided by customer SIEVE ANALYSIS Percent Expanded *Cumulative SEDIMENTATION ANALYSIS Passing Percent Passing Specific Gravity (# if assumed) : 2.65 # Uncertainty with Expanded Dispersant Details : Sodium hexametaphosphate, Sodium carbonate of the Percent Sieve Size Passing (%) Uncertainty (%) Sampling History : As received (%) 100.0 mm 100 The presence of any visible organic matter in the soil : None 75.0 mm 100 63.0 mm 100 Particle Expanded % Finer Expanded 50.0 mm 37.5 mm 100 Diameter Uncertainty of the than D Uncertainty of 100 Particle Diameter K % finer than D 28.0 mm 100 (mm) (mm) (%) (%) 20.0 mm 100 0.0634 94 100 92 14.0 mm 0.0451 10.0 mm 100 0.0324 88 6.30 mm 100 0.0233 83 5.00 mm 100 79 0.0167 3.35 mm 100 0.0089 69 2.00 mm 100 0.0046 54 1.18 mm 0.0024 39 600 µm 100 0.0014 30 SUMMARY 425 µm 00 99 300 µm 0 Gravel (%) : 212 µm 98 Sand (%) : 6 98 59 150 um Silt (%) : 94 Clay (%) 63 um 35 : Legend o = Sedim Sieve Size(mm) nentation Points >63µm ignored 0.6 0.063 0,15 0.3 1.18 2 5 10 20 37.5 75 100 90 80 70 sing 60

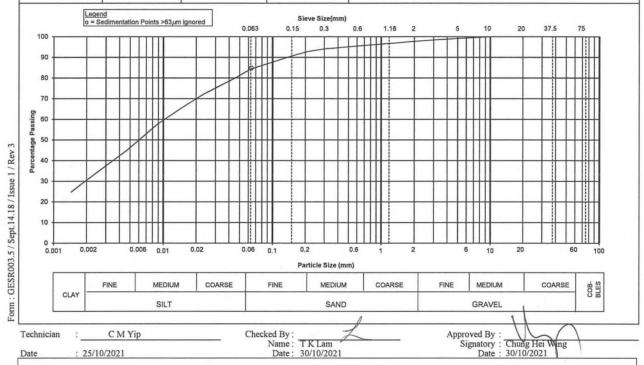
Pas 50 age 40 30 20 10 0.001 0.002 0.006 0.01 0.02 0,06 0.1 0.2 0.6 6 10 20 60 Particle Size (mm) FINE MEDIUM COARSE MEDIUM COARSE MEDIUM COARSE FINE FINE COB-CLAY SILT SAND GRAVEL Approved By Technician C M Yip Checked By : Name : TK Lam Signatory : Chung Hei Wing Date : 30/10/2021 : 25/10/2021 30/10/2021 Date Date Date : HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

C Gammon Construction Ltd

Form : GESR003.5 / Sept.14.18 / Issue 1 / Rev 3

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate,


Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

Page 1 of 1

•		,		Report No.	: J2999-365.12
Job No. : J2999)	Contract No.	-		
Customer : ALS	Technichem (HK)	Pty Ltd		Works Order No.	: 365
Project : -				Sample ID No.	: HK2142472-015
				Sample No.	: G/Benthic Survey
Date Received : 25/10	/2021			Sample Depth (m)	:-
Tested Date : 25/10	/2021			Specimen Depth (m)	:-
				Sample Type	: Large Disturbed
Description : Dark	grey, slightly sand	y SILT/CLAY with shell	fragments	Sample Origin	: - [‡]
Sieve Method : Metho	od A	[•] Upon request	* Delete as appropria	te [‡] Information provided	by customer
SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION ANALYSIS	
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if assumed) :	2.65 #
Sieve Size		of the Percent	with Expanded	Dispersant Details : Sodium hexam	etaphosphate, Sodium carbonate
Sieve Bize	(%)	Passing (%)	Uncertainty (%)	Sampling History : As received	

	(70)	Passing (76)	Uncertainty (76)	Sampling History	As received		
100.0 mm	100	-	-	The presence of any	visible organic matter in	the soil : Non	e
75.0 mm	100	-					
63.0 mm	100			Particle	*Expanded	% Finer	*Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100		-		Particle Diameter	K	% finer than D
28.0 mm	100	-	• .	(mm)	(mm)	(%)	(%)
20.0 mm	100		-	0.0638	-	85	-
14.0 mm	100			0.0459	-	80	-
10.0 mm	100	-	-	0.0329	-	76	-
6.30 mm	99	-	-	0.0236	-	72	-
5.00 mm	99	-	-	0.0170		68	-
3.35 mm	99	-	-	0.0090	-	58	-
2.00 mm	98		-	0.0047	-	45	-
1.18 mm	97	-		0.0024	-	34	-
600 µm	95	-	-	0.0014	-	25	
425 µm	95	-	-	SUMMARY :			
300 µm	94	-		Gravel (%)	: 2		
212 µm	93	-	-	Sand (%)	: 14		
150 µm	91		-	Silt (%)	: 54		
63 µm	84	-	-	Clay (%)	: 30		

HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

C Gammon Construction Ltd

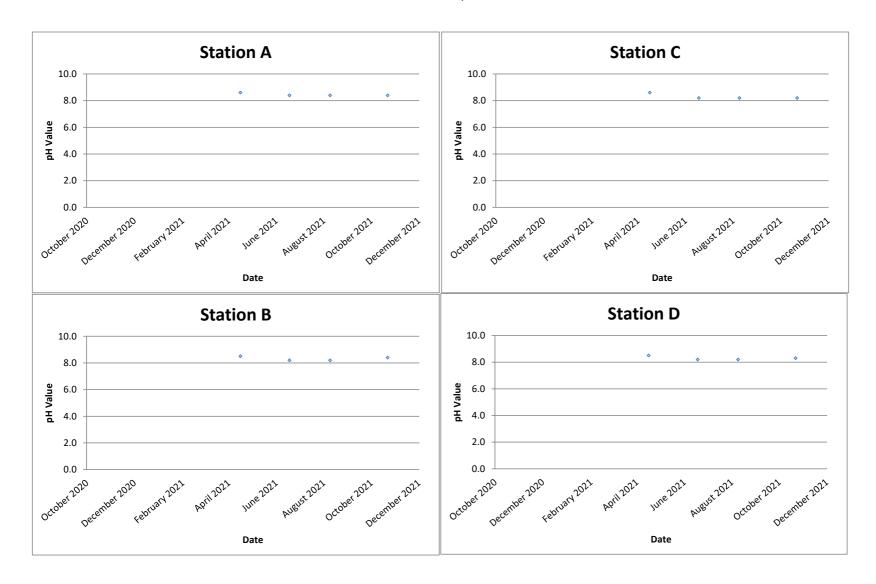
Technology Centre 21 Chun Wang Street, Tseung Kwan O Industrial Estate,

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

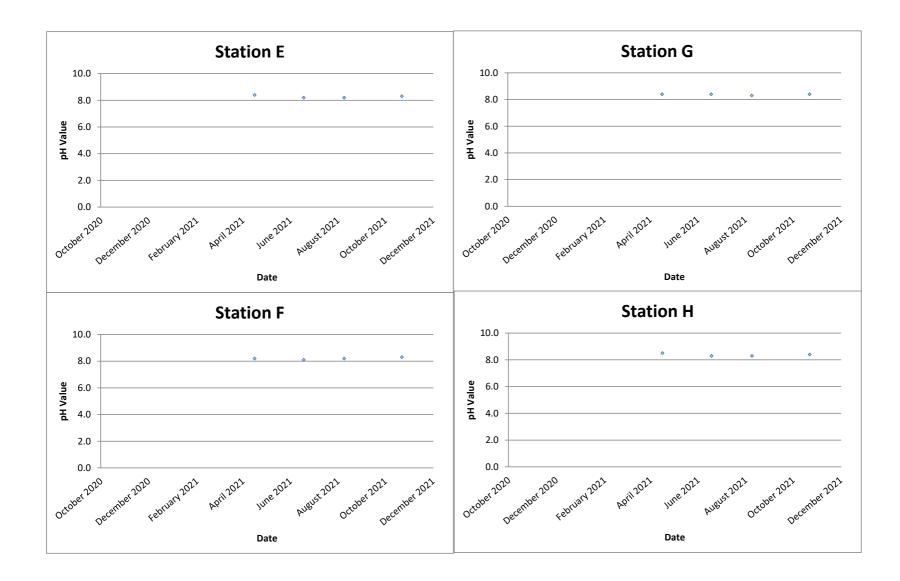
	nd Hydrome		,		Report No. :	J2999-365.12	
Job No. : J2999		Contract No	.: -				
Customer : ALS]	Fechnichem (HK) Pt	v Ltd		Works	Order No. :	365	
Project : -						HK2142472-016	6
				Sample		H/Benthic Surve	y
Date Received : 25/10				Sample	e Depth (m) :	-	
Tested Date : 25/10	/2021			Specin	nen Depth (m) :	-	
						Large Disturbed	
Description : Dark	may slightly candy	SILT/CLAY with she	Il fragmants			.‡	
					- ongin		
Sieve Method : Metho	od A	[^] Upon request	* Delete as appropria	te ⁺ Inform	mation provided by ca	ustomer	
SIEVE ANALYSIS	Percent	*Expanded	*Cumulative	SEDIMENTATION	ANALYSIS		
	Passing	Uncertainty	Percent Passing	Specific Gravity (# if		5 #	
	1 assuig		with Expanded				ashanata
Sieve Size	(0/)	of the Percent		Dispersant Details :		iosphate, Sodium	carbonate
	(%)	Passing (%)	Uncertainty (%)	Sampling History :			
100.0 mm	100	-	-	The presence of any	visible organic matter	in the soil : None	:
75.0 mm	100	-	-				
63.0 mm	100	-	-	Particle	*Expanded	% Finer	*Expanded
50.0 mm	100	-	-	Diameter	Uncertainty of the	than D	Uncertainty of
37.5 mm	100	-			Particle Diameter	K	% finer than
28.0 mm	100	-		(mm)	(mm)		
						(%)	(%)
20.0 mm	100		-	0.0642	-	90	-
14.0 mm	100	-	-	0.0463	-	84	-
10.0 mm	100	-	-	0.0331		81	-
6.30 mm	100	-	-	0.0237	-	77	-
5.00 mm	100	-	-	0.0170	-	72	-
3.35 mm	99	-	-	0.0091	-	62	-
2.00 mm	99	-	-	0.0047	-	48	-
1.18 mm	98	-		0.0024	-	37	
600 µm	97	-		0.0014		28	
	97				-	20	-
425 μm		-		SUMMARY :			
300 µm	96	-		Gravel (%)	: 1		
212 µm	94	-	-	Sand (%)	: 11		
150 µm	93	-	-	Silt (%)	: 55		
63 µm	88	-	-	Clay (%)	: 33		
		innered	Sieve Size(mm)			
	I dimentation Points >63µm	ignored 0.06) 0.6 1.18 2	5 10	20 37.5	75
		n ignored 0.00			5 10	20 37.5	75
o = Sec		0.00			5 10	20 37.5	75
o = Sec		0.00			5 10	20 37.5	75
100		0.00			5 10	20 37.5	75
100		0.00			5 10	20 37.5	75
100 90		1 ignored 0.00			5 10	20 37.5	75
100 90		0.00			5 10	20 37.5	75
0 = Sec 100 90 80 70		0.00			5 10	20 37.5	75
0 = Sec 100 90 80 70		lignored 0.00			5 10	20 37.5	75
0 = Sec 100 90 80 70		0.00				20 37.5	75
0 = Sec 100 90 80 70		0.00				20 37.5	75
0 = Sec 100 90 80 70		0.00				20 37.5	
0 = Sec 100 90 80 70		0.00				20 37.5	
0 = Sec 100 90 80 70		0.00				20 37.5	
0 = Sec		0.00					
0 = Sec 100 90 80 70		0.00				20 37.5	
0 = Sec 100 90 80 70 60 60 40 30		0.00					
0 = Sec							
0 = Sec 100 90 80 70 0 0 0 0 0 0 0 0 0 0 0 0 0							
0 = Sec 100 90 80 70 0 0 0 0 0 0 0 0 0 0 0 0 0							
0 = Sec 100 90 80 70 60 60 30 20							
0 = Sec 100 90 80 70 60 60 40 30 20 10 0 0	Imentation Points >63µm						
0 = Sec 100 90 80 70 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00				20 37.5	
0 = Sec 100 90 80 70 60 60 40 30 20 10 0 0	Imentation Points >63µm			0.6 1.18 2			
D = Sec 100 90 80 70 50 60 40 30 20 10 0.001 0.002	Imentation Points >63,47	0.00	5 0.1 0.2 Particle Size (m	0.6 1.18 2		20	
0 = Sec 100 90 80 70 60 60 60 70 60 70 40 70 10 60 70 10 60 70 10 60 70 10 60 70 10 70 10 10 10 10 10 10 10 10 10 1	Imentation Points >63µm	0.00	33 0.15 0.3 1 1 1 </td <td>0.6 1.18 2</td> <td></td> <td></td> <td></td>	0.6 1.18 2			
0 = Sec 100 90 80 70 50 60 10 10 10 10 10 10 10 10 10 1	Imentation Points >63,47	0.00	33 0.15 0.3 1 1 1 </td <td>0.6 1.18 2</td> <td>6 10</td> <td>20</td> <td>60 100</td>	0.6 1.18 2	6 10	20	60 100
0 = Sec 100 90 80 70 60 60 70 60 70 40 70 40 70 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Imentation Points >63,47	0.00	5 0.1 0.2 Particle Size (m	0.6 1.18 2		20	60 100

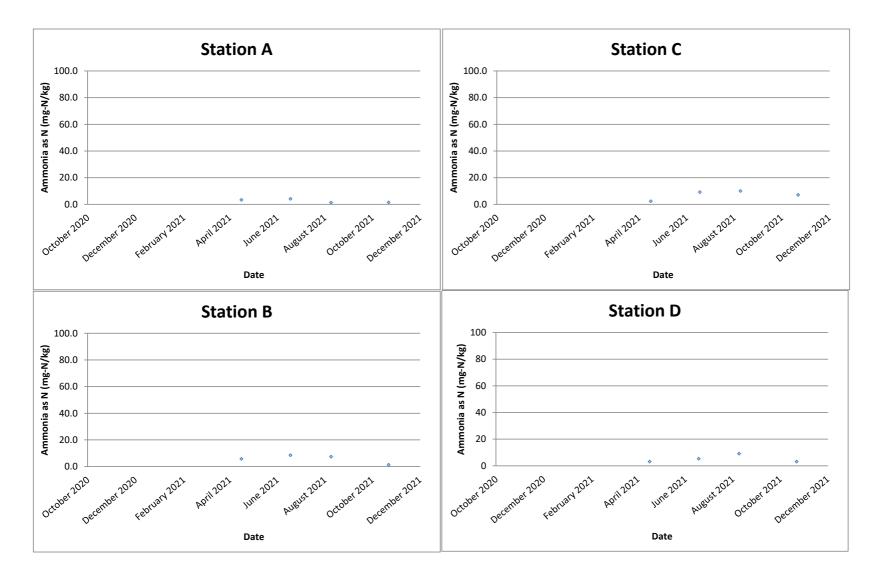
Percenta 40 30 20 10 0.001 0.002 0.006 0.01 0.02 0.06 0.2 0,6 2 6 20 60 0.1 10 100 Particle Size (mm) MEDIUM COARSE COARSE FINE FINE MEDIUM FINE MEDIUM COARSE COB-BLES CLAY SILT SAND GRAVEL Checked By : Name : TK Lam Date : 30/10/2021 Approved By Signatory Technician C M Yip ÷. Chung HerWing 30/10/2021 : 25/10/2021 Date Date HKAS has accredited this laboratory (Reg. No. HOKLAS 055) under HOKLAS for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. This report shall not be reproduced unless with prior written approval from this laboratory.

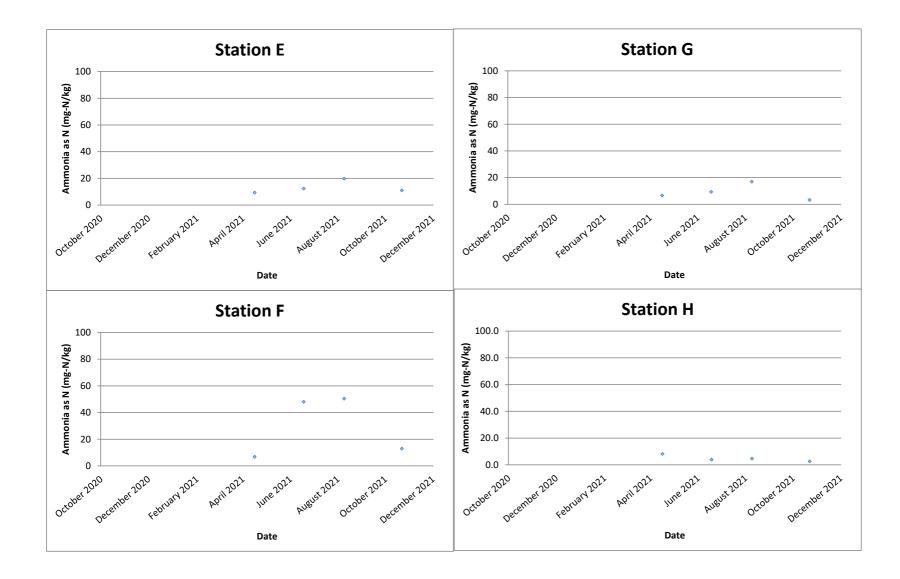
C Gammon Construction Ltd

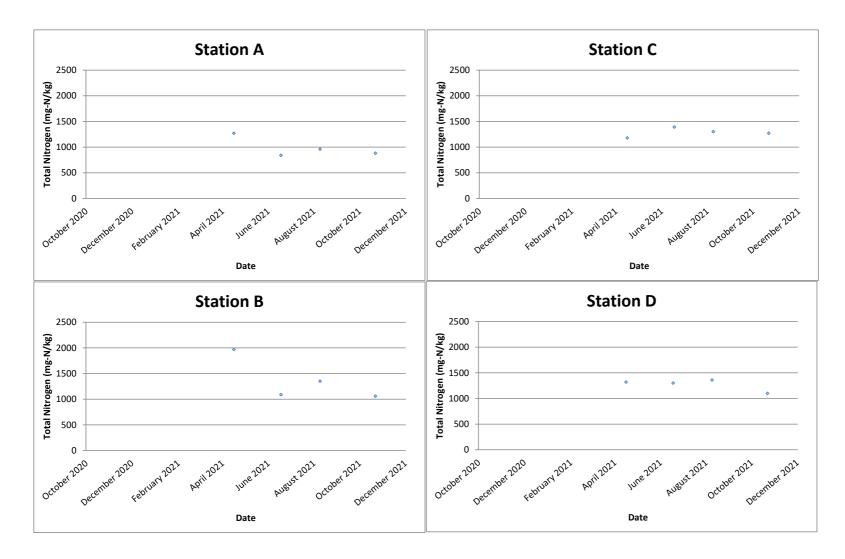

Technology Centre

21 Chun Wang Street, Tseung Kwan O Industrial Estate,

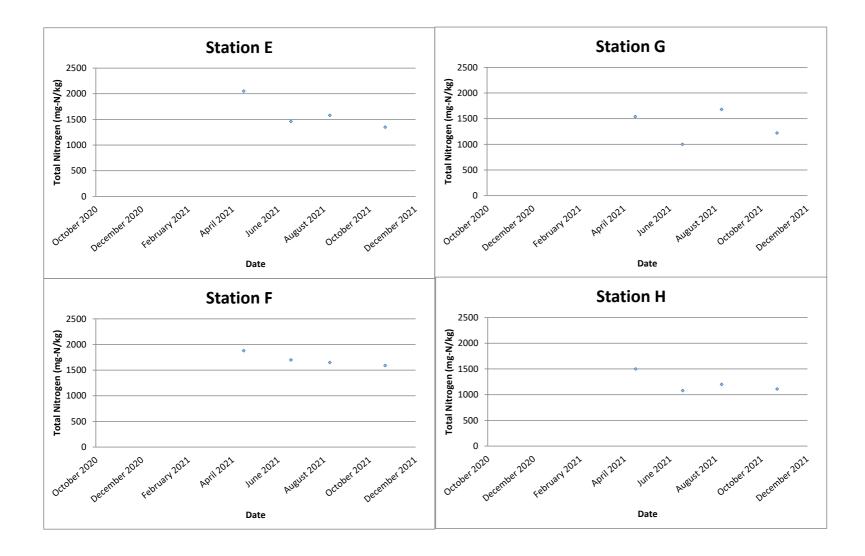

Tseung Kwan O, N.T. Tel :26991980, Fax : 26917547

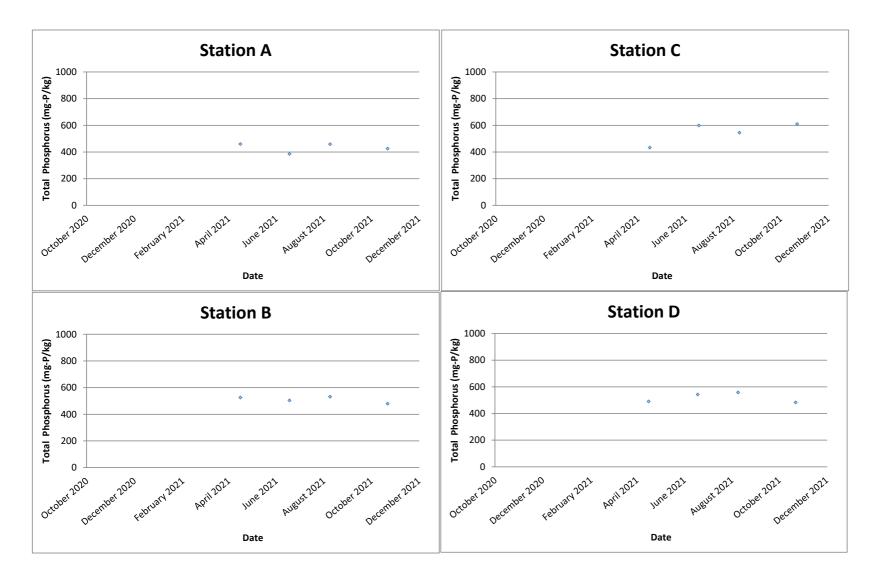

Page 1 of 1

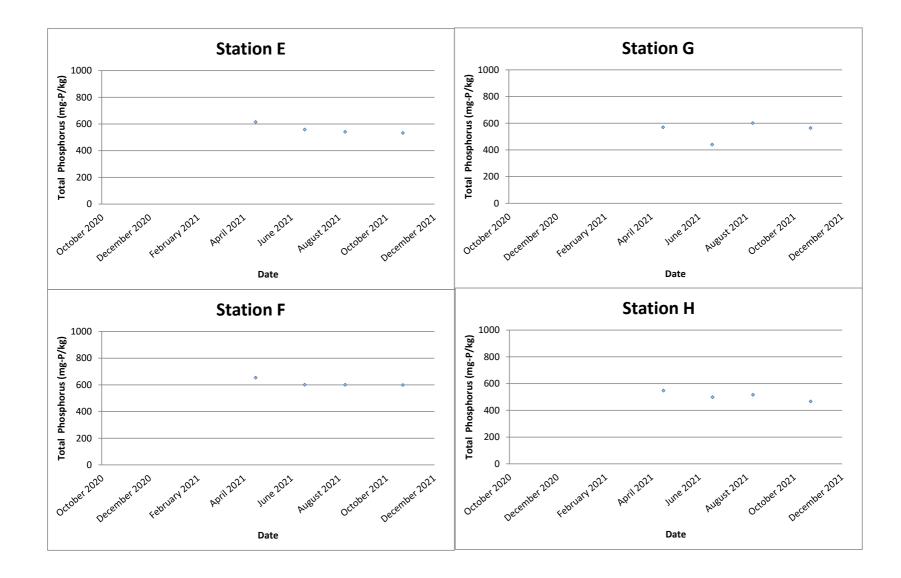

pH value

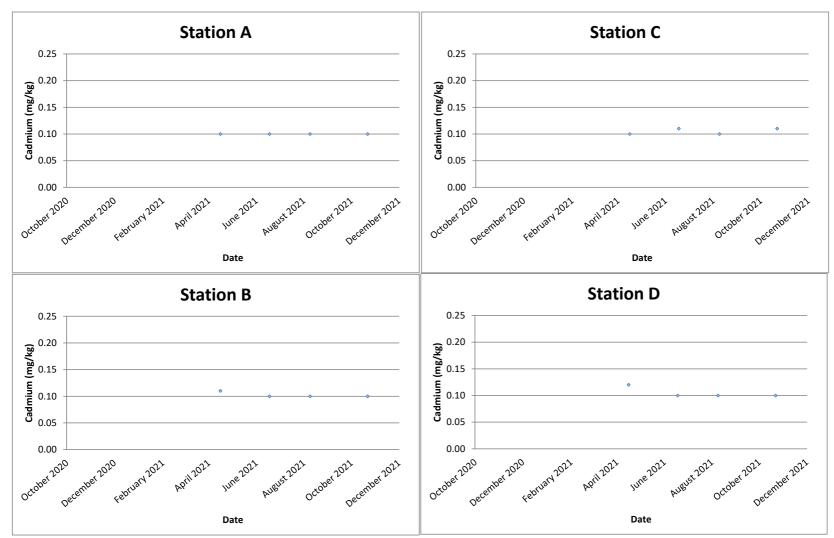


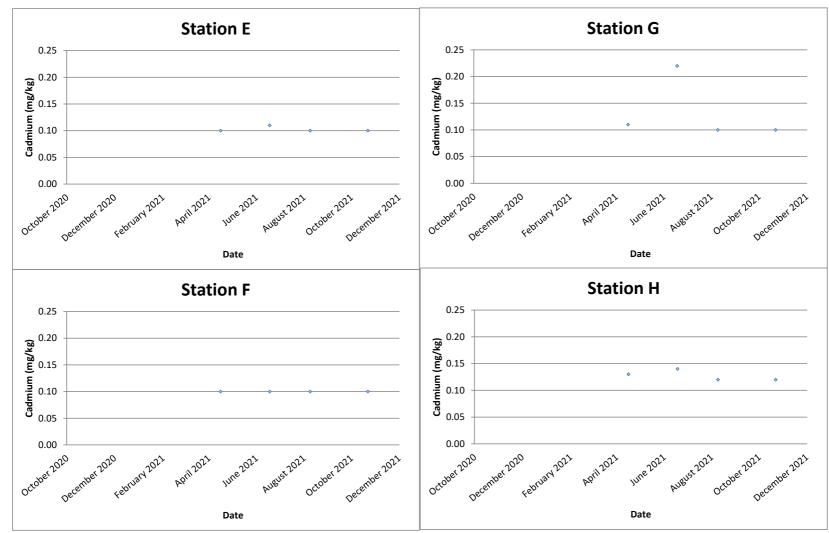
pH value



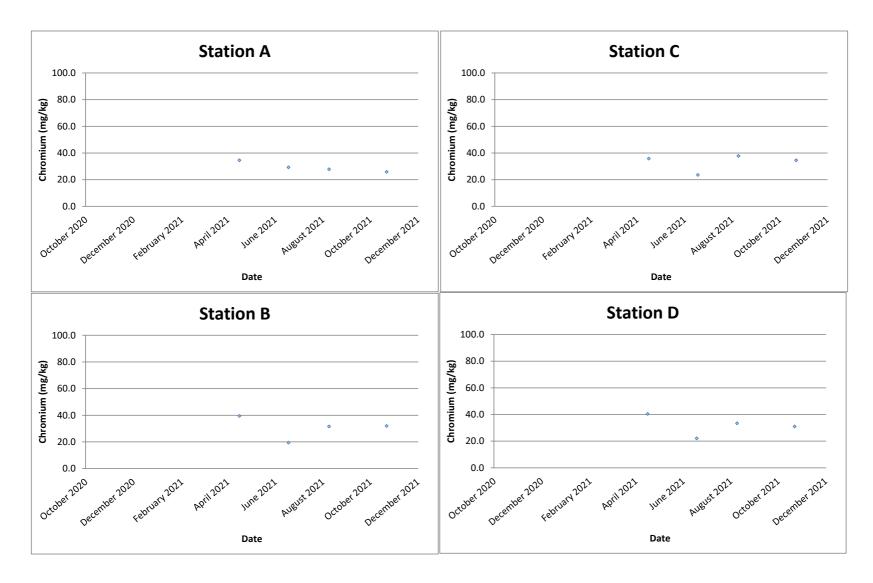




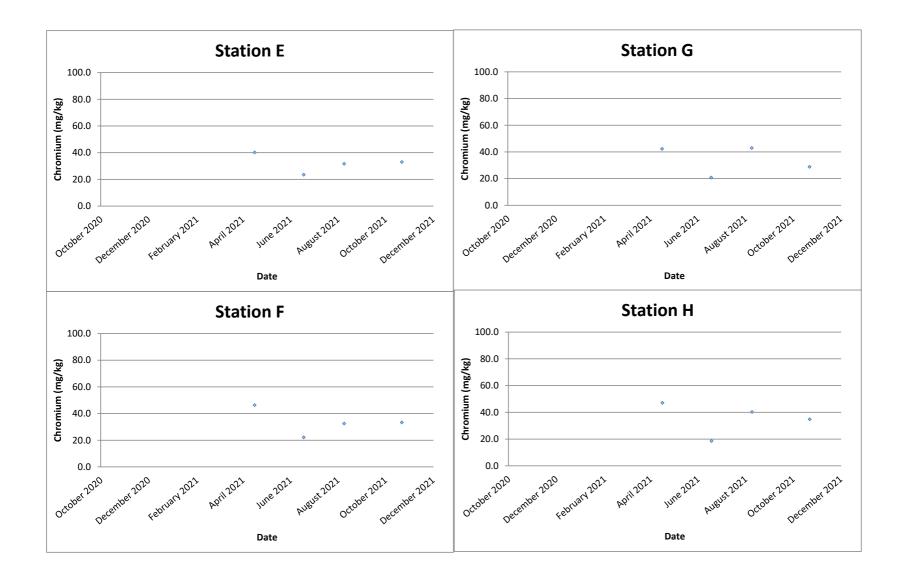

Total Nitrogen (mg-N/kg)



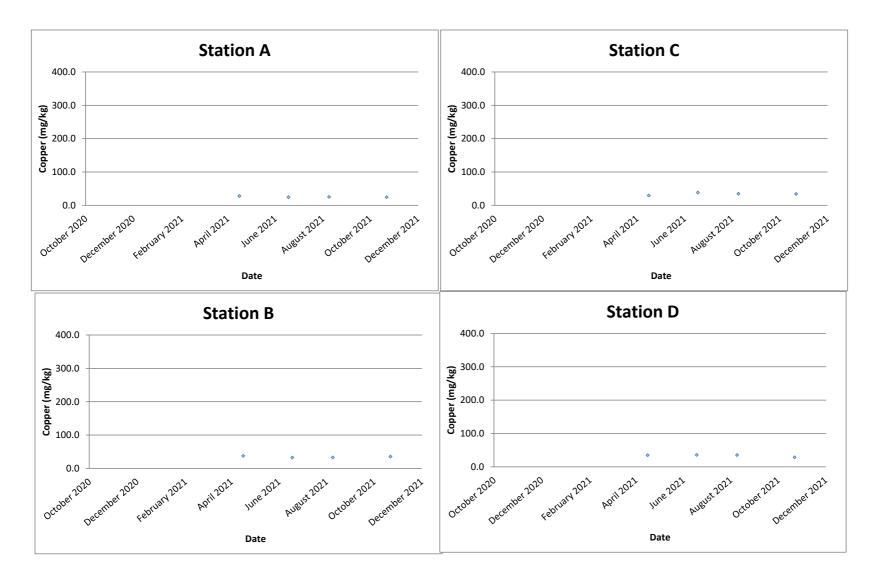
Cadmium (mg/kg)

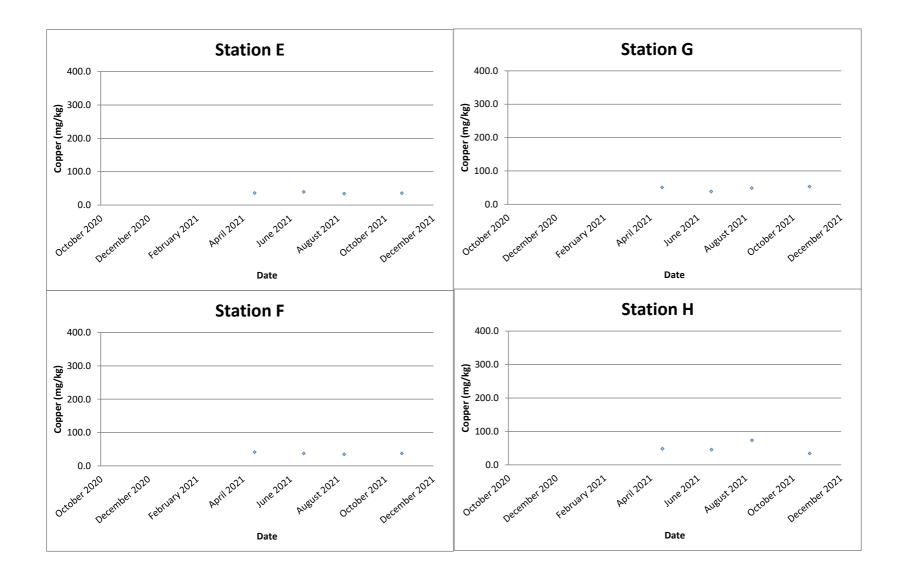

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

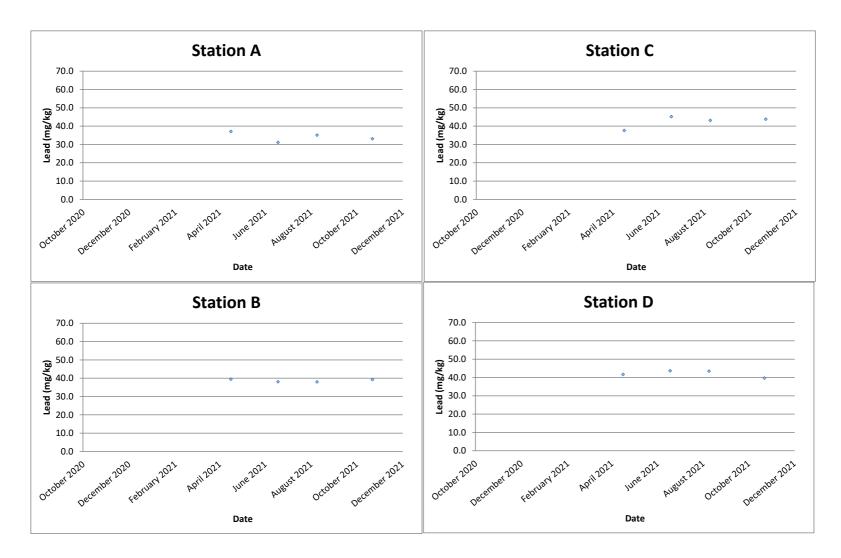
Cadmium (mg/kg)

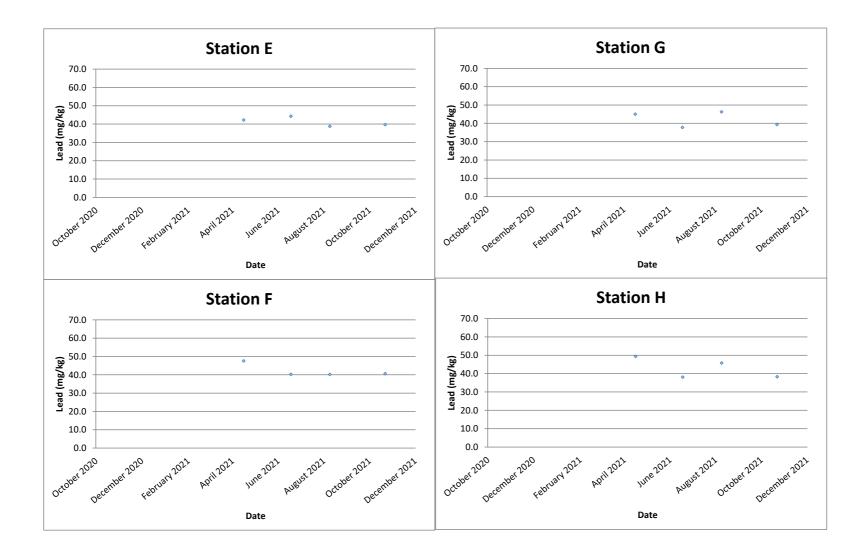


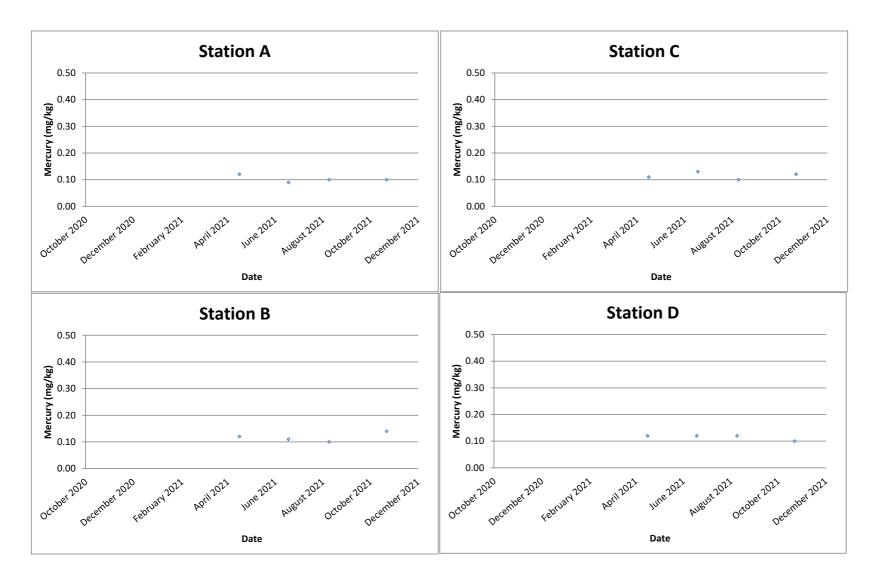
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

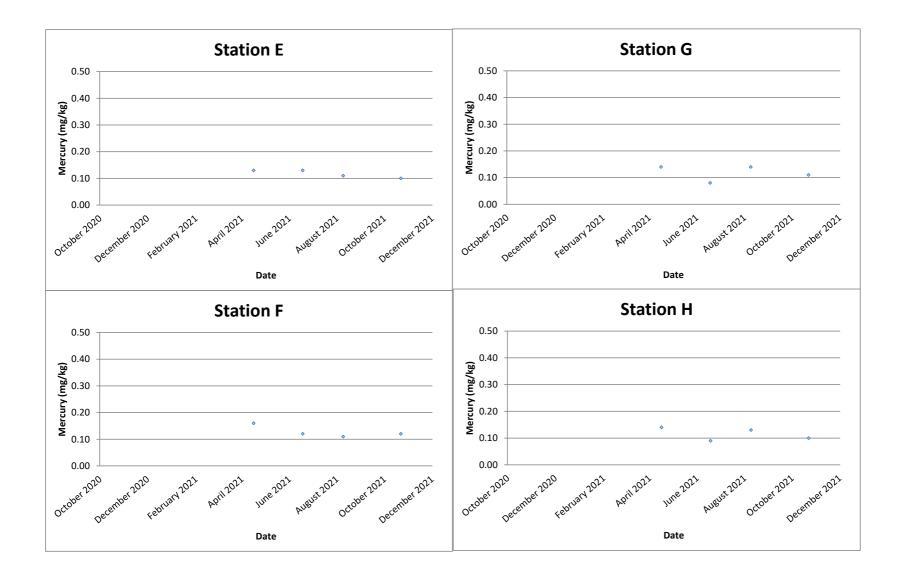

Chromium (mg/kg)

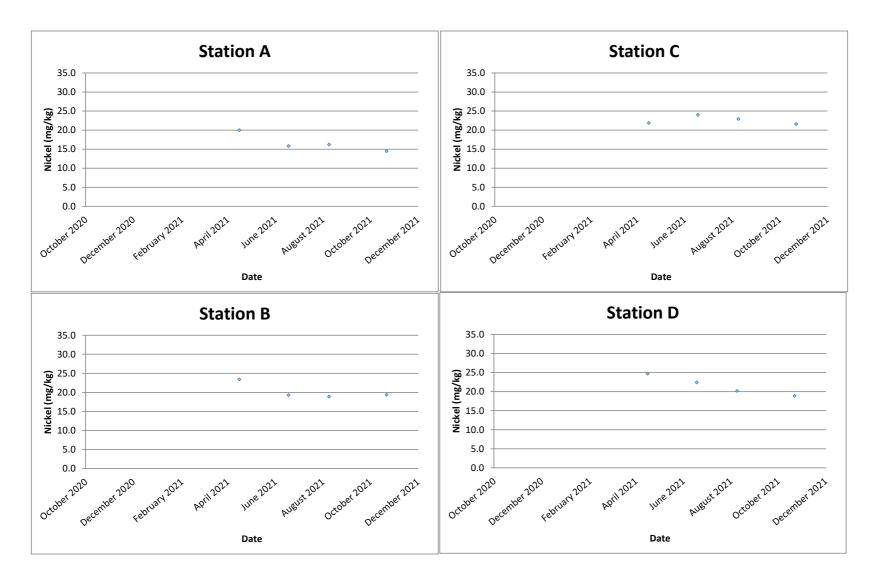

Chromium (mg/kg)

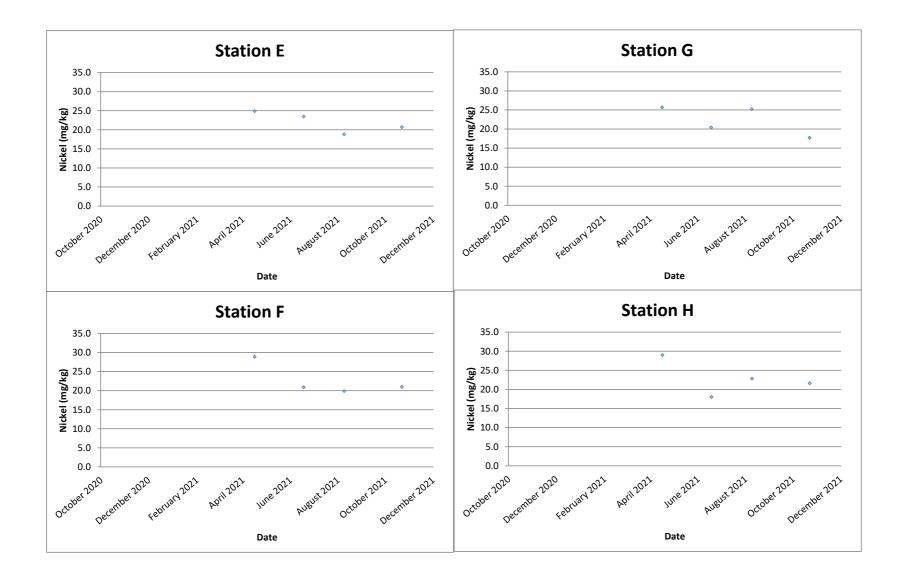

Copper (mg/kg)

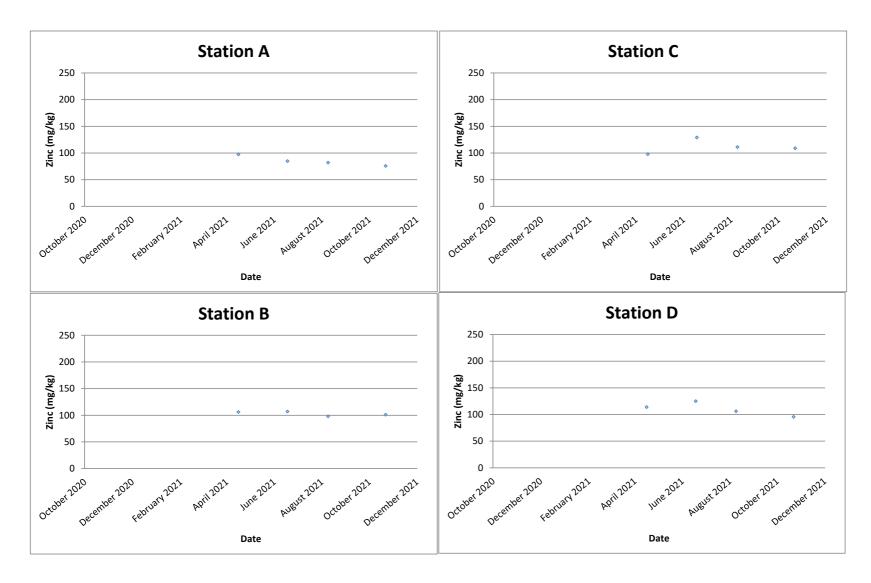

Copper (mg/kg)

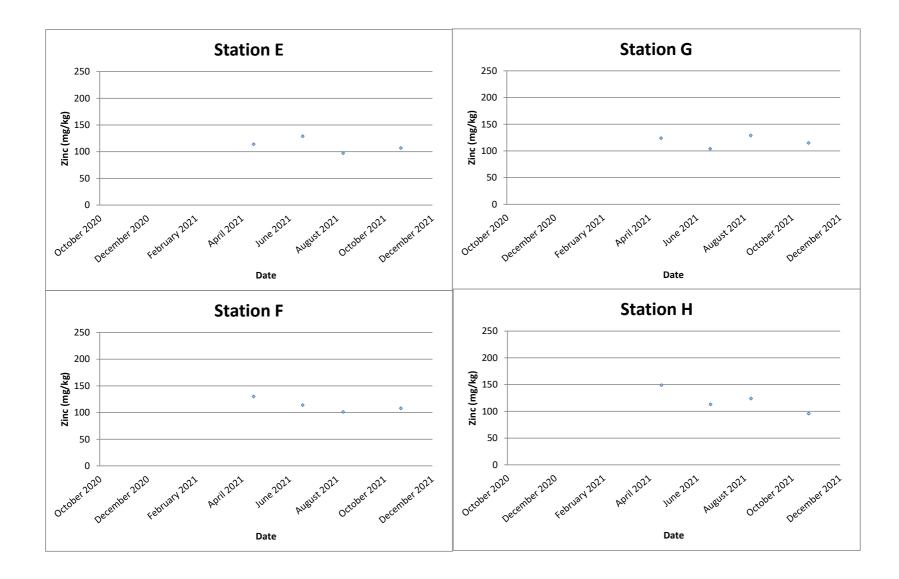

Lead (mg/kg)

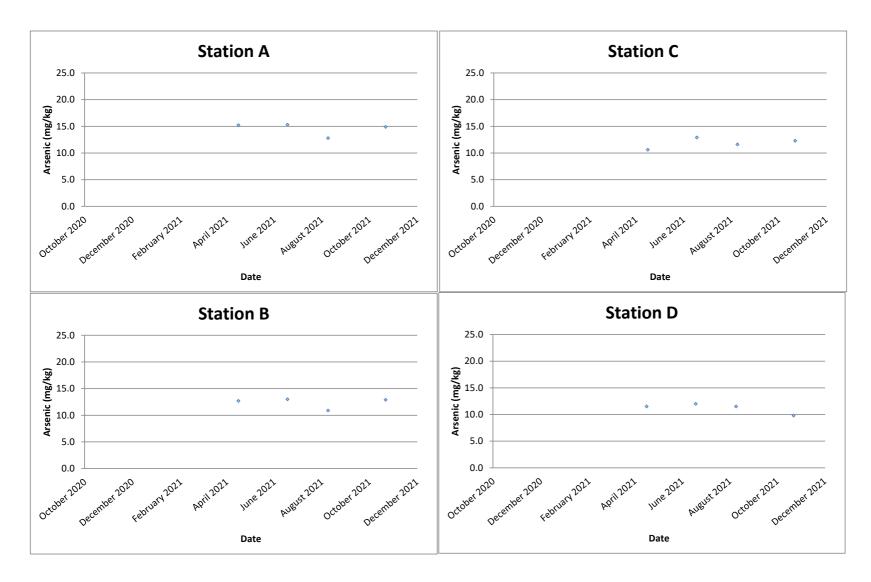

Lead (mg/kg)

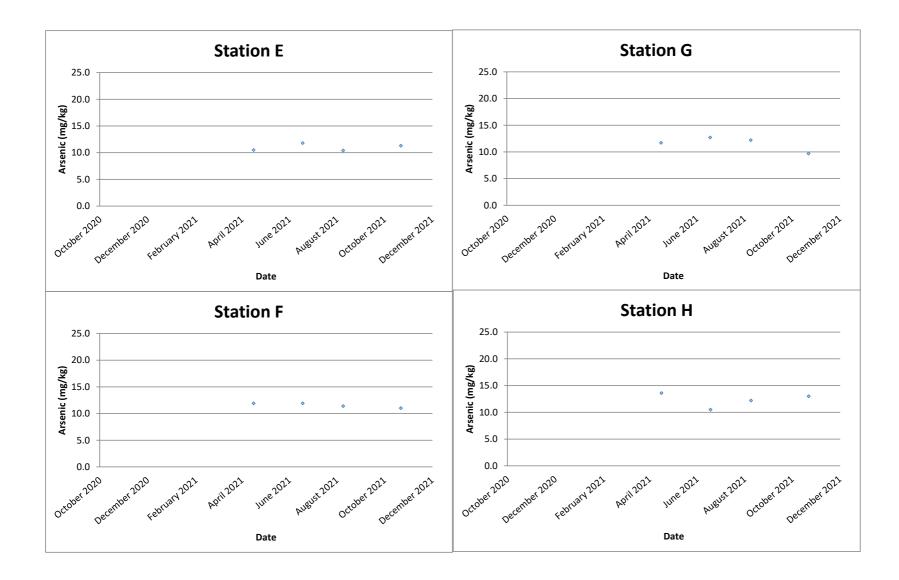

Mercury (mg/kg)

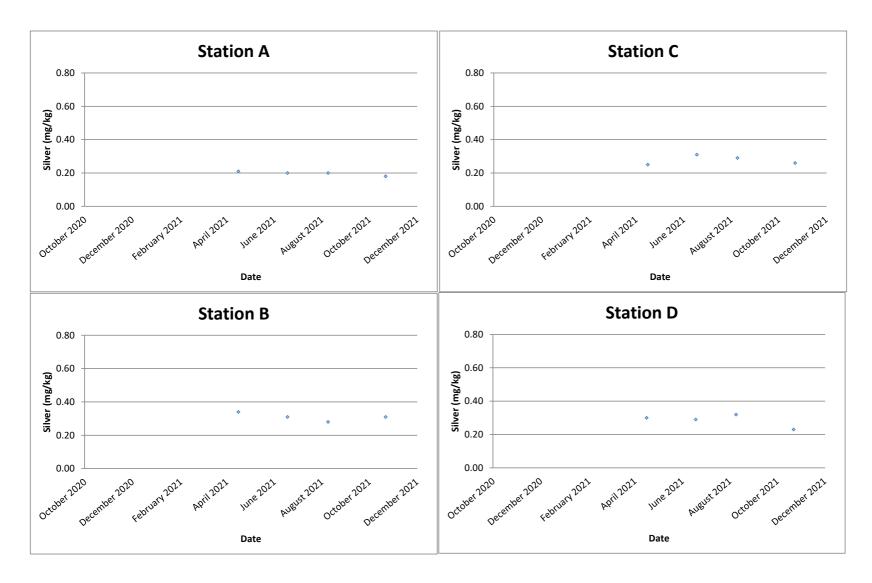

Mercury (mg/kg)

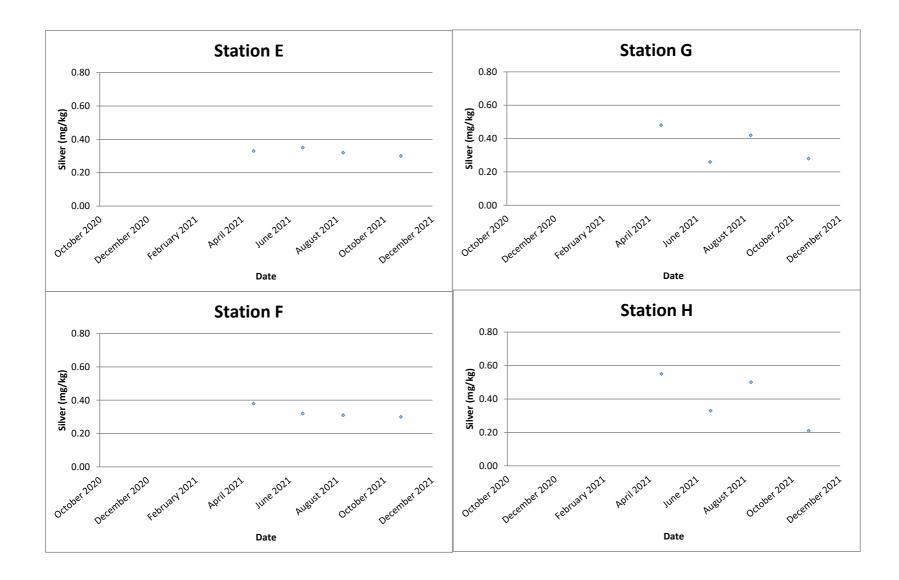

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix I

Benthic Survey Report

Benthic Survey Report (22 October 2021)

Abundance

A total of 298 benthic organisms was recorded from the eight monitoring stations during October 2021 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data; and to August 2021 results (**Figure 1**). The current decrease in overall abundance may be attributed to the decrease in *Capitella* and *Nephtys* abundance which could have have been due to the concurrent decrease in total organic carbon of the sediments relative to August 2021 data. As shown in several studies, distribution of Capitella populations is restricted to organically enriched areas as a result of a physiological requirement for sediment with high levels of organic matter for their normal growth (Tutsumi, et al 1990). Same as previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.59; F-crit = 1.59; p-value = 2.40E-09; $\alpha = 0.05$).

In terms of spatial distribution, the lowest abundance of 19 ind. was recorded in the impact station, Station D, while the highest (68 ind.) was noted in the reference station, Station A (**Figure 2**). Total macrobenthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.00; F-crit = 2.06; P-value = 0.005; α = 0.05).

Biomass

The total wet biomass recorded in the eight monitoring stations was 6.61 g with the highest biomass recorded in the reference station, Station G (2.59 g) while the lowest biomass was observed in the reference station, Station H (0.19 g). Relative to the August 2021 period, a general decrease in biomass was observed during the current monitoring period (**Figure 3**). The decrease might be attributed to the parallel decrease in abundance of benthic organisms, i.e. capitellids and nephtyids.

Taxonomic Composition

A total of six phyla comprising of 25 families and about 30 genera were identified. During the current monitoring period, the annelids (64.43%) dominated the macrobenthic assemblage followed by the molluscs (11.74%), and arthropods (11.41%) while the group with the lowest dominance were the chordates (0.34%) (**Figure 4**). Relative to August 2021 community assemblage, current results showed similar annelid-dominated community.

This shift in community assemblage with shift in season was also observed during the previous monitoring years.

Diversity

Benthic diversity index (H') in the impact stations ranged from 1.74 to 2.41. In the reference stations, H' values ranged from 1.91 to 2.55. Impact stations remained to have relatively higher diversity values compared to reference stations. In terms of evenness index (J) values, current monitoring results showed

that both the impact Stations C and D were able to maintain high evenness index. Current monitoring results indicated an overall increase in diversity and evenness values from the baseline survey condition.

Summary Tables

Abundance and biomass of macrobenthic organisms are shown in **Tables 1** and **2**, respectively. Data summary for different monitoring periods are presented in **Tables 3** to **7**. Representative photos of assemblages and specimen are shown in the last pages of this benthic survey report.

Figures

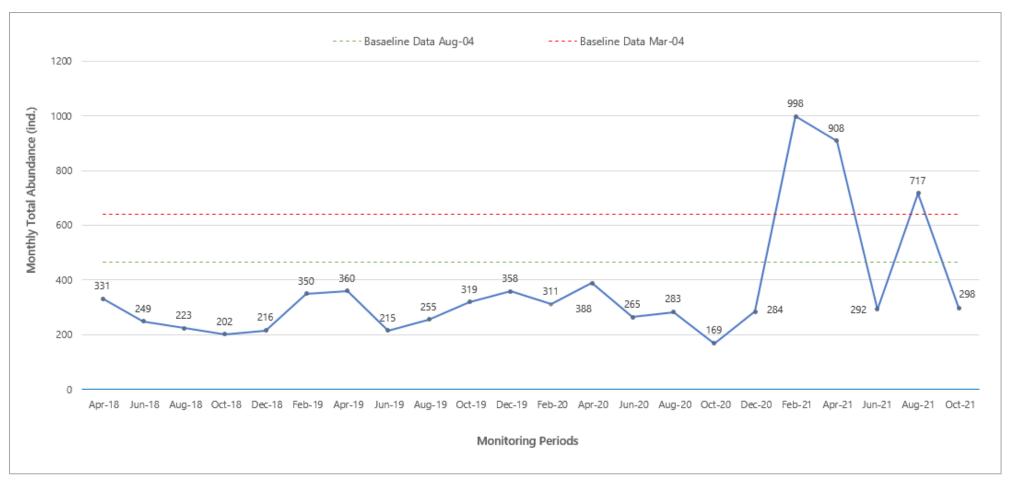


Figure 1: Monthly total abundance (ind.) of benthic organisms across monitoring periods

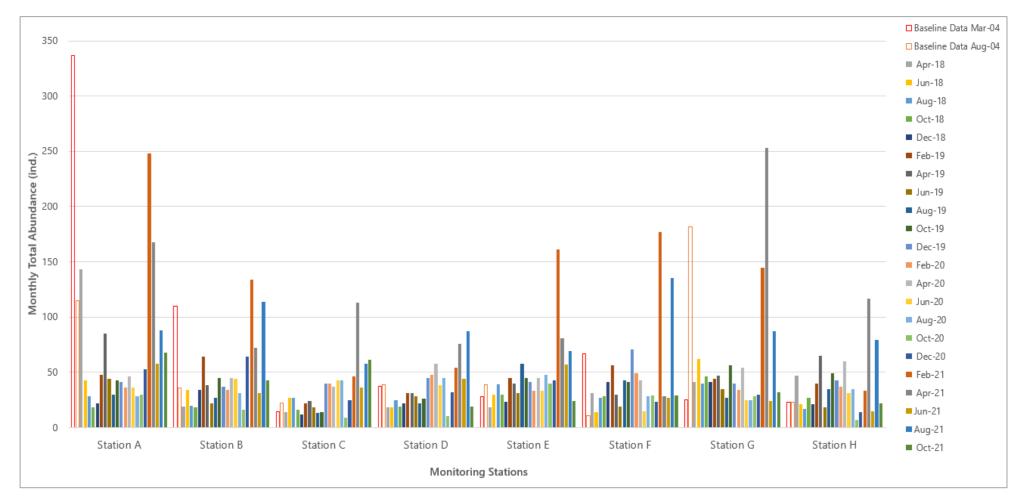


Figure 2: Monthly total abundance (ind.) of benthic organisms across monitoring stations

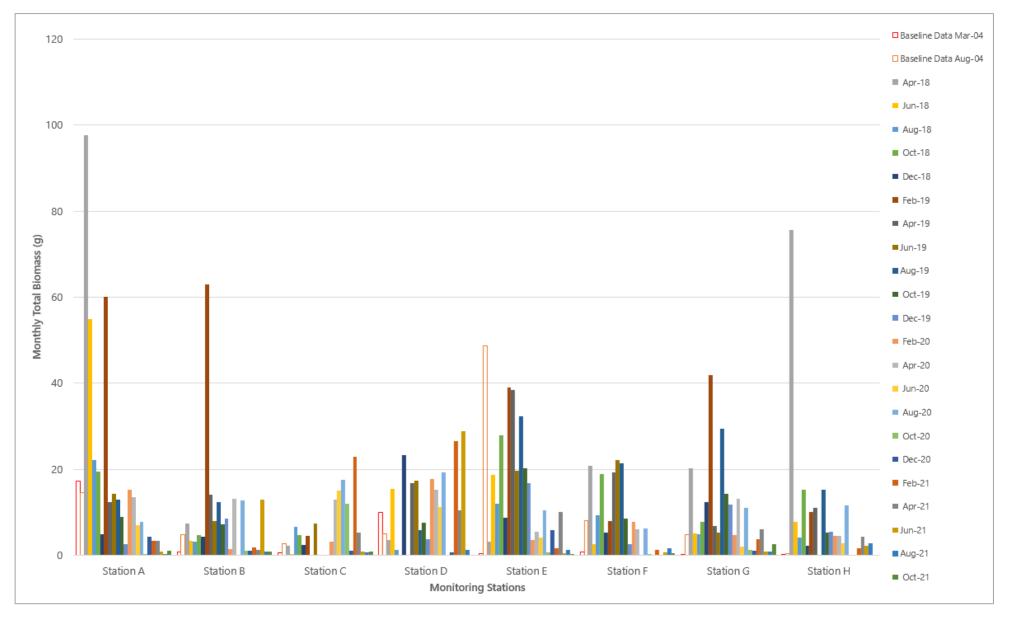


Figure 3: Monthly total biomass (g) of benthic organisms across monitoring stations

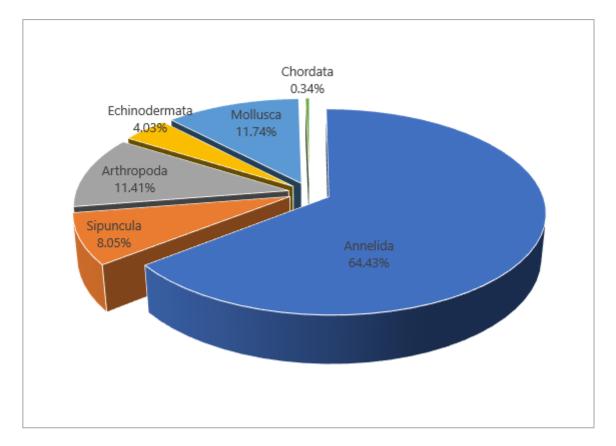


Figure 4: Percent composition of benthic organisms

Data Summaries

Table 1: Abundance (ind.) of macrobenthic communities in the eight monitoring stations, 22 October 2021

Dhadaaa	Class	Orales	Family	Comme		Monitoring Stations							
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	н	
Annelida	Polychaeta	-	Opheliidae	c.f. Ophelia							1		
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	13	4	14		6	2	4	8	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella capitata	10	3	9	3	5	3	4		
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	3						4		
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								2	
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce			4					1	
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)		2				2			
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	10	5	5	3	2	5	3	2	
Annelida	Polychaeta	Phyllodocida	Aphroditidae	Laetmonice						1			
Annelida	Polychaeta	Phyllodocida	Nereididae	Ceratonereis	2								
Annelida	Polychaeta	Phyllodocida	Nereididae	Neanthes	2		5	2			2		
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	2	2				2			
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	1	7	4	2		1	1		
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus			3		1	2			
Annelida	Polychaeta	Terebellida	Pectinariidae	Lagis		3							
Annelida	Polychaeta	Terebellida	Sternaspidae	Sternaspis scutata		2	2			1			
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus			1						
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax	1						1	1	
Arthropoda	Crustacea	Decapoda	Goneplacidae	Scalopidia (S. spinosipes)			1						
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	7								
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	2	5	3		2		2	3	
Arthropoda	Malacostraca	Cumacea	Diastylidae	c.f. Diastylis			1	4					
Chordata	Actinopterygii	Perciformes	Gobiidae	Goby		1							
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus		1		5	4	2			
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula		1							

Mollusca	Bivalvia	Myida	Dreissenidae	Mytilopsis	1	2					2
Mollusca	Bivalvia	Ostreoida	Ostreidae	Ostrea	1						
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	5	2	2		5	3	
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)		3	1	1	1	4	1
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	8		6	3	2	3	2

Table 2: Biomass (g) of macrobenthic communities in the eight monitoring stations, 22 October 2021

Dhuduur	Chara	Orden	Family.	6			М	onitoring	g Stations	5		
Phylum	Class	Order	Family	Genus	Α	В	С	D	E	F	G	н
Annelida	Polychaeta	-	Opheliidae	c.f. Ophelia							0.0989	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.0237	0.006	0.0176		0.0263	0.0094	0.0065	0.0109
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella capitata	0.0723	0.033	0.048	0.0329	0.0315	0.0088	0.0056	
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0.013						0.0044	
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								0.0211
Annelida	Polychaeta	Errantia	Phyllodocidae	Phyllodoce			0.017					0.0057
Annelida	Polychaeta	Nereidida	Nephtyidae	Aglaophamus (A. dibranchis)		0.0044				0.008		
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.0508	0.0325	0.0729	0.0368	0.0264	0.0244	0.0459	0.0374
Annelida	Polychaeta	Phyllodocida	Aphroditidae	Laetmonice						0.0541		
Annelida	Polychaeta	Phyllodocida	Nereididae	Ceratonereis	0.0007							
Annelida	Polychaeta	Phyllodocida	Nereididae	Neanthes	0.0402		0.0089	0.0002			0.0338	
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0.0128	0.026				0.0077		
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0.0142	0.1391	0.1147	0.0337		0.0725	0.0511	
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus			0.0206		0.0092	0.0286		
Annelida	Polychaeta	Terebellida	Pectinariidae	Lagis		0.0091						
Annelida	Polychaeta	Terebellida	Sternaspidae	Sternaspis scutata		0.0271	0.0468			0.0103		
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus			0.0622					
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax	0.0766						0.0237	0.0653

Arthropoda	Crustacea	Decapoda	Goneplacidae	Scalopidia (S. spinosipes)			0.2841					
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.0782							
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0.0002	0.0041	0.0042		0.0031		0.019	0.0026
Arthropoda	Malacostraca	Cumacea	Diastylidae	c.f. Diastylis			0.0001	0.0015				
Chordata	Actinopterygii	Perciformes	Gobiidae	Goby		0.1455						
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus		0.0002		0.0916	0.0931	0.0656		
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula		0.0105						
Mollusca	Bivalvia	Myida	Dreissenidae	Mytilopsis	0.0137	0.0454						0.0202
Mollusca	Bivalvia	Ostreoida	Ostreidae	Ostrea	0.5745							
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	0.0824	0.3694	0.1501			0.181	0.0439	
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)		0.0398	0.0046		0.0088	0.0304	1.9272	0.0147
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0.0322		0.0207		0.0529	0.0281	0.3311	0.012

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	68	1.09	15	2.36	0.87
В	43	0.89	15	2.55	0.94
C*	61	0.87	15	2.41	0.89
D*	19	0.20	6	1.74	0.97
E	24	0.25	8	1.91	0.92
F	29	0.53	13	2.41	0.94
G	32	2.59	12	2.38	0.96
Н	22	0.19	9	1.93	0.88

Table 3: Summary of Benthic Survey Data, October 2021

*impact sites

Table 4: Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

*impact sites

Table 5: Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.3
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

*impact sites

Таха	Mar-04	Aug-04	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	80.19	73.29	54.99	70.28	0.47	64.31	66.14	59.78	60.77	56.44	69.06	63.25	51.48	50.35
Sipuncula	0.78	0.21	0.00	0.00	0.00	1.57	1.25	0.00	1.29	0.52	1.13	0.35	1.78	1.06
Arthropoda	11.23	18.80	20.23	10.83	4.65	9.80	19.75	14.53	13.83	28.87	8.30	13.43	18.93	20.77
Echinodermata	0.62	3.63	3.42	4.72	0.47	5.10	3.13	1.68	1.61	0.77	2.26	3.53	2.96	2.82
Cnidaria	1.72	0.43	0.85	0.00	1.86	0.39	0.00	0.84	0.32	0.26	0.75	0.00	1.18	0.00
Mollusca	5.46	3.42	19.94	13.33	0.47	17.25	8.15	22.35	19.94	11.60	15.85	15.90	18.93	24.65
Chordata	0.00	0.21	0.28	0.56	0.47	1.18	0.94	0.00	0.32	0.52	1.13	1.41	0.00	0.35
Nemertea	0.00	0.00	0.28	0.28	98.60	0.39	0.63	0.84	1.93	1.03	1.51	2.12	4.73	0.00

Table 6: Taxonomic Composition (%) of Benthic Survey

Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21
Annelida	22.75	31.72	73.63	78.52	64.43
Sipuncula	0.70	0.00	0.34	0.00	8.05
Arthropoda	70.14	55.95	10.27	9.90	11.41
Echinodermata	0.30	1.43	4.11	1.39	4.03
Cnidaria	0.00	0.00	0.00	0.00	0.00
Mollusca	5.81	10.90	11.64	10.04	11.74
Chordata	0.10	0.00	0.00	0.14	0.34
Nemertea	0.00	0.00	0.00	0.00	0.00

Таха	Mar-04	Aug-04	Feb-19	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	514	343	193	253	124	164	211	214	189	219	183	179	87	143
Sipuncula	5	1	0	0	0	4	4	0	4	2	3	1	3	3
Arthropoda	72	88	71	39	17	25	63	52	43	112	22	38	32	59
Echinodermata	4	17	12	17	10	13	10	6	5	3	6	10	5	8
Cnidaria	11	2	3	0	2	1	0	3	1	1	2	0	2	0
Mollusca	35	16	70	48	59	44	26	80	62	45	42	45	32	70
Chordata	0	1	1	2	2	3	3	0	1	2	3	4	0	1
Nemertea	0	0	1	1	1	1	2	3	6	4	4	6	8	0

Table 7: Taxonomic Composition (Abundance) of Benthic Survey

Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21
Annelida	227	288	215	563	192
Sipuncula	7	0	1	0	24
Arthropoda	700	508	30	71	34
Echinodermata	3	13	12	10	12
Cnidaria	0	0	0	0	0
Mollusca	58	99	34	72	35
Chordata	1	0	0	1	1
Nemertea	2	0	0	0	0

Photos of Macrobenthic Assemblages

Station A

Station B

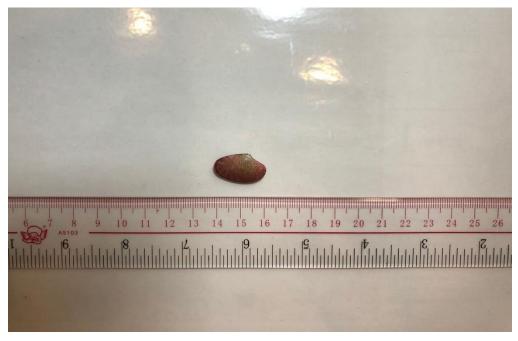


Station C

Station D

Station E

Station F


Station G

Station H

Photos of Representative Taxa Identified

Paphia undulata

Sipunculus

c.f. Ophelia

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix K

Environmental Complaints Log

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	cause a malodour and was smelled as far as the	activity on 28 th November 2019. Due to the possibility of having unpleasant gases

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•			
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	e Managei	ment			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0646A

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented